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ABSTRACT 

The synthetic retinoid 13-cis-retinoic acid (13-cis-RA), prescribed for the treatment of severe 

nodular acne, has been linked to an increased incidence of depression. Chronic treatment 

studies in rodents have shown that 13-cis-RA induces an increase in depression-related 

behaviours and a functional uncoupling of the hippocampus and dorsal raphe nucleus (DRN). 

Changes in the number of serotoninergic neurons in the DRN have been reported in depressed 

human patients. Given that retinoids have apoptotic effects, we hypothesised that a decrease in 

the number of serotoninergic neurons in the DRN or median raphe nucleus (MRN) would lead to 

decreased serotoninergic tone and in turn to the behavioural changes seen with 13-cis-RA 

administration. Here, we used immunolabelling and unbiased stereological methods to estimate 

the number of serotonin (5-hydroxytryptamine, 5-HT) neurons in the MRN and DRN of vehicle 

control and 13-cis-RA-treated adult mice. In the MRN, the number of 5-HT immunolabelled cells 

was 1815 ± 194 in control, compared with 1954 ±111 in 13–cis-RA treated tissues. The number 

of 5-HT immunolabelled cells was much higher in the DRN, with 7148 ± 377 cells in the control, 

compared with 7578 ± 424 in the 13-cis-RA treated group. Further analysis of the DRN revealed 

that there were no changes in the number of 5-HT neurons within distinct subregions of the 

DRN. Similarly, changes in the density of serotoninergic neurons or in the volume of the MRN or 

DRN were not observed in 13-cis-RA treated animals. These data show that apoptotic actions of 

13-cis-RA do not occur in vivo at drug concentrations that induce changes in depression-related 

behaviour and functional uncoupling of the DRN and hippocampus. The potential pro-

depressant behavioural and molecular effects associated with chronic administration of 13-cis-

RA may result from changes in serotoninergic activity rather than changes in the number of 

serotoninergic neurons.
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INTRODUCTION 

 Vitamin A and related retinoids are increasingly recognized to play an important role in 

adult brain function (Lane and Bailey, 2005). Studies have shown that retinoid signalling 

influences learning and memory (Etchamendy et al., 2001, Cocco et al., 2002), sleep (Maret et 

al., 2005, Kitaoka et al., 2007), locomotor activity (Krezel et al., 1998) and mood (O'Donnell, 

2004, Bremner and McCaffery, 2008, O'Reilly et al., 2008). The synthetic retinoid 13-cis-retinoic 

acid (13-cis-RA, isotretinoin, Accutane) is prescribed for the treatment of severe nodular acne 

(Zouboulis and Piquero-Martin, 2003). Controversially, the use of 13-cis-RA has been reported 

to increase the incidence of depressive illness in approximately 1-10% of patients receiving the 

drug (Hull and D'Arcy, 2005, Bremner and McCaffery, 2008). In animal studies chronic 

administration of 1 mg/kg 13-cis-RA has been shown to increase depression-related behaviours 

in both mice and rats (O'Reilly et al., 2006, Trent et al., 2009) but not in all studies of the adult 

rat (Ferguson et al., 2005, 2007). However, the mechanism by which 13-cis-RA treatment can 

influence depression-related behavioural changes remains poorly understood. 

We have recently shown that the administration of 13-cis-RA in mice for six weeks leads 

to metabolic changes in the inferior rostral linear nucleus of the raphe and a functional 

uncoupling between the raphe nuclei and the hippocampus (O'Reilly et al., 2009). One 

explanation for this is that 13-cis-RA treatment adversely affects serotoninergic input to forebrain 

regions. Retinoid signalling plays a crucial role in neuronal proliferation, differentiation and 

apoptosis during development of the nervous system (Maden, 2007).  Similar actions of retinoid 

signalling have been proposed to occur in the mature brain. In the hippocampus of young adult 

mice treated with 13-cis-RA, adult neurogenesis was suppressed (Crandall et al., 2004).  In 

cultured hippocampal neurons, high concentrations of 13-cis-RA reduced the number of neurons 

and the degree of dendritic branching (Liu et al., 2008). A similar effect on the morphology of 

serotoninergic neurons was observed in slice cultures treated with high concentrations of 13-cis-
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RA (Ishikawa et al., 2008). Taken together these data suggest that long-term treatment with 13-

cis-RA may lead to reduced serotoninergic input to the brain regions which mediate depression-

related behaviours. 

A large body of evidence supports the involvement of serotonin (5-hydroxytryptamine, 5-

HT) in the pathogenesis of depression (Mann, 1999, Neumeister et al., 2004). Acute tryptophan 

depletion transiently reduces 5-HT synthesis and induces relapse in depressed patients 

(Delgado et al., 1991, Bell et al., 2001). Activation of somatodendritic Gi/Go-protein coupled 

5HT1A autoreceptors inhibits electrical activity in serotoninergic neurons, 5-HT synthesis and 5-

HT release from nerve endings (Blier and de Montigny, 1987, Sharp et al., 1989). Both 

increased and decreased expression of the 5-HT1A receptor have been reported in depressed 

and suicidal patients (Neumeister et al., 2004). In addition, polymorphisms in the promoter of the 

human 5-HT1A receptor have been linked with depression in some (Lemonde et al., 2003) but 

not all (Arias et al., 2002) patients. The 5-HT transporter (5-HTT) acts as a critical regulator of 

serotonin signalling via reuptake of 5-HT from the synaptic space (Blakely et al., 1991). 

Abnormalities in the expression or function of the 5-HTT may also contribute to depression. One 

5-HTT polymorphism is associated with lower 5-HTT expression and anxiety related traits 

(Lesch et al., 1996) and with increased rates of depression and suicidality (Caspi et al., 2003). 

Additionally, the antidepressant selective serotonin reuptake inhibitors (SSRIs) act by blockade 

of 5-HTT to enhance serotoninergic neurotransmission (Blier and de Montigny, 1994).  Previous 

work by our group, in vitro, has shown that 13-cis-RA administration leads to an increase in 

protein levels of the 5-HT1A receptor and the 5-HTT, as well as increasing intracellular 5-HT 

content (O'Reilly et al., 2007). Such changes are likely to influence the activity of serotoninergic 

neurons and hence serotoninergic input to the forebrain. 

The serotonin system in the brain originates in the raphe nuclei and projects throughout 

the brain to innervate forebrain regions including the hippocampus and frontal cortex (Jacobs 
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and Azmitia, 1992, Barnes and Sharp, 1999, Lechin et al., 2006). The median raphe nucleus 

(MRN) innervates the dorsal hippocampus, medial septum, nucleus accumbens core and 

hypothalamus. The dorsal raphe nucleus (DRN) innervates the fronto-parietal cortex, amygdala, 

lateral septum, nucleus accumbens shell, ventral hippocampus and hypothalamus. The DRN 

thus provides the main source of serotoninergic input to the cortico-limbic structures that are 

associated with mood disorders (Michelsen et al., 2007, Drevets et al., 2008). A decrease in the 

overall numbers of serotoninergic neurons in the DRN of depressed patients has been reported 

(Baumann et al., 2002) although others have reported increased numbers of serotoninergic 

neurons in suicide patients (Underwood et al., 1999). We hypothesised that chronic treatment 

with 13-cis-RA may cause a decrease in the number of serotoninergic cells emanating from the 

DRN, thus reducing serotoninergic input to the cortico-limbic structures implicated in mediating 

depression-related behaviours. In this study we have used an unbiased stereological procedure 

to estimate the volume and number of serotoninergic neurons in the MRN and DRN of young 

adult mice with or without 13-cis-RA chronic treatment. To the best of our knowledge this is the 

first report of a detailed stereological analysis of the adult mouse raphe nuclei.   
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EXPERIMENTAL PROCEDURES 

Animals 

Experiments were conducted with DBA/2J young adult male mice obtained from Jackson 

Laboratories (Bar Harbor, ME) and Charles River Ltd (Margate, UK). Mice were received at 

postnatal day 21 and treatment began at postnatal day 28 and continued for six weeks. All mice 

were housed in groups of four per cage with ad libitum access to food and water and maintained 

on a 12:12 h light dark cycle. All of the procedures performed were approved by the University of 

Texas IACUC, protocol number 04100403, according to the National Institutes of Health Guide 

for the Care and Use of Laboratory Animals and in the UK performed under a project licence 

held under the Animals (Scientific Procedures) Act 1986 and in accordance with the UK Home 

Office guidelines.  

 

Drug Treatment 

Animals were randomly assigned to control or drug treatment groups and allowed to 

acclimatize to their environment for one week before commencing treatment. Drug treatment 

was essentially as described previously (O'Reilly et al., 2006). All mice received an intra-

peritoneal injection of either vehicle (0.9% w/v sodium chloride/ dimethyl sulphoxide (DMSO) at 

a ratio of 1:1 v/v) or 1mg/kg 13-cis-RA, dissolved in vehicle, daily for six weeks. This treatment 

regime has been shown to induce an increase in depression-related behaviours in young adult 

mice (O’Reilly et al., 2006). This dose of 13-cis-RA is in the range of doses widely used to treat 

acne in patients (0.5 to 2 mg/kg/day) and achieves plasma levels similar to those seen in 

patients (Kerr et al., 1982, O'Reilly et al., 2006). 
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Tissue preparation 

At the end of treatment, mice were anaesthetized and perfused transcardially with 4% 

paraformaldehyde. The brains were immediately removed intact and postfixed in 4% 

paraformaldehyde overnight followed by storage in PBS with 0.1% azide at 4°C.  Brains were 

cut in the caudal-rostral direction across the region containing both the MRN and DRN (-5.20 to -

4.04 mm from Bregma, (Paxinos and Franklin, 2001) using a vibrotome to achieve 40 µm 

coronal sections that were stored in PBS with 0.1% azide at 4°C until immunohistochemistry 

was performed. 

 

5-HT Immunohistochemistry 

For immunochemistry every third section across the region containing both the MRN and 

DRN was processed. All washes were done in PBS at room temperature unless otherwise 

stated.  Sections were washed and then blocked for endogenous peroxides (3:1 methanol: 3% 

hydrogen peroxide) followed by incubation in SuperBlock (Pierce, Rockford, IL) for 15 min. 

Subsequently, sections were incubated in blocking solution (BS) consisting of PBS containing 

10% SuperBlock, 10% normal goat serum , 2% bovine serum albumin, and 0.2% Triton X-100 

with a 1:10,000 dilution of the rabbit polyclonal primary anti-5-HT antibody (Sigma, Saint Louis, 

MO) for 24 h. The sections were then washed and incubated for 1 h in biotinylated goat anti-

rabbit secondary antibody (Sigma, Saint Louis, MO)  at a 1:600 dilution in BS. After washing, 

immunolabelling was detected using avidin-conjugated horseradish peroxidase with 

diaminobenzidine as substrate using the Vectastain ABC kit (Vector Labs, Burlingame, CA) 

according to the manufacturer’s protocols. Sections were mounted onto slides and allowed to air 
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dry prior to Nissl counterstaining and dehydration through alcohols (75% to 100%), cleared in 

xylene and coverslipped with Permount mounting solution (Fisher Scientific).   

Stereological analysis of 5-HT immunolabelled neurons 

Using Nissl counterstained sections the MRN and DRN were outlined at a low 

magnification (4X objective) with the aid of a mouse atlas (Paxinos and Franklin, 2001).  To 

demark the MRN, the anterior or ventral tegmental nucleus was used to determine the most 

dorsal region of the MRN, while the paramedian raphe nuclei and the tectospinal tract were used 

to determine the edges along the dorsal-ventral axis.  The most ventral region of the MRN was 

identified by locating the pericentral reticulotegmental nucleus of the pons. The slices of the 

MRN used for the stereological analysis started at approximately -4.04 mm from Bregma and 

continued posterior to -4.96 mm from Bregma.  The landmark used to help identify the most 

ventral region of the DRN was the superior cerebellar peduncle and the caudal linear nucleus of 

the raphe. The aqueduct was used as a landmark to determine the dorsal boundary of the DRN 

and sections used for stereological analysis were identified at -4.04 mm from Bregma and 

continued until -5.02 mm from Bregma.  

The stereological analysis performed was similar to that described in (Chakraborty et al., 

2003). The stereological analyses were performed using a computer-assisted morphometry 

system consisting of an Olympus BX61 photomicroscope (Center Valley, PA) and 

StereoInvestigator morphometry and stereology software (MicroBrightField, Inc., Colchester, 

VT). Stereological microscope analyses were performed at high magnification (100X oil 

objective, N.A. 1.35) and approximately nine slices were analyzed per subject for the MRN and 

10 slices were analyzed per subject for the DRN.  The observer was blinded as to which 

treatment group the subject belonged to during the stereological analysis.  
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The StereoInvestigator software placed dissector frames using a systematic random 

design within each contour outlining each region on a 90 x 90-m2 grid for the MRN and a 90 x 

130-m2 grid for the dorsal raphe nuclei. 5HT labeled cells were counted within 45 x 45 m 

optical dissector frames on the x-/y- axis and the final post-processing thickness of each section 

was measured.  The average height of the tissue was 15.65 m and 5HT labeled cells were 

counted over the whole thickness.  The optical fractionator method (Gundersen, 1986, 

Chakraborty et al., 2003) was used to estimate the total number of 5-HT immunolabelled 

neurons in the MRN or DRN which were counted as two separate categories.  The neuronal 

number estimates did not depend on a direct measurement of the volume of reference of the 

region considered and therefore tissue shrinkage during histological processing would not 

influence the neuronal number estimates. The total cell number is determined as the number of 

cells counted x sampling probability-1 where the sampling probability-1 is (ssf x asf x tsf) -1 (ssf is 

section sampling fraction (0.33); asf is area sampling fraction; tsf is the thickness fraction 

determined as the height, H, of the unbiased virtual counting spaces divided by t, the thickness 

of the slice after histological processing, H/t).  Coefficient of error (CE) values for the cell number 

estimates were determined using the Gundersen method incorporated in the StereoInvestigator 

software and then averaged for each group. 

The volumes of the MRN and DRN were measured by drawing the contour plot of each 

region at 10X magnification and then multiplying the contour area by the total thickness of the 

interslice distance (number of sections between each contour multiplied by slice thickness i.e. 3 

x 40 m).  Volume estimates were calculated based on postprocessing tissues that have shrunk 

in all three directions.  No attempts were made to correct for shrinkage because it probably 

differs in the z and x-y directions. 
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Tryptophan hydroxylase Immunohistochemistry and Microscopy 

To identify whether subregions of the DRN might be affected by 13-cis-RA treatment we 

used tryptophan hydroxylase 2 (TPH-2) immunolabelling. Tissue sections from –4.84 to –4.24 

mm from Bregma (Paxinos and Franklin, 2001) were selected for TPH-2 staining. All washes 

were performed in PBS at room temperature. Sections were washed and blocked in 3% bovine 

serum albumin for 1 h. Sections were then incubated with rabbit polyclonal anti-TPH2 antibody 

(Millipore, Billerica, MA, USA, 1:200) overnight at 4°C. Subsequently, sections were washed in 

PBS and incubated in donkey anti- rabbit alexafluor 568 secondary antibody (Invitrogen,1:1000) 

for 2 h at room temperature. After washing, sections were mounted and coverslipped using 

ProLong Gold (Invitrogen) and stored at 4°C prior to imaging. Images were captured using a 

confocal laser scanning microscope (laser  488nm, Zeiss LSM510, Carl Zeiss Ltd., UK) with a 

10x objective. The aqueduct and the medial longitudinal fasiculus were used as anatomical 

borders to demarcate the DRN (Paxinos and Franklin, 2001). All TPH-2 positive cells were 

counted in alternate sections, in a total of 8 sections per mouse, and the estimated neuronal 

number reported as the total in all 8 sections counted. The subregions examined were the DRN 

ventrolateral part (DRVL), the DRN dorsal part (DRD) and the DRN ventral part (DRV) as 

identified previously by TPH-2 immunoreactivity (Lowry et al., 2008). The observer was blinded 

to the treatment of each group during cell imaging and counting. 

 

Statistical analysis 

Data are reported as the mean ± S.E.M of n animals and were subject to a two-tailed t-

test to analyse the differences between vehicle treated control, and 13-cis-RA treated, mouse 

brains. The n number for each region investigated varies because of variability in the tissue 

quality of some of the sections.
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RESULTS 

To identify whether chronic treatment with13-cis-RA altered the number of serotoninergic cells in 

the raphe nuclei, we performed a stereological analysis of immunohistochemically labelled 

sections from vehicle control and drug treated adult mouse brains. Qualitative examination 

revealed that no gross anatomical or histochemical abnormalities were observed in 13-cis-RA 

treated brains compared with vehicle treated controls. 5-HT-immunolabelled cells were easily 

identified in tissue sections through the MRN and DRN (Fig. 1A-D). For the DRN, the average 

number of cells counted per mouse was 419.8 ± 47.2 and 458.3 ± 35.6 for control and treated 

groups respectively (n=7-10, P=0.50). For the MRN, the average number of cells counted per 

mouse was 153.8 ± 21.3 and 160 ± 35.6 for control and treated groups respectively (n=7-10, 

P=0.76). There were no differences between vehicle control and 13-cis-RA treated brains in the 

estimated number of 5-HT immunolabelled neurons in the MRN or DRN (Fig. 1E). In the MRN, 

the estimated number of 5-HT immunolabelled cells was 1815 ± 194 in control tissues compared 

with 1954 ±111 in the 13–cis-RA treated group (P=0.51, n=8 control, n=10 treated), estimated 

with an average CE of 0.098 ± 0.006 and 0.099 ± 0.006 respectively. The number of 5-HT 

immunolabelled cells was much higher in the DRN when compared to the MRN with an 

estimated cell number of 7148 ± 377 in the control group and 7578 ± 424 in the 13-cis-RA 

treated group (P=0.53, n=7 control, n=10 treated), estimated with a CE of 0.081 ± 0.011 and 

0.073 ± 0.004 respectively.    

Further investigation of the volume of the MRN and DRN revealed no significant 

differences between vehicle control and 13-cis-RA treated mice (Fig. 2). The volume of the MRN 

was 0.14 ± 0.02 mm3 in the control group and 0.14 ± 0.01 mm3 in the 13-cis-RA treated group 

(P=0.99, n=8 control, n=10 treated), estimated with an average CE of 0.043 ± 0.005 and 0.027 ± 

0.003 respectively. Similarly, in the larger DRN, the volume of the nucleus in control mice was 

0.28 ± 0.02 mm3 compared with 0.29 ± 0.01 mm3 in 13-cis-RA treated mice (P=0.42, n=7 
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control, n=10 treated), estimated with an average CE of 0.049 ± 0.004 and 0.041 ± 0.004 

respectively (Fig. 2A). Furthermore there was no difference in the density of cells contained 

within the MRN or DRN between control and treated groups (Fig 2B, P=0.34 for MRN, P=0.91 

for DRN, n=7-10 per group).  

To exclude the possibility that subregional differences in the number of serotoninergic 

neurons could be obscured in the stereological analysis, we also examined the numbers of 

serotoninergic cells within subregions of the DRN using TPH-2 immunoreactivity (Fig. 3). The 

number of TPH-2 immunolabelled cells in the DRV, DRD and DRVL was not significantly 

different when vehicle control sections were compared with 13-cis-RA treated brains (Fig. 3, P= 

0.69 DRV; P=0.21 DRD, P=0.35 DRVL, n=6).  

Taken together these data show that chronic administration of 13-cis-RA does not 

decrease serotoninergic cell number in the raphe nuclei of young adult mice. 
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DISCUSSION 

In this study we have shown that chronic 13-cis-RA treatment has no effect on the 

number of serotoninergic neurons in the raphe nuclei of young adult mice compared with 

controls. Stereological analysis of 5-HT immunolabelled neurons revealed that the volume, 

number of serotoninergic neurons and neuronal density of the MRN and DRN was not affected 

by 13-cis-RA treatment. Furthermore, analysis of DRN subregions showed that there was not a 

significant difference in the number of serotoninergic neurons in the DRV, DRD and DRVL 

following 13-cis-RA treatment.  We have previously shown that chronic treatment with 13-cis-RA 

induces an increase in depression-related behaviours (O'Reilly et al., 2006, Trent et al., 2009). 

In addition, we have shown that in mice treated with 13-cis-RA there is a functional uncoupling 

of the dorsal raphe nuclei and the hippocampus (O'Reilly et al., 2009). However, the data in the 

present study suggest that these effects of 13-cis-RA are not due to neuronal loss in the MRN or 

DRN. 

To our knowledge, this study represents the first quantitative estimate of the number of 

serotoninergic neurons in the DRN and MRN of the adult mouse obtained by unbiased 

stereological methods. The total number of 5-HT immunolabelled neurons was estimated to be 

approximately 7500 in the DRN and 1900 in the MRN of DBA/2J adult mice. During 

development, at postnatal day 7 in the mouse, similar methods have shown that the number of 

5-HT cell bodies in the DRN is 5641 ± 456 (Donovan et al., 2002) which is consistent with our 

estimates in the adult mouse. Stereological estimates of serotoninergic neuronal number in the 

adult DRN range from 15,000 in rats (Casu et al., 2004, Strackx et al., 2008), 95,000 in dogs 

(Bernedo et al., 2009) through 51,000 up to 165,000 in humans (Underwood et al., 1999, Bielau 

et al., 2005). This variability in the number of serotoninergic neurons likely reflects the 

interspecies variation in size. 
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Increases, decreases and no change in 5-HT cell number have all been reported in 

depressed human patients (Underwood et al., 1999, Baumann et al., 2002, Hendricksen et al., 

2004). Our original hypothesis, that chronic treatment with 13-cis-RA would decrease 

serotoninergic cell number, was largely based on evidence that 13-cis-RA and other retinoids 

have been shown to induce apoptosis (Sun et al., 2004, Guruvayoorappan et al., 2008, Liu et 

al., 2009). The serotoninergic neurons of the DRN project to most forebrain areas, including 

those crucial for emotional behaviours, such as the amygdala and paraventricular nucleus of the 

hypothalamus, as well as limbic structures, such as the hippocampus (Azmitia and Segal, 1978, 

Imai et al., 1986, Mamounas et al., 1991, Petrov et al., 1992). An increase in cell death in the 

DRN in response to retinoid treatment could therefore lead to a reduction in serotoninergic input 

to these forebrain regions involved in mediating responses to stress. Such a decrease could 

account for the increase in depression-related behaviours, and the functional uncoupling of the 

DRN and hippocampus, observed following 13-cis-RA treatment (O’Reilly et al., 2006, O’Reilly et 

al., 2009, Trent et al., 2009). Given the proposed trophic role of serotonin (Whitaker-Azmitia, 

2001), a decline in serotoninergic input to the hippocampus could also account for the reported 

decreases in adult neurogenesis following 13-cis-RA treatment, an effect which may be pro-

depressive (Crandall et al., 2004). Ishikawa et al. (2008) used slice cultures from embryonic day 

20 rats to show that high concentrations of 13-cis-RA (100 M) decreased serotoninergic cell 

number. While these effects were blocked by nanomolar concentrations of RAR/RXR 

antagonists, indicating a receptor-mediated effect, concentrations of 13-cis-RA as high as 100 

M have not been achieved in vivo. Indeed, the chronic retinoid treatment regime we used here 

gives rise to plasma retinoid levels of 1.5 ± 0.4 g/ml (5.1 M; O’Reilly et al., 2006), well below 

the high concentrations used to show a decrease in serotoninergic cell number in vitro (Ishikawa 

et al., 2008).  These lower plasma retinoid levels induce depression-related behaviour (O’Reilly 

et al., 2006) but did not reduce the number of serotoninergic neurons in the raphe nucleus 
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suggesting that some other, non-apoptotic, mechanism accounts for the change in depression-

related behaviour. 

Although the total number of serotoninergic cells arising in the raphe nuclei remain 

unchanged, it is still possible that the serotoninergic input to the hippocampus is impaired by 

chronic 13-cis-RA treatment. It is known that the dendritic and cellular morphology of cultured 

cells is affected by high levels of 13-cis-RA (Ishikawa et al., 2008, Liu et al., 2008) and if this is 

also true for the in vivo situation there would be a loss of serotoninergic synaptic contacts 

occurring within the hippocampus and a reduced serotoninergic drive into further hippocampal 

contacts. Not only may this directly account for the behavioural changes previously reported 

(O'Reilly et al., 2006, Trent et al., 2009) but it may also account for the functional uncoupling 

seen between the DRN and the hippocampus (O'Reilly et al., 2009).  However, such changes in 

morphology are unlikely to occur at the plasma retinoid levels that are able to induce an increase 

in depression-related behaviours, as discussed above. 

An alternative explanation for the functional uncoupling of the DRN from the hippocampus could 

be altered activity of serotoninergic neurons following 13-cis-RA treatment. Interestingly, mice 

subjected to chronic stress, a well established paradigm for inducing depressive-like behaviours, 

show reduced firing of serotoninergic neurons in the DRN (Bambico et al., 2009).  The firing rate 

of serotoninergic neurons from the DRN can be regulated by 5-HT1A autoreceptors, where a 

decrease in receptor number leads to increased basal firing activity (Richer et al., 2002) and 5-

HT1A receptor stimulation by 5-HT1A agonists or increased intra-cellular 5-HT conversely 

decreases the firing activity of these neurons (Blier et al., 1998).13-Cis-RA, at 2.5 and 10 M, 

increased 5-HT1A receptor and 5-HTT protein levels and intracellular 5-HT in vitro (O'Reilly et al., 

2007). If these changes are recapitulated following 13-cis-RA treatment in vivo one would expect 

the activity of serotoninergic projections from the DRN to be diminished, potentially leading to an 

increase in depression-related behaviour.
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Figure 1. Immunohistochemical analysis of serotoninergic neurons in the brain of vehicle control 
and 13-cis-RA treated young adult mice. Illustrative photomicrographs of coronal sections from 
control mouse brains showing that 5-HT immunolabelled neurons were readily detected in the 
raphe nuclei in Nissl counter-stained tissue sections at 2x (A) and 4x (B) magnification from 
which contour plots were drawn. Higher magnification images, 40x (C) and 100x (D), were used 
for cell counting and show the representative density of 5-HT immunolabelled neurons. The 
number of serotoninergic neurons in the median (MRN) and dorsal (DRN) raphe nuclei were 
counted (E). Data shown are mean ± S.E.M.. For MRN control n=8, 13-cis-RA n= 10; for DRN 
control n=7, 13-cis-RA n=10. 
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Figure 2. Quantitative analysis of the volume of the raphe nuclei in vehicle control and 13-cis-

RA treated young adult mice. Chronic 13-cis-RA treatment did not alter the estimated volume (A) 

or the estimated density of serotoninergic neurons (B) in either the median (MRN) or dorsal 

(DRN) raphe nuclei compared with vehicle treated controls. Data shown are mean ± S.E.M. For 

MRN control n=8, 13-cis-RA n= 10 ; for DRN control n=7, 13-cis-RA n=10. 
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Figure 3. Analysis of TPH-2 immunolabelling in the dorsal raphe nucleus from vehicle control 

and 13-cis-RA treated adult mice. (A) Illustrative confocal micrograph showing the dorsal raphe 

nucleus, bounded by the aqueduct (Aq) and medial longitudinal fasciculus (mlf), and the 

subregions of the dorsal raphe nucleus: the dorsal raphe nucleus dorsal part (DRD), ventral part 

(DRV) and ventrolateral part (DRVL). Scale bar: 40 m (B) TPH-2 immunolabelled cells were 

counted to estimate the number of serotoninergic neurons in each dorsal raphe subregion for 

both vehicle control and 13-cis-RA treated mice. Data shown are mean ± S.E.M., n= 6 per 

group. 
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