

Citation for published version: Sunderland, PT, Woon, ECY, Dhami, A, Bergin, AB, Mahon, MF, Wood, PJ, Jones, LA, Tully, SR, Lloyd, MD, Thompson, AS, Javaid, H, Martin, NMB & Threadgill, MD 2011, '5-benzamidoisoquinolin-1-ones and 5-(carboxyalkyl)isoquinolin-1-ones as isoform-selective inhibitors of poly(ADP-ribose) polymerase 2 (PARP-2)', Journal of Medicinal Chemistry, vol. 54, no. 7, pp. 2049-2059. https://doi.org/10.1021/jm1010918

DOI: 10.1021/jm1010918

Publication date: 2011

Link to publication

©ACS."This document is the Accepted Manuscript version of a Published Work that appeared in final form in the Journal of Medicinal Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher.

To access the final edited and published work see http://dx.doi.org/10.1021/jm1010918

University of Bath

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately and investigate your claim.

$\label{eq:solution} 5-Benzamidois oquinolin-1-ones \ and \ 5-(\ensuremath{\omega}-carboxyalkyl) is oquinolin-1-ones \ as \ is of orm-selective inhibitors of PARP-2$

Peter T. Sunderland,^a Esther C. Y. Woon,^{a,†} Archana Dhami,^a Aoife B. Bergin,^{a,‡} Mary F. Mahon,^b Pauline J. Wood,^a Louise A. Jones,^c Sophie R. Tully,^c Matthew D. Lloyd,^a Andrew S. Thompson,^a Hashim Javaid,^c Niall M. B. Martin^c and Michael D. Threadgill^{a,*}

^aMedicinal Chemistry, Department of Pharmacy & Pharmacology, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

^bCrystallography Unit, Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.

^cKuDOS Pharmaceuticals Ltd., 410 Cambridge Science Park, Milton Road, Cambridge CB4 0PE, U.K.

[†]Present address: Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, UK

[‡]Present address: Department of Pharmacy & Pharmaceutical Sciences, Trinity College Dublin, College Green, Dublin 2, Ireland.

e-mail: m.d.threadgill@bath.ac.uk

Supplementary Information

Experimental Section	S2
Spectroscopic data for compounds described in Experimental Section	S 6
Cytotoxicity assay and dose-response curves	S 8
Elemental microanalysis data	S14
References for supplementary information	S15

Experimental Section

5-Benzamidoisoquinolin-1-one (**15a**). Compound **1** (50 mg, 0.25 mmol) was stirred with PhCOCl (39 mg, 0.28 mmol) in pyridine (2.0 mL) at 90°C for 16 h. Evaporation and recrystallisation (EtOAc) gave **15a** (57 mg, 86%) as an off-white solid: mp >310°C (decomp.); ¹H NMR ((CD₃)₂SO) δ 6.52 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.4, 5.5 Hz, 3-H), 7.50-7.61 (4 H, m, 3',4',5',7-H₄), 7.75 (1 H, d, *J* = 7.6 Hz, 6-H), 8.04 (2 H, d, *J* = 7.0 Hz, 2',6'-H₂), 8.13 (1 H, d, *J* = 7.8 Hz, 8-H), 10.33 (1 H, s, PhCONH), 11.32 (1 H, d, *J* = 4.7 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 100.6, 124.8, 125.9, 127.0, 127.8 (C₂), 128.5 (C₂), 128.9, 130.5, 131.8, 133.2, 134.1, 134.2, 161.6, 166.0; MS (ES⁺) *m/z* 287.0801 (M + Na) (C₁₆H₁₂N₂NaO₂ requires 287.0796); 265.0952 (M + H) (C₁₆H₁₃N₂O₂ requires 265.0977); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Methylbenzamido)isoquinolin-1-one (15b). Compound **1** was treated with 4-methylbenzoyl chloride, as for the synthesis of **15a**, to give **15b** (82%) as an off-white solid: mp 297-300°C; ¹H NMR ((CD₃)₂SO) δ 2.40 (3 H, s, Me), 6.50 (1 H, d, *J* = 7.0 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.2, 6.7 Hz, 3-H), 7.35 (2 H, d, *J* = 7.6 Hz, 3',5'-H₂), 7.48 (1 H, t, *J* = 7.8 Hz, 7-H), 7.51 (1 H, d, *J* = 8.2 Hz, 6-H), 7.72 (2 H, d, *J* = 7.6 Hz, 2',6'-H₂), 8.11 (1 H, d, *J* = 8.2 Hz, 8-H), 10.25 (1 H, s, ArCONH), 11.31 (1 H, br s, NH); ¹³C NMR ((CD₃)₂SO) δ 21.0, 100.6, 124.7, 127.0, 127.8, 128.8, 129.0, 130.5, 131.3, 133.2, 134.2, 141.8, 161.6, 165.9; MS (ES⁺) *m*/*z* 301.0941 (M + Na) (C₁₇H₁₄N₂NaO₂ requires 301.0953); 279.1119 (M + H) (C₁₇H₁₅N₂O₂ requires 279.1134); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Nitrobenzamido)isoquinolin-1-one (15c). Compound **1** was treated with 4-nitrobenzoyl chloride, as for the synthesis of **15a**, to give **15c** (71%) as an orange solid: mp >190°C (decomp.); ¹H NMR ((CD₃)₂SO) δ 6.55 (1 H, d, *J* = 7.5 Hz, 4-H), 7.20 (1 H, dd, *J* = 7.2, 5.8 Hz, 3-H), 7.53 (1 H, t, *J* = 7.9 Hz, 7-H), 7.79 (1 H, d, *J* = 7.2 Hz, 6-H), 8.16 (1 H, d, *J* = 7.9 Hz, 8-H), 8.26 (2 H, d, *J* = 8.5 Hz, 3',5'-H), 8.40 (2 H, d, *J* = 8.5 Hz, 2',6'-H), 10.66 (1 H, s, ArCONH), 11.36 (1 H, d, *J* = 5.2 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 100.46, 123.6, 125.2, 126.0, 129.1, 129.3, 130.4, 132.6, 134.1, 139.9, 134.2, 149.3, 161.6, 164.6; MS (ES⁺) *m/z* 332.0639 (M + Na) (C₁₆H₁₁N₃NaO₄ requires 332.0647), 310.0827 (M + H) (C₁₆H₁₂N₃O₄ requires 310.0828); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Trifluoromethylbenzamido)isoquinolin-1-one (**15d**). Compound **1** was treated with 4-trifluoromethylbenzoyl chloride, as for the synthesis of **15a**, to give **15d** (72%) as a pale orange solid: mp 319-321°C; ¹H NMR ((CD₃)₂SO) δ 6.54 (1 H, d, *J* = 7.3 Hz, 4-H), 7.19 (1 H, dd, *J* = 7.3, 4.9 Hz, 3-H), 7.53 (1 H, t, *J* = 7.7 Hz, 7-H), 7.77 (1 H, d, *J* = 7.7 Hz, 6-H), 7.94 (1 H, d, *J* = 7.7 Hz, 8-H), 8.15 (2 H, d, *J* = 8.2 Hz, 3',5-H₂), 8.23 (2 H, d, *J* = 8.2 Hz, 2',6'-H₂), 10.56 (1 H, s, ArCONH) 11.35 (1 H, d, *J* = 4.9 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) (HMBC / HMQC) δ 100.5 (4-C), 125.1 (8-C), 125.9 (q, *J* = 31.5 Hz, 3',5'-C₂), 126.8 (7-C), 126.9 (8a-C), 128.9 (2',6'-C₂), 130.3 (6-H), 130.9 (q, *J* = 31.5 Hz, 4'-C), 132.6 (5-C), 134.0 (4a-C), 137.9 (m, CF₃), 149.5 (1'-C), 161.5 (1-C); MS (ES⁺) *m*/z 355.0666 (M + Na) (C₁₇H₁₁F₃N₂NaO₂ requires 355.0670), 333.0844 (M + H) (C₁₇H₁₂F₃N₂O₂ requires 333.0851); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Fluorobenzamido)isoquinolin-1-one (15e). Compound **1** was treated with 4-fluorobenzoyl chloride, as for the synthesis of **15a**, to give **15e** (68%) as a pale orange solid: mp 302-305°C; ¹H NMR ((CD₃)₂SO) δ 6.54 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.4, 6.2 Hz, 3-H), 7.33 (2 H, d, *J* = 8.6 Hz, 2',6'-H₂), 7.54 (1 H, d, *J* = 8.2 Hz, 7-H), 7.69 (1 H, d, *J* = 8.2 Hz, 6-H), 8.03 (2 H, dd, *J* = 9.0, 5.0 Hz, 3',5'-H₂), 8.14 (1 H, d, *J* = 8.2 Hz, 8-H), 10.44 (1

H, br s, ArCONH), 11.33 (1 H, br, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 102.1, 116.3 (d, *J* = 21.5 Hz), 116.5, 126.1, 127.3, 129.5, 131.2 (d, *J* = 9.2 Hz), 131.3, 131.8, 133.6, 135.2, 163.0, 164.4 (d, *J* = 283.6 Hz); MS (ES⁺) *m*/*z* C₁₆H₁₁FN₂NaO₂ requires 305.0702), 283.0889 (M + H) (C₁₆H₁₂FN₂O₂ requires 283.0883); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Chlorobenzamido)isoquinolin-1-one (15f). Compound **1** was treated with 4-chlorobenzoyl chloride, as for the synthesis of **15a**, to give **15f** (77%) as a pale orange solid: mp 347-349°C; ¹H NMR ((CD₃)₂SO) δ 6.51 (1 H, *J* = 7.5 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.5, 5.2 Hz, 3-H), 7.51 (1 H, *J* = 7.8 Hz, 7-H), 7.63 (2 H, d, *J* = 8.2 Hz, 3',5'-H₂), 7.74 (1 H, d, *J* = 7.8 Hz, 6-H), 8.04 (2 H, d, *J* = 8.2 Hz, 2',6'-H₂), 8.13 (1 H, d, *J* = 7.8 Hz, 8-H), 10.41 (1 H, s, ArCONH), 11.34 (1 H, d, *J* = 4.6 Hz, 2-NH); ¹³C NMR δ 100.6, 125.0, 125.9, 127.0, 128.5, 127.0, 128.5 (C₂), 128.9, 129.7 (C₂), 130.4, 132.9, 132.9, 134.2, 136.6, 161.6, 165.0; MS (ES⁺) *m*/*z* 321.0399 (M + Na) (C₁₆H₁₁ClN₂NaO₂ requires 321.0407), 299.0584 (M + H) (C₁₆H₁₂ClN₂O₂ requires 299.0587); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Bromobenzamido)isoquinolin-1-one (15g). Compound **1** was treated with 4-bromobenzoyl chloride, as for the synthesis of **15a**, to give **15g** (81%) as a yellow solid: mp 258-260°C; ¹H NMR ((CD₃)₂SO) δ 6.51 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.4, 5.7 Hz, 3-H), 7.52 (1 H, t, *J* = 7.8 Hz, 7-H), 7.71 (2 H, d, *J* = 8.2 Hz, 3',5'-H₂), 7.74 (1 H, d, *J* = 7.4 Hz, 6-H), 7.99 (2 H, d, *J* = 8.2 Hz, 2',6'-H₂), 8.13 (1 H, d, *J* = 7.8 Hz, 8-H), 10.40 (1 H, s, ArCONH) 11.34 (1 H, d, *J* = 5.1 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 99.9, 125.0, 125.9, 127.0, 128.7, 128.5, 128.9, 129.7, 130.4, 132.9, 132.9, 135.2, 136.6, 161.5, 165.2; MS (ES⁺) *m*/*z* 343.1414 (M + H) (C₁₆H₁₂⁷⁹BrN₂O₂ requires 343.0082); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(4-Iodobenzamido)isoquinolin-1-one (15h). Compound **1** was treated with 4-iodobenzoyl chloride, as for the synthesis of **15a**, to give **15h** (76%) as a pale grey solid: mp >290 °C; ¹H NMR ((CD₃)₂SO) δ 6.51 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.5, 5.4 Hz, 3-H), 7.51 (1 H, t, *J* = 7.6 Hz, 7-H), 7.74 (1 H, d, *J* = 7.4 Hz, 6-H), 7.82 (2 H, d, *J* = 8.2 Hz, 3',5'-H), 7.95 (2 H, d, *J* = 8.2 Hz, 2',6'-H), 8.14 (1 H, d, *J* = 7.8 Hz, 8-H), 10.39 (1 H, s, ArCONH) 11.33 (1 H, d, *J* = 5.1 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 99.5, 100.6, 124.9, 125.9, 127.0, 128.9,129.7, 130.42, 132.9, 133.6, 134.2, 137.4, 161.6, 165.4; MS (ES⁺) *m/z* 390.9950 (M + H) (C₁₆H₁₂IN₂O₂ requires 390.9944); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(2-Methylbenzamido)isoquinolin-1-one (15i). Compound **1** was treated with 2-methylbenzoyl chloride, as for the synthesis of **15a**, to give **15i** (63%) as an off-white solid: mp 310-313°C; ¹H NMR ((CD₃)₂SO) δ 2.54 (3 H, s, Me), 6.62 (1 H, d, *J* = 7.5 Hz, 4-H), 7.21 (1 H, t, *J* = 7.0 Hz, 7-H), 7.32 (2 H, d, *J* = 7.0 Hz, 6,8-H₂), 7.41 (1 H, t, *J* = 7.4 Hz, 5'-H), 7.51 (1 H, t, *J* = 7.4 Hz, 4'-H), 7.58 (1 H, d, *J* = 7.4 Hz, 3'-H), 8.10 (1 H, d, *J* = 7.4 Hz, 6'-H), 10.24 (1 H, s, ArCONH), 11.32 (1 H, d, *J* = 5.1 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 19.5, 100.4, 124.5, 125.6, 125.9, 127.0, 127.4, 128.9, 129.7, 130.6, 131.0, 132.9, 133.6, 135.4, 136.8, 161.6, 168.6; MS (ES⁺) *m*/*z* 301.0956 (M + Na) (C₁₇H₁₃N₂NaO₂ requires 301.0953), 279.1130 (M + H) (C₁₇H₁₄N₂O₂ requires 279.1133); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(2-Iodobenzamido)isoquinolin-1-one (**15j**). Compound **1** was treated with 2-iodobenzoyl chloride, as for the synthesis of **15a**, to give **15j** (61%) as a pale buff solid: mp 317-320°C; ¹H NMR ((CD₃)₂SO) δ 6.77 (1 H, d, *J* = 7.9 Hz, 4-H), 7.20 (1 H, t, *J* = 7.9, 5.6 Hz, 3-H), 7.25 (1 H, dt, *J* = 7.6, 1.8 Hz, 4'-H), 7.54-7.63 (3 H, m, 3',5',7-H₃), 7.90 (1 H, d, *J* = 7.9 Hz, 6-H), 7.96 (1 H, d, *J* = 7.9 Hz, 8-H), 8.12 (1 H, d, *J* = 7.6 Hz, 6'-H), 10.41 (1 H, s, ArCONH), 11.34 (1 H, d, *J* = 5.6 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 93.6, 100.5, 124.6, 125.9, 127.1, 128.1,

128.2, 128.7, 129.2, 131.0, 132.5, 133.2, 139.0, 161.5, 166.4; MS (ES⁺) m/z 390.9952 (M + H) (C₁₆H₁₂IN₂O₂ requires 390.9944); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(Thiophene-2-carboxamido)isoquinolin-1-one (15k). Compound 1was treated with thiophene-2-carbonyl chloride, as for the synthesis of **15a**, to give **15k** (51%) as an off-white solid: mp 288-291°C; ¹H NMR ((CD₃)₂SO) δ 6.51 (1 H, d, *J* = 7.4 Hz, 4-H), 7.19 (1 H, dd, *J* = 7.4, 5.4 Hz, 3-H), 7.23 (1 H, dd, *J* = 4.9, 3.6 Hz, 4'-H), 7.52 (1 H, t, *J* = 7.8 Hz, 7-H), 7.70 (1 H, d, *J* = 7.8 Hz, 6-H), 7.83 (1 H, d, *J* = 4.9 Hz, 5'-H), 8.03 (1 H, d, *J* = 3.6 Hz, 3'-H), 8.13 (1 H, d, *J* = 7.8 Hz, 8-H), 10.41 (1 H, s, ArCONH), 11.33 (1 H, d, *J* = 5.4 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 100.2, 125.5, 126.6, 127.2, 128.7, 129.3, 129.9, 131.2, 132.3, 132.9, 134.7, 139.4, 161.2, 162.2; MS (ES⁺) *m*/z 293.0347 (M + Na) (C₁₄H₁₀N₂NaO₂S requires 293.0361), 271.0529 (M + H) (C₁₄H₁₁N₂O₂S requires 271.0541); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(Cyclohexanecarboxamido)isoquinolin-1-one (15l). Compound **1** was treated with cyclohexanecarbonyl chloride, as for the synthesis of **15a**, to give **15l** (68%) as an off-white solid: mp 302-305°C; ¹H NMR ((CD₃)₂SO) δ 1.18-1.86 (11 H, m, cHex-H₁₁), 6.57 (1 H, d, *J* = 7.5 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.3, 6.2 Hz, 3-H). 7.42 (1 H, t, *J* = 7.8 Hz, 7-H), 7.76 (1 H, d, *J* = 7.8 Hz, 6-H), 8.02 (1 H, d, *J* = 7.8 Hz, 8-H), 9.66 (1 H, s, cHexCONH), 11.30 (1 H, d, *J* = 5.1 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 25.3 , 25.4, 29.3, 44.2, 100.0, 123.6, 125.8, 126.9, 128.5, 128.6, 132.6, 133.1, 161.6, 174.8; MS (ES⁺) *m*/*z* 563.2616 (2 M + Na) (C₃₂H₃₆N₄NaO₄ requires 563.2634), 541.2798 (2 M + H) (C₃₂H₃₇N₄O₄ requires 541.2815) 293.1248 (M + Na) (C₁₆H₁₈N₂NaO₂ requires 293.1266), 271.1140 (M + H) (C₁₆H₁₉N₂O₂ requires 271.1147); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(2,2-Dimethylpropanamido)isoquinolin-1-one (15m). Compound **1** was treated with 2,2-dimethylpropanoyl chloride, as for the synthesis of **15a**, to give **15m** (68%) as an off-white solid: mp 305-307°C; ¹H NMR ((CD₃)₂SO) δ 1.28 (9 H, s, Bu^t), 6.38 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.4, 4.3 Hz, 3-H), 7.45 (1 H, t, *J* = 7.6 Hz, 7-H), 7.53 (1 H, d, *J* = 7.6 Hz, 6-H), 8.08 (1 H, d, *J* = 7.6 Hz, 8-H), 9.36 (1 H, s, Bu^tCONH), 11.29 (1 H, br, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 27.4 (C₃), 40.1, 100.5, 124.6, 125.8, 126.9, 128.7, 130.7, 133.4, 134.5, 161.7, 177.1; MS (ES⁺) *m*/*z* 267.1109 (M + Na) (C₁₄H₁₆N₂NaO₂ requires 267.1109), 245.1291 (M + H) (C₁₄H₁₇N₂O₂ requires 245.1290); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-(Adamantan-1-ylcarboxamido)isoquinolin-1-one (**15n**). Compound **1** was treated with adamantane-1-carbonyl chloride, as for the synthesis of **15a** to give **15n** (59%) as an off-white solid: mp 303-306°C; ¹H NMR ((CD₃)₂SO) δ 1.73-2.04 (15 H, adamantane-H₁₅), 6.36 (1 H, d, J = 7.4 Hz, 4-H), 7.18 (1 H, dd, J = 7.4, 6.2 Hz, 3-H), 7.42 (1 H, t, J = 7.7 Hz, 7-H), 7.52 (1 H, d, J = 7.7 Hz, 6-H), 8.07 (1 H, d, J = 7.7 Hz, 8-H), 9.29 (1 H, s, adamantaneCONH), 11.29 (1 H, d, J = 4.9 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 27.7, 36.1, 38.5, 38.6, 100.5, 124.5, 125.8, 126.9, 128.7, 130.7, 133.4, 134.4, 161.7, 176.6; MS (ES⁺) *m/z* 345.1574 (M + Na) (C₂₀H₂₂N₂NaO₂ requires 345.1579), 323.1769 (M + H) (C₂₀H₂₃N₂O₂ requires 323.1768); Anal. (C₁₆H₁₂N₂O₂) C,H,N.

5-Benzamido-3-methylisoquinolin-1-one (22). Compound 21 was treated with benzoyl chloride, as for the synthesis of 15a, to give 22 (72%) as an off-white solid: mp >310°C (decomp.); ¹H NMR ((CD₃)₂SO) δ 2.12 (3 H, s, Me), 6.33 (1 H, s, 4-H), 7.42 (1 H, t, *J* = 7.8 Hz, 7-H), 7.55 (2 H, t, *J* = 7.9 Hz, 3',5'-H₂), 7.62 (1 H, t, *J* = 7.9 Hz, 4'-H), 7.69 (1 H, dd, *J* = 7.8, 1.2 Hz, 6-H), 8.04-8.09 (3 H, m, 2',6',8-H₃), 10.28 (1 H, s, PhCONH), 11.35 (1 H, s, 2-NH); ¹³C NMR δ 19.0, 98.7, 124.7, 124.9, 125.1, 127.8, 128.4, 130.6, 131.7, 132.5, 134.2, 134.6, 138.5, 162.3, 166.0; MS (ES⁺) *m/z* 301.0948 (M + Na) (C₁₇H₁₄NaN₂O₂ requires

301.0953), m/z 279.1142 (M + H) (C₁₇H₁₅N₂O₂ requires 279.1134); Anal. (C₁₇H₁₄N₂O₂) C, H, N.

1-Oxoisoquinoline-5-carboxylic acid (24). Compound 23^{51} (427 mg, 2.5 mmol) was boiled under reflux with KOH in EtOH (20% w/v, 12 mL), under nitrogen, until the production of NH₃ ceased (3 d). The mixture was acidified with aq. HCl (9 M) and the solvent was evaporated. The residue was taken up into MeOH and filtered. Evaporation of the solvent from the filtrate gave 24 (394 mg, 83%) as a white solid: mp >300°C (lit.⁵¹ mp >300°C); ¹H NMR (CD₃OD) δ 7.28 (1 H, d, *J* = 7.7 Hz, 4-H), 7.56 (1 H, t, *J* = 7.7 Hz, 7-H), 7.76 (1 H, d, *J* = 7.7 Hz, 8-H), 8.58 (1 H, d, *J* = 7.7 Hz, 6-H).

E-3-(1-Oxoisoquinolin-5-yl)propenoic acid (26). Compound 25^{52} (200 mg, 0.74 mmol), propenoic acid (0.06 mL, 70 mg, 0.49 mmol), Pd(OAc)₂ (16 mg, 74 µmol) and Et₃N (186 mg, 1.8 mmol) in EtCN (0.6 mL) were boiled under reflux for 1 h. Aq. HCl (2 M, 20 mL) was added and the precipitate was collected and dried to give 26 (152 mg, 97%) as an off-white solid: mp 314–318°C (lit.⁵¹ 315–318°C); ¹H NMR ((CD₃)₂SO) δ 6.58 (1 H, d, *J* = 15.8 Hz, =CHCO₂), 6.74 (1 H, d, *J* = 7.3 Hz, 4-H), 7.30 (1 H, d, *J* = 7.3, Hz, 3-H), 7.52 (1 H, t, *J* = 7.7 Hz, 7-H), 8.10 (1 H, d, *J* = 15.8 Hz, ArCH=), 8.12 (1 H, d, *J* = 7.7 Hz), 8.27 (2 H, d, *J* = 7.7 Hz, 6,8-H₂), 11.47 (1 H, br s, NH), 12.60 (1 H, br s, CO₂H).

Methyl 3-(5-amino-1-oxoisoquinolin-2-yl)propanoate (31). NaH (80 mg, 3.5 mmol) was added to **1** (400 mg, 1.8 mmol) in dry THF (40 mL), followed by methyl propenoate (170 mg, 1.9 mmol) and the mixture was stirred for 2 h. Evaporation and recrystallisation (MeOH) gave **47** (300 mg, 67%) as pale buff crystals: mp 188–190°C; IR v_{max} 3465, 1715, 1674 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.67 (2 H, t, *J* = 7.0 Hz, CH₂CO₂), 4.09 (2 H, t, *J* = 7.0 Hz, CH₂N), 4.36 (3 H, s, Me), 5.62-5.91 (3 H, br, OH, 2 × NH), 6.72 (1 H, d, *J* = 7.5 Hz, 4-H), 6.84 (1 H, d, *J* = 7.5 Hz, 3-H), 7.16 (1 H, t, *J* = 7.8 Hz, 7-H), 7.31 (1 H, d, *J* = 7.4 Hz 6-H), 7.41 (1 H, d, *J* = 7.8 Hz 8-H); ¹³C NMR ((CD₃)₂SO) δ 33.1, 44.9, 53.9, 100.3, 114.1, 114.8, 123.8, 126.4, 127.2, 130.6, 144.3, 161.2, 172.6; MS (ES⁺) *m*/*z* 269.0922 (M + Na) (C₁₃H₁₄N₂NaO₃ requires 269.0902), 247.1068 (M + H) (C₁₃H₁₅N₂O₃ requires 247.1083).

5-Amino-2-(2-carboxyethyl)isoquinolin-1-one hydrochloride (32). Ester **31** (302 mg, 1.23 mmol) was boiled under reflux in aq. HCl (6.0 M, 4.0 mL) for 24 h. Evaporation gave **32** (281 mg, 85%) as a pale amber solid: mp 199–201°C ; IR v_{max} 3240, 2580, 1721, 1638 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.71 (2 H, t, *J* = 6.6 Hz, CH₂CO₂), 3.22-4.58 (4 H, m, OH, NH₂, NH), 4.14 (2 H, t, *J* = 6.6 Hz, CH₂N), 6.71 (1 H, d, *J* = 7.8 Hz, 4-H), 7.46 (1 H, t, *J* = 7.8 Hz, 7-H), 7.56 (2 H, m, 3-H and 7-H), 8.00 (1 H, d, *J* = 7.8 Hz, 8-H); ¹³C NMR ((CD₃)₂SO) δ 33.1 (*C*H₂CO₂), 44.9 (NCH₂), 53.9 (Me), 100.3 (4-C), 114.1 (6-C), 114.8 (8-C), 123.8 (4a-C), 126.4 (8a-C), 127.2 (7-C), 130.6 (3-C), 144.3 (5-C), 161.2 (1-C), 172.6 (CO₂Me); MS (ES⁺) *m/z* 233.0927 (M + H) (C₁₂H₁₃N₂O₃ requires 233.0936).

Spectroscopic data for compounds described in Experimental Section of paper.

5-Aminoisoquinolin-1-one hydrochloride (1). ¹H NMR (D₂O) δ 6.76 (1 H, d, *J* = 7.5 Hz), 7.39 (1 H, d, *J* = 7.5 Hz), 7.59 (1.59 (1-H, t, *J* = 8.0 Hz), 7.79 (1 H, d, *J* = 8.0 Hz), 8.27 (1 H, d, *J* = 8.0 Hz).

1-Chloro-5-nitroisoquinoline (**13**). ¹H NMR (CDCl₃) δ 7.81 (1 H, t, *J* = 8.2 Hz, 7-H), 8.41 (1 H, dd, *J* = 6.3, 1.2 Hz, 4-H), 8.49 (1 H, d, *J* = 6.3 Hz, 3-H), 8.56 (1 H, dt, *J* = 8.2, 1.2 Hz, 8-H), 8.75 (1 H, dd, *J* = 8.2, 1.2 Hz, 6-H).

5-Nitroisoquinolin-1-one (**14**). ¹H NMR ((CD₃)₂SO) δ 6.97 (1 H, dd, *J* = 7.7, 0.7 Hz), 7.45 (1 H, dd, *J* = 7.7, 1.8 Hz), 7.66 (1 H, t, *J* = 7.7 Hz), 8.46 (1 H, dd, *J* = 7.7, 1.5 Hz), 8.58 (1 H, ddd, *J* = 7.7, 1.5, 0.7 Hz), 11.80 (1 H, br s, NH).

5-Benzamidoisoquinolin-1-one (**15a**). ¹H NMR ((CD₃)₂SO) δ 6.52 (1 H, d, *J* = 7.4 Hz, 4-H), 7.18 (1 H, dd, *J* = 7.4, 5.5 Hz, 3-H), 7.50-7.61 (4 H, m, 3',4',5',7-H₄), 7.75 (1 H, d, *J* = 7.6 Hz, 6-H), 8.04 (2 H, d, *J* = 7.0 Hz, 2',6'-H₂), 8.13 (1 H, d, *J* = 7.8 Hz, 8-H), 10.33 (1 H, s, PhCONH), 11.32 (1 H, d, *J* = 4.7 Hz, 2-NH); ¹³C NMR ((CD₃)₂SO) δ 100.6, 124.8, 125.9, 127.0, 127.8 (C₂), 128.5 (C₂), 128.9, 130.5, 131.8, 133.2, 134.1, 134.2, 161.6, 166.0; MS (ES⁺) *m*/*z* 287.0801 (M + Na) (C₁₆H₁₂N₂NaO₂ requires 287.0796); 265.0952 (M + H) (C₁₆H₁₃N₂O₂ requires 265.0977); Anal. (C₁₆H₁₂N₂O₂) C, H, N.

3-Methyl-5-nitroisocoumarin (19). IR (KBr) v_{max} 1746, 1648 1520, 1331 cm⁻¹; ¹H NMR (CDCl₃) δ 2.37 (3 H, s, Me), 7.13 (1 H, d, J = 0.8 Hz, 4-H), 7.55 (1 H, t, J = 8.2 Hz, 7-H), 8.41 (1 H, dd, J = 8.2, 1.2 Hz, 6-H), 8.56 (1 H, ddd, J = 8.2, 1.2, 0.8 Hz, 8-H); ¹³C NMR (CDCl₃) δ 20.5, 98.4, 121.9, 126.9, 131.4, 131.8, 135.7, 143.8, 158.6, 160.8; MS (EI⁺) *m*/*z* 205.0384 (M) (C₁₀H₇NO₄ requires 205.0375), 159 (M - NO₂); Anal. (C₁₀H₇NO₄) C, H, N.

3-Methyl-5-nitroisoquinolin-1(2*H***)-one (20).** IR (KBr) v_{max} 3435, 1668, 1523, 1346 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.29 (3 H, s, Me), 6.78 (1 H, s, 4-H), 7.55 (1 H, t, *J* = 7.8 Hz, 7-H), 8.38 (1 H, dd, *J* = 7.8, 1.2 Hz, 6-H), 8.49 (1 H, dd, *J* = 7.8, 1.2 Hz, 8-H), 11.79 (1 H, br s, NH); MS (FAB⁺) *m*/*z* 205.0617 (M + H) (C₁₀H₉N₂O₃ requires 205.0613), 189 (M – Me); Anal. (C₁₀H₈N₂O₃) C, H, N.

5-Amino-3-methylisoquinolin-1(*2H*)-one (21). IR (KBr) v_{max} 3476, 3375, 3298, 1655 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 2.18 (3 H, s, Me), 5.47 (2 H, br, NH₂), 6.44 (1 H, s, 4-H), 6.80 (1 H, dd, *J* = 7.8, 1.2 Hz, 6-H), 7.05 (1 H, t, *J* = 7.8 Hz, 7-H), 7.32 (1 H, dd, *J* = 7.8, 1.2 Hz, 8-H), 11.06 (1 H, br s, NH); MS (FAB⁺) *m*/*z* 175.0874 (M + H) (¹²C₁₀H₁₁N₂O requires 175.0871), 159 (M – Me). A sample was converted to the HCl salt: ¹H NMR ((CD₃)₂SO) δ 2.24 (3 H, s, Me), 4.8 (3 H, br, N⁺H₃), 6.43 (1 H, s, 4-H), 7.34 (1 H, dd, *J* = 7.9, 7.6 Hz, 7-H), 7.46 (1 H, d, *J* = 7.6 Hz, 6-H), 7.89 (1 H, d, *J* = 7.9 Hz, 8-H), 11.06 (1 H, br s, NH); ¹³C NMR ((CD₃)₂SO) (HMQC / HMBC) δ 19.2 (Me), 97.2 (4-C), 122.8 (8a-C), 123.8 (4a-C), 125.2 (8-C), 125.5 (6-C), 130.6 (7-C), 133.0 (5-C), 138.6 (3-C), 162.0 (1-C); Anal. (C₁₀H₁₁ClN₂O) C, H, N.

3-(1-Oxoisoquinolin-5-yl)propanoic acid (27). ¹H NMR ((CD₃)₂SO) δ 2.54 (2 H, t, *J* = 7.8 Hz, ArC*H*₂), 3.09 (2 H, t, *J* = 7.8 Hz, C*H*₂COOH), 3.17-3.42 (1 H, br, CO₂H), 6.62 (1 H, d, *J* = 7.4 Hz, 4-H), 7.21 (1 H, br d, *J* = 7.8 Hz, 3-H), 7.38 (1 H, t, *J* = 7.4 Hz, 7-H), 7.55 (1 H, d, *J* = 7.4 Hz, 6-H), 8.07 (1 H, d, *J* = 7.4 Hz, 8-H), 11.29 (1 H, br s, NH); ¹³C NMR ((CD₃)₂SO) δ

27.4, 34.8, 100.7, 125.1, 125.9, 126.5, 128.9, 132.2, 136.1, 136.3, 162.0, 173.7; MS (ES⁺) m/z 240.0682 (M + Na) (C₁₂H₁₁NaNO₃ requires 240.0637); 218.0819 (M + H) (C₁₆H₁₅N₂O requires 218.0817).

Ethyl 2-(1-oxoisoquinolin-5-ylamino)acetate (28). IR v_{max} 3437, 1728, 1654 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 1.19 (3 H, t, *J* = 7.2 Hz, Me), 4.01 (2 H, d, *J* = 4.9 Hz, CH₂N), 4.12 (2 H, q, *J* = 7.2 Hz, OCH₂), 6.44 (1 H, t, *J* = 4.9 Hz, CH₂NH), 6.56 (1 H, d, *J* = 7.8 Hz, 4-H), 6.72 (1 H, d, *J* = 7.8 Hz, 3-H), 7.11 (1 H, m, 6-H), 7.22 (1 H, t, *J* = 7.8 Hz, 7-H), 7.46 (1 H, d, *J* = 7.8 Hz, 8-H), 11.2 (1 H, br, NH); ¹³C NMR ((CD₃)₂SO) δ 14.1, 44.8, 60.4, 99.2, 110.5, 114.4, 125.5, 126.8, 126.9, 127.0, 143.1, 162.0, 171.1; MS (ES⁺) *m*/*z* 269.0911 (M + Na) (C₁₃H₁₄N₂NaO₃ requires 269.0902), 247.1136 (M + H) (C₁₃H₁₅N₂O₃ requires 247.1083).

5-(Carboxymethylamino)isoquinolin-1-one hydrochloride (29). IR v_{max} 3134, 2523, 1737, 1608 cm⁻¹; ¹H NMR ((CD₃)₂SO) δ 3.91 (2 H, s, CH₂), 5.23-6.22 (3 H, m, OH, NH₂), 6.58 (1 H, dd, *J* = 7.9, 0.8 Hz, 4-H), 6.72 (1 H, d, *J* = 7.6 Hz, 3-H), 7.10 (1 H, brd, *J* = 7.0 Hz, 6-H), 7.22 (1 H, t, *J* = 8.2 Hz, 7-H), 7.45 (1 H, d, *J* = 7.9 Hz, 8-H), 11.21 (1-H, brs, NH); ¹³C NMR δ ((CD₃)₂SO) 44.8, 99.2, 110.4, 110.5, 114.2, 135.5, 126.9, 127.0, 143.2, 162.0, 172.5; MS (ES⁺) *m/z* 219.0757 (M + H) (C₁₁H₁₁N₂O₃ requires 219.0770).

Cytotoxicity assay.

Cell proliferation was determined using the MTS assay (Promega Cell Titer 96® One Solution Cell Proliferation Assay). Cells (500 HT29 cells (Cancer Research UK), 1000 MDA-MB-231 cells (Cancer Research UK), 2000 LNCaP cells (Cancer Research UK) or 1500 FEK4 cells (a kind gift from Professor R. M. Tyrrell, University of Bath)) were seeded into culture medium (50 μ L; DMEM with high glucose (4.5 g L⁻¹) and L-Gln, supplemented with penicillin (100 U mL⁻¹), streptomycin 100 µg mL⁻¹ and 10% foetal bovine serum (all reagents supplied by Invitrogen)) in 96-well tissue culture plates (Nunc) with four replicants. Plates with cells were then incubated at 37°C, in humidified 5% CO₂ in air for 3-5 hours. Solutions of test compounds in DMSO were diluted 1-in-50 in culture medium; 50 µL of these solutions were added per well to cells, giving a final volume of 100 μ L per well containing 1% (v/v) DMSO. Control samples with medium only and 1% (v/v) DMSO only were also included. Plates were incubated for to 7 d. MTS reagent was added at the required time at 20 µL per well, mixed gently and incubated for 1-4 h. The A_{490nm} was measured using a plate reader (VERSAmax tunable plate reader, Molecular Devices) and sample absorbances were corrected for background absorbance. Data were fitted using a logarithmic concentration scale to a dose-response curve using SigmaPlot 11.

Cytotoxicity of 5-AIQ 1 vs. HT29 human colon carcinoma cells, MDA-MB-231 human breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human fibroblasts.

The shaded bars represent the variation in the no-drug control values. Error bars are ± 1 S.D.

Cytotoxicity of 15a vs. HT29 human colon carcinoma cells, MDA-MB-231 human breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human fibroblasts.

The shaded bars represent the variation in the no-drug control values. Error bars are ± 1 S.D.

Cytotoxicity of 15l vs. HT29 human colon carcinoma cells, MDA-MB-231 human breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human fibroblasts.

The shaded bars represent the variation in the no-drug control values. Error bars are ± 1 S.D.

Cytotoxicity of 15m vs. HT29 human colon carcinoma cells, MDA-MB-231 human breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human fibroblasts.

The shaded bars represent the variation in the no-drug control values. Error bars are ± 1 S.D.

Cytotoxicity of 15n vs. HT29 human colon carcinoma cells, MDA-MB-231 human breast carcinoma cells, LNCaP human prostate carcinoma cells and FEK4 human fibroblasts.

The shaded bars represent the variation in the no-drug control values. Error bars are ± 1 S.D.

Elemental microanalysis data.

		Found			Calculated		
Cpd.	Formula	С	Н	Ν	С	Н	Ν
15 a	$C_{16}H_{12}N_2O_2$	72.67	4.48	10.42	72.72	4.58	10.60
15b	$C_{17}H_{14}N_2O_2$	73.23	4.98	10.22	73.37	5.07	10.07
15c	$C_{16}H_{11}N_3O_4$	61.96	3.38	13.22	62.14	3.58	13.59
15d	$C_{17}H_{11}F_3N_2O_2$	61.23	3.68	8.66	61.45	3.34	8.43
15e	$C_{17}H_{11}F_3N_2O_2$	67.98	3.68	9.62	68.05	3.92	9.92
15f	$C_{16}H_{11}ClN_2O_2$	64.23	3.68	9.32	64.33	3.71	9.38
15g	$C_{16}H_{11}BrN_2O_2$	55.85	3.14	8.02	56.00	3.23	8.16
15h	$C_{16}H_{11}IN_2O_2$	49.16	2.78	7.32	49.25	2.84	7.18
15i	$C_{17}H_{14}N_2O_2$	73.33	5.02	10.11	73.37	5.07	10.07
15j	$C_{16}H_{11}IN_2O_2$	49.12	2.66	7.26	49.25	2.84	7.18
15k	$C_{14}H_{10}N_2O_2S$	62.11	3.55	10.62	62.21	3.73	10.36
15 l	$C_{16}H_{18}N_2O_2$	71.31	6.52	10.17	71.09	6.71	10.36
15m	$C_{14}H_{16}N_2O_2$	68.68	6.46	11.31	68.83	6.60	11.47
15n	$C_{20}H_{22}N_2O_2$	69.46	6.46	8.06	69.55	6.42	8.11
19	$C_{10}H_7NO_4$	58.3	3.47	6.78	58.54	3.44	6.83
20	$C_{10}H_8N_2O_3$	58.4	3.99	13.5	58.82	3.95	13.72
21	$C_{10}H_{11}ClN_2O$	56.82	5.01	13.45	57.02	5.26	13.30
22	$C_{17}H_{14}N_2O_2$	73.42	5.06	10.13	73.37	5.07	10.07

References for Supplementary Information

- Menear, K. A.; Adcock, C.; Boulter, R.; Cockcroft, X.-L.; Copsey, L.; Cranston, A.; Dillon, K. J.; Drzewiecki, J.; Garman, S.; Gomez, S.; Javaid, H.; Kerrigan, F.; Knights, C.; Lau, A.; Loh, V. M.; Matthews, I. T. W.; Moore, S.; O'Connor, M. J.; Smith, G. C. M.; Martin, N. M. B. 4-[3-(4-Cyclopropanecarbonylpiperazine-1-carbonyl)-4-fluorobenzyl]-2*H*-phthalazin-1-one: A novel bioavailable inhibitor of poly(ADP-ribose) polymerase-1. *J. Med. Chem.* 2008, *51*, 6581-6591.
- 51. Watson, C. Y.; Whish, W. J. D.; Threadgill, M. D. Synthesis of 3-substituted benzamides and 5-substituted isoquinolin-1(2*H*)-ones and preliminary evaluation as inhibitors of poly(ADP-ribose)polymerase (PARP). *Bioorg. Med. Chem.* **1998**, *6*, 721–734.
- 52. Ferrer, S.; Naughton, D. P.; Parveen, I.; Threadgill, M. D. *N* and *O*-Alkylation of isoquinolin-1-ones in the Mitsunobu reaction: Development of potential drug delivery systems. *J. Chem. Soc.*, *Perkin Trans. 1* **2002**, 335–340.
- 55. Dillon, K. J.; Smith, G. C. M.; Martin, N. M. B. A FlashPlate assay for the identification of PARP-1 inhibitors. *J. Biomol. Screen.* **2003**, *8*, 347-352.