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ON CONFORMAL GAUSS MAPS

F.E. BURSTALL

Abstract. We characterise the maps into the space of 2-spheres in Sn that are the conformal
Gauss maps of conformal immersions of a surface into Sn. In particular, we give an invariant

formulation and efficient proof of a characterisation, due to Dorfmeister–Wang [4, 5], of the

harmonic maps that are conformal Gauss maps of Willmore surfaces.

Introduction

A useful tool in conformal surface geometry is the central sphere congruence [1, §67; 10] or conformal
Gauss map [2]. Geometrically, the central sphere congruence of a surface in the conformal n-sphere
attaches to each point of the surface a 2-sphere, tangent to the surface at that point and having
the same mean curvature vector as the surface at that point. The space of 2-spheres in Sn may be
identified with the Grassmannian of (3, 1)-planes in Rn+1,1 and so the central sphere congruence
may be viewed as a map, the conformal Gauss map, to this Grassmannian.

The utility of this construction is that it links the (parabolic) conformal geometry of the sphere
to the (reductive) pseudo-Riemannian geometry of the Grassmannian. For example, a surface
is Willmore if and only if the conformal Gauss map is harmonic [1, §81; 2; 6; 9]. In another
direction, away from umbilic points, the metric induced by the conformal Gauss map, which is
in the conformal class of the surface, is invariant by conformal diffeomorphisms of Sn and even
arbitrary rescalings of the ambient metric [7, 11].

The purpose of this short note is to characterise those maps into the Grassmannian which are the
conformal Gauss map of a conformal immersion. In so doing, we build on a result of Dorfmeister–
Wang [4,5] which treats the case where the map is harmonic. As a by-product of our analysis, we
give an invariant formulation and efficient proof of their result.

It is a pleasure to thank David Calderbank, Udo Hertrich-Jeromin and Franz Pedit for their careful
reading of and helpful comments on a previous draft of this paper.

1. The conformal Gauss map

We view the conformal n-sphere Sn as the projective lightcone P(L) of Rn+1,1 [3, Livre II,

Chapitre VI; 8, Chapter 1]. Here L = {v ∈ Rn+1,1
× | (v, v) = 0} and ( , ) is the signature (n+ 1, 1)

inner product.

Let f : Σ → Sn = P(L) be a conformal immersion of a Riemann surface into the conformal
n-sphere. Equivalently, f is a null line subbundle of the trivial bundle Rn+1,1 := Σ× Rn+1,1.

Define f1,0 ≤ Cn+2 by
f1,0 = span{σ, dZ σ | σ ∈ Γf, Z ∈ T 1.0Σ}.

Here the notation U ≤ V means U is a subbundle of V . That f is a conformal immersion is
equivalent to f1,0 being a rank 2 isotropic subbundle of Cn+2. Set f0,1 := f1,0 and note that1

f1,0 ∩ f0,1 = f .

The conformal Gauss map of f is the bundle of (3, 1)-planes V ≤ Rn+1,1 given by

V = span{σ, dZ σ, dZ̄ σ, dZ dZ̄ σ | σ ∈ Γf, Z ∈ ΓT 1,0Σ}.

2010 Mathematics Subject Classification. 53A30 (primary), 53C43 (secondary).
1We make no notational distinction between a real bundle and its complexification
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ON CONFORMAL GAUSS MAPS 2

We have a decomposition Rn+1,1 = V ⊕ V ⊥ which induces a decomposition of the flat connection
d:

d = D +N ,
where D is a metric connection preserving V and V ⊥ while N is a 1-form taking values in skew-
endomorphisms of Rn+1,1 which permute V and V ⊥.

Remark. We may view V as a map from Σ into the Grassmannian of (3, 1)-planes in Rn+1,1 and
then N can be identified with its differential.

The flatness of d yields the structure equations of the situation:

0 = RD + 1
2 [N ∧N ] (1.1a)

0 = dDN . (1.1b)

Here dD is the exterior derivative on bundle-valued forms with D used to differentiate coefficients.

The conformal Gauss map V is defined by the following properties:

1. f0,1 ≤ V ;

2. f0,1 ≤ kerN 1,0.

Now, for Z a local section of T 1,0Σ, NZ is skew while f0,1 is maximal isotropic in V so that

NZV
⊥ = (kerNZ |V )⊥ ⊆ (f0,1)⊥ ∩ V = f0,1 ≤ kerNZ |V (1.2)

and we conclude:

Lemma 1.1 (c.f. [4, Proposition 2.2]). If V is the conformal Gauss map of a conformal immersion
then (N 1,0)2

|V ⊥ = 0.

Following [4], we say that V with the property of Lemma 1.1 is strongly conformal.

The conformal Gauss map also satisfies a second order condition. First note that (1.2) tells us that

NZV
⊥ ⊆ f0,1. (1.3)

Moreover, f0,1 is D0,1-stable thanks to the following lemma which will see further use in Section 2:

Lemma 1.2. Let W ≤ V be maximal isotropic in V with a never-vanishing section w such that
DZ̄w ∈W , for Z̄ ∈ T 0,1Σ. Then W is D0,1-stable.

Proof. Let u ∈ ΓW be a local section so that u,w locally frame W . It suffices to show that
DZ̄u ∈W . However,

(DZ̄u,w) = −(u,DZ̄w) = 0;

(DZ̄u, u) = 1
2 Z̄(u, u) = 0,

since W is isotropic. Thus DZ̄u ∈W⊥ ∩ V = W since W is maximal isotropic in V . �

In the case at hand, for σ ∈ Γf , we have DZ̄σ ∈ f0,1 by definition so Lemma 1.2 applies to show
that f0,1 is D0,1-stable.

Now contemplate the tension field τV := ∗ dD ∗N of V . Since ∗N = i(N 1,0 −N 0,1), (1.1b) yields

τV = 2i ∗ dDN 1,0 = −2i ∗ dDN 0,1.

In view of the last paragraph, τV V
⊥ takes values in f0,1 since ∗ dDN 1,0V ⊥ does. However, τV is

real so that τV V
⊥ takes values in f0,1 ∩ f1,0 = f :

τV V
⊥ ⊆ f. (1.4)

In particular, since f is a null line subbundle on which N vanishes, we conclude:
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Proposition 1.3. If V is the conformal Gauss map of a conformal immersion with tension field
τV . Then:

N ◦ τV |V ⊥ = 0 (1.5a)

(τV )2
|V ⊥ = 0. (1.5b)

This line of argument additionally give us some control on the rank of N : TΣ⊗ V ⊥ → V :

Lemma 1.4. Let V be the conformal Gauss map of a conformal immersion f , then the set

A := {p ∈ Σ | NZV
⊥ = NZ̄V

⊥ 6= {0}, Z ∈ TpΣ}
is nowhere dense.

Proof. Any open set in the closure of A must contain an open set where NZV
⊥ = NZ̄V

⊥ 6= {0}.
On this latter set, we immediately see from (1.3) that NZV

⊥ = f . Since τV V
⊥ ≤ f also, by (1.4),

we rapidly conclude (c.f. Lemma 2.2 below) that f is D0,1-stable and so D-stable. Since N f = 0
also, f is constant: a contradiction. �

In the next section, we will establish a generic converse to these results.

2. Reconstruction of f from V

Suppose now that we have a bundle V ≤ Rn+1,1 of (3, 1)-planes and ask whether V is the conformal
Gauss map of some conformal immersion f . Our task is then to construct f ≤ V but, in fact, it
will be more convenient to construct f0,1:

Proposition 2.1. Let W ≤ V be a maximal isotropic subbundle of V such that:

1. W is D0,1-stable;

2. N 1,0W = 0, or, equivalently (c.f. (1.2)), NZV
⊥ ⊆W , for all Z ∈ T 1,0Σ.

Then f := W ∩W is a real, null, line subbundle which, on the open set where it immerses, is
conformal with W = f0,1 and conformal Gauss map V .

Proof. Since V has signature (3, 1), W and W must intersect in a line bundle, necessarily null and
real. Since f is real, f ≤ kerN 1,0 ∩ kerN 0,1 so that, for σ ∈ Γf , Z̄ ∈ T 0,1Σ,

dZ̄ σ = DZ̄σ +NZ̄σ = DZ̄σ ∈W,
since f ≤ W and W is D0,1-stable. Thus W = f0,1 on the set where f immerses. We conclude
that, on that set, f is conformal, since f0,1 is isotropic and V is the conformal Gauss map of f
since f0,1 ≤ kerN 1,0. �

For our main result, we need the following simple observation:

Lemma 2.2. Let V ≤ Rn+1,1 be a bundle of (3, 1)-planes with tension field τV . Let w = NZν, for
ν ∈ ΓV ⊥ and Z ∈ TΣ. Then DZ̄w ∈ NZV

⊥ + τV V
⊥.

Proof. For suitable Z ∈ T 1,0Σ, τV = DZ̄NZ −N 1,0

[Z̄,Z]
so that

DZ̄w = DZ̄(NZν) = (DZ̄NZ)ν +NZ(DZ̄ν)

= τV ν +N 1,0
[Z̄,Z]

ν +NZ(DZ̄ν) ∈ NZV
⊥ + τV V

⊥.

�

With all this in hand, we have:

Theorem 2.3. Let V ≤ Rn+1,1 be a bundle of (3, 1)-planes with tension field τV . Suppose that:

1. V is strongly conformal.

2. Equations (1.5) hold.
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3. {p ∈ Σ | NZV
⊥ = NZ̄V

⊥ 6= {0}, Z ∈ TpΣ} is empty.

Set U := NZV
⊥ + τV V

⊥ and restrict attention to the open dense subset of Σ where U has fibres
of locally constant dimension and so is a vector bundle.

Then rankU ≤ 2 and we have:

(a) Where rankU = 2, there is a unique real, null line subbundle f ≤ V which, where it immerses,
is a conformal immersion with conformal Gauss map V .

(b) Where rankU = 1, there are exactly two real, null line subbundles f, f̂ ≤ V , which, where they
immerse, are conformal immersions with conformal Gauss map V . In this case, V is harmonic

and f, f̂ are a dual pair of Willmore, thus S-Willmore [6], surfaces.

(c) Where rankU = 0, V is constant and there are infinitely many real, null line subbundles f ≤ V
defining conformal immersions with conformal Gauss map V .

Proof. First note that hypotheses 1 and 2 amount to the assertion that U ≤ V is isotropic so that
rankU ≤ 2.

We now consider each possibility for rankU in turn.

First suppose that rankU = 2. Then U is maximal isotropic in V and is D0,1-stable by Lemma 1.2
in view of Lemma 2.2. By construction NZV

⊥ ⊆ U so that we may take U = W in Proposition 2.1
to learn that V is the conformal Gauss map of f = U ∩ U where the latter immerses.

Now suppose that rankU = 1. We claim that U = NZV
⊥: first this holds on a dense open set Ω,

(if NZV
⊥ vanishes on an open set, so does τV ) so that, by hypothesis 3, we have U ∩ U = {0} on

Ω. Since τV is real, we must have τV = 0 on Ω and hence everywhere so that the claim follows
and V is a harmonic map. It is now immediate that U is D0,1-stable. By hypothesis 3, we have
that U ∩ U = {0} everywhere so that there are exactly two real, null line subbundles f1, f2 ≤ V
orthogonal to U ⊕ U and we set Wi = fi ⊕ U , i = 1, 2. Lemma 1.2, applied to a section w of U
assures us that each Wi is D0,1-stable so that Proposition 2.1 gives that each fi is conformal where
it immerses with conformal Gauss map V . In this case, the fi are dual Willmore surfaces.

Finally, ifN 1,0 = 0 thenN vanishes also so that V is d-stable and so constant. Thus S2 := P(L∩V )
is a conformal 2-sphere and any conformal immersion f : Σ→ S2 (in particular, any meromorphic
function on Σ, off its branch locus) has V as conformal Gauss map. �

Remarks.

1. The caveat that f immerse is not vacuous: one can readily construct V satisfying the hy-
potheses of Theorem 2.3 for which f we find is constant. Indeed, given constant f ∈ P(L), let
W ≤ Cn+2 be a non-constant rank 2 isotropic subbundle containing f with W holomorphic
with respect to the trivial holomorphic structure of Cn+2 and choose V ⊥ to be a complement
to W +W in f⊥. Then it is not difficult to show that W is D0,1-stable and N 1,0W = {0}.

2. For strongly conformal V , equations (1.5) are not independent. Indeed, when rankN 1,0
|V ⊥ =

2, NZV
⊥ is maximal isotropic in V so that (1.5a) forces τV V

⊥ ≤ NZV
⊥. Thus τV V

⊥ is
isotropic and (1.5b) holds. Again, when rankN 1,0

|V ⊥ = 1, it is easy to see that (1.5a) holds
automatically.

In the interesting case of harmonic V (so that τV = 0), matters simplify considerably. Here, of
course, hypothesis 2 of Theorem 2.3 is vacuous. Moreover, N 1,0 is a holomorphic 1-form with
respect to the Koszul–Malgrange holomorphic structure of Cn+2 with ∂̄-operator D0,1. It follows
that NZ |V ⊥ has constant rank off a divisor and, moreover, that there is a D0,1-holomorphic sub-

bundle of Cn+2 that coincides with NZV
⊥ away from that divisor. In this setting, we conclude

with Dorfmester–Wang:

Corollary 2.4 (c.f. [4, Theorem 3.11; 5, Theorem 3.11]). Let V ≤ Rn+1,1 be a strongly conformal
harmonic bundle of (3, 1)-planes.

Let U ≤ V be the D0,1-holomorphic, isotropic bundle that coincides with NZV
⊥ off a divisor.
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(a) if rankU = 2, there is a unique real, null line subbundle f ≤ V which, where it immerses, is
a Willmore, non S-Willmore, surface with conformal Gauss map V .

(b) if rankU = 1 and U ∩ U = {0}, there are exactly two real, null line subbundles f, f̂ ≤ V ,
which, where they immerse, are a dual pair of S-Willmore surfaces.

Remark. In the notation of Dorfmeister–Wang [4, 5], after a gauge transformation that renders
V, V ⊥ constant, N 1,0 is represented by the matrix B1.
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