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Zusammenfassung

Schlagworte: Smart Camera Netzwerke, verteilte Algorithmen zur Kameraausrichtung,

Interaktion zwischen Nutzern und Kameras

Diese Dissertation behandelt Verwaltungsalgorithmen für große Kamerasysteme. In

zukünftigen Sicherheits- und Überwachungssystemen werden intelligente Kameras zum

Einsatz kommen. Diese Smart Cameras verfügen über integrierte Recheneinheiten, die

Bilddaten noch am Bildsensor analysieren. Das Ergebnis dieser Analyse kann über ein

Netzwerk übertragen werden. Somit reagieren Kameras weitestgehend autonom, werten

kooperativ Bilddaten aus und fordern nur im Falle des Auftretens vordefinierter Ereignisse

Unterstützung durch menschliches Personal an.

Eine bisher ungelöste Aufgabe bestand darin, das Aufnahmeverhalten dieser Kam-

eras mit Hilfe verteilter Algorithmen zu koordinieren. In dieser Arbeit werden Ver-

fahren vorgestellt, die in großen Kameranetzen zu einem selbst-organisierenden Systemver-

halten führen. Insbesondere werden Algorithmen zur räumlichen Aufteilung einer zu

überwachenden Fläche vorgestellt. Somit wird ein dezentrales, verteiltes Verfolgen von

Objekten mit mehreren Kameras möglich. Die zentrale Problemstellung ist hierbei,

wie eine Vielzahl durch Aktuatoren drehbarer Kameras so ausgerichtet werden kann,

sodass das kooperative Aufnahmeverhalten die Anforderungen des Nutzers bestmöglich

erfüllt. Eine mathematische Betrachtung ergibt, dass dieses Problem zur Klasse der NP-

vollständigen Probleme gehört. Daher kann, bei den zur Verfügung stehenden Rechenres-

sourcen und den Anforderungen an eine geringe Laufzeit der Algorithmen, lediglich eine

Annäherung von Lösungen mit Hilfe von Heuristiken erreicht werden. Der Entwurf und

die Evaluierung solcher Algorithmen werden in dieser Arbeit vorgestellt.

Um eine Kontrolle der Kameras durch Nutzer vornehmen zu können, wurde ein Ver-

fahren zur Interaktion zwischen Kameras und mobilen Steuergeräten untersucht. Dieses

Verfahren stellt sicher, dass trotz der Autonomie der Kameras letztlich die Nutzer das

System ihren Wünschen und Anforderungen entsprechend kontrollieren können.



Abstract

Keywords: Smart Camera networks, distributed algorithms for camera alignment, inter-

action between users and Smart Cameras

This thesis presents system management algorithms for Distributed Vision Networks.

Future video surveillance systems are expected to consist of Smart Cameras. These cam-

eras contain a computing unit that is used for analysing image data acquired from the

built-in CCD sensor. Recent advances in the research areas of computer vision make way

for scene interpretation and automated generation of alarms in case serious incidents are

detected. Security staff can be informed by cameras by using mobile devices that are

connected to the Smart Camera network.

The contribution to knowledge presented in this thesis is a class of algorithms that

coordinates Smart Cameras in such a way, so that they act self-organising and with

the least necessary amount of control by humans. The focus is on the alignment of

multiple cameras’ PTZ heads in order to observe the area the cameras are positioned on

in the most efficient manner. Thereby, a decentralised, distributed system for a seamless

tracking of objects with multiple cameras becomes feasible. The main problem is to

coordinate numerous cameras in order to reach a system behaviour that suits the needs

of its users. A theoretical analysis of the problem reveals that the problem which is

related to the NP-complete set-packing problem can hardly be solved with the computing

capacities of today’s computing systems. Therefore, distributed heuristics are described

which approximate close to optimal solutions to this problem.

In order to enable users to interact with a camera system, appropriate methods are

introduced that make way for a bi-directional communication between cameras and mobile

devices. Thereby we assure that the cameras behaviour can be supervised by humans and

the system can be adapted to specific needs.
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Chapter 1

Introduction

1.1 Motivation: Intelligent Distributed Surveillance

Systems

“The work on intelligent distributed surveillance systems has been led by computer

vision laboratories perhaps at the expense of system engineering issues“

- Dr Sergio Velastin, Kings College London [1]

Due to the tense international security situation video surveillance systems have be-

come part of our everyday life. Surveillance systems are used at airports and public

transport facilities to detect and prevent acts of terrorism. In many public places cam-

eras are installed for the prevention of vandalism. Benefits and threats arising from an

increasing deployment of surveillance systems are discussed extensively. Apart from tech-

nical issues that are discussed throughout this dissertation, social sciences investigate the

impact of surveillance systems on our live. In many inner cities, video based surveillance

systems are used to make citizens feel save and secure - although privacy issues can not

be neglected and are subject of continuous public discussion and legal investigation [2].

A new generation of surveillance systems relies on Smart Cameras and overcomes

drawbacks of today’s systems in terms of privacy protection, cost efficiency and robustness

towards security threats. Smart Cameras consist of a CCD sensor acquiring images and a

computing unit that allows to analyse the collected images automatically. No image data

leaves the Smart Camera as long as no predefined incidents are detected. Advances in the

research area of computer vision allow for object detection, tracking and recognition and

1



2 1 Introduction

thereby enable Smart Cameras to understand scenes autonomously. The research project

PRISMATICA1, which has been funded by the European Union, investigated intelligent

surveillance systems. Research results show that in future computers are able to analyse

images in an accurate and reliable way - similar as humans do [1].

In case predefined, serious incidents are recognised, security staff is informed. Video

data that is recognised as irrelevant is deleted automatically by the Smart Cameras.

Thus, privacy is guaranteed. Persons surveyed by Smart Cameras are no longer prone to

negative side effects of today’s CCTV systems such as voyeuristic security staff or inatten-

tiveness caused by fatigue - which might lead to dangerous situations passing unnoticed.

By overcoming current privacy problems, other fields of application apart from security

and surveillance arise. For gaining a deeper understanding of shopping behaviour, Smart

Cameras can be used to count people and measure waiting times - e.g. for optimising

queues at cash desks [3].

Installations consisting of numerous networked Smart Cameras are called Distributed Vi-

sion Networks. An international conference has been established recently (International

Conference on Distributed Smart Cameras, ICDSC) where advances in research concern-

ing Distributed Vision Networks are discussed. Several fields of research drive the devel-

opment of these networks, especially advances in embedded and distributed systems and

computer vision are important factors for future developments. Large camera systems (as

e.g. used at international airports) are comprised of thousands of cameras. This thesis

shows, that image analysis and camera alignment benefit from a self-organising system

architecture. In Distributed Vision Networks, Smart Cameras analyse scenes together and

anticipate dangerous situations or aggregate useful statistics. Apart from collaboration

in terms of computational image analysis, management tasks need to be carried out. For

example, cameras need to cooperatively adjust their fields of view by panning and tilting

their CCD sensors in order to observe areas or track objects efficiently. These manage-

ment tasks should -as the analysis of video streams- be carried out in a distributed fashion

and should not rely on central components that might be prone to errors and attacks and

even lead to system failure.

Today, the main component of a video based surveillance system is a central con-

trol console, where the video data from all cameras is delivered to. In contrast to this,

Distributed Vision Networks rely on a distributed system. Each Smart Camera is a com-

puting node that is able to analyse data without a central entity. In order to allow for

cooperation between (neighbouring) Smart Cameras and users, the networked system ar-

chitecture has to be designed in such a way, that cooperation becomes possible. Security

1http : //cordis.europa.eu/data/PROJ FP5



1.2 Problem Statement and Contribution 3

staff can stay in contact with the Smart Camera system by using mobile terminals that

are connected to the Smart Cameras. These users of the Smart Camera system can send

requests to the cameras and thereby control the system behaviour. In case serious inci-

dents are detected by the cameras, security staff is informed. Therefore video data can

be transferred from one or more cameras to a mobile node. This information can then

be used to detect false alarms or investigate the incident further. The notification pro-

cess requires a bi-directional communication scheme: Security staff defines incidents that

the cameras are expected to watch out for and sets parameters that control the system’s

behaviour.

This thesis introduces a class of management algorithms for Distributed Vision Net-

works. Namely a spatial partitioning algorithm (ROCAS [4]) and a tracking algorithm

(DMCtrac [5]) are introduced. For the alarm management, a system is presented that al-

lows for a bi-directional communication between Smart Cameras and human staff equipped

with mobile terminals (AMiDiViN [6]).

1.2 Problem Statement and Contribution

The increasing performance of computing systems led to a design gap: On the one hand,

today’s systems can carry out more complex tasks in less time. On the other hand, it

is difficult for humans to design and maintain these systems. Common camera networks

consist of thousands of cameras2 that can hardly be managed manually in terms of camera

alignment let alone image analysis. During the last years, several approaches to address

the problem of rising complexity of technical systems have been proposed and evaluated.

Some of these approaches can be transferred directly to the management issues arising in

large Distributed Vision Networks, some need to be modified and for several applications,

completely new approaches need to be investigated. A detailed comparison is given in

Chapter 3.

This thesis is influenced by the research initiative Organic Computing (DFG SPP

1183). The Organic Computing initiative aims at overcoming drawbacks of current top-

down engineering approaches. Instead of designing a system as a static and thoroughly

planned automaton with predefined states and behaviour, more flexible approaches are

investigated. An Organic Computing system is able to develop and adjust itself to chang-

ing environmental influences. It exposes life-like properties, as described by the Self-*

2For example, at Athens airport 4.500 cameras are in operation which deliver their video data to
central recording servers. In case serious incidents are reported, video data is analysed in the aftermath.
Real-time detection of incidents is hardly feasible by manual image analysis.
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properties of the system. The following terms have been defined that describe Organic

Computing systems. According to [7, 8], an Organic Computing system is

• Self-Organising

• Self-Optimising

• Self-Healing

• Self-Explaining

• Anticipative

For Distributed Vision Networks, these self-* properties can be translated into concrete

design features that have been implemented as a part of this thesis:

Smart Cameras are able to cooperate and investigate scenes without human interven-

tion. Therefore, PTZ3 cameras can be used to reorganise their fields of view by turning

their heading. These Smart Cameras self-organise their fields of view. The user can set

up constraints (priority regions, blind spots) but does not need to take care of the process

in detail.

Smart Cameras are further able to arrange their fields of view so that an optimal

surveillance coverage is achieved. In Section 5.2.3 it is shown, that the process of optimis-

ing the arrangement of the cameras’ fields of view is an NP-complete derivative of the art

gallery problem [9]. Distributed heuristics that help to find close to optimal solutions to

this and related problems are presented in Chapter 5. The heuristics ROCAS and DMC-

trac are examples for a distributed heuristics that bring Self-Optimisation properties to

a Distributed Vision Network.

Self-Healing in Distributed Vision Networks implies that Smart Cameras are not only

able to detect system failure but also to react in order to compensate its effects. Failure

detection mechanisms allow the detection of fail-stop errors of single nodes. An appro-

priate reaction to a fail-stop error of a single Smart Camera is to re-arrange the cameras’

fields of view so that the area covered by the failing node is covered as good as possible

by neighbouring nodes. Hence, the overall system performance decreases (a failing node

leads to a decrease in area covered by the surveillance system) but the Smart Cameras

are able to partly compensate this loss in surveillance coverage (graceful degradation).

The interaction of Smart Cameras and humans (e.g. security staff) becomes possible

with Mobile Alarm Management Terminals. For example, a Smart Camera system can

guide security personnel to the position where an incident happened. Instead of just

3Pan, Tilt, Zoom
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raising an alarm, a self-explaining system illustrates its actual behaviour (e.g. ’alarm on

a certain area’) by sending background information gathered by several cameras positioned

in the area the incident happened in. The users of such systems intuitively gain a deeper

understanding of how the cameras came to the conclusion to raise an alarm.

Since Distributed Vision Networks are expected to carry out surveillance tasks with-

out human intervention, they need to anticipate critical situations in order to prevent

fatal incidents. An example for anticipation in Distributed Vision Networks is the follow-

ing situation: At a train station an unattended suitcase might be detected by a Smart

Camera. Before raising an alarm signal, the detecting Smart Camera will communicate

with neighbouring Smart Cameras in order to investigate the scene. In case a person has

run away from this suitcase and left the building, an alarm should be raised. In case the

cameras come to the conclusion, the suitcase has been left since it owner turned a few

steps away to a timetable, then no alarm needs to be raised. Thereby, the number of false

alarms can be reduced.

This thesis introduces a class of distributed system management algorithms that enable

Smart Cameras to take over cooperative tasks by relying on Organic Computing features

as introduced above. The following section summarises the major contributions of this

work and explains its scientific focus.

1.3 Classification and Scientific Focus

Today’s CCTV surveillance systems rely on centralised structures [1]. Video data is

transferred from the cameras to centralised control rooms where it is analysed by security

staff. Current research focuses on intelligent surveillance networks. This thesis presents

a novel network architecture for Distributed Vision Networks, that is tailored to suit the

needs arising in large networks. Smart Cameras form mesh networks by self-organising

their network infrastructure4. This novel approach to the architecture of distributed

surveillance systems serves as a basis for cooperative tasks that Smart Cameras carry out

to understand scenes cooperatively. The following three main aspects are focused within

this thesis and contribute to the system management in large camera systems.

• System architecture: Distributed Vision Networks as introduced above rely on nu-

merous Smart Cameras. Such systems need to support several basic functions. A

4A mesh network is a subclass of wireless ad-hoc networks [10]. In an ad-hoc network, nodes connect
spontaneously in order to forward data among them. Mesh networks are characterised by a static position
of the network nodes. In contrast to this, MANETs (mobile ad-hoc networks) are designed for moving
nodes. This thesis focuses on non-moving Smart Cameras.
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novel Smart Camera middleware has thus been designed. It is tailored to the de-

mands arising in completely self-organising Distributed Vision Networks. A special

focus has been set on the deployment of this middleware on devices with limited com-

puting power. It has been implemented in C++ and is therefore both lightweight

and portable as described in Chapter 4. The middleware offers several abilities

reaching from the invocation of existing computer vision algorithms to the message

exchange between cameras. A special focus is on the overall system architecture.

Local neighbourhoods resulting from spontaneously connected cameras in send-

ing/receiving range do not posses any knowledge beyond their own communication

range. Although evaluation results show that the decentralised system performs

well in general, specific shortcomings need to be addressed by a central entity. This

central instance is needed for example for the notification process in case of alarms

(only one camera is expected to call the police, not all cameras that detected an

incident). The decision which camera becomes this central entity must not be fixed

at system startup but needs to be determined by election algorithms. Thereby, the

system becomes robust towards node and communication failure that may occur in

wireless networks.

Furthermore, prerequisites that are taken to make the algorithms cope with lossy

communication channels are presented.

• Spatial partitioning algorithms: Since the Smart Cameras investigated for this the-

sis have PTZ abilities, they are able to react to sensory input and use actuators

to adapt to changing situations. A management task arising in such sensor/actu-

ator network is to connect the coordination of sensory input and actuator output

so that e.g. a tracking of objects with cameras and PTZ abilities becomes feasi-

ble. Another problem is the initial adjustment of a camera’s heading in order to

guarantee high surveillance coverage. The problem of partitioning an area under

surveillance is related to a problem that has first been discussed 30 years ago in

computational geometry. The art gallery problem considers an n-walled room that

has to be observed by museum guards in the most efficient manner [9]. The spatial

partitioning and tracking algorithms that are investigated in the following, are dis-

tributed heuristics that approximate solutions to the problem of aligning cameras’

fields of view according to special user goals, which can be formulated as derivative

of the art gallery problem. After having shown in Chapter 6, that the partitioning

problem is NP-complete, heuristics are presented to approximate solutions to this

problem.
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• Alarm management in Distributed Vision Networks: Since Distributed Vision Net-

works are expected to act without a central control console, other mechanisms that

allow for interaction between users and the system need to be provided. For example,

users can switch between various modes of operation to control the camera network

(e.g. start searching a specific object). For surveillance applications, guards are in

action that patrol the surveillance area and react after they have been informed by

staff working at the central control console. For some applications it seems useful

to connect patrolling guards directly to the Smart Cameras. This is achieved by

mobile devices that connect to the cameras by a wireless communication channel.

As long as the user of such terminal remains in communication range of the camera

system, relevant data can be transferred from the cameras to the mobile device.

With this thesis, an election algorithm is presented, that allows cameras to elect a

leader among them. This leader is in charge of informing security staff about the

cooperative decision a set of Smart Cameras has agreed upon. An adaption of this

algorithms allows to notify mobile guards quickly by discovering a network route to

the Smart Camera which interacts with the mobile device of security staff.

1.4 Outline

This thesis is structured as follows. Chapter 2 gives a definition of the system model.

Apart from formal problem statements, the current state of the art in the research areas

embedded systems and computer vision is reflected. Several basic assumptions are taken

from this analysis and motivate the need for system management in Distributed Vision

Networks. Chapter 3 gives an overview of related work. Current research on Smart Cam-

eras focuses on basic algorithms like cooperative calibration of cameras or object tracking

with multiple cameras. These and other works are presented and analysed and their re-

spective shortcomings are discussed. Chapter 4 describes the Smart Camera middleware

that has been developed in order to provide an interface between computer vision algo-

rithms and the system management algorithms that are investigated in the remainder of

this document. Chapter 5 introduces distributed algorithms for system management. The

evaluation of the algorithms’ performance in both a simulated and real environment are

given in Chapter 6. Chapter 7 contains the conclusion of this work and gives an overview

of resulting future research opportunities.
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Chapter 2

Distributed Vision Networks

This chapter contains a general overview of the anticipated system model. It introduces

methods and paradigms from the research fields computer vision, embedded systems and

ad-hoc networking which all have impact on the architecture and algorithms for Dis-

tributed Vision Networks as presented in this thesis. This Chapter introduces the reader

to the research questions that are answered in this thesis, provides general background

information and defines a set of assumptions taken.

2.1 Definition: Smart Camera

Each Smart Camera is an autonomous node containing a CCD sensor, processing capabil-

ities (CPU, memory, etc.) and a communication interface. Common surveillance systems

usually rely on cameras, that submit image data to central control instances. According

to Velastin et al., ’Intelligent vision systems’ are based upon central servers carrying out

image analysis and storage [1]. The system structure of Smart Camera systems is differ-

ent from those systems that are in operation today and ’Intelligent vision systems’. By

analysing video data within the camera, no image data leaves the camera as long as no

predefined incidents occur. Smart Cameras need to contain a computing unit in order

to carry out image analysis and handle the cooperation between multiple cameras. An

overview of existing Smart Camera prototypes is given in Section 2.3. All of these cam-

eras have in common, that they collect image data from a CCD sensor (often by using

an FPGA1). The typical resolution of today’s cameras is 720 ∗ 576 pixel (TV quality) but

cameras with higher resolution (e.g. QXGA, 2.048 ∗ 1.536 pixel) are beginning to gain

1Field Programmable Grid Array

9
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more acceptance for surveillance applications. The recorded image data is analysed on

DSPs2. Complex computer vision algorithms and higher image resolution require higher

computational capacities. The performance of the computing units also has a tremen-

dous impact on the nodes’ power requirements: simple Smart Cameras capturing low

resolution data and carrying out only trivial analysis of images are known to work with

battery power only [11]. More sophisticated image analysis requires more energy which

can currently only be provided in mains operation. A communication interface is neces-

sary to enable Smart Cameras to cooperate with each other. Apart from wired networks

(e.g. IEEE 802.3 Ethernet) wireless network devices can be used (IEEE 802.11 WLAN).

The amount of data exchanged between Smart Cameras is typically lower than in today’s

camera networks. Instead of transferring video data, only aggregated information needs

to be transferred. A user of the system is enabled to acquire further information from

certain cameras in case incidents have been detected. Thus cameras transfer video data

only on rare occasions and these data transfers affect only those parts of the network

where an incident happened in.

A Smart Camera needs to have information about its position and orientation in

order to cooperate efficiently with neighbouring cameras. For non-mobile cameras, this

can be obtained by manual configuration when the cameras are deployed or by camera

calibration techniques using feature points as described in [12]. For mobile cameras the

current position may be obtained by appropriate positioning technologies such as GPS

in outdoor scenarios [13] or by IEEE 802.11 WLAN positioning [14] in indoor scenarios.

The Euclidean distance between cameras and objects under observation can be derived

from computer vision algorithms, like described in Section 2.2. These prerequisites need

to be met in order to allow Smart Cameras to self-organise their behaviour and form

Distributed Vision Networks as described in the following of this thesis.

In the following computer vision algorithms that meet these prerequisites are intro-

duced shortly. Since a detailed description is not within the scope of this thesis, the reader

is referred to publications of the respective authors as denoted below.

2.2 Computer Vision

As stated before, large security systems that make use of video cameras are mainly used

to record data rather than detect incidents in real-time. Current research advances in the

area of computer vision allow for automated surveillance applications and have tremen-

2Digital Signal Processors
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dous impact on the development of Distributed Vision Networks. Since computer vision is

essential for Smart Camera applications and the design of Distributed Vision Networks,

this section contains a short overview of the state of the art in the field of computer

vision. This enables the reader to gain a deeper understanding of the calculus behind

design decisions taken in this thesis. Existing computer vision algorithms offer abilities

that are taken for granted for the architecture and algorithms as investigated in the fol-

lowing chapters. The architecture presented in this thesis has mainly been evaluated by

simulation experiments. Since no real-world computer vision is used in this simulation en-

vironment, several assumptions must be made. These abstractions are introduced in the

following. For example, the detection and recognition of moving objects is fundamental

for the tracking algorithm that is described later on.

The robust detection of objects, their size and position estimation is part of current re-

search. The computer vision algorithms used in Distributed Vision Networks are assumed

to carry out the following tasks:

• (1) Position estimation and camera calibration

• (2) Movement detection

• (3) Object detection

• (4) Object recognition

• (5) Behaviour analysis

Current computer vision algorithms support the functionalities as mentioned above.

Different approaches to each of these points exist and offer different capabilities. Some

algorithms are more accurate than others but may be more compute intensive. Each

problem is addressed in the following and different existing solutions are described and

compared to each other.

2.2.1 Camera Calibration

Camera calibration is needed for several computer vision algorithms that are mentioned in

the following. The basic idea behind camera calibration is to calculate real world distances

from an image that has been captured by a camera. The calibration process of a camera

reveals two important types of parameters: intrinsic and extrinsic parameters. Intrinsic

parameters (such as focal length) allow to transform from the image coordinate system

into the camera coordinate system. The extrinsic parameters allow for the reconstruction
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of the world coordinates from the camera coordinates (camera position, translation and

rotation). A Smart Camera measures the size of an object in pixels, and the position is

derived from the image coordinate system. Camera calibration allows to compute the real

world position and size of an object. Figure 2.1 shows the process of camera calibration.

A robust and well performing method to calculate both intrinsic and extrinsic camera

parameters has been proposed by Tsai [15]. This method is aimed at computation of the

external position and orientation of the camera relative to the object reference coordinate

system as well as the effective focal length, radial lens distortion, and image scanning

parameters. Nowadays, camera calibration has matured into products and is used for

various kinds of applications. Recent advances allow for high accuracy measurement as

e.g. needed for minimally invasive surgery [16]. For the following, we assume all Smart

Cameras to be calibrated. Thereby the position and size of objects can be derived from

the images captured by the camera.

Figure 2.1: Camera calibration process: transform image coordinates to camera and world
coordinates

Cheng et al. developed a method for obtaining vision graphs for Distributed Camera

Networks with pre-installed, static cameras, see [17]. The vision graph allows to deter-

mine, which cameras share an overlapping field of view. The cameras observe an area

from different viewpoints imaging large parts of the same environment. Each camera in

the network encodes a set of distinctive and approximately viewpoint-invariant feature

points and broadcasts them as a digest throughout the network. Each receiving camera

decompresses this digest and constructs a vision graph of the camera network. Cameras

being connected image parts of the same environment. The graph helps calibrating the

network by passing messages along the graph’s edges to recover a 3-dimensional structure

and camera positions in a distributed manner. This work is an example for a distributed

management algorithms that makes way for calibration in camera networks.
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2.2.2 Movement Detection

A common method to analyse video data in order to detect objects and their movements is

background subtraction. The foreground objects are detected by calculating the difference

between the current frame and an image of the static background of the scene. Thereby a

simple event detection becomes possible: if (framei−background) > Threshold, a change

in the scene is detected. This simple algorithm allows to separate fore- from background

and can be used to implement an activity monitoring. Acquiring the static background of

a scene is difficult and the robustness heavily depends on the area of application. Several

refinements have been developed over the last years in order to cope for example with

illumination, motion changes and geometric changes of the background. While searching

an appropriate algorithm for tracking piglets in cages, the running (or median) average

has been introduced by McFarlane et al., see [18]. The formula that computes a running

average over the whole scene to extract the background is

Bi+1 = α ∗ Fi + (1− α) ∗Bi

The learning rate α determines how fast foreground objects are considered as background

objects. A thumb-rule is to set α = 5%.

An improvement is to compute the background model as a chronological average from the

history of each pixel. This leads to a rather high memory consumption of the algorithm,

since the last n images of a picture need to be hold in a history. Keeping a history of each

pixels values over the last n frames allows for more sophisticated foreground detection

algorithms. By fitting a Gaussian distribution (µ, σ) over a histogram, a probability den-

sity function (PDF) is derived. By updating the PDF for each video frame the threshold

adapts to changing backgrounds. By combining more than one PDF, the modelling of

multimodal background becomes feasible, at least for a number of pre-defined modes of

operation [19]. The usage of multiple Gaussian has been refined by Oliver et al. [20]:

they defined eigenbackgrounds that base upon an eigenvector decomposition to reduce

the input space and results show, that the calculation of a background model can thereby

be sped up significantly.

To summarise this short introduction, one can state that moving object detection has

been investigated thoroughly. Several robust and lightweight (in terms of memory and

compute time consumption) exist. A good starting point for further information on this

topic is given in [21]. Cucchiara et al. present a comparison between different approaches

- some of which have been introduced above.
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2.2.3 Object Detection and Recognition

The detection and recognition of objects is an important capability in Distributed Vision

Networks. Detecting objects means to identify their positions in an image whereas the

recognition of objects is concerned with identifying the object itself. E.g., a face detection

algorithm returns the positions of faces in an image, including the position of noses and

eyes. A face recognition algorithm matches the features of these faces to a database and

returns the identity of the persons.

Object Detection

Object Detection has matured over the last years and is now also commercially available.

Even standard digital cameras for the customer market offer a face detection mechanism

that allows to focus faces automatically3. Viola and Jones [22] developed a powerful

algorithm that allows to detect objects in images in real-time. Although it is often used

for face detection, it can be trained to detect any kind of objects. Their approach bases

upon so called Haar-like features. These features are sums of pixels in rectangular areas

and can be described as basic Haar functions. A variant of the machine learning algorithm

AdaBoost [23] is used to both select the best features and to train classifiers that use

them. In order to enable real-time processing of images, cascades of classifiers are used.

Strong classifiers that yield high detection rates are used prior to those that are weaker. A

classifier cascade can be seen as a decision tree that categorises whether an image includes

an object and determine its position in image coordinates.

Object Recognition

Recognising objects in images faces several challenges: partial occlusions, viewpoint

changes, varying illumination and cluttered backgrounds are just a few of them. De-

pending on the field of application, different image features can be used for recognition.

For tracking applications, the colour histograms of objects can be used [24]. In case an

object needs to be handed over from one camera to another, the colour histogram of the

object is transmitted and used for recognition on other cameras. The CAMshift algorithm

proposed by Bradksi has first been used for tracking of faces [25]. More accurate results in

terms of recognition rate can be achieved by the use of SIFT4 features [26]. SIFT features

are robust towards scale invariants and overcome drawbacks of histogram based recog-

nition approaches. Since the complexity of the SIFT algorithm is rather high, current

3E.g. Casio EXILIM EX-Z1
4scale invariant feature transform



2.2 Computer Vision 15

research results document mainly the use of histogram functions for tracking [27, 28]. For

tracking in Smart Camera networks, the use of eigenfaces [29] for face recognition may

be used. Similar to SIFT features, this complex algorithm is currently not applicable for

real-time applications and serves as an example for algorithms that can be deployed on

Smart Cameras in future as soon as their computing capacity allows for such complex

computations in real-time. Shi and Tomasi [30] developed an algorithm, that detects

Good Features To Track in an image. These features can be used to recognise objects

that have been detected on a first camera and reappear on a second one. Good Features

To Track are image areas that expose a high difference in contrast or brightness to sur-

rounding areas or form edges. An application for the use of the Shi-Tomasi algorithm are

e.g. mobile robot application where surrounding areas are scanned and investigated to

allow for robust navigation. Good Features To Track can be used to detect the movement

direction of an object. By calculating the movement vector between a pair of features in

two subsequent frames, the direction of motion can be detected. This approach is based

upon the work of Lucas and Kanade [31]. In this early work, the local calculation of

motion vectors is described and evaluated for a stereo vision system.

2.2.4 Behaviour Analysis

Future Smart Cameras will be able to recognise human behaviour. In order to displace hu-

mans in front of monitor walls for manual video analysis, the detection and interpretation

of human actions need to be designed in form of appropriate algorithms. The following

section is way too short to give an extensive overview but gives two examples that describe

how cameras can analyse human behaviour. The detection of human behaviour has been

investigated by Cupillard et al. in [32] for the purpose of securing underground stations.

By extracting foreground objects and measuring their speed, humans are detected and

their behaviour is classified. A person moving fast and another person falling nearby

indicates a fight between these two persons. The definition of regions of interest allows

the detection of persons blocking entrances or jumping barriers. This system has been

evaluated in a metro station in Paris and results show, that the system helps to unburden

security staff from trivial monitoring tasks. The combination of rather low-level computer

vision algorithms (foreground detection, definition of regions of interest) allows for the

robust detection of serious incidents.

Recent advances in the field of human action representation have been published by

Yilmaz et al. [33]. They present a system, that combines 2-dimensional shapes of moving

persons from subsequent frames and form 3-dimensional volumes. Predefined volumes
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Figure 2.2: Examples for 3-dimensional movement shapes and corresponding human be-
haviour as shown in [33]

can then be matched to human actions. Figure 2.2 shows detected human behaviour.

The aforementioned works still lack the overall system aspect. Although computer

vision seems to have matured over the years, it remains unclear, how thousands of cameras

that are placed e.g. in underground stations can cooperate to analyse events and which

demands arise in terms of network infrastructure. A centralised approach does not scale

very well and might lead to a low performance and high cost for system enhancement. A

Distributed Vision Network relying on Smart Cameras is able to solve these problems as

presented in the following.

2.3 Embedded Systems: Smart Cameras

Smart Cameras are embedded systems, that consist at least of a CPU, memory, a commu-

nication interface and a CCD sensor. For different fields of application, various types of

Smart Cameras have been built. Several research projects have been concerned with the

problem of building high performance, low power Smart Cameras. These systems usually

rely on FPGAs and DSPs. Other Smart Cameras base upon x86 processors that have

recently become available in very small size, at low cost and with low power consump-

tion. The following section describes some exemplary Smart Camera hardware platforms.

Apart from Smart Camera prototypes built at research laboratories, early commercial

products have lately become available. Their performance and field of applications is

shortly described here, too.

Table 2.1 shows an overview of current Smart Cameras and highlights their special

capabilities. These devices are introduced in more detail in the following.

At TU Graz, Rinner et al. developed the so called SmartCam, that consists of an Intel

IXDP 425 development board with an Intel IXP 425 network processor (533 MHz). This

system serves as the communication interface and connects the processing unit and the

sensing unit via a PCI bus (133 Mhz) and provides basic networking functionalities (such
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Vendor Device Processor Performance
TU Graz SmartCam TMS 320 DSP High
Stanford WSNL MeshEye Atmel AT91SAM7S Low
University Aubière SeeMOS Altera Stratix High
Matrixvision MVblueCougar Motorola MPC4825 Medium
SONY XCI-V100 VIA Eden x86 Medium
Universität Hannover SRA Smartcam Intel Atom x86 Low

Table 2.1: Smart Camera Hardware

as USB, Ethernet and expansion slots for WLAN and GSM/GPRS). The sensing unit

consists of a CMOS sensor and an FPGA. The image data has a resolution of 640 ∗ 480

pixels. The data acquired by the sensing unit is sent to the processing unit. The processing

unit consists of up to four TMS320-C6415T DSPs (Texas Instruments). Each DSP offers

up to 8.000 MIPS (when running at 1 Ghz). Again, an FPGA is needed for each DSP to

provide programming interfaces such as I2C. These DSPs are equipped with 1 MB internal

RAM, which allows to carry out computer vision algorithms efficiently. The peak power

consumption of the system is estimated to be 30W . The multi processor system offers

a computing power of up to 32.000 MIPS, which indicates a rather high performance.

Several applications have been implemented to evaluate this architecture. For example a

traffic surveillance scenario for the detection of lost cargo in tunnels has been set up as

well as a cooperative tracking of persons with two SmartCams, see Chapter 3 for more

information on their work.

Figure 2.3: MeshEye mote, developed by Aghajan et al. [11]

At Stanford Wireless Sensor Networks Laboratory, Aghajan et. al developed the

so called MeshEye Mote, see [11]. This device is based upon an Atmel AT91SAM7S

controller. The 32 Bit RISC processor can be clocked at up to 55 MHz. It is connected to
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three image sensors: two low quality sensors, that acquire images of 30 ∗ 30 pixels with a

colour-depth of 6 Bit grayscale and one CMOS sensor that delivers 640∗480 pixels (VGA

resolution). The mote can be extended to support eight low quality sensors. The rational

behind using these low cost sensor is, that the node constantly observes the surrounding

area for changes. In case a scene changes drastically, the VGA sensor is activated, so that

a more detailed view of the scene can be analysed. The communication interface of the

MeshEye mote is a IEEE 802.15 (ZigBee) device, that is connected to the main processors

USB hub.

The MeshEye mote is equipped with rather weak computing resources. It is hence not

suited for high performance computer vision tasks but in return offers very low power

consumption. The device can be powered by 2 AA batteries for several days. The runtime

of course depends on the number of incidents that need to be analysed with the high

quality image sensor. Figure 2.3 shows the MeshEye mote.

Figure 2.4: SeeMOS node developed by Berry et al.

François Berry et al. from LASMEA (Blaise Pascal University in Aubière) developed

the SeeMOS node. This Smart Camera is split up into three layers, as can be seen from

Figure 2.4. The CCD sensor (at the front) is connected to an FPGA board (ALTERA

Stratix EP1S60F1020C7) that plays the central role in this system. The FPGA board is

connected to a communication board and a DSP board. The communication board is in

charge of connecting the SeeMOS node to other devices via USB and IEEE 1394. The

DSP board is used to speed up basic functionalities such as FFT and filtering. In [34] an

evaluation of this architecture is presented. A tracking algorithm that enables the camera

to track an 32 ∗ 32 template over the whole visual field (2.048 ∗ 2.048) is described. The

high performance of the architecture leads to a framerate of 55 frames per second.
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Fleck et al. developed a Smart Camera software framework called SmartSurv [35].

By using SmartSurv, cameras are enabled to detect abnormal behaviour of persons. For

evaluation purposes, in a residential home elderly people have been observed. In case the

Smart Cameras detect a person falling, an alarm signal is sent to inform staff. The cameras

are supplied by Matrixvision, a company specialised in computer vision for industrial

applications. The Matrixvision cameras as used for SmartSurv consist of a CCD sensor, an

FPGA (Xilinx) for low-level computation and a PowerPC processor for other tasks. The

mvBlueCOUGAR uses a 400 MHz Motorola MPC 4825 CPU (including MMU and FPU)

and an embedded Linux operating system. The camera is equipped with 64 MB SDRAM

(64 Bit, 133 MHz FSB) and a 32 MB Flashdrive as background memory. A special 4 MB

Flash memory is used to save the bootloader, kernel and system configuration. An IEEE

802.3 Ethernet interface is used for communication with other devices. The camera does

not only send video data but also receives software updates through this interface.

Recently, x86 processor based cameras have become commercially available. SONY

offer the XCI SX1, a CCD camera for industrial applications that incorporates a VIA

Eden x86 processor. The system comes with Linux or Windows XP embedded and an

image processing library that allows for edge detection. A network interface (IEEE 802.3)

provides connection to other camera inside the system. The availability of commercial

products shows, that Smart Cameras may soon be used for different application areas.

The cooperative behaviour of large interconnected camera systems can only be ensured

by the use of an appropriate system architecture as presented in this thesis.

Since commercial products are still only available at very high cost and scientific

prototypes are not sold, a Smart Camera prototype has been set up with off-the shelf

components for the evaluation of the architecture presented in this thesis. The basic

hardware is a miniature sized ITX mainboard with an Intel Atom 330 CPU (Dual Core,

1.6 GHz). It is equipped with 1 GB RAM and 4 GB background memory (SSD). Interfaces

to cameras are IEEE 1394 Firewire, USB and Ethernet. The communication interface can

either be IEEE 802.11 WLAN or IEEE 802.3 infrastructure LAN. Although this prototype

lacks the power of custom built FPGA/DSP based cameras, it represents a cross section

of commercial and scientific Smart Cameras.

2.4 Wireless Sensor Nodes

A wireless sensor node is comprised by at least a battery, a processor, memory, a sensor

and a communication interface. Although Smart Cameras are a special type of wireless

sensor nodes, the term wireless sensor node is often associated with special devices and
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software as introduced in the following section.

A typical sensor node is the Mica mote that has initially been developed at UC Berke-

ley. It makes use of an Atmega 128L processor and is available with various receivers.

Powered by 2 AA batteries, Mica motes are able to operate for up to one year and de-

liver environmental data like temperature, humidity or air pressure. The memory of the

Mica motes is up to 640 kByte, which suffices for a lightweight operating system and more

than 100.000 measurements. Figure 2.5 shows an image of the Mica mote that is available

commercially from Xbow Inc5.

The work on wireless sensor networks is driven mainly by the need to acquire en-

vironmental information. For example, in order to investigate climate changes, sensor

nodes have been spread over glaciers in Norway [36]. These sensors deliver temperature

information, air pressure and tilt information to detect movements in the glacier. The

nodes make use of a minimalistic computing unit that acquires sensor data periodically

and emits this data on the network interface. All data gathered by the sensors is sent

to a central server, where the data is stored and analysed. Another application of sensor

networks is grape monitoring [37]. Sensors have been deployed on a vineyard and deliver

exact temperature and humidity information. Thereby, precise plant care becomes possi-

ble. Again, the sensors use a low power computing unit to acquire and transfer data to a

central server. Since the sensors are usually intended to be distributed over large areas,

they are designed to work for a long time without their batteries being recharged. For out-

door applications, solar power can be used to recharge the batteries. The main challenge

in wireless sensor networks is the power consumption of the sensor nodes. Especially, the

communication between nodes is usually rather energy consuming. Hence, lightweight

and well performing management algorithms have been developed that allow for efficient

usage of battery power by adapting the network traffic to the current power state of the

nodes. Some of these algorithms can be re-used in Distributed Vision Networks, that are

a sub-class of wireless sensor networks as described in the following.

The sensors of Smart Cameras deliver much more complex data than common wireless

sensors - the memory consumption of image analysis does by far exceed the capabilities

of common sensor nodes like the Mica mote shown in Figure 2.5. Since the data transfer

between cameras is bandwidth and energy consuming, video data needs to be analysed

within the camera in order to derive abstract information that can be transmitted over

the wireless channel. This bears the problem, that analysis of video data requires powerful

computing resources that are not provided by classical wireless sensor as described e.g. in

[39]. The research on cooperating Smart Cameras is therefore focused on wired networks

5http://www.xbow.com
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Figure 2.5: Berkeley Mica mote [38]

with mains powered prototypes, as described in Section 2.3. In future, more powerful

computing units will become available that allow to carry out image data analysis on

small wireless nodes as described in [11]. Aghajan et al. present a first prototype of a

wireless sensor node with CCD sensors for data acquisition.

In general, it can be stated that wireless sensor nodes have a software architecture,

that is similar to the software needed for Distributed Vision Networks. Several examples

are described in Chapter 3. The main differences result from the high computational

requirements for image analysis (which currently prevents the use of battery powered

camera systems) and the camera’s ability to use actuators to change the alignment of their

field of view. Furthermore, the context data acquired by cameras in a cooperative manner

can be used for system management tasks (like key generation for encryption as filed for

a patent [40]). Thus, applications beyond the scope of classical wireless sensor networks

become feasible. The hereby arising demands with respect to distributed management

algorithms are addressed throughout this thesis.

2.5 Summary

This chapter contains a description of the basic components of Distributed Vision Net-

works. Several computer vision algorithms are introduced that can be used in addition

to the system management algorithms presented in this thesis. Furthermore, hardware

platforms of Smart Cameras are introduced to give an insight where system management

algorithms can be used and which prerequisites need to be met. Since research work

on wireless sensor nodes is partly related to the work presented in this thesis, a short
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introduction to the hardware and software used for common wireless sensor networks is

given.



Chapter 3

Related Work

In future, Smart Cameras will act autonomously and cooperate to conclude online whether

an event they detected is critical and an alarm has to be raised or not [41]. The burden

of analysing large amounts of data will be shifted from human operators in control rooms

to the computing units of networked cameras. As introduced in the previous chapter,

the work on Distributed Vision Networks is approached by several research areas. This

chapter focuses on system management algorithms for such networks and presents related

work in this area.

Distributed Vision Networks are a sub-class of common wireless sensor networks. Thus,

the impact of recent developments in this research area on Distributed Vision Networks is

discussed in this chapter, too. Wireless sensors networks and problems arising in context

of their deployment and management have been discussed thoroughly. A short overview

is given in the following. Apart from networking issues and basic communication al-

gorithms, a short introduction on middleware concepts that can be applied to Smart

Cameras is given. Furthermore, in Section 3.3, a detailed overview of work in the area

camera alignment is presented. The adjustment of PTZ heads to varying user demands

and environmental changes is a fundamental system management task. Several existing

approaches are introduced and their shortcomings are discussed. Finally, an overview of

related work concerning user interaction and alarm management is given.

3.1 Basic Algorithms in Wireless Sensor Networks

As mentioned before, Distributed Vision Networks are a sub-class of wireless sensor net-

works. The most important constraints in sensor networks, caused by limited energy

23
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resources, are the limited communication distance and bandwidth. Ad-hoc networks are

deployed where no infrastructure exists and nodes with limited communication range form

networks on-the-fly. A common communication scheme is broadcasting. Instead of send-

ing messages to nodes by addressing each node separately, messages are sent to all nodes

in communication range (one-to-all cardinality). In order to reach those nodes that are

not in direct communication range, flooding can be used. By forwarding each incoming

message to all neighbouring nodes, the message eventually arrives at all nodes inside the

network. A problem arises, in case too many messages are being forwarded simultane-

ously. These so called broadcast-storms [42] may lead to a situation where the messages

are extinguished due to collisions on the physical medium. In [43], the impact of this

effect is analysed in detail.

Another problem is partitioning: in case nodes are out of each others communication

range (e.g. due to movement of nodes or moving communication obstacles), the network

may split up in different sub-networks. The partitioning of a network has tremendous im-

pact on algorithms used for network management. A detailed specification of partitioning

in ad-hoc networks can be found in [44].

Both of these problems, broadcast storms and partitioning can be addressed by repe-

tition mechanisms. By adapting to the current situation of the network, nodes can avoid

broadcast storms by forwarding only selected messages that have presumably not been

forwarded yet, like introduced in [45] by Khelil. In order to cope with network parti-

tioning, nodes can keep a history of formerly known nodes in sending range. In case a

message can not be forwarded to these nodes any more, the network may have been split

up. In this case, the message can be re-broadcasted. Thereby, a temporal partitioning

can be overcome.

Figure 3.1 shows a typical Distributed Vision Network. Mobile terminals (short

MAMT for Mobile Alarm Management Terminal as introduced in Chapter 4) are con-

nected to Smart Cameras via unicast. The communication range of camera A is indicated

by the dashed circle. The system is split up in two partitions.

All these communication algorithms depend heavily on the area of application. The

node density, movement speed of nodes and timing constraints set by upper level appli-

cations constrain the usage of the algorithms. If not stated otherwise, the Smart Camera

algorithms presented in this thesis rely on a broadcasting communication scheme. Some

algorithms require the communication with direct neighbours only (single hop commu-

nication). Other algorithm require multihop communication which can be achieved by

flooding based broadcast or more advanced alternatives, e.g. [45]. For alarm management

in Distributed Vision Networks as presented in this thesis, reliable multi-hop communica-
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Figure 3.1: Partitioned network with limited communication range of nodes

tion is used. Therefore, existing on-demand-routing protocols (like AODV [46] and DSR

[47]) have been adapted and enhanced where necessary in order to suit the special needs

that arise in these special kind of sensor network.

3.2 Operating System and Middleware

Each Smart Camera node is running a software framework. The basic functionalities

are provided by an operating system. For example, with TinyOS an operating system

for wireless nodes is provided [48]. It is lightweight and designed for energy efficiency.

Recently, Linux distributions have become available, that are adapted to resource con-

strained embedded devices, like Ubuntu MID [49]. Since Linux serves as a basis for many

scientific and commercial Smart Camera devices, it is used as a basis for the middleware

introduced in the following chapter, too.

Sensor nodes and Smart Cameras are usually equipped with a middleware providing

functionalities that are not part of applications (that carry out high level algorithms)

or the operating system (that carries out basic functionalities like task scheduling and

memory management). Typical tasks for a middleware are e.g. event dispatching or the

establishment of neighbourhood relationships, message generation and interoperability.

Many middleware architectures have been presented until now and several of them might

be suited for Smart Camera systems. To name a few, BASE [50] and AMUN (OCµ) [51]

have been developed and provide component based flexibility and adaptivity in terms of

changing environments. They offer many of those functionalities that are needed for Dis-
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tributed Vision Networks. Still, they lack some important points. For example, AMUN

comes with a vast variety of functions that allow for the design of organic computing

systems. E.g., in [52] an artificial immune system for AMUN is presented. Thereby, ma-

licious events can be detected and eliminated. Other middleware architectures, such as

BASE, offer a component based approach. By adapting existing and adding new compo-

nents, a BASE architecture that suits the needs of a Distributed Vision Network could be

developed. In general, it remains unclear how well existing middleware approaches can

cope with the demands arising in Smart Camera networks. Especially real-time capabili-

ties are still subject of ongoing research. A further important aspect of a Smart Camera

middleware is the close coupling of all algorithms to the image data that has been ac-

quired by the CCD sensor. This data needs to be analysed in real-time and needs to be

accessibly from different components (that might either be part of the middleware or high

level applications). Apart from detecting events of interest, several system management

algorithms can benefit from context information (e.g. functional monitoring and encryp-

tion). Therefore, an image data centric approach seems most appropriate and has been

implemented in context with this thesis [53]. Instead of adapting an existing middleware

to the needs arising in a Smart Camera system, a new middleware has been designed

that connects special camera hardware (CCD sensor, PTZ actuator) and provides basic

communication mechanisms. Thereby, a lightweight and highly specialised middleware

becomes available, that exactly suits the needs arising in Distributed Vision Networks.

This middleware serves as a basis for the system management algorithms that are dis-

cussed throughout this thesis. The detailed architecture of the customised middleware is

presented in Section 4.2.1.

3.3 Cooperative Tasks in Distributed Vision Networks

Cooperative tasks, like camera calibration and scene analysis, are subject of research in the

area of computer vision. In contrast to those tasks, the following sections present works,

that are related to the system management tasks that are focused in this dissertation.

3.3.1 PTZ Camera Alignment and Spatial Partitioning

PTZ cameras suffer at first sight from several drawbacks in comparison to statically

installed cameras: They are prone to mechanical failure since the drives used to pan/tilt

and zoom are exposed to mechanical stress. Additionally, PTZ cameras are a lot more

expensive than statically installed cameras. Despite of this, for several fields of application,
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PTZ cameras offer benefits. A single PTZ camera is able to observe a larger area with a

better image resolution than a statically installed camera. Furthermore, the cost arising

for the installation of multiple static cameras usually outweigh the cost of a single PTZ

camera. The use of numerous statically installed cameras may not be appreciated for

aesthetic reasons or building constraints, too.

In large systems, cameras can use their PTZ abilities to achieve an efficient scene

coverage. Efficient means, that the cameras adjust their fields of view in such way, so

that the scene coverage is maximum. Cameras can switch (either automatically or due

to users’ requests) to other tasks like object tracking or stereo vision applications and

change their heading and investigate scenes cooperatively. Usually, cameras will switch

back to an efficient observation mode after they finished their task to save resources and

avoid unnecessary wear-out of PTZ drives. This state of steady observation, with the goal

to avoid cameras moving, is achieved by spatial partitioning algorithms.

Strategies to increase and measure surveillance coverage are proposed by Mundhenk

et al. [54]. Their ideas have been simulated and tested in the iRoom of the University of

Southern California. Several cameras that are connected to a central server track objects

and periodically change their fields of view in order to achieve an even observation of an

area. Results published consider movement strategies of a single pan/tilt camera. Coop-

eration between cameras is not discussed. The visualisation methods used by Mundhenk

et al. have been proposed by Hew in [55]. Hew’s approach of visualising surveillance

coverage by fading colours on a 2-dimensional map is suited well for the visualisation of

partitioning and coverage algorithms. It has therefore been implemented in the toolchain

used for the evaluation of algorithms presented in this thesis.

Aligning cameras in order to cover a maximum area is related to the art gallery

problem. In the 1970s, Victor Klee threw up the question how many guards are needed

to completely observe an art gallery room. Vasek Chvátal showed, that bn
3
c guards are

occasionally needed and always sufficient to cover a polygon with n vertices, i.e. an n-

walled room [56]. This problem and derivatives have thoroughly been discussed, see [9].

A related problem is the adjustment of the cameras’ viewshed in such way so that optimal

surveillance coverage is reached.

Erdem et al. developed an application determining where to place cameras to satisfy

task-specific and floor plan-specific coverage requirements, see [57]. This application al-

lows for offline partitioning of a surveillance area under constraints and considers viewing

obstacles, fields of view and regions of special interest that need to be observable in high

resolution. This thesis focuses on the distributed online partitioning of a given surveil-

lance area without any node having a global knowledge of the system, whereas Erdem et
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al. present a planning tool for statically configured surveillance systems.

The aforementioned works base upon unrealistic guard capabilities, e.g. unlimited line

of sight. A realistic and formally correct model of a cameras field of view is presented in

[58]. A camera is installed at a position v with the coordinates (x, y, z). An area D is

to be observed by the camera that has a limited line of sight r. The viewshed V (v) is

the set of points or cells on the surface D that are visible from v extending out to some

maximum distance r from the viewpoint:

V (v) = f(v,D, r) = {δ ∈ D | d(v, δ) ≤ r and δ visible from v}
This definition also considers viewing obstacles: in case an object is placed between v

and δ, the line of sight is blocked and δ is not visible from v. This camera model is used

throughout this thesis (see Section 5.1 for details).

For mobile robot applications, Gonzáles-Baños and Latombe investigated how a 2-

dimensional workspace can be explored in the most efficient manner. Hence, robots move

through the workspace (modelled as a polygonal map) and stop at certain points where

they start taking images of their surroundings. A solution to the art gallery problem

is approximated by using random robot placement. The set of all positions a robot is

placed on is the set G. In order to acquire a complete view of the workspace quickly, the

robots are expected to cover the total area with the smallest number of images. Out of

G, a set S is searched, that covers all observable points X on the workspace. This is the

set-coverage problem, that has been shown to be NP-complete [59]. A common approach

to approximate a solution to this problem is the greedy search. The algorithms starts

to pick those positions, that contain the largest number of uncovered points. Thereby, a

near-optimal solution can be found in linear time.

Murray et al. describe how an optimal positioning and alignment of cameras for secu-

rity applications in 3-D urban environments can be achieved [60]. By relying on a realistic

viewshed and a geographic information system1, realistic scenarios can be investigated.

Urban scenes are modelled with possible positions where cameras could potentially be

installed. An offline optimisation is then carried out, to derive the minimum number of

cameras and their positions and alignment in order to achieve an optimal surveillance

coverage. This offline optimisation solves the Maximum Coverage Location Problem

(MCLP). This problem can be formulated in such way so that it becomes solvable by

a commercial optimisation tool. This mathematical description of the camera positioning

problem and the optimisation approach discussed by Murray et al. offers the possibility

to set up cost effective and efficient surveillance systems based upon a centralised offline

1A GIS is an information system comprised by hardware, software, data and applications. Spatial
data can be acquired, modified, analysed and visualised.
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optimisation

Both works mentioned above are closely related to the camera alignment problem

that is addressed by the ROCAS algorithm presented in this thesis. Instead of calculating

the camera alignment in advance, ROCAS is a distributed heuristic that approximates a

solution to the coverage problem at runtime. No central planning instance is needed and

the system becomes robust towards node failure and environmental changes.

Positioning cameras in order to achieve a complete scene coverage has been proven to

be in NP [61]. Cole et al. use a 3-dimensional environment to place viewing stations in.

The area is segmented since the height varies and viewing obstacles are present. Although

the cameras have an unlimited viewshed, pits and walls limit the cameras’ lines of sight.

In case the walls and pits are arranged in a certain way, the general complexity can be

described formally. By a reduction from set-packing, the NP-completeness of this task is

shown. For an overview of complexity classes, cf. to Karp’s work [59] or see Section 5.2.4

for a short introduction. In Chapter 5, it is proven that the problem of aligning cameras

in order to maximise area coverage as investigated in this thesis is NP-complete, too.

Apart from a static camera alignment, the tracking of moving objects has been inves-

tigated. The following section describes approaches to this problem.

3.3.2 Tracking with Single PTZ Camera

In [62], Kang et al. present a system for tracking objects with a single PTZ camera.

This system includes mechanisms for adaptive background generation, moving regions

extraction and tracking. A mosaicing technique is proposed to project one view onto

another view with different pan and tilt angles to allow for seamless tracking with a

panning and tilting camera. The background generation relies on an adaptivity model

as introduced in [18]. Since the computing complexity is rather low, real-time tracking

becomes feasible. The transformation of the real-world to pixel coordinates is affected by

the cameras pan/tilt angle and the zoom factor. All these camera parameters are taken

into account for the tracking process. As a result, the input video can be presented to the

user with the moving object indicated by a bounding box. The system was evaluated and

results show, that it is possible to implement robust object tracking with a single PTZ

camera. Especially, suitable computer vision algorithms have been refined and applied by

the authors. For image analysis, a PC (Intel Pentium 4, 1.300 Mhz) is used. This PC has

a computing power that is comparable to available Smart Camera systems.
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3.3.3 Tracking with Multiple Cameras

Marking objects and tracking them with cameras that do not have overlapping fields of

view requires the exchange of some condensed data describing those objects. In [24], an

approach based on a fuzzy logic matching algorithm is proposed by Loke et al. to find

the correspondence of multiple targets in a multi-camera network with non overlapping

viewsheds. By using the CAMshift algorithm [25], a very high detection rate is achieved.

In order to allow for more robust tracking, sophisticated features like SIFT-features [26]

or Good Features To Track [30] can be used.

In [63], Everts presents a system that can be used to track objects with multiple

calibrated PTZ cameras in a cooperative manner. Tracking and calibration results are

combined with several image processing techniques in a statistical segmentation frame-

work, through which the cameras can hand over targets to each other. A prototype system

consisting of two cameras is presented that operates in real time. Evaluation focuses on

computer vision techniques and shows, that realtime tracking of objects using multiple

PTZ cameras is feasible. In contrast to the work presented in this thesis, there has been

no evaluation how well the system performs for large numbers of cameras.

In [64] a biologically inspired approach to the coordination of two PTZ cameras is

discussed. The behaviour of a chameleon’s eyes has been studied and modelled in terms

of control theory. The resulting PTZ camera control can be used for mobile robots in

order to efficiently scan an area under observation with both eyes independently. In case

a prey appears (an object the cameras are supposed to focus), tracking of this object with

both eyes for stereo vision is performed. Again, no more than two cooperating cameras

have been used for evaluation.

In [27], Wolf et al. present a peer-to-peer multi-camera system for multi-object track-

ing, where different CPUs are used to process inputs from distinct cameras. Instead of

transferring control of tracking jobs from one camera to another, each camera in the

system performs its own tracking and keeps its own tracks for each target object, thus

providing fault tolerance. Experimental results demonstrate the success of the proposed

peer-to-peer multicamera tracking system. For the message exchange between cameras, a

message passing interface (MPI) is used. Thereby, the correctness of the communication

protocol can be proved. A realistic simulation of the system’s behaviour in large scenarios

is not discussed, especially the impact of the communication network is not investigated.

In contrast to Wolf’s approach, the focus of this work is on a completely self-organising

ad-hoc network establishing local neighbourhoods only.
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3.3.4 Master/Slave Tracking

A promising approach towards reliable multi object tracking in Distributed Vision Net-

works is the master/slave approach. DMCtrac, the tracking algorithm presented in Sec-

tion 5.4.2 builds upon this approach, too. The master is in charge of tracking an object

actively whereas a slave knows about the objects existence but is not responsible for the

tracking of this object. The following section shortly describes related work in the field

of master/slave tracking algorithms.

In [28], a Smart Camera consisting of a two-stage computation unit is described: An

image processing unit consisting of DSPs carries out image analysis, whereas a network

processor carries out all high-level applications and communication related tasks. Within

the DSP framework, the actual tracking algorithm can be loaded as a DSP task. The

tracking is then done with help of the CAMshift algorithm. The handover between differ-

ent cameras is implemented as follows: First, the subsequent cameras the object possibly

moves to are selected and the tracking agent is being migrated into these cameras. During

this step, several tracker instances exist. Then, the tracking task is initialised on the slave

cameras. If the object is discovered by a Smart Camera in slave mode, this camera will

take over the tracking task as a master. The master informs the other slaves which one

of them got the tracking task and which one is to be terminated. Due to the usage of

motion vectors, the authors minimise the amount of created slaves when following a single

object with multiple cameras. Therefore, this approach scales well even in large networks,

although the authors do not dwell on this aspect. The network communication in large

networks and the reliability with respect to limitations arising by the usage of a wireless

communication channels is not reported in the work described above.

For the work presented in [65], Margi et al. decided to use a master/slave approach.

In contrast to the approaches introduced so far, they distinguish between end nodes and

internal nodes. The main task of the end nodes is to discover objects which enter the

network’s monitored space and then deliver a message of detection to the next nodes.

The internal nodes are alerted by end nodes and then track the object further. The main

advantage of the distinction between end nodes and internal nodes is energy saving: in

contrast to end nodes, which always have to search for possible objects, the internal nodes

can save energy. Unless they are tracking, they can be on standby and only have to wake

up from time to time and listen to messages from end nodes.

Ukita has been working extensively on Autonomous Vision Agents (i.e. Smart Cam-

eras), see [66, 67] for major contributions. Apart from computer vision problems, also

the tracking of multiple objects with PTZ cameras has been investigated in detail. In

analogy to the system model used for this work as presented in Chapter 4, Ukita defines
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an AVA-layer (i.e. a Smart Camera), an AVA-Agency layer (Smart Camera group) and

inter-AVA-layer (Smart Camera system). Ukita’s theoretical abstraction helps to define

the neighbourhood dependencies for the tracking task. In case an AVA is searching for

an object (freelancer AVA), the camera’s PTZ head is screening the area by panning and

tilting. After an object that needs to be tracked is detected, neighbouring cameras are

informed. In case this object has not been tracked yet, an AVA agency is formed. All

member-AVAs of this agency track the object cooperatively. In other words, the masters

and slaves form a group that is called an agency. The 3-D position of an object tracked

by the AVAs is calculated precisely and by combining the position retrieved by multiple

cameras, the system can cope very well with noisy input data. Although the results of

Ukita’s work can be regarded as highly sophisticated, they lack an evaluation of their

applicability in a real world system that has to cope with faulty communication channels,

network partitioning and bandwidth limitations. Similar to all other works presented

so far, the main focus of Ukita’s work is on computer vision problems rather than on

system engineering and networking issues. In contrast to this, we focus on distributed

algorithms that allow for a coordination of large camera systems. Distributed algorithms

are investigated that make way for a self-organising behaviour of the camera system. A

special focus is on networking issues, as e.g. the robustness of protocols towards lossy

communication channels. Furthermore, the scalability of these algorithms is investigated

in depth in order to evaluate their performance in very large networks with hundreds of

interacting cameras.

3.4 User Interaction and Alarm Management

Today’s surveillance systems are controlled manually by operators in a central control

room. Apart from the arising drawbacks (as lack of fault tolerance and scalability), this

central instance is necessary since it is the only interface to the user. Although Smart

Cameras act autonomously, several parameters need to be adjusted by surveillance staff.

For example, the system might need to be switched from a modest, resource saving alarm

level (steady observation achieved by partitioning) to a higher alarm level (tracking)

manually. Since the system architecture proposed in this thesis aims at rendering the

central control instance unnecessary, other approaches for user interaction need to be

considered.

Intuitively, a closer coupling between humans (surveillance staff) and the surveillance

system seems to be a valid approach to overcome drawbacks of today’s surveillance sys-

tems. Several publications evaluate the use of mobile devices to display video data and
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alarms raised in surveillance systems as introduced in Chapter 2. Other works report the

use of mobile device as receivers for video streams. An important aspect is the encoding

and routing of video data with respect to the bandwidth limitations of wireless networks.

Although several works consider generic systems for streaming multimedia content from

a sender to mobile devices (as e.g. Steiger et al. [68]), this section focuses on surveil-

lance applications for mobile devices that allow users to communicate with cameras and

in return acquire information from the cameras.

The alarm management in today’s surveillance systems relies on a central control con-

sole. A supervisor is in charge of coordinating staff on the precinct (e.g. an underground

station) and to detect unusual events with the help of a monitor console where the view

of cameras can be projected on. Thus, the supervisor needs to select a set of cameras that

will likely help to observe the scene. In [1], an in-depth description of alarm management

in Victoria Station, London, is presented. The authors describe in detail which tasks a

supervisor carries out and what is done in case an incident is detected. Staff communi-

cates via full-duplex radio devices and a telephone is available for communication with

police and firefighters. Since a supervisor is not only in charge of monitoring videos but

also handles complaints of staff and passengers, his attention is not always focused on the

video images. The authors state, it might therefore be necessary to develop notification

methods that do not interrupt the supervisor suddenly but rather discretely catch his

attention.

Li et al. present an early work dealing with mobile devices for surveillance applications

in [69]. They describe a system called PDA watch that enables users to acquire video

streams from surveillance cameras. A JAVA based framework has been developed, that

allows users to login and register at cameras which in return deliver video data to the

mobile device. The data sources (surveillance cameras) transfer still image to a central

server which distributes the video data to the mobile devices.

A more sophisticated approach that also delivers streaming video is introduced in

[70]. Cucchiara et al. present a home surveillance system that can for example be used to

monitor elderly or disabled people. In case serious incidents are detected by surveillance

cameras, a notification is sent to a PDA that informs relatives or service personnel. A

central server is used to both acquire and analyse image data delivered by the video

cameras and encode the video stream to transfer it to connected PDAs. An extensive

evaluation with respect to categorisation of the persons behaviour is presented. Results

are promising since the detection rate is very high.

In [71], Imai et al. present a system to connect cameras and mobile devices via

the Internet. Cameras deliver still images that are analysed by a computing unit. The
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images can be retrieved by mobile phones. Therefore, cameras are connected to a special,

JAVA-based webserver. The mobile phones are connected to the Internet via a UMTS

connection. In case incidents are detected, the server emits an email to registered mobile

phones. Users can then decide to retrieve images from the webserver. Evaluation considers

the time needed for transmitting image data from the webserver to requesting mobile

phones. Results yielded are good and promising, the data transmission takes between 2s

and 7s, which seems appropriate for many surveillance applications.

Although several works as mentioned in the previous section consider the use of hand-

held devices in combination with cameras, up to now no bi-directional interaction has

been considered. Since this interaction between Smart Cameras and users is an essential

aspect for both basic management algorithms and high level applications, this thesis in-

troduces appropriate algorithms. Apart from notification of guards, the system presented

here allows users to control the camera system with a mobile device.

3.5 Summary of Related Work

Figure 3.2 shows an overview of selected related works and the abilities they lack in

comparison to the algorithms presented in this thesis.

The design of Smart Camera hardware has been led by laboratories like the Stanford

Wireless Sensor Network’s Laboratory (Aghajan) or the Institut of Technische Informatik

TU Graz (Rinner). The evaluation of the camera’s performance in terms of computer

vision algorithms has been analysed thoroughly. The aspect of networking and cooperative

behaviour has only been discussed shortly in this context.

The most significant shortcoming of existing approaches to camera alignment (Erdem,

Cole, Murray) is the lack of online optimisation. The related work on spatial partitioning

covers a vast range of visibility problems and offers solutions and heuristics to approximate

solutions. This is suited well for planning camera positions and initial alignment in

advance but does not consider Organic Computing paradigms, such as self-optimisation

at system runtime. A large camera system is prone to node failure and communication

disturbances. Instead of planning all possible alignment combinations in advance, ROCAS

enables the cameras to adapt to new situations and user goals. Approaches with mobile

cameras as addressed by Latombe et al. aim at finding optimal guard positioning. This

is related to the set-coverage problem and does not solve the task of optimal camera

alignment as investigated in this thesis.

The tracking of objects is closely related to the coverage problem addressed by RO-

CAS. Related work mainly considers computer vision aspects of tracking (Rinner, Wolf)
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and only few approaches to the design of self-organising tracking systems (for example

presented by Ukita) are known. With DMCtrac an algorithm is presented in this thesis

that combines the Master/Slave approach and a distributed system structure. Thereby,

an evaluation of tracking systems with respect to requirements on the underlying network

become feasible.

A bi-directional interaction of users and Smart Cameras is not documented until now.

Existing approaches that suggest a coupling of PDAs and Smart Cameras focus on trans-

mission of video data only. Furthermore, no experiments considering large networks (e.g.

with thousands of nodes) are documented.

The summary of related works shows, that computer vision is ready for cooperative

object tracking with multiple PTZ cameras. This thesis contributes to the area of network-

ing issues since aspects of wireless communication arising in the context of Distributed

Vision Networks have not been covered completely yet. There is little work available

that considers the self-organising aspect of Distributed Vision Networks under real world

constraints. These constraints are e.g. fault tolerance with respect to a lossy commu-

nication channel and the impact of mechanical stress put on PTZ cameras that carry

out cooperative surveillance tasks. These issues are addressed throughout the following

chapters.
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Figure 3.2: Comparison of related work



Chapter 4

System Architecture

The most significant design feature of a Distributed Vision Network as introduced here

is the avoidance of a central control instance. The decentralised system architecture pre-

sented in the following relies on a network of Smart Cameras and mobile terminals. Smart

Cameras need to self-organise their behaviour in order to analyse scenes cooperatively and

consider the requests sent by mobile terminals. This chapter presents basic functionali-

ties concerning message exchange and failure detection. This serves as a basis for more

sophisticated tasks as introduced in Chapter 5.

At first, the networked system architecture is presented. Afterwards, software com-

ponents and several algorithms are introduced that comprise a middleware for Smart

Cameras.

4.1 Networked System Architecture

We assume the exchange of data with neighbouring cameras to take place via a wireless

ad-hoc network or a network with static infrastructure. For local communication between

neighbouring nodes, a wireless network seems most suitable in terms of easy installation

and flexibility towards camera replacement and is therefore investigated in this thesis.

Since operators of today’s surveillance systems might be interested in reusing the already

existing wired network infrastructure, prerequisites are taken that allow to re-use these

components. For example, cameras that are out of communication range can be connected

by wired networks by using an appropriate routing protocol [72].

Cameras exchange information about their current state (alignment, position of ob-

jects, etc.). The use of broadcast communication allows for an efficient usage of the

37
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wireless communication channel and enables Smart Cameras to establish local neighbour-

hoods. These neighbourhoods carry out tasks cooperatively. A small sized system, that

incorporates all elements of a Distributed Vision Network is shown in Figure 4.1. In the

following sections the components of such a system are described in detail.

4.1.1 Role Assignment

In a Distributed Vision Network, a Smart Camera can take over one or more of the

following roles. The basic role, that is carried out by each camera, is the role of aligning

a camera’s own viewshed according to the user goals. The camera alignment inside the

network is carried out by an algorithm presented in Chapter 5. This algorithm might

make use of a central computing instance, a role that could also be taken over by a Smart

Camera.

Furthermore, the following roles have been defined:

• In order to interact with users, Smart Cameras can start a webserver application.

Thereby, the camera takes over the role of a Smart Camera Webserver (SCW)

and provides human-readable information to Mobile Alarm Management Terminals

(MAMTs).

• By becoming a gateway, cameras can route traffic to other networks (SC-GW). This

is important for large networks that cover wide areas and may fall into partitions

as explained in Section 3.1.

• For the alarm management, an election algorithm enables cameras to cooperatively

judge whether to raise an alarm or not. Given appropriate computer vision algo-

rithms, a set of cameras can vote for whether an incident is critical and an alarm

needs to be raised or not. The elected Smart Camera Leader (SCL) is in charge of

collecting votes and informing security staff.

All these roles are assigned dynamically by an election mechanism presented in Section

4.3.4 that chooses a leader among all cameras inside the network. Thereby, a single point

of failure is avoided. The concept of roles as introduced above is now explained in more

detail.
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Figure 4.1: Networked system architecture

4.1.2 Smart Camera Webserver and Mobile Alarm Management

Terminals

The interaction of mobile terminals and cameras relies solely on a wireless network since

security staff is expected to be mobile instead of forced to stay inside a control room.

A mobile terminal connects to any Smart Camera in transmission range. Thereby, the

camera automatically becomes the routing end point for this mobile terminal. A webserver

is started on a Smart Camera as soon as a mobile device connects to it. The Smart Camera

that is connected to a Mobile Alarm Management Terminal (MAMT) becomes a Smart

Camera Webserver (SCW). This webserver is in charge of routing all relevant traffic from

the Smart Camera system (SCS) to the MAMT and vice versa. The communication

between MAMT and SCW is a unicast communication, whereas for the communication

between Smart Cameras a broadcast scheme is used. The impact of this design decision

becomes obvious in the evaluation: frequent broadcasts demand a high bandwidth and

are not suited for the transmission of video data. The unicast channel helps to reduce the

bandwidth consumption. Without going into detail here, the Mobile Alarm Management

Terminals are PDAs or mobile phones that have in common that they are at least able

to establish a duplex connection to the camera network and come with a display and

input device to allow for user interaction. More information about MAMTs is given in

the evaluation in Section 6.7.3.

4.1.3 Establishing Hierarchies by Leader Election

For some applications, it is necessary to establish a hierarchical network structure: In

case several cameras have spotted an event of interest, they are expected to analyse
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cooperatively whether an alarm needs to be raised or not. This alarm should be sent by

one camera only, thus the group elects a Smart Camera Leader (SCL) and lets the leader

inform a MAMT.

Another application, a leader can be used for, is the partitioning of an area under

surveillance as described in Section 5.3.2. In order to achieve a global maximum in

surveillance coverage, local optimisation may not suffice. By electing a leader, global

knowledge can be aggregated in the system and be used for global optimisation. It is

important to notice that this globally collected data is only used in addition to the local

optimisation. Therefore, the failure of a leader does not make the whole system stop

working but causes only a decrease in quality (i.e., raising an alarm takes longer or the

surveillance coverage reaches just a local maximum). The failure of a leader is detected

by a heartbeat mechanism (Section 4.3.3) and automatically initiates an election of a new

leader (Section 4.3.4). The evaluation of the system as presented here shows, that a leader

is not able to carry out all management tasks arising in a network and that especially

for the cameras’ alignment for partitioning and object tracking distributed algorithms are

suited better, see Section 6.4.10.

As mentioned before, the use of existing infrastructure networks might be necessary

in order to bridge large distances between Smart Cameras that exceed their transmission

range. A Smart Camera Gateway (SCG) can be elected in order to route traffic between

Smart Camera systems. The SGW in Figure 4.1 connects SCS A and SCS B.

After the description of the networked system architecture, the following section deals

with the software architecture of a single Smart Camera node.

4.2 Software Architecture

The system management algorithms presented in this thesis have been integrated in a

Smart Camera middleware that is presented in the following. Figure 4.2 shows a block

diagram of the software components.

Based upon an operating system, a three-layered architecture has been developed.

Starting from the bottom, Layer I contains basic functionalities such as image acquisition

and processing. Furthermore, the physical alignment of a camera’s PTZ drives is handled

in this layer. For the networking part, a message dispatcher has been incorporated. In

order to secure the communication between Smart Cameras, a concept for key generation

and dissemination in Smart Camera networks has been developed [40].

Layer II contains the Map Manager. Its main purpose is to keep neighbourhood

information and aggregated sensor data (e.g. concerning viewing obstacles). Thereby,
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Figure 4.2: Software architecture for Smart Cameras

neighbourhoods are established and maintained as described in Section 4.3.1.

Distributed management algorithms are part of Layer III. The tracking algorithm

DMCtrac [5] coordinates the tracking of multiple moving objects with multiple PTZ

cameras. ROCAS [4] is a distributed heuristic approximating solutions to the maximum

coverage problem in Distributed Vision Networks. The alarm management component

[6] incorporates algorithms that allow for user interaction with Smart Cameras. All these

upper-level algorithms are explained in Chapter 5.

The following section gives a short overview of the basic components in Layer I and

II. Their extensive description starts with Section 4.3, where also more details about the

implementation are presented.

4.2.1 Software Architecture in Detail

Since Linux serves as a basis for the software, no special prerequisites in terms of schedul-

ing or memory management need to be considered. All hardware components comprising

a Smart Camera are supported by appropriate device drivers. These low level function-

alities are not discussed further.
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4.2.2 Layer I: Basic Building Blocks

Starting from the bottom, three basic building blocks of the software framework can be

identified: Image Sensor, PTZ actuator and Network interface.

The network functionalities are a critical part of the architecture and do not rely on

the operating system. The Click modular router [73] is used to acquire messages directly

from the network interface, process them (e.g. for routing) and emit messages on the

interface. The Click router consists of numerous C++ classes, so called elements, that

handle network messages. Click elements can be connected by a graph, with the messages

floating along the edges. For performance reasons, message handover is done by passing

a pointer from one element to another.

Click is a flexible and extensible open source program for IP based network program-

ming. Click and the system management algorithms that have been implemented in

context with this thesis can either be run inside a network simulator [74] or as a Linux

kernel module on a real-world prototype. The simulation environment is described in

Section 6.2. Apart from the PTZ actuator component, the Image Processing component

and higher level applications, the node software is integrated in the Click Modular router.

The PTZ actuator component is loaded as a shared library. It is connected to the

Click router by functional binding. This library offers a unified interface so that the

computing unit can be attached to various PTZ cameras and control their pan and tilt

angle, and the zoom setting. Apart from the camera’s PTZ abilities, other settings like

built-in autofocus and white balance can be controlled.

An extensive software library for computer vision (OpenCV [25]) is used for Image

Processing. OpenCV contains a collection of computer vision algorithms that incorporates

many of the features necessary for movement detection and object recognition as intro-

duced in Section 2.2. OpenCV is further able to save still images, record video streams

and encode them in different ways. These data can be accessed by Click elements, e.g.

in order to detect feature points for Functional Monitoring or higher level applications

as e.g. person counting. For method invocation and data transfer, a socket based com-

munication scheme is used. The exchange of image data between the Image Processing

element and other elements is done in shared memory. The shared memory block can be

accessed from all elements that need to work on image data. The following components

make use of this image data:

• Alarm Management

• Security, Authentication
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• Functional Monitoring

• DMCtrac

• ROCAS (Obstacles and priority regions)

The access of DMCtrac and ROCAS on image data is a stub function on the real

world prototype and has been evaluated in the simulator only. Future enhancement of

the real-world prototype can incorporate appropriate computer vision algorithms in high

level applications like person counting or behaviour analysis at this point.

For Security and Authentication, a Click element has been developed that contains

an algorithm for generating a cryptographic key to encrypt the communication between

cameras. Therefore, image data is analysed and feature points are extracted by using

appropriate algorithms like [26] or [30] that have been introduced in Section 3.3.3. Two

cameras with an overlapping field of view can generate a cryptographic key from what they

have seen by deriving a fingerprint from the feature points they detected. The process

of generating this key and an authentication process has been developed and filed as a

patent [40]. The underlying algorithm can also be used for Functional Monitoring of the

system. The networking part contained in the Event Dispatcher takes care of message

repetition in order to cope with lossy communication channel and the aforementioned

temporal partitioning of wireless networks.

4.2.3 Layer II: Map Manager

Information about neighbouring nodes is stored in the Neighbourhood Cache and is used

by the algorithm presented in Section 4.3.1. It can be established in both WLAN networks

(where neighbourhoods result from transmission range) but also in LAN networks, where

geometric neighbourhood needs to be discovered first by appropriate routing protocols

[72].

The Map Manager is in charge of holding all information provided by spatially ad-

jacent cameras. Neighbouring nodes exchange information about their position and the

geometry of their field of view. The Map Manager also maintains a cache including view-

ing Obstacles and Prioritised Regions. These values, defining which areas to observe with

high priority and where no observation is necessary (e.g. viewing obstacles) need to be

configured by the user. In future, sophisticated computer vision algorithms may be used

to detect and store viewing obstacles automatically. ROCAS makes use of the Map Man-

ager in order to approximate solutions to the alignment problem as introduced in Section

5.2.2.
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For the Functional Monitoring, the same patented algorithm as for the Security, Au-

thentication component is used. By deriving common feature points from image data,

cryptographic keys can be generated. Since the details of the underlying algorithms are

beyond the scope of this thesis, the reader is referred to [40, 75]. As implemented in all

other components, the Click router is used for handling the message flow and the image

data acquired from OpenCV (included in the Processing component).

The Leader Election component takes care of the election process that is necessary to

find a suitable leader inside a network of numerous cameras, see Section 4.3.4. In case a

camera has been elected as a leader, it uses global algorithms to carry out Cooperative

Tasks as presented in the following.

4.2.4 Layer III: Controller

The Controller component contains the algorithm named ROCAS for spatial partitioning

of Smart Camera networks. It is in charge of aligning the PTZ cameras’ heads with respect

to the positions of neighbours and local constraints (priority regions and obstacles). The

tracking algorithm DMCtrac enables the cameras to cooperatively track multiple objects

in a cooperative manner. In case an object leaves a camera’s field of view, neighbouring

cameras take over the object to achieve a seamless tracking. The Alarm Management

component is used to detect events of interest and notify guards. All these algorithms are

presented in detail in Chapter 5.

The software architecture presented above has been optimised to suit the special needs

arising in Distributed Vision Networks. Image data can be accessed fast from different

components by a shared memory concept. After introducing the anticipated system and

node architecture, the following section provides a more detailed description of the basic

algorithms in Layer I and II as well as the interaction of components.

4.3 Basic Algorithms for System Management

In the following, a short introduction is given on the communication between Smart

Camera nodes and how the neighbourhood relationship in a completely decentralised

system is established. The following sections present selected software components of

Layer I and Layer II in detail.

Since a detailed description of several components mentioned below is beyond the

scope of this thesis, these components are not discussed further. Instead, the reader is

referred to works containing more background information:
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• The adjustment of PTZ Drives and Coordinate Translation are introduced in [76, 77]

• Image Processing and Image Data Acquisition are described in [77, 78]

• For an introduction to Security, Authentication and Functional Monitoring cf. to

[75, 40]

4.3.1 Event Dispatcher

Message exchange is coordinated by a thread running on each camera that manages a

message bag for outgoing messages, see Algorithm 1. When the thread is started, a timer

is initialised. In case the timer expires (line 4), all messages that have been collected in the

message bag are sent. In case the message bag was empty, a heartbeat message is sent in

order to inform neighbouring nodes that the camera is still alive. The heartbeat messages

are called SPM (Smart Camera Position Message) since they include all information a

camera has to share with neighbouring cameras or spatial alignment as introduced in the

following chapter. This SPM (Figure 4.3) contains a message ID, the sender ID and the

camera’s position. An SPM further contains information about the camera’s field of view

described by the viewing range, the span angle and the viewing angle. The total length

of an SPM is 28 Byte since all seven fields contain integer values.

Algorithm 1 Neighbourhood Management thread

1: init:
2: set timer ti
3: init neighbourcache // start with empty NC
4: on timerexpire :
5: send messages in sendbuffer
6: send out heartbeat
7: set timer ti
8: end on
9: on incoming message :

10: if message is a management message
11: update neighbourcache()
12: end if
13: end on

By varying the timing interval ti, the timer can be used to shape the outgoing traffic:

choosing a high value ti causes the cameras to exchange messages seldomly. This saves

bandwidth but causes the time to termination of the algorithm to become longer. Choos-

ing a low value ti intuitively results in a decreasing time to termination. It should be kept
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Figure 4.3: Smart Camera Position Message (SPM) as used for ROCAS

in mind, that the resulting higher bandwidth consumption provokes collisions and mes-

sage loss. Thus, choosing ti too small has a negative impact on the system’s performance.

The parameter ti and its influence on the system’s performance is extensively discussed

in Chapter 6.

The timing interval can be varied by using randomisation techniques [79]. Thereby,

the outgoing traffic can be shaped. A time period is chosen randomly in which a camera

backs off from the shared media. In this time ti, other cameras have access on the

communication channel. This decreases the probability of simultaneous media access and

helps to avoid collisions on the shared media. In Chapter 6 the influence of traffic shaping

on the system’s performance is investigated in detail.

The frequent exchange of messages allows cameras to keep a so called neighbourhood

cache, where all known neighbours and their properties are stored. Incoming messages

are processed immediately after they arrive. The neighbourhood management procedures

(invoked from lines 3 and 11 of Algorithm 1) are part of the Map Manager component of

the software architecture presented in Figure 4.2.

4.3.2 Failure Model

In order to decide, whether a component of a distributed system has failed or not, failure

detection techniques can be applied [80]. Components are for example camera hardware,

software processes or the communication system. Depending on the underlying system

model, the failure of processes can be determined exactly or not at all. A common

system model is the synchronous system: informally spoken, it is assumed that all timing

constraints are known (i.e. message delay, processing times, clock drift). For such systems,
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failure of components can be determined exactly [81]. In an asynchronous system, there

are no timing constraints. Therefore, it is impossible to decide whether a component

has failed or is just very slow [82]. Developing applications for synchronous systems is

thus much easier than developing software for asynchronous systems. The advantage of

using an asynchronous system model is, that applications can easily be ported to other

platforms and communication systems since they are robust towards timing issues. Since

failures can not be detected in asynchronous systems, some constraints need to be made in

order to allow for practical failure detection (e.g. defining upper boundaries for message

transmission). In the following, upper time boundaries are applied in order to allow for a

practical failure detection.

4.3.3 Neighbourhood Cache

Apart from simple actions like adding and deleting neighbours from the neighbourhood

cache, prerequisites have been taken to deal with failures as introduced above. A basic

failure detection is used to maintain neighbourhood dependencies between Smart Cam-

eras. By detecting fail-stop errors1, neighbouring nodes can detect whether a formerly

existing neighbour has failed or not. Hence, an upper timing boundary for message ex-

change and processing time needs to be defined. Processing and transmission time for

SPMs are below 10ms on common Smart Cameras as described in Section 5.3. For secu-

rity relevant applications of Smart Cameras we assume that detecting node failure within

1s is appropriate. Jitter and clock drift can therefore be neglected, since their impact on

the upper boundary of message transfer is only marginal in comparison to the moderate

timing requirements of upper level algorithms like ROCAS.

For the partitioning algorithms ROCAS and DMCtrac, a failure detector is imple-

mented in the Neighbourhood Cache to detect devices that left the distributed system

without properly notifying other nodes. A common method to detect such failures is the

frequent exchange of heartbeat messages with a constant frequency fheartbeat. In our case,

we set the timer interval ti = 1
fheartbeat

as introduced in the previous section. In case a

heartbeat message is received by a device, the corresponding entry tlast heartbeat is set to

the receive-time of the message. In case a heartbeat has been missing for too long (longer

than ttolerated), the node is expected to have failed and is removed from the neighbourhood

cache, line 3.

Newly joining nodes and updates of tlast heartbeat are carried out by calling the updateentry

1A fail-stop error occurs when a component that has been running correctly, stops prematurely. Once
a component crashes, it does not recover.



48 4 System Architecture

Algorithm 2 Update neighbourcache

1: for each neighbour
2: if tlast heartbeat < ( get(time) − ttolerated )
3: removeentry(neighbourID)
4: end if
5: else if updateentry(neighbourID)
6: end for

function (line 5). Note, that formerly failing nodes that recovered from their failure are

considered as newly joining nodes. In order to save bandwidth, heartbeat functionality is

also embedded in SPMs. Only in case no management message has been sent for a certain

amount of time, a camera decides to emit a heartbeat. This helps to reduce bandwidth

usage.

A similar algorithm is used e.g. on the Internet by the border gateway protocol (BGP,

defined in RFC 1657) to check the connectivity of the routing graph. More elaborate

mechanisms rely on dynamic heartbeat intervals and an adaption process that helps to

minimise the impact of temporal message loss on the communication channel, e.g. confer

to Satzger et al. [83].

For the purpose of detecting node failure in Smart Camera networks, the approach

as presented in Algorithm 2 suffices. ROCAS and DMCtrac can cope with inaccurate

neighbourhood information, which has been shown by simulation experiments presented in

Section 6.4.1. In an asynchronous IEEE 802.11 WLAN system, node failure can effectively

be detected within at least one second (depending on ti and ttolerated).

4.3.4 Leader Election

A variant of the extrema finding algorithm proposed by Vasudevan [84] has been imple-

mented as a part of the Smart Camera node architecture [85]. In addition to the basic

functions described below, some modifications enable the cameras to elect a leader among

them that carries out special roles as introduced in Section 4.1.1. The original variant of

Vasudevan’s algorithm has been extended in two points:

• It has been adapted to an IP based broadcast system

• Simultaneous elections are now feasible

In order to cope with lossy communication channels and network partitioning, Vasude-

van’s algorithm incorporates message repetition as used in the Event Dispatcher. Thereby,

the algorithm is suited well for the usage in today’s wireless communication systems. For
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the usage in Distributed Vision Networks, the algorithm has been enhanced to support

multiple simultaneous elections for different roles. A short introduction on the algorithm

is given below, for an in-depth description cf. to [85, 6].

Vasudevan’s algorithm relies on three phases. These three phases serve as a basis for

several distributed algorithms. For example, Dijkstra and van Scholten [86] developed an

algorithm for termination detection. Thereby, it is possible to detect whether a process in

a distributed system has finished and terminated. Vasudevan’s derivative of the algorithm

allows to cope with disturbances of today’s real world wireless systems like partitioning,

node failure and message loss. For the usage in Smart Camera systems, it has been

adapted to suit our needs:

1. Explode: any camera in a network can decide to start an election algorithm for a

certain role, messages are broadcasted by all cameras (flooding)

2. Echo: in response to explode message, other cameras respond with their ID and a

value a describing how well they are suited to take over the requested role

3. Information: after phase two is finished (i.e. each camera has emitted and forwarded

echo messages), the camera starting to send explode messages informs all other

cameras about the result of the election.

The algorithms terminates in case a leader has been elected. In case the election

failed (e.g. due to message loss or node failure), the election is repeated. An evaluation

of the leader election mechanism in a Distributed Vision Network is presented in Section

6.16. A special focus is on the timing behaviour since its impact on the system’s overall

performance is critical. On this basis, benefits and drawbacks of centralised components

are discussed in Section 6.4.10.

4.4 Summary

This chapter presents a system architecture for Smart Camera networks. It introduced

a networked system architecture and explained roles that Smart Cameras can take over

dynamically, e.g. by using an election algorithm.

A middleware for Smart Cameras has been presented, that consists of several com-

ponents tailored to suit the needs arising in Distributed Vision Networks. Lightweight

algorithms have been explained, that allow for message exchange between Smart Cameras

and make way for cooperative tasks as introduced in the following chapter.
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Chapter 5

Distributed System Management

Algorithms

This chapter presents algorithms that make way for self-organisation and self-optimisation

in Distributed Vision Networks. Since the underlying problem of aligning cameras’ heads

in an optimal way can be shown to be NP-complete, heuristic approaches have been

pursued. An algorithm that is approximating solutions to statically align cameras in the

most efficient way is ROCAS (Robust Camera Alignment System [4]). For moving objects,

a tracking algorithm is presented that makes use of the cameras’ PTZ abilities (DMCtrac:

Distributed Multi-Camera tracking [5]). Both alignment algorithms presented here are

distributed heuristics addressing the problem of spatio-temporal camera alignment in large

systems.

In the end of this chapter, another system management algorithm is presented. In

order to let human staff interact with cameras, an appropriate algorithm for alarm man-

agement is introduced.

5.1 Pan and Tilt Alignment

The alignment of PTZ cameras in a cooperative manner is an important task arising in

large Distributed Vision Networks. Cameras may be arranged in a way, so that their

fields of view overlap. This overlap might be necessary for tasks like target tracking. In

order to reach a maximum surveillance coverage of an area under observation, this overlap

between cameras’ fields of view needs to be minimal. Figure 5.1 shows a 2-dimensional

view from bird’s eye perspective on a Smart Camera system. On the left side, a misaligned
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Figure 5.1: Example for misaligned cameras (left) and correctly aligned cameras (right)

configuration is shown. The right side displays the arrangement of cameras after a spatial

partitioning has been carried out in order to maximise the area covered by the cameras’

viewsheds.

In addition to this, cameras should focus on certain areas that are of special interest.

The prerequisites concerning alignment might change over time. For example, at an

entrance of a building a camera might be installed in order to capture images of frontal

faces. A high level application may be in use to identify persons. Intuitively, a camera

is expected to focus on the entrance door but in case a person needs to be tracked, the

camera can decide to follow the person by using PTZ abilities. Thereby, the camera

is misaligned, changes its heading and leaves the former region it observed unattended.

Other cameras are informed, that they should take over the task of observing the entrance.

In order to achieve an appropriate alignment for tracking and static surveillance, ROCAS

and DMCtrac have been developed. These algorithms do not only consider the priority

of regions, but also the alignment of neighbouring cameras in order to achieve a global

optimum in surveillance and tracking coverage.

A surveillance system in operation adaptively switches between two modes of opera-

tion: While surveying a static scene, cameras aim at reaching the maximum surveillance

coverage (in the simple example introduced above: focus the entrance door). As soon

as the Smart Cameras need to investigate a scene more deeply and e.g. try to identify

or track an object, they start to cooperatively reconfigure their fields of view in order to

gather as much data as possible about this incident - therefore overlapping viewsheds are

needed or at least tolerated.

In order to align cameras in a way that leads to a close to optimal surveillance coverage,

distributed heuristics are introduced in this thesis. A formal analysis of this problem

shows, that it is NP-complete. With ROCAS an algorithm is presented which is able to

approximate a solution to the problem of static camera alignment.
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Tracking objects with multiple cameras is another problem concerning camera align-

ment by panning, tilting and zooming. In order to allow for a seamless tracking of objects,

cameras can follow objects by using their PTZ abilities. For object handover, cameras

need to agree on a common migration region that needs to be focused simultaneously in

order to take over objects. With DMCtrac, this thesis presents a heuristic that approxi-

mates a solution to the tracking problem.

5.2 Formal Problem Statement: Spatial Partitioning

Figure 5.2 shows the simplified viewshed of a camera and its geometry according to De

Floriani’s definition [58]. ROCAS relies on 2-dimensional geometries. The ground plane

view is approximated by a triangular shape. Real world experiments show, that the ground

plane view is a trapezoid but for the alignment process the impact of this simplification

can be neglected [87]. By modelling the ground plane view as a triangle, the calculation

of intersections between polygons becomes slightly faster and visualisation in form as

triangles can be understood more intuitively. Triangular shapes modelling the cameras’

fields of view have also been used by Erdem [57] for a positioning algorithm, as well as

in [17] for the camera calibration. Extensions to a 3-dimensional model offers higher

accuracy, especially in case cameras are positioned on differing heights. The calculation

of volumetric intersections does in return require a much higher computational effort [60]

and has not been investigated further in context with this thesis. The following theoretical

investigations rely on a 2-dimensional model, but the assumptions and results might also

hold for 3-dimensional models.

A camera SC is characterised by its position and field of view as described in Figure

5.2. Each camera is positioned on an area A at a position (x, y). Each camera’s field

of view FOV is defined by the focal length L, the viewing angle α and the camera’s

alignment δ. For now, we assume the cameras only to tilt, the pan and zoom abilities are

neglected.

5.2.1 Formal Description

Optimal partitioning of an area A means to find an adjustment for all cameras’ viewsheds

on A (w.l.o.g. we assume that all cameras are on A), so that the surveillance coverage

becomes maximal. Intuitively, surveillance coverage is maximal in case of:

• the overlap of cameras being minimal
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Figure 5.2: Geometry of a camera’s viewshed

• the accumulated priority of the area focused by all cameras in the system being

maximal

Depending on the degrees of freedom given, several parameters can be changed to

achieve an optimal system configuration. For the classical art gallery problem the follow-

ing assumptions are made: cameras have an unlimited viewing range, can be placed at

any position on A and have a 360◦ field of view. Goal is to find a position for each camera,

so that the observable area of a given polygon becomes maximal. For practical reasons

(i.e. building constraints), a camera may not be placed at any position but only near

those positions where several requirements are fulfilled. These requirements include for

example power supplies, mounting possibilities or aesthetic guidelines to be met. In the

system presented here, cameras are placed at fixed positions and have a limited viewshed.

Furthermore, we want those regions to be observed, that are especially prone to inci-

dents. The area A the cameras are positioned on is divided into j subareas Aj. These

subareas are prioritised by assigning values to them to weight the importance of the area.

In the following we choose low values to indicate uninteresting areas, whereas large values

indicate regions that should be observed in depth. Depending on the regions covered by

a camera’s FOV , the priority function w(FOV ) returns the priority of the area currently

focused. The following section shows an example how regions can be prioritised.
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Figure 5.3: Scenario with at airport terminal: left side showing satellite view, right side
showing camera’s map with prioritised regions

5.2.2 Priority Regions

For real world applications, the area A is modelled as a polyhedral shape that contains

viewing obstacles and regions of special interest in form of a 2-dimensional map. Trees,

walls and large moving objects may block a camera’s line of sight and might be of minor

interest in comparison to other areas, that are expected to be observed with higher priority.

In buildings, regions with a higher priority might be entrances or emergency exits. The

priority of regions may be set in advance and kept statically inside the cameras at the

time of their installation. With more sophisticated computer vision algorithms available,

Smart Cameras may be able to interact in order to cooperatively rate regions in terms

of priority. Regions that might frequently be subject of suspicious activities could be

marked with a high observation priority. Smart Cameras need to align their fields of view

to guarantee a complete coverage of A. In contrast to viewing obstacles, priority regions

need to be observed in detail.

The priority of regions is represented by assigning numerical values in order to weight

the priority. Thus, the area A is divided into a set of subareas (A = {A1, .., An}). This

discrete approach allows us to model the priority of regions in detail. In the following,

we use a regular grid to represent polygonal regions. Figure 5.3 shows, how a map of

precincts of Hannover airport is modelled in terms of prioritised regions. On the left, a

satellite view of a terminal building is depicted. We assume areas close to the terminal

building to be of major importance, since attackers might try to find a way out of the

terminal and into aircrafts. Thus, the regions are prioritised accordingly: the map on the

right side of Figure 5.3 shows the region values assigned. The cameras are expected to

focus on those regions, that are close to the terminal building. The building itself does

not need to be observed and for the taxiways and aprons further security mechanisms are

existing, thus those regions are assigned a low priority (low values in the grid).
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Variable Description
SC Configuration of a single Smart Camera
FOV Mapping of camera configuration on an area
SC System configuration ∪SC
FOV Mapping of all cameras on an area ∪FOV
A Area under observation
A Subareas, ∪A = A
w(FOV ) Weight of subareas covered by FOV (SC)

Table 5.1: List of mathematical abbreviations

By summing up the values of all grid elements (subareas A) that are covered by a

camera’s field of view (FOV), a camera’s alignment can be rated in terms of efficient

coverage. FOV describes the mapping of a camera’s field of view onto an area, FOV :

SC → A. By calculating w(FOV ) =
∑
w(Aj), Aj ∈ FOV , this is done for a single

camera. In this example some areas Aj are only covered partly by a FOV. We count only

those subareas Aj for the calculation of w(FOV ) that are covered by FOV to more than

50%. In the example depicted in Figure 5.3, w(FOV ) for the upper left camera results

to w(FOV ) = 2 + 2 + 2 + 2 = 8.

Aligning the camera to any other position would lead to a decrease of w(FOV ) and

a decrease in coverage quality - assuming their positions are fixed. The camera indicated

with a red viewshed on the upper right side of Figure 5.3 is misaligned, it is focusing an

area of minor importance.

In addition to the intersection with priority regions, the intersection of cameras’

viewsheds is considered. We are searching for an overlap-free camera configuration, i.e.

∩FOV = ∅.
Table 5.1 provides an overview of the mathematical symbols.

5.2.3 Proof of Problem Complexity

In this section, the complexity of the spatial alignment problem for Smart Camera net-

works is proved by reduction to the set-packing problem. The area A the cameras are

expected to observe is therefore dissected into n sub-areas A= {A1, .., An}. The problem

description given above allows for each element in A to be covered exactly by a single

camera’s field of view and each camera on A can select its alignment in such way, so that

it has no overlap with neighbouring cameras. The task to achieve FOV(SC) = A with

the highest possible coverage of priority regions w(FOV) is equivalent to the set-packing

problem which has been shown to be NP-complete by Karp [59].
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5.2.4 Karp’s Problem

A work by Stephen Cook laid the basis for an important step forward in computational

complexity theory [88]. It has been shown that several problems, that have formerly

been known to be difficult to solve efficiently, belong to a certain group of problems: the

so-called NP-complete problems [59]. All these problems have in common, that once a

solution to the problem has been found, this solution can be verified quickly - in polynomial

time. The difficulty is to find such a solution: for NP-complete problems, no deterministic

polynomial-time algorithms are known. Karp presented a list of 21 common problems

and showed that they all belong to the complexity class NP. In case a deterministic

polynomial algorithm is found, that solves one of these NP-complete problems, then all

of the algorithms in the complexity class NP can be solved by that algorithm1.

In order to solve the set-packing problem, a superpolynomial amount of time is needed

in terms of the input size. Since we want cameras to be aligned in real-time, we need fast

algorithms to find acceptable solutions to this problem. Hence, distributed heuristics are

introduced. These heuristics approximate solutions to the alignment problem quickly and

with sufficient accuracy, as shown in Section 5.3. The following sections formally describe,

why the camera alignment problem is difficult to solve and belongs to the complexity class

NP.

The Set-Packing Problem

The set-packing problem is defined as follows: Given a set of subsets FOV over a domain

A= {A1, .., An}, the maximum number k of disjoint subsets is searched. After identifying

all independent subsets, the optimal combination of subsets in terms of their cost is

searched. In a camera network, we are searching for a system configuration where there is

no camera overlap, i.e. disjoint fields of view are searched. Speaking in terms of cameras,

no camera SCA has an overlapping field of view with neighbouring cameras SCB i.e.

FOV (SCA) ∩ FOV (SCB) = ∅.
The goal is to find an optimal configuration for all cameras SC with w(FOV) be-

ing maximal. Note, that there may exist multiple possible solutions to the problem and

we are searching for only one of them. Therefore, we define a set of optimum align-

ment candidates per camera Dxm . The alignment of a camera SCx is represented by the

alignment angle δx. The resulting possible fields of view per camera are FOV (SC(δ))x

1The proof, that there is really no deterministic polynomial time algorithm to solve
the NP problems does not exist yet. For such prove, a $1 million prize is awarded:
http://www.claymath.org/millennium/P vs NP/.
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with δ ∈ {0◦, .., 359◦}. A camera can have m possible alignment candidates SCx with

w(FOV (SCx)) being maximal.

The set D of m resulting alignment candidates for camera x results to

Dxm = {δxm | w(FOV (SC(δ))xm is max, FOVxm ∩ FOVy = ∅ ∀xm 6= y}

We are interested in disjoint fields of view, i.e. need the underlying set-packing problem

to be solved or at least an approximated solution which is represented by selecting only

those alignment candidates that have no overlap with any other cameras’ possible FOVy.

Finally, the resulting system configuration with optimal camera alignment is:

SC = {SC1(D11), .., SCn(Dn1)}

Without loss of generality, we chose the first configuration Dx1 fulfilling the conditions

given above. This optimum configuration contains an overlap free configuration for each

camera with the highest possible surveillance coverage with respect to priority of regions.

Due to the enormous size of real-world systems, the problem can hardly be solved in

real-time. The following example describes the problem in detail and offers a step-wise

description of how the problem can be solved.

Example

Figure 5.4: Example for camera alignment reduced to set-packing problem

The reduction of the camera alignment problem to the set-packing problem is in the fol-

lowing demonstrated by a modestly sized example. Two cameras are positioned on an area
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A as depicted in Figure 5.4. This area is divided into subareas A = {AAA, AAB, .., AHH}.
Each subarea carries a priority value w(Aij).

In the following example, the cameras are expected to be able to change their align-

ment to four different positions each. This is a simplification, for ROCAS we assume

cameras to switch between 360 different positions. Nevertheless, the example with 4

alignment candidates per camera suffices to explain the set-packing problem in Smart

Camera networks. These positions are encoded by numerical values 1..4, as depicted in

Figure 5.5. This encoding scheme replaces the alignment angle δ, i.e. camera A directing

its heading to the north is encoded by A1, north-east by A2 and so forth.

Figure 5.5: Camera positioning and encoding of alignment

Each camera alignment results in a different set of subareas Aij to be covered by the

cameras’ fields of view. The complete list of subareas SA1..SB4 derived from the system

configuration presented in Figure 5.4. For example, with camera A being aligned to

position 1 of and their respective weight is shown in Table 5.2.
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Sets of covered subareas Aij priority wj

SA1 = {AAA, AAB, ABA, ABB, ACA, ACB} wA1 = 7
SA2 = {ABD, ACC , ACD, ACE, ADB, ADC} wA2 = 8
SA3 = {AEB, AEC , AFC , AFD, AFE, AGD} wA3 = 6
SA4 = {AFA, AFB, AGA, AGB, AHA, AHB} wA4 = 0
SB1 = {AAG, AAH , ABG, ABH , ACG, ACH} wB1 = 6
SB2 = {ABE, ACD, ACE, ACF , ADF , ADG} wB2 = 9
SB3 = {AEF , AEG, AFD, AFE, AFF , AGE} wB3 = 8
SB4 = {AFG, AFH , AGG, AGH , AHG, AHH} wB4 = 7

Table 5.2: Example for camera alignment problem

By comparing all sets S to each other, the disjoint subsets can be identified. Identify-

ing these disjoint sets Aj has been proven to be NP-complete by Karp. After the disjoint

subsets have been found, a selection process is started that selects those disjoint sets

covering regions with a high priority w. Since w(A2) + w(B3) is maximal, this system

configuration is chosen. In Table 5.3, all possible combinations of the cameras’ align-

ment are shown. Overlapping configurations are indicated with w = −∞, i.e. they are

practically occluded from the set of possible alignment candidates Dx.

w(B1) w(B2) w(B3) w(B4)
w(A1) 13 16 15 14
w(A2) 14 −∞ 16 15
w(A3) 12 15 −∞ 13
w(A4) 6 9 8 7

Table 5.3: List of disjoint subareas and their respective weights

This example shows, how an optimal camera alignment can be achieved by mathemat-

ical analysis. The following section presents ROCAS, a heuristic to approximate solutions

fast and with high accuracy.

5.3 ROCAS

In the following, a lightweight distributed heuristic is presented that approximates a

solution to the problem of aligning camera heads in Distributed Vision Networks. ROCAS

calculates an overlap function wa locally at each camera that determines, whether an

overlap with other cameras occurs and returns the weight of the overlapping areas. A

second function wb is used, that describes the priority of the region the camera focuses

and whether the camera alignment is on A. The resulting overlap function is w(FOV ) =
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wb(FOV ) − wa(FOV ). Viewing obstacles have a negative region value and cameras

focusing obstacles calculate a lower wb(FOV ).

The heuristic bases upon the assumption, that minimising overlap locally leads to a

global maximum in coverage. That this assumption is true will be shown in Section 5.3.1

and has been evaluated quantitatively, see Chapter 6 for results. ROCAS is a distributed

algorithm for dynamic reconfiguration of cooperating cameras and uses solely local (single-

hop) communication and local knowledge. We assume, that the transmission range of a

camera is larger than its viewing range.

Algorithm 3 Distributed Partitioning Algorithm

1: init:
2: set timer // randomisation used
3: init neighbourcache // start with empty NC
4: init mySPM // stores own position and geometry
5: overlap← 0
6: on timerexpire :
7: send SPM to all neighbours // send out heartbeat
8: set timer and restart
9: end on

10: on incoming SPM :
11: oldoverlap← overlap
12: update neighbourcache // add/removeSCs
13: overlap← calculateoverlap // with all SCs in NC
14: minimise overlap // by changing own position
15: if ( oldoverlap− overlap ) > thm
16: send SPM to all neighbours
17: change own position
18: end if
19: end on

At startup, a camera generates an SC Position Message (SPM) corresponding to the

message format depicted in Figure 4.3 (see Algorithm 3, line 4). A camera’s networking

unit is further in charge of parsing incoming messages from neighbouring cameras. If

a message is received from a neighbouring node (see Algorithm 3, line 10), it is checked

whether the neighbour is in viewing range or not. This is done by calculating the euclidean

distance between the two cameras. If it is in viewing range its position and field of

view is saved in a cache holding all information about neighbouring cameras, the so

called Neighbourhood Cache (NC) that has been introduced in Section 4.2. Should the

neighbouring camera be already known, a local timestamp (i.e. no clock synchronisation

required) is updated. This timestamp is used for a heartbeat based failure detection.

The NC is checked for changes every time a message is received, see Algorithm 3, line
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12. In case of changes, the camera calculates its own overlap with all known neighbours

and tries to minimise its overlap by tilting randomly either to the left or to the right,

looking for the smallest angle to turn around. The polygon clipping algorithm used for

the calculation of the overlapping area of several cameras’ fields of view has originally been

developed by Vatti, see [89]. In case the overlap has reached a local minimum, the camera

switches back to listening for incoming messages and the viewshed remains unchanged.

If the overlap can be lowered significantly, the camera generates a message and sends

it out to all neighbours (see Algorithm 3, line 15-18). Significantly means, that slight

optimisations (i.e. less than the movement threshold thm) are ignored since sending a

message for each of these slight changes causes unnecessary computational effort, network

usage and mechanical problems due to dynamic fatigue of the camera mechanics. By

varying thm, the system’s behaviour can be influenced. In case thm is set to a small value,

the cameras will achieve a better surveillance coverage, since they move more precisely.

In return, the cameras will move more often and extend the time to termination of the

algorithm as well as decrease the lifetime of the PTZ drives. In Section 6.4.6, the influence

of thm on the performance of ROCAS is investigated in detail. After sending a message,

the camera begins to wait for incoming messages. If there are no incoming messages to

be processed after a pre-set dead time, the camera sends out an SPM as heartbeat signal,

line 6-9. In case failing nodes are detected, repartitioning takes place and old entries are

deleted from the NC as described in Section 4.3.3.

5.3.1 Convergence and Termination

ROCAS adjusts the viewshed of a camera only in case an improvement of its local cov-

erage is achieved. Each adjustment, which is not carried out concurrently with other

adjustments of neighbours, leads inevitable to a global improvement as well. Concurrent

adjustments are possible, but very unlikely as shown in the following.

In large camera systems oscillations are possible. Oscillation means that a scenario

could arise, in which two cameras adjust their viewsheds almost at the same time. This

leads to inconsistent NCs, which can result in two cameras choosing the same new field of

view by coincidence. Inconsistent NCs can also arise from collisions on the communication

channel, in which messages are lost.

The probability of an arising and continuous oscillation (i.e. lasting more than 4 time

steps) in a system consisting of 100 cameras is very low (< 1%). Due to the low probability

of arising oscillations and the threshold of the algorithm (see line 15, Algorithm 3) the

termination of ROCAS is practically given. The threshold secures that the algorithm



5.3 ROCAS 63

stops after finding a plateau of a beginning maximum by avoiding minor changes.

A scenario of two cameras SCA and SCB is considered. It is assumed that both

cameras are situated on the same position and have the same orientation and configuration

on start up. That is, the field of view of both cameras is identical, both cameras observe

the same area. This is a worst case scenario for the probability of choosing the same

new alignment, as explained later on. To start an oscillation, the two cameras SCA

and SCB must be willing to change their alignment to improve the coverage of the area

they observe. This is given by the assumption that SCA and SCB are positioned on

the same place having a best match (that is, overlap completely) in their fields of view.

Further, they calculate the same new best alignment of their viewsheds to improve the

coverage (event1). Finally, they have to locally adjust their field of view and inform

their neighbours about this. The communication times t0(SCA) and t0(SCB) are set to

identical values to provoke neighbourhood cache inconsistency (event2). Both events are

essential to start an oscillation. The probability of event1 is pevt1 and that of event2 is

pevt2 respectively. Since both events have to appear, the probability posc for an oscillation

is the product of the events pevt1 and pevt2.

The probability pevt1 is calculated as follows. In the scenario of two cameras mentioned

above, both cameras have 360 possibilities to change their viewshed assuming 1◦ steps for

rotation. Since the implementation of ROCAS as introduced before makes the PTZ head

turn randomly to the left or right for searching a new best field of view and looks for the

smallest angel to turn around, the probability of choosing the same new field of view is

0.5, as both cameras are situated on the same position with the same orientation. Thus,

the probability to chose the same new field of view is pevt1 = 0.5 ∗ 0.5 = 0.25.

The probability for collisions in the communication channel follows a binomial distri-

bution. This is equivalent to the so called birthday problem [90], in which the probability

is calculated that k of n persons are born at the same date. The binomial distribution B

can be calculated as follows:

B(·|p, n) : Z→ [0, 1], k 7→ B(k|p, n) =

(
n

k

)
pk(1− p)n−k

For the camera network we assume that k out of n cameras access the communication

channel with a probability of pc. In an IEEE 802.11 WLAN, pc can be calculated as shown

in the following paragraph.

For selecting the same new field of view one camera has to change its position and

send this information to its neighbours at time t0. The time step t0 is chosen from an

100 ms interval randomly distributed by our messaging Algorithm 1. A collision arises
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Figure 5.6: Example for inconsistency arising in neighbourhood cache

as soon as another camera adjusts its viewshed concurrently in the time of inconsistent

NCs, in the interval [t0 - tmsg, t0] or [t0 , t0 + tmsg].

The time tmsg is approximated by the message transmission time and can be calculated

to 2ms (assuming that a message has a size of 1.375 Byte and is send via an IEEE 802.11

network with 5.5 Mbit/s). That is, the probability of choosing any time t0 from the

interval of 100 ms is pc = 0.02, assuming discrete time steps. In case less than two

Smart Cameras decide to start sending, no collision will arise. In case two or more Smart

Cameras start sending at the same time, collisions and message loss will occur. Intuitively,

in a large network, the probability for collisions rises and for n cameras in our example

results to B(n) = 1−(B(0|0.2, n)+B(1|0.2, n)). These collisions can only arise in case two

or more cameras start sending simultaneously. The results for the cumulative probability

(which is the sum of the single probabilities) are presented in Figure 5.7. The diagram

also includes curves for the probability of collisions after five and eight sending attempts

respectively. In case of 120 cameras sharing a collision domain, the probability for an

oscillation lasting more than five timer cycles (5× 100ms) is below 1%.

An example for collisions arising on the shared media is shown in Figure 5.6. Two

cameras SCA and SCB are positioned in such a way, so that their fields of view might

possibly overlap. Camera SCA decides to align its viewshed at time t0 and immediately

emits a message. Simultaneously, SCB aligns its field of view and emits a message at

time t0 + td1 with td1 < tmsg. Again, this situation might occur since the cameras choose

a random backoff interval within a timespan of 100ms. Since tmsg = 2ms, the probability

for such situation is 2%. In this case, neighbourhood cache inconsistency occurs and the

cameras might overlap. Such overlap is identified by cameras exchanging further messages

frequently. In the example, camera SCB resolves the situation by sending a message at

time t1. SCA responds to that message at t1 + td2 with td2 tmsg. No collision occurs in

this case.

As already mentioned above, the probability for starting an oscillation is the product

of the probabilities for choosing the same viewshed and transmission collisions. To keep
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an oscillation alive, this has to continue each following discrete time step t. As these

events are independent from each other, the probability of an continuous oscillation is

calculated as follows:

pcontinuous osc = posc
t

Thus, the probability of a continuous oscillation decreases over time. After five time

steps the probability for a continuous collision in a network consisting of 300 cameras

is below 10% (see Figure 5.7). Since oscillations are very unlikely and our algorithm

converges at the beginning of a maximum plateau, our algorithm terminates with high

probability.
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Figure 5.7: Probability of collisions by concurrent behaviour in a system with an increasing
number of Smart Cameras

5.3.2 Centralised Variant of ROCAS

ROCAS, as introduced so far, uses local knowledge in order to find an optimal surveillance

coverage. Intuitively, a central component, that has global knowledge about all cameras

in the system, is able to find a solution that offers higher surveillance quality than the

local optimisation. With global knowledge, local maxima can be overcome for the sake

of a better overall system performance (Figure 5.10 shows an analogon derived from

mathematical complex analysis). The evaluation of ROCAS has shown, that in some

situations, local knowledge does not suffice to reach an optimal surveillance coverage.

These situations may arise in case the cameras’ physical neighbourhood is not represented
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in their neighbourhood caches because of limited communication range. One of these

special cases, taken from [91], is depicted in Figure 5.8.

Figure 5.8: Example scenario for ROCAS finding local maximum

Four cameras SCA..SCD cameras are expected to observe a maximum area of the

corridor they are positioned in. Camera SCD has a communication range rd. It knows

about camera SCC but not about cameras SCA and SCB. A central server (e.g. camera

SCC) might be elected to gather global knowledge. Thereby, an appropriate solution can

be found (i.e. cameras SCA, SCB, SCC turn to the left as depicted in Figure 5.9).

Figure 5.9: Optimal solution: global knowledge helps to overcome local maxima

The instance carrying out the centralised derivative of ROCAS is in charge of acquir-

ing all position and alignment information from all cameras. This information is used to

calculate an optimal alignment for all cameras and notify them about their new align-

ment. This instance, that carries out the overlap optimisation centrally, might either be

a computation node or a Smart Cameras with special (larger) computing capacities like

camera SCC in the example introduced above.

In some special cases, a central instance is able to find better solutions to the partition-

ing problem than an algorithm relying on local knowledge does. In return, the centralised

approach causes significant drawbacks in terms of scalability and runtime complexity as

described in Section 6.4.10.
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Figure 5.10: Optimisation problem - how to overcome local maxima

5.4 Cooperative Object Tracking

A common task in surveillance systems is to track objects of interest. Security staff

switches from one camera to the next in order to follow an object on the monitor wall. In

modern systems, PTZ cameras are used to follow objects. With DMCtrac, an algorithm is

presented that allows cameras to take over the tracking of objects autonomically. Objects

are searched for and followed by tilting the cameras PTZ heads. In case objects are

assumed to move out of a Smart Camera’s field of view, neighbouring cameras are informed

to take over the object to track it further.

5.4.1 Formal Problem Statement

The following formal problem statement describes our theoretical approach to the tracking

problem and explains the definition of the performance metrics that have been applied

for the evaluation of DMCtrac.

A defines the spatial area of interest the cameras are observing at time and is derived from

a floorplan of the building site or a map of the precinct that is observed. A may contain

static and moving viewing obstacles covering or occluding a total area of O(t) that need to

be considered by the cameras, i.e. O(t) is not observed by the cameras. Each camera has a

2-dimensional viewshed that covers an area FOV (t) ⊂ A. We investigate a multi camera
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and multi object system that uses n cameras for searching and tracking m objects on A.

In analogy with the spatial partitioning, the tracking problem can be formulated as one

of Karp’s NP-complete problems. A reduction to the set packing problem can be derived

in analogy to the proof presented in Section 5.2.3. Moving objects replace the static sub-

areas as investigated for ROCAS, i.e. w(FOV ) changes over time. The difficulty arising

for the tracking task is that objects may move on unpredictable routes. The alignment

of cameras’ PTZ heads therefore needs to be adjusted continously by DMCtrac whereas

ROCAS terminates in case a solution to the coverage problem has been found.

A camera with PTZ abilities can change its field of view (and thereby change FOV (t))

by panning, tilting and zooming. The time t is used as a discrete value. We further define

the union of all k fields of views to be FOV(t)=
⋃

k=1..n FOVk(t). Objects that need

to be tracked may either have been selected by human operators in a live video stream

or may have been stored inside the cameras. Computer vision algorithms (e.g. based

upon histograms) are used to let cameras decide which objects to track. The selection of

objects for tracking is not discussed here, it is assumed that cameras know which objects

to track. The focus is on tracking objects with multiple cameras, which includes object

handover between multiple cameras.

The position of an object i to be tracked is given by its 2-dimensional position −→p i(t).

A trajectory −→r i is comprised by a sequence of positions over time −→r i = {−→p 0, ...,
−→p n} and

the length of a trajectory −→r i is given by lri. lri defines the temporal length of a trajectory

in time intervals, not a distance.

We further define a function ω that indicates whether an object at position −→p i(t) that is

supposed to be tracked is currently seen by at least one camera at time t.

ω(i, t) =

1, if −→p i(t) ∈ FOV(t)

0, else

The aggregated number of successful tracking steps for an object i is Ωi =
∑

t ω(i, t). In

order to reach a high tracking quality (i.e. tracked objects are under constant observa-

tion) we aim at maximising Ωi. The ratio Ωi

lri
is used to define the tracking quality Q.

Approaches to raise Ω are constrained by the fact that the system is supposed to maintain

a high surveillance coverage of S. The surveillance coverage C is defined as C = FOV(t)

A−O(t)
,

i.e. the union of all cameras’ viewsheds over the maximal viewable area. Thereby, we

avoid objects to be tracked by more than one camera at once. This might not be appre-

ciated for all application scenarios, but for those where a large area is to be covered most

efficiently and the tracking of an object with one single camera at a time suffices.

In other words, the goal is to find a system configuration SC(t) so that all object

positions on A lie within the viewsheds of a minimum number of cameras. This is the
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classical set-packing problem [59]. Although it is proven to be NP-complete, heuristics

based upon greedy search yield close to optimal results. DMCtrac is described next and

builds upon a greedy algorithm, too.

5.4.2 Tracking Algorithm: DMCtrac

Tracking objects is a dynamic task and needs to be addressed by another algorithm

than the static scene coverage handled by ROCAS. The basic idea of DMCtrac is to let

cameras switch between several modes of operation. In case no objects are focused and

tracked, cameras search for objects by screening A with pan/tilt movements. In case a

camera detects an object, it becomes responsible for further tracking. This underlines the

greedy character of DMCtrac: objects are assigned to cameras on a first come, first served

basis, i.e. the first camera detecting the object carries on tracking. Remaining cameras

automatically take over other objects they find. DMCtrac is based upon a state-machine

which will be described in detail in the following.

Figure 5.11: DMCtrac as a state-machine [5]

Figure 5.11 shows an overview of the different states of the state-machine. The search

state is joined initially after the system has been switched from a static surveillance mode

(managed by ROCAS) to tracking. A PTZ camera in search mode will pan and tilt

saccadically and scan the surrounding area for objects that could possibly be tracked. In

case an object that needs to be tracked has been detected, the camera becomes a master.

In case objects got lost, neighbouring cameras are informed and switch to look mode to

take over the object at an estimated migration point. Cameras in slave state move to a
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position that leads to a maximum surveillance coverage of the area under observation.

The search mode is started by the operator of a surveillance system in order to track

specific, predefined objects (like persons or vehicles identified by histograms that are sent

to the system by users as introduced in Section 5.5). The camera will then follow this

object until it either loses this object or gets a message from a neighbouring camera stating

that help is required for tracking another object. In case a camera decides to follow the

neighbour’s request, it will switch to the look state. The look state becomes activated

in case a neighbouring node informed the camera that an object is going to get lost and

might need to be taken over. The camera that lost an object will switch to slave state and

search for a position to turn to that leads to a maximal coverage of the area of surveillance

before starting to search for objects again. Each camera scans the surrounding area for

objects that need to be tracked. As mentioned before, the detection and recognition is

derived from an underlying computer vision algorithm. In case an object has been found,

this object is analysed and marked so it has a unique ID that is used for the tracking of

this object. All objects a camera has found in its field of view FOV (t) are added to an

object cache. Each camera chooses to track those objects that seem most promising to

be tracked. A possible criterion for a promising object to be tracked is, that it is close to

the camera and thus is expected to remain inside the cameras field of view longer than

other objects. The distance between an object and the camera can be calculated in a

calibrated system as introduced in Chapter 2. Since we assume the size of objects we

track to be known, the pixel size of an object can easily be calculated to the real word

size of the object. Thereby, the real-world distance between camera and object can be

approximated. DMCtrac currently tracks those objects first, that are positioned closest

to the camera. Other possible criteria for promising objects to track are face or body

orientation that arise in different application scenarios.

The four different states DMCtrac builds upon are described in the following.

5.4.3 Search Mode

Algorithm 4 Search mode

1: init:
2: set timer
3: on timerexpire :
4: move randomly
5: search for objects to be tracked
6: if object found
7: switch to master mode
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In search mode, a camera is not actively tracking an object but searching the sur-

rounding area for objects to be tracked. The camera k changes its heading over time

(FOVk(t)) and thereby investigates the surrounding area randomly, lines 3 and 4 of Al-

gorithm 4. More elaborate approaches than just turning randomly or performing an

exhaustive search can be found in [55, 54]. The authors investigate how a 2-dimensional

area can be observed most efficiently by PTZ cameras and introduce sophisticated algo-

rithms that coordinate the cameras’ movements to keep a constant surveillance coverage.

In case an object is found, the camera becomes master for this object, line 7.

In case an object is detected by two cameras at the same time, both cameras become

master of the object. This conflict is resolved by a simple election algorithm: both

masters exchange messages and the camera positioned closest to the object remains master

whereas the other camera retreats to its previous state. This temporarily causes a slight

loss in surveillance coverage but does not affect DMCtrac any further as results show.

I.e., usually only one camera is following an object at a time. This parameter may be

changed, e.g. one might decide to track object from at least two different viewpoints. To

achieve this, the master needs to send a LOOK command to neighbouring nodes which

then would decide if to accept or deny this command considering their own tracking

tasks. The movement of the PTZ head and time needed for image recognition is derived

by measurements carried out on a prototype. The Axis PTZ214 camera used for the

real-world evaluation pans/tilts with a speed of 45◦ per second. A camera with a span

angle of 45◦ therefore needs 8 seconds to perform an exhaustive search for objects in its

possible field of view when turning in 45◦ steps. The search mode can be left to master

mode in case the camera has detected an object it needs to track or to slave mode in case

a neighbouring camera became master of the object the camera searched for.

5.4.4 Master Mode

Algorithm 5 Master mode
1: on timerexpire :
2: set timer
3: if object is inside FOV
4: pushback position
5: calculate motion vector for object
6: move PTZ head in direction of motion vector
7: if no object is inside FOV
8: send LOOK −message with motion vector

The master mode is reached from search mode and from look mode in case an object
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has been found.

Being in master mode is the most computing intensive task for a camera since for each

tracking step the object needs to be recognised and the motion vector is calculated, line

5 of Algorithm 5. After the object has been detected in search or look mode, the camera

keeps a record of the trajectory, line 4. Elaborate mechanisms of how to retrieve position

information of moving objects and calculate stable results (e.g. by use of Kalman filters)

are described in [92]. Currently, our cameras follow object saccadically. I.e., they do not

perform a continuous movement but rotates stepwise, line 6. The Axis PTZ214 camera

we used is able to change its viewing angle in steps of 1◦. Experiments considering the

PTZ movement strategy are given in Chapter 6. The master mode is left towards slave

mode in case an object got lost. The neighbouring cameras are informed by sending a

LOST message.

5.4.5 Slave Mode

Algorithm 6 Slave mode

1: wait and detect
2: repartition // runROCAS

The slave mode is entered from search mode or from master mode. A camera turns to

slave mode in case all objects are tracked by at least one camera. When the slave mode

is entered, the camera waits for a predefined time in order to detect objects that may

have changed their motion vector unexpectedly and returned instead of migrating to the

predicted region. After this dead-time, the camera calculates its heading for an optimal

position according to ROCAS, so that the maximum surveillance coverage is achieved or

simply turns to a predefined home position, line 2 of Algorithm 6. The slave mode is

left, in case the Hello messages from an objects master are missing for too long (camera

switches to search mode) or a master sends a message that the object has been lost or is

feared to get lost (camera switches to lost mode).

5.4.6 Look Mode

A camera enters the look mode, in case a corresponding request was emitted by a

neighbouring camera in slave mode. Slaves may request other cameras to take over their

tracking tasks in case an object they tracked has recently got lost. The look state is

entered only in case the camera currently does not track an object as a master on its own.
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Algorithm 7 Look mode
1: on timerexpire :
2: set timer
3: wait and detect
4: if object is inside FOV
5: switch to master mode
6: if no object is inside FOV
7: return to search mode

In case a camera detects an object within FOV (t), it switches to master mode (line 5 of

Algorithm 7. If no object is detected (within a predefined timespan), the camera returns

to search mode (line 7).

By including weights of tracking tasks, object priorisation becomes feasible (compara-

ble to the priorisation of areas for ROCAS). I.e., a look request is to be connected with an

alarm level. Urgent incidents detected by cameras will lead to a scaling in the urgency of

look requests. The look mode is left to master mode in case an object has been identified

or to search mode in case the object is not found at the predicted position.

5.4.7 Summary of DMCtrac

Beginning with a formal problem statement, the previous sections introduced DMCtrac,

a distributed algorithm for object tracking. The algorithm has been modelled in form of

a state machine with four states. Each state has been explained in detail and examples

have been given to subscribe the functionality of the algorithm.

The following section describes a further algorithm for system management in Dis-

tributed Vision Networks. By using appropriate notification algorithms, cameras and

users can interact.

5.5 User Interaction and Notification

Until now, algorithms for the self-organisation of the alignment of cameras’ PTZ heads

have been discussed. In this section, another class of algorithms is presented and discussed.

User interaction and alarm management in a decentralised system differs significantly from

alarm management in centralised systems: In a centralised system, a compute server can

be fed with user demands. For example, at train stations, the faces of criminals can be

compared to faces in the video streams. In case faces match, an alarm is raised in the

central control room. This approach lacks scalability. It is hardly possible to analyse video
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streams of hundreds of cameras and perform a face recognition on these streams in real

time. The task of analysing videos can be performed much better on Smart Cameras. A

problem arising in this context is how to provide the input data to let cameras know what

they are expected to search for. Furthermore, management algorithms like ROCAS and

DMCtrac need to be adjusted to varying user demands. Since no central control instance

is existing, another approach to feed this data into the network is needed. Furthermore,

the alarms that have been detected by the cameras need to be transferred to surveillance

staff to take appropriate action.

This section presents a lightweight system called AMiDiViN (alarm management in

Distributed Vision Networks) to allow for user interaction with cameras. The focus is

rather on underlying message dissemination than on usability and graphical user inter-

faces. We present an algorithm that enables human staff to send messages to the camera

system. By using an appropriate forwarding scheme, cameras spread these messages in-

side the network. The requests are send to those cameras that they are addressed to. In

return, cameras can notify staff, e.g. in case of alarms.

5.5.1 Partitioning: Modes of Operation

Depending on the user goals that are fed into the Distributed Vision Network, the Smart

Cameras will adapt their behaviour. For the partitioning, this means the system can

operate in two contradictory modes of operation the security staff can switch between:

• Exhaustive tracking, all cameras are turning their PTZ heads and search for objects

• Static alignment of all cameras with optimal surveillance coverage

Exhaustive tracking means, that all cameras in a subsystem try to track as many

objects as possible. Such a scenario may arise in context of an alarm in highly sensitive

areas, where a single person is searched and cameras try to focus all moving objects as

long as possible in order to identify them. This goal can be achieved by using DMCtrac. A

contradictory mode of operation is to keep the camera alignment fixed so that a constantly

high surveillance coverage (as calculated by ROCAS) is achieved. In case an object that

has previously been defined to be tracked enters a single Smart Cameras field of view, the

system will switch over to track this single object.

Cameras that are constantly turning and searching for objects suffer from material

wearout. On the other hand, special situations may arise that require intense search

operations to prevent incidents. Cameras might not be able to switch between these
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modes on their own because they lack background information. Therefore, human guards

are in charge to identify such situations and adjust the system according to their goals.

5.5.2 Search and Detect Objects

We assume each guard to carry exactly one terminal. A notification sent to a mobile

terminal is expected to be noticed by a guard that takes over the task of handling the

alarm. All cameras SC in the system comprise the camera network SC= {SC0, ..., SCn}.
These cameras can be grouped by their capabilities, i.e. a camera placed in an elevator

will not be able to detect cars, in contrast to a camera on a parking space. A group is a

sub-set of N , and each camera is member of at least one group. For example, all cameras

in elevators may be members of a group E. Each guard g can publish multiple search

requests Rg = {rg0, ..., rgn} and select which group of cameras the request is addressed to

by defining a number of constraints c that need to be fulfilled by the searching cameras.

A common constraint is to define an area where the object is potentially to be found, i.e.

spatial constraints can be defined. Each request r contains information needed by the

cameras to find an object (i.e. features). A camera that receives a search request R will

check whether it fulfills c and carry out the requested tasks only in case c is fulfilled. Each

camera holds a queue Q that keeps all requests. Figure 5.12 shows the flow of messages in

case a guard publishes a search request. This request may be sent to a group of cameras

P = p0, ..., pn that are installed on a parking space. Each camera stores the image features

contained in r and searches for these feature.

Figure 5.12: Guard sends search request to vision network

In response to a search request r, cameras can inform security staff about incidents
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they analysed. In Figure 5.13, the notification process is shown. Since the position of

guards changes over time, the cameras P need to search for the guard gr in the system.

An appropriate algorithm that solves this problem is presented in the following section.

Figure 5.13: Notification after an object has been found

Data dissemination for alarm management

The dissemination of search requests and notifications for the publish/subscribe system is

based upon a broadcasting scheme that first grows and afterwards shrinks a tree to allow

for on demand route discovery. A simple search based upon broadcasts can be divided

into the following three phases, which serve as a basis for several distributed algorithms

as presented in Section 4.3.4:

• Explode: the camera that detects an event (detecting camera) sends a search request

to find a guard

• Echo: each camera connected to a MAMT will return its position and inform the

detecting camera that the search request was successful and a backward path is

created that connects the MAMT and the detecting camera

• Inform: the detecting camera sends further information (video) over the backward

path to the MAMT, the backward path is closed after some period of time

Each Explode and Echo message carries a payload of several hundred bytes containing

position and a textual classification of the incident or the position of the guard. The
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message exchange during Information phase relies on unicast communication via a back-

ward path established during the Echo phase. The algorithm as described above needs

to cope with multiple cameras detecting the same incident simultaneously. This situation

arises in case the cameras are positioned close to each other and the failure of a node is

detected by more than one camera. Therefore, the approach as described above has been

extended and modified on the basis of an extrema finding algorithm that can cope with

such situations. Vasudevan et al. describe a robust algorithm for leader election in ad-hoc

networks in [84]. Their algorithm allows to find a maximum value (e.g. highest battery

power) in a network and takes care of multiple nodes starting a vote (i.e. detecting an

event) and can even cope with node failure and joining/leaving nodes during the election

(search) process. Network partitioning is addressed by a re-broadcasting mechanism that

helps to reconnect partitions. The extrema searched for is whether a guard is connected

to any smart camera, which will then become leader (in our case: the routing end point)

for a certain incident. For now, this value is binary (1=guard connected, 0=no guard con-

nected). In future, this can be enhanced to a quality value (e.g. guard with car=100%,

guard without car=50%).

The following enhancements have been carried out, to adapt Vasudevan’s algorithm

to suit the special needs of our system: Since no global routing tables are present, the

neighbourhood cache as introduced in Section 4.3.1 is used. Each camera communicates

with its direct neighbours and forwards all messages it receives, in case it did not deliver

the same message earlier. Each search request is assigned a random ID and a sequence

number to make it unique, see [93].

Since each node can start an explosion (election) at any time, Vasudevan uses IDs for

each election process, too. In case a node receives multiple election messages, it will only

participate in the election process with the highest ID. Since the cameras need to find

guards simultaneously, the adaption presented here allows for multiple search instances.

Algorithm 8 shows a simplified variant of the adapted notification algorithm. The basic

idea is to create a spanning tree and find a guard. This is done by sending and forwarding

explosionmessages, line 2 and 3. An explosioncache is kept locally by each camera in order

to re-broadcast messages after timeouts, which is not shown here in detail (function call

in line 12). In case a first guard is found (line 6), the tree is shrunken. This is done by

broadcasting ack messages, line 7. In case a node receives an ack message for an explosion

it already forwarded, this explosion phase is locally removed from its explosioncache. The

ack message is re-broadcasted frequently until either a timeout occurs or data is send down

the backward path to the mobile terminal. This data may contain images or videos and is

not broadcasted but sent to unicast addresses only. The receiver of an ack message stores
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Algorithm 8 Growing and shrinking the notification tree

1: on incoming explosion :
2: explosion message→ explosioncache
3: if ( explosion message is new )
4: forward explosion to neighbours
5: end if
6: if ( MAMT − connected )
7: send ack to all neighbours
8: end if
9: end on

10: on incoming ack :
11: find corresponding entry in explosion− cache
12: update explosioncache
13: if ( ack message is new )
14: set backward entry to first incoming ack
15: broadcast ack to neighbours
16: if ( ack for own request )
17: send information over backward path
18: end if
19: end on

the unicast address of the sender that thereby becomes part of the backward path. When

the algorithm enters the information phase, this backward path is used to send information

from the detecting cameras to the previously localised mobile terminal. The evaluation

in Chapter 6 discusses the benefits of this approach. By using a unicast communication

scheme, sending video and audio data requires less bandwidth than a broadcasting scheme

would do. For better readability some points are not shown in Algorithm 8, e.g. explosion

messages are re-broadcasted after a timeout in case no ack has been received for too long.

The backward path is a branch of the tree that is established by all cameras on receiving

an ack. By closing unused branches after some period of time in which no data has been

received, the backward path is created that connects the detecting camera and a MAMT.

5.6 Algorithm Complexity

As mentioned before, Vasudevan intended only one instance of the election process to

be active. The adaption to the notification problem explicitly needs to support multiple

search requests to be active simultaneously as incidents might arise simultaneously, too.

This has an impact on the algorithms message complexity. This section shows, that

although a flooding based method is used, the algorithm is suited well for today’s IEEE
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802.11 WLAN ad-hoc networks. It is assumed, that a partition of Smart Cameras contains

n nodes. In case a single alarm is raised, 2 ∗ n messages (one for Explosion, one for

Echo) are sent. The information phase is not investigated here, since it is unicast based

and hence no flooding related problems can arise. The best case message complexity is

O(n). This number of messages is taken for an ideal system where no message loss and

collisions appear and no partitioning arises. The impact of multiple events being detected

simultaneously is high: in case all nodes detect an event at the same time, the message

complexity is 2 ∗ n ∗ n, i.e. O(n2). A timing delay is used in order to keep the message

overhead low, see algorithm 8, line 4. Timing delays of 1s have been proven to be suited

well and decrease the traffic on the wireless channel while still maintaining short response

times. The timing constraint leads to a bandwidth usage of approx. n ∗ 1 messages per

second. Since the messages are comparably small (approx. 500 Bytes for transmitting an

explosion or ack), no fragmentation takes place and the overall data rate that is needed

is approx. n ∗ 8 ∗ 500Bit/s. The bandwidth needed results to 400kBit/s for a network of

100 cameras sharing a collision domain. This worst case scenario shows, that a common

IEEE 802.11 WLAN with data rates above 5.5 MBit/s is suited well for the notification

algorithm presented here. Since the impact of collisions and timing delays is difficult

to investigate theoretically, the reader is referred to simulation experiments presented in

Section 6.6.

5.6.1 Conclusion

This chapter contains the description of two PTZ alignment problems arising in Dis-

tributed Vision Networks. After a formal description of these problems and a discussion

of their complexity, heuristics have been presented to approximate solutions for these

problems.

With ROCAS, an algorithm for static alignment of PTZ heads has been introduced.

This algorithm enables Smart Cameras to align their viewsheds in such way so that the

surveillance coverage becomes maximal. The algorithms takes viewing obstacles and the

priority of regions into account and is suited for real-world applications.

DMCtrac allows cameras to align their PTZ heads for object tracking. By identifying

objects and following them in a cooperative manner, Smart Camera networks can acquire

trajectories of moving objects with multiple cameras. This is achieved by predicting the

object’s motion vector and a handover mechanism to pass the tracking task from one

camera to another. DMCtrac can help to relieve security staff from the trivial task of

tracking objects. Thereby, precincts observed by Smart Cameras may become safer and
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incidents might be detected beforehand.

A notification algorithm is presented, that allows users and cameras to interact. Cam-

eras can inform users in case previously defined incidents have been detected. The algo-

rithms presented here allow for a closer coupling of humans and cameras and avoids a

central control console.

The next chapter contains an in-depth evaluation of the algorithms that have been

introduced so far.



Chapter 6

Experiments and Evaluation

This chapter contains the evaluation of the proposed architecture and algorithms. Rel-

evant metrics that allow to quantise the system’s performance are explained first. Af-

terwards, experiments are presented. The experiments that comprise the evaluation are

derived from application scenarios for Smart Cameras, e.g. for security systems. Some

experiments have been carried out in a simulation environment whereas others are car-

ried out in a real-world testbed. Simulation experiments allow for large networks to be

investigated (with up to hundreds of cooperating cameras). Real-world experiments have

been conducted with up to ten cameras and confirm the assumptions taken for the sim-

ulation experiments (e.g. for image recognition complexity, movement speed of objects

and camera heads).

6.1 Performance Metrics

Different metrics can be applied in order to measure the performance of the system pre-

sented in this thesis. The overall architecture can be evaluated in terms of how well it can

cope with failure of Smart Cameras and how fast events of interest are transferred from

the network to security staff. For the alignment of cameras, the surveillance coverage is

of major importance, i.e. how well an area of interest is observed by the cameras. For

the tracking of objects, the tracking quality in terms of detected movements is a valuable

metric to gain deeper insight of the performance.

Each of the following subsections contains a short introduction to the management

algorithm that is investigated and a number of evaluation aspects formulated as questions.

These questions are answered in this chapter.

81



82 6 Experiments and Evaluation

Performance Metrics for Basic Management Algorithms

The architecture of a Distributed Vision Network as presented in this thesis can be inves-

tigated with respect to its performance in terms of time and message complexity. Apart

from costs for installation and maintenance (which are not discussed here), a user of such

system may be interested in the following performance criteria:

• How much time is needed for system startup? Before system startup, we expect

cameras to be turned off completely. When they are turned on at any time t0,

they need to learn to know each other and establish neighbourhoods. After the last

camera is configured properly at t1, the startup time ts = t1 − t0 is calculated.

• What is the bandwidth consumption for the basic management algorithms? By

counting the messages m with size s exchanged between cameras, we can calculate

the bandwidth consumption to b=s ∗m. Thereby an insight is given on how well

todays communication systems can cope with our algorithms.

• How long does it take to detect failing nodes? In case a node fails at time tf0,

we need to know how fast neighbouring cameras correspond to this failure and at

what time tf1 the compensation process is finished. Our goal is to keep the time to

compensation tc = tf1 − tf0 as short as possible.

• How long does it take to integrate new nodes in the system? After a new node (or

formerly failing node) is switched on, it needs to be integrated into the camera net-

work. The time between switching the camera on tin0 and its successful integration

at time tin1 can be calculated.

• How long does it take to elect a leader? The leader election algorithm for role assign-

ment can be started by any camera at time te0 and finishes after at te1 all cameras

are informed about which node has been elected as leader. The time difference

te = te1 − te0 is used evaluate the performance of the leader election algorithm.

Performance Metrics for ROCAS

The spatial partitioning of an area under surveillance in a static environment (i.e. with

no objects to be tracked) is addressed by ROCAS, a distributed heuristic introduced in

Section 5.1. Apart from time and message complexity, the quality of the solution in terms

of area coverage is important.
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• Time complexity: How long does it take until all cameras have chosen their optimal

headings (i.e. the algorithm terminates)?

• What is the computation complexity for the partitioning algorithm running on each

camera?

• Message complexity: How many messages need to be sent, until the algorithm

terminates?

• Robustness: How do disturbances in form of packet loss influence the system’s

performance?

• How accurate is the partitioning? How much does the surveillance quality increase?

Performance Metrics for DMCtrac

For the tracking of moving objects, DMCtrac has been developed. This network protocol

has been designed for real-time tracking with multiple PTZ cameras. It is an extension of

ROCAS and some evaluation aspects are already discussed within the evaluation section

for ROCAS (Section 6.4). Apart from message complexity and robustness, the tracking

quality as introduced in Section 5.4.2 is considered for the further evaluation.

• Quality: How well can objects be tracked? We therefore define the optimum tracking

quality for an object Qo, that could be reached in case the cameras had no further

tasks they are expected to carry out. In a real world system Qo can often not be

achieved and an object’s tracking quality results to a real tracking quality Q. The

ratio Qr = Q
Qo

defines the resulting tracking quality.

• PTZ wearout: How does the movement strategy affect the tracking quality? In

order to avoid cameras to fail because of excessive PTZ usage, we aim at keeping

the number of camera movements n low. A reduction of n might lead to a decrease

in tracking quality Qr but prolong the lifetime of the cameras’ PTZ drives.

Performance Metrics for User Interaction and Notification

The bi-directional nature of communication between humans and cameras requires the

evaluation to be split up into two parts. On the one hand, guards emit search requests

by using mobile terminals. On the other hand, cameras notify guards, in case objects of

interest have been found or serious incident are anticipated. Timing issues are of major

importance for both of these tasks.
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In case a guard poses a search request, the time complexity is defined as the time

needed for transferring the search request from a mobile terminal to all cameras in the

network. For the notification task, the time complexity is defined as the timespan between

the detection of an event by Smart Cameras and the delivery of an alarm message that

instructs staff to investigate the scene further.

The following questions are answered in the evaluation section of the alarm manage-

ment algorithm (Section 6.6)

• How long does it take to transfer a search request from a mobile terminal to all

cameras? By calculating the timespan ts = ts1 − ts0 with ts0 being the time of the

user emitting the search request and ts1 being the time at which the last camera

receives the request.

• How long does it take to notify a guard in case an incident is detected? The timespan

tn between a camera detecting an event and the guard being notified is an important

performance metric.

Several parameters are identified, that influence the systems’ performance we have

defined with the metrics presented above. All metrics introduced above are measured

under the influence of at least one of the following parameters:

• System size in number of cameras

• Message loss on the communication channel

• Protocol timing (namely ti as introduced in Section 4.3.1)

• Movement threshold to minimise number of PTZ turnings

6.2 Experimental Setup

The simulation environment that is used for the evaluation of the system architecture and

algorithms is based upon the network simulator NS2 [94]. By using the Click Modular

Router [73] and NSClick [74], the core algorithms can be run either inside the simulation

framework or on real world Linux systems. An algorithm that has been implemented and

tested inside the simulation framework can easily be ported to real world Smart Cameras.

For setting up simulation scenarios, a graphical user interface is used, that allows

to place cameras on 2-dimensional maps. These maps can for example be floorplans of

buildings or precincts and contain viewing obstacles (such as walls or trees) and prioritised
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regions (like entrance doors or fire exits). Figure 6.1 shows a screenshot of the planning

tool containing a map of Hanover airport. The field of view that cameras can possibly

observe by rotating their PTZ head is indicated by a circle. The actual field of view of

each camera is indicated by a triangle, see [95] for details. A visualisation frontend allows

to display the alignment process of the cameras as initiated by ROCAS and DMCtrac and

calculates the global results for observation quality. This is necessary, since the cameras

act with local knowledge only and at no time a consistent snapshot of all cameras exists.

After a simulation run has finished, the global history is created as described in [96] and

[87]. Screenshots of these tools are shown in Figures 6.1 and 6.2. These tools were used

for setting up and analysing all simulation experiments that are discussed in the following.

Figure 6.1: Planning tool Figure 6.2: GUI for visualisation

6.3 Parameters of Simulation Experiments

This section shortly describes several parameters that have been used to model the en-

vironment for simulation experiments. The network simulator NS2 allows to model a

realistic wave propagation model. For the IEEE 802.11 wireless LAN, the two-ray-ground

model is used that models packet loss and reflections with high accuracy [97]. The com-

munication range is set to 160m, a valid assumption for IEEE 802.11 WLAN devices in an

outdoor environment. The cameras are placed on a plain surface, 2m above the ground.

The field of view of each camera is set to 50m viewing range and 45◦ viewing angle. The

movement speed of the PTZ camera (Axis 214 PTZ) is 45◦ per s. The zoom and pan

ability of the cameras is not used in the following.
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Parameter Value
Network size 10..1000 cameras
Area size 100m ∗ 100m..800m ∗ 800m
Transmission range IEEE 802.11 WLAN 160m
Viewing range 50m
Viewing angle 45◦

Movement threshold 3%
Backoff interval 350ms
Startup interval 1000ms
PTZ movement speed 45◦/s

Table 6.1: Parameters for simulation experiments

6.4 Startup and Failure Compensation

At system startup, cameras exchange state information and keep neighbourhood caches

that store information gathered from surrounding nodes. This information includes po-

sition and alignment of the cameras’ PTZ heads. In Section 4.3.1, an algorithm for

establishing and maintaining the neighbourhood cache is described. As mentioned be-

fore, timing constraints are an important factor in camera networks. The time difference

between cameras detecting events of interest and guards being informed has an impact on

whether a critical incident can be prevented in time or not. System startup is expected

to happen on rare occasions, e.g. after a power failure has occured or after an attack has

been launched against the camera network. It is therefore crucial for the overall system

performance to start up quickly. In the diagram displayed in Figure 6.3, the time-span

needed to start the system is indicated by a blue bar. Since ROCAS is closely coupled to

message exchange and neighbourhood cache, the performance evaluation of ROCAS gives

an insight on how fast the neighbourhoods are formed (Figure 6.3 also includes experi-

mental results for node failure, but for now the focus is on system startup). The diagram

shows the area coverage in metres square over time. The ROCAS algorithm reaches a

stable maximum in coverage after below 5s. This indicates, that the neighbourhoods have

been established in advance. This time span seems very reasonable for a camera system.

6.4.1 Detection of Joining and Failing Cameras

As proposed before, the algorithm presented in Section 4.3.3 allows for a reconfiguration of

a system in case new cameras are installed. These new cameras start sending their SPMs

and make themselves known to neighbouring cameras. This algorithm makes cameras

hot-pluggable and renders manual reconfiguration unnecessary. Thereby downtime and
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Figure 6.3: Overlap over time for a scenario with nodes failing and joining

costs for staff are avoided.

In large networks of cooperating cameras, failure of components becomes inevitable.

ROCAS detects failing nodes by keeping timestamps in the neighbourhood cache. In case

a neighbour did not send a message for a certain period of time, it is deleted from the list

of possibly overlapping neighbours.

Figure 6.3 shows, how the failure of nodes is compensated. Since the failure of a

large amount of cameras is more critical than failure of single nodes and results are more

significant, a scenario with numerous failing/joining cameras is presented.

Three scenarios have been simulated in order to show how failure of nodes is compen-

sated and how new joining nodes are integrated into the camera network. Two failure-free

scenarios have been set up, showing the development of overlap for 80 and 100 SCs. For

the third scenario 100 cameras are used at startup, but after tA = 13s, 20 randomly

chosen cameras fail. These cameras are those that are missing in the scenario containing

80 instead of 100 cameras. Thereby, the results of all three runs can be compared to each

other. In reality, the sudden failure of 20 cameras may occur in the case of a failing power

supply. For this experiment, after tB = 23s, the formerly failing nodes are put back into

operation. Figure 6.3 shows that the overlap caused by failing and joining nodes is nearly

equivalent to the scenarios without failing/joining nodes. Detecting failing and joining

nodes only takes a few seconds, depending on the interval of the heartbeat signals. I.e.,



88 6 Experiments and Evaluation

given a heartbeat frequency of fheartbeat = 1
ti

= 1Hz, and a tolerated delay for messages of

ttolerated = 2∗ ti, failing nodes are detected in at least 2∗ ti = 2s. This worst case detection

time is ttolerated and results from a node failing immediately after sending a message. A

receiving node will then wait for the full length of ttolerated before detecting the failure.

In case a node fails directly before it was due to send a heartbeat message, the detection

time results to td = ttolerated − t1.

For the example shown in Figure 6.3, node failure occurs directly after a message has

been sent. Thus, the detection time is td = 2s for a heartbeat interval of ti = 1s and

ttolerated = 2s

6.4.2 Scalability of ROCAS
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Figure 6.4: Scalability of ROCAS: Average time to termination and message complexity
in networks of 100 to 800 cameras, error bars indicate standard deviation

The scalability of ROCAS is investigated with the following scenario. Smart Cameras

are placed on an area A of 800x800 metres square. A has been divided into j = 640000

subareas Aj. For this experiment, the priority w(Aj) of the area under surveillance is

kept constant. This is a worst case assumption, since the search-space for optimal camera

alignment becomes larger due to the equivalent weights of all subareas. With obstacles

and weighted regions present, the algorithm has less opportunities to choose the cameras’

alignment and might terminate faster. The network size varies between 100 and 800 cam-
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eras. For each scenario, 30 simulation runs have been carried out and for each simulation

run, the initial alignment of each camera’s PTZ head has been chosen randomly. In order

to prove the robustness of the algorithm, the communication channel has been modelled

with a packet loss of 80% as described in Section 6.4.4.

Figure 6.4 shows, how the time to termination increases with the number of cameras

inside the network. Results show, that ROCAS can be deployed even in very large systems

consisting of up to 800 cameras. The average time to termination does not exceed 120s

even for a system with 1000 cameras, which is very promising for highly sensitive real-

world applications. Smaller systems do need less time to find an optimal alignment than

large systems. For systems with a size of 500 cameras and more, the time to termination

is constantly high.

This is due to the fact, that at some point in time the cameras can not optimise their

alignment further. This upper bound results from the network geometry and the impact

of message collisions on the shared media as described in detail in Section 5.3.1. The

impact of collisions and the limited horizon of each cameras’ knowledge lead to chain

effects in the optimisation process. Local optimisations have impact on far away cameras.

Therefore the time to termination varies significantly, see error bars in Figure 6.4.

6.4.3 Bandwidth Consumption of ROCAS

The bandwidth needed by ROCAS can be calculated as follows: We assume an IEEE

802.11 WLAN in ad-hoc mode to be used. The frame size is low, since we send IP packets

that contain just position and alignment information. The total length of a frame is

100 Bytes containing Ethernet header, IP information and the payload. The maximum

message complexity can be derived from Figure 6.4. We assume a worst case scenario, in

which 100 cameras share a collision domain and start sending messages simultaneously

and 80% of the messages get lost on the communication channel. These 100 cameras

sent 1s message per second, as introduced in Section 4.3.1. The bandwidth results to

B = 100 ∗ 800 ∗ 8Bit/s = 64kBit/s. This bandwidth does not take retransmissions into

account but in comparison to the minimum bandwidth of 5.5 MBit/s in IEEE 802.11

WLAN networks, the bandwidth amount needed by ROCAS is very reasonable.

6.4.4 ROCAS and Message Loss

As stated before, in a wireless environment the communication between Smart Cameras

may be disturbed by message loss. Message loss occurs in case packets collide on the
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shared media. As investigated in Section 5.3.1, the chance of message loss increases with

the number of cameras sharing the same collision domain (i.e. the shared communication

range). In order to evaluate, how a lossy communication channel influences the perfor-

mance of ROCAS, the following scenario has been investigated: a number of 100 to 350

Smart Cameras is positioned randomly on a constant area. The loss on the communication

channel is expected to be equally distributed. I.e., packet loss does not happen in bursts

but single packets get lost randomly as caused by collisions on the shared medium or

changes in the network topology due to node failure. The loss rate is set to 20% and com-

pared to a perfect channel with 0% message loss. Figure 6.5 shows how the performance

of ROCAS decreases with the raise in packet loss. In small systems of 100 cameras, the

loss does not influence the quality significantly. For larger systems, the achieved surveil-

lance quality is slightly lower. This is caused by alignment messages getting lost and

neighbourhood inconsistency. For a network consisting of 350 cameras, the surveillance

quality achieved with a loss free communication channel results to 92%. With 20% mes-

sage loss, the quality results to 90%. The runtime of the algorithm has been kept constant

for this experiment. Due to message repetition, the impact of message loss vanishes over

time. This experiment shows, that ROCAS is robust towards losses on the communication

channel and can be expected to work well in harsh real-world environments.
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6.4.5 Exploration of Parameter Space

As mentioned before, ROCAS can be adapted to various user demands by changing a

set of parameters. Two main parameters are used to adapt ROCAS to changing require-

ments that might arise from varying user demands or changes in the Smart Cameras

environment:

• Movement threshold as introduced in Section 5.3

• Backoff interval as introduced in Section 4.3.1

• Startup delay

The movement threshold thm avoids that Smart Cameras carry out slight changes that

might damage their PTZ drives. E.g., a movement threshold set to 3% avoids, that Smart

Cameras carry out movements that lead to an increase of surveillance coverage below 3%.

These slight changes might on the one hand improve the surveillance coverage but may

on the other hand cause harm to the cameras’ drives that tire from too many movements.

The backoff interval ti specifies the timespan a camera backs off from the shared

media after having sent a message. This parameter has been introduced in Section 4.3.1.

A backoff interval that has been selected too short causes collisions on the shared media.

Many messages might be sent in vain. A backoff interval that is chosen too long will

cause the overall runtime of the distributed algorithm to be longer than necessary. The

optimum parameter depends on the size of the collision domains in the network.

The startup delay is closely related to the backoff interval. At system startup, all

cameras emit messages to establish their neighbourhood caches. Hence, the backoff in-

terval is extended and defined as startup timer. The impact of the backoff interval is not

investigated here but in the following Section 6.4.8 where the exploration of parameter

space is discussed.

The following experiments have been carried out in networks comprised by 20 to 100

cameras. The movement threshold is varied between 1% and 10% and the backoff interval

is changed between 100ms and 1000ms. The cameras are positioned on a constant area

A, with an area of 285m ∗ 285m. Further simulation parameters are shown in Table 6.1.

Parameter changes have impact on the systems performance in terms of time and message

complexity, quality of surveillance coverage and the number of movements carried out by

the cameras’ PTZ drives.
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6.4.6 Movement Threshold

The impact of the movement threshold on the time complexity can be seen from Figure

6.6. A decreasing movement threshold leads to an increasing time complexity. The

accuracy of the solution found by the algorithm decreases with an increasing movement

threshold. Intuitively, a precise alignment of cameras with 1% accuracy takes longer

than a rather imprecise alignment where solutions are accepted only in case of a 10%

accuracy. As expected, in large systems more time is needed to finish the partitioning

than in small systems: in a system with 20 cameras, the algorithms needs about 1s to

terminate, whereas in large systems with 100 cameras the time to termination is up to

4.5s.
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Figure 6.6: Time to termination depending on system size and movement threshold
(600ms backoff interval)

The increase in surveillance coverage achieved by ROCAS depends on the system

size, but also on the movement threshold as can be seen from diagram 6.7. The larger

the movement threshold is chosen, the lower is the increase in surveillance coverage. A

movement threshold of 10% leads to an increase of 4%..12% for various system sizes. A

1% threshold allows for a quality increase of up to 16% for a scenario with 60 cameras.
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Note, that the quality decreases for larger systems (movement threshold 1%, system size

80 and 100). This is due to overlap that can not be avoided by the cameras since they

are already packed with high density on the area A. The coverage can therefore not be

increased any further.
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Figure 6.7: Increase in surveillance coverage depending on system size and movement
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The benefit of a large movement threshold becomes obvious in Figure 6.8: especially in

large systems, the number of pan/tilt turnings can be minimised significantly by tolerating

a 10% overlap in form of the movement threshold. In a scenario consisting of 100 cameras,

the average number of turnings can be reduced from 8 for a movement threshold of 1% to

5 if a 10% threshold is chosen. The saving of nearly 40% in camera movements directly

adds to the lifetime of the cameras. Operators of large networks might therefore switch

between various modes of operation to find the most favourable working point.
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Figure 6.8: Average number of camera movements depending on system size and move-
ment threshold (600ms backoff interval)

6.4.7 Backoff Interval

The impact of the backoff interval ti on the time complexity can be seen from Figure 6.9.

As expected, an increasing backoff interval leads to an increasing time complexity. With

ti = 100ms, a system with 20 cameras is aligned in 300ms. A larger system (with 100

cameras) needs 1s to finish the alignment process. If ti is set to 1s, the time to termination

goes up to 5.8s.

In return, the average number of messages that needs to be sent by the cameras

increases significantly for small values of ti. For ti = 100ms, in a system consisting of 100

cameras each camera needs to send an average number of up to 2.6 messages until the

alignment is completed. For larger values of ti (e.g. ti = 0.5s), only 2 messages per node

need to be sent. Thereby, bandwidth can be saved and wireless nodes can save energy for

data transmission (for example to prolong the lifetime of their batteries).

Figure 6.11 shows the impact of a rising backoff interval on the average number of

movements carried out by the cameras’ drives. Especially for a large system size, the

number of movements decreases with an increasing backoff interval. This is due to the
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Figure 6.9: Time to termination depending on system size and backoff interval (4% move-
ment threshold)

fact that the probability for collisions and simultaneous alignment as introduced in Section

5.3.1 is influenced positively by larger backup intervals. Thereby, unnecessary movements

can be avoided by reducing conflicts arising from the backoff interval chosen too short.

6.4.8 Automatic Exploration of Parameter Space

The subsequent section presented experimental results considering different parameter

settings. The complete exploration of the parameter space is hardly feasible. Thus, an

evolutionary algorithm has been used to optimise the parameter setting for ROCAS. This

flexible tool called POWEA (protocol optimisation with evolutionary algorithms [98]) can

be used for various network protocols and has been used for the optimisation of ROCAS

as described in the following.

At first, a simulation scenario with NS2 needs to be set up and the configuration

space of the parameters needs to be provided. The process of network protocol parameter

optimisation consists of three subsequent steps that are carried out iteratively: generate
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Figure 6.10: Message overhead depending on system size and backoff interval (4% move-
ment threshold)

parameter sets with the EA (1), run simulation process (2), interpret results and calcu-

late fitness (3). Therefore, the call procedure of the NS2 simulator has been modified

with respect to providing parameters and reading simulation results. An interface be-

tween the protocol and POWEA bases on logfiles. The input parameters can thereby be

changed without modifying the protocol logic of ROCAS. See Figure 6.12 for a graphical

representation of the workflow.

The EA performs a predefined number of iterations (generations). The population-size

as well as the number of children for the next generation have to be defined in advance.

Another important factor is the mutation-rate, which describes the expectation value of

the probability that one parameter (gene) is altered in that generation. For the basic

configuration of the EA the values as described within Table 6.2 have been used. These

values have been adapted from a configuration given in [99], where a traffic network is

optimised by a similar EA.

The result of each simulation run (that evaluates one parameter set) is a logfile, which

stores the sending and receiving events of the nodes within the supervised area. Thereby,
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Figure 6.12: Workflow of the POWEA system

the overall performance of the parameter set can be measured. POWEA comes with

a special parser to read and interpret these logfiles. The parser needs to be adapted

by the user to new protocols in order to read the performance values that comprise

the fitness function (e.g. coverage rate, message overhead, or combinations of these).
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Variable Value
Number of generations 18 cycles
Population size 10 individuals
Number of children per generation 6 individuals
Mutation rate 0.8 per child
Crossover rate 0.83 per child

Table 6.2: Configuration of the EA

The fitness function can be provided as a mathematical term in form of a JAVA class.

E.g., for ROCAS the following weighted fitness function has been used: fitness =

messagecomplexity−1 ∗ 40% + timecomplexity−1 ∗ 20% + quality ∗ 40%, where all met-

rics have been normalised (if the performance is better than the reference solution the

evaluation-values are higher than 1.0 and vice-versa).

The optimisation process is performed until a stop criterion is fulfilled (e.g. a number

of generations has been processed). If it continues, the EA generates a new generation

by keeping the best individuals and substituting the bad (in terms of low fitness function

values) individuals by generating new ones using genetic operations. By performing this

process iteratively the performance of the scenario is increased over time.

Optimisation Results

The evaluation of the protocol is based upon scenarios with 8 to 80 Smart Cameras

positioned on a grid. The parameters are varied between 100ms and 1000ms for startup

delay and backoff time and 0..10% movement threshold.

Figure 6.13 shows the fitness values of generations the EA has delivered. Based upon

a startup fitness of 1.0 for each scenario, POWEA always delivered better parameter

sets than the reference solution. The best generations fitness is between 1.08 and 1.27.

The best generation for each scenario has been chosen and 20 simulation runs have been

carried out in order to further analyse the performance. Figure 6.14 shows an example

for the optimisation concerning message complexity. The error bars indicate the standard

deviation around the mean number of messages sent by each camera. About 10% of

messages could be saved by using the best parameter sets discovered by POWEA. We

expect this to pay back in terms of less power consumption which is important for battery

powered nodes.
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6.4.9 Computation Complexity of Polygon Clipping

As mentioned before, ROCAS relies on a 2-dimensional approximation of the ground plane

view, see Section 5.1. The overlap between cameras’ fields of view, prioritised regions and

obstacles is based upon a polygon clipping algorithm introduced by Vatti in [89]. The

clipping algorithm has a time complexity O(n × m), with n and m being the number

of edges of the two polygons. For ROCAS, only simple polygons (without holes and

self-intersections) are used. Since a camera’s field of view is modelled by a triangle and

obstacles and priority regions are modelled as rectangles, ROCAS makes use of polygons

with three to four vertices. Since each camera has to clip its own ground plane view with

all neighbouring cameras and regions in order to find an optimal heading, the runtime

complexity needs to be taken into account in order to evaluate the systems’s performance.

The clipping algorithm returns the resulting overlap polygon. The area of this polygon is

calculated by the Gaussian trapeze formula oa = 1
2
×
∑n

i=1(yi + yi+1)(xi − xi−1). Figure

6.15 shows the time needed for polygon clipping on a Smart Camera: the camera calculates

its overlap in field of view with 10 to 100 polygons. For each scenario 100 runs of the

clipping algorithm have been carried out in order to derive average values and standard

deviation. The time needed for the calculation of overlap until an optimal position is

found takes below 150ms even in case of the 100 polygon scenario.
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Figure 6.15: Runtime complexity of clipping algorithm for 10 to 100 polygons, error bars
show standard deviation from mean

In comparison to the image recognition tasks carried out on the 1.6 GHz Atom based
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prototypes, polygon clipping has only minor impact on the system’s overall performance.

For comparison: the Viola Jones algorithm [22] takes 200ms to detect faces in an image

with 640× 480 pixels.

An approach to increase the accuracy of ROCAS is to switch from a 2-dimensional

ground plane view to a 3-dimensional model of the cameras’ fields of view and obstacles.

Since the 3-dimensional clipping of volumetric shapes is much more complex than just

clipping polygons, the influences on the runtime of ROCAS need to be considered carefully.

6.4.10 Comparison of Distributed and Centralised Approach to

Partitioning

As stated before, a centralised algorithm for camera alignment has been developed. By

introducing an election scheme as presented in Section 4.3.4, the system elects a central

entity that takes over certain tasks. An experiment has been conducted that uses a

centralised algorithm for camera alignment in order to discuss benefits and drawbacks of

a centralised approach. For the centralised variant of the ROCAS algorithm, a leader

needs to be elected to carry out the global optimisation of overlap. With a simulation

experiment, the time and message complexity of the leader election has been analysed as

described in the following.
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Figure 6.16: Evaluation of election algorithm
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Experiment

For simplicity, this experiments does not establish a hierarchical but a completely cen-

tralised structure, i.e. only one leader is elected and all other cameras become slaves.

The network size is varied between 10 and 100 cameras. Figure 6.16 shows experimental

results concerning runtime and message complexity for an adapted version of Vasudevan’s

election algorithm [84, 85]. The average time needed for electing a leader is between 4s

and 6s. The mean number of messages is between 4 and 13 per node.

A complete evaluation of the election process would also focus on other aspects, e.g.

how long a node is without a leader and investigate the robustness of the election pro-

cess in case a leader fails. Since the time needed for leader election is rather high, and

decentralised variants are much faster, the evaluation is kept short here. For an in-depth

description of the election algorithm and its impact on the system’s performance confer

to our work describing the election algorithm for Smart Cameras in detail [6].

The experiment described in this section reveals a basic problem of the leader election

mechanism. The flooding based broadcast requires all cameras to forward a large number

of election messages. Since the election process is started on several nodes simultaneously,

a large amount of these messages is sent in vain until the final leader succeeds and its

ID is published throughout the network. Thereby, the algorithm becomes rather time

and bandwidth consuming. In case a leader fails (as can be detected by the algorithm

introduced in Section 4.3.3), the election might even be have to carries out multiple times,

which causes a significant drop in the overall system performance. This drawback might

need to be taken into account in order to achieve an increased surveillance coverage as

described in Section 6.4.10.

As shown in Section 6.4.9, the time needed for calculating the overlap of hundreds of

polygons is rather high. The attempt of transferring the ROCAS algorithm as described

so far directly to a central server is doomed to fail in terms of scalability. Therefore,

another approach to the partitioning problem has been developed with respect to the

special circumstances arising when a central server is used. This algorithm is faster but

less accurate than ROCAS, see Section 5.3.2.

At startup, the cameras elect a leader among themselves that serves as centralised

master. The master collects all position and alignment data from its slaves and calculates

a global approximation to the alignment problem. Afterwards, the cameras are informed

about their new optimal alignment.

Figure 6.17 shows experimental results. The time needed to finish the partitioning

process is taken as primary quality criterion. The pure partitioning and alignment of

cameras on the basis of a central server is very high. It takes approx. 1s to determine
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a camera alignment for networks of 10 to 100 cameras. ROCAS needs up to 2s for this

task. The drawback of the centralised system becomes obvious when the leader election

is taken into account. The simulation of the election algorithms has been carried out for

10 simulation runs in each camera scenario. The node that starts the election is chosen

randomly and during the election process, the node with the highest computing capability

(indicated by its quality value) is chosen. Since these nodes can be positioned very close

or far away from each other, the time to termination varies significantly (see error bars in

Figure 6.17 that indicate standard deviation from mean). The election algorithms takes

between 4s and 14s to terminate.

These results underline, that the use of a centralised component is critical since the

time needed to finish the election is much higher than the time needed for local coordi-

nation of camera nodes without a leader as provided by ROCAS.
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Figure 6.17: Centralised in comparison to decentralised partitioning

Maximum System Size

The decentralised system architecture allows to establish networks of potentially unlimited

size. In case only local neighbourhoods are established, the system scales well.

With leader election and multi-hop routing, the system size is constraint. As presented

in Figure 6.17, the central server approximates a solution to the coverage problem quickly

(below 2s for a system of 100 cameras including data transfer).
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subareas j Qcentral tRc in s slowdown S
16 92 4.7 2.35
25 97 4.7 2.35
400 99 5.98 2.99
1600 100 16.58 8.29

Table 6.3: Quality and time to termination of centralised ROCAS

For a small system of 18 cameras a comparison in terms of accuracy has been carried

out. This system size suffices to show the limitations the centralised variant of ROCAS

has to cope with. The cameras are positioned on a regular 3 ∗ 3 grid and observe an area

A = 200 ∗ 200m2.

The decentralised variant of ROCAS takes tRd
= 1s to finish and reaches a surveillance

coverage of Qdecentral = 100%. The area A is divided into j = 200 ∗ 200 = 40000 subareas

Aj with a size of 1m2 each. Depending on the number j of subareas Aj, the surveillance

quality Qcentral and the time to termination tt has been investigated. Again, tt includes the

time overhead te that is needed to elect a central entity and the time needed to calculate

an optimal camera alignment ta. For the simulation experiment carried out here, te has

been measured to be 4s. Table 6.3 shows experimental results. The left column contains

the number j of subareas Aj. The grid is varied between j = 25..1600. The column

entitled tRc displays the time to termination. In order to compare the results achieved

by the centralised variant of ROCAS to the decentralised variant, the slowdown has been

calculated to S =
tRc

tRd

.

This experiments shows, that the centralised approach to camera alignment suffers

from performance drawbacks in comparison to the decentralised approach. Not only the

time to termination is longer but also the quality decreases significantly. Only for special

situations, where cameras are positioned in such way so that they block each others field

of view, the centralised variant of ROCAS allows for an increasing surveillance coverage

in comparison to ROCAS. See Section 5.3.2 for an example and a detailed description of

such a scenario.

6.5 Tracking Algorithm DMCtrac

DMCtrac is a distributed algorithm for object handover in large networks of PTZ Smart

Cameras. In the research field of computer vision, several algorithms are in use for object

recognition and handover between cameras. DMCtrac builds upon these basic algorithm

and allows for a self-organised tracking of multiple objects with multiple PTZ cameras.
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In order to evaluate the performance of DMCtrac, a metric has been defined, that gives

an insight how well the distributed algorithm can cope with varying numbers of cameras

tracking different numbers of objects, see Section 5.4.

6.5.1 Simulation Environment for Tracking

With DMCtrac, Smart Cameras are enabled to track objects cooperatively. In order

to generate realistic object movements, a pseudo-random trajectory generator is used.

Objects tracked by the Smart Cameras in our application scenarios are either vehicles or

humans. These objects usually do not follow random movement models but move on on

predefined routes based upon a concrete intention. E.g., on an airport ground vehicles

visit planes to refuel them or supply them with food. Tracking objects on their usual

routes allows to detect potentially dangerous situations. These routes vary only slightly

from each other and routes that differ significantly from common ones may be rated

as suspicious. The trajectories that are fed into DMCtrac can be characterised by the

frequency of their appearance. After having adjusted to a large number of unsuspicious

tracks, the cameras may be required to detect a single suspicious movement. Thus,

the simulation environment allows to let objects move on predefined trajectories. These

trajectories are then replayed to the simulated Smart Cameras in order to evaluate their

abilities to follow objects in the most efficient manner and detect anomalies as fast as

possible.

6.5.2 DMCtrac: Evaluation

Figure 6.18 shows an overall evaluation of DMCtrac. The scenario is based upon a virtual

testbed derived from a university campus. The typical routes taken by students and

university staff are taken as input for the tracking scenario. In [5], the setting is described

in detail. 12 spatially adjacent cameras are positioned in such a way, so that their FOVs

potentially overlap slightly. The simulation has been carried out for a time-span of 720s.

The trajectory investigated has a length of 462m, leading around the whole precinct.

Therefore, each object stays inside the FOV of the SCs for 356s (persons move with a

speed of 1.3m/s). The first object starts at time t = 0s and the last object at t = 356s.

I.e., in case 10 objects are fed into the simulator, every 35.6s a new object enters the

cameras’ FOVs. A single object moving through the FOVs of the system could ideally

be tracked all the time (i.e. Q = 100%). Each camera tries to follow an object as long

as it stays inside its FOV. For this experiment, the average length of a trajectory inside
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Figure 6.18: Evaluation of DMCtrac: tracking quality for fourteen SCs tracking multiple
(1..50) objects

a single camera’s field of view is 50m (calculated manually). This corresponds to a time

of 38.5s. Without searching for objects and no delays caused by SC movement, the ideal

Q = 100% could theoretically be reached for up to 356s
38.5s

= 9.2 objects.

DMCtrac reaches Q = 96% for a single object. For a modest number of objects to

be tracked, the usage of PTZ cameras pays back in full. The SCs are able to track 10

objects while maintaining an average Q = 60% per object. The standard deviation of Q

remains low at about 8%. Q decreases the more objects are to be tracked. This is due to

the fact that SCs are busy tracking objects and no capabilities are left to take over other

objects. Cameras switch to search mode from time to time in order to detect objects that

currently are not tracked. This takes some time since the rotation speed of SCs and the

time needed for object detection need to be considered, too.

It has further been investigated, how message loss affects the performance of DMCtrac.

When using a wireless communication channel, a certain amount of the messages that

the SC send gets lost on the communication channel. It is assumed that this packet

loss happens randomly and equally distributed (not in bursts). Figure 6.18 shows, that

the performance decreases only slightly and DMCtrac can cope well with packet loss

of 10%. In case a packet loss of 50% occurs Q decreases significantly. When tracking

more than 20 objects, the performance even drops below the value achieved by statically

installed SCs. This is due to the fact, that missing LOST and V ISIBLE messages
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make SCs search constantly for other objects to track. This seriously affects the system’s

performance. DMCtrac is a very lightweight algorithms: tracking two objects requires the

SC to exchange an average of 0.16 messages per s. This value increases moderately for

24 objects under investigation where each SC sends an average number of 0.43 messages

per s.

Movement Strategies

The movement strategy for the observation of static scenes has been investigated by

Mundhenk et al. [100]. By continuously panning and tilting a PTZ head, a large area

can be observed with few cameras only. Small linear drives are used to pan and tilt the

cameras’ heads. The lifetime of these drives is constraint and for cost reasons, the number

of camera movements is kept low.

In order to evaluate how the mechanical stress the PTZ drives are exposed to due to

DMCtrac, the following two experiments have been carried out. For the first experiment,

we let cameras track objects seamlessly. I.e., a camera rotates in fine granular steps of 1◦ in

order to follow objects. For the second experiment we set up a threshold of 45◦. The span

angle of a camera’s viewshed is 45◦, too. Cameras do not pan before the change they need

to carry out is larger than this threshold. Thereby, the camera tilts to a new viewing angle

with no overlap to its previous position. Figure 6.19 shows the tracking quality Q achieved

by both configurations. DMCtrac without movement threshold achieves values for Q that

vary between 96% for a single object and 40% for 24 objects. In comparison, DMCtrac

using a movement threshold achieves about 20% lower values for Q. The impact of PTZ

movement on computer vision algorithms is not considered here. Figure 6.18 shows, that

by setting a threshold, the number of changes carried out for the PTZ heading can be

decreased significantly. Without movement threshold, SCs carry out up to 1 change per

s, whereas the movement threshold reduces the average number of movements to 0.7 per

s.

This experiment shows, that the mechanical stress the cameras are exposed to is

correlated to the accuracy of the tracking result. For a real-world application of DMCtrac,

the use of different tracking modes appears to be of value. In alarm situations, cameras

may pan and tilt constantly in order to acquire a deeper and more accurate understanding

of the scene they investigate. In case the alarm level is low, the cameras can minimise the

mechanical stress on their PTZ heads by using a turning threshold and thereby achieve a

lower tracking quality Q. The movement strategy can be adjusted either by the cameras

detecting events of interest or by security staff putting the system into an alarm mode.
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Figure 6.19: Tracking quality depending on movement strategy

6.6 Evaluation: Alarm Management

The evaluation of the alarm management algorithm has been carried out in a simulated

environment as well as in a real-world testbed. Both experiments and results are described

in the following sections.

6.6.1 Simulation Environment

For the simulation of the alarm management algorithms we assume the cameras and node

to be positioned on an area with 800m ∗ 800m square. The transmission range of a

camera is set to 160m and the number of cameras simulated varies between 10 and 100.

The performance criteria we applied for the evaluation of our algorithms are the following:

• Time needed to emit search request

• Time needed to notify guards

• Message complexity

The first two points consider the timing behaviour of the routing algorithm. For the

simulation experiments, only network timing is considered. We do not model possibly

unstable computer vision algorithms for event detection but use fixed values derived from
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Figure 6.20: Impact of movement strategy on the number of PTZ turnings

our real-world testbed. We assumed a detection time of 2s, which seems an appropriate

value according to Figure 6.26.

In systems of varying size (x-coordinate of Figure 6.21), a node has been chosen

randomly to emit SEARCH requests. A second node has been chosen to reply to the

request with a NOTIFICATION message. The time between emission of a SEARCH

request and its arrival on all cameras on the system has been measured. Average values

have been measured between 2.5s for systems with only 10 cameras to 12s for larger

systems consisting of 100 cameras (y-coordinate of Figure 6.21).

The notification of guards is much faster than the emission of SEARCH requests. This

is due to the fact, that the notification is successful as soon as the first guard has been

found whereas the emission of SEARCH requests finishes after all cameras have received

the request. The notification algorithm terminates after all cameras have forwarded the

corresponding NOTIFICATION, i.e. the overall time needed to notify all guards in the

system is identical to the emission of a SEARCH request. Even in large system of 100

cameras, a guard is found in 4s and a backward channel is established to transfer video

and image data from the cameras to the guard. In terms of timing behaviour, one can

state that AMiDiViN is suited well for today’s wireless networks.

A further metric that gives an insight on the performance of AMiDiViN is the av-

erage number of cameras that need to forward requests. Message forwarding is energy

consuming and should therefore be kept at a minimum level - this is an important aspect
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Figure 6.21: Time needed for disseminating a search requests to SC network of varying
size

for battery powered systems. Furthermore, an ineffective broadcasting of messages may

lead to a choking of network traffic and delays in transmission of data. A flooding based

broadcast involves all cameras in a system, as depicted in Figure 6.22. In this figure, the

number of cameras involved in the forwarding algorithm for both unicast and broadcast

approach are shown. The set of cameras that forwards messages is a physical network seg-

ment where data packets can collide with one another for being sent on a shared medium.

A system benefits from the small number of cameras involved in the routing process.

For lightweight notification tasks a broadcasting scheme is effective in terms of message

and time complexity. The delivery of video data in large networks benefits from a low

number of forwarding cameras achieved by a unicast communication scheme. AMiDiViN

creates a backward path by establishing a routing table on each camera on the direct

route between detecting cameras and guards. This routing system helps to minimise the

number of packet collisions on the shared media and avoids broadcast storms. Figure 6.22

further shows the average number of routing hops on the backward path.

6.7 Evaluation in Real World Testbed

Large camera networks as installed at airports consist of thousands of cameras. Since

such a large networks have not been available for evaluation purposes of the management
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Figure 6.22: Number of cameras involved in routing: Unicast streaming on backward path
in comparison to broadcasting

algorithms presented in this thesis, these large networks have been simulated. In order

to provide a realistic simulation environment, several experiments have been conducted

in a real world testbed. This testbed consists of several cameras, that are installed in

a research lab and surrounding university corridors. As mentioned in Section 6.2, all

system management algorithms can be transferred from a simulation environment to real

world prototypes. The following section presents a real-world prototype as used for the

evaluation.

6.7.1 Prototype

The software components introduced in Chapter 4 have been evaluated on a real world-

prototype. A picture of the Smart Camera prototype is shown in Figure 6.23. The

camera consists of an off-the-shelf PTZ camera (Axis PTZ214) and a computing unit.

The computing unit is a miniature-sized, Linux-based embedded PC (Intel Atom 330

running at 1.6GHz with 1GB RAM). It can be connected to various kinds of cameras,

reaching from USB and FireWire webcams to network cameras. This platform is used for

the implementation the Smart Camera node software framework. For the communication

with other nodes, an IEEE 802.11 WLAN or an IEEE 802.3 Ethernet device is used.

Various interfaces are available to connect the computing unit to the camera. Since



112 6 Experiments and Evaluation

Figure 6.23: Smart Camera prototype

their capabilities in terms of data rate and CPU usage heavily acts the overall system

performance, the interface needs to be chosen carefully.

The framework uses Linux as operating system. This bears the advantage, that most

hardware drivers are available in source code and can be adapted to the usage in a Smart

Camera. A standard distribution (Ubuntu [49]) is used that comes with appropriate

drivers to connect various kinds of camera to the system. The interface to the camera’s

video data is provided by V4L2 (video for Linux v2). The Actuators and Sensors are part

of the PTZ camera depicted in Fig 6.23. The Actuator is the PTZ functionality of the

camera. An extensible control library for PTZ camera movement has been implemented

for this thesis [76]. After image data has been collected from the camera’s CCD Sensor

the computer vision framework OpenCV [25] is used for Image Processing.

6.7.2 Evaluation of Alarm Management

For the alarm management, a testbed with 5 cameras has been used. These cameras

have been installed at the institute’s corridor as depicted in Figure 6.24. The cameras

use a Logitech Quickcam Pro 9000 as image capturing device. The aforementioned Atom

based miniature PCs are used as computing units. The mobile terminal used for the

connection between camera network and surveillance staff is an Apple iPhone with IEEE

802.11 WLAN interface in ad-hoc mode. The user of this terminal selected a predefined

object (identified by its colour histogram) and publishes this search request. Each camera
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capable of recognising this object subscribes to this request and starts searching for the

object. In case the object has been found, the position of the detected object is sent back

to the terminal. This experiment is in the following discussed in detail:

Five cameras are installed at the ceiling of the floor. The fields of view of the cam-

eras overlap slightly so that a seamless trajectory estimation of moving persons becomes

possible. This testbed has been used to evaluate the publish subscribe system for alarm

management. A mobile terminal has been connected to one of the cameras.

Figure 6.24: Real-world testbed

6.7.3 Object recognition

To give an insight not only on the networking aspects of the system presented in this

thesis, we shortly present results of basic image recognition we used for the evaluation of

the alarm management algorithm. The following algorithm is used for event detection.

Algorithm 9 Analyse captured frame

1: AnalyseCapturedFrame()
2: detect upper bodies U
3: for (each element u in U) do
4: calculate colour histogram
5: for (each element r in Q) do
6: compare u to r
7: if u is very similar to r then
8: notifyguard
9: end if

10: end for
11: end for

The algorithm can be separated in three sections: detection of objects, tracking of

these objects by features and location of objects of particular interest. The computer

vision library OpenCV [101] is used for the basic computer vision algorithms. The object
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detection module is an upper-body detection with Haar-classifiers for the detection of

persons introduced by Kruppa et. al in [102]. Based on this detection, distinctive fea-

tures can be calculated, for example colour-histograms [103] as used in our demonstrator.

Since our research focus is on networking aspects, we do not dwell on more sophisticated

algorithms that could be used instead. In consideration of their individual features, the

persons can be distinguished and can be tracked. Each histogram is compared to his-

tograms of persons which are already known by the Smart Camera. To locate persons of

special interest, security staff marks a person to find in a still image which is depicted

on the mobile terminal. Based on this selection, a colour histogram is calculated and

transfused to the Smart Camera network. The guard will be notified, when the person is

found.

The correlation coefficient dcorr between two histograms is calculated as

dcorr(H1, H2) =

∑
iH
′
1(i) ·H ′2(i)√∑

iH
′2
1 (i) ·H ′22 (i)

with H ′k(i) = Hk(i) − (1/N)(
∑

j Hk(j)) and N equals the number of bins in the his-

togram. For AMiDiViN, 3-D colour histograms have been used with 125 bins. In case

dcorr becomes larger than 0.8, the histograms are assumed to belong to identical objects

(line 6). dcorr = 0 indicates total mismatch and dcorr = 1 indicates a perfect match. The

size of a histogram results to 512 Byte which allows histograms to be transferred in the

network without packet fragmentation. The impacts of this simplified detection algorithm

becomes obvious in the following.

6.7.4 Object Detection

The colour histogram derived from moving persons is used for triggering alarms. By com-

paring the detected colour histogram with those histograms stored in the search cache, a

camera decides whether to raise an alarm and notify guards or not. In order to evaluate

the robustness of this approach, the following experiment has been conducted. The his-

togram of a test person’s clothing is selected manually on a MAMT and distributed to the

cameras in the testbed depicted in Figure 6.24. On the corridor, several persons pass by

the cameras and each camera is expected to detect the person defined by the histogram

stored in the search cache. Table 6.4 shows experimental results for a varying number of

persons and appearances of the searched person in a single cameras field of view.

Results show, that the upper body detection works well. Only 1 out of 10 appearances

of a person have not been detect in time (column: Alarms). In time means, we assume
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Figure 6.25: Webpage as displayed on MAMT (iPhone)

No of persons Appearances Alarms False Alarms
1 10 10 0
2 10 10 0
3 10 9 2
4 10 9 4
5 10 9 4

Table 6.4: Detection results of upper body detection

that in case a person has been moving longer than 10s in the cameras field of view

without being detected, the person is not detected at all. Distinguishing persons solely

by the colour of their clothing introduced in Section 6.7.3 is not reliable. In case 3 or

more persons are compared to a histogram, the false alarm rate is high (20% to 40%), see

column: False Alarms.

In future, more sophisticated detection algorithms need to be deployed to make AMiDi-

ViN able to cope with real-world settings where low false alarm rates are required. How-

ever, we assume that for the evaluation of AMiDiViN (with a focus on networking issues

rather than on computer vision), realistic assumptions about the overall timing behaviour

of the system can be made.
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Figure 6.26: Detection time, errorbars show standard deviation

In order to measure the timing behaviour of our real-world testbed, test persons are

walking randomly in the field of view of the cameras. At time t0 = 0s SEARCH request

for one of these persons is fed into the camera system by a MAMT. Each camera receiving

a SEARCH message starts the process of histogram comparison and in case the object is

detected, an alarm is raised.

The time passing by between emitting a SEARCH request for a person (t0) and the

arrival of a corresponding NOTIFICATION t1 has been measured for different scenarios

as presented in Figure 6.26. In case a single person needs to be detected, the average

time needed is t1− t0 = 1.3s (average values for 10 runs). In case 5 persons are inside the

cameras field of view, the detection time is up to 8s. The standard deviation is rather

high (0.6s to 2.2s). This is due to the influence of the upper body detection. Persons

are recognised only in case their pose allows for their detection which is the main impact

on the detection time. The delay caused by the message transmission time is rather

low: during the test runs, the average round trip time between the emitting camera and

the detecting camera (1-Hop WLAN) was 152ms in average (62ms standard deviation).

These values can be neglected in comparison to the time needed for image analysis.
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6.8 Overall Conclusion

The previous sections investigated system management algorithms for Distributed Vision

Networks. The spatial partitioning of an area is achieved by ROCAS. Tracking of objects

is handled by DMCtrac and the user interaction is taken over by distributed routing

algorithms. Several metrics have been defined that allow to measure the algorithms

performance. The main metrics are time and message complexity and accuracy. Several

scenarios have been derived from real-world applications and the performance of the

algorithms is evaluated in a network simulator. The size of the area the cameras are

positioned on is up to 640000m2, i.e. rather large areas as they might appear in real-

world.

In the first part of this chapter, ROCAS has been investigated. It has been deter-

mined, that ROCAS terminates in a modest amount of time: for large networks of 1000

cameras, no more than 120s are needed to finish the camera alignment, see Section 6.4.2.

With this experiment it has further been proven, that ROCAS is suited well for networks

consisting of at least 1000 nodes. With experiments presented in Sections 6.4.1 and 6.4.4,

it has been shown that ROCAS is robust towards node failure and losses on the com-

munication channel. The message complexity of ROCAS is low in comparison to the

bandwidth available in todays communication systems, see Section 6.4.3. By adjusting

several protocol parameters, the behaviour of ROCAS can be adjusted to specific needs

arising in different situations (Section 6.4.8). A centralised variant of ROCAS has been

presented, too. Results show, that for some situations a centralised algorithm achieves

better quality results than the distributed algorithm, see Section 5.3.2. Usually, the dis-

tributed algorithm terminates faster and achieves comparable results as shown in Section

6.4.10.

For tracking objects with multiple cameras, this thesis introduced DMCtrac. The eval-

uation of DMCtrac showed, that depending on the underlying computer vision algorithm,

a seamless tracking of objects is feasible in today’s wireless networks. Section 6.5.2 shows,

that single objects can be tracked without disturbances. A system with 12 cameras can

track up to 50 objects simultaneously. A message loss rate of up to 10% can be compen-

sated partly and does only slightly affect the overall performance. By applying different

strategies for PTZ movement, the lifetime of cameras can be prolonged by accepting less

accurate tracking results.

For the notification of guards a system for user interaction has been evaluated in

Section 6.6. Even in large systems of up to 100 cameras, the dissemination of requests

sent by a user to all cameras in a system does not take more than 14s.
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Image recognition and scene analysis are not investigated in detail here but their im-

pact has been considered as defined in Section 6.7.3. Results show, that the management

of Distributed Vision Networks benefits from the algorithms presented in this thesis. The

time complexity of the algorithms can be considered as very low, aligning cameras and

distributing notifications in the networks takes only few seconds – even in large networks

consisting of hundreds of cameras. By a traffic shaping mechanism, the bandwidth con-

sumption can be kept low. For example, ROCAS consumes below 8 kBits/s. This shows,

that todays’ wireless networks can cope with these algorithms. Furthermore, the heuristics

presented are lightweight and have low computation complexity. The evaluation shows,

that overall system presented in this thesis can be used on embedded camera devices

that are available today. Operators of large surveillance systems can benefit from self-x

properties and short reaction times.



Chapter 7

Conclusion

This thesis presents system management algorithms for Distributed Vision Networks.

These algorithms enable Smart Cameras to cooperate in order to solve surveillance tasks.

Based upon advances in the research areas of computer vision and embedded systems, this

work introduces a system architecture that serves as a basis for high-level applications e.g.

for securing public transport facilities. The analog camera systems that are used today in

these areas are expected to be replaced by digital solutions in the future. Smart Cameras

combining CCD sensor and computing unit are the basis for such systems. Appropriate

software enables them to take over surveillance tasks in a cooperative way.

7.1 Summary of Contributions

Several distributed algorithms have been investigated and analysed thoroughly. They

allow for self-organising camera alignment and target tracking with multiple cameras.

Special prerequisites have been considered to make the algorithms cope with harsh envi-

ronments causing communication failures like message loss. An evaluation with a realistic

model of the underlying wireless network shows, that these algorithms are suitable for

very large networks consisting of at least 1000 Smart Cameras. They terminate fast and

by far exceed manually managed systems in terms of reliability and efficiency.

Several conclusions can be drawn in the end of this work. In order to build robust

Distributed Vision Networks that act self-organising, self-optimising, self-healing and self-

explaining, several issues have to be concerned. As stated in Chapter 1, three main

problems have been addressed with this thesis:

• System architecture: A system architecture based upon wireless networked Smart

119
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Camera nodes has been designed as described in Chapter 4. This architecture

allows cameras to self-organise their behaviour and makes way for cooperative tasks

to be carried out by the cameras. Different roles that cameras can take over in

such system have been introduced and implemented to measure their performance

under real-world constraints. Furthermore, a middleware for Smart Cameras has

been developed that serves as a basis for high level management algorithms. This

middleware is tailored to suit the needs arising in Distributed Vision Networks.

Especially, a close coupling of image data and applications has been taken care for

to allow for high speed processing on embedded systems with only modest amount

of computing resources.

• Spatial partitioning algorithms: With a suitable system architecture as a basis, the

problem of PTZ camera alignment has been discussed. Solutions to this mathe-

matical problem, that has been shown to be NP-complete in Chapter 5, can be

approximated by distributed heuristics. These algorithms enable cameras to self-

optimise their alignment without using a central entity. For example, an algorithm

has been investigated that enables cameras to track objects cooperatively by handing

over objects from one camera to the next. By using a realistic network simulation,

the algorithms have been shown to be well-suited for large networks in terms of

functionality and performance.

• Alarm Management in Distributed Vision Networks: In order to let humans control

Distributed Vision Networks, a system has been presented that manages the interac-

tion of users and cameras. Requests can be sent by users e.g. from mobile terminals

that are connected to the Distributed Vision Network. These requests may concern

the system management in terms of alignment constraints but also application spe-

cific requests concerning computer vision. Moving objects can be selected by a user

and cameras take over the task of searching for these objects throughout the camera

network. In return, the cameras can alarm a guard as soon as they have detected

such an object. An appropriate routing scheme for the dissemination of requests

throughout the camera network has been designed and evaluated.

With the algorithms presented in this thesis, a class of management algorithms for

Distributed Vision Networks has been introduced. All algorithms have been evaluated

in scenarios derived from real-world applications. For the spatial partitioning algorithm,

the precincts of an airport have been considered. These wide areas need to be protected

against potential attackers. Simulation experiments show that cooperating Smart Cam-

eras are suited well for this task. The area coverage becomes close to optimal so that
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dangerous events can be detected beforehand. The camera alignment takes only short

time, even in large systems of several hundred cameras less than one minute is needed

until the cameras have chosen their final alignment.

The tracking of objects has been simulated with realistic trajectories derived from

persons moving to and away from a university building. Multiple cameras can track

multiple objects in the most efficient manner, e.g. so that frontal faces of persons (as

needed for identification) are captured with high probability. The impact of message

loss and drive wearout on the tracking quality have been investigated, too. With the

algorithm presented here, operators of surveillance systems can increase security while

at the same time avoiding a rise in cost for staff. Applications for these algorithms

are, for example, security applications at airports and other public transport facilities.

With advances in the areas embedded systems and computer vision, complex tasks can

be carried out by cameras autonomously. Especially a real-time detection of potentially

dangerous situations becomes now feasible. The privacy preserving character of Smart

Camera systems may lead to an increasing security in areas, where today’s camera systems

can only be used to record data and analyse incidents in their aftermath. With this thesis,

basic algorithms have been presented that allow for self-organisation and self-optimisation

in Distributed Vision Networks even in large systems with thousands of cameras.

7.2 Future Research Opportunities

Based upon the management algorithms presented in the previous chapters, future re-

search opportunities arise. For each of the three main contributions of this thesis, some

possible links to future research topics are presented in the following.

Camera Alignment

The alignment of PTZ cameras has been investigated for a 2-dimensional model of the

field of view only. This model offers sufficient accuracy for many applications, as described

in Section 5.3. In case a 2-dimensional, triangular ground plane view does not suffice to

reach an appropriate accuracy, e.g. for cameras being installed on different heights, a 3-

dimensional model is needed. Currently, ROCAS makes use of a polygon clipping library

in order to calculate the 2-dimensional overlap between cameras. In order to switch to

a 3-dimensional model, this polygon clipper needs to be exchanged for a library allowing

to calculate the intersections between volumetric shapes. With this enhancement, more

sophisticated alignment tasks can be solved. In order to acquire stereo images of a scenery,
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cameras could thereby calculate their pan/tilt alignment with higher precision.

Tracking

The tracking algorithm DMCtrac that has been introduced in Chapter 5.4.2 can be en-

hanced in order to achieve a better tracking quality. The success of handing over an object

from one PTZ camera to another without overlapping fields of view depends heavily on

the object’s behaviour. An object might spontaneously decide to change its route while

not being watched by any camera. Currently, the motion vector of an object is calculated

and used to determine a possible migration region of the object. Possible candidate cam-

eras for taking over the object will align their PTZ head in order to recognise the object.

A first enhancement is to calculate the movement speed of an object and therefore allow

for a more robust prediction of the objects arrival time at another camera. In order to

cope with unexpected changes in the trajectories of objects, the use of machine learning

techniques seems promising. Usually, objects move on common routes, i.e. planes move

on a taxiway. Smart Cameras can learn these common routes and anticipate an object’s

behaviour in order to reach a more efficient tracking quality.

Alarm Management

The alarm management as presented in this thesis offers only basic notification mecha-

nisms. The user interface could be enhanced in order to allow for a more comfortable

interaction with the camera system. A future version of the interface might also include a

graphical representation of the cameras’ alignment and an online view of objects moving

in sight of the cameras. In this context, the live streaming of video to the mobile device is

of greatest interest, since it allows for a cooperation of human staff and Smart Cameras.

This list of research opportunities is way too short to cover all possible issues that

need to be investigated in future. It contains some ideas that arose in context with this

dissertation and might be considered in upcoming research projects. This work presents

algorithm for network management. Especially in the fields of collaborative behaviour of

cameras and high level algorithms for image recognition a lot of work still needs to be

done.
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