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Abstract

Developers of Molecular Dynamics (MD) codes face significant challenges when adapting existing simula-
tion packages to new hardware. In a continuously diversifying hardware landscape it becomes increasingly
difficult for scientists to be experts both in their own domain (physics/chemistry/biology) and specialists
in the low level parallelisation and optimisation of their codes. To address this challenge, we describe
a “Separation of Concerns” approach for the development of parallel and optimised MD codes: the
science specialist writes code at a high abstraction level in a domain specific language (DSL), which
is then translated into efficient computer code by a scientific programmer. In a related context, an
abstraction for the solution of partial differential equations with grid based methods has recently been
implemented in the (Py)OP2 library. Inspired by this approach, we develop a Python code generation
system for molecular dynamics simulations on different parallel architectures, including massively paral-
lel distributed memory systems and GPUs. We demonstrate the efficiency of the auto-generated code by
studying its performance and scalability on different hardware and compare it to other state-of-the-art
simulation packages. With growing data volumes the extraction of physically meaningful information
from the simulation becomes increasingly challenging and requires equally efficient implementations. A
particular advantage of our approach is the easy expression of such analysis algorithms. We consider two
popular methods for deducing the crystalline structure of a material from the local environment of each
atom, show how they can be expressed in our abstraction and implement them in the code generation
framework.

Keywords: Molecular Dynamics, Domain Specific Language, Performance Portability, Parallel
Computing, GPU

1. Introduction

Molecular Dynamics (MD) codes such as NAMD
[1, 2], LAMMPS [3], GROMACS [4, 5] and DL-
POLY [6, 7] are important computational tools
for understanding the fundamental properties of
physical, chemical and biological systems. They
can be used to verify phenomenological theories
about atomistic interactions, understand complex
biomolecules [8] and self assembly processes [9],
replace costly laboratory experiments and allow
access to areas of parameter space which are very
difficult to reproduce experimentally. For exam-
ple, simulations can be run at high pressures and
temperatures found in stellar atmospheres [10], or
for dangerous substances, such as radioactive ma-
terials (see e.g. [11]). Classical MD codes simu-
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late a material by following the time evolution of
a large number of particles which obey the laws of
classical physics (in particular Newton’s laws [12])
and interact via phenomenological potentials. To
extract meaningful information, the state of the
system (i.e. the distribution of particle positions
and velocities) has to be analysed, for example by
calculating pairwise distribution functions. Infor-
mation on the crystalline structure of a material
can be derived by inspecting the local environment
of each particle [13, 14, 15].

In order to study systems at physically rele-
vant length- and timescales and to produce statis-
tically converged results, modern codes typically
run in parallel on state-of-the art supercomput-
ers [2]. With the recent rise of novel manycore
chips, such as GPU and Xeon Phi processors, sev-
eral popular MD simulation packages have been
successfully adapted to those new architectures,
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see e.g. [16, 17, 18, 19, 20, 21]. However, de-
velopers of MD codes face significant challenges:
adapting and optimising existing codes requires
not only a deep understanding of the physics and
chemistry of the simulated system, but also de-
tailed knowledge of the rapidly evolving hardware.
To name just a few complications, GPUs have a
complex memory hierarchy (host/device memory,
shared memory and local registers) and any data
access has to be coalesced to avoid unnecessary
data movement. Write conflicts have to be avoided
in threaded implementations on manycore chips
and recent CPUs, such as the Intel Haswell and
Broadwell chip, only run at peak performance if
the code can be vectorised. Since in practice it is
rare for a chemist/physicist to possess the skills
for optimising code on this level, it can be very
challenging to port MD software to a new archi-
tecture and maintain its performance in a rapidly
evolving hardware landscape. To address this fun-
damental issue, we describe an approach based on
the idea of a “Separation of Concerns” between the
domain specialist and scientific programmer. By
using a suitable abstraction, both the scientific ca-
pabilities and computational performance can be
improved independently.

DSLs for grid-based PDE solvers. Very similar is-
sues have been faced by developers of grid-based
solvers for partial differential equations (PDEs).
The key observation there was that the funda-
mental and computationally most expensive op-
erations can be expressed in terms of a suitable
abstraction: the algorithms (e.g. explicit time
stepping methods or iterative solvers for elliptic
PDEs) can be formulated as the repeated iter-
ations over a set of grid entities (cells, vertices,
faces, edges), each of which can hold information,
such as a local field value. This expression of the
algorithm in a Domain Specific Language (DSL)
simplifies the implementation significantly: once
the domain-specialist has expressed the code in
terms of those basic operations at the correct ab-
straction level and encapsulated any data in the
corresponding fundamental data structures, a com-
putational scientist can implement and optimise
the code on a particular architecture.

By introducing the correct abstraction, only
a small set of typical loops, which can be para-
metrised over the set of input and output data,
has to be considered. This concept has been ap-
plied very successfully in the development of the
performance-portable OP2 library [22, 23], which
allows the execution of finite element and finite
volume codes on a range of architectures. As de-
monstrated in [24, 22, 23, 25], the code achieves
excellent performance on CPUs, GPUs and Xeon

Phi processors. Similar techniques for structured
grids have been used to develop the C++ based
STELLA grid library for the COSMO numerical
weather forecast model [26]. DSLs for highly effi-
cient stencil computations on GPUs have also been
described in [27, 28].

Recently OP2 was re-implemented in Python
as the PyOP2 [29] framework. In PyOP2 the sci-
ence user specifies the computationally most ex-
pensive operations as a set of small kernels written
in C. Using code generation techniques, those ker-
nels are then compiled and executed on a partic-
ular architecture. By employing just-in-time com-
pilation, the kernels are launched from a high-level
Python code which implements the overall solver
algorithm. The performance of the resulting code
is on a par with that of monolithic Fortran- or C-
implementations.

A new DSL for MD simulations. In this paper we
describe a similar DSL approach for molecular dy-
namics simulations. The fundamental operation
we consider is a two-particle kernel: the user im-
plements a short C-code which is executed for each
combination of particle pairs in the simulation.
This kernel can modify any properties stored on
those particles. A classic example is the force cal-
culation: for each pair of particles, the force (out-
put) is calculated as a function of the two particle
positions (input). This local operation can be ex-
pressed in a few lines of C-code. The code is then
executed over all particle pairs, using the optimal
algorithm for a particular hardware and the na-
ture and size of the problem. For example, on a
CPU architecture, cell-list or neighbour-list meth-
ods can be used, whereas on GPU a neighbour-
matrix approach as in [30] might be more suitable.
Those details of the kernel execution, however, are
of no interest for the science developer who can fo-
cus on (i) the implementation of the local kernel
and (ii) the overall algorithm which orchestrates
the kernel calls in an outer timestepping loop.

To achieve this we developed a Python-based
code generation system which creates and com-
piles fast, architecture dependent wrapper code to
execute the C-kernel over all particle pairs. Our
approach is shown schematically in Fig. 1. By
using Python as a high-level language, looping al-
gorithms such as the Velocity Verlet method [31]
(see also e.g. [32, 33]) for timestepping or advanced
thermostats [34, 35] can be implemented very eas-
ily, while still generating fast code for the compu-
tationally expensive particle loops.

In the following we describe a proof-of-concept
implementation of the DSL and concentrate on
short-range two-particle kernels, i.e. kernels which
are only executed for particles which are separated
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Figure 1: Structure of the code generation framework. The
“Separation of concerns” between the domain specialist
user and computational scientist is indicated by the dashed
horizontal line.

by no more than a specified cutoff distance. We
demonstrate that for a Lennard-Jones benchmark
we achieve performance similar to state-of-the-art
simulation tools such as DL-POLY and LAMMPS.

While many atomistic models require the cal-
culation of long range forces and intra-molecular
interactions, systems containing only short range
interactions remain actively studied, particularly
in problems in soft matter and nucleation see e.g.
[36, 37]. In a separate paper [38] we report on the
implementation of a particle-Ewald method [39]
for electrostatic forces in our framework. As dis-
cussed in Section 6, more advanced long range al-
gorithms and further generalisations of the frame-
work to support multiple species and bonded in-
teractions for molecules will be implemented in the
future.

We stress, however, that our approach is not
limited to force calculations. To extract mean-
ingful information from a simulation, the results
have to be analysed. With growing problem sizes
and data volumes, this step becomes computation-
ally expensive and requires efficient and parallel
implementations. Below we consider two meth-
ods for analysing local environments which can
be used to classify the crystalline phase of a ma-
terial: the bond order analysis in [13] and com-
mon neighbour analysis in [14] (see also [15] for an
overview of other analysis methods). In the tra-
ditional approach, the user would run the simula-
tion with an existing MD package and then write
post-processing code to extract physically mean-
ingful information from the output. However, in

contrast to the MD code itself, parallelising this
analysis code or porting it to a different architec-
ture is often too time consuming to be feasible.
As we will demonstrate below, the fundamental
kernels for various common analysis methods can
be expressed in our framework. This implies that
optimised and parallel code is automatically gen-
erated for this important stage of the simulation
workflow.

A high-level approach for introducing new al-
gorithms to existing MD packages has been re-
alised in the PLUMED [40] and MIST [41] libraries.
They are written as plug-ins to well-established
codes and introduce free energy methods and al-
ternative integrators respectively. However, this
approach still requires the underlying MD code
to be implemented efficiently in the first instance.
Similar high-level Python interfaces are provided
by OpenMM [42] and HOOMD-blue [17]; in those
two cases the underlying code is part of the pack-
age itself. Using these interfaces both OpenMM
and HOOMD-blue allow the user to control a sim-
ulation and access available particle data through
calls to the underlying library. A Python based
DSL for MD simulations is described in [43]: the
Molecular Dynamics Language (MDL) provides data
structures for particle vectors and allows the easy
construction of new integrators via Python classes.
It also provides an interface to existing algorithms
from the ProtoMol packages and support for read-
ing MD configuration file formats. The main pur-
pose of MDL is to provide a scripting environment
for rapid prototyping of new timestepping algo-
rithms. Although there is support for MPI par-
allelism, the main focus is not on performance or
portability. While using optimised C++ imple-
mentations from ProtoMol, in contrast to our ap-
proach there is no code generation.

Many MD libraries support the implementa-
tion of custom interactions by either providing a
mechanism that interpolates tabulated values to
produce a potential, or a plugin system that al-
lows users to write and compile extensions that
implement the desired interaction. The OpenMM
Python interface allows a custom potential to be
described in symbolic form. Based in this, OpenMM
will automatically generate GPU code by using
symbolic differentiation and code generation. The
resulting code is compiled at runtime through the
OpenCL compiler.

However in all cases (with the exception of ker-
nel code generation in OpenMM) the primary aim
of the provided Python interface is to simplify ac-
cess to functionality in an underlying C++ or For-
tran code, i.e. Python acts as a “glue” for com-
bining existing functionality. If a desired simula-
tion or technique cannot be described within the

3



Python interface for the library, the user needs
to program extensions for the specific MD pack-
age. In contrast, our approach is more invasive
and allows the expression of both the high-level
algorithm and low level kernel in one code. We
support general kernels, which are not restricted to
force calculations that can be expressed in mathe-
matical form.

Structure. This paper is organised as follows: in
Section 2 we introduce the fundamental abstrac-
tions and data structures used in our approach.
The implementation of the abstractions in a Python
library and code generation techniques for differ-
ent architectures are discussed in Section 3. In
Section 4 we show how fairly complex structure
analysis techniques based on bond order- and com-
mon neighbour- analysis can be expressed in our
abstraction and explain how they can be added to
the simulation. To demonstrate the performance
of the generated code, we compare runtime and
scalability to other popular MD packages both on
MPI-parallel clusters and for GPUs in Section 5.
Here we also show output of the structure analysis
algorithms described in Section 4. We conclude
and outline ideas for further developments in Sec-
tion 6.

2. Abstraction

We begin by formulating the key operations
which are required to develop a generic MD code.
If the domain specialist (computational physicist
or chemist) can express their algorithms in terms
of those operations, then the code can be imple-
mented in a performance portable way in the high-
level Python framework described in Section 3.

Throughout this paper we assume that we want
to simulate and analyse a collection of N � 1
particles. Let each particle with global index i ∈
{0, 1, 2, . . . , N − 1} ≡ N have a set of properties π

such that π
(i)
r is the value of the r-th property on

particle i. Each particle has exactly M properties,
i.e. r ∈ [0,M − 1] ≡ M. Properties can, for ex-
ample, be the particle’s position and momentum
vector, its charge or the particle index. In addi-
tion there can be Mg global properties πgrg with
rg ∈ [0,Mg − 1] ≡ Mg. Typical global proper-
ties might be the total kinetic energy or the radial
distribution function (represented as a vector R
with entries Ri which count the average number
of particles in each distance interval [ri, ri+1]).

Operations which involve one or more particles
are described in the following three definitions:

Definition 1. A Particle Loop is an operation which

for each particle i ∈ N reads properties π
(i)
r with

r ∈ MR ⊂ M and writes properties π
(i)
s with

s ∈MW ⊂M. The operation can also read global
properties πgrg with rg ∈Mg

R ⊂Mg and write πgsg
with sg ∈ Mg

W ⊂Mg such that the final value of
these global properties is independent of the order
in which it loops over the particles.

Example 1. Kinetic energy calculation. To cal-
culate the total kinetic energy, we loop over all

particles i and add 1
2m

(i)
∑d−1
k=0(v

(i)
k )2 to the global

variable K. The particle properties considered in
this example are the mass m(i) and the three com-

ponents v
(i)
k , k = 0, 1, 2 of the particle’s velocity

vector v(i).

Definition 2. A Particle Pair Loop is an oper-
ation which for all particle pairs (i, j) ∈ N × N
reads properties π

(i)
r and π

(j)
r with r ∈ MR ⊂ M

and modifies properties π
(i)
s with s ∈ MW ⊂ M

such that the result is independent of the order of
execution. The kernel can also read global proper-
ties πgrg with rg ∈ Mg

R ⊂ Mg and write πgsg with
sg ∈ Mg

W ⊂ Mg such that the result does not
depend on the order in which the loop is executed
over all particle pairs.

Example 2. Force Calculation. The most obvi-
ous example of a Particle Pair Loop is the force
calculation. Here each particle has six relevant
properties, namely the three entries of its position
vector and the three entries of the force exerted on
the particle by all other particles. For each parti-
cle pair the total force on the first particle is incre-
mented by the interaction force f(r(i), r(j)) which
depends on the relative position of the particles,

i.e. the three position properties r
(i)
k for k = 0, 1, 2

are read and the three force properties F
(i)
k are

incremented as F
(i)
k 7→ F

(i)
k + fk(r(i), r(j).

Definition 3. A Local Particle Pair Loop is a Par-
ticle Pair Loop which is only executed for particles
which are separated by no more than a specified
cutoff distance rc.

Example 3. Local environment. Suppose that each
atom can be in one of two possible states. For ev-
ery atom we want to count the number of other
atoms in the same state which are up to a distance
rc away. In this case each particle would have five
properties, namely the three entries of the position
vector, the state of the atom and the number of
atoms in the same state in the local environment.
For each pair of atoms the Particle Pair Kernel
would first check whether they are less than rc
apart by calculating the distance |r(i) − r(j)| be-
tween the particle positions. If this is the case, and
both particles are in the same state, the counter
for the number of same-state atoms is increased.
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Further examples will be given in Section 4 where
we show how the bond order analysis in [13] and a
common neighbour analysis [14] can be expressed
as Particle- and Particle Pair- Loops. The Parti-
cle Pair Loop can be easily generalised to a loop
involving k > 2 particles for multiparticle forces.

Note that the computational complexity of a
Local Particle Pair loop is O(N · Nlocal) where
Nlocal = (4/3)πr3

cρ is the average number of lo-
cal neighbours. Since, for constant density ρ, the
number Nlocal is constant and relatively small, the
computational complexity is O(N) and therefore
significantly smaller than the O(N2) complexity of
a Particle Loop.

Comment on Newton’s third law. For most phys-
ically relevant interactions the force on the first
particle of the pair is equal and opposite to the
force acting on the second particle. Hence, instead
of looping over all N(N−1) unordered pairs (i, j),
one could also only loop over the N(N − 1)/2 or-
dered pairs with i < j, calculate the force once and
update it on both particles. Naively this should
lead to a speedup of a factor of two. However, it in-
troduces write conflicts in a (shared memory) par-
allel implementation. While those can be avoided
by adding suitable atomic statements or using a
colouring approach, the more serious issue is that
it prevents automatic vectorisation. When writ-
ing back to memory, the compiler has to assume
that there could be aliasing between particle data
(from the compiler’s point of view two of the neigh-
bours of each particle could be identical), and will
not generate vectorised code. This can be over-
come by suitable clustering of the neighbour lists
[44] or blocking of the pair lists [45] and explicit
vector load/store operations. Note, however, that
the authors of [44] use architecture dependent vec-
tor instructions in their kernels, which we want to
avoid to achieve portability.

Here we do not use any of those approaches and
rely on automatic vectorisation, which works well
if we only write to the first particle in each pair. In
summary we observe that the factor of two which
could be gained by using Newton’s third law is
more than offset by the advantages of vectorisa-
tion and we find that the code is faster overall if
we loop over all ordered pairs and only write to the
first particle. As will be demonstrated in Section
5.1, for short range forces we achieve equal or bet-
ter performance than other common MD packages.
If necessary, it would of course be possible to im-
plement a version of the pair looping mechanism
which exploits Newton’s second law in our code
generation framework and improvements such as
those described in [44, 45] could be considered in
future extensions.

Listing 1: Data structure initialisation

x = ParticleDat(ncomp=3,dtype=c_double)

v = ParticleDat(ncomp=3,dtype=c_double)

S = ParticleDat(ncomp=1,dtype=c_int ,

initial_value =0)

KE = ScalarArray(ncomp=1,

dtype=c_double ,

initial_value =0.0)

PE = ScalarArray(ncomp=1,

dtype=c_double ,

initial_value =0.0)

3. Implementation

The operations identified in the previous sec-
tion are the computationally most expensive com-
ponents of an MD simulation. We now describe
their efficient parallel implementation in a code
generation framework. From the discussion above
it should be clear that our framework will have to
provide (1) data structures to represent particle

properties π
(i)
r as well as global properties πgr and

(2) mechanisms for executing Particle- and Parti-
cle Pair-Loops. The following choices are inspired
by the PyOP2 [29] data structures and execution
model. An implementation of the framework de-
scribed in this section can be found at:

https://bitbucket.org/wrs20/ppmd

All results in this paper were obtained with the
release available as [46].

3.1. Data structures

Particle properties π
(i)
r are represented as in-

stances of a ParticleDat class. This class is a
wrapper around a two-dimensional numpy array,
where the first index labels the particle i and the
second corresponds to the property index r. Simi-
larly we provide storage for global data shared by
all particles in a ScalarArray class.

For convenience and to support different data
types, we do not collect all properties into a single
ParticleDat (or ScalarArray), but rather allow
several ParticleDats and ScalarArrays instances
which can be named by the user. For example,
consider a simulation with particles which have
three dimensional position and momentum vectors
r(i),v(i) ∈ R3 and a species index S(i) ∈ N. We
also store the total kinetic- and potential energies
KE,PE ∈ R. This set of local and global proper-
ties would be implemented as shown in Listing 1.

The underlying numpy array can be accessed
as the ParticleDat.data property; however the
“getitem” and “setitem” methods have been over-
loaded to automatically mark the ParticleDat as

5
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Listing 2: Switching between CPU and GPU implementa-
tion

import ppmd as md

# Set USE_CUDA to True or False

if not USE_CUDA:

Data = md.data

State = md.state.State

ParticleLoop =

md.loop.ParticleLoop

PairLoop =

md.pairloop.PairLoopNeighbourListNS

else:

Data = md.cuda.cuda_data

State = md.cuda.cuda_state.State

ParticleLoop =

md.cuda.cuda_loop.ParticleLoop

PairLoop =

md.cuda.cuda_pairloop. \

PairLoopNeighbourListNS

PositionDat = Data.PositionDat

ParticleDat = Data.ParticleDat

ScalarArray = Data.ScalarArray

“dirty” if the internal data has been modified di-
rectly by the user. This is important in parallel
implementations based on a domain decomposi-
tion approach, where data owned by neighbour-
ing processors is duplicated in a “halo” region. If
“dirty” data is used subsequently in a loop, a ex-
change of halo data will be triggered automati-
cally and ensures that data is consistent between
processors. The interface to the stored data is
identical for both CPU- and GPU- ParticleDat

data structures. When accessing data stored in a
ParticleDat stored on the GPU in device mem-
ory, “getitem” and “setitem” calls will automati-
cally trigger data copies between host- and device-
memory. The correct architecture is chosen at the
beginning of the Python script by setting aliases
for the appropriate objects as shown in Listing 2.

3.2. Particle Pair Loops

In addition to data structures, an execution
model is required to launch the computational ker-
nel over all particle pairs. For this, the user writes
a brief C-kernel which describes how the properties
of the two particles involved in the interaction are
modified. In addition, the ParticleDats which
are operated on have to be passed explicitly to the
pair looping mechanism. For each ParticleDat

an access descriptor describes whether the prop-
erty is read from or written to. The allowed access
descriptors are READ (property is only read), WRITE
(property is only written to), RW (property is read
and written), INC (property is incremented) and
INC_ZERO (identical to INC except the values are
set to zero before the kernel is launched); see also

Tab. 3 for a summary. Since the code generation
system does not inspect the C-kernel provided by
the user, this information allows the looping sys-
tem to handle read- and write- access to parti-
cle properties in a parallel setting. For example,
in a distributed memory implementation, before
the execution of the loop halo regions have to be
updated for all variables which have a READ ac-
cess descriptor. Similarly, if a particle has WRITE

or INC access, in a threaded implementation write
conflicts have to be avoided by generating atomic
write statements or employing suitable colouring
(see for example the layer algorithm described in
[47]). In addition to ParticleDats, global vari-
ables (represented as ScalarArrays) can be passed
to the kernel with the same access descriptors.
To treat numerical constants which do not change
during the kernel execution, each kernel can also
be be passed a list of Constant objects. Any in-
stances of Constant variables in a kernel are re-
placed by their numerical values at compile time;
this allows the compiler to make additional opti-
misations, for example by exploiting static loop
bounds.

As an (fictitious) example, imagine that on each
particle we store the properties a (which has d = 3
components) and b (which has one component).
For all particles i we carry out the operation which
calculates

b(i) =
∑

all pairs (i, j)

d−1∑
r=0

(
a(i)
r − a(j)

r

)2

(1)

and updates the global sum

Sg =
∑

all pairs (i, j)

d−1∑
r=0

(
a(i)
r − a(j)

r

)4

. (2)

A Particle Pair loop which performs this opera-
tion can be implemented as shown in Listing 3.
The execution over all particle pairs is illustrated
schematically in Fig. 2.

Inside the Particle Pair Loop the two involved
particles are accessed as the .i and .j component
of a structure, and the names of the ParticleDats
are given in the dictionary which is passed as the
second argument to the PairLoop constructor. For
example, the r-th component of the first particle
is accessed as a.i[r]. This C-variable automat-
ically points to the correct position in the numpy

array which holds the ParticleDat values. Parti-
cle Loops are conceptually very similar and can be
implemented in the same way. While the simple
example above aims to illustrate the key concepts
of our approach, we also describe the implementa-
tion of a complete Lennard-Jones benchmark with
Velocity-Verlet integrator in Section 5. The C- and
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Listing 3: Python code for executing the operations in Eqs.
(1) and (2) over all particle pairs.

# dimension

dimension =3

# number of particles

npart =1000

# Define Particle Dats

a = ParticleDat(npart=npart ,

ncomp=dimension ,

dtype=c_double)

b = ParticleDat(ncomp=1,

npart=npart ,

initial_value =0.0,

dtype=c_double)

S = ScalarArray(ncomp=1,

initial_value =0.0,

dtype=c_double)

kernel_code=’’’

double da_sq = 0.0;

for (int r=0;r<dimension ;++r) {

double da = a.i[r]-a.j[r];

da_sq += da*da;

}

b.i[0] += da_sq;

S += da_sq*da_sq;

’’’

# Define constants passed to kernel

kernel_consts = (Constant(’dimension ’,

dimension) ,)

# Define kernel

kernel = Kernel(’update_b ’,

kernel_code ,

kernel_consts)

# Define and execute pair loop

pair_loop = PairLoop(kernel=kernel ,

{’a’:a(access.READ),

’b’:b(access.INC),

’S’:S(access.INC)})

pair_loop.execute ()

a.i[r] (read)

b.i[0] (write)

a.j[r] (read)

property a

property b

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

8
21

4

2 1

kernel

24

3

global property S (write)

Figure 2: Pairwise kernel for executing the operation in
Eqs. (1) and (2) over all particle pairs.

Python-code for executing the force calculation in
this case is given in Listings 9 and 10 in Appendix
A.1.

We note that the code in Listing 3 resembles
what would be written in PyOP2 to implement
a loop over a set of mesh entities. In PyOP2
the fundamental data types are called Dat and
GlobalDat. A Dat object represents data which
is associated with topological entities of the mesh,
for example the average value of a field in each
grid cell. A GlobalDat variable contains glob-
ally available data. The main difference is that
PyOP2 loops over a particular static set of topo-
logical entities and can access data on other re-
lated entities which are specified via indirection
maps. Those indirection maps are provided as ad-
ditional arguments to the Dat dictionary of the
looping class. An important difference is that the
indirection maps in PyOP2 have a fixed “arity”,
i.e. each unknown depends on a fixed number of
other unknowns. In contrast, in an MD code, the
number and identity of nearest neighbours of each
particle varies throughout the simulation. In a
parallel MD code the distribution of particles over
processors also changes over time, and this requires
additional parallel communication.

3.3. Domain Specific Language

The key Python classes for representing MD
specific data objects in our embedded DSL are
summarised in Tab. 1. The looping classes which
are used to modify those fundamental objects ac-
cording to the Particle Loop and Particle Pair
Loop operations defined mathematically in Section
2 are given in Tab. 2. Valid access descriptors
are listed in Tab. 3. For clarity instances of fun-
damental Python types are coloured in blue, the
DSL specific classes are shown in orange and in-
stances of those classes in red. The semantics of
the language have been explained in the preceed-
ing sections. The code strings used in the Kernel

objects have to be legal C-code, and the particle
properties can be accessed as described in Section
3.2.

While the spectrum between pure DSLs (such
as the Unified Form Language [48]) and APIs (such
as, for example, the BLAS/LAPACK libraries [49,
50]) is somewhat fluid, we argue that our approach
does represent an (embedded) DSL since:

1. It allows the expression of domain-specific
mathematical operations (Particle- and Par-
ticle Pair loops) for the fundamental data
objects (= particle properties).

2. It is relatively complete in the sense that it
allows the expression of key operations in
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Description Access Descriptor

Read-only access access.READ

Write-only access access.WRITE

Read and write access access.RW

Incremental access access.INC

Incremental access, access.INC ZERO

initialise to zero

Table 3: Supported access descriptors

MD codes; it is not restricted to the compo-
sition of high-level operations such as calls
to pre-defined force terms.

3. The user has full low-level control in the sense
that they can directly manipulate the fun-
damental data objects in the C-kernel; this
allows the implementation of complex force
calculations or analysis algorithms.

In this sense it differs from other, more scripting-
like approaches such as the PLUMED [40] or MIST
[41] libraries which mainly provide high-level APIs
to existing MD packages.

3.4. Code generation for performance-portability

To execute a pairloop we use a code genera-
tion approach. Given the kernel and information
on how data is accessed, appropriate wrapper C-
code for launching the kernel over all particle pairs
is generated for a particular hardware backend.
This means that to target different architectures,
the user has to write the kernel code only once:
it is up to the code generation system (developed
by a computational scientist) to execute this on
a specific architecture. The implementation gen-
erates C code by first inserting the user written
kernel into a pre-made template for the specified
looping type, then for each passed ParticleDat

or ScalarArray C code is added that matches the
specified access descriptor. The result of the code
generation stage is a C function which is subse-
quently compiled into a shared library using the C
compiler defined by the user. The shared library
is then loaded by the framework using the ctypes

Python module such that it may be called directly
from the Python code.

Note that the user never has to explicitly add
calls to MPI routines or guarantee the correctness
of the results on a threaded architecture by pro-
tecting write statements with “atomic” or “criti-
cal” keywords.

On a particular architecture different pair loop-
ing mechanisms (described below) lead to the same
scientific result but can have different computa-
tional performance. Our method allows the straight-

Listing 4: Pair loop in a sequential implementation

for (int i=0;i<npart ;++i) {

for (int j=0;j<npart ;++j) {

if (i!=j) {

// INSERT KERNEL CODE HERE

}

}

}

forward comparison between different looping mech-
anism without the user intervention to modify code,
a feature that could potentially be exploited to op-
timise performance on a problem-by-problem ba-
sis. Since the system is aware of data dependencies
between different kernel, loop fusion to reduce the
amount of data movement could be implemented
to further improve performance.

On a sequential machine, the simplest possible
wrapper code is shown in Listing 4. The compu-
tational complexity of this nested loop is O(N2)
and for short range kernels this method would be
extremely inefficient. In the following we describe
more advanced looping mechanisms for executing
Local Particle Pair Loops on parallel architectures.

3.5. Cell based methods for Local Particle Pair Loops

If we only consider Local Particle Pair kernels
with a fixed cutoff rc, the computational complex-
ity is reduced to O(N) and it is possible to use cell
based looping methods (see [51] for an introduc-
tion). In this approach the physical domain of size
[0, Lx]×[0, Ly]×[0, Lz] is divided into small cells of
size Λx×Λy×Λz such that Λx,y,z ≥ rc; to simplify
the presentation, we assume Λ = Λx = Λy = Λz in
the following. At a given point in time every par-
ticle can be uniquely associated with one of those
small cells. The local Particle Pair loop with cut-
off rc can then be executed by visiting all cells e in
an outer loop and then iterating over all 26 neigh-
bouring cells e′. Since Λ ≥ rc it is then sufficient
to consider pairs of particles (i, j) such that i ∈ e
and j ∈ e, e′.

For each particle this algorithm considers po-
tential interactions with other particles in a vol-
ume 27Λ3. However, most of these pairs will be
separated by a distance |r(i) − r(j)| > Λ ≥ rc.
To avoid unnecessary execution of the kernel for
non-interacting particles, it is possible to add an-
other preprocessing step which loops through all
potential pairs and only stores those which are a
distance of up to Λ away. Interactions can then
be calculated by looping through this neighbour
list. In three dimensions this reduces the cost of
the force calculation by up to a factor 81/(4π) ≈
6.45. The computational overhead for building the
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Description Python Class

Collection of properties for all particles with d com-
ponents per particle. All values are initialised to x0

when the object is created.

ParticleDat(ncomp=d,
dtype=c double/c int/c long/...,

initial value=x0)

Specialisation of ParticleDat for particle positions
(see Section 3.5).

PositionDat(ncomp=d,
dtype=c double/c int/c long/...,

initial value=x0)

Global property (not specific to individual particles)
with d′ components; values are initialised to y0.

ScalarArray(ncomp=d′,
dtype=c double/c int/c long/...,

initial value=y0)
Numerical constant which is replaced by its specific
value in kernel, i.e. the string L is replaced by the
numerical value x in the generated C-code.

Constant(label=L,
value=x)

Kernel object which can be used in one of the looping
classes defined in Tab. 2. The C-source code is given
as a string S and any numerical constants C1, C2,
. . . can be passed in as a list of Constant objects.

Kernel(label=L,
code=S,
constants=(C1, C2, . . . ,) )

Table 1: Fundamental data classes of the DSL

Description Python Class

Execute Kernel object k for all particles and mod-
ify particle data (ParticleDat, PositionDat or
ScalarArray objects) d1, d2, . . . . Each particle data
object di can be accessed via the corresponding label
Li and has access descriptor Ai defined in Tab. 3.

ParticleLoop(kernel=k,
part dats={L1:d1(A1),

L2:d2(A2),
. . . } )

Same as ParticleLoop, but execute the kernel over
all pairs of particles.

PairLoop(kernel=k,
part dats={L1:d1(A1),

L2:d2(A2),
. . . } )

Table 2: Fundamental looping classes of the DSL
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Listing 5: Creation of a state object with position, velocity
and acceleration data

import ppmd as md

# create state and domain objects

state = md.state.State ()

state.domain = md.domain.BaseDomain ()

state.domain.boundary_condition =

md.domain.BoundaryTypePeriodic ()

state.npart = N

# add ParticleDats to state

PositionDat = md.Data.PositionDat

ParticleDat = md.Data.ParticleDat

state.pos = PositionDat(ncomp=3,

dtype=c_double)

state.vel = ParticleDat(ncomp=3,

dtype=c_double)

state.acc = ParticleDat(ncomp=3,

dtype=c_double)

neighbour list is usually amortised by the gain in
the force calculation.

For both O(N) pair looping mechanisms de-
scribed above, different ParticleDats can no longer
be considered independently, but rather have to
be seen as members of a State object which also
stores the shared cell- and neighbour lists. One
particular ParticleDat in this State object stores
the particle position, and this information is re-
quired when building the cell- or neighbour-lists.
To distinguish it from other properties such as
velocity and acceleration, a special derived class
PositionDat is used. As shown in Listing 5, all
ParticleDats in a simulation have to be associ-
ated with a State object by setting (user-defined)
properties of the state as

A.PROPERTY = ParticleDat(...).

Each state also contains a domain object, which
stores information about the physical domain size
and boundary conditions.

During the simulation, particles will move be-
tween cells and hence if Λ = rc the cell- and neigh-
bour lists need to be rebuilt at every iteration,
which can be very expensive. This can be avoided
by increasing the cell size and choosing an ex-
tended cutoff rc: if the relevant interaction range
is rc < rc < Λ and vmax is the maximal particle
velocity, a rebuild of the cell- and neighbour lists
is only necessary every n time steps if

rc = rc + 2n · δt · vmax = rc + δ (3)

where δt is the time step size. For time integration
loops we further provide the IntegratorRange class,
which allows timestepping methods to be imple-
mented in a way that retains the simplicity and
flexibility of a standard Python range based loop

Listing 6: Example use of IntegratorRange called with:
Ni number of iterations, timestep size dt, velocities v, list
reuse count Ns and shell thickness delta = rc − rc.

for i in IntegratorRange(Ni,dt ,v,

Ns,delta):

particle_loop_1.execute ()

force_calculation.execute ()

particle_loop_2.execute ()

without explicit cell- and neighbour list rebuilds
by the user. An example is shown in Listing 6.
In addition to the number of integration steps,
IntegratorRange is passed the following informa-
tion:

• the timestep size δt,

• a ParticleDat containing particle velocities,

• a maximum reuse count and

• the thickness δ = rc − rc of the additional
shell.

3.5.1. Parallelisation

To simulate the interactions of a very large
number of particles in a reasonable time, MD codes
have to be parallelised. Modern HPC installations
expose parallelism on different levels and the im-
plication of this complex hierarchy on MD imple-
mentations will be discussed in the following.

Distributed memory. The cell-based methods de-
scribed above can be parallelised with a standard
domain-decomposition approach. For this the global
domain is split up into smaller subdomains stored
on each processor. To correctly include interac-
tions with particles stored on neighbouring subdo-
mains, a layer of halo cells is added. Those cells
hold copies of particles which are owned by other
processors. Data in halo cells needs to be updated
whenever this data changes. Note, however, that
this is only necessary if the values of a partic-
ular ParticleDat are actually read in the loop,
and this information is made explicit via the ac-
cess descriptors passed to the pairloop. Our code
generation system will therefore only launch the
corresponding parallel communication calls if nec-
essary. This guarantees the parallel correctness of
the code while avoiding superfluous and expensive
parallel communications. Since particles can move
to different processors and hence the data layout
is not fixed, there are actually two parallel com-
munication types which need to be carried out:

1. Data on particles in the halo region has to
be updated if it has changed and is used in
a pair loop.
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2. Particles which leave the local domain need
to be moved to a different processor.

The first operation typically needs to be performed
whenever dirty data is read. For example halo ex-
changes on particle positions are required before
every force update. The second communication
type only needs to be performed every n steps,
since the increased cut off in Eq. (3) ensures the
accuracy of the calculation even if a particle leaves
the cell during those steps. In addition to rebuild-
ing the cell list, when a particle has left the subdo-
main owned by a processor, the State object will
automatically move all data owned by the particle
to the receiving processor.

Virtually all modern supercomputers now con-
sist of a large collection of relatively complex com-
pute units (CPUs, GPUs or Xeon Phis) organised
into nodes. While parallelisation between nodes
is achieved with the distributed memory approach
described above, each node consists of a large num-
ber of compute cores which have access to the same
memory. Parallelisation across those cores on a
node requires a different approach which will be
described in the following section. To make use
of the full machine, a hybrid approach which com-
bines both parallelisation strategies is typically used.

Threading and GPU parallelisation. To reduce mem-
ory requirements, in a sequential implementation
(or if the code is parallelised purely with a dis-
tributed memory approach), the cell-list is stored
as a linked list and the neighbour list is realised
by storing all neighbours in a long array. This
prevents any further shared memory parallelisa-
tion based on threading since neither the cell-list
nor the neighbour-list can be built in parallel. To
avoid this problem on GPUs we use the approach
in [30] and replace the cell list by a cell-occupancy
matrix H. For this each particle i is associated
with a cell ci and the particles in a cell are arranged
into “layers”, such that all particles in a cell have
a different layer-index. If the layer index of parti-
cle i is `i, then Hci,`i = i, and H can be built in
parallel. Based on this, a neighbour matrix W can
be built such that Wm,i is the index of the m-th
neighbour of particle i. An alternative approach
which is described in [47] and avoids building W ,
would be to loop over all pairs of layers and use
the matrix H to identify interacting particles.

We recently also extended our framework by
an OpenMP backend which is described in [38].

Vectorisation. Modern HPC CPUs contain float-
ing point units (FPU) which are capable of ex-
ecuting Single Instruction Multiple Data (SIMD)
instructions. By using SIMD instructions the FPU
can apply the same operation to multiple data

points simultaneously. For example a 256bit wide
vector FPU may simultaneously apply the same
operation to four 64bit doubles or eight 32bit floats.
However, producing machine code that contains
these SIMD instructions is a non-trivial task. One
approach to produce SIMD instructions involves
explicitly implementing the desired mathematical
operations using “intrinsic” functions for a tar-
get architecture (see e.g. [44]). This ensures that
SIMD instructions are generated by the compiler
but requires careful implementation to be tech-
nically correct and produce efficient code. Since
the intrinsics are hardware specific, this approach
is not portable. In our code we currently simply
avoid code patterns which inhibit auto-vectorisation
by the compiler. The ability to replace loop bounds
by their numerical values via Constant objects
also helps with vectorisation. As noted in Section
2, we do not currently exploit symmetry in New-
ton’s third law when computing forces between
particles (although the framework would in prin-
ciple support this). We find that the Intel C/C++
compiler will successfully auto-vectorise kernels with-
out explicitly implementing gather or scatter oper-
ations provided the kernel itself does not contain
a code pattern that inhibits vectorisation. The
strong- and weak- scaling results reported in Sec-
tion 5.1 were obtained with vectorised code. We
have also tried to vectorise the code by blocking
pair-loops as described in [45], but find that for
the simple examples we considered this did not
give any improvement due to additional explicit
memory movement. In the future we will also ex-
plore further optimisations which are necessary for
more complex kernels and consider for example a
portable implementation of the vectorisation ap-
proaches in [44].

4. Structure analysis algorithms

To demonstrate that the abstraction and im-
plementation described in the previous sections
can be used to implement more complex kernels
and is not restricted to force calculations, we now
discuss two popular algorithms for classifying the
local environment of a particle. We show how
these algorithms can be expressed in terms of particle-
and local particle-pair loops. Both algorithms can
be used to identify the crystalline structure of the
material; an overview of other common methods
can be found in [15].

4.1. Bond order analysis

The bond order analysis (BOA) in [13] intro-
duces a set of order parameters which are defined
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Lattice Structure Q4 Q5 Q6

fcc 0.191 0 0.575
hcp 0.097 0.252 0.485
bcc 0.036 0 0.511

Table 4: Values of Q4, Q5 and Q6 for perfect lattices, see
[15] and Tab. 1 in [52].

for each particle i as

Q
(i)
` =

√√√√ 4π

2`+ 1

+∑̀
m=−`

|q(i)
`m|2 (4)

with ` = 0, 1, 2, . . . . The sum

q
(i)
`m =

1

|N (i)|
∑

j∈N (i)

Y m` (r̂(i,j)) (5)

is computed by evaluating the spherical harmonics
Y m` in the directions

r̂(i,j) =
r(i) − r(j)

|r(i) − r(j)|
pointing from the atom i to each of its neighbours
j ∈ N (i). Atoms are considered to be neighbours
if their distance is smaller than a predefined cutoff

range rc. The moments q
(i)
`m describe the angular

dependence of the charge density ρ(i)(r − r(i)) of
the atom’s neighbours in spectral space. It can
then be shown that the integral of the squared
averaged charge density can be written as∫

Ω

|ρ(i)(r)|2dΩ =

∞∑
`=0

(
Q

(i)
`

)2

.

Perfect crystal lattices have well defined values for
Q`. In particular the order parameters with ` =
4, 5, 6 are often used to estimate the degree and
nature of crystalinity. Specific values for fcc, hcp
and bcc lattices are given in Tab. 4 ([15, 52]).
In a simulation the local structure of the material
can therefore be estimated by calculating Q

(i)
` and

comparing to the reference values in Tab. 4. If
they agree within some tolerance, the system is
classified to be in the corresponding state.

The order parameters Q
(i)
` can be calculated

with the two loops shown in Algorithms 1 and 2.
The first particle pair loop (Algorithm 1) calcu-

lates the number of neighbours ν
(i)
nb = |N (i)| and

the moments

q̃
(i)
`m =

∑
j∈N (i)

Y m` (r̂(i,j)) (= ν
(i)
nb q

(i)
`m)

for m = −`, . . . ,+` for each atom i; those quanti-
ties are stored in two ParticleDats. The particle

loop in Algorithm 2 uses ν
(i)
nb and q̃

(i)
`m to calculate

the Q
(i)
` according to Eq. (4); the result is stored

in a third ParticleDat. The corresponding source
code can be found in the examples/structure/boa/
subdirectory of the accompanying code release [46].

Algorithm 1 BOA Local Particle Pair Loop I.
Input: particle positions r(i) [READ].

Output: moments q
(i)
`m [INC ZERO]

1: for all pairs (i, j) do
2: if |r(i) − r(j)| < rc then

3: r̂(i,j) 7→ (r(i) − r(j))/|r(i) − r(j)|
4: for m = −`, . . . ,+` do

5: q̃
(i)
`m 7→ q̃

(i)
`m + Y m` (r̂(i,j))

6: end for
7: end if
8: end for

Algorithm 2 BOA Particle Loop II.

Input: moments q̃
(i)
`m [READ], number of local neigh-

bours ν
(i)
nb [READ].

Output: Q
(i)
` [WRITE]

1: for all particles i do
2: for m = −`, . . . ,+` do

3: q
(i)
`m 7→ q̃

(i)
`m/ν

(i)
nb

4: end for

5: Q
(i)
` 7→

√
4π

2`+1

+∑̀
m=−`

|q(i)
`m|2

6: end for

4.2. Common neighbour analysis

Common neighbour analysis (CNA) [14] is a
purely topological method for classifying the lo-
cal environment of each particle. All atoms within
a certain cutoff distance rc are considered to be
“bonded”. For any bonded pair (i, j) the set of all
other atoms which are bonded to both i and j are
referred to as common neighbours. The bonds be-
tween those common neighbours define a graph G.
For each pair (i, j) ∈ G this graph is now classified
by three numbers [15]: (1) the number of common
neighbours nnb, i.e. the number of vertices in G,
(2) the number of bonds nb, i.e. the number of
edges in G, and (3) nlcb, the number of bonds in
the largest cluster (connected subgraph) G′ ⊂ G.
For each pair of bonded atoms this defines a triplet
(nnb, nb, nlcb) (see Fig. 3). To classify the local en-
vironment of an atom, the triplets (nnb, nb, nlcb)
are computed for all its neighbours and compared
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Figure 3: Common neighbour analysis for bonded atom
pair (i, j) (empty circles). The set of common neighbours
(filled circles) are classified as a (4, 2, 1) triplet.

i

v
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v v

w

w

i

Figure 4: Example of direct (left) and indirect (centre and

right) bonds as described by the sets E(i)d , E(i) and E(i) in
Eqns. (6) and (7). The bond (v, w) in the central diagram

would be counted twice in E(i) but only once in E(i).

to reference signatures for periodic crystal struc-
tures. For example, in an hcp lattice, each atom
has 12 bonds, six of which are classified as (4, 2, 1)
and the other six are (4, 2, 2); see Tab. 1 in [15].
There is some ambiguity in the cutoff distance rc.
To overcome this limitation, the author of [15] sug-
gests an adaptive extension of the method. While
this improved algorithm can also be implemented
in our framework, for the sake of brevity we do
not discuss this extension here and focus on the
original method.

To implement the CNA algorithm in our frame-
work we proceed in two steps: For each atom i we
first calculate all directly and indirectly bonded

atoms. The set E(i)
d describes the direct bonds;

the indirect bonds in the local environment are
collected in E(i)

(see Fig. 4):

E(i)
d =

{
(i, v) : v ∈ N , |r(i) − r(v)| < rc}

E(i)
=
{

(v, w) : v, w ∈ N , |r(v) − r(w)| < rc,

|r(i) − r(v)| < rc
} (6)

Since some of the indirect bonds are counted twice
in E(i)

, the set E(i) is an ordered representation of
the same bonds:

E(i) =
{

(v, w) : (v, w) ∈ E(i)
, v < w

}
⊂ E(i)

(7)

As before, N = {0, . . . , N − 1} is global index set
and N (i) the set of all neighbours of particle i,
i.e. all other particles which are no more than a
distance rc away. In a second step we loop over all

pairs (i, j) of atoms and calculate the sets

C = N (i) ∩N (j)

E = {(v, w) : v, w ∈ C, v < w} ⊂ E(i) ∩ E(j).
(8)

C is the set of common neighbours and E is the set
of common neighbour bonds. Note that, to avoid
double counting, here we consider ordered bounds
(v, w) ∈ E(i) such that v < w. Together the two
sets C and E define the graph G introduced above.
The first two entries of the triplet (nnb, nb, nlcb)
can be calculated directly as nnb = |C| and nb =
|E|. To calculate the size of all subgraphs G′ ⊂ G,
a random node v ∈ G is chosen. The size of the
subgraph G′ such that v ∈ G′ is obtained with a
breadth-first traversal of the connected component
containing v, removing all visited nodes from G
in the process. This is repeated until all nodes
have been removed, thus calculating the size of
all subgraphs G′ ⊂ G. The computation of the
maximal cluster size nlcb = maxG′⊂G{|G′|} with
this method is shown explicitly in Algorithm 7 in
Appendix D.

We now show how the CNA algorithm can be
implemented as a set of Local Particle Pair- loops.
For this, define the following ParticleDats:

• r (ncomp=3): Particle coordinates, r(i) stores
the position of particle i

• G (ncomp=1): Global id, G(i) = i ∈ N stores
the unique global index of particle i.

• νnb (ncomp=1): Number of neighbours, i.e.

ν
(i)
nb = |N (i)|; this is the number of red par-

ticles in the inner circle in Fig. 5.

• νb (ncomp=1): Number of bonds in the local

environment. ν
(i)
b = |E(i)

d ∪ E
(i)| counts the

directly bonded neighbours of a particle plus
the number of indirect bonds defined in Eq.
(6).

• E (ncomp=2ν
(max)
b ): Array representation of

the set E(i)
d ∪ E

(i)
defined in Eq. (6). Two

consecutive entries E
(i)
2k , E

(i)
2k+1 represent a

bonded pair in the local environment of par-
ticle i, i.e. one of the links shown in Fig. 5.
The entries of E(i) are arranged as follows:

– (E
(i)
2k , E

(i)
2k+1) = (G(i), G(j)) with j 6= i

for 0 ≤ k < ν
(i)
nb

– (E
(i)
2k , E

(i)
2k+1) = (G(j′), G(j′′)) with j′ 6=

i, j′′ 6= i for ν
(i)
nb ≤ k < ν

(i)
b

In other words, the first ν
(i)
nb tuples represent

the bonds in E(i)
d and are shown as red (solid)
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Figure 5: Local bonds used for CNA construction

lines in Fig. 5. The remaining νb−νnb tuples

describe the set E(i)
and correspond to the

blue (dashed) lines. The static size ν
(max)
b

of the list has to be chosen sufficiently large,

i.e. ν
(max)
b ≥ maxi{ν(i)

b }.

• T (ncomp=3ν
(max)
nb ) stores the triplets (nnb, nb, nlcb)

such that (T
(i)
3j , T

(i)
3j+1, T

(i)
3j+2) is the triplet

(nnb, nb, nlcb) for the j-th bonded neighbour
of particle i. The number of components

ν
(max)
nb has to be chosen such that ν

(max)
nb ≥

maxi{ν(i)
nb }.

• t (ncomp=1) stores the number of classified
bonds of particle i.

Using those ParticleDats, for each particle the

list representation E(i) of the set E(i)
d ∪E

(i)
can now

be calculated with two Local Particle Pair Loops:
the first loop, shown in Algorithm 3, calculates

the first 2ν
(i)
nb entries of E(i) by inspecting the di-

rect neighbours of each particle. Based on this,
the second loop in algorithm 4 adds the remaining

2(ν
(i)
b −ν

(i)
nb ) entries, i.e. the blue (dashed) lines in

Fig. 5. The final Particle Pair Loop in algorithm 5
then uses the information stored in E(i) and E(j)

to extract the tuple (nnb, nb, nlcb).

Algorithm 3 CNA Local Particle Pair Loop I:
Calculate direct bonds for each particle.
Input : r(i) [READ], G(i) [READ].

Output : ν
(i)
nb [INC ZERO], ν

(i)
b [INC ZERO],

E(i) [WRITE]

1: for all pairs (i, j) do
2: if |r(i) − r(j)| < rc then

3: (E
(i)
2νb
, E

(i)
2νb+1) = (G(i), G(j))

4: ν
(i)
b 7→ ν

(i)
b + 1

5: ν
(i)
nb 7→ ν

(i)
nb + 1

6: end if
7: end for

The C-code for Algorithms 3 and 4 is shown in
Appendix A.2. All source code (include the one for

Algorithm 4 CNA Local Particle Pair Loop II:
Calculate all other bonds in the local environment.
Input : r(i) [READ], G(i) [READ], ν

(i)
nb [READ].

Output : ν
(i)
b [INC], E(i) [RW]

1: for all pairs (i, j) do
2: if |r(i) − r(j)| < rc then

3: for k = 0, . . . , ν
(j)
nb − 1 do

4: if E
(j)
2k+1 6= G(i) then

5: (E
(i)
2νb
, E

(i)
2νb+1) = (E

(j)
2k , E

(j)
2k+1)

6: ν
(i)
b 7→ ν

(i)
b + 1

7: end if
8: end for
9: end if

10: end for

Algorithm 5 CNA Local Particle Pair Loop

III: Calculate number of common neighbours n
(i)
nb ,

number of bonds n
(i)
b between those common

neighbours and the largest clustersize n
(i)
lcb.

Input : r(i) [READ], ν
(i)
nb [READ], ν

(i)
b [READ], E(i)

[READ].
Output : T (i) [WRITE], t(i) [INC ZERO]

1: for all pairs (i, j) do
2: if |r(i) − r(j)| < rc then

Set C of common neighbours:

3: C 7→ {v : ∃k < ν
(i)
nb , ` < ν

(j)
nb , v = E

(i)
2k+1 =

E
(j)
2`+1}

Construct set E of common neighbour bonds:
4: E 7→ {}
5: for k = ν

(i)
nb , . . . , ν

(i)
b − 1 do

6: if E
(i)
2k ∈ C and E

(i)
2k+1 ∈ C then

7: (v, w) = (E
(i)
2k , E

(i)
2k+1)

8: if w > v then
9: swap v ↔ w

10: end if
11: if (v, w) 6= E then
12: E 7→ E ∪ (v, w)
13: end if
14: end if
15: end for
16: T

(i)

3t(i)
7→ |C|

17: T
(i)

3t(i)+1
7→ |E|

Calculate largest cluster size, see Algorithm 7:

18: T
(i)

3t(i)+2
7→ maxClustersize(E)

19: t(i) 7→ t(i) + 1
20: end if
21: end for
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Listing 7: Velocity and position update kernel in the Ve-
locity Verlet Algorithm 6 (line 6). The constants dt and
dht iMass are set to δt and δt/(2m) and passed to the pair-
loop as Constant objects.

v.i[0] += F.i[0]* dht_iMASS;

v.i[1] += F.i[1]* dht_iMASS;

v.i[2] += F.i[2]* dht_iMASS;

r.i[0] += dt*v.i[0];

r.i[1] += dt*v.i[1];

r.i[2] += dt*v.i[2];

Listing 8: Velocity update kernel in the Velocity Verlet
Algorithm 6 (line 8). As in Listing 7, the quantity δt/(2m)
is passed to the pairloop as a Constant object.

v.i[0] += F.i[0]* dht_iMASS;

v.i[1] += F.i[1]* dht_iMASS;

v.i[2] += F.i[2]* dht_iMASS;

the slightly longer Algorithm 5) can be found in
the subdirectory examples/structure/cna of the
accompanying code release [46]. Results obtained
with our implementation of both a bond order- and
common-neighbour-analysis algorithm are shown
below in Section 5.2.

5. Results

To demonstrate the performance, portability
and scalability of our code generation framework
on two different chip architectures, we implemented
the Velocity Verlet integrator [31] (see also e.g.
[32, 33]) shown in Algorithm 6. Access descriptors
for all loops are given in Tab. 5. The main time
stepping loop is realised with an IntegratorRange

iterator (see Section 3.5), which takes care of cell-
list and neighbour-list updates. C-kernels for the
particle-loops that update velocity and position in
lines 6 and 8 are shown in Listings 7 and 8. We
simulated a Lennard-Jones liquid system of non-
bonded particles interacting via the potential

V (r) = 4ε

((σ
r

)12

−
(σ
r

)6

+
1

4

)
(9)

with a specified cutoff rc. The C-kernel for the cal-
culation of the resulting short-range force in line 7
is given in Appendix A.1. The full source code can
be found in the code/examples/lennard-jones

subdirectory of [46]. It should be stressed that
exactly the same code can be used to run the sim-
ulation both on a CPU and a GPU if the appro-
priate definitions shown in listing 2 are added at
the beginning of the Python code.

Algorithm 6 Velocity Verlet integrator used in
Section 5. The system is integrated numerically
with a time step of size δt until the final time T =
nmaxδt.

1: Create ParticleDats for forces F and veloci-
ties v.

2: Create PositionDat for particle positions.
3: Initialise particle positions and velocities.
4: Collect ParticleDats and PositionDat in a

State object
5: for timestep i = 1, . . . , nmax do
6: For all particles i: v(i) 7→ v(i) + δt

2mF (i),

r(i) 7→ r(i) + δtv(i)

7: For all pairs (i, j): F (i) 7→ F (i)+f(r(i), r(j))

8: For all particles i: v(i) 7→ v(i) + δt
2mF (i)

9: end for

Line Loop type Access Descriptor

6 ParticleLoop
v [INC], r [INC],
F [READ], m [READ]

7 ParticlePairLoop
F [INC ZERO],
r [READ]

8 ParticleLoop
v [INC], F [READ],
m [READ]

Table 5: Access descriptors for the loops in the Velocity
Verlet Algorithm 6.
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Parameter Value

Number of atoms: N 106

Number of time steps: nmax 104

Number density: ρ 0.8442
Force cutoff: rc 2.5
Force extended cutoff: rc = rc + δ 2.75
Steps between neighbour list update: 20†

Table 6: Parameters of Lennard-Jones benchmark for the
strong scaling experiment; units are chosen such that σ =
ε = 1 († = excluding DL-POLY, see main text).

5.1. Comparison to other codes

To verify that the code generation approach
does not introduce any sizable computational over-
heads, we compare the performance of our code
to monolithic C/Fortran implementations in well
established and optimised MD libraries. For this
we performed the same strong scaling experiment
with DL-POLY (version 4.08), LAMMPS (release
dated 1st March 2016) and our code generation
framework (subdirectory release of [46]). Raw
results can be found in the accompanying data
repository [53].

All codes were built with the Intel 2016 com-
piler suite and OpenMPI 1.8.4 (with the exception
of DL-POLY, which used OpenMPI 2.0.0). The
NVIDIA CUDA toolkit version 7.5.18 was used
for the GPU compilation and the framework was
run with Python 2.7.8. The numerical experiments
were carried out on the University of Bath HPC
facility “Balena”. All nodes of the cluster consist
of two Intel Xeon E5-2650v2 (2.6GHz) processors
with eight cores each; in addition some nodes are
equipped with Nvidia Tesla K20X GPU accelera-
tor cards. As the GPU port of LAMMPS offloads
the force calculation, we allowed LAMMPS to use
all 16 cores of the host CPU along with the GPU.
In contrast, in our framework the entire simula-
tion is run on the GPU and it is sufficient to use a
single MPI rank which acts as the host controller.

We use the parameters in Tab. 6, adapted from
a LAMMPS benchmark [54]. All three codes im-
plement the neighbour list method for force cal-
culations. For LAMMPS and our framework the
extended cutoff rc in Eq. (3) was chosen such that
be δ = rc−rc = 0.1rc with a neighbour list update
every 20 iterations. In contrast, DL-POLY auto-
matically updates the neighbour-list when neces-
sary. The total integration time on up to 1024
cores (64 nodes) and up to 8 GPUs is tabulated
in Table 7. Parallel speed-up and parallel effi-
ciency are plotted in Figure 6; grey regions in-
dicate core counts contained within a single CPU
node. On the largest core count (1024 cores) the
average local problem size is reduced to 1,000 par-

ticles per processor. To provide a fair compari-
son, one K20X GPU is compared to a full 16-core
CPU node since in this case the power consump-
tion is comparable (235 W for the K20X GPU [55]
vs. 2 × 95 W +(memory power consumption) for
the Intel Xeon E5-2650v2 CPU [56]). We write
t(p,N) for the measured wallclock time required
to integrate a system with N particles on p CPU
nodes or GPUs. The corresponding speed-up and
parallel efficiency (relative to one CPU node or one
GPU) are defined as

Speed-up =
t(1, N)

t(p,N)

Strong parallel efficiency =
t(1, N)

p× t(p,N)

(10)

and shown in Fig. 6. The absolute times demon-
strate that the framework provides comparable per-
formance and scalability to DL-POLY and LAMMPS.
In fact we find that for this particular setup both
LAMMPS and our code are significantly faster than
DL-POLY and scale better. It should be kept in
mind, however, that currently both LAMMPS and
DL-POLY have a much wider range of applica-
tions and provide functionality which is not yet
implemented in our framework. A socket-to-socket
comparison demonstrates that one full GPU can
only deliver a slightly higher performance than a
full CPU node. Again, the same is observed for
LAMMPS. The framework can make effective use
of multi-GPU systems to accelerate computation.

To test performance for very large problem sizes
we also carried out a weak scaling experiment.
In this setup the average work per unit compu-
tational resource is fixed and the total problem
size grows proportional to the number of nodes.
A system with 512, 000 particles per CPU core
(8, 192, 000 particles per node) was integrated over
5000 timesteps. For the largest computational con-
figuration (1024 cores) the total problem size is
about half a billion (5.24 · 108) particles. All other
system parameters are unchanged from Tab. 6.
The total time for increasing problem sizes is shown
in Fig. 7 (left). The weak parallel efficiency is de-
fined as

Weak parallel efficiency =
t(1, N)

t(p,N · p) (11)

and plotted in Fig. 7 (right). We observe that
(relative to one node) the parallel efficiency never
drops below 90% and conclude that the frame-
work will effectively scale to systems containing
very large numbers of particles on a significant core
count.

The number of particles on a single CPU node
in the previous weak scaling run is too large to
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Node/GPU Integration Time (Seconds)
count Framework LAMMPS DL POLY 4

CPU GPU CPU GPU CPU

1/16 6.83 · 103 8.22 · 103

4/16 1.49 · 103 1.67 · 103

8/16 9.18 · 102 1.05 · 103 4.99 · 103

1 5.01 · 102 3.85 · 102 5.69 · 102 2.75 · 102 2.91 · 103

2 2.50 · 102 2.79 · 102 1.47 · 103

4 1.32 · 102 1.08 · 102 1.40 · 102 1.24 · 102 7.76 · 102

8 7.50 · 101 6.95 · 101 7.32 · 101 6.08 · 101 4.92 · 102

16 4.45 · 101 5.72 · 101

32 3.05 · 101 3.25 · 101

64 2.38 · 101 1.72 · 101

Table 7: Strong scaling experiment: time taken to propagate N = 106 particles over nmax = 104 time steps.
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Figure 6: Strong scaling experiment: parallel speed-up (left) and parallel efficiency (right). Efficiency and speed-up are
relative to one full node (16 cores). Efficiency is calculated according to Eqn. (10). In the left plot perfect scaling is
indicated by the dashed gray line.

Node count Integration Time (103 Seconds)

1/16 1.61
2/16 1.65
4/16 1.66
8/16 1.52

1 1.91
2 1.93
4 1.94
8 1.96
16 1.99
32 2.01
64 2.09
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Figure 7: CPU-only weak scaling experiment: time taken to integrate the system over nmax = 5000 time steps (left) and
parallel efficiency (right). The efficiency relative to one full node (right) is calculated according to Eqn. (11). The top
horizontal axes shows the total number N of particles in the system; the number of particles per core is kept fixed at
512, 000 (8, 192, 000 particles per node).
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Node/GPU Integration Time (Seconds)
count CPU GPU

1 116.9 60.3
4 123.2 78.0
8 124.8 89.7
16 129.9 94.1
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Figure 8: CPU-GPU weak scaling experiment with reduced particle number: time taken to simulate nmax = 5000 time
steps (left) parallel efficiency relative to a single GPU/node, calculated according to Eqn. (11) (right). The number of
particles per node is kept fixed at 512,000.

fit into GPU memory. To also compare the weak
scalability of the generated CPU and GPU code
we therefore repeat the same experiment with a re-
duced number of 512,000 particles per node. The
resulting time and parallel efficiency are shown in
Fig. 8. While the parallel efficiency is worse for
the GPU, it never drops below 60%. On one node
the GPU code is about twice as fast as the CPU
code and on 16 nodes this speedup factor drops
to around 1.3×. This can be explained by the
fact that on one node the CPU implementation is
slower and therefore communication overheads will
have a relatively larger impact on the GPU code.
To improve scalability further, we will investigate
overlapping communication and communication in
the future. This, however, is usually more chal-
lenging on GPUs due to the reduced work in halo
regions.

5.1.1. Absolute performance

To quantify the absolute performance on both
CPU and GPU we use data collected in the sec-
ond weak scaling experiment (see Fig. 8). The
computationally most expensive operation in the
simulation is the force update step performed with
a particle pair loop. This accounts for 54.8% of
the total runtime on the CPU and 36.9% on the
GPU. As in this simulation the potential energy
was updated every 10 iterations, we also report
performance metrics for the combined force- and
potential-energy (PE) update.

With the vector instruction set each core of
an E5-2650v2 (2.6 GHz) Intel CPU can perform 4
double precision additions and 4 double precision

Intel Xeon node K20X GPU
kernel peak time peak time

Force 16.5% 54.8% 11.9% 36.9%
Force & PE 7.5% 6.5% 14.3% 2.6%

Table 8: Absolute performance metrics (as percentage of
peak performance and integration time) for two kernels
recorded from GPU weak scaling experiment presented in
Fig. 8. The “Force & PE” kernel is only called every 10
iterations and hence accounts for a smaller proportion of
the total runtime than the “Force” kernel.

multiplications per clock cycle, resulting in a total
performance of 332.8 GFLOPs per node. The peak
double precision floating point performance of the
nVidia Tesla K20x GPU is quoted as 1.31 TFLOPs
[57].

Absolute performance numbers for a single-node
run are reported in Tab. 8. The measured times
only include the time spent in the auto-generated
C-code, but we found that the launch of a shared
library function from Python has a negligible over-
head (≈ 10–20µs). Since the system is spatially
homogeneous and there is little load imbalance, we
report measurements collected by a single core on
the fully populated node. The results demonstrate
that the computationally most relevant kernels use
a significant fraction of the peak floating point per-
formance. As confirmed by the report generated
by the compiler, the kernel for the Lennard-Jones
force calculation in Listing 9 is automatically vec-
torised.
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Figure 9: Evolution of mean Q4, Q5 and Q6 values over the
course of the simulation. The horizontal dashed lines plot
the expected Q4 and Q6 values of a perfect FCC lattice.

5.2. Structure analysis algorithms

We finally demonstrate how the structure anal-
ysis algorithms described in Section 4 can be im-
plemented with our framework. For this we first
add an on-the-fly implementation of the BOA anal-
ysis method. This is achieved by extending the
main timestepping loop in Algorithm 6 by calls to
the PairLoop and ParticleLoop which evaluate
Q` according to Algorithms 1 and 2. The source
code is available in the examples/on-the-fly-analysis
subdirectory of [46].

To initialise the simulation, 125000 identical
particles are arranged in a periodic cubic lattice
and their velocities are sampled from a normal
distribution. After allowing the system to equili-
brate for 50,000 steps in an microcanonical ensem-
ble we coupled the system to an Andersen ther-
mostat with a target temperature near zero for
500,000 iterations. The final configuration con-
sists of two distinct regions. The first is void of
particles while the second contains a crystal struc-
ture. Fig. 9 shows the change of Q4, Q5 and Q6

throughout the simulation. A distribution of the
Q4 and Q6 values at the final timestep is shown in
Figs. C.11 and C.12 in Appendix C. This distri-
bution describes the proportion of FCC and HCP
in the final configuration as classified by the BOA
method. In this work we purely focus on the im-
plementation of the method and do not attempt a
physical interpretation of the results.

To demonstrate that the resulting code still
scales well in parallel, we carry out a weak scal-
ing experiment with the parameters in Tab. 9.
The results are shown in Fig. 10 and confirm that
adding the on-the-fly analysis and thermostat have
no negative impact on scalability. Finally the
common neighbour analysis was implemented as
a parallel post-processing step. C-Kernels for Al-
gorithms 3, 4, 5 and 7 can be found in the sub-

Parameter Value

Number of atoms per node: 524288
Number of time steps: nmax 5000
Non-dimensionalised density: ρ 0.8442
Force cutoff: rc 3.0
Force extended cutoff: rc = rc + δ 3.3
Steps between neighbour list updates: 18

Table 9: Parameters of bond order analysis weak scaling
experiment. Units are chose such that σ = ε = 1.

directory examples/structure/cna of [46]. We
validated our implementations by verifying that
perfect crystals are correctly classified in each of
the FCC, BCC and HPC configurations. We then
applied the method to the test case with 125000
particles mentioned above. For the final configu-
ration the algorithm classified 19360 (15.5%) par-
ticles as FCC and 13052 (10.4%) particles as HCP
while 92588 (74.1%) particles were left unclassi-
fied. Again a physical interpretation of this result
would be beyond the scope of this article.

6. Conclusions

The key computational components of a Molec-
ular Dynamics simulation can be expressed as loops
over all particles or all particle pairs. Based on this
observation, we described an abstraction for im-
plementing those loops and introduced the neces-
sary data structures and execution model. Our ap-
proach is inspired by the OP2 and PyOP2 frame-
works for the solution of PDEs with grid based
methods. We implemented a Python-based code
generation system which allows the developer to
write performance portable molecular dynamics
algorithms based on a separation of concerns phi-
losophy. By considering two popular analysis meth-
ods for the classification of crystalline structures,
we showed that it is easy to apply our approach
to write performant and scalable analysis code. In
principle the framework also allows for biasing dy-
namics within a simulation dependent on the local
environment of each particle.

The performance and scalability of our code
generation framework compares favourably to two
existing and well established Molecular Dynamics
codes (LAMMPS and DL-POLY) both on CPUs
and GPUs. This demonstrates that for the model
system considered here the code generation ap-
proach does not introduce any computational over-
heads; the autogenerated code runs at similar speed
as monolithic codes in C++ (LAMMPS) or For-
tran (DL-POLY). We stress, however, that our
main aim is not to out-perform existing codes but
rather explore new ways of implementing both time-
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Figure 10: Weak scaling experiment that combines a simulation with on-the-fly analysis. Time taken to integrate 5000
steps, parallel efficiency relative to a single node (right).

stepping methods and analysis algorithms with min-
imal programmer effort.

There are many ways in which our framework
has to be extended to provide similar functional-
ity to existing MD packages. As reported in [38],
long range force calculations with the Ewald sum-
mation method [39] are supported in a more re-
cent version of the code; this method can be im-
plemented directly with the data structures and
looping algorithms described here. However, the
computational cost of this algorithm grows with
O(N3/2) and it can therefore only be used for mod-
erate size systems. To overcome this limitation we
are currently also implementing a Fast Multipole
algorithm [58] which has optimal O(N) complex-
ity. This approach will require new data structures
such as a hierarchical mesh which stores multipole-
and local- expansions in each grid cell. Since the
functional form of the electrostatic interaction is
fixed, long range interactions could also be sim-
ulated by linking to a standalone C-code or an
existing library such as the SPME method in DL-
POLY [59]. Another important extension is sup-
port for multiple species. While currently differ-
ent species can be simulated by adding a species
label as a ParticleDat and adding corresponding
if-branches to the computational kernels, this is
clearly not efficient and should be replaced by na-
tive support in the fundamental data structures.
Adding constraints to incorporate bonded interac-
tions will require further work. We note, however,
that excluded particles can already be treated in
our framework. For this, a ParticleDat stores
a list with global ids of all excluded particle for

each atom. In the PairLoop kernel this exclusion
list can be inspected to calculate only the relevant
forces.

The performance of the GPU implementation
of an algorithm is sensitive to the memory access
pattern. At the beginning of a simulation particles
are arranged in an ordered fashion in memory that
corresponds to the physical location of the particle.
As the simulation evolves the movement of parti-
cles within the simulation domain introduces an
essentially random ordering of particles in mem-
ory. The results we present exhibit a slow down
effect as the simulation evolves due to this sub-
optimal memory ordering effect. Future versions
of the framework will periodically reorder the par-
ticle data to mitigate this effect. More generally,
an in-depth performance study from the perspec-
tive of memory utilisation both for the CPU and
the GPU backend is important since many MD
codes are memory bandwidth limited.

Finally, automatic generation of kernels from
the analytical form of the potential as implemented
in the OpenMM library [42] could be added. We
stress, however, that it is important to still allow
the user to also implement arbitrary kernels by
hand to cover more general applications.
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Appendix A. Kernels

This appendix lists some C-kernels which are
used for the Lennard-Jones force calculation in
Section 5 and in the common neighbour analysis
discussed in Section 4.2. The full source code can
be found in [46].

Appendix A.1. Force calculation

The Lennard-Jones potential in Eqn. (9) gives
rise to the force

F (r) = −∇V (r) = −r

r

∂V

∂r

=
48ε

σ2
r

((σ
r

)14

− 1

2

(σ
r

)8
)
.

(A.1)

The corresponding kernel for the force- and po-
tential calculation is shown in Listing 9 and the
Python code for creating the corresponding data
objects and executing the PairLoop is given in
Listing 10. The particle position is passed in as
the ParticleDat r and the resulting force and
potential energy are returned in the ParticleDat

F and ScalarArray u. The squared cutoff dis-
tance r2

c and the numerical constants σ2, CV = 4ε
and CF = −48ε/σ2 are passed to the pairloop
as Constant objects. Since we use a hard cut-
off, the force and potential are nonzero only if
(r(i) − r(j))2 ≤ r2

c and only need to be calculated
in this case. However, to ensure that the code can
be vectorised, the force and potential is calculated
for all relative distances r(i) − r(j) and written to
the variable F with a ternary operator.

Appendix A.2. Common Neighbour analysis

Computational kernels for Algorithms 3 and
4 in the common neighbour analysis method are
shown in Listings 11 and 12. The ParticleDats
used in those kernels are related to the variables
introduced in Section 4.2 and summarised in Tab.
A.10.

Appendix B. Key Variables

A list of key physical variables used in this pa-
per can be found in Tab. B.11.

Appendix C. Bond Order Analysis

Figures C.11 and C.12 show the final distri-
bution of the order parameters Q4 and Q6 in the
numerical experiment described in Section 5.2.

Listing 9: Lennard-Jones kernel

const double dr0 = r.i[0] - r.j[0];

const double dr1 = r.i[1] - r.j[1];

const double dr2 = r.i[2] - r.j[2];

// Calculate squared distance

// dr2 = |r_i - r_j |^2

double dr_sq = dr0*dr0+dr1*dr1+dr2*dr2;

// (sigma/dr)^2

const double r_m2 = sigma2/dr_sq;

// (sigma/dr)^4

const double r_m4 = r_m2*r_m2;

// (sigma/dr)^6

const double r_m6 = r_m4*r_m2;

// (sigma/dr)^8

const double r_m8 = r_m4*r_m4;

// Increment potential energy

u[0]+= (dr_sq <rc_sq) ?

CV*((r_m6 -1.0)*r_m6 +0.25) : 0.0;

const double f_tmp=CF*(r_m6 -0.5)*r_m8;

// Increment forces

F.i[0]+= (dr_sq <rc_sq)?f_tmp*dr0 :0.0;

F.i[1]+= (dr_sq <rc_sq)?f_tmp*dr1 :0.0;

F.i[2]+= (dr_sq <rc_sq)?f_tmp*dr2 :0.0;

Listing 10: Lennard-Jones PairLoop implementation for the
force calculation. The kernel code is defined in Listing 9.
The constants σ2 (sigma2), r2c (rc sq), CV = 4ε (CV) and
CF = −48ε/σ2 (CF) are passed to the kernel as Constant

objects.

# Numerical constants

kernel_consts = (Constant(’sigma2 ’,

sigma2),

Constant(’rc_sq ’,

rc_sq),

Constant(’CV’,

CV),

Constant(’CF’,

CF))

# Particle positions and forces

r = PositionDat(npart=npart ,

ncomp=dimension ,

dtype=c_double)

F = ParticleDat(npart=npart ,

ncomp=dimension ,

dtype=c_double)

# potential energy

u = ScalarArray(ncomp=1,

initial_value =0.0,

dtype=c_double)

kernel_code = ... # see Listing 9

kernel = Kernel(’force’,

kernel_code ,

kernel_consts)

# Define and execute pairloop

pair_loop = PairLoop(kernel=kernel ,

{’r’:r(access.READ),

’F’:F(access.INC),

’u’:u(access.INC)},

shell_cutoff=rc)

pair_loop.execute ()
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Description ParticleDat

r(i) particle position r

G(i) global id id

E(i) array repr. of E(i)
d ∪ E

(i)
bond

ν
(i)
nb # of bonded neighbours n nb

ν
(i)
b # of bonds n bond

Table A.10: Variables and ParticleDats used in the com-
mon neighbour analysis kernels in Listings 11 and 12.

Listing 11: CNA kernel for direct bond calculation in Al-
gorithm 3.

// Calculate squared distance

const double dr0 = r.i[0] - r.j[0];

const double dr1 = r.i[1] - r.j[1];

const double dr2 = r.i[2] - r.j[2];

double dr_sq = dr0*dr0+dr1*dr1+dr2*dr2;

if (dr_sq < rc_sq) {

// Add direct bond

bond.i[2* n_bond.i[0]] = id.i[0];

bond.i[2* n_bond.i[0]+1] = id.j[0];

// Increment number of neighbours

n_nb.i[0]++;

// Increment number of bonds

n_bond.i[0]++;

}

Listing 12: CNA kernel for indirect bond calculation in
Algorithm 4.

// Calculate squared distance

const double dr0 = r.i[0] - r.j[0];

const double dr1 = r.i[1] - r.j[1];

const double dr2 = r.i[2] - r.j[2];

double dr_sq = dr0*dr0+dr1*dr1+dr2*dr2;

if (dr_sq < rc_sq) {

for (int k=0;k<n_nb.j[0];++k) {

// Add indirect bond

if (bond.j[2*k+1] != id.i[0]) {

bond.i[2* n_bond.i[0]] =

bond.j[2*k];

bond.i[2* n_bond.i[0]+1] =

bond.j[2*k+1];

// Increment number of bonds

n_bond.i[0]++;

}

}

}

Variable Definition

r position
v velocity
vmax maximal velocity
F force
m mass
V potential
δt time step size
rc cutoff distance
rc extended cutoff (see Eq. (3))
N number of particles

Table B.11: Key variables used in this paper.
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Figure C.11: Probability density of Q4 values in final sys-
tem configuration. Dashed vertical line at Q4 = 0.097 is the
expected Q4 value of a perfect hcp lattice. Dashed vertical
line at Q4 = 0.191 is the expected Q4 value of a perfect fcc
lattice.
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Figure C.12: Probability density of Q6 values in final sys-
tem configuration. Dashed vertical line at Q6 = 0.485 is the
expected Q6 value of a perfect hcp lattice. Dashed vertical
line at Q6 = 0.575 is the expected Q6 value of a perfect fcc
lattice.
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Appendix D. Largest subcluster algorithm

Algorithm 7 can be used to calculate the size of
the largest connected component of a graph given
by a set of edges E . For this the edges in each
subgraph are counted with a breadth-first traver-
sal, counting and removing all visited edges in the
process.

Algorithm 7 Calculate maximal cluster size.
Input : graph defined by a set of edges E .
Output : Smax, the size of the largest cluster

1: Smax 7→ 0
2: while E 6= ∅ do
3: S 7→ 0
4: Pick some edge (v1, v2) ∈ E
5: Q 7→ {v1}
6: while Q 6= ∅ do
7: Pick some v ∈ Q and remove it from Q
8: P 7→ {(v, w) ∈ E}
9: Q 7→ Q ∪ {w : (v, w) ∈ P}

10: S 7→ S + |P|
11: Remove all edges e ∈ P from E
12: end while
13: Smax 7→ max{S, Smax}
14: end while
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