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Abstract

Background: The consolidation of pathway databases, such as KEGG, Reactome and ConsensusPathDB, has generated
widespread biological interest, however the issue of pathway redundancy impedes the use of these consolidated
datasets. Attempts to reduce this redundancy have focused on visualizing pathway overlap or merging pathways, but
the resulting pathways may be of heterogeneous sizes and cover multiple biological functions. Efforts have also been
made to deal with redundancy in pathway data by consolidating enriched pathways into a number of clusters or
concepts. We present an alternative approach, which generates pathway subsets capable of covering all of genes
presented within either pathway databases or enrichment results, generating substantial reductions in redundancy.

Results: We propose a method that uses set cover to reduce pathway redundancy, without merging pathways. The
proposed approach considers three objectives: removal of pathway redundancy, controlling pathway size and
coverage of the gene set. By applying set cover to the ConsensusPathDB dataset we were able to produce a
reduced set of pathways, representing 100% of the genes in the original data set with 74% less redundancy,
or 95% of the genes with 88% less redundancy. We also developed an algorithm to simplify enrichment data
and applied it to a set of enriched osteoarthritis pathways, revealing that within the top ten pathways, five
were redundant subsets of more enriched pathways. Applying set cover to the enrichment results removed
these redundant pathways allowing more informative pathways to take their place.

Conclusion: Our method provides an alternative approach for handling pathway redundancy, while ensuring
that the pathways are of homogeneous size and gene coverage is maximised. Pathways are not altered from
their original form, allowing biological knowledge regarding the data set to be directly applicable. We demonstrate the
ability of the algorithms to prioritise redundancy reduction, pathway size control or gene set coverage. The application
of set cover to pathway enrichment results produces an optimised summary of the pathways that best represent the
differentially regulated gene set.
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Background
Pathways are sets of genes corresponding to functionally
related interacting proteins. Pathway data is available
from many databases dependent on biological focus. The
fragmented nature of pathways across multiple databases
makes it difficult to perform inclusive analysis of all
known data. To address this issue, many attempts have
been made to consolidate pathway databases such as
ConsensusPathDB (CPDB) [1], PathwayCommons [2],
The Human Pathway Database (HPD) [3], Pathway

Interaction Database (PID) [4], and NCBI Biosystems
[5]. Amalgamating multiple databases into a consistent
searchable format facilitates the use of these resources,
however the arbitrary nature of pathway boundaries
results in overlap, generating data redundancy. This
redundancy greatly increases the quantity and complex-
ity of pathway data, which has lead to the development
of a range of tools to assist in data simplification and in-
terpretation [3, 4, 6–8]. Previous solutions presented to
deal with redundancy include visualizing redundancy be-
tween pathways to the user [3], merging pathways based
on similarity [7, 8] and even integrating full pathway sets
into a non-redundant, single unified pathway [9]. Redu-
cing redundancy simplifies the pathway-related descriptive
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space, allowing multiple resources to be combined while
limiting the number of pathway attributes assigned to
each gene. The advantages are apparent, with resources
such as PathCards being integrated into the widely used
GeneCards [8].
Redundancy Control in Pathway Databases (ReCiPa)

[7] uses a pathway merging algorithm to combine path-
ways with high levels of overlap. Users select a max-
imum overlap threshold and pathway pairs displaying
greater levels of overlap are merged. Within that study
redundancy was observed within five large databases
(KEGG, Biocarta, CGP, NCI-PID, and Reactome). They
proceeded to merge pathways from the Molecular Signa-
tures Database (MSigDB), whose overlap exceeded 75%,
reducing pathway redundancy.
Pathcards described a multistep procedure to reduce

pathway redundancy, also through pathway merging [8].
Two thresholds were calculated and sequential merging
steps were used to minimize overlap, while preventing
the generated super-pathways from becoming too large
to be informative. By merging pathways into super-
pathways, Pathcards suggested many new molecular in-
teractions. They demonstrated that many of these newly
generated interactions are supported by high numbers of
literature co-mentions and high experimental interac-
tions scores according to STRING. However, while the
generation of potential interactions can be highly benefi-
cial, if the aim is to utilize previously validated data,
merging pathways introduces a source of uncertainly
into the dataset.
A major application of pathway data sets is pathway

enrichment analysis. Both Pathcards and ReCiPa
explored the capability of their reduced pathway dataset
to improve enrichment results. Enrichment analysis of
830 differential expression sets was performed using the
super-pathways generated within Pathcards. The enrich-
ment results from super-pathways tended to be more
significant than the enrichment scores of their constitu-
ent pathways. Similarly within the ReCiPa study enrich-
ment analysis was performed using genes differentially
expressed in obesity. After merging, the top 20 most
significantly enriched pathways showed less overlap and
greater significance towards the disease, compared to
the original dataset.
Pathway Distiller implemented an alternative approach

by removing redundancy from enriched pathway sets
following enrichment analysis [6]. Pathways may be
consolidated into pathway concepts based on gene
expression profiles, gene membership, protein-protein
interaction data or shared Gene Ontology (GO) terms.
Each method provides varying, complementary views of
the data, with different pathway concepts generated.
Consolidating enrichment output into a reduced number
of pathway concepts increases data manageability and

readability, by organizing redundant pathways into their
major groups.
All of the approaches discussed to this point have used

merging and consolidation to address redundancy. Alexa
et al. (2006) demonstrated that redundancy in GO en-
richment results could be reduced by selecting a subset
of representative terms [10]. Pathway enrichment ana-
lysis and GO enrichment analysis are similar techniques
in which sets of differentially expressed genes are com-
pared to gene sets associated with pathways or GO
terms. Alexa et al. (2006) introduced two algorithms,
elim and weight, which use the Gene Ontology topology
to select a representative subset of highly enriched GO
terms [10]. The enrichment set cover algorithm pre-
sented in this paper shares some conceptual similarity
with this approach however, the implementation is dif-
ferent since there is no organized topological hierarchy
for combined pathway datasets and the rules governing
the Gene Ontology, such as the true path rule [11], do
not apply.
Within this paper we show that set cover can be used

to reducing redundancy by selecting subsets of represen-
tative pathways. We describe a set of algorithms for
reducing redundancy in pathway datasets, as well as a
separate algorithm for reducing redundancy from path-
way enrichment results. The proportional set cover algo-
rithm and hitting set cover algorithm aim to identify a
minimum subset of pathways required to cover the
genes in highly redundant, consolidated pathway data-
bases. The generated set covers are not designed to
depict the full range of possible pathway boundaries and
their accompanying cellular functions, but rather they
provide a simplified set of pathways to represent the
actions of genes within the dataset. Since the pathways
are not merged database and biological information
remains directly applicable and functional specificity is
not lost through pathway size expansion. The proposed
method also removes the risk of biologically distinct
pathways being merged. The algorithm’s ability to re-
move overlap is not limited by thresholds, conferring an
advantage compared to approaches such as Pathcards
and ReCiPa in which redundancy between pathway pairs
can only be removed if the overlap exceeds the thresh-
old. Set cover algorithms also consider redundancy be-
tween multiple pathways, rather than just comparing
pathway pairs.
We also developed the enrichment set cover algorithm

for handling pathway enrichment data and applied it to
a set of enriched osteoarthritis pathways [12]. In contrast
to the approaches used by ReCiPa and Pathcards, the
enrichment set cover algorithm is designed to be used
following enrichment analysis, which should be
performed using the full pathway dataset. Redundancy is
then removed from the enriched pathway set by
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selecting the pathway with the lowest p-value to cover
each differentially regulated gene. Enriched pathways are
not merged or altered and the number of enriched path-
ways required to cover the dataset is reduced. The
resulting pathways set can therefore be used as an opti-
mized summary output, conveniently showing the most
important pathways for describing the differentially reg-
ulated gene set. By increasing the number of differen-
tially regulated genes covered by the most highly
enriched pathways, researchers examining the top 10 or
20 pathways are provided with a more inclusive por-
trayal of the gene set.

Approach
We downloaded pathway data from ConsensusPathDB
(CPDB), an opensource online collection of pathways,
that incorporates 32 sources including KEGG, Wikipath-
ways, PDB, Reactome. CPDB makes these resources
available as a single download, which we acquired on
24/09/2015 containing 4011 pathways. We applied the
set cover algorithm to the CPDB data set, analyzing it’s
effectiveness at: reducing pathway overlap; reducing
pathway size variability; and preserving the maximum
number of genes in the data set. We found that standard
set cover caused unacceptable increases in pathway size,
therefore we modified the algorithm and assessed the
modified algorithms capability to meet the previous
three objectives.
Set cover is a well-defined algorithm in computer sci-

ence for handling overlapping sets of sets. For example,
set cover is used by CLASS, a bioinformatics program
that maps RNA sequence data to transcripts [13]. Set
cover has also been used to predict protein-protein
interactions based on binding domains [14], to reduce
the complexity of SNP sets [15] and to minimize the
number of probes needed to analyze DNA [16].
Set cover algorithms deal with elements and sets,

which relate to genes and pathways respectively. All the
unique genes in the data set are collectively referred to
as the universe. The aim is to produce a reduced selec-
tion of sets (pathways), which collectively cover all the
elements (genes) in the universe (dataset). This subset of
the original data is called the cover set [17]. Each time a
pathway is added to the cover set the genes in the path-
way become covered (Fig. 1). Direct application of set
cover lead to extremely large, functionally non-specific
pathways dominating the cover set, therefore we imple-
mented the proportional set cover and hitting set cover
algorithms to better control pathway size, while reducing
redundancy and covering the dataset.
When dealing with enrichment analysis data the aim is

to reduce redundancy between pathways, while preser-
ving the order of enrichment significance denoted by the
p-values. We designed an algorithm that would select

the set of pathways with the lowest p-values capable of
covering all the genes in the dataset. This ensures that
the filtered results return the most enriched pathways
available for each gene.

Methods
Overlap score
To measure overlap across different algorithms we mea-
sured the mean number of pathways that each gene ap-
pears in. Within the raw data genes appeared in a mean
of 12.4 pathways. We refer to this metric as the overlap
score.

Set cover
We applied the set cover algorithm to the data set,
which generates a subset of pathways called a cover set,
in which all the genes in the data set are represented or
“covered”. Set cover begins by first assigning values to
each pathway (vi). The set cover values correspond to
the number of uncovered genes each pathway contains
(Eq. 1).

vi ¼j si∩R j ð1Þ

where (si) is the pathway’s gene set and R is the set of
all uncovered genes.
At the beginning of the algorithm all the genes in the

dataset are uncovered so the algorithm selects the lar-
gest pathway. The genes from the selected pathway are
then covered, so it is unnecessary to cover them again
using additional pathways. The algorithm then recalcu-
lates how many uncovered genes each pathway contains
and continues to add the pathway with the maximum
value to the set cover until all genes in the data set are
covered.

where R is the set of uncovered genes, U is all the genes
in the dataset, C is the covered genes, SC is the set cover
result, GC is the gene coverage (see Gene Set Coverage
section) and si is a pathway.
Application of the set cover algorithm was effective in

reducing overlap between the pathways; however, it se-
lected very large pathways with reduced informativeness
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(maximum size 2320, standard deviation 160, almost
double the standard deviation on the original dataset
86.9). We therefore explored methods that avoid prefer-
ential selection of large pathways.

Gene set coverage
As the set cover algorithm approaches completion and
the final sets are added to the cover set, increases in
data coverage are gained at the expense of redundancy
reduction. This is because the final sets required to
cover the few remaining genes tend to have the most
overlap with other pathways already in the set cover. In
addition, fewer pathways are available to cover the final
few genes, restricting options to control pathway size.

To allow a user-defined compromise between the gene
coverage, pathway redundancy and pathway size we
introduce the Gene Coverage (GC) parameter. Setting
GC below 100% allows the algorithm to finish before
the final elements have been covered. We experimented
setting GC to 90, 95, 99 and 100% of the number of
genes in the data set.

Proportional set cover
When reducing pathway redundancy there are three
competing aims: reducing redundancy; controlling path-
way size; and covering the entire gene set. The propor-
tional set cover algorithm was generated to focus on
controlling pathway size.

A B

C D

A B

C D

Fig. 1 Set cover. a A simple set of overlapping sets. b The red set with 8 uncovered elements is selected first. c The blue set with 3 elements is
selected second. d The orange set then covers all the elements in the universe
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To control the size of the pathways we altered the
scoring mechanism to rank pathways based on the pro-
portion of uncovered genes they contained, rather than
the absolute number (Eq. 2). This works because larger
pathways are more likely to have a proportion of their
genes covered when other pathways are selected. Add-
itionally this mechanism directly penalizes overlap,
which the standard algorithm does not. At the beginning
of the proportional set cover algorithm none of the
genes are covered so the proportion of uncovered genes
in every pathway is 1. This would result in the starting
pathway being selected at random. To ensure that path-
way size variability is controlled as strictly as possible,
we implemented the second part of Eq. 2, which ensures
that pathways of mean pathway size are preferentially
selected when multiple pathways with the same propor-
tion of uncovered genes are available.

vi ¼ j si∩R j
j si j þ 1

abs sij j− sij j
� �

� k
ð2Þ

where si is the pathway’s gene set, jsijis the mean path-
way length, R is the uncovered genes set and k is a large
constant to limit the influence of the second term (taken
equal to 10,000).

Hitting set cover
The set-covering problem can be reformulated into the
equivalent set-hitting problem. In this formulation genes
and pathways are visualized as bi-partite graph in which
the pathways are connected to the genes that they con-
tain. In this depiction it is clear that some genes are only
linked to a single pathway, which must be selected if the
gene is to be covered. The importance of pathways can
therefore be considered as a factor of how infrequent
their genes are. The hitting set cover is therefore
designed to reduce redundancy as much as possible
without directly selecting for pathway size.
We counted instances of each gene j within the path-

ways of the data set (fj), then assigned the gene’s value vj
as 1/ fj (Eq. 3). We then assigned a value vi to each path-
way defined as the sum of each uncovered gene’s scores
divided by the number of genes in the pathway (Eq. 4).

v j ¼ 1= f j ð3Þ

vi ¼
P

jϵsi∩R v j
j si j ð4Þ

where vj is the value of a gene, fj is the number of path-
ways the gene is in,
jϵsi ∩ R means for each uncovered gene in the pathway

and |si| is the size of the pathway.

Set cover for pathway enrichment analysis
Pathway analysis is a frequently used method; therefore
a modified set cover algorithm to address this situation
could be highly useful. The universe represents differen-
tially expressed genes and the sets are enriched pathways
generated through enrichment analysis. Enrichment ana-
lysis results represent entirely different input data com-
pared to the pathway datasets used in the previous
algorithms, as the enriched pathways already have scores
(p-values). We wish to reduce redundancy (gene overlap)
between enriched pathways and it is essential that the
pathways with the lowest possible p-values are selected.
Eq. 4 allows the pathways with the lowest p-values to be
selected, unless all of their genes are covered by other
enriched pathways with even lower p-values.

b ¼ 0 if si∩R ¼ ∅; b ¼ 1 if si∩R≠∅ ð5Þ
vi ¼ 1−pvalueið Þ � b ð6Þ

where si is the enriched pathway’s gene set, R is the un-
covered gene set, ∅ is an empty set, b is a binomial op-
erator, pvaluei is the pathway’s p-value and vi is the
pathway’s set cover value.
We generated the enriched data set by applying

GOseq [18] to expression data from the damaged cartil-
age in osteoarthritis patients and controls [12].

Results
We started with the large, extensively redundant CPDB
data set and used set cover to reduce pathway overlap,
while controlling pathway size and seeking to cover as
much of the data set as possible. We describe the ability
of the standard set cover algorithm and two modified
algorithms, in conjunction with the GC parameter, to
meet these objectives.

Remaining pathway redundancies vary depending on the
applied algorithm
The original pathway data set contained 11,196 genes and
3305 pathways; the starting overlap score (see Methods)
was 12.4. The standard set cover algorithm reduced over-
all redundancy from 12.4 to 4.1, a 73% reduction (since a
completely discrete pathway set would have a score of 1).
The overlap score for proportional set cover was 4.36,
slightly higher than the standard set cover algorithm, but
still representing a 70% reduction in overlap from the
original data. The hitting set cover algorithm was designed
to select pathways that contained rare genes within the
data set, resulting in the greatest reduction in overlap
(overlap score of 3.95 equivalent to a 74% reduction, see
Overlap score section for calculation).
After application of the set cover algorithms the dis-

tribution of the remaining overlap between pathways
varied greatly. Figure 2 shows the Jaccard similarity
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Fig. 2 Jaccard coefficient between pathway pairs in the cover set results produced by each algorithm

Fig. 3 Redundancy in set cover outputs given different GC values
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between pairs of pathways, in the outputs produced by
each of the three algorithms. We used the Jaccard simi-
larity to measure the degree of overlap between individ-
ual pathway pairs. This score measures the proportion
of genes shared across both pathways. The standard set
cover algorithm produced the lowest maximum overlap
(Jaccard similarity = 0.68) between the pathways in the
output dataset. However, compared to the original data,
a higher proportion of pathway pairs in the set cover
output showed Jaccard similarities between 0.1 and 0.3.
Proportional set cover had the greatest maximum
Jaccard similarity at 0.93, out of the set cover algorithms.
The hitting set cover algorithm produced a maximum
Jaccard similarity between two pathways of 0.82, despite
having the lowest overlap score.

Gene coverage can be lowered to reduce redundancy
For each of the algorithms it is possible to use the GC
parameter to prioritize reductions in redundancy over
gene coverage by stopping any algorithm before all of

the genes in the dataset have been covered. Figure 3
shows improved ability of the set cover algorithms to re-
duce pathway overlap for different values of GC. If 99%
of the genes are required then the hitting set algorithm
achieves the lowest overlap score of 3.24, equivalent to
an 80% reduction in overlap. Redundancy can be further
reduced if only 95% of the genes are covered, with the
proportional and hitting set algorithms producing an
overlap score of 2.41, equivalent to a 88% reduction in
redundancy. Both the proportional set cover and the
hitting set cover are more effective at reducing redun-
dancy than the standard set cover if GC is set to less
than 100%.

Pathway size is affected by the set cover algorithm and
gene coverage setting
When GC was set to 100% the standard set cover algo-
rithm represented all of the genes in the dataset using
only 524 pathways (16% of the original pathway set).
However, many of these were very large increasing the

Fig. 4 Pathway sizes in cover set when GC is set to (a) 100%, b 99%, c 95% and (d) 90%. The boxes indicate the 25th and 75th percentiles and the
whiskers indicate the 5th and 95th percentiles
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mean size to 87.2 (standard deviation 160.1). These
pathways have reduced informativeness since functional
specificity is lost. Figure 4a illustrates the tendency of
this algorithm to select extremely large pathways.
The proportional set cover algorithm was designed to

preferentially select moderately sized pathways. This
returned a cover set of 1336 pathways with controlled
size variation (mean of 36.5, standard deviation 55.1)
shown in Fig. 4a. The hitting set cover algorithm was
less able to control pathway size than the proportional
set cover algorithm, returning 957 pathways with a mean
size of 46.2 (standard deviation 61.7).
Figure 4b–d show that as GC is reduced the tendency

of the standard set cover to select very large pathways be-
comes more exaggerated. Decreasing GC also improves
the ability of the proportional set cover algorithm to select
moderately sized pathways. The hitting set algorithm also
tends to select smaller pathways when GC is reduced,
since larger pathways often contain more frequent genes.
Reducing GC affects pathway size since in the later stages
of the algorithm, fewer pathways are available to cover the
remaining genes, reducing the available options. There-
fore, lowering GC has the ability to help control pathway
size when the proportional set cover and hitting set cover
algorithms are used.
Since the databases that contribute to CPDB contain

pathways of different sizes, the set cover generated may
preferentially select pathways from some databases more
than others.
Table 1 shows the proportion of pathways that come

from each database in the cover set generated by each All
algorithms generate set covers with reduced INOH and
SMPDB pathways, showing that SMPBD’s focus on small

molecules and INOH’s ontology-based approach tend to
be ill-suited to the generation of discrete pathway protein
sets. The standard set cover algorithm generates sets con-
taining large pathways, preferentially selecting pathways
from KEGG (median size 65, see Table 1) and Netpath
(median size 51); while proportional set cover tends to
select smaller pathways from Reactome (median size
17) and HumanCyc (median size 5), whilst avoiding
NetPath.

Reducing redundancy in pathway enrichment analysis
To demonstrate the ability of the set cover algorithm to
handle enrichment data, we applied the enrichment set
cover algorithm to an osteoarthritis data set, retrieved
from Dunn et al. (2016) [12]. From the osteoarthritis
data set, 58.3% of the differentially expressed genes
could be mapped to a CPDB pathway, which was a 17%
improvement on the GOseq [18] implemented data set.
We retrieved 42 enriched pathways with a p-value lower
than 0.05, following the Benjamini-Hochberg correction
for multiple testing. Set cover for enrichment analysis
reduced the number of pathways required to cover the
differentially expressed genes to 23 (Additional file 1:
Table S1).
The heat map in Fig. 5a shows the asymmetric overlap

between the top ten pathways before application of the
algorithm. The p-values from pathway enrichment deter-
mine the order in which pathways were considered for
inclusion in the cover set. Pathways were omitted if all
of the differentially expressed genes that they covered
were also covered by more enriched pathways. Note that
overlap tends to be higher in the bottom left triangle as
pathways added later were often smaller subcomponents

Table 1 Proportion of pathways from CPDB databases

Median
size

CPDB
%

Standard set cover Hitting set cover Proportional set cover

100% 99% 95% 90% 100% 99% 95% 90% 100% 99% 95% 90%

BioCarta 15.0 6.3 6.3 4.6 0.5 0.0 4.7 4.8 5.4 5.4 5.8 6.1 6.1 5.0

EHMN 32.5 1.6 3.2 3.4 2.6 1.0 2.1 2.3 1.8 1.6 1.6 1.4 0.9 0.9

HumanCyc 5.0 8.2 6.5 7.7 2.6 0.0 10.1 10.9 12.9 14.3 10.9 11.7 13.7 15.4

INOH 34.5 2.3 1.7 1.9 1.0 1.0 0.8 0.6 0.3 0.2 1.1 1.1 0.9 0.7

KEGG 65.0 7.2 29.0 30.5 37.6 40.4 15.8 15.0 13.5 13.4 12.2 9.9 8.3 7.1

NetPath 51.0 0.9 2.1 2.4 3.6 5.1 1.1 1.2 1.1 1.0 1.0 0.9 0.6 0.2

PharmGKB 13.0 2.8 3.1 2.9 0.5 0.0 2.0 2.1 2.4 2.3 2.1 2.2 2.1 1.7

PID 35.0 5.2 15.6 13.9 10.3 6.1 9.5 9.8 9.4 8.5 8.2 8.3 6.4 4.6

Reactome 17.0 39.6 4.2 5.3 10.8 21.2 36.1 35.1 34.7 35.3 39.4 40.9 45.1 48.8

Signalink 32.0 0.4 1.0 1.2 1.0 0.0 0.6 0.7 0.7 0.7 0.7 0.7 0.7 0.8

SMPDB 11.0 16.7 1.7 1.4 0.5 0.0 1.6 1.5 1.4 1.2 2.8 3.0 2.9 3.2

Wikipathways 26.0 8.8 25.6 24.9 28.9 25.3 15.6 16.0 16.2 16.2 14.2 13.7 12.5 11.7

Median size represents the median sizes of the pathways in the CPDB dataset. CPDB % represents the proportion of the pathways in the unaltered dataset that
came from each database. The following columns represent the proportion of pathways in the set cover generated by the standard set cover algorithm, the
hitting set cover algorithm and the proportional set cover algorithm. Different results are obtained by altering the proportion of the gene set covered, shown in
subcolumns below the algorithm header
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of larger pathways. We can see that ‘extracellular matrix
organization’, the most enriched pathway, was placed in the
cover set first. Next was ‘collagen biosynthesis and modify-
ing enzymes’; however, all of the differentially expressed
genes in this pathway are also covered by the larger path-
way ‘extracellular matrix organization’, as indicated by the
red cell in the ‘collagen biosynthesis and modifying
enzymes’ row, ‘extracellular matrix organization’ column.
The corresponding cell in the ‘extracellular matrix
organization’ row reveals that 24% of the differentially
expressed genes in ‘extracellular matrix organization’ are
also in ‘collagen biosynthesis and modifying enzymes’.

Figure 5b shows overlap between the top ten pathways
after application of the enrichment set cover algorithm.
Because the differentially expressed genes covered by the
‘collagen biosynthesis and modifying enzymes’ pathway
are a subset of those covered by the ‘extracellular matrix
organization’ pathway, the ‘collagen biosynthesis and
modifying enzymes’ pathway is removed from the cover
set (Fig. 5b). The second pathway in this list therefore
becomes ‘GPCR signaling g alpha q’. The ‘collagen for-
mation’ and ‘class b 2 secretin family receptors’ pathways
are also removed because the differentially expressed
genes they cover are additionally covered by the more

Fig. 5 Pathway redundancy heat maps. a Pathway overlap for top ten enriched pathways. b Pathway overlap for top ten enriched pathways after
application of set cover. The values represent asymmetric overlap, i.e. for each pathway shown on the left axis, values represent the proportion of
genes that are also included in the pathway shown on the bottom axis
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enriched pathways ‘extracellular matrix organization’
and ‘signal transduction’ pathways (respectively).
Additionally, ‘GPCR signaling pertussis toxin’ and ‘GPCR
signaling cholera toxin’ are absent from the returned list,
as all of their differentially expressed genes are found in
‘GPCR signaling g alpha q’ or ‘signal transduction’.
Some pathways in the enrichment set cover do still

show high levels of overlap, for example ‘wnt signalling
network’ is included despite 89% of its differentially
expressed genes being covered by ‘signal transduction’.
This is acceptable because ‘signal transduction’ is more
highly enriched than ‘wnt signalling network’, yet the
‘wnt signalling network’ is worth including as it contains
three differentially expressed genes that are not in ‘signal
transduction’. If ‘wnt signalling network’ had been
excluded then these genes would not have been
described by the most significant pathway available to
represent them. The unmodified top ten enriched path-
ways only cover 78.0% of the enriched genes. Using the
set cover enrichment algorithm increases this figure to
85.2% without disrupting the pathway order given by the
enrichment p-values.

Discussion and conclusion
We described algorithms suitable for reducing overlap in
large pathway data sets allowing multiple databases to
be amalgamated without excessive redundancy impeding
the usefulness of the resource. Standard set cover is the
best algorithm to reduce the number of pathways
required to cover the data set, but significantly increases
pathway size, which can be controlled by proportional
set cover or hitting set cover. The proportional set cover
is the best algorithm for controlling pathway size and
the hitting set cover is the preferred choice for covering
all of the genes in the dataset with minimal pathway
redundancy. We showed that reducing the GC param-
eter allows further reductions in pathway redundancy;
for example, if only 95% of the genes in the CPDB data-
set were covered redundancy can be reduced by up to
88%. In addition reducing GC increases pathway size
control when the proportional set cover and hitting set
cover algorithms are used.
For pathway enrichment analysis we aimed to re-

duce redundancy while selecting the most significantly
enriched pathways based on p-values. As an applica-
tion we used the modified set cover algorithm to re-
duce the results of enrichment analysis from a large
osteoarthritis data set. We found that 5 out of the 10
top ranking pathways could be omitted as they were
subsets of more highly enriched pathways. Overlap
between pathways returned from enrichment data is
not always immediately obvious and requires further
consideration. By reducing this redundancy, data in-
terpretation is made more intuitive. Reducing

redundancy also allows the user to explore substan-
tially more of the data set using the same number of
pathways.
The enrichment set cover algorithm presented within

this study differs from existing methods implemented by
ReCiPa and Pathcards, since enrichment analysis is
performed prior to reduction of redundancy. This is be-
cause the different sets of pathway boundaries available
in the full dataset may optimally fit the differentially
expressed genes. For example, comparison of the ‘apop-
tosis’ taken from KEGG, Reactome and Wikipathways,
reveals that many of the proteins are specific to a single
database [19]. This is due to the vague definition of
pathway boundaries, as well as differing experimental
focus on cellular contexts, such as tissues or disease
states. Following enrichment analysis the pathways that
are most significantly enriched are selected to represent
the differentially expressed genes and superfluous path-
ways are removed. This prevents the top results from
being dominated by large numbers of highly similar
pathways.
Set cover uses greedy heuristic methods, which pro-

vide good approximations of the optimal solution in a
time effective manner. These methods are extremely effi-
cient and can be run in a matter of minutes, however it
should be noted that they do not guarantee an optimal
solution. This is particularly true for the proportional set
cover algorithm where the randomness of early selec-
tions influences the result. However, all possible out-
comes result in reduced redundancy. The enrichment
set cover algorithm is exempt from these considerations
unless multiple pathways have identical p-values.
It should also be noted that set cover algorithms, in-

cluding the algorithms presented within this paper, are
capable of reducing redundancy regardless of structure
of pathway overlap within the initial data set [20, 21].
That is to say, the methods presented are equally appro-
priate for use on data sets in which many pathway pairs
show high levels of overlap or datasets with low overall
overlap. The selection criteria used within each approach
(the number of uncovered genes; the highest proportion
of uncovered genes; the rarity of genes across the data-
set; and enrichment p-values) utilize relative measure-
ments taken across the dataset and are not affected by
the overall composition of pathway redundancy. The
only assumptions made are that some variability will be
present in both the size of pathways and the redundancy
between pathway pairs. Since pathway datasets are un-
likely to be entirely uniform in each of these aspects, the
methods described are capable of iteratively selecting
pathways on the basis of their relative vi scores across all
foreseeable datasets.
We have provided a method to dramatically reduce re-

dundancy in pathways facilitating a more concise
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portrayal of cellular processes, while avoiding the issues
introduced by pathway merging. Our algorithms are
publicly available and have wide applicability to analysis
of pathway datasets from any organism.

Additional file

Additional file 1: Table S1. Enriched pathways from the osteoarthritis
dataset (p-value< 0.05). The set cover column indicated the 23 pathways
that were included in the set cover. (DOCX 19 kb)
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