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Abstract. In this article we discuss, with a combination of analytical and numerical results, 
a canonical set of differential equations with a robust heteroclinic cycle, subjected to time-
periodic forcing. We find that three distinct dynamical regimes exist, depending on the ratio 
of the contracting and expanding eigenvalues at the equilibria on the heteroclinic cycle which 
exists in the absence of forcing. By reducing the dynamics to that of a two dimensional map 
we show how frequency locking and complex dynamics arise. 

1. Introduction 
Nonlinear differential equations used to model competitive or cooperative interactions are widely 
recognised to be capable of generating complex dynamics. In many cases, such differential 
equations also contain subspaces of the solution phase space that are flow-invariant. Such 
invariant subspaces arise, for example, in the presence of symmetry or through modelling 
assumptions. The existence of invariant subspaces further produces generic, and ‘natural’ kinds 
of dynamics that are not at all generic in the absence of invariant subspaces. One of these is 
heteroclinic cycling, which arises robustly in the presence of invariant subspaces. 

A heteroclinic cycle is a collection of flow-invariant sets {ξ1, . . . , ξn} and connecting orbits 
{γ1(t), . . . , γn(t)} whose α- and ω-limit sets satisfy α(γi) = ξi and ω(γi) = ξ(i mod n)+1. A 
heteroclinic cycle is said to be robust if, for every 1 ≤ i ≤ n there exists an invariant subspace 
Pi such that 

• the connecting orbit γi is contained in Pi, 

•	 ξ(i mod n)+1 is a sink within Pi. 

The flow-invariant sets ξ1, . . . , ξn may of course be periodic orbits or chaotic invariant sets. 
For simplicity we will here consider the ξi to be equilibria, and the invariant subspace Pi to 
be two-dimensional. The presence of invariant subspaces gives rise to a natural division of 
the eigenvalues of the Jacobian matrix at ξi into four classes: radial eigenvalues rij are those 
whose eigenvector lies in Li ≡ Pi−1 ∩ Pi; expanding eigenvalues eij > 0 correspond to Pi \ Li; 
contracting eigenvalues −cij < 0 correspond to Pi−1 \ Li. All other eigenvalues are denoted 
transverse (tij). Stability of the robust heteroclinic cycle (RHC) can be ensured when the local 
contraction dominates the expansion near each equilibrium, as given by the following result due 
to Krupa and Melbourne [1]. 
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Theorem. Asymptotic stability is guaranteed if


n n 

ti < 0 ∀ i and min(ci, ei − ti) > ei 

i=1 i=1 

where, at ξi, ti = maxj {Re tij} < 0 and ci = minj {Re cij } > 0 are the real parts of the weakest 
transverse and contracting eigenvalues, and ei = maxj{Re eij } > 0 is the real part of the 
strongest expanding eigenvalue. 

It should be noted that in many cases necessary and sufficient conditions for asymptotic 
stability differ from the above inequalities [2, 3]. Moreover, useful notions of stability that are 
weaker than asymptotic stability exist, for example ‘essential asymptotic stability’ [4, 5]. 

Turning to applications, there is a substantial literature on RHCs that has developed 
principally in two areas. The first of these applies methods developed in equivariant bifurcation 
theory [6, 7, 5] to fluid mechanical problems [8] and coupled oscillator networks [9, 10]. The 
second part of the literature is in evolutionary game theory and mathematical biology, including 
population dynamics [11, 12] and neuroscience [13]. The review article by M. Krupa [14] contains 
further details and many literature references. 

In this article we examine the effect of an external time-periodic forcing on the dynamics 
near a RHC. While it is well-known that a constant symmetry-breaking perturbation typically 
breaks the heteroclinic cycle and generates a single periodic orbit which lies close to the remaining 
invariant subspaces, the effect of an external time-periodic forcing term has not previously been 
systematically studied. In this article we continue our earlier analysis [15] and identify and 
explain the existence of three distinct regimes as the eigenvalue ratio δ ≡ c/e > 1 decreases 
towards unity. Our study is crucial to advancing the detailed understanding of the dynamics 
that arises when RHCs are coupled together [16, 17], since a second RHC acts similarly to an 
external periodic forcing. A full paper containing details of the results is currently in preparation 
[18]. 

The remainder of this article is laid out as follows. Section 2 introduces the model dynamical 
system. In section 2.1 we describe the systematic reduction of the dynamics to those of a 
two-dimensional map. Section 3 describes the dynamics at large δ where frequency locking 
does not occur (referred to as region I), and at intermediate δ where frequency locking appears 
(region II). In section 4 we reduce our return map to the well-known continuous-time ODEs for 
the forced damped pendulum and hence explain the bistability between frequency locking and 
quasiperiodic dynamics that arises when δ is very close to unity (region III). 

2. Canonical example and ODE dynamics 
Consider the vector field in R3 given by the differential equations 

ẋ = x(1 − X − cy + ez) + γ(1 − x) sin2 ωt, (1) 

ẏ = y(1 − X − cz + ex), (2) 

ż = z(1 − X − cx + ey), (3) 

where X ≡ x + y + z and, for γ = 0, c, e > 0 are the absolute values of the contracting and 
expanding eigenvalues at the equilibrium points ξ1 ≡ (1, 0, 0), ξ2 ≡ (0, 1, 0) and ξ3 ≡ (0, 0, 1) 
which lie on a RHC. If c > e (i.e. δ > 1) then the above theorem due to Krupa and Melbourne 
implies that the RHC is asymptotically stable. System (1) - (3) with γ = 0 was analysed first 
by May and Leonard [19] as a model of competitive Lotka–Volterra type interactions between 
three populations. Independently [20], it was derived in the weakly nonlinear analysis of the 
Küppers–Lortz instability of convection rolls in rotating Rayleigh–Bénard convection. A proof 
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Figure 1. Robust heteroclinic cycle (thick dashed line) for (1) - (3) when γ = 0, and transverse 
planes Hi

in and Hi
out used in the return map construction for γ > 0. 

of the existence of the RHC in (1) - (3) when c, e > 0 was given by Guckenheimer and Holmes 
[21]. Space does not permit a complete description of the dynamics of (1) - (3), save to remark 
that if ce < 0 then additional equilibria exist that destroy the connecting orbits on the RHC. 

2.1. Return map 
When 0 < γ � 1 we analyse the dynamics by assuming that (after transients) trajectories 
continue to pass repeatedly through neighbourhoods of the three equilibria in turn, and converge 
to some (possibly chaotic) invariant set. The standard approach is to construct and analyse a 
Poincaré return map that gives the coordinates of successive intersections of a trajectory with 
a transverse surface, say H3 

in , near one of the equilibria, see figure 1. Between Hi
in and Hi

out 

we use the linearisation of (1) - (3) to integrate along trajectories and construct a ‘local map’. 
Between Hi

out and H(
in 
i mod 3)+1 we estimate the leading order behaviour of trajectories near 

the unstable manifold W u(ξi) and so construct a ‘global map’. In both cases we consider the 
perturbation amplitude γ to be asymptotically small, and we keep only the leading order terms 
in γ. Composition of local and global maps results in a return map defined (at leading order) 
on two variables: the x-coordinate on H3 

in and the time tn at which the trajectory hits H3 
in : 

xn+1 = x d + γµ2 (1 − a1 cos 2ωgn − b1 sin 2ωgn) + γf(xn, tn), (4) n 

ξ 
tn+1 = tn + µ3 − ξ log xn − γ (1 − a2 cos 2ωtn + b2 sin 2ωtn) , (5) 

2exn 

where we have kept terms up to O(
2 
γ) only, gn ≡ tn + µ3 − ξ1 log xn and d ≡ (c/e)3 . We 

further define the parameters ξ = (c + ce + e2)/e3 , a1 = c2/(c2 + 4ω2), a2 = e2/(e2 + 4ω2), 
b1 = 2cω/(c2 +4ω2) and b2 = 2eω/(e2 +4ω2). The global maps cannot be computed analytically 
and lead to the introduction of the unknown function f(xn, tn) into (4). For a suitable choice 
of f(xn, tn) [15] the dynamics of the return map agree quantitatively extremely well with those 
of the ODEs (1) - (3) over a wide range of the parameters c, e and γ; this is illustrated in 
figure 2. Figure 2 shows a sequence of intervals in ω in which stable, frequency-locked periodic 
orbits exist, separated by intervals of more complicated (quasiperiodic or chaotic) dynamics. In 
figure 2(a), it is interesting to note that for ω < 0.05, the periodic orbit undergoes a period
doubling bifurcation within each frequency-locking interval; this bifurcation behaviour occurs in 
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Figure 2. (a) Period T of trajectories of the ODEs (1) - (3) returning to H3 
in , as a function of 

driving frequency ω. (b) Dynamics of the return map (4) - (5), where the ‘period’ is tn+1 − tn. 
Note the detailed agreement, including the regions of frequency locking in between complex 
dynamics (this corresponds to region II). c = 0.25, e = 0.2, γ = 10−6 . 

Figure 3. Period T of trajectories of the ODEs (1) - (3) returning to H3 
in , as a function of driving 

frequency ω. (a) c = 0.5 showing the disappearance of the intervals in ω of frequency locking 
at δ = 5/2 (region I); (b) c = 0.205 showing the emergence of bistability between frequency-
locking (slanted curve sections) and quasiperiodic dynamics (black regions), i.e. region III. Other 
parameters: e = 0.2, γ = 10−6 . 

the map (4) - (5) as well [15]. It is also interesting to note that the position of the frequency
locked periodic orbit (which corresponds to a fixed point in the map) coincides exactly with one 
of the extrema of the ranges of periods for oscillations in the regions of complicated dynamics. 
Figure 3 illustrates the ODE dynamics for larger and smaller values of c (regions I and III 
respectively); the map dynamics at these parameter values also agree quantitatively with the 
ODE dynamics. 

3. Regions I and II: complex dynamics and frequency locking 
The system (1) - (3) was investigated by Rabinovich et al. [22] who noted the existence of 
intervals in ω containing frequency-locked periodic orbits, and presented an ad hoc construction 
of a circle map that was claimed to capture the system dynamics. In contrast, our results [15] 
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Figure 4. Plots of tn+1 mod π/ω against tn mod π/ω for the ODEs (1) - (3). (a) One-
dimensional circle-map-like dynamics for c = 0.25, ω = 0.098 near the end of a frequency-locking 
interval in ω (corresponding to region II, same values of c and e as in figure 2); (b) complex 
dynamics for c = 1.5, ω = 0.097 (corresponding to region I). Other parameters: e = 0.2, 
γ = 10−6 . 

are based on a careful asymptotic reduction of the ODEs to the two-dimensional return map 
above. As discussed in [15], and illustrated in figure 4, numerical results obtained both for the 
ODEs (1) - (3) and for the map (4) - (5) indicate that the dynamics might be that of a circle 
map when δ is moderately close to unity (figure 4a), but is certainly not circle-map-like when 
δ is large (figure 4b). We distinguish between the region of complex dynamics that exists when 
δ � 1 (region I) and the range of δ for which the dynamics contains substantial intervals of 
frequency-locking and therefore might be circle-map-like (referred to as region II). To determine 
whether or not the asymptotic dynamics is one-dimensional, we appeal to the ‘Annulus Principle’ 
due to Afraimovich et al. [23], reported also in Afraimovich and Hsu [24]: 

Theorem (Annulus Principle). Suppose that the 2D map 

xn+1 = F (xn, tn), tn+1 = tn + G(xn, tn) mod 2π, 

maps an annulus A ≡ {(x, t) : c1 < x < c2} into itself, and also satisfies the four conditions 

|(1 + Gt)
−1 | < ∞, 1 − |(1 + Gt)

−1 ||Fx| > 2|(1 + Gt)
−1 | |Gx||Ft|, (6) 

|Fx| < 1, 1 + |(1 + Gt)
−1 ||Fx| < 2|(1 + Gt)

−1 |, (7) 

then the maximal attractor in A is an invariant circle which is the graph of a smooth 
2π–periodic function x = h(t). 

A direct analytic computation of the range of parameters c, e, ω under which the Annulus 
Principle holds for (4) - (5) becomes extremely messy. Instead we resort to a simplification 
of (4) - (5) that should be valid for δ near unity and ω � 1 and which preserves the essential 
qualitative features of the dynamics. With these assumptions, we obtain the simplified map 

d xn+1 = x + γµ2[1 −√
a2 cos(2ωtn)], (8) n 

tn+1 = tn + µ3 − ξ log xn+1 mod π/ω. (9) 
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Figure 5. Dynamics in region III. (a) Period T of frequency-locked and quasiperiodic orbits 
in (8) - (9) returning to H3 

in , as a function of driving frequency ω. c = 0.2001, e = 0.2, 
γ = 2× 10−5 . (b) Dynamics of iterates of (4) - (5) in the (t, x) plane showing stable coexistence 
of frequency locked state (stable focus) and the invariant curve. c = 0.20215, e = 0.2, 
ω = 0.0439772, γ = 10−5 . 

Such a simplified map was discussed by Afraimovich, Hsu and Lin [25] as a model for the 
dynamics of a time-periodically forced system that is very similar to ours (the change of variable 
yn = xn

d brings the simplified system (8) - (9) into their form). These authors refer to (8) - (9) as 
a ‘dissipative separatrix map’ since it corresponds closely to well-known and much-studied return 
maps near separatrices in perturbed Hamiltonian systems when d = 1. It is straightforward to 
check the inequalities in (6) - (7) for the dissipative separatrix map (8) - (9). Intriguingly, it 
turns out that the first of the four inequalities, (6a), is not satisfied in the limit δ 1+ .→

The qualitative nature of the conclusion is surprising; an attracting invariant curve x = h(t) 
(and therefore one-dimensional dynamics) exists (numerically) for large enough δ > 1, but we 
cannot guarantee that the dynamics remains one-dimensional as δ 1+ . Further numerical →
results are consistent with this conclusion: for δ just above unity additional stable invariant sets 
exist - this region of bistability defines region III. 

4. Region III: bistability between frequency locking and quasiperiodicity. 
For δ close to unity we observe that there is bistability between frequency locking and 
quasiperiodic motion (region III), see figure 2(b). As δ 1+ this bistability becomes much →
more pronounced, see figure 5(a). The typical dynamics of iterates of (8) - (9) in the (t, x) phase 
space, near one of the frequencies ω where the frequency-locked state has a period close to that 
of the quasiperiodic dynamics (i.e. T ≈ 119 in figure 5a) are shown in figure 5(b). Two fixed 
points exist away from the invariant curve; one saddle point and one stable focus. As usual, 
the stable manifold of the saddle provides the boundary dividing the basin of attraction of the 
invariant curve from that of the stable focus. 

In the double limit in which 0 < � := δ − 1 and γ � 1 we find that (8) - (9) can 1 �
be simplified to a second-order ODE for a rescaled time variable s ∼ tn+1 − tn; we obtain the 
canonical equation for a forced damped pendulum [26, 27] 

s̈ + η−1 ṡ −√
a2 cos s = λ, 

where η and λ are combinations of the parameters in (8) - (9). If λ > 1 the only invariant set | |
is a stable periodic orbit (the invariant curve corresponding to quasiperiodic dynamics here). If 



|λ| < 1 and η−1 is large (i.e. at large � > 0) then only equilibria (frequency-locked solutions) 
exist; thus there are intervals in ω within which frequency locking occurs, but where the periodic 
orbit does not, see figure 2; this is region II. If |λ| < 1 and η−1 is small (i.e. at small �) then 
equilibria coexist with the periodic orbit, as in figure 5; this bistability explains region III. 

5. Summary 
We have analysed the dynamics near a time-periodically forced robust heteroclinic cycle. There 
are three distinct regions for the dynamics; in region I the eigenvalue ratio δ � 1 and frequency
locking does not occur. In region II, for intermediate values of δ, the 2D map can be reduced to 
a (non-invertible) circle map and frequency locking intervals exist. In region III where δ is close 
to unity, bistability exists and hence the dynamics in no longer that of a circle map: instead the 
2D map can be reduced to the continuous time dynamics of a forced damped pendulum. 

Since the forcing term in (1) - (3) has no particular nongeneric features we conjecture that 
the use of other forcing terms would lead to qualitatively similar dynamical regimes. Work in 
progress also indicates that similar dynamical regimes exist in systems of coupled RHCs. 
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