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A signal processing method for 
alignment-free metagenomic 
binning: multi-resolution genomic 
binary patterns
Samaneh Kouchaki1,2, Avraam Tapinos1 & David L. Robertson   1,3

Algorithms in bioinformatics use textual representations of genetic information, sequences of the 
characters A, T, G and C represented computationally as strings or sub-strings. Signal and related 
image processing methods offer a rich source of alternative descriptors as they are designed to work 
in the presence of noisy data without the need for exact matching. Here we introduce a method, 
multi-resolution local binary patterns (MLBP) adapted from image processing to extract local ‘texture’ 
changes from nucleotide sequence data. We apply this feature space to the alignment-free binning 
of metagenomic data. The effectiveness of MLBP is demonstrated using both simulated and real 
human gut microbial communities. Sequence reads or contigs can be represented as vectors and their 
‘texture’ compared efficiently using machine learning algorithms to perform dimensionality reduction 
to capture eigengenome information and perform clustering (here using randomized singular value 
decomposition and BH-tSNE). The intuition behind our method is the MLBP feature vectors permit 
sequence comparisons without the need for explicit pairwise matching. We demonstrate this approach 
outperforms existing methods based on k-mer frequencies. The signal processing method, MLBP, 
thus offers a viable alternative feature space to textual representations of sequence data. The source 
code for our Multi-resolution Genomic Binary Patterns method can be found at https://github.com/
skouchaki/MrGBP.

Algorithms in bioinformatics use textual representations of genetic information, sequences of the characters A, 
T, G and C represented as strings or sub-strings. For example, in genome assembly, exact substring matching of 
short k-mers of fixed length are typically used to identify related sequences/strings1,2. Although this approach 
works well for closely related data, it will fail predictably with divergent sequences, e.g., viruses, due to a lack of 
homologous regions retaining sufficient sequence identity for exact matching. While there are approaches that 
permit relaxed k-mer matching3,4, the processing methods used in signal/image processing offer an alternative 
feature space because they are designed to be rotation and scale invariant, and are generally less sensitive to noise 
by mapping data to a less detailed representation, i.e., ‘texture’ changes. Due to the discriminative power and 
computational simplicity of such techniques, they have found applications to many areas5. Consequently, they 
may work better for divergent genome information such as found in microbial communities and in particular for 
viruses many of which remain uncharacterised.

We have implemented a signal processing method adapted from image comparisons (local binary pat-
terns, LBP, Fig. 1) for the extraction of local changes in numerical representations of genetic sequence data. 
Preliminary results have been presented as conference papers using a linear6 or non-linear7 dimensionality reduc-
tion approach. LBP is a feature descriptor capturing local texture changes first introduced for segmenting an 
image in two-dimensions into several meaningful partitions8,9. It is based on assigning a code to each local win-
dow. Its implementation for one-dimensional data has been applied to other signal processing areas, specifically, 
speech processing10,11. Here we implement the superior multi-resolution version of LBP, called multi-resolution 
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LBP (MLBP), which considers texture changes at different scales12 and benchmark its use in the processing of 
metagenomics data. We rationalise that in the same way as images, genomic sequences have ‘texture’ patterns at 
various scales that can be extracted using MLBP. Crucially for alignment/homology-free comparison the arbi-
trary location of each pattern does not affect the extracted feature vector.

To test an application of the MBLP method and its effectiveness compared to LBP and string-based methods, 
we consider the problem of unsupervised grouping of genomic contigs into species-level groups (‘binning’) based 
on alignment-free genome composition comparisons. High-throughput/‘next-generation’ sequencing technologies 
have generated enormous volumes of data in metagenomic studies. In these samples, the sequence reads can be from 
the same or different genomes from a microbial community of viruses and bacteria, including divergent variants 
of the same species. Hence, reconstructing (assembling) individual genomes from this mixed data can be prob-
lematic. Moreover, sequencing errors, sequence repetition, insufficient coverage and high levels of genetic diversity 
can give rise to fragmented assemblies. Furthermore, comparing metagenomic data to existing reference genomes 
(taxonomic binning) will only identify some of the reads/contigs present. Consequently, genome composition-based 
techniques13,14 have been introduced as an alternative way to analyse the species composition of metagenomic sam-
ples15. These methods use species-specific genomic signatures extracted by calculating the normalised frequency of 
k-mers of a specific size, commonly k = 416,17. The signatures are obtained by counting the occurrences of each k-mer 
combination where the k-mer frequency of each sequence represents a feature vector in high-dimensional space.

A number of metagenomic binning techniques have used genomic signatures as features, for example, leverag-
ing across-sample coverage-profiles18,19. The method emergent self organising maps (ESOM) based binning uses 
contour boundaries to visualise the clusters19. Unfortunately, ESOM plots are computationally very demanding. 
Other methods that consider coverage across multiple samples include CONCOCT18 and MetaBAT20. However, 
they require a high number of samples to perform well, e.g., 50 or more. VizBin17 is another visualisation approach 
that considers a single sample, but it needs manual selecting of the centroids for binning.

To perform clustering/binning we have first used singular value decomposition (SVD)21,22 (specifically ran-
domised SVD, RSVD23, for time efficiency) to reduce the dimensionality of the data, i.e., to identify the principal 
components of the MBLP feature vectors; termed ‘eigengenome’ information24. Second, these eigengenome fea-
tures are passed as an input to Barnes-Hut t-distributed stochastic neighbor embedding (BH-tSNE)25 for visual-
isation of the clusters in the data.

Figure 1.  Calculating the LBP code. A threshold of the integer numerical representation of the sequence (see 
Table 1) is determined by comparing the centre point (in the square) and its neighbours. The LBP code is then 
obtained by using dyadic weights.

Letter Integer EIIP Atomic Real

A 2 0.1260 70 −1.5

T −2 0.1335 78 1.5

C −1 0.1340 58 −0.5

G 1 0.0806 66 0.5

Table 1.  The numerical representation of each letter considering Integer, EIIP, atomic and real.
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An overview of our approach Multi-resolution Genomic Binary Patterns (MrGBP) is depicted in Fig. 2. 
We apply our method to both simulated and real metagenomic datasets, and demonstrate our results compare 
favourably to several existing binning methods. We also consider the effect of including coverage information 
across-samples in a hybrid approach to maximise the performance in longitudinal metagenomic samples and 
show improved performance. Collectively our results demonstrate the use of an image/signal processing method 
(MLBP) in bioinformatics, a new feature space for sequence analysis. The platform information for the reported 
run times is provided in the ‘Additional information’ Section.

Results and Discussion
Calculating MLBP requires numerical data as an input (Fig. 1). Thus, genomic sequences need to be first mapped 
into one or several numerical representations26,27. Representation methods can be based on biochemical or bio-
physical properties of DNA molecules or be arbitrarily assigned numbers (Table 1). MLBP features are then 
extracted from these numerical representations and used to compare sequence data.

The performance of our method is tested for a low complexity simulated dataset using different numeri-
cal mappings (EIIP, atomic, real and integer nucleotide representations, Table 1) for MLBP lengths p ≤ 6 
(Supplementary Figure 1). For example, for the integer representation our automated binning approach very 
closely matches the manually annotated clusters (compare panels a and b in Fig. 3). Specifically, the contigs from 
different species form visually separate clusters with very limited overlap with the clusters of other species.

The different numerical representations provided slightly different data clusters but overall the results demon-
strated similar performance (Table 2). The Integer representation was selected for subsequent analysis as it has 
relatively high performance and demonstrated more discrimination compared to the other representation meth-
ods. The average run time was 75.35 seconds (2184 contigs with total length 33138556 nucleotides). The run 
time includes loading the data, numerically representing the data, MLBP feature extraction and dimensionality 
reduction using BH-tSNE (Fig. 2).

Figure 2.  Schematic overview of our implementation of the MrGBP method to characterise the species 
relationships among metagenomic contigs.

Figure 3.  Visualisation of the simulated metagenomic community using Integer nucleotide mapping, 
MLBP to extract features, RSVD for feature reduction, BH-tSNE two-dimensional representation and cluster 
identification using DBSCAN comparing (a) manually annotated clusters (see species names in key) to (b) the 
DBSCAN defined clusters.

Nucleotide mapping Atomic EIIP Real Integer

Precision 97.23 89.08 97.41 98.38

Recall 94.82 96.80 93.96 96.35

F1 score 96.01 92.78 95.65 97.35

Number of clusters 12 10 13 12

Table 2.  Precision, recall, F1 score (%) and the number of clusters for various nucleotide mappings for a 
simulated low complexity metagenomic dataset.
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To check the effect of changing the window length, we considered various lengths of MLBP windows (Table 3 
and Supplementary Figure 2). As the MLBP vectors are based on a histogram, the number of features is deter-
mined by the window length, which may affect final performance. Here, run time only includes the time to 
numerically represent the data and MLBP feature selection.

With smaller window lengths, the resulting feature vectors cannot describe the underlying structure of the 
metagenomic dataset, while larger feature vectors increases the time complexity (Table 3). Hence, window size 
should be sufficiently large to maintain the distinctness of the signal (information regarding texture changes 
across various contigs).

The computational complexity of our method increases as the dimensions of the feature space increase. 
Therefore, we considered how keeping different numbers of eigen factors can affect the performance and run 
time of our method (Fig. 4). We use the numerical integer representation for the nucleotide mapping and p ≤ 6 for 
feature selection. The results show that after keeping a number of eigen factors, i.e., 30, the final performance does 
not change significantly. However, as the number of eigen factors increases the run time of RSVD and BH-tSNE 
increases (Table 4). These results demonstrate that the MLBP method can analyse a metagenomic dataset in a 
reasonable time frame. Moreover, it is performing well considering only one sample was analysed.

Comparison with Existing Methods for Simulated 10 and 100 Metagenomic Data.  We consid-
ered two simulated datasets with 10 and 100 genomes to compare our results to both low and complex metagen-
omic communities. Our results compared favourably with CONCOCT18, MetaBAT20 and MaxBin228,29 (Table 5). 
CONCOCT bins the data by employing sequence composition and across-sample coverage. The method has been 
compared with a range of methods including MetaWatt30, SCIMM31 and CompostBin32 to show its advantage 
over composition based techniques. However, for available high complexity metagenomic data CONCOCT does 
not work as well as many samples are usually required for it to perform well. MetaBAT bins the metagenomic 
data using probabilistic distances of genome abundance with sequence composition. It is an efficient method for 
analysing complex metagenomic data. MaxBin was originally introduced for single sample data in which it bins 
the data based on tetra-nucleotide frequencies and it has been extended to MaxBin2 to support multiple samples. 
MetaBAT and MaxBin2 produce many unclassified contigs. Consequently, they have higher precision but lower 
recalls.

Window length 2 4 6 8

Feature dimension 4 20 84 212

Precision 86.08 97.78 98.38 98.21

Recall 85.80 94.04 96.35 94.63

F1 score 85.94 95.87 97.35 96.39

Number of clusters 19 16 12 11

Run time 22.43 27.89 36.22 46.14

Table 3.  Precision, recall, F1 score (%), the number of clusters and the run times for MLBP of various window 
lengths or feature dimensions (p ≤ P) and integer representation.
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Figure 4.  Precision, recall and F1 score (%) by keeping different numbers of RSVD components. Integer 
representation and p ≤ 6 have been considered to analyse the simulated metagenomic dataset.

Number of RSVD 
Components 10 20 30 40 50 60 70 80

RSVD run time 0.06 0.12 0.20 0.30 0.44 0.55 0.69 0.85

BH-tSNE run time 27.76 28.83 30.04 31.20 33.05 34.65 35.63 35.80

Table 4.  Run times of RVSD and BH-tSNE for various number of RSVD components.
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For the 100 simulated genomes data our method performs better than CONCOCT and MetaBin methods, and 
quite close to MetaBAT. Lower performance is mainly because DBSCAN does not work very well for a very dense 
feature space (high complexity data representation). It may result in some unclustered contigs and therefore, 
lower performance. It still shows that the proposed pipeline can work for low and high complexity datasets. Note, 
alternative clustering methods could be explored.

For completeness we also ran our ‘MLBP pipeline’ (Fig. 2) replacing MLBP with (i) LBP and (ii) a k-mer text/
string-based representation to compare our feature space with a commonly used 4-mer frequencies. The results 
indicate that the MLBP method has a more discriminative feature vector and better performance than either LBP 
or the string representation (Table 5).

Real Data: Infant Human Gut.  A relatively low-complexity infant human gut dataset19 was analysed to test 
the performance of our method with real data. A main reason for considering this dataset is to show the effective-
ness of the MBLP method to bin low abundant viral community data to benchmark our texture analysis approach. 
The integer numerical representation was used for the nucleotide mapping, p ≤ 8 for feature selection and the first 
60 eigen components in the dimensionality reduction stage (RSVD).

MLBP binned the data into 19 clusters with precision and recall of 88.34 and 97.22 at the species level. 
BH-tSNE representation of the data demonstrates the genomic contigs of the same or very similar contigs are 
binned together (Fig. 5). While some of the plasmids and viruses (bacteriophages) clustered with their associ-
ated host clusters, most species formed their own cluster. The bacterial species tend to form separate clusters, for 
example, Anaerococcus sp. and C. albicans form clusters 1 and 3 (Fig. 5). However, separating plasmid or virus 
from its host is less straight-forward due to their closer genome compositions. Nonetheless, our method man-
ages to bin S. aureus strains, their plasmid and virus into two groups; (1) S. aureus strain and plasmid and (2) S. 
aureus strain 2 and virus. Propionibacterium sp. appears as a separate bin. E. faecalis and one of its plasmids forms 
one cluster. S. epidermidis has three strains, three viruses, one integrated virus (prophage) and several plasmids 

Methods Precision Recall F1 score Number of clusters

10 Genomes

MLBP 98.38 96.35 97.36 12

CONCOCT 98.56 97.35 97.95 19

MetaBAT 90.82 94.98 92.85 9

MaxBin 93.43 96.65 95.01 10

4-mer 96.14 70.80 81.54 13

LBP 90.41 96.33 93.27 11

100 Genomes

MLBP 91.52 83.97 87.58 116

CONCOCT 60.73 96.37 74.51 79

MetaBAT 92.34 89.62 90.96 104

MaxBin 89.83 83.96 86.80 85

4-mer 95.32 69.56 80.43 98

LBP 65.60 90.67 76.13 101

Table 5.  Precision, recall, F1 score (%) and the number of clusters for our proposed method, CONCOCT, 
MetaBAT and MaxBin.

Figure 5.  Visualisation of the infant gut metagenomic community using integer nucleotide mapping, MLBP to 
extract features, RSVD feature reduction, BH-tSNE two-dimensional representation and cluster identification 
using DBSCAN comparing (a) manually annotated clusters (see bacteria species, virus or plasmid names in key) 
to (b) the DBSCAN defined clusters 1 to 19.
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and the algorithm managed to bin them into five clusters where S. epidermidis strains 1 and 3 clustered together 
(including virus 13 and 14), with strain 4 forming a separate cluster (including virus 46).

Our results compare favorably with CONCOCT18, MetaBAT20 and MaxBin228,29, showing better performance 
on this dataset with small sample size (11 samples) in comparison with the other algorithms tested (Table 6).

To further investigate the relationship between clusters, the abundance patterns of each cluster were calculated 
based on the number of reads mapped to contigs at the different sampling time points (Supplementary Figure 3). 
Pairwise correlation coefficients were then calculated to check for any pattern among the clusters. The results 
suggests that there is a strong correlation between clusters of related species (Supplementary Figure 3). For exam-
ple, the clusters of Propionibacterium and Peptoniphilus species have similar abundance patterns (Clusters 9–10). 
Similar results were also found in19 where both species have proliferation in later stages and hence are well-adapted 
to the gut. Moreover, two clusters have been formed for F. magna with very similar coverage patterns (clusters 
5-6). Consequently, this similarity could be analysed further to join some of the clusters. A similar pattern can be 
observed in the clusters of S. aureus, confirming the relationship between each bacteria and virus (clusters 11-12). 
The five clusters of S. epidermidis also share similar coverage patterns (clusters 13–17). A further step could be to 
cluster all the contigs of these five clusters separately to have a better separation of the related strains and viruses.

Finally, we checked the run time of our method. It takes about three minutes (108.67 s) to analyse this dataset 
(the number of contigs is 2293 and total length of them is 27594702). Although our code is relatively fast, it could 
be further optimised in terms of both time and memory.

Conclusion
We have demonstrated that the image and signal processing technique, MBLP, can be adapted to numerical nucle-
otide sequence data comparisons and performs significantly better than LBP alone. Applied to metagenomic 
binning and visualisation, MLBP captures the genomic signature changes effectively, i.e., genome texture pat-
terns, permitting alignment-free comparison and clustering of related contigs. Our results on simulated genomic 
fragments and contigs from infant human gut samples demonstrates that a signal processing method can capture 
the underlying taxonomic structure of the microbiome data and performs favourably in comparison to existing 
metagenomic methods. Collectively our results demonstrate the ‘signal’ in genome data can be just, if not more 
effectively, captured by appropriate image/signal processing algorithms as opposed to text/string-based methods. 
This demonstrates the potential for exploitation of an alternative feature space for alignment-free comparison of 
genomic sequence data either alone or combined with text/string-based representations, i.e., ‘multi-view’ rep-
resentation of the data. Using other LBP/MLBP variants or features descriptors from image or signal processing 
will be investigated in future work.

Methods
Our methodological pipeline (Fig. 2) is comprised of several steps: (1) numerically represent the genomic contigs 
using a nucleotide mapping (Table 1). (2) MLBP is used to extract features from these numerical representa-
tions. If available, cross-sample coverage information (mean and standard deviation) is extracted separately using 
Bowtie 233 and can be considered as extra information to be added in the MLBP feature space. (3) Eigengenome 
information is extracted using RSVD to reduce the dimensions of the feature matrix. (4) BH-tSNE is used to map 
RSVD features to a two-dimensional space for visualisation and data binning. (5) For quantitatively evaluating 
the visualisation performance, we cluster the BH-tSNE projected data using DBSCAN a density-based spatial 
clustering algorithm34 and calculate the precision, recall and F1 score between the DBSCAN assigned labels and 
the original labels.

We note each step of the pipeline was based on having an appropriate analysis for the metagenomic data based 
on a novel feature space. Our primary purpose is to present this as a working view of the feature space, and not a 
novel metagenomics pipeline as such. Further optimisation in terms of implementation is of course possible and 
some options are already provided in the online software, e.g., changing the numerical representation.

The Nucleotide Mapping.  The genomic reads can be represented numerically in two ways: (i) Assigning 
an arbitrary value to each letter A, C, G or T of the nucleotide sequence, i.e., Voss35, two or four bit binary rep-
resentations36,37 or (ii) defining numerical representations that correspond to certain biochemical or biophysical 
properties of the DNA molecules: electron ion interaction potential (EIIP)38, paired nucleotide representations39 
or atomic representations40.

As each numerical representation method assigns different values to each nucleotide this can lead to different 
results and performance when LBP/MLBP is applied. We thus compare several existing numerical representations 
from the literature (EIIP, atomic, real and integer nucleotide representations). Table 1 shows the value assigned 
to each nucleotide in each of the representations. Figure 6 shows an example of mapping a nucleotide sequence 
to two numerical vectors.

Methods Precision Recall F1 score Number of clusters

MLBP 88.34 97.22 92.57 19

CONCOCT 79.5 90.62 84.69 32

MetaBAT 84.23 92.35 88.10 10

MaxBin2 82.84 93.50 87.84 10

Table 6.  Precision, recall, F1 score (%) and the number of clusters for our proposed method, CONCOCT, 
MetaBAT and MaxBin2.
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Multi-resolution Local Binary Patterns.  LBP has found popularity not only in the field of image process-
ing but also in signal processing41. The LBP distribution of genomic contigs was considered as the species specific 
genomic signatures in6. LBP examines the neighbouring points of each data point and assigns a binary code to it. 
By considering x(t) as the numerical representation of the t th position of a genomic segment, LBP is defined as

∑= + − − +

+ + −
=

−

+

x t x t i p x t

x t i x t
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The difference between each neighbouring point and the centre point t is passed to a Sign function. 
Consequently, each window of length p + 1 is represented by a p-bit binary number. Each binary number is con-
verted to a LBP code using a dyadic weight. An example of the LBP operator can be seen in Fig. 1 where p = 6. 
The value of the centred point (in the square in Fig. 1) is compared with the six neighbouring points to produce 
the binary number and LBP code. The distribution of the LBP codes are defined using the obtained codes for each 
window:

∑ δ=
≤ ≤ −

x i kh (LBP ( ( ), )),
(3)

k
p i N p

p
/2 /2

where δ shows the Kronecker delta function, k = 1, 2, ..., 2p is all possible values of LBP codes and N is the genomic 
fragment length. Considering the distribution of LBP codes makes the feature space independent of each pattern 
location and only dependent to frequency of each MLBP code.

MLBP is an LBP extension that combines the results of LBP distribution from various values of p ≤ P. 
Consequently, the pattern changes of different resolution levels are considered to improve the description of the 
data inputs. Here, we apply MLBP to one-dimensional linear sequences to consider pattern changes of various 
lengths. LBP/MLBP is selected in this work due to its performance in other applications and also as it is very fast 
to calculate.

Across-Samples Coverage Information.  To obtain the coverage profile for contigs across the longitudi-
nal samples, the Illumina reads were mapped to contigs with Bowtie 233 for each time point. SAMtools42,43 was 
then used to produce a per base depth file. As a result, our coverage feature vector for each genomic contig is the 
average and standard deviation of the per base depth for each contig. Coverage information provides extra infor-
mation that optionally can be added to the MLBP feature space.

Randomised Singular Value Decomposition.  A metagenomic community can be considered as a linear 
combination of genomic variables. The histogram of MLBP codes for each genomic fragment captures the local 
changes in the pattern (the “texture”) of each distinct contigs. By representing a vector of MLBP codes for each 
contig, low-rank matrix approximations can be used for efficient analysis of the metagenomic data. Our assump-
tion in using SVD is that the MLBP codes of the contigs from each species have a distinct energy contribution. 
Therefore, the data can be represented as a linear combination of mutually independent components. RSVD a 
faster version of SVD was used here23.

SVD decomposition of a matrix X is defined as

= ΣX U V , (4)T
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Figure 6.  Two representations: integer and EIIP. Each nucleotide A, C, G or T in the sequence is assigned to a 
value depending on the numerical representation.
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where U and V are the left and right singular vectors, ∑ is singular values and (·)T denotes the transpose operator.
In metagenomic data analysis due to data complexity, SVD can be time consuming. Therefore, RSVD is used 

as an accurate and robust solution to estimate the dominant eigen components quickly23.
RSVD calculates the first ith eigen components of the data by using QR decomposition and mapping X to a 

smaller matrix as

Ω =
= Ω =

=

N i
Y X Y QR
B Q X

randn( , ),
,
, (5)T

where randn generates a random matrix of the size of its inputs and N is the number of contigs. After decompos-
ing B using SVD, the final factors are obtained using Q and the eigen factors of B.

Barnes-Hut t-Distributed Stochastic Neighbor Embedding.  BH-tSNE is used in many research areas 
as a nonlinear technique for high dimensional data visualisation25. It works based on keeping the locality of 
the data in the lower dimension and was used in this paper for two-dimensional data visualisation and clus-
tering. BH-tSNE is based on the divergence minimisation of input objects distributions and the corresponding 
low-dimensional data points. As a result, it can preserve the original local data structure in the final lower dimen-
sional visualisation. Normalised Gaussian kernel has been considered as an ordinary similarity measure but it 
scales quadratically to the number of data points. The main objective function also has been approximated by 
defining the similarity function based on a number of neighbouring points25. In addition, a vantage-point tree is 
employed for decreasing search complexity. BH-tSNE is thus an efficient (O(N log N)) dimensionality reduction 
approach and is used in this paper for two-dimensional data visualisation and clustering.

DBSCAN.  DBSCAN is a popular density-based clustering algorithm with the aim of discovering clusters from 
the approximate density distribution of corresponding data points. DBSCAN does not need the number of clus-
ters to be specified but has two parameters that need to be determined: epsilon that indicates the closeness of the 
points of each cluster to each other and minPts, the minimum neighbours a point should have to be considered 
into a cluster. The initialisation point is a random point which has not been visited previously. The neighbourhood 
of this point is then retrieved and if it consists of an acceptable number of elements, a cluster is formed, otherwise 
the element is considered as noise. Hence, DBSCAN may result in some unclustered samples.

Usually DBSCAN parameters are not known prior to analysis and there are several ways to select their val-
ues. One way is to calculate the distance of each point to its closest nearest neighbour and use the histogram of 
distances to select epsilon. After selecting epsilon a histogram can be obtained of the average number of neigh-
bours for each point using the epsilon. Some of the samples do not have enough neighbouring points and can be 
considered as noise. Implementation of the parameter selection is included in spark_dbscal (https://github.com/
alitouka/spark_dbscan).

DBSCAN can find arbitrary shaped clusters, and is robust to outliers. However, it may not identify clusters of 
various densities or may fail if the data is very sparse. It is also sensitive to the selection of its parameters and the dis-
tance measure (usually Euclidean distance). The distance measure can affect any other clustering technique as well.

Datasets.  To validate the effectiveness of our methodology we consider both simulated and real datasets. 
Simulated metagenomic data of Illumina sequences for 10 and 100 genomes (Supplementary Tables 1 and 3) was 
downloaded from http://www.bork.embl.de/mende/simulated_data/. The data were assembled by Ray Meta44 
into contigs (k = 31). Using these datasets, various aspects of our method, including MLBP window length and 
RSVD number of eigen components, have been analysed.

For the real data analysis, a time-series metagenomics human gut dataset comprised of 11 samples (18 runs) 
taken over nine days from a newborn infant19 was used. The authors have assembled the data into 2329 con-
tigs. This assembly and binning information is provided at http://ggkbase.berkeley.edu/carrol/. Corresponding 
Illumina reads can be downloaded from the NCBI, SRA052203, which consists of 18 Illumina sequencing runs 
(SRR492065-66 and SRR492182-97). For the real data, we mapped the reads to the contigs using Bowtie2 and 
coverage profiles have been obtained using SAMtools.

Performance Evaluation.  In order to check the performance of our MrGBP method, DBSCAN34 has been 
used to cluster the final results. The precision, recall and F1 score are calculated between the DBSCAN assigned 
labels and the original labels to determine the performance as a measure of a clusters “purity”. Assuming there 
are m genomes in the dataset and it is binned to k clusters, the precision, recall and F1 score can be calculated as

=
∑

∑ ∑

=
∑

∑ ∑ + ∑

= ×
×
+

=

= =

=

= =

s

s
s

s

Precision
max

Recall
max

unbinned sequences

F1 2 Precision Recall
Precision Recall (6)

i
k

j
ij

i
k

j
m

ij

j
m

i
ij

i
k

j
m

ij

1

1 1

1

1 1

where sij is the length of contigs in cluster i corresponds to genome j.
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