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Continuous Level Monte Carlo and Sample-Adaptive Model Hierarchies\ast 

Gianluca Detommaso\dagger , Tim Dodwell\ddagger , and Rob Scheichl\S 

Abstract. In this paper, we present a generalization of the multilevel Monte Carlo (MLMC) method to a setting
where the level parameter is a continuous variable. This continuous level Monte Carlo (CLMC)
estimator provides a natural framework in PDE applications to adapt the model hierarchy to each
sample. In addition, it can be made unbiased with respect to the expected value of the true quantity
of interest provided the quantity of interest converges sufficiently fast. The practical implementation
of the CLMC estimator is based on interpolating actual evaluations of the quantity of interest at a
finite number of resolutions. As our new level parameter, we use the logarithm of a goal-oriented
finite element error estimator for the accuracy of the quantity of interest. We prove the unbiasedness,
as well as a complexity theorem that shows the same rate of complexity for CLMC as for MLMC.
Finally, we provide some numerical evidence to support our theoretical results, by successfully testing
CLMC on a standard PDE test problem. The numerical experiments demonstrate clear gains for
samplewise adaptive refinement strategies over uniform refinements.

Key words. multilevel Monte Carlo, adaptivity, unbiased estimator, complexity theorem, heterogeneous elliptic
PDEs, CLMC
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1. Introduction. No matter whether epistemic or aleatoric, known unknown or unknown
unknown, uncertainty plays a fundamental role in any real life situation. Its quantification
is becoming an object of interest for ever more complex problems, where accurate solutions
require huge computational costs. A lot of methods have been proposed in the last decade that
aim to reduce this cost without affecting the accuracy. Among others, multilevel techniques
conquered the scene arising in a multitude of algorithms, all following the pioneering work
on multilevel Monte Carlo (MLMC) by Giles [10] and the earlier paper by Heinrich [14] (see
also [9, 4, 11] and references therein). In general, multilevel techniques aim to accelerate
inference by exploiting a hierarchy of models with different levels of accuracy. By combining
estimates from all the models in a telescoping sum, the computational cost is shifted towards
the bottom (cheap and inaccurate) end of the hierarchy, while maintaining the accuracy of
the top (expensive and high resolution) end.
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94 GIANLUCA DETOMMASO, TIM DODWELL, AND ROB SCHEICHL

Since the initial work on MLMC, several techniques have been employed to exploit model
structures even further with considerable savings in computational cost. An important step
forward was the introduction of adaptive MLMC (AMLMC) [15], where error estimates and
adaptive refinement strategies are exploited to increase the accuracy only where needed (see
also [9, 8, 16] in the context of PDEs). In contrast to the majority of the literature on MLMC,
which is based on uniform refinements, AMLMC is able to deal with problems with very
localized sample-dependent noise or quantities of interest, avoiding excessive computational
cost by refining the models only where necessary and, in general, differently for each sample.

A second important step forward was the introduction of an MLMC estimator that is
unbiased with respect to the real quantity of interest [21] (see also [18, 19, 24]). In most
problems of consideration, the quantity of interest is a functional of the solution of an inac-
cessible, infinite-dimensional model. In such cases, standard MLMC is only able to provide
an estimator that is unbiased with respect to an approximation of the real quantity of inter-
est. Having an unbiased estimator for the real quantity of interest is often of great practical
interest, especially if the estimator is used for further predictions. Furthermore, the bias error
is typically harder to estimate than the sampling error, making it easier to avoid unnecessary
computational effort with an unbiased estimator.

In this paper, we present a generalization of MLMC to a continuous framework that we
denote continuous level Monte Carlo (CLMC), where the underlying hierarchical structure
is considered to be continuous rather than a finite sequence of discrete instances. The level
parameter \ell is assumed to be a real number rather than an integer, giving access to standard
tools from calculus, such as the integral or the derivative with respect to the level. Although
this might sound just like a conceptual generalization, we will in an interesting way see how
the continuous framework also allows deeper understanding and different perspectives. As a
first fact, it highlights a link with tools from probability theory, since the continuous sequence
of approximations can now be interpreted as a continuous stochastic process over the level
of resolution. In this framework, the classic telescoping sum of MLMC straightforwardly
becomes a simplified version of Dynkin's formula [20], or more simply the fundamental theorem
of calculus. As allowed in Dynkin's formula, the finest level L of resolution can be chosen
as a stopping time random variable, which stops the refining procedure differently for each
sample according to some probability distribution over L. We will see that there is a simple
probability distribution over L corresponding to the optimal decaying sequence of the number
of samples in MLMC and the choice of this distribution is not very sensitive to an accurate
estimation of the convergence rates and of the cost per sample.

The main result of the paper is a continuous version of the complexity theorem for MLMC.
This provides two main contributions:

\bullet it introduces a CLMC estimator that, under standard assumptions, satisfies the same
computational cost rate as the one in MLMC;
\bullet it proves that the CLMC estimator can potentially be unbiased, but the unbiased

version has finite computational cost exclusively when the variance decays faster than
the cost per sample grows.

Among potential applications, the continuous level framework finds its practical utility for
sample-dependent hierarchical refinements: when the refinement levels depend on samples
instead of being fixed, it is more natural to think of them in a continuous fashion, as theD
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CONTINUOUS LEVEL MONTE CARLO 95

resolution of a particular model can fall anywhere on the real line. This is a typical situation
in AMLMC. Indeed, the resolution level is usually interpreted as the logarithm of the error of
the numerical model, therefore intrinsically continuous. Moreover, the error is sample depen-
dent, hence each sample will hit its own sequence of level refinements. As AMLMC involves
taking sample averages of quantities of interest at some prescribed levels, approximations
have to be made that may lead to slight inefficiencies especially when the improvement in the
approximation error in each adaptation step varies strongly (see [16]).

Here, we develop practical CLMC algorithms that are easy to implement and do not require
any such approximation. As we can arbitrarily choose the nature of the quantity of interest
between the actual evaluations, to obtain a quantity of interest function that is continuous
over the levels we simply interpolate the calculated values, whence we can work out a practical
formula. Note that the practical formula can also be implemented for the unbiased version
of the CLMC estimator. Finally, we provide some numerical experiments showing the CLMC
algorithm in action for a standard two-dimensional model problem where the adaptivity and
the sample-dependent hierarchies are shown to be leading to significant computational savings.

The structure of the paper is as follows. In section 2, we give a short background of Monte
Carlo and MLMC; we present the main CLMC idea; we introduce the CLMC estimator and
show the unbiasedness property; we state the CLMC complexity theorem; we provide a corol-
lary showing when the estimator that provides the optimal cost is unbiased with respect to
the real quantity of interest. In section 3, we propose a practical CLMC algorithm for sample-
based adaptive hierarchical refinement; we discuss the special case of uniform refinement and
the similarities with MLMC and show the link between the distribution of the finest level and
the sequence of number of samples; we finish the section with some proposals for other pos-
sible implementations and approaches. Finally, section 4 introduces the PDE model problem
and the adaptive finite element hierarchy for them, as well as presenting and discussing the
numerical experiments. We finish the paper with some conclusions and ideas for future work
in section 5. The detailed proof of the complexity theorem, as well as some details about the
goal-oriented error estimator are delegated to the appendices.

2. Continuous level Monte Carlo.

2.1. Background: Monte Carlo and MLMC. Suppose one is interested in estimating the
expected value \BbbE [\scrQ ] of some (inaccessible) quantity of interest \scrQ , for simplicity assumed to
be scalar. In uncertainty quantification (UQ), \scrQ is typically a functional of the solution of
some random PDE, where the randomness can lie anywhere, e.g., within the coefficients, the
source, the boundary conditions, or the shape of the domain.

In general, the solution of a PDE cannot be calculated exactly and it has to be ap-
proximated numerically, up to some desirable resolution level L. Let us call QL such an
approximation and assume that QL \rightarrow \scrQ almost surely (a.s.) for L \rightarrow +\infty . Then, for any
desired tolerance \varepsilon > 0, there exists a fine enough resolution L, such that | \BbbE [\scrQ  - QL]| \leq \varepsilon ,
and we can focus on finding good algorithms to estimate \BbbE [QL] to the same accuracy. There
are two main issues here.

1. If the underlying probability distribution is continuous and high dimensional, which
is common in UQ applications, it can be extremely expensive to approximate the
expected value with standard quadrature methods.D
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96 GIANLUCA DETOMMASO, TIM DODWELL, AND ROB SCHEICHL

2. If the resolution L required to compute the PDE solution with sufficient accuracy is
high, then computing just one sample of QL will be expensive and the number of
samples that can be computed on level L in a reasonable time is limited.

A standard remedy for Issue 1 is the use of Monte Carlo (MC) methods [22]. Indeed, the
rate of convergence of MC estimators is independent of the dimension of the integral and it

is extremely easy to implement: given N independent samples
\bigl( 
Q

(k)
L

\bigr) N
k=1

of QL, distributed
according to the underlying probability distribution, the expected value can be estimated as

(1) \BbbE [QL] \approx 
1

N

N\sum 
k=1

Q
(k)
L .

While the right-hand side in (1) is an unbiased estimator of \BbbE [QL], it unfortunately con-
verges very slowly: \scrO (\varepsilon  - 2) samples are required for the root-mean-square error in the approx-
imation in (1) to be less than some tolerance \varepsilon , which can quickly become very large for small
tolerances. If in addition L is large, every single sample requires an expensive PDE solve,
leading to an infeasibly high total computational cost.

An acceleration technique suggested for (1) is the MLMC method [14, 10, 11]. It exploits a
hierarchy of approximations Q0, Q1, . . . , QL of\scrQ at different resolutions, starting with a coarse
and cheap approximation Q0, and going up to the fine and expensive approximation QL. In
contrast to the standard MC estimator in (1), which directly estimates \BbbE [QL] by sampling QL,
MLMC combines samples from the sequence of approximations (Q\ell )

L
\ell =0 to produce an overall

cheaper estimator. To this purpose, the approximations are combined into the telescoping
sum

(2) \BbbE [QL  - Q0] =
L\sum 

\ell =1

\BbbE [Q\ell  - Q\ell  - 1],

and then each term in the sum on the right-hand side is estimated with MC:

(3) \BbbE [Q\ell  - Q\ell  - 1] \approx 
1

N\ell 

N\ell \sum 
k=1

\Bigl( 
Q

(k)
\ell  - Q

(k)
\ell  - 1

\Bigr) 
.

To obtain an estimator for \BbbE [QL] it suffices to add an MC estimator for \BbbE [Q0].

Crucially, the consecutive approximations Q
(k)
\ell  - 1 and Q

(k)
\ell in the difference Q

(k)
\ell  - Q

(k)
\ell  - 1

come from the same sample k. This means that they are strongly positively correlated, and
the variance of the difference is heavily reduced:

(4) \BbbV [Q\ell  - Q\ell  - 1] = \BbbV [Q\ell  - 1] + \BbbV [Q\ell ] - 2Cov(Q\ell  - 1, Q\ell )\ll \BbbV [Q\ell  - 1] + \BbbV [Q\ell ].

As Q\ell \rightarrow \scrQ a.s. for \ell \rightarrow +\infty , we also have Q\ell  - Q\ell  - 1 \rightarrow 0, so that the covariance and, in
turn, the variance reduction, increases as \ell \rightarrow +\infty . As a consequence, the required number of
samples N\ell at level \ell can be chosen to decrease monotonically with increasing \ell , so that only
very few expensive samples on level L are needed. The majority of samples and therefore the
computational cost will be shifted to the coarser levels.D
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CONTINUOUS LEVEL MONTE CARLO 97

This reduction in computational complexity can be quantified rigorously, at least asymp-
totically as the tolerance \varepsilon \rightarrow 0. The complexity theorems in [10, 4] show that the overall
computational cost for the MLMC algorithm can be up to a factor \scrO (\varepsilon 2) smaller than the
cost of the MC estimator in (1). We will return to this and give more details in section 2.4.

2.2. Continuous level Monte Carlo: The main idea. In this section, we introduce the
CLMC idea. As we have seen above, MLMC exploits a discrete sequence of approximations
Q = (Q\ell )

L
\ell =0 of \scrQ . We now extend this to a continuous family of approximations (Q(\ell ))\ell \geq 0

of \scrQ . In other words, (Q(\ell ))\ell \geq 0 is a stochastic process of approximations over the continuous
level of resolution \ell defined on a probability space (\Omega ,\scrF ,\BbbP ), with sample space \Omega , \sigma -algebra
\scrF , and probability measure \BbbP .

Let L be a random variable with finite expectation, independent of the stochastic process
(Q(\ell ))\ell \geq 0, denoting the (random) finest level of resolution. Also, let L\mathrm{m}\mathrm{a}\mathrm{x} \in [0,\infty ] be a
deterministic constant. Note that L\mathrm{m}\mathrm{a}\mathrm{x} can deliberately assume the value +\infty and this will
allow us to write different results in a compact way. Assuming for each \ell \in (0, L\mathrm{m}\mathrm{a}\mathrm{x}) that
\BbbP (L > \ell ) > 0, we can write down the following formula:

(5) \BbbE [Q(L \wedge L\mathrm{m}\mathrm{a}\mathrm{x}) - Q(0)] = \BbbE 
\biggl[ \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

dQ(\ell )

d\ell 
d\ell 

\biggr] 
,

where the expectation is taken with respect to the probability measure \BbbP . A sufficient condition
for the formula in (5) to be well posed, is to assume that \BbbE [| \mathrm{d}Q(\ell )

\mathrm{d}\ell | ] \in L1(0, L\mathrm{m}\mathrm{a}\mathrm{x}). This also
ensures that we can exploit the Fubini--Tonelli theorem to exchange the order of the expected
operator with respect to \BbbP with the integral over the level parameter. Note that for simplicity
we are choosing 0 as the coarsest level, but this can of course be generalized.

If we assume L to be a deterministic variable, the expectation in (5) can be pulled inside
the integral and the derivative, so that (5) reduces to the fundamental theorem of calculus,
which guarantees the identity. However, more generally, (5) can be recovered as a particular
case of Dynkin's formula [20], where L is interpreted as a finite stopping time with respect to
the \sigma -algebra \scrF .

2.3. The CLMC estimator. Let us assume L to be a random variable independent of the
whole stochastic process (Q(\ell ))\ell \geq 0. We can then define the CLMC estimator

(6) \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

:=
1

N

N\sum 
k=1

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )

\biggl( 
dQ

d\ell 

\biggr) (k)

(\ell )1[0,L(k)](\ell ) d\ell ,

where the superscript (k) denotes the kth realization of the respective random variable and N
is the total number of samples. For simplicity of presentation, the estimator \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
is defined

as an estimator for \BbbE [Q(L\mathrm{m}\mathrm{a}\mathrm{x}) - Q(0)], as we see in Proposition 2.1. As in standard MLMC,
it suffices to add an unbiased estimator for \BbbE [Q(0)] to obtain an estimator for \BbbE [Q(L\mathrm{m}\mathrm{a}\mathrm{x})].

A reader familiar with the MLMC literature might be puzzled by the estimator in (6),
where we use the same number of samples N for each level \ell . However, note that, for each
sample k, the integrand in (6) will only be nonzero up to the random realization L(k) of L
and, therefore, in practice we do not need to evaluate Q(\ell ) beyond level L(k).

We are now ready to show that the CLMC estimator is unbiased.D
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Proposition 2.1. The CLMC estimator (6) is an unbiased estimator for \BbbE [Q(L\mathrm{m}\mathrm{a}\mathrm{x}) - Q(0)],
i.e.,

\BbbE [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

] = \BbbE [Q(L\mathrm{m}\mathrm{a}\mathrm{x}) - Q(0)] .

Proof. By exploiting the independence of L from (Q(\ell ))\ell \geq 0 and the previous assumption

that \BbbE 
\Bigl[ \bigm| \bigm| \bigm| \mathrm{d}Q(\ell )

\mathrm{d}\ell 

\bigm| \bigm| \bigm| \Bigr] \in L1(0, L\mathrm{m}\mathrm{a}\mathrm{x}) which allows us to exchange the order of the integrals, we have

\BbbE 
\Bigl[ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr] 
= \BbbE 

\Biggl[ 
1

N

N\sum 
k=1

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )

\biggl( 
dQ(\ell )

d\ell 

\biggr) (k)

1[0,L(k)](\ell ) d\ell 

\Biggr] 

=

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
\BbbE 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] 
\BbbE 
\bigl[ 
1[0,L](\ell )

\bigr] 
d\ell 

=

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
\BbbE 
\biggl[ 
dQ

d\ell 
(\ell )

\biggr] 
\BbbP (L \geq \ell ) d\ell 

=

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0
\BbbE 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] 
d\ell 

= \BbbE [Q(L\mathrm{m}\mathrm{a}\mathrm{x}) - Q(0)].

In particular, this implies the following important corollary.

Corollary 2.2. If L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty , then

\BbbE [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty ] = \BbbE [\scrQ  - Q(0)].

Corollary 2.2 results immediately from the fact that we can plug L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty in the
equation of Proposition 2.1. This shows that there is a version of the estimator (6) that is
unbiased with respect to the expectation of the difference of the real quantity of interest \scrQ 
and Q(0), and one can see the connection with the unbiased MLMC estimator introduced in
[21].

In the next subsection, we will prove a complexity theorem for the CLMC estimator (6).
We will pick L to be distributed as an exponential random variable to facilitate calculations
and mimic the exponential decay in the assumptions on the convergence of the quantity of
interest. Also, we will provide sufficient and necessary conditions for the Theorem to hold in
the case L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty , i.e., when the CLMC estimator is unbiased with respect to \scrQ  - Q(0).
A practical algorithm will then be described in section 3.

2.4. Complexity theorem. The fundamental theoretical result about the MLMC method
is the complexity theorem, first proved in [10] and generalized in [4]. In this section, we
state an analogous complexity theorem for the CLMC estimator (6). A full proof is given in
Appendix A.

First, let us define the mean-squared-error (MSE) of the CLMC estimator \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

in (6)
by

(7) MSE := \BbbE 
\Bigl[ \bigl( \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
 - \BbbE [\scrQ  - Q(0)]

\bigr) 2\Bigr] 
and denote by \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
its expected computational cost. Then, we have the following result.
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Theorem 2.3 (complexity theorem). Let \scrQ be some quantity of interest. Denote by (Q(\ell ))\ell \geq 0

a stochastic process defined on a probability space (\Omega ,\scrF ,\BbbP ) with \BbbE [| dQ(\ell )
d\ell | ] \in L1(0,\infty ), corre-

sponding to a family of numerical approximations of \scrQ such that Q(\ell ) \rightarrow \scrQ a.s. as \ell \rightarrow \infty .
Furthermore, suppose that there are positive constants \alpha , \beta \leq 2\alpha , \gamma , c1, c2, c3 such that, for
any \ell > 0, we have

(i)

\bigm| \bigm| \bigm| \bigm| \BbbE \biggl[ dQ(\ell )

d\ell 

\biggr] \bigm| \bigm| \bigm| \bigm| \leq c1e
 - \alpha \ell , (ii) \BbbV 

\biggl[ 
dQ(\ell )

d\ell 

\biggr] 
\leq c2e

 - \beta \ell , (iii) \scrC (\ell ) \leq c3e
\gamma \ell ,

where \scrC (\ell ) is the cost to compute one sample of Q(\ell ). Moreover, suppose that L \sim Exponential(r)
with

r \in [min(\beta , \gamma ), max(\beta , \gamma )].

Then, for any \varepsilon \in (0, e - 1), there exist L\mathrm{m}\mathrm{a}\mathrm{x} \in [0,+\infty ), N \in \BbbN , and C > 0 such that

(8) MSE \leq \varepsilon 2 and \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

\leq C \varepsilon  - 2 - \mathrm{m}\mathrm{a}\mathrm{x}(0, \gamma  - \beta 
\alpha 

)(log \varepsilon )\delta r,\beta +\delta r,\gamma 

with \delta denoting the Kronecker delta.

Note that the predicted computational cost in Theorem 2.3 is the same as in MLMC
(asymptotically).

Corollary 2.4. Suppose that the assumptions of Theorem 2.3 hold and that L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty ,
i.e., let us consider the unbiased CLMC estimator \widehat QCLMC

\infty .
(a) If \beta > \gamma , then for any \varepsilon \in (0, e - 1) and for any r \in (\gamma , \beta ), there exists an N \in \BbbN and

C > 0 such that
MSE \leq \varepsilon 2 and \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

\infty \leq C\varepsilon  - 2 .

(b) If \beta \leq \gamma and, in addition, there exist positive constants \eta \in [\beta , \gamma ], c\prime 2, and c\prime 3 such that

c\prime 2e
 - \eta \ell \leq \BbbV 

\biggl[ 
dQ(\ell )

d\ell 

\biggr] 
and c\prime 3e

\eta \ell \leq \scrC (\ell ) ,

then MSE \times \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty = +\infty for all r > 0 and N \in \BbbN , i.e., the unbiased estimator has

infinite MSE or infinite cost.

Corollary 2.4 provides sufficient and necessary conditions for the CLMC estimator with
L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty (which is unbiased with respect to \scrQ  - Q(0)) to have a finite expected complexity
cost. Intuitively, since L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty , the finest level at which computations are needed is
maxk=1,...,N L(k) \rightarrow \infty a.s. as N \rightarrow \infty .1 Therefore, the estimator (6) will have finite expected
cost only if the actual variance reduction rate is bigger than the actual cost growth rate. The
rates \beta and \gamma in Theorem 2.3 are only upper bounds. By analogy, we believe this constraint
also applies to the unbiased estimator introduced by Rhee and Glynn [21]. However, the paper
[21] is mainly concerned with time-stepping methods for SDEs, where the condition \gamma < \beta is
usually satisfied. Our result is also relevent for [18], which provides a related construction of
a multilevel unbiased estimator.

1To see this rigorously, let \ell > 0 be arbitrary and apply the Borel--Cantelli lemma to the sequence of events
En := \{ max\{ L1, . . . , Ln\} > \ell \} , n \in \BbbN .D
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100 GIANLUCA DETOMMASO, TIM DODWELL, AND ROB SCHEICHL

Note that, if L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty , even in the case \beta > \gamma , there is a nonzero probability that the
finest level L(k) for some sample (k) is drawn larger than the maximal refinement achievable
on the particular machine that is used, but we can exactly quantify the probability for this
to happen. Indeed, if \=L is the maximum refinement level achievable by the machine, the
probability that at least one sample is greater than or equal to \=L is given by

N\BbbP (L \geq \=L) = N exp( - r\=L).

We will see that for problems of interest this probability is very small. In the rare event that
L(k) > \=L for some sample k, one could simply approximate Q(k)(\ell ) = Q(k)(\=L) for \ell \in [ \=L,L(k)].
If \=L is sufficiently large, this would introduce a negligible bias error for any practical values
of \varepsilon .

3. Practical implementation. In the previous section, we have seen that it is possible to
extend MLMC to a continuous framework, where the approximations of the quantity of interest
are functions over a continuous family of resolutions. This point of view comes naturally when
the level parameter is not associated with some fixed hierarchy of approximations, but with
an adaptively chosen hierarchy for each sample, e.g., in the context of adaptive finite element
approximations of a PDE with random coefficients where the level parameter \ell is related to
the accuracy of the approximation (see section 4).

However, it still remains to show how this can be implemented in practice and how the
practical implementation differs from MLMC. There are many possible ways to implement
the estimator in (6). Let us first focus in some sense on the simplest one. We will comment
on other approaches at the end of this section.

3.1. Sample-dependent level hierarchies and piecewise linear interpolation. Let us as-
sume that we have estimates of the parameters \alpha , \beta , \gamma in Theorem 2.3. In practice, these can
be obtained (on the fly) from sample averages and sample variances of Q(\ell ) and dQ(\ell )/d\ell ,
as in standard MLMC. Then, given a desired tolerance \varepsilon > 0, Theorem 2.3 provides suitable
choices for the number of samples N and for the rate r of the exponential distribution of L
to achieve the optimal complexity in (8).

In what follows, we will define families of continuous approximations (Q(k)(\ell ))\ell \geq 0 that will
allow us to work out explicit formulas for the CLMC estimator (6). Importantly, note that
there is some freedom in the choice of the continuous family (Q(k)(\ell ))\ell \geq 0, as long as it satisfies
the assumptions in the complexity Theorem 2.3.

For any sample k, suppose that (Q
(k)
j )j\geq 1 denotes a countable sequence of approximations

of Q(k) at levels (\ell 
(k)
j )j\geq 1. Then, to define a continuous family Q(k)(\ell ) of Q(k), we use linear

interpolation such that\biggl( 
dQ

d\ell 

\biggr) (k)

(\ell ) :=
Q

(k)
j  - Q

(k)
j - 1

\ell 
(k)
j  - \ell 

(k)
j - 1

for \ell \in (\ell 
(k)
j - 1, \ell 

(k)
j ) .

Also, for each sample k, let us define the index J (k) corresponding to the first value of \ell 
(k)
j

that is bigger than L(k) \wedge L\mathrm{m}\mathrm{a}\mathrm{x}, that is,

J (k) := min\{ j \geq 1 : \ell 
(k)
j  - (L(k) \wedge L\mathrm{m}\mathrm{a}\mathrm{x}) \geq 0\} .D
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CONTINUOUS LEVEL MONTE CARLO 101

Hence, we can write down the CLMC estimator (6) as

\widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

=
1

N

N\sum 
k=1

\int L(k)\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )

\biggl( 
dQ

d\ell 

\biggr) (k)

(\ell ) d\ell 

=
1

N

N\sum 
k=1

J(k)\sum 
j=1

w
(k)
j

\Bigl( 
Q

(k)
j  - Q

(k)
j - 1

\Bigr) 
,(9)

where we define

(10) \~\ell 
(k)
j := \ell 

(k)
j \wedge (L(k) \wedge L\mathrm{m}\mathrm{a}\mathrm{x}) ,

and the integrals in the weights w
(k)
j can be computed explicitly as

(11) w
(k)
j :=

1

\ell 
(k)
j  - \ell 

(k)
j - 1

\int \~\ell 
(k)
j

\ell 
(k)
j - 1

1

P (L \geq \ell )
d\ell =

exp
\bigl( 
r\~\ell 

(k)
j

\bigr) 
 - exp

\bigl( 
r\ell 

(k)
j - 1

\bigr) 
r
\bigl( 
\ell 
(k)
j  - \ell 

(k)
j - 1

\bigr) 
for all j = 1, . . . , J (k) . Algorithm 1 provides the key instructions to implement the CLMC
estimator in (9).

Algorithm 1: CLMC algorithm---key steps.

Input : \varepsilon : tolerance;
r: exponential rate;
N : total number of samples;
L\mathrm{m}\mathrm{a}\mathrm{x}: maximum reachable level---potentially infinite if \gamma < \beta .

Output: \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

: CLMC estimator.

1: Initialize \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

\leftarrow 0;

2: for k = 1, 2, . . . , N do
3: Sample L(k) \sim Exponential(r);

4: Evaluate and store the column array \bfitQ \leftarrow [Q
(k)
0 , Q

(k)
1 , . . . , Q

(k)

J(k) ]
T ;

5: Calculate column array \bfitw of weights in (11);
6: Update \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
\leftarrow \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
+\bfitw T \ast diff(\bfitQ ), where diff(\bfitQ ) is the array of the

differences between consecutive elements of \bfitQ ;
7: end for

8: Set \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

\leftarrow \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

/N .

Note that it is easy to work out an unbiased estimator for the variance of \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

in (9),
which is needed to estimate the total number of samples N . Let us define

Y (k) :=
J(k)\sum 
j=1

w
(k)
j

\Bigl( 
Q

(k)
j  - Q

(k)
j - 1

\Bigr) 
.
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Then (9) simply reduces to a standard MC estimator with independent and identically dis-
tributed samples Y (k) and we can estimate

\BbbV 
\Bigl[ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}

\Bigr] 
\approx 1

N(N  - 1)

N\sum 
k=1

\left(  \Bigl( Y (k)
\Bigr) 2
 - 

\Biggl( 
1

N

N\sum 
i=1

Y (i)

\Biggr) 2
\right)  .

3.2. Uniform refinements as a special case. It is interesting to see what happens in
the case of uniform refinements, where all samples Q(k), for k = 1, . . . , N , are evaluated at

the same deterministic points \ell 
(k)
j = \ell j for j \geq 1, and then interpolated. Without loss of

generality, we assume that \ell j = j, as in standard MLMC.
In this case, the set of possible levels reduces to integers. Therefore, although a continuous

probability distribution for L is still a valid choice, it is more natural to pick a discrete
distribution over the levels, where \BbbP (L \geq j) is constant over the interval (j  - 1, j). In that
case, the practical CLMC estimator in (9) reduces to

\widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

=
1

N

N\sum 
k=1

J(k)\sum 
j=1

1

\BbbP (L \geq j)

\Bigl( 
Q

(k)
j  - Q

(k)
j - 1

\Bigr) 
.

A natural choice would be a geometric distribution on L.
To see the relationship with the standard MLMC estimator more clearly, let us define

N(\ell ) := N\BbbP (L \geq \ell ) .

Then, (N(\ell ))\ell \geq 0 \subset [0,\infty ) corresponds to a continuous density of samples, analogous to the
sequence of sample sizes at discrete levels in MLMC. Moreover, the probability that L is at
least \ell corresponds to the normalized density of samples that gets at least to level \ell . Therefore,
by plugging this relation in the equation above, we get

\widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

=

N\sum 
k=1

J(k)\sum 
j=1

1

N(j)

\Bigl( 
Q

(k)
j  - Q

(k)
j - 1

\Bigr) 
,

which exactly corresponds to the Rhee and Glynn estimator in [21].

3.3. Other implementations. Although the practical implementation discussed in sub-
section 3.1 is a natural, practical implementation of the CLMC estimator, it is not the only
possibility. One could think of exploiting the underlying continuous level structure in order
to predict the global trend of the function Q(\ell ), thereby denoising the pointwise evaluations
coming from the random samples. More concretely, imagine that each sample k provides eval-

uations (Q
(k)
j )J

(k)

j=1 , respectively, at levels (\ell 
(k)
j )J

(k)

j=1 . Instead of defining the function Q(k)(\ell ) as

the linear interpolant between the given points as in subsection 3.1, one could define Q(k)(\ell )
to be a particular polynomial interpolant or regression function. The resulting continuous
function may not exactly interpolate the points but rather catch the global trend, avoiding
overfitting sample-dependent noisy oscillations.D
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CONTINUOUS LEVEL MONTE CARLO 103

In general, for each sample k, define the polynomials

\biggl( 
dQ

d\ell 

\biggr) (k)

(\ell ) :=

np - 1\sum 
i=0

a
(k)
ij \ell i for \ell \in [\ell 

(k)
j - 1, \ell 

(k)
j ) ,

where the coefficient (a
(k)
ij )

np - 1
i=0 come from some np-order polynomial regression procedure,

for j = 1, . . . , J (k). As in standard MLMC, one needs to make sure that the consecutive
increments cancel properly; therefore, the fit procedure must be such that the polynomials

Q(k)(\ell ) coincide at the interval extremes (\ell 
(k)
j )J

(k) - 1
j=2 , i.e., Q(k)(\ell ) is a continuous function.

As in subsection 3.1, it can be shown that the resulting CLMC estimator is given by

(12) \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

=
1

N

N\sum 
k=1

J(k)\sum 
j=1

np - 1\sum 
i=0

a
(k)
ij

i\sum 
m=0

( - 1)m im

rm+1

\biggl( \bigl( 
\~\ell 
(k)
j

\bigr) i - m
er

\~\ell 
(k)
j  - 

\bigl( 
\ell 
(k)
j - 1

\bigr) i - m
er\ell 

(k)
j - 1

\biggr) 
,

where \~\ell 
(k)
j is defined as in (10). Note that, when the the regression polynomial is a simple

piecewise linear interpolation polynomial, the CLMC estimator (12) reduces to (9).

4. Application to AMLMC. The development of the continuous level framework was
motivated by the challenge of integrating samplewise adaptive finite element solutions within
a hierarchical framework. For a given sample, there are significant computational gains to be
realized by using goal-oriented (towards the quantity of interest) schemes, particularly when
the random field or quantity of interest is localized. The exciting conceptual idea here is
in contrast to other AMLMC methods [8, 16] we do not use the refinement steps or some
predefined error tolerances as the levels, but instead use a continuous measure of error in the
quantity of interest as our level. This naturally fits within our CLMC framework.

4.1. Subsurface flow problem and constructing pathwise adaptive solutions. We con-
sider a toy model describing steady state, single phase, incompressible flow in a permeable
medium (e.g., rock), given by the linear, scalar elliptic PDE

(13)  - \nabla \cdot k(x)\nabla u(x) = f(x) \forall x \in D \subset \BbbR d,

subject to suitable boundary conditions. Physically u(x) is the fluid pressure, f(x) the fluid
source term, and k(x) the scalar permeability field. In practical applications (e.g., in oil
reservoir simulation), the permeability field k(x) or the source term f(x) are not known
everywhere, therefore, a typical approach is to model each as a random field. Let the sample
space be denoted by \Omega , then the random permeability and source field k(x, \omega ) and f(x, \omega )
belong to D \times \Omega with a certain distribution (inferred from data). Therefore the solution to
(13), the unknown pressure field, is also a random field, i.e., u(x, \omega ) \in D \times \Omega . For simplicity,
we shall restrict ourselves to homogeneous Dirichlet conditions u(\omega , \cdot ) \equiv 0 on the domain
boundary \partial D. The particular random field k and source term f in section 4.2 guarantee that
(13) is well posed.D
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104 GIANLUCA DETOMMASO, TIM DODWELL, AND ROB SCHEICHL

For a fixed \omega \in \Omega we can recast (13) as a standard variational problem, i.e., find u(x, \omega ) \in 
V := H1

0 (D) = \{ v \in H1(D) : v = 0 on \partial D\} , such that

(14)

\int 
D
k(x, \omega )\nabla u(x, \omega ) \cdot \nabla v(x) dx\underbrace{}  \underbrace{}  

=: a(\omega ;u,v)

=

\int 
D
f(x, \omega )v(x) dx\underbrace{}  \underbrace{}  

=:b(\omega ;v)

\forall v \in V .

Here, D is assumed to be a bounded Lipschitz domain and V = H1
0 (D) is the usual Sobolev

space of weakly differentiable functions on D. Then, a(\omega ; \cdot , \cdot ) is a symmetric, bounded, and
positive-definite bilinear form on V \times V , and as such defines an inner product and a norm on V ,
the so-called energy norm \| u\| a :=

\sqrt{} 
a(u, u). If f is sufficiently smooth, then the functional

b(\omega ; \cdot ) is bounded on V (see [5, 3]).
To approximate the pressure solution u(x, \omega ), we construct a (samplewise adapted) finite

element (FE) space Vh(\omega ) \subset V of piecewise linear Lagrange polynomials on a grid \scrT h(\omega ) that
vanish on the boundary of D. The FE solution uh(x, \omega ) \in Vh(\omega ) satisfies

(15) a(\omega ;uh, vh) = b(\omega ; vh) \forall vh \in Vh(\omega ),

resulting in a (large) linear system of equations of dimension Mh(\omega ) := dim(Vh(\omega )). From
this, we are interested in approximating statistics (e.g., the expected value) of a quantity of
interest \scrQ , defined to be (for simplicity) a linear functional of uh(x, \omega ).

As motivated at the beginning of this section, we are going to build our approximate
solutions, sample-by-sample, using adaptive FE methods. But instead of using the number of
refinement steps as the level parameter and applying MLMC, we will use a samplewise error
estimate as the level parameter and apply our new CLMC framework.

As in the previous sections, let us denote by the superscript (k) a particular realization

\omega k \in \Omega . For each k, starting with an initial grid \scrT (k)
0 := \scrT 0, chosen to be the same for each

sample, we use an h-adaptive refinement strategy to construct a sequence of grids
\bigl( 
\scrT (k)
j

\bigr) J
j=0

.
In our case, the adaptive procedure is driven by a local, sample-dependent, goal-oriented error

indicator e
(k)
j,\tau for each \tau \in \scrT (k)

j . Denoting by (Q
(k)
j )Jj=0 the sequence of approximations of

\scrQ corresponding to the sequence
\bigl( 
\scrT (k)
j )Jj=0, the error in the quantity of interest \scrQ can be

bounded using the relative contributions from each element in the following way:

(16) | \scrQ  - Q
(k)
j | \leq e

(k)
j :=

\Biggl( \sum 
\tau \in \scrT (k)

j

e
(k)
j,\tau 

\Biggr) 1/2

.

In addition to solving (15) (the so-called primal problem), goal-oriented error estimators
typically also require an approximate FE solution wh(\omega ,x) of the dual problem

(17) a(\omega ; vh, wh) = \scrQ (vh) \forall vh \in Vh .

There are many different choices of goal-oriented error estimators; see, for example, [12]. For

one particular choice, described in detail in [12], the error estimator e
(k)
j,\tau in each elementD
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CONTINUOUS LEVEL MONTE CARLO 105

\tau \in \scrT (k)
j is computed by bounding the product of the energy norms of the errors in the primal

and dual FE solutions uh(\omega k,x) and wh(\omega k,x) of (15) and (17), respectively. Up to a sample-
dependent constant, for each of the two problems, these bounds are simply the sum of the
element residuals and of the jumps/discontinuities in interelement fluxes. Full details can be
found in [12], but we will also provide some more details in Appendix B.

The FE grid \scrT (k)
j+1 is generated by refining the \theta j percent of elements of \scrT (k)

j that contribute
most to the bound on error in \scrQ defined in (16). In our numerical experiments below, we

increase \theta j as j increases. To ensure that the FE space V
(k)
j+1 is conforming, i.e., that there are

no hanging nodes in \scrT (k)
j+1, this is followed by some additional refinements. We use a so-called

red/green refinement strategy (see [17] for more details).
Finally, we now define our samplewise continuous level at refinement step j to be

(18) \ell 
(k)
j :=  - log

\Biggl( 
e
(k)
j

e
(k)
0

\Biggr) 
.

The level gives a samplewise measure of the error in Q
(k)
j relative to the error on the coarsest

grid. We note that with this choice, computations on \scrT 0 are naturally providing values Q
(k)
0

at level \ell 
(k)
0 = 0. However, the main reason for using the relative error in (18) is due to the

particular error estimator that we are using being only known up to an unknown sample-
dependent constant.

4.2. Numerical experiments. All the numerical experiments are calculated using the high
performance FE library DUNE [2] and its discretization module dune-pdelab. Simulations are
carried out on a computer consisting of four, 8-core Intel Xeon E5-4627v2 Ivybridge processors,
each running at 1.2 GHz, giving a total of 32 available cores. The solutions for each sample
are computed on a single processor and independent samples are equally distributed across all
available cores. Individual solutions of the forward and dual problems are obtained using the
sparse direct solver UMFPACK [6]. Each adaptive step uses the red/green refinement strategy,

as implemented in dune-grid [1], refining \theta j percent of elements from \scrT (k)
j to \scrT (k)

j+1.

In our numerical test, we consider D := [0, 1]2. The coarse grid \scrT 0 for all samples is
taken as a uniform 32\times 32 triangular mesh on D. In our test we consider (13) with random
permeability field k and random source term f . The permeability field k(x, \omega ) is characterized
by a log-normal random field, where log k(x, \omega ) has a mean of zero and a two-point exponential
covariance function

(19) C(x,y) := exp ( - 3 \| x - y\| 1) , x,y \in D,

with \| \cdot \| p denoting the \ell p-norm in \BbbR 2. This choice of covariance function implies that k is
homogeneous and it follows from Kolmogorov's theorem [5] that k(\cdot , \omega ) \in C0,\eta (\Omega ) a.s. with
\eta < 1/2. Together with the following definition of the source term f(\cdot , \omega ) \in C\infty (\Omega ), this
ensures that (13) is well posed. The field is parameterized via a (truncated) Karhunen--Lo\`eve
expansion

(20) k(x, \omega ) = exp

\Biggl( 
R\sum 
i=1

\surd 
\mu i\phi i(x)\xi i

\Biggr) 
,
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Figure 1. Permeability field k, pressure solution uh, and influence function wh on the finest adaptive grid
(j = 6) for a particular realization \omega \in \Omega .

where \{ \mu i\} i\in \BbbN are the eigenvalues, \{ \phi i(x)\} i\in \BbbN the corresponding L2-normalized eigenfunctions
of the covariance operator with kernel function C(x,y), and \xi i \sim \scrN (0, 1). For more details
on how this expansion is constructed see, for example, [4]. In the calculations which follow
we take R = 36. For the random source term, we take

(21) f(x, \omega ) = 1000 a exp
\bigl( 
 - 20\| x - yf\| 22

\bigr) 
,

where a and the components of yf are all sampled from \scrU (0, 1).
As the quantity of interest, we consider the average pressure near yQ := [0.25, 0.25]T ,

defined by the linear functional

(22) \scrQ (u) := C1

\int 
D
exp

\biggl( 
 - 
\| x - yQ\| 22

\lambda Q

\biggr) 
u(x, \omega )dx

with \lambda Q = 0.0005 and C1 =
\bigl( \int 

D exp( - \| x - yQ\| 22/\lambda Q)dx
\bigr)  - 1 \approx 0.00157.

We now test our CLMC algorithm (Algorithm 1) by comparing uniform refinements and
adaptive refinements with a variable \theta j (percentage of elements refined per step). In particular,
we choose

(23) \theta j = min(100\%, \delta j\theta 0)

as the percentage of elements refined in \scrT (k)
j with \theta 0 = 1\% and \delta = 3. We note that this

choice is heuristic, motivated by a series of test runs. For the problem at hand, the idea of
starting with small \theta 0 and increasing the percentage with the number of adaptive steps makes
sense. Initially the error in \scrQ is dominated by the fact that the grid is not well adapted to
the particular random sample \omega \in \Omega . This includes the random field, the location of the
localized source, and the quantity of interest itself. Once the adaptive strategy has focused in
on all those localized regions, the error in \scrQ is governed by the global lack of regularity in the
coefficient [3, 23] and thus distributed fairly uniformly across the whole domain. So from that
point onwards, refining all elements uniformly leads to the most effective error reduction.

Before running a complete simulation we first consider a single sample \omega \in \Omega . Figure 1
shows the random permeability field k(x, \omega ), pressure solution uh(x, \omega ), and the influenceD
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CONTINUOUS LEVEL MONTE CARLO 107

Figure 2. Sequence of adaptive grids built using a goal-oriented error estimator for random \omega k \in \Omega ; level
is defined by \ell 

(k)
j given by (18).

function wh(x, \omega ) (i.e., the solution of the dual problem (17)) for this sample after 6 adaptive
steps. Snapshots of the grids, built using the goal-oriented error estimator, are shown in
Figure 2 at steps 0, 2, 4, and 6. Visually, we see that the adaptive scheme is working correctly,
refining near yQ = [0.25, 0.25]T , the point around which the pressure is averaged in the
functional \scrQ in (22), while also adapting around the localized source. At the latter levels
the refinement also starts to pick up local variations in the permeability field in regions that
influence the pressure at the point of interest.

For the uniform and adaptive strategy, we first run an initial batch of 6400 samples up
to L\mathrm{m}\mathrm{a}\mathrm{x} = 5, in order to estimate the parameters \beta and \gamma . In a real simulation, it would
not be necessary to estimate these parameters accurately and so significantly fewer samples
could be used. With uniform refinements, our estimates are \beta u = 2.28 and \gamma u = 1.0, whereas
for adaptive refinements we get \beta a = 2.22 and \gamma a = 0.78. Note that, in both cases, \beta > \gamma ,
therefore, by taking L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty in the CLMC setting we obtain unbiased estimators with
respect to \BbbE [\scrQ  - Q(0)]. In these initial runs we can already see the expected computational
gains of adaptive grid refinement. We note that the rates \beta for \BbbV [dQ/d\ell ] are much the same
in each case, whilst \gamma , the rate of growth of the expected cost per sample, is clearly smaller
for the adaptive strategy. Figure 3 gives a plot of the continuous level \ell , representing the
estimate of the relative FE error, against the natural log of the cost for all samples, which
shows the better rate for the adaptive scheme.

We then run the CLMC algorithm with a maximum of N = 106 samples for each case. The
exponential parameter rate r is taken to be the same for each case, so that any computational
gains can be attributed to the adaptive strategy, rather than a difference in r. The value is
chosen so that r = 1

2(ru + ra) =
1
4(\beta u + \gamma u + \beta a + \gamma a) = 1.57, and we consider the unbiased

estimator with L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty .
The numerical results show that the CLMC algorithm is working as expected. In Figure 4

(left), we observe as expected that the natural logarithm of \BbbE [dQ/d\ell ] decreases linearly with
\ell , i.e., \alpha \approx 1, in both the uniform and the adaptive case, since \ell is defined as the natural
logarithm of an estimate of the relative bias error. Figure 4 (middle) shows the variance
reduction for both uniform and adaptive refinement strategies. Both decay very similarly
across the levels with rates of around \beta = 2. Finally, Figure 4 (right) shows the actualD
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Figure 3. Level \ell against log(Cost) for 6400 uniform (red circles) and 6400 adaptive samples (blue squares).
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Figure 4. Results for the numerical test, in log-scale. Left and middle: Convergence plots of \BbbE [dQ/d\ell ]
and \BbbV [dQ/d\ell ] against \ell , respectively. Right: Total cost of uniform and adaptive algorithm (in seconds) against
estimated sampling error (= root-mean-square error due to unbiasedness).

cost to compute the estimate for different choices of N . The cost (in seconds) is plotted
against the root-mean-square error, which is equal to the sampling error, since the estimator
is unbiased. As proved in Theorem 2.3, since \beta > \gamma for both strategies, we observe parallel
straight lines with rate of \approx 2. Due to the reduced computational cost on the finer levels,
the adaptive strategy wins over the uniform one across a range of tolerances. Especially for
coarser tolerances the gains are significant and the sample-adaptive level hierarchy consistently
reduces the cost by a factor of 4.

The actual gains that are possible with the new CLMC estimator and with sample-adaptive
level hierarchies are very problem dependent. They also depend strongly on the error estimator
and on the adaptive refinement strategy. The estimator and the strategy employed here are
by no means optimal. It is known that the employed error estimator is not necessarily very
effective in the context of strong coefficient variations. Finally, the gains also depend onD
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CONTINUOUS LEVEL MONTE CARLO 109

the cost of the linear solver. For a fair comparison, we used a sparse direct solver, which
outperforms iterative solvers for the problem sizes encountered in our two-dimensional model
problem. However, further experiments in three space dimensions will require iterative solvers
and robust preconditioners that can cope both with the strong coefficient variations and with
the locally refined FE meshes. The cost and the memory requirements of sparse direct solvers
grow too rapidly in three dimensions (3D). Nevertheless, we expect the gains in 3D to be even
more significant.

5. Conclusions and further work. In this paper, we introduce CLMC, a generalization
of MLMC to a continuous framework where the level is a continuous variable rather than
an integer. We propose a practical estimator and prove a complexity theorem, showing the
same order of convergence as in MLMC. Furthermore, we provide a version of the estimator
that is unbiased with respect to the true quantity of interest and extend the complexity
theorem to this case, giving sufficient and necessary conditions for the unbiased estimator
to have finite cost. We apply CLMC to adaptive refinement schemes, where the continuous
framework is particularly well suited in order to capture sample-based level hierarchies. We
demonstrate clear computational gains when adaptive refinement strategies are adopted rather
than uniform ones.

The introduction of CLMC opens the door to several new research directions. We outline
a few ideas for further work:

Extension of Multi-index MC (MIMC) [13]. MIMC is an extension of MLMC to multidi-
mensional level parameters and higher-order differences. In the same way, as CLMC general-
izes MLMC by replacing the sum with an integral and the difference with a derivative in the
case of a scalar level parameter, one could generalize MIMC by employing multidimensional
integrals of partial derivatives. Indeed, consider (Q(\ell ))\ell to be a sequence of approximation
functions of \scrQ , where \ell = (\ell 1, . . . , \ell m) is an m-dimensional vector of non-negative levels. To
explain the idea, let us restrict our description to m = 2 and consider a two-dimensional
positive random variable \bfitL = (L1, L2). Assuming sufficient regularity, we can write

(24) \BbbE 
\bigl[ 
Q(\bfitL ) - Q(0)

\bigr] 
= \BbbE 

\biggl[ \int L1

0

\int L2

0

\partial 2Q(\ell )

\partial \ell 1\partial \ell 2
d\ell 

\biggr] 
+

2\sum 
j=1

\BbbE 
\biggl[ \int Lj

0

\partial Q(\ell )

\partial \ell j
d\ell j

\biggr] 
.

Note that (24) is a two-dimensional extension of the formula in (5). It is outside the scope of
this paper, but we argue that different choices for the probability distribution of the vector
of finest levels \bfitL (with potentially correlated components) correspond to different choices
of the grid of levels in MIMC. A natural choice would be again to pick independent Li \sim 
Exponential(ri) for i = 1, . . . ,m with ri > 0. Classically, in MIMC, \bfitL is a fixed integer
vector chosen to control the bias error, while the optimal strategy for the choice of samples
avoids computation of samples for levels with \ell 1/L1 + \ell 2/L2 > 1. Here, the bias can again be
completely eliminated (provided the variance decays fast enough w.r.t. the growth in cost),
and the optimal strategy is a direct consequence of the choice of the exponential distributions
for L1 and L2, making the probability that both \ell 1 and \ell 2 are simultaneously large practically
zero.D
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Extension of Multilevel Markov Chain Monte Carlo (MLMCMC) [7]. Multilevel tech-
niques have been successfully applied to sampling algorithms like Markov chain MC (MCMC),
drastically reducing their complexity cost. The extension of MLMCMC to continuous level
MCMC is an object of future work, potentially leading to an estimator that is an unbiased
with respect to the real quantity of interest, under the real target probability distribution.
Such an unbiased estimator would be of great interest: unlike forward problems, where the
bias can arise only from the approximation of the quantity of interest, inverse problems have
the additional issue of an approximation of the target probability distribution. Unbiasedness
guarantees that the estimator is in fact estimating the correct unknown, without expensive
extra computational cost to estimate the bias error. In addition, continuous level adaptive re-
finement strategies will significantly help to slim down MCMC's computational cost, allowing
one to solve even more complex problems.

Appendix A. Proof of the complexity results.

A.1. Proof of Theorem 2.3.

Proof. First, we want to bound the MSE by \varepsilon 2. By the bias-variance decomposition, this
can be achieved by bounding both the squared bias and variance by \varepsilon 2/2.

By using assumption (i) and recalling that L \sim Exponential(L), the bias term is bounded
by \bigm| \bigm| \bigm| \bigm| \bigm| \BbbE \Bigl[ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
 - (\scrQ  - Q(0))

\Bigr] \bigm| \bigm| \bigm| \bigm| \bigm| =
\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE 
\biggl[ \int L

L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

1

\BbbP (L \geq \ell )

dQ(\ell )

d\ell 
d\ell 

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| 
\leq \BbbE 

\Biggl[ \int L

L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

1

\BbbP (L \geq \ell )

\bigm| \bigm| \bigm| \bigm| \bigm| \BbbE 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] \bigm| \bigm| \bigm| \bigm| \bigm| d\ell 
\Biggr] 

\leq c1\BbbE 
\biggl[ \int L

L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

1

\BbbP (L \geq \ell )
e - \alpha \ell d\ell 

\biggr] 

=

\Biggl\{ 
c1

r - \alpha \BbbE 
\bigl[ 
e(r - \alpha )L  - e(r - \alpha )L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

\bigr] 
if r \not = \alpha ,

c1\BbbE [L - L \wedge L\mathrm{m}\mathrm{a}\mathrm{x}] if r = \alpha 
(25)

=
c1
\alpha 
e - \alpha L\mathrm{m}\mathrm{a}\mathrm{x} ,(26)

where we can explicitly compute the expected values in (25) using the distribution of L.
As we want to bound the squared bias by \varepsilon 2/2, this is equivalent to bounding the bias by

\varepsilon /
\surd 
2, which can be achieved by setting

(27) L\mathrm{m}\mathrm{a}\mathrm{x} \geq 

\Biggl\lceil 
1

\alpha 
log

\surd 
2c1r\varepsilon 

 - 1

\alpha 

\Biggr\rceil 
.

Then, let us provide an upper bound for the variance of the CLMC estimator (6). By the
law of total variance, we have

(28) \BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

] = \BbbE 
\Bigl[ 
\BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
| L]
\Bigr] 
+ \BbbV 

\Bigl[ 
\BbbE [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
| L]
\Bigr] 
.D
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Let us start by bounding the first term on the right-hand side of (28). We will use the
Cauchy--Schwarz inequality on the covariance, followed by assumption (ii). We have

\BbbE 
\Bigl[ 
\BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
| L]
\Bigr] 
= \BbbE 

\Bigl[ 
Cov

\Bigl( \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

, \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

\bigm| \bigm| L\Bigr) \Bigr] 
=

1

N
\BbbE 

\Biggl[ \int 
[0,L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}]2

1

\BbbP (L \geq \ell )

1

\BbbP (L \geq \ell \prime )
Cov

\biggl( 
dQ(\ell )

d\ell 
,
dQ(\ell \prime )

d\ell \prime 

\biggr) 
d\ell d\ell \prime 

\Biggr] 

=
1

N
\BbbE 

\Biggl[ \int 
[0,L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}]2

1

\BbbP (L \geq \ell )

1

\BbbP (L \geq \ell \prime )
\BbbV 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] 1
2

\BbbV 
\biggl[ 
dQ(\ell \prime )

d\ell \prime 

\biggr] 1
2

d\ell d\ell \prime 

\Biggr] 

=
1

N
\BbbE 

\left[  \Biggl( \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
\BbbV 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] 1
2

d\ell 

\Biggr) 2
\right]  

\leq 1

N
c22\BbbE 

\Biggl[ \biggl( \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
e - 

\beta 
2
\ell d\ell 

\biggr) 2
\Biggr] 

=

\left\{   
1
N

4c22
(2r - \beta )2

\BbbE 
\Bigl[ \bigl( 
e(r - 

\beta 
2
)L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}  - 1

\bigr) 2\Bigr] 
if r \not = \beta /2,

1
N c22\BbbE [(L \wedge L\mathrm{m}\mathrm{a}\mathrm{x})

2] if r = \beta /2

\leq 

\left\{         
1
N

4c22
(r - \beta )(2r - \beta )2

\bigl( 
(2r  - \beta )e(r - \beta )L\mathrm{m}\mathrm{a}\mathrm{x}  - \beta 

\bigr) 
if r \not = \beta /2, \beta ,

1
N

4c22
\beta 2 (\beta L\mathrm{m}\mathrm{a}\mathrm{x} + 1) if r = \beta ,

1
N

8c22
\beta 2 if r = \beta /2 .

On the other hand, the second term on the right-hand side of (28) can be bounded as

\BbbV 
\Bigl[ 
\BbbE [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

L\mathrm{m}\mathrm{a}\mathrm{x}
| L]
\Bigr] 
=

1

N
\BbbV 
\biggl[ \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
\BbbE 
\biggl[ 
dQ(\ell )

d\ell 

\biggr] 
d\ell 

\biggr] 
\leq 1

N
c21\BbbV 

\biggl[ \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0

1

\BbbP (L \geq \ell )
e - \alpha \ell d\ell 

\biggr] 

=

\Biggl\{ 
1
N

c21
(r - \alpha )2

\BbbV 
\bigl[ 
e(r - \alpha )L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}  - 1

\bigr] 
if r \not = \alpha ,

1
N c21\BbbV [L \wedge L\mathrm{m}\mathrm{a}\mathrm{x}] if r = \alpha 

\leq 

\Biggl\{ 
1
N

c21
(r - \alpha )2

\BbbE 
\bigl[ 
e2(r - \alpha )L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

\bigr] 
if r \not = \alpha ,

1
N c21\BbbV [L] if r = \alpha 

=

\left\{         
1
N

c21
(r - 2\alpha )(r - \alpha )2

\bigl( 
2(r  - \alpha )e(r - 2\alpha )L\mathrm{m}\mathrm{a}\mathrm{x}  - r

\bigr) 
if r \not = \alpha , 2\alpha ,

1
N

2c21
\alpha L\mathrm{m}\mathrm{a}\mathrm{x} if r = 2\alpha ,

1
N

c21
\alpha 2 if r = \alpha .

In both cases in the last step, we have again used our knowledge of the distribution of L.D
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Note that asymptotically the bound for the first term on the right-hand side of (28)
always dominates the bound of the second, since we have assumed that \beta \leq 2\alpha . Hence,
adding together the two bounds and using (27), as well as the fact that \varepsilon < e - 1, we obtain
the following asymptotic bound on the total variance:

\BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

] \leq C \prime 

N

\left\{     
\varepsilon 

\beta  - r
\alpha if r > \beta ,

log \varepsilon if r = \beta ,

1 if r < \beta 

for some constant C \prime > 0 that is independent ofN and \varepsilon . Thus, to guarantee \BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

] \leq \varepsilon 2/2
it suffices to choose

(29) N \geq 2C \prime \varepsilon  - 2 - \mathrm{m}\mathrm{a}\mathrm{x}(0, r - \beta 
\alpha 

)(log \varepsilon )\delta r,\beta ,

where \delta denotes the Kronecker delta.
Finally, we can bound the expected overall cost:

\scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

= N\BbbE 
\biggl[ \int L\wedge L\mathrm{m}\mathrm{a}\mathrm{x}

0
\scrC (\ell ) d\ell 

\biggr] 
= N

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0
\scrC (\ell )\BbbP (L \geq \ell ) d\ell 

\leq Nc3

\int L\mathrm{m}\mathrm{a}\mathrm{x}

0
e\gamma \ell \BbbP (L \geq \ell ) d\ell 

=

\Biggl\{ 
N c3

\gamma  - r

\bigl( 
e(\gamma  - r)L\mathrm{m}\mathrm{a}\mathrm{x}  - 1

\bigr) 
if r \not = \gamma ,

Nc3\gamma L\mathrm{m}\mathrm{a}\mathrm{x} if r = \gamma .
(30)

Hence, using (29) the overall cost can be bounded as

(31) \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
L\mathrm{m}\mathrm{a}\mathrm{x}

\leq C \varepsilon  - 2 - \mathrm{m}\mathrm{a}\mathrm{x}(0, r - \beta 
\alpha 

) - \mathrm{m}\mathrm{a}\mathrm{x}(0, \gamma  - r
\alpha 

)(log \varepsilon )\delta r,\beta +\delta r,\gamma 

for some constant C > 0, which is again independent of \varepsilon . This completes the proof
since we had assumed that r \in [min(\beta , \gamma ),max(\beta , \gamma )] and so max(0, r - \beta 

\alpha ) + max(0, \gamma  - r
\alpha ) =

max(0, \gamma  - \beta 
\alpha ).

A.2. Proof of Corollary 2.4.

Proof. To prove (a), suppose L\mathrm{m}\mathrm{a}\mathrm{x} = +\infty . Then, the bias in (26) is zero due to Corollary
2.2, so that the MSE is equivalent to the variance of the CLMC estimator. Since r < \beta it
follows as in the proof of Theorem 2.3 in section A.1, that

\BbbV 
\Bigl[ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

\infty 

\Bigr] 
\leq C \prime 

N

for some constant C \prime > 0. Analogously, since r > \gamma , the expected overall cost can be bounded
by

C\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty \leq C \prime \prime ND
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for some constant C \prime \prime > 0. Therefore, we can bound the MSE with \varepsilon 2 by taking N \geq C \prime \varepsilon  - 2

and the overall computational cost is C\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty = \scrO 

\bigl( 
\varepsilon  - 2
\bigr) 
.

To prove (b), suppose that the additional assumptions in part (b) of Corollary 2.4 hold.
Then, by tracking back the steps in the proof of Theorem 2.3 in section A.1, it can be seen
fairly easily that for \beta \leq \eta \leq \gamma we have

\BbbE 
\Bigl[ 
\BbbV [ \widehat Q\mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}

\infty | L]
\Bigr] 
\geq 

\left\{       
1
N

4c\prime 22
\eta (\eta  - r) if r < \eta , r \not = \eta /2 ,

1
N

8c\prime 22
\eta 2

if r = \eta /2 ,

+\infty if r \geq \eta ,

and \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty \geq 

\Biggl\{ 
N

c\prime 3
r - \eta if r > \eta ,

+\infty if r \leq \eta .

We see that MSE\times \scrC \mathrm{C}\mathrm{L}\mathrm{M}\mathrm{C}
\infty = +\infty for all choices of r.

Appendix B. Goal-oriented error estimators. We use a classical goal-oriented error esti-
mator to drive the samplewise adaptive scheme in our numerical experiments. The following
description is taken from [12]. Let \omega \in \Omega be fixed, and recall that u \in V denotes the solution
of (14) while uh \in Vh \subset V is its FE approximation on a grid \scrT h. The error in a quantity of
interest (defined by a linear functional2) is given by

(32) \scrQ (\epsilon h) = \scrQ (u - uh) = \scrQ (u) - Q(uh).

This functional can be interpreted as the ``source"" of the FE discretization error in the quantity
of interest, and is a bounded linear functional on the dual space V \prime . The key idea of goal-
oriented, a posteriori error estimators is to relate \scrQ (\epsilon h) to the solution residual ruh, i.e., we
seek a function w \in V \prime \prime such that \scrQ (\epsilon h) = w(ruh). Since V is a reflexive Hilbert space, there
exists a w \in V such that \scrQ (\epsilon h) = ruh(w). The function w, termed the influence function, is
the solution of the dual problem

(33) a(v, w) = \scrQ (v) \forall v \in V.

This dual solution can be approximate using the same FE approximation as uh, i.e., find
wh \in Vh \subset V s.t

a(vh, wh) = \scrQ (vh) \forall vh \in Vh .

Using the Galerkin orthogonality of u and uh, we can bound \scrQ (\epsilon h) as follows:

| \scrQ (\epsilon h)| = | \scrQ (u - uh)| = | a(u - uh, w)| = | a(u - uh, w)| + | a(u - uh, wh)| 

= | a(u - uh, w  - wh)| \leq 
\sum 
\tau \in \scrT h

\| u - uh\| a,\tau \| w  - wh\| a,\tau .(34)

In the last step, we have used the Cauchy--Schwarz inequality elementwise. Hence, the product
of energy norms \| u - uh\| a,\tau \| w - wh\| a,\tau provides an estimate for the elementwise contribution
to the error in Q(uh). It is now used to define an appropriate adaptivity scheme.

To estimate the error of the solutions of the primal and dual problems in the energy
norm on each element \tau , we use explicit error estimators. We only show the main ideas for

2Similar error estimators can also be obtained for nonlinear functionals by first linearizing about \epsilon h.D
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estimating \| u  - uh\| a,\tau using one of the most basic estimators. The bound for \| w  - wh\| a,\tau 
can be derived analogously. On each element \tau , using integration by parts, the FE error can
be represented as

a(\epsilon h, v)| \tau =

\int 
\tau 
fv dx - 

\int 
\tau 
\nabla uh \cdot k(x)\nabla v dx

=

\int 
\tau 
\scrR uv dx+

\int 
\partial \tau 
\scrJ uv ds \forall v \in V ,(35)

where the residual error on the element is define by

(36) \scrR u(x) = \nabla \cdot k(x)\nabla uh(x) + f(x) \forall x \in \tau ,

and where \scrJ u defines, for all x \in \partial \tau (except at the vertices), the jump of the flux in uh across
the element boundary by

(37) \scrJ u(x) =

\Biggl\{ 
k(x)

\Bigl[ 
n\tau (x) \cdot \nabla uh| \tau + n\tau \prime (\bfx )(x) \cdot \nabla uh| \tau \prime (\bfx )

\Bigr] 
\forall x \not \in \partial D ,

n\tau (x) \cdot k(x)\nabla uh| \tau \forall x \in \partial D ,

where n\tau is the outward unit normal to the element boundary \partial \tau at x and \tau \prime (x) is the
neighboring element of \tau at x. For simplicity, we assume that the boundary conditions are
homogeneous Dirichlet conditions on all of \partial D.

Using again Galerkin orthogonality, we can introduce the global FE interpolant \scrI hv in
(35), and thus using classical interpolation theory find that

a(\epsilon h, v)| \tau \leq \| \scrR u\| L2(\tau )\| v  - \scrI hv\| L2(\tau ) + \| \scrJ u\| L2(\partial \tau )\| v  - \scrI hv\| L2(\partial \tau )

\leq c1

\Bigl( 
h\tau \| \scrR u\| L2(\tau ) +

\sqrt{} 
h\tau \| \scrJ u\| L2(\partial \tau )

\Bigr) 
\underbrace{}  \underbrace{}  

=: \eta \tau (uh)

\| v\| a,\omega \tau ,

where \omega \tau denotes the subdomain of elements sharing a common edge with \tau , and where c1
is a problem dependent constant independent of the mesh size h\tau . Substituting v = \epsilon h and
summing over all elements, we can see that (up to a constant factor c2 depending on the
geometry) this leads to the explicit global energy error estimator

(38) \| \epsilon h\| a \leq c1c2

\left(  \sum 
\tau \in \scrT h

\eta 2\tau (uh)

\right)  1/2

for the primal solution on \scrT h.
The local error contribution \eta \tau (wh) to the dual solution wh on \tau in the energy norm

can be estimated analogously, and it can be shown that together with (34) this leads to the
goal-oriented error estimator

(39) | \scrQ (\epsilon h)| \leq c3
\sum 

\tau \in \scrT (k)

\eta \tau (uh)\eta \tau (wh) ,
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which is again explicit up to the unknown constant c3. Although the exact constants in all
the described estimators are not known, the relative error with respect to a coarsest reference
mesh can still be used to drive a goal-oriented mesh adaptivity procedure, as described in
section 4.1.

More sophisticated error estimators exist, including estimators where the constants are
known or can be computed explicitly (see, e.g., [12] for more details), but in our numerical
experiments we used the estimator described above.
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