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Numerical solution of the Giesekus constitutive equation for con-

�ned and free surface �ows: a �nite di�erence approach

ABSTRACT: This work presents a numerical technique for solving the Giesekus constitutive

equation for two-dimensional incompressible �ows. The governing equations are approximated

by the �nite di�erence method on a staggered grid and solved by second order approximations.

The solution of the momentum equations is performed by the implicit Euler method while

the Giesekus constitutive equation is resolved by the explicit modi�ed Euler method. It is

demonstrated that the methodology employed is capable of dealing with both con�ned and

free surface �ows. An analytic solution for fully developed channel �ows is presented which

is used to verify the numerical technique for channel �ows. Mesh re�nement studies show

the convengence of the methodology in channel �ows. The �ow through a 4:1 contraction is

considered and mesh independence results are provided. This problem is then simulated by a

range of Reynolds and Weissenberg numbers and various values of the parameter α. Moreover,

the �ow produced by a �uid jet �owing onto a rigid surface is simulated. The e�ect of the

parameter α on the �ow is investigated.

KEYWORDS: Giesekus model, Finite di�erence, Analytical solution, Contraction �ow, Free surface

�ow, Jet buckling.

1 Introduction

Numerical solution of viscoelastic �ows has been motivated by important industrial �ows for ex-

ample, contraction and cross slot �ows, injection molding, �lament stretching, container �lling, ink jet

printers, etc, to mention only a few. These problems do not permit analytic solutions; consequently only

numerical solutions can be found. For this reason, numerical methods for predicting Non-Newtonian

viscoelastic �ows have been a very active research area. The great majority of the techniques developed

for simulating viscoelastic �ows make use of �nite element, �nite volume and �nite di�erence meth-

ods that employs di�erential models such as UCM and Oldroyd-B [18, 20�22, 24�27, 30, 31, 36, 41, 86],

XPP [8,19,28,32�34], FENE-CR [23,29,85], PTT [12�14,23], Giesekus [4�11,15�17,75], among many

other. Among these constitutive models, the Giesekus equation has been the subject of work of sev-

eral investigators. This model is considered to approximate well the rheology of polymers [Giesekus-

1985,Giesekus-1982] and has the advantage of simplicity as it involves only two parameters: the time
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relaxation λ and the polymer viscosity µP . Besides, it can predict �rst and second normal stress dif-

ferences. The investigations using this model have concentrated on creeping �ows and the results pub-

lished have consisted mainly in constructing analytic solutions for fully developed �ows [10,16,90,91],

simulation of contraction �ows [6] and �ows over a cylinder [92]. Free surface �ows have also been tack-

led by Delvaux and Crochet [5] who presented results of the numerical simulation of two-dimensional

delayed die swell and Mu et al. [7] that applied the Giesekus model to predict axisymmetric extrudate

swell using a three-dimensional code.

This work is concerned with the numerical solution of the Giesekus model by the �nite di�erence

method. We solve the Giesekus equation by the modi�ed Euler method while the momentum equations

are computed by the implicit Euler method. We consider con�ned and moving free surface �ows in

which the �uid free surface is dealt with the technique presented in Tomé et al. [80]. The developed

methodology is veri�ed by using an analytic solution of a channel �ow subject to a Newtonian pressure

gradient and convergence results are provided by mesh re�nement. The complex �ow through a 4:1

contraction is investigated and the solutions are compared with the predictions from the �nite volume

code of Alves et al. [3]. In these results we consider �ows with inertia so that the �ow through a

4:1 contraction is simulated with Reynolds numbers Re = 0.1, 1. Additionaly, we present results of

the simulation of a jet �owing onto a rigid plate for several values of the Reynolds and Weissenberg

numbers together with a variation of the parameter α. For the problems studied, the parameter α was

in the range of [0, 0.5].

2 Mathematical formulation

The basic equations governing incompressible �ows governed by the Giesekus constitutive equation

are the mass conservation and momentum equations together with the Giesekus equation that can be

summarized as

∇ · u = 0, (1)

∂u

∂t
= −∇ · (uu)−∇p+

1

Re
∇2u +∇ ·T +

1

Fr2
g, (2)

∂τ

∂t
= −∇ · (uτ ) + (∇u)τ + τ (∇u)T − αRe (τ · τ )

− 1

Wi
τ +

2

WiRe
D (3)

where D =
1

2

[
(∇u) + (∇u)T

]
is the rate-of-deformation tensor.

The nondimensional numbers, Re =
ρUL

ηP
, Wi =

λU

L
, Fr =

U√
g L

, denote, respectively, the Reynolds,
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Weissenberg and Froude numbers. Moreover, U and L are scaling parameters for velocity and lentgh,

ηP is the polymeric viscosity, λ is the time relaxation of the polymer and α is the mobility parameter

that models the shear thinning behavior of the �uid. We shall investigate �ows where 0 ≤ α ≤ 0.5.

We point out that, to obtain the momentum equation (2) written in that form, the following EVSS

transformation [76]

T = τ − 2

Re
D, (4)

was employed. The nondimensionalization of the equations was obtained using the nondimensional

variables

x∗ =
x

L
, u∗ =

u

U
, t∗ =

U

L
t, g∗ =

g

g
p∗ =

p

ρU2
, τ ∗ =

τ

ρU2
, T∗ =

T

ρU2
.

We shall investigate two-dimensional Cartesian �ows, so that equations (4), (1), (2) and (3) can be

written as:

EVSS equations:

T xx = τxx − 2

Re

∂u

∂x
, (5a)

T xy = τxy − 1

Re

(∂u
∂y

+
∂v

∂x

)
, (5b)

T yy = τyy − 2

Re

∂v

∂y
. (5c)

Continuity and Momentum equations:

∂u

∂x
+
∂v

∂y
= 0. (6a)

∂u

∂t
= −∂(u2)

∂x
− ∂(uv)

∂y
− ∂p

∂x
+

1

Re

(∂2u
∂x2

+
∂2u

∂y2

)
+
∂T xx

∂x
+
∂T xy

∂y
+

1

Fr2
gx, (6b)

∂v

∂t
= −∂(uv)

∂x
− ∂(v2)

∂y
= −∂p

∂y
+

1

Re

(∂2v
∂x2

+
∂2v

∂y2

)
+
∂T xy

∂x
+
∂T yy

∂y
+

1

Fr2
gy. (6c)
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Giesekus equations:

∂τxx

∂t
= Gxx(u, τ ),

Gxx(u, τ ) = 2
(∂u
∂x
τxx +

∂u

∂y
τxy
)
−
(∂(uτxx)

∂x
+
∂(vτxx)

∂y

)
− 1

Wi

{
τxx + αReWi[(τxx)2 + (τxy)2]

}
+

2

ReWi

∂u

∂x
, (7a)

∂τxy

∂t
= Gxy(u, τ ),

Gxy(u, τ ) =
∂u

∂x
τxy +

∂u

∂y
τyy +

∂v

∂x
τxx +

∂v

∂y
τxy −

(∂(uτxy)

∂x
+
∂(vτxy)

∂y

)
− 1

Wi

{
τxy + αReWi[τxxτxy + τxyτyy]

}
+

1

ReWi

(∂u
∂y

+
∂v

∂x

)
, (7b)

∂τyy

∂t
= Gyy(u, τ ),

Gyy(u, τ ) = 2
(∂v
∂x
τxy +

∂v

∂y
τyy
)
−
(∂(uτyy)

∂x
+
∂(vτyy)

∂y

)
− 1

Wi

{
τyy + αReWi[(τxy)2 + (τyy)2]

}
+

2

ReWi

∂v

∂y
, (7c)

2.1 Boundary conditions

To solve equations (6a)-(7c) it is necessary to specify initial and boundary conditions as follows:

Fluid entrance (see ∂Ω2 in Fig. 1): u = Uinf .

Fluid exits (see ∂Ω3 in Fig. 1):
∂u

∂n
= 0, where n denotes the normal direction to the

boundary.

Rigid boundaries: u=0 (see ∂Ω3 in Fig. 1).

Free surface (see ∂Ω4 in Fig. 1): A free surface is an interface between air and viscous

�uid. It is supposed that surface tension forces can be neglected in which case, the boundary

conditions on the free surface can be represented as

σ · n = 0, (8)

where σ = −pI+
2

Re
D+T is the total stress tensor and n is the vector normal to the interface.

For two-dimensional surfaces, one can take n = (nx, ny) and m = (ny,−nx) so that condition
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(8) can be represented by equations

p = n2xT
xx + n2yT

yy + 2nxnyT
xy +

2

Re

[
n2x
∂u

∂x
+ n2y

∂v

∂y
+ nxny

(∂u
∂y

+
∂v

∂x

)]
, (9a)[

2nxny

(∂u
∂x
− ∂v

∂y

)
+ (n2y − n2x)

(∂u
∂y

+
∂v

∂x

)]
=

−Re
[
nxny(T

xx − T yy) + (n2y − n2x)T xy
]
. (9b)

Figure 1: Types of boundaries considered.

3 Numerical method

The equations presented in Section 2 are solved using an updated Marker-and-Cell method in-

troduced by Tomé et al. [77, 80] and the implicit technique of Oishi et al. [28], that employs a �nite

di�erence method on a staggered grid (see Fig. 2a. for the positions of variables in a cell). We are

interested in �ows that possess a moving free surface so a strategy to de�ne the �uid contour, thus the

free surface, is employed. This technique is presented in detail by Tomé et al. [80], in which the free

surface is described by a set of particles that moves with the local �uid velocity (see Fig. 3a). The

�uid body is represented by the volume encapsulated by the closed surface obtained by connecting

these particles (see Fig. 3b).
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(a) (b)

Figure 2: (a) Description of cell employed in the mesh. The variables related to pressure and

the stress tensor positioned at cell centre and denoted by Ψ; (b) Type of cells considered.

Figure 3b illustrates the representation of the �uid using this technique. However, to implement

this technique it is necessary that the cells within the mesh are de�ned into several groups of cells as

follows:

Rigid boundary (B): these cells de�ne the position and location of rigid conotours.

In�ow boundary (I): cells that model `�uid entrances' (`in�ows')

Out�ow boundary (O): cells that de�ne `�uid exits' (`out�ows')

Empty cells (E: cells that do not contain �uid

Full cells (F): cells contain �uid and has no contact with E-faces

Surface cells (S): cells contain �uid and has at least one face in contact with E-faces
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(a) Representation of �uid free surface. (b) Volume of �uid represented.

Figure 3: Fluid representation.

Due to incompressiblity, equations (1)-(2) must be solved simultaneously which couples the velocity

and pressure �elds. There are numerical methods that solve the coupled system of equations to obtain

the solutions. However, the associated non-linearities make these methods to have computational

di�culties to converge which lead them not to be robust. To avoid the complications that arise to

solve the coupled system, several strategies do uncouple the velocity and pressure �elds have been

developed. In this work, the solution of the system of equations (1)-(2) is computed by the projection

method proposed by Chorin [62, 63]. This method is based on the Theorem of Decomposition of

Helmholtz-Hodge (TDHH) [70] which is also known as the Ladyzhenskaja theorem [72], which is

presented next.

(Decomposition of Helmholtz-Hodge): Let Ω be a region having a smooth boundary ∂Ω and

ũ a vector �eld de�ned on Ω. Then, ũ can be decomposed in a unique form as

ũ = u +∇ψ (10)

where ψ is a scalar function de�ned on Ω. The vector �eld u is solenoidal and is parallel to ∂Ω, namely,

∇ · u = 0, and u · ~n = 0, (11)

where ~n is a normal unit vector that points to the exterior of ∂Ω.

We make use of this theorem and compute the solutions of equations (1)-(7c) in two steps: in the

�rst step, τ (x, tn) is used to compute the velocity u(x, tn+1) and the pressure p(x, tn+1) at time tn+1;

in the next step, the new �elds of velocity and pressure are employed to calculate τ (x, tn+1).
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Equation (6a) together with equations (6b) and (6c) are the same as those employed to simulate

�ows of a XPP �uid [28] and are solved by an implicit procedure that resolves a linear system to obtain

a tentative velocity �eld, followed by the solution of a Poisson equation to ensure incompressibility

throughout. One feature of the solution of the Poisson equation is that it is coupled with the pressure

condition on the free surface (9a) through the incompressibility condition to calculate the pressure on

the free surface. This methodology is described in detail in the work of Oishi et al. [28] and therefore

it will not be presented here.

The focus of this work is the solution of the Giesekus model. First we present the numerical method

for solving the Giesekus constitutive equation and, with the purpose of veri�cation of the resulting

computer solver, apply it to simulate �ows in a channel and 4:1 contraction. Then, we investigate its

application to free surface �ows governed by the Giesekus model.

3.1 Solution of the Giesekus constitutive equation

The tensor τ (x, tn+1) is calculated by the explicit modi�ed Euler method which is second order in

time. Therefore, the components of τ (x, tn+1) are obtained in two steps as follows.

1. Step 1: Calculate τxx(x, tn+1), τxy(x, tn+1), τyy(x, tn+1), by

τxx(x, tn+1) = τxx(x, tn) + δtGxx(u(n+1), τ (x, tn)), (12)

τyy(x, tn+1) = τyy(x, tn) + δtGyy(u(n+1), τ (x, tn)), (13)

τxy(x, tn+1) = τxy(x, tn) + δtGxy(u(n+1), τ (x, tn)), (14)

2. Compute τxx(x, tn+1), τ
yy(x, tn+1), τ

xy(x, tn+1) from equations

τxx(x, tn+1) = τxx(x, tn) +
δt

2

[
Gxx(u(n+1), τ (x, tn))

+ Gxx(u(n+1), τ (x, tn+1))
]
,

(15)

τyy(x, tn+1) = τyy(x, tn) +
δt

2

[
Gyy(u(n+1), τ (x, tn))

+ Gyy(u(n+1), τ (x, tn+1))
]
,

(16)

τxy(x, tn+1) = τxy(x, tn) +
δt

2

[
Gxy(u(n+1), τ (x, tn))

+ Gxy(u(n+1), τ (x, tn+1))
]
.

(17)

The expressions of Gxx(u, τ ),Gyy(u, τ ),Gxy(u, τ ) are given in equations (7a) - (7c). The tensor

τ (x, tn+1) is computed on cell centres and therefore, Gxx(u(n+1), τ (x, tn)), Gyy(u(n+1), τ (x, tn)),
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Gxy(u(n+1), τ (x, tn)), are approximated by the following di�erence equations

Gxxi,j =− conv(un+1τxx)
∣∣
i,j
− conv(vn+1τxx)

∣∣
i,j

+ 2
(un+1

i+ 1
2
,j
− un+1

i− 1
2
,j

δx
τxxi,j

)
+ 2
(un+1

i,j+ 1
2

− un+1
i,j− 1

2

δy
τxyi,j

)
− 1

Wi

{
τxxi,j +

αReWi

1− β
[(τxxi,j )2 + (τxyi,j )2

}
+ 2

(1− β)

ReWi

(un+1
i+ 1

2
,j
− un+1

i− 1
2
,j

δx

)
,

(18)

Gxyi,j =− conv(un+1τxy)
∣∣
i,j
− conv(vn+1τxy)

∣∣
i,j

+
(un+1

i+ 1
2
,j
− un+1

i− 1
2
,j

δx
+
vn+1
i,j+ 1

2

− vn+1
i,j− 1

2

δy

)
τxyi,j

+
un+1
i,j+ 1

2

− un+1
i,j− 1

2

δy
τyyi,j +

vn+1
i+ 1

2
,j
− vn+1

i− 1
2
,j

δx
τxxi,j −

1

Wi

[
τxyi,j +

αReWi

1− β
τxyi,j (τxxi,j + τyyi,j )

]
+

1− β
ReWi

(un+1
i,j+ 1

2

− un+1
i,j− 1

2

δy
+
un+1
i+ 1

2
,j
− un+1

i− 1
2
,j

δx

)
,

(19)

Gyyi,j =− conv(un+1τyy)
∣∣
i,j
− conv(vn+1τyy)

∣∣
i,j

+ 2
(vn+1

i+ 1
2
,j
− vn+1

i− 1
2
,j

δx
τxyi,j

)
+ 2
(vn+1

i,j+ 1
2

− vn+1
i,j− 1

2

δy
τyyi,j

)
− 1

Wi

{
τyyi,j +

αReWi

1− β
[(τxyi,j )2 + (τyyi,j )2

}
+ 2

(1− β)

ReWi

(vn+1
i,j+ 1

2

− vn+1
i,j− 1

2

δy

)
,

(20)

where

un+1
i,j+ 1

2

=
un+1
i− 1

2
,j

+ un+1
i− 1

2
,j+1

+ un+1
i+ 1

2
,j

+ un+1
i+ 1

2
,j+1

4
, un+1

i,j− 1
2

=
un+1
i− 1

2
,j

+ un+1
i− 1

2
,j−1

+ un+1
i+ 1

2
,j

+ un+1
i+ 1

2
,j−1

4
,

vn+1
i+ 1

2
,j

=
vn+1
i,j− 1

2

+ vn+1
i+1,j− 1

2

+ vn+1
i,j+ 1

2

+ vn+1
i+1,j+ 1

2

4
, vn+1

i− 1
2
,j

=
vn+1
i,j− 1

2

+ vn+1
i−1,j− 1

2

+ vn+1
i,j+ 1

2

+ vn+1
i−1,j+ 1

2

4
.

The convective terms conv(un+1τ )
∣∣
i,j

are calculated by the CUBISTA method [3]. This is a high

order scheme that requires remote-upstream, upstream and downstream values of the variable that is

being approximated and therefore, for points near rigid boundaries, the values of the components of

the extra-stress tensor in boundary cells are required. These values can be estimated by making linear

interpolation using internal values of the variables. For instance, with reference to the boundary cell

shown in �gure 4, the calculation of the components of τ is e�ected by

τxxi,j = 2 ∗ τxxi−1,j − τxxi−2,j (21a)

τxyi,j = 2 ∗ τxyi−1,j − τ
xy
i−2,j (21b)

τyyi,j = 2 ∗ τyyi−1,j − τ
yy
i−2,j (21c)
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For boundary cells having two-adjacent faces contiguous with internal cells then we apply linear inter-

polation in each direction and the estimated value set in the boundary cell is the average of the values

obtained in the each direction.

Figure 4: Calculation of the extra-stress components in boundary cells having the left-face

adjacent to internal (F/S) cells.

4 Veri�cation results

The resulting �nite di�erence equations from the approximation of the governing equations for the

�ow of Giesekus �uids were implemented in a computer code that simulates �ows governed by the

Giesekus model. To verify the correctness of the code and the methodology employed, the �ow in a

channel was simulated. At the channel entrance (see �gure 5), a Newtonian �ow pro�le given by

u(y) = −4
U

L2

(
y − L

2

)2
+ U e v(y) = 0, (22)

was especi�ed. The data employed are displayed in Table 1 which gave Re = 1 and Wi = 1. To

Figure 5: Domínio computacional de um canal bidimensional.

verify the convergence of the numerical method, this problem was simulated in 5 meshes de�ned in

Table 2. The simulations started at t = 0s and �nished at time t = 100s where it is expected that

steady state has been stablished. Indeed, �gure 6 displays the contour lines of u and v at time t = 100.

The results shown indicate that near the channel entrance there is a small variation of the velocity

but from the middle of the channel towards to the end, the isolines of the velocity u are parallel and

v = 0, what show that steady state has been reached. To demonstrate the convergence of the numerial
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method, the data used in these simulations were employed to calculate the analytic solutions (see

details in Appendix A) which delivered px = ∂p/∂x = −6.116. Figure 7 displays the convergence of

the values of px to the analytic value, with mesh re�nement. The numerical value of px was calculated

by px ≈
(∑Jl

j=1

piout,j − piout−1,j

δx

)
/Jl , where iout denotes the i-index of the column of cells before the

channel exit and Jl represents the number of cells in the y-direction of mesh Ml where l stands for 1,

2, · · · , or 5.

Figure 8 displays the numerical solutions obained on the meshes simulated against the respective

analytic solution. It can be seen that the agreement between numerical and analytic solutions is

good and that the numerical solutions converge to the analytic solutions as the mesh is re�ned. The

theoretical velocity u(y) was obtained by integrating ∂u/∂y over the interval [0, 1] and it is shown

in �gure 9 together with the numerical solutions where a good concordance between the computed

velocity u(y) is achieved.

To quantitatively show the convergence of the numerical method, the relative errors were calculated

by the formula

EMl
=

√√√√∑j=Jl
j=1 (solexata − solMl

)2∑j=Jl
j=1 (solexata)2

. (23)

Table 3 displays the errors obtained in the �ve meshes simulated while �gure 10 shows the diminishing

of the errors with mesh spacing which shows the convergence of the numerical method.

These results verify the code implementation of the Giesekus model on channel �ows.

L (m) U (m/s) η0 (Pa.s) ρ (kg/m3) α

0.01 0.1 1 1000 0.1

Table 1: Data employed in the simulation of channel �ow.

Meshes M1 M2 M3 M4 M5

Size
10× 100

(δx = L/10)

20× 200

(δx = L/20)

30× 300

δx = L/30

40× 400

δx = L/40

50× 500

δx = L/50

Table 2: De�nition of the meshes employed to simulate channel �ow.
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Figure 6: Contour lines obtained at t = 100. (a) Velocity u; (b) Velocity v; (c) Pressure p.

Figure 7: Convergence of the numerical values dp/dx to its analytic value with mesh re�nement.
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a) b)

c) d)

Figure 8: Comparison between the numerical and analytic solutions on meshes M1, M2, M3,

M4 and M5. a) τxx, b) τxy, c) τ yy, d) du/dy.

13



Figure 9: Comparison between the analytic solution u(y) and the velocity u on meshes M1,

M2, M3, M4 and M5.

Meshes

Relative Errors
M1 M2 M3 M4 M5

E(τxx) 3.690x10−2 1.188x10−2 5.408x10−3 2.982x10−3 1.850x10−3

E(τxy) 1.516x10−2 4.131x10−3 1.825x10−3 1.012x10−3 6.400x10−4

E(τ yy) 3.265x10−1 1.009x10−2 4.533x10−3 2.488x10−3 1.543x10−3

E(du/dy) 2.585x10−2 8.354x10−3 3.827x10−3 2.120x10−3 1.320x10−3

Table 3: Relative errors obtained on meshes M1, M2, M3, M4 and M5, for τxx, τxy, τ yy and

du/dy.
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Figure 10: Decaying of errors with mesh spacing.

5 Flow through a planar contraction 4:1

In this section, the results obtained in the simulation of the �ow through a planar contraction 4:1

are presented. In this problem, the �uid enters the domain through an entrance channel of width H

which at a distance L2 is contracted into another channel of width h = H/4 (see �gure 11). The �uid

velocity at the entrance channel is given by given by

u(y) = −4
UE
H2

(
y − H

2

)2
+ UE and v(y) = 0, y ∈ [0, H]. (24)

This problem is very often employed to test codes developed for solving Non-Newtonian �ows [73,82,84].

The main interest in this simulation lies in the fact that viscoelastic �uids present di�erent �ow patterns

when subject to complex geometries like the 4:1 contraction. An e�ect that has been studied by many

researchers is the appearance of a corner vortice as well as a lip vortice on the contraction walls.

The size of these vortices can be a consequence of various factors like the Reynolds and Weissenberg

numbers, rheological properties of the �uid, among others. This �ow behavior has been studied both

numerically as well as experimentally (e.g. [60,88,89]). Most of investigations have employed either the

UCM, Oldroyd-B and PTT models or a combination of them. Numerical simulations of contraction

�ows using the Giesekus model have been made only by a few authors [6,61]. More especi�cally, Choi

et al. reported results about the size of the corner vortex as a function of the viscoelastic Mach number
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(MA) and found that for small values of MA, the vortex size decreases and from a critical value of MA

the vortex size starts to increase. In the work of Joie et al., the results presented involved high values

of the Wiessenberg number and the size of the vortex was not reported. In both cases, the Reynolds

number employed was not clear.

Next we present results obtained in the simulation of contraction �ows using the Giesekus model.

The data used in these simulations were as follows:

• Length of the channels: L1 = L2 = 0.16cm

• H = 8cm, h = H/4 = 2cm

• Average velocity at the upstream channel: UE = 0.025ms−1

• Length scale; L = h/2

• Viscosity: ηP = 1Pa.s; ρ = 1000 kg/m3

• Giesekus model: α = 0.1 and λ = 0.1s

• Velocity scale: U = UE = 0.025ms−1

These data resulted in Re = ρU L/η0 = 1 and Wi = λU/L = 1 The corner vortex was scaled by

Lvortex =
X

L
where X is shown in �gure 11.

To verify the convergence of the numerical method on this problem, the �ow through the contraction

was simulated on the meshes: M1 with (40 × 160)-cells (δx = δy = 0.002), M2 with (80 × 320)-cells

(δx = δy = 0.001) and M3 with (160 × 640)-cells (δx = δy = 0.0005). The simulations started at t = 0

until steady state was achieved.

Indeed, �gure 12 shows the isolines at t = 100s. It can be seen that the u-velocity admits a steady

state pro�le, the v-component of the velocity is almos zero everywhere and the pressure varies linearly

through the exit channel. These results show that indicate that steady state has been achieved.

To verify mesh independence results, �gures 13 and 14 display, respectively, p(x), dp/dx and u, v,

while �gure 15 presents the results obtained for τxx, τxy, τyy and N1 = τxx − τyy, which are plotted

on the symmetry axis.

The results in �gures 13, 14 and 15 agree well on the three meshes employed and therefore, demon-

strate mesh independence of the numerical method applied to this �ow problem.

With the purpose of studying vortex development on the contraction walls, a number of simulations

with Reynolds numbers Re = 0.1 and Re = 1 have been performed. To observe elastic e�ects on the
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�ow, in these simulations, the Wiessenberg number was varied and the parameter α assumed the values

of 0.1, 0.3. The data employed were the same as before, except that the values of Wi were in the range

[0, 5] as it is speci�ed in Table 4 and the mesh employed was Mesh2. In total, 36 simulations were

e�ected, 9 simulations for each value of α and Re, respectively. Each simulation was carried out until

steady state was observed and the size of the corner vortex was measured.

Figure 16 displays the streamlines obtained with Re = 0.1 while �gure 17 shows those obtained

with Re = 1.

With reference to �gures 16h (Wi = 4) and 16i (Wi = 5) , a lip vortice can be noticed which

becomes larger in �gure 16i due to the increase in Wi. The same e�ect can be observed in �gure 17i

for Wi = 5 and Re = 1. To con�rm the appearance of these lip vortices, these �ows were simulated on

a �ner mesh with 160 × 640-cells and the results obtained also showed the appearance of lip vortices

for these values of Wi.

The appearance of lip vortices on contraction �ows has been reported by several investigators.

For instance, this e�ect is mentioned by Aboubacar and Webster [54] that considered creeping �ow

(Re = 0) and simulated 4:1 contraction �ows using an Oldroyd-B �uid. They showed that ifWi > 1, a

lip vortex might appear. Also, Alves et al. [2] used a �nite volume code and presented results from the

simulation of contraction �ows of PTT and Oldroyd-B �uids. Their main purpose was to investigate

the vortex size, vortex intensity and the Couette correction in contraction �ows. They performed

simulation in a contraction 4:1 employing a long exit channel and reported that the Oldroyd-B model

produced a diminishing vortex size with increasing Wiessenberg numbers and a lip vortex was detected

at Wi = 0.5, 1, 1.5. For the PTT models studied, using Re = 0, the results showed a non-monotonic

behaviour of the corner vortex size as a function of the Wiessenberg number and the occurrence of

lip vortex was not noticed. More recently, Ferrás et al. [1] used the sPTT model para simular the 4:1

contraction �ow with Re = 0 and Re = 0.04 and obtained results for 0 ≤ Wi ≤ 5. With Wi = 5,

Ferrás et al. [1] showed that an increase of inertia in the �ow produced a growing lip vortice that

became attached to the corner vortex, forming a large corner vortex that continued to grow with the

Wiessenberg number. This e�ect has been reported both experimentally and numerically for UCM

�uids under creeping �ow conditions.
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Figure 11: Computational domain for the �ow through a 4:1 contraction.

u

v
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p

Figure 12: Isolines obtained in the simulation of the �ow through a 4:1 contraction at time

t = 100s. Results shown on mesh M3.

a) b)

Figure 13: Numerical simulation of the �ow through a 4:1 contraction on meshes M1, M2 and

M3. Results obtained on the symmetry axis. a) Pressure; b) Pressure gradient.
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a) b)

Figure 14: Numerical simulation of the �ow through a 4:1 contraction on meshes M1, M2 and

M3 on the symmetry axis. a) Velocity u(x); b) Velocity v(x).

a) b)

c) d)

Figure 15: Numerical simulation of the �ow through a 4:1 contraction on meshes M1, M2 and

M3. Results obtained on the symmetry axis. a) τxx, b) τxy, c) τ yy e d) N1 = τxx − τ yy.
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λ 0.025 0.05 0.1 0.15 0.2 0.25 0.3 0.4 0.5

Wi 0.25 0.5 1 1.5 2 2.5 3 4 5

Table 4: Values of λ and the associated Wiessenberg numbers.

a) b)

c) d)

e) f)

21



g) h)

i)

Figure 16: Numerical simulation of the �ow through a planar contraction 4:1. Streamlines

obtained with Re = 0.1 and α = 0.1. a) Wi = 0.25, b) Wi = 0.5, c) Wi = 1, d) Wi = 1.5, e)

Wi = 2, f) Wi = 2.5, g) Wi = 3, h) Wi = 4, i) Wi = 5.

a) b)
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c) d)

e) f)

g) h)
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i)

Figure 17: Numerical simulation of the �ow through a planar contraction 4:1. Streamlines

obtained with Re = 1 and α = 0.1. a) Wi = 0.25, b) Wi = 0.5, c) Wi = 1, d) Wi = 1.5, e)

Wi = 2, f) Wi = 2.5, g) Wi = 3, h) Wi = 4 e i) Wi = 5.

A 5 mostra o tamanho dos vórtices obtidos para cada valor de Wi e a 18 mostra a variação do

tamanho do vórtice com o crescimento do número de Weissenberg.

Wi 0.25 0.05 1 1.5 2 2.5 3 4 5

Re = 0.1 1.422 1.387 1.339 1.325 1.321 1.333 1.354 1.429 1.535

Re = 1 1.230 1.186 1.120 1.076 1.043 1.026 1.018 1.028 1.070

Table 5: Length of the corner vortice as a function of the Weissenberg number for Re = 0.1, 1,

with α = 0.1.
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Figure 18: Variation of the length of the corner vortice as a function of the Weissenberg number

for Re = 0.1, 1, with α = 0.1.
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6 Simulation of jet buckling of Giesekus �uids

This section contains the results obtained in the simulation of a free surface �ow produced by a jet

�owing onto a horizontal rigid plate. It is known that, under certain conditions, after the jet �ows over

the rigid plate, a Newtonian jet can display the phenomenon of jet buckling. This problem has been

investigated using several constitutive models such that UCM, Oldroy-B, PTT, XPP, among others

and it was shown that elasticity can make the jet to go buckling (see [28,43,44,46,48,49,53,81,83,84]).

In particular, [66] and [65] performed a series of experiments showing a Newtonian jet undergoing

buckling and obtained conditions based on the Reynolds number (Re)and the height of the inlet jet to

the horizontal plate (H) for which jet buckling occurs (see �gure 19). Cruckshank [65] showed that a

two-dimensional jet should buckle when the following conditions

Re < 0.56 e H/Linj > 3π (25)

are satis�ed.

Figure 19: Domínio computacional para a simulação do jet buckling.

To demonstrate that the Giesekus model can simulate this phenomenon, a number of simulations

have been performed in which the Wiessenberg number and the Giesekus mobility parameter α were

varied in the interval [0, 0.5]. For comparison, the results obtained with a respective Newtonian jet

are were also simulated.

The input data employed in these simulations were:

• Domain size: 10cm×12.6cm
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• Mesh: δx = δy = 0.01cm (100×126 cells)

• Gravitational constant: g = 9.81ms−2

• Height of the inlet: H = 12cm

• Size of the inlet: Linj = 0.08cm

• Inlet velocity: U = 0.2ms−1

• Fluid de�nition:

� Fluid viscosity: η = 0.0025m2s−1, Fluid density: ρ = 1000kgm−3

� Giesekus model: α = 0.1, 0.3, 0.5, β = 0 (no solvent), λ = 0.005s

The scaling parameters U , L, ν = η/ρ, λ, lead to: Re = U L/ν = 0.8 and Wi = λU/L = 0.1.

Thus, Re = 0.8 > 0.56 and H/Linj = 15 > 3π, so that the Cruickshank conditions (25) are not

satis�ed and therefore, the simulation with the Newtonian jet is expected to not present the e�ect

of jet buckling. With regard to the jet containing the Giesekus �uid, no conclusion can be drawn as

Cruickshank's analysis applies only to Newtonian jets.

Figure 20 displays the �uid �ow con�guration from these simulations for both the Newtonian and

the viscoelastic Giesekus jets at selected times. We can see in �gure 20 that at time t = 0.12s the

results from the simulations are similar; they show the jets being issued from the inlet before reaching

the rigid plate below the inlet. Then, at time t = 0.28s all the jets have reached the rigid plate and we

can observe that the jets started to �ow radially and display similar �uid �ow con�guration. However,

at time t = 0.48s the jet with α = 0.1 already displays the buckling e�ect while the Newtonian jet

�ows steadilly in the x-direction; the other two jets (α = 0.3, 0.5) start presenting small asymmetries

and at times t = 0.64, 0.80s the jets with α = 0.1, 0.3 exhibit buckling while the jet with α = 0.5 starts

ondullating and does not present buckling at this time. We believe that these results agree with the

Giesekus model that predicts more shear thinning when increasing the value of α. The results showed

that α = 0.5 provided more mobility, due to the decrease in viscosity, which prevented the buckling

phenomenon.

To demonstrate that the buckling e�ect shown in �gure 20 was a consequence of elastic forces,

we performed two additional simulations in which the only change in the input data was the value

of the Wiessenberg number. The Wiessenberg numbers used in these simulations were Wi = 1, 2 so

we expect that the e�ects of elasticity would be more pronounced in these two simulations. Indeed,

�gures 21 and 22 show that at time t0.28s the simulations with the three jets having Wi = 1, 2 are
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�owing onto the rigid plate and the di�erences between the results shwon are not too noticeable.

Notwithstanding, as time progresses the results at times 0.64 and 0.80 show that all the three jets had

undergone the buckling phenomenon. These results certify that the e�ects of elastic forces, represented

by the Wiessenberg number, can in�uence the �ow produced by a jet �owing down to a rigid plate and

make the jet to buckle.

Newtonian α= 0.1 α= 0.3 α= 0.5

t = 0.12s

t = 0.28s

t = 0.48s
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Newtonian α= 0.1 α= 0.3 α= 0.5

t = 0.64s

t = 0.80s

Figure 20: Numerical simulation of a jet �owing down to a rigid plate with Re = 0.8 and

Wi = 0.1, at select times shown. First column: results obtained with a Newtonian jet (Wi = 0;

Second column: results with α = 0.1; Third column: results with α = 0.3; Fourth column:

results with α = 0.5.
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α= 0.1 α= 0.3 α= 0.5

t = 0.28s

t = 0.48s

t = 0.64s

t = 0.80s

Figure 21: Numerical simulation of a jet �owing down to a rigid plate with Re = 0.8 and

Wi = 1, at select times shown. Results obtained with α = 0.1, 0.3 and 0.5.
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α= 0.1 α= 0.3 α= 0.5

t = 0.28s

t = 0.48s

t = 0.64s

t = 0.80s

Figure 22: Numerical simulation of a jet �owing down to a rigid plate with Re = 0.8 and

Wi = 2, at select times shown. Results obtained with α = 0.1, 0.3 and 0.5.
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7 Concluding remarks

This work presented a front tracking technique for solving the Giesekus constitutive equation for

incompressible con�ned and free surface �ows. The governing equations were approximated by the

�nite di�erence method on a staggered grid. The momentum equations were solved by the implicit

Euler method while the solution of the Giesekus equation was obtained by a second order runge-kutta

scheme. The developed code was applied to �ows governed by the Giesekus model without solvent

(β = 0). The developed technique was quantitatively veri�ed by simulating channel �ow and the

results were compared with the analytic solution which was derived during the development of this

work. The results showed a 2nd order convergence of the numerical technique. The �ow through a

4:1 contraction was simulated and a study of the application of the Giesekus model on this problem

was performed. First, the �ow through a 4:1 contraction was simulated on three meshes which showed

mesh independence on this �ow problem. Then, �ow through a 4:1 abrupt contraction was solved

and the e�ects of varying the Weissenberg number and the mobility parameter α on the �ow were

investigated. In these simulations, the size of the corner vortex as a function of the Wiessenberg

number was monitored which displayed a decrease followed by an increase in size of the corner vortex.

Also, a lip vortex was obtained for Wiessenberg numbers Wi = 4, 5. These results are novel; the

investigations found in the literature only report an increase with Wi for a �xed value of α = 0.5

With regard to free surface �ows, a jet �owing down onto a rigid plate using various Weissenberg

numbers was simulated. results were
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8 APPENDIX

ANALYTIC SOLUTION

We consider a 2D-channel having unity width and fully developed �ow, where u = (u(y), 0),
∂p

∂x
= px = constant, τxy(y), τyy(y), τxx(y), y ∈ [0, 1]. Under these assumptions, the momentum

equations (2) reduce to

τxyy = px, (26)

τyyy = py, (27)

and the Giesekus equation (3) can be written as

τyy + αReWi[(τyy)2 + (τxy)2] = 0, (28)

uyτ
yy − 1

Wi

{
τxy + αReWi[τxy(τxx + τyy)]

}
+

1

ReWi
uy = 0, (29)

2uyτ
xy − 1

Wi

{
τxx + αReWi[(τxy)2 + (τxx)2]

}
= 0. (30)

where uy(y) =
∂u

∂y
. Equations (26)-(30) must be solved for the unknowns uy, px, τ

xy, τyy and τxx.

These solutions are found as follows:

By integrating (26) over the interval [0, y] and applying the symmetry condition, the shear stress

τxy is given by

τxy =

∫ y

0
pxds = px(y − 1

2
), y ∈ [0, 1] (the condition τxy = 0 when y = 1/2 was employed) .

(31)

Now, using (28), which is a second order algebraic equation in τyy, we can evaluate τyy from

τyy =
−1 +

√
1− 4α2Re2Wi2(τxy)2

2αReWi
, where we must have 1−4α2Re2Wi2(τxy)2 ≥ 0, for real solutions.

(32)

In this equation, the positive sign of the root was chosen so τyy = 0 in the middle of channel and it

must also provide τyy = 0 if α = 0 in (28), corresponding to the UCM model. More details about this

solution is given in [16].

The solution given by equation (32) permits us to evaluate
∂u

∂y
= uy from equation (29) in the form

uy =
1

Wi

( τxy

τyy + 1
ReWi

)[
1 + αReWi(τxx + τyy)

]
(33)

which introduced into equation (30), produces{
2
( (τxy)2

τyy + 1
ReWi

)[
1 + αReWi(τxx + τyy)

]}
−
{
τxx + αReWi

[
(τxy)2 + (τxx)2

]}
= 0. (34)
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This equation can be written as a second order algebraic equation for τxx which has 2 solutions. The

solution chosen for τxx is one that gives a positive �rst normal stress di�erence (N1 = τxx − τyy > 0),

in the middle of the channel and is given by

τxx =
−B −

√
B2 − 4AC

2A
(35)

where

A = −αWiRe, B = 2
(
τxy
)2[ αWiRe

τyy + 1
WiRe

]
−1, C = (τxy)2

[
2

τyy + 1
WiRe

(
1+αWiReτyy

)
−αWiRe

]

Therefore, τxy and τyy are computed from (31) and (32) while τxx is obtained from (35) and �nally,

uy is evaluated using (33). However, these solutions depend on the value of px which is calculated in

the next section.

8.1 Calculation of px � JONATHAN COULD PLEASE DESCRIBE

HOW PX IS OBTAINED

To evaluate equations (31)-(35), the value of px is required. It is obtained as follows: at the channel

entrance, a Newtonian pro�le uinf(y) is imposed which gives
∫ 1
0 uinf(y)dy = 2/3 so the Giesekus

solution u(y) must also provide
∫ 1
0 u(y)dy = 2/3. Using integration by-parts and the no-slip condition

for u(y), yields the following equation ∫ 1

0
yuydy +

2

3
= 0. (36)

The expressions (28)�(30) readily give

τyy =
1

2αReWi

(
−1 +

√
1− 4α2Re2Wi2(τxy)2

)
, (37)

τxx =
uy(1 +ReWiτyy)

αRe2Wiτxy
− (1 + αReWiτyy)

αReWi
, (38)

uy = 2αReτxy

(
1 + (2α− 1)

√
1− 4α2Re2Wi2(τxy)2

)
(

2α− 1 +
√

1− 4α2Re2W 2
i (τxy)2

)2 . (39)

These equations reproduce those presented in [16], where (37) follows from (28), (38) from (29), whilst

(39) arises from eliminating τxx between (29) and (30) and using (37). The sign choices have been

chosen so that the expressions reduce to those for the UCM model when α = 0.

Equation (31) relates the shear stress and pressure gradient px in the direction of �ow, which is

determined using the volume �ux relationship (36). The integral in (36) may be evaluated explicitly
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as follows. Using (39), we have∫ 1

0
yuydy = − 2

p2x

∫ − px
2

0
τxyuydτ

xy =
1

2p2xα
2Re2Wi3

∫ 1−a

φ−a

(z + a)

z2
(1− a(z + a))(1− (z + a)2)

1
2dz,

(40)

where z = 2α− 1 +
√

1− 4α2Re2Wi2(τxy)2 with

a = 1− 2α, φ =

√
1− α2Re2Wi2p2x. (41)

Explicitly evaluating the quadrature in (40) and using (36) we obtain the following transcendental

equation to determine px,

−4

3
α2Re2Wi3p2x = 2(3a2 − 1)

√
α(1− α) ln

(
1− aφ+ 2

√
α(1− α)(1− φ2)
φ− a

)

+
a

a− φ
(1− φ2)

3
2 +

√
1− φ2

(
1− 3a2 − 3

2
aφ

)
+ a

(
3a2 − 5

2

)(
sin−1 φ− π

2

)
.

(42)

This expression has not been previously noted in the literature. In the particular case α = 1/2, (42)

reduces to

1

3
Re2Wi3 p2x −

1

2
ln

(
1 + ReWi px

2

1− ReWi px
2

)
+

1

2
ReWi px = 0, (43)

which reproduces the expression of Yoo and Choi (1989) in our case (allowing for notational di�erences

with Repx = 2c1, their channel width being double and a di�erent volume �ux).
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α = 0 α = 0.1 α = 0.2 α = 0.3 α = 0.4 α = 0.5

Wi=0
-8.000000 -8.000000 -8.000000 -8.000000 -8.000000 -8.000000

Wi=0.2
-8.000000 -7.300155 -6.855619 -6.539274 -6.299874 -6.111361

Wi=0.4
-8.000000 -6.115756 -5.329620 -4.838947 -4.478883 -4.183502

Wi=0.6
-8.000000 -5.128988 -4.260858 -3.751357 -3.381857 -3.073223

Wi=0.8
-8.000000 -4.384128 -3.528613 -3.043154 -2.693575 -2.399257

Wi=1
-8.000000 -3.818926 -3.005257 -2.553329 -2.229699 -1.956402

Table 6: Numerical values of px for selected Wi and α with Re = 1. Upper value in each

cell is obtained from the transcendental equation (42), whilst the lower value is from the full

numerical scheme.
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