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Abstract

Generalized linear models allow the parameter estimation under assumption of a distribu-

tion of the exponential family to summarize collected data. Based on the parameters of

those models, tests can be conducted to reject a Null-hypothesis, or confidence intervals

can be calculated, giving an idea about the uncertainty of the parameter location with a

given error rate. If multiple parameters are of interest, multiplicity adjustment has to be

performed to control a global error rate for all tests or confidence intervals.

In this thesis multiple tests and simultaneous confidence intervals are constructed based

on deviance profiles, which show directly the uncertainty about the location of a param-

eter conditional on the given data. Statistics are obtained by minimizing the deviance

conditional on a parameter of interest, allowing for a linear transformation by a pre-

specified contrast matrix by considering additional constraints. Under assumption of an

approximately multivariate normal distribution for these statistics, multiple tests and

simultaneous confidence intervals are constructed. As the correlation structure of the

Normal distribution is unknown, it is directly estimated from the data.

In contrast to Wald-type confidence intervals, which are more simple to calculate, the

profile based intervals allow for unequal distances of the lower and upper confidence limits

to the point estimates; this might provide better coverage probability under assumption

of a non-equitailed distribution. A further advantage of the profile based intervals is their

transformation invariance.

The validity of the discussed methods is illustrated by means of a simulation study focusing

on count and categorical data. Part of this thesis is a user-friendly implementation of the

methods in the statistical software package R, which is presented by an evaluation of

several small case studies.

Keywords: profile likelihood, simultaneous confidence intervals, multiple comparisons
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Zusammenfassung

Generalisierte lineare Modelle bieten die Möglichkeit, Parameter unter Annahme einer

Verteilung aus der Exponentialfamilie zu schätzen, um die erhobenen Daten adequat

zusammenzufassen. Basierend auf diesem Modell können Tests zum Verwerfen einer Null-

hypothese, oder Konfidenzintervalle zur Abschätzung der Unsicherheit über die Lokation

eines Parameters zu einer vorgegebenen Fehlerrate berechnet werden. Bei mehreren Pa-

rametern von Interesse ist eine Multiplizitätsadjustierung erforderlich, um eine globale

Fehlerrate simultan für alle Tests oder Konfidenzintervalle einzuhalten.

Die vorgelegte Arbeit befasst sich mit der Konstruktion von multiplen Tests und simul-

tanen Konfidenzintervallen basierend auf Devianz-Profilen, die direkt die Unsicherheit

über die Lokation eines Parameters konditional der Daten widerspiegeln. Teststatistiken

erhält man, indem konditional auf dem jeweiligen Parameter von Interesse die Devianz

minimiert wird, wobei zusätzliche Bedingungen auch die Transformation der Parame-

ter über eine zuvor gewählte Kontrastmatrix erlauben. Unter der Annahme, daß diese

Statistiken approximativ einer multivariaten Normalverteilung folgen, können multiple

Tests und simultane Konfidenzintervalle berechnet werden. Da die Korrelationsstruktur

der multivariaten Normalverteilung jedoch unbekannt ist, wird diese direkt aus den Daten

geschätzt.

Im Gegensatz zu den einfacher zu berechnenden Wald-Konfidenzintervallen erlauben die

Profil-basierten Intervalle eine unterschiedliche Distanz der oberen und unteren Konfi-

denzgrenze zum Punktschätzer, was zu einer besseren Einhaltung der Überdeckungs-

wahrscheinlichkeit bei Annahme nicht normalverteilter Daten führen kann. Ein weiterer

Vorteil ist die Transformationsinvarianz der Profil-basierten Intervalle.

Die Validität der vorgestellten Methoden wird über eine umfangreiche Simulationsstudie

mit dem Schwerpunkt auf Zähl- und kategorialen Daten dargestellt. Ein Teil der Arbeit

umfasst die nutzerfreundliche Implementierung der Methoden in die statistische Software

R, welche anhand einer Reihe von Fallbeispielen vorgestellt wird.

Schlagworte: Likelihood Profile, Simultane Konfidenzintervalle, Multiple Vergleiche
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Chapter 1

Introduction

A common method to summarize observed data is to calculate arithmetic means and

standard deviations. To evaluate the uncertainty about these means, confidence intervals

can be constructed by adding and subtracting a specific constant times the standard

error around the mean values. This kind of data summary demands an equal-tailed

distribution of these parameters, which is naturally fulfilled for normal distributed data.

In many applications the observed data are not continuous measurements, but counts, or

categorical outcomes. These values are located on a restricted space; counts being only

positive integers, proportions are limited between 0 and 1. The more the mean value

approaches these limits of the parameter space, the less appropriate is the assumption of

an equal-tailed distribution. Hence, the summarization of the data by mean and standard

deviation becomes more inadequate and requires a more difficult interpretation. This

problem becomes evident, when, for example rare events are counted; the arithmetic

mean is located near zero and subtracting two times the standard deviation will result in

a negative lower limit, which is certainly inappropriate to characterize the variability of

the average of several counts.

Assuming an adequate skewed distribution for a non-normally distributed response of

interest is of course more appropriate than using the normality assumption. Instead of

estimating the mean and the standard deviation separately, a dependence of the variance

on the mean has to be assumed, making it necessary to estimate both parameters simul-

taneously. This can be done by evaluating a corresponding likelihood, representing the

probability of the location of a parameter given the observed data. Estimate of means
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are calculated by finding the maximum of this likelihood function, whereas the standard

error for the mean is a measure for the likelihood curvature, showing the uncertainty

about the location of this maximum. But the likelihood function offers more information

about the parameter of interest than summarized by mean and standard error, which

might be preferable to use when constructing confidence intervals. By calculating several

likelihood statistics around the location of the maximum likelihood estimate, a likelihood

profile can be established. Confidence limits are then estimated by searching for the

likelihood statistics that correspond to a quantile of the underlying distribution of the pa-

rameter of interest. This leads to confidence intervals, which are most strongly supported

by the data, as they closely incorporate the curvature of the likelihood function.

The problem of non-normally distributed parameters is mostly covered in the area of

nonlinear regression. For diagnosis of nonlinear models assuming a Gaussian distributed

response, Bates and Watts (1988) introduced the profile-t-plot, visualizing the deviation

from a normal distribution for single parameters of interest. Additionally, likelihood based

confidence intervals can be obtained by their method. Chen and Jennrich (1996) proposed

a generalization of these profiles to any maximum likelihood estimation. They suggest

the profiling of arbitrary functions of parameters, based on the likelihood transformation

invariance, showing the wide range of applications for this method, which is discussed

for applied nonlinear regression by Quinn et al. (1999). Confidence intervals based on

their likelihood profiles are direct inversions of a likelihood ratio test, which in many

cases might be preferable over linear test statistics (Donaldson and Schnabel, 1987). The

profiles are constructed equivalently by optimization or spline interpolation for several t-

or z-statistics conditional on some fixed parameters around the MLE (Quinn et al., 2000).

An alternative method constructing profiles by integration is suggested by Venzon and

Moolgavkar (1988), providing similar results.

The likelihood profiles are only based on a first order approximation, whereas inappropri-

ate results may be obtained for small samples. Therefore, adjustments of the likelihood

by higher order approximations have become popular, producing nearly exact results even

at small sample sizes. For categorical data for example, Staicu (2009) shows eminent bias

reduction by applying higher order approximations for confidence intervals of a binomial

parameter or a log odds ratio. There is already a vast amount of literature available on

the field of higher order approximations, most of it is not directly aimed at using these
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methods in practice; but there are also nice contributions, giving some understanding for

their application, e.g. Brazzale et al. (2007), Brazzale and Davison (2008), Skovgaard

(2001), and especially Pierce and Peters (1992).

Although the advantages of likelihood based methods are widely known, they are not

frequently used. Reasons might be longer and more expensive computations and fewer

implementations into statistical software packages.

So far, issues about simultaneous inference are not discussed on the basis of profile like-

lihood confidence intervals or hypotheses testing. There are several publications avail-

able for example on simultaneous confidence intervals comparing several binomial pro-

portions; for example considering Wald intervals for the difference of proportions with

Sheffé and Bonferroni-type intervals in Piegorsch (1991), or utilizing a multivariate nor-

mal distribution with an estimated correlation structure in Schaarschmidt et al. (2008).

Bonferroni-adjusted simultaneous confidence intervals based on score statistics are pre-

sented in Agresti et al. (2008).

In this thesis, the adaptation of multiple contrast tests and simultaneous confidence in-

tervals to existing profile likelihood methods is described with a restriction to generalized

linear models with quite simple parameter layouts. Focus is set on the applicability of this

likelihood based approach to real data problems, evaluating the performance with respect

to alternative methods. Furthermore, the additional information obtained from displaying

deviance profiles is discussed. At last an implementation as package in the statistical soft-

ware R (R Development Core Team, 2009) is presented to calculate simultaneous profile

deviance confidence intervals and multiple tests for user-defined contrasts.
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Chapter 2

Example data

2.1 Angina: Dose response study

The first example is a dataset from a dose response study of a drug to treat Angina

pectoris, taken from Westfall Peter H. (1999). Response variable was the duration of

pain-free walking after treatment, relative to the values before treatment. Four dose steps

and a negative control were applied with ten observations for each treatment level. The

data is shown in Figure 2.1.
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Figure 2.1: Boxplot for the Angina pectoris dose response data. Black points represent jittered

data points giving artificial variation on the x-axis.
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2.2 Micronucleus assay

In this data example the mutagenicity of hydrochinone is tested with a micronucleus assay

based on male mice (Adler and Kliesch, 1990). An experimental design of four doses of

hydrochinone, a negative (vehicle) control, and an active control, consisting of 25mg/kg

cyclophosphamide, is used. Counts of micronuclei in polychromatic erythrocytes after

24h are taken as a measure for the potency to induce chromosome damage. The design

is unbalanced with seven and four replications in the negative and positive control, and

five replications for each of the dose steps.
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Figure 2.2: Boxplots for micronucleus assay data. Black points represent jittered data points

giving artificial variation on the x-axis.

2.3 Cell transformation assay

This example data is provided by Thomas (2009), testing a chemical carcinogen by a

cell transformation assay. Mouse embryo cultures (BALBc 3T3 cells) are treated with

seven increasing doses of a carcinogen plus a solvent control. The original design consists

additionally of an empty and a positive control, which are omitted for simplification. The

cells treated with a carcinogen will not stop proliferation; therefore the number of type 3

foci, or cell clusters, are counted as an indicator for carcinogenicity. Ten dishes are used

as replicates for each treatment level. The data is visualized in Figure 2.3a.

For only two dishes the number of foci in the solvent control is higher than zero. For

a more extreme situation with zero foci counts in the control, a second data example is
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Figure 2.3: Boxplots for the data from two cell transformation assays (a, b). The dots at each

treatment level visualize the actual observations; artificial variation is introduced on the x-axis

to account for the discreteness of the data.

provided with the same design, testing a different carcinogen, shown in Figure 2.3b.

2.4 Liatrozole dose response study

A dose range case-control study was conducted to determine the lowest effective oral dose

of liatrozole in the treatment of psoriasis vulgaris (Berth-Jones et al., 2000). Three doses

of liatrozole and a placebo are randomly assigned to 116 patients, counting the number

of individuals, where a marked improvement was observed. All dose groups are assigned

with nearly the same number of patients, from 33 to 36 individuals. The resulting 2× k

table is shown as mosaicplot in Figure 2.4.
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Figure 2.4: Mosaicplot for the liatrozole dose range data.
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2.5 Fetal deaths after exposure to boric acid

This dataset represents results from a US National Toxicology Program (NTP, 1989) study

of developmental toxicity in CD-1 Swiss mice, taken from Bailer and Piegorsch (1997).

After female mice were exposed to 3 doses of boric acid in feed (0.1%, 0.2%, and 0.4%)

and a control, the number of dead fetuses and litter sizes were recorded for each animal.

The data is shown in Figure 2.5.
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Figure 2.5: Mosaicplot for the fetal deaths data. The dotted lines indicate that no event was

counted in this category.

7



Chapter 3

Methods

3.1 Parametric models

As a simple example, a vector of observed values y = (y1, . . . , yn) can be assumed, which

can be considered as a value taken on by a random variable Y . The goal is to make use of y

in drawing conclusions on the unknown distribution F (·) of Y . A set of all possible choices

of F, denoted as F , is called a statistical model. In the special case, when all elements

of F are of the same mathematical form, identified only by the different specification of

parameters θ, where for any fixed θ, F (· ; θ) is a distribution function whose support is a

subset of Rn. The statistical model F can also be defined as a set of density functions

F =
{
f(· ; θ) : θ ∈ Θ ⊆ Rk

}
(3.1)

for some density function f , and k being a positive integer.

3.1.1 Likelihood

Assuming a parametric model F parameterized by a fixed and unknown θ, the likelihood

is the probability of the observed data considered as a function of θ;

L(θ) = L(θ; y) = c(y)f(y; θ), (3.2)

where c(y) is a positive constant independent of θ.
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Therefore the likelihood includes all information about a postulated statistical model.

Information about the population of interest is supplied by a sample of observations,

which is assumed to be representative for the whole population. Hence, the likelihood

is calculated conditional on a random data sample, the only unknown variables are the

coefficients θ of the model. By finding the θ, which maximizes the likelihood, the residuals

of the models are minimized, and a parameter estimate θ̂ is found, being an unbiased

estimate based on the assumption of the model. (Reid, 2000)

3.1.2 Generalized Linear Models (GLM)

A simple one way layout with a vector of observations y = (yi) with i = 1, . . . , N as

a realization of a random variable Y is assumed. The design of an experiment can be

specified by a matrix of covariates X = (xij), with j = 1, . . . , k. Corresponding to this

design matrix, an unknown parameter vector β = (βj) contains the model coefficients of

interest. These parameters can be estimated by minimizing the residuals ε = (εi) for a

given deviance function. The model can then be written as

η = Xβ + ε. (3.3)

The linear predictor η is calculated on a given link function τ (·), for which the inverse

can be used to obtain the predictions on the original scale

η = τ (µ) . (3.4)

Under the assumption that each component of Y has a distribution in the exponential

family, the density takes the form

fY (y; θ, φ) = exp

{
yθ − b (θ)

a (φ)
+ c (y, φ)

}
(3.5)

for specific functions a (φ) , b (θ) , c (y, φ). As the parameters should be estimated condi-

tional on an observation y the log likelihood function can be written as

l (θ, φ; y) = log (fY (y; θ, φ)) . (3.6)

The parameter vector β̂ can be estimated by maximizing the (log) likelihood l (µ;y) or

equivalently minimizing the scaled deviance

D (µ;y) = 2 (l (y;y)− l (µ;y)) (3.7)
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with respect to µ. For a more detailed description see for example McCullagh and Nelder

(1989), or Nelder and Wedderburn (1972).

3.1.3 Parameterization

There are several ways available to specify the design matrixX with the only requirement

of being full of rank. Numerical covariates can be plugged into the design matrix, e.g.

estimating the slope in a linear regression, where the intercept can be represented by

a vector of ones. If categorical variables are of interest, they may be represented by

a dummy coding of zeros and ones, corresponding to the estimation of means and/or

differences between means of different factor levels. For example in an experiment with

one factor having three factor levels, three treatment means may be estimated, but also

the parameterization by one treatment mean and the difference to this mean for the two

other factor levels is possible. In both cases the same predictions are obtained.

3.2 Deviance profiles

If a model consists of only a single parameter, e.g. estimating the mean of a sample of

normal distributed observations, the deviance can be easily calculated conditional on this

fixed parameter β from β̂ by

d(β) = D (xiβ, yi) . (3.8)

If, according to Chen and Jennrich (1996), interest lies in a real valued function g(β), for

any p in range of g, let β̂p be the argument that maximizes L(β) given g(β) = p. Viewed

as a function of p, d(β̂p) is called a deviance profile. In this case, g is only a function

involving a single parameter.

For models with multiple parameters it is common to investigate the change in deviance

separately for each single component of a parameter vector; thus, a reduction in dimension

is needed, which can be defined by an adequate choice of g. The decrease of complexity

for a function g is achieved, e.g. by calculating the deviance conditional on one parameter

βj, treating all others βj′ as nuisance parameters. Hence, for a parameter vector β = (βj),
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the deviance profile is found by d(β̂p), with β̂p being the argument that maximizes L(β)

given g(β) = p.

If the nuisance parameters are uncorrelated to the parameter of interest, their conditional

estimates will be simply found at the unconditioned MLEs. Otherwise, d(β̂p) corresponds

to the minimum deviance for the specific function g.

Instead of investigating the deviance statistic directly, Bates and Watts (1988) suggest to

use the transformation

r(β̂p) = sign(p− ĝ)
√
d(β̂p) (3.9)

to the signed root deviance profile (SRDP), or signed log-likelihood ratio statistic (Barndorff-

Nielsen, 1986). This statistic includes the additional information about the direction of

the difference between each component of βp and g(β̂). While Bates and Watts only

construct their profile-t-plots for coefficients of non-linear regression models assuming a

Gaussian distributed response, Chen and Jennrich (1996) generalized this idea to arbitrary

functions of parameters in general maximum likelihood analysis.

Plotting the function r(β̂p) can reveal a large amount of information about the parameters

in a model. Even for complex problems these profile plots represent an accurate summary

for the observed data, illustrated directly for a parameter of interest. As the profile

likelihood can be interpreted also as a likelihood, any information about the model and

the sample of observations, that is, the uncertainty and distribution of a parameter is

visualized. Chen and Jennrich (2002) even propose to derive transformations of the data

to provide simple functions, which produce a nearly linear SRDP.

3.2.1 Observed information

The likelihood has a direct relationship to the available information from the model. If

the likelihood is characterized by narrow curves, the parameters can be estimated more

exactly with more information about the location of the MLE; at a larger width of the

likelihood curve, less information is available. As a measure about the curvature of the

log-likelihood the observed Fisher information function j(β) = −∂2l(β)/∂β2 can be used.

By plugging the maximum likelihood estimates into this observed information function,

the observed Fisher information j(β̂) is obtained. Instead of using the information about

11



the observations actually made, the expected Fisher information i(β̂), can be used to

give a generalization about the whole population (Lindsey, 1996), representing the k × k

variance-covariance matrix for β.

As it is shown in the Appendix (A.1) the Gaussian deviance is calculated by summing

up the squared residuals. Hence, the deviance is increasing equally around the MLE as

a quadratic function. The curvature of the deviance function can be completely covered

by this quadratic function, and therefore summarizing the data by mean and standard

errors leads to exact inference. In terms of a profile, the quadratic approximation (QA)

corresponds to the well known Wald statistic

t(β) = j(β̂)
1
2

(
β̂ − β

)
, (3.10)

described for example in Lindsey (1996). Instead of using the expected Fisher information

as in the original version by Wald (1949), the observed Fisher information is used here.

The square of the QA profile has it’s minimum at the MLE, increasing quadratically to

both sides; hence, t(β) is a linear function of β.

3.2.2 Linear contrasts of GLM parameters

In some situations the parameters of a model are not directly of interest, but linear

combinations of them. These linear combinations of parameters can be presented as

contrast matrices C = (cmj), m = 1, . . . ,M , multiplied with the parameter vector βj

ψm =
k∑
j=1

cmjβj. (3.11)

Some examples of choosing useful contrasts are presented in Hochberg and Tamhane

(1987) or Bretz et al. (2001). There are several popular contrasts available, which are

specifically discussed in the literature; the most famous ones considering comparisons to

a control (Dunnett, 1955) and the all-pairs comparisons (Tukey, 1983). Additionally,

trend tests are available based on Williams-type contrasts (Bretz, 2006). This contrast

considers several convex alternatives, comparing the first with the last group, the first

with the pooled two last, and so on until the first group is compared to a pooled estimate

for all following groups. Detection of a changepoint by multiple contrasts (Hirotsu and

Marumo, 2002) can be performed by dividing the parameters into all combinations of
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two interconnected groups. Exemplary construction of these contrasts applied on five

parameters is shown in the Appendix (A.2).

Also for the new parameter vector ψp = (ψm)p deviance profiles can be constructed by

calculating r(ψ̂p). The transformation of the parameter vector by the contrast matrix

can be simply interpreted as a set of specific functions gm of the model coefficients. But

here, the additional problem occurs, when estimating a deviance statistic conditional on

a parameter ψm, multiple solutions are existing, as the parameter linear combinations

can be constructed by multiple sets of model coefficients. Therefore, a constraint can be

introduced in the optimization algorithm, finding k − 1 model parameters that minimize

the deviance, conditional on, for example, a redundant parameter β1, by

ψm −
k∑

j′=2

cmj′βj′ = cm1β1, (3.12)

where βj′ are treated as nuisance parameters. It is of direct importance, that the coefficient

for the redundant parameter cm1 is not equal to zero, as then, multiple solutions are

available.

3.2.3 Profiling for the angina data

The angina dataset introduced in Section 2.1 consists of a continuous response measured

for five dose groups. When assuming the duration of pain-free walking following a Gaus-

sian distribution, for each group a mean parameter can be estimated, minimizing the

squared residuals. If comparisons of all four dose groups versus the control are of interest,

the contrast matrix

cmj =


−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1


can be used to transform the estimated parameter vector. For the resulting parameter

estimates of interest, that is, the difference between averages of the doses compared to the

control mean, the deviance profiles are calculated. By minimizing the deviance conditional

on each linear combination of means, single profile curves for each new parameter are

obtained, which is demonstrated on the difference of the first dose average to the control
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in Figure 3.1. All parameters with contrast coefficients of zero are fixed at their MLEs.

The remaining three contrasts for the comparison of each dose group to the control result

in similar profiles, only showing a shift in the location of the MLEs.
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Figure 3.1: left : Two-dimensional deviance profile for the parameters coding for the means of

dose 1 and the control in a linear Gaussian model for the angina dataset. The bold intersecting

line represents the deviance profile for the difference of both parameters. right : The profile

deviance curve for the difference of means of dose 1 and the control, presented as bold line in

the left contour plot.

As a Gaussian linear model with the assumption of homogeneous variances is used, and the

parameters for Dose 0 and Dose 1 are uncorrelated, the deviance increases symmetrically

with increasing distance to the coordinate of the two MLEs. If the difference between

these two parameters is increased by some constant d, the minimum deviance conditional

on this difference is reached for
(
β̂2 + d/2

)
−
(
β̂1 − d/2

)
= ψ̂1 + d, giving equal weight

to each of the original parameters; hence, the profile for the difference of the two means

is found by a bisecting line in the two-dimensional deviance contour. This profile is a

quadratic function, explaining the deviance statistic by the parameter for the difference

of means.

3.2.4 Profiling the cell transformation assay data

The response in the cell transformation assay data (Section 2.3) are counts of cell clusters.

These counts may be modeled adequately by assuming them to be Poisson distributed,
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estimating mean parameters for each dose group. As multiple dishes per dose group are

evaluated, being an additional source of variation, the variance might be underestimated

assuming a simple Poisson GLM; therefore a quasi-Poisson model might be assumed,

described more detailed in Section 3.8. This model implies a loose variance-mean rela-

tionship, scaling the variances by a single parameter estimated from the data. Likewise to

the profile for the angina data, the profiling is shown for the difference of the lowest dose

(0.01 µg/ml) to the control in Figure 3.2. The low number of counts in both groups cause

a deviation from a quadratic profile; for all further comparisons of higher dose groups to

the control this effect decreases as the number of counted events increases.
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Figure 3.2: left : Two-dimensional deviance profile for the parameters coding for the means of

dose 0.01 and the solvent control on a logarithmic scale in a quasipoisson GLM for the first cell

transformation assay dataset. The bold intersecting line represents the deviance profile for the

difference of both parameters. right : The profile deviance curve for the difference of means of

dose 0.01 and the solvent control on the log link, presented as bold line in the left contour plot.

Due to the assumption of the variance dependence of the mean the deviance contour is

not symmetric as in the Gaussian case. It follows, that the profile is not found easily

on the bisecting line in the contour; a change in the difference between means arises not

from an equal change of the primary parameters. Also the shape of the deviance profile

function deviates from a quadratic shape, as the underlying Poisson distribution is not

equal-tailed.
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3.3 Hypothesis testing based on deviance profiles

The deviance statistic can be directly interpreted as likelihood ratio test

∆(p) =
L(β̂p)

L(β̂)
, (3.13)

testing the single null-hypothesisH0 : p = g(β), as described in Chen and Jennrich (1996).

Under the assumption, that −2 log ∆(p), or equivalently d(βp) following approximately a

χ2 distribution with 1 degree of freedom, a test decision can be obtained. For Gaussian

distributed data, an F distribution with adequate degrees of freedom can be assumed for

the deviance test statistic.

If otherwise the signed root deviance statistic r(βp) is used to test the same hypothesis

H0 : p = g(β), a standard normal distribution can be assumed; in case of Gaussian

distributed data, a t-distribution with residual degrees of freedom might be a better

choice at small samples (Bates and Watts, 1988).

In practice, the value of p can be chosen to define the limits of a rejection region of the

test. The deviance statistic at d(β̂p) is compared with a 1 − α quantile of a χ2- or F -

distribution, with α defining the type-I-error rate for a single hypothesis. For the SRDP,

r(β̂p) is compared with a 1− α quantile of the standard Normal- or t-distribution.

3.3.1 A shortcut

As discussed in Section 3.2.1 the deviance profile can be approximated by a quadratic func-

tion. By calculating the inverse of the information matrix, estimates of standard errors of

the parameters are obtained, representing the curvature of the quadratic approximation

to the likelihood. Hence, the deviance profile is summarized by it’s minimum and the

curvature of a quadratic function, and also a test can be based on both of these measures.

This leads to the well-known z-statistic

T̂ =
β̂

σ̂β̂
(3.14)

with σ̂β̂ being the estimated standard error of β̂. As for Gaussian distributed data the

deviance profile and it’s quadratic approximation are similar, the same test results are

obtained for both profiles.
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3.3.2 Multiple hypotheses testing

Instead of performing only one test, based on a single profile, several functions of pa-

rameters gm for m = 1, . . . ,M might be of interest. Hence, the corresponding set of

null-hypotheses can be stated as

H0 :
M⋂
m=1

pm = gm(β). (3.15)

If separate univariate distributions are assumed for each test statistic, only a local type-

I-error rate can be controlled. If the control of a global error rate, e.g. controlling the

family-wise-error rate, is of interest, a multivariate distribution has to be assumed for

the vector of test statistics. Performing the relatively simple adjustment by Bonferroni,

dividing α by the number of comparisons, assumes that all test statistics are uncorrelated.

This is a quite strong assumption, as the set of gm are all functions of the same parameter

vector β; additionally, only if the distribution of the parameters implies the independence

of mean and variance, this assumption is reasonable.

As an alternative, a multivariate distribution with the known correlation structure of

the test statistics can be assumed. Obviously, there is the problem of obtaining such a

correlation structure. One simple solution is to estimate this correlation directly from

the observed data. This approach implies, that the underlying distribution of the test

statistics depend on the sample of observations; therefore, it is assumed, that accurate

estimates of the correlation structure are available. Hothorn et al. (2008) state, that this

approximation of the underlying distribution by a normal distribution with an estimated

shape can be made even for relatively small sample sizes. For Gaussian distributed data in

a linear model, assuming homogeneous variances, this assumptions lead to exact inference.

With β̂j being an estimate of βj, Σ̂j being an estimate of cov(β̂j) and assuming that a

multivariate central limit theorem holds, then

β̂j
a∼ N(βj, Σ̂j). (3.16)

The next problem is the estimation of the correlation structure from the data. It might be

quite difficult to obtain any adequate information about the desired correlation directly

from a complete deviance profile; but the simplification of the problem by a quadratic

approximation is well-known and directly available. Therefore, as described in Hothorn
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et al. (2008) the estimated variance-covariance matrix Σ̂j = (σ̂2
j,j) can be standardized

to an estimated correlation matrix. Quantiles and adjusted p-values from an estimated

normal distribution can be calculated according to Bretz et al. (2001).

For all comparisons a single quantile is calculated, allocating the available global type-I-

error α equally on all simultaneously tested hypotheses. This method is focussed on the

maximum of test statistics to control the family-wise error rate in the strong sense. This

allows additional conclusions about the rejection of any local hypothesis at the global

type-I-error level.

Due to the numerical availability of quantiles and percentiles only for a multivariate

normal (and t-) distribution and not for a multivariate χ2 distribution, the use of the

signed root deviance profile is proposed. Similar test results may be produced for deviance

profiles generating χ2 quantiles by taking the square of the quantiles calculated from a

multivariate normal distribution.

3.3.3 Multiple contrast tests

When performing tests for linear contrasts of model parameters, the profiles for these

linear combinations of parameters can be used directly to construct the test statistics.

To estimate the shape of the underlying distribution, also the quadratic approximation

to the profile can be used. Additionally to the correlation between parameters of the

full model, the correlation due to the specified contrasts have to be taken into account.

Practically this means, that the variance-covariance matrix estimated from the model can

be multiplied with the predefined contrast matrix

Σ̂ψ̂ = CΣ̂C ′ (3.17)

to obtain adequate variance estimates for the contrast parameters. By investigating com-

parisons of several parameters specified by a contrast matrix, the resulting parameters of

interest are most likely correlated. Considering the correlation due to the contrasts we

can assume

Cβ̂
a∼ N(Cβ, Σ̂ψ̂), (3.18)

see Hothorn et al. (2008).
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To perform the multiple test, a vector of test margins pm is specified; the correspond-

ing signed root deviance statistics r((ψ̂m)pm) are compared with a 1 − α quantile of a

multivariate normal or t-distribution with the estimated correlation structure.

When using the shortcut over the quadratic approximation to construct associated Wald

statistics, these are constructed by

T̂ψ =
ψ̂m

σ̂
(ψ̂)
m,m

. (3.19)

For a linear Gaussian model with homogeneous variances the correlation of test statistics

exclusively depends on the specified contrast. Accordingly, an exact test is constructed

for this special case under assumption of Equation 3.18.

3.4 Confidence intervals based on profile deviance

When believing in a true but unknown model parameter, estimating it by minimizing the

deviance should provide the best idea about the location of the parameter, based on a

representative random sample of observations. But this estimator is a random variable,

showing some variability for different sets of observations; therefore the standard error

can be used to obtain some uncertainty measure about the reliability of the MLE. Stan-

dard errors indicate the uncertainty about the parameter estimate, but are not directly

connected to the underlying true parameter in the model. To obtain conclusions about

the true parameter, some assumption about the distribution of the parameter estimate

has to be made. By calculating confidence intervals, given the distribution of the param-

eter estimate, some probabilistic information can be inferred about the location of the

true parameter. Here, only frequentist inference is discussed, in a sense, that the true

parameter is located within the estimated confidence interval limits in 100(1 − α)% of

replicated samples from the same population.

The calculation of these limits is based on a random sample of observations; therefore the

limits of the confidence intervals are also random variables. Hence, the confidence intervals

give only a frequentist view on the location of the true parameter, that is for N(1−α) out

of N random samples the parameter is located within the particular confidence limits.
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3.4.1 Univariate intervals

Confidence intervals based on a deviance profile can be constructed by inversion of the

likelihood ratio test (Chen and Jennrich, 1996). Under assumption of a χ2 distribution for

the deviance statistics, the confidence limits are found at the parameter values at which

the test is just about to reject the null-hypothesis. That is done by searching the profile

for a statistic that equals a corresponding quantile of the underlying distribution. For

signed root deviance profiles an approximate normal distribution can be applied, whereas

for Gaussian model the assumption of F - and t-distributions are suitable. The confidence

interval based on the deviance profile is defined by

CIdeviance =
{
p : d(p) ≤ q1−α/2

}
(3.20)

where q1−α/2 is the 1 − α quantile of a χ2 distribution with 1 degree of freedom. A

corresponding interval based on the signed root deviance profile is obtained by

CISRDP =
{
p : zα/2 ≤ r(p) ≤ z1−α/2

}
(3.21)

with z being a quantile of the standard normal distribution.

Confidence intervals can also be constructed based on a quadratic approximation to the

likelihood, see for example Lindsey (1996). The shortcut of calculating standard errors

as a measure of profile curvature provides confidence limits[
δ̂l, δ̂u

]
=
[
β̂ ± z1−α/2σ̂j,j

]
(3.22)

with the interval

CIQA =
{
p : zα/2 ≤ t(p) ≤ z1−α/2

}
. (3.23)

The construction of univariate confidence intervals is illustrated in Figure 3.3 based on the

profile for the difference between the first dose versus the control of the angina dataset.

As a Gaussian GLM is assumed, the deviance profile is a quadratic function, thus the

shortcut by adding and subtracting a quantile times the estimated standard deviation is

available.

An important feature of deviance profiles is their transformation invariance (Lindsey,

1996). If a confidence interval for a parameter on a transformed scale is needed, it can be

obtained by transforming the confidence limits for the original parameter without loss of
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Figure 3.3: Construction of the univariate confidence intervals for the difference of means

of doses 1 and 0 for the angina dataset assuming a Gaussian linear model. ψ̂1 represents the

parameter estimate for the difference. By searching for the intersections of the cutoff value

z21−α with the deviance profile, estimates of upper and lower confidence limits can be found.

z21−α represents the squared 1 − α quantile of a standard normal distribution. The shortcut

ψ̂1 ± z1−ασ̂ψ is only available for the quadratic approximation to the deviance.

information. As the curvature of the quadratic approximation, inferred from the observed

information function, depends on the scale of the corresponding parameter, transformation

invariance is not given for these confidence intervals (Section 3.5.1).

3.4.2 Confidence regions

Instead of single parameter models, most models of interest are containing multiple param-

eters; therefore a restriction to single profiles without considering the correlation between

the parameters is not recommended. As for a single parameter a deviance curve can be

used to obtain all information about a parameter, for multiple parameters a deviance

surface in a k-dimensional space has to be considered. Treating the vector of parame-

ter estimates β̂j as point in this k-dimensional space, a confidence region can be defined

around it, which includes the true parameter vector with a predefined error rate. This

confidence region can be calculated by choosing an adequate cut-off value, similarly to

the univariate deviance intervals. Here, also a quantile of the χ2 distribution can be used,
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resulting in a convex space, which includes the true parameter coordinate in N(1 − α)

out of N random samples of the same population of observations. This confidence region

also corresponds directly with an inversion of a likelihood ratio test.

Confidence regions for the first two components of the parameter vector of a Gaussian

linear model and a quasipoisson GLM based on the angina and cell transformation as-

say example are presented in Figure 3.4. The parameters ψ1 and ψ2 are coding for the

difference of the means of the first two dose groups with the control group. Both differ-

ences share the comparison to the same control group; therefore the two parameters are

correlated ρ = 0.5, resulting in elliptical confidence regions.

Of course, a corresponding confidence region can also be constructed on the quadratic

approximation to the deviance; but obviously a nice shortcut as for univariate confidence

intervals is not available, as a complete parameter space is of interest and not only two

single confidence limits.

If linear combinations of the model parameters are of interest, in a simple way the complete

confidence region for the original model parameters can be transformed into the space of

the new parameters of interest by multiplication with a predefined contrast matrix.
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Figure 3.4: left : Confidence region for the differences between the means of the first two dose

groups versus the control of the angina data example estimated in a Gaussian linear model.

right : Confidence region for the differences between the means of the first two dose groups

versus the solvent control, estimated on the log link in a quasipoisson GLM based on the cell

transformation assay example.
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3.4.3 Confidence intervals for multiple parameters

Interpreting parameters with respect to all other parameters in a model, based on a

confidence region, is quite difficult, as for complex problems, looking at features in a k-

dimensional parameter space, is quite impossible to grasp. It is easier to look at single

confidence intervals separately for each parameter in the model. The problem is here to

summarize the information of the complete confidence region to single confidence intervals

on the scale of each single parameter. One possibility to obtain confidence intervals for

each parameter separately, is to project the minimum and maximum values of a confidence

region on the scale of a particular parameter. This procedure matches the inversion of

single hypotheses tests each tested at a local type-I-error α.

Instead of calculating minimum and maximum values for a complete confidence region,

a deviance profile conditional on a single parameter, treating all others as nuisance pa-

rameters, as described in Section 3.2 includes all this information needed. By minimizing

the deviance for the nuisance parameters conditional on one parameter of interest, the

resulting profile curve shows directly the projections of the minimum and maximum limits

of a corresponding confidence region on the scale of interest. Therefore, separate profile

curves for each parameter also reflect the correlations between parameters since they are

treated as nuisance parameters and optimized simultaneously. This also holds for pro-

files for multiple linear combinations of parameters due to the transformation invariance

of the profiling. Confidence intervals for multiple parameters are in the same manner

constructed as the univariate intervals by choosing an adequate cut-off value for the de-

viance statistic. The projections of the minimum and maximum on each single axis of the

coordinate system yields then a rectangular confidence region.

If a parameter vector is interpreted as coordinate vector in a multidimensional parameter

space, the cut-off value for a complete confidence region can be chosen as quantile of a

univariate χ2 distribution. As described in Section 3.4.2 this confidence region will contain

the true coordinate vector with probability 1−α. Therefore, the corresponding confidence

intervals, obtained from the projections on the coordinate axes, will also contain each

particular true parameter with probability 1− α.

These multiple univariate confidence intervals are calculated, e.g. for the signed root
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deviance profile, by

CISRDP =
{
pm : zα/2 ≤ r(pm) ≤ z1−α/2

}
, (3.24)

resulting in a rectangular confidence set.

Instead of calculating single confidence intervals each at a local α level, an inversion of

the multiple test, discussed in Section 3.3.2, can be applied. The resulting confidence

intervals will maintain a global error rate, that is, with a probability of 100(1− α)% the

true parameter will be contained in each of the intervals. The simultaneous confidence

intervals are calculated in a similar way as the multiple univariate ones, but with an

adequate critical value likewise to the corresponding multiple test. Choosing the same

quantile for all confidence intervals allocates an equal amount of the global α to each of

the single, local confidence intervals. By the projection of the minimum and maximum

values in the confidence region onto the axes of the coordinate system, a rectangular

confidence set is obtained, as illustrated in Figure 3.5.

For uncorrelated parameters the simultaneous confidence level is adequately controlled by

α adjustment according to Bonferroni. With an increased correlation of the parameters,

the shape of the confidence region becomes more elliptical. A major source of this corre-

lation is the choice of the contrast, applying multiple linear combinations on the same set

of original model parameters. The corresponding profile curves summarize the confidence

region by conditional estimation of the model parameters dependent on their weight in

the linear combination.

3.5 Profile- vs. quadratic approximation based

confidence intervals

For Gaussian distributed data, the deviance profile is a quadratic function and therefore

similar to the quadratic ‘approximation’ to this profile. Hence, the confidence intervals

based on the deviance profile will exactly match the ones of the quadratic function. For

non-equal-tailed distributions, the quadratic approximation might not completely have

the same curvature as its deviance profile. The difference between both profiles depends

on the skewness of the distribution of the data and the sample size. With increasing
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Figure 3.5: Confidence regions for two components of a parameter vector referring to a

common intercept are represented by an elliptical contour. The two bold lines crossing the point

estimate represent the location of the profile curves for each single parameter component ψ1

and ψ2. The gray area represents the confidence set for ψ1 and ψ2 spanned by the intersections

of the profile curves with the limits of the confidence region. The dotted lines illustrate the

projection of the confidence limits and the point estimate to the axes of the coordinate system.

left : Confidence region and corresponding confidence set for the difference of means for dose 0

and 1 to the control estimated in a Gaussian linear model based on the angina data example.

right : Confidence region and confidence set for the difference of means for dose 0.01 and 0.03 to

the solvent control, estimated on a logarithmic scale in a quasipoisson GLM based on the cell

transformation assay example.

sample sizes the differences between the deviance profile and the quadratic approximation

decreases; for example the Poisson distribution can be adequately approximated by a

normal distribution, if a large enough number of events were counted.

3.5.1 Transformation invariance

To improve the quadratic approximation to the likelihood the parameters can be estimated

on a transformed scale. In the case of generalized linear models these are defined by the

link function (Eq. 3.4). If, for example, count data are analyzed in a Poisson GLM,

the variance is assumed to be completely determined by the mean. Expecting a large

variance for a large number of counted events and a smaller variance at less events counted,

estimating parameters on a logarithmic scale is an obvious choice. The effect of this

transformation is illustrated on the micronucleus assay example (Section 2.2) in Figure
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Figure 3.6: Construction of the univariate confidence intervals for the difference of means

of doses 1 and 0 for the angina dataset assuming a Gaussian linear model. ψ̂1 represents the

parameter estimate for the difference. By searching for the intersections of the cutoff value

z21−α with the deviance profile, estimates of upper and lower confidence limits can be found.

z21−α represents the squared 1 − α quantile of a standard normal distribution. The shortcut

ψ̂1 ± z1−ασ̂ψ is only available for the quadratic approximation to the deviance.

3.7. Comparing both profiles a small improvement of the quadratic profile can be found

for the log link, especially for the upper confidence limits.

One problem of the transformation approach is, that the parameters on the transformed

scale might not be of direct interest. A transformation of a confidence set back to the

original scale of interest is not possible in any case. If a confidence interval for the

difference of two parameters on a logarithmic scale is calculated, a transformation by

taking the exponent of the difference will lead to the ratio of those two parameters. If

the complete deviance profile is used to construct confidence intervals, this can be done

on any scale of interest; but there are computational limits, as reaching convergence for

a constrained likelihood optimization is easier on a canonical link. A discussion and

simulation study about choosing a non-canonical link can be found in Czado and Munk

(2000). The problem gets even more complex when looking at linear combinations of

parameters. If linear contrasts are used to compare weighted groups of parameters, the
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Figure 3.7: Two dimensional deviance contour plot for the differences of means for dose 0.01

and 0.03 to the solvent control estimated in a quasipoisson GLM based on the cell transfor-

mation assay example. The straight lines represent the deviance profile, whereas the dotted

lines visualize its quadratic approximation. The lines crossing the point estimate represent the

location of the profile curves for each single parameter component β1 and β2, with corresponding

confidence set shown as thin black lines. left : Parameters are estimated on the identity link.

right : Parameters are estimated on a logarithmic scale.

parameters are estimated on the specific link and pooled afterwards by multiplication

with a contrast matrix. A second strategy is the definition of an adequate design matrix,

estimating directly a parameter for the difference of pooled group means. In this case the

pooling is done before transformation with a specific link, leading to a different model

and therefore to a different parameter of interest.

A second problem is the dependence of the quadratic approximation on a distinct trans-

formation. Estimating confidence limits for parameters on the original scale and on a

transformed scale (using an adequate inverse of the transformation function) will lead to

different results, as the curvature of the quadratic profile and thereby also the standard

error estimates depend on the chosen transformation. Depending on the specified link

function and a chosen linear contrast, the confidence limits are in some situations not

fully supported by the likelihood.
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3.5.2 Extreme Settings

With decreasing distance of the parameters to the boundary of the parameter space the dif-

ference between the deviance profiles and the quadratic approximation increases. Hence,

if a parameter is located directly on the boundary of the parameter space, the difference

between both approaches should be maximal. Again a simple example is presented by

observing count data, being limited to observations of only positive integers. The sec-

ond cell transformation assay dataset (Section 2.3) contains a control group, where for 10

replications no cell cluster was counted at all. Comparing the multiple dose groups to this

control by confidence intervals for the difference of means estimated in a Poisson GLM is

quite challenging. To enable an accurate estimation of parameters, a logarithmic trans-

formation is applied, expanding the parameter space from −∞ to +∞. As the parameter

estimates are found iteratively, a stopping rule can be introduced, searching for adequate

estimates only within e.g. the interval [−10; 10]; thus, the control group estimate will be

set to the value -10. The deviance profile and the quadratic approximation is illustrated

for the comparisons of the first two doses versus the control in Figure 3.8.
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Figure 3.8: Two dimensional deviance contour plots for the differences of means for dose

0.01 and 0.03 to the solvent control estimated in a quasipoisson GLM based on the second cell

transformation assay example. The bold lines represent the location of the profile curves for

each single parameter component β1 and β2, with corresponding confidence set shown as thin

black lines. left : Contour plot based on the profile deviance. right : Contour plot based on the

quadratic approximation to the deviance.

Only lower interval limits are found for the profile deviance intervals, as the estimates for
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the difference to the control are located at +∞, or at 10 respectively. The quadratic ap-

proximation provides no confidence limit at all, as the standard error for these parameter

estimates tend also to +∞ and the quadratic function will be reduced to almost a straight

line at a deviance of zero. This effect is known as the Hauck-Donner phenomenon, which

was first described by Hauck and Donner (1977) for logistic regression.

It might be debatable, if the construction of confidence intervals with an approximate

normal distribution as assumption for the parameters is adequate. At least, with the

profile deviance approach a confidence interval is obtained, based only on the information

of the dose groups, where some events are counted. The calculation of a confidence interval

for a parameter, for which no useful information is available at all, that is for example if

no event has been counted in any of the compared doses, is not applicable for deviance

profiles.

Additionally, the construction of the profile in these situations is not computational stable.

The parameter estimates of course depend on the artificial parameter space limitations

and the algorithm used for constrained optimization.

3.6 Modifications of deviance statistics

By the calculation of the complete deviance profile instead of the computationally simple

quadratic approximation, the resulting confidence intervals and tests should have more

accurate properties at non equal-tailed distributed data. That is, the more skewed the

distribution is, the more suitable the deviance profile becomes. On the contrary, the

approximation of the statistic by a normal distribution changes for the worse; the more

a profile deviates from a quadratic function, the more unrealistic an underlying normal

distribution becomes. As the deviance profile is based on a first order approximation to the

likelihood, modifications of the statistic by higher order approximations may improve their

characteristics. Several methods are available dealing with higher order approximations;

here only one of the most prominent methods, the Barndorff-Nielsen approximation based

on saddle-point approximations (Barndorff-Nielsen, 1986), (Barndorff-Nielsen and Cox,

1979), is briefly discussed. This approach arises from an approximation to the density of

29



the maximum likelihood estimate

f(β̂|a; β)
.
= c|j(β̂)|

1
2 exp

(
l(β)− l(β̂)

)
≡ p∗(β̂|a; β), (3.25)

with c being a normalizing constant. The dimension of the sample space is reduced to a

k-dimensional space of the parameter vector β, by conditioning on a statistic a (Brazzale

et al., 2007). a needs to be an ancillary statistic, that is, the distribution of a needs to be

free of β. By the density of the maximum likelihood estimate, tail area approximations

can be derived, leading to the modified signed root deviance statistic

r∗(β) = r(β) +
1

r(β)
log

(
q(β)

r(β)

)
. (3.26)

For single parameter GLMs, q(β) can be substituted by the Wald statistic t(β) (Eq. 3.10).

As q(β) contains information about the curvature of the likelihood function at the MLE,

the modified deviance statistic includes an adjustment for higher moments. Assuming a

distribution of the exponential family in the GLM leads then to almost exact inferences,

as described by Davison (1988). The detailed derivation of r∗(β) is for example described

in Brazzale et al. (2007, p.148). Confidence intervals and tests can be calculated in a

similar way as for the deviance profiles using the modified statistic, with an exception

near the MLE. Here, a singularity occurs, where both the Wald and the deviance statistic

become zero. For confidence interval construction an acceptable solution to this problem

is a spline interpolation at an appropriate interval around the MLE; a hypothesis test is

not affected by this peculiarity.

3.6.1 Nuisance parameters

In multi-parameter models the reduction of the sample space to the k-dimensional space

of the parameter becomes more complex, as additionally the effect of the nuisance param-

eters, for which the likelihood is maximized to obtain the profile for a fixed parameter,

has to be considered. Not only the curvature of the likelihood at the MLE is needed,

but also the change in curvature for the conditional MLE given the estimated nuisance

parameters.

A parameter vector β = (ψ, λ) is introduced here, with parameter linear combination

ψ for profiling and the nuisance parameters λ of secondary interest. The signed root
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deviance statistic is calculated as described in Section 3.2, obtaining r(ψ) by maximizing

the likelihood for λ conditional on ψ. Additional to the Wald statistic with information

about ψ an adjustment term for the nuisance parameters ρ has to be introduced by

q(ψ) = t(ψ)ρ(ψ, ψ̂). (3.27)

The Wald statistic is given by

t(ψ) = jp(ψ)(ψ̂ − ψ) (3.28)

with the observed Fisher information of the profile log-likelihood jp = −l′′p(ψ). The

information about the nuisance parameters

ρ(ψ, ψ̂) =

(
|jλλ(ψ̂, λ̂)|
|jλλ(ψ, λ̂ψ)|

) 1
2

(3.29)

contains the determinants of the observed Fisher information function for the full model

|jλλ(ψ̂, λ̂)| and the constrained fit |jλλ(ψ, λ̂ψ)|. Hence, all components, which need to be

calculated, are available by performing a constrained and the full parameter optimization.

The singularity around the MLE is still a small problem, which can be solved by an

adequate spline interpolation.

3.6.2 Multi-parameter profiles

The Barndorff-Nielsen approximation only takes single parameters of interest into account,

with adjustment for the nuisance parameters. If the combination of several components

of a vector of parameters are simultaneously of interest, an approximation is needed, con-

sidering a multidimensional parameter space. The same technique as for the single pa-

rameters can be used, constructing a multi-parameter profile by constrained optimization

of the deviance and then finding adequate tail area approximations, using the observed

information functions of these constraint models. Skovgaard (2001) gives an analogous

method to construct these profiles, approximating the conditional distribution of the vec-

tor of MLEs. Calculations are difficult, as they are computationally very demanding; with

increasing number of parameters of interest, even more constraint optimizations around

the MLE have to be performed to construct a profile for parameter combinations, giving

an adequate resolution. Furthermore, estimates for covariances of likelihood differences

and derivatives are needed (Skovgaard, 1996).
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These multi-parameter profiles may be of interest to construct confidence regions based

on the modified deviance statistic, when the focus lies on the dependence of two or more

parameters simultaneously. But presenting a complete confidence region to make inference

about model parameters might be a difficult task, both for calculation and interpretation.

3.7 One-sided confidence intervals

Instead of calculating a two-sided quantile to equally segment the given error probability to

all tails of the multivariate distribution, it can also be spent exclusively to the upper or the

lower tails. Hence, with these quantiles one-sided upper or lower simultaneous confidence

intervals can be calculated, setting the opposite limit to −∞ or ∞, respectively.

The use of these one-sided confidence intervals might be arguable, if a further assumption

is imposed on a confidence region, that it must comprise a set of parameter values most

strongly supported by the data (Boyles, 2008). For constructing the one-sided confidence

region, an area, which is located in an uninformative region of the parameter space to the

experimental question but corresponding to a high likelihood, is ’sacrificed’ to the benefit

of an area, supporting the one-sided formulated experimental question but comprising a

lower likelihood. Therefore, a criticism could be the connection of a predefined hypothesis

with the confidence interval, which might be interpreted hypothesis-free; hence, different

(1 − α) confidence regions might be available for the same dataset, leading to different

conclusions according to the imposed requirements on the particular confidence region.

Nevertheless, in terms of coverage probability also the one-sided intervals should lead to

adequate decisions, and the corresponding test decision has an increased power.

Using a first order approximation to the likelihood by computing confidence intervals

based on the profile deviance may have additional benefits in the one-sided case com-

pared to the quadratic approximation. By approximating the likelihood with a quadratic

function, the complete likelihood has to be considered. At non equitailed distributions,

both tails of the likelihood are adjusting the slope of this quadratic function; that is, the

opposite tail might additionally influence the statistic and thereby the confidence limit of

interest.
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3.8 Accounting for extra dispersion

In most real data settings, e.g. count data will not follow exactly a Poisson process with

the assumption of the variance being equal to the mean, or categorical data will not

reveal a variance term, arising from the assumption of a binomial distribution. This extra

variability in the data may for example be caused by any environmental condition, which

has an effect on the observed data, but is not represented by a covariate in the model.

To account for this overdispersion, quasi-likelihood methods can be used (Wedderburn,

1974). Instead of assuming a fixed variance function to construct a likelihood, a loose

variance mean dependency can be assumed. The amount of extra variability is then

estimated from the data by iteratively assigning weights to each observation, shifting the

variability, which cannot be explained by the resulting weighted predictions, into a single,

additional dispersion parameter (McCullagh and Nelder, 1989).

An alternative approach is a direct incorporation of an additional dispersion parameter

into the variance function of the assumed distribution. This leads to the assumption

for example of a negative binomial distribution for count data (Lawless, 1987), and a

beta-binomial distribution, or Polya distribution in the multivariate case for categorical

data (Agresti, 2007). In opposite to the quasi-likelihood methods, a fixed variance-mean

relationship is assumed.

Consequently, the dispersion parameter has to be introduced into the deviance statistic

to capture the complete uncertainty about the parameter of interest. A straightforward

way is to scale the statistic, exemplary the signed root deviance profile, by

r̃(β) =
r(β)√
φ

(3.30)

with φ being the dispersion parameter (Venables and Ripley, 2003). At φ = 1 no overdis-

persion is assumed with increasing φ at increasing extra variability.

As a correlation between the dispersion and several other parameters can be expected in

models with assumption of distributions featuring variance-mean dependency, simultane-

ous estimation may get complicated. These difficulties even increase, estimating a profile

by constrained optimization.

One approach, which highly simplifies the calculations, is fixing the dispersion parameter
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to its MLE over the range of the whole profile. The corresponding confidence region does

not take the uncertainty about the dispersion parameter into account; as a consequence,

the intervals produced at correlation of the dispersion parameter with the parameter of

interest are too short.

As a second approach, the dispersion parameter can be treated as additional nuisance

parameter. Estimating the dispersion at each point in the profile is time consuming

and a convergence of each optimization is not guaranteed. A high variability of the

estimated statistics causes additionally problems for the spline interpolation. Therefore

an automation of the confidence interval calculation is complicated, but a controlled

computation for specific problems might result in more accurate intervals.
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Chapter 4

Simulation study

In most cases it is not possible to cover every relevant situation by a simulation study to

characterize or compare several methods. Therefore, only some interesting small sample

situations are selected, which might be representative for many practical applications.

Furthermore one has to bear in mind, that the representation of the simulation results

can also influence the evaluation of the methods, e.g. a compact display by a contour plot

might hide detailed information, interpolation or choice of a scale might be misleading;

otherwise large tables are rather impossible to survey.

To investigate the characteristics of the profile deviance intervals, simulations for count

and categorical data are performed. For categorical data only the simple case of two cate-

gories in k×2 tables is explored; Multinomial distributed data with more than 2 categories

are not considered, as corresponding models exhibit a more complex parameterization and

more complex optimization algorithms are needed. Starting with the simple case of two

sample comparisons should give an idea about the performance of the methods, with no

need of considering any adjustments of multiplicity of inferences.

A well established measurement of characterizing the performance of a test is by its size

and power. In the multiple testing setting several types of power are available as the

any-pair power, average power, etc.. Here, only average power is considered, observing

the probability of rejecting at least one hypothesis. A common method of evaluating

confidence intervals is by its coverage probability, that is, the probability that the true

parameter is included in the interval. The corresponding simultaneous coverage proba-
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bility is then defined as the probability of the true parameter vector being located inside

the confidence set.

Multiple tests and simultaneous confidence intervals based on the signed root deviance

profile (SRDP), based on the quadratic approximation to the likelihood (QA), and based

on Barndorff-Nielsen’s higher order approximations (HOA) are compared. As the confi-

dence intervals for higher order approximated profiles are only computationally available

if at least one event occurs in each group for count and categorical data, in all other

cases uninformative intervals with limits [−∞; +∞] are passed to the coverage proba-

bility calculations. To maintain comparability between these approaches, additionally a

modification of the SRDP intervals are calculated, substituting the confidence limits by

uninformative ones at observing exclusively zeros in a sample (SRDP 0). Treating the

occurrence of parameter estimates at the boundary of the parameter space as special

case by calculating SRDP and SRDP0, permits an indirect comparison for the confidence

interval performance in the settings.

As the confidence limits are found by projecting the intersections of a profile on the space

of a parameter, the profile has to cover the range of the interval. For single practical

applications, the computation of a profile can be restricted to an adequate range auto-

matically. A bisection algorithm, which does this in a simple way, is described in Section

5.1. But in order to avoid any influence of these algorithms in a simulation study, the

SRDP is calculated by spline interpolation for 100 points in an interval within [−15; 15]

on a log or logit scale, covering the complete computationally available parameter space.

By this method, computational instabilities at occurrence of groups, where overall zero

events were counted, are reduced. For the calculation of p-values, the profiling range

can be restricted to the space between zero and the parameter estimates; ±1 to stabilize

the spline interpolation at the margins. Only 25 supporting points are supposed to yield

reliable results.

All power simulations are performed only at 1,000 runs for each parameter combination,

as the computation of the profiles is quite time consuming. At investigating the behavior

at small sample sizes, a large variability for the power estimates can be expected. To

maintain comparability of the four methods, at each replication all confidence intervals

or tests are based on the same generated dataset. For the simulation of simultaneous
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coverage probability a higher resolution of 10,000 replications is chosen, at the cost of

investigating only a small number of parameter settings.

4.1 Power and size

A statistical test is based on rejecting a null hypothesis with a given error probability,

when interest lies on a specific alternative; hence, the simulation study is designed for

investigating parameter settings, clearly distinguishing between the null hypothesis and

selected alternatives.

4.1.1 Two-sample comparisons

Count data

Two response variables are generated from a Poisson distribution for each combination

of 15 Poisson means in a range between 0.1 and 10. At each simulation step, the two

means are estimated in a GLM with Poisson family on the log link. Test statistics and

corresponding p-values are calculated for the contrast ci = {−1, 1}.

Power and size for two-sided (left) and one-sided (right) comparisons are shown in Figure

4.1. As the two parameters are exchangeable, only the one-sided test with the alternative

hypothesis HA : β2 − β1 > 0 is used.

Under H0 the QA test holds the nominal level strictly for each setting with a tendency

of being quite conservative. The SRDP test shows a more liberal behavior, exceeding the

nominal level for some settings, but also showing a significantly higher power than the

QA test. When not rejecting H0 for data with zero counts (SRDP 0) the liberal behaviour

under H0 can be avoided. Also the HOA test does not show this liberal behavior as well

as being not as conservative as the QA approach. Furthermore, the differences between

the QA and profile based tests in handling zero data becomes noticeable, as for the SRDP

power increases up to the boundary of the parameter space. For all other methods,

completely zero counts yield in a decrease in power. Correspondingly, these results also

apply for one-sided testing.
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Figure 4.1: Contour plots showing the power and size for profile based tests (α = 0.05) for the

difference of two Poisson means β̂1 and β̂2 estimated on the log link. The light gray shaded areas

indicate a simulated level below 0.04, and for the next gray level in between [0.04; 0.06]; increasing

shade shows a higher power. left : two-sided comparisons; right : one-sided comparisons. Within

these panels: upper left : QA, upper right : SRDP, lower left : SRDP0, lower right : HOA.
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Figure 4.2: Contour plots showing the simulated power and size for profile based tests for the

log odds ratio based on the difference of the binomial GLM parameters β̂1 and β̂2 estimated on

the logit link (α = 0.05). The light gray shaded areas indicate a simulated level below 0.04,

and for the next gray level in between [0.04; 0.06]; increasing shade shows a higher power. left :

two-sided comparisons; right : one-sided comparisons. Within these panels: upper left : QA,

upper right : SRDP, lower left : SRDP0, lower right : HOA.

Categorical data

Data for a 2 × 2 table is generated from a Binomial distribution for all parameter com-

binations of 23 values between 0.005 and 0.995, and a population size of 100; The two

parameters are exchangeable for two-sided comparisons (Agresti, 2007), resulting in the

same performances mirrored at the bisecting diagonal of the parameter space. For each

generated table, the probability of successes is estimated on the logit link. Applying the

contrast ci = {−1, 1} results in tests for the odds-ratio.

The simulation results for two- and one-sided tests are shown in Figure 4.2. The main

focus is laid on small proportions, hence the contour plot axes are shown on the logit

scale.

The resolution of observing all combinations of 23 proportions, spread over the whole

parameter space, makes it hard to detect any violation of type-I-error rates in the figures.

Looking at the raw simulation results, the same outcome as for the count data can be
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observed, with the QA approach being conservative, SRDP being liberal, and the HOA

method representing a compromise between those two approaches. This becomes also

obvious when examining the power and size at very small proportions. Noticeable is also

the treatment of counting no event in one of the categories, yielding in a decreasing power

at the boundary of the parameter space, except for the SRDP test.

4.1.2 Multiple tests in a one-way layout

To investigate the power and size of multiple tests based on a deviance profile, the simula-

tion setting is extended to the comparison of five samples, as a trade-off between obtaining

information about an adequate multiplicity control and computation time. The sample

size is set to n = 1 per sample.

Representative for some useful multiple comparison procedures, described in Section 3.2.2

and with examples in the Appendix A.2, simulations are performed for many-to-one,

Williams-type, and changepoint comparisons. These contrasts show an increasing amount

of correlation between the test statistics. At each simulation step, multiple tests are

performed, testing the two-sided hypothesis H0 :
⋂M
m=1 ψm = 0 with ψm =

∑k
j=1 cmjβj

for m = 1, . . . ,M local hypotheses. Only a small extract of all combinations of the five

sample means βj are observed. The parameters are partitioned into two groups, each

with the same mean, restricting the alternatives to a grid of combinations of only two

parameters.

As a direct comparison, Bonferroni adjusted tests are calculated (marked in all figures as

lightgray, dotted contour lines).

Count data

As a basis for all count data simulations the five sample means are estimated in a

Poisson GLM on the log link. Parameters are chosen from the set of Poisson means

{0.5, 1, 1.5, 2, 2.5, 5, 7, 10, 15}.

For the Dunnett-type comparisons all combinations of the two parameter groups β1 and

β2,3,4,5 are observed, reproducing a design with one control group and all other treatments

in the alternative. Simulated size and power is shown in Figure 4.3 for two-sided and
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Figure 4.3: Contour plots showing the power and size for profile based tests (α = 0.05) for

Dunnett-type comparisons of five Poisson means β̂1 and β̂2,3,4,5 estimated on the log link. The

lightgray shaded areas indicate a simulated level below 0.04, and for the next grey level in

between [0.04; 0.06]; increasing shade shows a higher power. left : two-sided comparisons; right :

one-sided comparisons. Within these panels: upper left : QA, upper right : SRDP, lower left :

SRDP0, lower right : HOA.

one-sided comparisons. The size of the test is for every setting far below the nominal

level of 0.05; the performance under the alternative is comparable to the two-sample

comparisons for all of the four methods. As the comparisons are performed to a common

control group the multiple tests are correlated; therefore the Bonferroni correction yields

in a loss in power, assuming uncorrelated tests. A special situation arises at large number

of counts in the control group and small ones in the other group. The small number

of counts yields in large variance estimates, which are used to estimate the correlation

structure for the underlying multivariate normal distribution. In the extreme settings

under investigation, this estimation problem dominates, hence the correlation due to the

contrasts has virtually no impact. According to this, the Bonferroni correction shows the

same characteristics as the ‘plugin’ method for these settings.

The simulations for the Williams-type contrasts are performed by defining the parameters

β1 and β5, obtaining the remaining ordered parameters by linear interpolation on the log

link. One-sided tests are investigated, assuming that interest lies in a specific direction
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Figure 4.4: Contour plots showing the power and size for profile based tests (α = 0.05) for one-

sided Williams-type (left) and two-sided changepoint (right) comparisons of five Poisson means

estimated on the log link. The Williams settings are parameterized as β1 and β5 assuming a

linear trend for the parameters within; for the changepoint contrast, the difference between the

parameter groups β1,2 and β3,4,5 is observed. The lightgray shaded areas indicate a simulated

level below 0.04, and for the next gray level in between [0.04; 0.06]; increasing shade shows a

higher power. Within the panels: upper left : QA, upper right : SRDP, lower left : SRDP0, lower

right : HOA.

when testing for a trend. Two-sided tests are used for changepoint detections between

the pooled groups β1,2 and β3,4,5. The power results, shown in Figure 4.4, are again

similar to the ones before. Due to larger correlations between the tests, the difference to

the Bonferroni correction increases. The estimation of the correlation in the changepoint

setting is not as problematic as in the Dunnett case, as the comparisons are performed

between pooled parameter groups and not to a single control group.

Categorical data

Similar to the Poisson settings, simulations are performed for a Binomial GLM on the logit

link, applying multiple contrasts on estimates for a k × 2 table. Parameters are chosen

from the set of proportions {0.005, 0.01, 0.025, 0.05, 0.075, 0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5,

0.6, 0.7, 0.75, 0.8, 0.85, 0.9, 0.925, 0.95, 0.975, 0.99, 0.995} with a population size of 100.
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Figure 4.5: Contour plots showing the power and size for profile based tests (α = 0.05) for

Dunnett-type comparisons of five Binomial proportions β̂1 and β̂2,3,4,5 estimated on the logit

link. The lightgray shaded areas indicate a simulated level below 0.04, and for the next gray

level in between [0.04; 0.06]; increasing shade shows a higher power. left : two-sided comparisons;

right : one-sided comparisons. Within these panels: upper left : QA, upper right : SRDP, lower

left : SRDP0, lower right : HOA.

For the one- and two-sided Dunnett-type comparisons (Figure 4.5) and for the one-sided

Williams-type comparisons (Figure 4.6) the same results apply for the odds ratio compar-

isons as for the Poisson settings. All four methods hold the nominal level being almost far

too conservative and the SRDP tests show an increased power especially for the extreme

settings of small proportions. A difference to the Bonferroni adjustment can only be seen

at these comparisons of small proportions, where also the correlation estimates have a

large impact on a gain in power for the plugin method. It has to be acknowledged, that

the presentation of the results for multiple settings over a large range of parameters can

not highlight every feature, which might be of interest.

The changepoint comparisons, shown in the right panel of Figure 4.6, exhibit a special

situation, where also the SRDP test shows a loss in power at the borders of the parameter

space. As for the changepoint contrast mainly pooled parameter combinations are tested,

the impact of a single category without any event counted is relatively small. But due

to the small sample sizes for these settings, a test might not reject the null hypothesis
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Figure 4.6: Contour plots showing the power and size for profile based tests (α = 0.05) for

one-sided Williams-type (left) and two-sided changepoint (right) comparisons of five Binomial

proportions estimated on the logit link. The Williams settings are parameterized as β1 and β5
assuming a linear trend for the parameters within; for the changepoint contrast, the difference

between the parameter groups β1,2 and β3,4,5 is observed. The lightgray shaded areas indicate a

simulated level below 0.04, and for the next gray level in between [0.04; 0.06]; increasing shade

shows a higher power. Within the panels: upper left : QA, upper right : SRDP, lower left :

SRDP0, lower right : HOA.

and leads therefore to conservative results. Furthermore, the calculation of the profiles

for changepoint contrasts might be instable as the conditional optimization involves the

estimation of all of the five parameters at each step.

4.2 Coverage probability

Confidence intervals are not based on a specific null hypothesis, but should characterize

the uncertainty about a parameter estimate with a given error probability. To provide a

general view about the application of the presented confidence intervals for a broad range

of realistic models, the simulation settings are summarized by parameters of Gamma or

Beta distributions, when more than two samples are involved. By varying a location

parameter the confidence interval performance at decreasing sample sizes is described.

Assuming a fixed dispersion parameter enables the consideration of several realistic pa-
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rameter configurations. This allows for a basic representation of coverage probabilities,

closer to the practical application than observing only a small set of fixed parameter

combinations.

4.2.1 Two-sample comparisons

Count data

Two response variables are generated from a Poisson distribution for each combination

of 10 Poisson means in a range between 0.1 and 10. At each parameter combination, the

two means are estimated in a GLM with Poisson family on the log link. Then, confidence

intervals are calculated for the contrast ci = {−1, 1}. The estimated coverage probabilities

are presented in Figure 4.7.

The QA intervals are showing an overall conservative behavior, but getting liberal at

small mean values in one of the groups. This liberality, in spite of observing a large

number of zero event groups, may be caused by adjusting the quadratic profile on the

lower tail of the likelihood. Hence, the upper confidence limit is underestimated at largely

skewed distributions. Nominal coverage is only reached at larger mean values, which are

barely covered by the chosen simulation settings. The SRDP intervals reach the nominal

level faster, at smaller mean parameters than the QA method. At the borders of the

parameter space the intervals tend to be conservative, but near the border a liberal area

can be seen. In this region, the probability of drawing completely zero count data for one

of the two samples is high; all information about the variability is then obtained from

a single group, yielding in an underestimation of the variance of the difference of the

two means. Setting the corresponding interval uninformative for these settings (SRDP0)

eliminates this liberality, replacing it with conservative intervals. The HOA method shows

a little higher coverage probability than the SRDP0 intervals as a trade-off between the

QA and SRDP approach. The one-sided intervals reflect the same results as for the two-

sided intervals. Noticeable is the liberal behavior of the HOA approach at one border of

the parameter space, resembling the characteristic of the QA intervals for these settings.
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Figure 4.7: Contour plots showing the simulated coverage probabilities for the difference of

two Poisson means β̂1 and β̂2 estimated on the log link ((1− α) = 0.95). The light gray shaded

areas indicate simulated coverage > 0.96; the dark gray shaded areas < 0.94; with medium

gray intensity for [0.94; 0.96]; left : two-sided comparisons; right : one-sided comparisons. Within

these panels: upper left : QA, upper right : SRDP, lower left : SRDP0, lower right : HOA.
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Figure 4.8: Contour plots showing the simulated coverage probabilities for the log odds ratio

based on the difference of the binomial GLM parameters β̂1 and β̂2 estimated on the logit link

((1−α) = 0.95). The light gray shaded areas indicate simulated coverage > 0.96; the dark gray

shaded areas < 0.94; with medium gray intensity for [0.94; 0.96]; left : two-sided comparisons;

right : one-sided comparisons. Within these panels: upper left : QA, upper right : SRDP, lower

left : SRDP0, lower right : HOA.

Categorical data

Data for a 2 × 2 table is generated from a Binomial distribution for all parameter com-

binations of 23 values between 0.005 and 0.995, and a population size of 100. For each

generated table, the probability of successes is estimated on the logit link. Applying the

contrast ci = {−1, 1} results in confidence intervals for the log odds ratio.

The estimated coverage probabilities are presented in Figure 4.8. The axes are shown on

the logit scale to emphasize small proportions.

At the borders of the parameter space all intervals show a conservative behavior, only

reaching the nominal level for larger proportions. The area with coverage probability

around 0.95 is slightly larger for the SRDP, SRDP0, and HOA intervals in comparison to

the QA method. Likewise to the Poisson case, the SRDP intervals are liberal in a region

near the boundary due to counting no success or failure in one of the cells of the 2 × 2

table. This behavior turns conservative for the SRDP0 intervals.
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The one-sided QA intervals show a slightly liberal behavior at large odds ratios, when

computing lower limits. In comparison to the two-sided intervals, the liberal region of the

SRDP method is even increasing; even the SRDP0 intervals are somewhat liberal. Here,

the HOA intervals perform best with a large area around the nominal level.

4.2.2 Simultaneous confidence intervals in a one-way layout

To investigate the characteristics of simultaneous confidence intervals based on a deviance

profile, the simulation setting is extended to the comparison of five samples, as a trade-off

between obtaining information about an adequate multiplicity control and computation

time. For Tukey-type comparisons additionally a design with ten groups is used to demon-

strate the application to a higher dimensional problem. Replicated data is generated with

a balanced sample size of nj = 1, 10 per sample.

Representative for some useful multiple comparison procedures by multiple contrasts,

simulations are performed, likewise to the power simulations, for Dunnett-type, Tukey-

type, Williams-type, and changepoint comparisons (Appendix A.2). At each simulation

step, simultaneous confidence intervals are calculated for the M transformed parameters

ψ̂m =
∑k

j=1 cmjβ̂j, with β̂j being the 5(10) sample mean estimates.

As a direct comparison, Bonferroni adjusted simultaneous confidence intervals are calcu-

lated.

Count data

As a basis for all count data simulations the five sample means are estimated in a Poisson

GLM on the log link.

First, two-sided many-to-one comparisons are performed, using a Dunnett-type contrast

matrix. The responses are generated from a Poisson distribution with parameters being

drawn from a Gamma distribution with density

f(β) =
βa−1e−

β
s

saΓ(a)
(4.1)

with a > 0 being a shape and s > 0 a scale parameter. Mean and variance are E(β) = a

and V ar(β) = as2 (Johnson et al., 1994). Several parameter settings are investigated,
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Figure 4.9: Dunnett-type comparisons for 5 means estimated in a Poisson GLM. Simulation

settings are varied by the mean of a Gamma distribution E(βj) on the logarithmic scale and the

number of replicates per group nj . Black lines indicate multiplicity adjustment by a multivari-

ate normal distribution with estimated correlation structure; gray lines represent multiplicity

adjustment by Bonferroni.

fixing the scale parameter at s = 1 and varying the mean of the Gamma distribution for

8 locations between 1 and 15.

The results for two-sided Dunnett comparisons are shown in Figure 4.9. All methods are

conservative at a small number of counts, but will converge to the nominal level with

increasing sample sizes. The QA method shows the most conservative behavior, even

showing some conservativeness at larger sample sizes. The SRDP method first yields some

liberal decisions before approaching the nominal level with increasing sample size. This

effect is caused by groups with zero counts and will disappear when omitting these settings

by the SRDP 0 method. Overall the first order approximations (SRDP, SRDP0) are a bit

liberal. The higher order approximation (HOA) shows the best results, converging fast

and directly to the nominal level.

In many applications, comparisons to a control are needed with interest in only a one-

sided alternative. Therefore, the simulation is repeated for one-sided confidence intervals,

as discussed in Section 3.7. As a directed alternative is of interest, the parameter settings

are restricted to this one-sided problem; the sample means, generated by a Gamma distri-

bution are ordered, with the control group having the smallest value. Hence, the results

of the one-sided versus the two-sided simulations are not directly comparable, generating
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smaller counts for the one-sided control. Especially for Dunnett-type contrasts, this has

an enormous impact, as the control group is used in all of the local comparisons. The

results are presented in Figure A.1 in the Appendix. The one-sided intervals show quite

the same characteristics as the two-sided ones; as expected the QA, SRDP0, and HOA

intervals behave more conservative, and the SRDP is more liberal at small mean values

due to the ordered means settings.

If the alternative should be restricted even further, a trend may be detected for the

ordered samples by a Williams contrast. Only in rare situations two-sided alternatives

are of interest for this contrast, thus the simulation is conducted for one-sided confidence

intervals detecting an increasing trend. Although the Williams-type contrast allows for

multiple convex response shapes, only a linear trend is considered for the simulations.

This is realized by generating the minimum and maximum sample means by a Gamma

distribution and finding the means for the intermediate groups by linear interpolation.

The simulated coverage probabilities are visualized in Figure 4.10. No much difference can

be detected compared to the Dunnett-type simulations. Even for the more complicated

correlation structure the nominal level is reached at ‘high’ sample sizes; the deviance

profile methods, especially the HOA approach, shows a faster convergence to this level

with increasing sample sizes.

To investigate the interval characteristics at a large number of comparisons and a larger

number of parameters, a simulation for Tukey-type comparisons between 5 and 10 group

means are conducted (Figure 4.11). In both cases the quadratic approximation is far

to conservative at these small samples. The profile methods are converging faster to

the nominal level at increasing sample sizes. With an increased number of parameters

to compare, all methods become a bit more conservative. This conservativeness can be

expected, as the increased number of comparisons ((k(k− 1))/2) will not be obtained for

free.

At last, coverage probabilities of two-sided confidence intervals for changepoint contrasts

are investigated. The parameters of interest are highly correlated, as each is a represen-

tation of a slightly different linear combination of all original model parameters. Hence,

this contrast represents also a challenge for the conditional optimization algorithm. The

sample means are generated from a Gamma distribution without any further restriction
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Figure 4.10: One-sided Williams-type comparisons for 5 ordered means estimated in a Poisson

GLM assuming a linear trend. Simulation settings are varied by the mean of a Gamma distri-

bution E(βj) on the logarithmic scale and the number of replicates per group nj . Black lines

indicate multiplicity adjustment by a multivariate normal distribution with estimated correlation

structure; gray lines represent multiplicity adjustment by Bonferroni.
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Figure 4.11: Tukey-type comparisons for 5 (left) and 10 means (right) estimated in a Pois-

son GLM. Simulation settings are varied by the mean of a Gamma distribution E(βj) on the

logarithmic scale and the number of replicates per group nj . Black lines indicate multiplicity

adjustment by a multivariate normal distribution with estimated correlation structure; gray lines

represent multiplicity adjustment by Bonferroni.
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Figure 4.12: Changepoint comparisons for 5 means estimated in a Poisson GLM. Simulation

settings are varied by the mean of a Gamma distribution E(βj) on the logarithmic scale. Black

lines indicate multiplicity adjustment by a multivariate normal distribution with estimated

correlation structure; gray lines represent multiplicity adjustment by Bonferroni.

similar to the two-sided Dunnett simulation. The results are found in Figure 4.12.

Due to the large amount of zero counts at small sample means, the SRDP is liberal; a

change to larger intervals at small sample sizes can not be found for the chosen simulation

settings. Numerical problems may occur for the conditional parameter optimization and

spline interpolations; the number of supporting points to construct a profile has to be

increased to obtain accurate simulation results. Some numerical instabilities may cause

the SRDP 0 and especially the HOA method to underestimate the nominal level.

Categorical data

The observations in a 5× 2, (or 10× 2) table are generated from a Binomial distribution

with sampled population size of 100 for each group. The parameters of the Binomial

distribution are obtained from a Beta distribution

f(β) =
Γ(a+ b)

Γ(a)Γ(b)
βa−1(1− β)b−1 (4.2)

with a > 0 and b > 0 being two shape parameters (Johnson et al., 1995). Mean and

variance are E(β) = a
a+b

and V ar(β) = ab
(a+b)2(a+b+1)

. To simplify the parameterization, a

dispersion parameter φ = 1
a+b

is introduced and fixed at φ = 0.01, varying the expectation
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Figure 4.13: Dunnett-type comparisons for 5 parameters estimated in a Binomial GLM. Sim-

ulation settings are varied by the mean of a Beta distribution E(βj) on the logit link and the

number of replicates per group nj . Black lines indicate multiplicity adjustment by a multivari-

ate normal distribution with estimated correlation structure; gray lines represent multiplicity

adjustment by Bonferroni.

over all group means in each simulation setting for 8 values between 0.005 and 0.5. At

each simulation step the group means are estimated on the logit link in a Binomial GLM.

Simultaneous confidence intervals for the odds-ratio are calculated, using the same types

of contrasts as for the count data simulations.

As the simplest setting, two-sided many-to-one comparisons are performed. The simula-

tion results are presented in Figure 4.13.

The same characteristics can be found as for the count data simulations; the QA approach

is most of the time conservative, whereas the SRDP, SRDP0, and HOA method are

converging faster to the nominal level than the QA method. The HOA approach is liberal

at large sample sizes; this might also be caused by numerical instabilities, obtaining

less liberal results, when increasing the number of supporting points for the conditional

optimization and spline interpolation. This problem is enlarged for contrasts exhibiting

a more complex correlation structure.

Just as for the count data, also one-sided Dunnett-type comparisons are performed for the

odds-ratio. Again, the result presented in Figure A.2 in the Appendix, are comparable

to the two-sided ones. The simulations show clearly a superiority of the profile method
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Figure 4.14: Tukey-type comparisons for 5 (left) and 10 proportions (right) estimated in a

Binomial GLM. Simulation settings are varied by the mean of a Gamma distribution E(βj) on

the logit scale. Black lines indicate multiplicity adjustment by a multivariate normal distribution

with estimated correlation structure; grey lines represent multiplicity adjustment by Bonferroni.

compared to the quadratic approximation in terms of coverage probability. Additionally

investigating a systematic bias at detailed length, which is a known problem for confidence

intervals for the odds ratio (Staicu, 2009), would require far more simulation settings over

a wider range of parameter combinations and is therefore omitted here.

Coverage probabilities for one-sided Williams-type contrasts and two-sided changepoint

comparisons are shown in Figure A.3 and Figure A.4 in the Appendix. Likewise to the

Poisson setting only linear trends are assumed for the Williams-type confidence intervals.

The minimum and maximum sample proportions are generated from a Beta distribu-

tion, interpolating the intermediate group means by a logistic function. The changepoint

settings are chosen similar to the parameter layout for the two-sided many-to-one compar-

isons. Both results resemble the outcome of the Poisson simulations, showing a superiority

of the profile deviance methods compared to the QA approach. Again the HOA method

shows computational instabilities at large sample sizes yielding in an increased liberal

performance at large sample sizes and expected proportions around 0.5 respectively.

The possibility of performing a larger number of comparisons and comparing a larger

number of groups is shown exemplary for Tukey-type comparisons in Figure 4.14. Again

the quadratic approximation is highly conservative, whereas the profile methods reach the
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nominal level earlier when increasing the probability of observing a success.

4.2.3 Overdispersion

The simulation settings presented in this section are comparable to the ones in Section

4.2.2, with introducing additional variation for each observation. As the number of repli-

cations to estimate each parameter is the key factor in estimating any overdispersion

parameter, only three different sample mean configurations are used to generate the five

group means, but a range of 8 different sample sizes per group nj from 2 to 20 are included

instead. Settings with only one observation per group certainly do not allow estimating

any overdispersion. Only two-sided Dunnett- and one-sided Williams-type comparisons

are performed.

Count data

To add some amount of extra dispersion to the responses obtained from a Poisson distri-

bution, the expected value for each observation is generated from a Gamma distribution

(Eq. 4.1) with shape parameters ai = exp(
∑k

j=1 xijβj), i = 1, . . . , N , and scale parameter

s = 1. The resulting Gamma-Poisson distribution should represent some fairly overdis-

persed count data, which may occur in many real data applications. At each simulation

step, parameters are estimated on the log link assuming a quasipoisson model (Section

3.8) conditional on the estimated overdispersion parameter.

The resulting coverage probabilities for Dunnett- and Williams-type comparisons are

shown in Figure 4.15 and Figure 4.16.

The results depend on three different factors: the mean of the Gamma-Poisson distribu-

tion, the sample size per group, and the amount of overdispersion. The dominating effect

here is caused by underestimating the amount of overdispersion at small sample sizes as

the profiles are only scaled by the dispersion parameter estimate (Eq. 3.30). This leads

to a liberal performance for all of the presented methods. Especially at high mean values

and small sample sizes the amount of extra variability is underestimated. At small mean

values, the effect of zero counts gain more weight, leading to a conservative behavior of

all methods except for the SRDP intervals in the range of evaluated settings. This can
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Figure 4.15: Dunnett-type comparisons for 5 means estimated in a quasipoisson GLM. Simu-

lation settings are varied by the mean of a Gamma distribution E(exp(βj)) on the logarithmic

scale and the number of replicates per group nj . Fairly overdispersed count data is generated

from a Gamma-Poisson distribution at each simulation step. Black lines indicate multiplicity

adjustment by a multivariate normal distribution with estimated correlation structure; gray lines

represent multiplicity adjustment by Bonferroni.

nicely be seen for the Williams-type intervals, where the imposed order restriction on the

parameter settings leads to a higher number of zero counts in the ‘control’ group.

Categorical data

Additional variation is introduced to the categorical data by generating the expecta-

tions for each proportion from a Beta distribution (Eq. 4.2) with φ = 0.01 and pi =

expit(
∑k

j=1 xijβj), i = 1, . . . , N . Like in the count data setting, counts of successes and

failures generated from this mixture of a Beta and Binomial distributions should represent

actual fairly overdispersed Binomial data. For each generated dataset confidence intervals

based on linear combinations of parameters estimated in a quasibinomial model (Section

3.8) are calculated.

Simulation results for Dunnett- and Williams-type contrasts are shown in Figure 4.17

and Figure 4.18. The same problems as for the Poisson distributed data gets obvious,

underestimating the extra variability at small samples, leading to liberal decisions. Addi-

tionally, the large number of zeros at small proportions counteracts the liberal behavior

of the QA, HOA, and SRDP0 intervals.
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Figure 4.16: One-sided Williams-type comparisons for 5 ordered means estimated in a

quasipoisson GLM. Simulation settings are varied by the mean of a Gamma distribution E(βj)

on the logarithmic scale and the number of replicates per group nj . Fairly overdispersed count

data is generated from a Gamma-Poisson distribution at each simulation step assuming a linear

trend. Black lines indicate multiplicity adjustment by a multivariate normal distribution with

estimated correlation structure; gray lines represent multiplicity adjustment by Bonferroni.
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Figure 4.17: Dunnett-type comparisons for 5 parameters estimated in a quasibinomial GLM.

Simulation settings are varied by the mean of a Beta distribution E(βj) on the logit link and the

number of replicates per group nj . Overdispersion is introduced by generating data from a Beta-

Binomial distribution. Black lines indicate multiplicity adjustment by a multivariate normal

distribution with estimated correlation structure; gray lines represent multiplicity adjustment

by Bonferroni.
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Figure 4.18: One-sided Williams-type comparisons for 5 ordered parameters estimated in a

quasibinomial GLM. Simulation settings are varied by the mean of a Beta distribution E(βj) on

the logit link and the number of replicates per group nj assuming a linear trend. Overdispersion

is introduced by generating data from a Beta-Binomial distribution. Black lines indicate mul-

tiplicity adjustment by a multivariate normal distribution with estimated correlation structure;

gray lines represent multiplicity adjustment by Bonferroni.
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Chapter 5

Example evaluation by implemented

software

5.1 Computational Issues and Software Implementa-

tion

An R (R Development Core Team, 2009) package mcprofile is provided, enabling the

computation of signed root deviance profiles for linear transformations of GLM model

parameters. The profiles can be adjusted by Barndorff-Nielsen’s higher order approx-

imation. Based on the resulting mcprofile objects, simultaneous confidence intervals

and multiple tests can be calculated; additionally several graphical visualizations of the

profiles are provided.

Given an object of class glm or lm, and a contrast matrix with the same number of columns

as the number of parameters in the model, signed root deviance profiles are calculated for

a user-defined number of points around the MLE. A matrix with minimum and maximum

limits can be provided to define the parameter space for each profile; if limits are omitted,

they are determined automatically by a bisection algorithm, searching for projections,

where the statistic is approximately at the value of 1.5 times the quantile of a standard

Normal distribution at a Bonferroni adjusted α-level. For the conditional optimization

the function optim is used, applying a quasi-Newton algorithm, minimizing the deviance

statistic with an restriction on the model parameters. An extract of the function is shown
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in the Appendix (p. IV). The output of the function is an object of class mcprofile

containing amongst others a list with a sequence of parameter values around the MLE of

interest, the corresponding signed root deviance statistic, and the conditional parameter

estimates of the original model parameterization. Additionally, functions are provided for

interpolation, based on the R function splinefun.

The higher order approximations are based on modified R code of Brazzale et al. (2007).

After modifying the design matrix of the model, a conditional optimization is performed

with the R function glm.fit (Venables and Ripley, 2003), using the predictions, ob-

tained by the conditional estimation in the mcprofile object, as offset. The iteratively

reweighted least square estimation provides variance-covariance estimates for the full

model and the conditional fit, which can be used to obtain the observed Fisher infor-

mation function for both models, after multiplication with an adequate contrast matrix.

A simplified extract of the R code is shown in the Appendix (p. V).

Simultaneous confidence intervals and multiple tests are constructed by the functions

confint and test. The associated p-values and quantiles of a multivariate normal distri-

bution are calculated with help of the R package mvtnorm (Genz et al., 2009). Extracts

of the R code providing statistical inference can be found in the Appendix (p. VI).

An important issue about the software implementation is the computation time. The

time consumption will of course increase with the number of conditional estimations rep-

resenting the profile, and the number of parameters in the model. But also the distribu-

tional assumption plays a role; for Gaussian distributed data fast convergence is achieved,

whereas for highly skewed distributions each conditional parameter estimation takes more

time. At the boundary of the parameter space the computational time is maximal, as

per default the profile is calculated over a broad space with large difficulties of reaching

convergence at all. At last, the number of non-zero coefficients in the contrast matrix has

a high impact on computation time. Differences of single parameters, as for Dunnett-type

contrasts, are easily profiled; the parameters of interest can in this case directly be rep-

resented by an adequate design matrix, performing the constrained optimization with an

iteratively reweighted least square algorithm. Otherwise, for comparing pooled groups of

parameters, like for Williams-type and changepoint contrasts, more time is needed due

to a more complex parameter optimization. For other user-defined contrast matrices the
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gradient function of the deviance has to be found numerically during each optimization

step; this increases computation time and may cause a larger variability in the results.

5.2 Evaluation of the examples

As all examples represent dose-response studies in a one-way layout with a negative con-

trol, the minimum effective dose is detected by calculating simultaneous confidence inter-

vals for Dunnett-type contrasts. Additionally, confidence intervals based on Williams-type

contrasts are constructed, with C1 being the comparisons of the last with the first pa-

rameter, pooling the neighbor of the last parameter for each further contrast.

Exemplary R code is given to demonstrate the application of the implemented software.

(It is assumed, that the datasets are imported into R and additional packages have been

loaded by library(mcprofile) and library(multcomp).)

5.2.1 Angina

For the angina example (Section 2.1) a normal distributed response is assumed. Therefore,

the quadratic approximation exactly matches the deviance profiles. (1 − α) = 0.95 si-

multaneous confidence intervals are calculated, assuming a t-distribution with 45 residual

degrees of freedom.

> str(angina)

’data.frame’: 50 obs. of 2 variables:

$ dose : Factor w/ 5 levels "control","1",..: 1 1 1 1 1 1 1 1 1 1 ...

$ response: num 12 19.1 14.2 11.2 16.2 ...

First, a linear model is fit to the data, estimating the group means by omitting the default

parameterization of a common intercept.

> fit <- lm(response ~ dose-1, data=angina)

To construct confidence intervals for the parameters of interest, a contrast matrix has to

be specified, suitable for the vector of estimated model parameters. This is done by a

user-friendly function provided by the package multcomp.

> K <- contrMat(table(angina$dose), type="Dunnett")
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The signed root deviance profiles can be calculated by

> mcp <- mcprofile(object = fit, CM = K)

As default, 100 supporting points are used to estimate the profile over a range, estimated

by a bisecting method. Plotting the profiles by

> plot(mcp)

displays them as straight lines, which can be expected for a Gaussian linear model. Si-

multaneous lower confidence limits are calculated by

> ci <- confint(mcp, alternative="greater")

shown in Table 5.1. p-values of a corresponding hypotheses test are computed by

> test(mcp, alternative="greater")

Williams contrasts are applied in the same way, substituting the contrast matrix simply

by

> K <- contrMat(table(angina$dose), type="Williams")

before calculating profiles, confidence intervals, and tests.

Table 5.1: Lower confidence limits for many-to-one comparisons for the angina data example.
Comparison Estimate Lower limits
Dose1 - Control 2.10 -1.35
Dose2 - Control 3.40 -0.05
Dose3 - Control 5.00 1.55
Dose4 - Control 10.50 7.06

The lower confidence intervals indicate that dose 3 is the lowest dose showing a significant

difference to the control. A significant trend is detected by the confidence intervals for

Williams-type contrasts given in Table 5.2. The single Williams contrast C 1 is the same

as the comparison of Dose4 - Control in the Dunnett contrast, but yielding different lower

confidence limits. This effect is caused by a higher correlation between the Williams com-

parisons, producing a higher value for the critical value computed from the multivariate

normal distribution.
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Table 5.2: Lower confidence limits for Williams-type trend detection for the angina data exam-
ple.

Comparison Estimate Lower limits
C 1 10.50 7.44
C 2 7.75 5.09
C 3 6.30 3.80
C 4 5.25 2.82

5.2.2 Micronucleus assay

As the micronucleus example (Section 2.2) consists of replicated count data, a quasipoisson

model is assumed, accounting for overdispersion within all replications for each dose group.

The estimated dispersion parameter is φ̂ = 0.94; hence the variability within a dose groups

seems to be a bit smaller than assumed under a Poisson distribution.

The Dunnett-type confidence intervals of Table 5.3 are calculated by

> str(Mutagenicity)

’data.frame’: 31 obs. of 2 variables:

$ Treatment: Factor w/ 6 levels "Vehicle","Hydro30",..: 1 1 1 1 1 ...

$ MN : int 1 2 2 2 3 3 5 2 4 4 ...

> fit <- glm(MN ~ Treatment-1, data=Mutagenicity,

+ family=quasipoisson(link="log"))

The SRDP intervals are computed as for the angina example in Section 5.2.1; all compar-
isons are performed to the solvent control, omitting the positive control for simplicity.

> K <- contrMat(table(Mutagenicity$Treatment), type="Dunnett")

> K2 <- K[-5,]

> mcp <- mcprofile(fit, K2)

> ci <- confint(mcp, alternative="greater")

As the confidence intervals are calculated on a logarithmic scale, taking the exponent of
point- and confidence limit estimates yields in inference for the ratio of Poisson means.

> exp(ci$confint)

To compute the QA intervals, the function glht in package multcomp can be used, or the

profile can be calculated by

> QA <- wald(mcp)

> ciQA <- confint(QA, alternative="greater")

> exp(ciQA$confint)

Likewise the HOA intervals are obtained:

> HOA <- hoa(mcp)
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> ciHOA <- confint(HOA, alternative="greater")

> exp(ciHOA$confint)

A graphical comparison of all three profiles is available by the function

> compareplot(mcp, QA, HOA)

plotting all profile curves together in one graphic.

Table 5.3: Lower confidence limits for many-to-one comparisons for the micronucleus data
example.

Lower limits
Comparison Estimate QA SRDP HOA
Hydro30 / Vehicle 1.48 0.76 0.75 0.76
Hydro50 / Vehicle 2.41 1.32 1.34 1.33
Hydro75 / Vehicle 5.44 3.18 3.26 3.25
Hydro100 / Vehicle 7.78 4.63 4.76 4.73

As ratios of Poisson means are observed, lower confidence limits larger than 1 denote

significant differences to the control, which is first occurring for dose Hydro50 (Table 5.3).

The exponent of the estimates for the Williams-type comparisons (Table 5.4), using the

contrast

> K <- contrMat(table(Mutagenicity$Treatment), type="Williams")

are not this easy to interpret, as constructing differences of pooled groups of parame-

ters on the logarithmic scale yields ratios of geometric means on the transformed scale.

Nevertheless, a significant trend can be detected.

Table 5.4: Lower confidence limits for Williams-type trend detection for the micronucleus data
example.

Lower limits
Comparison Estimate QA SRDP HOA
C 1 7.78 4.89 5.01 4.97
C 2 6.51 4.15 4.26 4.23
C 3 4.67 2.98 3.05 3.03
C 4 3.50 2.23 2.28 2.27

No large differences between the deviance profiles and the quadratic approximation can be

seen for this relatively large number of counts. This is an assurance, that the quadratic

approximation can safely be used for this dataset, with probably good performance in

terms of coverage probability.
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5.2.3 Cell transformation assay

Likewise to the micronucleus assay data (Section 2.3), a quasipoisson model is assumed

for the counts in the cell transformation assay. The extra variability due to the sampling

from several dishes is included by a single overdispersion parameter. This parameter is

estimated as φ̂ = 1.6, thus a small amount of extra variability has been found.

The R code is quite similar to the micronucleus assay data:

> str(dat)

’data.frame’: 80 obs. of 2 variables:

$ trt : Factor w/ 8 levels "solvent","0.01",..: 1 1 1 1 1 1 ...

$ foci: int 0 1 0 0 0 0 0 0 0 2 ...

> fit <- glm(foci ~ trt-1, data=dat, family=quasipoisson(link="log"))

> K <- contrMat(table(dat$trt), type="Dunnett")

> #K <- contrMat(table(dat$trt), type="Williams")

> mcp <- mcprofile(fit, K)

> ci <- confint(mcp, alternative="greater")

> exp(ci$confint)

> QA <- wald(mcp)

> ciQA <- confint(QA, alternative="greater")

> exp(ciQA$confint)

> HOA <- hoa(mcp)

> ciHOA <- confint(HOA, alternative="greater")

> exp(ciHOA$confint)

Table 5.5: Lower confidence limits for many-to-one comparisons for the first cell transformation
assay example.

Lower limits
Comparison Estimate QA SRDP HOA
0.01 / solvent 1.67 0.23 0.23 0.23
0.03 / solvent 1.00 0.11 0.09 0.09
0.1 / solvent 4.00 0.70 0.85 0.82
0.3 / solvent 8.67 1.67 2.18 2.11
1 / solvent 15.33 3.07 4.10 4.00
3 / solvent 16.67 3.35 4.48 4.37
10 / solvent 19.67 3.98 5.35 5.22

The lowest dose with a significant difference to the control can be found at dose 0.3 for all

approaches (Table 5.5). Additionally a significant trend can be found by Williams-type

trend tests shown in Table 5.6. As the spontaneous rate in the control is relatively low and

only two Type 3 foci are counted, a quadratic approximation to the deviance profile might
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loose some information about the profile curvature. Thus, different confidence limits are

found, especially far in the alternative of a difference to the control or a highly significant

trend. Here, the profile methods provide more clear decisions, showing a higher power.

Table 5.6: Lower confidence limits for Williams-type trend detection for the first cell transfor-
mation assay example.

Lower limits
Comparison Estimate QA SRDP HOA
C 1 19.67 5.09 6.33 6.19
C 2 18.10 4.75 5.96 5.84
C 3 17.13 4.52 5.69 5.58
C 4 14.45 3.82 4.80 4.71
C 5 11.17 2.94 3.70 3.63
C 6 7.47 1.94 2.42 2.36
C 7 6.03 1.57 1.95 1.91

The second dataset is an extreme example with no foci counted at all in the control.

Estimating the mean for this group on the log link requires a stopping rule at some low

parameter value to reach rough convergence. The dispersion parameter is estimated at

φ̂ = 0.87. This estimated variability, lower than under a Poisson assumption, is hard to

justify in this context. Moreover, the estimation of the dispersion parameter might been

unstable due to the zero control group. Therefore, a simple Poisson model is used with

the dispersion parameter set to φ = 1.

The R code is not much different than for the first cell transformation dataset. The profile

is computed automatically for every parameter in a range from -20 to 20 as the control

group consists of only zero counts.

> str(dat)

’data.frame’: 80 obs. of 6 variables:

$ trt : Factor w/ 8 levels "Solvent","0.01","0.03",..: 1 1 1 1 1 1 ...

$ foci : int 0 0 0 0 0 0 0 0 0 0 ...

> fit <- glm(foci ~ trt-1, data=dat, family=poisson(link="log"))

> K <- contrMat(table(dat$trt), type="Dunnett")

> mcp <- mcprofile(fit, K)

...

Instead of searching for minimal and maximal values automatically to restrict the profile

calculations, they can directly be specified by a limits argument and distributing the

supporting points equally over this range.

> lims <- cbind(rep(-5,nrow(K)), rep(10,nrow(K)))
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> mcp <- mcprofile(fit, K, limits=lims, equally.spaced=TRUE)

...

Table 5.7: Lower confidence limits for many-to-one comparisons for the second cell transforma-
tion assay example.

Lower limits
Comparison Estimate QA SRDP HOA
0.01 / solvent 17772221 0 1.03 0
0.03 / solvent 26658332 0 1.76 0
0.1 / solvent 88861105 0 6.90 0
0.3 / solvent 79974995 0 6.17 0
1 / solvent 346558310 0 28.33 0
3 / solvent 790863836 0 65.29 0
10 / solvent 1874969320 0 155.47 0

The comparisons to the control (Table 5.7) and the Williams-type comparisons (Table 5.8)

generate enormously high parameter estimates. The outcome are large variance estimates

yielding in lower confidence limits of zero for the QA and HOA method. Different results

can be obtained from the SRDP, showing a significant difference already at the comparison

of the lowest dose to the control and a significant trend. These confidence intervals might

be liberal as seen in the simulation study, but at least some useful limits could be obtained.

Table 5.8: Lower confidence limits for Williams-type trend detection for the second cell trans-
formation assay example.

Lower limits
Comparison Estimate QA SRDP HOA
C 1 1874969320 0 155.47 0
C 2 1217721409 0 101.03 0
C 3 800984416 0 66.42 0
C 4 450252990 0 37.21 0
C 5 325467499 0 26.89 0
C 6 214484139 0 17.65 0
C 7 150270336 0 12.31 0

5.2.4 Liatrozole dose response study

The liatrozole study, introduced in Section 2.4, has a simple 4× 2 table as outcome. The

probability of observing an improvement at each dose is estimated in a binomial GLM on

the logit link.

> str(dat)
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’data.frame’: 4 obs. of 3 variables:

$ Dose : Factor w/ 4 levels "Placebo","50",..: 1 2 3 4

$ Improved : num 2 6 4 13

$ Unaffected: num 32 27 32 21

> fit <- glm(cbind(Improved, Unaffected) ~ Dose-1, data=dat,

+ family=binomial(link="logit"))

> K <- contrMat(table(dat$Dose), type="Dunnett")

> mcp <- mcprofile(fit, K)

> ci <- confint(mcp, alternative="greater")

> exp(ci$confint)

Table 5.9: Lower confidence limits for many-to-one comparisons for the liatrozole example.
Lower limits

Comparison Estimate QA SRDP HOA
OR: 50 vs. Placebo 3.56 0.65 0.73 0.70
OR: 75 vs. Placebo 2.00 0.33 0.35 0.34
OR: 100 vs. Placebo 9.90 1.98 2.38 2.28

Applying a Dunnett contrast and exponentiating the results, yields in lower confidence

intervals for the odds ratio for dose groups versus the control. The lower limits presented

in Table 5.9 indicate a significant difference only for the 100mg dose to the placebo group.

A significant Williams-trend can also be detected (Table 5.10) on the logit transformed

scale. The estimates for the Williams contrasts are some kind of ‘pooled odds-ratios’,

constructing linear combinations of parameter estimates on the logit scale and then taking

the exponent.

Table 5.10: Lower confidence limits for Williams-type trend detection for the liatrozole example.
Lower limits

Comparison Estimate QA SRDP HOA
OR: C 1 9.90 2.24 2.64 2.52
OR: C 2 4.45 1.04 1.22 1.16
OR: C 3 4.13 1.00 1.20 1.14

Due to the small sample sizes, large differences between the SRDP and the quadratic

approximation can be found. For the third Williams contrast the QA limits are only

on the border of showing a significant trend; the SRDP and HOA limits are noticeably

located in the alternative.
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5.2.5 Fetal deaths after exposure to boric acid

The last example, introduced in Section 2.5, has a more complex layout, which can be

summarized by an 4 × 2 table, but with additional replicates for each dose group. To

capture the animal variability, a GLM under quasibinomial assumption can be used to

estimate the proportions of dead fetuses per dose on the logit link. The boxplot in Figure

2.5 indicates a higher variability for the animals at the highest dose. Summarizing the

animal variability by a single dispersion parameter over all doses might be misleading,

and estimating several dispersion parameters by extended quasi-likelihood can be a better

choice. But then the accuracy of the estimation might suffer from a decreased residual

degree of freedom. The single dispersion parameter is estimated at φ̂ = 1.93 showing a

fair amount of animal variability.

> str(dat)

’data.frame’: 107 obs. of 4 variables:

$ Dose : Factor w/ 4 levels "control","low",..: 1 1 1 1 1 1 ...

$ dead : num 0 0 1 1 1 2 0 0 1 2 ...

$ alive: num 15 3 8 11 12 11 16 11 10 6 ...

> fit <- glm(cbind(Improved, Unaffected) ~ Dose-1, data=dat,

+ family=quasibinomial(link="logit"))

> K <- contrMat(table(dat$Dose), type="Dunnett")

> mcp <- mcprofile(fit, K)

...

Table 5.11: Lower confidence limits for many-to-one comparisons for the fetal deaths example.
Lower limits

Comparison Estimate QA SRDP HOA
OR: low vs. control 1.28 0.56 0.56 0.56
OR: middle vs. control 0.74 0.29 0.28 0.28
OR: high vs. control 3.46 1.66 1.71 1.70

By the many-to-one comparisons in Table 5.11 the high dose can be classified being

significantly different to the control. Also a significant trend can be detected by the

Williams contrasts (Table 5.12).
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Table 5.12: Lower confidence limits for Williams-type trend detection for the fetal deaths
example.

Lower limits
Comparison Estimate QA SRDP HOA
OR: C 1 3.46 1.76 1.80 1.80
OR: C 2 1.58 0.80 0.81 0.81
OR: C 3 1.47 0.77 0.79 0.79

No large differences between the QA and the profile limits can be detected, assuring the

safe use of the Wald intervals.

70



Chapter 6

Discussion

Deviance profiles are a useful method to visualize the uncertainty about a parameter

estimate in a compact way, treating all others as nuisance parameters. The comparison

of the profile with an adequate quadratic function is an indicator if the standard Wald

methods for inference yield appropriate results. Furthermore, the comparison of profiles

for two different parameters provide a way to roughly identify the correlation between

them. But profiling cannot only be used to arrange nice displays; the direct relationship to

a likelihood-ratio test makes them a useful tool for parametric statistical inference by tests

and confidence intervals. Not only tests of global hypothesis about model parameters are

available; signed root deviance profile based confidence intervals enable the application of

profiling also to multiple contrast methods with adequate control of an approximate global

type-I-error rate. The transformation invariance is a useful feature of the likelihood based

methods, allowing for inference for functions of parameters without loss of information.

Confidence intervals based on a quadratic approximation the the likelihood will produce

different results, depending on the link function in a GLM. For example, the calculation of

confidence intervals for the difference of proportions in a Binomial GLM on the identity

link, a risk ratio on the log link, and an odds-ratio on the logit link, might result in

different conclusions for the Wald method. The profile deviance methods will yield the

same results independent of the chosen scale of the parameters.

The simulation results show the applicability of the methods to a broad range of set-

tings. The coverage probability of the profile based simultaneous confidence intervals is

maintained more closely at the designated level compared to common Wald intervals.
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Especially, at small sample sizes improved confidence intervals are obtained. But overall

a more liberal performance of the SRDP intervals can be determined; for problems that

require more conservative decisions one may prefer the Wald method or, as a compromise,

the higher order approximations.

The largest difference between the methods can be found for samples, where no event is

counted at all. The SRDP based intervals use all available information of the observed

data to provide an estimate of a confidence limit for the difference of sample means. This

method tends to underestimate the variance for these parameters of interests, leading to

liberal confidence intervals, as it is seen in the simulation study. Also the approximation

with a normal distribution might be inappropriate. At least some estimates for a confi-

dence limit can be obtained for these settings; if a more conservative approach is needed,

the corresponding limits may be set to [−∞;∞].

A major drawback of the profiling methods is their high computational effort. Simple

models with a small number of parameters can easily be handled; for more complex

problems it may not be worth to spend the additional costs of constructing a profile.

There are several alternatives to conditional likelihood inference available. An even more

flexible but also more time consuming approach are resampling or bootstrap methods,

e.g. introduced in Efron and Tibshirani (1994). As resampling methods are also directly

based on the observed data, inference for a parameter is only available conditional on the

specific sample. Most appealing is the applicability of resampling methods to almost any

problem; also a combination of resampling and profiling methods are possible (Brazzale

et al., 2007).

Instead of following the frequentist paradigm of believing in a true parameter and con-

structing confidence intervals that contain this parameter in 100(1 − α)% of repeated

sampling from an entire population, Bayesian intervals can be constructed, e.g. described

in Gelman et al. (2003). Assuming a model with prior knowledge about the distribution

of the parameters, the information of a random sample of observations can be used to

support these assumptions. By weighting the prior distribution with the likelihood ob-

tained from the sample, a posterior distribution of the parameter of interest is obtained.

Confidence intervals based on this posterior distribution will contain the parameter of

interest with probability 1− α, which might match the experimental question more pre-
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cisely. Using uninformative prior distributions will lead to confidence intervals with quite

similar frequentist coverage probability as the profile methods, because only the likelihood

of the observed data is used. Especially, if the information provided by the observed data

is low, providing an adequate prior distribution may improve the results a lot.

As an outlook, there might be several extensions of the profile methods possible, like

applying them on (generalized) nonlinear models, as here a large improvement might be

expected towards the standard Wald-type methods. Also the construction of profiles for

ratios of model parameters, like it is done as an extension to Fieller’s method in Dilba

et al. (2006), may be of interest for future work.
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Appendix A

Appendix

A.1 Commonly used deviance functions

Gaussian deviance:

D(µi, yi) = 2
N∑
i=1

(yi − µi)2

Poisson deviance:

D(µi, yi) = 2
N∑
i=1

wi {yi log (γ − (yi − µi))} ,

with a weight vector wi and γ =

{ yi
µi

y 6= 0

1
if

y = 0

Binomial deviance:

D(µi, yi) = 2
N∑
i=1

wi {yi log (γ) + (1− yi) log (κ)} ,

with a weight vector wi, γ =

{ yi
µi

y > 0

1
if

y = 0
, and κ =

{ 1−yi
1−µi y < 1

1
if

y = 1

Negative binomial deviance:

D(µi, yi) = 2
N∑
i=1

{
yi log (γ)− (yi + ρ) log

(
yi + ρ

µi + ρ

)}
,

with a dispersion parameter ρ and γ =

{ yi
µi

y ≥ 1
1
µi

if
y < 1

A.2 Exemplary contrast matrices

I



Dunnett:

cmj =


−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1


Tukey:

cmj =



−1 1 0 0 0
−1 0 1 0 0
−1 0 0 1 0
−1 0 0 0 1

0 −1 1 0 0
0 −1 0 1 0
0 −1 0 0 1
0 0 −1 1 0
0 0 −1 0 1
0 0 0 −1 1



Williams:

cmj =


−1 0 0 0 1
−1 0 0 1/2 1/2
−1 0 1/3 1/3 1/3
−1 1/4 1/4 1/4 1/4



Changepoint:

cmj =


−1 1/4 1/4 1/4 1/4
−1/2 −1/2 1/3 1/3 1/3
−1/3 −1/3 −1/3 1/2 1/2
−1/4 −1/4 −1/4 −1/4 1



A.3 Additional simulation results

A.3.1 Count data
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Figure A.1: One-sided Dunnett-type comparisons for 5 ordered means estimated in a Pois-

son GLM. Simulation settings are varied by the mean of a Gamma distribution E(βj) on the

logarithmic scale and the number of replicates per group nj . Black lines indicate multiplicity

adjustment by a multivariate normal distribution with estimated correlation structure; grey lines

represent multiplicity adjustment by Bonferroni.
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A.3.2 Categorical data
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Figure A.2: One-sided Dunnett-type comparisons for 5 ordered parameters estimated in a

Binomial GLM. Simulation settings are varied by the mean of a Beta distribution E(βj) on the

logit link and the number of replicates per group nj . Black lines indicate multiplicity adjustment

by a multivariate normal distribution with estimated correlation structure; grey lines represent

multiplicity adjustment by Bonferroni.
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Figure A.3: One-sided Williams-type comparisons for 5 ordered parameters estimated in

a Binomial GLM assuming a linear trend. Simulation settings are varied by the mean of a

Beta distribution E(βj) on the logit link and the number of replicates per group nj . Black lines

indicate multiplicity adjustment by a multivariate normal distribution with estimated correlation

structure; gray lines represent multiplicity adjustment by Bonferroni.
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Figure A.4: Changepoint comparisons for 5 parameters estimated in a Binomial GLM. Sim-

ulation settings are varied by the mean of a Beta distribution E(βj) on the logit link and the

number of replicates per group nj . Black lines indicate multiplicity adjustment by a multivari-

ate normal distribution with estimated correlation structure; gray lines represent multiplicity

adjustment by Bonferroni.

A.4 R Code

A.4.1 Estimating SRDP

The following objects are needed:

x A vector of k − 1 starting values (obtained from the original model)

X A design matrix

y A response vector

family A GLM family object

weight A vector of weights

deviance The deviance of the original model

dispersion The estimated dispersion parameter

k A vector with a single contrast

w Index of the restricted parameter

p Value of the parameter restriction

Then a constrained optimization can be performed, calling the function optim to optimize
the function optfkt:

constDeviance <- function(x, X, y, family, weight){

mu <- fam$linkinv(X %*% x)

if (fam$validmu(fv)) sum(family$dev.resids(y=y, mu=mu, wt=weight))

else 9999999999
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}

srd <- function(x, X, y, deviance, dispersion, family, weight){

sqrt(abs(constDeviance(x=x, X=X, y=y,

fam=family, weight=weight)-deviance)/dispersion)

}

kbb <- function(x, k, p, w){

K <- -1*c(-p, k[-w])/k[w]

hv <- c(1,x)

b1 <- (K %*% hv)[1,1]

b <- numeric(length=length(k))

b[(1:length(k))[-w]] <- x

b[w] <- b1

b

}

optfkt <- function(x){

beta <- kbb(x=x, k=k, p=p, w=w)

srd(beta, X=X, y=y, deviance=deviance,

dispersion=dispersion, family=family, weight=weight)

}

A.4.2 Higher order approximation

Providing a glm and a mcprofile object with a list of estimated parameters profile, a
profile based on higher order approximations is calculated by:

dKj <- diag((k == 0)[1,])

Kj <- rbind(k, dKj[apply(dKj,1,sum) != 0,])

vcfit <- summary(fit)$cov.unscaled

j <- 1/det(Kj %*% vcfit %*% t(Kj))

j.1 <- j / (1/(k %*% vcfit %*% t(k))[1,1])

ind <- k == 0

Xi <- X[,ind,drop=FALSE]

mp <- na.omit(as.data.frame(t(apply(profile,1,function(p){

bp <- p[-c(1,2)]

r <- -p[2]*sqrt(dispersion)

d <- p[1]

q <- ((k %*% b)[1,1] - dx) / sqrt(k %*% vcfit %*% t(k))[1,1]

o <- X[,!ind,drop=FALSE] %*% unlist(bp[!ind])

fm <- glm.fit(x = Xi, y = y, weights = weights,

etastart = X %*% b, offset = o, family = family,

control=fit$control)

class(fm) <- "glm"

csummary <- summary(fm)

j.0 <- 1 / det(csummary$cov.unscaled)

rho <- sqrt(j.1 / j.0)

rstar <- (r + log(rho*q/r) / r)*1/sqrt(disp)

rstar

}
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A.4.3 Confidence intervals and tests

Quantiles of a multivariate t- or normal distribution are found with vc being the variance-
covariance matrix of the estimated parameters and K being the specified contrast matrix.

require(mvtnorm)

VC <- K %*% vc %*% t(K)

d <- 1/sqrt(diag(VC))

dd <- diag(d)

cr <- dd %*% VC %*% dd

if (alternative == "two.sided"){

if (is.null(df)){

quantile <- qmvnorm(level, interval=c(-10, 10),

corr=cr, tail="both.tails")$quantile

} else {

quantile <- qmvt(level, df=df, interval=c(-10, 10),

corr=cr, tail="both.tails")$quantile

}

} else {

if (is.null(df)){

quantile <- qmvnorm(level, interval=c(-10, 10),

corr=cr, tail="lower.tail")$quantile

} else {

quantile <- qmvt(level, df=df, interval=c(-10, 10),

corr=cr, tail="lower.tail")$quantile

}

}

With psi being a vector of parameter values and tau the corresponding SRDP statistics,
confidence intervals are found by interpolation with a spline function sf() :

sf <- splinefun(tau, psi))

mintau <- tau[1]

maxtau <- tau[length(tau)]

if ((alternative == "greater" | alternative == "two.sided") &

mintau <= -quantile){

lower <- sf(-quantile)

} else {

lower <- -Inf

}

if ((alternative == "less" | alternative == "two.sided") &

maxtau >= quantile){

upper <- sf(quantile)

} else {

upper <- Inf

}

Tests are constructed correspondingly for a margin delta by:

sf <- splinefun(psi, tau)

stat <- -sf(delta)
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pfct <- function(q) {

switch(alternative, two.sided = {

low <- rep(-abs(q), dim)

upp <- rep(abs(q), dim)

}, less = {

low <- rep(q, dim)

upp <- rep(Inf, dim)

}, greater = {

low <- rep(-Inf, dim)

upp <- rep(q, dim)

})

if (is.null(df)){

pmvnorm(lower = low, upper = upp, corr = cr)

} else {

pmvt(lower = low, upper = upp, df=df, corr = cr)

}

}

# for a vector of test statistics

padj <- numeric(length(stat))

for (i in 1:length(stat)) {

padj[i] <- 1 - pfct(stat[i])

}

(This R Code is in some extend taken from the R package multcomp (Hothorn et al.,
2008))
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