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1 Summary 
 

Human breast cancer, representing the most frequent tumor in women, can be divided into 

two major subclasses, the inherited and the sporadic form. Whereas the inherited subclass 

is predominantly characterized by mutations of the cancer susceptibility genes BRCA1 and 

BRCA2, the underlying mechanisms leading to sporadic breast cancer remain undefined 

and are therefore subject of the present study.  

Here, we focus on the decipherment of the complex network regulating BRCA1, involving 

the transcriptional activators ERα, IGF1R, AhR and SP1, as well as the dominant negative 

repressor ID4. Deregulation of individual or multiple components of this network promote 

breast cancer formation by repressing BRCA1 as a key molecule for genomic stability and 

by activating mitogenic signal cascades.  

In this study, we analyzed post-transcriptional control mechanisms mediated by 

microRNAs, which could previously be identified as regulator of crucial cellular functions. 

We investigated the role of two independent microRNAs, miR-203 and miR-335, for the 

formation of sporadic human breast cancer and their involvement in the regulatory network 

of the cancer susceptibility gene BRCA1.  

MiR-335 was found at a decreased expression level in primary sporadic breast cancer 

specimens, positively correlating to the transcript level of BRCA1. Functionally, 

overexpression of miR-335 led to decreased cell viability, paralleled by an increase in 

apoptosis and downregulation of the BRCA1 activators ERα, SP1, AhR and IGF1R and the 

repressor ID4, suggesting a tumor-suppressive function for miR-335 in breast cancer.  

As microRNA miR-203 influences partly the same factors in the regulatory pathway of 

BRCA1 and could also be connected to apoptosis and altered cell viability, both 

microRNAs form a network with superior regulating function for the homeostasis in breast 

tissue. Furthermore, the expression of miR-203 is regulated by SP1, binding to a 

methylation sensitive upstream motif. In addition, the expression of both microRNAs is 

controlled by estrogens, forming a tight network controlled by feedback mechanisms.  

Taking the results together, both microRNAs affect the same targets in signaling pathways 

of breast cells with impact of apoptosis, proliferation and expression of the tumor 

susceptibility gene BRCA1. Misregulation during cancer development and progression may 

lead to an increased tumorigenic potential by suppression of tumor suppressing signals and 

activation of growth promoting cascades. 
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1.1 Zusammenfassung 

Brustkrebs, der den größten Teil der weiblichen Krebserkrankungen ausmacht, wird in 

zwei Klassen unterteilt: die erbliche und die sporadische Form. Während sich die erbliche 

Form häufig durch Mutationen der Krebs-Suszeptibilitätsgene BRCA1 und BRCA2 

auszeichnet, sind Mechanismen, die eine sporadische Erkrankung auslösen, weitestgehend 

unbekannt und daher Schwerpunkt dieser Studie. Dabei fokussieren wir auf die 

Entschlüsselung des komplexen Netzwerkes zur Regulation von BRCA1, welches 

aktivierende Faktoren wie ERa, IGF1R, AhR und SP1 beinhaltet, aber auch dominant 

negative Repressoren wie ID4. Fehlregulierungen einzelner oder mehrerer Komponenten 

dieses Netzwerkes unterstützen die Entwicklung von Brustkrebs durch die Verringerung 

der BRCA1-Expression, was zu einer genomischen Instabilität führt, aber auch durch die 

Aktivierung von wachstumsfördernden Signalkaskaden. In dieser Studie wurden post-

transkriptionelle Kontrollmechanismen basierend auf MikroRNAs untersucht, die bereits 

als Regulatoren von wichtigen zellulären Prozessen identifiziert wurden. Hierbei wurde die 

Rolle zweier MikroRNAs, miR-203 und miR-335, bei der Entwicklung von Brustkrebs 

und der Regulierung des Brustkrebs-Suszeptibilitätsgens BRCA1 untersucht.  

MiR-335 wies eine verminderte Expression im primären Brustkrebsgewebe auf, wobei 

diese positiv mit der Expression von BRCA1 korrelierte. Funktionell führte eine 

Überexpression von miR-335 zu geringerer Zellviabilität, gesteigerter Apoptose und 

verminderter Expression der BRCA1-Aktivatoren ERα, SP1, AhR und IGF1R sowie des 

Repressors ID4, was eine Tumorsuppressor-Funktion von miR-335 vermuten lässt.  

Da miR-203 teilweise die selben Komponenten der BRCA1-Kaskade reguliert und 

ebenfalls mit verminderter Zellviabilität und gesteigerter Apoptose in Verbindung gebracht 

wird, bilden beide MikroRNAs ein Netzwerk mit übergeordneter Funktion bei der 

Erhaltung des Gleichgewichts im Brustgewebe. Dieses Netzwerk weist diverse 

Rückkopplungsschleifen auf, da die Expression von miR-203 von SP1 reguliert wird, dass 

an ein Motiv im Methylierungs-sensitiven Promoter der MikroRNA bindet, und beide 

MikroRNAs Östrogen-abhängig sind.  

Zusammenfassend wirken beide MikroRNAs auf gleiche Zielmoleküle in Signalkaskaden 

von Brustzellen ein, mit Einfluss auf Apoptose, Wachstum und die Expression des 

Brustkrebs-Suszeptibilitätsgens BRCA1. Fehlregulierungen während der Krebsentstehung 

oder dessen Fortschreitens könnte zu erhöhtem tumorgenen Potential führen, indem 

Tumor-unterdrückende Signale vermindert und wachstumsfördernde aktiviert werden.  
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2 Introduction 
 

Breast cancer is the most frequent tumor in human females, with only marginal appearance 

in men. The tumor derives in a multistep process from ductal epithelial cells by triggering 

mechanisms as yet poorly defined. Human breast cancers can be divided into two major 

subclasses, the inherited and the sporadic form, with the latter representing the greatest 

part. The inherited subclass is predominantly characterized by mutations of the cancer 

susceptibility genes BRCA1 and BRCA2, favoring a high predisposition to develop breast 

cancer. Since BRCA1 mutations are found in the sporadic form only rarely, mechanisms 

triggering the formation of these tumors are under intense investigation.  

 

 

2.1 BRCA1 and breast cancer formation 

 

The inherited form of human breast cancer in 40-50% of cases can be associated with 

mutations of the cancer susceptibility genes BRCA1 and BRCA2 (1). Four years after the 

association of breast and ovarian cancer to one specific locus on chromosome 17q in 1990 

(2), the coding sequence of BRCA1 was identified by positional cloning (3). In addition, 

mutation studies revealed sequence aberrations for BRCA1 in numerous inherited breast 

and ovarian cancers (4).  

BRCA1 is involved in a number of cellular processes such as DNA repair (5), 

transcriptional regulation (6), ubiquitinylation (7), chromatin remodeling (8), 

X chromosome inactivation (9) and estrogen signaling (10). Specific domains within its 

protein structure mediate the nuclear localization and present interaction sites for a range 

of proteins with diverse cellular functions. Its N-terminal RING-finger domain dimerizes 

with BARD1 to form a complex with ubiquitinylation function upon the induction of 

cellular stress (11). Since the BRCA1/BARD1 complex polyubiquitinates its target with 

strong preference to an unconventional lysine, specific functions apart from protein 

degradation are hypothesized (12). Upon DNA damage, BRCA1 is phosphorylated by the 

signaling kinases ATR and ATM and co-localizes with the ssDNA binding protein RAD51 

(5) and the helicase BACH1 (13) in the BRCA1-associated surveillance complexes 

(BASC) at the sites of double-strand breaks. Since no direct activity of BRCA1 could be 
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detected, a scaffolding function for repair proteins is speculated (14). In its 

unphosphorylated form, BRCA1 is incorporated in the BRCA1-associated transcriptional 

(BAT) complex (15). The C-terminal domain (CTD) supports the binding to the RNA 

polymerase II and the RNA helicase A and other proteins of the core transcription complex 

(16). Here, BRCA1 acts as an activator of transcription. Since evidence of a direct DNA 

binding of BRCA1 is lacking, it is thought to exhibit post-promoter activities in the 

transcriptional activation complex (17). Overexpression of BRCA1 leads to upregulation 

of stress-response genes and downregulation of estrogen-receptor-regulated genes resulting 

in cell cycle arrest and apoptosis (6, 10).  

Its diverse functions in crucial cellular processes define BRCA1 as a key protein to 

maintain homeostasis and chromosomal integrity. Hence, downregulation or mutation 

promotes chromosomal instability (18) and tumorigenesis. In inherited breast cancers, 

mutations of BRCA1 account for about 25% of all cases, with an estimated lifetime risk to 

develop breast cancer of as high as 80% (19). However, hereditary breast cancer is only 

responsible for 5-10% of the overall appearance. Despite the fact that mutations in BRCA1 

are the predominant cause in inherited breast cancer, only minimal numbers were 

determined in sporadic tumors (4, 20, 21). Nevertheless, due to its function as a tumor 

suppressor gene, BRCA1 is thought to play a major role in the development of sporadic 

breast cancer as well.  

Various attempts have been made to establish the role of BRCA1 in the development of 

sporadic breast cancer. After Thompson and colleagues first described a decreased 

expression of BRCA1 in tumor samples (22), a multitude of studies followed confirming 

downregulation of BRCA1 protein expression in a high percentage of sporadic breast 

tumor cases (23-25). The underlying mechanisms remain unclear, since almost no genomic 

mutations were detected. However, altered expressions of regulatory factors of BRCA1 or 

epigenetic modifications have been suggested to be responsible. Here, Dobrovic and 

Simpfendorfer first described promoter methylation as a possible repression event in breast 

cancer (26). In subsequent studies, the number of cases with full or incomplete methylation 

status varies from 11% up to 30% in sporadic breast cancers (27-29).  

A different attempt to explain aberrant expression of BRCA1 is based on an altered 

transcriptional regulation. BRCA1 expression is embedded in a tightly controlled network 

involving various activating and repressing factors. Here, the expression was determined to 

be hormone-dependent via direct activation through the estrogen (ERα), the aryl 

hydrocarbon (AhR), and the insulin-like growth factor 1 (IGF1R) receptor. They are 
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supported by hormone-independent factors such as the specific protein 1 (SP1) or inhibited 

via the inhibitor of DNA binding 4 (ID4). These factors were identified as potent 

regulators forming a tightly cross-linked network controlling the expression levels of 

BRCA1 and are introduced in the following chapters.   

 

 

2.2 The inhibitor of DNA binding (ID4) 

 

ID4 is a negative regulator belonging to the family of helix-loop-helix proteins (30). 

Importantly, ID proteins harbor an HLH domain, but lack the DNA interaction site. ID 

proteins therefore act as the dominant-negative interaction partner of specific HLH factors 

by inhibiting their binding to promoter sequences. The ID family consists of four members, 

sharing the structural specialities identifying them as heterodimerization partners with an 

inhibitory function. Since the family members appear to be differentially expressed in 

tissue types and development stages, a distinct function of each member is assumed (31, 

32). Functionally, ID4 was validated to abrogate the DNA binding ability of E47 and 

MyoE. Expression profiling determined ID4 to be involved in cell differentiation, 

especially in neurogenesis and osteogenesis (33, 34). 

In diverse tumor types, an altered ID4 expression could be detected. Here, some studies 

demonstrated downregulation of ID4 expression, mostly due to promoter 

hypermethylation, in breast cancer (35-37), colon cancer (38), gastric cancer (39), and 

leukemia (40, 41). In contrast, others described ID4 overexpression in bladder cancer (42), 

small cell lung cancer (43), and t(6;14)-associated leukemia (44). Accordingly, Shan and 

colleagues detected overexpression of ID4 in mammary cancers and its correlation with 

increased cell growth and higher tumorigenic potential in a rat model (45).  

In a previous study, ID4 was identified to negatively regulate the expression of BRCA1 

(46). These data were further underlined by studies describing an inverse correlation of 

BRCA1 and ID4 in sporadic breast tumors (47, 48). Welcsh and colleagues expanded these 

findings to a feedback-loop after detecting an activation of ID4 by BRCA1 (49).  
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2.3 The estrogen receptor α (ERα) 

 

The family of estrogen receptors consists of the two members, ERα (gene: ESR1) and ERß 

(gene: ESR2), sharing a high homology in their DNA- and hormone-binding domains. 

Estrogen receptors interact directly with promoter regions harboring specific estrogen-

responsive elements (ERE), thereby mediating mitogenic effects to the cells (50). Here, 

secreted growth factors, growth factor receptors, proteases, and cyclin/cdk factors have 

been identified as targeted genes (51). Interaction of ERα with other transcription factors, 

such as JUN (52), NFkappaB (53) or SP1 (54) transmits ERE-independent transcriptional 

activation. In addition, ERα transduces non-genomic effects by interacting with 

membrane-associated proteins involved in mitogenic signaling pathways (55). In normal 

breast tissue, ERα is necessary for mammary gland development. Its tumorigenic effect 

was primarily discovered after detecting an increased risk of breast cancer following 

excessive exposure to estrogens (56). In concordance with this, premalignant lesions 

showed an increase in the ERα level, suggesting a higher risk with elevating receptivity to 

estrogens. These hormones are thought to stimulate proliferation by inducing pathways of 

autocrine, paracrine or intracrine growth factors. In cell cultures, estrogens were able to 

directly stimulate proliferation by increasing the number of cells entering the S-phase (57).  

Binding of an ERα antagonist results in an altered conformation of the protein, thereby 

inhibiting its DNA binding capacity. Estrogen-positive tumors show good response to anti-

estrogen agents such as tamoxifen, leading to a more favorable prognosis. Furthermore, 

these tumors have a higher grade of differentiation, lower cell proliferation rates and a 

decreasing tendency towards metastasis (58). This was confirmed by in vitro experiments, 

revealing a lower invasiveness and motility of ERα-positive cancer cells (59, 60). 

Conversely, ERα-negative cancer cells implanted in mice showed a higher metastatic 

potential (61). Also, unliganded ERα has anti-invasive capacities (62), challenging the 

development of ERα antagonists for hormonal therapy. An effective treatment is obliged to 

block the mitogenic effect of the receptor without lowering the protein amount to avoid a 

progression to more unfavorable tumor types.  

In contrast to the tumorigenic potential of estrogens and their receptors, the addition of 

estrogens to ERα-positive cancer cells induced the expression of the cancer susceptibility 

gene BRCA1 (63). Despite lacking a direct interaction motif, BRCA1 recruits the liganded 

receptor to its AP-1 binding site as part of an activating multi-protein complex including 

ERα, p300, JUN, and FOS (64). In a negative feedback loop, BRCA1 induces p53, which 



 Introduction  

7 

 

itself interrupts the estrogen activation. This mechanism is thought to be a checkpoint to 

allow DNA repair or induction of apoptosis to ensure genomic stability in proliferating 

cells.  

Summarizing, ERα stimulates cell growth in a ligand-dependent and -independent manner. 

Its activation and overexpression favors tumorigenesis at an early cancer stage. Later in 

tumor progression, ERα expression is associated with a good response to hormonal therapy 

and decreased aggressive tumor capacities. 

 

 

2.4 The aryl hydrocarbon receptor (AhR) 

 

AhR is a transcription factor belonging to the HLH family. Upon binding of its ligands, 

AhR translocates into the nucleus. Once activated, AhR associates with the nuclear factor 

ARNT through an HLH interaction. As an activated transcription factor, it binds to 

XRE/AhRE promoter elements, thereby activating or suppressing its target genes (65). 

CYP1B1 and other members of the P450 enzyme family have been identified as 

downstream targets, mediating the toxic effect by metabolizing the AhR ligands into 

mutagenic intermediates (66). CYP1B1 contains seven AhR binding motifs and was shown 

to be upregulated upon AhR activation (67). As AhR is highly conserved throughout its 

evolution, additional functions are assumed (68). This is supported by AhR activation even 

in the absence of specific ligands and by overexpression of the receptor in a range of 

cancer types (69). The oncogenic effect of AhR is probably mediated by its downstream 

targets, since the CYP1B1 protein level is also increased in these tumors. Expression of 

CYP1B1, which metabolizes endogenous estrogens to mutagenic 4-hydroxy-estradiol (70), 

directly correlates with the risk of breast cancer (71), supporting a specific role of AhR by 

induction of CYP1B1 during breast cancer pathogenesis. Functional studies further 

underlined its association with cancer development. Overexpression of AhR increased the 

proliferation rate of cancer cells, whereas knockdown of the expression converted the 

effect (72). In concordance with this, downregulated AhR led to a prolonged transition 

from G1- to S-phase by downregulating diverse cell cycle regulators (73). As additional 

effectors, epiregulin (74), overexpressed in breast cancer, and TGF-ß (75), which inhibits 

mammary tumor growth, were identified. Controversially, activation of AhR results in a 

reduced cell proliferation under some circumstances. Here, diverse effectors have been 
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identified mediating the inhibiting effect of AhR. For example, the growth-promoting ERα 

signaling cascade is abolished following interaction with ligand-bound AhR, thus leading 

to a degradation of the receptor (76). In contrast, other ligands activate both ERα- and 

AhR-induced transcription (77). Studying AhR-induced apoptotic mechanisms, a similar 

discrepancy appears. On the one hand, a pro-apoptotic function of AhR by inducing the 

BAX and the FAS cascade was identified (78). Vice versa, AhR was shown to repress 

apoptosis, for example by blocking pro-apoptotic E2F-1 signals (79).  

Summarizing, these data support the idea that AhR might have oncogenic and tumor-

suppressive functions depending on the cellular background and presence of ligands. In 

breast tumors, overexpression of AhR might lead to growth-promoting signals by 

activating the expression of CYP1B1. As it is described for the estrogen receptor α, AhR 

drives tumorigenesis, but simultaneously activates the tumor suppressor gene BRCA1. 

Hockings and colleagues demonstrated that estrogen-induced BRCA1 expression is 

dependent on the availability of unliganded AhR, which binds to XRE elements in the 

promoter region (80). 

 

 

2.5 The insulin-like growth factor 1 receptor (IGF1R) 

 

The insulin-like growth factors IGF-I and IGF-II bind to receptors, which are important 

components in the growth signaling machinery, controlling development and cellular 

integration within the tissue structure. One major effector is the insulin-like growth factor 1 

receptor (IGF1R) stimulated upon ligand binding. The receptor is tightly controlled by 

various binding proteins mediating an activating or suppressing effect on its function (81). 

IGF1R is associated with mitogenic and transforming activities following overexpression 

of the receptor (82), whereas inhibition leads to cell cycle arrest in the G0-G1 phase, 

induction of apoptosis, and a reduced tumor growth in vivo (83). IGF1R signaling is 

mediated by the Akt pathway leading to inhibition of pro-apoptotic mitochondrial 

enzymes, thereby promoting cell survival (84). Both overexpression of the receptor itself 

as well as increasing levels of the ligand IGF-II were associated with cancer formation (85, 

86) including breast cancer (87). The expression of IGF1R is controlled by a network 

involving ERα, SP1 and BRCA1. Here, BRCA1 has a key regulatory function since 

interaction with ERα or SP1 can abrogate the activation of IGF1R gene expression (88-90). 
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Interestingly, the specific ligand IGF-I also downregulates the expression of its receptor 

IGF1R (91), probably by activation of BRCA1, indicating a negative feedback loop (92). 

The participation of IGF1R in diverse growth and survival-promoting pathways and its 

association with cancer formation defines it as an interesting therapeutic target. Targeted 

inhibition of the receptor (83), its binding proteins (93) or the ligands is a potent approach 

to abolish mitogenic signals leading to cancer formation or progression. Some of these 

therapeutic strategies are currently the subject of first clinical trials (94). 

 

 

2.6 The specificity protein 1 (SP1) 

 

The transcription factor SP1 is one of four members of the SP family, sharing three zinc 

finger DNA binding domains. SP1 and Sp3 are ubiquitously expressed in mammalian cells. 

However, despite being united through conserved protein domains, they fulfill distinct 

cellular functions. SP proteins regulate gene expression by binding to specific GC-rich 

motifs in the promoter regions of target genes. The regulatory effect of SP1 was shown to 

be activating or repressing, with the specificity of its functions depending on the cellular 

background and its interacting partners (95). The regulatory effects of the SP family are in 

part hormone-dependent through an interaction with the estrogen receptor. Specific 

knockdown of SP proteins abrogated the estrogen-mediated gene regulation of two thirds 

of genes regulated by the hormone (96). Furthermore, SP1 can be activated by an 

interaction with other regulatory factors such as RB or E2F, for example in the regulation 

of IGF-II (97).  

An increased DNA-binding activity of SP1 could previously be associated with the 

formation of breast carcinomas (98). In other cancer types, an overexpression of SP1 was 

detected and was accompanied by an unfavorable prognosis (99). Conversely, interference 

of the SP1 function results in decreased cancer cell growth (100).  

Activation of BRCA1 expression depends on the ligand binding of the estrogen receptor 

and its interaction with SP1. This is thought to depend on the activation of the MAPK 

pathway, leading to an activating phosphorylation of both transcription factors (101). In 

addition, the recruitment of SP1 to the proximal promoter of BRCA1 was determined to be 

activated by IGF-I (92). In return, BRCA1 inhibits SP1 function following physical 

interaction (88). 
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2.7 The tightly cross-linked network of BRCA1  

 

The expression of the cancer susceptibility gene BRCA1 is incorporated in a tightly 

controlled network of transcriptional activators and repressors. Importantly, these 

transcription factors are also involved in diverse cellular processes regulating cell 

proliferation and apoptosis, defining them as crucial elements for the formation of cancer. 

In the following, the network regulating BRCA1 expression is summarized in detail 

(Fig. 1).  

Activation of BRCA1 depends on the assembly of a multi-protein complex including ERα, 

SP1, AhR and other cofactors. The formation of the transcriptional activator complex was 

shown to be regulated by ligand binding to the receptors and the expression level of the 

single components. While estrogen favors the binding of its specific receptor, ligand 

binding to AhR disrupts the initiation complex. IGF-I is responsible for SP1 recruitment to 

the promoter, probably by activating its receptor IGF1R. In contrast to the activating role 

on the tumor suppressor BRCA1, the factors are associated with increased proliferation 

rates and reduced apoptosis. In concordance with this, their overexpression was detected in 

a range of tumors including breast tumors. Among the predominantly growth-promoting 

functions of the factors, BRCA1 might act as a checkpoint ensuring an error-free 

replication cycle of proliferating cells. BRCA1 coordinates induction of apoptosis in 

damaged cells or the release into the next cycle phase. Multiple negative feedback loops 

initiated by BRCA1 form a tightly regulated downstream cascade ensuring genomic 

stability during cell growth. Here, BRCA1 disrupts its own activating complex by directly 

interacting with the components of the initiation complex (ERα, SP1) and by activation of 

p53, which inhibits ERα binding. BRCA1 blocks the IGF1-induced activation by 

interacting with SP1, a potent activator of IGF1R. This interaction further interrupts the 

negative regulation of ID4 through SP1. ID4 might act as a dominant-negative inhibitor by 

binding to HLH proteins in the initiation complex of BRCA1.  

BRCA1 regulation is embedded in a tight network with self-regulating feedback 

mechanisms. Here, BRCA1 and its activators are involved in crucial mechanisms ensuring 

cellular and genomic integrity. Hence, alteration of this network might support tumor 

formation and progression. However, mechanisms leading to an altered expression of the 

single components are yet poorly defined. As microRNAs are described as post-

transcriptional regulators of a high number of protein-coding genes, they might participate 
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in the control of BRCA1 and its regulators. Therefore, microRNAs are of great interest in 

this study and are introduced in detail in the following chapters.  

 

 

 

 

Fig. 1: Schematic overview of the complex BRCA1 regulation mechanism by the 

transcriptional activators SP1, AhR, ERα, IGF1R and the repressor ID4.   

 

 

2.8 MicroRNAs and their function 

 

The discovery of microRNAs in C. elegans (102-104) and later in humans and most other 

eukaryotic species (105, 106) defined a new era in the understanding of post-

transcriptional regulation of protein-coding genes. Previously, protein binding to the 

3´ UTR, differential adenylation and splicing as well as RNA editing mediated the fine 

tuning of message delivery to the polysomes. With microRNAs binding to the 3´ UTR of 

mRNAs, another variable but specific post-transcriptional system was discovered. 

Regarding the high number of different microRNAs with multiple predicted targets, the 

functional dimension of these small RNAs can only be estimated.  
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MicroRNAs are non-coding RNAs transcribed by the RNA polymerase II as large pri-

microRNAs (Fig. 2). Alternatively, these primary molecules excise from intronic regions 

of protein coding genes, thereby circumventing the transcription process. Pri-microRNAs 

fold in an imperfect hairpin structure and are further processed by the RNase III type 

endoribonuclease Drosha to approximately 70 nucleotide pre-microRNA hairpins. Rarely, 

intronic microRNAs (mirtrons) fold directly into pre-microRNAs following splicing (107, 

108). These canonical hairpins are transported from the nucleus to the cytoplasm by 

exportin 5 (109), where they are further processed by the endonuclease Dicer. In 

collaboration with the TAR RNA-binding protein (TRBP), the precursors are sliced in 

double-stranded, approximately 21 bp long oligonucleotides with protruding 2-nucleotide 

3´ ends. In general, the strand with the 5´ terminus, inhabiting the thermodynamically less 

stable end, is incorporated in the microRNA-induced silencing complex (miRISC), 

whereas the complementary strand is degraded as a passenger strand (110-112). However, 

sequencing efforts of small cellular RNAs indicated that the passenger strand is also 

present in the cells (113, 114) and, furthermore, the so-called microRNAs* were proven to 

be active in the post-transcriptional regulation process (115). MicroRNAs exhibit a 

functionality as part of the multi-protein complex miRISC. The major and best 

characterized members of the microRNA ribonucleoproteins (miRNPs) are members of the 

Argonaute family (AGO1-4) (116). AGO2 has previously been associated with the RNA 

interference machinery using siRNAs as mediators of gene silencing. It is the only family 

member harboring an RNaseH-like P-element induced wimpy testis (PIWI) domain, 

enabling the protein to slice double-stranded RNAs. For RNA cleavage, a perfect 

complementarity of the small RNA and the target molecule is required, which is 

obligatorily involved in siRNA-mediated silencing, but rarely found in microRNA 

regulation. Except for plants (117), where a perfect complementarity between the 

microRNA and its target is frequently found, microRNAs generally pair imperfectly to 

their targets (118). Consequently, the result of the microRNA:RNA interaction is not a 

degradation of the target, but rather a block of the translation process. The exact 

mechanism inhibiting the ribosomes from mRNA processing is not entirely understood. 

One model is based on the interference with initiation components such as the eukaryotic 

translation initiation factor 4E (eIF4E). This major member of a multi-protein complex, 

initiating ribosomal binding, binds to the cap structure of mRNAs. Interaction with the 

poly(A)- binding protein 1 (PABP1) facilitates the formation of a loop structure to attract 

the 60S ribosomal subunit to the complex. AGO proteins contain limited sequence 
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homology to the cap binding region of eIF4E, suggesting a competition of the initiation 

complex and miRISC. The involvement of the poly(A) tail in the repression activity of the 

miRNP complex is discussed controversially. While some studies described the 

requirement of both cap and tail structures (119), others revealed a tail-independent 

repression of translation (120). Another model of translational inhibition is based on an 

interrupted elongation process. In this so-called “drop-off” model, miRISC serves as a 

terminator for ribosomal elongation (121). Alternatively, mRNA degradation following 

destabilization through deadenylation or decapping is one proposed model for microRNA 

function (122). A key factor during the target decay is GW182 located in P-bodies 

previously connected to mRNA degradation. Regarding the fact that all models are 

experimentally validated, different effects of microRNAs on the translational repression 

are likely.  

These aspects together with an imperfect base pairing sufficient to inhibit translation make 

it extremely challenging to predict functional microRNA targets. Therefore, specific 

features that are required for microRNA binding and may enhance the prediction accuracy 

have been defined: First, the “seed” region on positions 2-8 in the 5´ end of mature 

microRNAs has to pair perfectly to the target molecule (123). Second, mismatches (bulges) 

in the center of the RNA duplex prevent the argonaute-mediated cleavage. Third, the 

interaction is stabilized by base pairings in the 3´ end of the microRNA, where mismatches 

are tolerated. These criteria form the background for algorithms, predicting a functional 

microRNA:target interaction. Databases such as TargetScan (124) and miRBase (125) give 

an idea of how crucial microRNAs are in virtually all cellular mechanisms by targeting 

approximately 30% of all protein-coding genes. However, characterizing microRNAs as 

potent repressors in the 3´ UTR of mRNAs represents a too simplified view of its function. 

In addition to the mechanisms described above, microRNAs can act as repressors or 

activators (126, 127) of gene expression by binding to the 3´ and 5´ UTR (128, 129). 

Furthermore, microRNA can be transported into the nucleus (130) or even secreted (131) 

from the cell with as yet unknown functions.  
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Figure 2: MicroRNA biogenesis in eukaryotic cells. MicroRNAs are transcribed as pri-

microRNAs or are spliced from intronic gene regions. They are processed to mature 

oligonucleotides with a length of approximately 21 nt functioning as a translational 

repressor or leading to target degradation.  
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2.9 Control of microRNA expression and biogenesis 

 

Among the 546 identified human microRNAs, some are broadly expressed in diverse 

tissue types or developing stages, suggesting a substantial role for the maintenance of the 

various cellular functions (132). In contrast, numerous microRNAs are expressed in a cell 

type- or timepoint-dependent manner. Their expression is associated with specific cell 

types, differentiation states or development stages, suggesting a distinct function in the 

cellular context. Furthermore, expression of single microRNAs could be directly linked to 

specific diseases and cancer types.  

MicroRNA expression can be regulated in different steps, from transcription of the pri-

microRNA up to biogenesis of the mature molecule. Global functional studies could link a 

number of processes to cancer formation. Here, the machinery responsible for microRNA 

processing could be connected to cancer progression. Cancer cells with impaired 

microRNA processing enzymes DGCR8, Drosha, Dicer, thus decreasing the overall level 

of mature molecules, revealed an increased tumorigenic potential in a mouse model system 

(133). Aberrant expression of Dicer was determined in a range of lung cancers (134) and is 

in concordance with a reduced global microRNA level in the cancer tissues compared to 

normal controls (135). As microRNAs are an important part of the post-transcriptional 

regulation process, it was surprising to find out that they themselves are post-

transcriptionally controlled. Comparing the level of precursor molecules with that of 

mature microRNAs occasionally produced confusing results, since no linearity could be 

observed (136, 137). In one example, detailed analysis could link the stem cell protein 

Lin-28 to specifically regulate the microRNA Let-7 (138). Here, one model describes the 

degradation of the precursor molecule following uridylation of the 3´ terminus (139), 

another favors the impaired processing by binding of lin-28 to the loop-structure (140). A 

further example involves the mir-17-92 gene cluster, where the RNA-binding protein 

hnRNP A1 is required for processing of mir-18a but not the other microRNAs of the 

cluster. Considering the existence of 28 human hnRNPs, specific protein binding might be 

an important mechanism in microRNA biogenesis (141). Further post-transcriptional 

regulation is achieved by RNA editing of microRNAs. Here, an adenosine is converted to 

an inosine leading to blocked downstream processing (142) or differential target selection 

(143).  

As is common for protein-coding genes, microRNAs are pre-transcriptionally regulated by 

activator and repressor molecules. MicroRNAs that are located in intronic regions of 
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protein-coding genes, representing approximately 25% of all microRNAs, are in general 

excluded from this mechanism (144). These microRNAs are predominantly expressed in 

correlation with their host genes without the requirement of further regulation. However, it 

was shown that DNA polymerase II also interacts with the proximal regions of intronic 

microRNAs, suggesting a host gene independent expression (145). The remaining number 

of microRNAs is located in intergenic regions, often clustering together in a multigene 

region transcribed simultaneously. Several studies determined their regulation to be closely 

associated with transcription factors binding to the 5´ region of the transcription start. For 

example, E2F was validated as an activator of the gene cluster mir-17-92 representing an 

example for a feedback mechanism since -vice versa- the encoded microRNAs inhibit the 

transcription factor (146, 147). Furthermore, MYC was identified as a potent regulator of 

the gene cluster. In contrast, MYC also functions as a transcriptional repressor 

downregulating numerous targets by binding directly to their promoter regions (148). The 

repressed microRNAs were proven to exhibit tumor-suppressing features, suggesting MYC 

as a superior key molecule during cancer formation. Further molecules involved in 

apoptosis, proliferation and genomic stability have been described as transcriptional 

microRNA regulators. Here, p53, the key factor for genomic integrity, was validated to 

activate the expression of three miR-34 family members. ChIP experiments verified its 

binding to highly conserved sites in the proximal promoter region (149-151). Further 

examples of a specific activation of microRNAs are the regulation of miR-15b by the 

androgen receptor (152), the activation of miR-155 by NFkappaB (153), and the binding of 

Twist1 to the promoter of miR-10b (154). In summary, the regulation of microRNAs is 

defined as a multistep process involving numerous supporting factors. Interestingly, not 

only the proteins regulated by microRNAs but also microRNAs themselves could be linked 

to cancer formation and are discussed in the following chapter. 

 

 

2.10  MicroRNAs involved in cancer 

 

MicroRNAs are one of the largest class of gene regulators. With 546 different products 

they represent 1-4% of all expressed human genes (155). As regulators of approximately 

30% of all protein-coding RNAs, microRNAs have a major influence on probably all 

important processes within the cell. Here, microRNAs regulate important cellular 
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pathways, e.g. proliferation, apoptosis, differentiation, and development. Therefore, they 

are crucial for a variety of different diseases including cancer (156). Single microRNAs are 

predicted to bind to different targets with a wide range of functions, suggesting that the 

small regulators have a key position for cellular homeostasis in the tissue environment 

(157).  

The importance of microRNAs for the development of cancer is not only theoretical but is 

experimentally established. Expression analysis from various tumor types revealed an 

aberrant expression profile compared to normal control samples (158). Narrowing down 

the function to specific targets mediating the tumorigenic effect of microRNAs, oncogenes 

and tumor suppressors were validated as direct or indirect targets. Here, entire pathways 

important for the cellular fate are affected by single microRNAs (159). Genomic analysis 

further supported their tumorigenic potential by linking their genomic locations to fragile 

sites of the human genome that have been previously associated with cancer (160).  

The direct or indirect association of microRNAs with key factors or pathways involved in 

cancer development and progression led to the nomenclature as “oncomirs” (161). In this 

context, the mir-17-92 gene cluster is probably the most popular one combining all 

attributes described above. The gene cluster encodes for a polycistronic pri-microRNA, 

harboring sequences for the six mature microRNAs miR-17, miR-18a, miR-19a, miR-20a, 

miR-19b-1 and miR92-1. The cluster is located in the third intron of the primary transcript 

of the gene C13orf25 (162). Since this transcript is predominantly conserved in the 

microRNA-coding sequences, an exclusive function for microRNA transcription is 

suggested. Amplification of the genomic locus 13q31.4 is a common event in several types 

of lymphomas and diverse solid tumors and is accompanied by an increased C13orf25 

gene product and its associated microRNAs (163). Upregulation of the pri-microRNA 

miR-17-92 is observed in 65% of B-cell lymphomas, suggesting a direct contribution to 

cancer formation (164). Surprisingly, loss-of-heterozygosity of the locus has been observed 

for breast and ovarian cancers and melanomas. Detailed analysis revealed a suppression of 

the AIB1 gene, accompanied by a decreased proliferation rate following overexpression of 

the cluster in breast cancer cells (165). These and previously described conflicting results 

demonstrate a dual role of the mir-17-92 gene cluster in the formation of cancer. 

Depending on the cellular background and tissue type, it functions as an oncogene or 

tumor suppressor gene. The mir-17-92 cluster is a good example of how microRNAs are 

differentially expressed in cancer, thereby influencing downstream targets involved in 
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crucial processes that lead to tumor formation. Their misregulation can be due to genomic 

alterations or varying expression of transcription factors.  

Up to now, numerous examples of microRNAs associated with cancer development by 

deregulating key molecules have been described (166-168). Some microRNAs represent 

key molecules themselves by regulating multiple factors of specific pathways involved in 

cancer. Here, microRNA let-7, strongly associated with lung cancer with poor prognosis 

(169), not only directly regulates the oncogene RAS but also crucial members of the 

associated pathway (170). Another example indicates miR-21, upregulated in most human 

cancers (163), as a key factor involved in p53, TGF-ß, and apoptotic signaling by targeting 

numerous molecules of the pathway (159). 

 

 

2.11  MicroRNAs as diagnostic tools and therapeutic targets 

 

The aim of basic microRNA research is not only an improved understanding of the post-

transcriptional regulation, but also the transfer of knowledge to develop new clinical 

approaches. Diagnosis, prognosis and therapy are crucial fields where microRNAs deliver 

new tools to advance treatment. Along with the characterization of novel cancer-specific 

microRNAs, a multitude of new targets for therapeutic approaches appear. Since 

microRNAs function as “oncomirs”, specific downregulated or restored expression might 

achieve therapeutic effects in cancer cells. Here, problems arise that were already present 

in classical gene therapy and RNAi therapeutics. An effective therapeutic agent has to be 

specific and efficient to successfully regulate its target without causing severe side effects. 

Delivery of the construct remains another critical task of the treatment. These challenges 

are addressed by a number of fast-forward studies transferring modulation of microRNA 

expression from the cell culture to in vivo applications.  

The development of potent microRNA inhibitors presents the basis for future studies (171). 

The so-called “antagomirs” are designed as complementary constructs to the mature 

microRNA sequence. Their delivery in significant amounts into the cytoplasm blocks the 

endogenous microRNA function by specifically and stably binding to the targeted 

molecules. Upregulation of mature microRNAs can be achieved by delivering sense 

oligonucleotides into the cells, which mimic the endogenous function. These modifying 
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approaches can be performed transiently with oligonucleotides or stably by using specific 

expression vectors.  

One of the first in vivo applications used chemically modified “antagomirs” to 

downregulate single microRNAs in mice (172). Intravenous administration of the 

constructs resulted in a downregulation of the targeted microRNA in various tissues. The 

biological relevance was validated by analyzing downstream effects of the treatment. In 

detail, inhibition of the endogenous miR-122 resulted in downregulation of specific 

mRNAs enriched with recognition sites for miR-122. In concordance with the association 

of miR-122 to cholesterol biosynthesis, the plasma level of cholesterol was affected by the 

treatment. In a continuative study, chemically modified “antagomirs” for miR-122 were 

injected into primates (173). Here, the constructs blocked endogenous microRNA miR-122 

and reduced the cholesterol level in hepatocytes. A similar technique was performed in an 

in vivo mouse model using reintroduction of Let-7 as treatment of KRAS-dependent lung 

cancers. The delivery of Let-7, a direct regulator of KRAS expression, resulted in reduced 

lung tumor growth in treated mice (174). These and other studies (175, 176) suggest 

microRNA-mediated therapy as a promising technique for the future treatment of cancer. 

Identification of potential targets is a crucial prerequisite for targeted therapy and is 

therefore addressed in this work.  

However, besides the development of a specific therapy, cancer diagnostics has benefited 

from the emerging field of microRNA research. Expression analysis of diverse tumor types 

revealed a unique profile, clustering in distinct subgroups representing tumor origin, 

prognosis, and response to specific treatments. Determination of the expression level of 

approximately 200 microRNAs is sufficient to accurately classify human cancers (158). In 

contrast, this could not be achieved by a parallel analysis of 16,000 protein-coding genes. 

Applying this question to various cancer types and normal tissues, microRNAs may offer a 

high potential in tumor diagnosis (177-180). Highly relevant for the patient and for 

defining new therapeutic strategies is the evaluation of cancer-free survival. Several 

studies, screening high numbers of cancer specimens, present single or groups of 

microRNAs as a reliable factor for cancer prognosis (181). For example, the reduced 

expression of Let-7 serves as an indicator for shortened post-operative survival in lung 

cancer (182). High expression of miR-21 is associated with advanced clinical stage and 

poor prognosis (183). Another critical point in cancer therapy is the response to specific 

treatments. MicroRNAs were proven as reliable prediction factor of certain therapies. 

Here, in some cases, the microRNA expression status could be directly correlated to the 
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therapeutic response. Overexpression of Let-7 for example abolishes radiation-induced cell 

death (184). Radiation therapy for lung cancer patients might therefore be a promising 

treatment solely for tumors with a reduced Let-7 expression level. Another study identified 

miR-221 and miR-222 as potential indicators for cancer cell resistance against tamoxifen 

(185, 186). Summarizing, microRNAs might be a potent target for specific cancer 

therapies and an important indicator for cancer diagnosis, prognosis and therapeutic 

stratagies. 
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3 Aim of the study 
 

 

Mutations in the breast cancer susceptibility gene BRCA1 are predominantly associated 

with inherited breast cancers with only marginal appearance in the sporadic form. 

Although, a decreased expression of BRCA1 was detected in the sporadic form, the 

underlying mechanisms remain undefined and are therefore the subject of this study.  

Here, we focus on the decipherment of the complex network regulating BRCA1, 

representing a promising candidate to be deregulated in sporadic breast cancer. The 

transcriptional activators ERα, IGF1R, AhR, and SP1, as well as the dominant negative 

repressor ID4, were previously described as powerful regulators of BRCA1, with additional 

involvement in mitogenic signaling pathways in breast tissue. Deregulation of individual or 

multiple components of this network might therefore promote cancer formation by 

repressing BRCA1 as a key molecule for the genomic stability and by activating growth-

promoting signal cascades.  

In this study, the traditional view of signaling cascades is extended to post-transcriptional 

control mechanisms mediated by small regulatory RNAs. The so-called microRNAs could 

previously be identified as regulators of crucial cellular functions by controlling key 

molecules, such as oncogenes or tumor suppressor genes. Furthermore, their deregulation 

was determined for a variety of cancers including breast cancer.  

The aim of this study is to verify the importance of microRNA function for BRCA1 

regulation and its validation as key component within the network with a superior role for 

breast tumor formation. To identify microRNAs with crucial regulatory function, this study 

focuses on the identification of microRNAs with multiple targets in the regulatory cascade 

of BRCA1. As the transcriptional regulators ERα, IGF1R, AhR, SP1, and ID4 harbor 

multiple predicted binding sites for diverse microRNAs, a post-transcriptional control can 

be speculated and is therefore subject of this study.   

A detailed characterization of microRNA function and targets might lead to an improved 

understanding of breast cancer development and might be important for future diagnostics 

and therapy. 
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4  Material and Methods 
 

 

4.1 Cell culture and modification 

 

The cell lines used in this study were maintained in their individual growth media in 10 cm 

cell culture dishes (Thermo Fisher Scientific, Rochester, NY, USA) in a CO2 incubator 

(Binder, Tuttlingen, Germany). Medium was changed every 48 h and cells were split after 

reaching approximately 90% confluence using trypsin EDTA (0.5%) (Biochrom, Berlin, 

Germany).  

 

4.1.1 Cell culture 
 

MCF7 cells were obtained from ATCC (LGC Prochem, Wesel, Germany) and maintained 

in MEM (PAA Laboratories, Pasching, Austria), supplemented with 10% FCS (Gibco, 

Carlsbad, CA, USA), 1x sodium pyruvate (Sigma, St. Louis, MO, USA), 1x nonessential 

amino acids (Gibco), and 1% penicillin/streptomycin (PAA). HCC1937 cells were 

obtained from DSMZ (Braunschweig, Germany) and maintained in RPMI (Biochrom), 

supplemented with 10% FCS and 1% penicillin/streptomycin. HeLa and PA-1 cells (both 

LGC Prochem) were maintained in DMEM (PAA), supplemented with 10% FCS, 1x 

nonessential amino acids, 1x L-glutamine (PAA), and 1x penicillin/streptomycin. 

MiaPaCa2, Panc1, ASPC1 and Capan1 cells (all LGC Prochem) were maintained in 

DMEM supplemented with 10% FCS, 1x L-glutamine, and 1x penicillin/streptomycin. SK-

BR-3 and T47D cells (both LGC Prochem) were cultured in McCoy`s 5A modified 

medium (Biochrom) supplemented with 10% FCS, 1x sodium pyruvate, and 1x 

penicillin/streptomycin. HBL100 cells (LGC Prochem) were maintained in McCoy`s 5A 

modified medium supplemented with 10% FCS and 1x penicillin/streptomycin. HEK293 

cells (LGC Prochem) were maintained in DMEM, supplemented with 10% FCS, 1x L-

glutamine, 1x sodium pyruvate, and 1x penicillin/streptomycin. Cells were cultured at 

37°C and 5% CO2 in a humidified atmosphere.  
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4.1.2 5-Aza treatment 
 

For the promoter methylation studies, 1 x 10
5
 cancer cells were subcultured onto one well 

of a 6-well plate (Sarstedt, Nümbrecht, Germany) for 24 h and subsequently treated with 

2 µM 5-Aza-2´-deoxycytidine (Sigma) for 72 h (media change every 24 h), followed by 

incubation in normal growth media for 24 h.  

 

4.1.3 Estradiol stimulation 
 

For hormonal stimulation, 4 x 10
4
 MCF7 cells were subcultured onto one well of a 24-well 

plate (Sarstedt) for 24 h, followed by a cell starvation step in phenol-red and serum free 

DMEM for 48h. Subsequently, cells were treated with 10 nM ß-estradiol (Sigma) or an 

equal volume of ethanol (control) for 24 h.   

 

4.1.4 Oligonucleotides and plasmids  
 

In this study, different experimental setups required varying types of expression-modifying 

constructs. Overexpression of specific genes or in vitro transcriptions were performed 

using eukaryotic expression plasmids carrying the full-length mRNA or solely the coding 

sequence of the gene of interest. The expression of reporter genes was performed using an 

expression vector for the green fluorescent protein (GFP) or the firefly luciferase protein. 

For knockdown experiments mediated by transcript degradation, siRNAs were used. The 

overexpression of microRNAs was achieved by transfecting modified oligonucleotides 

with sequence identity to their endogenous counterparts. Antisense molecules, here termed 

inhibitors, blocking the endogenous microRNAs were transfected for microRNA-silencing 

experiments. 

 

4.1.4.1   microRNAs 
 

Overexpression and knockdown of the microRNAs miR-203 and miR-335 were performed 

using miScript microRNA Mimics (Qiagen, Hilden, Germany) or miScript microRNA 

Inhibitors (Qiagen), respectively. The negative control oligonucleotides for both constructs 

were also purchased from Qiagen.  
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For protein and cell cycle analysis, 1 x 10
5
 MCF7 cells were seeded onto one well of a 24-

well plate by simultaneous reverse transfection with 50 nM miScript microRNA Mimics or 

control oligonucleotides using 3 l HiPerfect (Qiagen) according to the manufacturer`s 

protocol in a total volume of 500 l normal growth medium. 26 h or 48 h later, the cells 

were collected by trypsinization. 

To assess the proliferation rate and apoptotic activity, 7.5 x 10
3 

MCF7 cells or 1 x10
4
 

HCC1937 cells were seeded onto one well of a 96-well plate (Sarstedt). Simultaneous 

reverse transfection with 50 nM miScript microRNA Mimics or control oligonucleotides 

was carried out using 0.75 µl HiPerfect following the manufacturer`s instructions in a total 

volume of 50 l growth medium. 24 h after transfection, 50 l culture medium were added 

to MCF7 cells or a medium change was performed after 6 h for HCC1937 cells. 

 

4.1.4.2   siRNAs 
 

Knockdown experiments for SP1 were performed using siRNA oligonucleotides purchased 

from Qiagen. For the control setup, the AllStars Negative Control siRNA (Qiagen) was 

transfected. For specific silencing of SP1, the siRNA Hs_SP1_5 HP (5´-

CAGCAAGTTCTGACAGGACTA-3´) was used. 1 x 10
5
 MCF7 cells were subcultured 

onto one well of a 24-well plate for 24 h. Transfections were performed with 5 nM siRNA 

using 3 µl HiPerfect in a total volume of 500 µl. 48 h after transfection, cells were 

collected by trypsinization, 

The silencing oligonucleotides specific for ID4 (#1: 5´-

GGAAAGGAAAAAACAUCGGtt-3´, #3: 5´-GGUGCAGUUAAACUUUUAAtt-3`) were 

purchased from Ambion (Austin, TX, USA) and were co-transfected with an LNGFR 

expression plasmid (Miltenyi Biotec, Bergisch Gladbach, Germany) to enrich for 

transfectants. The experiments were analyzed relative to cells transfected with Silencer 

Select Negative Control siRNA (Ambion).  

 

4.1.4.3   Plasmids 
 

For the construction of pcDNA3-NRAS-Full or pcDNA3-NRAS-ORF, the full-length 

mRNA or the ORF of NRAS was extracted from the clone IRAUp969B1241D (Imagenes, 

Berlin, Germany) with SfiI (NEB, Ipswich, MA, USA) or SfiI/DraI (NEB), respectively. 
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Following blunt ending using the T4 DNA polymerase (NEB), the fragments were 

subcloned into pcDNA3 (Invitrogen, Carlsbad, CA, USA). The plasmid 

pcDNA3-ID4-ORF was created by subcloning ID4 from pLPC-ID4 (46) in pcDNA3 using 

EcoRI (NEB) and NotI (NEB). The 3´ UTR of ID4 was amplified by PCR: FF 

5´-GTGAACAAGCCGCGGGACAGCATTCTGTG-3´; RV 5´- 

TTTGAATTCCAAGACAGAGAAATCTACTTTAATATTCAC-3´ (Operon, Huntsville, 

AL, USA), digested with NotI and XbaI (NEB), and subcloned into the NotI-XbaI-digested 

pcDNA-ID4-ORF to create pcDNA-ID4-Full.  

For the cloning of multiple MREs in the luciferase reporter vector pGL3 (Promega, 

Madison, WI, USA) a polylinker was introduced at the XbaI site to create pGL3-MCS 

(Operon, Tab. 1). The MREs of ESR1, AhR, IGF1R, SP1 and ID4 were amplified with 

specific primers (Operon, Tab. 1) using the AmpliTaq Gold polymerase (Applied 

Biosystems, Foster City, CA) and subcloned into pGL3-MCS using XbaI or SacII (NEB) 

and EcoRI (NEB). 

The expression plasmid for the surface marker LNGFR was obtained from Miltenyi 

Biotec. 

 

Tab. 1: Oligonucleotide sequences for the cloning of the polylinker (pGL3-MCS) or the 

amplification of the diverse MREs in the 3´ UTRs of ESR1, AhR, IGF1R, SP1 and ID4. 

The restriction sites used for cloning into pGL3 (EcoRI: GAATTC; SacII: CCGCGG; 

XbaI: TCTAGA) are indicated in bold letters.  
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4.1.4.4   Co-transfections 
 

For protein analysis of ID4, 2 x 10
5
 MCF7 cells were seeded onto one well of a 24-well 

plate by simultaneous reverse transfection with 20 nM miScript microRNA Inhibitors or 

control oligonucleotides and 0.75 g plasmid DNA using 3 l HiPerfect in a total volume 

of 500 l growth medium. After 12 h, the cells were collected by trypsinization.  

For the rescue experiment, 0.3 g of plasmid DNA was co-transfected with 50 nM 

miScript microRNA Mimics using 0.75 µl HiPerfect by simultaneously seeding 7.5 x 10
3 

MCF7 cells onto one well of a 96-well plate in a total volume of 50 µl growth medium. As 

a control experiment, an empty expression vector and control oligonucleotides were 

transfected. 24 h after transfection, 50 l culture medium was added. 

For luciferase assays 8 x 10
3
 HEK293 cells were seeded onto one well of a 96-well plates 

and grown for 24 h. Subsequently, 25 ng of the pGl3 constructs were co-transfected with 3 

ng of a renilla luciferase plasmid (pGl-4.7), 50 nM miScript microRNA Mimics or control 

oligonucleotides and 222 ng MIGR1 plasmid using 0.5 µl Lipofectamine 2000 (Invitrogen) 

according to the manufacturer`s protocol. Cells were incubated for 24 h before 

determination of the luciferase activity. 

For the enrichment of cells transfected with siRNA specific for ID4, an expression plasmid 

for the truncated surface receptor LNGFR was co-transfected simultaneously with the 

oligonucleotides. Therefore, 5 x 10
5 

MCF7 cells were plated onto one well of a 6-well plate 

24 h prior to the transfection. Transfections were performed using the CalPhos Mammalian 

Transfection Kit (BD, Franklin Lakes, NJ, USA) following the manufacturer’s instructions. 

Cells were transfected with a negative control siRNA or two independent ID4-specific 

siRNAs at a concentration of 150 nM. To enrich transfectants, cells were cotransfected 

with 3 µg LNGFR expression plasmid DNA. Transfections were carried out in OptiMEM 

(Gibco) supplemented with 5% FCS for 14 h and stopped by adding MEM with 10% FCS 

after washing once with 1x PBS. Subsequently, cells were selected using the MACSelect 

LNGFR Transfected Cell Selection Kit (Miltenyi Biotec) following the manufacturer’s 

instructions. Separation efficiency was assessed by FACS analysis with MACSelect 

control antibodies (Miltenyi Biotec) in a FACSCalibur Flow Cytometer (BD). 
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4.2 Patient material 

 

Sporadic breast tumors were randomly selected from the tumor bank of the Institute of 

Pathology at Hannover Medical School. For quantitative analysis, fresh frozen specimens 

from forty-one post-menopausal patients with a median age of 66 years were used. These 

samples were all invasive ductal carcinomas with six tumors having a G2 and thirty-five a 

G3 grade of differentiation. For microRNA expression analysis only G3 tumors were used. 

Eight breast tissues from healthy women undergoing breast reduction surgery were taken 

as control samples. The study was authorized by the Ethics Committee of Hannover 

Medical School. 

 

4.2.1 Clinical features 
 

Following surgery, sporadic breast tumors are analyzed routinely for their expression status 

of Her-2, the estrogen and the progesterone receptor by immunohistochemistry. 

Furthermore, proximal lymph nodes are analyzed for the occurrence of metastatic cells. 

These data and the age of the patient were assessed by a detailed search in an internal 

database of Hannover Medical School and are authorized by the Institute of Pathology.  

 

 

4.3 MicroRNA co-precipitation 

 

The interactions between microRNAs and mRNAs on a cellular background were detected 

by microRNA co-precipitation. The gene of interest was transcribed in the presence of 

biotin-labeled UTPs, introduced into HeLa cells and specifically rescued using avidin-

agarose beads.  

 

4.3.1  In vitro transcription 
 

For in vitro transcription, plasmids pcDNA3-NRAS-Full and -ORF were linearized 

overnight with XhoI. The plasmids pcDNA3-ID4-Full and pcDNA3-ID4-ORF were 
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linearized with XbaI or NotI, respectively. The control plasmid pcDNA3-GFP was digested 

with XhoI prior to transcription. DNAs were ethanol-precipitated (2 vol. ethanol, 1/20 vol. 

0.5M EDTA, 1/10 vol. 3M NaAc) and washed once with 70% ethanol. Dried pellets were 

resuspended in RNase-free water. The transcription was performed using the mMESSAGE 

mMACHINE Transcription kit (Ambion) and 1 mM Bio-16-UTP (Ambion) following the 

manufacturer´s instructions. Transcripts were further processed using the Poly(A)-Tailing 

kit (Ambion). After transcription, the RNAs were extracted using the RNeasy Mini kit 

(Qiagen) and quantified photometrically. The quality was determined using a Bioanalyzer 

(Agilent, Santa Clara, CA, USA).  

 

4.3.2 mRNA transfection 
 

4 x 10
5 

HeLa cells were seeded onto one well of a 6-well plate and cultured overnight. For 

transfection, 6 l of HiPerfect were preincubated with 100 l OptiMEM for 5 min, 

followed by the addition of 3 g mRNA and a further 10 min of incubation at room 

temperature. The pre-seeded cells were washed once with 1x PBS (PAA) and cultured in 

900 l OptiMEM prior to transfection. The transfection-RNA mix was added dropwise and 

the cells were cultured for 24 h. To determine the translation efficiency and the stability of 

the labeled mRNA, transfected cells were cultured for 48 h, trypsinized, and analyzed in 

FACSCalibur Flow Cytometer. 

 

4.3.3 Co-precipitation 
 

For co-precipitation, cells were lysed as described in 4.3.5. The RIPA buffer was 

supplemented with 100 U/ml RNaseOUT (Invitrogen). Samples were sonified five times 

for 15 sec each on ice, followed by centrifugation for 15 min at 13,200 x g and 4°C. The 

supernatant was precleared with proteinA-agarose beads (Roche, Mannheim, Germany) for 

1 h on ice. Avidin-agarose beads (Pierce, Rockford, IL, USA) were washed three times in 

cold RIPA buffer and blocked for 1 h on ice with 1% BSA (Serva, Heidelberg, Germany) 

and 0.2 mg/ml carrier RNA (Qiagen). Subsequently, the beads were washed once with 

RIPA buffer. The precleared lysate was supplemented to final concentrations of 500 mM 

NaCl, 0.1 mg/ml carrier RNA and 0.1% BSA, followed by the addition of 50 µl avidin 

beads. After an incubation of 2 h rocking on ice, the beads were pelleted and washed five 
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times with RIPA buffer (including 500 mM NaCl, proteinase inhibitors and 10 U/ml 

RNaseOUT) for 5 min each rocking on ice. After changing the reaction cup, beads were 

washed three times in 0.1 x SSC for 5 min rocking at room temperature. Finally, the total 

RNA was extracted using the miRNeasy Mini kit (Qiagen) following the manufacturer´s 

instructions.  

 

 

4.4 Expression analysis 

 

Expression analysis was performed for specific genes on both the transcript and protein 

level. The data for mRNA expression were normalized to the housekeeping gene GAPDH, 

whereas the protein amount was normalized to the ubiquitously expressed structural 

protein ß-actin. As microRNAs are small RNAs with a number of processing steps, the 

expression level of mature microRNAs was detected and normalized to the small nuclear 

RNA U6 (sn-U6). 

 

4.4.1   Microdissection 
 

For the analysis of mRNA expression in cancer samples, all tissues were microdissected 

prior to RNA extraction. To determine the expression of microRNAs, all samples with a 

tumor fraction of less than 80% were microdissected prior to RNA extraction. In both 

studies, epithelial breast cells from control tissues were enriched using microdissection. 

Therefore, frozen tissues were cut in 6 µm cryosections, mounted on pre-cooled membrane 

slides and immediately frozen on dry ice. After dehydration in 70% ethanol, sections were 

stained on ice using 1% cresyl violet (Aldrich, Munich, Germany). After additional 

dehydration steps, sections were air-dried. Samples for ID4 and BRCA1 analysis were 

isolated using a PALM MicroBeam (P.A.L.M. Microlaser Technologies GmbH, Bernried, 

Germany), whereas the Cellcut Smart (Olympus, Hamburg, Germany) was used for the 

microRNA experiments.  
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4.4.2 RNA isolation  
 

For the expression analysis of microRNAs from methylation experiments, RNA was 

isolated using 500 µl Trizol (Invitrogen) according to the manufacturer`s instructions. 

MicroRNAs from primary tissue, cancer cell line experiments, and co-precipitations were 

extracted using the miRNeasy Mini Kit (Qiagen). For microdissected samples, carrier 

RNA (Qiagen) was added during the isolation steps. MessengerRNAs from microdissected 

material were isolated using the RNeasy Micro Kit (Qiagen) as described in the 

manufacturer’s instructions. RNA was quantified on a spectrophotometer (Implen, Munich, 

Germany). 

 

4.4.3 Reverse transcription 
 

To identify the expression levels of mRNAs, the reverse transcription reactions were 

performed as described by the manufacturer using SuperScriptII Reverse Transcriptase 

(Invitrogen) and random hexamer primers (MWG, Ebersberg, Germany). For the 

amplification of 3´ UTR fragments the RNA of various cell lines was pooled and reverse 

transcribed using oligo-d(T) primers (Invitrogen). Prior to the reaction, samples were 

DNaseI digested using the RNase-free DNase Set (Qiagen). For reverse transcription of 

microRNAs, the specific primers (Applied Biosystems) for the analyzed microRNAs were 

pooled in one reaction. Reactions were performed using the Taqman MicroRNA Reverse 

Transcription Kit (Applied Biosystems) according to the manufacturer´s instructions. For 

microdissected and co-precipitated material, the maximum volume of RNA solution was 

applied during the process, replacing the water in the reaction.  

 

4.4.4 Quantitative real-time PCR (qRT-PCR)  
 

For quantitative analysis of microRNAs, the Taqman microRNA assays (Applied 

Biosystems) were used following the manufacturer´s instructions with some modifications 

for microdissected and precipitated samples. To maximize sensitivity, the maximum 

amount of sample volume was used in the reaction. 

For the quantitative analysis of protein-coding genes, specific primers (Tibmolbiol, Berlin, 

Germany) and FAM/TAMRA-labeled Taqman probes (Tibmolbiol) were used.  For 
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BRCA1 detection, the primers (FF:5`-CTGCTCAGGGCTATCCTCTCA-3`; REV:5`-

TGCTGGAGCTTTATCAGGTTATGT-3`) and the probe (5`-

TGACATTTTAACCACTCAGCAGAGGGATACCA-3`) were used. For ID4 detection, 

the primers (FF:5`-CGCTGTCCAGGTGTGCG-3`; REV:5`-

GGCTTTTTTTCTCTAACTTCTGCTCTT-3`) and the probe (5`-

CTGAGCCCGAGCCAGGAGCA-3`) were used. For SP1 detection, the primers (FF:5`-

GCCTCCAGACCATTAACCTCA- 3`; REV:5`-AGCCCCTTCCTTCACTGTCTT- 3`) 

and the probe (5`-CAAATGCCCCAGGTGATCATGGA-3`) were used.  

The qRT- PCR was performed using the qRT-PCR Core Kit (Eurogentec, Seraing, 

Belgium) with a reaction volume of 20 µl for microRNA and 25 µl for mRNA detection, 

running on an I-Cycler Thermal Cycler (Bio-Rad Laboratories, Hercules, CA, USA). After 

an initial denaturation step at 95°C for 10 min, reactions were run for 50 cycles (95°C for 

15 sec; 60°C for 1 min). Expression data were assessed in two independent reactions 

performed as doublets and are given as mean values +/- SD. The co-precipitation 

experiments were analyzed in triplets and are displayed as mean values +/- SD from three 

independent experiments.  

To detect the reference gene GAPDH, the Human GAPDH Endogenous Control Assay 

(Applied Biosystems) was used according to the manufacturer´s instructions.  

 

4.4.5 Protein isolation 
 

For the isolation of total proteins from cell culture experiments, the cells were trypsinized, 

washed once with cold 1x PBS, and lysed in 100 µl 1x RIPA buffer (10 mM Tris, pH: 7.5; 

150 mM NaCl; 1% NP40, 0.5% sodium deoxycholate; 0.1% SDS; 1mM EDTA) 

supplemented with proteinase inhibitors (1 mM PMSF, 2.8 g/ml aprotinin, 1.46 M 

pepstatin A, 16.8 M leupetin (all: Sigma)). Lysates were incubated for 1 h on ice and 

cleared by centrifugation at 13,200 x g at 4°C for 20 min. Proteins from primary tissue 

were extracted using the Cell Grinding kit (Amersham, Little Chalfont, UK) following the 

manufacturer`s instructions.  
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4.4.6 Western blotting 
 

Proteins from cell culture experiments were separated on a 10% SDS-PAGE (Invitrogen) 

and transferred onto a nitrocellulose membrane (Invitrogen) using the iBlot Gel Transfer 

Device (Invitrogen). Total cell lysates from primary tissues were separated on a 10% SDS-

PAGE (Nunc, Wiesbaden, Germany). Proteins were blotted onto a nitrocellulose 

membrane (Schleicher and Schüll, Dassel, Germany) using a semi-dry blotting system 

(Biometra, Göttingen, Germany). SP1 (Upstate, Billerica, MA, USA), ERα (SP1; 

Neomarkers, Fremont, CA, USA) were diluted and incubated 1:5000 in 5% NFDM. 

c-MYC (N-262; Santa Cruz Biotechnologies Inc., Santa Cruz, CA, USA) was diluted and 

incubated 1:500 in 5% NFDM. AhR (H-211, Santa Cruz), IGF1R (C20; Santa Cruz) and 

ID4 (H70; Santa Cruz) were diluted 1:250 and incubated in 3% Slim Fast (Unilever, 

Hamburg, Germany). Samples were normalized to ß-actin (MP Biomedicals, Solon, OH), 

diluted 1:5000 in 5% NFDM. Detection was performed using Lumigen TMA-6 

(Amersham). Signal intensities were scanned and quantified with ImageJ software (NIH, 

Bethesda, MA, USA). 

 

4.4.7 Isolation of genomic DNA and MSP 
 

For the promoter methylation studies, cancer cells were treated with 5-Aza as described in 

4.1.2, trypsinized, and washed once in 1 x PBS. Fresh frozen primary tissues were sliced 

into small fragments and processed immediately. To isolate the genomic DNA, cell pellets 

or tissue materials were incubated in proteinase K buffer (50 mM Tris, pH:7.6; 25 mM 

EDTA; 0.5% Igepal; 0.5% SDS) supplemented with 0.5 mg/ml proteinase K (Merck, 

Darmstadt, Germany) for 4 h at 55°C. To ensure complete lyses, the solution was vortexed 

frequently. After the addition of 1.7 M NaCl, the solution was cleared by centrifugation. 

Samples were RNaseA (20 µg/ml) (Qiagen) digested and DNA was precipitated by adding 

0.7 vol. isopropanol. DNA was pelleted, washed with 70% ethanol, airdried and dissolved 

in water.  

Genomic DNA was converted using the Epitec Bisulfite kit (Qiagen) following the 

manufacturer`s instructions. Methylation-specific PCR was performed with specific 

primers (FF: 5´-GAGTATTTTCGGTTTAGACGAGAC-3´; RV: 5´-

GAAAATAACCCTAACTCAACGAC-3´, Operon), at 56°C using the AmpliTaq Gold 

polymerase. Unmethylation-specific PCR was performed under the same conditions with 
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the specific primers (FF: 5´- GAGTATTTTTGGTTTAGATGAGATGG-3´ and RV: 5´- 

CAAAAATAACCCTAACTCAACAAC-3´, Operon).   

 

 

4.5 Functional analysis 

 

The effect of the overexpression or knockdown of certain genes or microRNAs was 

assessed by functional assays determining the viability, the caspase activity or the cell 

cycle status of the cells. The functionality of a microRNA:mRNA interaction was validated 

by luciferase reporter assays. Therefore, the cells were treated as described in 4.1.4.   

 

4.5.1 Viability assay 
 

To determine the amount of vital cells on days one to three after transfection, 1/10 vol. of 

WST-1 reagent (Roche) was added to the wells and incubated at room temperature. WST-1 

is processed in the mitochondria of vital cells into a product with altered absorbance 

properties. After 1 h, the absorbance is measurement at 460 nm for the specific product and 

600 nm to determine the background in a microplate autoreader (BioTek, Winooski, VT, 

USA). All assays were performed in triplicate and repeated at least twice. Data are given as 

mean  SD. 

 

4.5.2 Apoptotic assay 
 

The rate of apoptosis induced by different treatments was assessed by using the caspase 

activity as an indicator of programmed cell death on days one to three after transfection. 

Therefore, the activities of caspase 3 and 7 were determined by the addition of Caspase 3/7 

Glo substrate (Promega) to the wells according to the manufacturer`s instructions. Pro-

caspases are cleaved to their active form, if apoptosis is induced. The substrate is processed 

into a luciferase substrate by active caspases, which is enzymatically converted to 

measurable bioluminescence. 1 h after addition of the substrate, the lysates were 

transferred to white-walled 96-well plates (Greiner Bio-one, Frickenhausen, Germany) and 

the relative light units were measured in a luminometer (Lumat; Berthold, Bad Wildbad, 
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Germany). All assays were performed in triplicate and repeated twice. Data are given as 

mean  SD. 

 

4.5.3 Cell cycle analysis 
 

For cell cycle analysis, cells were collected 48 h after transfection by trypsinization, 

washed once with cold 1x PBS, and resuspended in 200 l 1x PBS. After the addition of 

800 l ice-cold absolute ethanol, cells were stored at -20°C. For analysis, cells were 

collected by centrifugation, resuspended in 1 ml 1x PBS supplemented with 0.1% Triton 

X-100 (Sigma) and 1 g/ml RNaseA (Qiagen), and incubated for 30 min at 4°C. After the 

addition of 1 ml of a 50 g/ml propidium iodide solution and incubation for 30 min at 4°C, 

the cellular DNA content was measured by FACS cytometry in a FACS Calibur and was 

evaluated
 
using CellQuest Pro software (BD). Experiments were repeated three times and 

data are given as mean  SD. 

 

4.5.4 Luciferase assay 
 

To assess the luciferase activity, the Dual-Glo luciferase assay (Promega) was performed 

24 h after transfection, following the manufacturer´s instructions, with the following time 

intervals. The firefly luciferase activity was measured 10 min after addition of its specific 

substrates. After the renilla luciferase substrate was added, the reaction was incubated for 

another 10 min, followed by the determination of the renilla activity. Measurements were 

performed in a Synergy 2 (BioTek). Luciferase experiments were repeated at least in three 

independent experiments and samples were measured as triplets. Data are given as mean  

SD. 

 

 

4.6 Statistics 

 

Statistical analysis was carried out using the Mann-Whitney U test, Student´s t test or 

Pearson´s correlation using GraphPad software (San Diego, CA, USA). Values of p < 0.05 
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were considered as significant. The expression data of primary cancer samples are 

displayed as a box plot with lower quartile (25%), median (gray bar) and upper quartile 

(75%) values. Whiskers extend from each end of the box to the adjacent values in the data; 

by default, the most extreme values within 1.5 times the interquartile range from the ends 

of the box. 
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5 Results 
 

5.1 MicroRNAs control the regulatory cascade of BRCA1 

 

Bioinformatic analysis (TargetScan 4.2 software (124)) was used to identify microRNAs 

with predicted response elements (MRE) that occured in the 3´ UTR of genes involved in 

the regulatory cascade of BRCA1. Most frequently, miR-203 was predicted to post-

transcriptionally regulate the cascade by controlling AhR, ESR1 (protein: ERα), IGF1R, 

ID4, and SP1. With several binding sites in the 3´ UTR of IGF1R and AhR, miR-203 had a 

high probability to regulate the expression of the predicted targets (Fig. 3). As a binding 

site was also predicted for ESR1, ID4 and SP1, a superior function of miR-203 in an 

upstream pathway of BRCA1 could be speculated. A second microRNA with predicted 

binding sites occurring numerous times in the 3´ UTR of the analyzed genes was miR-335. 

Therefore, the significance of this microRNA was also evaluated in this study. With the 

exception of AhR, microRNA miR-335 revealed binding sites in all analyzed regulators of 

BRCA1.  

The binding probability was not only associated with the number of binding sites within a 

3´ UTR, but was also influenced by different criteria improving the success of the 

prediction. Context scores, respecting the effect of various aspects of microRNA binding, 

were included in TargetScan 4.2 software. These criteria considered the seed region 

complementarity, the nucleotide composition near the site, the proximity to sites for 

coexpressed miRNAs leading to a cooperative action, the proximity to residues pairing to 

miRNA nucleotides 13-16, and the positioning within the 3´ UTR (124). They resulted in 

the context score, presented as increasing probability with decreasing values. In the 

cascade of BRCA1 regulation, miR-203 revealed high context scores for AhR and ID4, 

intermediate values for IGF1R and ESR1 and low values for SP1 (Tab. 2). MicroRNA 

miR-335 showed intermediate score values for SP1, ESR1, and ID4 (Tab. 2). The binding 

affinity of miR-335 to IGF1R revealed only low context scores, whereas this microRNA is 

not predicted in the 3´ UTR of AhR.  
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Figure 3: MicroRNAs miR-203 and miR-335 were predicted to regulate the 

expression of AhR, ERa, IGF1R, SP1, and ID4. The schematic overview displays the 

predicted microRNA response elements of miR-203 and miR-335 in the 3´ UTRs of AhR, 

ESR1, IGF1R, SP1 and ID4. The gray boxes represent the coding sequence of the 

respective gene, whereas the arrows map the specific position of the microRNA binding 

site. The 3´ UTRs are displayed in the indicated magnifications.  

 

Tab. 2: MicroRNA binding prediction was improved by considering different criteria. 

The context score values representing the probability of a microRNA:mRNA interaction 

were assessed using TargetScan 4.2 software. The values display the sum of different 

prediction criteria, with a score of -1 representing the highest likelihood of a functional 

target match. 
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Since the 546 identified microRNAs differ in their specificity to distinct tissue types, the 

expression status of the analyzed microRNAs miR-203 and miR-335 was determined for 

breast (MCF7, SK-BR-3, HCC1937, HBL100, T47D), pancreas (Capan1, ASPC1, 

MiaPaCa2, Panc1), cervix (HeLa) and ovarian (PA-1) cancer cell lines (Fig. 4). Except for 

the breast cancer cell line T47D, miR-335 was ubiquitously expressed in all tested cell 

lines. Notably, two of the pancreatic cell lines (MiaPaCa2 and Capan1) revealed a low 

expression level, whereas the breast cancer cell line SK-BR-3 showed the highest miR-335 

expression. For miR-203, there was only a very weak or no expression detectable in all 

pancreatic cell lines and PA-1. HeLa and HBL100 cells revealed moderate expression 

levels. Interestingly, four out of five breast cancer cell lines showed high levels of miR-203 

expression, suggesting a specific function of the microRNA in this tissue. For subsequent 

analysis, the cell lines were assigned to three subgroups representing varying levels of 

expression. The three groups were termed high, moderate and low, indicating expression 

levels more than 10-fold higher, similar, or more than 10-fold smaller than the reference 

cell line HeLa, respectively.  

 

A          B 

   

Fig. 4: MicroRNAs miR-203 and miR-335 revealed varying expression levels in 

human cancer cell lines. The expression level of miR-203 (A) and miR-335 (B) was 

determined for various human cancer cell lines from different tissue types. The expression 

was normalized to small nuclear RNA U6 (sn-U6) and is displayed relative to HeLa cells. 

 

To determine the functional effect of miR-203 and miR-335 on the BRCA1 regulating 

factors, their protein expression was analyzed by Western blotting following 

overexpression of the microRNAs. 48 h after transfection of mature microRNA miR-203, 
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MCF7 cells revealed a decreased amount of protein for the targets ERα (-93%), AhR 

(-73%) and IGF1R (-62%) compared to control-miR treated cells (Fig. 5). The protein 

expression of SP1 was slightly upregulated following treatment (+44%). To exclude a 

secondary effect caused by an altered cell cycle, apoptosis or proliferation status, c-MYC 

as a key regulator for the cellular fate was also detected. Revealing no change in the 

expression of c-MYC, the regulatory effect of miR-203 was specific to the genes analyzed. 

 

  

 

Fig. 5: MicroRNA miR-203 regulated the expression of ERa, AhR and IGF1R. The 

expression levels of the BRCA1 regulating factors were assessed by Western blotting 

following overexpression of the microRNA miR-203 for 48 h in MCF7 cells. The band 

intensity was quantified and normalized to ß-actin. The results are displayed as one 

representative Western blot and as protein expression values relative to control-miR 

transfected cells.  

 

To determine the effect of miR-335 overexpression, an earlier timepoint was used to avoid 

unspecific effects caused by induction of apoptosis. Therefore, protein analysis was 

performed 26 h following transfection of the mature microRNAs. The protein amounts of 

ERα (-55%), AhR (-32%), IGF1R (-91%), and SP1 (-74%) were reduced as a consequence 

of overexpression of miR-335 compared to the control-miR transfected cells (Fig. 6). At 

that timepoint, microRNA overexpression had no effect on the expression of c-MYC.  
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Fig. 6: Overexpression of miR-335 reduced the expression of ERa, AhR, IGF1R and 

SP1. Protein amounts of the indicated factors were determined by Western blotting 26 h 

after transfection of mature microRNA miR-335. The band intensities were quantified and 

normalized to ß-actin. The results are displayed as one representative Western blot and as 

protein expression values relative to control-miR transfected cells.  

 

 

5.2 MicroRNA co-precipitation enabled the detection of predicted 
microRNA:mRNA interactions 

 

Interactions between microRNAs and their specific targets can currently be detected by 

standard protein analysis or reporter gene assays. However, protein quantification using 

Western blotting or immunohistochemistry (IHC) are limited to the availability of specific 

antibodies. Furthermore, these methods cannot distinguish between primary and secondary 

targets. Reporter assays on the other hand specifically determine the activity of certain 

microRNAs for one gene, but do not consider naturally occurring modifications, e.g. 

mRNA folding. Therefore, the microRNA co-precipitation technique was developed as a 

tool to directly and specifically validate microRNA:mRNA interactions on a cellular 

background (Fig. 7). For the specific precipitation, the gene of interest was transcribed in 

vitro in the presence of biotin-labeled UTPs. The resulting tagged mRNAs were introduced 

into cells where endogenous microRNAs specifically bound to the bait molecule. These 

complexes were isolated using avidin-linked agarose beads incubated with the cell lysate. 

The specific isolation of labeled mRNAs was followed by a subsequent quantitative 

analysis.  
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Fig. 7: MicroRNA:mRNA interactions could be detected by specific precipitation. The 

schematic overview of the microRNA co-precipitation technique presents a method with 

four subsequent steps. The in vitro transcription of the gene of interest with simultaneous 

biotin-labeling was followed by an introduction into a cellular system, leading to a 

complex formation with microRNAs. The endogenous microRNAs guided by RNPs were 

co-purified with the tagged mRNA using avidin-agarose beads. The isolated RNAs were 

quantified by qRT-PCR. Results were normalized to control constructs lacking the 3´ UTR.   

 

Prior to microRNA co-precipitation, the effect of biotin-labeled UTPs on the in vitro 

transcription reaction and the translation efficiency in a cellular system was determined. 

Therefore, the reporter gene GFP was transcribed in the presence or absence of labeled 

UTP. The integrity of the resulting mRNA was analyzed on a Bioanalyzer revealing 

transcripts of the expected length and no detection of incomplete transcription products 

(Fig. 8). The efficiency of intracellular translation was assessed after transfection of the 

transcripts into HeLa cells. Both labeled and unlabeled mRNAs showed similar signal 

intensities for GFP 48 h after transfection, suggesting that the biotin-UTP had no influence 

on translation efficiency or stability of the mRNA (Fig. 9).  
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Fig. 8: The quality of the in vitro transcribed mRNA was not influenced by labeled 

UTPs. The coding sequence of GFP was cloned in a T7 RNA polymerase transcription 

vector and in vitro transcribed in the presence and absence of biotin-labeled dUTPs. The 

integrity of the mRNA was assessed using a Bioanalyzer and is displayed as a 

chromatogram. Completely processed transcripts are indicated (*).   

 

 

 

Fig. 9: The integration of biotin-labeled UTPs had no influence on mRNA stability or 

translation efficiency. Labeled or unlabeled mRNA of GFP was transfected into HeLa 

cells. The signal intensity was assessed by FACS analysis 48 h following transfection. The 

data are displayed as histograms with the indicated cell numbers representing different 

magnitudes of signal intensity.  

 

5.2.1 MicroRNA Let-7 co-immunoprecipitated with NRAS 
 

To verify a co-precipitation of associated microRNAs with a labeled mRNA, the published 

interaction between the oncogene NRAS and the microRNA Let-7 (166, 187) was used as a 
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positive control in a proof of principle. Two variants of NRAS were cloned and transcribed, 

one of which contained the coding sequence and the 3´ UTR including three predicted 

binding sites for Let-7 (Fig. 10), whereas the other contained only the coding sequence 

without the 3´ UTR and therefore served as a negative control.  

 

 

 

Fig. 10: MicroRNA Let-7 was predicted to bind to the 3´ UTR of the oncogene NRAS. 

According to Johnson et al. (166), the mRNA of NRAS harbors three active binding sites 

for the microRNA Let-7, located in the 3´ UTR, downstream of the coding sequence of the 

oncogene. The predicted Watson-Crick base bindings of Let-7 and NRAS are displayed.    

 

Both transcripts were transfected into HeLa cells, predetermined to express microRNA 

Let-7, and rescued after 24 h using avidin-linked agarose beads. Both constructs were 

successfully extracted from the cell lysates at similar amounts as demonstrated by 

quantitative real-time PCR (Fig. 11), whereas avidin beads incubated with a lysate from 

untreated cells failed to isolate NRAS. Quantitative real-time PCR of microRNA Let-7 

following microRNA co-precipitation resulted in a significantly higher signal in the full-

length NRAS mRNA rescue compared to the ORF control. 
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Fig. 11: MicroRNA Let-7 could be specifically co-precipitated with full-length NRAS 

mRNA. Following transfection of the labeled full-length NRAS mRNA (NRAS-Full) or the 

control lacking the 3´ UTR (NRAS-ORF), constructs were purified after 24 h. The amount 

of isolated NRAS mRNA, its associated microRNA Let-7 or unspecifically bound sn-U6 

was determined by qRT-PCR. The results are displayed as Ct-values following 

amplification.  

 

Quantification of the isolated microRNA, precipitated by the NRAS full-length mRNA, 

resulted in a 7.6-fold increased amount of Let-7 after normalization to the purified amount 

of NRAS (p < 0.05; Fig. 12A). To exclude the effect of altered unspecific binding capacity 

based on longer bait molecules or breakage products, unspecific bound small nuclear RNA 

U6 (sn-U6) was used for normalization in parallel. At low-level, unspecific precipitation of 

sn-U6 was found for both constructs (Fig. 11). However, no specific enrichment of sn-U6 

could be detected in one of the variants. Normalizing the enriched microRNA Let-7 to 

sn-U6 or NRAS revealed comparable results (Fig. 12B). In this proof-of-principle 

experiment, the novel precipitation technique was able to specifically enrich microRNA 

Let-7 binding to NRAS at a significant amount above the background. 
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A      B 

       

Figure 12: Normalizing the level of specific enriched microRNA Let-7 revealed a 

signal intensity significantly above the background. (A) Quantification of co-

precipitated Let-7 normalized to the amount of isolated NRAS. (B) Quantification of 

isolated Let-7 normalized to the sn-U6. P-values < 0.05 are indicated (*).  

 

5.2.2 MicroRNA miR-335 bound to ID4 mRNA  
 

The influence of a specific microRNA on the expression of ID4 could not be detected by 

standard protein analysis, since there was no antibody available that showed adequate 

sensitivity to quantify endogenous ID4 protein. Therefore, the microRNA co-precipitation 

technique was used to verify its part in the regulatory network involving miR-203 and 

miR-335. Both microRNAs are predicted to bind to the 3´ UTR of ID4 (Fig. 3) and were 

expressed in HeLa cells (Fig. 4).   

The full-length mRNA of ID4 was transcribed in the presence of biotin-labeled UTPs. In 

parallel, a truncated ID4 mRNA lacking the complete 3´ UTR sequence served as a 

negative control. The transcripts were transfected into HeLa cells and extracted from cell 

lysates using avidin-linked agarose-beads. After co-precipitation of labeled ID4, the 

amount of co-purified microRNAs was quantified. The sn-U6 and microRNA Let-7 were 

used as controls for unspecific binding of small RNAs. After normalizing the data of each 

microRNA to the negative control precipitation (ID4-ORF), the signal intensity was 

compared to both control RNAs (Fig. 13). Here, miR-335 was particularly enriched by co-

precipitation with the full-length ID4 transcript, whereas miR-203 had signal intensities 

comparable to the two control RNAs (Let-7 and sn-U6). The enrichment of miR-335 

reached statistical significance (p < 0.05) in comparison to sn-U6 (2.3-fold) and microRNA 
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Let-7 (2.6-fold), clearly suggesting an interaction with the ID4 3´ UTR in the cellular 

system.  

 

 

Fig. 13: MicroRNA miR-335 specifically bound to the 3´ UTR of ID4. Quantification of 

selected microRNAs and controls after precipitation of labeled ID4 mRNA. The signal was 

normalized to a truncated negative control transcript lacking the 3´ UTR (ID4-ORF) and is 

displayed relative to sn-U6. P-values < 0.05 are indicated (*). 

 

For validation, the full-length mRNA of ID4 was overexpressed in MCF7 cells in the 

presence of antisense oligonucleotides directed against miR-335. ID4 protein expression 

was detected by Western blot analysis followed by quantification of the band density 

(Fig. 14). According to the previous experiments, the expression of ID4 could be increased 

when endogenous microRNA miR-335 was blocked. The specificity was approved by co-

transfection experiments using an ID4-ORF control plasmid. As expected, no increased 

expression was detected for the negative control, suggesting that the post-translational 

regulation is specifically mediated through elements in the 3´ UTR of ID4. 
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Fig. 14: Inhibition of miR-335 increased levels of exogenously expressed ID4. Western 

blot analysis after co-transfection of full-length (ID4-Full) or control (ID4-ORF) ID4 

expressing plasmids with antisense oligonucleotides inhibiting endogenous miR-335 (+) or 

control molecules (-). A representative immunoreaction is displayed for ID4 and ß-actin. 

The ratios represent the level of the differential expression of ID4 after transfection with 

anti-miR-335 or control molecules. Ratios are mean values normalized to ß-actin.  

 

 

5.3 Reporter assays demonstrated direct microRNA:target 
interaction 

 

To further validate the impact of the microRNAs miR-203 and miR-335 on the expression 

of the single components in the regulatory cascade of BRCA1, reporter assays were 

performed. The luciferase reporter system enabled the identification of direct 

microRNA:mRNA interactions and allowed the identification of active MREs in the genes 

of interest. Therefore 500 bp-fragments flanking the microRNA binding sites in the 

3´ UTRs of ESR1, AhR, IGF1R, SP1, and ID4 were amplified and cloned downstream of 

the luciferase reporter gene. Here, overexpression of miR-203 led to a significant 

decreased luciferase expression of AhR (-12%), IGF1R (-10%), and SP1 (-15%) reporter 

constructs in HEK293 cells (Fig. 15A). For 3´ UTRs harboring more than one MRE, the 

most active site is displayed. The reporter activity of ESR1 and ID4 reporter plasmids were 

unaffected by the microRNA miR-203. Following overexpression of miR-335, the ESR1 

(-20%), IGF1R (-18%), and SP1 (-18%) reporter constructs exhibited reduced luciferase 
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expression (Fig. 15B). In contrast to previous results the ID4 reporter plasmid activity 

remained unchanged after co-expression of the miR-335.  

 

A                B 

        

 

Fig. 15: Overexpression of miR-203 and miR-335 led a decreased reporter gene 

activity. Luciferase assays following co-transfection of mature microRNA miR-203 (A) or 

miR-335 (B) and reporter constructs harboring the respective microRNA target sites of 

ESR1, AhR, IGF1R, SP1, and ID4. The results represent mean values normalized to 

control-miR transfected cells and are displayed relative to a control plasmid lacking MREs. 

P-values < 0.05 (compared with control transfections) are indicated (*). 

 

 

5.4 The microRNAs miR-203 and miR-335 influenced the expression 
of BRCA1 

 

AhR, ERα, IGF1R and SP1 were all known regulators of the breast cancer susceptibility 

gene BRCA1. To determine the influence of miR-203 and miR-335 on BRCA1, the 

endogenous expression was assessed following transfection of MCF7 cells with mature 

microRNAs. Since the regulation of BRCA1 is a secondary target effect of the microRNA 

activity, expression was analyzed up to 72 h after transfection. Due to the apoptosis-

inducing effect of miR-335, the expression level was measured after 24 h and 48 h 

following transfection. Whereas overexpression of miR-203 led to an approximately 50% 

decreased expression of BRCA1 (Fig 16A), miR-335 caused a profound upregulation of the 

cancer susceptibility gene, reaching a maximum of approximately 3-fold (Fig. 16B) 
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A          B 

  

Fig. 16: The microRNAs miR-203 and miR-335 had an impact on the expression of 

BRCA1. The endogenous expression level of BRCA1 was quantified by qRT-PCR at 

indicated time points following overexpression of the microRNA miR-203 (A) and miR-

335 (B). The results represent the absolute expression levels normalized to GAPDH. 

P-values < 0.05 (compared with control transfections) are indicated (*). 

 

 

5.5 MiR-203 and miR-335 influenced cellular behavior and fate 

 

Since the previously identified targets of the microRNA miR-203 and miR-335 were all 

involved in important cellular mechanisms like growth, apoptosis and the regulation of the 

tumor susceptibility gene BRCA1, the effects of overexpressing both microRNAs in MCF7 

or the BRCA1 deficient cell line HCC1937 cells were analyzed. Two days after transfection 

with mature microRNAs, both cell lines were phenotypically changed compared to the 

control-miR transfections.  

 

5.5.1 MiR-203 induced apoptosis and decelerated growth  

 

MCF7 cells overexpressing miR-203 rounded up, without losing attachment to the well 

surface. Detailed analysis revealed a reduction of cell viability to 63% and 71%, on day 

three following overexpression of miR-203 in MCF7 or HCC1937 cells, respectively 

(Fig. 17A). In the case of HCC1937 cells, this could be traced back to an increased rate of 
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apoptosis (186%), whereas the caspase activity in MCF7 cells only slightly increased to 

124% (Fig. 17B). Analysis of the cell cycle status of MCF7 cells overexpressing miR-203 

revealed a significantly (p > 0.05) increased amount of cells in the G0/G1 phase (65%) 

compared to the control (57%) (Fig. 17C), suggesting a reduced proliferation rate due to a 

decelerated cell cycle.  

  

A          B    

    

C       

 

 

Fig. 17: Overexpression of miR-203 resulted in decreased cell viability, increased 

apoptosis or decelerated cell cycle. (A) The viability of MCF7 and HCC1937 cells was 

determined up to three days following overexpression of miR-203. The data were assessed 

using the WST-1 assay and are displayed relative to control-miR transfected cells. (B) The 

induction of apoptosis was determined by quantification of the caspase 3 and 7 activities 

up to three days after transfection of mature miR-203 in MCF7 and HCC1937 cells. Data 

are normalized to the cell number and are displayed relative to control-miR transfected 
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cells. (C) The cell cycle status was determined in MCF7 cells overexpressing miR-203 

after 48 h. The cell cycle phases and the apoptotic fraction (Sub-G0) of transfected cells 

were determined by FACS analysis following propidium iodide staining and are displayed 

relative to control-miR transfected cells. Significance was determined by comparison to 

control transfected cells. P-values < 0.05 are indicated (*). 

 

5.5.2 MiR-335 induced apoptosis in cancer cells 
 

Cells overexpressing miR-335 showed distinct signs of cell death (Fig. 18). 

Overexpressing miR-335 reduced the viability to 35% for MCF7 and to 53% for HCC1937 

cells on day three following transfection (Fig. 19A). This was accompanied by a maximum 

caspase activity of 350% and 298% respectively compared to control-miR treated cells 

(Fig. 19B). These results were verified by FACS analysis following propidium iodide 

staining, showing a significantly higher amount of fragmented DNA (22% in sub-G0 

fraction) of MCF7 cells overexpressing miR-335 compared to control transfected cells 

(4%) (Fig. 19C). These results were accompanied by a simultaneously decreasing G2/M 

fraction (23% vs. 9%). 

 

A     B 

         

 

Fig. 18: Overexpression of miR-335 phenotypically changed the MCF7 cells. 

Displayed are MCF7 cells 48 h following transfection of mature microRNA miR-335 (A) 

or control-miR (B), visualized by light microscope with a 20-fold magnification.  
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A         B 

   
 

C       

 

 

Fig. 19: Overexpression of miR-335 resulted in decreased cell viability, increased 

apoptosis and DNA fragmentation. (A) The viability of MCF7 and HCC1937 cells was 

determined up to three days following overexpression of miR-335. Data were assessed 

using the WST-1 assay and are displayed relative to control-miR transfected cells. (B) The 

induction of apoptosis was determined by quantification of the caspase 3 and 7 activities 

up to three days after transfection of mature miR-335 in MCF7 and HCC1937 cells. Data 

are normalized to the cell number and are displayed relative to control-miR transfected 

cells. (C) The cell cycle status was determined in MCF7 cells overexpressing miR-335 

after 48 h. The cell cycle phases and the apoptotic fraction (Sub-G0) of transfected cells 

were determined by FACS analysis following propidium iodide staining and are displayed 

relative to control-miR transfected cells. Significance was determined by comparison to 

control transfected cells. P-values < 0.05 are indicated (*). 
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5.6 MicroRNA miR-203 and miR-335 expressions were altered in 
human sporadic breast cancer 

 

To validate the relevance of the microRNAs for breast cancer development or progression, 

primary breast cancer samples were analyzed for the expression of both microRNAs. 27 

ductal invasive breast tumor samples from postmenopausal breast cancer patients were 

used in this study and considered as sporadic. Normal breast tissues from seven women 

undergoing breast-reducing surgery served as controls. To enhance the specificity of the 

study, ductal cells from normal breast tissues and tumor cells from breast cancer samples 

with a tumor fraction lower than 80% were isolated using laser capture microdissection 

prior to RNA extraction. The microRNA expression levels were determined by qRT-PCR. 

Comparing tumor samples and normal breast tissues, expression data for the miR-203 

could be divided into two subgroups, with the first showing a significantly lower 

microRNA expression (-58%) compared to the normal tissue and the second a 5-fold 

increased median transcript level (Fig. 20A). The median miR-335 expression was 

significantly decreased in the cancer specimens by approximately 3-fold (Fig. 20B). 

 

A             B 

           

 

Fig. 20: Analysis of sporadic breast cancer revealed an altered expression of miR-203 

and miR-335. Expression of microRNA miR-203 (A) and miR-335 (B) in normal breast 

tissue (n=7) and sporadic human breast cancer samples (n=27) were analyzed by qRT-PCR 

and normalized to sn-U6. Results are displayed as a box-plot. P-values < 0.05 (compared 

with control specimens) are indicated (*). 
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The expression data of both microRNAs were further analyzed for a potential correlation 

with certain clinical features. The presence or absence of the estrogen and progesterone 

receptor is routinely detected in cancer samples. The expression level of Her-2 was scored 

ranging from 0 to 3. The metastatic potential of the tumor was studied by checking the 

distinct lymph nodes of the patients. These data, when available, were correlated to the 

expression levels of miR-203 and miR-335. For miR-203, the features were compared 

between tumors representing the high (n = 10) or low (n = 13) expressing subgroup 

(Tab. 3). Here, tumors expressing low levels of miR-203 revealed a tendency to form 

lymph node metastasis (11/13, 85%) and to express the ER (10/14, 71%). Tumors with 

increased levels of miR-203 showed a reduced expression of the progesterone receptor 

(2/7, 22%) and higher levels (approximately 2-fold) of Her-2 compared to the other 

subgroup. No correlation could be detected between the microRNA expression and the age 

of the patient.  

To correlate the expression of miR-335 to the clinical features, tumors with low expression 

of the microRNA (n = 20) were compared with tumors showing similar expression levels 

as the control specimen (n = 7) (Tab. 4). Cancer samples showing high levels of miR-335 

were associated with a positive expression of the estrogen receptor (7/7, 100%), whereas 

the tumors expressing miR-335 at decreased levels had a positive ER signal only in 50% of 

the specimens. Tumors with low amounts of the miR-335 transcript revealed slightly 

decreasing amounts of the progesterone receptor. The other features (age, Her-2 status and 

occurrence of metastasis) showed no correlation to the microRNA expression.  

 

Tab. 3: Expression levels of miR-203 correlated with diverse clinical features. The 

expression level of miR-203 was assigned to the routinely detected features of age, 

occurrence of lymph node metastasis, estrogen (ER) and progesterone (PR) receptor and 

Her-2 status.  
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Tab. 4: Low levels of miR-335 were associated with decreased progesterone and 

estrogen receptor status.  The expression level of miR-335 was assigned to the routinely 

detected features of age, occurrence of lymph node metastasis, estrogen (ER) and 

progesterone (PR) receptor and Her-2 status.  

 

  

 

 

Following quantification of BRCA1 expression, the transcript amounts were correlated to 

the level of miR-203 and miR-335. For miR-335, a significant positive correlation (0.35; 

p < 0.05) between both transcript levels was found (Fig. 21), supporting a regulatory 

pathway of BRCA1 that involves miR-335. In contrast, no correlation could be detected 

between the expression levels of BRCA1 and the level of miR-203 (data not shown).   

 

 

 

Fig. 21: Expression levels of miR-335 and BRCA1 correlated positively. Both 

expression levels were determined for primary breast samples (n=30) by qRT-PCR and 

compared using Pearson`s correlation. The tested parameters revealed a significant positive 

correlation (0.35; p < 0.05), displayed by a regression line.   
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5.7 ID4 revealed a crucial function in the microRNA-dependent 
network 

 

To identify the role of ID4 in the regulatory network involving microRNAs, growth factors 

and suppressor genes, functional assays were performed in a cell culture model. Therefore, 

simultaneous overexpression of the microRNAs and ID4 was performed in MCF7 cells. 

The expression plasmid used, solely contained the coding sequence for ID4 without its 

3´ UTR to avoid any influence by the microRNA activity. Transfection setups using 

miR-control oligonucleotides and an empty expression plasmid served as control 

experiments. As previously shown, overexpression of the microRNA in the absence of ID4 

led to a dramatic decrease in cell viability (compare Fig. 19). On day three after 

transfection, the relative viability of miR-335-transfected cells decreased to 57% (Fig. 22). 

Overexpression of ID4 in the absence of active microRNAs had rather a promoting effect 

on cell proliferation. Co-expressing ID4 along with the microRNA revealed a complete 

interruption of the microRNA-mediated effects. Co-expression of ID4 and miR-335 led to 

a relative viability of 106 % compared to the controls.     

 

 

Fig. 22: Overexpression of ID4 rescued the microRNA-mediated effect. The viability 

of MCF7 cells overexpressing miR-335 in the absence or presence of ID4 was assessed by 

WST-1 assay for three days and is displayed relative to control-miR/control-vector 

transfected cells. 

 

Since ID4 could rescue the effect of miR-335, its function on the cellular fate was further 

analyzed. In an attempt to mimic the microRNA-mediated knockdown of ID4, an siRNA-
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mediated knockdown was performed. Again, MCF7 cells were used to assess the relevance 

of the abolished ID4 expression in a viability assay. To enhance the efficiency of the 

siRNA-mediated knockdown, a surface marker was co-transfected in the reaction. Marker-

positive cells were enriched using a magnetic bead-based selection system and subcultured 

for eight days. The specificity of the selection was controlled by FACS analysis of the final 

cell suspension. The knockdown efficiency was assessed by determining the ID4 

expression in selected cells. Two siRNAs (#1 and #3) revealed a significant knockdown of 

the ID4 transcript level by 69% and 52%, respectively (Fig. 23A). Furthermore, the 

knockdown led to a decreased cell proliferation of MCF7 cells of 36% (#1) and 28% (#3) 

(Fig. 23B). Notably, the siRNA with the higher knockdown efficiency led to a more 

profound effect on cancer cell growth. No phenotypical changes of the transfected cells 

could be detected.  

 

A      B 

       

Fig. 23: The knockdown of ID4 resulted in decreased cancer cell proliferation. 

(A) The siRNA-mediated knockdown of ID4 was supported by a bead-based selection 

system to enhance the efficiency, which was analyzed by qRT-PCR on day two after 

transfection. The results are displayed relative to control-siRNA transfected cells. (B) The 

impact of the knockdown on cell proliferation was determined by the WST-1 assay up to 

eight days after selection. The data are presented relative to control-siRNA transfected 

cells. 

 

As previously proven for the microRNAs, the relevance of the ID4 function for breast 

cancer development was studied in primary breast cancer samples. Furthermore, the 

influence of miR-335 on ID4 was determined by correlating the expression levels, 

extending the study from the cell culture model to primary tumor specimens. The ID4 
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expression was determined on both the transcript and protein levels. The amount of ID4 

transcript was assessed by qRT-PCR after RNA isolation from fresh frozen tumor samples 

enriched by microdissection. The protein level was determined in a previous work by 

S. Außenhofer using immunohistochemistry performed on formalin-fixed paraffin-

embedded samples (188). The protein data are displayed in this study to underline the 

importance of post-transcriptional mechanisms for the regulation of ID4. According to the 

previously identified microRNA-mediated regulation of ID4, human breast cancer samples 

showed a significant decrease in ID4 transcripts (p < 0.05), while the ID4 protein 

expression increased significantly (p < 0.05), when compared to normal breast epithelial 

cells (Fig. 24A and 24B). The biological relevance of the microRNA miR-335 on the ID4 

RNA expression was validated by detecting a significant (p < 0.05) inverse correlation 

(-0.42) between both expression levels in the cancer samples (Fig. 25). Since the ID4 

protein expression data were assessed for different tumor samples, no direct correlation 

analysis could be performed.    

 

   A             B 

             

 

Fig. 24: High discrepancy of ID4 expression on the RNA and protein levels. (A) ID4 

mRNA expression analysis in normal control tissues (n=8) and tumor samples (n=36) 

assessed by qRT-PCR. Relative expression was determined by normalizing ID4 expression 

to GAPDH and is displayed as a box plot. * p < 0.05 (compared with control specimens). 

(B) Immunohistochemical staining of normal control breast tissues (n=15) or tumor 

samples (n=30) using anti-human ID4 antibody. The ID4 protein expression was 

determined by counting the expression of 100 nuclei and is displayed as a box plot. 

P-values < 0.05 (compared with control specimens) are indicated (*). 
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Fig. 25: The expression level of miR-335 inversely correlated with the transcript level 

of ID4. Both expression levels were determined for sporadic breast cancer samples by 

qRT-PCR and compared using Pearson`s correlation. The two features revealed a 

significant negative correlation (-0.42; p < 0.05) displayed by a regression line.   

 

 

5.8 The promoter regions of miR-203 and miR-335 harbored 
different regulatory elements 

To determine transcriptional regulators of both microRNAs, the sequence 2000 bp 

upstream of the transcription start was analyzed using PROMO software (189). Both 

microRNAs revealed multiple regulatory elements, such as binding sites for SP1 and ERα 

(Fig. 26, 33A and 33B). To determine regions prone to epigenetic modification the CpG 

island searcher software was used (190). Here, miR-203 revealed a CpG island spanning its 

proximal promoter region (Fig. 26).  

 

5.8.1 The transcription factor SP1 regulated the expression of 
miR-203 

 

Bioinformatic analysis of the promoter region of microRNA miR-203 detected a binding 

motif for the transcription factor SP1 (5`-GGGGCGGGG-3`) 489 bp upstream to the 

transcription start (Fig. 26). This element is embedded in a CpG island spanning from 

position -685 to -55 in the promoter region.  
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Fig. 26: Regulatory elements mapped to the proximal region of miR-203. The specific 

binding element for the transcription factor SP1 was located upstream of the transcription 

start of microRNA miR-203. A 630 bp fragment spanning the SP1 binding site was 

predicted to be sensitive to epigenetic modification through CpG methylation. A 

methylation-specific PCR with indicated primer locations (arrows) was performed to 

identify base modifications within the regulatory region of miR-203.   

 

To validate the relevance of the predicted regulating elements in the promoter region of 

miR-203, cancer cell lines with differing expression levels of miR-203 (scoring according 

to 5.1), but similar protein amounts of SP1 were identified (Fig. 27). Interestingly, SP1 

seemed to be ubiquitously expressed within any cell line with only slight variations, 

whereas the miR-203 expression is highly diverse. Cell lines presenting higher levels of 

SP1 showed the tendency to express increased amounts of miR-203. To evaluate the 

influence of epigenetic modifications in the form of CpG methylation, four cell lines were 

selected with high, moderate or low expression of miR-203 but similar SP1 levels and 

analyzed for their methylation status by a methylation-specific PCR (MSP) (Fig. 28). Here, 

the expression level of miR-203 correlated positively with the event of CpG methylation. 

MCF7 and HeLa cells showing high or moderate expression of the microRNA revealed a 

hypomethylated promoter region, whereas the CpG islands of cell lines with low 

expression levels (PA-1 or MiaPaCa2) were hypermethylated.  

To identify the impact of the methylation status on miR-203 expression, the cell lines were 

treated with the demethylating reagent 5-Aza-2´-deoxycytidine (5-Aza). In MiaPaCa2 and 

PA-1 cells, the hypermethylation could be partly reversed following treatment with 2 µM 

5-Aza for 3 days (Fig. 28). In parallel, the level of miR-203 was increased 94-fold or 

33-fold for MiaPaCa2 and PA-1 cells, respectively, suggesting that the methylation status 
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may influence the microRNA expression (Fig. 29). In both cell lines harboring a 

hypomethylated promoter region of miR-203 (MCF-7, HeLa), treatment with 5-Aza had no 

effect on CpG methylation and only a weak influence (approximately 2-fold) on the 

expression level of the microRNA.  

 

 

 

Fig. 27: The transcription factor SP1 was ubiquitously expressed in all cell lines. The 

endogenous protein amount of SP1 was identified in total cell lysates for the indicated cell 

lines by Western blotting. Displayed here is the specific band for SP1. All samples were 

loaded at similar total protein amounts. The expression of miR-203 is assigned to three 

subgroups representing high, moderate or low levels of the microRNA transcript.  

 

 

 

Fig. 28: The promoter of miR-203 revealed a varying methylation status in different 

cell lines. The genomic DNA of the cell lines MCF7, HeLa, PA-1 and MiaPaCa2 was 

analyzed for CpG methylation in the promoter region of miR-203. MSP analyses were 

performed for untreated (- 5-AZA) cells and cells treated (+ 5-AZA) with the 

demethylating reagent 5-Aza. Methylation- (M) and unmethylation- (U) specific PCR 

reactions are separated in individual columns as indicated.   
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Fig. 29: Expression of miR-203 was dependent on the methylation status. The 

expression level of miR-203 was assessed by qRT-PCR in MCF7, HeLa, PA-1 and 

MiaPaCa2 cells following treatment with 2 µM 5-Aza for three days. The amounts of the 

mature microRNA are normalized to sn-U6 and displayed relative to untreated control 

cells.  

 

According to previous results, the cell line MCF7 was chosen to clarify significance of the 

SP1-mediated regulation of miR-203. The breast cancer cells revealed an unmethylated 

promoter region and high levels of miR-203 and therefore was an adequate model in which 

to study the influence of the transcription factor, predicted to bind to the proximal 

promoter region. The impact of varying levels of SP1 on the transcription efficiency of 

miR-203 was assayed using an siRNA-mediated knockdown approach. The expression of 

miR-203 was assessed two days following transfection by qRT-PCR. Transfection of 

MCF7 cells with a specific siRNA directed against SP1 forced a reduced expression of 

52%, presenting an adequate approach to study the effects of the transcription factor 

(Fig. 30A). According to the proposed model, siRNA-mediated knockdown diminished the 

expression of miR-203 by 23%, revealing a positive correlation between the expression of 

the microRNA and its transcription factor (Fig. 30B).  

 

 

 

 

 

 

 



 Results  

63 

 

A      B 

 

Fig. 30: The transcription factor SP1 regulated the expression of miR-203. (A) The 

transcript amounts of SP1 were determined following siRNA-mediated knockdown 

(+/- siRNA SP1) of the gene. Expression levels were analyzed two days after transfection 

by qRT-PCR, normalized to GAPDH and displayed relative to control transfected cells. 

(B) Expression of miR-203 was determined 48 h after knockdown (+/- siRNA SP1) of the 

transcription factor SP1. Expression was quantified using qRT-PCR, normalized to sn-U6 

and is presented relative to control transfected cells. P-values < 0.05 (compared with 

control transfections) are indicated (*). 

 

To establish the correlation of SP1 and miR-203 and to prove its biological relevance, 

primary tumor samples were analyzed for the expression of the transcriptional activator 

SP1. Since SP1 was previously identified as a target of post-transcriptional regulation, the 

expression level was detected on the transcript and protein levels. Comparing the SP1 

mRNA levels in cancer samples and normal breast tissue, no difference could be detected 

between the two cohorts (Fig. 31A). Protein analysis of total tumor cell lysates by Western 

blotting revealed samples with increased protein levels of SP1 in cancer specimens 

compared to control samples (Fig. 31B). To clarify the connection between SP1 as a 

transcriptional activator of miR-203, both expression levels were correlated. Here, no 

significant correlation could be detected (data not shown). Although, no correlation 

between the protein amount of SP1 and its post-transcriptional regulator miR-335 could be 

identified, there was a 1.6-fold higher median expression level of the microRNA in 

samples with low SP1 expression (n = 12), compared to samples with a high amount of 

SP1 (n = 10).  
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Fig. 31: Protein expression of SP1 was increased in sporadic breast cancer. 

(A) Primary sporadic breast cancer samples were analyzed for their expression level of 

SP1 on the mRNA level. The amount of SP1 transcript was determined by qRT-PCR and 

normalized to GAPDH. Results are displayed as a box plot for normal control breast 

tissues (n = 8) or tumor samples (n = 35). (B) Primary sporadic breast cancer samples were 

analyzed for their expression level of SP1 on the protein level. The amount of protein was 

determined by Western blotting and normalized to ß-actin. Results are displayed as a box 

plot for normal control breast tissues (n = 7) or tumor samples (n = 12).  

 

Finding no direct correlation between the expression of miR-203 and its potential 

transcription factor SP1, the identified epigenetic regulation mechanism was analyzed in 

primary breast tumor samples. The regulating effect mediated by epigenetic modifications 

was analyzed by MSP. Therefore, a number of samples showing high (n = 3) or low 

(n = 11) miR-203 expression (according to 5.6) and normal breast epithelial cells (n = 2) 

were studied for CpG methylation in the promoter region. Here, one tumor sample (CA #1) 

with normal SP1 protein level (compared to the healthy control) showed a heterozygous 

methylation of the promoter region of miR-203 (Fig. 32). Conversely, this was 

accompanied by decreased levels of microRNA miR-203 expression compared to the 

control sample. The other tumors (e.g. CA #2,3) with reduced or high expression of the 

microRNA, as well as the normal tissue, showed no detectable methylation of the miR-203 

promoter region, indicating the absence of a methylation mediated regulation of the 

microRNA in these samples.     
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Fig. 32: Epigenetic modifications altered miR-203 expression in breast tumors. 

Selected tumors were analyzed for the promoter methylation status by MSP. Displayed 

here is the MSP result of three tumors (CA) compared to one representative healthy 

control. The expression values for SP1 protein and the miR-203 for all samples are 

displayed as normalized absolute values. U = unmethylated, M = methylated 

 

5.8.2 The expression of miR-203 and miR-335 was induced by 
estrogen 

 

Bioinformatic analysis of the promoter region of microRNA miR-203 identified two 

binding sites (-1192, -1039) for ERα (Fig. 33A). The promoter region of miR-335 contains 

seven predicted binding sites for the estrogen receptor α located 5´ to the transcription start 

(-1727, -1458, -1431, -885, -552, -149) (Fig. 33B). The influence of estrogen for the 

expression of both microRNAs was assessed following estrogen stimulation of serum-

starved MCF7 cells for 24 h. Both microRNAs demonstrated an increase of expression to 

231% (miR-203) and 191% (miR-335) after estrogen-stimulation (Fig. 34).  
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Fig. 33: The promoter regions of miR-203 and miR-335 harbored potential ERα 

binding sites. Schematic overview of the promoter region and the coding sequence of 

miR-203 (A) and miR-335 (B). The putative binding sites of ERα are indicated with the 

exact location relative to transcription start site.  

 

 

 

Fig. 34: The expression of miR-203 and miR-335 is regulated by estrogen. Quantitative 

analysis of microRNA expression by qRT-PCR in serum-starved MCF7 cells 24 h after 

induction with 10 nM ß-estradiol (E2). Data were normalized to sn-U6 expression and are 

given relative to control ethanol-treated cells. 
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6 Discussion 
 

A biological network is more than the sum of its members. Analyzing the structure of a 

networking process, it is necessary to determine its members, their specific functions, 

connections and interactions. Subsequently, the single factors form a theoretical 

framework, predicting the processes and interactions within the machinery. However, the 

determination of the framework is only the beginning of a speculative input-output 

scenario without the demand of accuracy. As an example, associated with the network 

analyzed in this study, the interaction of the estrogen and the aryl hydrogen receptor 

perfectly illustrates the difficulties in analyzing closely connected cascades. Following 

binding of its specific ligand TCDD, AhR binds to liganded ERα. This interaction can 

exhibit an activating or repressing effect on the target gene expression depending on the 

current context. The activation of the CAD gene depends on the interaction of ERα with 

SP1 (191). Following ligand binding, AhR translocates to the nucleus, interacts with ERα, 

thereby disrupting the activator complex for CAD and inhibiting its expression. In this 

context, the AhR/ERα interaction represses gene transcription, whereas for another gene 

(CYP1A1), the same complex was shown to be essential for gene activation (192). In the 

regulation of BRCA1, unliganded AhR forms an activating complex with ERα, whereas 

ligand binding disrupts this formation, thereby leading to gene repression (80). This 

example demonstrates different outcomes following the interaction of only two proteins 

and their ligands. Considering the complex network regulating BRCA1, influences of 

single events are difficult to predict. Regarding the multiple factors involved in the 

regulation, it is likely to be prone to various aberrations causing destabilization of the 

homeostasis. Vice versa, diverse feedback mechanisms might protect the network and 

ensure its integrity.  

Considering the high number of cancer types associated with the single members of the 

network, multiple aberrations or misregulation of key factors might lead to cancer 

promotion or tumor progression. As detected for inherited breast cancers, disrupting the 

function of BRCA1 highly predisposes to cancer formation (19). BRCA1 represents a key 

factor in the network, since disruption of its function leads to a number of tumor-

promoting effects. First, BRCA1 performs a crucial function in the DNA repair mechanism 

via homologous recombination and decelerates the cell cycle of proliferating cells (5). 

Thus, BRCA1 favors an error-free replication cycle, guaranteeing genomic stability and 
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functions as a gate-keeper forcing apoptosis or cell cycle arrest of damaged cells (193). 

Second, BRCA1 indirectly serves as an anti-proliferative factor due to its repressive 

interaction with ERα (89) and SP1 (88), as well as its inhibition of IGF1R expression, 

blocking highly mitogenic pathways. Disrupting the function of BRCA1 therefore leads to 

destabilization of the genome by inhibiting a major checkpoint in DNA repair and to 

acceleration of cell growth by induction of mitogenic pathways. Germline mutations of 

BRCA1 result in a high predisposition to develop breast cancer due to an enhanced 

probability of a complete loss of function of the tumor suppressor through a second 

disruptive event. Although only few mutations of BRCA1 were detected in sporadic breast 

cancer (4), a misregulation of the gene was also confirmed in sporadic tumors (22). 

Hypermethylation of the promoter is one mechanism identified, but it only covers a small 

number of cases (27). Misregulation of activating factors therefore is a proposed model to 

explain the reduction of the tumor susceptibility gene. Regarding the high number of 

activators, a more specialized effect might be assigned to negative regulators of BRCA1. 

Accordingly, the only yet identified dominant inhibitor ID4 might act as a key molecule 

for the regulation of BRCA1 and the development of sporadic breast cancer (46). 

Considering the controversial results obtained from ID4 expression studies (35-44), a 

detailed analysis is also part of this study.  

Searching for other superordinated components of the regulating complex of BRCA1 and 

for breast cancer development, this study extended the traditional cohort of controlling 

molecules to the recent research field of small regulatory RNAs. Since microRNAs were 

identified as negative post-transcriptional regulators for multiple predicted target 

molecules, the effect of microRNAs was interesting for the question addressed in this 

study.  

A number of microRNAs were previously detected to be deregulated in sporadic breast 

cancers. A study comparing the expression profile of normal breast tissue with diverse 

breast tumor samples revealed miR-21 and miR-155 to be upregulated, whereas miR-10b, 

miR-125b and miR-145b were suppressed (177). This and other expression studies 

increased the insight into the initiation and progression of sporadic breast cancer and led to 

the identification of novel “oncomirs”, some specific to breast cancer, others previously 

described for different cancer types. Considering the tissue-specific background of the 

cancer origin, breast cancer “oncomirs” occasionally revealed varying functions compared 

to other tumor types. Here, one example is the microRNA gene cluster mir-17-92. As 

previously described, gene amplification and overexpression are associated with a number 
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of lymphomas and solid cancers. In contrast, in breast cancer specimens, loss-of-

heterozygosity was observed for the chromosomal region 13q31 harboring the cluster. As a 

potential target mediating the effect specific for breast cancer, the transcriptional co-

activator AIB1 was identified (194). AIB1 is involved in the regulatory functions of ERα 

and E2F (195). Reduced expression of AIB1 decreases estrogen-dependent and 

-independent cancer cell proliferation, suggesting AIB1 to be a potent mediator for tumor 

growth signals. Here, AIB1 represents one part of the tissue-specific background that 

mediates the function of the mir-17-92 cluster.  

Another microRNA that can be closely connected to hormone-dependent tissues like breast 

and ovarian cancer is miR-206. Initial expression studies revealed its increased expression 

in a subset of ER-negative tumor samples (177). Follow-up studies could validate the 

estrogen receptor as a direct target of miR-206 (196). The same study describes an 

estrogen-dependent miR-206 expression, suggesting a feedback loop in the regulatory 

pathway of the microRNA. Clinical significance was established showing an inverse 

correlation of miR-206 and the estrogen receptor in primary cancer samples (197). 

The microRNAs previously described are predominantly downregulated in sporadic breast 

cancer. Their assigned targets are frequently overexpressed in tumor samples and exhibit 

growth-promoting functions, indicating a tumor-suppressive effect of the associated 

microRNAs. In contrast, expression analysis of tumor samples and metastasis revealed 

other microRNAs with oncogenic function by suppressing potential tumor suppressor 

genes. For example, microRNA miR-21 is overexpressed in a range of tumors including 

breast tumors (198). Its function is associated with tumor growth and apoptosis. These 

oncogenic features could be elevated by studies validating the tumor suppressor genes 

TPM1 (199) and PDCD4 (200) as primary targets of miR-21. TPM1 suppresses anchored-

independent growth and is repressed in cancer cells derived from breast cancers. PDCD4 is 

a pro-apoptotic regulator suppressed in invasive carcinomas compared to normal tissues. 

The simultaneous repression of both factors by miR-21 and the previously described 

involvement in the p53 pathway suggests that this microRNA is important for cancer 

formation not only in breast tissue. 

In breast cancer, the development of metastasis is a crucial prognostic marker. Here, 

microRNAs were proven to contribute to the spreading of cancer cells. Mir-10a, initially 

shown to be downregulated in breast cancer specimens, seems to exhibit prometastatic 

features in a later stage of tumor progression. Functional analysis of miR-10a identified its 

promotion of tumor invasion and formation of metastasis following overexpression (154). 
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As a primary target, the transcription factor HOXD10 was identified, which is part of a 

signaling cascade leading to the activation of RHOC, a pro-metastatic gene. Additional 

microRNAs linked to the formation of metastasis were detected by comparing highly 

metastatic tumor cells to unselected controls. Microarray analysis revealed a reduced 

expression of miR-335, miR-206 and miR-126 in metastatic cells (201). Conversely, 

restoration of the microRNA expression converted the phenotype.  

This study focuses on the impact of an altered microRNA expression on breast cancer 

development by deregulating the network controlling the BRCA1. As previously shown for 

the regulation of the oncogene Ras, a single microRNA can control entire pathways by 

regulating multiple key factors of the cascade (187). Hence, one might hypothesize that 

one or more microRNAs can exhibit superior regulating function by controlling multiple or 

key molecules in the initiation complex of BRCA1 or the tumor suppressor itself. A very 

straight-forward study, screening mutations in microRNAs regulating key molecules for 

breast cancer tumorigenesis, identified post-transcriptional regulation of BRCA1 by miR-

17 and gives a first example of microRNA regulation in this context (202). The aim of this 

study was to establish microRNAs controlling multiple factors in the regulatory complex 

of BRCA1. As key components of the complex associated with cancer formation, the 

hormone receptors ERα, AhR and IGF1R, the transcription factor SP1 and the dominant 

inhibitor ID4 were analyzed in this study.  

In previous studies, some of these factors were already identified as targets of microRNA 

deregulation with a connection to cancer formation. The estrogen receptor was shown to be 

regulated by a number of microRNAs in different types of cancer. Here, miR-221 and 

miR-222 were determined to be overexpressed in breast tumors and cell lines with reduced 

ERα expression and were further validated to directly bind to the 3´ UTR of the receptor 

(203). Conversely, an overexpression of the microRNAs resulted in resistance to tamoxifen 

treatment, while blocking the microRNAs had the opposite effect. Another study revealed 

miR-18a as a regulator of ERα in HCC samples (204). An increasing level of miR-18a 

inversely correlated with reduced amounts of the receptor in tumor tissues. Furthermore, 

Adams and colleagues determined miR-206 to negatively control the estrogen receptor in 

breast cancer cell lines (196). These results were extended by studying the microRNA 

expression in breast tumor samples (197). Here, miR-206 and ERα revealed an inverse 

correlation, suggesting functionality of the microRNA for tumor formation. Interestingly, 

Sun and colleagues determined miR-22 as a negative regulator of ERα and SP1 (205), 

underlining the hypothesized superior function of microRNAs analyzed in this study. For 
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the remaining components of the BRCA1 regulating complex, no direct interaction with a 

microRNA has yet been described. However, molecules up- and downstream of the factors 

are affected. MicroRNA miR-27b was identified to control the expression of CYP1B1, an 

oncogenic enzyme activated by AhR (206). In concordance with this, an increased 

CYP1B1 level revealed an inverse correlation with a reduced amount of miR-27b in breast 

cancer samples. SP1 also represents a target of indirect microRNA regulation, since 

miR-27a alters the expression of the SP1 repressor ZBTB10 (207).  

In this study, the influence of microRNAs on the expression of multiple targets in the 

upstream cascade regulating BRCA1 was analyzed. Therefore, prediction algorithms were 

used to identify microRNAs likely to bind to the 3´ UTRs of SP1, AhR, ESR1, IGF1R, and 

ID4. This bioinformatic analysis detected miR-203 targeting all five molecules involved in 

the study. Furthermore, miR-335 is predicted to control four out of the five targets, 

favoring a good probability that both microRNAs hold a key position in the network. Both 

microRNAs were previously connected to diverse cancer types including sporadic breast 

cancer. Controversially, published expression studies of miR-203 indicate different 

functional consequences of an altered miR-203 expression profile depending on the tissue 

context. Whereas overexpression of miR-203 was detected in bladder cancer (208) and 

colon adenocarcinomas (209), another study revealed a reduced expression in oral 

squamous cell carcinoma cell lines (210). Studies supporting the tumor-suppressive 

function of the microRNA detected an increased cell growth of lung cancer cells following 

miR-203 inhibition (211) and a reduced proliferation rate after its overexpression in 

hematopoietic cancer cells (212). The latter was associated with a reduction of oncogenic 

ABL1 or BCR/ABL1. For skin cell differentiation, miR-203 was shown to repress 

“stemness” of basal cells by inhibiting p63, a crucial factor for stem-cell maintenance 

(213). In summary, miR-203 function is predominantly associated with tumor-suppressive 

features, as it reduces cell proliferation and expression of oncogenes and favors 

differentiation. Since it is overexpressed or repressed in different cancer types, a tissue-

dependent function cannot be excluded.  

Previous studies analyzing the function of miR-335 also detected a suppressive effect of 

this microRNA for tumor formation. Interestingly, this was predominantly observed in 

cancer cells derived from hormone-dependent tissues. Here, miR-335 lacking tumors are 

prone to exhibit metastasis (214) or drug resistance (215), hence promoting a more 

unfavorable prognosis. In concordance with this, miR-335 revealed anti-mitogenic and 

pro-apoptotic functions mediated by repressing Jagged-1 in brain cells (216). The 
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expression of the Notch signaling ligand Jagged-1 correlates negatively with disease-free 

and overall survival in breast cancer samples (217, 218). Although no analysis compared 

normal and tumor samples, there is strong evidence linking miR-335 to severe phenotypes 

of breast tumors. Since its locus is frequently lost in breast cancer samples (219), miR-335 

is suspected to function as a tumor and metastasis suppressor microRNA.  

The present study identified target molecules of miR-203 and miR-335 mediating the 

predominantly tumor-suppressive phenotype. In overexpression experiments, the 

importance of the microRNAs for the expression of the BRCA1 regulators SP1, AhR, ERα, 

IGF1R and ID4 was determined. In concordance with this, functional analysis 

demonstrated the effect of the microRNAs on cancer cell behavior and cell fate. 

Furthermore, the microRNA expression was directly connected to BRCA1 regulation. To 

detect biological relevance, the expression profiles of miR-203 and miR335 were assessed 

in sporadic breast cancer samples, predetermined for their expression status of BRCA1, 

SP1 and ID4. In an attempt to reveal the origin of microRNA expression alterations, 

regulating elements in the promoter region were identified and validated. Finally, the 

exclusive influence of ID4 on the regulatory network of BRCA1 and on the function of 

microRNAs was clarified. Therefore, a novel technique was established, identifying the 

direct interaction of microRNAs with their associated mRNA. This new method enables 

the identification of microRNA activity on targets previously undetectable by standard 

techniques such as ID4.  

At the start, the basic hypothesis of the study was verified by transferring the 

bioinformatically predicted model to a cellular system. Therefore, an adequate cancer cell 

line model was identified that presents a suitable environment for this study. Requirements 

for the cell lines were the expression of all transcription factors, microRNAs and BRCA1 at 

a detectable level. Since the prediction algorithms do not account for different time- and 

tissue-dependent expression patterns of the microRNA and its target, one can exclude false 

positive predictions by detecting the expression status of the molecules in the system 

analyzed. Predicted interaction partners that are not expressed in the same tissue are 

unlikely to be biologically relevant. Diverse non-breast cancer cell lines were included, 

since BRCA1 misregulation was also described for other cancer types (220). To determine 

the amount of transcribed microRNAs, stem-loop RT-PCR was performed (221). This 

approach transmits specificity already in the reverse transcription reaction using specific 

primers binding to the mature microRNA. In a probe-based real-time PCR, specific 

microRNA levels were detected by excluding genomic DNA and precursor 
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oligonucleotides. MicroRNA miR-335 revealed an ubiquitous expression in the majority of 

the cell lines analyzed. Notably, the pancreatic cell lines exhibited a lower level compared 

to breast cancer cells. A similar result was achieved by detecting the amount of mature 

miR-203. MicroRNA miR-203 expression was absent or weak in all pancreatic cells, while 

the breast cancer cell lines revealed moderate or high levels of miR-203. Functional 

relevance of both miR-335 and miR-203 is therefore possible in breast cancer tissues, 

whereas at least for miR-203 a functionality is unlikely in the pancreas. For further studies, 

the breast cancer cell line MCF7 was chosen, which expresses miR-203 and miR-335, 

harbors detectable protein levels of the transcription factors, and was established for 

BRCA1 and ID4 experiments in the past (46, 80). 

To determine the regulating effect and the impact of misregulated microRNAs on SP1, 

AhR, ERα, and IGF1R, the proteins were analyzed following overexpression in MCF7 

cells. Therefore, oligonucleotides mimicking the function of mature microRNAs were 

transfected. The advantage of this approach is the independence from the microRNA 

processing machinery, disrupted in various cancers and cancer cell lines. In concordance 

with their predicted functions, miR-203 and miR-335 both downregulated the expression 

of the estrogen, the aryl hydrocarbon and the insulin-like growth factor 1 receptor. A 

specific suppressive function of miR-335 was observed for SP1, whereas miR-203 led to 

rather increased levels of the receptor. The results are in agreement with the prediction 

scores, showing low probabilities for miR-203 to regulate SP1. The effect of miR-335 on 

AhR is either due to an unpredicted binding activity or to a secondary target effect caused 

by the overexpression of the microRNAs, which may also explain the upregulation of SP1. 

Regarding the high complexity of the network, secondary target effects were expected, not 

only for the BRCA1 expression, but also through feedback mechanisms for single members 

of the cascade. 

For ID4 no antibody is available to detect the protein expression by Western blotting. The 

lack of a specific and sensitive antibody against the protein of interest is an important 

weakness in the analysis of the microRNA activity on a target of interest. Currently, the 

most common method to prove the activity of specific microRNAs on any target of interest 

is a luciferase system using potential regulatory sequences downstream to the reporter gene 

(222). Transfection of these constructs together with a simultaneous overexpression or 

knockdown of a predicted microRNA reveals its functionality on the target sequence. 

Since this model works with artificial constructs, naturally occurring modifications, e.g. 

mRNA folding, are not considered (223). Concerning the high number of predicted 
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microRNA:target interactions, this system is also unsuitable for a broad and complex 

screening setup. In this context, new systems combining biochemistry and bioinformatics 

have recently been developed. In an attempt to screen for microRNA targets on the protein 

level, Baek and colleagues used quantitative mass spectroscopy following manipulation of 

single microRNAs (224). This technique extends the standard protein detection methods to 

a high throughput system for the identification of microRNA targets. However, this 

technique requires expensive equipment and profound expertise in mass spectrometry, that 

may not be available in each laboratory investigating microRNA:mRNA interactions. 

Another approach detecting direct interactions of the analyzed molecules is based on the 

isolation of the ribonucleoprotein (RNP) complex harboring the microRNA and its 

associated mRNA (225, 226). Argonaute, as the major protein in this aggregate, is 

immunoprecipitated followed by a quantification and bioinformatic analysis of enriched 

molecules. Here, interactions are predicted based on statistics, but lack a direct detection 

system. A more straightforward technique by Lund et al. is based on microRNA labeling, 

directly detecting the interaction of the two molecules in the RNP (227). Following 

precipitation of one specifically tagged microRNA, quantitative analysis can detect 

mRNAs co-purified by this method. Furthermore, they extended the use of the technique to 

a high-throughput screening of isolated target molecules (128). Since this approach is 

appropriate to detect effector molecules for specific microRNAs, a detection of different 

microRNAs regulating one specific gene is not possible.  

In the present study, we established a reverse technique, termed microRNA co-

precipitation, which allows the detection of active microRNA response elements (MREs) 

in a single gene of interest. Using biotin-tagged nucleotides, a labeled mRNA is introduced 

and rescued from a cellular system. MicroRNAs bound over RNPs are co-precipitated and 

can be quantified by standard techniques. This novel approach is suitable for virtually all 

genes that can be transcribed in vitro and is therefore valuable for a broad range of 

researchers screening for microRNAs regulating their specific genes of interest.  

The microRNA co-precipitation technique uses the advantage of simple mathematical 

mechanisms. Having an equation with two variables represented by microRNAs and 

mRNAs, the method assigns one of them, thus leading to a simple identification of the 

other. Using biotin-labeling and specific precipitation techniques, the variable “mRNA” is 

transferred to a constant. Consequently, the second variable “microRNA” can be 

determined using quantitative real-time PCR. 
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This novel method was established in a proof-of-principle experiment using the well 

described regulation of microRNA Let-7 on the oncogene NRAS (187, 166). Following 

validation of the principle, the technique was performed to detect microRNA interactions 

in the 3´ UTR of ID4.  

Prior to the proof-of-principle, the influence of the biotin-labeling on the transcription and 

translation efficiency was determined using the transcript of the reporter gene GFP. 

Analysis of the integrity of the mRNA and the signal intensity following transfection of the 

transcript revealed no influence of the biotin-labeled UTPs.  

To establish the co-precipitation technique, mRNA-labeling was applied to the oncogene 

NRAS harboring three binding sites for Let-7 in its 3´ UTR. The method enriched Let-7 in 

significant amounts above the background, which was defined by a control transcript and 

the binding of unspecific small RNAs, such as sn-U6. Stringent washing steps were 

sufficient to enrich the analyzed molecules, but unspecific binding could not be avoided. 

Interestingly, the isolated NRAS transcripts as well as the amount of unspecific background 

were suitable for normalization. Here, normalization to sn-U6 provides advantages to the 

purified transcripts, since differences in length and integrity, in terms of breakage products, 

can influence the results of the precipitation. The unspecific background is equally 

distributed to all isolated fragments and mirrors the actual amount of purified molecules. 

This technique combines the advantages of a number of established methods like protein 

co-immunoprecipitation and biotin-labeling. All steps are performed in a cellular system 

using constructs with original gene sequences. The secondary structures probably imitate 

the original ones, creating a natural system to avoid false positive results. Furthermore, a 

control construct lacking the 3´ UTR and therefore the region harboring the most active 

MREs serves as an adequate control for normalization. Notably, much more attention has 

to be paid to unspecific bindings for the microRNA co-precipitation compared to the 

reverse approach using labeled microRNA. Using intensive blocking and stringent washing 

conditions, the established technique is suitable to specifically detect active MREs in 

untranslated regions of selected genes. Using standard techniques, it is applicable in any 

laboratory setting to validate the binding of microRNAs to virtually all genes. It is valuable 

for a broad range of researchers screening for microRNAs regulating their gene of interest. 

Furthermore, this technique is also appropriate for high-throughput platforms such as 

microRNA microarrays to identify a high number of valid microRNA:mRNA interactions 

in a single step. Since this modification is not limited to prediction algorithms, it might 
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further improve our knowledge of the criteria crucial for the mRNA:microRNA 

interaction. 

The established technique was then performed to identify predicted interactions between 

microRNAs and the mRNA of ID4. Here, microRNA miR-335 was particularly enriched 

by co-precipitation with the full-length ID4 transcript, whereas miR-203 had signal 

intensities comparable to the two control RNAs. MicroRNA miR-335 reached statistical 

significance in comparison to both controls, clearly suggesting a functional interaction with 

the ID4 3´ UTR. Since this was the first time the novel technique was applied to detect 

predicted, but as yet unvalidated microRNA:mRNA interactions, the results were validated 

using an independent method. Therefore, the lack of detectable endogenous protein 

amounts was bypassed by ectopic overexpression of ID4. According to the previous 

results, inhibition of endogenous miR-335 by specific oligonucleotides resulted in an 

increased translation rate and protein amount using full length ID4 mRNA.  

To further validate a direct influence of miR-203 and miR-335 on the expression of ESR1, 

AhR, IGF1R, SP1 and ID4 reporter gene assays were performed. Here, a direct regulation 

of miR-335 of ESR1, SP1 and IGF1R could be detected. The previously identified impact 

of miR-335 on AhR probably represents a secondary target effect in the tightly connected 

regulatory cascade of BRCA1, since no MREs are predicted in its 3´ UTR. The results 

obtained by protein analysis and co-immunoprecipitation of ID4, as well as the correlation 

in primary breast cancer tissue and the phenotype rescue, strikingly suggest a direct effect 

of miR-335 on ID4. As reporter assays present a highly artificial detection system, the 

absence of miR-335 activity on the ID4 luciferase construct might reflect a false negative 

result, for example due to altered mRNA folding.  

For miR-203, reporter assays determined a direct influence of the microRNA on the 

expression of AhR, IGF1R and SP1. No regulatory effect was detected for ESR1 and ID4. 

These data reflect the profound impact of secondary target effects in the tightly regulated 

cascade upstream of BRCA1, as the results obtained for SP1 and ERα on protein level 

correlate inversely to the reporter assays.    

In summary, the overexpression, as well as precipitation experiments and the reporter 

system proved that miR-203 and miR-335 influence components of the regulatory complex 

of BRCA1 either in collaboration or with distinct functions. The effect of the microRNAs 

on their distinct targets is predominantly direct. However, secondary events also participate 

in the regulation. The results suggest that misregulation of the microRNAs has a 

downstream effect on key regulators of BRCA1, which also directly participate in 



 Discussion  

77 

 

tumorigenesis. Therefore, the microRNAs themselves might exhibit tumor-promoting or 

suppressing functions. 

To underline this hypothesis, the influence of the microRNAs on BRCA1 expression was 

determined. Surprisingly, altering the levels of miR-203 and miR-335 caused opposite 

effects on BRCA1. While an overexpression of miR-203 led to a decreased level of the 

tumor suppressor, miR-335 activated the expression of BRCA1. The negative effect of 

miR-203 can be traced back to the depletion of activating factors, such as ERα, AhR and 

IGF1R. As miR-335 also inhibits the expression of stimulating factors of BRCA1, a similar 

effect of both microRNAs could be expected. Despite the reduction of activators following 

overexpressed miR-335, BRCA1 is induced. This may be mediated through the inhibition 

of the dominant negative regulator ID4. These results suggest ID4 and hence miR-335 as 

key molecules with a superior function for the regulation of BRCA1. However, detecting 

no direct regulation of ID4 by miR-335 in the luciferase reporter system, we cannot rule 

out that other, yet undefined, repressors of BRCA1 might be involved in the cascade.  

In consequence, miR-335 strikingly reveals a tumor-suppressing function by suppressing 

mitogenic signaling and activating control mechanisms ensuring genomic integrity. 

Accordingly, a reduction of miR-335 creates an environment with highly oncogenic 

features.  

To further address this question, a cancer cell model was set up to identify the influence of 

an altered expression of miR-203 and miR-335 on cancer cell behavior and fate. 

Interestingly, upregulation of both microRNAs in MCF7 cells led to a reduced cell 

proliferation with distinct triggers. Overexpression of miR-203 caused a decreasing 

proliferation rate due to a deceleration of the cell cycle, visualized by an increasing number 

of cells in the G0/G1 phase. Only weak simultaneous activation of apoptotic mechanisms 

was detected. The effect of miR-203 on cell cycle progression is probably due to a 

depletion of mitogenic signals, usually driving the cell through the replication cycle. Since 

overexpression of miR-203 results in downregulation of ERα, AhR and IGF1R, major 

mitogenic signal transducers are missing, resulting in a deceleration of the cell cycle. In 

concordance with this, individual knockdown of these growth-promoting factors has 

previously been shown to inhibit cell cycle progression (73, 83, 228).  

In contrast to the miR-203 mediated effect, overexpression of miR-335 resulted in a 

striking phenotypic change, characterized by a profound reduction of cell viability and an 

increase of apoptosis. Cell cycle analysis demonstrated that the decreased proliferation rate 

is not due to a cell cycle arrest, since the number of cells in the G0/G1-phase remained 
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stable. Apoptosis is usually induced during the transition from the S- to the M-phase. 

Comparing the identified targets of miR-203 and miR-335, the latter has distinct functions 

controlling SP1 and ID4. Since a knockdown of these factors did not reveal a dramatic 

phenotypic change or an increased apoptosis, further targets might be responsible for this 

effect of miR-335. Other studies could connect miR-335 to the anti-apoptotic factors 

SOX4 (214) and Jagged-1 (216). A specific knockdown of the factors results in decreased 

proliferation and an induction of apoptosis (229, 230). MicroRNA miR-335 might 

therefore suppress tumor formation by repressing mitogenic factors such as SP1, ERα, 

AhR, IGF1R and ID4 and transducing pro-apoptotic signals via SOX4 and Jagged-1.  

Previous studies also identified BRCA1 as a potent inducer of apoptosis (6). To test 

whether the pro-apoptotic effect of the microRNA is mediated by the tumor suppressor, 

overexpression experiments were performed in BRCA1-deficient cells. MicroRNA 

miR-335 overexpression resulted in an earlier apoptotic response compared to wild-type 

BRCA1 cells. In contrast to the previous results, miR-203 was able to induce apoptosis in 

deficient cells, but at a lower magnitude compared to miR-335. First, these results suggest 

a BRCA1-independent effect of the microRNA and second, an increased sensitivity to 

microRNA-mediated apoptotic signals in BRCA1-deficient cells compared to cells 

expressing active BRCA1. The increased sensitivity to apoptosis-stimulating signals might 

be due to the insufficiency of survival signals in a genomically unstable background. 

BRCA1 deficiency creates an environment that favors both tumor progression and cell 

death. On the one hand, tumors lacking BRCA1 show impaired DNA repair that promotes 

the probability of oncogenic mutations. On the other hand, it leads to a very unstable 

genomic condition raising sensitivity to DNA damage-inducing agents followed by the 

induction of cell death (231, 232). In BRCA1-deficient cells, depletion of survival and 

mitogenic signals by microRNAs might have a similar effect leading to an increasing rate 

of cell death. Vice versa, the inhibition of the microRNAs in tumor cells lacking BRCA1 

could lead to a tumor-promoting environment by accelerating cell growth in the absence of 

a potent DNA damage control mechanism. Regarding the influence of the microRNAs on 

the initiation complex of BRCA1, this might be a self-promoting, tumor-inducing 

mechanism, since a single microRNA can induce growth-promoting signals and suppress 

control mechanisms.  

 

To validate the biological relevance of the insights derived from these cell culture 

experiments, the study was extended to primary breast cells. Thus, a number of sporadic 



 Discussion  

79 

 

breast cancer samples and tissues from healthy control donors were analyzed for the 

expression levels of miR-203 and miR-335. To improve the insight into the regulatory 

network controlling BRCA1, the expression of the tumor suppressor was determined in 

parallel. As all samples are derived from patients examined at the Hannover Medical 

School, they are routinely analyzed for the expression of the estrogen and progesterone 

receptor, Her-2 and the appearance of lymph node metastasis. These features were also 

integrated into this study by correlating them to the microRNA expression levels.   

Compared to the healthy controls, the cancer samples revealed an aberrant expression 

profile for miR-203, lacking a clear tendency. In relation to normal breast epithelial cells, 

one group of cancer samples can be classified as miR-203 overexpressing samples, with 

another demonstrating a clear repression of the microRNA. Analyzing both subgroups, 

they exhibited a significant difference to the control. These subgroups might represent 

tumors which are triggered by different alterations. It has been shown before that miR-203 

can function as an oncogene and a tumor suppressor gene, depending on the background 

presented by the host cell (208-212). For breast cancer, similar results were obtained for 

the estrogen receptor alpha. On the one hand, activation of the receptor leads to formation 

of breast cancer (56), whereas on the other hand receptor depletion is a poor prognostic 

factor for cancer progression (58). Likewise, miR-203, which is functionally related to 

ERα, might have distinct functions at different stages during cancer development. 

Furthermore, as yet unknown targets of the microRNA can exhibit different effects 

depending on the cell and tissue status. In tumors expressing low levels of miR-203, a 

growth-promoting effect can be suspected by activation of ERα, AhR, and IGF1R. All 

could previously be connected to breast cancer development due to their function as 

mitogenic signal transducers. In primary breast cancer samples, a reduction in the miR-203 

level was accompanied by an increase in the number of ERα-positive samples underlining 

this theory. Interestingly, a reduced expression of miR-203 correlates with an increased 

appearance of lymph node metastasis. This supports the idea that as yet undefined targets 

extend the functionality of miR-203 for breast cancer development and progression.  

Analyzing the expression level of miR-335 in breast cancer specimens revealed clearer 

results. Compared to healthy breast tissues, tumor samples presented a significantly lower 

miR-335 expression. In concordance with the results obtained from the cell culture 

experiments, the expression levels correlated positively with the amount of BRCA1 

transcripts. These data further supported the idea of miR-335 acting as a positive regulator 

of BRCA1. Hence, its downregulation in sporadic breast cancer might cause repression of 
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the tumor suppressor and promotion of tumor formation. Therefore, miR-335 might be one 

missing link responsible for the downregulation of BRCA1 in sporadic human breast 

cancers. In contrast to the expression data of miR-203, miR-335 expression does not 

inversely correlate with the ERα status. Taking into account that ERα is regulated by at 

least five validated microRNAs (miR-221, miR-222, miR-18a, miR-206, miR-203 and 

miR-335), a direct correlation with one single regulator cannot be expected. Extending our 

attention to the functional effects associated with miR-335, a correlation with metastasis-

promoting features was identified (201). In concordance with the findings by Tavazoie and 

colleagues describing a connection of miR-335 with formation of metastasis, tumors 

expressing low levels of the microRNA are associated with a decrease of ERα-positive 

samples. Reduction of the estrogen receptor favors a poor prognosis, in part by supporting 

the formation of metastasis (58). These results promote the association of a reduced 

miR-335 expression with a more aggressive tumor type and underline the data of our 

study.  

The data obtained from the analysis of primary breast cancer samples strongly suggest that 

miR-335 functions as a tumor suppressor microRNA. First, miR-335 is downregulated in 

sporadic breast cancers. Second, the expression of miR-335 positively correlates with the 

activation of the tumor suppressor gene BRCA1 in sporadic breast samples and in a cancer 

cell model. Third, miR-335 negatively regulates the expression of the known BRCA1 

repressor ID4. Fourth, overexpression of miR-335 is associated with a significant increase 

in apoptosis. Fifth, miR-335 suppresses the expression of pro-mitotic signal transducers 

such as ERα, AhR, IGF1R and SP1. Sixth, miR-335 reduction is accompanied by reduced 

levels of ERα, supporting pro-metastatic features of the microRNA. MicroRNA miR-335 

therefore inhibits tumor formation and progression on two independent ways multiplying 

each other. On the one hand it functions anti-mitogenically by suppressing ERα, SP1, 

IGF1R and AhR and pro-apoptotically by controlling SOX4 and Jagged-1. On the other 

hand, it ensures genomic stability by activation of the key factor BRCA1, through 

repression of its dominant repressor ID4. These functions also multiply each other in 

opposite directions, when miR-335 is downregulated in tumors, leading to accelerated 

tumor growth, genomic instability and cancer progression.  

 

Having proven the importance of miR-203 and miR-335 for human sporadic breast cancer, 

the underlying mechanisms leading to an altered expression of the microRNAs can next be 

questioned. Here, miR-203 and miR-335 represent two very different types of microRNAs. 
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While the first is located in an intergenic region on chromosome 14, the latter is a member 

of the intronic microRNAs, termed “mirtrons”. Therefore, miR-203 is regulated by an 

independent promoter, whereas miR-335 is co-transcribed with its host gene MEST/PEG1 

and is activated following splicing of the primary mRNA. Recently, the interaction of 

intronic microRNA promoter regions with the DNA polymerase II was detected, 

suggesting also an independent transcriptional control of the “mirtrons” (145).     

Detailed analysis of the promoter region of miR-203 revealed a binding motif for the 

transcription factor SP1. Interestingly, this interaction site is overlaid by a region of 

epigenetic regulation through cytosine methylation. This CpG island spans the major part 

of the proximal promoter region including the SP1 binding motif. To clarify the influence 

of SP1 on the expression of miR-203, the protein amount of the transcription factor was 

analyzed in various cancer cell lines and correlated with the expression of miR-203. The 

results revealed only a weak correlation between the two expression levels. While the miR-

203 level showed high variance between the cell lines, the amount of SP1 was about equal 

in all cell lines. These data suggested an epigenetic influence on the regulation of miR-203. 

Promoter methylation is a frequent event in microRNA regulation (233) and was 

previously shown to control the expression of miR-203 in other cancer types (179, 210). In 

agreement with the expression level of the microRNA, there was complete methylation of 

the promoter region in cancer cell lines with low or absent expression of miR-203. 

Conversely, tumor cells with increased levels of the microRNA revealed no methylation of 

the CpG island in the proximal region of the gene. Accordingly, the expression of miR-203 

was induced following the treatment with a demethylating reagent in methylated cell lines. 

This supports the idea that binding of activating factors to the promoter of miR-203 is 

prevented by methylation of crucial binding motifs. To determine whether SP1 is a potent 

activator of miR-203, an unmethylated cancer cell line was chosen for functional assays. 

Here, specific knockdown of SP1 led to a decrease of miR-203 expression. To transfer 

these insights from the cell line system to primary breast cells, the expression of SP1 was 

analyzed in a range of sporadic breast tumors, predetermined for their expression level of 

miR-203. In contrast to the direct correlation of the microRNA and its activator in the cell 

culture model, no connection could be identified in primary breast cancers. While SP1 is 

ubiquitously expressed on the transcript level in all tumor samples and healthy controls, the 

protein amount was increased in cancer cells. This finding is in line with other studies 

describing an increased expression of the transcription factor in other cancer types (99, 

234). The lack of a direct correlation between SP1 and the expression of miR-203 suggest 
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that additional factors are involved in the regulation of the microRNA. Having identified 

promoter methylation to be relevant in cell cultures, primary breast samples were studied 

for their methylation status. The analysis of a number of tumors gave one specimen with a 

hypermethylated microRNA promoter. These data suggest a biological relevance of the 

epigenetic modification. Conversely, the tumor samples exhibit a decreased expression of 

miR-203, while the SP1 protein amount was not altered compared to the healthy controls. 

Although at a decreased level, miR-203 expression was detectable in this hypermethylated 

tumor sample, which is explained by the heterozygous occurrence of the methylating 

event.  

In addition, the promoter region of miR-203 harbored direct binding motifs for the 

estrogen receptor α. Cell culture experiments in this study underline the activating effect of 

ERα on the expression of the microRNA. 

In summary, the expression of the microRNA miR-203 is controlled by the transcription 

factors SP1 and ERα, as well as by epigenetic modifications in terms of cytosine 

methylation. Taking into account that the SP1 level does not correlate with miR-203 

expression and that hypermethylation seems to be a rare event in primary cancers, 

additional factors such as ERα are likely to be involved in the regulation of the microRNA.  

As an intronic microRNA, the expression of miR-335 is predominantly directly linked to 

its host gene MEST/PEG1 (235) located on chromosome 7q31. Interestingly, this locus has 

previously been shown to be deleted by LOH in 41% of breast cancer samples (219). LOH 

of this region was associated with a higher frequency of metastasis and shorter overall 

survival. This event might also explain the significant downregulation of miR-335 in breast 

cancer samples analyzed in this study and underlines the importance of miR-335 for breast 

cancer progression. The miR-335 host gene MEST/PEG1 encodes for three different 

transcript variants. The coding region of the microRNA is located in the second intron 

included in all variants. Pederson and colleagues described a frequent loss of imprinting 

(LOI) of the gene in cancer cells (236).  

As intronic microRNA expression is also controlled by host gene-independent promoters, 

the 5´ region of miR-335 was analyzed for putative regulatory binding sites. Interestingly, 

the promoter region of miR-335 revealed direct binding motifs for ERα, for which the 

impact on the microRNA expression was proven in this study. Since both miR-203 and 

miR-335 were established as repressors of the hormone receptor, these results indicate a 

feedback-loop to control the network. This might be a common self-regulatory mechanism 
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of ERα, since BRCA1, which itself is activated by estrogens, was shown to negatively 

regulate the function of the receptor (89). 

 

Comparing the identified targets of miR-203 and miR-335 suggests that the latter performs 

a dominant function in the regulation of BRCA1 by controlling the expression of ID4. The 

superior regulating function of miR-335 might therefore be mediated and dependent on the 

dominant-negative repressor. Since the effect of miR-335 on the expression of BRCA1 was 

already proven in primary tissues, the expression level of ID4 was analyzed in the identical 

sample cohort. Despite the fact that both expression levels decreased in tumor specimens 

compared to normal tissues, a significant inverse correlation between the transcript level of 

ID4 and miR-335 was detected in the cohort of tumor samples. Analyzing the transcript 

level to detect a post-transcriptional regulation is a common approach for high-throughput 

screening, however, microRNAs predominantly function as translational inhibitors. The 

resulting hits consist of secondary effects, but also of primary targets of the microRNAs 

(237). This is not due to a direct cleavage of the miRISC, but is thought to be a result of a 

shortening of the poly(A)-tail (122) and of a complex storage in the P-bodies, which are 

rich in RNA-degrading enzymes (238). Therefore, the identified inverse correlation 

between miR-335 and ID4 mRNA in breast cancer samples along with previously 

described results strongly suggests ID4 as a primary target of the microRNA in vitro and in 

vivo.  

 

Interestingly but not surprisingly, a striking discrepancy between the transcript and protein 

level of ID4 was detected. While the cancer samples analyzed in this work exhibited a 

dramatic decrease in ID4 mRNA, a previous study could identify an increase in the ID4 

protein amount. This is in concordance with the miR-335 expression analysis showing 

lower levels of the microRNA in breast cancer samples compared to normal tissue 

controls. The dramatic reduced expression of ID4 on the transcript level might be the result 

of a feedback-mechanism mediated by suppressed BRCA1, which acts as an activator of 

ID4 (49). Despite the repression on the transcript level of ID4, the reduction of miR-335 

leads to an increase of ID4 protein expression. Together, these data suggest that miR-335 

not only controls ID4 in the cell culture model, but also regulates its expression in the 

breast tissue.  

Furthermore, ID4 seems to be involved in the microRNA function independent of BRCA1. 

This becomes strikingly clear when miR-335 is overexpressed parallel to ID4. A 
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simultaneous expression resulted in an abolished function of the microRNA. In detail, the 

pro-apoptotic effect of miR-335 that was shown to be BRCA1-independent was completely 

compensated, when ID4 was co-expressed. This implies that ID4 is located downstream in 

a linear signal cascade activated by miR-335. Overexpression of the microRNA 

downregulates ID4, thereby transducing pro-apoptotic signals. This cascade is disrupted 

when ID4 is overexpressed in parallel. Further experiments could exclude an exclusive role 

of ID4 in this cascade, since a knockdown of the repressor resulted in decreased 

proliferation, without induction of apoptosis. Despite that fact, ID4 appears as a key factor 

in the regulatory cascade of miR-335 by inducing a strong survival signal to the cells and 

repressing the expression of BRCA1.   

In consequence, the overexpression of ID4 in primary cancer samples transduces strong 

survival signals. It inhibits the decelerating function of BRCA1 on cell proliferation 

(binding ERα, SP1, suppression of IGF1R) on the one hand and its assurance of genomic 

stability on the other, driving the cell more rapidly through tumor progression. Reduction 

of miR-335 further increases the tumorigenic potential not only by promoting the 

expression of ID4, but also by increasing translation efficiency of the mitogenic factors 

SP1, ERα and AhR. 

  

The event of BRCA1 disruption by inactivating mutations as is the case for inherited breast 

cancer serves as a good model for the development of sporadic breast cancers. Although a 

mutational loss of function is not the event of BRCA1 inactivation in the sporadic form, 

one can assume that BRCA1 also plays an important role in sporadic breast cancer. BRCA1 

generally functions as a key component for the maintenance of genomic integrity. 

However its deregulation is predominantly associated with hormone-controlled tissue types 

such as the breast and the ovary, intimating that there are distinct functions or regulatory 

events in these cells. BRCA1 function and regulation is surrounded by an intense regulated 

network involving various co-factors. It is notable that crucial key factors regulating 

BRCA1 and transmitting its function are hormone-dependent, suggesting a function and 

regulation in a hormone-dependant manner. Here, the estrogen receptor alpha exhibits a 

key position since it activates BRCA1 expression and also interacts with the protein. The 

ligand-bound receptor has high mitogenic activity, which is blocked following binding to 

BRCA1, thereby forming a balanced network to ensure tissue integrity. In the inherited 

form of breast cancer, this equation is shifted to the growth-promoting function of ERα, 

since the repressive effect of BRCA1 is missing. A similar model can be assumed for 
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sporadic breast cancer, replacing the mutation by a deregulated control mechanism. 

Extending the model from the estrogen receptor to the actual number of involved 

components, there are several intersections where aberrations can disrupt this balanced 

status.  

 

This work describes the relation between these factors and adds novel components to the 

complex. Here, two microRNAs were established with superior functions forming a cross-

talking network in the regulation of BRCA1 and growth signal transduction (Fig. 35A). The 

microRNAs miR-203 and miR-335 were shown to share identical target molecules, but 

also to exhibit distinct functions regarding BRCA1 regulation and cancer cell behavior. The 

miR-335 possesses a superior function by activating BRCA1 through repression of ID4, 

inducing apoptosis and repressing mitogenic signaling. Therefore, this work suggests that 

miR-335 acts as a tumor suppressor microRNA in breast epithelial cells. Thus, its 

downregulation promotes tumor formation in this tissue, as proven in primary samples. 

Repression of miR-335 triggers two major cascades leading to a growth-promoting and 

anti-apoptotic environment (Fig. 35B). On the one hand, its downregulation results in lack 

of repression of ERα, AhR, IGF1R and Sp1, thereby supporting proliferation. On the other, 

it induces the BRCA1 repressor ID4 leading to suppression of a key factor for genomic 

stability.  

Characterization of miR-203 still remains a difficult task, since its expression is associated 

with both oncogenic and tumor-suppressive features. This is underlined by its expression 

profile in primary samples. It is certain that miR-203 is a component of the regulatory 

cascade of miR-335 since the first is regulated by SP1, which is controlled by the latter. 

However, future studies will have to further characterize the significance of miR-203 for 

breast cancer development and progression.  
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A        B 

       

 

Fig. 35: An altered expression of miR-203 and miR-335 promotes tumor formation. 

Model of BRCA1 regulation and tumor promotion in normal cells (A) and its deregulation 

in breast tumors (B). The green arrows indicate an activating effect, whereas the red arrows 

illustrate a repressing event. The size of the arrows represents the intensity of the effects.  

 

This is one of the first studies identifying single microRNAs as key molecules for the 

regulation of an entire pathway related to breast cancer. Considering the importance of 

other microRNAs for key factors such as p53 or c-MYC, one can speculate that 

microRNAs are crucial components for cancer diagnosis and therapy in the future. The 

microRNAs identified here might therefore participate as prognostic markers or as 

effectors for a targeted therapy in future trials. 
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7 Future perspectives 
 

 

Regarding the successful identification of microRNAs involved in breast cancer 

tumorigenesis and the importance for the regulatory cascade of BRCA1, the future 

perspectives have to be divided into two subgroups. On the one hand, the microRNAs 

miR-203 and especially miR-335, identified in this study, have to be studied in more detail, 

regarding their functionality in vivo and their involvement in breast cancer predisposition. 

On the other hand, other microRNAs might participate in the regulatory pathway of 

BRCA1 to increase the complexity of the cascade and thereby enhancing its sensitivity.   

The identified miR-203 and miR-335 present profound tumor-suppressive features, in 

terms of the regulation of apoptotic signaling and the stabilization of the genome via 

BRCA1. Consequently, they might be a promising candidate to prevent tumor formation in 

vivo. To address their importance for breast cancer and for potential therapeutic strategies, 

the effect of an altered miR-203 and miR-335 expression on normal breast cells has to be 

determined. Here, overexpression or knockdown of both microRNAs in human mammary 

epithelial cells (HMECs) might extend the previous experiments to a non-tumor model and 

give a first impression of its value in a specific tumor treatment.  

Subsequently, a mouse model might give further insights of the relevance of reduced 

miR-203 and miR-335 expression for breast cancer development, progression and the 

aggressiveness. Here, in a xenograft model, subcutaneously injected cells with 

downregulated miR-203 and miR-335 expression are supposed to gain a growth advantage 

and to reveal an enhanced potential to form metastasis. Conversely, re-expression of the 

microRNA should reduce the tumor formation. In addition, these experiments could 

determine whether expression of miR-203 and miR-335 can prevent the formation of 

tumors, and whether they are also able to reduce preexisting tumors. Inducible induction of 

microRNA expression can be achieved by stably transfecting cell lines with suitable 

expression vectors as shown by Kumar and colleagues in a lung cancer model (133).  

To get a deeper insight of the impact of both microRNAs for sporadic breast cancer 

formation and their potential as clinical marker, the expression level in a greater cohort of 

primary tumors with profound knowledge on biological markers, survival rates, and 

response to therapies has to be evaluated. These data might further establish miR-203 and 

miR-335 as diagnostic tool and prognostic marker.  



___________________________Future perspectives______________________________ 

88 

 

Furthermore, germline mutations in miR-203 and miR-335 might predispose to breast 

cancer development. Here, families with breast cancer history showing no mutations of 

BRCA1 and BRCA2 might harbor mutations in the microRNAs, representing an additional 

marker for breast cancer predisposition. Disruption of the second allele of miR-203 or 

miR-335 might be an early event with multiple tumorigenic effects. Germline mutations of 

miR-15/16 were previously associated with predisposition for leukemia (181). A knockout 

mouse model might clarify, if miR-203 and miR-335 are essential for a normal 

development and if disruption of the microRNA is sufficient to force tumor formation. 

Here, overexpression of breast cancer specific oncogenes, such as HER-2 or estrogen 

supplementation in parallel might result in additive or synergistic effects.  

These and further studies might strengthen the importance of miR-203 and miR-335 for 

breast tumor formation and distinguish their potential for cancer therapy. 

In addition to miR-203 and miR-335, a number of other microRNAs might participate in 

breast cancer formation and progression. Here, microRNAs that have multiple targets in 

the cascade of BRCA1 might also be suppressed in sporadic breast cancer or mutated in the 

inherited form. Vice versa, microRNAs that bind directly to the 3´ UTR of BRCA1 might 

be overexpressed.  

Summarizing, miR-203 and miR-335 have the potential to be valuable for breast cancer 

prognosis and might be a specific therapeutic target in the future. In general, microRNAs 

were shown to participate in crucial cellular mechanism as superordinated regulators and 

will therefore be of great interest in future cancer diagnostics and targeted therapy.  
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9 List of abbreviations 
 

 

ATCC   American Type Culture Collection 

AhRE   Aromatic hydrocarbon response element 

BASC   BRCA1-associated surveillance complex 

BAT   BRCA1-associated transcriptional complex 

Bp   Base pairs 

CA   Carcinoma 

cDNA   complementary DNA 

C. elegans  Caenorhabditis elegans 

ChIP   Chromatin immunoprecipitation 

Ct   Threshold Cycle 

CTD   C-terminal domain 

DSMZ   Deutsche Sammlung für Mikroorganismen und Zellkulturen 

e.g.   Exempli gratia (for example) 

ERE   Estrogen response element 

FACS   Fluorescence activated cell sorter 

FF   Forward 

Fig.    Figure 

G0/1-phase  Gap phase 0/1 

HCC   Hepatocellular carcinoma 

HLH   Helix-loop-helix domain 

HMAC  Human mammary epithelial cell 

IHC   Immunohistochemistry 

hnRNP  Heterogeneous ribonucleoprotein particles 

LOH   Loss of heterozygocity 

LOI   Loss of imprinting 

M-Phase  Mitotic phase 

miR   MicroRNA 

miRISC  MicroRNA-induced silencing complex 

miRNP  MicroRNA ribonucleoproteins 

mRNA   Messenger RNA 

MSP   Methylation specific PCR 

nt   Nucleotids 

PAGE   Polyacrylamide gel electrophoresis 

P-bodies  Processing bodies 

PCR   Polymerase chain reaction 

PIWI   RNaseH-like P-element induced wimpy testis domain 

Pol.II   DNA polymerase II 

qRT-PCR  Quantitative real-time PCR 

RING   Really interesting new gene 

RNAi   RNA interference 

RNP   Ribonucleoprotein particles 

RV   Reverse 

SD   Standard deviation  

S-phase  Synthesis phase 

siRNA   Small interference RNA 

ssDNA  Single stranded DNA 
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Tab.    Table 

UTR   Untranslated region 

XRE   xenobiotics response element 
 

 

9.1 List of abbreviations (chemicals) 

 

5-AZA   5-Aza-2´-deoxycytidine 

Bio-16-UTP  Biotin-16-uridine-5’-triphosphate 

BSA   Bovine serum albumin 

CO2   Carbone dixide 

DMEM  Dulbecco's Modified Eagle Medium 

E2   ß-estradiol 

EDTA   Ethylenediaminetetraacetic acid 

FCS   Fetal Calf Serum 

MEM   Modified Eagle Medium 

MRE   MicroRNA response element 

NaAc   Sodium acetate  

NaCl   Sodium chloride 

NFDM   Non fat dry milk 

NP40   Nonidet P-40 

PBS   Phosphate buffered saline 

PMSF   Phenylmethylsulfonylfluorid 

RIPA   Radio immunoprecipitation assay buffer 

RPMI   Roswell Park Memorial Institute Medium 

SDS   Sodium dodecyl sulfate  

SSC   Saline-Sodium Citrate 

Tris   Tris(hydroxymethyl)aminomethane 

WST   water soluble tetrazolium 
 

 

9.2 List of abbreviations (genes and proteins) 

 

ABL1   Abelson murine leukemia viral oncogene homolog 1 

AGO   Argonaute 

AhR   Aryl-hydrocarbon receptor 

AIB1   Amplified in breast cancer-1 

ATM   Ataxia telangiectasia mutated 

ATR   Ataxia telangiectasia and Rad3 related 

ARNT   Aryl hydrocarbon receptor nuclear translocator 

BACH1  BTB and CNC homology 1 

BARD1  BRCA1-associated RING domain gene 1 

BAX   BCL2-associated X protein 

BCR   Breakpoint cluster region 

BRCA1/2  Breast cancer  1/2 

CAD Carbamoylphosphate synthetase 2/aspartate 

transcarbamylase/dihydroorotase 
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CDK   Cyclin dependant kinase 

CYP1B1  Cytochrome P450, family 1, subfamily B, polypeptide 1 

DGCR8  DiGeorge syndrome critical region gene 8 

E2F   E2F transcription factor 

E47   E2A immunoglobulin enhancer binding factors E12/E47 

EIF4E   Eukaryotic translation initiation factor 4E 

ERα/β   Estrogen receptor α/β 

ESR1   Estrogen receptor 1 

FAS   TNF receptor superfamily, member 6 

FOS   FBJ murine osteosarcoma viral oncogene homolog 

GAPDH  Glyceraldehyde-3-phosphate dehydrogenase 

GW182  Eukaryotic translation initiation factor 2C, 1 

GFP   Green fluorescence protein 

HER-2   Erythroblastic leukemia viral oncogene homolog 2 

HOXD10  Homeobox D10 

ID4   Inhibitor of DNA binding 4 

IGF   Insulin-like growth factor 

IGF1R   Insulin-like growth factor I receptor 

JUN   Jun oncogene 

KRAS   Kirsten rat sarcoma viral oncogene homolog 

Let-7   Lethal 7 

Lin-28   Abnormal cell lineage 28 

LNGFR  Low affinity nerve growth factor receptor 

MAPK   Mitogen-activated protein kinase 

MEST   Mesoderm specific transcript homolog 

MYC   Myelocytomatosis viral oncogene homolog 

MyoE   Myosin IE 

NFkappa  Nuclear factor kappa 

NRAS   Neuroblastoma RAS viral (v-ras) oncogene homolog 

P300   E1A binding protein p300 

P450   Cytochrome P450, family 2, subfamily B, polypeptide 6 

P53   Tumor protein p53 

P63   Tumor protein p63 

PABP1  Poly(A) binding protein, cytoplasmic 1 

PEG   Mesoderm specific transcript homolog 

PDCD4  Programmed cell death 4 

PR   Progesterone receptor 

RAD51  DNA repair protein RAD51 homolog 1 

RAS   Rat sarcoma 

RB   Retinoblastoma 1 

RHOC   Ras homolog gene family, member C 

sn-U6   U6 small nuclear 1 

SOX4   SRY (sex determining region Y)-box 4 

SP1   Specificity protein 1 

TCBP   T-cluster binding protein 

TGFβ   Transforming growth factor beta 

TPM1   Tropomyosin 1 

TRBP   TAR RNA binding protein 

TWIST1  Twist homolog 1 

ZBTB10  Zinc finger and BTB domain containing 10 
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