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Abstract 

Background 

As new cannabis products and administration methods proliferate, patterns of use are becoming 

increasingly heterogenous. However, few studies have explored different profiles of cannabis use 

and their association with problematic use  

Methods 

Latent class analysis (LCA) was used to identify subgroups of past-year cannabis users endorsing 

distinct patterns of use from a large international sample (n= 55,240). Past-12-months use of 6 

different cannabis types (sinsemilla, herbal, hashish, concentrates, kief, edibles) were used as latent 

class indicators. Participants also reported the frequency and amount of cannabis used, whether 

they had ever received a mental health disorder diagnosis and their cannabis dependence severity 

via the Severity of Dependence Scale (SDS).  

Results 

LCA identified 7 distinct classes of cannabis use, characterised by high probabilities of using: 

Sinsemilla & herbal (30.3% of the sample); Sinsemilla, herbal & hashish (20.4%); Herbal (18.4%); 

Hashish & herbal (18.8%); All types (5.7%); Edibles & herbal (4.6%) and Concentrates & sinsemilla 

(1.7%). Relative to the Herbal class, classes characterised by sinsemilla and/or hashish use had 

increased dependence severity. By contrast, the classes characterised by concentrates use did not 

show strong associations with cannabis dependence but reported greater rates of ever receiving a 

mental health disorder diagnosis.   

Conclusions 

The identification of these distinct classes underscores heterogeneity among cannabis use 

behaviours and provides novel insight into their different associations with addiction and mental 

health. 
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1. Introduction  

The legal status of cannabis is evolving as many national and subnational jurisdictions legalise or 

decriminalise its use for medicinal and/or recreational purposes (Freeman et al., 2019, Hall and 

Lynskey, 2016). Within this dynamic legal landscape, the way people are using cannabis is also 

changing. In both licit and illicit markets, individuals now have access to a wide variety of cannabis 

products and methods of administration (EMCDDA, 2019, UNODC, 2018), resulting in novel trends in 

patterns of use and consumption practices (Borodovsky et al., 2016, Meacham et al., 2018, Spindle 

et al., 2019). 

Cannabis products are typically classified according to their preparation, cultivation process and the 

content of two cannabinoids – tetrahydrocannabinol (THC) and cannabidiol (CBD). THC 

concentration is often referred to as a measure of potency (i.e. percentage of total weight), and 

produces the reinforcing effects of cannabis as well as the transient negative effects (Curran et al., 

2016). By contrast, CBD is non-intoxicating at doses typically found in cannabis products and has 

been shown to offset some of THC’s negative effects (Englund et al., 2013) without altering the 

reinforcing effects (Haney et al., 2016). THC and CBD are synthesised by the cannabis plant in 

glandular trichomes, which appear most abundantly on the flowers of female plants – therefore 

these glandular trichomes are typically harvested for cannabis production (Potter, 2014).  

In its traditional form, herbal cannabis consists of seeded floral material, usually dried and dark 

green to brown in colour. Derived from outdoor-grown landrace (domesticated, locally adapted, 

traditional variety) plants, THC concentrations in these products are typically modest; around 6% in 

the US (Chandra et al., 2019) and 9% in the U.K. (Potter et al., 2018). Alternatively, high potency 

herbal cannabis (referred to here as Sinsemilla, meaning without seeds) is produced from intensely 

cultivated indoor-grown plants, which have been selectively bred for their THC yield and prevented 

from fertilization to increase THC synthesis (Potter, 2014). As a result, this variety is much more 

potent than traditional herbal cannabis (~17%) -  though there is considerable variation within and 



5 
 

between countries (Chandra et al., 2019; EMCDDA, 2019) - and their growing market dominance is 

contributing to the rise in potency of the cannabis currently being used in many parts of the world 

(Chandra et al., 2019, Freeman et al., 2018a, Potter et al., 2018, Zamengo et al., 2015). Cannabis 

resin (i.e. hashish) is sold in compressed blocks of extracted plant trichomes. Unlike herbal cannabis 

or sinsemilla - which are typically devoid of CBD - hashish is traditionally characterised by similar 

proportions of both THC and CBD (in the U.K ~5%; Hardwick and King, 2008). However, the 

cannabinoid profiles of these products are determined by the plants used to produce them. 

Recently, THC concentrations have been increasing substantially with potencies reaching 15-20% 

throughout Europe (Freeman et al., 2018a), USA (Chandra et al., 2019) and Morocco (Stambouli et 

al., 2016) – a major producer for illegal export to Europe and other north African countries 

(EMCDDA, 2019).  

These most common varieties of cannabis are typically smoked in joints, either with or without 

tobacco (Hindocha et al., 2016); though they may also be used in a waterpipe (i.e. bong) or 

vaporisers (electronic devices which heat cannabis into a vapor for inhalation; Russell et al., 2018) 

which may influence the pharmacokinetics and transient effects of THC inhalation (Spindle et al., 

2018). Evidence suggests that among these products, those with higher THC concentrations confer 

the greatest harms, including increased severity of dependence (Freeman and Winstock, 2015), 

cannabis use disorder symptom onset and treatment (Arterberry et al., 2019, Freeman et al., 2018b) 

and a greater risk of, and relapse to psychosis (Di Forti et al., 2015, Di Forti et al., 2019, Schoeler et 

al., 2016). However, few studies have explored the risk of harms carried by the more novel products 

becoming increasingly prevalent. 

One of the most rapidly proliferating forms of cannabis, known broadly as cannabis concentrates, 

are extremely potent extracts produced through advanced methods of extraction. These include 

butane, or other solvent-based extraction (e.g. Butane Hash Oil), or combined heat and pressure 

(e.g. Rosin) with products often differentiated by specific labels describing their consistency (e.g. 
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shatter, wax, budder; Caulkins et al., 2018). As these efficient methods of extraction allow the 

cannabinoids to be removed from trichomes, the potencies of these products (which can reach 70-

80% and potentially higher; Raber et al., 2015) can exceed those produced from sift extraction, such 

as Kief (a powdery substance consisting of loose trichomes that are often extracted from plant 

material using manual sifting). These cannabis concentrates are typically consumed via a process 

known colloquially as ‘dabbing’ in which the vapours created through heating (usually via electronic 

vaporisers or heated glass/aluminium rods) the highly refined concentrates are inhaled.  This 

method can enable rapid consumption of high doses of THC, and users report stronger and longer 

lasting effects than that from smoked cannabis (Loflin and Earleywine, 2014). The increasing 

prevalence of concentrates is evident from both sale and seizure data from the USA (Chandra et al., 

2019, Smart et al., 2017), and although an understudied area, early research suggests that their use 

is associated with poorer mental health (Chan et al., 2017) and increased symptoms of dependence 

(Loflin and Earleywine, 2014, Meier, 2017); though evidence is mixed (Bidwell et al., 2018, Sagar et 

al., 2018).  

Also gaining prominence, particularly in legal markets (Borodovsky et al., 2016) and among medicinal 

users (Pacula et al., 2016) are cannabis infused foods (edibles) and liquids. Pharmacokinetically 

distinct from inhalation, the onset of effects are delayed but have a longer duration when cannabis 

is ingested (Huestis, 2007); potentially making it more difficult for users to titrate their dose and 

experience their desired level of intoxication. Also, while THC’s bioavailability is much lower when 

consumed orally, a single commercially available edible product in the USA can contain up to 100mg 

of THC (10 servings; although some states impose restrictions beyond 50mg; Gourdet et al., 2017). 

Offering a non-combustible alternative to cannabis consumption, and often produced and marketed 

in the form of sweet food products (i.e. brownies and confectionary), there is growing concern that 

the widespread availability of edibles may increase the likelihood of initiation and frequency of use 

among young people (MacCoun and Mello, 2015).  
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Previous studies investigating the effects of different types of cannabis use typically assign 

participants to separate groups according to the type of cannabis they most commonly use. 

However, grouping participants in this way fails to characterise the full range of cannabis products 

used and how these differ across individuals. As global drug markets rapidly evolve, developing a 

richer understanding of cannabis use patterns across a wide range of products is necessary to 

understand cannabis use and its consequences. One approach to studying this issue is to use person-

centred analyses (such as latent class analysis; LCA) which can capture the heterogeneity in and 

characterise distinct profiles of cannabis use and then compare these groups across key health-

related outcomes. Studies utilizing these approaches have typically identified subgroups of people 

who use cannabis describing different affective, involvement (i.e. frequency and consequences of 

use) and/or risk profiles (Manning et al., 2018, Pearson et al., 2017). Although other studies have 

used these approaches to distinguish groups by various cannabis use characteristics, including 

products preferred/used (Korf et al., 2007, Krauss et al., 2017), defining classes/clusters using the 

types of cannabis individuals use in addition to other features of cannabis use not related to product 

use fails to entirely characterise the specfifc heterogenity in the profiles of cannabis products being 

used. In addition, by not exploring differences in important health-related outcomes across these 

subgroups, these studies were not able to characterise the risk of harm associated with the different 

profiles of cannabis use. We are unaware of any previous studies that have both parsed people who 

use cannabis into groups specifically on the basis of their use of different cannabis products, and 

then explored variations in health-related outcomes, in particular, dependence between those 

classes/groups. To address this gap, we used LCA to differentiate groups of people who use cannabis 

(recruited in the Global Drug Survey, GDS, 2018, a large multi-national survey) using six different 

cannabis-product indicators (sinsemilla, herbal, hashish, concentrates (e.g. BHO, oil), kief & edibles). 

To validate the LCA solution, we then compared rates of mental health diagnoses and probable 

dependence across these latent classes.  
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2. Method 

2.1 Sample  

GDS runs the largest drug survey in the world. Using an anonymous, on-line encrypted platform GDS 

conducts a cross-sectional survey of drug use each year. The survey is promoted through 

collaboration with media partners and via various social media platforms. Since GDS2012, over 

700,000 people have taken part in these surveys. Core questions assessing patterns of commonly 

used drugs are supplemented each year by specialist sections determined by the GDS Expert 

Advisory Group.  

GDS2018 was translated into 19 languages. GDS recruits from a self-nominating population, 

providing a non-probability sample that should not be considered representative of drug users or 

indeed generalisable beyond the demographic profile of the respondents. However, given the large 

international scope of the survey, the data obtained here can nonetheless provide valuable insights 

into current drug trends and patterns of use, in addition to identifying user populations that might 

otherwise be hard to access. For a more detailed discussion of the methodology, utility and 

limitations of the GDS see (Barratt et al., 2017, Winstock et al., 2012). The data included in the 

present study were taken from GDS 2018 (data collected from November 6th 2017 & to 10th January 

2018). A total of 130,761 responses were received; 55,242 reported past year use of cannabis and 

were subsequently selected for the analyses reported here. These included responses from 175 

different countries, including Germany (30.0%), Denmark (9.5%), Poland (7.9%), USA (6.7%), 

Switzerland (3.9%) and the UK (3.6%). Ethical approval was obtained from the University College 

London Research Ethics Committee 11671/001: Global Drug Survey, University of Queensland (No: 

2017001452) and The University of New South Wales (HREC HC17769) Research Ethics Committees. 

All procedures contributing to this work comply with the ethical standards of the relevant national 

and institutional committees on human experimentation and with the Helsinki Declaration of 1975, 

as revised in 2008. 
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2.2 Measures 

2.2.1 Sociodemographic characteristics and mental health 

Country of residence was used as reported by respondents. Age was collected as a continuous 

variable and subsequently categorised (16-19, 20-24, 24-29, 30+). Gender, ethnicity and highest 

educational achievement were taken directly from questions with multiple response options, 

categories with small numbers were collapsed for ease of interpretation (e.g. those reporting Non-

Binary and Different Identity for gender were combined into a single ‘Other’ category). Participants 

were also asked if they had ever received a diagnosis for any mental health disorder in their lifetime 

(yes/no). 

2.2.2 Cannabis Use 

GDS includes a detailed set of questions on cannabis use. Participants were initially asked questions 

relating to their cannabis use in general. Specifically, frequency was collected as a continuous 

variable (amount of days used in the past 12 months) and then categorised (<monthly; ≥ monthly 

(<weekly); ≥weekly (<daily); daily or near daily). Participants with ineligible responses (i.e. 0 or >365 

days) were excluded. Amount used was also collected as a continuous variable (‘On a day that you 

use cannabis how much would you say you normally use?’) ranging from 0.1 gram to 14+ grams. In 

addition, participants reported whether or not they add tobacco when preparing their cannabis. 

Participants were then asked about their use of several different types of cannabis products. Each 

cannabis product was accompanied by a series of product-specific labelled photographs in order to 

improve identification by participants (Wilson et al., 2019). Respondents were asked which of the 

following types they had used in the past 12 months (yes/no): sinsemilla, herbal, hashish, 

concentrates, kief & edibles. 
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2.2.3 Severity of dependence  

Cannabis dependence was assessed using the Severity of Dependence Scale (SDS; Gossop et al., 

1995), a 5-item scale measuring the psychological components of dependence. This scale has been 

used previously to assess the relationship between use of different cannabis products and cannabis 

dependence (Freeman and Winstock, 2015, Sagar et al., 2018). Each item is scored along a 4-point 

scale [never (0); sometimes (1); often (2); always (3)] and total scores (ranging from 0 to 15) are 

obtained by summing the items, with higher scores indicating higher levels of dependence. In 

addition to total scores, we also compared groups using a diagnostic cut off for cannabis 

dependence, for which ≥3 was adopted based on (Swift et al., 1998). 

2.3 Statistical Analyses  

LCA was performed to identify underlying subgroups of people who use cannabis classified by their 

endorsement (i.e. reported past year use) of six cannabis products (see Measures). LCA classifies 

respondents into mutually exclusive classes with distinct endorsement profiles (i.e. cannabis 

products used). The classes are then interpreted by two model parameters - the prevalence of each 

class (typically expressed in % of sample) and the probability that members of a class endorse, in this 

instance, past year use of particular cannabis products. LCA assumes that endorsement probabilities 

within each class are statistically independent. A series of models postulating an increasing number 

of classes (1-9) were sequentially fitted to the data using maximum likelihood estimation and 

multiple starting values (4000 runs) to avoid local maxima. Model estimates were adjusted for the 

clustering of respondents within countries. These analyses were conducted in Mplus (version 8.1; 

Muthén and Muthén, 2017). In order to achieve converging evidence on the most parsimonious 

model, models were compared using the Akaike information criterion (AIC), Bayesian information 

criterion (BIC) and sample size-adjusted BIC. Entropy (measure of class distinctiveness, with values 

approach 1 indicating clear delineation of the classes), class size and interpretability were also 

considered. In addition, to determine whether meaningful subdivisions of classes were introduced as 
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the number of classes increased, we compared the most likely class assignment for each respondent 

in successive solutions, represented in the form of a probability tree showing class reassignment 

from the k-class solution to the k+1 class solution (Supplementary Figure S2) . Likelihood ratio tests 

may be unreliable and can over-extract when using multilevel data, therefore they were not used in 

model enumeration. 

The discriminant validity of the preferred solution on sociodemographic and cannabis use 

characteristics was assessed using omnibus tests (ANOVAs/chi-square). Additional pairwise chi-

square tests were conducted to examine class differences in rates of ever receiving a mental health 

disorder diagnosis using a Bonferroni corrected threshold of p<0.002. A linear regression model was 

used to explore the association between latent class membership and severity of dependence. To 

account for error in class classification when relating latent classes to SDS scores, respondents were 

assigned to every latent class proportional to their estimated posterior probabilities of being 

classified in those classes (i.e. probability regression; Clark and Muthén, 2009). All confidence 

intervals were generated using robust methods (10,000 bootstrapping samples, bias-corrected 95% 

confidence intervals). The class with the lowest mean SDS score was used as the reference group. 

The model was adjusted for age and gender, as well as key aspects of cannabis use, specifically 

amount, frequency of use and whether participants added tobacco when preparing their cannabis, 

based on previous research investigating the relationship between multiple measures of cannabis 

use, and cannabis related problems (Curran et al., 2018, Hindocha et al., 2016). In addition, a 

sensitivity analysis was conducted to assess the influence of other socio-demographic characteristics 

that couldn’t be included in the initial model due to large amounts of missing data (Supplementary 

Table S2, Figure S3). These analyses were conducted using STATA (version 15.1; StataCorp., 2017). 
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3. Results 

3.1 Sample Characteristics 

Country of residence was missing for 2 participants who were therefore excluded from all analyses. 

The remaining 55,240 participants endorsing past year use of at least one cannabis product were 

included in the latent class analysis, while for the regression analysis, missing data from any variable 

in the model were excluded listwise, leaving a sample of 47,511. Of the complete sample, 71.2% 

were male, with a mean age of 25.0 (SD 8.9; Table 1, first column) and less than monthly use was 

most commonly reported (36.8%). Also, the majority of participants reported adding tobacco when 

preparing their cannabis (66.8%) and the mean amount of cannabis used per session was 0.59 (SD 

0.83) grams, comparable to studies using other GDS recruitment pools (e.g. Hindocha et al., 2016). 

The proportions of participants endorsing past year use of the cannabis products were: sinsemilla 

(69.2%), herbal (76.1%) hashish (46.4%), concentrates (12.8%), kief (18.4%) and edibles (26.7%).  

 

<Table 1> 

 

3.2 LCA of cannabis type use in previous 12 months  

3.2.1 Model selection  

Fitting nine latent class models (1 to 9 classes) failed to reach a global minimum solution (i.e. fit 

indices continued to improve as the number of classes increased) and successive models with 

additional classes were not identified (e.g. overparameterization). This is not uncommon, 

particularly when using large sample sizes, and model enumeration can be determined heuristically 

by considering the substantive interpretability and utility of the classes (Nylund-Gibson and Choi, 

2018). Therefore, after inspection of the class characteristics for each solution, we opted for the 7-

class model, which we believed offered the optimum solution in terms of class proportions and 
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theoretical meaning. Although model fit was marginally better for 8 and 9 classes (see 

supplementary Table S1, Figure S1), the endorsement profiles of the classes identified in these 

models were not sufficiently different from those in the 7-class model to suggest that additional, 

meaningfully different subdivisions of cannabis use were identified (supplementary Figure S2), 

particularly when also considering their small prevalence. 

 

3.2.2 Model interpretation  

Endorsement probabilities, in this case referring to the probability of reporting past year use of 

specific cannabis products (Figure 1), suggest that classes identified by the seven-class solution can 

be characterised as follows 

1. Sinsemilla & herbal (30.3% of the sample): High probability of using sinsemilla; moderate 

probability of herbal use. 

2. Sinsemilla, herbal & hashish (20.4%): High probabilities of using sinsemilla, herbal cannabis 

and hashish; as well as moderate probability of using edibles.  

3. Hashish & herbal (18.8%):  High probabilities of hashish and herbal use; moderate 

probability of using sinsemilla 

4. Herbal (18.4%): high probabilities of herbal use only.  

5. All types (5.7%): High probabilities of using Sinsemilla, herbal, hashish, concentrates, kief & 

edibles. 

6. Edibles & herbal (4.6%): High probabilities of edibles and herbal use. 

7. Concentrates & sinsemilla (1.7%): High probabilities of concentrate and sinsemilla; moderate 

probabilities of herbal and edibles use.  
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<Figure 1> 

 

3.2.3 Socio-demographic and cannabis use characteristics and self-reported mental health diagnoses 

by latent class 

The characteristics of each latent class are displayed in Table 1. Omnibus tests show overall 

differences between these classes on sociodemographic characteristics (age, gender, ethnicity, 

highest level of education) and cannabis use characteristics (frequency and amount of use, mixing 

with tobacco), suggesting good discriminant validity of the latent class solution. Additionally, 

between group comparisons revealed that the two classes characterised by concentrates use (All 

types, Concentrates & Sinsemilla) had the highest proportion of participants reporting ever receiving 

a mental health disorder diagnosis, with the rates in these classes significantly greater than all other 

classes at the Bonferroni corrected threshold of p<0.002 (Table 1, Figure 2).  

  

 

<Figure 2> 

 

3.3 Association between latent class membership and severity of dependence on cannabis 

As summarised in Table 3 and Figure 3, the linear regression model indicated that, after adjusting for 

demographics and frequency, amount and preparation of cannabis use, SDS scores significantly 

differed across latent classes. Specifically, when compared to the reference class Herbal, the 

Sinsemilla & herbal; Sinsemilla, herbal & hashish and Hashish & herbal classes were associated with 

increased severity of dependence (p’s <0.05). Inspection of Figure 3 indicates that the Concentrates 

& sinsemilla class was associated with the lowest SDS scores. The sensitivity analysis including 
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sociodemographic covariates with large amounts of missing data did not notably change the results 

(supplementary Table S3, Figure S4). These different associations between latent class membership 

and risks of high SDS scores therefore validate the utility of this method for identifying distinct 

subgroups of people who use cannabis based on their use of different cannabis products. 

 

<Figure 3> 

 

 

4. Discussion 

Using latent class analysis, we identified 7 distinct classes of people who use cannabis from a large 

international sample defined by their use of 6 different cannabis products. The classes identified 

were as follows: 1. Sinsemilla & herbal (30.3% of the sample); 2. Sinsemilla, herbal & hashish 

(20.4%); 3. Hashish & herbal (18.8%) 4. Herbal (18.4%); 5. All types (5.7%) 6. Edibles & herbal (4.6%) 

and 7. Concentrates & sinsemilla (1.7%). These findings underscore the considerable heterogeneity 

in patterns of use among people who use cannabis that are not accounted for in previous studies 

categorising use according to use of one particular product, and may highlight important limitations 

in current cannabis assessment tools. As global cannabis markets continue to diversify and the 

availability of new, less well understood, cannabis products increases, it is necessary for measures 

used in future studies to be able to capture the variability in patterns of cannabis use identified here 

(Temple et al., 2011). 

In addition, these classes showed important differences in mental health diagnoses and associations 

with cannabis dependence severity, supporting previous evidence that addiction and mental health 

problems are associated with the type of cannabis product used (Chan et al., 2017, Freeman et al., 

2018b, Freeman and Winstock, 2015, Meier, 2017). Consistent with previous findings, we found that 
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groups using predominantly low potency (e.g. herbal) cannabis had lower risks of cannabis 

dependence compared to groups using higher potency products. Interestingly, the class 

characterised by high probabilities of using the three most common cannabis types (Sinsemilla, 

herbal & hashish) was most strongly associated with dependence severity. This replicates previous 

associations between high potency herbal cannabis (e.g. sinsemilla) and greater cannabis 

dependency (Freeman and Winstock, 2015) and cannabis use disorder symptom onset and 

treatment (Arterberry et al., 2019, Freeman et al., 2018b). Additionally, this class was characterised 

by high probabilities of hashish use along with the Hashish & herbal class, which also showed 

especially strong associations with dependence severity. These associations between hashish and 

cannabis dependence are a novel finding, and might be explained by evidence that its potency has 

increased substantially in Europe (particularly from 2011 onwards; (Freeman et al., 2018a) as well as 

USA (Chandra et al., 2019) and Morocco (Stambouli et al., 2016). Another possible explanation is 

that these classes reported elevated rates of combining tobacco and cannabis, which may increase 

cannabis dependency (Hindocha et al., 2016, Hindocha et al., 2015, Ream et al., 2008, Valjent et al., 

2002). Notably, the two groups with high probabilities of using concentrates (All types, Concentrates 

& sinsemilla) did not show strong associations with dependence severity, with neither significantly 

differing from the Herbal class. This finding challenges the assumption that use of the most potent 

products (i.e. cannabis concentrates) would be most strongly associated with dependence on 

cannabis. Although previous studies have reported associations between concentrate use and 

greater dependence-related problems (Loflin and Earleywine, 2014, Meier, 2017); other studies have 

found no differences in overall dependence scores between concentrate users and non-users 

(Bidwell et al., 2018). Also, using an earlier wave of the GDS, (Chan et al., 2017) found that 

concentrate users report fewer positive effects and a lower urge to use when stoned compared to 

other types of cannabis; which is consistent with evidence from both human and animal studies 

suggesting that extremely high doses of THC may be aversive, and less reinforcing than moderate 

doses (Curran et al., 2016). Additionally, data suggests that concentrates may be used for 
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experimental purposes (i.e. due to curiosity, rather than their positive effects (Sagar et al., 2018). 

They are also more likely to be used by medical patients (Krauss et al., 2017) and for medicinal 

purposes (Chan et al., 2017). Interestingly, in this sample, the two classes showing high levels of 

concentrate use were also characterised by elevated rates of ever receiving a mental health disorder 

diagnoses, supporting previous studies reporting associations between concentrate use and mental 

health problems (Chan et al., 2017). However, this should be interpreted with caution as our 

assessment of mental health had limitations. In particular, we did not examine specific mental health 

disorders and responses may be subject to biases due to the reliance on having received a diagnosis, 

which may be linked to differences in healthcare access, health literacy, diagnostic validity and 

reliability of healthcare systems across the range of countries sampled. 

 

This study has several strengths. It is the first study to our knowledge that has both characterised 

heterogeneity in use of multiple cannabis products and then investigated their association with 

dependence severity. Additional strengths include the rich and detailed questions on six different 

cannabis products with pictorial aids, and the use of latent class analysis in a large international 

sample of over 55,000 people who use cannabis use with a broad range of ages. However, the 

findings reported here should be interpreted within the context of the study’s limitations. Firstly, we 

used a self-selecting sample, which limits the generalisability of these findings to the general 

population. However, we are unaware of studies including rich information on multiple cannabis 

products using a population-based sampling method. Also, individuals recruited as part of GDS show 

remarkable similarity in terms of broad demographic and use characteristics when compared to 

those recruited as part of national household surveys in the USA, Australia and Switzerland (Barratt 

et al., 2017). Therefore, such surveys can offer valuable and rapid insight into emerging trends in 

drug use (e.g. cannabis concentrates and edibles; Bidwell et al., 2018, Chan et al., 2017, Sagar et al., 

2018). The cannabis products used in this study did not have specific THC or CBD concentrations 
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attributed to them, due to differences within and between international cannabis markets (Chandra 

et al., 2019, EMCDDA, 2019). There may also be additional heterogeneity within product categories 

(i.e. the large variety of different types of concentrates) and due to different consumption methods 

(e.g. vaping/inhalation via water pipe). However, the use of multiple cannabis products in this study 

offers an important methodological strength, and self-reported data on cannabis type is associated 

with quantities of both THC and CBD measured in the laboratory (Freeman et al., 2014) providing 

validation to this method. Additionally, differences in the legal status and availability of cannabis 

products between countries are likely to influence individuals’ patterns of use and therefore latent 

class assignment in this study. Inspection of supplementary Figures 5-10 (class assignment in the 

countries with the 6 most respondents) show notable geographical differences in class assignment, 

and this may reflect how legality influences the products that are used. For example, in the USA, 

where several states have legalised the recreational use and commercial provision of cannabis, a 

large proportion of respondents were assigned to the classes characterised by concentrates use. By 

contrast, in the other 5 countries, where no legal cannabis markets exist, respondents were 

characterised by the use of more traditional products (i.e. sinsemilla, herbal and/or hashish). Also, 

rates of use of each of the cannabis products (except hashish) in this sample are lower than those 

reported in a comparable survey conducted in Canada (Canadian Cannabis Survey, 2018) where 

commercial sales have recently become legal at the national level. However, due to the sampling 

methodology of this study, these results cannot be assumed to be representative and should not be 

generalised to particular countries or regions, in common with other surveys using non-probability 

sampling methods (Barratt et al., 2017).   

5. Conclusions 

This study is the first to characterise heterogeneity in the use of different cannabis products and 

explore their associations with cannabis dependence. Our results highlight that people who use 

cannabis may use a variety of different products in various combinations, and that this can account 



19 
 

for significant variation in cannabis dependency and mental health disorder diagnoses. These 

findings also demonstrate the importance of future studies using cannabis assessment tools that are 

able to account for the variability in the products currently being used. In terms of cannabis 

dependence, the highest rates were found among those who used the three most common cannabis 

types (sinsemilla, herbal & hashish). Although those characterised by the use of highly potent 

concentrates did not show the strongest associations with dependence, rates of ever receiving a 

mental health disorder diagnoses were particularly elevated within these individuals.    
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Table 1. Socio demographic characteristics and patterns of cannabis use and mental health diagnosis on the whole sample and by latent class membership 

        SDS, Severity of Dependence Scale. Common superscript letters within rows indicate classes do not significantly differ at the Bonferroni adjusted threshold (p<0.002).

Variable  Category  Total 
Sinsemilla & 
herbal 

Sinsemilla, herbal & 
hashish 

Hashish & 
herbal 

Herbal All types Edibles & herbal  
Concentrates & 
sinsemilla 

Omnibus test statistic 

Age 
 
 

25.0 (±8.9) 24.80 (±8.72) 23.09 (±6.89) 25.94 (±8.97) 26.71 (±10.09) 23.56 (±7.83) 25.30 (±9.44) 28.23 (±11.67) 

F= 212.49, p<0.001 
 Missing <0.1% <0.1% 0% 0% 0% <0.1% 0% 0% 

Gender Male 71.2% 72.5% 78.8% 68.6%  62.9%b 82.7% 57.5%a 74.1% 

Χ2= 1318.59, p<0.001 Female 27.7% 26.5% 19.8% 30.6% 36.2% 15.1% 41.6% 23.5% 

Other 1.1% 0.9% 1.5% 0.8% 0.9% 2.2% 1.5% 2.4% 

Ethnicity White 61.1% 61.1% 54.8% 62.0% 69.4% 49.3% 69.0% 55.1% 

Χ2=181.76, p<0.001 Other 6.6% 7.2% 6.6% 5.3% 5.5% 8.4% 9.1% 10.7% 

Missing 32.3% 31.7% 38.6% 32.7% 25.6% 42.3% 21.9% 34.2% 

Highest level of 
education 

Lower Secondary or 
Less 

12.3% 14.9% 11.7% 10.8% 11.0% 12.2% 8.6% 14.3% 

Χ2= 998.19, p<0.001 

Technical/Trade 
Certificate 

6.2% 7.0% 5.9% 6.3% 5.9% 5.6% 4.0% 5.2% 

Higher Secondary 14.9% 14.9% 17.0% 14.5% 13.0% 16.4% 14.2% 14.2% 

College Diploma 15.7% 13.6% 16.2% 15.6% 18.7% 12.0% 21.8% 12.7% 

Degree 15.1% 14.0% 10.5% 16.6% 20.1% 10.6% 23.3% 13.1% 

Higher Degree 3.9% 4.0% 2.2% 4.3% 5.3% 2.1% 5.6% 5.7% 

Don’t know 0.7% 0.9% 0.6% 0.5% 0.5% 1.0% 0.6% 1.4% 

Missing 31.2% 30.9% 35.9% 31.4% 25.5% 40.1% 22.0% 33.5% 

Frequency of use < Monthly 38.6% 46.1% 11.1% 34.1% 68.2% 2.6% 58.8% 27.7% 

Χ2= 12909.25, p<0.001 

≥ Monthly (< weekly) 8.6% 9.5% 8.0% 10.8% 6.9% 2.9% 11.0% 7.2% 

≥ Weekly (< daily) 25.2% 24.3% 34.6% 28.5% 14.3% 23.9% 19.8% 27.6% 

Daily or near daily 26.4% 18.7% 45.1% 25.4% 9.3% 69.0% 9.4% 35.9% 

Missing 1.3% 1.3% 1.3% 1.2% 1.3% 1.7% 1.1% 1.7% 

Amount used per 
occasion (g) 

 0.59 (±0.83) 0.54 (±0.66) 0.72 (±0.85) 0.50 (±0.62) 0.39 (±0.55) 1.23 (±1.78) 0.48 (±0.75) 0.78 (±1.28) 

F= 515.84, p<0.001 Don’t know 4.6% 4.1% 2.0% 7.4% 8.2% 5.7% 4.6% 6.2% 

Missing 1.2% 1.0% 1.0% 1.3% 1.6% 1.0% 7.8% 1.4% 

Mix with tobacco Yes 65.7% 63.0% 71.6% 84.0% 60.2% 46.7% 44.0% 25.8% Χ2= 3709.68, p<0.001 

 Missing 1.6% 1.6% 1.2% 1.4% 2.2% 1.1% 1.5% 2.1%  

Mental health 
diagnosis (ever) 

Yes 15.7% 14.9%a 15.7%b 14.7%a 14.6%a 21.7%c 18.5%ab 23.6%c 

Χ2= 325.14, p<0.001 
Missing 27.0% 26.3% 32.2% 27.4% 20.8% 36.3% 18.8% 30.3% 

SDS  1.89 (±2.47) 1.63 (±3.00) 2.77 (±2.70) 2.08 (±2.55) 0.97 (±1.80) 3.03 (± 2.79) 1.08 (±1.88) 1.86 (±2.43) F= 680.49, p<0.001 

 
 

Missing 6.7% 7.4% 5.9% 6.5% 7.4% 5.7% 5.7% 6.7%  
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Table 2. Fit statistics for the 1-9 latent class models of type of cannabis use in past 12 months.  

 

 

 

 

 

 

 

 

 

Note: Preferred solution is in bold. AIC, Akaike information criterion; BIC, Bayesian information 

criterion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

No. of classes AIC BIC Adjusted BIC Entropy 

1 364585.265 364638.782 364619.713 - 
2 342535.986 342651.939 342610.624 0.69 
3 336722.971 336901.360 336837.800 0.73 
4 335808.001 336048.826 335963.019 0.65 
5 334610.296 334913.557 334805.505 0.82 
6 333973.889 334339.586 334209.287 0.72 
7 333570.339 333998.473 333845.928 0.77 
8 333402.717 333893.287 333718.496 0.81 
9 
 

333293.584 333846.589 333649.552 0.73 
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Table 3. Associations between latent class analysis of multiple cannabis product use and severity of 

dependence on cannabis (see Figure 3. for Beta and 95% CI for latent classes displayed in a caterpillar 

plot). 

B, unstandardized linear regression coefficients; Beta, standardized linear regression coefficients; 

95% CI, 95% bias corrected confidence intervals. 

 

 

 

 

 

 

Variable Category B Beta P Value 95% CI 

Latent Class Herbal  Ref. 
   

 Sinsemilla & herbal 0.155 0.023 <0.001 0.100 – 0.209 

 Sinsemilla, herbal & hashish 0.429 0.054 <0.001 0.350 – 0.505   

 Hashish & herbal 0.262 0.028 <0.001 0.188 – 0.337  

 All types 0.074 0.006 0.216 -0.057 – 0.217   

 Edibles & low potency herbal -0.040 -0.003 0.491 -0.121 – 0.044   

 Concentrates & sinsemilla -0.158 -0.007 0.096 -0.340 – 0.026  

Age 20-24     

 16-19 -0.023 -0.004 0.358 -0.074 – 0.025   

 25-29 -0.111 -0.017 <0.001 -0.170 – -0.054  

 30+ -0.337 -0.055 <0.001 -0.395 – -0.282   

Gender Male     

 Female 0.002 0.000 0.914 -0.042 – 0.048   

 Other 0.434 0.018 <0.001 0.218 – 0.655   

Frequency of use <Monthly     

 Monthly or more (<weekly) 0.513 0.059 <0.001 0.456 – 0.571   

 Weekly or more (<daily) 1.447 0.257 <0.001 1.397 – 1.496   

 Daily or near daily 2.833 0.511 <0.001 2.770 – 2.894   

Amount used per occasion (g)  0.091 0.030 <0.001 0.056 – 0.130   

Mix with tobacco   0.366 0.069 <0.001 0.325 – 0.407   
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Figure 1. Endorsement profiles for past year use of cannabis products by latent class for the seven-

class model. 
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Figure 2.  Prevalence (%) of daily cannabis use, SDS scores ≥ 3 and lifetime mental health diagnoses 

by latent class. 
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Figure 3. Caterpillar plot displaying standardised linear regression coefficients and bias corrected 

95% CI for associations with dependence severity for latent class (compared to Herbal), adjusted for 

age, gender, frequency of use, amount used per session, and mixing with tobacco (as reported in 

Table 2). 

 

 

 

 

 


