

Citation for published version:
Bradford, R, ffitch, J & Dobson, R 2011, Real-time Sliding Phase Vocoder using a Commodity GPU. in
Proceedings of ICMC 2011. ICMC, University of Huddersfield and ICMA, pp. 587-590, Proceedings of
ICMC2011, 1/08/11.

Publication date:
2011

Link to publication

University of Bath

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 07. Dec. 2019

https://researchportal.bath.ac.uk/en/publications/realtime-sliding-phase-vocoder-using-a-commodity-gpu(d698493f-b81e-4347-83a8-fbf5db7ae8cd).html

REAL-TIME SLIDING PHASE VOCODER USING A COMMODITY GPU

Russell Bradford, John ffitch, Richard Dobson

Department of Computer Science
University of Bath, UK

jpff@cs.bath.ac.uk

ABSTRACT

We describe a new approach to the processing of audio
by way of transformations to and from the frequency do-
main. In previous papers we described the Sliding Dis-
crete Fourier Transform (SDFT), comprising an extension
to the classic phase vocoder algorithm to perform a frame
update every sample. We proposed this as offering musi-
cal advantages over the common STDFT, including lower
latency and the potential for new classes of effect. Its
major disadvantage has been the very high computational
cost, which makes it intractable for real-time use even on
high-specification consumer workstations.

We report on a version of the SDFT that exploits the
intrinsic parallelism of the scheme on a commodity GPU,
to implement the transform and its inverse in real time for
multiple audio channels. This implementation is used to
provide previously uncomputable real-time effects. We
describe a key new effect, enabled by the method, which
we have called Transformational FM (TFM).

1. INTRODUCTION

There are many musical analyses and transformations that
are best performed in the frequency domain. For example
Lazzarini et al. [7] have introduced a range of spectral
operations for Csound.

These transformations are predicated on an efficient
translation from the time domain to frequency, and the in-
verse translation. For many years the usual process has
been the FFT algorithm, with its much repeated n log(n)
time complexity, coupled with overlapping windows. For
a number of years this STDFT mechanism has been avail-
able in real time. However it was noted by some that as
the overlap between the windows became larger the per-
ceived quality improved.

In the limit if the windows overlap by all but one sam-
ple we consider the sliding form[1]. There is an alterna-
tive to the FFT/IFFT algorithm if the advance is one sam-
ple at a time. In [2] it is argued that there are a number of
significant advantages of the single sample advance, but
that this advantage is critically undermined by the greatly
increased computational cost over the standard ”hopping”
phase vocoder. In this paper we show how with reason-
ably cheap commodity hardware we can deliver signifi-
cantly more performance than is needed for real-time.

2. THE UNDERLYING MATHEMATICS

The Discrete Fourier Transform (DST) is defined by the
formula

Ft(n) =
N−1

∑
j=0

f j+te−2πi jn/N (1)

where the PCM-coded input signal is ft , and Ft(n) are the
n frequency (complex) amplitudes for time t, and N is the
(assumed) cyclic period of the signal.

If we know the values Ft(n) we can determine Ft+1(n):

Ft+1(n) =
N−1

∑
k=0

fk+t+1e−2πik n
N (2)

=
N

∑
k=1

fk+te−2πi(k−1) n
N (3)

=

(
N−1

∑
k=0

fk+te−2πik n
N − ft + ft+N

)
e2πi n

N (4)

= (Ft(n)− ft + ft+N)e2πi n
N (5)

Thus the cost of moving on by one sample is N com-
plex multiplications and 2N additions, as the value of e2πi n

N

can be precomputed.
There are two immediate problems that need to be ad-

dressed in this formulation. Firstly it is well-known that
applying a window such as the Hamming window reduces
spectral smear, and with this formulation the window can-
not be applied in the time domain. The solution in this
case is to apply the window as a frequency-domain con-
volution. That is to say, it can be applied after the SDFT
as multiplication of the spectral transform of the window.
Indeed for cosine-based windows this operation is simple
(see [5]).

The second issue is the amount of accumulated error,
as numerical rounding errors may propagate. These errors
relate primarily to the accumulating phase advance (id-
iomatic to the phase vocoder), here computed per sample.
Our experiments show that if the SDFT is performed in
single precision IEEE arithmetic and at the CD sampling
rate, phase errors at the resynthesis stage (which is in ef-
fect additive synthesis by oscillator bank) become evident
as distortion of the waveform after as little as ten minutes.
In contrast, using double precision we observe no deteri-
oration after a day. We note here as a general point that
whenever such processes (originally implemented as an
”offline” process applied to a relatively short soundfile)

are recast as real-time effects, it is usually important to
perform some form of ”soak test” of this nature to confirm
that errors of this kind do not accumulate to detrimental
effect.

In the paper by Moorer ([8]) a complicated inverse
formula is developed. However it requires N2 data to be
maintained and is clearly impractical, the more so for a
real-time implementation. Instead we use a direct calcu-
lation of the definition of the inverse DFT:

ft =
1
N

N−1

∑
n=0

Ft(n)e2πitn/N (6)

but as we only need consider one value of t for each frame
this is more efficient than the formula would suggest.

To deliver a useful SDFT we must be able to perform
these operations, any spectral transformation operation,
and an inverse within the constraints of real-time perfor-
mance.

3. THE HARDWARE

In [2] attempts to perform the transformation and its in-
verse on standard hardware were shown to be much too
slow for other than proof-of-concept, and the authors ad-
vocated the use of special plug-in vector hardware to give
sufficient power; in particular the Clearspeed CSX board.
There are indications that this hardware is viable [9], but
it is specialised and relatively expensive hardware aimed
primarily at the HPC community, and is not widely avail-
able.

In this paper we report on the use of a more common
parallel computing component, the video card. Recent
graphics cards incorporate significant amounts of paral-
lel processing to support, for example, 3-D games. The
release of the Nvidia CUDA language for some of their
GPU-based cards opens the possibility of using this bulk
parallelism for audio processing. We are using an Nvidia
GeForce GTX 470, a medium-range graphics coproces-
sor. This card has has 14 streaming multiprocessors (SMs),
each of which has 32 processing cores, giving a total of
448 cores. A general feature of such coprocessors is that
each core in a given SM is has to run exactly the same
code, in lockstep with every other core in that SM. In the
context of a graphics processor, where we might want to
run the same processing over many pixels, this is not a
constraint: each core processes an individual pixel in par-
allel. For our purposes, this translates to the cores pro-
cessing individual bins in the DFT in parallel.

The cores run at 0.6GHz, and support IEEE 64-bit
(double) floating point. This is a relatively new feature
for graphics cards; previous generations of video cards
tended only to support 32-bit (single float) precision. As
noted above, this is important to us (while it has been less
important to graphics processing, hence its late arrival in
such cards). The card has a theoretical performance of
about 1000 GFlops.

As a comparison, the card resides in a standard 4-core
Intel i7 desktop machine, running at 2.67Ghz, with a the-

oretical performance of approximately 40 GFlop. The rel-
ative slowness of the cores in the coprocessor is more than
offset by their multiplicity. But we have to work hard to
get at this large pool of computational potential.

The card has 1.3GB of its own memory, shared be-
tween all the SMs. However, and this turns out to be criti-
cal in the design of CUDA programs, access to that mem-
ory is desperately slow, taking 100s of clock cycles per ac-
cess. To mitigate this, each core supports multithreading
in hardware, trivially supporting 1000s of threads in a typ-
ical program. To hide the memory access cost, the hard-
ware will rapidly swap between threads waiting for data
and threads waiting for processing time. Having many
threads means that there will always be some processing
to do, rather than waiting idle on data access. An efficient
CUDA program needs to be written with this in mind.

The card also contains a limited amount of fast shared
memory (across the cores in an SM) , of the order of 10s
of KB, together with some other more specialised kinds
of memory. An efficient CUDA program will need to con-
sider the use of these memory blocks, maybe copying data
between slow global memory and fast local shared mem-
ory. This all adds complexity to the program.

This is above the usual issues with coprocessors that
do not have direct access to the main system’s memory.
We must also consider the cost in time of moving data
back and forth from the coprocessor. A program needs
to balance the cost of data movement against the gains
achieved from using the coprocessor. Audio presents spe-
cial challenges in this respect - we typically wish to trans-
fer as small a data packet as possible to minimise latency,
and this can directly conflict with the optimal use of the
parallel hardware.

We are not the first to use GPUs in audio processing.
There have been occasional presentations in CUDA con-
ferences relating to audio. [4] used a GPU for a variety
of filtering operations, but only got improvements over a
standard CPU in an implementation of reverberation. In-
deed it is our experience that organising these algorithms
for a GPU is a non-trivial operation.

4. THE SOFTWARE

Our demonstration software is written in a combination of
C and CUDA. The C frontend obtains the input samples
and feeds them to the DFT engine running on the GPU,
together with control data, and retrieves the processed au-
dio. There is also an interactive real-time demonstrator
with a trivial GUI, written in C++, that allows us to con-
trol some simple FM transformations (applied in the fre-
quency domain), including the special case where the mod-
ulation can be performed at audio rates. We describe the
transformations later (section6).

As is clear from section3, the critical aspect of the pro-
gram is the management of memory access. Our current
code is the result of many experiments and arrangements,
too numerous to catalogue. The code has been validated
by checking that the resynthesised sound data is the same

as the input if no transformations are performed, and by
checking a number of simple pitch-shifts.

5. PERFORMANCE

No of Channels Time for 1sec sound
1 0.56 sec
2 0.59 sec
4 0.70 sec
8 0.88 sec

Table 1. Times for 1sec round trip multi-channel sound
with 1024 bins.

We do not make any claims for optimality of our pro-
gram, but it is sufficiently fast. We have been working at
a sample rate of 44100 Hz, using double precision IEEE
floating point arithmetic. For the first measurements the
GPU program calculates the complex DFT by the sliding
method, applies a Hamming window, and then converts
the data into the magnitude-frequency form that is needed
in the standard phase vocoder. In fact this is the most
expensive operation, involving the calculation of an arc-
tangent. The data is then converted back to the complex
form, and resynthesised using equation (6). The size of
the window was 1024 samples.

For a mono input stream this round trip runs at about
twice real-time. However, doubling the number of chan-
nels does not double the time required; the times shown in
table 1 show that the program is not saturating the avail-
able processing power. This is an effect of the memory
access issues describe above, and suggests that there may
be more musical use that can be performed with this com-
modity hardware.

6. APPLICATION

Our motivation for this work is not an exercise in com-
puter science, but a desire for clean and efficient musical
sonic transformations. To this end we have implemented
two demonstration applications, both of which are well
inside real-time.

The first is a straightforward pitch-shifter. As demon-
strated in [2] we take advantage of the fact that the conver-
sion of the raw SDFT frames into sliding phase vocoder
frames of magnitude/frequency bins leads to a working
bin bandwidth of ± Nyquist. Resynthesis does not em-
ploy the IDFT as such (which would impose the usual re-
strictions on bin frequencies) but uses direct additive syn-
thesis, thus we can have any frequency in any bin. After
the initial SDFT analysis stage we are free to view the
process entirely in terms of a free-ranging oscillator bank.
This means (disregarding any phase-locking considera-
tions) that pitch-shifting is reduced to the trivial case of
scaling each bin. This is controlled by a simple GUI con-
trolled by the main processor. Via a slider the amount to
shift the sound as a ratio (1 being no change, 2 an octave

up and 0.5 an octave down) is passed continuously to the
SDFT engine on the GPU. The input can be taken from an
audio file or directly from a microphone. There is nothing
exceptional about this program apart from the clarity of
the transformation.

The second application is a variation of the first pro-
gram with one significant difference. Instead of just a
pitch shift, the shift of pitch is sinusoidal, with added GUI
controls for the amplitude of sinusoid and the frequency
of the change (figure 1). If the input were a pure tone then
this would be just frequency modulation. The innovation
here is that we now have a choice of modulation strategy.
We can, following the standard formulation for audio-rate
FM, modulate the input sound (such as a monophonic in-
strumental voice) as a whole, or we can analyse the in-
coming sound into its component frequencies, and then
each component can be individually subjected to the FM
transformation; in each case the modulation can be ap-
plied (thanks to the single-sample update) at audio rates.
This is what we define as Transformational FM (TFM),
which was introduced in [2], but there was a slow off-line
calculation. With the CUDA/CPU implementation this is
now available as a real-time multi-channel effect proces-
sor. In figure 2 we show a screen shot of the application,
with the waveform and spectrum of the input signal (top
right) and output (bottom right).

Figure 1. Screen shot of TFM GUI.

It is our contention that this effect is new, and now
available at low cost to add to the existing repertoire of
real-time effects.

7. CONCLUSIONS AND FUTURE WORK

We believe that the next big challenge for audio process-
ing is to harness parallel processing in a musical way. We
describe this approach High-Performance Audio Comput-
ing (HiPAC). Unlike standard High Performance Comput-
ing (HPC), HiPAC demands that we be especially aware
of latency and the many demands of real-time operation.
This has already been expounded in [3] and [6], and dis-
cussed in a panel at ICMC in 2008 [10].

The current program is not fully optimised, but can al-
ready handle 8 channels. As presently implemented, we
modulate the incoming audio by a simple fixed frequency.
This gives a result loosely comparable to ring modulation.

Figure 2. Screen shot of TFM in action.

A next stage is to incorporate a simple pitch tracking el-
ement, which will enable the FM Modulation Index to be
preserved as the source changes pitch. A further obvi-
ous extension of the program would be to implement the
constant-Q variant of the SDFT [6]. This requires three
SDFTs for each frequency bin, so as we can perform the
basic operations on 8 streams at present it seems likely
that at least stereo constant-Q is realisable, assuming the
all-important data positioning issues can be resolved.

The work presented here is a significant step towards
the target of a broader application of HiPAC techniques.
Not only is the DFT performed in real time, which has
been the case for some years, but the frequency domain
representation is updated at every sample, not only of-
fering the consequent improvements in audio quality but
also, and more significantly, allowing new families of trans-
formations to become available to the performing musi-
cian. We note in particular the fact that the resynthesis
step is performed by direct additive synthesis, a process
that is well-known but also generally considered as com-
putationally excessively demanding. We have highlighted
TFM as one way of exploiting the single-sample stream-
ing analysis of the sliding phase vocoder. In the gen-
eral case, any process that can be applied to the output
of a phase vocoder style oscillator bank can be employed.
Even allowing for the need to optimise such processes
to take maximum advantage of the GPU architecture, the
speed gains we have obtained via commonly available low-
cost hardware suggest that there is much scope for the im-
plementation of “GPU streaming plugins” that can trans-
form the raw additive output of the process in a multi-
tude of ways, with the further alluring prospect of multi-
channel and polyphonic operation.

8. REFERENCES

[1] R. Bradford, R. Dobson, and J. ffitch, “Sliding is
Smoother than Jumping,” in ICMC 2005 free sound,
SuviSoft Oy Ltd, Tampere, Finland, Ed. Escola Su-
perior de Música de Catalunya, 2005, pp. 287–290.

[2] ——, “The Sliding Phase Vocoder,” in Proceedings

of the 2007 International Computer Music Confer-
ence, S. O. Ltd, Ed., vol. II. ICMA and Re:New,
August 2007, pp. 449–452, iSBN 0-9713192-5-1.

[3] R. Dobson, J. ffitch, and R. Bradford, “High Per-
formance Audio Computing – A Position Paper,” in
Proceedings of the 2008 ICMC. SARC, Belfast:
ICMA and SARC, 2008, pp. 213–216, iSBN 0-
9713192-6-x.

[4] F. Fabritius, “Audio processing algorithms on the
GPU,” Master’s thesis, Kgs. Lyngby, Technical Uni-
versity of Denmark, 2009.

[5] J. ffitch, R. Dobson, and R. Bradford, “Sliding DFT
for Fun and Musical Profit,” in 6th International
Linux Audio Conference, F. Barknecht and M. Ru-
mori, Eds., LAC2008. Kunsthochscule für Medien
Köln: Tribun EU, Gorkeho 41, Bruno 602 00, March
2008, pp. 118–124, iSBN 978-80-7399-362-7.

[6] ——, “The Imperative for High-Performance Au-
dio Computing,” in Proceedings Linux Audio Con-
ference. Istituzione Casa della Musica, 2009, pp.
73–79.

[7] V. Lazzarini, J. Timoney, and T. Lysaght, “Spectral
Signal Processing in Csound 5,” 2006, pp. 392–395.

[8] J. A. Moorer, “Audio in the New Millennium,” J.
Audio Eng. Soc., vol. 48, no. 5, pp. 490–498, May
2000.

[9] I. Tsimashenka, “Development, Implementation and
Analysis of Real-Time Parallel Algorithm of Sliding
Discrete Fourier Transform,” M.Phil., Department
of Computer Science, University of Bath, Dec 2010.

[10] D. Wessel, R. Dannenberg, Y. Orlarey, M. Puck-
ette, P. V. Roy, and G. Wang, “Reinventing Audio
and Music Computation for Many-Core Processors.”
SARC, Belfast: ICMA and SARC, 2008, iSBN 0-
9713192-6-x.

