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Abstract

Stick-slip flow is a challenging viscoelastic benchmark problem due to the presence of a separation
or transition point at the die exit where a sudden change in flow boundary conditions occur. We
present numerical simulations of transient planar stick-slip flow of the Phan-Thien–Tanner (PTT)
and Giesekus fluids, investigating the polymer stress behaviour around the stress singularity at the
stick-slip point, confirming the asymptotic results presented in Evans et al., Physics of Fluids, 29,
1–33, 2017. In order to improve the numerical knowledge about this viscoelastic benchmark problem,
two distinct mathematical methodologies are used for comparison in the computational simulations:
the Cartesian and the natural stress formulations. The former, is widely applied in computational
rheology, whilst the latter is used for the first time in the context of this problem. The natural stress
formulation gives improved convergence results both temporally and spatially near the singularity,
whilst maintaining the same global flow characteristics as the Cartesian.
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1 Introduction

A common industrial processing situation involves the extrusion of molten polymers through a die. The
dies tend to be rectangular (slit) or capillary (cylindrical) and the polymer is usually melted and pumped
through fixed channels and orifices to provide a steady stream of a given cross-sectional profile [1]. It is
a process that has received much experimental and theoretical attention due to the following features:

1. Die swell: on leaving the channel, the extrudate can expand (i.e swell) significantly when viscoelastic
materials are involved instead of Newtonian [2];

2. Stress singularity: on leaving the die there is an abrupt change in boundary conditions from one
involving velocity on the die wall to that of a stress free surface condition outside the die [2–7];

3. Extrudate distortions and fracture: various morphological distortions in the extrudate surface can
occur when the wall shear stress exceeds critical values. The surface can change from being smooth
to exhibiting sharkskin, spurt (sometimes referred to as stick-slip in reference to changing no-slip
and slip wall velocity conditions) and fracture. These instabilities have attracted a lot of attention,
see for example, Petrie & Denn [8], Denn [9, 10], Larson [11], Graham [12], and more recently,
Kwon [13].

Our focus here is on the situation in which the extrudate’s free surface remains smooth and does not
deform. This is a particular case of die swell, which is also often referred to as stick-slip flow (in reference
to the change of boundary conditions inside the die to outside). It allows investigation of the singular
stress behaviour at the die exit, before proceeding to more complex and involved situations. Stick-slip is
one of five benchmark problems [14] proposed for the testing and comparison of numerical techniques.

Real polymeric fluids exhibit properties in simple shear flows such as shear thinning and non-zero
normal stress differences [2,15]. Models such as PTT [16,17] and Giesekus [18], capture such effects well
and correct deficiencies of simpler models, such as Oldroyd-B [2, 19], which possesses inifinite stresses at
finite elongational rates. This is particularly relevant for stick-slip, as elongational flow dominates after
emergence of the polymeric fluid from the die. It is also worth remarking that the PTT and Giesekus
models are not only applicable to polymer processing of plastics, elastomers, suspensions and certain food
products [20], but also to other problems in Rheology, such as non-Newtonian haemodynamics [21, 22],
the extrusion process [23,24], double-layer optical fibers [25], fluid damper problems [26] and microfluidic
flows [27, 28], to name only a few.

In previous work [29], we categorised the stress singularity for PTT and Giesekus fluids in planar
stick-slip flow. Here, we continue the investigation by presenting a numerical scheme for solving the
full flow equations. Two distinct formulations of the constitutive equations are presented; one being the
traditional Cartesian stress formulation (CSF) using a fixed Cartesian stress basis whilst the other is the
natural stress formulation (NSF) which aligns the stress along streamlines. We use the schemes to verify
the asymptotic results (Evans [30, 31] and Evans et al. [29]) at the singularity for the stress, velocity as
well as the boundary layer structures at the wall (no-slip) and free (slip) surfaces. As for the re-entrant
corner singularity (Renardy [32], Evans & Oishi [33, 34]), we show that the NSF can more accurately
capture the behaviour near to the singularity than the CSF. This is also expected to be the case for die
swell, where the free-surface is now able to deform.

There is only limited numerical work in the literature for the stick-slip flow of the PTT fluid and
apparently no investigation for Giesekus. PTT has been considered by Fortin et al. [35], Baaijens [36],
Xue et al. [37] and Karapetsas & Tsamopoulos [38]. Fortin et al. [35] use a finite element method (FEM)
and present results for the polymer normal stress in the direction of flow and in the absence of a solvent
viscosity. Convergence is obtained upto a limiting Weissenberg number Wicrit, which increases as the
PTT model parameter ǫ increases (Wicrit = 2, 13, and unlimited for ǫ = 0, 0.02, 0.25 respectively). They
state that similar results are obtained with a solvent viscosity, although provide no quantitative details.
Baaijens [36] uses a discontinuous Galerkin FEM to solve the PTT model, with again no solvent viscosity,
presenting results upto Deborah number De = 87 for a large PTT model parameter ǫ = 0.25 and which
reduce to De=25.5 for the UCM case of ǫ = 0. Karapetsas & Tsamopoulos [38] give a FEM based on
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a modified elastic-viscous split stress EVSS-G scheme, which they apply in both planar and cylindrical
cases and to the linear and exponential forms of the PTT model. Estimates of the elastic stress singularity
are given, although these are almost exclusively for the no solvent viscosity case. There is a solitary result
for a solvent viscosity fraction β = 1/9 for the exponential PTT model. However, in all the cases where
they have numerical results, theoretical knowledge of the singularity is currently unknown. It is only for
the linear PTT model with solvent viscosity that the singularity has so far been classified. Our results
here then extend the literature by considering the linear PTT model in a solvent viscosity, as well as
presenting the analogous results for Giesekus. Moreover, we present a transient scheme, which should be
contrasted to all previous schemes which deal only with the steady situation.

The layout of the paper is as follows. The CSF and NSF of the PTT and Giesekus equations are
presented in section 2 including the flow geometry, mesh description and the overview of the numerical
methods. In section 3, we present the numerical convergence results for both formulations, including
temporal convergence studies and profile analyses. The stress singularity investigation is conducted in
Section 4. Not only are the stress singularities numerically verified, but also the theoretical boundary
layer structures at both the stick and slip surfaces. Whilst the known theoretical asymptotic results at
the singularity are technically valid as long as a solvent viscosity is present in the models, capturing
the singularity numerically becomes extremely challenging as the solvent viscosity reduces. Results for
β = 1/9, illustrating this are presented in section 4.3. Finally, the influence of Weissenberg number is
investigated in section 4.4.

2 Flow equations

The geometry and governing equations relevant to this flow are described in [29]. The flow is incom-
pressible with the extra-stress tensor being rheologically decomposed into solvent and polymer compo-
nents while the geometry used in all simulations is illustrated in Fig. 1. The channel half-width H and
mean speed V of the incoming flow are used as characteristic length and velocity scalings, whilst the pres-
sure and both the solvent and polymer extra-stresses are all scaled using the total viscosity η (comprised
of solvent ηs and polymer ηp)1. The dimensionless form of the flow equations are

∇ · v = 0, (2.1)

Re
(
∂v

∂t
+ v · ∇v

)
= −∇ p+ β∇2v +∇ ·T, (2.2)

T+ Wi
(

▽

T +
κ

(1− β)
g(T)

)
= 2 (1− β)D, (2.3)

g(T) =

{
tr(T)T, PTT,

T2, Giesekus,
(2.4)

with D = 1
2 (∇v + (∇v)

T
) the rate-of-strain tensor and the upper-convected stress derivative defined as

▽

T=
∂T

∂t
+ (v · ∇)T− (∇v)T−T (∇v)T . (2.5)

The dimensionless parameters are the Reynolds number Re, Weissenberg number Wi and retardation
parameter β ∈ [0, 1] (the dimensionless retardation time or dimensionless solvent viscosity). The model
parameter κ is the coefficient of the quadratic stress terms representing the PTT model parameter (ǫ
being commonly used) or Giesekus mobility factor.

In component form relative to fixed Cartesian axes, Eqs. (2.1)-(2.3) can be re-written as

1We remark that this is an alternative non-dimenionsalisation for the extra-stresses to that presented in [29] which used
the respective solvent and polymer viscosities instead of the total viscosity.
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∂u

∂x
+
∂v

∂y
= 0, (2.6)

Re
(
∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y

)
= − ∂p

∂x
+ β

(
∂2u

∂x2
+
∂2u

∂y2

)
+
∂T11
∂x

+
∂T12
∂y

, (2.7)

Re
(
∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ β

(
∂2v

∂x2
+
∂2v

∂y2

)
+
∂T12
∂x

+
∂T22
∂y

, (2.8)

T11 + Wi
(
∂T11
∂t

+ u
∂T11
∂x

+ v
∂T11
∂y

− 2
∂u

∂x
T11 − 2

∂u

∂y
T12 +

κ

(1− β)
g11

)
= 2 (1− β)

∂u

∂x
, (2.9)

T22 + Wi
(
∂T22
∂t

+ u
∂T22
∂x

+ v
∂T22
∂y

− 2
∂v

∂y
T22 − 2

∂v

∂x
T12 +

κ

(1− β)
g22

)
= 2 (1− β)

∂v

∂y
, (2.10)

T12 + Wi
(
∂T12
∂t

+ u
∂T12
∂x

+ v
∂T12
∂y

− ∂v

∂x
T11 −

∂u

∂y
T22 +

κ

(1− β)
g12

)
= (1− β)

(
∂u

∂y
+
∂v

∂x

)
, (2.11)

where Eq. (2.4) is now defined as

g11 =

{
(T11 + T22)T11, PTT,
(
T 2
11 + T 2

12

)
, Giesekus,

(2.12)

g12 = (T11 + T22) T12 (2.13)

g22 =

{
(T11 + T22)T22, PTT,
(
T 2
12 + T 2

22

)
, Giesekus.

(2.14)

We refer to (2.9)–(2.11) as the Cartesian stress formulation of the constitutive equation. An alternative
is to align the polymer stress basis along streamlines, thus introducing natural stress variables. We follow
closely here the construction of Renardy [32] (see also [39] and [40]). Introducing the configuration tensor
A by

T =
(1− β)

Wi
(A− I) , (2.15)

the polymer constitutive equation (2.3) becomes

Wi
▽

A +(A− I) + κg (A− I) = 0, (2.16)

after using
▽

I= −2D. We now express A in terms of the dyadic products of v and an orthogonal vector
w as follows

A = λvvT + µ
(
vwT +wvT

)
+ νwwT , (2.17)

where
v = (u, v)

T
, w =

1

|v|2 (−v, u)T ,

with w chosen such that |v × w| = 1. Computationally, it is convenient to use scaled natural stress
variables λ̂, µ̂, ν̂ as follows

λ =
λ̂

|v|2 , µ = µ̂, ν = ν̂|v|2, (2.18)

which satisfy the following component equations
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Wi

[
∂λ̂

∂t
+

2µ̂

|v|2
(
v
∂u

∂t
− u

∂v

∂t

)
+ |v|2(v · ∇)

(
λ̂

|v|2

)
+ 2µ̂|v|2∇ · w

]
+
(
λ̂− 1

)
+ κgλ̂ = 0, (2.19)

Wi

[
∂µ̂

∂t
+

(
λ̂− ν̂

|v|2

)(
u
∂v

∂t
− v

∂u

∂t

)
+ (v · ∇)µ̂+ ν̂|v|2∇ · w

]
+ µ̂+ κgµ̂ = 0, (2.20)

Wi

[
∂ν̂

∂t
+

2µ̂

|v|2
(
u
∂v

∂t
− v

∂u

∂t

)
+

1

|v|2 (v · ∇)
(
ν̂|v|2

)]
+ (ν̂ − 1) + κgν̂ = 0, (2.21)

where

gλ̂ =





(
λ̂+ ν̂ − 2

)(
λ̂− 1

)
, PTT,

[(
λ̂− 1

)2
+ µ̂2

]
, Giesekus,

(2.22)

gµ̂ =
(
λ̂+ ν̂ − 2

)
µ̂ (2.23)

gν̂ =





(
λ̂+ ν̂ − 2

)
(ν̂ − 1) , PTT,

[
(ν̂ − 1)

2
+ µ̂2

]
, Giesekus

(2.24)

with

|v|2∇.w = |v|2
(
∂

∂x

(
− v

|v|2
)
+

∂

∂y

(
u

|v|2
))

=
1

|v|2
(
(v2 − u2)

(
∂v

∂x
+
∂u

∂y

)
+ 4uv

∂u

∂x

)
.

The component form of (2.15), adopting eqs. (2.17) and (2.18) results in the following equations

T11 =
(1− β)

Wi

(
−1 +

1

|v|2
(
λ̂u2 − 2µ̂uv + ν̂v2

))
, (2.25)

T12 =
(1− β)

Wi|v|2
(
λ̂uv + µ̂(u2 − v2)− ν̂uv

)
, (2.26)

T22 =
(1− β)

Wi

(
−1 +

1

|v|2
(
λ̂v2 + 2µ̂uv + ν̂u2

))
, (2.27)

with the inverse relationships being

λ̂− 1 =
Wi

(1 − β)|v|2
(
u2T11 + 2uvT12 + v2T22

)
, (2.28)

µ̂ =
Wi

(1− β)|v|2
(
−uvT11 + (u2 − v2)T12 + uvT22

)
, (2.29)

ν̂ − 1 =
Wi

(1− β)|v|2
(
v2T11 − 2uvT12 + u2T22

)
. (2.30)

We refer to (2.19)–(2.21) as the natural stress formulation (NSF) of the constitutive equations, which
may be solved with the momentum equation in the form (2.7)–(2.8) on using (2.25)–(2.27).

2.1 Flow description

The planar stick-slip geometry is shown schematically in Figure 1. We have a sudden modification in
the boundary condition at the stick-slip transition point where the stress singularity is located. On the
solid surface (denoted here as ∂Ωst), we have no-slip boundary condition:

v = 0 in ∂Ωst, (2.31)
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whilst, on the slip surface ∂Ωsl, we have no flow across the surface,

v = 0 in ∂Ωsl (2.32)

and no shear-stress
T12 + β

∂u

∂y
= 0 on ∂Ωsl. (2.33)

The boundary conditions for the velocity field imposed at the inlet assumes fully developed flow (u =
u(y), v = 0), whilst a Neumann homogeneous boundary condition is applied at the outlet. As an initial
condition at t = 0, the Cartesian extra stress is set as T = 0.

The initial and boundary conditions for the natural stress variables λ̂, µ̂ and ν̂ are taken consistent
with the Cartesian extra stress variables using (2.28)-(2.30). At the inlet, with v = 0 for fully developed
flow, we have

λ̂ =

[
Wi

(1− β)
T11 + 1

]
/u2, µ̂ =

Wi
(1− β)

T12, ν̂ = u2
[

Wi
(1 − β)

T22 + 1

]
, (2.34)

whilst at the outlet, a homogeneous Neumann condition is employed for the NS variables. For the stick
and slip regions, the conditions (2.31), (2.32) are adopted togther with the equivalent of (2.33) being

(1 − β)

Wi
µ̂+ β

∂u

∂y
= 0 on ∂Ωsl. (2.35)

The initialisation λ̂ = ν̂ = 1 and µ̂ = 0 at t = 0 completes the specification of the NS variables.
We remark that at the inlet (and also initially at t = 0), specifying the three Cartesian extra-stresses

or the three natural stress variables is sufficient to determine the two characteristic quantities required
for well-posedness of the PDE system (2.1)–(2.3) [41, 42]. The two characteristic quantities here are

det
(
T+

(1 − β)

Wi
I

)
=

(1− β)2

Wi2
(λ̂ν̂ − µ̂2),

and

(v⊥)T
(
T+

(1− β)

Wi
I

)
v⊥ =

(1− β)

Wi
|v|2ν̂,

where v⊥ = |v|2w, which are transported along the characteristics associated with the constitutive
equation (2.3). In the steady case, the characteristics are streamlines, whilst they are particle paths in
the unsteady case. The classification analysis of [41, 42] for the UCM model, still pertains for the PTT
and Giesekus models in the forms presented here, although the transport equations for the characteristic
quantities necessarily change.

2.2 Overview of the numerical method

We implement the numerical scheme in a finite-difference framework. The algorithm has two main
steps:

1. Computation of velocity and pressure fields. Based on a semi-implicit scheme, Eqs. (2.1) and (2.2)
are uncoupled via an incremental projection method [43]. In this strategy, the momentum equation
(2.2) is solved for a tentative velocity field ṽ(n+1) considering an implicit discretization for the
viscous term while the convective terms, pressure gradient and divergence of the stress tensor are
treated in an explicit manner, e.g,

ṽ(n+1)

δt
− β

Re
∇2ṽ(n+1) =

v(n)

δt
− ((v · ∇)v)(n) − 1

Re
∇p(n) + 1

Re
∇ · (T)(n), (2.36)
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Figure 1: The stick-slip geometry description. The (0,−1) point represents the stick-slip transition point.
The dimensionless domain half-length L is typically taken as 8.

where δt is the time-step. Once the intermediate velocity field is obtained, the final velocity field is
updated based on the Helmholtz-Hodge decomposition [44]

v(n+1) = ṽ
(n+1) −∇φ(n+1), (2.37)

where the final pressure field is incremented by an iterative process [45, 46]

p(n+1) = p(n) +
Re

δt
φ(n+1), (2.38)

with φ being an intermediate pressure which needs to be previously computed. This computation
is done by solving the Poisson-like equation

∇2φ(n+1) = ∇ · ṽ(n+1). (2.39)

To solve the stick-slip problem by the incremental projection method, it is necessary to construct
correct boundary conditions for φ, respecting the boundary conditions imposed for the velocity field
v in the two regions of the domain:

• Boundary conditions for the Poisson equation in the stick region: As the no-slip boundary
condition applies for the velocity field, we have imposed the classical homogeneous Neumann
boundary condition for the intermediate pressure, i.e.

∂φ

∂y
= 0 in ∂Ωst. (2.40)

• Boundary conditions for the Poisson equation in the slip region: We propose a specific boundary
condition for the intermediate pressure when the projection method is applied under slip
conditions. The normal stress condition is

n · [−pI+ 2βD+ T] · nT = 0, (2.41)

where n denotes the outward unit normal vector to the boundary ∂Ωsl. Equation (2.41) is
commonly used as a free surface boundary condition for solving interface problems (see in [47]).
Imposing Eq. (2.41) on the free slip surface and considering the fixed normal vector n = [0, 1],
we obtain:

−p+ 2β
∂v

∂y
+ T22 = 0. (2.42)

Using the continuity equation (2.6), (2.42) may be rewritten as

−p− 2β
∂u

∂x
+ T22 = 0. (2.43)
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According to the ideas of the semi-implicit version of the Marker-And-Cell algorithm [43], Eq.
(2.43) can be used to compute the pressure field at the free surface by an iterative process
imposing the following time discretization:

−p(n+1) = 2β
∂u(n+1)

∂x
− T

(n)
22 . (2.44)

In the present work, Eq. (2.44) is combined with the update velocity (2.37) and pressure (2.38),
resulting in a specific boundary condition for φ on the free slip surface:

Re

δt
φ(n+1) − 2β

∂2φ(n+1)

∂x2
= −2β

∂ũ(n+1)

∂x
+ T

(n)
22 − p(n) in ∂Ωsl. (2.45)

2. Computation of the non-Newtonian tensor. After obtaining the final velocity and pressure fields, the
final value for the extra stress tensor T(n+1) is computed according to the two stress formulation:

• Cartesian Stress Formulation. Equation (2.3) is discretized in the following explicit manner:

T(n+1) −T(n)

δt
=

1

Wi

(
−T(n) +

(
∇v(n+1) +

(
∇v(n+1)

)T))

−
(
v(n+1) · ∇

)
T(n) +

(
∇v(n+1)

)
T(n) +T(n)

(
∇v(n+1)

)T
− κ

1− β
g(T(n)) + 2

1− β

Wi
D(n),

(2.46)

where g(T(n)) is constructed selecting the fluid model as was described in Eq. (2.4). Therefore,
the components (T n+1

11 , T n+1
12 , T n+1

22 ) are then computed directly from Eq. (2.46).

• Natural Stress Formulation. The first stage for this formulation is the solution of Eqs. (2.19)–
(2.21) using an explicit time discretization. For example, Eq. (2.19) can be written as

λ̂(n+1) − λ̂(n)

δt
= − 1

Wi

(
λ̂(n) − 1

)
− κgλ̂(n) − 2µ̂(n)|v(n+1)|2∇ · w(n+1)

− 2µ̂(n)

(|v(n+1)|2 + tol)

(
v(n+1) u

(n+1) − u(n)

δt
− u(n+1) v

(n+1) − v(n)

δt

)

− |v(n+1)|2(v(n+1) · ∇)

(
λ̂(n)

(|v(n+1)|2 + tol)

)
,

(2.47)

where

|v(n+1)|2∇.w(n+1) =
1

|v(n+1)|2 + tol

(
((v(n+1))2 − (u(n+1))2)

(
∂v(n+1)

∂x
+
∂u(n+1)

∂y

)

+4u(n+1)v(n+1) ∂u
(n+1)

∂x

)
.

(2.48)

The tolerance tol = 10−6 is imposed for regularization in order to avoid numerical division by
zero in domain regions where the velocity field vanishes [33]. Equations (2.20) and (2.21) are
discretized in a similar manner, resulting in the values for µ̂(n+1) and ν̂(n+1). Obtained the NS
variables in level time (n+ 1) we can use the relationships Eqs. (2.25)–(2.27) to compute the
final components (T n+1

11 , T n+1
12 , T n+1

22 ) of the extra-stress tensor.

The algorithms of the numerical schemes for CSF and NSF are summarized in the flowchart in Fig 2.
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Start
Update the

boundary conditions
Eqs. (2.31)–(2.33)

Calculate the
intermediate velocity

field Eq. (2.36)

Calculate the
intermediate pressure

field Eq. (2.39)
considering

Eqs. (2.40) and (2.45)

Update
the final

velocity field
Eq. (2.37)

Update
the final

pressure field
Eq. (2.38)

Solve Eq. (2.46)
for CSF or Eqs.
(2.19)-(2.21) and

(2.25)–(2.27)
for NSF

Did it reach
the final time ?

n = n+ 1 No

End
Yes

Figure 2: Flowchart of the numerical schemes.

2.3 Non-uniform mesh discretization

To capture the effect of the singularity, we have applied a stretching strategy for refining the mesh
elements around the stick-slip transition point, as illustrated in Fig. 3. In particular, we use three non-
uniform meshes, M1, M2 and M3. Details for the minimum value for the space steps ∆xmin and ∆ymin

being given in Table 1.

Figure 3: Visualization details of the non-uniform mesh for the stick-slip problem.
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Table 1: Meshes used in the present work.
Mesh ∆xmin ∆ymin

M1 5.0× 10−3 5.0× 10−3

M2 5.0× 10−4 5.0× 10−4

M3 5.0× 10−5 5.0× 10−5

3 Convergence results

We demonstrate the capability of the numerical scheme for solving the stick-slip problem by con-
sidering the complete system of governing equations for the PTT and Giesekus models using both the
Cartesian and natural stress formulations. We first validate the scheme through a mesh refinement study
by considering profiles of the pressure, first normal stress difference and velocity in two cross sections of
the domain. After this, we compare numerical results for the polymer stress near the singularity with the
predicted theoretical asymptotic behaviours. In all simulations in this Section, we use parameter values
of Re = 0.01, Wi = 1, κ = 0.1 and β = 1/2.

The verification of the numerical schemes for Newtonian flow can be found in the Appendix A.

3.1 Numerical study of temporal convergence

Here we confirm temporal convergence of the schemes as the time step reduces. Since the main purpose
of the current work is related to the numerical behaviour of variables around the singularity, temporal
convergence is studied through the local residual as a time function. In particular, the local residuals are
captured in a control point located in the closest cell of the singularity.

The local residuals for the velocity in the x direction, the component 11 of the extra stress tensor and
the λ̂ NS variable are respectively evaluated as

res(u)|P =
u(n+1) − u(n)

δt

∣∣∣∣
P

+

(
u
∂u

∂x
+ v

∂u

∂y

)∣∣∣∣
(n+1)

P

+
1

Re
∂p

∂x

∣∣∣∣
(n+1)

P

− β

Re

(
∂2u

∂x2
+
∂2u

∂y2

)∣∣∣∣
(n+1)

P

− 1

Re

(
∂T11
∂x

− ∂T12
∂y

)∣∣∣∣
(n+1)

P

(3.49)

res(T11)|P =
T

(n+1)
11 − T

(n)
11

δt

∣∣∣∣∣
P

+

(
u
∂T11
∂x

+ v
∂T11
∂y

)∣∣∣∣
(n+1)

P

−
(
2
∂u

∂x
T11 + 2

∂u

∂y
T12

)∣∣∣∣
(n+1)

P

+
κ

(1 − β)
g11

∣∣∣∣
(n+1)

P

− 2

Wi
(1− β)

∂u

∂x

∣∣∣∣
(n+1)

P

,

(3.50)

and

res(λ̂)|P =
λ̂(n+1) − λ̂(n)

δt

∣∣∣∣∣
P

+

(
2µ̂

|v|2
(
v
∂u

∂t
− u

∂v

∂t

))∣∣∣∣
(n+1)

P

+

(
|v|2(v · ∇)

(
λ̂

|v|2

))∣∣∣∣∣

(n+1)

P

+
(
2µ̂|v|2∇ ·w

)∣∣(n+1)

P
+

(
1

Wi

(
λ̂− 1

)
+

κ

Wi
gλ̂

)∣∣∣∣
(n+1)

P

,

(3.51)

where g11 is computed from Eq. (2.12) while gλ̂ is obtained from Eq. (2.22). The local residuals for
the other components of the extra stress tensor and for the remaining NS variables can be constructed
in a similar manner. In particular, the local residual investigation will be done considering only the
PTT model (results for Giesekus being similar) on the coarse mesh M1 varying the time-step as δt =
5× 10−4, 1× 10−4, 5× 10−5, 1× 10−5.
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Figures 4 and 5 present the time variation of local residuals on a logarithm scale for CSF and NSF
respectively. They confirm temporal convergence for both formulations, provided a sufficiently small time-
step of δt = 1×10−4 or smaller is used. However, for the largest time step shown, δt = 5×10−4, the local
residual for Eq. (3.49) is still large compared to those of the smaller time-steps and in fact, the use of a
time-step greater than δt = 5 × 10−4 leads to a complete breakdown of the code for both formulations.
Therefore, in order to capture the expected behaviour of the stress singularities, in this work we have
adopted small time step values for all meshes, for instance δt = 1 × 10−5 for M2 and δt = 5 × 10−6 for
M3. As a consequence of this CFL limitation, the CPU time can considerably increase in the application
of very refined meshes, such as those used in [38] in the steady case. Interestingly, these residual plots
also illustrate the significant rate of convergence improvement for the NS variables over the CS variables,
emphasising that the two formulations behave in fundamentally different ways.
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Figure 4: Time variation of the CSF local residuals of (a) u, (b) T11, (c) T12 and (d) T22 near to the
singularity for the PTT model using β = 1/2.

3.2 Numerical investigation of the profiles

Initially, we confirm temporal convergence for the velocity component u, the pressure field p and the
first normal stress difference N1 = T11 − T22 along the line y = 1. Fig. 6 presents results for PTT using
CSF on the coarse mesh M1 for the same time-steps adopted in the previous section. The temporal
convergence behaviour for Giesekus is similar.

A mesh refinement study is now employed along the line y = 1 that contains the stick-slip transition
point. Results for the velocity component u are presented in Figs. 7a) and b) for PTT and Giesekus,
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Figure 5: Time variation of the NSF local residuals of (a) u, (b) λ̂, (c) µ̂ and (d) ν̂ near to the singularity
for the PTT model using β = 1/2.

respectively. These figures illustrate numerical convergence of solutions for both formulations and for
both fluids. In particular, for the u-velocity profile, no significant difference was observed between the
CSF and NSF results.

The presence of the stick-slip separation or transition point at y = 1 is more evident for p and N1,
as can be seen in Figs. 7c) and d) and Figs. 7e) and f), respectively. Concerning the pressure field, a
difference may be observed between the CSF and NSF results for both fluids at the free surface and
around the stick-slip transition point where the minimum pressure is significantly lower for NSF in M3
than CSF. Figures 7e) and f) give the distribution of N1 along the line y = 1. Far away of the stick slip
transition point, the mesh refinement confirms the numerical convergence of the results for both models
and formulations. However, around the singularity, the peak values of the first normal stress difference
increase significantly as the mesh is refined. These behaviours are similar to those observed in [36,38] for
the PTT model with β = 0.
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Figure 6: Profiles of (a) u, (b) p and (c) N1 along the horizontal line y = 1 for the PTT model using
different time steps.
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Figure 7: Profiles of (a) u (PTT), (b) u (Giesekus), (c) p (PTT) (d) p (Giesekus), (e) N1 (PTT) and (f)
N1 (Giesekus) along the horizontal line y = 1.

4 Stress singularity results

In this Section, we initially verify the formulations comparing the numerical results with the asymptotic
results, and after this, a numerical investigation of the boundary layers on the stick-slip problem is
conducted. Moreover, we explore the results for small solvent viscosities. Finally, we have analysed the
singularity results varying the Weissenberg number.
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Figure 8: Illustration of the selected angles for studying the asymptotic behavior near the stick-slip
transition point.

4.1 Numerical comparison with the asymptotic results

We now compare our results with the asymptotic results of Evans et al. [29] considering fixed values of
Weissenberg number, Wi = 1, and the viscosity ratio, β = 1/2. In summary, the solvent stress, velocity
and pressure fields behave respectively as

Ts ∼ r−
1
2 , v ∼ r

1
2 and p ∼ r−

1
2 , (4.52)

while for the polymer stress it is expected that

T ∼
{
r−

4
11 , PTT,

r−
5
16 , Giesekus,

(4.53)

where r is the radial distance from the singularity. In particular, for the NS variables, the asymptotic
results can be summarized as follows

λ ∼
{
r−

15
11 , PTT,

r−
21
16 , Giesekus,

µ ∼
{
r−

3
22 , PTT,

r0, Giesekus,
ν ∼

{
r

12
11 , PTT,

r
21
16 , Giesekus.

(4.54)

The asymptotic results predict that the solvent stress should dominate the polymer stress close to the
singularity, which suggest that the kinematics are Newtonian-like. The above behaviours are expected to
hold uniformly in angle, apart from near the stick and slip surfaces, where very thin cusp-like boundary
layers are present.

We analyse the numerical results at the stick-slip transition point along the rays θ = π/2 in Figures 9–
10 and θ = 3π/4 in Figures 11–12, these angles being illustrated in Fig. 8. Figure 9 presents the verification
of the singularity behaviour for the velocity components and the pressure, whilst Fig. 10a),b) describes
results for the polymer Cartesian extra-stress components. Also included are results for the NS variables in
Fig. 10c),d). According to Fig. 9, we can confirm that the CSF and NSF produce similar results capturing
the expected asymptotic behaviours for the velocity and pressure fields. However, for the components of
extra-stress tensor depicted in Figs. 10a),b), it is evident that meshes M1 and M2 in both formulations
are too coarse to capture the required behaviour for both fluid models. In particular, CSF struggles with
the T22 component, which clearly needs a finer mesh and appears to converge slower to its asymptotics
than the other two components. In contrast to the CSF, as illustrated in Figs. 10c),d), the NSF produces
results in very good agreement with (4.54) capturing accurately the theoretical behaviours. Therefore,
both formulations capture the required behaviours on meshes M2 and M3, but with clear differences in
rate of convergence for the different components. Noteworthy, is the ability of the NSF to capture the NS
behaviours even on the coarsest mesh M1. Similar behaviours are observed at θ = 3π/4 as shown in Figs.
11–12. These results emphasize that smaller length scales are needed for the Cartesian stresses to capture
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Figure 9: Asymptotic variation near the stick-slip transition point of (a) u, v (PTT), (b) u, v (Giesekus),
(c) p (PTT) and (d) p (Giesekus) along the line θ = π/2 with β = 1/2 and Wi = 1.

the singular behaviour compared to the natural stress variables. We also remark, that Cartesian extra-
stress values calculated using the NS variables through (2.25)–(2.27) do not show a markedly significant
improvement, in contrast to the re-entrant corner singularity (see in [34]).

The asymptotic solutions local to the singularity determined in [30,31] and [29] for the stream function
(adjusted here for the current flow orientation) and natural stress variables are

ψ ∼ 2C0r
3
2 sin θ cos

θ

2
, λ ∼ C1

C2
0

(
ψ

C0

)n1

, µ ∼ C2

(
ψ

C0

)n2

, ν ∼ C2
0C3

(
ψ

C0

)n3

, (4.55)

where

PTT: n1 = −10

11
, n2 = − 1

11
, n3 =

8

11
,

Giesekus: n1 = −7

8
, n2 = 0, n3 =

7

8
. (4.56)

Fitting these expressions to the NSF numerical solution, we may determine the four constants (C0, C1, C2, C3),
estimates (from the ray θ = π/2) being recorded in Table 2. For comparison, we also record the C0 value in
the Newtonian case, which agrees accurately with the analytical value reported in [6] of (3/2π)1/2 ≈ 0.691.
It is worth remarking that the numerical estimates for the constants along the ray θ = 3π/4 give very
similar values (agreeing to 1 d.p.) to those for θ = π/2.
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Figure 10: Asymptotic variation near the stick-slip transition point of (a) T11, T12, T22 (PTT), (b) T11,
T12, T22 (Giesekus), (c) λ, µ, ν (PTT) and (d) λ, µ, ν (Giesekus) along the line θ = π/2 with β = 1/2
and Wi = 1.

We now use these results to obtain estimates of the radial length scales on which the leading order
Cartesian stress behaviours are expected to hold. The asymptotic behaviours (4.55) are predicated on
the dominance of the solvent extra-stress Ts = 2βD over the polymer extra-stress T i.e.

T ≪ Ts (4.57)

near the transition point, which should hold for non-zero β. Using the results in [29–31] we have that the
polymer stress behaves as

T ∼ (1 − β)

Wi
λvvT as r → 0, (4.58)

where λ is recorded in (4.55). Since we are using local polar coordinates x = r cos θ, y + 1 = r sin θ the
stream function in (4.55) can be written as

ψ =
√
2C0(y + 1)

(
(x2 + (y + 1)2)

1
2 + x

) 1
2

.

We can thus obtain expressions for the Cartesian velocity components and hence the solvent and polymer
stresses, which are most conveniently written in polar coordinates as follows

u = C0r
1
2 cos

(
θ

2

)
(3− cos θ), v = −C0r

1
2 cos

(
θ

2

)
sin θ,
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Figure 11: Asymptotic variation near the stick-slip transition point of (a) u, v (PTT), (b) u, v (Giesekus)
(c) p (PTT) and (d) p (Giesekus) along the line θ = 3π/4 with β = 1/2 and Wi = 1.

T s
ij = βC0r

−
1
2 fij(θ), Tij =

(1− β)

Wi
C1r

1+ 3
2n1hij(θ),

where

f11(θ) = cos

(
θ

2

)
(2 cos2 θ − cos θ + 1), f12(θ) = sin

(
θ

2

)
(2 cos2 θ + cos θ + 1), f22(θ) = −f11(θ)

(4.59)
and

h11(θ) =

(
2 sin θ cos

(
θ

2

))n1

cos2
(
θ

2

)
(3−cos θ)2, h12(θ) = h11(θ)

sin θ

(3 − cos θ)
, h22(θ) = h12(θ)

sin θ

(3 − cos θ)
(4.60)

with n1 specified in (4.56). We may compare the absolute value of corresponding solvent and polymer
components to obtain the radial estimates

rij =

∣∣∣∣
βWi

(1− β)

C0

C1

fij(θ)

hij(θ)

∣∣∣∣

2
3(n1+1)

. (4.61)

The functions |fij(θ)/hij(θ)| are plotted in Figure 13 and for uniform dominance of the solvent stress
across the main interval of θ as illustrated by dotted lines in Figure 13, we require for the PTT and
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Figure 12: Asymptotic variation near the stick-slip transition point of (a) T11, T12, T22 (PTT), (b) T11,
T12, T22 (Giesekus), (c) λ, µ, ν (PTT) and (d) λ, µ, ν (Giesekus) along the line θ = 3π/4 with β = 1/2
and Wi = 1.

Giesekus models to use
∣∣∣∣
f11
h11

∣∣∣∣ = 0.21,

∣∣∣∣
f12
h12

∣∣∣∣ =
{
0.64, PTT,

0.63, Giesekus,

∣∣∣∣
f22
h22

∣∣∣∣ =
{
1.73, PTT,

1.71, Giesekus,
(4.62)

which give the radial estimates recorded in the last three columns of Table 2 on using the estimates of the
ratio C0/C1. It is clear that the radial estimates from the 11 and 12 components show that substantially
smaller meshes are needed before their solvent stress components dominate those of the polymer.

4.2 Numerical investigation of the boundary layers

Additional insights on the stick-slip stress singularity behaviour may be gained by exploring the
boundary layer structures. Here we compare the absolute magnitude of the terms in the CSF of the
constitutive equations. We thus record

max
( |Tij |
Wi

, |
▽

Tij |,
κ

(1− β)
|gij |,

2(1− β)

Wi
|Dij |

)
, (4.63)

for each of the three components ij = 11, 12 and = 22 separately in Fig. 14. In these figures, we have
considered a specific region nearby the singularity and the maps are labeled without the presence of the
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Table 2: Estimate values of C0, C1, C2 and C3 as well as radial distances (4.61) for PTT and Giesekus
models with Wi = 1, κ = 0.1 and fractional viscosity cases β = 1/2 and β = 1/9.

Model C0 C1 C2 C3 r11 r12 r22

Newtonian 0.692 − − − − − −
β = 1/2

PTT 0.745 1.18 1.17 3.86 9× 10−7 3× 10−3 4.8
Giesekus 0.780 1.30 1.53 5.45 4× 10−5 1× 10−2 2.8

β = 1/9
PTT 0.712 1.13 1.26 4.35 9× 10−16 3× 10−12 5× 10−9

Giesekus 0.817 1.30 1.62 5.83 7× 10−13 3× 10−10 6× 10−8

modulus sign for convenience. Equations (2.9)–(2.11) give the explicit representation of the terms. The
figures indicate the dominance of the upper convective polymer stress derivative (blue representation)
near the singularity but away from the stick and slip boundaries. According to the first row of Figure 14, it
dominates uniformly. The sub-plots in the second and third rows of Fig. 14 indicate that the rate-of-strain
terms (green representation) dominate at the stick surface with the demarcation with the upper convected
derivative terms being cusp like near the singularity (transition point). This supports the presence of the
stick surface boundary layer, where the rate-of-strain terms must be recovered for viscometric behaviour.
Similarly at the slip surface, it can be seen in the second row of Fig. 14 the dominance of the quadratic
stress terms, as predicted theoretically for the slip boundary layer. These structures are apparent for
both models. In order to clarify the threshold used to determine which term is dominant, we have also
plotted in Figs. 15 the results of the four terms of (4.63) in the horizontal line y ≈ 1.999925 (near to
the singularity). The results in the ordinate axis are constructed using the log-scale. The results in this
section used the parameter values β = 1/2, Wi = 1 and κ = 0.1.
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Figure 13: Variation of (a) |f11/h11|, (b) |f12/h12| and (c) |f22/h22| with θ for PTT n1 = −10/11. The
curves for Giesekus n1 = −7/8 are almost identical.
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Figure 14: Dominance of the groups of terms (4.63) for components (a) ij = 11 (PTT), (b) ij = 11
(Giesekus), (c) ij = 12 (PTT), (d) ij = 12 (Giesekus), (e) ij = 22 (PTT) and (f) ij = 22 (Giesekus)
within the Cartesian constitutive equation using β = 1/2 and Wi = 1.
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Figure 15: Dominance of the groups of terms (4.63) for components (a) ij = 11 (PTT), (b) ij = 11
(Giesekus), (c) ij = 12 (PTT), (d) ij = 12 (Giesekus), (e) ij = 22 (PTT) and (f) ij = 22 (Giesekus)
within the Cartesian constitutive equation using β = 1/2 and Wi = 1.

4.3 Numerical investigation for small solvent viscosities

Here we examine the results for the smaller fractional viscosity ratio of β = 1/9. Due to the CFL
stability restriction in the time-step, to achieve numerical results on our finest mesh M3, we are limited
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spatially to considering a reduced domain, e.g., the dimensionless domain half-length is now taken as
L = 4. Although the global results will not be accurate, it is worth noting that this truncated channel
length will not change the numerical structure of the stress singularities near to the stick-slip transition
point, including the estimates of the constants presented in Table 2. We base this statement on observing
that the results for β = 1/2 in section 4.1 did not change when L = 8 was reduced to L = 4.

Figures 16–17 reproduce the results of previous Figures 9–10, but for the case β = 1/9. Whilst
the velocity and extra-stresses (both Cartesian and Natural) illustrate convergence to the theoretical
behaviours, the pressure does not, suggesting the need for a more refined mesh for this variable. However,
the fall off in the Cartesian components T12 and T22 for the closest points is noteworthy for both models
and reminiscent of behaviour at the re-entrant corner singularity in contraction flow (see, for example [48]).
The radial distance estimates (4.61) have now reduced significantly for this fractional viscosity and are
recorded in Table 2. This is mainly due to the effect of the power of β in the expressions, the power
being 7 1

3 for PTT and 5 1
3 for Giesekus (the constants C0, C1 are relatively insensitive to changes in β). It

also highlights the extreme challenge that numerical schemes face in capturing the singularity for small
solvent viscosities (and in fact the emergence of another, as yet theoretically unknown singularity as the
solvent viscosity vanishes in the limit β → 0).

The plots for the velocities and extra-stresses confirm no significant variations in the predicted slopes
from the theoretical ones, confirming the insensitivity of the power-law exponents in (4.55) to the solvent
fraction. Results for β = 1/9 along the ray θ = 3π

4 are also presented in Figs. 18–19.
The Cartesian boundary layer plots in Figure 20, emphasise the shrinking dominance of the upper-

convected stress derivative near to the singularity and hence the relevance of the stretching solution (4.58).
For the PTT 22 component, it is no longer visible. Evidence of cusp-like boundary layers at both the
stick and slip surfaces are still apparent in the 12 component plots. Additionally, we have also described
in Figs. 21, the profiles of the four terms of (4.63) in the horizontal line y ≈ 1.999925
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Figure 16: Asymptotic variation near the stick-slip transition point of (a) u, v (PTT), (b) u, v (Giesekus),
(c) p (PTT) and (d) p (Giesekus) along the line θ = π/2 considering the half-length L = 4 with β = 1/9.

25



(a)

-4

-3

-2

-1

 0

 1

 2

 3

-5 -4 -3 -2 -1  0

CSF, M3
slope=-4/11

log (r)

log (T11)

log (T12)

log (T22)

(b)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

-5 -4 -3 -2 -1  0

CSF, M3
slope=-5/16

log (r)

log (T11)

log (T12)

log (T22)

(c)

-6

-4

-2

 0

 2

 4

 6

 8

-5 -4 -3 -2 -1  0

NSF, M3
slope=-15/11
slope=-3/22
slope=12/11

log (r)

log (λ)

log (µ)

log (ν)

(d)

-6

-4

-2

 0

 2

 4

 6

 8

-5 -4 -3 -2 -1  0

NSF, M3
slope=-21/16

slope=0
slope=21/16

log (r)

log (λ)

log (µ)

log (ν)

Figure 17: Asymptotic variation near the stick-slip transition point of (a) T11, T12, T22 (PTT), (b) T11,
T12, T22 (Giesekus), (c) λ, µ, ν (PTT) and (d) λ, µ, ν (Giesekus) along the line θ = π/2 considering the
half-length L = 4 with β = 1/9.
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Figure 18: Asymptotic variation near the stick-slip transition point of (a) u, v (PTT), (b) u, v (Giesekus),
(c) p (PTT) and (d) p (Giesekus) along the line θ = 3π/4 considering the half-length L = 4 with β = 1/9.
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Figure 19: Asymptotic variation near the stick-slip transition point of (a) T11, T12, T22 (PTT), (b) T11,
T12, T22 (Giesekus), (c) λ, µ, ν (PTT) and (d) λ, µ, ν (Giesekus) along the line θ = 3π/4 considering the
half-length L = 4 with β = 1/9.
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Figure 20: Dominance of the groups of terms (4.63) for the components (a) ij = 11 (PTT), (b) ij = 11
(Giesekus), (c) ij = 12 (PTT), (d) ij = 12 (Giesekus), (e) ij = 22 (PTT) and (f) ij = 22 (Giesekus)
within the Cartesian constitutive equation using β = 1/9 and Wi = 1.

29



(a)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T11
κ

1−β g11

2 (1− β)D11

T11/Wi

x

(b)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T11
κ

1−β g11

2 (1− β)D11

T11/Wi

x

(c)

-4

-3

-2

-1

 0

 1

 2

 3

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T12
κ

1−β g12

2 (1− β)D12

T12/Wi

x

(d)

-4

-3

-2

-1

 0

 1

 2

 3

 4

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T12
κ

1−β g12

2 (1− β)D12

T12/Wi

x

(e)

-6

-5

-4

-3

-2

-1

 0

 1

 2

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T22
κ

1−β g22

2 (1− β)D22

T22/Wi

x

(f)

-4

-3

-2

-1

 0

 1

 2

 3

-0.2 -0.15 -0.1 -0.05  0  0.05  0.1  0.15  0.2

▽

T22
κ

1−β g22

2 (1− β)D22

T22/Wi

x

Figure 21: Dominance of the groups of terms (4.63) for the components (a) ij = 11 (PTT), (b) ij = 11
(Giesekus), (c) ij = 12 (PTT), (d) ij = 12 (Giesekus), (e) ij = 22 (PTT) and (f) ij = 22 (Giesekus)
within the Cartesian constitutive equation using β = 1/9 and Wi = 1.

4.4 Influence of the Weissenberg number

In this section we numerically show that the stick-slip singularity is independent of the Weissenberg
number, varying this number as 5, 10 and 15. In order to save CPU time and maintain numerical stability,

30



Table 3: Estimate values of C0, C1, C2 and C3 as well as radial distances (4.61) for PTT model with
κ = 0.1 and fractional viscosity β = 1/2.

Wi C0 C1 C2 C3 r11 r12 r22
1 0.748 1.19 1.18 3.86 3.53× 10−7 1.23× 10−3 1.84
5 0.775 4.70 2.07 3.18 2.58× 10−6 9.04× 10−3 1.34
10 0.783 8.15 2.59 2.93 7.93× 10−6 2.77× 10−2 41.36
15 0.788 11.19 2.96 2.79 1.59× 10−5 5.56× 10−2 82.91

we use the intermediate mesh M2 (see Table 1) for the truncation length L = 8 and β = 1/2. We mention
that the dimensionless domain half-length adopted in our study did not influence the numerical results
captured in the vicinity of the singularity, as shown by the results in the Appendix B.

Figures 22 and 23 confirm that the leading order asymptotic behaviours of the variables are indepen-
dent of the selected Weissenberg numbers. For the velocity and pressure behaviours in Fig. 22, the CSF
and NSF produce very similar results. The extra-stress components of the CSF are shown in Fig. 23(a),
whilst the natural stress variables are given in Fig. 23 (b). It is noteworthy that increasing Wi leads to
improvement in the slope results for the T22 component in the CSF.

The influence of the Weissenberg number on the analytical constants (C0, C1, C2, C3) (see eq. 4.55)
from the ray θ = π/2 are described in Table 3. Results for the dominance of the terms for PTT with
selected Wi are shown Fig. 24, with only the 12 and 22 components plotted, since there being no change
for the 11 component to that seen in Fig. 14(a) for Wi = 1. The maps illustrate the growing dominance of
the upper convected stress derivative term as the Weissenberg number is increased, with Table 3 showing
increasing radial distances on which the singularity is anticipated to be found. A profile investigation is
also presented in Fig. 25 to quantify the dominance of the terms on the boundary layer structures.
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Figure 22: Asymptotic variation near the stick-slip transition point of (a) u, v and (b) p along the line
θ = π/2 for PTT with β = 1/2. The Weissenberg numbers adopted were Wi = 1, 5, 10, 15.
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Figure 23: Asymptotic variation near the stick-slip transition point of (a) T11, T12, T22 and (b) λ, µ, ν
along the line θ = π/2 for PTT with β = 1/2. The Weissenberg numbers adopted were Wi = 1, 5, 10, 15.
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Figure 24: Dominance of the groups of terms (4.63) for components 12 and 22 within the Cartesian
constitutive equation for PTT with β = 1/2: first row for Wi = 5 and components (a) ij = 12, (b)
ij = 22, second row for Wi = 10 and components (c) ij = 12, (d) ij = 22 and third row for Wi = 15 and
components (e) ij = 12, (f) ij = 22.
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Figure 25: Dominance of the groups of terms (4.63) for components 12 and 22 within the Cartesian
constitutive equation for PTT with β = 1/2: first row for Wi = 5 and components (a) ij = 12, (b)
ij = 22, second row for Wi = 10 and components (c) ij = 12, (d) ij = 22 and third row for Wi = 15 and
components (e) ij = 12, (f) ij = 22.
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5 Discussion

A finite-difference numerical scheme using a semi-explicit projection method has been implemented
to address the planar stick-slip flow for the PTT and Giesekus viscoelastic models. The scheme solves
the transient problem and has been applied to two different formulations of the polymer constitutive
equations, the traditional formulation using Cartesian stresses (CSF) and the other using natural stresses
(NSF). The Cartesian stress formulation uses a fixed basis for the polymer stress, whilst the natural stress
formulation aligns the polymer extra-stress along particle paths/streamlines.

The purpose of the investigation was to understand the efficacy of both formulations in a flow problem
with a challenging singularity present. The main conclusion of the numerical tests in section 3, is the
significant improvement in the rate of convergence both temporally for the extra-stress residuals and
spatially in capturing the stress singularity behaviour that the NSF affords over the CSF. In addition,
as presented in section 4, the NSF results allow consistent estimates of the constants in the asymptotic
behaviours (4.55), which in turn can be used to derive theoretical estimates in Table 2 of the length scales
on which the solvent stress dominates the polymer stress near to the singularity. For β = 1/2 these suggest
radial distances of 10−6 for PTT and 10−5 for Giesekus, where the pressure and Cartesian T22 component
are the slowest convergent variables and only just beginning to attain their singular behaviours on the
finest mesh M3. The situation is starkly different for the smaller fractional viscosity case of β = 1/9.
Whilst the natural stress variables capture their singular behaviours, the Cartesian components clearly
struggle even on the finest mesh M3. The radial estimates in Table 2 have now reduced considerably,
illustrating the severe challenge capturing the singularity possess to the Cartesian formulation for small
solvent viscosity. It is on these radial distances that the theoretical asymptotic structure at the singularity
presented in [30,31] is expected to be found. However, numerical evidence of the structure is still apparent
on larger length scales, as evidenced in the dominance plots for each group of terms in the component
equations of the Cartesian form of the polymer constitutive equations. As is often the case, and apparent
here, the asymptotic results can hold on scales larger than their strict region of validity.
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Appendix A: Verification for Newtonian flow

We first verify the scheme for Newtonian flow, where the contribution of the non-Newtonian effects is
neglected. Thus only step 1 of the algorithm is applied. The u velocity component along the free surface
in Newtonian flow, is given by the expression [51]

u
(
x
)
= 2a 1

2
x

1
2 − 2a 3

2
x

3
2 + 2a 5

2
x

5
2 +O

(
x

7
2

)
, as x→ 0, (5.64)

near to singularity. This equation, together with the value in Table 4, may be used to calculate the
coefficients a 1

2
, a 3

2
and a 5

2
shown in Table 5. In this Section, we have considered the intermediate mesh

M2, as defined in Table 1. Firstly, as can be seen in Table 5, our results compare well with those of the
literature. In addition, we have plotted the horizontal velocity component u and the pressure p calculated
along the stick-slip surface y = 1, as presented respectively in Figs. 26 and 27(a). Figure 27b) is presented
as an additional comparison on the log− log scaling. According to these figures, we can confirm that our
results are in good agreement with those numerical results presented by the literature.

Table 4: Set of values for x and u used to calculate the coefficients a1/2, a3/2 and a5/2.

Values
x 0.102512 0.499067 0.888449
u 0.4251695 0.8036053 0.9261778
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Table 5: Coefficients of the expansion (5.64) near to the singularity for the Newtonian stick-slip flow.
Reference a1/2 a3/2 a5/2

Present work (M2) 0.69125 0.27154 0.05232
Karapetsas (M11, hmin = 7.0e− 06) [38] 0.69157 0.27197 0.05247
Tanner and Huang (Analytical sol.) [6] 0.69099 − −

Salamon et al. [7] 0.69160 0.27183 0.05232
Elliotis et al. [52] 0.69099 0.26450 0.03037
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Figure 26: Comparison results for the velocity along the horizontal line y = 1.
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Appendix B: Effect of the truncation length for the stress singu-

larity results

In this appendix, we have investigated the effect of the truncation length for capturing the numerical
results in the vicinity of the stick-slip transition point. For this purpose, we have considered the PTT
model on the M2 mesh, and considered three different dimensionless domain half-lengths, e.g., L = 4,
L = 8 and L = 16 varying the Weissenberg number as 1, 5, 10 and 15. According to Figs. 28–29, we
can confirm that the results for the velocity and pressure fields are very similar for the three truncation
lengths. Moreover, it is relevant to highlight that the numerical results for extra-stress tensor and for
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natural stress variables, presented respectively in Fig. 30 and Fig. 31, are also very similar for L = 4,
L = 8 and L = 16 even for large Wi. Therefore, the dimensionless domain half-lengths adopted in our
study did not influence the numerical results captured in the vicinity of the singularity.

(a)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

slope=1/2

log (u)

log (v)

log (r)

CSF, M2, 4L

CSF, M2, 8L

CSF, M2, 16L

NSF, M2, 4L

NSF, M2, 8L

NSF, M2, 16L

(b)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

slope=1/2

log (u)

log (v)

log (r)

CSF, M2, 4L

CSF, M2, 8L

CSF, M2, 16L

NSF, M2, 4L

NSF, M2, 8L

NSF, M2, 16L

(c)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

slope=1/2

log (u)

log (v)

log (r)

CSF, M2, 4L

CSF, M2, 8L

CSF, M2, 16L

NSF, M2, 4L

NSF, M2, 8L

NSF, M2, 16L

(d)

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

-4 -3.5 -3 -2.5 -2 -1.5 -1 -0.5  0

slope=1/2

log (u)

log (v)

log (r)

CSF, M2, 4L

CSF, M2, 8L

CSF, M2, 16L

NSF, M2, 4L

NSF, M2, 8L

NSF, M2, 16L

Figure 28: Asymptotic variation near the stick-slip transition point of u and v along the line θ = π/2 for
different values of Wi: (a) Wi = 1, (b) Wi = 5, (c) Wi = 10 and (d) Wi = 15.
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Figure 29: Asymptotic variation near the stick-slip transition point of p along the line θ = π/2 for different
values of Wi: (a) Wi = 1, (b) Wi = 5, (c) Wi = 10 and (d) Wi = 15.
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Figure 30: Asymptotic variation near the stick-slip transition point of T11, T12, T22, λ, µ and ν along the
line θ = π/2 for different values of Wi: (a) Wi = 1, (b) Wi = 5, (c) Wi = 10 and (d) Wi = 15.
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Figure 31: Asymptotic variation near the stick-slip transition point of λ, µ and ν along the line θ = π/2
for different values of Wi: (a) Wi = 1, (b) Wi = 5, (c) Wi = 10 and (d) Wi = 15.
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