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ZUSAMMENFASSUNG 

Dem in vielerlei Hinsicht einzigartige Tierstamm Placozoa kommt eine Schlüsselposition 

zum Verständnis der frühen Metazoa-Evolution zu. Trotz mehr als hundert Jahren Placozoen-

Forschung ist deren Stellung innerhalb der Metazoa ungeklärt und wir wissen sehr wenig über 

die Biodiversität, Phylogeographie und die allgemeine Biologie. In der vorliegenden Dissertation 

steuere ich empirische Daten zu den gesamten Themenkomplexen bei. 

Um die Stellung der Placozoa zu klären, wurde eine Kombination von Daten verschiedener 

Quellen benutzt: Morphologische Merkmale, mitochondriale und nukleäre Proteinsequenzen 

sowie strukturelle Merkmale der mitochondrialen großen ribosomalen Untereinheit (16S). Mehr 

als 9400 kombinierte, phylogenetisch informative Merkmale der Placozoa und verschiedener 

Schlüsselgruppen der Metazoa flossen in eine „total-evidence analysis“ ein. Diese Analyse zeigt, 

dass die Placozoa die basalste Stellung innerhalb der Diploblasten (zweikeimblättrige Tiere) 

einnehmen. Im Weiteren führten die Ergebnisse zur Aufstellung einer neuen Hypothese über die 

Evolution der Metazoa – der so genannten „Diploblast-Bilateria-Schwester-Hypothese“. In 

diesem Szenario sind Diploblasten und Triploblasten (dreikeimblättrige Tiere = Bilateria) 

Schwesterngruppen, d.h repräsentieren zwei monophyletische Gruppen mit paralleler Evolution. 

Die Diversität der Placozoa war bislang nur unzureichend charakterisiert. Anhand von 

weltweit gesammelten Proben konnte ich den Placozoa fünf neue genetische Linien und eine 

neue Klade hinzufügen. Durch die Beprobung verschiedenen Standorte in unterschiedlichen 

Regionen konnte die geographische Verbreitung erheblich ausgeweitet werden. Die 

Kombination von phyolgenetischen und geographischen Daten lässt auf Speziation durch die 

Besetzung ökologischer Nischen schließen. Morphologische Untersuchungen an verschiedenen 

klonalen Linien identifizierten des Weiteren fünf Gruppen innerhalb der Placozoa, die durch 

jeweils einzigartige morphologische Merkmale von den anderen Gruppen eindeutig zu 

unterscheiden sind. Die Summe genetischer und morphologischer Daten weist deutlich auf die 

Existenz höherer taxonomischer Einheiten hin, deren systematischer Rank noch zu bestimmen 

sein wird. 

Wichtige Ergebnisse zur Biologie der Placozoa konnten bei der sexuellen Fortpflanzung und 

der Embryonalentwicklung erzielt werden. Erstmals konnte ich Spermien-Marker in adulten 

Tieren identifizieren, die eine zweigeschlechtliche Fortpflanzung der Placozoa nahe legen. Des 

Weiteren wurden neue morphologische Merkmale der Embryogenese beschrieben, wie z.B. 

intakte Zellkerne und Chromosomen in Embryonen. Diese neuen Charakteristika sprechen für 

die Lösung beschriebener Probleme im Zellzyklus während der Embryonalentwicklung. Die 

Zahl bislang beobachteter Blastomere konnte auf 128 Zellen verdoppelt werden. Diese 

Ergebnisse deuten darauf hin, dass der noch nicht geschlossene Lebenszyklus der Placozoa im 

Labor aufgedeckt werden könnte. 

 

 

 

Schlagworte: Placozoa, Phylogeographie, Biologie 
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ABSTRACT 

In several respects the enigmatic Placozoa is a key phylum for understanding early metazoan 

evolution. Despite over hundred years of placozoan research the phylogenetic position within the 

Metazoa is unknown and very little has been known a on the biodiversity, phylogeography and 

basic biology. In the presented thesis I provide new empirical data addressing these topics. 

To decipher the phylogenetic position of the Placozoa a combination of characters from 

different sources was used: morphological characters, mitochondrial and nuclear protein 

sequences and structural characteristics of the mitochondrial large ribosomal subunit (16S). 

More than 9,400 concatenated phylogenetic informative characters from the Placozoa and 

different key metazoan groups were integrated in a ‘total-evidence’ analysis. This analysis shows 

that the Placozoa posses the most basal position within diploblasts (animals with two germ 

layers). In addition the results led to erecting a new hypothesis on the evolution of the Metazoa – 

the so-called ‘diploblast-Bilateria sister hypothesis’. In this scenario diploblasts and triploblasts 

(animals with three germ layers = Bilateria) are sister clades, i.e. representing two monophyletic 

groups with parallel evolution. 

The diversity within the Placozoa is yet highly insufficiently characterized. Based on 

worldwide sampling I was able to add five new genetic lineages and one new clade to placozoan 

genealogy. By means of sampling various locations in different regions the placozoan 

geographic distribution was thereby substantially increased. The combination of phylogenetic 

and geographic data suggests a speciation through ecological niche occupation. Morphological 

studies on different placozoan lineages additionally identified five distinct groups within the 

Placozoa that are clearly distinguishable from each other by unique morphological traits. The 

sum of molecular and morphological data explicitly indicates the existence of several taxonomic 

entities of yet undefined ranks. 

Important data on the biology of the Placozoa were obtained with respect to sexual 

reproduction and embryonic development. For the first time I identified sperm markers 

indicating bisexual reproduction in the Placozoa. In addition, new morphological characteristics 

in placozoan embryogenesis were observed like intact nuclei and chromosomes in embryos 

resolving existing problems in the cell cycle during embryonic development. The number of the 

so far observed blastomers was doubled to 128 cells. These results suggest that the yet 

unresolved life cycle of the Placozoa might be clarified in the laboratory. 

 

 

 

Keywords: Placozoa, phylogeography, biology 
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CHAPTER 1 

 

INTRODUCTION 

 

 

 

 

 

“Es bleibt daher nichts Anderes übrig, 

als das Thier einstweilen isolirt auf die 

unterste Stufe der Metazoa zu stellen”  

Franz Eilhard Schulze (1883) about the 
position of Trichoplax adhaerens in the 
metazoan tree of life 
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Trichoplax adhaerens and the phylum 

Placozoa 

All animals on our planet – however 
diverse – descended from a common metazoan 
ancestor. Due to a lack of traces, such as 
sediments, we can only speculate on what the 
first metazoans were like. Many theories have 
been developed and discarded (see for 
example [1]) – but a final explanation has not 
been found yet. A key to answering the 
question on the origin of the Metazoa might be 
found in the enigmatic phylum Placozoa. The 
only described species within this phylum was 
discovered by F.E. Schulze in 1883 ([2]; 

Figure 1) when he noticed a small 
inconspicuous animal in a marine aquarium at 
Graz University. He named the species 
Trichoplax adhaerens (see Figure 2A) based 
on its morphology (Greek “tricha” [!!"xa] = 
‘hair’ and “plax” [#$%&] = ‘plate’, Latin 
“adhaerere“ = ‘to stick’; [2]) without 
allocating it to a certain phylum. In 1891 
Schulze fully described the species in a 
monograph [3]. A second species,  
 

Treptoplax reptans, was described two years 
later [4], but its existence was never confirmed 
and must be doubted [5, 6]. 

Shortly after the discovery of Trichoplax 
adhaerens research on this enigmatic species 
ceased because of an immature speculation, 
that it would be a morphological abnormal 
larva belonging to the phylum Cnidaria [7]. 
After detailed ultrastructural studies (see 
below) and after the discovery of sexual 
reproduction by Grell and colleagues [5, 7-19] 
it was shown that Trichoplax adhaerens is so 
different from all other animal taxa that it 
deserves its own phylum. Grell subsequently 
named this phylum “Placozoa” in 1971 
according to Bütschli’s ‘Placula’ – a 
hypothetical two-layered and benthic 
‘Urmetazoon’ [9, 20] for a historical summary 
of placozoan research see [6, 21, 22]. This 
conclusion was later supported by detailed 
structural data of the 16S mitochondrial large 
ribosomal subunit [23]. More than a century 
after the discovery of Trichoplax adhaerens 
the phylum status of the Placozoa was finally 
accepted. 

 
 
Figure 1. A photoengraving (left) and a photograph (right) of the discoverer of Trichoplax adhaerens,  

Prof. Dr. med., Dr. phil. Franz Eilhard Schulze. 

Source: Humboldt-Universität zu Berlin, Universitätsbibliothek. 
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Morphology of Trichoplax adhaerens 

Besides the description of the gross 
morphology by Schulze in 1891 [3] we 
possess some good knowledge about the 
ultrastructure of Trichoplax adhaerens from 
studies in the 1970ies and 1980ies. These 
studies have shown that Trichoplax lacks both, 
a basal lamina and an extracellular matrix [16, 

19]. It was shown that Trichoplax has only 
four somatic cell types [16]. By means of gene 
inhibition studies on Trox-2 – the only 
Hox/ParaHox-like gene in this animal [24, 

25]– a fifth cell type was recently discovered 
and indicated as a putative stem cell candidate 
[26]. No symmetry of any kind is seen in 
Trichoplax, and nothing like an oral–aboral or 
even a dorso-ventral polarity exists. The only 
polarity present results from the fact that the 
lower (nutritive) epithelium faces the substrate 
while the upper (protective) epithelium faces 
the open water. The unique bauplan is based 
on a simple, irregular sandwich organization. 
An upper and a lower epithelium surround a 
loose network (not an epithelium) of so-called 
fiber cells (see Figure 2B for a schematic cross 
section). All these simple bauplan 
characteristics make placozoans more similar 
to protozoans than to any other metazoan. 

The Trichoplax adhaerens genome 

With approximately 98Mb Trichoplax 
adhaerens possesses the smallest genome of all 
known metazoan genomes; it has recently been 
sequenced [39] . In sharp contrast to the 
simplest morphology, placozoans harbor rich 
complements of genes of almost all 
developmental pathways found in higher 
animals (cf. [22]). Gene content, structure and 
organization are similar to those of the ancestral 
eumetazoan genome. Despite the simplicity of 
the body plan, the placozoan genome shares 
many features with the genome of the 
eumetazoan common ancestor, including a rich 
array of transcription factors and signaling 
genes [24]. Trichoplax harbors representatives 
for almost 80% of the ~7,800 core eumetazoan 
gene families that are conserved between the 
sea anemone and Bilateria [68] . 

Phylogenetic position of the Placozoa 

A morphological perspective 

From their extensive morphological and 
embryonic studies F.E. Schulze (1891) [3] and 
K.G. Grell (1971) [9] came to the same 
conclusion: The phylum Placozoa, with its yet 
only described species Trichoplax adhaerens, 
represents morphologically the simplest living 
animal and has “to be placed isolated at the 
lowest level of metazoan evolution” [9], 
author’s translation). Although several studies 
are in favor of this view from a morphological 
perspective [2, 9, 21], others disagree placing 
sponges as the closest relative of the 
‘Urmetazoon’ (e.g. [27, 28]; Figure 3A). This 
view is mainly based on a presumed 
synapomorphic collar structure surrounding a 
flagellum shared among sponges and 
choanoflagellates. Several arguments have 
been discussed that either support or reject 
homology between these structures [29-33]. 
Some authors are in favor of a convergent 
evolution of collar structures and metazoan 
choanocytes [31] or even claim that the 
choanoflagellates are derived sponges [31, 34, 

35].  

A molecular perspective 

Genomic techniques and associated 
algorithms to process genetic information from 
different animals were used to decipher 
metazoan relationships from the very early 
1990ies. The first molecular studies were 
mainly based on ribosomal DNA (18S and 
28S) because of their high conservation in 
certain regions making it easy to design primer 
sets working across animal phyla. These early 
studies much improved our knowledge on 
phylogenetic relationships among some, 
mostly bilaterian groups (see e.g. the review 
[36]). But the relationships among very early 
branching metazoans – Placozoa, Porifera, 
Cnidaria and Ctenophora – still remained 
unresolved. To the authors’ knowledge a total 
of 33 articles have been published in the last 
two decades using placozoan partial or 
complete 18S and/or 28S sequences for 
phylogenetic tree reconstructions. Most often 
sponges have been placed as the earliest
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Figure 2. Micrograph showing the general morphology of Trichoplax adhaerens.  

A light microscopic image (A) and the original drawing from Schulze (1883) (B) showing an animal from a top view. (C) is a 

schematic cross section of its epithelial organization, modified from Grell, 1972. Abbreviations: SS = shiny sphere; B = 

bacterium; N = nucleus; CV = concrement vacuole; MC = mitochondrial complex; GC = gland cell. 

 

branching animals in these studies and nearly 
every possible relationships at the base of the 
Metazoa has been published based on these 
two genetic markers (see Figure 3B and Table 
1 for an overview and references). A total of 
32 different phylogenetic relationships among 
the five major groups (Porifera, Placozoa, 
Cnidaria, Ctenophora and Bilateria) has been 
proposed. Thus every article produced a new 
phylogenetic scenario based on 18S and/or 

28S. Even the most modern phylogenetic 
reconstruction methods using complete 28S 
sequences from 197 taxa didn’t resolve this 
problem showing paraphyletic sponges with 
one representative grouping together with a 
Ctenophore – a morphologically non-sense 
scenario [37]. One has to note that most of the 
older 18S and 28S studies mentioned above 
and in Table 1 are based on limited taxon 
sampling and statistical methods that are now
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Table 1. Summary of published phylogenetic studies inferring metazoan relationships. 

# in Fig. 3 reference data source marker(s) method missing taxa tree topology remarks

Abouheif  et al., 1998 ribo 18S MP - (S,(Ct,(Pl,(Cn,B)))) rooted on sponges

Aleshin et al., 1995 ribo 18S ML - (O,(B,(((S1,(S2,Ct)),(Pl,Cn)))))

Aleshin et al., 1995 ribo 18S NJ - (O,(S1,(S2,Ct),(B,(Pl,Cn))))

B4 Aleshin et al., 1998 ribo 18S MP - (O,(Ct,(S,(B,(Pl,Cn)))))

Bass et al., 2007 ribo 18S ML, BA Ct (O,(S1,(S2,(Cn,(Pl,B)))))

Berntson et al., 2001 ribo 18S ML B (O,(S,(Ct,(Pl,Cn))))

Borchiellini et al., 2001 ribo 18S MP - (S,(Ct,(B,(Pl,Cn)))) rooted on sponges

Carranza et al., 1997 ribo 18S ML S (O,(Ct,(Cn,(Pl,B))))

Cavalier-Smith & Chao, 1995 ribo 18S ML - (O,((S1,(S2,Ct)),(B,(Pl,Cn))))

Cavalier-Smith & Chao, 2003 ribo 18S ML B (O,(S,(Ct,(Cn1,(Cn2,(Pl,Cn3)))))) Placozoa within Cnidaria

Collins, 1998 ribo 18S CP - (O,((S1,(S2,Ct)),(Cn,(Pl,B))))

Collins, 1998 ribo 18S ML, NJ - (O,((S1,(S2,Ct)),(Pl,(Cn,B))))

Collins, 2000 ribo 18S MP - (S,(Ct,(Cn,(Pl,B)))) rooted on sponges

Collins, 2002 ribo 18S MP - (O,(S1,(S2,(Ct,(Pl,(Cn,B))))))

Gerlach et al., 2007 ribo 18S NJ - (O,((S1,Ct),(S2,Cn,(Pl,B))))

Glenner et al., 2004 ribo 18S BA - (O,(S,Ct,(B,(Pl,Cn))))

B7 Katayama et al., 1995 ribo 18S ML - (O,((S,(Pl,Ct)),(Cn,B)))

Katayama et al., 1995 ribo 18S MP, NJ - (O,(B,(Cn,(Pl,(S,Ct)))))

Kim et al., 1999 ribo 18S ML - (O,(S,(Ct,(Pl,Cn,B))))

Kober & Nichols, 2007 ribo 18S MP, BA - (O,((S1,(S2,Ct)),((Cn,(Pl,B1)),(S3,B2))))

Littlewood et al., 1998 ribo 18S NJ - (Pl,((S,Ct),(Cn,B))) unrooted tree

Medina et al., 2003 ribo 18S ML, MP, BA - (O,(S1,(S2,(S3,(B,(Pl,Cn))))))

B1 Podar et al., 2001 ribo 18S ML - (O,(S,(Ct,(Pl,(Cn,B)))))

Sidall et al., 1995 ribo 18S MP - (O,((S1,(S2,Ct)),(B,(Pl,Cn))))

B5 Smothers et al., 1994 ribo 18S MP, NJ - (O,((S,Ct),(B,(Pl,Cn))))

B3 Wainright et al., 1993 ribo 18S ML - (O,(S,(Ct,(B,(Pl,Cn)))))

B2 Wallberg et al., 2004 ribo 18S MP - (O,(S,(Ct,(Cn,(Pl,B)))))

Winnepenninickx et al., 1998 ribo 18S NJ - (O,((S1,(S2,Ct)),(Cn,(Pl,B))))

Zrzavy et al., 1998 ribo 18S MP - (O,((S1,(S2,Ct)),(Pl,(Cn1,(Cn2,B)))))

Christen et al., 1991 ribo 28S MP - (O,((S1,(S2,Pl)),(B,(Cn,Ct)))) Placozoa within sponges

Kober & Nichols, 2007 ribo 28S MP, BA - (O,((S1,B1),(Pl,(Cn,(S2,Ct,B2))))) paraphyletic Bilateria

Lafay et al., 1992 ribo 28S ML, MP, NJ - (B,(S1,(S2,(Pl,(Ct,(S3,Cn)))))) unrooted tree

Zrzavy & Hypsa, 2003 ribo 28S MP - (S,(Ct,(B,(Pl,Cn)))) rooted on sponges

B6 Cartwright & Collins, 2007 ribo 18S, 28S ML - (O,((S,Ct),(Cn,(Pl,B))))

B3 Da Silva et al., 2007 ribo 18S, 28S ML - (O,(S,(Ct,(B,(Pl,Cn)))))

Mallatt et al., 2009 ribo 18S, 28S ML - (O,(S1,((S2,Ct),(B,(Pl,Cn)))))

Mallatt et al., 2009 ribo 18S, 28S BA - (O,(S1,(S2,(Ct,(B,(Pl,Cn))))))

Odorico & Miller, 1997 ribo 18S (3' end) to 28S (5' end) ML B (S,Cn,(Pl,Ct)) unrooted tree

A Glenner et al., 2004 morph 94 characters BA - (O,(S,(Pl,(Cn,(Ct,B)))))

A Nielsen et al., 1996 morph 61 characters Min - (O,(S,(Pl,(Cn,(Ct,B)))))

Nielsen, 2001 morph 64 chartacters Min Ct (O,(S,(Pl,(Cn,B))))

A Peterson & Eernisse, 2001 morph 138 characters MP - (O,(S,(Pl,(Cn,(Ct,B)))))

Zrzavy et al., 1998 morph 276 characters MP - (O,(S,(Pl,(Cn,(B1,(Ct,B2))))))

Hejnol et al., 2009 nuclear 1487 nc-encoded proteins (270,580 aa) ML - (O,(Ct,(S1,(Pl,(S2,(Cn,B))))))

C2 Hejnol et al., 2009 nuclear 150 nc-encoded proteins (??? aa) ML - (O,(Ct,(S,(Pl,(Cn,B)))))

F2 Marletaz et al., 2008 nuclear 77 ribosomal proteins (11,730 aa) ML (WAG) - (O,(Ct,(B,(Cn,(S1,(S2,Pl)))))) Placozoa within sponges

Marletaz et al., 2008 nuclear 77 ribosomal proteins (11,730 aa) BA (CAT) - (O,((S1,(S2,Pl)),(B,(Cn,Ct)))) Placozoa within sponges

C1 Philippe et al., 2009 nuclear 128 nc-encoded proteins (30,257 aa) BA (CAT) - (O,(S,(Pl,(B,(Cn,Ct)))))

Ruiz-Trillo et al., 2006 nuclear EF-1, HSP-70, actin ML Ct (O,(B1,((Pl,(S,(B2,Cn1))),(Cn2,B3)))) paraphyletic Bilateria

Sperling et al., 2009 nuclear house keeping genes BA (WAG, CAT) Ct (O,(S1,(S2,(S3,(Pl,(Cn,B))))))

Srivastava  et al., 2008 nuclear 104 nc-encoded proteins (6,783 aa) ML, MP, BA Ct (O,(S,(Pl,(Cn,B))))

D3 Burger et al., 2009 mito 13 mt-encoded proteins (3,004 aa) BA (CAT) Ct (O,(Pl,S,Cn1,Cn2,B))

D1 Dellaporta et al., 2006 mito 12 mt-encoded proteins (2,730 aa) ML, BA Ct (O,(B,(Pl,(S,Cn))))

D1 Erpenbeck et al., 2007 mito 13 mt-encoded proteins (??? aa) ML, BA Ct (O,(B,(Pl,(S,Cn))))

Haen et al., 2007 mito 12 mt-encoded proteins (2,678 aa) ML Ct (O,((Pl,(S1,Cn)),(S2,B)))

Haen et al., 2007 mito 12 mt-encoded proteins (2,678 aa) BA (CAT) Ct (O,((S,Cn),(Pl,B)))

D2 Lavrov et al., 2008 mito 14 mt-encoded proteins (2,701 aa) cons Ct (O,(Pl,(S1,B,(S2,Cn))))

Lavrov et al., 2008 mito 14 mt-encoded proteins (2,701 aa) ML, BA (cpREV) Ct (O,((S1,B),(Pl,(S2,Cn))))

Lavrov et al., 2008 mito 14 mt-encoded proteins (2,701 aa) BA (CAT) Ct (O,(Pl,(B,(S,Cn))))

Ruiz-Trillo et al., 2008 mito 13 mt-encoded proteins (2,619 aa) BA (CAT) Ct (O,((B,Pl),(S,Cn)))

D1 Signorovitch et al., 2007 mito 12 mt-encoded proteins (2,553 aa) ML, BA Ct (O,(B,(Pl,(S,Cn))))

D1 Wang & Lavrov, 2007 mito 12 mt-encoded proteins (2,812 aa) ML, BA, NJ Ct (O,(B,(Pl,(S,Cn))))

Wang & Lavrov, 2008 mito 14 mt-encoded proteins (2,558 aa) BA (CAT) Ct (O,(B,(Pl,(S1,(Cn1,(Cn2,S2))))))

Glenner et al., 2004 mixed 18S, morph MP - (O,(S1,(S2,(Ct,(B,(Pl,Cn))))))

Glenner et al., 2004 mixed 18S, morph BA - (O,(S,(Ct,(B,(Pl,Cn)))))

Nielsen, 2008 mixed 18S, morph cons (review) - (O,(S1,(S2,(S3,(Pl,(Cn,(Ct,B)))))))

Peterson & Eernisse, 2001 mixed 18S, morph MP - (O,(S1,(S2,(Pl,(Cn,(Ct,B))))))

Sidall et al., 1995 mixed 18S, morph MP - (O,((S1,(S2,Ct)),(B,(Cn1,(Cn2,Pl))))) Placzoa within Cnidaria

Zrzavy et al., 1998 mixed 18S, morph MP - (O,(S1,(S2,(Pl,(Cn,(Ct,B))))))

Bridge et al., 1995 mixed 18S, morph, mitochondrial structure Min B (S,(Ct,(Pl,Cn))) rooted on sponges

Peterson & Eernisse, 2001 mixed 18S, morph, mitochondrial structure MP - (O,(S1,(S2,(Ct,(S3,(Pl,(Cn,B)))))))

Carr et al., 2008 mixed tubA, hsp90, 18S, 28S BA B (O,((S1,Ct),(Cn,(Pl,S2))))

Schierwater et al., 2009a mixed WGS, ESTs, mt, cDNA BA - (O,(B,(Pl,(S,(Cn1,(Ct,Cn2))))))

E Schierwater et al., 2009b mixed
WGS, ESTs, mt, cDNA, morph, mol. morph.   

(17,664 characters from 51 partitions)
ML, MP, BA - (O,(B,(Pl,(S,(Ct,Cn)))))

E Schierwater et al., 2009c mixed
WGS, ESTs, mt, cDNA, morph, mol. morph.   

(17,664 characters from 51 partitions)
ML, MP - (O,(B,(Pl,(S,(Ct,Cn)))))

 
The table comprises all references that include data from the Placozoa. Shown are five character groups using different sources of 

information: ribosomal DNA sequences (ribo), morphological characters (morph), nuclear encoded protein sequences (nuclear), 

mitochondrial encoded protein sequences (mito) and information from combined sources (mixed). WGS=whole genome 

sequence, ESTs=expressed sequence tags, CP=cladistic parsimony, NJ=neighbor joining, MP=maximum parsimony analyses,  

ML= maximum likelihood analyses, BA=Baysian inferences, cons=consensus, Min=minimum length, O=outgroup(s), 

S=Porifera (S1-S3 in case of paraphyly), Pl=Placozoa, Cn=Cnidaria (Cn1-Cn3), Ct=Ctenophora, B=Bilateria (B1-B3). This table 

also includes the studies by Schierwater et al. (2009b,c), which will be discussed in detail in chapter 1. 
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considered insufficient. 
State of the art molecular phylogenetic 

approaches using highly advanced algorithms 
and substantially improved computer power 
were promising to overcome such problems as 
genetic information from hundreds to 
thousands of genes could be used to study 
metazoan evolution. Several approaches have 
been used to resolve the metazoan tree of life. 
Single gene amplification strategies or EST 
libraries with several thousand characters 
resulted in different and partially highly 
contradictory phylogenies (Figure 3 and Table 
1). Hardly any consensus can be found, but 
mostly an assumed linear evolution from 
simple (non-bilaterian = diploblastic) to 
complex (bilaterian = triploblastic) organisms 
has been supported by these concatenated 
nuclear genes studies (for refs see Table 1). 
This traditional view is currently widely 
accepted. In most phylogenetic scenarios 
following this assumption sponges were found 
branching off first [38, 39] thus being the 
closest living relative to the ‘Urmetazoon’.  

Another important source of phylogenetic 
informative characters derives from 
mitochondrial genomes. With recent 
sequencing techniques mitochondrial genomes 
came more and more into the focus of 
phylogenetic research. Animal mitochondrial 
genomes usually are 16-25kb long, compact 
and circular molecules possessing 24 tRNA 
genes and 12-14 respiratory chain proteins (cf. 
[36]). In placozoans, however, the 
mitochondrial genome is a large circular 
molecule. In Trichoplax, for example, the mt 
genome is the largest ever found in animals 
[40]. It is over 43kb long and shows features 
of both, animals and protists. Using 12 
concatenated mitochondrial proteins for 
phylogenetic inferences resulted in trees with a 
diploblasts-Bilateria sister relationship with 
placozoans being basal within the diploblasts 
in most of the trees. This scenario was seen 
also before in ribosomal DNA-based 
phylogenies (compare Figure 3B7 to D1) but 
was neglected for several decades (cf. [6]). 

Despite over 150 years of research on the 
phylogeny of the metazoan phyla no consensus 
has been found yet. An accepted phylogenetic 
scenario, however, is indispensable if we seek 

to understand evolutionary events leading to 
highly diverse animal bauplans. It is also a 
prerequisite for many other research areas, e.g. 
to study genome evolution. We can only draw 
conclusion about gene content and genome 
structure of the ‘Urmetazoon’ and about the 
evolution from thereon if we identify its 
closest extant relative. Both, morphology-
based and molecular phylogeny have not yet 
answered this question and the first aim of my 
thesis was therefore to find new ways to 
identify and evaluate phylogenetic characters 
from all informative sources in order to 
unravel the phylogenetic position of the 
enigmatic Placozoa in the metazoan tree of 
life. 

Biodiversity and Biogeography of the 

Placozoa 

Despite a century of research, little has been 
known about the biodiversity of the Placozoa. 
The Placozoa is a monotypic phylum yet. 
However, recent research on genetic variations 
between different isolates indicates that its 
biodiversity is much larger than hitherto 
presumed (Figure 4). Based on 16S 
mitochondrial ribosomal large subunit, 18S 
and 28S rRNA, and internal transcribed spacer 
sequences (ITS) Voigt et al. (2004) [43] were 
able to detect eight different genetic lineages 
within five distinct clades in isolates collected 
worldwide. This study thereby supported the 
existence of higher taxonomic units when 
compared to other basal Metazoa. With these 
findings the traditional picture of Placozoa as 
the phylum with the least number of species 
was shaken to the core [44]. Two subsequent 
studies gave further input to the genetic 
diversity increasing the number of distinct 16S 
haplotypes (the only used genetic marker in 
these studies) to a total of 11 ([45, 46]; Figure 
4). Using ITS region sequence data, another 
study was able to show a clear split of the 
Placozoa in two main groups [47]. 

In addition to 16S data, support for 
different placozoan species comes from 
complete mitochondrial genome sequences. 
Based on 12 concatenated protein sequences 
phylogenetic inferences showed a clear 
separation of the Placozoa in two main groups,
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Figure 3. An overview of published intra-relationships of the four diploblastic groups (Placozoa, Porifera, Cnidaria, 

Ctenophora) and their inter-relationship to the Bilateria.  

Shown are a few examples for each of the five character groups defined in Table 1: morphology (A), ribosomal DNA (B), 

nuclear encoded protein sequences (C), mitochondrial encoded protein sequences (D) and combined data sources (E). Placozoans 

have been placed at nearly every possible relationship to the other four groups even within Porifera (F1, F2) and within Cnidaria 

(F3). A consensus on the phylogenetic placement of the Placozoa is still missing. This figure includes the phylogenetic tree that 

was inferred from the most comprehensive data set to date including several sources of phylogenetic informative characters (E). 

The tree shows a diploblast-bilateria sister scenario with placozoans being basal within the diploblasts, which will be discussed in 

detail in chapter 1. O=outgroup(s), S=Porifera, Pl=Placozoa, Cn=Cnidaria, Ct=Ctenophore, B=Bilateria. 
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Figure 4. Placozoan phylogenetic relationships based on 16S rDNA& ITS (A, left and right, respectively) and 16S 

rDNA only (B). 

A clear sub-structuring is seen within the Placozoa based on molecular genetic data that allowed to initally identify eight (A) and 

later on eleven(B) different 16S rDNA haplotypes. (A) from Voigt et al., 2004; (B) modified from Pearse & Voigt, 2007. 
 

group A & B ([48]; Figure 5). The sequence 
analyses suggest the existence of higher 
taxonomic ranks in the Placozoa. Additional 
support comes from the substantial structural 
and molecular polymorphisms between the 
four sequenced mitochondrial genomes and 
the differences in lengths between 32 and 43 
kb.  

All studies on the diversity of the Placozoa 
are based on molecular genetics. No studies 
have been conducted on morphological 
differences among various clonal lineages. 
Such studies, however, might unravel 
morphological differences among placozoan 
isolates possible enabling us to describe new 
species in the Placozoa. The second aim of my 
thesis was therefore to morphologically 
characterize different placozoan clonal 
lineages. 

Placozoans are found in the littoral of 
tropical and subtropical regions. Up to now, 
animals were collected in the Red Sea [16], 
near West Samoa [15], Guam [43], Palau, 
Madang (Papua New Guinea), in the Great 
Barrier Reef ([45]; B. Schierwater, pers. 
comm.) near Moorea (French Polynesia), 
Okinawa and Iriomote (Ryukyu-Islands, 
Japan), in northeast Sulawesi (Celebes Sea, 
Indonesia), near Roatan (Honduras), Hawaii, 
at the Caribbean coast of Panama [49-51] and 
Mexico [52], at Cubagua Island ⁄ Margarita 
Island (Venezuela; [43]), and at the Pacific 
coast of Panama, Belize, Jamaica and Grenada 
[43, 46]. The distribution of placozoans seems 
to be closely attached to certain ecological 
circumstances that are located in regions 
between 30°N and 30°S. However, animals 
were also found in areas further north such as 

A B 
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the Bermudas [19], at he the coast of Brazil 
[53], the southeast Atlantic coast of North 
America [54], both coasts of the main 
Japanese island [55, 56], and in the 
Mediterranean Sea [2, 4, 57, 58]. Using 
placozoan-specific sampling approaches no 
specimens were found at very low 
temperatures at McMurdo Sound, Antarctica (-
1.6°C [59]) and in the Monterey Canyon, 
Central California, ~1000–3000m depth (~3°C 

[45]). The absence of placozoans from these 
samples, however, does not necessarily mean 
that they are not there, as some samplings in 

warm regions did not yield any placozoans, 
too.  

Although more than 30 locations have been 

positively sampled for placozoan specimens 

(see [45] for an overview) only 15 of these 

have been genetically screened. Genotyping is 

needed, however, to characterize the 

placozoan phylogeography and to study the 

genetic diversity within the Placozoa. Thus the 

third aim of my thesis was the genetically 

characterization of additional geographic 

locations that were not studied before.  

 

Figure 5. Phylogenetic relationships of representatives from placozoan clades based on mitochondrial protein 

sequences. 

The Placozoa are split in two different groups: A ( clades III and V) and B (I and II). This tree is based on 2,553 amino acids 

from 12 concatenated respiratory chain genes (atp6, cob, cox1–3, nad1–6, and nad4L). Values above internal nodes represent 

Bayesian posterior probabilities, and those below represent bootstrap percentages under ML. From Signorovitch et al., 2007. 

 

Ecology and Biology of the Placozoa 

Ecological studies have been conducted 
only to a very limited extent because these 
animals are too small for observation in the 
field [21, 49, 50]. Existing observations have 
revealed little or no environmental preference 
[45, 49, 50], however, in general animals 
appear to be more abundant in relatively 
sheltered, full-salinity waters close to coral 

reefs and/or mangroves. In areas with strong 
currents or high-energy waves, reduced 
salinity or sandy bottoms, animals are rarely 
[45, 46]. Animals have been collected to a 
depth of 25 meters, although placozoans have 
not been looked for in coastal waters to a 
depth of more than this or in open waters away 
from shores.  

Seasonality was observed in a placozoan 
population at a temperate location. Long-term 
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observations at Shirahama (mainland Japan) 
showed seasonal fluctuations in population 
density. During a three-year period, more 
individuals were observed between July and 
November than during the rest of the year 
[55]. It was shown that placozoans are more 
abundant on the lower surface of collecting 
slides when placed in natural habitats [45]. It 
was claimed that this might be related to the 
greater amount of mud and ultraviolet 
radiation on the upper surface. It was shown 
before that animals strongly reacted to 
ultraviolet radiation by detaching from the 
substrate and twisting vigorously into 
contorted shapes [50]. No preference to settle 
on the upper or lower side was observed under 
laboratory conditions habitats [45]. The 
difference is thus likely related to secondary 
factors present only in the field rather than 
directly to the orientation of the substrate. 

In the laboratory, placozoans grow on 
cryptomonads and green algae of the genus 
Chlorella [16], on Pyrenomonads [26] and 
other unicellular algae like diatoms (own 
observation). They also feed on commercial 
aquarium fish food (Y.K. Maruyama 2004, 
personal communication to V.B. Pearse; in 
[45]) and even on dead Artemia nauplii [60] 
The natural food source, however, is unknown 
and might differ between locations. 

The natural microcommunity of placozoans 
with other organisms is unknown. However, a 
few organisms are regularly found together 
with placozoans on sampling slides: in 
particular several kinds of sessile ciliates 
(solitary and colonial), sessile polychaetes 
(spirorbid and other serpulid), and sometimes 
free-living entoprocts. Potential predators like 
snails and tubeworms were observed to recoil 
after contact with placozoans or reject them as 
food ([45] and reference therein). An anti-
predator mechanism for this phenomenon was 
proposed after laboratory trials [61]. When 
individual placozoans were fed to polyps of 
the hydroid Podocoryna carnea the polyps 
became paralyzed (immobile and 
unresponsive). After dissozation and re-

aggregation to cell pellets, the shiny spheres 
were excluded resulting in the loss of 
paralization capacity. These results suggested 

that placozoans have a defense mechanism 
against predators through neuro-toxic 
substances in the shiny spheres. 

In the laboratory, we commonly see 
Trichoplax undergoing binary fission. Animals 
grow and then pull apart into two daughter 
individuals of similar size [3, 15]. Another 
mode of vegetative reproduction has also been 
seen, the budding off of small spherical and 
pelagic swarmers. The latter most likely are 
dispersal stages floating in the open water for 
up to a week [62-65]. Most likely Trichoplax 
can reproduce bisexually, i.e. by producing 
female and male gametes. Sperms have not 
been observed. Oocytes are comparatively huge 
(70-100 'm in diameter) and appear in small 
numbers in individual placozoans in the 
laboratory [11, 17]. After fertilization the 
zygote starts total equal cleavage. In all 
observations embryonic cells continued to 
divide until reaching a maximum of 64 
blastomers when all embryos die because of 
uncontrolled DNA replications [17, 66]. 
Beyond that aberrant 64-cell stage, no 
embryonic development has been observed. We 
know nothing about sexual reproduction of this 
organism in the field. Field specimens of 
Trichoplax have never shown signs of sexual 
reproduction (own observation), but genetic 
evidence suggests the presence of events of 
sexual reproduction at least in the past [67]. 

The lack of knowledge of the complete life 
cycle in the Placozoa is a handicap for 
evolutionary and functional genetic studies. To 
establish the Placozoa as a model system in the 
‘evo-devo’ field the completion of the latter is 
urgently needed. The induction of sexual 
reproduction in the laboratory would be highly 
useful, enabling us for example to manipulate 
placozoan embryos. The last aim of my thesis 
was therefore to complete the life cycle of the 
Placozoa. 
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2.1. Concatenated analysis sheds light on early metazoan evolution 

and fuels a modern “Urmetazoon” hypothesis 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

“I think the authors are correct in 

pointing out that we have to be open 

to the idea that bilaterians are a sister 

group to the diploblasts. This in itself 

is an important contribution of the 

paper.” 

anonymous reviewer 

“While the manuscript focuses 

primarily on the relationship of 

placozoans to the diploblasts, perhaps 

the most surprising result is the 

position of the bilaterians as the 

earliest-evolving animals.” 

anonymous reviewer 

“Overall, neither the basal 

placement of placozoans relative to 

diploblasts and the hox expression 

patterns provide any more or less 

support for the placula hypothesis 

than before.” 

anonymous reviewer 

“Multiple topologies can be 

consistent with the placula 

hypothesis and the basal 

placement of placozoans is not 

evidence in support of the 

hypothesis.” 

anonymous reviewer 
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Abstract 

For more than a century, the origin of metazoan animals has been debated. One aspect of 

this debate has been centered on what the hypothetical “urmetazoon” bauplan might have 

been. The morphologically most simply organized metazoan animal, the placozoan 

Trichoplax adhaerens, resembles an intriguing model for one of several “urmetazoon” 

hypotheses: the placula hypothesis. Clear support for a basal position of Placozoa would 

aid in resolving several key issues of metazoan-specific inventions (including, for example, 

head–foot axis, symmetry, and coelom) and would determine a root for unraveling their 

evolution. Unfortunately, the phylogenetic relationships at the base of Metazoa have been 

controversial because of conflicting phylogenetic scenarios generated while addressing the 

question. Here, we analyze the sum of morphological evidence, the secondary structure of 

mitochondrial ribosomal genes, and molecular sequence data from mitochondrial and 

nuclear genes that amass over 9,400 phylogenetically informative characters from 24 to 73 

taxa. Together with mitochondrial DNA genome structure and sequence analyses and Hox-

like gene expression patterns, these data (1) provide evidence that Placozoa are basal 

relative to all other diploblast phyla and (2) spark a modernized “urmetazoon” hypothesis.

Author Summary 

Following one of the basic principles in 

evolutionary biology that complex life forms 

derive from more primitive ancestors, it has 

long been believed that the higher animals, the 

Bilateria, arose from simpler (diploblastic) 

organisms such as the cnidarians (corals, 

polyps, and jellyfishes). A large number of 

studies, using different datasets and different 

methods, have tried to determine the most 

ancestral animal group as well as the ancestor 

of the higher animals. Here, we use “total 

evidence” analysis, which incorporates all 

available data (including morphology, 

genome, and gene expression data) and come 

to a surprising conclusion. The Bilateria and 

Cnidaria (together with the other diploblastic 

animals) are in fact sister groups: that is, they 

evolved in parallel from a very simple 

common ancestor. We conclude that the higher  

animals (Bilateria) and lower animals 

(diploblasts), probably separated very early, at 

the very beginning of metazoan animal 

evolution and independently evolved their 

complex body plans, including body axes, 

nervous system, sensory organs, and other 

characteristics. The striking similarities in 

several complex characters (such as the eyes) 

resulted from both lineages using the same 

basic genetic tool kit, which was already 

present in the common ancestor. The study 

identifies Placozoa as the most basal diploblast 

group and thus a living fossil genome that 

nicely demonstrates, not only that complex 

genetic tool kit arise before morphological 

complexity, but also that these kits may for 

similar morphological structures in parallel. 

Introduction 

Attempts to explain the origin of metazoan life 

seek to unravel both the transition from (1) 

single-celled to multicellular organisms and 

(2) diploblastic to triploblastic body plans. The 

most favored scenarios are based on five 

wellknown hypotheses on the “urmetazoon” 

bauplan: Haeckel’s gastraea, Jägersten’s 

bilaterogastraea, Metschnikoff’s phagocytella, 

Lankester’s planula, and Bütschli’s placula  

[1–5]. Attempts to unravel the urmetazoon 

bauplan and to provide support for any of the 

five hypotheses depends on identifying the 

most basal extant diploblast group. Two 

phylogenetic alternatives have remained under 

discussion; one sees the sponges (Porifera) and 

the other the placozoans (Placozoa) as basal 

relative to all other diploblast groups [6–10]. 

The latter view was accepted for the most part 

of the last century. The presence of only four 

somatic cell types, the smallest metazoan 

genome, and the lack of any foot or head 

structures, any anterior–posterior organization, 

or any kind of organs, and both a basal lamina 
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and an extracellular matrix (ECM) places 

Trichoplax in a basal and isolated position 

relative to all other metazoan phyla [11–16] 

(cf. [17], however). 

Tangled Roots at the Base of the Metazoan 

Tree of Life 

 Mainly because of misinterpretation of life 

cycle stages between Trichoplax adhaerens 

and the hydrozoan Eleutheria dichotoma, 

Placozoa lost their predominant role as the key 

model system for studying the origin of 

metazoan life [5, 17]. This outcome was 

nourished by molecular studies based on a 

variety of character sources, which created a 

series of conflicting phylogenetic scenarios in 

which most often Porifera came out basal [18–

24]. Figure 1 shows six plausible scenarios for 

the relationships of five taxonomic groups 

(Bilateria, Cnidaria, Ctenophora, Porifera, and 

Placozoa) and two plausible arrangements for 

four taxa when Placozoa are left out that are 

critical in assessing the early relationships of 

metazoans. For five taxa and one outgroup, 

there are 105 ways to arrange these taxa in 

dichotomous branching trees. Nearly 95% of 

these possible trees can be eliminated as not 

plausible based on existing data. All six of the 

hypotheses in Figure 1 have been suggested as 

viable in the literature over the past two 

decades (see Table S1 for a summary of papers 

in the last decade addressing the phylogenetics 

of these taxa). All six hypotheses have been 

suggested in publications in the last year alone. 

For instance, Srivastava et al. (2008) [23] 

hypothesize Placozoa as the sister group to 

both Cnidaria and Bilateria, with sponges 

branching off earlier (arrow b in Figure 1). 

Another recent study, which suggests a basal 

position for Ctenophora and Anthozoa (arrow 

E in Figure 1), unfortunately does not add to 

the issue, since it does not include Placozoa in 

the analysis [25]. However, this study does 

suggest that Cnidaria are not sister to Bilateria, 

but rather to Porifera [25]. A study that does 

include Placozoa [26] also suggests that 

Bilateria and Placozoa are basal metazoans 

(arrow a in Figure 1). Striking examples of the 

diversity of hypotheses generated on these taxa 

are recent analyses of mitochondrial genome 

sequence data [27–29] that place Bilateria as 

sister to all non-Bilateria, with Placozoa as the 

most basal diploblast (arrow e in Figure 1). In 

the following, we use the term “diploblasts” 

for all nonbilaterian metazoans; we do not 

intend to contribute to the discussion of 

whether diploblastic animals may have a 

mesoderm, however [1, 30–33]. 

Results and Discussion 

A Concatenated Dataset for Metazoa 

 Given that both nonphylogenetic 

interpretation of morphological data as well as 

molecular analyses of sequence data have 

failed to resolve the issue, a more 

comprehensive, systematic analysis of 

morphological data and new molecular 

markers are now a requisite for identifying the 

root of the metazoan tree of life. To approach 

this goal, we conducted concatenated analyses 

for 24 metazoan taxa from all of the major 

organismal lineages in this part of the tree of 

life that included morphological characters (17 

characters), both mitochondrial and nuclear 

ribosomal gene sequences (five gene partitions 

for 6,111 nucleotide positions) and molecular 

morphology [8] (ten characters), as well as 

nuclear coding genes (16 gene partitions 

derived from our database searches and 

another 18 gene partitions derived from the 

Dunn et al. (2008) study [25]; see Materials 

and Methods) for 8,307 amino acid positions 

and protein coding genes (16 gene partitions 

for 3,004 amino acid characters) to resolve 

phylogenetic relationships between recent 

diploblast groups. The total number of 

characters included was 17,664 from 51 

partitions, giving 7,822 phylogenetically 

informative characters. We also constructed a 

matrix with a larger number of taxa based on 

the Dunn et al. (2008) [25] study with 73 taxa 

for the same gene partitions (see Materials and 

Methods and Tables S2 and S4). This matrix 

had 17,637 total characters and 9,421 

phylogenetically informative characters. In 

addition, Hox gene expression was compared 

for a placozoan and a cnidarian bauplan to test 

predictions from the placula hypothesis [5]. 
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Clarity and Confusion at the Root of the 

Metazoan Tree 

 Parsimony, likelihood (with morphological 

characters removed), and mixed Bayesian 

analysis of the smaller concatenated matrix 

using a variety of approaches, weighting 

schemes, and models is generally consistent 

with the view that Bilateria and diploblasts 

(Porifera, Ctenophora, Placozoa, and Cnidaria) 

are sister groups. In addition, Placozoa are 

robustly observed as the most basal diploblast 

group (Figure 2 and Figure 3). Figure 3 shows 

the support for several hypotheses of 

monophyly obtained from diverse methods of 

analysis. Porifera, Bilateria, and Fungi all form 

strong monophyletic groups (Figure 3). The 

four cnidarian classes (Anthozoa, Hydrozoa, 

Scyphozoa, and Cubozoa) together with the 

Ctenophora form a monophyletic group, the 

“Coelenterata.” Within the Cnidaria, the 

generally accepted basal position of the 

anthozoans is also recovered by this analysis 

[34, 35].  

 Both choanoflagellates and Placozoa are 

strongly excluded from a Porifera–

Coelenterata monophyletic group. The basal 

position of Placozoa is also strongly supported 

by comparing the phylogeny in Figure 2 with 

hypotheses that place it more derived, using 

the statistical approach of Shimodaira and 

Hasegawa [36, 37]. This battery of tests (Table 

1) demonstrates that the basal position of the 

Placozoa is significantly better than other 

hypotheses. The 95% confidence tree includes 

the Maximum Likelihood (ML) and Bayesian 

trees (both with Placozoa as basal in the 

diploblasts) with a cumulative expected 

likelihood weight (ELW) of 0.960763. The 

tree topology shown in Figure 2 summarizes 

the best supported phylogenetic hypothesis 

obtained by using Maximum Parsimony, ML, 

and Bayesian analyses of the concatenated 

dataset. Analysis of the larger matrix (Figure 

S2) was less well resolved within the Bilateria, 

but showed the same general topology as the 

smaller analysis. Specifically, Bilateria are 

monophyletic and sister to the diploblasts, 

with the choanoflagellate Monosiga basal to 

these taxa with high jackknife values and 

Bayesian posteriors. Diploblasts are also 

monophyletic, and Placozoa are the most basal 

taxon in the diploblasts. In addition, within the 

diploblasts, Porifera and Coelenterata are 

monophyletic, and within Bilateria, Ecdysozoa 

and Deuterostomia are monophyletic; all 

groupings with high node support. The 

topology within the diploblasts is also robust 

when Bilateria are removed from the analysis. 

The full analysis seemingly misplaces the 

Bilateria clade as the sister to all diploblasts. 

The classical position of the Bilateria is in a 

highly derived position from within the 

diploblasts and usually sister to the Cnidaria. 

The seemingly “weird” prediction of a basal 

Bilateria from the present analysis has been 

observed before in other studies (see Table 

S1). Several studies have addressed 

phylogenetic problems specific to this region 

of the tree of life and have suggested that this 

region of the tree will be inherently difficult to 

resolve. These studies suggest that the 

compression of splitting events in this region 

renders the resolution of these nodes with high 

support difficult, if not impossible [38–42]. 

These studies have suggested that even large 

amounts of data might not resolve the 

problem. Other studies have pointed to taxon 

sampling and modeling as a potential problem 

in resolving this part of the tree of life [25, 38–

40]. Another problem is that the large number 

of molecular phylogenetic approaches creates 

 
 

Figure 1. Discussed Relationships at the Base of the 

Metazoan Tree. 

Potential arrangements of five critical taxa (B, Bilateria; Cn, 

Cnidaria; Ct, Ctenophora; P, Placozoa; and S, Porifera) are 

shown on the right, and some hypotheses in the literature with 

only four taxa (Placozoa omitted) on the left. Arrows indicate 

the root of the networks. The letters at the arrows are for 

reference to Table S1. The uppercase letters refer to 

publications in Table S1 that support the indicated root for 

trees without Placozoa. The lowercase letters refer to 

publications in Table S1 that support the root for trees with all 

five taxa. 

 



CHAPTER 2 - STUDIES   26 

 

 

Figure 2. Maximum Likelihood Phylogenetic Tree of Metazoan Relationships Using the Concatenated Data Matrix. 

Node support is based on the best ML tree filtered through 1,000 rapid bootstrap replicates. Only support values below 100% are 

shown. Bayesian inference supported strongly (posterior probability = 1.0) all nodes with the exception of monophyly of 

Cnidaria. The maximum a posteriori and the Bayesian 50% majority-rule consensus trees disagreed with the best ML tree in 

supporting a Ctenophora–Anthozoa clade with posterior probability of 0.98. Please note that “Coelenterata“ is not a taxonomic 

unit, but rather it is a traditional grouping for reasons of convenience. The alpha shape parameters of the Gamma distribution 

were 0.507454 and 0.651659 for the nucleotide and amino acid partitions, respectively. Log-likelihood = -261429.821426. 

doi:10.1371/journal.pbio.1000020.g002
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multiple and possibly the most short-lived 

hypotheses in biology. The large repertoire of 

algorithms, models, and assumptions 

sometimes produces a forest of trees from the 

same dataset (cf. [43]). Thus, tree-building 

procedures are highly crucial and deserve 

particular attention if this region of the tree of 

life is to be resolved [38]. 

 

 

Figure 3. Phylogeny of Animals and Weighting Schemes. 

The impact of several weighting schemes on the phylogenetic hypothesis in Figure 2. The values in the table are jackknife values 

for maximum parsimony, rapid bootstrap for ML, and posterior clade probabilities for Bayesian inference. The color coding for 

the values is shown at the bottom of the table. The major monophyletic groups examined for jackknife support in Figure 2 are 

indicated in the top row. See Figure 2 for nodes defined by these groups. Monosiga refers to placing Monosiga as basal to 

Metazoa, and Placozoa refers to placing Placozoa as basal to diploblasts. Total in the first row refers to the entire dataset 

analyzed with equal weighting of all characters. The next four rows show results for analyses of partitioned datasets: mtDNA, 

mitochondrial partition; Nuclear, nuclear; Protein, protein; and rRNA, ribosomal RNAs from both nuclear and mitochondrial 

genomes. The bottom rows show results for various weighting schemes; 2:rRNA, 10:rRNA, and 100:rRNA refer to weighting 

schemes in which transversions are weighted 2, 10, and 100 times more than transitions, respectively. Protein weighting schemes 

are Gonnet weighting matrix, Whelan and Goldman (WAG) matrix, Le and Gascuel (LG) matrix, and genetic identity (GI). For 

details on weighting matrices, see Figure S4. 

doi:10.1371/journal.pbio.1000020.g003

Possible Swamping by Mitochondrial 

Data? 

 Our analyses provide strong evidence for a 

basal position of Placozoa relative to other 

diploblasts, and thus agree with the 

mitochondrial genome data analyses (as 

indicated by arrow f in Figure 1; [27, 28]). It is 

therefore important to examine whether the 

mitochondrial signal swamps out the nuclear 

data, to rule out the possibility that the 

topology we present in Figure 2 is biased by 

mitochondrial information. Figure S1 

addresses this problem and demonstrates that 

nuclear information contributes positive 

support to 16 of the 21 nodes in the tree. 

Mitochondrial information contributes positive 

support to only 15 out of 21 nodes. In addition, 

examination of the amount of hidden support 

contributed by nuclear versus mitochondrial 

data (not shown) shows that the majority of the 

hidden support comes from nuclear 

information. Both of these results using 

partitioned support measures indicate that the 

addition of nuclear data does not conflict with 

mitochondrial information and is indeed 

contributing positively to the overall 

phylogenetic hypotheses. 

Resurrecting the “Placula” 

 Although the hypothesis in Figure 2 is in 
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conflict with a recent analysis of coding genes 

from whole genomes [23] as well as is in 

conflict with other studies (Table S1), the 

scenario presented here is consistent with 

another set of studies and also with one of the 

major urmetazoon hypotheses, the placula 

hypothesis (Figure 4). This hypothesis fuels 

intriguing scenarios for the mechanisms and 

direction of anagenetic evolution in Metazoa, 

and in the form presented here, it can illustrate 

the derivation of Cnidaria and Bilateria from a 

placozoan-like ancestor. A basal position of 

Placozoa relative to Cnidaria, and diploblasts 

sister to Bilateria are cum grano salis 

consistent with several recent molecular 

phylogenetic analyses ([23, 27] and this study) 

encouraging us to reconsider the placula 

hypothesis in a modern light. The comparison 

of Hox/ParaHox-like gene expression pattern 

in Placozoa and Cnidaria creates a new 

working hypothesis for the origin of the 

entoderm, a main body axis, and symmetry. 

Based on the undisputed evidence that 

Placozoa are basal relative at least to Cnidaria, 

the Trox-2 gene is likely ancestral to 

Hox/ParaHox-like genes from Cnidaria (as 

formerly suggested [44, 45]). Trox-2 is 

expressed at the gastrodermis/epidermis 

(lower/upper epithelium) boundary in 

Trichoplax [46]. Strikingly, we found similar 

expression patterns for two putative Trox-2 

descendents in the hydrozoan Eleutheria 

dichotoma (Figure 4). These regulatory gene 

expression data mirror directly the beginning 

and ending stage of a modern interpretation of 

the placula hypothesis. The latter explains the 

origin of a symmetric bauplan with one or two 

defined body axes and an internal feeding 

cavity from a simple placuloid (proto-

placozoan–like) bauplan that lacked all of the 

former characteristics. In the most 

parsimonious scenario, the expression of a 

single regulatory gene defines polarity in 

Placozoa, i.e., the differentiation of a lower 

versus upper epithelium. According to the 

proposed “new placula hypothesis,” the 

nonsymmetric placozoan bauplan transforms 

into a symmetric Cnidaria (or also Bilateria) 

bauplan by the former ring of epithelia 

boundary separation transforming into the new 

“oral” region of the derived symmetric 

bauplan (Figure 4). This transformation is 

simply the result of a placula lifting up its 

feeding epithelium in order to form an external 

feeding cavity, keeping function and 

morphology of the epithelium unchanged. In 

the final stage, the “oral” pole develops 

specialized organs, such as a mouth and 

tentacles for feeding (cf. [47]). The latter could 

be driven by duplication of the regulatory 

gene, which originally defined polarity in the 

placula (Figure 4; cf. [48] for review). 

Observations on extant Placozoa and Cnidaria 

mirror this scenario almost perfectly (Figure 

4). Although prediction and observation match 

nicely, one has to note, however, that no gene 

or even gene family, no matter how important, 

can provide more than just indirect support for 

a working hypothesis on a hypothetical animal 

bauplan that can never be observed. It is 

important to note that multiple topologies can 

be consistent with the placula hypothesis and 

that the form of the extant earliest-branching 

lineage does not necessarily have to represent 

the form of the ancestor; we consider the 

latter, however, the more parsimonious 

alternative. We also point out that the 

regulatory gene family mentioned here, 

 

Table 1. Comparison of Competing Phylogenetic Hypotheses
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Figure 4. Modern Interpretation and Modification of the Placula Hypothesis of Metazoan Origin. 

Here, a nonsymmetric and axis-lacking bauplan (placula) transforms into a typical symmetric metazoan bauplan with a defined 

oral–aboral or anterior– posterior body axis. In the placula transformation, a primitive disk consisting of an upper and a lower 

epithelium (lower row), which can be derived from a flattened multicellular protist, forms an external feeding cavity between its 

lower epithelium and the substrate (second row from bottom). The latter is achieved by the placula lifting up the center of its 

body, as this is naturally seen in feeding Trichoplax (i.e., the two Trichoplax images derive from a nonfeeding (first row) and 

feeding (second row) individual. If this process is continued, the external feeding cavity increases (cross section, third row) 

while at the same time the outer body shape changes from irregular to more circular (see oral views). Eventually, the process 

results in a bauplan in which the formerly upper epithelium of the placula remains outside (and forms the ectoderm) and the 

formerly lower epithelium becomes “inside“ (and forms the entoderm; upper row). This is the basic bauplan of Cnidaria and 

Porifera. Three of the four transformation stages have living counterparts in the form of resting Trichoplax, feeding Trichoplax, 

and cnidarian polyps and medusae (right column). The above-outlined transformation of a placula into a cnidarian bauplan 

involves the development of a main body axis and a head region, which allows the invention of new structures and organs for 

feeding. From a developmental genetics point of view, a single regulatory gene would be required to control separation between 

the lower and upper epithelium (three lower rows). If the above scenario were correct, the following empirical data would be 

congruent with it. In the form of the putative ProtoHox/ParaHox gene, Trox-2, in Trichoplax, we find a single regulatory gene, 

marks the differentiation of an as yet undescribed cell type at the lower–upper epithelium boundary in Trichoplax [46]. More 

than one regulatory gene would be required to organize new head structures originating from the ectoderm–entoderm boundary 

of the oral pole (upper row). Quite noteworthy, two putative descendents of the Trox-2 gene, Cnox-1 and Cnox-3, show these 

hypothesized expression patterns (Diplox expression upper row; for simplicity, only the ring for Cnox-1 expression is shown; 

see Figure S4 for expression patterns of both genes and Jakob et al. [46, 52] for details. Cnox-1 and Cnox-3  expression both 

mark the ectoderm-entoderm boundary at the oral pole in the hydrozoan Eleutheria dichotoma. Both genes are expressed in 

parallel in a ring-shaped manner at the tip of the manubrium, with Cnox-3 being expressed more ectodermally and Cnox-1 being 

expressed more entodermally (unpublished data). 
doi:10.1371/journal.pbio.1000020.g00 
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Hox/ParaHox-like genes, seems to be absent in 

sponges [49]. A secondary loss of 

Hox/ParaHox-like genes in sponges seems 

plausible, and the work by Peterson and 

Sperling, 2007 [50] provides some evidence 

for this assumption. Whether a possible loss of 

a Hox/ParaHox gene might be related to the 

reduction of epithelial organization in Porifera 

[3] remains an interesting speculation. The 

Hox/ParaHox loss scenario in sponges is just 

one of several crucial questions raised by the 

phylogeny in Figure 2. According to this 

phylogeny, diploblasts and Bilateria both may 

have started from a placula-like bauplan as 

suggested in Figure 4 (“new placula 

hypothesis”). The shown new placula 

hypothesis illustrates a potential transition 

from a nonsymmetric, axis-lacking placula 

into a radial symmetric and head–foot axis 

organized cnidarian. In a similar way, the 

placula could also be transformed into a 

Bilateria bauplan, i.e., a bilaterally symmetric 

bauplan with an anterior–posterior body axis. 

One of the easiest models for adopting a 

bilateral symmetry suggests that the 

“urbilaterian” kept the benthic lifestyle of the 

placula but adopted directional movement. The 

latter almost automatically leads to an 

anterior–posterior and ventral–dorsal 

differentiation. The pole moving forward 

develops a head and becomes anterior, the 

body side facing the ground carries the mouth 

and thus by definition becomes ventral. 

According to the above scenario, the main 

body axes of diploblastic animals and Bilateria 

were independent inventions. Whereas an 

independent evolution of body axes in 

diploblastic animals and Bilateria seems easily 

plausible, the independent evolution of other 

characters (e.g., the nervous system; see 

below) seems less plausible given our 

knowledge of the development and 

morphology of these characters. We will never 

observe the hypothetical placula, but we may 

draw some conclusions from Placozoa, which 

seem to have retained many of the 

characteristics of the placula if our 

interpretation is valid. This scenario draws into 

question several aspects of animal evolution 

that will require reinterpretation if this 

hypothesis is correct. Most notable of these 

aspects is the evolution of the nervous system, 

which in the hypothesis in Figure 2, can only 

be explained by convergent evolution of 

Cnidaria and Bilateria nervous system 

organization. According to the placula 

hypothesis, we suggest that the placula already 

had the genetic capability and basic building 

blocks to build a nervous system, and that 

from here, the final build-up of the nervous 

system developed via independent, but 

parallel, pathways in diploblasts and Bilateria. 

The genome of the placozoan Trichoplax 

adhaerens indeed delivers some notable 

evidence that the genetic inventory may 

precede morphological manifestation of organs 

[23]. For example, the placozoan genome 

harbors representatives of all major genes that 

are involved in neurogenesis in higher 

animals, whereas placozoans show not the 

slightest morphological hint of nerve or 

sensory cells. Quite noteworthy, however, is 

that placozoans are quite capable of stimuli 

reception and perception used to coordinate 

behavioral responses. In this light, the 

generally accepted unlikely convergent 

evolution of a nervous system only looks 

unlikely from a morphological, but not from a 

genetic and physiological, point of view. 

Regardless of the need for reinterpretation of 

this and other anatomical characters, the 

findings presented here provide a viable 

hypothesis for the major cladogenetic events 

during the metazoan radiation. Given the basal 

position of Placozoa, we suggest that at least 

for diploblastic metazoan life, the body plan 

started with the following: an asymmetric 

body plan, a most simple morphology (only 

two steps above basic definition [51]), a single 

ProtoHox gene, a large mitochondrial 

(mtDNA) genome, an outer feeding epithelium 

that gave rise to the entoderm, and the smallest 

of all known (not secondarily reduced) 

metazoan genomes. If the placula is also the 

ancestral state for metazoans (i.e., the common 

ancestor of Bilateria and diploblasts in Figure 

2), then the same could be said for the 

urmetazoon. 



CHAPTER 2 - STUDIES   31 

 

Materials and Methods 

Cloning and sequencing of target genes 

In order to extend the analyses of Rokas et al. [42] to 

basal metazoans also, we isolated 13 of the suggested 

target genes that were missing from the placozoan 

Trichoplax adhaerens. These genes could be amplified 

by using the primer sets that had worked in the previous 

study in sponges: TOA04, 05, 06, 09, 10, 11, 13, 15, 16, 

17, 21, 25, 33, 48, 53, 56, 57, 59, 62, 65, 67, and 68. In 

order to obtain sequences of these genes for Placozoa 

and to characterize variation within Placozoa, we also 

isolated six of these genes from a second, distantly 

related placozoan species (Placozoa sp. H2, TunB clone, 

Tunisia). For cubozoans, we filled gaps in the matrix by 

isolating three target genes from Carybdea marsupialis 

(Table S5). We amplified target genes from cDNA. For 

both placozoan species, some 200 healthy growing 

vegetative animals of each species were used for the 

isolation of total RNA. Before extraction, animals were 

washed three times with sterile 3.5% artificial seawater 

(ASW) and starved overnight to prevent algae 

contamination. Animals were lysed in 500 ll of fresh 

homogenization buffer (HOM: 50 mM Tris HCl, 10 

mM EDTA, 100 mM NaCl, 2.5 mM DTT, 0.5% SDS, 

0.1% DEPC in ultrapure water [Gibco]; pH 8.0). After 

addition of 25 lg of DEPCtreated Proteinase K, samples 

were stored for 30 min at 65 °C. The homogenate was 

squeezed through a needle connected to a 2.5-ml 

syringe. This protocol significantly increased RNA 

yield compared to conventional RNA extraction kits. 

Nucleic acids were isolated by two rounds of 

phenol/chloroform/isoamyl alcohol (25:24:1) 

purification. Nucleic acids were dissolved in ultrapure 

water, and DNA was digested with DNase I 

(Fermentas). Total RNA was used for cDNA 

transcription with poly-T primers following the 

manufacturer’s protocol (Invitrogen Superscript II Kit). 

Target genes were amplified after initial denaturation (3 

min at 94 °C) by 40 rounds of 94 °C for 30 s, 50 °C for 

30 s, and 72 °C for 75 s, followed by a final elongation 

step (5 min at 72 °C) using the Bioline Taq system 

following the manufacturer’s recommendations 

(Bioline). Amplified fragments of the predicted size 

were purified and cloned into pGEM-T (Promega). 

Sequencing was performed on a Megabase 500 using 

the DYEnamic ET Terminator Cycle Sequencing Kit 

(Amersham) or by using the service provided by 

Macrogen. For further details, see Jakob et al. [46] and 

Table S5. For a detailed explanation of the inclusion of 

sequences in the phylogenetic matrices used in this 

study, see Table S2, which shows the source of 

sequences in this study. We constructed two matrices, a 

small one composed of 24 taxa (see Figure 2) and a 

large one composed of 73 taxa. For the smaller matrix, 

we chose nine bilaterian taxa based on the availability 

of sequence information for a species. We chose three 

Lophotrochozoa, three Ecdysozoa, and three 

Deuterostomia as representatives of the Bilateria. Other 

ingroup taxa include representatives of the four classes 

of Cnidaria, the three major groups of Porifera 

(Desmospongiae, Calcarea, and Hexactinellida), 

Placozoa, and Ctenophora. Since rooting of the tree is 

critical, we attempted to break up the root by including 

several outgroup species: two fungal species 

(Saccharomyces and Cryptococcus), Tetrahymena, 

Trypanosoma, and Dictyostelium based on their 

relevance to the study and the availability of genome-

level information. Trypanosoma was used as outgroup 

species in all aspects of the study, but the topology of 

resultant trees indicates that slime mold or Tetrahymena 

could also be used. To increase the number of placozoan 

and cubozoan sequences, we PCR amplified several 

genes as indicated in Table S5. Morphological 

characters were scored for the taxa in this study as 

described in Schierwater and DeSalle (2007) [10]; see 

Table S3). Molecular “morphology” characters were 

also included for the taxa in this study as scored by 

Ender and Schierwater, 2003 [8] (see Figure S3). The 

final partitioned matrices for the smaller (24 taxa) and 

the larger (73 taxa) can be found in Table S4. In 

addition to genes already available from whole 

mitochondrial sequencing (15 genes) and nuclear genes 

(16 genes), we included 18 genes from the Dunn et al. 

(2008) study [25]. These genes were chosen on the basis 

of taxonomic representation being over 50% in the 

Dunn et al. (2008) study. For the larger 73-taxon matrix, 

we included all of the taxa from the Dunn et al. (2008) 

study (their smaller matrix in their Figure 2; [25]) plus 

Cubozoa, Scyphozoa, Placozoa, Hexactinellida, 

Calcarea, Caenorhabditis, Tetrahymena, Trypanosoma, 

and Dictyostelium. For this larger matrix, we filled in 

character information for these taxa for the 18 Dunn et 

al. (2008) [25] genes from GenBank as completely as 

possible. We used Blast scores and existing annotations 

as criteria for assessing orthology for these added 

sequences. In this larger matrix, we used only genes 

from the Dunn et al. (2008) study [25] with greater than 

50% taxon representation. 

In situ hybridization and immunocytology  

RNA in situ hybridization studies were performed as 

described before [46, 52]. For immunocytology studies, 

polyclonal antibodies were produced to oligopeptides 

near the C-terminal of the Trox-2, Cnox-1, and Cnox-3 

proteins. For whole-mount analysis, live animals were 

fixed for 1 h in 5% formaldehyde in sterile seawater. 

Immunocytochemistry was performed with anti-Trox or 

anti-Cnox, respectively, antisera and goat anti-rabbit-AP 

(Novagen) or FITC-conjugated goat anti-rabbit antibody 

(Sigma). Localization of antibody complexes was 

revealed by staining with NBT and X-phosphate 

(Roche) or fluorescent microscopy, respectively. 

Further details will be described elsewhere (S. Sagasser 

et al. unpublished data). 

Alignment 

To generate static alignments, we used MAFFT [53], 

initially with a gap opening penalty of 1.5 and gap 

extension penalty of 0.123. We also examined the 

impact of varying gap opening penalties by obtaining 
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alignments using opening penalties of 1.0, 0.5, and 0.1. 

The alteration of gap penalty only served to alter the 

number of characters in our matrices and did not 

severely impact phylogenetic hypotheses. 

Phylogenetic analysis 

For our 24-taxon matrix, we conducted parsimony, 

Bayesian, and likelihood analyses as explained below. 

The 73-taxon matrix was analyzed with Bayesian 

inference. Phylogenetic trees using static alignment 

were generated using PAUP v4b10 [54]. Tree searches 

were accomplished using 1,000 random taxon additions 

and Tree Bisection Reconnection (TBR). Jackknife 

measures for node support were obtained using PAUP 

with 30% character removal and 1,000 repetitions. To 

examine the effect of character weighting in 

phylogenetic analysis of this dataset, we implemented 

character weighting for nucleic acids and amino acid 

partitions as follows. First, we implemented three 

schemes for weighting transitions and transversions 

(100, 10, and 2) for nucleic acids. Second, we used four 

transformation matrices for amino acid weighting: 

Gonnet [55], WAG [56], LG [57], and Genetic Identity 

(GI). Bremer support measures (decay indices) [58], 

partitioned Bremer and hidden support values [59, 60] 

were generated using TreeRot v3 [61]. The parallel 

implementation of MrBayes v3.1.2 [62, 63] was used 

for Bayesian inference of phylogeny. Two simultaneous 

runs with random starting trees were launched for two 

million generations, each with a 1,000-step thinning, a 

10% burn-in, and a temperature parameter of 0.2 so as 

to lead to better mixing. All three data types (DNA, 

protein, and morphology) were accommodated in the 

Bayesian analysis. We employed ML inference in 

RAxML v7.0.4 [64] using the GTR substitution model 

for DNA [65, 66] along with G-distributed rate 

heterogeneity [67, 68] and the Whelan and Goldman 

(WAG) amino acid substitution matrix [55] with 

empirical residue frequencies coupled with G-

distributed rate heterogeneity. Node support was 

evaluated with 1,000 rapid bootstrap replicates [69]. 

Alternative phylogenetic hypotheses were compared 

using the Shimodaira- Hasegawa test [37] and expected 

likelihood weights [70], as implemented in RAxML. 

Supporting Information 

Supporting Material (Figures 1-4, Tables 1-3 and 5) is 

provided in the Addendum. The Supporting Table 4 is 

enclosed on the data CD. 

Supporting Figure 1. Positive or negative partitioned 

Bremer support for all nodes under mitochondrial 

versus nuclear gene partitions.  

Supporting Figure 2. Phylogenetic Tree for 73 taxa 

matrix with Bilateria shown as major groups (A) and 

including all Taxonomic names (B). 

Supporting Figure 3. 16S rRNA secondary structure 

prediction. 

Supporting Figure 4. In situ expression of Hox-like 

genes Cnox-1 and Cnox-3 in the hydrozoan 

Eleutheria dichotoma. 

Supporting Table 1. Survey of the literature for 

hypotheses concerning the major animal lineages 

discussed in this paper. 

Supporting Table 2. GenBank accession numbers used 

in this study. 

Supporting Table 3. Morphology data matrix. 

Supporting Table 4. Alignment matrix for 24 taxa and 

73 Taxa (in nexus format). 

Supporting Table 4. Disposition of PCR and 

sequencing of placozoan and cubozoan genes. 

Acknowledgments 

We acknowledge helpful comments from the Key 

Transitions Symposium speakers (Phoenix, Arizona, 

2007), the German Zoological Society meeting speakers 

(Germany, 2005), Max, and three anonymous reviewers. 

ME acknowledge the Evangelische Studienstiftung e.V. 

Villigst. RD and SOK acknowledge the Lewis B. and 

Dorothy Cullman Program in Molecular Systematics 

and the Sackler Institute for Comparative Genomics at 

the American Museum of Natural History. SOK was 

supported by the Alfred P. Sloan Foundation. Some 

symbols in Figure 2 are courtesy of the Integration and 

Application Network (http://ian.umces.edu/symbols/), 

University of Maryland Center for Environmental 

Science.  

Author contributions. BS contributed to data 

collection and analyses, developed the “new placula 

hypothesis” and together with RD designed the study. 

ME, WJ, HJO, HH, and SD collected and analyzed data. 

SOK and RD performed the phylogenetic analyses. RD 

and BS coordinated the phylogenetic discussion. All 

authors contributed to data interpretation and writing.  

Funding. Supported by the Deutsche Forschungs-

gemeinschaft (DFG SCHI-227/24-2, DFG SCHI-

227/20-2, HA-1947/5-2), the Lower Saxony Graduate 

Program, the Human Frontier Science Program, the 

National Institute of Health (NIH R01 GM38148), and 

National Science Foundation Award Number 0531677. 

The funders had no role in study design, data collection 

and analysis, decision to publish, or preparation of the 

manuscript.  

Competing interests. The authors have declared that no 

competing interests exist. 



CHAPTER 2 - STUDIES   33 

 

References

1. Boero F, Schierwater B, Piraino S (2007) Cnidarian 

milestones in metazoan evolution. Integrative and 

Comparative Biology 47: 693–700. 

2. Bütschli O (1884) Bemerkungen zur Gastraea-

Theorie. Morphologische Jahrblatt 9: 415–427.  

3. Gruner HE (1993) Einführung, Protozoa, Placozoa, 

Porifera. In: Kaestner A, editor. Lehrbuch der 

Speziellen Zoologie Band I. Jena (Germany): G. 

Fischer. pp. 62–72. 

4. Ivanov AV (1973) Trichoplax adhaerens and the 

problem of the origin of Metazoa. Doklady 

Akadademii Nauk SSSR Series Biology 211: 1469–

1471.  

5. Syed T, Schierwater B (2002) Trichoplax adhaerens: 

discovered as a missing link, forgotten as a 

hydrozoan, re-discovered as a key to metazoan 

evolution. Vie Milieu 52: 177–187. 

6. Borchiellini C, Chombard C, Manuel M, Alivon E, 

Vacelet J, et al. (2004) Molecular phylogeny of 

Demospongiae: implications for classification and 

scenarios of character evolution. Molecular 

Phylogenetics and Evolution 32: 823–837. 

7. Collins A (1998) Evaluating multiple alternative 

hypotheses for the origin of Bilateria: an analysis of 

18S rRNA molecular evidence. Proceedings of the 

National Academy of Sciences of the United States 

of America 95: 15458–15463. 

8. Ender A, Schierwater B (2003) Placozoa are not 

derived cnidarians: evidence from molecular 

morphology. Molecular Biology and Evolution 20: 

130–134. 

9. Manuel M, Borchiellini C, Alivon E, Le Parco Y, 

Vacelet J, et al. (2003) Phylogeny and evolution of 

calcareous sponges: monophyly of calcinea and 

calcaronea, high level of morphological homoplasy, 

and the primitive nature of axial symmetry. 

Systematic Biology 52: 311–333. 

10. Schierwater B, DeSalle R (2007) Can we ever 

identify the Urmetazoan? Integrative and 

Comparative Biology 47: 670–676. 

11. Grell KG, Benwitz G (1971) Die Ultrastruktur von 

Trichoplax adhaerens F.E. Schulze. Cytobiologie 4: 

216–240. 

12. Grell KG (1981) Trichoplax adhaerens and the 

origin of Metazoa. In: Origine dei grandi phyla dei 

Metazoi, Convegno Intern. Rome: Accademia 

nazionale dei Lincei. pp. 107–121. 

13. Ruthmann A (1977) Cell differentiation, DNA 

content and chromosomes of Trichoplax adhaerens 

F. E. Schulze. Cytobiologie 15: 58–64. 

14. Ruthmann A, Grell KG, Benwitz G (1981) DNA-

content and fragmentation of the egg-nucleus of 

Trichoplax adhaerens. Zeitschrift für Naturforschung 

C 60: 564–567. 

15. Schierwater B, de Jong D, Desalle R (2008) 

Placozoa and the evolution of Metazoa and 

intrasomatic cell differentiation. International 

Journal of Biochemistry & Cell Biology 41: 370–

379. 

16. Schulze FE (1883) Trichoplax adhaerens nov. gen.  

nov. spec. Zoologischer Anzeiger 6: 92–97. 

17. Ax P (1995) Das System der Metazoa I. Jena 

(Germany): Gustav Fischer. 77–79 pp. 

18. Aleshin VV, Petrov NB (2002) Molecular evidence 

of regression in evolution of metazoa. Zhurnal 

Obshchei Biologii 63: 195–208. 

19. Brooke NM, Holland PW (2003) The evolution of 

multicellularity and early animal genomes. Current 

Opinion in Genetics & Development 13: 599–603. 

20. Giribet G (2002) Relationships among metazoan 

phyla as inferred from 18S rRNA sequence data: a 

methodological approach. EXS 92: 85–101. 

21. Medina M, Collins AG, Silberman JD, Sogin ML 

(2001) Evaluating A New Old “Urmetazoon” 

Hypothesis hypotheses of basal animal phylogeny 

using complete sequences of large and small subunit 

rRNA. Proceedings of the National Academy of 

Sciences of the United States of America 98: 9707–

9712. 

22. Schutze J, Krasko A, Custodio MR, Efremova SM, 

Müller IM, et al. (1999) Evolutionary relationships 

of Metazoa within the eukaryotes based on 

molecular data from Porifera. Proceedings of the 

Royal Society of London Series B Biological Science 

266: 63–73. 

23. Srivastava M, Begovic E, Chapman J, Putnam NH, 

Hellsten U, et al. (2008) The Trichoplax genome 

and the nature of placozoans. Nature 454: 955–960. 

24. Wainright PO, Hinkle G, Sogin ML, Stickel SK 

(1993) Monophyletic origins of the metazoa: an 

evolutionary link with fungi. Science 260: 340–342. 

25. Dunn CW, Hejnol A, Matus DQ, Pang K, Browne 

WE, et al. (2008) Broad phylogenomic sampling 

improves resolution of the animal tree of life. Nature 

452: 745–749. 

26. Ruiz-Trillo I, Roger AJ, Burger G, Gray MW, Lang 

BF (2008) A phylogenomic investigation into the 

origin of Metazoa. Molecular Biology and Evolution 

25: 664–672. 

27. Dellaporta SL, Xu A, Sagasser S, Jakob W, Moreno 

MA, et al. (2006) Mitochondrial genome of 

Trichoplax adhaerens supports Placozoa as the basal 

lower metazoan phylum. Proceedings of the 

National Academy of Sciences of the United States 

of America 103: 8751–8756. 

28. Lavrov DV, Forget L, Kelly M, Lang BF (2005) 

Mitochondrial genomes of two demosponges 

provide insights into an early stage of animal 

evolution. Molecular Biology and Evolution 22: 

1231–1239. 

29. Signorovitch AY, Buss LW, Dellaporta SL (2007) 

Comparative genomics of large mitochondria in 

placozoans. PLoS Genetics 3: e13.  

30. Boero F, Bouillon J, Piraino S (2005) The role of 

Cnidaria in evolution and ecology. Italian Journal of 

Zoology 72: 65–71. 

31. Boero F, Gravili C, Pagliara P, Piraino S, Bouillon J, 

et al. (1998) The cnidarian premises of metazoan 



CHAPTER 2 - STUDIES   34 

 

evolution: from triploblasty, to coelom formation, to 

metamery. Italian Journal of Zoology 65: 5–9. 

32. Seipel K, Schmid V (2005) Evolution of striated 

muscle: jellyfish and the origin of triploblasty. 

Developmental Biology 282: 14–26. 

33. Seipel K, Schmid V (2006) Mesodermal anatomies 

in cnidarian polyps and medusae. International 

Journal of Developmental Biology 50: 589–599. 

34. Bridge D, Cunningham CW, Schierwater B, DeSalle 

R, Buss LW (1992) Class-level relationships in the 

phylum Cnidaria: evidence from mitochondrial 

genome structure. Proceedings of the National 

Academy of Sciences of the United States of America 

89: 8750–8753. 

35. Collins AG, Schuchert P, Marques A, Jankowski T, 

Medina M, et al. (2006) Medusozoan phylogeny and 

character evolution clarified by new large and small 

subunit rDNA data and an assessment of the utility 

of phylogenetic mixture models. Systematic Biology 

55: 97–115. 

36. Shimodaira H, Hasegawa M (2001) CONSEL: for 

assessing the confidence of phylogenetic tree 

selection. Bioinformatics 17: 1246–1247. 

37. Shimodaira H, Hasegawa M (1999) Multiple 

comparisons of log-likelihoods with applications to 

phylogenetic inference. Molecular Biology and 

Evolution 16: 1114–1116. 

38. Baurain D, Brinkmann H, Philippe H (2006) Lack of 

resolution in the animal phylogeny: closely spaced 

cladogeneses or undetected systematic errors? 

Molecular Biology and Evolution 24: 6–9. 

39. Philippe H, Telford MJ (2006) Large-scale 

sequencing and the new animal phylogeny. Trends 

in Ecology & Evolution 21: 614–620. 

40. Rodriguez-Ezpeleta N, Brinkmann H, Roure B, 

Lartillot N, Lang BF, et al. (2007) Detecting and 

overcoming systematic errors in genome-scale 

phylogenies. Systematic Biology 56: 389–399. 

41. Rokas A, Carroll SB (2006) Bushes in the tree of 

life. PLoS Biol 4: e352.  

42. Rokas A, Kruger D, Carroll SB (2006) Animal 

evolution and the molecular signature of radiations 

compressed in time. Science 310: 1933–1938. 

43. DeSalle R, Schierwater B (2007) Key transitions in 

animal evolution. Integrative and Comparative 

Biology 47: 667–669. 

44. Schierwater B, Dellaporta S, DeSalle R (2002) Is the 

evolution of Cnox-2 Hox/ParaHox genes 

“multicolored” and “polygenealogical”? Molecular 

Phylogenetics and Evolution 24: 374–378. 

45. Schierwater B, Kamm K, Srivastava M, Rokhsar D, 

Rosengarten RD, et al. (2008) The early ANTP gene 

repertoire: insights from the placozoan genome. 

PLoS ONE 3: e2457. 

46. Jakob W, Sagasser S., Dellaporta SL, Holland PW, 

Kuhn K, et al. (2004) The Trox-2 Hox/ParaHox 

gene of Trichoplax (Placozoa) marks an epithelial 

boundary. Development Genes & Evolution 214: 

170–175. 

47. Blackstone NW (2007) A food’s-eye view of the 

transition from basal metazoans to bilaterians. 

Integrative and Comparative Biology 47: 724–733. 

48. Ball EE, de Jong DM, Schierwater B, Shinzato C, 

Hayward DC, et al. (2007) Implications of cnidarian 

gene expression patterns for the origins of 

bilaterality—is the glass half full or half empty? 

Integrative and Comparative Biology 47: 701– 711. 

49. Larroux C, Fahey B, Degnan SM, Adamski M, 

Rokhsar DS, et al. (2007) NK homeobox gene 

cluster predates the origin of Hox genes. Current 

Biology 17: 706–710. 

50. Peterson KJ, Sperling EA (2007) Poriferan ANTP 

genes: primitively simple or secondarily reduced? 

Evolution & Development 9: 405–408. 

51. Syed T, Schierwater B (2002) The evolution of the 

Placozoa: a new morphological model. 

Senckenbergiana lethaea 82: 315–324. 

52. Jakob W, Schierwater B (2007) Changing hydro-

zoan bauplans by silencing Hox-like genes. PloS 

ONE 2: e694.  

53. Katoh K, Kuma K, Toh H, Miyata T (2005) MAFFT 

version 5: improvement in accuracy of multiple 

sequence alignment. Nucleic Acids Research 33: 

511–518. 

54. Swofford DL (2003) PAUP*: phylogenetic analysis 

using parsimony (*and other methods), version 4 

[computer program]. Sunderland (Massachusetts): 

Sinauer Associates. 

55. Gonnet GH, Cohen MA, Benner SA (1992) 

Exhaustive matching of the entire protein sequence 

database. Science 256: 1443–1445. 

56. Whelan S, Goldman N (2001) A general empirical 

model of protein evolution derived from multiple 

protein families using a maximumlikelihood 

approach. Molecular Biology and Evolution 18: 

691–699. 

57. Le SQ, Gascuel O (2008) An improved general 

amino acid replacement matrix. Molecular Biology 

and Evolution 25: 1307–1320. 

58. Bremer K (1988) The limits of amino-acid sequence 

data in Angiosperm phylogenetic reconstruction. 

Evolution 42: 795–803. 

59. Baker RH, DeSalle R (1997) Multiple sources of 

character information and the phylogeny of 

Hawaiian drosophilids. Systematic Biology 46: 654–

673. 

60. Baker RH, Yu X, DeSalle R (1998) Assessing the 

relative contribution of molecular and morphological 

characters in simultaneous analysis trees. Molecular 

Phylogenetics and Evolution 9: 427–436. 

61. Sorenson MD, Franzosa EA (2007) TreeRot, version 

3 [computer program]. Boston: Boston University. 

62. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist 

F (2004) Parallel Metropolis coupled Markov chain 

Monte Carlo for Bayesian phylogenetic inference. 

Bioinformatics 20: 407–415. 

63. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: 

Bayesian phylogenetic inference under mixed 

models. Bioinformatics 19: 1572–1574. 

64. Stamatakis A (2006) RAxML-VI-HPC: maximum 

likelihood-based phylogenetic analyses with 

thousands of taxa and mixed models. Bioinformatics 

22: 2688–2690. 

65. Lanave C, Preparata G, Saccone C, Serio G (1984) 



CHAPTER 2 - STUDIES   35 

 

A new method for calculating evolutionary 

substitution rates. Journal of Molecular Evolution 

20: 86–93. 

66. Rodriguez F, Oliver JL, Marin A, Medina JR (1990) 

The general stochastic model of nucleotide 

substitution. Journal of Theoretical Biology 142: 

485–501. 

67. Yang Z (1994) Maximum likelihood phylogenetic 

estimation from DNA sequences with variable rates 

over sites: approximate methods. Journal of 

Molecular Evolution 39: 306–314. 

68. Yang ZH (1993) Maximum-Likelihood estimation 

of phylogeny from DNAsequences when 

substitution rates differ over sites. Molecular 

Biology and Evolution 10: 1396–1401. 

69. Stamatakis A, Hoover P, Rougemont J (2008) A 

rapid bootstrap algorithm for the RAxML web 

servers, Systematic Biology 57: 758–771. 

70. Strimmer K, Rambaut A (2002) Inferring 

confidence sets of possibly misspecified gene trees. 

Proceedings of the Royal Society of London Series B 

Biological Science 269: 137–142. 



CHAPTER 2 - STUDIES  36 

 

2.2. The Diploblast-Bilateria sister hypothesis: 

Parallel evolution of nervous systems may have been a simple step 

Abstract 

For many familiar with metazoan relationships and body plans, the hypothesis of a sister 

group relationship between Diploblasta and Bilateria [1] comes as a surprise. One of the 

consequences of this hypothesis—the independent evolution of a nervous system in 

Coelenterata and Bilateria—seems highly unlikely to many. However, to a small number of 

scientists working on Metazoa, the parallel evolution of the nervous system is not 

surprising at all and rather a confirmation of old morphological and new genetic 

knowledge [2–4]. The controversial hypothesis that the Diploblasta and Bilateria are sister 

taxa is, therefore, tantamount to reconciling the parallel evolution of the nervous system in 

Coelenterata and Bilateria. In this addendum to Schierwater et al. (2009) [1] we discuss two 

aspects critical to the controversy. First we discuss the strength of the inference of the 

proposed sister relationship of Diploblasta and Bilateria and second we discuss the 

implications for the evolution of nerve cells and nervous systems. 

Key words: placozoa, trichoplax, urmetazoon hypothesis, basal metazoan evolution, trichoplax.com, pre-nervous 

system, placula hypothesis. 

Addendum to: Schierwater B, Eitel M, Jakob W, Osigus HJ, Hadrys H, Dellaporta SL, et al. Concatenated analysis 

sheds light on early metazoan evolution and fuels a modern “urmetazoon” hypothesis. PLoS Biol 2009; 7:1000020; 

DOI:10.1371/journal.pbio.1000020. 

 

The analysis in Schierwater et al. (2009) [1] 

involved 24 ingroup taxa and several carefully 

chosen outgroups. Here we present a larger 

analysis of 72 taxa5 to reinforce the inference 

we obtained with the smaller taxonomic 

sample. Figure 1A presents the results of this 

analysis and shows clearly that the Bilateria 

and Diploblasta are monophyletic and sister to 

each other with robust bootstrap support for 

both parsimony and maximum likelihood 

analyses. We could not overturn the sister 

group relationship of these two groups 

regardless of the larger taxonomic sampling or 

the statistical tests we used in the present 

analysis (Fig. 1A). It is clear to us from 

analyses with broader taxonomic 

representation that the sister relationship of 

Bilateria and Diploblasta is a valid hypothesis. 

With respect to the controversial aspect of 

parallel nervous system evolution, we point 

out that a definition of a nervous system that 

satisfies most is that nervous systems are 

spatially organized systems of aggregated 

nerve cells. The simple question, “what is a 

nerve cell?” then becomes the crux of the 

argument. But, this question elicits a spectrum 

of answers from different experts. Accurate 

homology statements concerning nerve cells 

are crucial to the story and these have to wait 

for a general definition of what a nerve cell is. 

The key to these definitions lies in examining 

the non-bilaterian animals [2–6]. In most 

modern views “early nervous system 

evolution” is the equivalent of “early co-

evolution of electrical excitability and 

functional synapses organizing intracellular 

and extracellular signaling processes spatio-

temporally” [6]. Most zoologists agree that 

neither Placozoa nor Porifera have nerve cells 

or a nervous system, but it is important to 

recognize that both sponges and placozoans 

show behavior! They respond in a coordinated 

way to external stimuli that must be perceived 

and mediated by some kind of perception and 

transduction cells. Both sponges and 

placozoans harbor a pre-nervous integration 

system with many so-called “nerve cell 

typical” features, molecules and related genes, 

but these characteristics cannot be co-localized 

with any specific cell type [7-10]. While in 



CHAPTER 2 - STUDIES  37 

 

sponges several cell types are likely involved 

in signal perception and transduction, in 

placozoans it seems to be a single cell type 

only, the fiber cells, which form a loose 

connection network in the center of the 

placozoan body [11]. 

Although we are far away from a general 

definition of a nerve cell (and therefore a 

definition for nervous system), we can still 

summarize our current knowledge on early 

nerve cell evolution (Fig. 1B) as follows: The 

last common ancestor of metazoans (LCMA) 

likely possessed a pre-nervous system with 

some kind of unspecialized proto-nerve cells. 

Placozoa and Porifera cum grano salis 

conserved this stage, while both Coelenterata 

and Bilateria developed specialized nerve cells  

from this stage (top; scenario in Fig. 1B). In 

this light the parallel invention of nerve cells, 

and consequently a nervous system, in 

Bilateria and Coelenterata is hardly 

problematic and not much more than a 

morphological and physiological 

specialization of already existing proto-nerve 

cells. Since specialization of totipotent cells 

into unipotent cells is a routine step in all 

metazoan lineages it seems possible to evolve 

specialized nerve cells directly from proto-

nerve cells. In other words, the invention of 

so-called nerve cells is anything but a major 

invention in metazoans, if the LCMA already 

possessed protonerve cells, which obviously 

seems to be the case. 

 

 
 
Figure 1. (A) Phylogenetic tree with relationships within Bilateria, Coelenterata, and Porifera collapsed. The 72 taxa are 

comprised of the 64 taxa from [5] plus eight taxa added from [1]. Numbers in parentheses refer to number of species in each of 

these groups. Phylogenetic matrices and tree topologies within the collapsed groups are available from the authors. We inferred 

the phylogeny using a maximum likelihood (ML) and maximum parsimony (MP) optimality criterion. Node support values 

(ML/MP) for nodes marked by circles with inset letters are: (B) Bilateria 100/100, (C) Coelenterata 100/82, (S) Porifera 100/100, 

(D) Diploblasta 100/99, (M) Metazoa 100/63; (P) Placozoa is a single taxon. Within the Bilateria: Deuterostomia 100/100, 

Protostomia 100/100. (B) Phylogenetic scenarios for the evolution of nerve cells mapped onto the Diploblast-Bilateria Sister 

hypothesis. Five potential characters (represented by colored boxes in the figure) important in the evolution of nerve cells are 

mapped onto the Diploblast-Bilateria Sister. Most qualities of a nerve cell seem to have been present already in the last common 
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metazoan ancestor (LCMA in light blue). In the top figure we present the most parsimonious explanation for the evolution of 

these five characters (6 parsimony steps). Only the specialization of multifunctional proto-nerve cells into unifunctional nerve 

cells would have occurred in parallel in Bilateria and Coelenterata in the above scenario. The middle scenario is similar to the top 

only instead of hypothesizing independent gain of specialized nerve cells it hypothesizes independent loss of specialized nerve 

cells (7 steps). The bottom tree shows a highly unlikely scenario where the number of steps is nearly twice that of the top 

scenario. 
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2.3. Multiple Dicer genes in the early-diverging Metazoa 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

“The phlogenetic analysis will be of 

use to many research groups and 

raises some interesting questions 

regarding why some organisms 

contain multiple Dicer genes.” 

anonymous reviewer 

“This is a well thought out, carefully 

written, and important contribution to 
a rapidly changing and central field.” 

anonymous reviewer 

“[…] throwing C. elegans into 

the argument of more Dicer 

genes equals more virus 

fighting capabilities does not 

go over well [...]“ 

anonymous reviewer 

“Although the authors conducted 

extensive analysis of the Dicer 

genes in 7 major metazoan phyla, 

they did minimal molecular 
biology [...]“ 

anonymous reviewer 
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Abstract 

Dicer proteins are highly conserved, are present in organisms ranging from plants to 

metazoans, and are essential components of the RNA interference pathway. Although the 

complement of Dicer proteins has been investigated in many “higher” metazoans, there has 

been no corresponding characterization of Dicer proteins in any early-branching 

metazoan. We cloned partial cDNAs of genes belonging to the Dicer family from the 

anthozoan cnidarian Nematostella vectensis and two distantly related haplotypes (species 

lineages) of the Placozoa (Trichoplax adhaerens 16S haplotype 1 [H1] and Placozoa sp. 

[H2]). We also identified Dicer genes in the hydrozoan Hydra magnipapillata and the 

demosponge Amphimedon queenslandica with the use of publicly available sequence 

databases. Two Dicer genes are present in each cnidarian species, whereas five Dicer genes 

each are found in the Porifera and Placozoa. Phylogenetic analyses comparing these and 

other metazoan Dicers suggest an ancient duplication event of a “Proto-Dicer” gene. We 

show that the Placozoa is the only known metazoan phylum which contains both 

representatives of this duplication event and that the multiple Dicer genes of the “basal” 

metazoan phyla represent lineage-specific duplications. There is a striking diversity of 

Dicer genes in basal metazoans, in stark contrast to the single Dicer gene found in most 

higher metazoans. This new data has allowed us to formulate new hypotheses regarding the 

evolution of metazoan Dicer proteins and their possible functions in the early diverging 

metazoan phyla. We theorize that the multiple placozoan Dicer genes fulfill a specific 

biological requirement, such as an immune defense strategy against viruses. 

Key words: Dicer, RNAi, evolution, Placozoa, Cnidaria, Porifera. 

Introduction

The RNA interference (RNAi) pathway is 

an ancient and highly conserved mechanism 

present in most eukaryotes. The pathway plays 

roles in both gene regulation and defense 

against viruses via translational repression, 

mRNA degradation, or genome modification 

(by the creation of heterochromatin). The 

process can be triggered by various sources of 

RNA, including endogenous small noncoding 

microRNAs (miRNAs), both endogenous and 

exogenous small interfering RNAs, RNA 

viruses, transposons, and exogenously 

introduced double-stranded RNAs (dsRNAs). 

The RNAi pathway is triggered when larger 

dsRNA templates are cleaved into smaller 

RNAs, which pair with accessory proteins to 

form RNA-induced silencing complexes 

(RISC) and attach to complementary RNA or 

DNA sequences. Members of a class 

3RNaseIII-type enzyme family called Dicer 

generate the small RNAs. Dicer protein 

members are able to recognize and cleave 

dsRNAs, help to form the RISC and are thus 

crucial elements in the initiation of the RNAi 

pathway (for review see [1]). 

Dicer proteins are a widely conserved 

family, present in many organisms including 

plants, fungi, and the Metazoa. Typically, 

Dicer proteins contain a number of different 

domains: an N-terminal DEAD box, an RNA 

helicase domain, a Piwi–Argonaute–Zwille 

(PAZ) domain, a divergent dsRNAs-binding 

domain (dsRNA bind; previously known as 

DUF283), two ribonuclease (RNase III) 

domains, and an additional dsRNAs-binding 

domain (dsrm) (fig. 1A) [2–4]. The function of 

each of these domains are being elucidated; 

however, catalysis of dsRNA into smaller 

fragments relies upon the activity of the 

RNaseIII domains, which function as a 

homodimer [5] and are ubiquitous among all 

Dicer proteins. The PAZ domain is theorized 

to be a protein–protein interaction domain and 

has been shown to bind the end of the target 

dsRNA and determine the size of RNA 

fragments produced (typically 21–25 nt) [6]. 

Likewise, the two dsRNAs-binding domains 

(dsRNA bind and dsrm) most likely bind 
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dsRNA targets [7]. 

Although the plants Arabidopsis thaliana 

and Oryza sativa contain four and five Dicer 

proteins, respectively [4], thus far metazoans 

were thought to contain only one (e.g., 

Caenorhabditis elegans and vertebrates) [8, 9] 

or two (insects only) [10] Dicer genes. It has 

been suggested that the higher number of 

Dicers in plants is related to their requirement 

in immune defense [4, 11]. 

Recently, assessing the presence of 

miRNAs has become a topic of hot research in 

the early diverging or “basal” metazoans—the 

cnidarian Nematostella vectensis contains at 

least four miRNAs from three families, 

whereas the number in the demosponge 

Amphimedon queenslandica (formerly known 

as Reniera sp.) differs from none [12, 13] to 

eight [14]. In the placozoan Trichoplax 

adhaerens, no miRNAs have yet been 

identified [14]. However, despite the large 

effort currently employed into identifying this 

aspect of the RNAi pathway, there has been no 

corresponding characterization of Dicer 

proteins from any of the early branching 

metazoan phyla aside from a brief mention of 

the number of predicted Dicer genes from 

some genome sequencing projects [14, 15]. In 

order to more comprehensively assess the 

Dicer gene complement in cnidarians, 

poriferans, and placozoans, we identified 

Dicer genes in the hydrozoan cnidarian Hydra 

magnipapillata and the demosponge A. 

queenslandica with the use of publicly 

available sequence data sets and cloned partial 

cDNAs corresponding to genes belonging to 

the Dicer family from the anthozoan cnidarian 

N. vectensis and two different haplotypes of 

the Placozoa. The single yet described species 

of the Placozoa, T. adhaerens, is the most 

simple animal known in terms of morphology 

(see [16]). Although their exact phylogenetic 

position remains highly controversial, they are 

clearly oneof the earliest branching metazoan 

phyla and may even have originated at the 

very root of the Metazoa [17, 18]. These 

animals haveproven to be amenable to 

experimental molecular studies [19–21], and 

there are indications that the RNAi pathway 

functions as it does in other organisms; 

putative membersof the pathway are present in 

the T. adhaerens genome (Drosha and 

Argonaute—data not shown and [14]) and 

addition of dsRNA can induce gene-specific 

silencing in T. adhaerens [20]. The fact that 

these genes are expressed in T. adhaerens (and 

also N. vectensis) strongly suggests they are 

also functional, unless they are (very new) 

pseudogenes.  

The results of phylogenetic analyses 

incorporating our new sequence data suggest 

the duplication of a single hypothetical 

metazoan “Proto-Dicer” gene early in 

evolution giving rise to the major metazoan 

Dicer family, which we have termed Dicer 

“Group II” and an (as of yet) Placozoa-

restricted Dicer protein family (Dicer “Group 

I”). We show that the Dicer2 genes present in 

insects represent a lineage-specific 

duplication. We also show that in each basal 

metazoan phyla sampled, multiple Dicers are 

present (clearly in contrast to “higher” phyla) 

and are the result of lineage-specific 

duplications. A hypothetical function of these 

duplications is discussed. 

Results and Discussion 

Multiple Dicer Genes in the Early-

Branching Metazoa 

We isolated partial cDNAs of five Dicer 

genes in each of the two placozoan haplotypes 

and partial cDNAs of two Dicer genes in the 

anthozoan, N. vectensis. The sequences of 

these cloned cDNAs have been deposited into 

the NCBI GenBank database (EU394521–

EU394532). These data, taken together with 

the results of our genomic database searches, 

reveal that the cnidarians N. vectensisand H. 

magnipapillata possess two Dicer genes each, 

whereas the poriferan A. queenslandica and 

the two placozoan haplotypes investigated 

possess five Dicer genes each. We would like 

to note that this differs from other predictions 

of the same data sets; the number of Dicer 

genes in T. adhaerens is denoted as three in 

the supporting data for the recent whole-

genome sequencing project [15] and four in A. 

queenslandica [14]. The reasons for this are 

most likely differences in prediction programs 

(although strangely, the T. adhaerens and A. 
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queenslandica Dicer genes are not 

significantly different to others so as to appear 

unrecognizable upon a simple Blast similarity 

search). In any case, it serves as a reminder 

that automated annotation of whole-genome 

sequence may not always provide accurate 

answers regarding gene number or sequence; 

careful manual annotation might be 

indispensable in certain cases. 

Phylogenetic Analysis of Dicer Proteins 

Previous phylogenetic analyses supported 

by comparable domain organization have 

suggested a monophyletic origin of plant and 

animal Dicer proteins [3]. We conducted 

similar phylogenetic analysis, with the 

inclusion of sequences from the basal 

Metazoa. Initially, we conducted a Neighbor-

Joining phylogenetic analysis with 645 protein 

sequences from the DEAD/DEAH Box, 

MDA5 RIGI IGP2, Archaeal and invertebrate 

helicase, and Dicer families, which all belong  

to the helicase protein superfamily. This 

analysis (supporting fig. 1, Supporting 

Material online) clearly shows that the newly 

identified putative Dicer proteins in Placozoa, 

Porifera, and Cnidaria belong to the same 

Dicer family already identified in the plant and 

opisthokont lineages and not to any other 

members of the helicase superfamily. We then 

trimmed this larger helicase matrix down to 

112 proteins from the Dicer family only and 

conducted phylogenetic analyses to examine 

the relationships between the Dicer proteins of 

plants, fungi, and Metazoa. Our results show 

that metazoan Dicers form two distinct 

clades—one containing Dicer genes solely 

from the Placozoa (Dicer Group I) and the 

other comprising Dicer genes from the 

Placozoa and all other metazoan phyla (Dicer 

Group II). An independent duplication event in 

the lineage leading to the fungi has also 

resulted in two distinct fungal Dicer families 

(which we have termed “Alpha” and “Beta”; 

figs. 2 and 3). 

 

Figure 1. Overview of the structure of Dicer proteins found in various groups of organisms.  

Schematic diagram of the general domain structure of Dicer proteins (A). The minimal (least complex) and maximal (most 

complex) domain structure of Dicer proteins present in different groups of organisms grouped according to our phylogenetic 
analysis (B). 
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Dicer Genes in the Basal Metazoa and 

Their Relationship to Other Metazoan 

Dicers 

Our results suggest a single duplication 

event of a hypothetical Proto-Dicer gene early 

in metazoan evolution to give rise to two types 

of metazoan Dicer genes, Group I and Group 

II, and show that the Placozoa are the only 

known extant metazoan phyla which possesses 

both Group I and Group II genes. The most 

parsimonious interpretation of this data is that 

the Placozoa are basal to the Porifera and there 

was a loss of a Group I Dicer gene early in the 

evolution of the Metazoa. Although data from 

this study and from Schierwater et al. (2009) 

[18] clearly supports this hypothesis, it is 

important to consider that this may simply 

reflect undersampling, especially in the basal 

metazoan lineages. 

Although discrete from the situation, we see 

in the Metazoa, our analyses also show a 

duplication event in the ancestor of the fungi, 

giving rise to two separate fungal Dicer 

families and further diversification within 

these families (figs. 3 and 4). Interestingly, 

however, our survey of available 

choanoflagellate data failed to identify any 

sequences with homology to any fungal or 

metazoan Dicer genes, suggesting lineage loss 

(see also [14]). 

Lineage-Specific Duplications within the 

Basal Metazoa 

Within the Bilateria, Dicer genes are only 

present in single copies, with the exception of 

the insect Dicer2 genes, which arose via a 

lineage-specific duplication event. Within the 

early diverging Metazoa, other lineage-

specific duplications of Dicer genes are clearly 

apparent; N. vectensis and H. magnipapillata 

contain two independently duplicated Dicer 

genes each, and the five sponge Dicers also 

appear to have arisen via lineage-specific 

duplications (all belonging to Dicer Group II). 

Within the Placozoa, the situation is slightly 

more complex; four independently duplicated 

placozoan Dicer genes (Dcl1A, B, C, and E) 

belong to the hypothetical Dicer Group I, 

whereas a single gene belongs to Dicer Group 

II (Dcl1D) based on our classification. Recent 

studies conducted on EST and genomic 

sequence data sets of several of the early 

diverging phyla have shown a more complex 

set of genes and gene families than historically 

assumed. For example, cnidarians, poriferans, 

and placozoans have been shown to possess 

homologs of components of a diverse range of 

metazoan signaling pathways [15, 22–28], and 

many of the genes likely to play key roles in 

development have been independently 

duplicated [27, 29, 30]. The Dicer gene family 

therefore represents another example of 

genetic complexity in morphologically 

“simple” animals. 

Selective Loss of the PAZ Domain in 

Some Sponge Dicer Proteins 

Although the complete coding sequences 

have not yet been ascertained, structural 

features can be deduced from the predicted 

proteins. Each of the basal metazoan Dicer 

proteins show a typical domain structure 

(although all lack a C-terminal dsrm motif), 

indicating that the proteins most likely 

function as other known Dicer proteins and 

that the hypothetical metazoan Proto-Dicer 

almost certainly harbored a full (or near full) 

domain complement (fig. 1). Interestingly, the 

A. queenslandica AqDcr2B and AqDcr2C 

proteins appear to lack a PAZ domain.  

Although Dicer proteins which lack a PAZ 

domain are found in ciliates (e.g., 

Tetrahymena thermophila; [31]), algae (e.g., 

Chlamydomonas reinhardtii; [32]), and fungi 

(e.g., Neurospora crassa and 

Schizosaccharomyces pombe; [33]), to our 

knowledge all metazoan Dicer proteins so far 

investigated contain PAZ domains (fig. 1). 

Therefore, A. queenslandica AqDcr2B and 

AqDcr2C are the first reported metazoan 

Dicer-like proteins to lack a PAZ domain, 

although postulating theories as to the 

significance of this would be purely 

speculative and is therefore not discussed here. 

In addition, it should be noted that this 

observation is based solely on genomic 

predictions, and as of yet, we have no further 

data in support of these predictions. 
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Figure 2. Bayesian phylogenetic analysis of Dicer proteins of various organisms.  

Metazoan, fungal, and plant sequences are boxed in red, orange, and green, respectively. The purple shaded triangles show 

placozoan proteins, orange triangles show cnidarian and sponge proteins. Numbers on the nodes represent the posterior 

probability using parsmodel after 4 million generations. The first 400,000 trees were removed from computing the Bayesian 

posteriors as burn-in. Only nodes with Bayesian posteriors greater than 75% were retained in this tree. Any node shown in the 

tree that does not have a number has Bayesian posteriors of 1.0. For complete list of proteins in the analysis and raw Bayesian 

posterior values for individual nodes within the large clades represented by shaded triangles, see supplemental data sets 2 and 3 

(Supporting Material online). 
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Figure 3. Tree-based scenario for the evolution of Dicer proteins.  

Boxes indicate a divergence event (i.e., divergence by cladogenesis). Circles represent putative duplication events. Change in 

colors represent major cladogenetic events or ancestors in the tree of life; green represents the plant– opisthokont divergence; 

dark blue represents the fungi–animal divergence; yellow represents the hypothetical “Proto-Dicer“ duplication.  

Why So Many Dicers? 

One important and significant finding of 

this study is the fact that, unlike all other 

metazoan phyla with the exception of the 

insects, the basal metazoans possess multiple 

Dicer genes. Notably, although N. vectensis 

and H. magnipapillata possess only two Dicer 

genes each, five Dicer genes are present in 

both A. queenslandica and the Placozoa. One 

function of Dicer proteins is to generate 

miRNAs, which modulate gene expression. In 

animals, this initially requires the actions of 

the proteins Drosha and Pasha to create 

primary miRNA, a template for Dicer, whereas 

long dsRNA, such as that obtained 

exogenously, requires Dicer only [34]. Both 

processes require the action of the RISC 

central component Argonaute. However, 

although the genome of T. adhaerens 

possesses recognizable homologs of 

Argonaute and Drosha, a homolog of Pasha is 

not identifiable. The most simple explanation 

for not finding a homolog of Pasha might be 

that it escaped whole-genome sequencing; 

although the coverage is approximately 8-fold, 

it is certainly incomplete. It may also be 

possible that a different mechanism is used for 

miRNA production in this organism. A third 

explanation is that placozoans are not able to 

produce miRNAs and, therefore, lack any form 

of miRNA-mediated gene regulation. This is 

indeed suggested in a recent article which 

failed to identify any miRNAs in T. adhaerens 

despite a widespread screen which was able to 

identify candidates in both N. vectensis and A. 

queenslandica [14], a claim supported by a 

second study [35]. If this is the case, it 
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suggests that the Dicer duplication we see in 

the Placozoa is not likely to be a reflection of 

an increased level of gene regulation mediated 

by miRNAs. A logical theory is that 

placozoans use RNAi as a large part of their 

defense against viruses. In plants, the presence 

of multiple Dicer-like proteins reflects, in part, 

complex antiviral strategies [2, 4, 36, 37]. For 

example, in A. thaliana, the Dicer-like 2 

(Dcl2) protein responds to the turnip crinkle 

virus but not the cucumber or turnip mosaic 

viride, which are specifically targeted by 

Dicer-like 4 (Dcl4) [37]. The use of RNAi as a 

viral defense mechanism has also been shown 

in fungi, for example, Cryphonectria 

parasitica [38] and metazoans, for example 

Drosophila melanogaster [39, 40], C. elegans 

[41, 42], and mouse [43]. 

The reason for the Dicer duplication in the 

Porifera and Cnidaria is not so clear, with the 

full subset of machinery required for the 

synthesis of miRNAs from stem–loop 

precursors encoded in their genomes and 

putative miRNAs identified in each of these 

phyla [12–14]. Although it clearly requires 

further research, we believe it is possible that 

because the semi-sessile and phagocytic 

Placozoa are exposed to a high viral load, the 

duplication of Dicer genes may constitute part 

of a specific immune defense strategy against 

viruses. This would suggest that the Placozoa 

and Porifera have relatively simple innate 

immune systems, although to date, there has 

been no research in support of this. Recent 

investigation into the innate immune system of 

cnidarians has shown that in general they 

possess a relatively complex innate immune 

system [44–46], a situation mirrored in the 

marine deuterostome Strongylocentrotus 

purpuratus [47]. In these animals at least, 

although they must be exposed to a similarly 

high viral load, perhaps the need for a viral 

defense system mediated by Dicer is 

negligible. 

Conclusion 

In this study, we identified several new 

sequences that have previously been 

overlooked in several genome projects and 

cloned partial cDNAs from two placozoan 

species lineages and an anthozoan cnidarian. 

Phylogenetic analyses incorporating this new 

data have allowed us to formulate new 

hypotheses on the ancestral repertoire of Dicer 

proteins in animals. We show that the 

complexity of the Dicer gene complement of 

the early branching metazoans is striking and 

changes our view on the presence and 

evolution of metazoan Dicer proteins. 

Ultimately, further research in this area will 

lead to a greater understanding of RNAi and 

the evolution of its roles in gene regulation and 

immune defense. 

Materials and Methods 

Data Sets 

Genomic and expressed sequence tag (EST) 

sequence data were accessed from the available 

databases at National Center for Biotechnology 

Information, Compagen (www.compagen.org), the 

Department of Energy Joint Genome Institute 

(http://genome.jgi-psf.org), and the Computational 

Biology and Functional Genomics Laboratory 

(http://compbio.dfci.harvard.edu/tgi/). The raw data sets 

from the Cnidaria included 10,272,644 genomic reads 

and 163,221 ESTs, from H. magnipapillata, 2,817,779 

genomic reads (comprising 356 Mbp) and 166,595 

ESTs for N. vectensis (release v1.0), from the Placozoa 

(T. adhaerens), 940,892 genomic reads (comprising 

105.6 Mbp) and 14,572 ESTs (release v1.0), and from 

the Porifera, 2,823,539 shotgun sequences and 83,040 

ESTs (A. queenslandica). Coverage of the N. vectensis 

genome is currently 7.8-fold, whereas for the H. 

magnipapillata, T. adhaerens, and A. queenslandica 

genome projects, the coverage at present is estimated to 

be approximately 6-fold, 8-fold, and 12-fold, 

respectively. 

Database Searches and Phylogenetic Analysis 

For database searches, a local Blast platform, the 

public Blast platform at NCBI, or the Blast platform 

provided on the appropriate database were used (see 

previous section). Genomic contigs were assembled 

manually as required and coding sequence predicted 

using the Genscan [48], Genomescan [49], or 

GeneMark.hmm [50] programs. The various protein 

domains were identified with the use of PFAM protein 

family database [51] and resulted in an initial matrix 

with 645 proteins (available upon request). Protein 

sequence alignments of the RNase III (a) and (b) 

domains (without the intervening linker) were created 

using MAFFT ([52]; see supporting data set 1, 

Supporting Material online). Missing data were denoted 

with question marks in the alignment. The phylogeny of 

helicase superfamily proteins was generated using 

Neighbor-Joining analyses (PAUP*; [53]) with the 
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archaeal helicases used as outgroups. A 50% jackknife 

tree was generated with 100 repetitions of character 

removal to determine the level in the tree where 

robustness fades (supporting fig. 1, Supporting 

Material). A second trimmed matrix was used to 

examine the relationships of proteins within the Dicer 

family (supporting data set 2, Supporting Material) 

using Bayesian inference with MrBayes v3.2 [54] and 

the plant Dicers as outgroup. The parsmodel option was 

used as a model and 4 million Markov chain Monte 

Carlo generations were used and the first 10% (400,000) 

of the trees removed as burn-in. The Bayesian posteriors 

were calculated from the saved trees from MrBayes runs 

using the majrule option in PAUP*. Only nodes with 

posterior probabilities greater than 0.75 were retained in 

the final tree. For more detail of Bayesian posteriors at 

all nodes in the tree, see supporting data set 3 

(Supporting Material). It should be noted that the 

nomenclature of the newly identified Dicer genes from 

these organisms is based solely on the order in which 

they were identified, and the use of the same 

alphabetical letter or number for genes of different 

species does not necessarily denote orthology. 

Accession numbers of all sequences used in the analyses 

is shown as supplemental table 1 (Supporting Material). 

Isolation of Partial Dicer cDNAs from  

N. vectensis and Placozoa 

RNA was extracted from a single N. vectensis polyp 

(Hannover culture; Nv0204) starved for 3 days prior to 

the procedure, using the QIAGEN RNeasy Mini Kit. 

Similarly, RNA was extracted from a culture of starved 

placozoans using approximately 350 adult animals each 

from two different haplotypes (T. adhaerens, 16S 

haplotype 1 [H1] and Placozoa sp., 16S haplotype 2 

[H2]). Note that these two haplotypes reflect two 

different species lineages and possibly even two 

different families (Eitel M, Guidi L, Balsamo M, 

Schierwater B, in preparation) and as such are termed 

Trichoplax adhaerens (T. adhaerens) or Placozoa sp. 

H2 in the text and figures. cDNA was generated from 

reverse transcription of total RNA using the Gene Racer 

RACE Ready cDNA synthesis kit (Invitrogen) 

following the manufacturer’s recommendations. 

Initially, we amplified small fragments of a Dicer gene 

(NvDcr2) from N. vectensis cDNA with primers based 

on genomic DNA sequence, to create a cDNA contig of 

approximately 5,000 bp (which included the RNase III 

(a) and (b) domains). Following this, we focused on the 

characteristic RNase III domains for subsequent cloning 

attempts. Subsequently, cDNA corresponding to the 

RNase III (a) and (b) domains of a second N. vectensis 

Dicer gene (NvDcr1) and each of the five placozoan 

Dicer-like genes from two haplotypes (TaDclA–E and 

PlacoDclA-E; including the intervening linker) were 

isolated using primers based on T. adhaerens genomic 

DNA sequence. A complete list of primer sequences 

and polymerase chain reaction (PCR) Protocols are 

available on request. Following PCR, products were 

cloned using the pGEM-T cloning system (Promega) 

and two to five clones from each fragment were 

sequenced on both strands using the ABIPRISM 

BigDye Terminator Cycle Sequencing Ready Reaction 

Kit and analyzed on an ABI PRISM 310 Genetic 

Analyzer or were sequenced using the services provided 

by Macrogen. The sequences were manually checked 

and assembled with the use of SeqMan (DNA star 

package). 

Supporting Material  

Supporting Figure 1 and Supporting Table 1 are 

provided in the Addendum. Supporting Data files 1-3 

are enclosed on the data CD. 

Supporting Figure 1. Neighbor-Joining phylogenetic 

analysis with 645 protein sequences from the 

DEAD/DEAH Box, MDA5 RIGI IGP2, Archaeal 

and invertebrate helicase, and Dicer families. 

Supporting Table 1. Accession numbers of all 

sequences used in the analyses. 
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2.4. The phylogeography of the Placozoa suggests a taxon-rich 

phylum in tropical and subtropical waters 

“I have very few comments, as 

overall I was impressed by the 

work.” 

anonymous reviewer 

“This paper provides important data 

on the distribution and diversity of 
this enigmatic group.” 

anonymous reviewer 

“… higher ranked taxa (families, 

orders and the like) are conceptual 

and not real entities. This should 

be made clear throughout the 
manuscript.” 

anonymous reviewer 

“… concerning the description of 

species, it seems the authors only 

try to pass the buck to someone 

else.” 

anonymous reviewer 
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Abstract 

Placozoa has been a key phylum for understanding early metazoan evolution. Yet this 

phylum is officially monotypic and with respect to its general biology and ecology has 

remained widely unknown. Worldwide sampling and sequencing of the mitochondrial 

large ribosomal subunit (16S) reveals a cosmopolitan distribution in tropical and 

subtropical waters of genetically different clades. We sampled a total of 39 tropical and 

subtropical locations worldwide and found 23 positive sites for placozoans. The number of 

genetically characterized sites was thereby increased from 15 to 37. The new sampling 

identified the first genotypes from two new oceanographic regions, the Eastern Atlantic 

and the Indian Ocean. We found seven out of eleven previously known haplotypes as well 

as five new haplotypes. One haplotype resembles a new genetic clade, increasing the 

number of clades from six to seven. Some of these clades seem to be cosmopolitan while 

others appear to be endemic. The phylogeography also shows that different clades occupy 

different ecological niches and identifies several euryoecious haplotypes with a cosmopolitic 

distribution as well as some stenoecious haplotypes with an endemic distribution. 

Haplotypes of different clades differ substantially in their phylogeographic distribution 

according to latitude. The genetic data also suggest deep phylogenetic branching patterns 

between clades. 

Keywords: Placozoa, Trichoplax, phylogeography, haplotypes, worldwide distribution, placozoan biodiversity, 
cryptic species. 

Introduction

Placozoans have been attracting increasing 
attention from almost all fields of biology. 
While their role as the simplest organized 
metazoan model system is hardly questionable 
[1, 2], their phylogenetic position near or even 
at the very base of the metazoan tree of life has 
been subject of hot disputes [3–15]. Quite 
remarkably, the biology of placozoans is 
poorly and their ecology very poorly known. 
The only described species within the phylum 
Placozoa is Trichoplax adhaerens, F.E. 
Schulze (1883) [16]. Trichoplax is a small 
disc-shaped animal with a diameter of up to 
2mm, which continuously changes its body 
shape. With a total of 98Mb it has the smallest 
known metazoan genome [15] and represents 
the simplest metazoan bauplan with only five 
somatic cell types [2]. An extracellular matrix 
is absent, so are a basal membrane, muscle or 
nerve cells, and a primary and secondary body 
axis. The upper epithelium (or “protection 
layer”) of the bottom crawling animal is 
directed to the water. It is made up of a 
squamous epithelium with mono ciliated cells 
that sometimes harbor so called shiny spheres 
[17–19], which are believed to function in 
anti-predator defense [20]. The lower 

epithelium (or “nutrition layer”) faces the 
bottom and is built up of mono ciliated 
cylindrical cells, that account for the “slow” 
movement of the animal, and gland cells, 
which secrete enzymes for extra cellular 
digestion of the underlying algae and biofilm 
[19, 21, 22]. Sandwiched between these two 
layers are the inter-connected fiber cells, 
which represent some kind of contractive 
elements [16–19, 23, 24]. They are responsible 
for the coordinated body shape changes and 
the ‘fast’ movement [19, 24]. For further 
details and references on the morphology see 
Syed & Schierwater [25, 26] and for images of 
placozoans see www.trichoplax.com. 
 The natural habitat of placozoans is mostly 
unknown because of the nearly invisible 
natural appearance of placozoans. We can 
draw a few conclusions on their ecology from 
a limited number of biogeographical and 
ecological studies ([27, 28] and refs therein]. 
Based on these studies placozoans are 
common in warm tropical and subtropical 
marine waters in a geographic latitudinal band 
roughly reaching from 30° North to 30° South. 
Placozoans are often found on mangrove tree 
roots, reefs, boat docks in the eulitoral and 
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litoral, and at stony beaches but never on 
sandy surfaces or in areas with high wave 
activity or with abundant freshwater input. 
Very little is known about the population 
density of placozoans in their habitats and the 
habitats themselves [29]. Only a single study 
reports seasonality in the occurrence of 
placozoans in the Western Pacific Ocean 
(Okinawa) with high numbers in the summer 
months and very low numbers in the winter 
[30]. Growth rates and vegetative reproduction 
by budding and fission seem to be positively 
correlated to increasing temperatures. 
Vegetative reproduction by binary fission is 
the normal way of reproduction in the 
laboratory and most likely also in the field. 
Sexual reproduction is rarely but regularly 
seen under laboratory conditions, but all 
efforts to complete the sexual life cycle in the 
laboratory have been unsuccessful yet [1, 31]. 
Like all other metazoans, which have invented 
vegetative reproduction as a complement to 
sexual reproduction, placozoans likely 
reproduce sexually in the field in preparation 
for less favorable conditions (cf. [32–34]). The 
specific mode of sexual reproduction (mono- 
vs. bisexual, outcrossing vs. selfing), however, 
remains unknown.  
 Placozoans represent the only animal 
phylum that contains just a single described 
species. A second species, Treptoplax reptans 
Monticelli 1893, was never found again since 
its original description and its existence must 
be doubted [25, 35]. Recent genetic studies 
have suggested however, that there is an 
unknown, yet substantial biodiversity within 
the Placozoa [27, 28, 36–38]. Using ribosomal 
DNA genes Voigt et al. (2004) [28] were able 
to identify eight different genetic lineages 
(named haplotypes H1-H8 based on 16S 
sequence), which form five major clades. After 
this pilot study the number of haplotypes was 
subsequently increased to ten [37] and finally 
to eleven [27]. No morphological differences 
are visible in light microscopy, suggesting the 
existence of so-called “cryptic” species. For 
overview and references on the turbulent 
history of placozoan research see Schierwater 
(2005) [1] and Schierwater et al. (2009) [2]. 
 Phylogeography is the study of 
relationships among organisms in relation to 

their geographical distribution and local 
environmental traits. In this context molecular 
phylogeographic analyses have become a 
major tool for investigating historical aspects 
of biogeography and understanding genetic 
structuring among populations [e.g 39]. It 
involves the analysis of gene genealogies in a 
spatial context for inferring historical 
processes that have shaped current population 
structures and the distribution of organisms. 
Phylogeography is also a key tool to define 
immediate conservation units and conservation 
areas in times where species extinction 
accelerates continuously (cf. [40]). 
 For placozoans, the few existing 
phylogeographic data provide only a very 
patchy picture of their distribution. Only 
fifteen sites worldwide have been genetically 
characterized to date, with most samples from 
the Caribbean and the bordering Pacific areas 
[27, 28, 37]. Very little data is available from 
the Mediterranean (Western Italy), the Pacific 
Ocean (Western Australia, Guam, Hawaii, and 
the Pacific coast of the US and Panama), and 
the Western Atlantic Ocean (Bermudas) [37, 
41]. No genetic data at all are available from 
the Indian Ocean and the Southern and Eastern 
Atlantic Ocean. The known clades do not 
show any obvious pattern of restricted 
geographic distribution and no hints for 
ecologically separated lineages. Several 
lineages seem to occur sympatrically. 
Although placozoan specimens have been 
reported from around the world [19, 27, 41–
44], a genetic characterization is missing for 
most of the findings. The latter is crucial, 
however, for understanding the biodiversity, 
phylogeny and biogeography of one of the 
earliest (possibly the earliest) metazoan 
animals with presumably a few hundred 
million years of dispersal and evolution. 
Unraveling placozoan phylogeography may 
also help to better understand phylogeographic 
distribution patterns of benthic tropical and 
subtropical organisms in general. 
 By means of a worldwide sampling effort 
and molecular characterization of the 
mitochondrial 16S gene we here report five 
new haplotypes and one new clade within 23 
newly genotyped sampling sites. The data 
suggest an unexpected high biodiversity of 
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possibly dozens to hundreds of placozoan 
haplotypes and species of Placozoa and 
support the former observation that the 16S 
gene as a single marker is sufficient to 
characterize the phylogenetic complexity of 
the Placozoa. The data unravel unique 
geographic distribution patterns of certain 
genetic lineages and suggest a genetic split of 
haplotypes by means of ecological niche 
separation and a differential latitudinal 
distribution of higher taxonomic units (clades). 

Results 

Sampling and Culturing 

 Using standard ‘trap’ sampling and rock 
sampling procedures a total of 78 isolates from 
23 field-sampling sites were collected. In 
addition eight isolates from two aquarium 
samples were also genotyped (Table 1). 
Sampling efforts on the following sites yielded 
no placozoans: coasts of Costa Rica, 
Argentina, Uruguay, Chile, Peru, Colombia, 
Florida, Crete (Greece), Cyprus, Rovinji 
(Croatia), Cres (Croatia), Fano (W Italy), 
Saintes-Maries-de-la-Mer (France), Lanzarote 
(Spain), Perth (W Australia), and Townsville 
(E Australia). The overall sampling success of 
roughly 60% positive sites for placozoans 
indicates their worldwide distribution, while 
the negative sampling efforts are no valid 
indication of a lack of placozoans in the 
respective area. Sampling was mainly done in 
the summer to increase the chances for finding 
placozoan specimens (see Table 1). From the 
Mediterranean Sea, however, we were also 
able to collect placozoans in January, 
indicating their occurrence throughout the year 
even in this temperate climate zone. In Hong 
Kong we performed repeated sampling at 
different time points to learn about the 
seasonality of placozoan occurrenc. During 
spring the number of collected placozoans was 
low (n=0-3 in March through May), while in 
September 15 individuals (eight of which were 
genotyped) were collected under comparable 
sampling conditions. Most sampling was done 
in shallow waters with the exception of Kenya. 
Here the positive slide racks were attached to a 
reef at a depth of 20m. Two specimens were 
isolated from this location indicating their 

abundance at least in the first 20m. Another 
sampling effort in Kenya in a mangrove 
stream system at 3m water depths yielded no 
placozoans.  
 Culturing of isolates in the laboratory was 
mainly successful for clade I samples. Most 
other haplotypes died after a short while (days 
or weeks) of culturing, although different 
culturing conditions were tried. The only 
sample from another clade for which year-
round cultures were successfully established 
derived from the ‘Kenya‘ clone (H16, clade 
III,). For clade V only cultures of H4 and H13 
were stable for a few weeks with increasing 
population density before declining and dying 
off.  

Systematics 

As known from three previous studies [27, 28, 
37] the 16S gene is well suited for identifying 
species lineages in placozoans. This marker 
has been successfully used in the Placozoa and 
has been known to provide good phylogenetic 
resolution. We could detect seven out of 
eleven previously known haplotypes: H1, H2, 
H3, H4, H8, H9, H10. In addition we found 
five new 16S haplotypes (Figure 1). These 
new haplotypes were named in an increasing 
numerical order with higher numbers found 
later during the study (H12-H16). Haplotypes 
formerly named H4-2 and H4-3 are here 
referred to as H9 and H10, respectively, in 
accordance with the continuing numbering of 
new haplotypes proposed by Voigt et al. 
(2004) [28]. The haplotype numbering does 
not denote an affiliation of a certain haplotype 
to a specific clade. Partial sequences within 
one haplotype were always 100% identical, 
independent of the isolates’ origin. Thus the 
following 16 unique haplotype sequences were 
used in the alignments:  
Trichoplax adhaerens/H1 (NC_008151.1),  
H2 (GQ901079), H3 (NC_008834.1),  
H4 (NC_008833.1), H5 (AY652526),  
H6 (AY652527), H7 (AY652528),  
H8 (NC_008832.1), H9 (EF421454),  
H10 (GQ901128), H11 (EF421455),  
H12 (GQ901132), H13 (GQ901134),  
H14 GQ901136), H15 (GQ901137), 
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Table 1. Newly genotyped placozoan isolates. 

Oceanographic Region Clade Haplotype Sampling site, Country habitat type
genotyped    

isolates

no. in       

Figure 2
date of collection sampled by

Mediterranean Sea I H1 Cala Rajada (Majorca), Spain stone pool 1 12 10/2006 SL

H2 Castiglioncello, W Italy * stony beach 4 13 05/2008 SL

H2 San Felice Circeo, E Italy * muddy water pond 2 15 10/2007 Co

H2 Kateríni, Greece boat dock/harbor 2 17 08/2008 SL

H2 Ormos Panagias boat dock/harbor 1 17 05/2009 SL

H2 Port of Hammamet,Tunisia boat dock/harbor 3 19 04/2006 SL

H2 Zarzis, Tunisia stony beach 4 19 07/2008 SL

H2 Caesarea, Israel stony beach 8 20 01/ 2007 Co

V H9 Turunç, Turkey stony beach 3 18 08/2007 SL

H10 Otranto, E Italy * stony beach 4 16 08/ 2008 SL

Indian Ocean I H2 Réunion coral reef 4 23 12/2006 Co

III H16 Mombasa, Kenya coral reef 2 22 05/2007 SL

V H4 Laem Pakarang, Thailand stony beach 3 24 03/2008 SL

Indo-Pacific I H2 Bali, Indonesia (A.s.) unknown 3 26 ? SL

H2 Indonesia (A.s.) coral reef 3 25 ? SL

VII H12 Indonesia (A.s.) coral reef 2 25 ? SL

W Pacific Ocean I H2 Chatan (Okinawa), Japan boat dock/harbor 2 30 03/2007 SL

V H4 Kota Kinabalu (Sabah), Malaysia boat dock/harbor 3 28 09/2005 SL

H4 Hong Kong, China mangrooves 2 29 03/ 2007 Co & SL

H13 Hong Kong, China flow through seawater system 8 29 04/2006, 09/2007 Co & SL

H14 Hong Kong, China flow through seawater system 1 29 04/2006 Co & SL

H15 Boracay, Philippines * stony beach 4 31 09/2007 SL

C Pacific Ocean III H8 Oahu, Hawaii boat dock/harbor 1 1 05/2007 SL

Caribbean II H3 Bahamas flow through seawater system 1 9 2001 SL

III H8 Bahamas flow through seawater system 1 9 2001 SL

E Atlantic Ocean I H2 Puerto de la Cruz (Tenerife), Spain stone pool 6 11 08/2007 SL

 
Haplotypes (H1-H16) and clades (I-VII) are listed according to their oceanographic regions. Asterisks ‘*’ mark samples derived 
from stone collections. A total of 78 specimens were genotyped. SL = Schierwater Lab: Stefanos Anastasiadis, Michael Eitel, 
Heike Hadrys, Wolfgang Jakob, Kai Kamm, Sara Khadjeh, Jessica Rach, Sven Sagasser, Bernd Schierwater, Tareq Syed, Janne 
Timm; Co = Collaborators: Dorothee Hutchon, Jean-Pascal Quod, Paolo Tomassetti, Ng Wai Chuen, Gray Williams. 

 

H16 (GQ901141). The alignment contained 
816 nucleotide positions including gaps. For 
subsequent analyses unalignable indel 
positions were removed, which resulted in a 
total of 536 nucleotide positions including 
gaps (see Supporting Figure 1).  

Baysian inference, maximum likelihood 
(ML) and maximum parsimony (MP) analyses 
all resulted in the same overall tree topology 
with seven clearly separated clades, increasing 
the number of known clades from five to seven 
(I-VII; Figure 1): five formerly described 
clades I-V and the new clades VI and VII. 
Clade VI was also recognized by Pearse & 
Voigt (2007) but not named. Differences 
between ML and MP analysis were only found 
within a single clade (clade V) where slightly 
different phylogenetic relationships were 
observed for haplotypes H9, H10, H13, H14 
and H15 with low support (Figure 1). In 
addition to the two new clades, we also found 
three new members of clade V (H13-H15) as 
well as one new member of clade III (H16). 
The overall phylogenetic analysis additionally 
reveals a separation of clades into two main 
groups (A and B), harboring 13 (A) and three 
(B) haplotypes, respectively. Group A is 
furthermore subdivided into two subgroups, 

A1 and A2 (Figure 1). This obvious separation 
of groups A and B is also immediately evident 
in the TCS haplotype network (Figure 2). 
Haplotypes of group A1 and B are separated 
by at least 105 mutational steps (H2 to H16). 
Between A2 and B the minimal number of 
mutational steps is 124 (H2 to H11). 

For an overview of genetic differences 
between the seven placozoan clades and in 
order to provide a framework for subsequent 
systematic studies, we analyzed mean 
uncorrected pairwise nucleotide distances 
within and between clades. The pairwise 
distances within a placozoan clade ranged 
from 1.6 percent in clade V to 2.1 percent in 
clade III (Table 2). In contrast to this intra-
clade variability mean distances between two 
clades ranged from 3.8 to 21.5 percent (Table 
2 and Supporting Table 2). For obtaining an ad 
hoc idea of the systematic importance of these 
values we compared them to established data 
from Porifera and Cnidaria. Distances between 
placozoan haplotypes were found to be at the 
same order of magnitude as seen between 
genera or families of Porifera and Cnidaria 
(Figure 4). For instance, the highest observed 
value of placozoan sequence divergence of 
27% is higher than any distance observed
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 Table 2. The genetic distance between placozoan clades is substantially higher than within clades. 

level of comparison distance

highest pairwise distances within clade I 0.8

highest pairwise distances within clade III 2.1

highest pairwise distances within clade V 1.6

lowest minimal pairwise distances between clades 3.8

highest minimal pairwise distances between clades 21.5

mean of all minimal pairwise distances between clades 13.0

minimum of all pairwise distances between haplotypes 0.2

maximum of all pairwise distances between haplotypes 26.7

within genera, families or orders in the 
Porifera. Within the Cnidaria this value 
exceeds all comparable distances within 
genera and families and eight out of ten 
distances among families within orders. The  

mean distance between placozoan clades of 
13% reflects a number that separates higher 
taxonomic categories in other diploblastic 
animals (Figure 4, Table 2 and Supporting 
Table 3). 

 

 

Figure 1. 16S haplotype cladogram of all known placozoan lineages.  

The cladogram shows a distinctive hierarchical arrangement independent of the tree-building algorithm applied. Haplotype 
numbers (H) refer to strains listed in Table 1. Numbers beside nodes are from left to right: Baysian posterior probabilities, 
Maximum likelihood and Maximum Parsimony bootstrap support. Values below 70% are marked with ’-’. Two main groups (‘A’ 
and ‘B’) are found within the Placozoa probably representing higher taxonomic units. Within group ‘A’ two subgroups (‘A1’ and 
‘A2’) are clearly distinguishable. Red labeling marks formerly undescribed haplotypes. 
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Figure 2. TCS haplotype-network and phylogeographic distribution of clades.  

Based on 16S genetic distances (number of nucleotide exchanges given in circles between each haplotype) a clear grouping into 
groups A1, A2 and B is apparent. Color code is the same as in Figure 1. Putative ancestral haplotypes within each clade are 
marked by a rectangle. Within each group cosmopolitans are found represented by stars in the world maps. These cosmopolitan 

clades are clade III (group A1, green stars), clade V( group A2, blue stars), and clade I (group B, magenta stars). Stars in the 
world maps summarize all observed haplotypes within each clade to highlight its worldwide distribution. 
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Phylogeography 

Placozoan isolates were found worldwide in 
tropical and subtropical waters including the 
Mediterranean Sea. First genetic information 
was obtained from the Indian Ocean (3 
samples) and Eastern Atlantic Ocean (1 
sample). In the Mediterranean Sea the 
sampling size increased from one to twelve 
and in the Western Pacific Ocean from two to 
six. The total number of genetically 
characterized worldwide sampling sites was 
thereby raised from 15 to 37. The 
biogeographic distribution of all known 
placozoan 16S haplotype lineages is 
summarized in Figure 3. According to the 
phylogeographic distribution shown here, 
three groups of distributional range become 
obvious: (i) clades I, III, V show a worldwide 
distribution; (ii) clade II is restricted to the 
Caribbean; (iii) clades IV, VI and VII were 
found only on a single sampling site. The first 
genetic data from the Indian Ocean revealed a 
community of at least three different 
placozoan clades in this area. The aquarium 
samples from ‘Indonesia’ and ‘Bali’ (numbers 
25 and 26 in Figure 3 and Table 1) cannot be 
assigned to a specific location other than to the 
‘Indo-Pacific’ region (compare the ‘Indo’ 
sample from Voigt et al. (2004) [28]. Thus the 
number of clades in this region was increased 
to three. Adding H12 to the Indian Ocean 
increases the number to four clades in this 
area, a number identical to the Caribbean, a 
known placozoan diversity hotspot (compare 
Figure 3).  

Our in-depth sampling of the Mediterranean 
revealed haplotypes from three different 
clades. Specimens from clade V were not 
previously found in this region and within this 
clade Haplotype H10 was only reported from 
the Bermudas. The phylogeographic 
distribution of clade III was also considerably 
increased by the new data. This clade was 
previously known from the Caribbean only, 
with the exception of an H8 sample from 
Guam and an H7 sample from the ‘Indo-
Pacific’ [28]. The new data expand the 
distribution of clade III to the Indian Ocean 
(H16, Kenya), Bermuda and Hawaii (both 
H8). The new haplotypes H13-H15 were 
found in the tropical Western Pacific only, 

namely in Hong Kong (H13 and H14) and 
Boracay (Philippines; H15) increasing the 
number of haplotypes within the clade V to a 
total of six. In contrast to previous studies [28, 
37] we never found more than a single 
haplotype in a single sample from a single site. 
The only exception was an aquarium sample, 
which revealed two different haplotypes (H2 
and H12; number 25 in Figure 3 and Table 1).  

An analysis of the North-South distribution 
of the different clades revealed significant 
differences in their phylogeographic 
distribution. To test the hypothesis that clades 
differ in their temperature dependent 
latitudinal distribution and their specificity of 
niche occupation as shown in Figure 3, we 
performed a Jonckheere-Terpstra test [45, 46] 
using the exact test module in PASW Statistics 
18.0 (SPSS). Sea surface temperatures were 
downloaded for the year 2008 from the NEO 
homepage (http://neo.sci.gsfc.nasa.gov/ 
Search.html) and the average, minimal and 
maximal temperatures were calculated for 
each location (see Supporting Figure 2). The 
Jonckheere-Terpstra test independently 
revealed highly significant monotonic trends 
(p<0.01) for (i) the increasing latitudinal range 
and (ii) the temperature adaptation abilities 
(especially to the local minimal temperatures) 
for the clades in the following sequence: 
II<III<V<I; in other words clade I has the 
highest distributional range from North to 
South and the highest adaptive capacity to 
different water temperatures (temperature 
extremes); accordingly clade II has the 
smallest distributional range and the lowest 
adaptive capacity (cf. Figure 3). 

Discussion 

Biodiversity and Systematics 

Our worldwide sampling effort led to the 
detection of several new haplotypes and one 
new placozoan clade. Comparative genetic 
analyses suggest the presence of a large 
number of placozoan species that must group 
into several distinct higher taxonomic units. 
Our data confirm the former observation that a 
single mitochondrial marker, the 16S gene, is 
both, highly suited and sufficient to identify 
placozoan lineages and to resolve placozoan
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relationships even among very closely related 
lineages. It must be noted that several other 
markers, including mitochondrial coding genes 
and nuclear ribosomal proteins, do not provide 
this level of resolution ([28, 36]; Eitel & 
Schierwater, unpubl. data].  

With this study the number of known 16S 
haplotypes has increased to 16, which form 
seven distinct clades. Given the numerous yet 
unsampled tropical and sub-tropical marine 
areas it is obvious that only a small fraction of 
placozoan species/haplotypes has been found 
yet. According to Figure 5, which plots the

 

 

Figure 4. Pairwise genetic distance between taxonomic ranks in Porifera, Cnidaria and Placozoa.  

Shown are mean uncorrected p distances in the 16S fragment between families (within orders), genera (within families), and 
species (within genera) of Cnidaria (blue) and Porifera (red). Mean distances between haplotypes of Placozoa (green) are at least 
as high as distances seen between families within orders in the other two diploblast phyla. Values lying just or clearly outside the 
upper quartile are marked with circles and asterisks, respectively. 

 
number of total haplotypes against the number 
of screened locations the existence of at least 
several dozen haplotypes (and likely 
placozoan species) has to be assumed. The real 
number of unknown haplotypes, however, may 
be in the hundreds since repeated sequencing 
of already known haplotypes creates an 
artificial saturation effect. The important 
question what these haplotypes are in terms of 
systematic units (e.g. which of the haplotypes 
represent a separate species) cannot be 

addressed here and in our understanding 
requires additional studies that include 
characters from other disciplines, particularly 
morphology [cf 47–51]. The relatively high 
genetic distance between haploytpes in 
comparison to Cnidaria and Porifera and the 
clear branching pattern suggests that the 
phylum Placozoa harbors at least several 
different taxonomic entities of yet undefined 
ranks. In our analyses two major groups are 
genetically distinguishable, group A and B, 
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with group A being divided in 2 subgroups 
(A1 and A2). The same phylogenetic structure 
was also obtained from protein coding 
mitochondrial genes [36]. The term ‘Placozoa 
sp.’ for 16S haplotypes H2-H16 thus clearly is 
more reasonable than the misleading term 
‘Trichoplax sp.’ as this pretends a close 
phylogenetic relationship to the genus 
Trichoplax. Sequence variation within the 16S, 
ITS, 18S and 28S ribosomal RNA, [28] and 
complete mitochondrial genome sequences 
(four species from [36,52]) further cement this 
view.  

We are currently observing great confusion 
in placozoan taxonomy with each new 
sequence given a new ‘Placozoan 
sp./Trichoplax sp.’ name. Currently Genbank 
lists 75 putative placozoan species – a number 
that is clearly far outside the real number of 
species supported by existing data. We thus 
propose to name placozoan specimens as 
‘Placozoa sp. Hx’ with ‘x’ referring to the 
haplotype reference number (e.g. 2-16 for 
known haplotypes or x>16 for new 
haplotypes) and Trichoplax adhaerens (H1), 
respectively. To ensure a subsequent correct 
assignment of an isolate to a species and to 
additionally provide geographic information, 
we suggest inclusion of the clone/isolate-ID in 
the taxonomic name. Accordingly the TUN-B 
clone from Tunisia is here named ‘Placozoa 
sp. H2 (TUN-B clone)’, for example. In order 
to avoid confusion when new haplotypes arise 
from parallel sampling we strongly suggest 
reporting any new haplotype to the editors of 
the World Placozoa Database at the World 
Register of Marine Species (WoRMS) 
(http://www.marinespecies.org/placozoa/) 
first.  

For valid species assignment we suggest 
collection of morphological and ecological 
data for the different haplotypes and 
subsequent application of the taxonomic circle 
approach [49, 51] before any new species is 
given a name. Only after the new species has 
been validly described by at least two different 
and cum grano salis independent datasets (e.g. 
16S sequences and morphological data) we 
can address the question of the taxonomic 
ranks of the clades and groups. These 
morphological aspects are currently 

investigated, and will to be addressed in a 
different study. The ecological and 
phylogeographic aspects related to differential 
clade distribution, however, can be discussed 
here. 

Phylogeography 

In three former studies [27, 28, 37] 
placozoans were genotyped from 15 sites of 
five major geographic regions: The 
Mediterranean Sea, the Caribbean, the Central 
and Western Pacific Ocean and the Western 
Atlantic Ocean. Our combination of slide and 
rock sampling led to the isolation of placozoan 
specimens from an additional 23 tropical and 
subtropical waters (including the 
Mediterranean) leading to the first genotyped 
placozoans from the Eastern Atlantic Ocean, 
the African coasts and the Indian Ocean. 
Placozoans have been known from tropical 
and subtropical waters but also from temperate 
sites with seasonally low water temperatures 
(11-14°C in the Mediterranean Sea and 
Western Pacific; [41, 44]). We found samples 
in January in the Mediterranean Sea at 15°C. 
The highest water temperature at which we 
found placozoans in our samples was 27°C 
(Kenya, Indian Ocean).  

One of the aims of this study was to find 
out whether the distribution of 
haplotypes/clades maps to geographic patterns, 
and whether different placozoan lineages may 
occupy different ecological niches. The 

Figure 5. Coleman Rarefaction Curve obtained from 
plotting the total number of different haplotypes against 
the number of genetically screened locations. 
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observed genetic divergences suggest that 
different genetic strains are differentially 
adapted to certain environmental conditions. In 
our study we found an interesting distribution 
pattern of certain clades that support this view: 
clade I has the highest distributional range 
from North to South and thus can be termed an 
euryoecious clade with the most abundant and 
best adapted haplotype H2 belonging here. Not 
surprisingly H2 is by far the easiest to culture 
placozoan lineage. An example of the 
opposite, i.e. a stenoecious lineage, is H13. 
This haplotype has been found at two different 
times and locations in Hong Kong but 
nowhere else. Possibly H13 is adapted to local 
environmental conditions. All efforts to culture 
H13 in the laboratory for an extended period 
of time failed. Animals of haplotype H3 (clade 
II) have been exclusively found in the 
Caribbean and thus may be endemic to that 
region. The haplotypes H5 and H12-H16 have 
each been found in a single spot only and may 
also be endemics. Clade III representatives are 
restricted to a narrow latitudinal corridor 
ranging from 25°N (e.g. Bahamas) to 3.5°S 
(e.g. Kenya). While clade I likely harbors the 
most euryoecious and clade II possibly the 
most stenoecious species, clade V 
distributional patterns are difficult to interpret. 
Clade V shows a wide longitudinal distribution 
including tropical, subtropical and temperate 
regions. This cosmopolitan clade, however, 
has been very resistant to culturing under 
laboratory conditions. Besides water 
temperature other environmental factors like 
salinity, fresh water and nutrient input from 
the land, water chemistry, light conditions, etc. 
likely affect lineage distribution and 
accessibility to culturing. Possibly clade V 
harbors a number of stenoecious species that 
have radiated to a broad spectrum of niches. 
Overall the first phylogeographic data suggest 
the presence of a large number of ecologically 
very different placozoan species lineages and 
at the same time highlight our poor knowledge 
of this group.  

The above interpretations might present an 
underestimation of placozoan diversity and 
distribution for several reasons. Sample 
transportation and laboratory culturing prior to 
genetic characterization of placozoan 

specimen may lead to differential survival 
rates, as different haplotypes react differently 
to certain environmental conditions. 
Haplotypes with higher acclimatization 
abilities may have higher chances to survive 
and thus get genotyped. Since we transported 
new samples in their natural water and reduced 
culturing times before analysis to a minimum, 
however, we do not expect that this to be 
significant in our study. Another factor that 
might affect the observed phylogeography is 
shipping traffic in a globalized economy, 
which has become a general problem for 
biogeography studies on marine invertebrates 
[53–55]. Since ballast water of ships usually 
travels several days or weeks in the dark, 
however, placozoans are not likely to survive 
long routes in the absence of growing algae as 
food. Unfortunately we know little about other 
potential food sources for different placozoans.  

A good, yet underestimated source for 
collecting placozoans are aquaria. The new 
clade VI (H12), for example, derived from an 
aquarium sample, which was newly set up 
with stone/coral material from ‘Indonesia’. 
The same is true for the ‘Bali’ samples. 
Despite the missing exact geographic 
assignment of these samples – and of aquaria 
samples in general – it is obvious, however, 
that they are a reasonable sources for 
placozoan specimens that are at least helpful 
for screening genetic diversity in Placozoa. 

Based on the known data we can predict 
most placozoans are found between the 
equator and 20° North. Finally resolving 
placozoan phylogeography is a major task of 
unraveling species diversity and species 
distribution in this phylum. Given that our data 
suggest the presence of possibly several 
dozens or even hundreds of placozoan species 
the number of sampling locations needs to be 
substantially increased in future studies. Only 
a worldwide effort by several laboratories 
promises success in unraveling the 
biodiversity and ecological and 
phylogeographic distribution of the enigmatic 
Placozoa in detail. For this we endeavor to 
offer free genetic characterization of 
genotypes of new placozoan samples, 
haplotype assignment, and material and 



CHAPTER 2 - STUDIES  62 

 

 

database storage (for details see 
http://www.marinespecies.org/placozoa/). 

Material and Methods 

Placozoan sampling and culturing 

Placozoan specimens were sampled worldwide in 
coastal tropical and subtropical waters in different 
depths up to 20m. For choosing the collection sites we 
focused on poorly or non-studied areas, including the 
Mediterranean Sea and the Indian and the Western 
Pacific Ocean (see Table 1 and Figure 3). Specimens 
were collected using two different methods. In the first 
method stones and other hard substrates, such as coral 
parts and mussel shells were collected at a depth of up 
to 1m and placed in plastic bottles with seawater from 
the sampling site. These samples are hereafter referred 
to as ‘rock samples’. As a second method, standard 
microscopic glass slides (76 x 26 mm) were placed in 
plastic microscope slide boxes (‘slide samples’), which 
were cut open at the top and the bottom to enable water 
circulation [30, 44]. Each rack contained five evenly 
spaced glass slides. Nylon ropes were used to attach 
single or groups of racks (2-5) to the bottom, boat docks 
or coral reefs at a water depth of 1-20m. As reported 
before [27] placozoans were found most abundantly on 
slides floating in the water column. Most of the racks at 
each sampling site were thus attached to float freely in 
the water. Racks were exposed to the marine 
environment for three days to three weeks. After 
recovery, single and combined slide samples from each 
site were placed separately into plastic bottles (0,5 – 2L 
volume) while still submerged. The samples were then 
transferred to the laboratory for culturing and genetic 
analyses. All slides from a single rack were transferred 
to a glass petri dish (14 cm in diameter and 2 cm height) 
with one side placed on a new microscopic slide (to 
prevent the sample-slides from sitting on the bottom). 
All culture glass dishes were pre-filled with 200ml of 
50% seawater from the sampling site and 50% sterile 
artificial seawater (ASW) with a salinity of 35ppt, 
supplemented with soil extract (see http://www.epsag-
uni-goettingen.de), KNO3 (0.2g/L), K2HPO4 (20mg/L) 
and Mg2SO4 (20mg/L). To each dish 1-2 ml of diluted 
Pyrenomonas helgolandii (Chromalveolata, 
Cryptophyceae) algal culture was added. Algae 
thereafter kept dividing in the cultures. Both sides of 
each slide were screened for placozoans once a day for 
up to four weeks using a Zeiss Stemi SV 6 dissecting 
microscope. Every week 50% of the water was replaced 
by fresh ASW for slow acclimatization to the artificial 
seawater. Adult animals were found within this period 
with some slides positive for placozoans immediately 
and some only towards the end of this period. Identified 
placozoans from both, rock and slide samples, were 
either processed directly for DNA isolation or 
transferred to new culture dishes using artificial 
seawater only (see above). Clonal lineages were started 
with a single individual in a petri dish in a climate 
regulated culture room at 23°C at a long day light 

regime (LD 14:10) placed 40cm below two 30W neon 
lamps (Osram, Germany) (cf [56, 57]). 

Molecular analyses 

Genomic DNA was extracted from single animals 
using FTA Elute cards micro following the 
manufactures’ recommendations (Whatman) or by using 
a chelex-isolation method described in Voigt et al. 
(2004) [28]. Isolation of genomic DNA from clonally 
cultured isolates was performed on 50-100 individuals 
using a HOM buffer isolation protocol (Ender & 
Schierwater 2003). A region of variable length of the 
mitochondrial 16S rDNA gene was amplified by 
polymerase chain reaction using the primers and PCR 
conditions described in Signorovitch et al. (2006) [37]. 
PCR products were purified using the Wizard SV Gel 
and PCR Clean-Up System (Promega) and sequenced 
directly in both directions using the dGTP BigDye 
(Applied Biosystems). Cycle sequencing reactions were 
read on an ABI PRISM 310 DNA sequencer. When the 
standard sequencing protocol failed because of a GC-
rich hairpin secondary structure, PCR products were 
subcloned into pGEM-T (Promega) and sequenced 
using the sequencing service for difficult templates 
provided by Macrogen (Korea). Chromatograms and 
sequences were analyzed using the LaserGene software 
package (DNASTAR). In order to obtain additional 
5’sequences with informative characters a different 16S 
fragment was amplified from several representatives of 
haplotypes H2, H9, H12, H13 and H14 using the 
primers and protocol from Voigt et al. (2004) [28]. This 
way we filled gaps in the alignment to other haplotypes 
from previous studies [28]. All DNA sequences were 
deposited into GenBank (accession numbers 
GQ901078-GQ901155; see Supporting Table 1). 
Sequences were aligned by means of MAFFT [58, 59] 
using the “E-INS-i“ option implemented online 
(http://align.bmr.kyushu-u.ac.jp/mafft/online/server/). 
This option improved the alignment for the 16S 
sequences with multiple conserved domains and 
stretches of weakly conserved regions. Indels 
commonly found among different placozoan clades in 
less conserved loop regions were removed manually 
from the alignment. As some haplotypes differ only in 
these regions of low conservation we maintained the 
alignment in all phylogentically informative regions.  

To infer phylogenetic relationships among 
placozoan haplotypes we performed Bayesian 
likelihood, maximum likelihood (ML) and maximum 
parimony (MP) inference. For likelihood-based analyses 
a TrN+G model of nucleotide evolution (Akaike 
information criterion) was used as obtained from 
Modeltest 3.7 [60]. Bayesian posterior probabilities 
were obtained from the parallel version of MrBayes 
3.1.2 [61, 62] with two runs (Nchains=8; Temp = 0.5). 
Since the TrN+G model is not implemented in 
MrBayes, the model was set to GTR+G with changes 
according to modeltest. We ran 10,000,000 Markov 
Chain Monte Carlo generations, sampling at every 100 
generations. The first 25% of the obtained trees were 
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discarded. The ML analysis was carried out with 
PhyML 3.0 [63, 64] including 500 bootraps replicates. 
The MP analysis was done in PAUP* 4.0b10 [65] with 
default values and bootstrap support values obtained 
from 10,000 replicates (full heuristic search) with gaps 
scored as missing characters. A haplotype network 
analysis was done in TCS 1.21 [66] with gaps scored as 
a 5th character state. In the absence of a suitable 
outgroup midpoint rooting was applied (cf. [28]).  

In order to compare 16S divergences between 
placozoan haplotypes to those between closely related 
Porifera and Cnidaria, additional 16S sequences were 
taken from GenBank (http://www.ncbi.nlm.nih.gov). 
Sequences were aligned using MAFFT (see above) with 
separate alignments for Porifera and Cnidaria, 
respectively. Mean uncorrected pair-wise distances 
between families (within orders), genera (within 
families) and species (within genera) were calculated in 
MEGA v. 4.0 [67] and compared to distances within the 
Placozoa. We only compared orders of Porifera and 
Cnidaria that had at least two sequences from different 
families. Similarly, mean p distances within families 
(and genera) were calculated only for those families (or 
genera) with at least two representatives from different 
genera (or species). 

In order to obtain first estimates of the completeness 
of haplotype sampling in the Placozoa we plotted the 
number of identified haplotypes against the total 
number of genotyped locations. A Coleman Rarefaction 
Curve [68, 69] was therefore calculated in EstimateS 
available online at http://viceroy.eeb.uconn.edu/ 
EstimateS. 
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2.5. Ultrastructural analyses support different species lineages in the 

Placozoa, Grell 1971. 

Abstract  

The morphology and ultrastructure of nine clonal placozoan lineages, that are genetically 

well separated, were studied. We scored several morphological characters at a cellular and 

intracellular level and identified a number of morphological differences among clones. 

Some differences appear clone specific and allow recognizing five distinct placozoan 

lineages based on morphological criteria only. Furthermore, we here describe two new 

morphologic characters for Placozoa, a new type of fiber cells and an epithelial structure 

called ‘concave disc’. We also describe a formerly suggested potential stem-cell type. 

Key words: Trichoplax, Placozoa, morphology, ultrastructure, clone identification. 

Introduction 

Placozoans are small, disc-shaped and any 
kind of symmetry lacking marine invertebrates 
discovered in the late 19th century (for history 
and references see [1-3]. At present the only 
named species in the phylum is Trichoplax 

adhaerens Schulze, 1883 [4]. The 'bauplan' of 
Trichoplax is extremely simple, consisting of 
two epithelial layers separated by a layer of 
inter-connected fiber cells [5]. Only four cell 
types have been described based on 
morphology, but at least one additional has 
been recognized on the basis of expression of a 
Hox/ParaHox-like gene [6]. These small and 
presumably totipotent cells are located in a 
ring around the periphery of Trichoplax at the 
contact point of the upper and lower 
epithelium. Although the two cell layers are 
reported as epithelial layers, neither a basal 
lamina nor an extracellular matrix (ECM) is 
present: this simple condition is peculiar to 
Placozoa and not found in any other metazoan 
phylum. Only adult sponges, as the only 
metazoans, also lack a basal lamina but have 
ECM material [7]. For this and other reasons 
Trichoplax is the simplest organized metazoan 
and it is possibly closest related to the 
ancestral ‘Urmetazoon’ [8, 9]; for opposing 
views [10] and [11]. 

From the 1970s Placozoa were found in 
tropical and subtropical oceans in near shore 
habitats. Although the specimens found in 
various locations cannot be morphologically 
distinguished, they show surprising diversity at 

the DNA level, suggesting the existence of 
cryptic species [12,13,14]. Voigt et al. (2004) 
[14] analyzed 31 individuals collected from 
seven worldwide localities, clonal cultures and 
local aquaria, and compared them at the four 
loci 16S rDNA, 18S rDNA, 28S rDNA, and 
ITS. The authors conclude that the phylum 
Placozoa is composed of at least five highly 
divergent clades. Signorovitch et al. (2006) 
[13] sampled placozoans in the Caribbean Sea 
and sequenced the mitochondrial 16S rDNA 
locus identifying four clades of the five 
previously identified from Voigt et al. (2004) 
[14]. Eitel & Schierwater (2010) [12] 
identified five additional distinct genetic 
lineages bringing the sum of genetically 
distinguishable lineages to a total of 16. 

Currently, morphological knowledge of the 
Placozoa is mainly based on the original 
description by Schulze (1883, 1891) [4, 15] 
and subsequent studies by Grell and Benwitz 
(1971, 1981) [16,17] on Trichoplax adhaerens 
only. Grell found placozoans in an algal 
sample from the Red Sea. This original clone 
is now continued in the Schierwater laboratory 
in Hannover as the so-called “Grell” clone. 
This clone has been maintained in culture 
since 1969, and all published data derive from 
it. As a result, not only the morphological 
studies present in literature but also the 
genome sequence derive from this single [1, 
16-18].  

As a result of worldwide field sampling 
over the last six years we have now been 
culturing several genetically very different 
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placozoan lineages in the lab, which allows us 
for the first time to compare the morphology 
of different lineages/haplotypes, i.e. to look at 
the intra-phylum diversity at the 
morphological level. We here report a 
combined optical (SEM and TEM) approach to 
evidence ultrastructural differences among 
different gentic lineages. 

Results 

Identified ultrastructural features were both in 
the upper and the lower epithelium of the 
different placozoans. 

Flagellated cells of the upper epithelium 
(T-cells) 

In all clones examined the flat and 
flagellated cells of the upper epithelium (T-
cells) show the nucleus protruding for up to 3 
!m inside the body (Figure 1 A, B). Most 
flagella of these cells have a distal end 
resembling a small ‘spoon-like’ structure 
(about 1 !m in diameter). At SEM these 
appear to be formed by a folding of a distal 
enlargement of the axoneme cytoplasmic 
membrane. Thus in TEM sections the ‘spoon-
like’ structures show more than one section of 
axonemes (Figure 1 C, D, E).  In the clones 
‘GRELL’, ‘TUN-A’, ‘HWH-B’ and ‘HWH-A’ 
(for details on the clones see Table 1), these T-
cells show a wide external surface, polygonal 
in shape (about 10 !m in diameter), and are 
tightly connected to the adjacent cells through 
numerous desmosomes (Figure 1 F, G). Only 
in the ‘GRELL’ clone, a large number of 
finger-like, electron-dense cytoplasmic 
microtubules (200 nm in length and 20 nm in 
diameter) are found beneath the external 
surface of each T-cell, arranged into stacks of 
10-15 microtubules each (Figure 1H; see 
character ‘A1’ in Figure 4).  In the clones 
‘PAN’, ‘TUN-B’, ‘TEN-A’, ‘OKH-A’, ‘KEN-
A’, and ‘MEDI’ T-cells are smaller, about 6 
!m in diameter, and have a rounded edge and 
a convex external surface (characters ‘A2’ in 
Figure 4). Each of these cells are only partially 
connected to the adjacent ones (character ‘A3’ 
in Figure 4) because of the presence of 
numerous discoidal structures interposed 
between the cell edges. In TEM sections these 

cup-like structures appear strongly concave 
and electron-dense, with a diameter ranging 
from 2.5 to 5 !m (Figure 1 I-L) and we named 
them ‘concave discs’ (character ‘A4’ in Figure 
4). In SEM images each of these appear to be 
the end of the distal short branch of an 
uppermost fiber cells. The concave discs are 
uniformly distributed in the whole upper 
epithelium. The character of concave discs 
comes along with a reduced number of 
desmosomes connecting the T-cells (character 
‘A5’ in Figure 4). 

Cells of the lower epithelium 

In all clones the lower epithelium is mostly 
composed of flagellated, cylindrical cells and a 
few scattered, aflagellated, gland cells (Figure 
2 A, B). Several ‘spoon-like’ structures at the 
distal end of the flagella of the cylindrical cells 
are regularly seen. Only in the ‘TEN-A’ clone 
abundant homogeneous material is visible 
(character ‘B’ in Figure 4). It covers the 
external surface of the cells, which is quite 
evident in both SEM and TEM images. This 
material is strongly electron-dense and is very 
likely secreted since similarly structured 
material is also seen in the form of highly 
electron-dense vesicles in the cytoplasm of 
‘TEN-A’ gland cells (Figure 2 C, D). 

Marginal cells 

A marginal thickening made up of 
numerous, very small, ovoidal cells (about 2 
!m in diameter) runs around the entire margin 
of the body. These cells do not show any 
defined orientation, they are arranged in 
several layers and with 2x3 !m are remarkable 
small (Figure 2 E- J). The position matches the 
area of the formerly described putative stem-
cell lineage [6].  

Fiber cells 

The numerous, star-shaped fiber cells are 
arranged in 3-4 layers (Figure 3A, B) and are 
connected to each other forming a three-
dimensional syncytium between the two 
epithelia. In clones with concave discs (‘PAN’, 
‘TUN-B’, ‘TEN-A’, ‘OKH-A’, ‘KEN-A’, and 
‘MEDI)’ a sub-population of the fiber cells is 
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Figure 1. The two types of epithelia.  

A Cross section through the epithelium without concave discs (‘HWH-B’). B Two T-cells: the nuclear portion protruding inside 
the body, the flagellar pit and a desmosome (arrow) are visible (‘HWH-B’). C, D, E Spoon-like structures at SEM and TEM in 
the clone ‘GRELL’. F Upper epithelium without concave discs (‘GRELL’). G Some desmosomes join the T-cells of ‘HWH-B’ 
clone. H Microtubules (arrows) inside the cytoplasm of the T-cells in ‘GRELL’ clone. I Cross section through the epithelium 
with concave discs; they are marked by arrows (‘HWH-B’). J Two concave discs of ‘PAN’ clone. K Upper epithelium with 
concave discs (‘TUN-B’). L Magnification of flagellar pit and concave discs of the clone ‘TUN-B’. cd=concave disc; 
d=desmosome; fc=fiber cells; fp=flagellar pit; lp= lower epithelium; n=nucleus; up= upper epithelium. 
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Figure 2. The lower epithelium and the margin.  

A Lower epithelium at SEM of the clone ‘TUN-B’. The flagella and their pits are visible. B SEM cross-section through the lower 
epithelium (‘TUN-B’ clone) formed by cylindrical and gland cells. C, D SEM and TEM images showing the abundant 
homogeneous material (arrows) covering the lower epithelium in the clone ‘TEN-A’. E, F The marginal cord (arrows) running 
along the whole margin of the animal body in the ‘PAN’ (in vivo) and in the ‘GRELL’ clones. G, H TEM images showing the 
small, ovoidal cells of the margin. I The small, ovoidal cells forming the marginal cord without a defined orientation are showed 
(‘GRELL’). J Confocal image showing the different (smaller) size of the nuclei (arrows) of marginal and other cells (‘PAN’). 
mc=marginal cells; cc=cylindrical cells; gc=gland cells. 
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located just beneath the upper epithelium. 
These have a cell extension through which 
they get in contact to the concave discs. These 
fiber cells often contain a single and large 
electron-dense vesicle. SEM observations 
evidence that these vesicles are extruded from 
the concave discs which are connected to the 
fiber cells, suggesting that these vesicles may 
correspond to the described ‘shiny spheres’ 
(Figure 3 C- G). In clones lacking concave 
discs, however, the vesicles are scattered in the 
interspace between the upper epithelium and 
the underlying fiber cells (Figure 3 H). The 
external nuclear membrane of all the fiber 
cells is clearly connected with the cisternae of 
the rough endoplasmic reticulum (Figure 3 I), 
which contain several kinds of bacteria (Figure 
3 J) in all clones and in all samples. Only in 
the Mediterranean clone the mitochondrial 
complex is formed by mitochondria with a 
very electron-dense matrix and by very thin 
vesicles containing a dark material (C1, C2 in 
Figure 4). 

Discussion 

General and unique morphological 
characters in the Placozoa 

In this study several new morphological 
features were detected, some of which appear 
to be differentially developed in the various 
lineages. Three new main morphological 
features are described in our study that were 
not reported before: (i) concave discs of the 
upper epithelium in some lineages, (ii) two 
sub-populations of fiber cells in some lineages, 
and (iii) several layers of small, ovoidal cells 
in the outer margin of the animal in all 
examined placozoan lineages. The 
combination of all new and formerly known 
characters allows distinguishing five distinct 
lineage groups (Figure 4): Group I contains the 
‘GRELL’ clone only and is characterized by 
the unique presence of microtubules in the 
upper epithelium. Group II (‘TUN-A’, ‘HWH-
A’ and ‘HWH-B’ clones) is distinct from 
group I only by the absence of microtubules. 
Groups III (‘PAN’, ‘TUN-B’, ‘OKH-A’ and 
‘KEN-A’ clones), IV (‘TEN-A’ clone) and V 
(‘MEDI’ clone) can be distinguished from 

groups I and II by the presence of polygonal 
T-cells and concave discs in the cells of the 
upper epithelium.  Furthermore, only the group 
IV shows abundant secreted material on the 
surface of the lower epithelium. Group V 
exclusively possesses a high density of the 
mitochondrial matrix and thin and electron-
dense mitochondrial complex vesicles in the 
fiber cells. 

Despite these obvious separations the 
observed morphological lineage groups do not 
correspond to the genetic placozoan phylogeny 
presented in Voigt et al. (2004) [14] and Eitel 
& Schierwater (2010) [12] (see Table 1). 
Several, if not all, different morphological 
features might thus be the result of unknown 
environmental adaptation leading to 
convergent adaptation related to similar 
environmental conditions. Unfortunately our 
knowledge on the placozoan ecology is too 
poor yet to test this hypothesis. This surprising 
observation may have several reasons, which 
we cannot resolve here. The incompatibility 
between morphological and molecular data 
may be the results of (i) a preliminary and 
false molecular tree, (ii) sampling artifacts in 
the morpholocial study, and (iii) independent 
losses and gains of characters during 
placozoan evolution. The first alternative 
seems unlikely because of the robustness of 
molecular trees derived from different 
molecular markers and [12, 14]. The second 
explanation seems unlikely because several 
individuals of the same developmental stage 
(vegetatively reproducing adults) were 
examined for all clones. We thus favor the 
third explanation and suggest that independent 
losses and gains of characters occurred during 
placozoan evolution. 

The new morphological characters 

The spoon-like structures are modifications 
of the distal tip of most cilia, whereas the 
ciliary pit has the same appearance in all cilia. 
Structures comparable to the spoon-like 
structures were described by Rassat & 
Ruthmann (1979) [19] in Trichoplax 

adhaerens (‘GRELL’ clone): these so-called 
‘hoods’, local thickenings of the flagella, were 
reported from delimited areas of both 



CHAPTER 2 – STUDIES  71 

 

epithelia, with no certain function. A possible 
role of these structures in favoring locomotion 
by improving the adhesion to hard substrates 
through their expanded distal end or a 
sensorial-like function involved in the right 
body orientation has been proposed [19]. 
However, the finding of paddle-like ends in 
cilia of free-living platyhelminthes allowed 
Ehlers & Ehlers (1977) [20] to hypothesize 
that these were artifacts caused by technical 
procedures in preparing specimens. For the 
same reason our findings of the ‘spoon-like’ 
structures may also be doubted and follow-up 
studies with different fixation protocols will be 
needed to resolve the question. The lower 
epithelium did not reveal any new features 
with respect to those already reported in 
literature [16, 21], except for the abundant 
material covering the ventral cells in the 
‘TEN-A’ clone. Since these individuals are 
particularly large (" 4-5 mm in diameter) this 
material might be involved in the adhesion to 
the substrate. The marginal cells showed the 
same shape, size and arrangement in all 
clones. However, some special features make 
their classification into one of the traditionally 
known four cell types difficult. In fact, their 
smaller size, random orientation and 
arrangement to form a thickening around the 
animal body are unique characteristics. We 
argue that the marginal cells represent a new 
cell type, which is the fifth type of somatic 
cells in the Placozoa. The morphology and 
distribution of these marginal cells is 
congruent with the conclusions derived from 
expression data, in particular the expression of 
the Proto-Hox/ParaHox gene, Trox-2 [6], 

suggesting that we ultrastructurally identified 
the presumed pluripotent or totipotent stem 
cell type [6]. The fiber cells form a complex 
three-dimensional meshwork because they are 
arranged in at least three or four 
interconnected layers in all samples observed. 
This picture differs from the traditional 
schematic drawing of the cellular organization 
of Trichoplax adhaerens reported in the 
literature showing the fiber cells arranged in a 
single layer (see e.g. Figure 1 in [22]). 
Moreover, the cytoplasmic branches of the 
upper fiber cells connecting to the concave 
discs are an additional morphocytological 
character documented here for the first time. 
Many vesicles of varying sizes, formerly 
described as ‘concrement vacuoles’ were 
observed in the fiber cells of all clones [16]. 
Possibly these vesicles are successive steps in 
the formation of the shiny spheres within the 
fiber cells. Two sub-populations of the 
uppermost fiber cells are seen only in those 
clones bearing concave discs, fiber cells with 
connections to the concave discs and others 
without. Accordingly, in clones lacking 
concave discs the release of the common shiny 
spheres to the exterior occurs from the 
intercellular space through the intercellular 
junctions between the T-cells of the upper 
epithelium. In those clones armed with 
concave discs, the shiny spheres can be 
released in a different way, i.e. directly from 
the upper fiber cells through the concave discs. 
The reason for different placozoan lineages to 
release the shiny spheres in different ways is 
unknown but might be related to different 
predation pressures. 

 Table 1. Names and origins of placozoan lineages used for morphological and ultrastructural studies. 

Name of clonal lineage 16S haplotype Origin Reference

GRELL H1 Elat, Egypt [16]

TUN-A H2 Yasmine, Tunisia [12]

HWH-A H8 Honululu, Hawaii, US [12]

HWH-B H4 Honululu, Hawaii, US E. Gaidos, U Hawaii, US, pers. comm., 2007 

PAN (=CAR-PAN-4) H2 Bocas del Toro, Panama [14]

TUN-B H2 Yasmine, Tunisia [12, 23]

OKH-A H2 Chatan, Okinawa, Japan [12]

KEN-A H16 Mombasa, Kenya [12]

TEN-A H2 Puerto de la Cruz, Tenerife, Spain [12]

MEDI ??? Orbetello, Italy P. Tomasetti, ICRAM, Italy, pers. comm., 2006



CHAPTER 2 – STUDIES  72 

 

 

Figure 3. Fiber cells and their peculiarities.  

A Fiber cells with long cytoplasmic protrusions forming a three-dimensional syncytium (‘GRELL’). B TEM cross-section 
through a whole animal of the ‘MEDI’ clone. C Fiber cells connected to a concave disc (arrow, ‘MEDI’ clone). D Fiber cell 
close to a concave disc (‘PAN’ clone). The latter shows a shiny sphere. E Fiber cells just beneath the upper epithelium show the 
cytoplasmatic protrusions ending in the concave discs (arrows, ‘TUN-B’). F SEM image showing a big vesicle in the moment of 
extrusion by the concave disc (arrow) (‘PAN’ clone). G Drawing of histological organization showing a fiber cell with a short 
cytoplasmic protrusion ending in a concave disc containing the extruded large vesicle (modified after Grell, 1972). H A large 
vesicle free in the space between the fiber cells (‘HWH-B’). I The continuity between the external nuclear membrane and the 
cisternae of the rough endoplasmic reticulum of the fiber cells are shown (‘PAN’). J Three fiber cells with three kinds of bacteria 
inside the reticulum cisternae (‘TUN-B’). cd=concave disc; fc=fiber cells; lp= lower epithelium; m=margin; up= upper 
epithelium; v=vesicle. 
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CLONE NAME GRELL TUN-A HWH-A HWH-B PAN TUN-B OKH-A KEN-A TEN-A MEDI

CLONAL LINEAGE GROUP I II II II III III III III IV V

UPPER EPITHELIUM

Microtubules 

0: Absent

1: Present

Cellular surface

0: Poligonal

1: Rounded

Cell arrangement                   

0: Juxtaposed cells   

1: Separated cells

Concave disc

0: Absent

1: Present

Desmosomes

0: Low number

1: High number

LOWER EPITHELIUM

Secreted material                                                                                                                               

0: Not evident 

1: Abundant

FIBER CELLS

Mitochondrial matrix

0: Low density  

1: High density

Mitochondrial complex vesicles

0: Large and electron-transparent

1: Thin and electron-dense

000 0 0

0 0 0

01 0 0 0

0 0

0 0 0 01

0 0 0 0

1

0 0

A3 1

0

0 00

0

0

00 00

0 00 0 00 0

1 1 1 1 1

1 1

0 0

0

1

1 1 1 1 1 1

1 1

0 0

1 1 11

0

0

10 0 0 0

1

A1

A2

A4

A5

B

C1

C2

0

0

 

Figure 4. Morphological characters identified in this study.  

A total of eight distinctive morphological characters from the upper epithelium (A1-A5), the lower epithelium (B) and the fiber 
cells (C1-C3) allow distinguishing five lineage groups (I-V). Only those characters are listed that show differences in at least one 
group. Additional new placozoan characteristics are discussed in the text. 

 

This study complements the current 
knowledge of placozoan ultrastructure and 
lists a number of measurable morphological 
characters that appear to differ among various 
placozoan clones. Three new ultrastructural 
features were found in the Placozoa. Although 
five species lineages can clearly be separated 
by morphology a direct correlation to a 
molecular genealogy is not seen. 

Material and Methods 

Living specimens belonging to five different 16S 
haplotypes were collected from laboratory cultures of 
placozoan lineages [12]. The clone names and their 
geographical origins are given in Table 1. At least 
twenty individuals from each clone were fixed in 2% 
glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 

7.4), and stored in 0.1 M sodium cacodylate buffer until 
post fixation in 1% osmium tetroxide in the same buffer. 
Samples were subsequently prepared for EM analysis. 
For TEM, after washing in the same buffer, five 
individuals of each clone were dehydrated in a graded 
alcohol series and embedded in Araldite. Thin and 
ultrathin sections were cut with an LKB Ultrotome 
2088V. Thin sections were stained with toluidine blue 
and observed in transmission light under a VANOX 
AHBT3 Olympus optical microscope. Ultrathin sections 
were contrasted with uranyl acetate and lead citrate and 
observed using a Philips CM10 transmission electron 
microscope. For SEM studies, fifteen specimens of each 
clone were dehydrated in a graded alcohol series and 
critical point-dried using carbon dioxide, mounted on 
aluminum stubs, sputter coated with gold palladium and 
finally observed with a Philips 515 and a Philips 
Phenom scanning electron microscope. In vivo 
observations were carried out in phase contrast under a 
VANOX AHBT3 Olympus optical microscope. 
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2.6. Unexpected discovery of a warm water dweller from the phylum 

Placozoa in Roscoff 

Trichoplax adhaerens (phylum Placozoa) 

is a small (2–3 mm in diameter) marine 

invertebrate living in the littoral of tropical 

and subtropical seas [1]. First described by 

Franz Eilhard Schulze in 1883 [2], it is now 

thought to be most closely related to the 

ancestor of all metazoan animals [3, 4]. The 

name Trichoplax is eponymous with its 

morphology, as the animal looks like a small 

irregular “hairy plate” (“tricho plax”) which 

sticks (“adhaere”) to the surface. The 

organism has no defined shape and it changes 

its appearance continuously while moving. 

Trichoplax lacks any kind of symmetry, has 

no organs, nerve cells, basal lamina or 

extracellular matrix and consists solely of five 

different somatic cell types [5, 6] which form 

two distinct cell layers: The upper and the 

lower pseudo-epithelium, with interconnected 

fiber cells sandwiched between those. Despite 

its apparent morphological simplicity the 

recent sequencing of the Trichoplax genome 

[7] revealed a high genomic complexity 

usually associated with higher animals.  

The life cycle of Trichoplax adhaerens is 

mostly unknown. Under laboratory conditions 

placozoans reproduce vegetatively by 

budding and binary fission but sexual 

reproduction was also observed as oocytes 

and later on embryos were found in adult 

animals [8]. However all embryos studied so 

far died sooner or later without developing 

beyond the 128 cell stage (Eitel et al., unpubl. 

data). Very little is known about the biology 

of placozoans in their natural habitat, as an 

observation of these microscopic animals in 

the open water is impossible. 

By sampling efforts using microscopy 

slides as settle ground for placozoans, 

specimens have been found at several 

locations worldwide and year-round [9-11]. Its 

occurrence has been thought to be exclusively 

restricted to the tropical and subtropical seas 

(with the Mediterranean assigned to the 

subtropics). Only sampling in warm waters of 

approximately 22 – 28 °C has been successful 

so far [11]. However, in Roscoff we found a 

surprise. During the “Volker Schmidt Training 

Course” which took place in May 2009, we 

sampled the seawater aquaria of the “Station 

Biologique de Roscoff” (CNRS). Surprisingly, 

we found placozoan specimens in these 

samples proving the existence of the Placozoa 

even in cold waters. The isolated specimens 

belong to the cosmopolitan Placozoa sp. H2 

(see Eitel & Schierwater, 2010 for details on 

placozoan systematics) and they are the 

northernmost placozoan isolates ever found. 

Ongoing research on Placozoa is highly 

diverse and this enigmatic animal attracts 

growing worldwide interest. In our institute in 

Hannover (Germany), we work on several 

different aspects on placozoan research 

including development, morphology, 

systematics, physiology, biochemistry, 

functional genomics, ecology and biodiversity. 

Furthermore we seek to develop the Placozoa 

as a model organism for cancer research (c.f. 

http://www.trichoplax.com). 
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A collage of Trichoplax research.  

1. Trichoplax adhaerens (‘Grell’ clonal lineage), 2. Cross section of the animal (modified after [12]): Lower epithelium (LE), 

upper epithelium (UE), fiber cells (FC), shiny sphere (SS), (endosymbiotic) bacterium (B) Concrement vacuole (CV), cover cell 

(CvC), mitochondria (Mc), gland cells (GC) and cylinder cells (CC), 3. Sampling Placozoa in Roscoff: glass slides in aquarium, 

4, 5, 6. The authors at work, 7. An individual of the newly found ’Roscoff’ lineage, 8. Trichoplax adhaerens stained via immune 

histochemistry, background: high magnification of a stained Trichoplax individual. 
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2.7. New insights into placozoan sexual reproduction and 

development 

Abstract 

Unraveling animal life cycles and embryonic development is basic to understanding animal 

biology and often sheds light on phylogenetic relationships among metazoan groups. A key 

group for understanding the evolution of the Metazoa is the early branching phylum 

Placozoa, which have attracted rapidly increasing attention. Despite over a hundred years 

of placozoan research the life cycle of this enigmatic phylum is not fully known. Placozoa 

are a unique model system for which the nuclear genome sequence was published before 

the basic biology (i.e. life cycle and development) has been unraveled. Organismal studies 

have reported the development of egg cells (oocytes) and a molecular genetic study 

nourished the hypothesis of sexual reproduction in natural populations at least in the past. 

Here report new observations on sexual reproduction and embryonic development in the 

Placozoa and support the hypothesis. The regular observation of egg cells and expressed 

sperm markers provide strong support that placozoans reproduce sexually in the field. 

Using whole genome and EST sequences and additional cDNA cloning we have identified 

five conserved sperm markers, characteristic for different stages in spermatogenesis. We 

also report details on the embryonic development up to a 128-cell stage and new 

ultrastructural features occurring during early development. These results suggest that 

sperm and oocyte generation and maturation occur in different placozoans and that clonal 

lineages reproduce bisexually in addition to the standard mode of vegetative reproduction. 

The sum of observations is best congruent with the hypothesis of a simple life cycle with an 

alternation of reproductive modes between bisexual and vegetative reproduction. 

 

Introduction 

The Placozoa have formerly and recently 
attracted much attention in the context of 
identifying the mother of all metazoans, the 
Urmetazoon. According to Bütschli’s placula 
hypothesis metazoan life started with a single 
two-layered benthic organism, which 
reproduced both vegetatively and sexually. 
Studying the latter in the diploblastic Placozoa 
will be quite crucial not only for identifying 
the Urmetazoon but also for using the 
Placozoa as a model system for future studies 
in all areas of biology. Molecular systematics 
has not resolved the phylogeny at the base of 
the metazoan tree of life yet, but leaves two 
plausible candidates for the earliest branching 
metazoan phylum, Placozoa and Porifera [1-
3].  

Fundamental for Bütschlis’ placula 
hypthesis of metazoan evolution was the 
morphologic simplicity of Trichoplax 

adhaerens, the only approved species within 
the phylum Placozoa [4-8]. Trichoplax has 

only five somatic cell types, lacks any kind of 
symmetry and has no extra cellular matrix and 
no nerve or muscle cells [4, 9, 10]. Thus 
Trichoplax is the simplest organized animal 
from a morphological perspective [4, 11]. The 
Placozoa possess a pivotal position in modern 
biology. It is the only phylum for which a 
complete nuclear genome was published [12] 
without knowledge of the life cycle and basic 
biology. While life cycle and development in 
sponges have been resolved for many cases 
(cf. [13, 14]), very little has been known for 
Placozoa. Studying the development in the 
Placozoa is therefore an important task from 
all perspectives of comparative development 
and early metazoan evolution.  

The question whether placozoans reproduce 
sexually in the field has not been answered 
yet. One study has provided molecular 
evidence for sexual events by uncovering 
allele shuffling, thus indicating a complete 
sexual life cycle at least in the past [15]. 
Sexually reproducing animals have not yet 
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been identified in the field. Nonetheless, 
embryonic development has been studied to 
some extent in the laboratory [16-20]. Under 
laboratory conditions, Trichoplax adhaerens 
usually propagates clonally by binary fission 
and sometimes by producing buds, the so-
called swarmers [21-23]. Kept at high animal 
densities and with food scarceness, however, 
female gametes (oocytes) are built within 4-6 
weeks [17, 19]. These only appear in so-called 
D-phase (= degeneration phase) animals and 
are always accompanied by the accumulation 
of big droplets of ‘fatty substances’ [17, 19]. 
The oocytes are possibly derivates of the lower 
epithelium [19]. Through incorporation of 
extensions from nursing fiber cells attached to 
its surface, they grow into the inter spaces 
between the lower and upper epithelium. After 
reaching a varying mature size of 70-120!m 
oocytes are fertilized. Following fertilization 
the so-called ‘fertilization membrane’ (FM), a 
protective eggshell, is built around the zygote 
which starts total, equal cleavage [17]. Male 
gametocytes (sperm) were also described 
according to ultrastructural analysis [10] but 
their functionality was not confirmed. 

Although substantial efforts have been 
made to follow embryonic development, 
embryos never developed beyond a 64-cell 
stage [19, 20]. As a reason for the cease in 
embryonic development uncontrolled DNA 
replication was claimed, preventing the switch 
from S-phase to the G2-phase of the cell cycle 
[20] and pruning the embryo to die. 
Throughout the embryonic development no 
intact nuclei were found as the nucleus 
undergoes fragmentation before the 
fertilization membrane is formed [20]. The 
authors claimed that this observation may be 
an artifact of laboratory conditions and that 
degeneration must not necessarily take place in 
naturally reproducing animals. 

Here we provide molecular support for the 
existence of spermatogenesis and sperm 
maturation in placozoans. In addition we 
describe in-depth analyses of growing oocytes 
and embryos from a placozoan representative 
by means of fluorescence microscopy and 
scanning and transmission electron 
microscopy. We also report further culturing 
improvements leading to the identification of 

intact nuclei and chromosomes in the embryos 
under laboratory conditions allowing embryos 
to develop at least to a 128-cell stage. While 
all formerly studies on Placozoa were on 
Trichoplax adhaerens, the only valid species 
in the phylum, we here report data from 
different species lineages. 

Results 

Induction of sexual reproduction 

We have induced sexual reproduction in 
different placozoan lineages. In independent 
experiments different food sources, salt 
concentrations and temperatures were used to 
optimize conditions necessary for triggering 
sexual reproduction. Although tested on 
several placozoan lineages, induction of sexual 
reproduction was successful only in three: 
Trichoplax adhaerens (‘Grell’ clone; 16S 
haplotype H1; [24]), Placozoa sp. H2 (‘CAR-
PAN-4’ clone; 16S haplotype H2; [24]) and 
Placozoa sp. H16 (‘KEN-A’ clone; [28]). 
Positive induction of sexual reproduction was 
found only in these lineages under several 
conditions including various food sources 
(Pyrenomonas helgolandii, Chlorella vulgaris 

and Isochrysis galbana), salt concentrations 
(25-45 ppt) and temperatures (23-28°C). The 
major limiting factor was found to be the 
temperature. Sexually reproducing individuals 
were only found at temperatures of 23°C or 
above. As the final results from the different 
culture conditions were the same, further 
inductions were done under our standard 
culture conditions (see Material and Methods). 
The oocyte maturation and early embryonic 
development of Placozoa sp. H2 (Figure 1) 
and Placozoa sp. H16 (not shown) resembles 
that of Trichoplax adhaerens as described 
earlier [17, 19]. Animals started to degenerate 
after reaching a high population density after 
5-6 weeks. They always started the 
degeneration process by lifting the upper 
epithelium and condensing the lower 
epithelium until forming a hollow sphere 
containing the embryo (“brood chamber”). 
First signs of oocyte maturation were visible in 
flat animals in terms of transparent yolk 
droplets outside the oocyte that fused to a 
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single larger droplet within a few days (Figure 
1B). Only animals in the degeneration phase 
(D-phase) built oocytes, as reported previously 
for Trichoplax adhaerens [17-19]. Nursed by 
attached fiber cells, oocytes grew until 
reaching a final size of 50-120!m, comparable 
to Trichoplax adhaerens oocytes. The latter 
always contained a large nucleus (compare 

Figures 1A and 2H). The standard number of 
oocytes per sexual animal was one; only once 
we observed nine oocytes in a single D-phase 
animal (Figure 1C). After fertilization the 
‘fertilization membrane‘ was built (see Figures 
1 and 3) and the zygotes started total equal 
cleavage. 

 

 

Figure 1. Progress of Placozoa sp. H2 oocyte maturation and early embryogenesis.  

Shown are light miscroscopy (A-D) and SEM (F) images of Placozoa sp. H2 oocytes and embryos. Typically, one oocyte with a 
huge nucleus grows in a flat, non-degenerating animal (A, B). Occasionally several oocytes are found in degenerating animals. 
We found one animal with nine maturing oocytes (C). Accompanied by the generation of yolk droplets, the animal enters the 
degeneration phase (D-phase) where the upper epithelium starts to lift up (B) until attaining a completely round shape (D, 
compare Figure 3a1). The oocyte grows by incorporating extensions from fiber cells through pores. One ‘connection pore’ of a 
maturing oocyte is shown in (E) (arrow). After fertilization the ‘fertilization membrane’ (FM; eggshell) is built around the 
embryo (D; and see Figure 3). Often formerly nursing fiber cells are still attached to the FM (D, F). n=nucleus, o=oocyte, 
yo=yolk outside oocyte, fm=fertilization membrane, e=embryo, fc=fiber cells, dma=degenerating mother animal. 

 

Identification of sperm-specific markers 

After a first annotation of the Placozos sp. 
H4 (‘HWH-B’ clone) EST project one cluster 
with high similarity to a murine sperm-
associated protein was found (Spag8; see Tab. 
1). We screened the available 2,506 EST 
clusters and 11,514 predicted proteins of 
Trichoplax adhaerens (available at the Joint 
Genome Institute, JGI) and our 2,096 unique 
Placozoa sp. H4 EST clusters on a local blast 
server using a set of mouse sperm-associated 

proteins retrieved from Genbank (see Material 
and Method section). Five candidate sperm-
associated were identified (Spag8, Dnajb13, 
Mns1, Meig1 and Nme5; Table 1). All five 
were also present in the predicted Trichoplax 
adhaerens proteins but only Spag8 was 
represented in the Trichoplax ESTs. By means 
of RACE we then cloned four of these 
potential sperm markers (Spag8, Dnajb13, 
Mns1 and Meig1) from Placozoa sp. H2, the 
lineage used here for the described 
ultrastructural features. We were unable to 
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amplify Nme5 in this lineage. Amplification 
attempts in the Placozoa sp. H16 (‘KEN-A’ 
clone) using degenerate primers based on the 
Trichoplax and Placozoa sp. H4 sequence 
yielded no results even at low stringency 
conditions (data not shown). The identified 
sperm-associated proteins group within five 
distinct categories representing different 
functions in vertebrates: category I protein 
Spag8 is related to sperm-oocyte recognition; 
the category II protein Dnajb13 is sperm-
flagellum associated; category III and IV 
proteins Mns1 and Meig1 are involved in male 
gametocyte meiosis and spermatogenesis 
control, respectively, and the category V 
protein Nme5 has a function (oxidative stress 
protection) that is not within one of the other 
four categories (see Table 1 for references). 
All sperm-associated proteins show a Blast E-
value below 1e-10 in blastp against mouse 
RefSeq proteins (Genbank), which was set as a 
minimum cut off value in the reciprocal Blast 
searches. Three of the five putative sperm 
markers only resulted in hits of the 

homologous proteins from other taxa (Spag8, 
Mns1 and Meig1) when blasted against the 
RefSeq database (Genbank) using a stringent 
cutoff value of 1e-20. The other two proteins 
(Dnajb13 and Nme5), however, belong to 
large gene super-families. We therefore 
searched for gene homologs using 
phylogenetic reconstructions (see 
supplementary Figure 1 for alignments of 
placozoan and anthozoan Dnaj and Nme 
domains with orthologous and paralogous 
domains from other Metazoa). To test that the 
sequences did not artificially group to the 
respective groups we also included sequences 
from other super-family members as well as 
sequences from the anthozoan Nematostella 

vectensis. The phylogenetic analyses strongly 
support a grouping of Trichoplax Dnajb13 and 
Nme5 to their particular gene families 
indicating homology (supplementary Figure 
2A and B, respectively). 

 

 

Table 1. Expressed placozoan homologs of mouse male germline markers. 

category
gene 

abbreviation
gene name

T. adhaerens (H1)   

accession       

numbers

Placozoa sp. H2 

accession       

numbers    

Placozoa sp. H4     

accession       

numbers              

(ESTs per         

cluster)

e-value of     

best hit     

against 

Genbank    

e-value of    

best hit against  

mouse RefSeq 

proteins             

mouse       

accession 

number

location in mouse function in mouse Reference

I spag8

sperm     

associated    

antigen 8
XP_002110904 

a XXX XXX (2) 1E-27 2E-07 NP_001007464 sperm acrosome

sperm-oocyte      

recognition;                          

cell division during 

spermatogenesis;             

[56, 57]

II dnajb13

spermatogenesis 

apoptosis-related     

protein

XP_002112903 XXX XXX (1) 1E-113 5E-102 NP_705755

testis: in cytoplasm 

of spermatids and 

associated with the 

axoneme of sperm 

flagellum

assembly and stability        

of axoneme during         

sperm flagellum 

development and     

assembly of the       

annulus structure

[58-60]

III mns1 

meiosis-specific      

nuclear structural      

protein 1
XP_002111307 

b XXX XXX (1) 8E-122 4E-84 NP_032639

pachytene stage 

during spermato-

genesis

determination and 

maintenance of the 

appropriate nuclear 

morphology during        

meiotic prophase

[61, 62]

meig1
meiosis expressed    

gene 1 XP_002109786 
b XXX XXX (1) 2E-18 7E-17 NP_032605

spermatocytes when 

initiating meiosis
chromatin organization [63]

IV meig1
meiosis expressed    

gene 1 XP_002109786 
b XXX XXX (1) 2E-18 7E-17 NP_032606

testis: two transcript 

variants

critical gene for manchette 

structure and thus keyin 

the regulation of 

spermiogenesis

[64]

V Nme5
non-metastatic      

cells 5
XP_002112439 n.d. XXX (1) 2E-69 2E-61 NP_542368 

stage 12-16 

spermatids                

protection of developing 

male germ cells from 

beeing killed by oxidastive 

stress 

[41]

 

Four homologs of mouse sperm-associated proteins – indicated by high E-values in blast searches – are active in adult, non-
degenerating placozoan animals. These proteins were detected after screening EST sequences from Placozoa sp. H4 (‘HWH-B’ 
clone) and subsequently retrieved from the Trichoplax genome (JGI) by blast and amplified from a Placozoa sp. H2 (‘CAR-
PAN-4’ clone) cDNA library (see Materials and Methods for details). The putative sperm markers fall within three distinct 
functional categories: category I=sperm-oocyte recognition; category II=sperm flagellum-associated, category III=sperm 
meiosis-associated, category IV=control of spermatogenesis. a: EST supported (JGI); b: For the alignment in Supplementary 
Figure 1 the JGI-predicted amino acid sequence was changed according to Placozoa sp. H4 EST ORF; n.d.=not detected; 
XXX=accession number not yet available. For all blast searches the Trichoplax adhaerens predicted sequences was used.



CHAPTER 2 - STUDIES 82 

 

Cell counting in developing embryos 

To follow embryonic development beyond 
the 64-cell stage and to test the assumption 
that the cell cycle is disrupted at a very early 
stage of embryonic development, complete 
embryos were stained with nucleic acid 
intercalating fluorescent dyes. DAPI staining 
was first used to check the appearance of the 
nucleus in early embryos by means of standard 
fluorescence microscopy. The results show 
distinct signals directly correlated to the 
number of counted blastomers (Figure 2F-H). 
The above procedure allowed to see intact 

nuclei as well as metaphase chromosomes in 
single blastomers (arrows in Figure 2H). All 
chromosomes were found in distinct patches as 
they are all interconnected [31]. To further 
count nuclei in later embryos, propidium 
iodide was used to stain nuclei. Detection by 
confocal laser microscopy revealed similar 
results as DAPI showing intact nuclei and 
metaphase chromosomes clearly fluorescently 
labeled (Figure 2 J-L). By counting the signal 
in all planes, a maximum of 120 cells were 
found in Placozoa sp. H2 (n=3), indicating the 
128-cell stage. All embryos died after the 
observed 128-cell stage. 

 

Figure 2. Various Placozoa sp. H2 embryonic cleavage stages. 

Shown are embryos at the zygote-, 2-cell, 8-cell and 64-cell stage inside the fertilization membrane under light microscopy (A-
D). Cleavage is total and equal. Nuclear staining with DAPI shows a direct correlation of blastomer number and fluorescent 
signals under standard fluorescent microscopy (F-H; 2, 8 and 64 cells, respectively). The same was seen with propidium iodide 
staining in confocal images (J-L; 1, 8 and 120 cells, respectively). Red signals at the surface of the fertilization membrane in K 
and L derive from attached bacteria and algae to the surface of the free drifting embryos. Positive controls for the staining 
procedure with adult animals showed clear nuclear signals for both fluorescent dyes (E, I). Maturing oocytes have a huge nucleus 
compared to somatic cells of the mother animal (arrow in E). Metaphase chromosome clumps were regularly found in fluorescent 
stainings, indicating normal cell cycle (arrow in H, K and L; compare Figure 3d2). The scale bars of A, F and J apply to C-D, G-
H and K-L, respectively. 
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Figure 3. Ultrastructural analyzes of developing Placozoa sp. H2 oocytes and embryos.  

Shown are toluidine stained semi thin sections (left panels) and SEM images (right panels) of maturing oocytes  (a) and 
embryos in different stages (b, c, d). Yolk material inside and outside maturing oocytes and embryos is clearly visible in dark 
blue in toluidine stained sections (a1, b1, c1) and as moderately electron dense material in TEM images (a2, b2). The early 
‘fertilization membrane’ is made up of two layers (b1, b2), whereas three layers are distinguishable in later stages (c1, c2). A 
putative maturing sperm cell with a maturing flagellum (arrow) is shown in e (note that this image is derived from Placozoa sp. 
H4, ‘HWH-B’ clone). Additional features not reported before are glycogen granules (a3) and lipid droplets in the oocyte (b1, b2, 
c1). In some sections intact nuclei (d1) and chromosomes (d2) were found in blastomers, indicating a normal cell cycle. 
o=oocyte, yo=yolk outside oocyte, yi=yolk inside oocyte, fc=fiber cell, ex=fiber cell extensions, cg=cortex granulum, 
gl=glycogen, li=lipid droplet, fm=fertilization membrane, sl=striped layer, gs=ground substance, dgs=dense ground substance, 
bl=blastomer, n=nucleus, nl=nucleolus, c=metaphase chromosomes, sc=putative sperm cell, ue=upper epithelium. 

 
Ultrastructural analyses of developing 
oocytes and embryos 

By means of toluidine staining and 
transmission electron microscopy, features of 
maturing placozoan oocytes and developing 
embryos known from Trichoplax adhaerens 
were studied in Placozoa sp. H2. All oocytes 
had a large nucleus with a diameter of close to 
20!m (Figure 3a1). Several fiber cells were 
always seen in close contact to the oocyte 

(Figure 3a2). These are clearly distinguishable 
from other cell types by their characteristic 
mitochondrial complexes and concrement 
vacuoles [9, 10]. Extensions of these cells are 
absorbed by the oocyte, also allowing bacteria 
to be actively transferred (Figure 4C). Cortical 
granules were found throughout the body of 
young oocytes, which migrate to the margin 
when the oocytes are mature (Figure 3a2, a3) 
(cf. [19]).  
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Figure 4. Endosymbiotic bacteria in Placozoa sp. H2 oocytes.  

Many bacteria were found in patches as shown in (A) DAPI stained and (B) propidium iodide stained oocytes and in TEM 
images (C). The bacteria are actively transferred to the maturing oocyte by by extensions of fiber cells (see main text). 
b=bacteria. 

In addition to these formerly seen 
characteristics, several new features were 
found in Placozoa sp. H2 oocytes and 
embryos. Droplets that were described as 
‘lipid droplets’ in degenerating mother animals 
[16-18] have the same structure inside and 
outside the oocyte/embryo based on toluidine 
and TEM images (Figure 3a1, a2), which 
indicates the same building material. We 
therefore refer to all these droplets as ‘yolk’ 
instead of ‘lipid’ droplets. Another feature 
newly found inside placozoan oocytes and 
embryos were glycogen granules and lipid 
droplets (Figure 3a3, b1, c1). Although not 
unusual for oocytes and embryos, these 
materials have not been previously recognized 
in Trichoplax adhaerens.  
In early stages the known two-layer structure 
of the fertilization membrane is made up of the 
striped layer and the ground substance (Figure 
3b1, b2), comparable to the Trichoplax 
fertilization membrane. However, in embryos 
from the 4-cell stage onward a third layer was 
detected (Figure 3c1, c2). According to the 
structure and position under the ground 
substance, we refer to this layer as ‘dense 
ground substance’. Additionally, as observed 
in fluorescent staining, intact nuclei and 
metaphase chromosomes were visible in TEM 
sections (Figure 3d1, d2). The latter is another 
new feature for placozoans. 

Discussion 

The Placozoa is key a phylum for 
unraveling early metazoan evolution. 
Morphological as well as molecular traits 

indicate a basal position in the metazoan tree 
of life with the exact phylogenetic position 
heavily discussed (cf. [3]). Important 
additional insights might come from the yet 
poorly known embryonic development. The 
latter also is of crucial importance for steadily 
increasing number of developmental genetic 
studies that use Trichoplax as a basal 
metazoan model system [32]. We here have 
extended current knowledge on placozoan 
sexual reproduction and embryonic 
development, which might become crucial for 
the value of placozoan moel systems.  

We have shown, that sexual reproduction 
can regularly be induced – as seen by oocyte 
maturation and early embryonic development - 
in three placozoan species lineages: 
Trichoplax adhaerens (the so-called ‘Grell’ 
clone), the Placozoa sp. H2 (‘CAR-PAN-4’ 
clone) and Placozoa sp. H16 (‘KEN-A’ clone). 
One most critical element for the induction of 
sexual reproduction was shown to be the 
temperature as production of oocytes only 
occurred at 23°C or above. Our data provide 
compelling evidence for bisexual reproduction 
in present populations of the Placozoa. 

Oocyte maturation and early cleavage 
stages of Placozoa sp. H2 resembles that of 
Trichoplax adhaerens described earlier [16, 
17]. Despite the fact that we were able to 
follow the embryonic development beyond the 
64-cell stage, we were not able to complete the 
life cycle. Obviously some critical 
environmental factors, necessary for the 
completion of the embryonic development, 
remain unknown. 
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Strong support for bisexual reproduction in 
several species-lineages comes from the 
observed expression of sperm associated 
marker proteins. We were able to identify 
potential sperm markers in three different 
placozoan representatives (Trichoplax 
adhaerens, Placozoa sp. H2 and Placozoa sp. 
H4). These genes cover various stages of 
spermatogenesis ranging from early meiosis to 
mature sperm, with functional flagella and 
sperm-oocyte recognition proteins used for 
fertilization. All markers were expressed in 
adult, healthy growing animals with no signs 
of degradation. This is true at least for 
Placozoa sp. H2 and Placozoa sp. H4 where 
cDNA was used to amplify these genes. 
Noteworthy is the fact that we were unable to 
isolate any of the five putative sperm markers 
from Placozoa sp. H16 (‘KEN-A’ clone) at 
low stringencies. This mirrors the sequence 
divergence between different placozoan 
lineages [24, 28, 33, 34]. 

The active transcription of sperm markers 
in cultures with no signs of oogenesis raises 
several interesting questions: 
First, why should an animal spend energy and 
time on producing sperm when no oocytes are 
available to be fertilized? The fact that the 
sperm-oocyte recognition marker Spag8 is 
transcribed indicates late stages of sperm 
maturation or even mature sperm. A possible 
explanation for the existence of mature sperm 
before egg formation might be the storage of 
the sperm during normal growth. The latter 
seems to be the normal case for most 
bisexually reproducing animals, at least when 
they are dioecious [35]. The storage of sperm 
allows a more rapid sexual response to a 
changing environment for example. As shown 
in the laboratory, animals start to degrade 
when the conditions are sub-optimal. This is 
accompanied by reduction of the lower 
epithelium leading to a complete stop of food 
uptake. Thus all energy for growing oocytes 
comes from the consumption of stored reserve 
materials in the animal’s body. The costs to 
produce oocytes and sperm in parallel in the 
same animal might therefore be too high and 
the animal’s way to overcome this 
evolutionary dead end might be to produce 
sperm and oocytes consecutively or by using 

different genders (i.e. being dioecious). Also, 
producing sperm and oocytes consecutively 
reduced the chance for self-fertilization. 

A second question is, why are no oocyte 
markers found when sperm markers are 
evident? We were unable to identify actively 
transcribed oocyte markers in our EST 
libraries although different oocyte markers are 
found in the Trichoplax genome. For example 
mos, a conserved key regulator of animal 
oocyte meiotic maturation (see e.g. [36]) is 
present in the genome sequence but but 
remains undetected yet in ESTs. The reason 
might simply be that ESTs derived from 
healthy growing specimens with no need for 
oogenesis yet. 

The third question that immediately arises 
is, why are no sperm cells visible? We were 
not able to detect cells that fit the 
morphological description of sperm cells by 
Grell & Benwitz (1981) [10]. Neither in 
healthy growing nor in degrading animals with 
oocytes any sperm cells were identified, with a 
single exception from Placozoa sp. H4 
(‘HWH-B’ clone; Figure 3e). However, the 
identification of a flagellum-associated sperm 
marker is the first indication that placozoans 
possess flagellated sperms, a presumed 
ancestral feature of metazoans [37]. 

We have no functional data for the 
identified sperm-associated proteins in 
placozoans yet, but  several lines of arguments 
support their role in spermatogenesis. For 
example the observation that a sperm 
associated antigen was found to be expressed 
in known regions of gametogenesis in a 
sponge [38] indicates a highly conserved 
function throughout the Metazoa. Together 
with the fact that Spag8 homologs were the 
only blast hits for the placozoan Spag8 protein 
against the Genbank, this suggests a sperm-
associated function of Spag8 in the Placozoa. 
The highly stringent blast searches and 
phylogenetic analyses suggest that also the 
other putative placozoan sperm markers are 
homologs of the known mouse proteins that 
play important roles in spermatogenesis. One 
has to note, however, that all proteins but 
Meig1 have also been found to be weakly 
expressed in other tissues [39-43]. Meig1 has 
only been known to be expressed in the testis 
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in mammals. It will be interesting in future 
studies to unravel its function in basal animals 
like the Placozoa and Porifera and elucidate if 
Meig1 expressing sperm cells are an ancestral 
feature of the Metazoa. 

We have found cortical granules in 
placozoan oocytes that have been known from 
oocytes also across different metazoan phyla 
[44-53] and are known to be a key element for 
building the cortex or fertilization membrane 
of a fertilized oocyte. The fertilization 
membrane is build for protecting the embryo 
from its environment and for preventing 
polyspermy (e.g. [54, 55]). Like in other 
animals in Trichoplax adhaerens and Placozoa 
sp. H2 these cortical granules are evenly 
dispersed throughout early oocytes and later 
move towards the margins during maturation 
([19]; own data). In Trichoplax they are known 
to build the fertilization membrane [19]. The 
fact that these granules disappear when the 
fertilization membrane is built supports this 
view of a participation in the generation of the 
protective eggshell. The generation of the 
eggshell after fertilization of the oocyte likely 
is a common feature in the Placozoa.  

Another new finding is that Placozoa sp. 
H2 has a three-layered fertilization membrane, 
while the one in Trichoplax adhaerens is two-
layered [19]. This may be a unique 
morphological character of this placozoan 
species-lineage or a result of age of the 
analyzed embryos. Embryos after the 4-cell 
stage were not examined for this membrane in 
Trichoplax adhaerens [19, 20]. It must also be 
noted that only our studies discovered lipid 
droplets and glycogen in oocytes, features that 
were not observed in Trichoplax adhaerens 
oocytes before. We were able to identify the 
‘droplets’ that are seen in degenerating 
animals as yolk droplets. These droplets show 
identical optical densities and structures as the 
yolk droplets inside the oocyte and thus we 
named these‘outer yolk droplets’ according to 
their occurrence outside the oocyte. 

Conclusions 

By using standard and confocal fluorescent 
microscopy and TEM analyses we could show 
that intact nuclei and chromosomes can be 

found in placozoan embryos. All 
chromosomes of a single blastomer are 
interconnected and are found in distinct 
patches as observed before in Trichoplax 
adhaerens. The identification of several 
spermatogenesis markers suggests sperm 
maturation and indicates bisexual reproduction 
in placozoans. Together with some important 
progress in inducing placozoan embryonic 
development beyond the formerly barrier of 64 
blastomers, brings us an important step closer 
to unraveling the life cycle and development 
of the Placozoa. 

Material and Methods 

Animal material and culture conditions  

To study placozoan embryonic development a 
previously established clonal culture of the Placozoa sp. 
H2 (‘CAR-PAN-4’ clone from Panama; 16S Haplotype 
H2; [24]) was used. This clone regularly reproduces 
sexually in our laboratory under the described 
conditions [25, 26]. The culture was set up as follows: 
Initially 50 animals were placed in 2L-aquaria with 
3.5% artificial seawater (ASW) at 23°C with a daylight 
period of 12h under two 30W Osram neon lamp 40cm 
above the culture. A few millilitres of food from a pure 
culture of Pyrenomonas helgolandii algae 
(Cryptophycae, Chromalveolata), were added to start 
the culture. The algae divided autonomously in the 
culture after addition of soil extract (www.epsag-uni-
goettingen.de), KNO3 (0.2g/L), K2HPO4 (20mg/L) and 
Mg2SO4 (20mg/L). Under these conditions, placozoans 
divided continuously until reaching a high density with 
approximately ten animals per square cm. As mentioned 
before by Grell (1972) [17], starvation and high 
population density led to a degradation phase (D-phase), 
to oocyte maturation within 5-6 weeks and finally to 
growing embryos.  

Identification of sperm-associated proteins in 
three placozoan species-lineages 

In order to search for sperm-associated proteins we 
started with EST data from the Placozoa sp. H4 (‘HWH-
B’ clone, E. gaidos, Hawaii, pers. comm..; see [27]), 
which can be grown in large quantities. This lineage is 
genetically distantly related to Trichoplax adhaerens 
(H1 lineage; [9,24,28]) and to the Placozoa sp. H2 
lineage. Roughly 2000 healthy growing vegetative 
animals were used for construction of the cDNA library. 
Animals were washed three times with sterile 3.5% 
ASW and starved overnight to prevent algae 
contamination. Animals were transferred to 1,5ml 
Eppendorf tubes with approximately 200 animals per 
tube and ASW was removed after brief centrifugation. 
Animals were lysed in fresh 500!l homogenisation 
buffer (HOM: 50mM Tris HCl, 10mM EDTA, 100mM 
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NaCl, 2,5mM DTT, 0,5% SDS, 0.1% DEPC in Ultra 
pure water (Gibco) at pH 8.0; [29]). Proteins were 
digested with 25!g DEPC-treated Proteinase K for 30 
minutes at 65°C. The homogenate was forced through a 
needle connected to a 2.5ml syringe. This step 
significantly increased nucleic acid yield. Subsequently 
nucleic acids were isolated by two rounds of Phenol : 
Cloroform : Isoamylalcohol (25:24:1) purification. 
Finally DNA was digested with DNaseI (Fermentas) 
and total RNA was used for cDNA library construction 
at the MPI for Molecular Genetics (Berlin) using the 
CloneMiner cDNA Library Construction Kit 
(Invitrogen). Initially 4,015 ESTs were 5’ end 
sequenced, quality and vector clipped and assembled 
resulting in 2,196 unique clusters. To search for genetic 
spermatogenesis markers in ESTs we used a Blast-based 
screening. Initially, we screened for obvious markers by 
searching for the phrases ‘sperm’, ‘testis’ and ‘meiosis’ 
in the first 10 blast-hits (blastx) of all EST clusters 
against Genbank protein entries at NCBI 
(http://blast.ncbi.nlm.nih.gov/Blast.cgi) using default 
parameters. The resulting list of male gamete related 
candidate proteins were blasted against mouse RefSeq 
proteins at NCBI and filtered for first hits only. This 
step resulted in several Placozoa sp. H4 orthologs of 
mouse sperm-associated proteins. Secondly, more 
mouse sperm-specific proteins were retrieved from 
Genbank (RefSeq database) and blasted against our EST 
clusters (tblastn on local Blast server). This led to the 
identification of additional homologs of genes related to 
spermatogenesis in mammals. 

We subsequently identified homologs of the final 
candidates in Trichoplax adhaerens using the JGI Blast 
server (http://genome.jgi-psf.org). In order to isolate 
these genes from Placozoa sp. H2, on which 
ultrastructural analyses on sexual reproduction were 
carried out, a cDNA library was constructed using RNA 
isolation methods as mentioned above. The cDNA was 
generated with the GeneRacer kit (Invitrogen). To 
amplify nearly complete coding sequences 3’-RACE 
was performed according to manufacturer’s 
recommendations (Invitrogen) using 5’ genes-specific 
primers based on the T. adhaerens and Placozoa sp. H4 
sequences, and the GeneRacer 3’ primers (the complete 
list of primers is available upon request).  

Cell counting by fluorescent DNA labeling 

Zygotes with a ‘fertilization’ membrane as well as 
older developmental stages were isolated from D-phase 
animals. Embryos were fixed in sterile plastic six-well 
plates with 4% paraformaldehyde in ASW. After 
fixation, embryos were washed for 5 minutes in 1x 
PBST (phosphate buffered saline; 0.1% Tween). For 
propidium iodide (PI) staining, RNA was digested with 
RNase A in 1x PBST to prevent background. After a 
washing step of 5 minutes in 1x PBST, the DNA was 
stained for one minute in 1xPBS containing fluorescent 
dyes (PI and DAPI). All steps were done in sterile 
plastic six-well plates. After staining, embryos were 
washed with 1x PBS, mounted on microscopic slides, 
and subsequently examined. Visualisation was done on 

a Zeiss Axiovert 200M fluorescence microscope (DAPI) 
and on Leica TCS SP2 confocal laser microscope (PI). 
PI stained embryos were scanned and photographss 
were taken at 1!m steps to follow single nuclei 
throughout the embryo and to prevent double counting. 

Scanning and Transmission Electron 
Microscopy and toluidine blue staining 

Eggs were isolated six weeks after starting new mass 
cultures. For TEM analysis eggs were fixed overnight in 
a 0.1 M phosphate buffered (pH 7.3) solution of 
paraformaldehyde (2%), glutaraldehyde (3%) and picric 
acid (7.5%) [30]. After washing in 0.1 M phosphate 
buffered (pH 7.3) solution (PBS), samples were post-
fixed in 2% osmium tetroxide solution in the same 
buffer and rinsed in PBS again. Following dehydration 
in a graded acetone series samples were embedded in 
Araldite. Ultrathin sections were cut with a LKB 
Ultrotome 2088V, double contrasted with alcoholic 
uranyl acetate and lead citrate, and observed under a 
Philips CM10 transmission electron microscope. 
Several 1!m semithin sections were stained with 
toluidine blue and observed under an Olympus Vanox 
optical microscope. For SEM, after the post-fixation in 
osmium, samples were rinsed in PBS, dehydrated 
through a graded ethanol series and critical point-dried 
under CO2 atmosphere. After mounting on aluminum 
stubs, the samples were sputter coated with gold-
palladium and observed with a Philips 515 scanning 
electron microscope.  

Supporting Information 

Supporting Material is provided in the Addendum. 

Supporting Figure 1. Alignments of C-terminal DnaJ 
domains (A) and NDK domains (B) underlying 
phylogentic inferences in Supporting Figure 2. 

Supporting Figure 2. Neighbor Joining trees (BioNJ) 
of DnaJ and Nme protein domains. The placozoan 
DnaJB13 and Nme5 clearly group to corresponding 
known family subgroups, respectively. 
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3.1. Phylogenetic position of the Placozoa 

The phylogenetic position of one of the key 

metazoan phyla, the Placozoa, is still heavily 

debated (cf [1-4]). Most of the older 

phylogenetic analyses that included the 

Placozoa were based on ribosomal DNA data 

or on a selected set of nuclear encoded 

proteins using phylogenetic reconstruction 

methods. Our workgroup therefore sought for 

a new approach to unraveling the phylogenetic 

position of the Placozoa in the metazoan tree 

of life (ToL). We used the simple and effective 

‘total-evidence-analysis’. A concatenated data 

set from several kinds of putative phylogenetic 

informative characters was used: 

mitochondrial and nuclear DNA sequences as 

well as gross morphology, molecular 

morphology and in situ hybridization data. For 

this data set a bunch of nuclear encoded genes 

have been isolated using primer sets that have 

been shown before to amplify target genes 

from Porifera to Chordata [5]. A total of 13 

genes from Trichoplax adhaerens cDNA were 

amplified. In addition gaps in the matrix were 

filled for Cubozoa by isolating target genes 

from Carybdea marsupialis cDNA. The result 

of the analyses is a new and quite striking 

scenario of metazoan evolution. In this 

scenario diploblasts (non-Bilateria sensu 

stricto) and tribloblasts (Bilateria) are sister 

groups that share a common urmetazoan 

ancestor. Placozoans inhibit a pivotal role in 

this scenario, as they are earliest branching 

group in the diploblast clade sharing lots of 

features with the hypothesized ‘placula’ [6] 

and thus possibly being the closest still living 

relative to the ‘Urmetazoon’. 

Although this phylogentic scenario has 

been shown before based on the analysis of 

concatenated mitochondrial respiratory chain 

proteins [7-10]; see Figure 3 D in the 

introduction) and on 18S sequence data [11-

13]; Figure 3 B7) this scenario was named for 

the first time: “the diploblast-bilateria sister 

hypothesis”. Further analyses with additional 

placozoan and other lower metazoan 

representatives will have to prove this 

scenario. The given ‘total-evidence’ approach 

might lead the way, how to use phylogentic 

informative characters from several sources 

for a single answer. This scenario raises an 

essential question about the evolution of the 

nervous system in the Metazoa. Placozoans 

and sponges both lack a nervous system. 

Based on the present results this feature must 

therefore have evolved twice, i.e. 

independently: once in the bilaterian ancestor 

and a second time in the coelenterate ancestor. 

It is therefore likely that placozoans and 

sponges have some sort of proto-nerve cells 

that evolved to what is known ’real’ nerve 

cells. In the case of placozoans fiber cells 

might represent these proto-nerve-cells, as 

they are known to possess nerve cell-like 

structures [14]. 

In addition to this ‘total-evidence-analysis’ 

important insights in evolutionary events 

might also come from studding the evolution 

of important protein families. One such family 

is the so-called Dicer protein family that plays 

crucial roles in gene regulation and defense 

against viruses. Plants and Fungi are known to 

possess several Dicer proteins [15]. 

Metazoans, in contrast were thought to contain 

only one (e.g., Caenorhabditis elegans and 

vertebrates) [16, 17] or two (insects only) 

Dicer genes [18]. It was shown that the higher 

number of Dicers in plants is related to an anti-

viral defense mechanisms [15, 19]. No 

information about Dicer proteins was available 

for lower metazoans like Placozoa, Porifera or 

Cnidaria. Partial Dicer cDNAs were therefore 

isolated from two placozoan lineages 

(Trichoplax adhaerens and Placozoa sp. H2) 

and partial Dicer cDNAs from the anthozoan, 

N. vectensis. In addition Dicer proteins were 

identified using publicly available databases of 

the hydrozoan cnidarian Hydra magnipapillata 

and the sponge Amphimedon queenslandica. 

Surprisingly five Dicer proteins each in the 

two placozoan lineages and in the sponge were 

identified, respectively. In addition each two 

Dicer paralogs were found in both cnidarian 

species. Phylogenetic analyses including plant 

and fungal Dicer proteins suggest a single 

duplication event of a hypothetical “Proto-

Dicer” gene early in metazoan evolution. This 

duplication gave rise to two types of metazoan 
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Dicer genes, Group I and Group II. The 

analyses showed that the Placozoa is the only 

known still living metazoan phylum that 

possesses both Group I and Group II Dicers. 

The only parsimonious explanation for the 

shown phylogenetic tree of the Dicer protein 

family is a position of the Placozoa close to 

the metazoan ancestor and that all other 

metazoans have lost Group I Dicers. The 

existence of several Dicer proteins in basal 

metazoan phyla is not only a surprising 

feature. It raises the question, why so many 

Dicers are needed. Based on known functions 

of plant Dicer proteins the identified basal 

metazoan Dicer proteins are claimed to work 

in anti-viral defense. 
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3.2. Biodiveristy and biogeography of the Placozoa 

In earlier studies placozoans were found in 

tropical and subtropical waters roughly 

between latitudes from 30° North to 30° South 

[20- 22]. Although more than 30 locations 

have been positively sampled for placozoan 

specimens only 15 of these have been 

genetically characterized. Using slide 

sampling and rock collection methods I was 

able to isolate a total of 78 placozoan 

specimens from 23 new worldwide locations. I 

thereby identified seven out of 11 formerly 

known 16S haplotypes, five new haplotypes, 

and one new placozoan clade expanding our 

current knownledge on placozoan systematics. 

Genetic characterization of the different 

locations yielded two cosmopolitan clades 

(euryoecious lineages) and several putative 

endemics (stenoecious lineages) indicating that 

different clades occupy different ecological 

niches. This is consistent with the existence of 

several genetically and ecologically separated 

entities representing higher taxonomic units of 

yet undefined ranks. 

To further identify these taxonomic units 

from a morphological perspective, 

morphological differences among different 

clonal placozoan lineages were studied, 

together with Loretta Guidi and Maria 

Balsamo from the University of Urbino (Italy). 

We used SEM and TEM imaging of 20 

specimens each from ten different clonal 

lineages. In these samples nine different 

morphological characters were identified that 

allowed distinguishing between different 

clonal lineage groups. These morphological 

groups are not congruent with the observed 

genetic clades or haplotypes suggesting that 

the observed morphological differences are 

due to unknown local environmental traits, 

some of which might be quite similar in 

various locations. These first morphological 

data from different placozoan lineages, 

however, allow to clearly distinguish between 

five clonal groups. Furthermore, we identified 

two new morphological characters for 

Placozoa: a new type of fiber cells and an 

epithelial structure called ‘concave disc’. We 

also describe morphological characteristics of 

a formerly suggested potential stem-cell type. 

Future studies on additional lineages will have 

to show if new species can be named based on 

the observed morphological characters. The 

available results, however, already support the 

assumption based on genetic data that the 

diversity within the Placozoa is greater than 

previously presumed.  

In a course on the Placozoa that I gave 

together with Karolin von der Chevallerie and 

Prof. Dr. Bernd Schierwater within the 

framework of the “Volker Schmidt Training 

Course” (May 2009) the seawater aquaria of 

the “Station Biologique de Roscoff” were 

sampled for placozoans. Very surprisingly 

several placozoan specimen were found on 

traps in the cold waters of the northeastern 

Atlantic Ocean. Genetic screening identified 

these placozoans as Placozoa sp. H2. This 

observation fits perfectly to the shown 

cosmopolitan distribution of that particular 

species-lineage and further cements the 

euryoecious nature of the placozoan clade I 

with animals living in tropical and subtropical 

waters and also in cold waters of the northern 

Atlantic Ocean. The specimens from Roscoff 

are the northernmost placozoans ever 

described - a feature suggesting that sampling 

in other northern (and southern) areas might 

also be successful. 
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3.3. Biology of the Placozoa 

Very little has been known about the basic 

biology of the Placozoa. Basically nothing is 

known about the ecology, habitats, behavior, 

population structures, life cycle, development 

and other aspects. In the presented studies new 

empirical data on the biology of the Placozoa 

are added. 

Placozoans were isolated from various 

natural and artificial habitats including reefs, 

boat docks (either with or without concrete 

surface), inside and outside moles, rock pools, 

stony beaches, mangroves and flow-throw tank 

systems. Most animals were isolated from boat 

docks and stony beaches supporting their 

natural occurrence on hard surfaces as shown 

before [20, 21]. Placozoans were found in 

waters of different temperatures ranging from 

14-27°C and in all seasons. The maximum 

depth where I found animals was at 20m in the 

warm waters at the coast of Kenya indicating 

their occurrence in the first 20 meters at least 

in this region. The lineage Placozoa sp. H13 

was isolated independently at different 

seasonal times in Hong Kong. This finding is 

in accordance with earlier studies of 

seasonality of placozoans in Japan [23] and 

indicates stable populations. An important 

finding of our field sampling is the fact that 

more isolates were obtained from the water 

column. Fewer animals were found on samples 

directly placed on the bottom. This supports 

the view that mostly pelagic stages (budded 

swarmers or maybe sexually produced larvae) 

were settling on the traps rather than benthic 

animals. Swarmers, or possibly other unknown 

pelagic forms, might thus represent an 

important stage in the life-history of 

placozoans in respect of dispersal. 

In earlier studies it was claimed that 

placozoans are not viable under low salinity 

conditions [20]. In my studies, however, I was 

able to show that they survived in a reduced 

salinity of 25ppt. Even more striking, sexual 

reproduction was successfully induced under 

this condition in the Placozoa sp. H2 lineage. 

At least some placozoans are therefore 

adaptable to low salinities suggesting that they 

might be found even in brackish waters. High 

salinities are also coped with to values of 

50ppt in the Placozoa sp. H2 ([20] and own 

observations). This together with the ability to 

adapt to a range of temperatures highlights the 

flexibility of at least some placozoans to 

handle different environmental conditions. The 

finding of distinct distribution patterns of 

different placozoan clades, however, also 

indicates the existence of unique ecological 

traits with certain lineages inhabiting specific 

ecological niches.  

Embryonic development is an indispensable 

part in the biology of animals. The latter is not 

known in the diploblastic Placozoa. Knowing 

the development crucial not only to compare it 

with known developmental patterns in other 

lower Metazoa, but also for using the Placozoa 

as a model system for future studies in all 

areas of biology.  

By using standard and confocal fluorescent 

microscopy and TEM analyses new 

morphological features were observed. Intact 

nuclei and chromosomes were regularly found 

in placozoan embryos and a three-layered 

fertilization membrane was seen to surround 

older embryos. These features were never seen 

before in placozoan embryonic development. 

Although the major aim of unraveling the 

complete placozoan life cycle was not 

achieved here, the current knowledge on 

placozoan sexual reproduction and embryonic 

development was largely extended. Several of 

the new developmental features were shown to 

be common in placozoans and some are 

unique to certain lineages. Placozoans 

developed under the improved culturing 

conditions until reaching at least the 128-cell 

stage. In addition, molecular hints for the 

existence of sperms were presented indicating 

bisexual reproduction in the Placozoa. 

Subsequent studies on placozoan development 

in different lineages must be tried for 

completing the embryonic development in the 

laboratory and thereby helping to piece the 

puzzle of placozoan biology together.
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All Supporting Material is additionally enclosed on the data CD. The underlined 

supporting files are provided as electronic data only. 

2.1. Concatenated analysis sheds light on early metazoan evolution and fuels a modern 

"Urmetazoon" hypothesis. 

Supporting Figure 1. Positive or negative partitioned Bremer support for all nodes under 

mitochondrial versus nuclear gene partitions.  

Supporting Figure 2. Phylogenetic Tree for 73 taxa matrix with Bilateria shown as major groups 

(A) and including all Taxonomic names (B). 

Supporting Figure 3. 16S rRNA secondary structure prediction. 

Supporting Figure 4. In situ expression of Hox-like genes Cnox-1 and Cnox-3 in the hydrozoan 

Eleutheria dichotoma. 

Supporting Table 1. Survey of the literature for hypotheses concerning the major animal lineages 

discussed in this paper. 

Supporting Table 2. GenBank accession numbers used in this study. 

Supporting Table 3. Morphology data matrix. 

Supporting Table 4. Alignment matrix for 24 taxa and 73 Taxa (in nexus format). 

Supporting Table 5. Disposition of PCR and sequencing of placozoan and cubozoan genes. 

2.3. Multiple Dicer genes in the early-diverging Metazoa. 

Supporting Figure 1. Neighbor-Joining phylogenetic analysis with 645 protein 

sequences from the DEAD/DEAH Box, MDA5 RIGI IGP2, Archaeal and invertebrate 

helicase, and Dicer families. 

Supporting Table 1. Accession numbers of all sequences used in the analyses. 

Supporting Data 1. Protein sequence alignments of the RNase III (a) and (b) domains 

(without the intervening linker). 

Supporting Data 2. Trimmed matrix used to examine the relationships of proteins 

within the Dicer family. 

Supporting Data 3. Detail of Bayesian posteriors at all nodes in the tree. 

2.4. The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical and 

subtropical waters. 

Supporting Figure 1. 16S alignment used in phylogenetic analyses in Figure 1. 

Supporting Figure 2. Sea surface temperatures for the 37 genetically screened locations.  

Supporting Table 1. Accession numbers of all genotyped isolates with associated clone identifier. 

Supporting Table 2. Pairwise genetic distances between placozoan 16S haplotypes. 

Supporting Table 3. Poriferan and Cnidarian mean uncorrected pairwise distances (16S). 

2.7. New insights into placozoan sexual reproduction and development. 

Supporting Figure 1. Alignments of C-terminal DnaJ domains (A) and NDK domains (B) 

underlying phylogentic inferences in Supporting Figure 2. 

Supporting Figure 2. Neighbor Joining trees (BioNJ) of DnaJ and Nme protein domains. 
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Supporting Material for Section 2.1.: 

Concatenated analysis sheds light on early metazoan evolution and fuels a 

modern "Urmetazoon" hypothesis. 

Supporting Figure 1. Positive or negative partitioned Bremer support for all nodes under mitochondrial 

versus nuclear gene partitions.  

The shown analysis was done for one of the “plausible” parsimony trees. Other topologies preferred by parsimony 

analysis gave similar inferences about support. The figure shows whether the partitioned Bremer support values are 

positive negative or neutral. This figure demonstrates that the nuclear versus mitochondrial partitions all provide 

similar degrees of support for the various nodes in the tree. Note that over half of the nodes acquire positive support 

from both partitions (11/21). Most of the negative support in the tree is within the diploblast clade (six out of eight 

nodes) indicating the instability of the relationships in this clade. Note also that the majority of the negative support 

comes from mitochondrial partitions further strengthening our contention that the mitochondrial partitions are NOT 

swamping the nuclear partitions. Nodes at the base of the tree exhibit consistent support from all sources under the 

shown partitioning scheme. Quite strikingly, nuclear proteins seem to provide the highest positive support of all the 

characters in the analysis. 
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Supporting Figure 2. Phylogenetic Tree for 73 taxa matrix with Bilateria shown as major groups (A) and 

including all Taxonomic names (B). 

The 73 taxa are comprised of the 64 taxa from the Dunn et al. (2008) study [25] plus nine taxa added from the 

present study. Since the topologies within Lophotrochozoa, Ecdysozoa, and Deuterostomia are not discussed in our 

study, we have represented these as major monophyletic groups in this figure (A). All included taxa are listed in (B). 

The blue circles indicate that the support for these nodes are 100% jackknife support for unweighted parsimony 

analysis and 1.0 posterior Bayesian probability for parsmodel analysis in MrBayes. For four nodes relevant to the 

present study from this larger analysis, the jackknife values and Bayesian posteriors are listed next to the nodes, 

respectively. For references see section 2.1. 
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Supporting Figure 3. 16S rRNA secondary structure prediction. 
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Supporting Figure 4. In situ expression of Hox-like genes Cnox-1 and Cnox-3 in the hydrozoan 

Eleutheria dichotoma. 

The two Hox-like genes, Cnox-1 and Cnox-3, display differential spatiotemporal expression patterns in the medusa 

stage. Cnox-1 (A1– A4) is expressed ectodermally in the so-called Nesselring, an area of undifferentiated cells 

lining the ring canal of medusae (cross section: A3, A4). Cnox-3 expression marks the most ectodermal oral part of 

the manubrium (B1, B2). Staining is with NBT/X-phosphate (A1, B1) and fluorescein-labeled probes (A2, B2); the 

scale bar indicates 50 lm. Pictures are reprinted from Jakob and Schierwater (2007) [52]. For references see section 

2.1. 
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Supporting Table 1. Survey of the literature for hypotheses concerning the major animal lineages 

discussed in this paper. 

Authors Year Node addressed Reference

Baurain et al. 2007 A [1]

Chen et al. 2000 A [2]

Cook et al. 2004 A [3]

Davidson et al. 1995 A [4]

Dewel 2000 A [5]

Erwin and Davidson 2002 A [6]

Ferrier and Holland 2001 A [7]

Finnerty 2003 A [8]

Finnerty et al 2004 A [9]

Finnerty et al. 2003 A [10]

Groger and Schmid 2001 A [11]

Hedges et al. 2004 A [12]

Holland 2004 A [13]

Jacobs et al. 2007 A [14]

Knoll and Carrol 1999 A [15]

Koizumi 2007 A [16]

Lartillot et al. 2007 A [17]

Malakov 2004 A [18]

Matus et al. 2006 A [19]

Medina et al. 2001 A [20]

Ogishima and Tanaka 2007 A [21]

Peterson and Sperling 2007 A [22]

Peterson et al. 2000 A [23]

Plachetzki et al. 2007 A [24]

Rieger et al. 2005 A [25]

Rokas et al. 2003 A [26]

Ryan and Baxevenis 2007 A [27]

Santera et al. 2005 A [28]

ToL website 2008 A [29]

Valentine 1994 A [30]

Valentine 1997 A [31]

Embley and Martin 2006 A [32]

Extavour 2007 A [33]

Extavour and Akam 2003 A [34]

Lavrov and Lang 2005 A [35]

Technau et al. 2005 A [36]

Baguna and Riutort 2004 B [37]

Telford 2006 B [38]

Adoute et al. 2000 C [39]

Collins 1998 C [40]

Collins and Valentine 2001 C [41]

Peterson and Davidson 2000 D [42]

Peterson and Ernisse 2001 D [43]

Dunn et al. 2008 E [44]

Field et al. 1989 F [45]

Ruiz-Trillo et al. 2008 a [46]

Srivastava et al. 2008 b [47]

Gerlach et al. 2007 c [48]

Nielsen 2008 d [49]

Dellaporta et al. 2006 e [50]

Lavrov et al. 2005 e [51]

Signorovitch et al. 2007 e [52]

Erpenbeck et al. 2007 f [53]

Wallberg et al. 2004 f (but root on sponges) [54]
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Supporting Table 2. GenBank accession numbers used in this study. 
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Supporting Table 2 continued: lilac color marks filled-in sequences from Dunn et al. [25]. 
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Supporting Table 3. Morphology data matrix. 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Protozoa 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Placozoa 1 1 0 0 0 0 0 0 0 0 0 0 0 0 ? ? 0

Porifera 1 2 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1

Anthozoa 1 2 1 2 1 1 1 1 1 1 1 1 1 0 1 1 1

Hydrozoa 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Scyphozoa 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Cubozoa 1 2 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1

Ctenophora 1 2 2 2 0 ? 1 1 1 1 2 1 1 1 1 1 1

Bilateria 1 2 2 2 1 1 1 1 1 1 2 1 1 1 1 1 2

 

1. SGD: soma-germ-line differentiation  (0=exceptionally; 1=always) 

2. SOD: intrasomatic differentiation (0=absent, 1=2-5 2=>5 somatic cell types) 

3. MUS: contractile cells (0=absent, 1= epithelio-muscle cells, 2= muscle cells) 

4. EXC: excitation (conducting) cells (0, 1=in non-specialized cells, 2=nerve cells) 

5. TOT: totipotent cell lineages (0, 1) 

6. CRD: cell re-differentiation (0, 1) 

7. COL: collagen (0, 1) 

8. ECM: extracellular matrix (0, 1) 

9. BAL: basal lamina (0, 1) 

10. DIG: digestive cavity (0, 1) 

11. SYM: multicellular symmetry (0=absent, 1=radial, 2=biradial) 

12. DBA: defined body axis (0, 1) 

13. MOU: mouth and/or anus (0, 1) 

14. SEN: sensory organs (0, 1) 

15. ECT: ectoderm (0, 1) 

16. ENT: entoderm (0, 1) 

17. MES: mesogloea (0, 1), mesoderm (2)  
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Supporting Table 5. Disposition of PCR and sequencing of placozoan and cubozoan genes. 

 

Primer  name     

(Rokas et al., 2005)
target gene

Trichoplax 

adhaerens 

accession #

Placozoa           

sp. H2      

accession #

Carybdea 

marsupialis 

accession #

TOA4 Cell division control protein 42 (CDC42) FJ387001 * FJ387011 -

TOA5 Ras-related nuclear protein (RAN) FJ387005 * - -

TOA6 Eukaryotic translation initiation factor 2 (EIF2) FJ387008 * FJ387015 FJ387000 *

TOA9 Heat shock 70kDa protein 8, cyto. (HSP70-8) FJ387002 * FJ387012 -

TOA11 Heat shock 70kDa protein 9, mito. FJ387003 - -

TOA15 DNA-directed RNA Polymerase II beg. FJ387016 - -

TOA16 DNA-directed RNA Polymerase II middle FJ387016 - -

TOA25 Ribosomal protein S2 (RPS2) FJ387006 * FJ387014 FJ386999 *

TOA48 RNA polymerase III (RPOIII) FJ387007 * - -

TOA62 Na,K-ATPase Alpha-subunit, beg. (ATP1a) FJ387004 * FJ387013 FJ386998 *

TOA65 Beta-tubulin (BTU) FJ387017 * FJ387010 -
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Supporting Material for Section 2.3.: 

Multiple Dicer genes in the early-diverging Metazoa. 

Supporting Figure 1. Neighbor-Joining phylogenetic analysis with 645 protein sequences from the 

DEAD/DEAH Box, MDA5 RIGI IGP2, Archaeal and invertebrate helicase, and Dicer families. 
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Supporting Table 1. Accession numbers of all sequences used in the analyses. 

Species Accession Number

Aedes aegypti AAW48724, AAW48725, EAT38656, EAT41563, AAW48725

Amphimedon queenslandica Predictions (trace files from NCBI/Compagen)

Anopheles gambiae

EAA00264, XP_320248, XP_310969, XP_312076, EAA08469, XP_315671, 

EAA11703, EAA11336, XP_315363, EAU77041, EAA00456, XP_320481, 

EAA00143, XP_320199, XP_314012, EAA10198, EAA43551, XP_311826, 

EAA14744, XP_319825, XP_314194, EAA04138, EAA02455, XP_565256, 

EAA

Apis mellifera

XP_624510, XP_001122487/CG4792PA, XP_623285, XP_393356, 

XP_391829PA, XP_393083/CG7922PA, XP_394723, NP_001035345, 

XP_395653, XP_624210/CG6418PB, XP_624894, XP_395774, 

XP_001120427, XP_001122489, XP_623193, XP_001122539, XP_1122313, 

XP_001122266, XP_623668

Aplysia californica
AASC01159495, AASC01031229, AASC01032805, AASC01106637, 

AASC01109799, AASC01031229

Arabidopsis thaliana
NP_171612,P84634, NP_197532, AAZ80387, AAF03534, AAF26461, 

ABF19797, AAF26098, NP_5661993, NP_174785, Q9SP32

Archaeaon (uncultured methanogenic 

archaeon RC-I)
CAJ37592

Archaeoglobus fulgidus NP_070287 

Aspergillus fumigatus XP_749133, XP_746479, XP_750055, XP_753471

Aspergillus oryzae BAE62891, BAE56740, BAE55820

Aspergillus terreus XP_001212029, XP_001216523, XP_001211270

Bos taurus
XP_580928, XP_615590, XP_591336, NP_001015545, NP_976235, 

XP_878993, XP_114051083

Bradyrhizobium CAL79857

Burkholderia tailandensis YP_ 439173

Caenorhabditis briggsae

CAE61501, CAE61499, CAE63741, CAE75060/CBG22974, CAE61310, 

CAE60412, CAE64981, CAE67390, CAE70046, CAE67097, CAE70203, 

CAE64944, CAE74433, CAE64461, CAE65221, CAE60548, CAE59756, 

CAE60124, CAE57692, CAE66170, CAE56477, CAE73250, CAE68945, 

CAE60391, CAE682

Caenorhabditis elegans

NP_498761, S44849/K12H4, P34529, NP_501019, NP_492161, NP_501018, 

NP_490761 , NP_492326, NP_001022623, NP_491963, NP_491876, 

NP_497615 , NP_001041134 , NP_497743, NP_001033411, NP_491681 , 

NP_499069, NP_495891, NP_498646, NP_001021793, NP_495324, 

NP_49098

Campylobacter jejuni YP_ 001000786

Candida albicans XP_718614

Canis familiaris XP_545493, XP_860567, XP_537547, XM542912

Capitella sp. Prediction (from JGI Genome portal site)

Cenarchaeum symbiosum AAC62691

Ciona intestinalis TC70565, AABS01000072, AABS01000110, AABS01000049
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Ciona savignyi

AACT01005683, AACT01055680, AACT01064761, AACT01025433, 

AACT01042303, AACT01028999, AACT01051614, AACT01064761, 

AACT01025432, AACT01005683, AACT01021086

Clostridium perfringens YP_ 699468

Coccidioides immitis EAS34409

Coprinopsis cinerea XP_001833777, XP_001840952

Cryphonectria parasitica ABB00356 

Cryphonectria parasitica ABB00357

Cryptococcus neoformans XP_569593, XP_5683221

Danio rerio

XP_001339107, NP_001074053, AAH97103, XP_701089, NC007125, 

XP_694124, XP_683015, XP_693126, XP_683474, CAAK03020666, 

NC007118, CAAK03040846, CAAK03040844

Desulfotomaculum reducens YP_ 001113172

Dictyostelium discoideum XP_635263, CAC41974, XP_636093, XP_644014, XP_0011346281

Drosophila melanogaster

NP_524453, NP_523778, NP_650971/CG7922PA, NP_648062, NP_731031, 

NP_649788/CG7483PA, NP_572424/CG10777PB, NP_723899PA, 

NP_536783/CG9748PA, NP_476595, NP_651970, NP_723089, 

NP_573020/CG6227PA, NP_476927/CG12759PA, NP_610090/CG9253PA, 

NP_648413, NP_524019, N

Drosophila pseudoobscura EAL252091

Drosophila teissieri ABB54769

Drosophila yakuba
ABB54762, ABB54764, ABB54763, ABB54766, ABB54767, ABB54761, 

ABB54765

Drosophlia simulans
ABB54753, ABB54756, ABB54757, ABB54759, ABB54758, ABB54754, 

ABB54760

Erwinia carotovora YP_ 050432

Fugu rubripes CAAB01000424, CAAB01000424, CAAB01000038

Gallus gallus
XP_422031, XP_422365, AADN02003674, NP_001035555, AADN02058700, 

XP_422031MDA5, AADN02050596, XP_4258711, AADN02068708

Gibberella zeae XP_3845841, XP_3892011, XP_384584, XP_389201 

Haloarcula marismortui YP_ 137178

Halobacterium NP_2809761

Haloquadratum walsbyi YP_ 656807

Helobdella robusta Prediction (from JGI Genome portal site)

Homo sapiens

NP_803187, AAD19826, CAI46068, AAG343681, AAG54076, AAI11751, 

NP_071451, Q9BYX4IFIH1, BAC04159, Q8IYD8, BAB14684, AAY24206, 

BAB71141, CAB70840, NP_077024, Q96C10, Q99J87, NP_803187, Q9UPY3, 

AAH44952, BAC77356, EAX10482, AAH78180, EAX10482, AAH44952, BAB14

Hydra magnipapillata Predictions (trace files from Ensembl)

Leishmania major strain Friedlin NP_047099, XP_843148, XP_843415

Macaca mulatta
NP_001036133, NP_001040588, XP_001108799, XP_0011008681, 

NM00104266, NP_001036131, NP_001036131

Magnaporthe grisea XP_3636151

Magnaporthe grisea XP_363615

Methanocaldococcus jannaschii NP_248512

Methanococcoides burtonii YP_ 565613

Methanococcus maripaludis NP_988515 

Methanoculleus marisnigri ZP 01392061

Methanopyrus kandleri NP_614961 

Methanosaeta thermophila YP_ 842666 

Methanosarcina acetivorans NP_615070 

Methanosarcina barkeri YP_ 304755
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Methanosarcina mazei NP_633411

Methanosphaera stadtmanae YP_ 447070

Methanospirillum hungatei YP_ 503150 

Methanothermobacter thermautotrophicus NP_276531

Monodelphis domestica XP_001374256

Mucor circinelloides CAK32533

Mus musculus

AAH80200, BAE31652, NP_082111, AAH04031, BAB31303, BAE31919, 

AAH25508, BAC33670, BAE31920, NP_084426, AAL84638, BAC15765, 

NP_683750, Q8R418, Q6Q899, BAC35487, BAC29687, BAC30614, BAE36884, 

DQ167127

Nanoarchaeum equitans NP_963674 

Natronomonas pharaonis YP_ 325830 

Nematostella vectensis EU394531, EU394532

Neosartorya fischeri XP_001261296

Neurospora crassa XP_961898 , XP_963538

Oryzia sativa
NP_001048796, NP_001045148, CAH67991NP_0010648981, AAP543461, 

ABA91791, BAAF03033934, BAAF03018910, BAAF03033934, BAAF03018911

Pan troglodytes
XP_001156442, XP_001156611, XP_509928, XP_001166868, XP_001167022, 

XP_001167051, XP_001154010, XP_525410

Paramecium tetraurelia CAI39097

Phaeosphaeria nodorum EAT83689

Placozoa sp. (Haplotype2) EU394522, EU394524, EU394526, EU394528, EU394530

Plasmodium yoelii XP_731192

Pongo pygmaeus CAH89418

Pyrococcus abyssi NP_125972 

Pyrococcus Furiosus 1WP9 

Pyrococcus furiosus NP_579744 

Pyrococcus horikoshii NP_877878, NP_143722

Rattus norvegicus
XP_001055482, XP_001081462, XP_001069041, XP_2163804, 

XP_001067411, NM001005556

Rhizopus oryzae RO3G 15434 

Saccharomyces pombe NP_588215, NP_5936241 

Salmonella enterica YP_ 216307, YP_ 50791, NP_456214

Salmonella typhimurium NP_460264

Schistosoma mansoni CAJ00235

Sclerotinia sclerotiorum XP_001585179, XP_001588821

Strongylocentrotus purpuratus

XP_001176626, XP_001180482, XP_0012041351, gbAAGJ02143776, 

gbAAGJ02010786, gbAAGJ02133742, gbAAGJ02119714, gbAAGJ02005534, 

gbAAGJ02146168, gbAAGJ02018562, gbAAGJ02131955, XP_001204135, 

XP_001181040

Sus scrofa AB287431

Tetradon nigorviridis
CAG09339, CAG10454, CAAE01014530, CAG02830, CAAE01015004, 

CAAE01014530, CAAE01014338

Thermococcus kodakarensis YP_ 183434

Thermoplasma acidophilum NP_394951 

Thermoplasma volcanium BAB606591 

Tribolium castaneum

NP_001107840, XP_969530, XP_968993/CG4792, XP_973670/CG7922, 

XP_969008/CG4554, XP_975873, XP_972501, XP_972000/CG32344, 

XP_969791/CG9253, XP_975511/CG7483, XP_968296/CG2173, XP_974261, 

XP_967902/CG9748, XP_969217, NP_001034520, XP_974045, XP_975300, 

XP_97

Trichoplax adhaerens EU394521, EU394523, EU394525, EU394527, EU394529

Trypansomoa cruzi XP_807714, EAN98055
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Uncultured crenarchaeote 31-F-01 BAE95223

Uncultured marine group II euryarchaeote 

DeepAnt-JyKC7
AAT10146 

Uncultured methanogenic archaeon RC-I AJ36563

Xenopus laevis AAH73528/MGC82787 
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Supporting Material for Section 2.4.: 

The phylogeography of the Placozoa suggests a taxon-rich phylum in tropical 

and subtropical waters. 

Supporting Figure 1. 16S alignment used in phylogenetic analyses in Figure 1. 
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Supporting Figure 2. Sea surface temperatures for the 37 genetically screened locations.  

The average temperature decreases with increasing distance from the equator. To show the differences in seasonal 

temperature fluctuations between tropical, subtropical and temperate habitats the minimal (min. temp.) and maximal 

(max. temp.) sea surface temperatures are given. 
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Supporting Table 1. Accession numbers of all genotyped isolates with associated clone identifier. 

origin Haplotype clone ID gapped sequence accession number

-

Spain (Majorca) H1 MAJ-A - GQ901078

Tunisia (Yasmine) H2 TUN-1 - GQ901079

H2 TUN-A - GQ901080

H2 TUN-B - GQ901081

Tunisia (Zarzis) H2 TUN-C - GQ901082

H2 TUN-D - GQ901083

H2 TUN-E - GQ901084

H2 TUN-F - GQ901085

Spain (Teneriffe) H2 TEN-A - GQ901086

H2 TEN-E - GQ901087

H2 TEN-F - GQ901088

H2 TEN-G - GQ901089

H2 TEN-H - GQ901090

H2 TEN-M - GQ901091

Israel (Caesarea) H2 ISR-A - GQ901092

H2 ISR-B - GQ901093

H2 ISR-C - GQ901094

H2 ISR-D - GQ901095

H2 ISR-E - GQ901096

H2 ISR-F - GQ901097

H2 ISR-G - GQ901098

H2 ISR-H - GQ901099

Italy (San Felice Circeo) H2 ISFC-1 - GQ901100

H2 ISFC-2 - GQ901101

Italy (Castiglioncelleo) H2 ICAS-1 - GQ901102

H2 ICAS-2 - GQ901103

H2 ICAS-3 - GQ901104

H2 ICAS-4 - GQ901105

Greece (Katerini) H2 GRC-A - GQ901106

H2 GRC-B - GQ901107

Greece (Ormos Panagias) H2 OMP-1 - GQ901108

Reunion H2 REU-A - GQ901109

H2 REU-B - GQ901110

H2 REU-C - GQ901111

H2 REU-D - GQ901112

'Indonesia' (aquarium sample) H2 AQLA-1 - GQ901113

H2 AQLA-4 - GQ901114

H2 AQLA-5 - GQ901115

'Bali' (aquarium sample) H2 BAL-1 - GQ901116

H2 BAL-2 - GQ901117

H2 BAL-3 - GQ901118

Japan (Okinawa) H2 OKH-A - GQ901119

H2 OKH-B - GQ901120

Bahamas H3 BAH-A - GQ901121

Malaysia H4 MAL-A - GQ901122

H4 MAL-B X GQ901143

H4 MAL-C X GQ901144

Hong Kong H4 HKM-A X GQ901145

H4 HKM-B X GQ901146

Thailand H4 THA-A - GQ901123

H4 THA-B X GQ901147

H4 THA-C X GQ901148

USA (Hawaii) H8 HWH-A - GQ901124

H8 BAH-B - GQ901125

Turkey H9 TKW-A - GQ901126

H9 TKW-B - GQ901127

H9 TKW-C X GQ901149

Italy (Otranto) H10 OTR-1 - GQ901128

H10 OTR-2 - GQ901129

H10 OTR-3 - GQ901130

H10 OTR-4 - GQ901131  
'Indonesia' (aquarium sample) H12 AQLA-2 - GQ901132

H12 AQLA-3 - GQ901133

Hong Kong H13 HKT-A - GQ901134

H13 HKT-C - GQ901135

H13 HKT-D X GQ901150

H13 HKT-E X GQ901151

H13 HKT-F X GQ901152

H13 HKT-G X GQ901153

H13 HKT-H X GQ901154

H13 HKT-I X GQ901155

Hong Kong H14 HKT-B - GQ901136

Philippines (Boracay) H15 PHB-A - GQ901137

H15 PHB-B - GQ901138

H15 PHB-C - GQ901139

H15 PHB-D - GQ901140

Kenya H16 KEN-A - GQ901141

H16 KEN-B - GQ901142
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Supporting Table 2. Pairwise genetic distances between placozoan 16S haplotypes (explanations see 

main text).  

The minimal p-distance between clades (grey) is substantially higher than within clades (purple, green and blue for 

clades I, III and V, respectively). Note that values for H10 are misleadingly high compared to closely related 

haplotypes (H9, H13-H15) because of missing sequence information for H10 at the conserved 5’ end. 

 

Clade II Clade VI Clade VII Clade IV

H1 H2 H3 H6 H7 H8 H16 H11 H12 H5 H4 H9 H10 H15 H13 H14

H1 -

H2 0.01 -

II H3 0.122 0.122 -

H6 0.209 0.201 0.165 -

H7 0.204 0.197 0.168 0.019 -

H8 0.181 0.175 0.144 0.019 0.007 -

H16 0.173 0.166 0.139 0.021 0.003 0.004 -

VI H11 0.183 0.190 0.170 0.120 0.110 0.104 0.08 -

VII H12 0.189 0.182 0.163 0.092 0.085 0.085 0.07 0.070 -

IV H5 0.193 0.190 0.180 0.096 0.091 0.096 0.08 0.078 0.038 -

H4 0.215 0.213 0.194 0.150 0.147 0.132 0.12 0.124 0.093 0.070 -

H9 0.223 0.221 0.202 0.159 0.156 0.143 0.13 0.126 0.102 0.077 0.01 -

H10 0.267 0.263 0.235 0.176 0.170 0.174 0.17 0.159 0.136 0.097 0.01 0.01 -

H15 0.239 0.236 0.210 0.155 0.151 0.154 0.15 0.138 0.117 0.083 0.01 0 0.01 -

H13 0.235 0.233 0.210 0.164 0.160 0.155 0.15 0.132 0.102 0.079 0.01 0.01 0.01 0 -

H14 0.239 0.237 0.212 0.169 0.165 0.159 0.15 0.136 0.107 0.083 0.02 0.010 0.01 0.01 0 -

Clade V

I

III

V

Clade I Clade III



ADDENDUM  121 

 

Supporting Table 3. Poriferan and Cnidarian mean uncorrected pairwise distances (16S). 
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Supporting Material for Section 2.7.: 

New insights into placozoan sexual reproduction and development. 

Supporting Figure 1. Alignments of C-terminal DnaJ domains (A) and NDK domains (B) underlying 

phylogentic inferences in Supporting Figure 2. 

 



ADDENDUM  130 

 

 



ADDENDUM  131 

 

(B) continued… 
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Supporting Figure 2. Neighbor Joining trees (BioNJ) of DnaJ and Nme proteins.  

The placozoan DnaJB13 and Nme5clearly group to corresponding known family subgroups (green branches). 

Branches representing Placozoan and Anthozoan sequences are marked in blue and red, respectively. 
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