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THEORY OF LIGHT-MATTER INTERACTION IN NEMATIC LIQUID CRYSTALS

AND THE SECOND PAINLEVÉ EQUATION

MARCEL G. CLERC, JUAN DIEGO DÁVILA, MICHA L KOWALCZYK, PANAYOTIS SMYRNELIS,

AND ESTEFANIA VIDAL-HENRIQUEZ

Abstract. We study global minimizers of an energy functional arising as a thin sample limit in the theory
of light-matter interaction in nematic liquid crystals. We show that depending on the parameters various

defects are predicted by the model. In particular we show existence of a new type of topological defect which
we call the shadow kink. Its local profile is described by the generalized Hastings and McLeod solutions of

the second Painlevé equation ([23] [15]). As part of our analysis we give a new proof of existence of these

solutions.

1. Introduction

1.1. Physical motivation. In a suitable experimental set up [11, 12, 9, 10, 13] involving a liquid crystal
sample, a laser and a photoconducting cell one can observe light defects such as kinks, domain walls and
vortices. A concrete example of formation of optical vortices is presented in [13].

To describe the energy of the illuminated liquid crystal light valve (LCLV) filled with a negative dielectric
nematic liquid crystal which is homeotropically anchored, we consider the Oseen-Frank model in the vicinity
of the Fréedericksz transition. Denoting the molecular director by ~n the Oseen-Frank energy is given by [18]

(1.1) F =

∫
K1

2
(∇ · ~n)2 +

K2

2
(~n · (∇× ~n))

2
+
K3

2
(~n× (∇× ~n))

2 − εa
2

( ~E · ~n)2,

where {K1,K2,K3} are, respectively, the splay, twist, and bend elastic constants of the nematic liquid crystal
and εa anisotropic dielectric constant (εa < 0). We will neglect the anisotropy i.e we will assume that

K1 = K2 = K3 = K. Under uniform illumination ~E = [V0 + aI]/d ẑ, where V0 is the voltage applied to
the LCLV, d thickness of the cell, I intensity of the illuminating light beam, and a is a phenomenological
dimensional parameter that describes the linear response of the photosensitive wall [36]. The homeotropic
state, ~n = ẑ, undergoes a stationary instability for critical values of the voltage which match the Fréedericksz
transition threshold VFT =

√
−Kπ2/εa − aI.

Illuminating the liquid crystal light valve with a Gaussian beam induces a voltage drop with a bell-shaped
profile across the liquid crystal layer, higher in the center of the illuminated area. The electric field within
the thin sample takes the form [9]

(1.2) ~E = Ez ẑ + Er r̂ ≡
[V0 + aI(r)]

d
ẑ +

za

dω
I ′(r)r̂,

where r is the radial coordinate centered on the beam, r̂ the unitary radial vector, I(r) the intensity of

Gaussian light beam, I(r) = I0e
−r2/2ω2

, I0 the peak intensity, and ω the width of the light beam.
If the intensity of the light beam is sufficiently close to the Fréedericksz transition the director is slightly

tilted from the ẑ direction and one can use the following ansatz

(1.3) ~n(x, y, z) ≈

 n1(x, y, πz/d)
n2(x, y, πz/d)

1− (n2
1+n2

2)
2

 .
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Introducing the above ansatz in the energy functional F and taking the limit of the thickness of the sample
d→ 0 one obtains the following problem (written here for simplicity in a non dimensional form) [21, 11, 9]

(1.4) G(u) =

∫
R2

ε

2
|∇u|2 − 1

2ε
µ(x, y)|u|2 +

1

4ε
|u|4 − a (f1(x, y)u1 + f2(x, y)u2) ,

where u = (u1, u2) : R2 → R2 is an order parameter describing the tilt of ~n from the ẑ direction in the thin
sample limit, ε� 1 is proportional to the width of the Gaussian beam and in radial co-ordinates

(1.5) µ(x, y) = e−r
2

− χ, f(x, y) = −1

2
e iθ

d

dr
[e−r

2

− χ] = e iθre−r
2

, (x, y) = re iθ,

and χ ∈ (0, 1) is a fixed constant. The function µ describes light intensity and is sign changing due to the fact
that the light is applied to the sample locally and areas where µ < 0 are interpreted as shadow zones while
areas where µ > 0 correspond to illuminated zones. The function f describes the electric field induced by
the light due to the photo conducting bluewall mounted on top of the sample [9]. Experiments show that as
the intensity of the applied laser light represented here explicitly by the parameter a increases, defects such
as light vortices appear first on the border of the illuminated zone and then in its center. This transition
takes places suddenly once a threshold value of a is attained. At large values of a vortices have local profiles
resembling the profile of the standard vortex of degree +1 in the Ginzburg-Landau theory. At low values
of a vortices are located in the shadow area (we call them shadow vortices) and their local profiles are very
different than that of the standard ones. In particular while the amplitude of the standard vortex is of order
O(1) in ε the amplitude of the shadow vortex is of order O(ε1/3). This picture is confirmed experimentally,
numerically and by formal calculations [13]. Currently new experiments are being designed in order to realize
experimentally other types of defects, such as kinks or domain walls. In the context of the model energy (1.4)
this amounts to assuming that u2 ≡ 0 (domain walls) or u = u(x) and u2 ≡ 0 (kinks). In the latter case the
energy takes form

(1.6) E(u) =

∫
R

ε

2
|ux|2 −

1

2ε
µ(x)u2 +

1

4ε
|u|4 − af(x)u,

with µ(x) and f(x) given by:

(1.7) µ(x) = e−x
2

− χ, χ ∈ (0, 1), f(x) = −1

2
µ′(x) = xe−x

2

,

where χ ∈ (0, 1) is fixed.
In this paper we will study global minima of the problem (1.6). The energy E(u) is a real valued, one

dimensional version of G(u), yet both show a remarkable qualitative agreement. This is not surprising in
view of the fact that both of them come from taking the thin sample and small tilt of the director limit of the
Oseen-Frank energy (1.1). The theoretical value of our study lies in understanding and explaining the basic
mechanism of formation of the various types of defects on the basis of the analogous mechanism for the the
energy E(u). In particular we will show existence of a new type of defect, the shadow kink, appearing at the
points where µ changes sign i.e. in the shadow area of the one dimensional model. Its analog for the energy
G is the shadow vortex [13] and here we make a first step in understanding its local profile via the second
Painlevé equation.

The model of light-matter interaction in nematic liquid crystals described above has some similarities with
the model of the Bose-Einstein condensates in a rotating trap based on the Gross-Pitaevskii energy

F (u) =

∫
R2

1

2
|∇u|2 +

1

2ε2
V (x)|u|2 +

1

4ε
|u|4 − Ωx⊥ · (iu,∇u) subject to ‖u‖L2 = 1,

where Ω ∈ R is the angular velocity, (iu,∇u) = iu∇ū − iū∇u and V (x) = x2
1 + Λx2

2 is a harmonic trapping
potential (more general nonnegative, smooth V are considered as well). The role played in G(u) or E(u) by
the parameter a is played here by the angular velocity, whose threshold values correspond to emergence of
global minimizers of different nature. When Ω = O(| ln ε|) is below a critical value Ω1 global minimizers are
vortex free [25, 5], while at some other critical values Ω2 > Ω1 global minimizers have at least one vortex
[25, 26], which looks locally like the radially symmetric degree ±1 solution to the Ginzburg-Landau equation

∆u+ u(1− |u|2) = 0, in R2.
2



At still higher values of Ω = O( 1
ε ) the so called giant vortex becomes the equilibrium state of the Bose-Einstein

condensate [4] (see also [2]). All these localized structures have exact analogues for our one dimensional model.
This could be surprising at first so let us explain this point. Due to the mass constraint we can recast the
Gross-Pitaevskii energy in the form somewhat similar to G

(1.8) F (u) =

∫
R2

1

2
|∇u|2 +

1

4ε2

[(
|u|2 − a(x)

)2 − (a−(x)
)2]2 − Ωx⊥ · (iu,∇u),

where a(x) = a0 − V (x), a0 is determined so that
∫
R2 a

+ = 1 and a± are the positive and negative parts of
the function a. Additionally, the splitting of this functional corresponding to density and phase of u found
in [34] shows that on the nonlinear level the two models should have many properties in common. To get an
idea of what we have in mind let us demonstrate the similarity between the case when a = 0 in E and Ω = 0
in F . The former problem becomes to minimize

E(u) =

∫
R

ε

2
|ux|2 −

1

2ε
µ(x)u2 +

1

4ε
|u|4

and the latter to minimize

F (u) =

∫
R2

1

2
|∇u|2 +

1

4ε2

[(
|u|2 − a(x)

)2 − (a−(x)
)2]2

.

Intuitively the global minimizers should be respectively: u =
√
µ+ and u =

√
a+ (this is the Thomas-Fermi

limit of Bose-Einstein condensate). The problem is that both of these functions are not smooth at their zero
level sets. Because of this the true minimizers will exhibit a boundary layer behavior near the zero level set of
a+ or µ and their local profiles, after suitable scaling, are given by the unique, positive solution of the second
Painlevé equation [23]

(1.9) y′′ − xy − 2y3 = 0, in R,

such that

(1.10) y(x)→ 0, x→∞, y(x) ∼
√
−x/2 x→ −∞.

This phenomenon is also known as the corner layer and it is present in the context of the Bose-Einstein
condensates [3, 30] as well as in many other problems, see for example [7, 6, 38, 32, 31]. In the next section
we will see that the shadow kink, which is the one dimensional analog of the shadow vortex and is the global
minimizer of E(u) is described locally by a solution of the second Painlevé equation

(1.11) y′′ − xy − 2y3 − α = 0, in R,

with α 6= 0 leading to a quite different behaviour than the corner layer. Equation (1.11) has been studied by
Painlevé and others since the early 1900’s and is a part of a hierarchy of the Painlevé equations, which in
turn is a part of a larger hierarchy of equations characterised by the fact that the only movable singularities
of their solutions are poles (see for example [29]). One of the most interesting aspects of these equations is
how ubiquitous they are in applications. To mention a few examples besides the Bose-Einstein condensates
discussed above: the problem of finding self-similar solution of the KdV equation is reduced to (1.11) by a
change of variables (see [1] and [20] for more about the connection of (1.11) with the theory of integrable
systems); the theory of random matrices [19], [15]; superconductivity [14] [24], [35]; for even more applications
we refer to [27], [33], [37] and the references therein.

In view of this discussion existence of the shadow kink should have consequences that go beyond the one
dimensional model (1.6) considered here. Indeed our result suggests that (1.11) with α 6= 0 should play
an important role in various boundary layer phenomena and for this it is necessary to understand special
solutions of the Painlevé equation beyond the case α = 0. In fact one of our contributions in this paper is to
find new proof of existence of solutions of (1.11) and to characterize them from the variational point of view as
we explain below. Furthermore, the analogy between the problem of minimization of the energy functionals
E and G, on the one hand, and formal relation between E and the Gross-Pitaevski energy functional, on the
other hand, suggest that the behaviour of the Bose-Einstein condensates between the threshold values of the
angular velocity Ω1 < Ω2 is described by a new type of topological defect, the shadow vortex. Therefore it is
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important to show rigorously existence of shadow vortices for the energy G and here we make the first step
in this direction considering a simpler case of the energy E.

To explain this let us briefly discuss one of the results of this paper which deals directly with the second
Painlevé equation (1.11) and gives new proof of existence of special type of solution. In [23] Hastings and
McLeod considered (1.9) and showed existence of a unique solution with (1.10) as the asymptotic conditions
at ±∞. In [15] it was proven that for any α 6= 0 equation (1.11) has two distinct solutions which converge
to 0 as x → ∞. One of these generalized Hastings-McLeod solutions is nonnegative and the other is sign
changing. This result, which was conjectured on the basis of numerical simulations in [16], was first proven
in [15] (the proof relies on [28] and [27]). Another proof of existence was given in [39]. These solutions of the
second Painlevé equation give formally the local profiles of the shadow kink which is different from the corner
layer type of behaviour determined by (1.9). We conjecture that minimizers of the Gross-Pitaevski energy
in the intermediate regime Ω1 < Ω < Ω2 may also have similar profile near the zero level set of the function
a(x) in (1.8).

1.2. Statements of the main results.
More generally than in (1.7) in what follows we assume that:{

µ ∈ C1(R) ∩ L∞(R) is even, µ′ < 0 in (0,∞), and µ(ξ) = 0 for a unique ξ > 0,

f ∈ L1(R) ∩ L∞(R) ∩ C(R) is odd, f(x) > 0, ∀x > 0.
(1.12)

The assumption that µ is even is made here for the sake of simplicity. It is only utilized in the proof of
Theorem 1.1 to deduce the evenness of the global minimizer for a = 0 (cf. Step 2), and to simplify the
expression of the comparison functions in Step 5. Our statements can easily be adjusted if µ′ < 0 in (0,∞),
µ′ > 0 in (−∞, 0), µ(ξ) = 0 for a unique ξ > 0, µ(ξ′) = 0 for a unique ξ′ < 0. We just mention that without

symmetry, the global minimizer may prefer for 0 < a < a∗, either the profile
√
µ+ or −

√
µ+, depending on

the sign of
∫ ξ
ξ′
√
µf .

We consider the energy

(1.13) E(u) =

∫
R

(
ε

2
|u′(x)|2 − 1

2ε
µ(x)u2(x) +

1

4ε
|u(x)|4 − af(x)u(x)

)
dx, u ∈ H1(R).

In this paper we will keep a ≥ 0 fixed and ε � 1. Under assumptions (1.12), there exists v ∈ H1(R) such
that E(v) = minH1(R)E. In addition, v ∈ C2(R) is a classical solution of the O.D.E.

(1.14) ε2v′′(x) + µ(x)v(x)− v3(x) + εaf(x) = 0, ∀x ∈ R.

Note that due to the symmetries in (1.12), the energy (1.13) and equation (1.14) are invariant under the odd
symmetry v(x) 7→ −v(−x).

Next we discuss the dependence of the global minimizer on a.

Theorem 1.1. The following statements hold.

(i) When a = 0 the global minimizer v is even, and positive up to change of v by −v.
(ii) For a > 0, the global minimizer v has a unique zero x̄ such that

(1.15) |x̄| ≤ ξ +O(
√
ε), and v(x) > 0, ∀x > x̄, while v(x) < 0, ∀x < x̄.

(iii) Suppose that

(1.16) a∗ := sup
x∈[−ξ,0)

√
2
(
(µ(0))3/2 − (µ(x))3/2

)
3
∫ 0

x
|f |√µ

<∞.

For all a > a∗, x̄→ 0 as ε→ 0, and the global minimizer v satisfies

(1.17)

lim
ε→0

v(x̄+ εs) =
√
µ(0) tanh(s

√
µ(0)/2),

lim
ε→0

v(x+ εs) =


√
µ(x) for 0 < x < ξ,

−
√
µ(x) for − ξ < x < 0,

0 for |x| ≥ ξ,
4



in the C1
loc(R) sense.

(iv) Let

a∗ := inf
x∈(−ξ,0]

√
2(µ(x))3/2

3
∫ x
−ξ |f |

√
µ
∈ (0,∞), and note that a∗ ≤ a∗.

Up to change of v(x) by −v(−x), for all a ∈ (0, a∗), x̄→ −ξ as ε→ 0, and

(1.18) lim
ε→0

v(x+ sε) =

{√
µ(x) for |x| < ξ,

0 for |x| ≥ ξ,

in the C1
loc(R) sense. The above asymptotic formula holds as well when a = 0. Moreover, when

f = −µ
′

2 we have a∗ = a∗ =
√

2.

We observe that (1.16) holds for instance provided µ is twice differentiable at 0, and f ′(0) > 0 cf. Step 6
of the proof below. We note also that convergence in (1.17) and (1.18) can be improved to C2 convergence on
compacts of R by a straightforward bootstrap argument (provided f ∈ C1(R)). One can see intuitively why
the transition occurs near the origin for a > a∗ by considering the term −

∫
R af(x)u(x)dx, whose contribution

in (1.13) increases with a. When u vanishes at 0, the value of −
∫
R fu is minimal, since u and f have the

same sign. This gain of energy compensates the cost of a transition near the origin for a > a∗.
The preceding theorem justifies the name shadow kink for the global minimizer when a ∈ (0, a∗). Indeed,

when a > a∗ the global minimizer has a profile of suitably re-scaled and modulated hyperbolic tangent. This
is not surprising since H(x) = tanh(x/

√
2) is a solution of the Allen-Cahn equation

(1.19) H ′′ +H −H3 = 0, in R,
and it is a standard, local profile of topological defects such as kinks or domain walls appearing in many
phase transition problems. On the other hand, when a < a∗ the zero of the global minimizer occurs near
the point where ξ changes its sign i.e. between the illuminated zone and the dark zone in the nematic liquid
crystal experiment. Because of this, unlike in the case of the standard kink, the shadow kink is hard to detect
experimentally. To understand qualitative properties of the global minimizers described above it helps to
consider the roots of the equation:

(1.20) − u3 + µ(x)u+ εaf(x) = 0.

Note that transitions of the global minimizers as ε → 0 connect the branches rε,± either near x = ±ξ (the
shadow kink) or at x = 0 (the standard kink).

ξ−ξ

x x
ξ−ξ

y y

rε,+

rε,-

rε,0

Figure 1. The roots of equation (1.20). Left: with a > 0; Right: with a = 0.

From the preceding discussion we see that when the parameter a changes from a < a∗ to a > a∗ the global
minimizer changes its character very significantly and in the particular case a∗ = a∗ an abrupt transition

5



between the shadow kink and the standard kink takes place. One may speculate that both the shadow and
the standard kink are local minimizers and that a∗ = a∗ is the Maxwell point of the energy functional.

Next we will study local profiles of the global minimizers near the points ±ξ, that is the zeros of µ. Our
goal is to show that the shadow kink is indeed different than the standard kink, and its local profile near the
point of sign change is nothing like the solution (1.19). We recall the second Painlevé equation

(1.21) y′′(s)− sy(s)− 2y3(s)− α = 0, ∀s ∈ R.

We will now define the notion of minimal solutions of (1.21). Let us denote

EPII
(u, I) =

∫
I

[
1

2
|u′|2 +

1

2
su2 +

1

2
u4 + αu

]
By definition a solution of (1.21) is minimal if

EPII(y, suppφ) ≤ EPII(y + φ, suppφ)

for all φ ∈ C∞0 (R). This notion of minimality is standard for many problems in which the energy of a localized
solution is actually infinite due to non compactness of the domain.

Theorem 1.2 (Local profile of the global minimizer). Let v be the global minimizer of E for a ≥ 0, let
µ1 := µ′(ξ) < 0, and let

w±(s) = ±2−1/2(−µ1ε)
−1/3v

(
± ξ ± ε2/3 s

(−µ1)1/3

)
.

As ε → 0, the function w± converges in C1
loc(R) up to subsequence, to a bounded at ∞, minimal solution of

(1.21) with α = af(ξ)√
2µ1

< 0.

In order to be more precise about the limit of w± we state:

Theorem 1.3 (A generalisation of the Hastings-McLeod result). The following statements hold.

(i) For any α ≤ 01 the second Painlevé equation has a positive minimal solution y, which is strictly
decreasing (y′ < 0) and such that
(a) When α = 0

y(s) ∼ Ai(s), s→∞

y(s) ∼
√
|s|/2, s→ −∞(1.22)

Moreover, this is the only nonnegative minimal solution, bounded at ∞.
(b) When α < 0

y(s) ∼ |α|
s
, s→∞

y(s) ∼
√
|s|/2, s→ −∞(1.23)

(ii) When α < 0 and y is a minimal solution bounded at ∞, such that it vanishes at s = s̄ then

y(s) ∼ |α|
s
, s→∞

y(s) ∼ −
√
|s|/2, s→ −∞(1.24)

From this we have as a corollary:

Corollary 1.4. If v is the global minimizer of E for a > 0 and if v ≥ 0 on [0,∞) (resp. v ≤ 0 on (−∞, 0]),
then w+ (resp. w−) converges to the solution y, described in Theorem 1.3 (i).

1By changing y by −y, we obtain the solutions of (1.21) corresponding to α ≥ 0

6



We recall that when α = 0 existence of a positive solution was proven in [23] by Hastings and McLeod.
In [15] the notion of the generalized Hastings-McLeod solutions was introduced and the following was shown
about them: when −1/2 < α < 0 there is a sign changing solution and when α < −1/2 there is a positive
solution (the constant α in [15] is taken with opposite sign, we adopt their result to our notation). Our
theorem states that the positive solution exists in fact for all α. It should also be mentioned that in [39]
another proof of existence of the sign changing solutions has been given. Together with numerical simulations
it seems to suggest that the range of α for which the sign changing solution exists is bigger than then one
given in [15].

Part (i) (a) of Theorem 1.3 characterizes the Hastings-McLeod solution (α = 0) as minimal. This property
holds also for solutions described in part (i) (b) of this theorem and it explains why they are energetically
privileged in the boundary layer behaviour seen in various physical systems. The minimality property holds
for H(x) = tanh(x/

√
2) in the Allen-Cahn equation and the vortex of degree ±1 in the Ginzburg-Landau

theory and it appears to be a universal fact about topologically nontrivial and physically relevant defects.
On the basis of of numerical simulations of the global minimizers of E and existence results in [15] and [39]
we expect that minimal solution described in Theorem 1.3 (ii) coincide with the sign changing, bounded at
∞ solution of the Painlevé equation.

In the rest of this paper we give proofs of the results stated above.

2. Proof of Theorem 1.1

Step 1. (Existence of a global minimizer)

Lemma 2.1. There exists v ∈ H1(R) such that E(v) = minH1(R)E. As a consequence, v is a classical
solution of (1.14).

Proof. We first show that inf{E(u) : u ∈ H1
loc(R) } > −∞. To see this, we regroup the last three terms

in the integral of E(u). Setting Iη := {x ∈ R : µ(x) + η > 0}, for η > 0 sufficiently small such that Iη is
bounded, we have

− 1

2ε
µ(x)u2 +

1

8ε
|u|4 < 0⇐⇒ u2 < 4µ =⇒ x ∈ Iη,

thus

− 1

2ε
µ(x)u2 +

1

8ε
|u|4 ≥ −2

ε
‖µ‖2L∞ χη,

where χη is the characteristic function of Iη. On the other hand,

1

8ε
|u|4 − af(x)u < 0 =⇒ |u|3 ≤ 8aε|f | =⇒ |fu| ≤ (8aε)1/3|f |4/3,

thus
1

8ε
|u|4 − af(x)u ≥ −a(8aε)1/3|f |4/3.

Next, we notice that E(u) ∈ R for every u ∈ H1(R), thanks to the imbedding H1(R) ⊂ Lp(R), for 2 ≤ p ≤ ∞.
Now, let m := infH1 E > −∞, and let un be a sequence such that E(un) → m. Repeating the previous
computation, we can bound∫

R

ε

2
|u′n|2 +

η

2ε
u2
n = E(un) +

∫
R

1

2ε
(µ(x) + η)u2

n −
1

4ε
|un|4 + af(x)un

≤ E(un) +
2

ε
(‖µ‖L∞ + η)2|Iη|+ a(8aε)1/3

∫
R
|f |4/3.

From this expression it follows that ‖un‖H1(R) is bounded. As a consequence, for a subsequence still called

un, un ⇀ v weakly in H1, and thanks to a diagonal argument we also have un → v in L2
loc, and almost

everywhere in R. Finally, by lower semicontinuity∫
R
|v′|2 ≤ lim inf

n→∞

∫
R
|u′n|2,
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and by Fatou’s Lemma we have∫
R
|v|4 ≤ lim inf

n→∞

∫
R
|un|4, and

∫
µ≤0

− 1

2ε
µv2 ≤ lim inf

n→∞

∫
µ≤0

− 1

2ε
µu2

n.

To conclude, it is clear that ∫
µ>0

− 1

2ε
µv2 = lim

n→∞

∫
µ>0

− 1

2ε
µu2

n,

thus m ≤ E(v) ≤ lim infn→∞E(un) = m. �

Step 2. (Proof of (i))

Proof. When a = 0, we have E(|v|) = E(v) since E depends on the square of v or its derivative, in particular
|v| is also a minimizer and a smooth solution of the Euler-Lagrange equation. Now suppose that v(x0) = 0 for
some x0. Then, |v| has a minimum at x0, and |v|(x0) = |v|′(x0) = 0. By the uniqueness result for O.D.E., it
follows that v ≡ 0. However, this situation does not occur for ε� 1. Indeed, by choosing an appropriate test
function φ with suppφ ⊂ (−ξ, ξ), one can see that E(φ) < 0 for ε � 1 (take for instance φ =

√
µ+η where

η is a suitable cut off function supported in (−ξ, ξ)). Thus v is positive up to change of v by −v. Finally,
we notice that E(v, [0,∞)) = E(v, (−∞, 0]), since otherwise we can construct a function in H1 with smaller
energy than v. As a consequence, ṽ(x) = v(|x|) is also a minimizer, and since ṽ = v on [0,∞), it follows by
the uniqueness result for O.D.E. that ṽ ≡ v. �

Step 3. (Uniform bounds)

Lemma 2.2. For ε and a belonging to a bounded interval, let uε,a be a solution of (1.14) converging to 0 at
±∞. Then, the solutions uε,a are uniformly bounded.

Proof. Since |f |, µ, ε, a are bounded (see 1.12), the real roots of the cubic equation (1.20) belong to a bounded
interval, for all values of x, ε, a (see Figure 1).

If u := uε,a takes positive values, then it attains its maximum 0 ≤ maxR u = u(x0), at a point x0 ∈ R.
Since

0 ≥ ε2u′′(x0) = u3(x0)− µ(x0)u(x0)− εaf(x0),

we can see that u(x0) is uniformly bounded above. In the same way, we prove the uniform lower bound. �

Step 4. (Proof of (ii))

Claim 1: When a > 0, the global minimizer v has at most one zero, denoted by x̄. Furthermore, v(x) > 0,
∀x > x̄, and v(x) < 0, ∀x < x̄.

Proof of Claim 1. Let x̄ ≥ 0 be a zero of v. If v(x1) < 0 for some x1 > x̄, then E(v, [x̄,∞) > E(|v|, [x̄,∞)),
which is a contradiction. Now, if v(x2) = 0 for some x2 > x̄, then according to what precedes v has a
minimum at x2. It follows that v(x2) = v′(x2) = 0, and v′′(x2) ≥ 0, which is impossible, since by (1.14)
we have: εv′′(x2) = −af(x2) < 0. Thus we have proved that v(x̄) = 0, with x̄ ≥ 0, implies that v(x) > 0,
∀x > x̄. Thanks to the previous argument, we also see that v cannot have another zero in the interval [0,∞).
In the same way, one can show that v has at most one zero ȳ in the interval (−∞, 0]. Furthermore, v(ȳ) = 0,
with ȳ ≤ 0, implies that v(x) < 0, ∀x < ȳ. To complete the proof, it remains to exclude the case where
v(ȳ) = v(x̄) = 0, with ȳ < 0 < x̄. In this case, we have either v > 0 or v < 0 in the interval (ȳ, x̄). Assuming
the former we see that v has a minimum at x̄, which is impossible by the argument at the beginning of the
proof. The second statement of Claim 1 follows by a similar argument. �

Claim 2: If ε > 0 and a > 0 remain in a bounded interval, there exists a constant δ > 0 such that v has a
unique zero x̄, when ε

a < δ. In addition, |x̄| ≤ ξ +O(
√
ε/a).

Proof of Claim 2. Suppose that x0 < −ξ is such that v(x0) > 0. We are first going to show that v′(x0) > 0.
Indeed, suppose by contradiction that v′(x0) ≤ 0. Setting

m := inf{x < x0 : v ≥ 0 on [x, x0]},
8



one can see by (1.14), that v is convex on the interval (m,x0], and thus v ≥ v(x0) on (m,x0]. It follows
that m = −∞, which is a contradiction since lim−∞ v = 0. This proves our claim. Now, let M > 0 be the
constant (cf. Lemma 2.2), such that |vε,a| ≤M when ε and a remain bounded, and let m′ = min[−ξ−1,−ξ](−f).
According to Claim 1, we have v > 0 on the interval [x0,−ξ], thus in view of (1.14) we have v′′ ≥ −aε f on
[x0,−ξ]. In particular, for any x0 ∈ [−ξ − 1,−ξ] such that v(x0) > 0, we obtain

(2.1) M ≥ v(−ξ)− v(x0) ≥ m′ a
ε

(ξ + x0)2

2
.

From this inequality, we see by taking δ = m′

2M , that if ε
a < δ, then we cannot have x0 = −ξ − 1, or in other

words v(−ξ− 1) ≤ 0. Repeating the same analysis for x0 > ξ, we also deduce that if ε
a < δ then v(ξ+ 1) ≥ 0.

Thus, the existence of a zero of v in the interval [−ξ − 1, ξ + 1] is ensured when ε
a < δ. This zero denoted by

x̄ which is unique by Claim 1, satisfies in view of (2.1): |x̄| ≤ ξ +O(
√
ε/a). �

Step 5. (Upper bound of the renormalized energy)

The minimum of the energy defined in (1.13) is nonpositive and tends to −∞ as ε → 0. Since we are
interested in the behavior of the minimizers as ε → 0, it is useful to define a renormalized energy, which is
obtained by adding to (1.13) a suitable term so that the result is bounded from below and above by an ε
independent constant. We define the renormalized energy as

(2.2) E(u) := E(u) +

∫
|x|<ξ

µ2

4ε
=

∫
R

ε

2
|u′|2 +

∫
|x|<ξ

(u2 − µ)2

4ε
+

∫
|x|>ξ

u2(u2 − 2µ)

4ε
−
∫
R
afu,

and claim the bound

(2.3) lim sup
ε→0

E(vε,a) ≤ min
(

0,
2
√

2

3
(µ(0))3/2 −

∫ ξ

−ξ
a|f |√µ

)
.

Proof of (2.3). Let us consider the C1 piecewise function:

φ(x) =

{√
µ(x) for |x| ≤ ξ − ε,

kεε
1/2e−

|x|−ξ
ε for |x| ≥ ξ − ε,

with kε defined by kεε
1/2e =

√
µ(ξ − ε) =⇒ kε = O(1). Since φ ∈ H1(R), it is clear that E(v) ≤ E(φ). We

check that E(φ) = O(ε ln(ε)), since it is the sum of the following integrals:∫
|x|≤ξ−ε

ε

2

|µ′|2

4µ
= O(ε| ln ε|),

∫
ξ−ε≤|x|≤ξ

µ2

4ε
= O(ε2),

E(φ, (−∞,−ξ + ε]) + E(φ, [ξ − ε,∞)) = O(ε).

Next, we repeat the previous computation by considering another C1 piecewise function:

ψ(x) =



−kεε1/2e
x+ξ
ε for x ≤ −ξ + ε,

−
√
µ(x) for − ξ + ε ≤ x ≤ −ζεε,

lε tanh
(
x
ε

√
µ(0)

2

)
for |x| ≤ ζεε,√

µ(x) for ζεε ≤ x ≤ ξ − ε,
kεε

1/2e−
x−ξ
ε for x ≥ ξ − ε,

with

ζε = − ln ε, kε as above,

lε tanh
(
ζε

√
µ(0)

2

)
=
√
µ(ζεε) =⇒ lim

ε→0
lε =

√
µ(0),

l2ε
µ(0)

= 1 +O(εγ), for some 0 < γ < 1.

Since ψ ∈ H1(R), we have E(v) ≤ E(ψ). We can check that

(2.4) lim
ε→0
E(ψ)→ 2

√
2

3
(µ(0))3/2 −

∫ ξ

−ξ
a|f |√µ.
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Indeed, setting ψ̃(s) =
√
µ(0) tanh

(
s
√

µ(0)
2

)
, E(ψ) is the sum of the following integrals:

E(ψ, (−∞,−ξ + ε]) + E(ψ, [ξ − ε,∞)) = O(ε),∫
ζεε<|x|≤ξ−ε

ε

2

|µ′|2

4µ
= O(ε| ln ε|),

∫
ξ−ε≤|x|≤ξ

µ2

4ε
= O(ε2),

−
∫
ζεε<|x|<ξ−ε

a|f |√µ→ −
∫
|x|<ξ

a|f |√µ,∫
|x|≤ζεε

µ2

4ε
=

∫
|x|≤ζεε

µ2(0)

4ε
+O(ζ2

ε ε),∫
|x|<ζεε

ε

2
|ψ′|2 =

l2ε
µ(0)

∫
|s|<ζε

1

2
|ψ̃′|2 =

∫
|s|<ζε

1

2
|ψ̃′|2 +O(ζεε

γ),

−
∫
|x|<ζεε

µ

2ε
ψ2 = −

∫
|x|<ζεε

µ(0)

2ε
ψ2 +O(ζ2

ε ε) = − l2ε
µ(0)

∫
|s|<ζε

µ(0)

2
ψ̃2 +O(ζ2

ε ε) = −
∫
|s|<ζε

µ(0)

2
ψ̃2 +O(ζεε

γ),∫
|x|<ζεε

1

4ε
|ψ|4 =

l4ε
(µ(0))2

∫
|s|<ζε

1

4
|ψ̃|4 =

∫
|s|<ζε

1

4
|ψ̃|4 +O(ζεε

γ),

−
∫
|x|<ζεε

afψ = O(ζεε).

Gathering the previous equations, (2.4) follows immediately. �

Step 6. Let a > 0, and let vε,a be a global minimizer. Up to the odd symmetry we may assume that v is
nonnegative on [0,∞). Setting

a∗ := inf
x∈(−ξ,0]

√
2(µ(x))3/2

3
∫ x
−ξ |f |

√
µ
∈ (0,∞),

and

a∗ := sup
x∈[−ξ,0)

√
2
(
(µ(0))3/2 − (µ(x))3/2

)
3
∫ 0

x
|f |√µ

∈ [a∗,+∞],

we have x̄ → −ξ as ε → 0, and a ∈ (0, a∗), while x̄ → 0 as ε → 0, and a > a∗. In the particular case where

f = −µ
′

2 , we have a∗ = a∗ =
√

2.

Proof. Let us consider a sequence εn → 0, let a > 0, and suppose that x̄n := x̄εn,a → l ∈ (−ξ, ξ), as n → ∞
(cf. (1.15)). We rescale v by setting ṽn(s) = vεn,a(x̄n + sεn). Clearly, ṽ′′n(s) = ε2nv

′′
εn,a(x̄n + sεn). As a

consequence of Lemma 2.2 and (1.14), the functions ṽn are uniformly bounded up to the second derivatives.
Thus, we can apply the theorem of Ascoli, via a diagonal argument, and show that for a subsequence still
called ṽn, ṽn converges in C1

loc(R) to a function Ṽ . Now, we are going to determine Ṽ . For this purpose, we
introduce the rescaled energy

Ẽn(ũ) =

∫
R

(1

2
|ũ′(s)|2 − 1

2
µ(x̄n + sεn)ũ2(s) +

1

4
|ũ|4(s)− εnaf(x̄n + sεn)ũ(s)

)
ds = E(un),

where we have set ũ(s) = un(x̄n + sεn) i.e. un(x) = ũ
(
x−x̄n
εn

)
. Let ξ̃ be a test function with support in the

compact interval J . We have Ẽn(ṽn + ξ̃, J) ≥ Ẽn(ṽn, J), and at the limit G0(Ṽ + ξ̃, J) ≥ G0(Ṽ , J), where

G0(φ, J) =

∫
J

[
1

2
|φ′|2 − 1

2
µ(l)φ2 +

1

4
|φ|4

]
,

or equivalently G(Ṽ + ξ̃, J) ≥ G(Ṽ , J), where

(2.5) G(φ, J) =

∫
J

[
1

2
|φ′|2 − 1

2
µ(l)φ2 +

1

4
|φ|4 +

(µ(l))2

4

]
=

∫
J

[
1

2
|φ′|2 +

1

4
(φ2 − µ(l))2

]
.

Thus, we deduce that Ṽ is a bounded minimal solution of the O.D.E. associated to the functional (2.5):

(2.6) Ṽ ′′(s)− (Ṽ 2(s)− µ(l))Ṽ (s) = 0,
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and since we have Ṽ (0) = 0, and Ṽ (s) ≥ 0, ∀s ≥ 0, we obtain Ṽ (s) =
√
µ(l) tanh(s

√
µ(l)/2) (recall

l ∈ (−ξ, ξ)). So far we have proved that

(2.7) lim
n→∞

v(x̄n + εns) =
√
µ(l) tanh(s

√
µ(l)/2), in the C1

loc sense.

Similarly, one can show that

(2.8) lim
n→∞

v(x+ εns) =


√
µ(x) for l < x < ξ,

−
√
µ(x) for − ξ < x < l,

0 for |x| ≥ ξ,
in the C1

loc sense.

Next, we compute a lower bound of the renormalized energy of vn, by examining each integral appearing
in the definition of E (cf. (2.2)). In view of Lemma 2.2 and (2.8), we have by dominated convergence

lim
n→∞

−
∫
R
afvn =

∫ l

−ξ
af
√
µ−

∫ ξ

l

af
√
µ.

On the other hand, it is clear that

0 ≤
∫
|x|>ξ

v2
n(v2

n − 2µ)

4ε
,

and∫
R

( ε
2
|v′n|2+χ(−ξ,ξ)

(v2
n − µ)2

4ε

)
=

∫
R

(1

2
|ṽ′n(s)|2+χ(−(ξ+x̄n)ε−1

n ,(ξ−x̄n)ε−1
n )(s)

(ṽ2
n(s)− µ(x̄n + sεn))2

4

)
ds =: Ln,

where χ is the characteristic function. Finally, by Fatou’s Lemma, we obtain

lim inf
n→∞

Ln ≥
∫
R

lim inf
n→∞

(1

2
|ṽ′n(s)|2 + χ(−(ξ+x̄n)ε−1

n ,(ξ−x̄n)ε−1
n )(s)

(ṽ2
n(s)− µ(x̄n + sεn))2

4

)
=

2
√

2

3
(µ(l))3/2.

Thus,

lim inf
n→∞

E(vn) ≥ 2
√

2

3
(µ(l))3/2 +

∫ l

−ξ
af
√
µ−

∫ ξ

l

af
√
µ.

To conclude, we are going to compare the above lower bound with the upper bound (2.3), and deduce
the convergence of the zero of the minimizer according to the value of a. We first check that a∗ > 0.

Let ψ : [−ξ, 0] 3 x 7→ ψ(x) =
√

2
3 (µ(x))3/2 − a

∫ x
−ξ |f |

√
µ. There exists a1 such that for 0 < a < a1

we have ψ′ > 0 on a small interval (−ξ,−ξ + γ], with γ > 0. Also, there exists a2 such that for 0 <
a < a2, we have ψ > 0 on [−ξ + γ, 0]. Thus, we can see that a∗ ≥ min(a1, a2). Furthermore, a∗ ≤√

2(µ(0))3/2

3
∫ 0
−ξ |f |

√
µ
≤ a∗. Now, if the minimizers vn are nonnegative on [0,∞), it follows that l ∈ [−ξ, 0], and

that lim infn→∞ E(vn) ≥ 2
√

2
3 (µ(l))3/2 − 2

∫ l
−ξ a|f |

√
µ > 0, for l ∈ (−ξ, 0] and a ∈ (0, a∗). In view of

(2.3) in Step 5, this situation does not occur, hence x̄ε,a → −ξ as ε → 0, and a ∈ (0, a∗). Similarly,

lim infn→∞ E(vn) ≥ 2
√

2
3 (µ(l))3/2 − 2

∫ l
−ξ a|f |

√
µ > 2

√
2

3 (µ(0))3/2 − 2
∫ 0

−ξ a|f |
√
µ, for l ∈ [−ξ, 0) and a > a∗,

since we have a > a∗ ≥
√

2
(

(µ(0))3/2−(µ(l))3/2
)

3
∫ 0
l
|f |√µ , ∀l ∈ [−ξ, 0). Again, by (2.3), this situation does not occur,

hence x̄ε,a → 0 as ε→ 0, and a > a∗. When f = −µ
′

2 , an easy computation shows that a∗ = a∗ =
√

2. Indeed,

in this case we check that 3
∫ 0

x
|f |√µ = 3

∫ 0

x
µ′

2

√
µ = [µ3/2]0x, ∀x ∈ [−ξ, 0], and 3

∫ x
−ξ |f |

√
µ = 3

∫ x
−ξ

µ′

2

√
µ =

[µ3/2]x−ξ = µ3/2(x), ∀x ∈ [−ξ, 0]. �

Step 7. (Proof of (1.17) and (1.18))

Proof. We proceed as in Step 6. For fixed a ≥ 0, and εn → 0, we consider the sequence of global minimizers
vn := vεn,a, and rescale them by setting ṽn(s) = v(x + εns). Since the rescaled sequence ṽn is uniformly
bounded up to the second derivatives (cf. Lemma 2.2), we obtain the convergence in C1

loc of a subsequence

to a minimal solution Ṽ of the O.D.E. Ṽ ′′ = W ′(Ṽ ). According to the shape of the potential W , and to

the location of the zero of v, we deduce that Ṽ is either a constant or a heteroclinic connection (cf. [8]).
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Finally, since the limit Ṽ is independent of the sequence εn, we obtain the convergence in (1.17) and (1.18),
as ε→ 0. �

3. Proof of Theorems 1.2 and 1.3

Step 1. (Uniform bounds)

Lemma 3.1. For ε� 1 and a belonging to a bounded interval, let uε,a be a solution of (1.14) converging to
0 at ±∞. Then, there exist a constant K > 0 such that

(3.1) |uε,a(x)| ≤ K(
√

max(µ(x), 0) + ε1/3), ∀x ∈ R.

As a consequence, the rescaled functions ũ±ε,a(s) = ±uε,a(±ξ±sε2/3)

ε1/3
are uniformly bounded on the intervals

[s0,∞), ∀s0 ∈ R.

Proof. For the sake of simplicity we drop the indexes and write u := uε,a. Let M > 0 be the constant such that
|uε,a| is uniformly bounded by M (cf. Lemma 2.2), and let k > 0 be such that 4µ(ξ + h) < −kh < 8µ(ξ + h),
for h ∈ (−δ, 0) (with δ > 0 small). Next, define λ > 1 such that λkδ ≥M2. Finally, let F := sup f . To prove
the uniform upper bound for x ≥ 0, we utilize the strict convexity of u in the region

D :=
{

(x, y) ∈ [0,∞)× [0,∞) : y >
√

4 max(µ(x), 0) + (4εaF )1/3
}
.

Indeed, one can see that for x ≥ 0, the positive root σ of the cubic equation u3−µ(x)u− εaf(x) = 0, satisfies

σ(x)−
√
µ(x) ≤ |εaf(x)|1/3, ∀x ∈ [0, ξ], and σ(x) ≤ |εaf(x)|1/3,∀x ≥ ξ.

Suppose that there exists x0 ∈ [0, ξ − ε2/3) such that u(x0) ≥
√

8λµ(x0) + (4εaF )1/3. In view of what

precedes we have x0 ∈ (ξ − δ, ξ). In fact, we are going to show that |ξ − x0| ≤ K ′ε2/3, for a constant K ′ > 0.
Our claim is that

(3.2) u(z) >
√

4µ(z) + (4εaF )1/3, for x0 ≤ z ≤ ξ.

Indeed, if u(x′) ≤
√

4µ(x′) + (4εaF )1/3, for some x′ ∈ (x0, ξ], the curve [0, ξ] 3 x→
√
kλ(ξ − x) + (4εaF )1/3,

denoted by Γ, separates the points (x0, u(x0)) and (x′, u(x′)). On the other hand, by construction, the curve
Γ separates also the points (0, u(0)) and (x0, u(x0)). This implies the existence of an interval [x1, x2], with
0 < x1 < x0 < x2 ≤ ξ, such that

• (xi, u(xi)) belongs to Γ, and
(
u− (4εaF )1/3

)2
(xi) = λk(ξ − xi), for i = 1, 2,

• (x, u(x)) is above Γ, and
(
u− (4εaF )1/3

)2
(x) ≥ λk(ξ − x), for x ∈ [x1, x2],

• u and also
(
u− (4εaF )1/3

)2
are convex in [x1, x2]

which is clearly impossible. Thus, (3.2) holds, and as a consequence u is convex in [x0, ξ]. Now, let l :=
min{x > ξ : u(x) = (4εaF )1/3}. Thanks again to the convexity of u in the region D, we see that

u(x) ≤ (4εaF )1/3, ∀x ≥ l.

In addition, u is convex and decreasing in the interval [x0, l], since u′(l) ≤ 0. Our second claim is that

ε2u′′ − u3

2
=
u3

2
− µu− εaf ≥ 0, on the interval [x0, l].

This is true for x ∈ [ξ, l], since u3

2 ≥ 2εaf , and −µu ≥ 0. We also check that when x ∈ [x0, ξ]:

u2 ≥ 4µ+ (4εaF )2/3 (by (3.2))⇒ u

2
(u2 − 2µ) ≥ µu+ (4εaF )2/3u

2
≥ 2εaF,

which establishes the second claim. Next, we obtain on the interval [x0, l]: ε
2u′′u′ − u3u′

2 ≤ 0, which implies

that the function [x0, l] 3 x→ 4ε2|u′|2−u4 is decreasing. Furthermore, 4ε2|u′|2−u4 ≥ −u4(l) = −(4εaF )4/3,
and on the interval [x0, l) we have:

4ε2|u′|2 ≥ u4 − (4εaF )4/3 ≥ (u− (4εaF )1/3)4 ⇒ −u′

(u− (4εaF )1/3)2
≥ 1

2ε
.
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An integration of the latter inequality over the interval [x0, ξ − ε2/3] gives: ε1/3

u(ξ−ε2/3)−(4εaF )1/3
≥ (ξ−ε2/3−x0)

2ε2/3
,

and since u(ξ−ε2/3)−(4εaF )1/3

ε1/3
>
√

4µ(ξ−ε2/3)
ε2/3

≥ K ′′ > 0, by (3.2), we deduce that ξ − x0 ≤ K ′ε2/3, with

K ′ = 1 + 2
K′′ . As a consequence, we have proved the upper bounds:

(3.3) u(x) ≤

{√
8λµ(x) + (4εaF )1/3 for x ∈ [0, ξ −K ′ε2/3],√
8λµ(ξ −K ′ε2/3) + (4εaF )1/3 for x ∈ [ξ −K ′ε2/3,∞).

The proof of the upper bound for x ≤ 0 is similar and simpler, since instead of D, we can consider the region

D′ :=
{

(x, y) ∈ (−∞, 0]× [0,∞) : y >
√

4 max(µ(x), 0)
}
,

where the solutions are strictly convex. Finally, the lower bound follows from the odd symmetry û(x) =
−u(−x). This completes the proof of (3.1). The uniform bounds for ũ± are straightforward. �

Step 2. (Proof of Theorems 1.2 and 1.3)

Proof. We rescale the global minimizers v as in Lemma 3.1 by setting ṽ±ε,a(s) = ±vε,a(±ξ±sε2/3)

ε1/3
. Without loss

of generality we consider them only in a neighborhood of ξ, and write ṽ := ṽ+
ε,a. Clearly ṽ′′(s) = εv′′(ξ+sε2/3),

thus,

(3.4) ṽ′′(s) +
µ(ξ + sε2/3)

ε2/3
ṽ(s)− ṽ3(s) + af(ξ + sε2/3) = 0, ∀s ∈ R.

Writing µ(ξ + h) = µ1h+ hA(h), with µ1 := µ′(ξ) < 0, A ∈ C(R), and A(0) = 0, we obtain

(3.5) ṽ′′(s) + (µ1 +A(sε2/3))sṽ(s)− ṽ3(s) + af(ξ + sε2/3) = 0, ∀s ∈ R.

Next, we define the rescaled energy by

(3.6) Ẽ(ũ) =

∫
R

(1

2
|ũ′(s)|2 − µ(ξ + sε2/3)

2ε2/3
ũ2(s) +

1

4
|ũ|4(s)− af(ξ + sε2/3)ũ(s)

)
ds.

With this definition Ẽ(ũ) = 1
εE(u). From Lemma 3.1 and (3.5), it follows that ṽ′′, and also ṽ′, are uniformly

bounded on compact intervals2. Thanks to these uniform bounds, we can reproduce the arguments in the
proof of Theorem 1.1, to obtain the convergence of ṽε to a minimal solution solution Ṽ of the O.D.E.

(3.7) Ṽ ′′(s) + µ1sṼ (s)− Ṽ 3(s) + af(ξ) = 0, ∀s ∈ R,

which is associated to the functional

(3.8) Ẽ0(φ, J) =

∫
J

(1

2
|φ′(s)|2 − µ1

2
sφ2(s) +

1

4
φ4(s)− af(ξ)φ(s)

)
ds.

Setting y(s) := 1√
2(−µ1)1/3

Ṽ
(

s
(−µ1)1/3

)
, (3.7) reduces to (1.21) with α = af(ξ)√

2µ1
, and y is still a minimal solution

of (1.21) bounded at ∞. By taking global minimizers v nonnegative on [0,∞), it is clear that at the limit we

obtain Ṽ ≥ 0, and y ≥ 0. Lemmas 4.2, 4.3 and 4.4 whose proofs are postponed for now, show that actually
y is positive, strictly decreasing, and has the asymptotic behavior described in Theorem 1.3 (i) (cf. (1.22)
and (1.23)). Finally, if we take global minimizers v nonpositive on (−∞, 0], we know by Theorem 1.1 (iv)

that their zero x̄ converges to ξ, as ε → 0. However, we are not aware if their limit Ṽ also vanishes. If so,
the minimal solution y has a unique zero s̄, and behaves asymptotically as in (1.24) (cf. Lemma 4.4). Note

that proving that Ṽ vanishes is actually equivalent to establishing the bound |x̄ε − ξ| = O(ε2/3). The proof
of the theorems is complete except for the Lemmas describing the asymptotic behaviour of the solutions of
the Painlevé equation. �

2By differentiating (3.5) we can also obtain the boundedness of ṽ′′′ on compact intervals (provided f ∈ C1(R)). Then, the
convergence in Theorem 1.2 can be improved to C2 convergence on compacts.
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4. Some Lemmas for solutions of the O.D.E. (1.21)

In this section we show Lemmas 4.2, 4.3 and 4.4 announced above. We begin with:

Lemma 4.1. Let us consider, for α < 0, the cubic equation

(4.1) 2y3 + sy + α = 0, ∀s ∈ R,

and let s∗ := −6|α4 |
2/3 < 0. Then

• for s > s∗, (4.1) has a unique real root σ+(s), which is positive;
• for s = s∗, (4.1) has a simple zero σ+(s∗) > 0, and a double zero σ−(s∗) = σ0(s∗) = −|α4 |

1/3 < 0;
• for s < s∗, (4.1) has three simple zeros: σ+(s) > 0, and σ−(s) < σ0(s) < 0.

Moreover,

(i) σ′+(s) < 0, ∀s ∈ R;

(ii) σ+(s) < |α|
s , for s > 0, and σ+ ∼ |α|s at +∞;

(iii) σ+(s) >
√
|s|/2, for s < 0, and σ+(s) =

√
|s|/2 + o(1), at −∞;

(iv) σ+ is convex in [0,∞), and concave in a neighborhood of −∞.

Similarly,

(v) the function (−∞, s∗] 3 s→ σ−(s) is strictly increasing;

(vi) σ−(s) > −
√
|s|/2, for s ≤ s∗, and σ−(s) = −

√
|s|/2 + o(1), at −∞;

(vii) σ− is convex in a neighborhood of −∞.
(viii) σ0(s)→ 0 as s→ −∞.
(ix) σ0 is decreasing and concave in a neighborhood of −∞.

Proof. The first statement of the Proposition follows by studying the variations and the extrema of the
polynomial in (4.1). Let us prove the properties of σ+. (i) By the implicit function theorem, it follows that
σ+ is differentiable. A computation shows that

(4.2) σ′+ = − 1

4σ+ − α
σ2
+

< 0.

Next, we notice that 2y3 + sy + α > sy + α ≥ 0, for y ≥ |α|
s , with s > 0, and this proves the inequality

in (ii). Writing σ+(s) = |α|
2σ2

+(s)+s
, we also obtain the equivalence in (ii). To see (iii), it is obvious that

2y3 + sy + α < 0, for y =
√
|s|/2, s < 0. Thus, σ+(s) >

√
|s|/2, for s < 0. In addition,

σ+(s)−
√
|s|/2 =

|α|
2σ+(s)(σ+(s) +

√
|s|/2)

= o(1).

(iv) Finally, we utilize again (4.2). Setting ψ(s) = 4σ+(s) − α
σ2
+(s)

, we have ψ′(s) = 2σ′+(s)
(

2 + α
σ3
+(s)

)
< 0,

as s → −∞, and ψ′(s) > 0 for s > 0. As a consequence, σ′+ is decreasing (respectively increasing) in
a neighborhood of −∞ (resp. in [0,∞)), and σ+ is concave (resp. convex) in this neighborhood. The
properties of σ− and σ0 are established in a similar way. �

Lemma 4.2. Let α < 0, and let y be a solution of (1.21), bounded in a neighborhood of +∞. Then,

(i) y ≥ σ+ in a neighborhood of ∞,
(ii) σ− ≤ y ≤ σ+ in a neighborhood of −∞,
(iii) the function

θ(s) = |y′(s)|2 − sy2(s)− y4(s)− 2αy(s), s ∈ R(4.3)

is decreasing, and converges to 0 at +∞.

(iv) y ∼ |α|s , as s→ +∞.

Proof. (i) Our first claim is that there exists a sequence sn → +∞ such that y(sn) ≥ σ+(sn) Assume by
contradiction that this is not true. Then, y < σ+ on some interval [m,∞), where y is also concave. Since y is
bounded on [m,∞), we deduce that lim+∞ y′ = 0, and y′ ≥ 0 on [m,∞). Furthermore, lim+∞ y exists, and
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y < 0 on [m,∞). Now, we notice that by (1.21), θ′(s) = −y2 ≤ 0, and thus θ is decreasing. This implies in
particular that lims→+∞ sy2(s) = l ∈ [0,∞]. If l 6= 0, it follows from (1.21) that lims→+∞ y′′(s) = −∞, which
is impossible, since y is bounded in a neighborhood of +∞. Therefore, lims→+∞ sy2(s) = 0, and θ(s) ≥ 0,

∀s ∈ R. As a consequence, we have |y′(s)|2 ≥ sy2(s), and −y
′

y ≥
√
s for s > 0. Integrating this inequality,

we obtain that y(s) = O(e−
2
3 s

3/2

) at +∞. By (1.21) again, we conclude that lims→+∞ y′′(s) = α, which
contradicts the fact that y is bounded at +∞. This establishes our first claim. To finish the proof of (i), let
us assume that y(t) < σ+(t), for some t > sk, with sk such that σ+ is convex on [sk,∞). It follows that there
exists an interval [a, b] such that

• sk ≤ a < t < b ≤ sl (for some l > k),
• y(a) = σ+(a), y(b) = σ+(b), and y(s) < σ+(s), ∀s ∈ (a, b).

Clearly, this is impossible since σ+−y is convex on [a, b]. Thus, we have proved that y ≥ σ+ in a neighborhood
of +∞, where y is also convex. Furthermore, by repeating the previous arguments, we obtain that lim+∞ y′ =
0 and lims→+∞ sy2(s) = 0. Then, (iii) follows immediately.

(ii) We proceed as in (i). To show that y ≤ σ+ in a neighborhood of −∞, we first establish the existence
of a sequence sn → −∞ such that y(sn) ≤ σ+(sn). Assume by contradiction that this is not true. Then,
y > σ+ on some interval (−∞,m], where y is also convex. In addition, y′(s) < 0, ∀s ≤ m, since otherwise
y would be convex on all R, and lim+∞ y = +∞. As a consequence, there exists m′ < m, such that
y3(s) + 2sy(s) + 4α ≥ 0, ∀s ≤ m′. Indeed, the positive root of the polynomial y3(s) + 2sy(s) + 4α is of order

O(
√
|s|) at −∞. Next, in view of (iii), we obtain |y′(s)|2 − y4(s)

2 ≥ y(s)
2 (y3(s) + 2sy(s) + 4α) ≥ 0, ∀s ≤ m′.

An integration of the inequality − y′

y2 ≥
1√
2

over the interval [s,m′] gives 1
y(m′) ≥

1
y(m′) −

1
y(s) ≥

m′−s√
2

, and

letting s → −∞, we obtain a contradiction. This proves the existence of the sequence sn. To deduce that
y ≤ σ+ in a neighborhood of −∞, just repeat the convexity argument in (i). Finally, the proof of the bound
y ≥ σ− is identical.

(iv) Let λ > 1 be fixed, let [m,∞) be an interval where y is convex, and suppose there exists a sequence

m < sk → ∞ such that y(sk) > λ2 |α|
sk

. We notice that the inequality λ2 |α|
sk
≥ λ |α|s holds for s ≥ sk

λ . Since y

is decreasing on [m,∞), it follows that y(s) ≥ λ |α|s for s ∈
[

max
(
m, skλ

)
, sk
]
. In particular, by Lemma 4.1

(ii), we obtain on each interval
[

max
(
m, skλ

)
, sk
]
:

2y3(s) + sy(s) + λα > 0⇔ 2y3(s) + sy(s) + α > (λ− 1)|α|

since the positive root of the cubic equation 2y3 + sy + λα = 0 is smaller than λ |α|s . As a consequence∫∞
m
y′′(s)ds =

∫∞
m

(2y3(s) + sy(s) +α)ds =∞, which is a contradiction. Thus, we have proved that for every

λ > 1, there exists a neighborhood of +∞ where σ+ ≤ y ≤ λ2 |α|
s . This implies that y ∼ |α|s , as s→ +∞. �

Lemma 4.3. Let α = 0, and let y ≥ 0 be a minimal solution of (1.21), bounded at ∞. Then, y coincides
with the solution described in Theorem 1.3 (i): it is positive, strictly decreasing, and satisfies (1.22).

Proof. Let us show that y > 0. If y(s0) = 0 for some s0 ∈ R, then y has a local minimum at s0, and
y ≡ 0 by the uniqueness result for O.D.E. But this is excluded since a solution of (1.21) which is bounded
in a neighborhood of −∞, is not minimal. To see this, we recall that for a minimal solution y, the second
variation of the energy is nonnegative:

(4.4)

∫
R
(|φ′(s)|2 + (6y2(s) + s)φ2(s))ds ≥ 0,∀φ ∈ C1

0 (R),

Clearly (4.4) does not hold when y is bounded and we take φ(s) = φ0(s+ h), with h→∞, and φ0 ∈ C1
0 (R)

fixed. We also notice that lims→∞ y′(s) = 0, and y′(s) ≤ 0, ∀s ≥ 0, since y is convex and bounded on
[0,∞). To obtain the asymptotic convergence at +∞, we establish, as in Lemma 4.2 (iii), that the function

θ(s) = |y′(s)|2−sy2(s)−y4(s) is decreasing, and converges to 0 at +∞. As a consequence, −y
′

y ≥
√
s, ∀s ≥ 0,

and thus y(s) ≤ y(0)e−
2
3 s

3/2

, ∀s ≥ 0. Now, we refer to [23] where a complete classification of the solutions of
(1.21) converging to 0 at +∞ is established. It is known that among these solutions, only the one described
in Theorem 1.3 (i) does not converge to 0 at −∞. Clearly, y does not converge to 0 at −∞, since it is not
bounded by minimality, thus y coincides with the aforementioned solution. �
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Lemma 4.4. Let α < 0, and let y be a solution of (1.21), bounded at ∞. Then,

(i) if y ≥ 0, we have y > 0, y′ < 0, and y(s) =
√
|s|/2 + o(1), as s→ −∞.

(ii) if y is minimal and vanishes at s̄, we have y(s) > 0 ⇔ s > s̄, y(s) < 0 ⇔ s < s̄, and y(s) =

−
√
|s|/2 + o(1), as s→ −∞.

Proof. (i) If y(s0) = 0 for some s0 ∈ R, then y′′(s0) ≥ 0, in contradiction with (1.21) that gives y′′(s0) = α < 0.
Thus, y > 0. To show that y′ < 0, we notice, that y(s) ≥ σ+(s) ⇒ y′(s) < 0. Indeed, if y(s) ≥ σ+(s),
and y′(s) ≥ 0, then y would be strictly convex in the interval (s,+∞), since σ′+ < 0, and this would
contradict the boundedness of y in [s,+∞). Similarly, we have that 0 < y(s) < σ+(s) ⇒ y′(s) < 0.
Here again, 0 < y(s) < σ+(s), and y′(s) ≥ 0, imply that y is strictly concave in the interval (−∞, s], in
contradiction with y > 0. Now, let λ > 0 be fixed, and suppose there exists a sequence sk → −∞ such that
0 ≤ y(sk) <

√
|sk|/2 − λ. Since y′ is bounded (in view of the bound 0 ≤ y ≤ σ+, and the concavity of y),

we notice that 0 ≤ y(s) ≤
√
|sk|/2 ≤

√
|s|/2, for s ∈ [sk − l, sk], with l independent of k. In particular, by

Lemma 4.1 (iii), we obtain on each interval [sk − l, sk]:

2y3(s) + sy(s) + α ≤ α.
As a consequence

∫ s1
−∞ y′′(s)ds =

∫ s1
−∞(2y3(s) + sy(s) +α)ds = −∞, which is a contradiction. Thus, we have

proved that for every λ > 0, there exists a neighborhood of −∞ where σ+ ≥ y ≥
√
|s|/2 − λ. This implies

that y =
√
|s|/2 + o(1), as s→ −∞.

(ii) If y is minimal and vanishes at s̄, it is easy to see that this zero is unique. Indeed, if y also vanishes at
s̄′ < s̄, we have y ≥ 0 on [s̄′, s̄], since otherwise we would obtain EPII

(y, [s̄′, s̄]) > EPII
(|y|, [s̄′, s̄]). It follows

from Lemma 4.2 (i) that s̄ is a local minimum of y in contradiction with (1.21). Another consequence of the
minimality of y, is the inequality (4.4), which implies that y is not bounded at −∞ (cf. Lemma 4.3). Let l < 0
be fixed, and let sk → −∞ be a sequence such that y(sk) < l. We notice that minu∈[l,0]

(
1
2u

4 + s
2u

2 + αu
)

is attained for u = l, when s < si, with |si| large enough. Thus, if y(s) > l for some s < si, we can find

an interval [a, b] containing s, such that y(a) = y(b) = l, and Ẽ0(y, [a, b]) > Ẽ0(min(y, l), [a, b]), which is a
contradiction. This proves that y(s) ≤ l for s < si i.e. lim−∞ y = −∞. It also follows that y is convex in
a neighborhood of −∞, since σ− ≤ y ≤ σ0. Utilizing the convexity of y, one can establish as in (i) that

y(s) = −
√
|s|/2 + o(1), as s→ −∞. �
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condensate, J. Math. Pures Appl. (9) 83 (2004), no. 6, 765–801. MR 2062641

[4] Amandine Aftalion, Xavier Blanc, and Jean Dalibard, Vortex patterns in a fast rotating Bose- Einstein condensate, Phys.

Rev. A 71 (2005), no. 023611.
[5] Amandine Aftalion, Robert L. Jerrard, and Jimena Royo-Letelier, Non-existence of vortices in the small density region of

a condensate, J. Funct. Anal. 260 (2011), no. 8, 2387–2406. MR 2772375

[6] N. D. Alikakos, P. C. Fife, Fusco G., and Sourdis C., Singular perturbation problem arising from the anisotropy of crystalline
grain boundaries, Journal of Dynamics and Differential Equations 19 (2007), no. 935–949.

[7] N. D. Alikakos, P. W. Bates, J. W. Cahn, P. C. Fife, G. Fusco and G. B Tanoglu, Analysis of a corner layer problem in
anisotropic interfaces, Discrete Contin. Dyn. Syst. Ser. B 6 (2006), no. 2, 237–255.

[8] P. Antonopoulos and P. Smyrnelis. On minimizers of the Hamiltonian system u′′ = ∇W (u), and on the existence of
heteroclinic, homoclinic and periodic orbits. To appear in the Indiana Univ. Math. J.

[9] R. Barboza, U. Bortolozzo, M.G. Clerc S. Residori, and E. Vidal-Henriquez, Optical vortex induction via light-matter
interaction in liquid-crystal media Adv. Opt. Photon. 7, 635-683 (2015)

[10] R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M. G. Clerc, and S. Residori, Harnessing optical vortex lattices
in nematic liquid crystals, Phys. Rev. Lett. 111 (2013), 093902.

16



[11] R. Barboza, U. Bortolozzo, G. Assanto, E. Vidal-Henriquez, M.G. Clerc, and S. Vortex induction via anisotropy stabilized

light-matter interaction, Phys. Rev. Lett. 109, 143901 (2012).
[12] Light-matter interaction induces a single positive vortex with swirling arms, Phil. Trans. R. Soc. A 372, 20140019

(2014).

[13] R. Barboza, U. Bortolozzo, J. D. Davila, M. Kowalczyk, S. Residori, and E. Vidal Henriquez, Light-matter interaction
induces a shadow vortex, Phys. Rev. E 90 (2016) 05201.

[14] S. Jonathan Chapman, Superheating field of type II superconductors, SIAM Journal on Applied Mathematics 55 (1995),

no. 5, 1233–1258.
[15] T. Claeys, A. B. J. Kuijlaars, and M. Vanlessen, Multi-critical unitary random matrix ensembles and the general Painleve

II equation, Ann. of Math. (2) 167 (2008), 601–641.
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dad de Chile, Casilla 170 Correo 3, Santiago, Chile.
E-mail address: jdavila@dim.uchile.cl
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