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Zusammenfassung 

Leishmanien sind obligat parasitäre Protozoen aus der Familie der Trypanosomatidae, die vor allem in 

tropischen und subtropischen Regionen, die weit verbreitete Krankheit Leishmaniose verursachen. 

Umhüllt und geschützt von einer dichten Glykokalyx, widerstehen sie extrem lebensfeindlichen 

Umwelteinflüssen. Die zelluläre Ummantelung des Parasiten besteht hauptsächlich aus den speziellen 

Lipophosphoglycanen (LPGs), den mucin-artigen Proteophosphoglycanen (PPGs) und den 

leichtkettigen Glycoinositolphospholipiden (GIPLs) und ist unentbehrlich für das Überleben im Darm 

seines Vektors, der Sandfliege, und für die Infektiosität im Säugetier, seines Reservoirs. 

Vor allem die Phosphoglycanstructuren von Leishmanien sind extrem galactosehaltig und setzen eine 

spezialisierte, enzymatische Maschinerie voraus, um die hohen Ansprüche der UDP-Galactose-

Biosynthese zu decken. Die vor kurzem biochemisch charakterisierte L. major UDP-Glucose-

Pyrophosphorylase (UGP), die äußerst spezifisch Glucose-1-Phosphat mit UTP umsetzt und UDP-

Glucose und Pyrophosphat erzeugt, schien ein Schlüsselenzym der UDP-Galactose-Biosynthese zu 

sein, da UDP-Galactose (UDP-Gal) entweder über Epimerisierung von UDP-Glucose (UDP-Glc) oder 

durch Uridylyltransfer von UDP-Glc zu Galactose-1-Phosphat entstehen sollte (Leloir 

Stoffwechselweg). Eine gezielte Gendeletion der UGP (Δugp) zeigte allerdings nur geringfügigen 

Einfluss auf die Phosphoglykanbiosynthese, wobei galactosehaltige GIPLs überhaupt nicht betroffen 

waren. Dementsprechend war die Virulenz der Δugp Mutante nur moderat herabgesetzt. In Anbetracht 

dieser Datenlage war anzunehmen, dass Leishmanien einen zweiten, UDP-Glucose unabhängigen 

Stoffwechselweg nutzen können, was mit dem offensichtlichen Fehlen des Leloir-Stoffwechselwegs in 

Leishmanien in Einklang war, da bisher kein verantwortliches Gen (von GALT) im Leishmanien 

Genom annotiert werden konnte. 

Es konnte jedoch ein aus Pflanzen stammendes Homolog der UDP-Zucker Pyrophosphorylase (USP) 

in Leishmanien und einigen anderen Protisten identifiziert werden. Charakteristisch für diese neue 

Klasse von Enzymen (EC 2.7.7.64) war ihre Fähigkeit, eine Bandbreite an Monosaccharid-1-

Phosphaten mit UTP zu aktivieren, wie Galactose-, Glucose-, Xylose-, L-Arabinose-, Galacturonsäure- 

und Glucuronsäure-1-Phosphat, um daraus das jeweilige UDP-Monosaccharid und Pyrophosphat zu 

formen. Es konnte gezeigt werden, dass dieses Enzym eine hohe Affinität zur Bindung von UTP zeigt 

und Galactose-1-Phosphat bevorzugt. Es zeigt einen gerichteten Bi-Bi Mechanismus, wobei zuerst 

UTP binden muss, gefolgt vom jeweiligen Monosaccharid-1-Phosphat, wodurch sehr wahrscheinlich 

die Erzeugung des UDP-Monosaccharids vorangetrieben wird. Somit stehen die in vitro gemessenen 

Eigenschaften der USP in Einklang mit der postulierten Funktion der Galactoseverwertung. Damit 

einhergehend ließ die erste Analyse einer L. major USP Gendeletionsmutante (Δugp) eine verminderte 

Galactosylierung der LPG Seitenketten vermuten. 

Darüber hinaus konnte gezeigt werden, dass bereits die heterozygote Deletion der USP in der Δugp 

Mutante ausreichend war, um die restliche LPG Expression dieses Stammes einzudämmen, und 
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demzufolge die Rolle der USP im UDP-Galactose Stoffwechsel verdeutlicht. Interessanterweise war 

es trotz mehrmaliger Versuche nicht möglich eine Doppelmutante (Δugp/Δusp) zu generieren, was 

darauf hindeutet, dass UDP-Gal und/oder UDP-Glc in L. major essentiell sind. Letztlich wurde die 

subzelluläre Lokalisation der USP und einiger anderer an der UDP-Glc/UDP-Gal Biosynthese 

beteiligter Enzyme aufgeklärt, wobei sich herausstellte, dass  es bedeutende Unterschiede mit anderen 

Trypanosomatiden gibt, die, anders als L. major, ihre UDP-Zucker in spezialisierten Organellen, den 

Glycosomen, synthetisieren. 
Schlagwörter:  Galactose, UDP-Zucker Pyrophosphorylase, LPG, Leishmanien
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Summary 
The protozoan parasites Leishmania spp., causing tropical and sub-tropical diseases called 

leishmaniases, are surrounded by a thick glycocalyx that protects them from the hostile environments 

in which they live. This cellular coat mainly consists of unique phosphoglycans, comprising the highly 

abundant lipophosphoglycan (LPG) and mucin-like proteophosphoglycans (PPGs), as well as low 

molecular weight glycoinositolphospholipids (GIPLs) and is indispensable for survival of the parasite 

in the insect vector and for establishment of infection in mammals. 

Leishmania phosphoglycans are extremely rich in galactose and require thus a specialized enzymatic 

machinery to cover the high demand on UDP-galactose (UDP-Gal) for biosynthesis. The recently 

biochemically characterized L. major UDP-glucose pyrophosphorylase (UGP), very specifically 

utilizing glucose-1-phosphate and UTP to form UDP-Glucose (UDP-Glc) and pyrophosphate, was 

supposed to be the key enzyme in UDP-Gal biosynthesis, either via subsequent epimerization of UDP-

Glc or by uridylyl transfer from UDP-Glc to galactose-1-phosphate. Targeted gene deletion of UGP 

(Δugp), however, only partially affected the synthesis of the galactose rich phosphoglycans, while no 

alteration in the abundant galactose-containing GIPLs was found. Consistent with these findings, Δugp 

Leishmania virulence was only modestly affected. These data implied that Leishmania elaborates a 

UDP-Glc independent salvage pathway for UDP-Gal biosynthesis and is consistent with the absence 

of GALT gene essential for the Leloir pathway in Leishmania genome. However, a homologue of the 

plant UDP-sugar pyrophosphorylase (USP) was found in Leishmania parasites and several other 

protists. Characteristic for this new class of enzyme (EC 2.7.7.64), L. major USP catalyzes the 

reaction of a broad pool of monosaccharide-1-phosphates, such as galactose-, glucose-, xylose-, 

L-arabinose-, galacturonic acid- or glucuronic acid-1-phosphate with UTP to form the respective UDP-

monosaccharide and pyrophosphate. We have notably shown that this enzyme possesses a high 

affinity for UTP, favors Gal-1-P and proceeds via an ordered Bi-Bi substrate mechanism in which 

UTP binds first followed by the sugar monophosphate, and thus most likely promotes nucleotide sugar 

synthesis rather than their pyrophosphorolysis. The in vitro characteristics of USP are hence in perfect 

agreement with a postulated function of this enzyme in galactose salvage. In agreement with this role, 

first analyses of the L. major USP gene deletion mutant suggest a reduction of side chain 

galactosylation of the abundant cell surface polysaccharide LPG. Moreover the heterozygous deletion 

of USP in the Δugp mutant abolished the residual LPG expression that was still present in the Δugp, 

thus supporting a role of USP in the UDP-galactose pathway. Interestingly, a mutant deficient in both 

UGP and USP could not be obtained despite repeated attempts suggesting an essential role for UDP-

Gal and/or UDP-Glc. Finally, the cytosolic localization of USP and several other enzymes involved in 

the UDP-Glc/UDP-Gal biosynthesis was established, highlighting an important difference with other 

trypanosomatids that seem to synthesize these nucleotide sugars in a specialized organelle called 

glycosomes.  
Keywords:  galactose, UDP-sugar pyrophosphorylase, LPG, Leishmania 
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CHAPTER 1 – General Introduction 
 

1.1   Leishmania, Leishmaniasis and Leishmanicidals 
Leishmania parasites are protozoan responsible for the disease leishmaniasis occurring in tropical 

regions of America and Africa and temperate regions of South America, South Europe and Asia. 

According to the World Health Organization, 12 million people are infected worldwide with an annual 

incidence of approximately 2 million new cases and 350 million people are threatened by these 

parasitic infections (Farrel, 2002; WHO, 2009). 

Depending on Leishmania species and its host fitness the severity of symptoms range from disfiguring 

local or diffuse cutaneous lesions to mucocutaneous and lethal visceral appearances. Cutaneous 

leishmaniasis, with clinical manifestations of up to 200 skin ulcers and sore wounds of several 

centimeters, is the most frequent form and is transmitted by L. major, L. tropica, and L. aetiopica, as 

well as L. braziliensis.  The latter also provokes mucocutaneous leishmaniasis, which can lead to 

necrosis of mucosa, nose, palate, tongue and lips. Lethal visceral leishmaniasis, caused by L. donovani 

and L. infantum, affects the reticulo-endothelial system and therein lymph nodes, spleen and liver. 

Uncured, this fatal form of leishmaniasis leads to death by a chance of 90 %, whereas the mortality 

rate decreases to 15 % after medical treatment (WHO, 2009). 

At present neither a vaccine nor specific drug without any drastic side-effect and low cost is available 

for prevention or therapy. It is alarming, that the few known chemotherapeutical drugs in use are 

compromised by a quick development of resistance. For example, a widespread resistance to the front 

line drugs pentavalent antimonials like sodium stibogluconate (PENTOSAM®) or meglumine 

antimoniate (GLUCANTIME®) has occurred in many countries while its biochemical mode of action 

is still under investigation (Ashutosh et al., 2007). Most of the currently used second-line drugs like 

Amphotericin B, Paromomycin (Aminosidine) and Miltefosine (IMPAVIDO®) arose from empirical 

testing or different therapeutic indications, being unaware of its exact molecular mechanism in the 

parasite’s system much less the human ones. 

Amphotericin B is believed to interact with membrane ergosterol (Kshirsagar et al., 2005) and 

displays severe side effects. A new formulation of a liposomal Amphotericin B (AMBISOME®) has 

much less adverse effects but its costs are high and unachievable for populations living in the endemic 

areas (Croft and Coombs, 2003; Sundar et al., 2003). 

The orphan drug paromomycin sulfate is an antibiotic aminoglycoside which inhibits protein synthesis 

by binding to 30S ribosomal RNA (Kanyok et al., 1994). Resistance could already be reported in in 

vitro studies (Maarouf et al., 1998). If resistance mutations are stable, transmission from such patients 

would lead to primary resistance in others (Davidson et al., 2009). 

Recent discovery of miltefosine (IMPAVIDO®) as the first oral drug for treatment of cutaneous and 

visceral leishmaniasis gave new hope in treatment of Leishmaniasis. Cure rates are around 95% for 
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visceral and cutaneous infections (Fischer et al., 2001). It is a highly efficient and simple molecule, 

stable at room temperature and, compared to others, has tolerable side effects like nausea and diarrhea. 

Nevertheless its teratogenicity is one main disadvantage. Unfortunately, again, in vitro studies have 

shown miltefosine resistance developing quickly in Leishmania promastigotes (Perez-Victoria et al., 

2006). 

New therapeutical approaches based on the knowledge of Leishmania biology are thus needed. 

 

 

1.2   Biology & Pathobiology 

The protozoan Leishmania is a single-celled eukaryotic and obligate living endoparasite, unable to 

thrive without its two hosts, an insect vector and a mammalian reservoir. According to this biphasic 

lifestyle, Leishmania adapted a polymorphic phenotype, as there are the single anterior flagellated 

promastigotes with a long and slender body of about 20 x 2 µm, living intercellularly within the 

midgut of the insect vector, and the non-flagellated amastigotes having an ovoid body of about 4 µm 

in diameter, able to persist or proliferate intracellularly within macrophages. Both promastigotes and 

amastigotes house particular organelles like the kinetoplast, one big mitochondrium near the flagella 

rod, containing around 15% of the total DNA, which groups Leishmania into the order of 

kinetoplastida (Figure 1). Further taxonomical classification of kinetoplastida separates the two 

families of free living, double flagellated Bodonida from the usually parasitic, single flagellated 

Trypanosomatida. The latter can be sub grouped into nine distinct genders including the gender 

Trypanosoma and Leishmania responsible for human diseases (Simpson et al., 2006). 

 

 

 

Figure 1. Classification of the genus Leishmania (based on Cavalier-Smith 2003 (Cavalier-Smith and Chao, 2003)). 
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1.2.1   Hosts 
In nature, Leishmania parasites are alternatively hosted by an insect vector or by mammalian 

reservoirs. Approximately 70 species, belonging to the genera Phlebotomus and Lutzomyia, are proven 

or suspected habitats for Leishmania parasites, which show specialization to different sand fly species 

(Killick-Kendrick, 1990). The nocturnal insects feed on plant saps, but before they are able to lay their 

eggs in wet soil rich organic material the females need a blood meal (Lane et al., 1985). The sand fly 

feeding on a potential reservoir host, like human, dog or rodent, is one of the crucial events within 

Leishmania life cycle. Leishmaniases are zoonoses or zoonotic, meaning that the causative agent 

usually stems from animal reservoirs which are responsible for the long term maintenance of 

Leishmania in nature. Often parasites persist in these animals, displaying only mild symptoms while 

dogs commonly develop a fatal disease (Sang et al., 1992). 

 

1.2.3   Life Cycle 
In the fly 

Sand fly infection begins with ingestion of blood from a mammalian reservoir, containing amastigote 

infected macrophages or free floating parasites (Figure 2). Within the insect midgut digestion of the 

blood-meal is initiated with secretion of digestive enzymes and a peritrophic membrane, which 

completely covers the early blood-meal as sac of chitinous mucopolysaccharides. Here, amastigotes 

quickly start differentiating into small, sluggish procyclic promastigotes entering the first 

multiplication step in the sand fly vector, always facing onslaught of digestive proteinases and 

premature excretion. Accordingly, surviving procyclics develop into slender, agile and non-dividing 

promastigotes, called nectomonads, and exit the lethal casing into the interluminal space via the 

release of chitinases (Schlein et al., 1991; Rogers et al., 2008; Sacks, 2001). Leishmania nectomonads 

first attach to the midgut thereby avoiding excretion and thereafter directly migrate by taxic responses  

(saliva- and sugar-taxis) to the anterior foregut (Kamhawi et al., 2004; Barros et al., 2006). 

Accordingly, nectomonads enter a new stage, which classifies them as leptomonad promastigotes, 

starting the second round of multiplication of an insect sugar-meal phase (Gossage et al., 2003). 

Finally, two additional stages are observed at the stomodeal valve, haptomonads and metacyclics. 

Haptomands are non-motile short flagellated and highly specialized promastigote forms building a 

parasite plug and are thought being responsible for the ongoing destruction of the constrictor by 

release of chitinases, leading to a successive parasite leakage (Schlein et al., 1992; Volf et al., 2004). 

The unattached, motile metacyclics display the infective stage behind the stomodeal valve and are 

highly adapted for an effective transmission, displaying a small cell body with elongated flagellum 

and a dense glycocalyx. A gel-like matrix secreted by Leishmania, termed promastigote secretory gel 

(PSG), is thought to contribute to a behavioural manipulation of the fly (Kamhawi, 2006; Bates and 

Rogers, 2004; Rogers et al., 2004). That is the so called ‘blocked fly hypothesis’ as a ‘blocked’ sand 



CHAPTER 1 – General Introduction 

 
Figure 2. Leishmania digenetic life cycle. Leishmania parasites are transferred by an insect sand fly vector into 
mammals, their natural reservoir hosts. They are present in two main morphological forms: amastigotes that survive and 
proliferate inside mammalian macrophages, and the different stages of extracellular promastigotes that multiply in the 
sand fly vector. 

 

fly attempts to feed multiple times, spreading its infectious load, whereby it regurgitates wide ranging 

doses of 10-10.000 metacyclics into the vertebrate host (Rogers et al., 2004; Rogers et al., 2009). 

 

In mammalian 

Upon dermal transmission Leishmania metacyclics rely on passive invasion and attraction and are 

confined to professional phagocytes like their main targets the macrophages, but infect also 

neutrophils and dendritic cells (Rittig and Bogdan, 2000; Sacks and Sher, 2002) (Figure 2). 

Attracted by tissue damage neutrophils are the first leukocytes that migrate to the site of infection 

ingesting Leishmania parasites but without killing them. Accordingly, the parasite infected apoptotic 

neutrophils attract macrophages by chemokines. Their subsequent phagocytosis lessens inflammatory 

signalling which is beneficial for Leishmania survival, while allowing a “silent” entry of parasites into 

their final host cells, the macrophages, resembling a “Trojan horse” strategy (van Zandbergen et al., 

2007; Peters et al., 2008). 

Within macrophages Leishmania efficiently circumvents lysosomal disintegration, by preventing 

phagosome maturation, the oxidative burst, and altering interleukin signalling, like the inhibition of 

11 
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IL-12 release, which is an essential cytokine for the development of acquired resistance to most 

intracellular pathogens (Piedrafita et al., 1999; Sacks and Sher, 2002). 

Upon replication the accumulating amastigotes are finally released by cell burst into the interstitial 

lumen and blood, where they encounter new target cells for re-infection. 

 

Cultivation of this dimorphic protozon parasite is nowadays feasible. At least for the flagellated 

promastigotes this could fairly be accomplished. In culture media their growth resembles promastigote 

development within the fly, since promastigotes and metacyclics can be detected in the stationary 

phase. Keeping macrophage colonizing amastigotes alive in vitro as so called axenic amastigotes is 

discussed concerning their experimental significance (Gupta et al., 2001). 

 

1.2.3   Genome 
To date the genomes of three Leishmania species from L. major, L. infantum and L. braziliensis (Ivens 

et al., 2005; Peacock et al., 2007), as well the ones from Trypanosoma brucei and T.cruzi have been 

sequenced (Aslett et al., 2009), allowing insights not only into the unique aspects of the biology of 

these parasites, but also eukaryote evolution, like their early divergence. The L. major Friedlin genome 

comprises 32.8 Mb in size, with a diploid karyotype of 36 chromosomes and an estimated number of 

8311 genes and 900 RNA genes (Dujardin, 2009). The key differences with other eukaryotes are an 

unusual genome organization into polycistronic gene clusters without gene fragmenting introns, 

simplified transcriptional machinery, and mRNA trans-splicing coupled with polyadenylation. The 

gene clusters can be divergently organized in head-to-head or in a convergent tail-to-tail fashion, 

whereas transcription is initiated bi-directionally in the divergent strand-switch regions between these 

clusters, terminating in the strand-switch region, which separates convergent clusters. Genes within 

these large (60 kb) transcripts of polycistronic mRNA are trans-spliced at their 5’-ends by addition of 

a 40 bp spliced-leader RNA (SL-RNA) and a cap structure. This so called trans-splicing is, compared 

to cis-splicing, a special form of RNA processing where exons from two different primary RNA 

transcripts are joined end to end and ligated. Polyadenylation occurs at the 3’-end, whereas the 3’-

untranslated regions (3’UTR) drastically influence mRNA stability and translational efficiency 

(Clayton et al., 2000). A promoter based gene regulation is almost absent in Trypanosomatids, thus the 

main control of protein level or activity is governed post-transcriptionally by mRNA stability (Clayton 

et al., 2000), translationally or post-translationally via protein modification and half life. 

Trypanosomatids demonstrate extensive posttranslational protein modification, especially for surface 

and secreted proteins, and have a considerable species-specific repertoire of glycoconjugate 

biosynthetic enzymes (Ivens et al., 2005). Gene duplication and amplification are biological 

mechanisms to modulate gene expression and enabling a rapid adaptation to a changing environment. 

In Leishmania this process is well documented, as we can find tandem repetitions of housekeeping 
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genes required in high abundance like tubulin or rRNA (Spithill and Samaras, 1987; Inga et al., 1998; 

Kebede et al., 1999), the amplification of short or long chromosome fragments in the form of linear or 

circular DNA (Papadopoulou and Ouellette, 1993) and ploidy changes in the entire chromosome or 

genome (Cruz et al., 1993). 

 

 

1.3   Leishmania cell surface and roles in pathogenicity 

The Leishmania promastigote glycocalyx is composed of phosphoglycans (PGs) that comprise the 

highly abundant lipophosphoglycan (LPG) and mucin-like proteophosphoglycans (PPGs), 

glycoinositolphospholipids (GIPLs) and GPI-anchored proteins such as gp63, also referred as 

‘leishmanolysin’. All these molecules belong to the GPI-membrane anchor family by virtue of 

containing the conserved backbone structure Man(α1-4)GlcN(α1,6)-phosphatidylinositol-lipid. Beside, 

Leishmania secretes PPGs and a phosphoglycosylated acid phosphatase (sAP) (Figure 3). 

Phosphoglycans are glycoconjugates that share a conserved backbone polymer of phosphorylated 

galactose-mannose disaccharide repeats (-6Gal(β1-4)Man(α1)-PO4-) with a neutral oligosaccharide cap. 

Among Leishmania species, the phosphoglycan domain is polymorphic and is either unsubstituted as 

 

 

Figure 3. Leishmania major surface glycoconjugate structures (based on McConville et al., 1990, Naderer et al., 2004 
and Ilg, 2000b). No arabinose capping of galactose on phosphoglycan side chains is depicted, which would represent the 
situation in metacyclic promastigotes. 

13 
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in L. donovani or variably substituted with oligosaccharide side chains (L. major, e.g.) (Ferguson et 

al., 1994; Mcconville et al., 1995; Ilg, 2000b). 

These unique glycan structures represent the protecting interface between parasite and an always 

changing, hostile environment, providing survival and conferring virulence, and thus have drawn the 

attention of researchers in order to find attractive drug targets within their biosynthetic machinery. 

Several deletion mutants have been designed in order to dissect their biosynthesis in Leishmania and 

evaluate their importance for parasitic life.  

 

1.3.1   GPI-anchored Proteins 
In trypanosomatids, proteins are often attached to the outer cell surface via GPI-anchors. Usually an 

ethanolamine phosphate mediates attachment of the protein C-terminus to the glycan core (Man(α1-

2)Man(α1-6)Man(α1-4)GlcN(α1-6)PI), which can be substituted in a protein, species and developmental stage 

specific manner (Figure 4). GPI-Proteins are functionally diverse including receptors, coat proteins 

and hydrolases. Amongst the latter, the major surface protease (MSP) gp63 has been widely studied, 

as it is abundant in all Leishmania species. Gp63 has been described to hydrolyze surface opsonized 

complement factors (Brittingham et al., 1999), and mediate ligand attachment to macrophage receptors 

(Alexander, 1992; Joshi et al., 2002), thus promote phagocytosis and the save entry of the parasites. 

Gene deletion of this protein (Hilley et al., 2000) lead to a 10-fold increased sensitivity to complement 

lysis and displayed attenuated virulence in mice. This protease is however not essential for continued 

survival after infection establishment. Recent studies suggest that amastigote and promastigotes both 

express multiple MSP isoforms, differing biochemically and localizing differently between the 

parasite stages, and thus play diverse roles in the extracellular versus intracellular forms of Leishmania 

species (Hsiao et al., 2008). 

 

1.3.2   LPG 
The unique lipophosphoglycan is the dominant protruding structure all over the cell surface of 

Leishmania promastigotes, with an estimated number of approximately 3-5 million copies expressed 

per cell (Sacks DL 1992). Within all Leishmania spp. LPG is made of four domains, as there are the 

PI-anchor, a glycan core, a backbone of 15-30 6Gal(β1-4)Man(α1)PO4 repeating units, and an 

oligosaccharide cap structure, mostly a mannose disaccharide (Turco and Descoteaux, 1992; 

Descoteaux and Turco, 1999; Mcconville et al., 1993; Guha-Niyogi et al., 2001) (Figure 4). Some of 

these elements are highly unusual for a eukaryotic glycoconjugate. This includes the presence of a 

galactofuranose in the glycan core and the repeating phosphorylated saccharide backbone containing a 

unique 4-O-linked mannose. While the GPI-lipid anchor of LPG is highly conserved, but glycosylated 

on the second mannose residue, the backbone varies stage specifically in its length. Most strikingly is 

the doubled increase in size as displayed by metacyclic stages of L. major (Bogitsh et al., 2005). 
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Figure 4. Leishmania major surface determinant configurations (based on McConville et al., 1990, Naderer et al., 2004
and Ilg, 2000b). PPG and LPG are both composed of the same phosphoglycan repeat unit, which are additionally equipped,
indicated by the residue (R). R = H-; Galβ1-; Galβ1-3Galβ1-; Araβ1-2Galβ1-; Araβ1-2Galβ1-3Galβ1-; Galβ1-3Galβ1-
3Galβ1- . 

Among Leishmania species a differing LPG backbone decoration is found. For example, L.major and 

L.tropicana LPG is additionally branched with galacto- or gluco-oligosaccharide side chains, 

respectively, which are optionally covered with additional arabinose caps. In contrast L.donovani LPG 

has an unmodified LPG backbone. 

LPG is thought to shield the parasites by preventing insertion of the macrophage C5-9 membrane 

attack complex (MAC) into the membrane in order to avoid perforation. The very long LPG chain of 

metacyclics seems to be of advantage for this role (Sacks and Sher, 2002). After phagocytosis LPG 

repeating units have been shown to transiently inhibit phagosome maturation. This delay may be 

pivotal, allowing sufficient time for promastigotes to differentiate into more hydrolase-resistant 

amastigotes (Desjardins and Descoteaux, 1997; Dermine et al., 2000). Furthermore, Leishmania LPG 

protects invading promastigotes from the modest oxidative burst generated during phagocytosis 

consistent with its ability to scavenge oxygen radicals in vitro (Chan et al., 1989). 

Besides innate microbicidal responses, macrophages can initiate the host activation cascade by 

presenting antigens and providing regulatory cytokines to T cells. Studies suggest intracellular 

protozoa interfering with the immune-initiation functions of macrophages. A striking dysfunction 

observed in macrophages and induced by Leishmania is their inability to produce IL-12, which is an 

essential cytokine for the development of acquired resistance to most intracellular pathogens, inducing 

interferon-γ and T helper type 1 (TH1) cell differentiation. This was shown by inhibiting interleukin 

IL-12p40 expression with LPG (Piedrafita et al., 1999; Sacks and Sher, 2002). During transformation 

from promastigotes to amastigote stage the major surface macromolecules like LPG are down-

regulated, whereas GIPLs are expressed at near-constant levels in both developmental stages 
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(Mcconville and Blackwell, 1991; Winter et al., 1994; Bahr et al., 1993; Schneider et al., 1993). Since 

LPG is not expressed by amastigotes, while only retaining a glycocalyx of GIPLs, its role is transient 

and confined to only the early stage of infection, and down regulation seems indispensable as LPG 

would compromise parasite survival in the host cell, as it is associated with activation of dendritic 

cells, natural killer (NK) cells and NK T cells (Becker et al., 2003; Amprey et al., 2004; Aebischer et 

al., 2005). 

Several gene deletion mutants interfering with LPG synthesis have been generated during the last 

years, many of them also influencing other surface determinants. LPG1, a putative 

galactofuranosyltransferase, was the first and to date only mutant lacking LPG exclusively. This 

mutant revealed, LPG being of importance for the initial establishment of infection, displaying a 

typical attenuated lesion phenotype in mice footpad infection studies (Spath et al., 2000). 

Contradictory L. mexicana LPG is not required for infection of macrophages (Ilg, 2000a). Furthermore 

its LPG is not modified nor rearranged during metacyclogenesis. Thus Leishmania species differ 

dramatically in their reliance upon LPG virulence (Turco et al., 2001). 

 

1.3.3   GIPLs 
Low molecular weight glycoinositolphospholipids (GIPLs) are the major class of glycolipids, with an 

estimated number of 10 million molecules per cell, synthesized by all Leishmania stages (Mcconville 

et al., 1993; Bogitsh et al., 2005). Depending on species or developmental stage three types of GIPLs 

have been described in Leishmania: type-1 containing the same glycan structure as protein anchors 

(Man(α1-2)Man(α1-6)Man(α1-4)GlcN(α1-6)PI), type 2 reflecting analogues of the LPG glycan core, which 

includes also the above mentioned galactofuranose (Gal(α1-6)Gal(α1-3)GalF(α1-3)Man(α1-3)Man(α1-4)GlcN(α1-6) 

PI) but without any glucose-modification at the second mannose residue, and hybrid type GIPLs 

containing features of both the protein and the LPG anchor (Guha-Niyogi et al., 2001) (Figure 4). 

Studies of the functions of GIPLs are more limited than studies of LPG. Nevertheless the GIPLs are 

believed to play also a role in modifying signaling events within macrophages, by inhibiting PKC 

signaling and ROS production (Proudfoot et al., 1995; Tachado et al., 1997; Mcneely et al., 1989). 

The Leishmania major ADS (alkyldihydroxyacetonephosphate synthase) gene deletion mutant 

deficient in a key component in ether lipid biosynthesis, lacks GIPLs and LPG (Zufferey et al., 2003). 

Unexpectedly gp63 that is normally anchored by an ether lipid was still synthesized. The effect on 

virulence of the ADS mutant was not stronger than the one observed with LPG1 suggesting a minor 

role for GIPLs in the amastigote stage. Similarly, the UDP-galactofuranose mutase null mutant (GLF) 

represents one of the rare sugar-metabolic mutants defective in GIPLs synthesis, since the unique 

galactofuranosyl residue was missing for type-2 GIPL synthesis. Because the LPG core is composed 

of galactofuranose, the whole LPG synthesis was perturbed, leading to the typical LPG1 phenotype. 

These observations implied that GIPLs are not essential for infectivity (Kleczka et al., 2007). 
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1.3.4   PPGs 
The proteophosphoglycans (PPG) constitute a family of molecules composed of the characteristic 

6Gal(β1-4)Man(α1)PO4 phosphoglycan repeating units directly attached to serine residues of proteins 

(Figure 4). The fairly uncommon and heavily O-glycosylated proteins comprise membrane bound 

(mPPG), filamentous (fPPG) or specific amastigote (aPPG) and promastigote (pPPG) 

proteophosphoglycans. In addition, the majority of Leishmania species secretes phosphoglycosylated 

enzymes like non-specific acid phosphatases (sAP). The mucin-like filamentous PPGs are secreted by 

the flagellar pocket of pro- and amastigotes and are also referred as promastigote secretory gel (PSG) 

embedding metacyclic promastigotes in the stomodeal valve of the fly. These structures predominantly 

consist of phosphoglycans (96%w/w) and in small amounts of amino acids. It is estimated that every 

second amino acid carries a phosphoglycan chain, conferring proteinase resistance to the polypeptide, 

and inhibiting secondary structure formation. The membrane bound PPG is linked via GPI-anchorage 

and is also heavily glycosylated providing many more potential receptor- and complement-binding 

sites than LPG, displaying up to 800 serine-linked phosphoglycan chains clustered in a specific 

domain, whereas LPG carries one (Ilg, 2000b). 

The secreted PPGs partially block the stomodeal valve forcing the fly to feed more often and thus 

increase the chance of parasite transmission. Very recently it was demonstrated that regurgitated PPGs 

by Leishmania infected sand flies powerfully recruited macrophages, thereby increasing L-arginine 

catabolism and the synthesis of polyamines essential for intracellular parasite growth. Thus 

demonstrating that secreted PPGs are essential components of the infectious sand fly bite for the early 

establishment of infection (Rogers et al., 2009). An L. donovani GDP-mannose transporter null mutant 

(LPG2) lacking both LPG and PPG is indeed rapidly killed in the sandfly midgut, while LPG1 

remained viable, thus implying hydrolytic protection (Descoteaux et al., 1995). Accordingly the LPG2 

mutant is avirulent in mouse and macrophage infection studies (Spath et al., 2003a) while the LPG1 

mutant only presents an attenuated virulence. These results suggest that PPGs play important roles in 

parasite survival in insect vector and mammalian host. Remarkably some viable L. major LPG2 

revertants (LPG2REV) could be recovered months after application from the site of infection. However, 

this persistence is not sufficient to maintain protective immunity. Intriguingly, L. mexicana differs 

again in the mechanism of infection, since the lack of LPG and PPG did not lead to reduced virulence 

(Ilg et al., 2001).  

 

1.4   From Monosaccharide to Glycan 

The glycocalyx and secreted phosphoglycans of Leishmania parasites are very rich in galactose. Taken 

into account that these structures provide essential functions for parasite survival within its hosts, the 

enzymes involved into phosphoglycan biosynthesis might constitute attractive drug targets. 
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1.4.1   Glycan assembly 
Leishmania glycoconjugate core structures are synthesized within the endoplasmic reticulum (ER) and 

optionally processed in the Golgi apparatus. The similar ER derived core structures of LPG and type-2 

GIPLs are galactofuranosylated within the Golgi at the terminal mannosyl residue, followed by 

addition of two galactopyranosyl units. Whereas type-2 GIPL assembly is then complete, synthesis of 

the core glycan is followed by addition of 15-30 phosphoglycan repeating units homogeneously 

expanding from the terminal galactosyl residue forming LPG and are generally capped by two 

mannose in L. major (Turco and Descoteaux, 1992; Mcconville et al., 1993). Synthesis of hybrid and 

type-1 GIPLs, as well as N-glycosylated GPI-anchored proteins like gp63, only involves the ER and 

its set of attributed transferases, whereas O-glycosylation of secreted and GPI-anchored 

proteophosphoglycans (sPPGs/mPPGs) is taking place within the Golgi and is initated by the transfer 

of phosphomannose to serine rich sequences of the polyamine core, subsequently elongating the 

mannosyl residue with phosphomannogalactopyranosyl repeating units, similarly to LPG biosynthesis. 

The phosphoglycan portions of LPG and PPG are assembled by the sequential and alternating transfer 

of mannose-P and galactose from their respective nucleotide-sugar donors, GDP-Man and UDP-Gal. 

Depending on the species of Leishmania, additional branching sugars can be added, creating a 

remarkable array of side chains, indicative for a diverse subset of species dependent nucleotide sugar 

transferases. For example, in L. major the C3 hydroxyl group of galactose is galactosylated with one 

to four residues that may be capped by arabinose (Mcconville et al., 1995; Varki et al., 2008). 

The maintenance of Leishmania glycan assembly drastically depends on nucleotide sugar availability 

(Stewart et al., 2005; Spath et al., 2003b; Capul et al., 2007). Consistent with the glycocalyx 

composition, the main nucleotide sugars detected in L. major promastigotes comprise a pool of UDP-

Glc, followed by UDP-N-acetylglucosamine (UDP-GlcNAc), UDP-Gal, GDP-Man, completed by 

smaller amounts of UDP-galactofuranose (UDP-GalF), GDP-D-arabinose (GDP-Ara) and 

GDP-L-fucose (GDP-Fuc). The pool of UDP-Glc synthesized from the abundant metabolites UTP and 

glucose-1-phosphate by the UDP-glucose pyrophosphorylase (UGP) is relatively large and partially 

used to produce UDP-Gal by epimerization. The biosynthesis of these two nucleotide sugars is thus 

intimately linked.  

To date the Golgi import of GDP-Man, GDP-Ara, GDP-Fuc and UDP-Gal was experimentally 

confirmed. The generation of Leishmania major gene deletion mutants of the GDP-Man (GDP-

Ara/GDP-Fuc) transporter or two UDP-Gal transporters referred as LPG2 and LPG5a/b respectively 

facilitated the dissection of glycoconjugate synthesis (Hong et al., 2000; Capul et al., 2007; Spath et 

al., 2003b). It has in particular been demonstrated that LPG2 leads to the concomitant deletion of LPG 

and PPGs and abolishes virulence. Contradictory the deletion of the LPG5a/b in the same species 

resulted only in attenuated virulence, although both LPG and PPGs are absent. To date this 

discrepancy remains unexplained. 
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1.4.2   UDP-Galactose metabolism 
The main route of UDP-galactose synthesis within Trypanosomatidae engages four enzymes 

converting glucose into glucose-6-phosphate (1), glucose-6-phosphate into glucose-1-phosphate (2), 

glucose-1-phosphate into UDP-glucose (3) and UDP-glucose into UDP-galactose (4). The enzymes 

involved are glucokinaseLmaj/Tcru/ hexokinaseLmex (1: GlcK/ HK) (Caceres et al., 2007; Pabon et al., 

2007), phosphogluco(manno)mutaseTcru/Lmaj (2: PGM/PMM) (Penha et al., 2009; Garami et al., 2001), 

UDP-glucose pyrophosphorylaseLmaj (3: UGP) (Lamerz et al., 2006) and UDP-glucose 4-

epimeraseTbru/Tcru (4: GALE) (Roper et al., 2000; Macrae et al., 2006) (Figure 5). These enzymes, 

although not all characterized yet in L. major, could be annotated within its sequenced genome, 

validating the existence of this pathway in Leishmania. Furthermore, galactokinase-like genes were 

found in L. major and T. cruzi genome, implicating that incorporated galactose can be transformed 

into galactose-1-phosphate (Gal-1P). Within most organisms, like mammals, plant, fungi, or bacteria, 

the so called Leloir pathway makes Gal-1P available for energy metabolism, that is glycolysis. The 

inability of Gal-1P depletion is reflected pathobiologically with the human disease galactosemia, 

lacking either the already mentioned UDP-glucose 4-epimerase (GALE) or an enzyme called UDP-

glucose:galactose-1-phosphate uridyltransferase (GALT). The latter consumes Gal-1P which is 

activated by a UDP-moiety switch from UDP-glucose, generating UDP-galactose and Glc-1P. 

Accordingly, GALE converts the C4 hydroxyl group of UDP-galactose into UDP-glucose, which in 

turn can be re-used for Gal-1P activation. Only catalytical amounts of UDP-glucose are enough to 

convert Gal-1P into Glc-1P, which is able to enter glycolysis after reconfiguration into glucose-6-

phosphate by the above mentioned phosphoglucomutase (PGM) that plays the role of a gatekeeper 

enzyme between catabolism and anabolism. Hence, in theory high levels of Glc-6P should fuel the 

anabolic pathway that is UDP-Gal synthesis. 

It is likely that UDP-glucose production via activation of Glc-1P with UTP by the UGP enzyme and 

subsequent epimerization (GALE), is the main route to UDP-galactose in L. major, nevertheless it was 

demonstrated that L. major is able to take up and incorporate [3H]-labelled galactose into its 

glycoconjugates, demonstrating that the existence of a salvage pathway for UDP-galactose in L.major  

(Turco et al., 1984) is possibly mediated by GALT as in many other organisms. 

Thus, due to the fact that both GALT and GALE rely on UDP-Glc abundance within Leishmania, 

UGP can be ascribed as a key enzyme in UDP-galactose formation. 

 

1.4.3   UDP-glucose pyrophosphorylase 
The UTP:glucose-1-phosphate uridylyltransferase (EC 2.7.7.9) commonly termed UDP-glucose 

pyrophosphorylase catalyzes the reaction of Glc-1P and UTP to form UDP-glucose and inorganic 

pyrophosphate (PPi). In L. major this enzyme is highly specific for Glc-1P or UDP-glucose. Like other 

pyrophosphorylases UGP follows an ordered bi-bi binding mechanism, with 
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Figure 5. Biosynthesis of UDP-galactose in various organisms. UDP-galactose (UDP-Gal) is synthesized de novo by 
epimerization of UDP-glucose (UDP-Glc) by UDP-glucose 4-epimerase (GALT, EC: 5.1.3.2). In addition, galactose-1-
phosphate (Gal-1-P) produced from galactose by galactokinase (GALK, EC: 2.7.1.6) is activated by the UDP-
glucose:galactose-1-phosphate uridylyltransferase (GALT, EC: 2.7.7.12). These reactions rely on UDP-Glc production 
from glucose-1-phosphate (Glc-1-P) by the UTP:glucose-1-phosphate uridylyltransferase also named UDP-glucose 
pyrophosphorylase (UGP, EC: 2.7.7.9). The phosphoglucomutase (PGM, EC: 5.4.2.2) mediating the interconversion of 
Glc-1-P and glucose-6-P (Glc-6-P) connects the galactose metabolism to gluconeogenesis and glycolysis. Glc-6-P may 
also originate from phosphorylation of free glucose by glucokinase (EC: 2.7.1.1) or hexokinase (HX, EC: 2.7.1.2). The
conversion of Gal-1-P into UDP-Gal described in mammals by Isselbacher is thought to be due to a weak UTP:galactose-
1-phosphate uridylyltransferase activity  (EC:2.7.7.10) of UGP. In plants, a third pathway for UDP-Gal biosynthesis is 
mediated by an unspecific UDP-sugar pyrophosphorylase (USP, EC: 2.7.7.64). 

 

binding of UTP preceding entry of Glc-1P by inducing a conformational change from “closed” to  

“open”, whereas for the reverse reaction UDP-glucose binds without the presence of PPi. Another 

common feature is the need for a divalent metal ion like Mg2+, which is presumably necessary to 

stabilize the negative charge of anhydrous phosphate-groups, e.g. UTP. Furthermore it is known from 

plant UGPs that activity is sequestrated by oligomerization, but the L. major UGP was shown to be 

active as a monomer. Moreover, the recently solved 3D-structure allows insights into substrate-protein 

interactions and amino acids involved into binding (Steiner et al., 2007; Lamerz et al., 2006). 

 

1.4.4   UDP-galactose pyrophosphorylase 
More than 50 years ago Luis Federico Leloir determined human GALT activity, and some years later 

Kurt Isselbacher found an impaired GALT being responsible for congenital galactosemia accompanied 

by his proposal of a direct activation of Gal-1P by UTP, due to a residual galactose metabolism 

(LELOIR, 1951; Isselbacher, 1958). To date both pathways are entitled after them, the Leloir pathway 

using UDP-glucose and the Isselbacher pathway using UTP for direct Gal-1P activation. Some studies 

elucidated UDP-gal pyrophosphorylase (UDP-gal PPase) activities in different human tissues and 
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developmental stages, whereas one referred about different splice variants of UGP1 and UGP2 

showing that UGP2 displays residual activity to Gal-1P but with a very slow turnover rate compared to 

GALT, which explains a compensatory and approximately 1000 times higher expression pattern in 

GALT blocked cells (Lai et al., 2003; Leslie et al., 2005; Wehrli et al., 2007). This finding clarifies 

that UDP-gal PPase activity can be assigned to the UGP. No specialized and highly active UDP-gal 

PPase (EC 2.7.7.10) could be identified and biochemically characterized so far. 

 

1.4.5   UDP-sugar pyrophosphorylase 
At the beginning of the century, a new class of enzyme termed UDP-sugar pyrophosphorylase (USP) 

entered the stage, especially drawing attention to plant biologists. Its name is reflecting the broad 

substrate activity, not only activating hexose-1-phosphates but also pentose-1-phosphates with a 

stringent nucleotide donor, UTP (Figure 6). Several publications today characterized USPs in pea, 

melon fruit and Arabidopsis thaliana (Kotake et al., 2004; Dai et al., 2006; Litterer et al., 2006b). 

Interestingly, in 1983 Patricia Lobelle-Rich and Richard Reeves already identified two UTP-utilizing 

enzymes in Entamoeba histolytica, the first was classified as UTP:glucose-1-phosphate 

uridylyltransferase (UGP, see above) and the second as a new defined UTP:hexose-1-phosphate 

uridylyltransferase (EC 2.7.7.10, as noted above) (Lobelle-Rich and Reeves, 1983). Whereas the 

analyzed UGP exhibited activities as expected nowadays as a Glc-1P specific enzyme with a 20-fold 

greater velocity compared to Gal-1P, the latter enzyme in all likelihood reflected the activities of a 

USP. Although they did not measure more sugar-1-phosphates, they found a characteristic 1.35 times 

greater maximum velocity with Gal-1P than Glc-1P. At present the USP was assigned to EC 2.7.7.64 

on all proteomic and enzyme databases and is referred under its accepted name UTP:monosaccharide-

1-phosphate uridylyltransferase. Completing the above denoted substrate spectrum this class of 

enzyme utilizes galactose-1P, glucose-1P, glucoronic acid-1P, arabinose-1P and xylose-1P (Kotake et 

al., 2004; Dai et al., 2006; Litterer et al., 2006b). Especially in plants, more precisely in Arabidopsis 

thaliana, it was shown by deletion mutants that USP is a prerequisite for pollen development (Kotake 

et al., 2007; Schnurr et al., 2006). Overall this enzyme was expected to play a role in salvage 

pathways. It is retooling hydrolysed polymer-sugars by activation and generating new building blocks 

for transferases. 
 

Figure 6. Exemplified reaction of a UDP-sugar pyrophosphorylase.  
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1.4.6   Glycosomes 
While speaking of sugars fate within a trypanosomatid organism one must not forget mentioning their 

unique and special microsomal compartments termed glycosomes. They are related organelles to 

peroxisomes and glyoxysomes lacking a genome and are enclosed by a single, protein dense 

membrane. Peroxysomes contain redox-enzymes, like catalase, for β-oxidation and other oxidative 

reactions. In contrast, the specialized plant glyoxysomes are also able to generate glucose from fatty 

acids, via the eponymous glyoxylate cycle. From early studies it could be shown that at least some 

pathways or enzymes commonly found in peroxisomes are also present in glycosomes of some 

trypanosomatid species (Hart and Opperdoes, 1984; Wiemer et al., 1996). Glycosomes and 

peroxisomes display close evolutionary relationships, like conserved (peroxisomal) targeting 

sequences (PTS) and homology in peroxin (PEX) proteins required for matrix protein import from 

trypanosomatids, yeast and humans. Targeting sequences are either localized C-terminal (PTS1: -SKL, 

or conservative variant) or N-terminal (PTS2: [RK]-[LVI]-x5-[HQ]-LA]), but also transport by     

“piggybacking” on other PTS-proteins is reported (Gould et al., 1989; Subramani et al., 2000; 

Swinkels et al., 1992). However, the finding that the first seven glycolytic enzymes are localized to the 

trypanosomatid peroxisome-like organelles is unique, hence the name glycosome (Figure 7). Beside 

glycolysis and β-oxidation pathways, also ether lipid biosynthesis, pyrimidine metabolism and purine 

salvage have been identified (Parsons, 2004; Opperdoes and Szikora, 2006). Interestingly, 

phylogenetic studies suggest that glycosomal proteins were recruited from a photosynthetic organism 

through lateral gene transfer, whether by endosymbiosis (Hannaert et al., 2003) or phagocytosis 

(Waller et al., 2004) remains unanswered. Nevertheless, the signature of the genetic donor can be 

traced in trypanosomatid enzymes and pathways, that are related to those of green algae, plants and 

chloroplasts, implying that the genetic partner was a green algae (Hannaert et al., 2003). Within 

trypanosomatid parasites the glycosomal compartmentation is thought to prevent toxic accumulation 

of phosphorylated intermediates and therefore functioning as an alternative to allosteric regulation. 

This finding was supported by computational metabolic models and a peroxin PEX14 knock-down 

which compromised glycosomal import of matrix proteins (Haanstra et al., 2008; Furuya et al., 

2002). Supporting this theory, most of the glycosomal enzymes which are artificially mislocated to the 

cytosol display cytotoxic effects, like the phosphoglycerate kinase or phosphomannomutase (PMM) 

from T.brucei or L.major, respectively (Blattner et al., 1998; Opperdoes and Szikora, 2006). Enzymes 

involved in nucleotide-sugar metabolism are speculated to reside within the glycosome, in this regard 

all trypanosomatid hexokinases are glycosomal as well as the putative galactokinases housing equal 

targeting sequences. Furthermore the already mentioned L. major phosphomannomutase (PMM), 

which also possesses a strong phosphoglucomutase (PGM) activity (Garami et al., 2001) and the 

T.brucei and T.cruzi UDP-glucose 4-epimerases (GALE) are located to glycosomes. Nevertheless, 

enzymes, like e.g. the transketolase in the pentose phosphate pathway, may also be located in both 

glycosomes and cytoplasma (Veitch et al., 2004). 
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Figure 7. Glycosomal pathways of carbohydrate metabolism in Leishmania (modified from Opperdoes & Szikora 
2006, “In silico prediction of the glycosomal enzymes of Leishmania major and trypanosomes.”). Substrates and 
enzymes representative for this study are highlighted: bold, substrates; blue, the glycosomal assigned enzymes; red, 
enzymes without any sequence identified in L. major, T. cruzi or T. brucei gene database. HX: hexokinase, GLCK: 
glucokinase, PGM: phosphoglucomutase, UGP: UDP-glucose pyrophosphorylase, GALE: UDP-galactose 4-epimerase, 
GALT: UDP-glucose:galactose-1-phosphate uridylyltransferase. 
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1.5  Objectives 

The development of novel and specific therapeutic strategies for treatment of leishmaniasis is 

desirable, but not achievable without fundamental knowledge of Leishmania biology. The glycocalyx 

of Leishmania parasites is known to be essential for parasite virulence, both in the insect and the 

mammalian hosts. However, the precise nature of the molecules involved is more difficult to 

determine due to the structural similarities between the glycocalyx components and sharing of several 

biosynthetic steps. Although a study involving deletion of the GDP-Man transporter clearly indicates 

that the concomitant deletion of LPG and PPGs is essential for parasitic virulence, a more recent 

mutant deficient in UDP-Gal transport questioned this result. Since to date this discrepancy remains 

inexplicable, our goal was to reinvestigate the role of these molecules rich in galactose.  

In Leishmania, UDP-Gal arises de novo by epimerization of UDP-glucose via UDP-glucose 4-

epimerase (GALE) or by a salvage pathway thought to involve phosphorylation of galactose by the 

putative galactokinase and activation into UDP-Gal via the action of UDP-glucose:α-D-galactose-1-

phosphate uridylyltransferase (GALT) as described by Leloir. However, the genome of Leishmania 

does not contain any clear homologue of the last enzyme and our first study indicated that Leishmania 

galactose salvage pathway is indeed independent from UDP-glucose production.  

Our aim was thus to first delineate the UDP-Gal biosynthetic pathways in Leishmania in order to 

subsequently obtain mutant deficient in UDP-Gal and evaluate the importance of this nucleotide sugar 

for parasite virulence. In this thesis, we report the identification and detailed biochemical 

characterization of an unusual enzyme potentially involved in galactose salvage, and present the first 

evidences of its in vivo function. 
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Preface – About this manuscript 

 

Prior to this study the ugp gene encoding a UDP-glucose pyrophosphorylase (UGP) was identified and 

biochemically characterized in L. major by our research group (Lamerz 2006). The following part of 

this manuscript aimed at generating a L. major ugp deletion mutant (Δugp) to determine the 

consequences of the loss of UDP-Glc for viability and virulence of this parasite. 

For this purpose, a L. major mutant strain was generated by targeted gene deletion, using two selection 

marker cassettes in a homologous recombination approach, in which the ugp alleles were replaced by a 

resistance gene, respectively. To validate the results, an episomal expression vector (‘add-back’)  was 

introduced into the Δugp mutant (Δugp/+UGP), in order to reconstitute the wild type situation. 

Subsequently, the mutant and add-back strain were analyzed for the presence of UDP-Glc and cell 

surface determinants of the glycocalyx. Therefore a combination of enzymatic, immunochemical, 

electrophoretic and mass-spectrometric techniques was employed. Finally, the virulence of the Δugp 

and Δugp/+UGP mutant strain was determined in an experimental mouse infection model and by in 

vitro macrophage infection studies. 

My contribution to this manuscript comprised the detailed immunochemical analysis of surface 

lipophosphoglycan and proteophosphoglycan glycoconjugate structures.  
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The nucleotide sugar UDP-galactose is essential
for the biosynthesis of several abundant
glycoconjugates forming the surface glycocalyx of 
the protozoan parasite Leishmania major. Current 
data suggest that UDP-galactose could arise de 
novo by epimerization of UDP-glucose or by a
salvage pathway involving phosphorylation of
galactose and the action of UDP-glucose:α-D-
galactose-1-phosphate uridylyltransferase as
described by Leloir.  Since both pathways require
UDP-Glucose, inactivation of the UDP-glucose 
pyrophosphorylase (UGP) catalyzing activation of
glucose-1 phosphate to UDP-glucose was expected
to deprive parasites of UDP-galactose required for
Leishmania glycocalyx formation. Targeted
deletion of the gene encoding UGP, however, only
partially affected the synthesis of the galactose rich
phosphoglycans. Moreover, no alteration in the
abundant galactose-containing
glycoinositolphospholipids was found in the
deletion mutant. Consistent with these findings, the
virulence of the UGP deficient mutant was only
modestly affected. These data suggest that
Leishmania elaborates a UDP-glucose independent
salvage pathway for UDP-galactose biosynthesis. 
 

 
Introduction 
 

Leishmania parasites are responsible for a group of 
diseases collectively known as Leishmaniases ranging
from self-healing ulcerative skin lesions to lethal
visceral infections. They alternate between flagellated
procyclic promastigotes colonizing the midgut of the
sandfly vector, metacylic promastigotes residing in the
foregut and transmitted to the mammalian host via a
bite, and non-flagellated amastigotes proliferating in
the macrophage of the mammalian host. The
promastigotes are coated with a thick glycocalyx rich
in molecules of the glycosylphosphatidylinositol (GPI)
family (Fig. S1). GPIs are based on the conserved
backbone structure Manα1,4GlcNα1,6-
phosphatidylinositol and, in Leishmania, anchor 
proteins such as the proteophosphoglycans (PPGs) or
a polysaccharide called lipophosphoglycan (LPG).
They can also be free and are then termed
glycoinositolphospholipids (GIPLs) (Ferguson 1999;
Guha-Niyogi et al  2001; McConville and Ferguson
1993; Mendonca-Previato et al  2005). Leishmania
glycocalyx is particularly rich in galactose (Gal) since
LPG, the most abundant glycoconjugate of
promastigotes, and protein linked phosphoglycans
(PGs) are comprised of linear chains of

6Galβ1,4Manα1-P repeating units (Fig. S1) (Ilg 2000; 
Turco and Descoteaux 1992). Moreover, in L. major, 
Gal residues substitute the backbone structure of LPG, 
PPGs and GIPLs (Ilg 2000; McConville et al  1990; 
Turco and Descoteaux 1992). While in protein linked 
PGs only the pyranic form of galactose exists, LPG 
and GIPLs contain in addition galactofuranose, an 
unusual conformer absent from vertebrate species but 
commonly expressed in eukaryotic and prokaryotic 
pathogens (Bakker et al  2005; Beverley et al  2005; 
Ilg 2000; McConville et al  1990; Turco and 
Descoteaux 1992). 

Consistent with the glycocalyx composition, the 
main nucleotide sugars detected in L. major
promastigotes are UDP-glucose (UDP-Glc), UDP-Gal, 
UDP-N-acetylglucosamine and GDP-mannose 
(Turnock and Ferguson 2007). The pool of UDP-Glc 
synthesized from the abundant metabolites UTP and 
glucose-1-phosphate by the UDP-glucose 
pyrophosphorylase (UGP) (also designated UTP:α-D-
glucose-1-phosphate uridylyltransferase) is relatively 
large and is used to produce UDP-Gal by 
epimerization (Lamerz et al  2006; Turnock and 
Ferguson 2007) (Fig. 1). Besides this de novo
synthesis of UDP-Gal mediated by the UDP-Glc 4-
epimerase, the latter nucleotide sugar may be 
generated by direct activation of galactose-1-
phosphate. Leishmania parasites, in contrast to the 
trypanosomatids Trypanosoma cruzi and 
Trypanosoma brucei, indeed can take up galactose 
from the environment and utilize it for the 
biosynthesis of glycoconjugates, although the 
enzymes involved in Gal activation are still unknown 
(Turco et al  1984). The UDP-glucose:α-D-galactose-
1-phosphate uridylyltransferase that catalyzes 
synthesis of UDP-Gal from galactose-1-phosphate and 
UDP-Glc is classically involved in salvage of 
galactose (Leloir 1951) (Fig. 1). This enzyme 
delineates the Leloir pathway which like the de novo
pathway for UDP-Gal biosynthesis depends on UDP-
Glc biosynthesis (Fig.1). UDP-Glc is thus expected to 
be an important metabolite for the biosynthesis of 
Leishmania glycocalyx. 

The relevance of the glycocalyx for Leishmania
survival and infectivity was demonstrated by targeted 
deletion of individual genes involved in the 
biosynthesis of surface glycoconjugates (Naderer et al 
2004). In particular, the contribution of LPG was 
unambiguously determined with a mutant exclusively 
deficient in this polysaccharide generated by targeted 
gene replacement of the putative 
galactofuranosyltransferase LPG1 (Spath et al  2000). 
In L. major, LPG is clearly essential for survival in the 
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Figure 1. Biosynthesis of UDP-α-D-galactose in various organisms. UDP-α-D-galactose (UDP-Gal) is synthesized de novo by 
epimerization of UDP-α-D-glucose (UDP-Glc) by the UDP-glucose 4-epimerase (UDP-Glc 4-epimerase, EC:5.1.3.2). In addition, α-D-
galactose-1-phosphate (α-D-Gal-1-P) produced from α-D-galactose (α-D-Gal) by the galactokinase (GK, EC:2.7.1.6) is activated by the UDP-
glucose:α-D-galactose-1-phosphate uridylyltransferase (Gal-1-P uridylyltransferase, EC:2.7.7.12). These reactions depend on UDP-Glc 
production from α-D-glucose-1-phosphate (α-D-Glc-1-P) by the UTP: α-D-glucose-1-phosphate uridylyltransferase also named UDP-glucose 
pyrophosphorylase (UGP, EC:2.7.7.9). The phosphoglucomutase (PGM, EC:5.4.2.2) mediating the interconvertion of α-D-Glc-1-P and α-D-
glucose-6-P (α-D-Glc-6-P) connects the galactose metabolism to gluconeogenesis and glycolysis. α-D-Glc-6-P may also originate from 
phosphorylation of free glucose (α-D-Glc) by the glucokinase (EC:2.7.1.1) or hexokinase (HK, EC:2.7.1.2) The conversion of α-D-Gal-1-P 
into UDP-Gal described in mammals by Isselbacher is thought to be due to a weak UTP:α-D-galactose-1-phosphate uridylyltransferase 
activity  (EC:2.7.7.10) of UGP. In plants, a third pathway for UDP-Gal biosynthesis is mediated by an unspecific UDP-sugar 
pyrophosphorylase (USP, EC:2.7.7.64). The pathways proposed for Leishmania parasites are based on analysis of the genome and the 
existence of a UDP-glucose independent pathway for UDP-Gal biosynthesis demonstrated in this work. Activation of α-D-Glc-1-P and α-D-
Gal-1-P by USP would explain the production of UDP-Glc and UDP-Gal in the L. major ugp- mutant. 

insect vector and promastigote infectivity in the
mammalian host but is not required for amastigote
survival (Naderer et al  2004; Spath et al  2000). In a
mouse model of cutaneous leishmaniasis, the LPG1
deficient mutant induces lesion formation after a
pronounced delay in the establishment of infection
(Späth et al  2000). Similar delayed lesion appearance
was observed with several other LPG deficient
mutants lacking LPG obtained by genetic deletion of,
for instance, the UDP-galactopyranose mutase or
alkyldihydroxyacetonephosphate synthase involved in
UDP-galactofuranose or ether phospholipid
biosynthesis respectively (Kleczka et al  2007;
Zufferey et al  2003). Besides corroborating the role of
LPG in infectivity, the study of these mutants
suggested that despite their abundance in amastigotes,

GIPLs are not crucial for survival of this parasitic 
stage (Kleczka et al  2007; Zufferey et al  2003). 
Intriguingly, absence of LPG and other 
phosphoglycans induced by replacement of the LPG2
gene encoding the Golgi GDP-Man transporter 
resulted in avirulence, whereas a mutant defective in 
UDP-Gal transport across the Golgi and essentially 
devoid of phosphoglycans only caused a modest delay 
in lesion appearance (Capul et al  2007; Späth et al 
2003). One hypothesis advanced for these findings 
was the possibility of an undiscovered molecule 
requiring the LPG2 GDP-Man transporter for its 
biosynthesis (Capul et al  2007). 

To interfere with the biosynthesis of galactosylated 
molecules and eventually shed light on their role in 
parasite virulence, we targeted UGP in the hope of 
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 blocking not only the de novo synthesis of UDP-Gal 
but also its salvage pathway. Our data demonstrate,
however, that the UDP-Gal salvage pathway is 
independent from UDP-Glc biosynthesis and able to
sustain the biosynthesis of most of the glycocalyx. 
 
 
Results 
 

Targeted replacement of L. major UGP – The full 
length L. major UGP has been cloned previously and
the enzyme partially characterized (Lamerz et al
2006). L. major genome (Ivens et al  2005) exhibits a
single copy of UGP gene located on chromosome 18
(LmjF18.0990) and does not display any highly
homologous gene. Prior to the generation of a null
mutant, that was achieved by consecutive replacement
of the two UGP alleles with genes encoding the
selection markers hygromycin phosphotransferase

(HYG) and phleomycin binding protein (BLE), the 
gene copy number was confirmed by Southern blot 
analysis of genomic DNA (Fig. S2). The successful 
generation of ugp- mutant, was confirmed by Southern 
blotting (Fig. 2). After SacI digest, the UGP gene 
could be detected in wild type and in the heterozygous 
mutant but no signal was obtained in the ugp- mutant 
(Fig. 2A).  Moreover, integration of the resistance 
markers into the correct gene locus was demonstrated 
with a probe hybridizing outside the region used for 
homologous recombination after BlpI digest (Fig. 2B). 
Multiple and/or random insertions of the resistant 
markers were excluded by additional Southern blots 
using probes specific for HYG or BLE (data not 
shown). Mutant parasites were morphologically 
identical to the parental strain and grew at similar 
rates and density under standard culture conditions. 
The absence of the UGP enzyme in the ugp- mutant 
and its re-expression in ugp-/+UGP was ascertained 
by Western blotting of total cell lysates detected with 
the anti-UGP serum (Lamerz et al  2006) (Fig. 3A). 
Equal protein loading and transfer efficiency was 
assessed by reversible staining in Ponceau S-solution 
(data not shown). In addition, figure 3B demonstrates 
the expression of UGP in the logarithmic and 
stationary growth phase of promastigotes as well as in 
amastigotes. This expression through the parasite life 
cycle is consistent with the need of activated 
nucleotide sugars for glycoconjugate biosynthesis in 
both parasitic life stages. The lower amount detected 
in amastigotes is in agreement with previous reports 
indicating lower expression of enzymes involved in 
the glycolytic pathway at this parasitic stage 
(McConville et al  2007; Naderer and McConville 
2008; Rosenzweig et al  2008). 

Despite the complete absence of UGP (Fig. 3A), a 
residual UDP-Glc pyrophosphorylase activity was 
detected in the deletion mutant. UDP-glucose 
formation from glucose-1-phosphate was measured in 

Figure 3. L. major UGP is expressed through life stages and 
absent from the ugp- mutant Whole cell lysates (12 µg/lane) of 
logarithmic and stationary phase wild type promastigotes, wild type 
amastigotes isolated from mice lesions and ugp- and ugp-/+UGP
promastigotes were subjected to SDS/PAGE and Western Blotting 
with anti UGP serum.  

Figure 2. Targeted gene replacements of UGP alleles. Southern 
Blot analysis of genomic DNA from wild type (+/+), heterozygous
UGP/Δugp::BLE (+/-) and homozygous ugp- mutant (-/-). DNA 
digested by SacI(A) or BlpI (B) was separated on agarose gel,
transferred to nylon membrane and hybridized with a digoxigenin-
labelled UGP probe or a digoxigenin-labelled 5’- flanking probe,
respectively. The size of expected fragments is outlined in the right
panel. 
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Figure 4. Phosphoglycosylation of 
reporter secreted acid phosphatase 
and LPG in the ugp- mutant. A, SAP 
was expressed in wild type and ugp-

mutant, immunoprecipitated with mAb 
LT8.2 and subjected to Western Blot 
analysis with mAb WIC 79.3 (top panel). 
Loading was checked using mAb LT8.2 
(lower panel). Untransfected wild type 
cells served as negative control. B, Cell 
extracts of wild type, ugp- and ugp-
/+UGP parasites were analyzed by 
western blotting with mAb WIC79.3. C, 
LPG expression of wild type, ugp- and 
ugp-/+UGP parasites was analyzed by 
indirect immunofluorescence 
microscopy. Promastigotes were fixed, 
permeabilized and stained with mAb 
WIC79.3. 

total cell lysates by a coupled enzymatic assay 
measuring reduction of NAD+ in presence of UDP-
Glc dehydrogenase. In wild type cells an activity of
0.41 U/mg was measured whereas the ugp- mutant 
showed a weak activity of 0.04 U/mg. These data
suggest the existence of a second UDP-glucose 
forming activity in L. major. 

 
Galactosylation is reduced in the ugp- mutant – L. 

major mutant LPG and protein linked PGs are made 
up of linear chains of 6Galβ1,4Manα1-P repeating
units, where the 3 position of the galactose may be
substituted by side chains rich in galactose and
arabinose (Ilg 2000; Turco and Descoteaux 1992).
Their synthesis requires thus the availability of UDP-
galactose. 

The effect of UGP deletion on protein linked PGs
was addressed first. We used a convenient PG reporter
developed previously, expressing a secretory acid
phosphatase (SAP) which is entensively
phosphoglycosylated (Späth et al  2000; Wiese et al 
1999). L. mexicana SAP1 was heterologously
expressed (Wiese et al  1999) in wild type and the ugp-

mutant. After immunoprecipitation and Western
blotting with the anti SAP mAb LT8.2 (Ilg et al
1993), a specific signal of about 70 kDa could be
detected in the stacking gel area indicating

phosphoglycosylation of the Ser/Thr-rich repetitive 
motifs of the protein (Fig. 4 A, lower panel) (Wiese et 
al  1995). The similar size of SAP expressed either in 
wild type or in the ugp- mutant suggests that the 
protein is properly phosphoglycosylated in the mutant 
(Fig. 4 A, lower panel). Immunoblotting with mAb 
WIC79.3, recognizing the galactosylated side chains 
decorating the phosphoglycan backbone revealed 
however a decrease of Gal modified repeating units in 
the ugp- mutant (Fig. 4A, top panel). These Gal 
modified repeating units were estimated to 70% from 
the intensity of the signal (Fig. 4A, upper panel) after 
correction for loading (Fig. 4A, lower panel). These 
results suggest that against expectations the ugp-

mutant is still able to produce substantial amounts of 
UDP-galactose. 

This conclusion was supported by analysis of LPG 
(Fig. 4). Analysis of LPG in whole cell lysates using 
the monoclonal antibody WIC79.3 for detection 
revealed a strong decrease of Gal modified repeating 
units in the ugp- mutant (Fig. 4B). Gal modified 
repeating units were estimated to 15% from the signal 
intensity and was hardly discernable by 
immunofluorescence microscopy (Fig. 4C). Together 
these results demonstrate significant, albeit reduced, 
production of UDP-Gal in the ugp- mutant.  

 

30 
 

Revised version published in Glycobiology vol. 20 no. 7 pp. 872–882, 2010



CHAPTER 2 – L. major UDP-glucose Pyrophosphorylase Gene Deletion 

 

Figure 5. GIPLs structures are unaffected in the ugp- mutant. A, Schematic representation of Leishmania GIPLs. Light shaded circles, 
Galp; light shaded circles with f, Galf; dark shaded circles, Man; half shaded squares, GlcN; hexagons, myoinositol; and P, phosphate. 
B, negative ion MALDI spectra of GIPLs isolated from ugp- mutant (top panel) and wild-type (lower panel) parasites. The identities of the 
major ions are indicated by the schematics in A and can be inferred from the structure of GIPL3, which is: Galα1-6Galα1-3Galfβ1-3Manα1-
3Manα1-4GlcNα1-6myo-inositol-1-HPO4-3(sn-1-alkyl-2-acylglycerol). The numbers of C atoms and of C=C double bonds in the acyl and 
alkyl chains, respectively, are indicated in brackets above each peak. 

The structural composition of GIPL is not affected
in the ugp- mutant – L. major synthesizes three
different type-2 GIPLs containing the common glycan
core Galfα1-3Manα1-3Manα1-4GlcN-phosphatidyl-
inositol termed GIPL-1 that can be elongated by one
(GIPL-2) or two (GIPL-3) terminal Gal residues 
(Galα1-3Galfα1-3Manα1-3Manα1-4GlcN-phos-
phatidylinositol and Galα1-6Galα1-3Galfα1-
3Manα1-3Manα1-4GlcN-phosphatidylinositol, 
respectively) (McConville et al  1990). To highlight

eventual structural differences between wild type and 
ugp- GIPLs, the glycolipids were extracted, purified 
and analyzed by negative ion matrix assisted laser
desorption ionization time of flight mass spectrometry
(MALDI-TOF-MS) (Fig. 5). The ions at m/z 1414, 
1498 and 1576, 1660 represent GIPL-1 and GIPL-2 
species containing C12:0 acyl and C18:0 or C24 alkyl 
chains, respectively (Kleczka et al  2007). Ions of m/z
1316, 1478, and 1640 (Fig. 5.) represent lyso-
structures with C24:0 alkyl chains corresponding to 
each of the three GIPL types. Furthermore, the ions at 
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m/z 442, 1470 and 1526 represent GIPL-1 structures 
with C12:0 or C14:0 acyl and C20:0/C22:0/C24:0 
alkyl chains, respectively. A very similar spectrum 
was obtained with the GIPL fraction from the ugp-

mutant (Fig. 5B) which indicates that the absence of 
UGP did not result in an increase of truncated GIPLs 
or precursor structures. Interestingly, the GIPL 
spectrum from wild type parasites contained an ion of 
m/z 1400 that is not present in the spectrum from ugp-

mutants (Fig. 5). Preliminary data suggest that this 
peak represents a GIPL-1 species with C17:0 alkyl 
and C12:0 acyl chains.  

      
Delayed lesion formation in mice infected with 

ugp- mutant – The effect of UGP deletion on 
infectivity was determined by infection with stationary 
phase promastigotes of susceptible Balb/c mice. 
Lesion formation of the wild type strain occurred three 
weeks after inoculation and progressed steadily (Fig. 
6). In contrast, the ugp- mutant showed a slight delay 
in lesion formation and swelling occurred five weeks 
after inoculation. Thereafter, the lesions developed as 
progressively as in mice infected with wild type cells 
and the lesions size correlated with parasite burden. 
As expected, the ugp-/+UGP cell line induced 
infections similar to wild type. The slight difference 
observed might be due to overexpression of UGP in 
the ugp-/+UGP (Fig. 3B). To exclude contaminants, 
amastigotes were recovered from infected animals and 
differentiated back into promastigotes. The identity of 
the re-isolated cell lines was confirmed by Western 
blotting using the anti UGP serum (data not shown).  

Human peritoneal macrophage infections were 
performed with stationary phase promastigote 
parasites opsonized with C5 deficient mouse serum. 
The time course of the infection rate for the wild type 
and knock out groups was observed in three 
independent double blind experiments (Fig. 7A). The 
initial infection rate with wild type parasites (85%) is 
slightly higher than the one with ugp- mutant (76%). 
After 25 h, the mean infection rate falls to 12% for 
wild type and 8% for the knock out and stays 
significantly lower with ugp- parasites.  After 117 h 
the difference in the mean infection rate between the 
two groups is too small to be significant. Additionally, 
the number of parasites per 30 macrophages was 
determined (Fig. 7B). The initial uptake into 
macrophages is approximately two times higher with 
wild type than ugp- parasites. Within two days of 
infection about 80% and 90% of wild type and ugp-

parasites perished, respectively. The data indicate a 
similar clearance of wild type and ugp- parasites and 
suggest that the delayed lesion formation observed in 

 
Figure 6. Delayed lesion formation of mice infected with the ugp-

mutant. Female Balb/c mice were inoculated in the footpad with 2
x 106 wild type (square), ugp- mutant (triangle) or  ugp-/+UGP 
(circle) and lesion formation was measured once a week .  

 
Figure 7. In vitro invasion of human peritoneal macrophages with
the ugp- mutant. In vitro macrophage infection with C3 opsonized
stationary phase wild type (circle) and ugp- (square) promastigotes.
The percentage of infected macrophages and the survival of
parasite/30 macrophages as a function of time are shown in A and B,
respectively. The data represent the mean, minimum and maximum
from three independent experiments. The inlay in A displays the p-
value of the Welch Two Sample t-test for each time point. 
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mice infected with the ugp- mutant might be due to a 
lower initial uptake of parasites into macrophages. 

 
 

Discussion 
 

In Leishmania parasites, epimerization of UDP-
Glc by the UDP-Glc 4-epimerase is likely the primary
route of UDP-Gal formation (Turnock and Ferguson
2007) although a salvage pathway for UDP-Gal 
synthesis is also known to occur (Turco et al  1984). 
Gal is generally phosphorylated by a galactokinase
before being converted to UDP-Gal by the UDP-
glucose:α-D-galactose-1-phosphate uridylyltransferase
(encoded by GALT) as described by Leloir (Leloir
1951). If the genome of L. major contains a putative
galactokinase, no obvious GALT homologue was
found.  An alternative pathway, initially described by
Isselbacher in mammals (Isselbacher 1958; Leslie et al
2005) has been associated with the weak UDP-
galactose pyrophosphorylase activity of UGP (Knop
and Hansen 1970; Lai and Elsas 2000). UGP occupies
thus a central position in galactose metabolism and
was expected to control L. major cell surface
molecules biosynthesis and affect virulence as
previously observed in several gram-negative and
gram-positive bacteria (Chang et al  1996; Mollerach
et al  1998; Vilches et al  2007).  

Surprisingly, targeted gene replacement of UGP in 
L. major showed only modest effects on the synthesis
of several key molecules of the glycocalyx. Whereas
the biosynthesis of LPG seems to be markedly
reduced, the influence on protein linked PGs is
limited, and remarkably, the structure of GIPLs
present in the ugp- mutant was totally unaffected. This
potentially could arise through a requirement for
UDP-Glc in the synthesis of the Glc-P modification 
found in the LPG anchor but not protein linked PGs or
GIPLs. Consistent with the limited alteration of its
surface glycocalyx components, the L. major ugp-

mutant only induced a modest delay in lesion
formation in susceptible Balb/c mice. Such delay in 
lesion emergence was previously observed with
various LPG deficient mutants (Capul et al  2007;
Kleczka et al  2007; Späth et al  2000; Zufferey et al
2003).  

The characterization of the ugp- mutant thus
suggests synthesis of a substantial, albeit reduced, 
UDP-Gal pool in the absence of UGP. Consistent with
the observation made in this study, MacRae and
collaborators showed that in presence of reduced
amount of UDP-Gal due to deletion of one allele of
the UDP-Glc 4-epimerase (TcGALE+/− mutant), 

T. cruzi preserved its galactofuranose-containing 
GIPLs, while the galactopyranose-rich mucins were 
more severely affected (Macrae et al  2006). These 
data led to the assumption that GIPLs are of major 
importance for basic parasite survival in culture. In 
Leishmania parasites, however, a mutant expressing 
agalactosylated GIPLs was generated by targeting 
galactofuranose metabolism and did not display any in 
vitro growth or morphological anomalies (Kleczka et 
al  2007). Similarly, deletion of UGP in L. major did
not induce morphological abnormality or growth 
defect, whereas the T. cruzi UDP-Glc 4-epimerase 
heterozygote mutant exhibited severe changes in cell 
surface molecular architecture and aberrant 
morphology (Macrae et al  2006). This suggests that 
the UDP-Gal pool is larger in the L. major ugp-

mutant than in the so called TcGALE+/−. It should be 
mentioned that in T. cruzi and T. brucei, epimerization 
of UDP-glucose seems to be the exclusive path for 
UDP-Gal synthesis since the hexose transporters of 
these two parasites are unable to transport Gal (Barrett 
et al  1998; Tetaud et al  1997). Consequently, 
deletion of the UDP-Glc 4-epimerase is lethal in these 
two trypanosomatids (Macrae et al  2006; Urbaniak et 
al  2006b), which makes the enzyme an attractive drug 
target (Urbaniak et al  2006a). While we had expected 
in these studies to be a similar test of the importance 
of UDP-Gal in Leishmania, our data showed 
surprisingly that Leishmania has another pathway of 
UDP-Gal synthesis bypassing the de novo and Leloir 
salvage pathways.  

A remaining question is how is UDP-Gal 
synthesized in the ugp- mutant? Intriguingly, the 
deletion mutant still exhibited a 10% UGP residual 
activity. In yeast, a greater than 95 % reduction in 
UGP activity obtained in a UGP antisense mutant did 
not lead to any obvious phenotype (Daran et al  1997), 
although UGP activity is essential for survival of this 
organism (Daran et al  1995). The 10% residual 
enzymatic activity for UDP-Glc synthesis detected in 
the ugp- mutant might thus be sufficient to maintain 
the biosynthesis of most surface glycoconjugates. 
Since absence of the UGP gene and protein were 
confirmed in the ugp- mutant, however, this residual 
activity can be clearly attributed to a different enzyme. 
Recently, it has become apparent that several 
organisms may contain isozymes of UGP encoded by 
different genes. For instance, deletion of a gene 
encoding UGP (udpgp1) in Dictyostelium discodeum 
pointed toward the importance of a second UGP 
involved in differentiation and development of the 
slime mold (Bishop et al  2002). Plants also often 
express different UGPs (Chen et al  2007; Meng et al 
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2007; Meng et al  2008). Arabidopsis, for instance,
contains homologous UGP genes encoding two
enzymes located in the cytoplasm and a chloroplastic
UGP involved in sulfolipid biosynthesis (Meng et al
2008; Okazaki et al  2009). However, the genome of
Leishmania major does not contain any close UGP
homologues.  Conversely, a leishmanial homologue of
the recently described plant UDP-sugar 
pyrophosphorylase (USP) was found. USP is an
enzyme that can non-specifically utilize UTP and 
glucose-1-phosphate or galactose-1-phosphate to
produce UDP-glucose or UDP-Gal and pyrophosphate
(Kotake et al  2004; Kotake et al  2007; Litterer et al
2006). Such an enzyme would be able to fuel the
UDP-Gal pool by direct activation of galactose-1-
phosphate and be responsible for the limited UDP-Glc 
production that takes place in the ugp- mutant. Like in
the L. major ugp- mutant, deletion of the two
Arabidopsis cytoplasmic UGPs had no effect on cell
wall composition and resulted in a 15 to 25% residual 
activity. This outcome was at least partially due to
USP overexpression (Meng et al  2009). A similar
compensation mechanism might take place in
Leishmania major and contribute to the mild
phenotype obtained by UGP deletion. Altogether, this
work demonstrates that the UDP-Gal salvage pathway
of Leishmania does not proceed via the Leloir
pathway and is able to contribute significantly to the
biosynthesis of the glycocalyx. 

 
 

Experimental procedures 
 

Parasite culture and transfection – L. major
MHOM/SU/73/5ASKH was grown at 27°C in M199
media (Invitrogen) containing 10% fetal calf serum,
40 mM Hepes pH 7.5, 0.1 mM adenine, 0.0005%
hemin, 0.0002 % biotin and 50 U/mL
penicillin/streptomycin. Parasites were transfected by
electroporation (Robinson and Beverley 2003) and
allowed to grow in 1x M199 medium for 24 hours
before transfer to semi solid media containing 1%
Noble agar (Becton Dickinson) and appropriate
antibiotics. Individual colonies were picked and grown
in selective M199 liquid media. The antibiotics 
phleomycin, hygromycin B, and puromycin were
obtained from InvivoGen and G418 from Sigma. 

 
Generation of L. major UGP deletion mutants and 

add back lines – For gene replacement by homologous
recombination the resistance markers hygromycin B
phosphotransferase (HYG) and the phleomycin
binding protein (PHLEO) were cloned between the 5’

and 3’ regions directly flanking the UGP-gene. 
Therefore, sequences 1.5 kb upstream and 
downstream of the ugp locus were amplified by PCR 
from genomic DNA using the primers CTG ATC 
TAG AAA CGA AGA CGA GCT ACA GCG CAT G 
/ TAA AGG ATC CCC ATG GCT TCA CCT CCG 
TGA CAG C and GAA AGG ATC CGC TAG CTA 
GGG GTC ACA AGC TGC TGA / ATA CGG TAC 
CCC GCC GTC ATC TGT CGA TTG CAC AC, 
respectively and ligated into the XbaI, BamHI and 
BamHI, KpnI restriction sites of the pcDNA3 vector 
respectively. The above primers contained additional 
BspHI and NheI restriction sites at the 3’ and 5’ ends 
of the 5’ and 3’ flanking region, respectively that 
allowed cloning of the selection markers amplified 
from the vectors pCR2.1hyg and pCR2.1phleo 
(M. Wiese, unpublished data) between the flanking 
regions. The resulting UGP::HYG and UGP::PHLEO 
targeting constructs were digested with BsaAI and the 
corresponding fragments purified by gel extraction 
and subsequent ethanol precipitation. The deletion 
mutant was generated by two consecutive rounds of 
homologous recombination using the UGP::PHLEO 
fragment in the first and the UGP::HYG in the second 
round. Southern blotting techniques were used to 
confirm the precise gene replacement. The obtained 
homozygous mutant was named ugp-.   

For episomal expression of UGP in the ugp-

background, the construct pXG-UGP was transfected 
into several clones, referred to as ugp-/+UGP. The 
plasmid was generated by PCR amplification of the 
UGP open reading frame with the primer pair AGT 
ACC CGG GAT GGA AAA CGA CAT GAA GTC C 
/ AGT AGG ATC CCT ACT TGT TGG TCG ACT 
GCT G. After XmaI/BamHI restriction digest, the 
fragment was ligated into pXG-PAC (Freedman and 
Beverley 1993).   

 
Western Blot Analysis – Whole cell lysates from 

exponentially growing and stationary phase L. major
promastigote cultures as well as from amastigotes 
isolated from mice were separated by SDS/PAGE and 
transferred onto nitrocellulose membranes (Whatmann 
Schleicher & Schüll). Protein concentration was 
measured in triplicate by Bradford protein assay 
(Biorad) to ensure equal loading. Enhanced 
chemiluminescence detection (Pierce) was used after 
incubation with mAb WIC79.3 (ascites fluid; diluted 
at 1:2000) (de Ibarra et al 1982) whereas the Super 
Signal West Femto ECL substrate (Pierce) was 
required after incubation with mAb CA7AE (diluted 
at 1:1000) (Tolson et al  1989). In both case, goat anti 
mouse mAb coupled to peroxidase (Dianova) at a 
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dilution of 1:25000 was used as secondary antibody.
L. major UGP was detected using a 1:60000 dilution
of a recently prepared antiserum (Lamerz et al  2006)
and AP-conjugated goat-anti-rabbit antibody (1:2000,
Dianova). 

 
Expression and analysis of L. mexicana secreted 

acid phosphatase – Proteophosphoglycosylation was
analyzed by heterologous expression of the L. 
mexicana secreted acid phosphatase (SAP1) (Wiese et
al  1999). Therefore, the plasmid pXG-Lmex-SAP1 
(Späth et al  2000) was transfected into wild type and
ugp- L. major cells. Recombinant proteins were
immunoprecipitated from the cell culture supernatants
with the anti-SAP mAb LT8.2 (Ilg et al  1993). Both
expression of SAP and phosphoglycosylation were
monitored by Western blotting using the mAbs LT8.2
and WIC79.3 and displayed with the Super Signal
West Femto ECL substrate (Pierce).  

 
GIPL analysis – GIPLs were extracted in

chloroform/methanol/water (1:2:0.8), purified over a
C18/SepPak® Plus column (Waters) and dried under a
stream of nitrogen as described previously (16). -
MALDI-TOF-MS analyses of lipid extracts were
performed in the negative-ion mode with delayed
extraction on a Voyager DE STR time-of-flight mass
spectrometer (Applied Biosystems, Foster City, CA,
USA) equipped with a 337 nm nitrogen laser.
Analyses were performed in reflector mode over the
m/z range 800–3000 with an accelerating voltage of
20 kV and a delay of 300 ns. The instrument was
externally calibrated. A low-mass gate value of m/z
500 was selected to avoid saturation of the detector. α-
Cyano-4-hydroxycinnamic acid (10 µg µl−1 in 60% 
ACN−0.1% TFA) was used as a matrix. Final mass
spectra represented an average of 5–10 spectra, each
of which is acquired from 200 laser shots. For
structural assignment of GIPLs, linear ion trap (LIT)
MSn spectra (n = 2, 3, 4) were obtained as previously 
described (Althea A. Capul, F-F. Hsu and SMB
unpublished; Althea A. Capul, Ph.D. Thesis,
Washington University 2005). Briefly, [M –H]- ions 
were generated by electrospray ionization (ESI) and
subjected to low energy CAD on a Thermo Finnigan
(San Jose, CA) LTQ LIT mass spectrometer (MS)
operated with Xcalibur software. Methanolic GIPL
solutions were continuously infused into the ESI
source with a syringe pump at a flow rate of 2 uL/min.
The automatic gain control of the ion trap was set to 
5x104 and the maximum injection time 100 ms.
Helium was used as buffer and collision gas at a
pressure of 1x10-3 mbar (0.75 mTorr). The relative

collision energy ranged from 20-30%, and an 
activation time of 30 ms and an activation q value of 
0.25 were used, which resulted in a residual precursor 
ion abundance of about 20%. The mass resolution of 
the instrument was tuned to 0.6 Da at half peak height.

 
Infection of human peritoneal macrophages –

Human peritoneal monocytes were isolated as 
previously described (van Zandbergen et al  2002). 
Briefly, freshly isolated human buffy coats were 
diluted and monocytes were isolated by Histopaque 
1077 (Sigma) gradient centrifugation. Collected cells 
were subjected to magnetic cell sorting using CD14 
microbeads (Miltenyi Biotec, Germany). Isolated 
monocytes cultured in RPMI 1660 media 
supplemented with 10% FCS, L-Glutamin and human 
macrophage colony stimulating factor (Tebu) for 7 
days. Before use in infection studies parasites were 30 
min incubated with 4% complement factor 5-deficient 
human serum (C5-deficient serum; Sigma) in RPMI. 
Parasites were then allowed to invade macrophages 
for 2 hours at 37°C in a parasite to macrophage ratio 
of 10:1. Measured infection rates were normalized to 
values obtained with wild type L. major after a 
2 hours infection step. 

 
Mouse infection – Promastigotes passed through 

BALB/c mice (Charles River) were grown to 
stationary phase and 2x106 parasites were injected 
subcutaneously into the footpad of female Balb/c mice 
(Charles River). Each experimental group consisted of 
five individuals. Lesion formation was monitored 
once a week by measuring the infected and the non-
infected footpad using a Vernier calliper. The median 
size difference (+/- MAD) of the infected and non-
infected footpad was plotted against the weeks post 
infection. Mice were sacrificed when necrosis 
appeared in the group and lesion derived parasites 
were enumerated in limiting dilution assays. In 
addition, amastigotes were isolated from lesions and 
either used directly or after differentiation into 
promastigotes used for further analyses. 

 
In vitro determination of UGP activity – For the in 

vitro testing of UGP activity, lysates obtained from 
promastigotes were assessed by a coupled enzymatic 
assay. The assay which measures the forward reaction 
of the enzyme has been previously described in detail 
(Lamerz et al  2006). Whole cell lysates were used as 
enzyme source. 
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 Supplementary Material 

 

 

Figure S1. Molecules of the GPI family dominating Leishmania major surface. GPI-anchored proteins, phosphoglycosylated proteins 
(protein linked PGs), lipophosphoglycan (LPG) and glycoinositolphospholipids (GIPLs) are the main molecules constituting Leishmania
glycocalix. Man, mannose; Gal, galactose, Glc, glucose, P, phosphate, GlcN, glucosamine, PI, phosphatidylinositol. *The side chains
substituting LPG vary in the different developmental stages. The side chains depicted here are the main chains present in procyclic 
promastigotes. For more details, the reader is referred to McConville, M. J. and Ferguson, M. A. (1993) Biochem.J. 294 , 305-324. 

 

Figure S2. L. major UPG is a single copy gene. A, Schematic display of L. major UGP locus indicating the size of fragments expected 
after digestion with the indicated restriction enzymes. B, Southern Blot analysis of genomic DNA digested with either BlpI, SacI, NcoI,
NcoI/BamHI or SapI. Fragments were separated on agarose gel, transferred to a nylon membrane and hybridized with a digoxigenin-
labelled UGP probe.  
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Preface – About this manuscript 

 

This part of my work aimed at the identification and biochemical characterization of the assumed 

UDP-sugar pyrophosphorylase (USP) in Leishmania major. For this purpose the L. major Friedlin 

(LmjF) genome was searched using the BLAST algorithm with the known USP gene from Pisum 

sativum. The candidate gene LmjF17.1160 was identified, cloned, the protein overexpressed in E. coli 

and purified by chelating and affinity chromatography. Using purified protein for immunization trials 

in rabbits, USP anti-serum could be obtained. The L. major USP characteristics such as 

oligomerization status, kinetic parameters, substrate epitope binding and binding mode were 

investigated using an array of techniques comprising enzymatic, electrophoretic, immunochemical and 

NMR-spectrometric techniques. In particular, a novel versatile enzyme coupled in vitro assay system 

was established for detection of USP reactivity.  

My contribution to this manuscript encompassed the purification, immunization and whole 

characterization of the L. major USP including the establishment of new techniques. Prof. Routier and 

I wrote the paper. 
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The Leishmania parasite glycocalyx is rich in
galactose-containing glycoconjugates that are
synthesized by specific glycosyltransferases which
use UDP-galactose as a glycosyl donor. UDP-
galactose biosynthesis is thought to be
predominantly a de novo process involving
epimerization of the abundant nucleotide sugar 
UDP-glucose by the UDP-glucose 4-epimerase,
although galactose salvage from the environment
has been demonstrated for L. major. Here we
present the characterization of a L. major UDP-
sugar pyrophosphorylase able to reversibly
activate galactose-1-phosphate into UDP-galactose 
thus proving the existence of the Isselbacher
salvage pathway in this parasite. The ordered
bisubstrate mechanism and high affinity of the
enzyme for UTP seems to favor the synthesis of
nucleotide sugar rather than their
pyrophospholysis. Although L. major UDP-sugar 
pyrophosphorylase preferentially activates
galactose-1-phosphate and glucose-1-phosphate,
the enzyme is able to act on a variety of hexose-1-
phosphates as well as pentose-1-phosphates but not
hexosamine-1-phosphates and hence presents a
broad in vitro specificity. The newly identified
enzyme exhibits a low but significant homology
with UDP-glucose pyrophosphorylases and
conserved in particular is the pyrophosphorylase
consensus sequence and residues involved in
nucleotide and phosphate binding. Saturation
Transfer Difference (STD) Nuclear Magnetic
Resonance (NMR) spectroscopy experiments
confirm the importance of these moieties for
substrate binding. The described leishmanial
enzyme is closely related to plant UDP-sugar 
pyrophosphorylases and presents a similar
substrate specificity suggesting their common
origin. 
 
 
INTRODUCTION 

Trypanosomatid parasites of the genus
Leishmania, the causal agent of the human disease
leishmaniasis, are characterized by a digenetic life
cycle with a promastigote stage in the sand fly vector
and an amastigote stage in mammalian macrophages.
According to World Health Organization reports more
than 20 million people are infected worldwide
(http://www.who.int/leishmaniasis/en/) and present
manifestations ranging from self-healing cutaneous
lesions to fatal visceral forms.  

Leishmania parasites are coated by a dense 
glycocalyx composed of GPI-like structures  which is 
essential for parasite survival in the sandfly vector 
and, at least for some species, for promastigote 
infectivity in the mammalian host (1). This glycocalyx 
is particularly rich in galactose occurring either in the 
pyranosic form (Gal) or the more unusual furanosic 
form (Galf). Its biosynthesis depends thus on the 
availability of the nucleotide activated sugar UDP-
galactopyranose (UDP-Gal) which can be 
interconverted into UDP-galactofuranose (UDP-Galf) 
by the specific enzyme UDP-galactopyranose mutase 
(2;3). Consequently, mutants deficient in the 
formation of UDP-Galf or in the transport of UDP-Gal 
into the secretory pathway organelles present an 
altered glycocalyx associated with parasite attenuation 
(4-7). A route to UDP-Gal formation is via 
epimerization of the abundant nucleotide sugar UDP-
glucose (UDP-Glc) by the UDP-Glc 4-epimerase (8). 
The biosynthesis of UDP-Gal is thus intimately linked 
to glucose metabolism (Fig. 1). Since the 
trypanosomatid parasites Trypanosoma brucei and 
Trypanosoma cruzi are unable to take up galactose 
from the environment (9;10), the 
UDP-Glc 4-epimerase is indispensable for 
biosynthesis of UDP-Gal and derived glycoconjugates 
in these organisms and is essential for their survival 
(11-14). In contrast, a salvage pathway for UDP-Gal 
synthesis is known to occur in Leishmania since 
radiolabeled Gal is taken up by promastigotes and 
incorporated into surface molecules (15). Gal most 
likely enters cells by a family of hexose transporters 
(16) before being converted into galactose-1-
phosphate (Gal-1-P) by the putative galactokinase 
present in the genome (LmjF35.2740). Deletion of 
three of these hexose transporters in Leishmania 
mexicana revealed their importance in the growth, 
infectivity and survival of the parasite underlining the 
importance of monosaccharide salvage in both 
promastigotes and amastigotes (16;17).  

Gal-1-P is usually activated into UDP-Gal by a 
UDP-glucose:α-D-galactose-1-phosphate 
uridylyltransferase enzyme (EC 2.7.7.12 encoded by 
the gene GALT) via the Leloir pathway.  A clear 
homologue of this activating enzyme is however not 
found in the Leishmania major genome. Alternatively, 
incorporation of Gal-1-P into uridine nucleotide by a 
pyrophosphorolytic reaction has been reported in 
mammals and constitutes the Isselbacher pathway (18) 
(Fig. 1) although a UTP:α-D-galactose-1-phosphate 
uridylyltransferase (EC 2.7.7.10) has never been 
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identified. In stark contrast, plants exhibit an enzyme 
with broad specificity called UDP-sugar 
pyrophosphorylase (USP; EC 2.7.7.64) that has been
recently involved in this alternative pathway for Gal
activation (19-21). 

Analysis of a L. major UDP-glucose 
pyrophosphorylase (UGP) deletion mutant (Lamerz et
al., unpublished work) revealed the presence of Gal
containing molecules underlining the existence of a
UDP-Gal biosynthetic pathway independent of UDP-
Glc biosynthesis. Herein, we report the identification,
cloning, and characterization of a Leishmania major
UDP-sugar pyrophosphorylase (USP) (EC 2.7.7.64) 
with broad substrate specificity including Gal-1-P and 
glucose-1-phosphate (Glc-1-P). The enzyme identified
by homology with its plant orthologues (19;21)
suggests the presence of the Isselbacher pathway in
Leishmania. 

 
 

EXPERIMENTAL PROCEDURES 
Cloning, Expression and Purification of His6-

tagged L.major USP – The entire open reading frame
of L. major UDP-sugar pyrophosphorylase
(LmjF17.1160) was amplified with the primer set 
ACL115 (CTG ACT CCA TAT GAC GAA CCC

GTC CAA CTC C) and ACL116 (CTT AGC GGC 
CGC ATC AAC TTT GCC GGG TCA GCC G), 
containing integrated restriction sites for NdeI and 
NotI, respectively and inserted into a pET22b 
expression vector (Novagen), containing a C-terminal 
His6-tag. For recombinant expression the vector was 
transformed into Ca2+-competent E.coli BL21(DE3) 
via heat shock. Cells were grown in Power Broth 
(AthenaES) at 37°C to an OD of 1.0, transferred to 
15°C and the expression induced at 1.2 OD by 
addition of 1 mM isopropyl 1-thio-β-D-
galactopyranoside. After 20 h the cells were harvested 
by centrifugation (6000 x g, 15 min, 4 °C) and washed 
with phosphate-buffered saline. 

A bacterial pellet obtained from 500 mL Power 
Broth solution was resuspended in 15 mL Ni2+-
chelating buffer ANi (50 mM Tris/HCl pH 7.8, 300 
mM NaCl) including protease inhibitors (40 µg/mL 
bestatin (Sigma), 4 µg/mL pepstatin (Sigma), 0.5 
µg/mL leupeptin (Serva) and 1 mM 
phenylmethylsulfonyl fluoride (Roche Applied 
Science). Cells were lysed by sonication with a 
microtip (Branson Sonifier, 50% duty cycle, output 
control 5, eight 30 s pulses for 8 min) and cell debris 
were removed by centrifugation (20.000 x g, 15 min, 4 
°C). The soluble fraction was loaded onto a 1 mL 
HisTrap HP Ni2+-chelating column (GE Healthcare). 
After a 20 mL wash with buffer ANi (50 mM Tris/HCl 
pH 8, 300 mM NaCl), the column was eluted with 20 
mL buffer ANi containing 40 mM imidazole followed 
by a final elution step of 5mL buffer ANi containing 
300 mM imidazole. The fractions containing L.major
USP were pooled and passed over a HiPrep 26/10 
desalting column (GE Healthcare) to exchange buffer 
ANi to buffer AQ (50 mM Tris/HCl pH 8.0). The 
sample was then loaded on a 1 mL Q-Sepharose FF 
anion exchange column (GE Healthcare) that was 
successively washed and eluted with 20 mL buffer AQ, 
20 mL buffer AQ containing 100mM NaCl and a final 
final volume of 5 mL buffer AQ containing 300 mM 
NaCl. Again, the fractions containing the recombinant 
L. major USP were pooled and exchanged to standard 
buffer (Tris/HCl pH 7.8, 10 mM MgCl2) via HiPrep 
26/10 column. Purified samples were snap-frozen in 
liquid nitrogen and stored in standard buffer at -80 °C.

 
Complementation of E.coli DEV6 galU Mutant –

Complementation of the E.coli DEV6 galU mutant 
strain was performed as previously described by 
Lamerz et al (22).  
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Size Exclusion Chromatography – Size exclusion
chromatography on a Superdex 200 10/300 GL
column (10 × 300 mm) (GE Healthcare) was used to
determine the quaternary organization of the
recombinant L. major USP. The column was
equilibrated with 50 mL of standard buffer (50 mM
Tris/HCl, pH 7.8, 10 mM MgCl2, loaded with 100 µL
of one of the following standard proteins, bovine
carbonic anhydrase (3 mg/mL), bovine serum albumin
(10 mg/mL), yeast alcohol dehydrogenase (5 mg/mL), 
potato β-amylase (4 mg/mL), and thyroglobulin
(3 mg/mL) (protein standard kit; Sigma) or with
purified recombinant His6-tagged L. major USP 
(4 mg/mL) and eluted at a flow rate of 1mL/min. The
apparent molecular weight was determined by
standard curve. 

 
In vitro Enzyme Assays – The formation of

pyrophosphate in the forward reaction was detected
with the EnzChek® Pyrophosphate Assay Kit
(Molecular Probes). The assay medium contained 50
mM Tris/HCl pH 7.8, 10 mM MgCl2, 1 mM DTT, 0.2
mM 2-amino-6-mercapto-7-methylpurine ribo-
nucleoside (MESG), 0.03 units APP, 2.0 units PNP
and varying amounts of sugar-1-phosphate and UTP

ranging from 0.5 to 3 mM.  Enzyme reactions were 
performed at 25°C in a total volume of 100 µL and 
started by the addition of USP. A control without USP 
was used for normalization.  

UTP produced in the reverse reaction, was 
converted into one equivalent of inorganic phosphate 
by E.coli Cytidine Triphosphate (CTP)-synthase in 
presence of ATP, L-Gln and the cofactor GTP. 
Inorganic phosphate was then quantified using the 
EnzChek® Pyrophosphate Assay Kit (Molecular 
Probes) but omitting the first coupling enzyme. For 
these experiments, the CTP-synthase gene was 
recombinantly cloned from E. coli XL1-blue in a 
pET22b expression vector with a primer set including 
Nde I and Not I restriction sites (SD13: CTT ACA 
TAT GCA TCA TCA TCA TCA TCA CGC TAG 
CGG ATC CAT GAC AAC GAA CTA TAT TTT 
TGT GAC C, SD14: CTT AGC GGC CGC TTA CTT 
CGC CTG ACG TTT CTG G). The N-terminal His-
tagged CTP-synthase was expressed and purified as 
described above for the USP, but without anion 
exchange chromatography. The assay mixture for the 
reverse reaction contained 50 mM Tris/HCl pH 7.8, 10 
mM MgCl2, 1 mM DTT, 0.2 mM MESG, 1 mM ATP, 
1 mM L-Gln, 0.25 mM GTP, 3 µg CTP-synthase, 2.0 
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concentrations (x) and the Michaelis-Menten-kinetic 
was analysed in PRISM using nonlinear-regression (y 
= Vmax • x / (KM + x)). 

 
SDS-PAGE Analysis and Immunoblotting – SDS-

PAGE was performed according to Laemmli. Protein 
samples were separated on SDS-polyacrylamide gels 
composed of a 5% stacking gel and a 10% separating 
gel. Protein bands were visualized by Coomassie 
brilliant blue staining. For Western blot analysis, 
proteins were transferred to nitrocellulose membranes 
(Schleicher & Schüll GmbH). His6-tagged proteins 
were detected using the penta-His antibody (Qiagen) 
at a concentration of 1 µg/mL and a goat anti-
mouse Ig alkaline phosphatase-conjugate (Jackson 
ImmunoResearch). 

 
STD NMR – All STD NMR experiments were 

performed on a Bruker Avance DRX 600 MHz 
spectrometer equipped with a triple axis cryoprobe at 
298 K in 50 mM deuterated TRIS buffer, pH 7.8 and 
10 mM MgCl2. The protein was saturated with a 
cascade of 40 selective Gaussian-shaped pulses of 50 
ms duration with a 100 µs delay between each pulse 
resulting in a total saturation time of ~2 s. The on- and 
off-resonance frequency was set to 0.7 ppm and 
40 ppm, respectively. In a typical STD NMR 
experiment, 0.5 µM recombinant USP was used and 
all investigated ligands were added at a molecular 
ratio (protein/ligand) of 1:100. A total of 1024 scans 
per STD NMR experiment were acquired, and a 
WATERGATE sequence was used to suppress the 
residual HDO signal. A spin lock filter with strength 
of 5 kHz and duration of 10 ms was applied to 
suppress protein background. Relative STD effects 
were calculated according to the equation ASTD = (I0 -
Isat) / I0 = ISTD / I0 by comparing the intensity of the 
signals in the STD-NMR spectrum (ISTD) with signal 
intensities of a reference spectrum (I0). The STD 
signal with the highest intensity was set to 100%, and 
other STD signals were calculated accordingly (23). 

 
RESULTS 

Identification of a putative UDP-sugar 
pyrophosphorylase in Leishmania genome – Although 
enzymatic epimerization of UDP-glucose is clearly 
not the sole source of UDP-galactose in Leishmania 
major (15) (Lamerz et al., unpublished work), the 
genome of this parasite lacks an obvious UDP-
glucose:α-D-galactose-1-phosphate uridylyltransferase 

units PNP and 2 mM of UDP-sugar and
pyrophosphate in a final volume of 100 µl. The
reaction was initiated by addition of USP and
normalized to buffer control. 

Measurements were performed in 96-well half-
area flat-bottom microplates (Greiner Bio-One) with 
the Power-WaveTM340 KC4 System (Bio-Tek). To 
exclude cross reactions all substrates and cofactors of
coupling enzymes were tested against USP inhibition
or competition and vice versa (data not shown). The
determinations of KM and Vmax values were performed
using varying substrate concentrations up to twelve
triplicates, whereas the second substrate was set to a
constant saturating concentration. The initial linear
rates (y) were plotted against the substrate
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enzyme (EC2.7.7.12). BLAST searches of the
L. major genome revealed however the existence of a
gene (LmjF17.1160) displaying approximately 32 %
identity with pea sprout USP (19) and 15 % identity
with L. major UDP-glucose pyrophosphorylase (UGP)
(22;24). This gene is extremely conserved amongst
Leishmania species and is also found in Trypanosoma
cruzi but not in Trypanosoma brucei. In L. major, the 
encoded protein referred to here as L. major USP or 
LmjUSP, contains 630 amino acids and has a
theoretical molecular weight of 69 kDa. An alignment
of Leishmania major USP and UGP is presented in
figure 2A and highlights the conservation of residues
essential for catalytic activity of pyrophosphorylase
and for nucleotide sugar binding (25;26). The LmjUSP 
basic residues K134, H224 and K434 (corresponding
to LmjUGP K95, H191 and K380) are strictly
conserved and predicted to be involved in phosphate
binding (26). Similarly, with the exception of V120
which is a lysine residue in UGPs, the amino acids
involved in uridine binding are preserved. In contrast,
only two of the residues of UGPs interacting with the
glucose moiety (G256 and N308) are conserved in
USPs (Fig. 2A, Fig. S1).   

The phylogenetic tree presented in figure 2B 
demonstrates that LmjUSP is clearly distinct from the
UDP-Glc synthesizing enzyme UGP as well as the
UDP-N-acetylglucosamine pyrophosphorylase (UAPs)
and UDP-glucose: α-D-galactose-1-phosphate 

uridylyltransferase (GALT). Trypanosomatid USPs 
clusters with the plant and algal USPs but constitute a 
separate branch. 

 
Leishmania major USP is involved in biosynthesis 

of UDP-glucose and/or UDP-galactose. To 
demonstrate the role of L. major putative USP in the 
metabolism of galactose, we first investigated its
ability to complement the growth defect of E. coli
galU mutant strain DEV6. This specific bacterial 
strain is unable to grow on agar containing galactose 
as the only carbohydrate source due to a mutation in 
UGP which prevents synthesis of UDP-Glc and 
subsequent depletion of the cytotoxic Gal-1-P by the 
UDP-glucose:α-D-galactose-1-phosphate 
uridylyltransferase enzyme (EC2.7.7.12). Upon 
transformation with LmjUSP cDNA, the ability of 
these bacteria to grow on galactose containing media 
was restored (Fig. S2) indicating the involvement of L. 
major USP in the activation of Gal-1-P either 
dependently (via the Leloir pathway) or/and 
independently of UDP-Glc biosynthesis (via the 
Isselbacher pathway) (Fig. 1). 

 
Leishmania major USP is a monomer exhibiting 

broad substrate specificity – Oligomerization has been 
shown to regulate the activity of barley UGP (27) but 
not that of L. major UGP (22). We have thus 
investigated the oligomerization state of L. major C-
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terminally His-tagged USP (LmjUSP-His6) expressed
in E. coli BL21 (DE3) cells and purified to
homogeneity via nickel affinity, anion-exchange and
by size exclusion chromatographies (Fig. 3). The 
recombinant L. major USP eluted as a single peak
with a retention time of 14.65 mL corresponding to an
apparent molecular mass of 69.7 kDa calculated from
the Log molecular weight versus retention volume plot
(Fig. 3C, inset). The theoretical mass (70.4 kDa) to
apparent molecular mass ratio of 1.01 clearly indicates
that the recombinant His6-tagged LmjUSP is a
monomer. This result was confirmed using untagged
LmjUSP expressed in E. coli and partially purified by
anion exchange- and size exclusion-chromatography
(data not shown). Moreover, we demonstrated that the
monomeric form (identified by PAGE and Western
blotting in figure 3D and E, respectively) is the active
form of the enzyme by assaying each fraction for their
ability to synthesize UDP-glucose with the assay
described below (Fig. 3C). 

Because of its homology with plant USPs,
LmjUSP was anticipated to have broad substrate 
specificity; versatile enzymatic assays that allow
testing of the forward or reverse reaction with various
substrates were thus established. The synthesis of
UDP-Glc, UDP-Gal or other UDP-sugar from their
respective sugar-1-phosphate and UTP (forward
reaction) generates pyrophosphate as by-product 
which can be monitored using the Invitrogen Enz-
Chek Pyrophosphate Kit. This system is based on
hydrolysis of pyrophosphate and subsequent
enzymatic reaction of inorganic phosphate with 2-
amino-6-mercapto-7-methylpurine ribonucleoside 
(MESG) to produce ribose-1-phosphate and 2-amino-
6-mercapto-7-methylpurine absorbing at 360 nm. In
pilot experiments, the possibility of ribose-1-
phosphate cross-reactions with LmjUSP was,
therefore, excluded by competitive testing with the
substrate Glc-1-P in a different NADH based assay
system (28) (data not shown). Alternatively, the
formation of UTP was followed to analyze the
synthesis of sugar-1-phosphate from nucleotide sugar
and pyrophosphate (reverse reaction). In this assay, 
UTP was utilized by E. coli CTP-synthase (29)
generating free inorganic phosphate which could be
detected using the same principle. The enzyme’s
substrate specificity was determined by one of the
employed in vitro assays (Table 1). Gal-1-P and Glc-
1-P appeared to be the main substrates of LmjUSP, in 
agreement with the ability of the enzyme to
functionally complement E. coli DEV6 galU mutants.

Like UGP, LmjUSP acts reversibly in vitro and could 
efficiently use the substrates UDP-Gal and UDP-Glc 
to produce Gal-1-P and Glc-1-P, respectively. 
Importantly, significant activity, albeit at lower level, 
was also detected when D-xylopyranose-1-phosphate 
(Xyl-1-P), UDP-β-L-arabinopyranose (UDP-L-Ara) or 
UDP-α-D-galacturonate (UDP-GalA) were used as 
substrates while GlcNAc-1-phosphate and UDP-
GalNAc were not converted. Similarly, α-D-mannose-
1-phosphate (Man-1-P) and α-L-fucose-1-phosphate 
(Fuc-1-P) were not activated by LmjUSP in the 
presence of GTP. Our results clearly establish that the 
leishmanial enzyme exclusively utilizes UTP for 
activation of Gal-1-P in accordance with expectations. 
Together, these data establish the pyrophosphorylase 
activity of the candidate protein and demonstrate its 
broad substrate specificity that includes Gal-1-P and 
Glc-1-P. 

Leishmania major USP follows simple Michaelis-
Menten kinetics – The kinetic parameters of the 
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purified enzyme were determined for the main
substrates of the forward (Gal-1-P, Glc-1-P, and UTP)
and reverse (UDP-Gal, UDP-Glc, and pyrophosphate)
reaction. Additionally, UDP-L-Ara and UDP-GalA 
which represent analogues of UDP-Gal in which the
C6-group is either absent or substituted were
analyzed. L. major USP followed Michaelis-Menten 
kinetics with all substrates tested (Fig. S3). The
calculated kinetic parameters Vmax, KM, kcat and 
derived catalytic efficiency (kcat/KM) are summarized
in table 2. Interestingly, Gal-1-P seems to be preferred
over Glc-1-P (KM = 860 µM and 1706 µM, 
respectively) suggesting a slight influence of the C4
hydroxyl group stereochemistry in substrate binding.
Nevertheless, the affinity of L. major USP for these
two hexose-1-phosphates is rather low and remarkably
lower than the affinity of the enzyme for UTP (KM = 
860 and 1706 µM versus 98 or 116 µM), the latter
being comparable to the affinity of various UGPs for 
UTP (22;30;31). This striking difference is reflected
by the low efficiency of the enzyme with hexose-1-
phosphates when compared to the co-substrate UTP.
In contrast, the affinity and maximum velocity of the
enzyme with UDP-Gal and UDP-Glc are comparable
(KM = 148 or 174 µM and Vmax = 134 or 157
µmol/min/mg respectively) resulting in an identical
efficiency of the enzyme with these two substrates of
51% when compared to the efficiency obtained with
UTP. Assuming that the sugar moiety of hexose-1-
phosphate and UDP-hexose binds to the same site, the
higher affinity of LmjUSP for the UDP-sugar suggests
that the nucleotide moiety plays a major role in
substrate binding. This hypothesis is consistent with
the high KM for UTP. As expected, the affinity and
turnover for UDP-L-Ara and UDP-GalA are low in
agreement with the observation that these nucleotide
sugars are poorer substrates (Tables 1 and 2) 
(19;20;32). Thus the absence of the C6 hydroxyl
group and particularly its substitution leads to a drastic
reduction of the enzyme efficiency. 

Because of its high affinity for LmjUSP, UTP
might bind first to the enzyme followed by Gal-1-P or 
Glc-1-P thus favoring the forward reaction despite the
low affinity of the enzyme for Gal-1-P and Glc-1-P. In 
line with this assumption, the turnover rates measured
for the hexose-1-phosphates were similar to the
turnover rate measured for UTP (~200 s-1) and higher
than the one of UDP-Gal, UDP-Glc or pyrophosphate
(~170 s-1). Altogether the kinetic data and their 
comparison with data obtained with L. major UGP 
(24) suggest an ordered bi-bi substrate mechanism. 

Leishmania major USP follows an ordered bi-bi 
mechanism – To gain insight into substrate binding to 
L. major USP and substantiate a sequential binding 
mode of substrates to the enzyme, protein-ligand 
interactions were investigated by Saturation Transfer 
Difference Nuclear Magnetic Resonance spectroscopy 
(STD NMR). This powerful method (33;34) is capable 
of identifying ligand binding epitopes of a ligand 
when bound to a target protein. Ligand protons that 
are in close contact with the enzyme receive a higher 
degree of saturation via the protein resulting in the 
observation of stronger STD NMR signals compared 
to ligand protons that do not interact with the protein 
surface and are solvent exposed. 1H NMR spectra 
were first recorded to assign signals and ensure that 
the enzyme was active in the forward and reverse 
reactions under the applied assay conditions. STD 
NMR experiments revealed strong STD NMR signals 
for UTP whereas the related nucleotides ATP, GTP 
and CTP result in low, if any, STD NMR signal 
intensity (Fig. S4). This result strongly suggests that 
ATP, GTP and CTP have low affinity for USP. The 
clear signals arising from the ribosyl proton H4rib, 
uridyl protons H5uri and H6uri and in particular from 
the ribosyl proton H1rib of UDP-Gal indicate their 
close vicinity to the protein surface. Interestingly, 
UDP and UMP show little affinity for LmjUSP 
emphasizing the importance of the UTP γ-phosphate 
in binding (Fig. S5).  In contrast, the STD NMR 
spectra of UDP-Gal, UDP-Glc, UDP-GalA and UDP-
L-Ara display strong STD NMR effects, indicating 
high affinity (Fig. 4) for LmjUSP. The STD NMR 
spectrum of UTP revealed close proximity of the 
H1rib, H4rib, H5uri and H6uri protons when bound to 
LmjUSP while the H2rib, H3rib and H5/H5’rib protons 
seem less important in the binding event. This 
interaction is strengthened by the sugar moiety 
notably in the case of UDP-Gal and UDP-Glc. 
Remarkably most of the Gal protons are in close 
vicinity of the protein surface with the H4gal, H2gal, 
H3gal and H6gal protons making the most significant 
contributions to the binding event. In comparison, the 
glucose moiety of UDP-Glc receives less saturation 
suggesting a lesser involvement in the binding event 
to the enzyme. The relative STD NMR effects of the 
H1glc (25%) H2glc (17%) and H3glc (30%) protons 
clearly demonstrate a less intimate contact with the 
protein and therefore a likely poorer affinity of UDP-
Glc for USP. Despite their different stereochemistry, 
the H4gal and H4glc protons show no drastic difference 
in relative STD NMR effects, in good agreement with 
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the specificity of the enzyme. Finally, the STD NMR
spectra of UDP-Ara and UDP-GalA emphasize the
importance of the H6gal/glc and H6´gal/glc proton contacts
with the protein surface. UDP-Ara seems to bind to
the enzyme in a similar manner as UDP-Gal but loss
of H6 and H6´ results in a reduced affinity. In
contrast, the steric hindrance and/or negative charge of
the carboxylic group of GalA appears to strongly
influence binding of the sugar as only weak STD
NMR effects in complex with the enzyme are
observed. 

Interestingly, no binding of Gal-1-P, Glc-1-P or 
Xyl-1-P to LmjUSP was observed by STD NMR
spectroscopy. However, addition of UTP to sugar-1-
phosphate:LmjUSP mixture resulted in strong and
specific STD NMR signals for H4 and H2 protons of
Gal-1-P (Fig. 5). This phenomenon, suggestive of an
ordered bi-substrate mechanism with UTP binding
preceding the hexose-1-phosphate entry, was 
previously observed with the LmjUGP and a
conformational change was proposed (22). The
subsequently determined x-ray crystal structure clearly 
revealed a conformational change upon complexion
with UTP (26). It is therefore not unreasonable to
assume that USP binds UTP in a similar mode.
Interestingly, STD NMR signals could be clearly
observed for various UDP-sugars even in the absence 
of pyrophosphate.  In the reverse reaction, the data
suggests a sequential binding mode with the
nucleotide sugar binding prior to pyrophosphate
supported by the observation that the affinity of the
enzyme for pyrophosphate seems to be influenced by
the nucleotide sugar (Table 2). 

 

DISCUSSION 
Although Leishmania promastigotes are known to

incorporate Gal taken from the environment into
surface molecules (15), enzymes involved in the
salvage pathway for UDP-Gal synthesis had not yet 
been reported. The activation of this monosaccharide
was lately shown to be independent from UDP-Glc 
synthesis since a L. major UGP deletion mutant still 
expresses Gal containing molecules (Lamerz et al.,
unpublished work). Herein we report the identification
and characterization of a L. major UDP-sugar 
pyrophosphorylase able to reversibly activate Gal-1-P 
into UDP-Gal constituting the Isselbacher pathway for
UDP-Gal synthesis. 

Leishmania major USP presents a clear homology
with plant USPs and a modest but significant
homology with UGPs and UAPs over the entire

sequence. In particular, the pyrophosphorylase glycine 
rich consensus motif (25;26) essential for catalysis is 
highly conserved and additional residues involved in 
uridine and phosphate binding. As highlighted by STD 
NMR spectroscopic studies, interactions of the uridine 
moiety of nucleotide sugars or UTP with LmjUSP are 
similar to those observed with LmjUGP and play a 
significant role in substrate binding. This leading role 
of the nucleotide moiety is observed in many enzymes 
involved in glycosylation for example UDP-
galactopyranose mutase (35), sialyltransferases (36), 
and pyrophosphorylases from E. coli (37) and might 
even hold true for nucleotide sugar transporters (38).  

Intriguingly, residues interacting with the glucose 
moiety in UGPs are not conserved in USPs which 
probably accounts for the broader specificity toward 
monosaccharide-1-phosphates and UDP-sugars of the 
latter. Like plant USPs, LmjUSP is able to convert 
reversibly and efficiently both Glc-1-P and Gal-1-P 
with a slight preference for Gal-1-P. Pentose-1-
phosphates such as Xyl-1-P and Ara-1-P can also be 
activated in vitro by Leishmania or plant USPs albeit 
with a reduced efficiency reflecting their lower 
affinity for the enzyme, and underlining the 
contribution of the hexoses H6 and H6´ protons to 
binding. In contrast, GalA-1-P is a poor substrate of 
LmjUSP. It is reasonable to assume that the carboxylic 
acid group of GalA creates either steric hindrance or 
more likely an unfavoured electrostatic potential 
leading to weak interactions of the uronic acid with 
the leishmanial enzyme. Different to the plant 
enzymes, all USPs identified in Leishmania species 
present an 18 amino-acid insertion near the uridine 
binding site that contains the conserved residues 
G223H224. Although not yet proven, this insertion 
might be responsible for the substrate differences 
observed for plant enzymes. The role of these 
additional amino acids awaits a crystal structure of 
LmjUSP. 

Despite its lower affinity for Ara-1-P, Arabidopsis 
thaliana USP seems to play a central role in the 
salvage of this pentose in vivo (21). In Leishmania, 
however, where D-Ara is present, the monosaccharide 
is exclusively activated by GDP and a putative GDP-
Ara pyrophosphorylase has been identified in the 
genome (8). In addition to GDP-α-D-Ara, L. major
promastigote synthesizes UDP-Glc, UDP-Gal (in the 
pyranosic and furanosic form), UDP-GlcNAc, GDP-
Man and low amounts of GDP-Fuc but neither UDP-
Xyl nor its precursor UDP-GlcA are produced (8). 
Considering the specificity of LmjUSP for UDP-
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activated sugars, its inability to act on hexosamine-1-
phosphate and the characterization or presence in the
genome of specific pyrophosphorylases for the
activation of GDP-activated sugars and UDP-GlcNAc 
(8;39), Leishmania USPs most likely play a role in the
salvage of galactose and glucose exclusively.
Moreover and despite the fact that USP is able to act
reversibly, the ordered bi-bi mechanism of the enzyme
and its high affinity for UTP, a naturally abundant
metabolite, presumably ensures the synthesis of
nucleotide sugar rather than their pyrophospholysis.
Remarkably, LmjUSP seems to have evolved a slight
preference for Gal-1-P over Glc-1-P in good
agreement with the presence of galactose (Gal) in
many of their surface glycoconjugates. 

In contrast to Leishmania parasites, the
trypanosomatids Trypanosoma brucei and 
Trypanosoma cruzi are thought to rely exclusively
upon epimerization of UDP-Glc for synthesis of UDP-
Gal since the hexose transporters of these parasites are
unable to transport Gal (9;10). Nevertheless the
genome of T. cruzi contains homologues of
galactokinase and USP which might be involved in
recycling galactose originating from degradation of
glycoconjugates in the endo-lysosomal compartment
or plays a role in salvage pathways of other sugars. T. 
cruzi is the only one of the three trypanosomatids that
synthesizes UDP-Rha, UDP-Xyl and its precursor
UDP-GlcA (8). Like the plant enzyme, T. cruzi USP 
might be involved in the synthesis of these nucleotide
sugars. In Arabidopsis, USP is particularly important
in pollination and possibly converts Gal-1-P, Ara-1-P 
and Rha-1-P secreted by the pistil (21). In T. cruzi
however the precise function of the Xyl and Rha
metabolism is still unclear. 

The trypanosomatid USPs are closely related to
plant USPs and hypothetical proteins of the diatoms
Phaedactylum tricornutum and Thalassiosira
pseudonana and green algae Micromonas pusilla, 
Ostreococcus tauri, Ostreococcus lucimarinus and 
Chlamydomonas reinhardtii which suggest the
common origin of these genes. Moreover, USP
homologues are found in ciliate protozoa
(Paramecium tetraurelia, Tetrahymena thermophila) 
and Apicomplexa (Toxoplasma gondi, 
Cryptosporidium sp. and Plasmodium sp.) but seems
absent from Percolozoa, Loukozoa and Metamonada.
The discovery of a plant-like enzyme common to 
several pathogens opens new perspectives for the
development of a pesticide like drug as already
proposed for the apicomplexan parasites (40). Like in

mammals (41) and yeast (42), accumulation of Gal-1-
P might reveal toxic for the parasite. 
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Preface – About this manuscript 

 

This chapter of my work is dedicated to the evaluation of the role of UDP-sugar pyrophosphorylase 

(USP) within L. major.  First, an L. major usp deletion mutant (Δusp) was generated to demonstrate 

the role of USP in galactose salvage, as postulated from the previous studies, and its importance for 

the parasite evaluated. Moreover, in order to measure the contribution of this enzyme to residual UDP-

sugar production in UDP-glucose pyrophosphorylase null mutants (Δugp), the generation of a mutant 

deficient in USP and UGP was attempted. Finally, the subcellular localization of USP, UGP and its 

metabolic neighbors was analyzed, since trypanosomes seem to situate their UDP-Gal metabolism in 

specialized compartments. 

We succeeded in generating two L. major mutant strains: the Δusp strain, in which both alleles of 

L. major usp were replaced by two resistance marker genes using homologous recombination and the 

Δugp/usp+/- strain, in which one allele of usp is replaced by an adequate resistance marker within the 

Δugp mutant. An episomal expression vector (‘add-back’) was introduced into the Δusp mutant 

(Δusp/+USP), in order to reconstitute the wild type situation. The strains were analyzed for the 

presence of the characteristic surface determinant lipophosphoglycan by a combination of 

electrophoretic, immunochemical and enzymatic techniques. Viability parameters were recorded 

concerning cell morphology and growth behavior. In addition, several techniques to determine 

subcellular localization were employed, such as immunofluorescence, permeablization experiments 

and isopycnic ultracentrifugation. 

This chapter summarizes the unpublished data that I obtained in the last months and highlights my 

ongoing work.  
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Leishmania major UDP-sugar pyrophosphorylase 
(USP) catalyzes the reaction of a sugar-1-
phosphate and its stringent nucleotide donor, UTP,
forming UDP-sugar and pyrophosphate. The broad
substrate diversity of the leishmanial enzyme is a
characteristic of this class of enzyme (EC 2.7.7.64)
that utilizes similar sugar-1-phosphates such as
galactose-, glucose-, xylose-, arabinose-, 
galacturonic acid- or glucuronic acid-1-phosphate. 
The in vitro characteristics of USP are in perfect
agreement with a postulated function of this
enzyme in galactose salvage. In agreement with this
role first analyses of an L. major USP deficient
mutant suggest a reduction of side chain
galactosylation of the abundant cell surface
polysaccharide LPG. Furthermore, a heterozygous
deletion of USP in recently characterized UDP-
glucose pyrophosphorylase (UGP) knockout
mutants, revealed high impact on residual LPG
expression, strengthening the role of USP in the 
UDP-galactose pathway. Interestingly, USP as well
as several other enzymes involved in nucleotide
sugar metabolism seem to be situated in the
cytoplasm despite the presence of peroximal
targeting sequences, highlighting a major
difference from the closely related trypanosomes.  
 
 
INTRODUCTION 

Recently, we biochemically characterized a
recombinantly expressed UDP-sugar pyro-
phosphorylase (LmjUSP) from L. major, which was
until then only precisely characterized in plants.
Genomic database screening revealed that LmUSP has 
no homologue in the animal kingdom and groups with
putative USPs from plants and algae. In particular
LmjUSP displays an enzymatic homology to
characterized plant USPs from Pisum sativum and 
Arabidopsis thaliana, since a similar range of 
substrates with equal activities are utilized (1). 
In contrast to the broad substrate spectrum of LmUSP, 
which activates predominantly D-galactose-1-
phosphate, D-glucose-1-phosphate, but also xylose-, 
L-arabinose- and galacturonic acid-1-phosphate with 
UTP to form its respective UDP-sugar, the recently
characterized L. major UDP-glucose pyro-
phosphorylase (LmjUGP) is very specific in
uridinylating glucose-1-phosphate (2). LmjUGP is 
thought to play a major role in UDP-galactose 
synthesis, via the interplay with a genetically assigned

UDP-galactose 4-epimerase (GALE) in L. major. 
Interestingly, the expression of the characteristic 
L. major surface and secreted phosphoglycan 
structures, which are heavily loaded with galactose, 
was however only modestly affected in LmUGP gene 
deletion (Δugp) mutants and residual activity for 
UDP-Glc production was detected. The galactose 
salvage pathway known to take place in Leishmania is 
thus independent from UDP-Glc biosynthesis in 
agreement with the lack of UDP-glucose:α-D-
galactose-1-phosphate uridylyltransferase (GALT) 
enzyme mediating the classical Leloir pathway. The in 
vitro characteristics of USP allow postulating a role of 
this enzyme in salvage pathway. 

The UDP-Gal pathway from the related 
trypanosomatids Trypanosoma brucei and 
Trypanosoma cruzi differ from the one of Leishmania. 
Indeed the hexose transporters of these trypanosomes 
are unable to transport galactose and thus the only 
route for UDP-Gal formation is via epimerization of 
UDP-Glc (3; 4). Deletion of GALE is lethal in 
T. brucei and T. cruzi (5-7). In contrast, L. major
GALE deficiency could theoretically be compensated 
by direct activation of imported galactose via 
galactokinase and USP.  

Trypanosomatid parasites (including Trypanosoma
and Leishmania species) possess specialized 
peroxisomes termed glycosomes. This unique 
organelle compartmentalizes various metabolic 
pathways, including glycolysis and gluconeogenesis. 
In trypanosomatid parasites unlike in most eukaryotes, 
the activities of hexokinases are not regulated by 
feedback inhibition (8; 9). Several studies have 
suggested that, due to low ATP concentrations inside 
the glycosome, kinase activities are kept in check, 
which in turn protects these cells from uncontrolled 
glycolytic flux (10-12). Moreover accumulation of 
glucose-6-phosphate has been shown to be toxic in 
Leishmania like in Trypanosoma (12; 13). Enzymes 
involved in nucleotide sugar metabolism were also 
localized in the glycosomes in T. cruzi or T. brucei 
(14; 15).  

In this study we address the role of USP within 
L. major parasites by targeted gene deletion. 
Preliminary results are consistent with a role of USP 
in galactose salvage. In addition, localization of 
several enzymes involved in UDP-Glc and UDP-Gal 
metabolism suggests that Leishmania and 
Trypanosoma differ in their regulation of the 
carbohydrate metabolism. 
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EXPERIMENTAL PROCEDURES 
 
Parasite culture, transfection and growth curves –
Promastigote cultures of L. major MHOM/
SU/73/5ASKH and respective mutant cell lines were
grown at 27°C in M199 medium (Invitrogen)
supplemented with 10% heat inactivated fetal calf
serum, 40 mM Hepes pH 7.5, 0.1 mM adenine,
0.0005 % hemin, 0.0002 % biotin and 50 U/mL
penicillin/streptomycin. Cultures were diluted 10-fold 
every 3-4 days. Transfection of parasites was
performed by electroporation (16) and allowed to
grow in M199 medium for 24 hours before transfer to
semi solid media containing 1% Noble agar (Becton
Dickinson), M199 medium and the doubled
concentrations of appropriate antibiotics. Individual
colonies were picked and grown in selective M199
liquid media. The antibiotics phleomycin, hygromycin
B, puromycin and nourseothricin were obtained from
InvivoGen, G418 (neomycin) from Sigma.
Leishmania growth was recorded by measuring the
OD at 615 in 1 ml-cuvettes, while promastigote 
cultures were provided with sugar deficient RPMI
1640 medium (Gibco, R1383) plus 10% dialyzed FBS
(Gibco), which was either supplemented with 50 mM
glucose, galactose, glucose/galactose mixture, or
xylose. No selective antibiotics were added. 
 
Antibody Preparation – Three New Zealand rabbits
(#222, #223, #244) were immunized with L. major
USP antiserum by subcutaneous injection with 500 µg
of recombinantly purified protein. For the first
injection, protein was mixed with complete Freund’s
adjuvant (Difco), followed by six injections at 6-week 
intervals using the incomplete Freund’s adjuvant
(Difco). Blood was collected 10 days after last
injection. The prepared serum can be diluted up to
1:20 000, specifically recognizing both recombinant
and native forms of LmjUSP. No cross-reactivity to
other His6-tagged proteins could be recorded. 
 
Immunofluorescence microscopy – For fluorescence
microscopy the cells were washed in PBS and
immobilized on poly(L)-lysine coated cover slides 
using 4% paraformaldehyde. To visualize endogenous
LmjUSP, wild type parasites were incubated with 50
mM NH4Cl for 15 min and permeabilized with 0.1%
Saponin. The samples were sequentially incubated
with polyclonal rabbit anti-serum USP#223 (see
above) at a dilution of 1:500 and 1:1000 and the 
secondary antibody Alexa 488 goat anti rabbit mAb

(Molecular Probes) at dilutions of 1:500 and 1:100, 
respectively. Nucleus and kinetoplast DNA was 
stained with 8µg/ml 4,6-Diamidino-2-phenylindole 
(DAPI, Sigma) in parallel to secondary antibody 
incubation. The same protocol was performed for 
detection of UGP using similar dilutions of a recently 
prepared antiserum (2). 
 
Subcellular fractionation – The method was based on 
a procedure described before (17; 18), but briefly 
performed as followed. All steps are accomplished at 
4°C. Approximately 8x108 cells of L. major
promastigotes were harvested at late Log-phase by 
centrifugation (1000xg, 10 min), washed twice in 5 ml 
ice cold PBS and once in 2 ml ice cold hypotonic 
Buffer (2 mM EGTA 2 mM DTT, 1 mM PMSF, 1 µM 
Leupeptin, 1 µM Pepstatin, 1 µM Bestatin). After 
centrifugation cells were adjusted to 2x108 cells/ ml 
with hypotonic buffer and incubated for 5 min on ice. 
Cell lysis was achieved by expulsion (10-times) of the 
suspension through a 27 gauge needle and status 
checked by light microscopy. Accordingly the lysate 
was made isotonic by addition of 4x stabilization 
buffer (100 mM HEPES-NaOH pH 7.4, 7.5 %(w/v)

sucrose, 1 mM ATP, 1 mM EGTA, 2 mM DTT, 1 mM 
PMSF, 1 µM Leupeptin, 1 µM Pepstatin, 1 µM 
Bestatin) and centrifuged 10 min at 500xg to remove 
cell debris and nuclear fraction. The postnuclear 
supernatant (approx. 5 ml) was layered on top of a 
linear sucrose gradient (12.5 ml), which was prepared 
using FPLC system (Amersham Pharmacia Biotech 
ÄKTA FPLC) setting up a gradient ranging from 15-
80 %(w/v) sucrose in an Ultraclear Centrifuge tube 
(Beckman). The organelles were fractionated by 
centrifugation at 170.000xg over night at 4 °C in a 
Beckman L-80 Ultracentrifuge using a SW41 rotor. 
Fractions (0.7 ml) were collected from the bottom of 
the tube by punctuation and densities calculated by 
measuring the refractive index. For each fraction 
protein concentrations were measured by using the 
BCA assay (Pierce). Samples were snap frozen in 
liquid nitrogen and subjected to -80 °C awaiting 
further analysis using coupled in vitro enzyme assays.
 
Selective permeabilization – Intact cells were titrated 
with growing concentrations of digitonin, and 
fractions analyzed enzymatically. Hence, depending 
on cell membrane destabilizing digitonin 
concentrations a characteristic set of enzymes is 
released. Therefore stationary phase L. major
promastigote cultures (5x107 cells/ ml) were washed 
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Figure 1. L. major UDP-galactose and UDP-glucose metabolism is situated in the cytosol. Immunofluorescence staining 
(A+B), successive permeabilization by digitonin titration (C+D) and cell fractionation by isopycnic ultracentrifugation (E-J) are 
described in detail in the experimental procedures section. Immunofluorescence: saponin permeabilized, stationary phase L. major
promastigotes were detected either with rabbit αUSP (A) or αUGP (B) serum and visualized via mouse α-rabbit Alexa488 
monoclonal antibody. Successive permeabilization: using promastigote cultures, increasing digitonin concentrations successively 
released enzyme markers representative of different subcellular compartments; C,  6x107 cells/ml; D, with 1.2x108 cells/ml, 
marker activities were detected enzymatically by the respective in vitro assay, HX: hexokinase, USP: UDP-sugar 
pyrophosphorylase, GALE: UDP-galactose 4-epimerase, UGP: UDP-glucose pyrophosphorylase, PGM: phosphoglucomutase. Cell 
fractionation: L. major promastigotes were lysed and the post-nuclear supernatant was subjected to isopycnic ultracentrifugation 
on a sucrose gradient; E, proteinconcentrations were determined with BioRad Bradford assay; F, the glycosomal marker 
hexokinase (HX), G, the golgi marker inositol diphosphatase (IDP), and (H) the UDP-sugar pyrophosphorylase (USP) were 
detected with a coupled enzyme assay for each fraction, and highest activity was set to 100%, respectively; I, degree Brix (°B) of 
the sucrose gradient was checked refractometrically and relative density Ri calculated; J, western blot analysis was performed with 
either α-fructose 1,6-bisphosphatase (αFBP) or α-phosphomannomutase (αPMM) serum used as subcellular markers for 
glycosomes or cytosol, similarly αUSP and αUGP serum was probed and all detected with an ECL Femto-Kit (Pierce). 
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twice with STE buffer (250 mM sucrose, 25 mM Tris-
HCl pH 7.4, 1 mM EDTA, 150 mM NaCl) and 
adjusted to 2x108 cells/ ml with STE buffer. A series
of digitonin concentrations (0-1000 µg/ml) was
prepared in a volume of 250 µl STE buffer, and each
sample supplemented with 100 µl cell suspension.
Probes were gently mixed by inversion, incubated for 
5 minutes at room temperature and rapidly cooled
down on ice. Accordingly, the samples were
centrifuged at 13000xg for 2 min at 4 °C, the 
supernatant was recovered carefully, snap frozen in
liquid nitrogen and stored at -80 °C for further
analysis. 
 
Enzyme Assays – Enzymatic activity was tested either
in full cell extracts, or in samples derived from
cellular fractionation by velocity centrifugation or
digitonin titration. The assay buffer used was 50 mM
Tris/HCl pH 7.8 and 10 mM MgCl2, and according to
the detected enzyme activity, supplemented with the
respective substrates and coupled enzymes for NADH
detection at 340 nm. Hexokinase (HX) activity was
tested in assay buffer supplemented with 10 mM
glucose, 1.5 mM NAD+, 1 mM ATP and 1 unit
glucose-6-Phosphat dehydrogenease (G6P-DH) 
(Leuconostoc mesenteriodes, SIGMA). UDP-galactose
4-epimerase (GALE) activity was measured in
additional 2 mM NAD+, 2 mM UDP-Gal and 0.08
U/ml UDP-glucose dehydrogenase (UG-DH) (bovine
liver, Calbiochem). Phosphoglucomutase (PGM) 
reaction took place in the presence of 2 mM NAD+, 3
mM glucose-1-phosphate and 1 unit G6P-DH. 
LmjUSP activity was tested in a preparation
supplemented with 2 mM NAD+, 2 mM galactose-1-
phosphate, 1 mM UTP, 0.12 units/ml UDP-galactose
4-epimerase (Streptococcus thermophilus, 
Calbiochem) and 0.08 U/ml UG-DH (Calbiochem).
Similarly the LmjUGP activity was measured, but for
testing in wild type, contaminating USP activity had to
be taken into account, therefore pure UGP activity was
additionally probed in Δusp mutants, using the assay 
buffer supplemented with 2 mM NAD+, 3 mM
glucose-1-phosphate, 1 mM UTP and 0.08 U/ml UG-
DH (Calbiochem). A different detection procedure and
assay buffer was used for the inosine 5’-diphosphatase
(IDP, Golgi). At first each sample was incubated for 1
hour at 30 °C in 50 mM Tris/HCl pH 7.5, 1 mM
MgCl2, 3 mM Inosine 5’diphosphate and 0.3%(w/v)

digitonin. Then the amount of phosphate produced by
degradation of Inosine 5’diphosphate to Inosine
5’monophosphate could be measured using malachite-

green detection mix (0,034% Malachit Green, e10 
mM (NH4)6Mo, 1 M HCl, 3.4% EtOH, 0,1% Tween 
20) plus a diluted sample of the first reaction. The 
mixture was incubated for 15 min and the end-point 
absorption recorded at 620nm. Each sample was tested
as blank for background phosphate contamination, as 
well. All measurements were performed in 96-well 
half-area flat-bottom microplates (Greiner Bio-One) 
with the Power-WaveTM340 KC4 System (Bio-Tek). 
 
Generation of L. major USP gene deletion mutants 
and USP add back strains – Gene replacement 
cassettes were constructed by double-joint PCR as 
described elsewhere (19), with adaptations performed 
as followed. Briefly, three PCR products were 
generated: 5’UTR, Resistance Marker (RM) and 
3’UTR. The RM amplikon was additionally equipped 
with 50 bp overlapping regions homologous to either 
5’UTR or 3’UTR amplikon. Accordingly, a fourth 
fusion PCR using the 5’UTR, RM and 3’UTR yielded 
the desired gene replacement cassette. This construct 
was amplified with nested flanking primers at the very 
ends. The 5’ and 3’ regions flanking the USP gene 
were amplified using genomic L. major DNA and the 
primers 5UTR_1_NotI(fw) (ctg act gaG CGG 
CCG CTT GCT GAT GAG GGA AGG ATC TGC) 
and 5UTR_1(rev) (AAG GCC GCG TGA CGA CAG 
AAA AGG) for the 5’UTR spanning 2.3 kb, while 
3UTR_1(fw) (TTG TTG TTG AGA GGG CCC 
TTG C) and 3UTR_1_NotI(rev) (ctg act gaG 
CGG CCG CAC AGG AGC GAC CTG CGA CGA 
CG) produced a 3’UTR PCR product of 1.3 kb length. 
The RMs were amplified by overlapping primers  used 
as followed: HYG_overlap(fw) (TTC CCC CCG 
CCG AGC CCC TCT GCT CTC TCC TTT TCT 
GTC GTC ACG CGG CCT TAT GAA AAA GCC 
TGA ACT CAC CGC), HYG_overlap(rev) (CAT 
TCA ACT ACA CTG GAA CAC CCA CAC TAG 
CAA GGG CCC TCT CAA CAA CAA CTA TTC 
CTT TGC CCT CGG ACG), PHLEO_overlap(fw) 
(TTC CCC CCG CCG AGC CCC TCT GCT CTC 
TCC TTT TCT GTC GTC ACG CGG CCT TAT 
GGC CAA GTT GAC CAG TGC),
PHLEO_overlap(rev) (ATT CAA CTA CAC TGG 
AAC ACC CAC ACT AGC AAG GGC CCT CTC 
AAC AAC AAT CAG TCC TGC TCC TCG GCC 
ACG), PAC_overlap(fw) (TTC CCC CCG CCG AGC 
CCC TCT GCT CTC TCC TTT TCT GTC GTC 
ACG CGG CCT TAT GAC CGA GTA CAA GCC 
CAC GG), PAC_overlap(rev) (CAT TCA ACT ACA 
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Figure 2. Targeted gene replacement analysis of usp alleles in wild type cells by southern blot. Southern blot of genomic DNA from 
wild type (wt), heterozygous mutant usp/Δusp::HYG  (usp+/-), and homozygous mutant Δusp::HYG/Δusp::BLE  (Δusp) (A-E). DNA was 
digested with either Sbf I or Nco I, separated on agarose gel, blotted onto nylon membrane, and hybridized with digoxigenin-labeled probes 
3’UTR*, usp*, hyg*, or ble*. The differential probe labeled fragments can be assigned to the respective theoretical length in panel F-H, 
indicating correct gene replacement. 
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Figure 3. Analysis of targeted gene replacement by Western blot and enzyme activity assay of Δusp clones. Southern blot validated Δusp
clones 1 and 2 were tested for absent USP protein expression, using ful cell lysates for SDS-PAGE and Western blotting together with 
primary αUSP serum and secondary α-rabbit-IR800 antibody for infrared detection on a LI-COR scanning facility (A). USP enzyme activity 
was tested in full cell extracts of wild type, Δusp and Δugp mutants probing for glucose-1-phosphate (grey boxes) and galactose-1-phosphate 
(black boxes)  uridinylating activity via the coupled enzymes UDP-galactose 4-epimerase (not for glc-1-P) and UDP-glucose dehydrogenase, 
producing an increase of NADH which can be followed at 340 nm (B). 

 

CTG GAA CAC CCA CAC TAG CAA GGG CCC
TCT CAA CAA CAA TCA GGC ACC GGG CTT 
GCG GGT C); the underscore marks the part of the 
respective RM. After amplikon fusion using 5’UTR, 
3’UTR and RM, the desired gene deletion cassette 
was amplified with the nested primer pair 
5UTR_3_NotI(fw) (ctg act gaG CGG CCG CAC 
GGT GCT GAG GAC TGC G) and 
3UTR_3_NotI(rev) (ctg act gaG CGG CCG 
CTG CTG CAG CTC TGG CGA GC). The Not I 
restriction sites allowed sub-cloning of the fragments 
into pYESNTA plasmid for accurate multiplication of 
the construct in E.coli XL1-blue cells. The USP::HYG, 
USP::PHLEO and USP::PAC targeting constructs 
were digested with Not I and the corresponding 
fragments purified by gel extraction and subsequent 
ethanol precipitation. The deletion mutant was 
generated by two consecutive rounds of homologous 
recombination using the USP::HYG fragment in the 
first and the USP::PHLEO in the second round, 
whereas USP::PAC was used in ∆ugp clones1. 
Southern blotting standard techniques, were used to 
confirm the precise gene replacement. The obtained 
homozygous mutant was named ∆usp and the 
heterozygous mutant produced in ∆ugp clones was 
termed ∆ugp/usp+/-. For episomal expression of USP 
in the ∆usp background, the construct pXG-USP was 
transfected into several clones, referred to as 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Targeted gene replacement analysis of one usp allele in 
Δugp mutant cells by southern blot. Southern blot of genomic
DNA from wild type (wt) and heterozygous usp/Δusp::PAC in 
Δugp::HYG/Δugp::BLE mutants (Δugp/usp+/-) (A+B). DNA was
digested with either Sbf I or Nco I, separated on agarose gel, blotted 
onto nylon membrane, and hybridized with digoxigenin-labeled 
probes 3’UTR* and pac*. The differential probe labeled fragments
can be assigned to the respective theoretical length in panel C, 
indicating correct gene replacement. 
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Figure 5. Growth curves of different L. major cultures in varying conditions. In a preliminary experiment wild type (wt) L. major
promastigotes were cultured in RPMI 1640 and 10% dialyzed FBS without sugar in total, or supplemented with either 50 mM Glc, Gal, or 
Xyl, and OD was measured at 615 nm, showing that parasites do not grow on Gal or Xyl only (A). Another experimental setup displays 
growth of wt and Δusp, Δugp or Δugp/usp+/- mutants,  respecively. This setup is summarized, either corresponding to glucose or a 
glucose/galactose supplementation of the media (B+C). Deviations are derived from three separate cultures. 

∆usp/+USP. The plasmid was generated by sub-
cloning the USP (equipped with a stop-codon) from a
pET22b+ expression vector described previously (1), 
into an altered version of pXG-SAT (20), termed
pXG-SAT/+His6, via Nde I and Not I restriction sites
(underlined, see as follows). pXG-SAT/+His6 has an 
additional adapterprimer insertion (GGG CAT ATG
CCT AGG CAA TTG TGG CCA GCG GCC GCg 
gca cca cca cca cca cca cTA GG) between 
the MCS restriction sites SmaI and BamHI of pXG-
SAT, allowing the expression of a His6-tagged protein,
but without relevance for this study. 
 
SDS-Page & Immuno Blotting – Whole cell lysates
from early stationary phase L. major promastigote
cultures were prepared in Lysis-Buffer (500µl 1M Tris
HCl pH 7.8, 100µl 1M MgCl, 100µl 10% Triton X
100, 100µl 100mM PMSF, 20µl Leupeptin (2µg/ml),
50µl Pepstatin (5µg/ml), add 10 ml H2O) and after
subsequent sonication (Branson Sonifier 450, output
cycle 50, 4x 30sec) separated by SDS/PAGE and
transferred onto nitrocellulose membranes (Whatmann
Schleicher & Schüll). Equal protein loading and
transfer efficiency was assessed by reversible staining
in Ponceau S-solution (0.2 % Ponceau S, 3 %(w/v)

trichloroacetic acid), or by running a separate
SDS/PAGE, following Coomassie brilliant blue
protein staining. Infrared detection on Li-Cor Odyssey
Imager was performed after incubation with mAb
WIC79.3 (ascites fluid) and goat anti-mouse IgG 
IR800Dye800CW (Li-Cor) at dilutions of 1:4000 and 
1:20000 respectively. LmjUSP was detected using a 
1:20000 dilution of polyclonal rabbit anti-serum 
USP#244 and either goat anti-rabbit IgG
IR800Dye800CW (Li-Cor) or AP-conjugated goat-
anti-rabbit antibody (1:2000, Dianova). 

 
RESULTS and DISCUSSION 
 

Localization studies – The Leishmania USP and 
UGP protein sequences described previously, display 
the putative C-terminal peroximal targeting signal 
(PTS-1) -AKL and -TNK respectively (21), which are 
assumed to mediate localization to the glycosomes. 
However, immunofluorescence studies using 
polyclonal rabbit αUSP- and αUGP-serum 
respectively, show that the enzymes are distributed 
over the whole cell, indicative of a cytoplasmic 
localization (Fig. 1 A+B). This cytoplasmic 
localization was confirmed by the selective 
permeabilization of membranes with digitonin. Low 
concentration of digitonin, leading to permeabilization 
of the plasma membrane, allowed detection of both 
USP and UGP whereas higher concentrations were 
required to detect the glycosomal enzyme hexokinase 
(HX) (Fig. 1 C+D). Interestingly, Leishmania
phosphoglucomutase (PGM) and UDP-galactose 4-
epimerase (GALE) seem also (at least partially) 
localized to the cytosol whereas they have been shown 
to be present in the glycosome in trypanosomes (14; 
15). 
Since many enzymes present a dual glycosomal and 
cytoplasmic localization (22-24), we have further 
investigated the possible presence of USP or UGP in 
the glycosome by isopycnic ultracentrifugation. Cell 
fractionation followed by enzymatic activity assays or 
staining of western blots with specific antibodies 
indicate again cytosolic localization of  USP and 
UGP, while the marker HX and fructose-1,6-
biphosphatase (FBP) were as expected present in the 
glycosome (Fig. 1 E-J) (8; 9; 17; 25). All together 
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Figure 6 (above). LPG phenotype characterization of Δusp
mutant and episomal reconstituted add-back. Increased 
WIC79.3 phenotype of Δusp mutants compared to wild type (wt)
and signal reduction after USP add-back integration (Δusp/+USP) 
(A+B); densitometrical calculated band intensities (A), the 
corresponding Western blot detected with WIC79.3 and  infrared
αmouse-IR800 antibody (B), Western blot using rabbit αUSP 
serum and monoclonal αrabbit-alkaline phosphatase antibody (C).

Figure 7 (right). Δugp/usp+/- mutants are almost LPG negative
in proteinase treated cell lysates for WIC79.3 blot and
carbohydrate staining. LPG phenotype comparison of proteinase
digested cell lysates of wild type, Δusp, Δugp and Δugp/usp+/-

clones. Densitometrically calculated band intensities (A), the 
corresponding Western blot detected with WIC79.3 and  infrared 
αmouse-IR800 antibody (B), and periodic acid  silver stain (C). 
 

these experiments argue against a glycosomal
localization of LmjUSP and LmjUGP, despite the
presence of potential targeting sequences. 

These findings challenge the assumption that
L. major UDP-Glc and UDP-Gal metabolism take
place within the glycosomes (21). In Leishmania like 
in Trypanosoma, accumulation of glucose-6-
phosphate (Glc-6-P) in the cytoplasm is toxic (12; 13).
The hexokinase and glucokinase are however not
regulated by a feedback inhibition mechanism like in
most eukaryotes (8; 9; 25-27) and are thus
sequestrated in the glycosomes, where ATP level are
balanced, with several other enzymes involved in
glycolysis and gluconeogenesis. This
compartmentalization avoids an uncontrolled
glycolytic flux. Our experiments confirm the
glycosomal localization of the hexokinase but strongly

suggest that the phosphoglucomutase, USP and UGP 
are in the cytoplasm despite the presence of putative 
peroxisomal (glycosomal) targeting sequences (PTSs). 
Further studies, could address targeting to glycosome 
in Leishmania via PTSs using several PTS tagged 
GFP-fusion proteins. 

In contrast to the glycolysis and gluconeogenesis 
and to the situation in trypanosomes, the nucleotide 
sugar metabolism of Leishmania appears thus to take 
place in the cytoplasm. The distribution of the 
enzymes involved in UDP-Glc synthesis, presented 
here, implies translocation of Glc-6-P from the 
glycosome into the cytoplasm which could be 
mediated by the glucose-6-phosphate transporter 
homolog LmjF30.2680 (Fig. 8). Studies of the in vitro
specificity of this transporter and its localization are 
currently under investigation. 
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It is noteworthy that PGM activity decreases from
digitonin concentration of 0.3 mg/ml, where the
glycosomal marker HX starts to increase (Fig. 1 D). 
Digitonin concentrations up to 1 mg/ml did not
account for PGM inhibition, which was tested in a 
separate experiment (data not shown). Possibly PGM
might be inhibited by the release of glycosomal
substrates like fructose-1,6-bisphosphate, which is
known to be a strong competitive inhibitor for PGM in
other organisms like e.g. human (28), potato tuber (29)
or Bacillus subtilis (30). 

 
Generation of LmUSP deletion mutants – LmjUSP

is a single copy gene (data not shown) located at
chromosome 17. Using deletion constructs based on
antibiotic resistance genes fused to L.major usp
flanking regions of 1.7 kb and 1.2 kb for the 5’UTR
and 3’UTR respectively, a usp null mutant
(Δusp::HYG/Δusp::BLE) was obtained by two
successive rounds of gene replacement. Southern blots
of either Sbf I or Nco I digested genomic DNA from
wild type, homozygote and heterozygote mutants were
hybridized with different digoxigenin-labeled(*) 
probes binding to the 3’UTR, usp, hyg or ble coding 
sequences and provided evidence of the correct
integration of resistance marker genes and the absence
of usp (Fig. 2). Successful mono-allelic usp deletion is
visualized using 3’UTR* by the signals at 9.1 and 6.2
kb with Sbf I digestion and 7.2 and 2.1 kb with Nco I, 
corresponding to the integrated hyg resistance marker
or the residual usp allele (Fig. 2A). This result was
confirmed using a probe hybridizing to the integrated
resistance marker gene hyg* (Fig. 2B). Homozygous
usp gene deletion was validated by the presence of
bands at 9.1 (Sbf I) and 7.2 kb (Nco I) visualized with
the hyg probe (Fig. 2B) or 8.5 (Sbf I) and 6.5 kb
(Nco I) with the ble probe (Fig. 2C). Moreover,
hybridization with a 3’UTR probe showed no bands
corresponding to usp but highlighted the presence of
the respective resistance marker genes hyg and ble 
(Fig. 2D). Finally, the usp* probe did not bind to
digested genomic DNA after two rounds of targeted
gene deletion, indicating the absence of usp in 
L. major parasites (Δusp mutants) (Fig. 2E). 

As expected, the distinct protein band at ~69 kDa
detected in cell lysates from wild type parasites using
polyclonal rabbit αUSP serum was absent from
L. major Δusp (Fig. 3A). Additionally, a coupled 
enzyme assay, based on UDP-galactose 4-epimerase 
and UDP-glucose dehydrogenase (producing NADH
measured at 340 nm), confirmed the absence of

activity  catalyzing the conversion of galactose-1-
phosphate and UTP to UDP-galactose and 
pyrophosphate in the Δusp mutant (Fig. 3B). 

Facing the next step in dissecting the UDP-
galactose pathway, a single usp allele could be 
successfully replaced with the PAC gene conferring 
resistance against puromycin in the UDP-glucose 
pyrophosphorylase null mutant Δugp and was 
designated Δugp/usp+/- (Δugp::HYG/Δugp::BLE; 
usp/Δusp::PAC). The southern blot analysis using a 
digoxigenin-labeled 3’UTR* and probe hybridizing to 
the pac ORF (pac*) shows correct resistance marker 
insertion proving single allelic deletion of usp in Δugp 
mutants (Fig. 4 A+B). 
 

Partial characterization of LmUSP deletion 
mutants – By light microscopy, all Δusp clones 
appeared morphologically normal compared to the 
parental wild type strain. Moreover, no major effect 
on growth of Δusp mutants was observed when the 
parasites were grown in 5% dialyzed FBS/RPMI 
media supplemented with glucose as single carbon 
source (Fig. 5 B) or a mixture of glucose and 
galactose (Fig. 5 C). Interestingly presence of 
galactose in the media did not result in poor in vitro
growth arguing against a toxic accumulation of 
galactose-1-phosphate in the parasite in contrast to the 
situation in mammals or yeast (31; 32).  

L. major promastigotes were moreover unable to 
grow in media with galactose as the sole carbon 
source strongly suggesting that this monosaccaride 
cannot enter glycolysis via USP, GALE, UGP and 
PGM (Fig. 5A; Fig 8) (33). The presence of an 
L. major inorganic pyrophosphatase in the cytosol 
(34), is in perfect agreement with this assumption, 
since pyrophosphate degradation is a driving force for 
pyrophosphorylase mediated reactions, like the one of 
UGP and USP, and thus preventing the reverse 
reactions of UDP-glucose to Glc-1-P. 

In view of the fact that Δusp mutants are able to 
synthesize UDP-Gal via the de novo pathway, we 
anticipate a mild phenotype in vitro. The presence and 
possible modification of phosphoglycans was 
analyzed in different L. major stationary phase 
cultures, using the monoclonal antibody WIC79.3. 
This antibody recognizes galactose-substituted repeat 
units present in L. major phosphoglycans, like LPG 
and PPG. Western blotting of total L. major cell 
extracts labeled with WIC79.3 reveals a characteristic 
LPG smear of about 15-100 kDa, which can vary in 
intensity and range, indicating differential LPG 
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Figure 8. UDP-galactose metabolism in Leishmania major. Glucose (Glc) can either be incorporated or its activated form glucose-6-
phosphate (Glc-6-P) is generated by gluconeogenesis (de novo). A putative Glc-6-P transporter homologue is a crucial player within this 
model, because PGM, GALE, UGP and USP are localized within the cytosol, challenging the model proposed by Opperdoes & Szikora 2006.
Galactose can be incorporated from the extracellular lumen or could be salvaged by degraded glycanstructures from the lysosomes. Since 
galactose-1-phosphate is also assumed to be activated within the glycosomes its transport across the membrane could be anticipated.  

expression or modification of side chains
(Fig. 6 A+B). Interestingly, the USP deficient mutant
displays an increased WIC79.3 reactivity when
compared to wild type parasites (Fig. 6 A+B) and this 
effect could be reverted by episomal expression of the
LmjUSP (Δusp/+USP) (Fig. 6 C). Considering that the
antibody has a strong preference for
monogalactosylated repeat units (-6[Galβ1-3]Galβ1-
4Manα1-P-), the elevated WIC79.3 signal in Δusp
mutants could arise from an increased level of
monogalactosylated repeat units at the expense of
polygalactosylated repeat units (-6[Galβ1-3Galβ1-
3]Galβ1-4Manα1-P-) as previously observed in the
LPG5B- mutant lacking a UDP-galactose transporter
(35). This change could reflect a small decrease in the
UDP-Gal pool in the golgi. 

More impressively, the additional deletion of one
usp allele in Δugp mutants (Δugp/usp+/-) resulted in
the quasi absence of LPG as observed by lack of
carbohydrate staining in proteinase treated cell lysates
and absence of labeling by the monoclonal antibody
WIC79.3 (Fig. 7). This indicates that USP is
responsible for the residual LPG expression observed

in Δugp mutants1 and support a potential involvement 
of USP in UDP-Gal production. 

Like the Δugp, the Δugp/usp+/- mutants tended to 
form rosettes and displayed a similar delayed growth 
defect. Comparing the growth in single glucose or 
glucose/galactose supplemented media, Δugp and 
Δugp/usp+/- cultures expand significantly better in 
glucose/galactose supplemented media 
(Supplemental Fig. 1C+D). This effect could be 
allocated to an anabolic advantage given by USP 
activity. 

  
More detailed analysis of LPG and other 

glycoconjugates are however necessary to confirm 
these modifications and thereby establish a role of 
USP in UDP-Gal production. The impact of USP and 
UGP absence on the UDP-Gal or UDP-Glc level will 
also be addressed by analysis of nucleotide-sugars 
extracted from L. major wild type and mutants by 
HPLC mass spectrometry as described by Turnock 
and Ferguson (36). Finally, a study of the hexose 
transporters in Leishmania mexicana demonstrates 
that these permeases are essential for the replication of 
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the parasites within macrophages and thus suggest an
important role for monosaccharide salvage in the 
amastigote stage. The virulence of the Δusp mutant 
will therefore be investigated in mice and
macrophages. 

Importantly, repeated attempts to create double
null mutants remained unsuccessful, suggesting that
either UDP-glucose and/or UDP-galactose production
are essential in L. major. This observation strongly
resembled the T. brucei and T. cruzi UDP-glucose 4-
epimerase (GALE) deletion mutants, where inability
of UDP-galactose formation turned out to be essential
as well (5-7). Interestingly, trypanosomatid parasites 
DNA contains the hypermodified base J (β-D-glucosyl 
5-hydroxymethyluracil) thought to be essential for
parasite viability. This base would originate from
glucosylation of the precursor hydroxyl-
methyldeoxyuridine. It is thus reasonable to assume
that UDP-Glc is the donor for base J biosynthesis and
is thus essential for Leishmania survival (37). 

 
1A.-C. Lamerz, S. Damerow, B. Kleczka, M. Wiese, G. van
Zanbergen, A. Wenzel, J. Lamerz, F. F. Hsu, J. Turk, S. M.
Beverley, and F. H. Routier, “Deletion of UDP-glucose 
pyrophosphorylase reveals a UDP-glucose independent UDP-
galactose salvage pathway in Leishmania major”, a revised 
and accepted version has been published in Glycobiology,
vol. 20 no. 7 pp. 872–882, 2010. 
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Supplementary Material  

FIGURE  S1 . Growth curves of L. major cultures in varying conditions.  L. major  promastigotes were cultured in RPMI 1640 and 10% 
dialyzed FBS without sugar in total, or supplemented with either 50 mM Glc, or Gal  and OD was measured at 615 nm. A, wild type; B, USP 
gene deletion mutant Δusp; C, UGP gene deletion mutant Δugp; D, UGP deletion mutant with single allelic deletion of USP Δugp/usp+/-. 
Deviations are derived from three separate cultures. Δusp shows no influence with Glc/Gal media, compared to Δugp and Δugp/usp+/-. 
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Current therapy of leishmaniasis encompasses chemotherapeutic based treatment using the first-line 

drugs of pentavalent antimonal agents or the second-line drugs like the antibiotics pentamidine and 

paromomycin, or the fungicide amphotericin B in different combinations (Ashutosh et al., 2007; Lee 

and Hasbun, 2003; Kshirsagar et al., 2005; Croft and Coombs, 2003; Kanyok et al., 1994; Maltezou, 

2010). The newly discovered miltefosine, originally developed as an anti-malignant, finds increasingly 

use as an antiprotozoal drug, having less severe side-effects compared to the other leishmanicidals 

(Fischer et al., 2001). Nevertheless, the development of drug resistant strains is fast. After 

approximately 50 years of pentavalent antimonal treatment, this drug has become almost useless in the 

majority of the affected countries (Maltezou, 2010). And resistance against miltefosine has also been 

reported, using cell culture experiments (Perez-Victoria et al., 2006; Maltezou, 2010). Moreover, 

prevalence of the disease is increasing with estimates of 12 million people currently infected 

worldwide, causing 80.000 deaths annually without mentioning the morbidity of the disease, which 

can cause severe disfigurement and lead to social isolation (according to WHO statistics). In answer to 

this worrying situation, predominantly found in third world countries, a wide field of Leishmania 

research is dedicated to the identification of new drug targets. Although several drug targets have been 

proposed during the last decades, only few of them seem to be Leishmania-specific and truly essential 

for virulence or survival. Nevertheless, Leishmania parasites present unique features, such as the rare 

sugar galactofuranose (Bakker et al., 2005), a special glycosylated desoxyribonucleotide called Base J 

(van Leeuwen et al., 1998), a subset of plant-like genes (Hannaert et al., 2003), peroxisome-like 

glycosomes (Opperdoes and Szikora, 2006) and  a phosphoglycan rich glycocalyx (Naderer et al., 

2004) that deserve close investigations. 

The surface glycocalyx was one of the main subjects studied during the last three decades, since it 

represents the protecting interface between parasite and an always changing, hostile environment 

(Naderer et al., 2004). It was shown by several gene deletion experiments that Leishmania hampered 

in their glycocalyx biosynthesis are either avirulent or displayed an attenuated lesion phenotype, 

underlining the biological importance of this structure (Sacks et al., 2000; Spath et al., 2000; Ilg, 

2000b; Ilg, 2000a; Descoteaux et al., 1995; Kleczka et al., 2007; Zufferey et al., 2003; Garami and 

Ilg, 2001; Capul et al., 2007). Since the phosphoglycans, that comprise the highly abundant 

lipophosphoglycans (LPG) and the secreted or membrane bound proteophosphoglycans (s/mPPG), are 

extremely rich in galactose, interfering with the production of UDP-Gal, the main building-block of 

phosphoglycan assembly, would profoundly affect the glycocalyx formation and the parasite 

virulence.  However, the galactose metabolism of Leishmania still had a few surprises in store. 
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5.1   UDP-glucose pyrophosphorylase deletion revealed a UDP-Glc 

independent galactose salvage pathway in L. major 
 

It is likely that the primary route of UDP-Gal formation in L. major is via epimerization of UDP-Glc 

by the UDP-galactose 4-epimerase (GALE) (Turnock and Ferguson, 2007). However, in contrast to 

Trypanosoma cruzi and Trypanosoma brucei, Leishmania species also possess a salvage pathway 

(Turco et al., 1984) that was assumed to occur by uridinylation of galactose-1-phosphate via UDP-

glucose:α-D-galactose-1-phosphate uridylyltransferase (GALT), as described by Leloir (Leloir, 1951). 

The initial activation of UDP-glucose carried out by a UDP-glucose pyrophosphorylase (UGP) from 

glucose-1-phosphate and UTP (Lamerz et al., 2006) seemed thus essential for UDP-galactose 

biosynthesis. One goal was therefore to evaluate the importance of UDP-galactose biosynthesis in 

L. major by means of a UGP deficient mutant (Lamerz, 2005).  Surprisingly, targeted gene 

replacement of UGP showed only modest effects on the synthesis of several key molecules of the 

glycocalyx, like LPG, protein linked phosphoglycans and glycoinositolphospholipids (GIPLs), and 

still displayed residual UDP-Glc formation by in vitro activity testing. However, the genome of 

Leishmania major does not contain any close UGP homologues. Conversely, a leishmanial homologue 

of the recently described plant UDP-sugar pyrophosphorylase (USP) was found. An enzyme that can 

utilize both glucose-1-phosphate or galactose-1-phosphate together with UTP to produce UDP-Glc or 

UDP-Gal and pyrophosphate (Litterer et al., 2006b; Kotake et al., 2004; Kotake et al., 2007; Litterer 

et al., 2006a). Such an enzyme would be able to fuel the UDP-Gal pool by direct activation of Gal-1-P 

and be responsible for the limited UDP-Glc production that takes place in the UGP deletion mutant. 

With the completion of the genome, it also became clear that no obvious GALT homologue exists in 

trypanosomatids, strengthening the potential involvement of USP in galactose salvage. 

After completing this study, we have hence concentrated our effort on the biochemical 

characterization and evaluation of the metabolic importance of Leishmania major UDP-sugar 

pyrophosphorylase, an enzyme that was only described in the plant kingdom. 

 

 

5.2   In vitro characteristics of a plant-like UDP-sugar pyrophos-

phorylase from Leishmania major 
 

The distribution of the USP gene is quite limited and eventually depends on the ecological niche of its 

organism. Beside Leishmania major, the recently sequenced genomes of L. brasiliensis and 

L. infantum both contain a USP homologue. Interestingly, the slightly distant relative T. cruzi presents 

a putative USP gene as well, whereas T. brucei seems to be devoid of such enzyme. The 

trypanosomatid USPs are closely related to plant USPs and hypothetical proteins of the diatoms 
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Phaedactylum tricornutum and Thalassiosira pseudonana and green algae Micromonas pusilla, 

Ostreococcus tauri, Ostreococcus lucimarinus and Chlamydomonas reinhardtii which suggest the 

common origin of these genes. Moreover, USP homologues are found in ciliate protozoa (Paramecium 

tetraurelia, Tetrahymena thermophila) and apicomplexa (Toxoplasma gondi, Cryptosporidium sp. and 

Plasmodium sp.) but are absent from the fungal and animal kingdoms. 

The strong homology between trypanosomatid and plant USPs might suggest that Lmj USP has been 

acquired by lateral gene transfer. It has indeed been suggested that kinetoplastids and euglenoids, 

which together form the phylum Eugleonoza, acquired plastids by endosymbiosis or phagocytosis of 

an alga before their divergence and that the former lineage subsequently lost the organelle and ability 

to photosynthesize but retained numerous plant-like genes (Hannaert et al., 2003). This hypothesis is 

however controversial (Waller et al., 2004). Although protist USPs show high homology to plant 

USPs, these constitute a separate phylogenic branch. USP gene might thus have been present in a 

common ancestor and lost during evolution. In this context, we should mention that USPs exhibit a 

modest but significant homology to UGPs and UDP-GlcNAc pyrophosphorylases (UAPs) over the 

entire sequence. In particular, the pyrophosphorylase glycine rich consensus motif (Peneff et al., 2001; 

Steiner et al., 2007) essential for catalysis is highly conserved, as well as residues involved in uridine 

and phosphate binding. 

 

When compared to the plant enzymes, all USPs identified in trypanosomatids present a short amino-

acid insertion near the uridine binding site. The primary sequence analysis tool ELM 

(http://elm.eu.org/) for prediction of functional sites and globular domains in proteins revealed 

glycosylation and phosphorylation motifs for both the 18aa insertion from Leishmania spp. and the 

7aa insertion from T. cruzi. These short sequences are disordered and might be post-translationally 

modified. Determination of the crystal structure of USP might shed some light on the function of these 

additional amino acid residues.  

 

STD NMR spectroscopic studies emphasized that interactions of L. major USP with UTP or the 

uridine moiety of nucleotide-sugars play a significant role in substrate binding as for L. major UGP 

(Lamerz et al., 2006). A finding bolstered by kinetic studies of USP and other pyrophosphorylases, 

showing that the affinity for UTP is the strongest, followed by the activated UDP-sugar (Lamerz et al., 

2006; Kotake et al., 2004; Weissborn et al., 1994; Turnquist et al., 1974). This leading role of the 

nucleotide moiety is observed in many enzymes involved in glycosylation, for example UDP-

galactopyranose mutase (Gruber et al., 2009), sialyltransferases (Datta and Paulson, 1995),  as well as 

pyrophosphorylases from E. coli (Thoden and Holden, 2007) and might even hold true for nucleotide 

sugar transporters (Maggioni et al., 2008). Intriguingly, residues interacting with the glucose moiety in 

UGPs are not conserved in USPs which probably accounts for the broader specificity toward 

monosaccharide-1-phosphates and UDP-sugars of the latter. Like plant USPs, L. major USP is able to 
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convert reversibly and efficiently both Glc-1-P and Gal-1-P with a slight preference for Gal-1-P. 

Pentose-1-phosphates such as Xyl-1-P and Ara-1-P can also be activated in vitro by Leishmania or 

plant USPs, albeit with a reduced efficiency reflecting their lower affinity for the enzyme, and 

suggesting the contribution of the hexose H6 and H6´ protons to binding. In contrast, GalA-1-P is a 

poor substrate of  L. major USP. It is reasonable to assume that the carboxylic acid group of GalA 

creates either steric hindrance or more likely an unfavoured electrostatic potential leading to weak 

interactions of the uronic acid with the leishmanial enzyme. Since L. major USP does not activate 

hexosamine- or N-acetylhexosamine-1-phosphates it clearly and metabolically differentiates itself 

from the enzymatic class of UAPs.  

In Arabidopsis, USP is particularly important in pollination and possibly converts Gal-1-P, Ara-1-P 

and Rha-1-P secreted by the pistil. And despite its lower affinity for Ara-1-P, Arabidopsis thaliana 

USP seems to play a central role in the salvage of this pentose in vivo (Kotake et al., 2007). In 

Leishmania, however, where D-arabinose is present, the monosaccharide-1-phosphate is exclusively 

activated by GTP and a putative GDP-arabinose pyrophosphorylase has been identified in the genome 

(Turnock and Ferguson, 2007). In addition to GDP-α-D-Ara, L. major promastigotes synthesize UDP-

Glc, UDP-Gal (in the pyranosic and furanosic form), UDP-GlcNAc, GDP-Man and low amounts of 

GDP-Fuc but neither UDP-Xyl nor its precursor UDP-GlcA are produced (Turnock and Ferguson, 

2007). In addition, L. major parasites are neither able to catabolize D-xylose nor D-galactose, which 

excludes the role of L. major USP in energy extraction from rare sugars derived by plant nectars 

within the sand fly midgut. Considering the specificity of L. major USP for UDP-activated sugars, its 

inability to act on hexosamine-1-phosphate and the characterization or presence in the genome of 

specific pyrophosphorylases for the activation of GDP-activated sugars and UDP-GlcNAc (Turnock 

and Ferguson, 2007; Garami and Ilg, 2001), Leishmania USPs most likely play a role in the salvage 

of galactose and glucose exclusively. Remarkably, L. major USP seems to have evolved a slight 

preference for Gal-1-P over Glc-1-P in good agreement with the presence of galactose in many of their 

surface glycoconjugates. Moreover, although it is a bidirectional enzyme, the ordered bi-bi reaction 

mechanism of USP highlighted in this work, and its high affinity for UTP, which is known to be a 

naturally abundant metabolite, presumably ensure the synthesis of nucleotide sugars rather than their 

pyrophosphorolysis and support a putative role in galactose salvage. Galactose most likely enters cells 

by a family of hexose transporters before being converted into Gal-1-P by the putative galactokinase 

present in the genome (LmjF35.2740) and activated into UDP-galactose by USP. 

In contrast to Leishmania, the trypanosomatids Trypanosoma brucei and Trypanosoma cruzi are 

thought to rely exclusively upon epimerization of UDP-Glc for synthesis of UDP-Gal since the hexose 

transporters of these parasites are unable to transport Gal (Tetaud et al., 1997; Barrett et al., 1998). 

While the genome of T. brucei is devoid of a USP and houses only a galactokinase pseudogene, 

T. cruzi contains four homologues of galactokinase and one USP. In the latter, USP might be involved 

in recycling galactose originating from degradation of glycoconjugates in the endolysosomal 
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compartment or plays a role in salvage of other sugars. For example, T. cruzi is the only one of the 

three trypanosomatids mentioned here that synthesizes UDP-Rha, UDP-Xyl and its precursor 

UDP-GlcA (Turnock and Ferguson, 2007). Like the plant enzyme, T. cruzi USP might be involved in 

the synthesis of these nucleotide sugars.  

 

 

5.3   UDP-galactose metabolism in L. major 
 

In eukaryotes, most of the nucleotide-sugars are synthesized in the cytosol. Remarkably, 

trypanosomatids seem to have emerged special features, since several enzymes of the carbohydrate 

metabolism were shown or predicted to reside within the glycosomes (Opperdoes and Szikora, 2006).  

This unique kinetoplastid organelle contains a large portion of plant-like genes and carries out 

pathways including glycolysis, purine salvage and pentose phosphate pathway, in addition to more 

typical peroxisome functions such as β-oxidation of fatty acids (Hannaert et al., 2003; de Souza, 

2002; Opperdoes and Szikora, 2006).  

In both Leishmania and Trypanosoma, cytosolic accumulation of glucose-6-phosphate is lethal 

(Kumar et al., 2009; Haanstra et al., 2008). The hexokinase and glucokinase are nevertheless not 

regulated by allosteric feedback inhibition like it is the case in most eukaryotes (Nwagwu and 

Opperdoes, 1982) but sequestrated in the glycosomes, where ATP level are balanced, with several 

other enzymes involved in glycolysis and gluconeogenesis. This compartmentalization avoids an 

uncontrolled glycolytic flux and moreover was proposed to serve as energy reservoir of organic-

phosphates to circumvent short periods of starvation (Bakker et al., 2000). Here, inability of allosteric 

regulation of kinases would contribute for an increased pool-size of organic-phosphates, since 

phosphorylation leads to intracellular fixation. 

In Trypanosoma, several enzymes of the UDP-Gal and UDP-Glc biosynthetic pathways have also 

been located to the glycosomes (Roper and Ferguson, 2003; Penha et al., 2009). Likewise, 

Leishmania USP and UGP protein sequences display the putative C-terminal peroxisomal targeting 

signal (PTS1) -AKL and –TNK respectively, assumed to mediate localization to the glycosomes 

(Opperdoes and Szikora, 2006). However, challenging the assumption that L. major UDP-Glc and 

UDP-Gal metabolism takes place within these organelles, this study demonstrates the cytoplasmic 

localization of USP and UGP. Interestingly, Leishmania phosphoglucomutase (PGM) and UDP-

galactose 4-epimerase (GALE) seem also localized to the cytosol, whereas they have been shown to be 

present in the glycosome of trypanosomes (Roper et al., 2005; Penha et al., 2009). These observations 

suggest a divergence in the nucleotide sugar metabolism between Trypanosoma and Leishmania. The 

sub-cellular distribution of the enzymes highlighted in this study would imply translocation of 

glucose-6-phosphate from the glycosome into the cytoplasm. This task could be mediated by the 

product of LmjF30.2680 that shows strong homology to the plant glucose-6-phosphate transporter. 
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Studies of the in vitro specificity of this transporter and its localization are currently under 

investigation.  

Similarly, L. major GDP-Man biosynthesis, which requires a phosphomannomutase and GDP-

mannose pyrophosphorylase, takes place within the cytosol (Penha et al., 2009; Opperdoes and 

Coombs, 2007) and might require translocation of glycosomal activated mannose-6-phosphate 

(Opperdoes and Coombs, 2007). Finally, Leishmania putative galactokinase also displays a canonical 

peroxysomal targeting motif (PTS1). If this localization is confirmed, galactose-1-phosphate would 

also need to be translocated into the cytoplasm to be activated by USP. The data presented in this 

thesis therefore gave rise to a new model for the topology of the carbohydrate metabolism in 

Leishmania (page 70, compared to page 22). Further studies, such as the investigation of signals for 

targeting to Leishmania glycosomes, will challenge this model. 

 

 

5.4   Importance of galactosylation for growth, virulence and 

viability in L. major 
 

In Leishmania species the abundance of incorporated galactose is tightly connected to its surface 

glycoconjugate structures like LPG, PPG and type-2 GIPLs (Ferguson et al., 1994; Mcconville et al., 

1995; Ilg, 2000b). Within the last years, a variety of approaches have been used to genetically disrupt 

Leishmania metabolism, in order to interfere with the glycocalyx biosynthesis and dissect the role of 

its components. Notably, disruption of the GDP-mannose pyrophosphorylase leading to disruption of 

the majority of the glycocalyx components resulted in viable but avirulent parasites demonstrating the 

importance of this cellular coat (Stewart et al., 2005). To date, the biological role of galactosylation 

has been mostly defined by three gene deletion mutants in L. major, these are a putative 

galactofuranosyltransferase (LPG1) (Spath et al., 2000), a UDP-galactopyranose mutase (GLF) 

(Kleczka et al., 2007), and a UDP-galactose transporter double knock-out (LPG5A/B) (Capul et al., 

2007) (see table 1, below). All of them are devoid of LPG, whereas phenotypical differences can be 

assigned to PPGs and GIPLs expression. The GIPLs stay generally unaffected except within the GLF 

mutant that lacks UDP-galactofuranose and consequently expresses truncated GIPLs, while PPGs are 

only affected within the LPG5A/B mutant. These three galactose based mutants all display an 

attenuated virulence in mice. In contrast, deletion of the L. major GDP-mannose transporter (LPG2) 

lacking both LPG and PPGs like LPG5A/B, is totally avirulent within mice. To date this discrepancy 

remains unexplained. Moreover in the related trypanosomatid parasites Trypanosoma cruzi and 

Trypanosoma brucei, biosynthesis of UDP-Gal is essential for survival (Roper et al., 2005; Macrae et 

al., 2006). These observations encouraged us to refine our understanding of the galactose metabolism 
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in Leishmania and revisit the role of galactosylated molecules by targeting the UDP-galactose 

formation. 

 
Code Name LPG GIPLs PPG Virulence Species

LPG1 Galactofuranosyl transferase no yes yes delayed L. major 

GLF UDP-galactopyranose mutase no affected yes delayed L. major 

LPG5A/B UDP-galactose transporters no yes no delayed L. major 

LPG2 GDP-mannose transporter no yes no no L. major 

GDP-MP GDP-mannose pyrophosphorylase no no no no L. mexicana 

UGP UDP-glucose pyrophosphorylase residual yes residual affected L. major 

USP UDP-sugar pyrophosphorylase affected ? ? ? L. major 

Table 1. Gene deletion phenotypes assigned to nucleotide-sugar metabolism in Leishmania. 

 

To demonstrate a role of USP in galactose metabolism and evaluate its importance in L. major, the usp 

single copy gene was targeted by homologous recombination and its two alleles replaced by selective 

resistance markers. The absence of activity (by USP or a similar enzyme) catalyzing the conversion of 

galactose-1-phosphate and UTP to UDP-galactose and pyrophosphate could be confirmed 

enzymatically in the Δusp mutant. By light microscopy, all Δusp clones appeared morphologically 

normal compared to the parental wild type strain; no body swelling was observed, which could have 

been indicative for osmotic stress by possible accumulation of Gal-1-P. There was no significant 

difference between the growth of wild type and mutant. In contrast to the situation in yeast or 

mammals (Lai et al., 2003; de Jongh et al., 2008), the suggested Gal-1-P accumulation in L. major 

seems not to be fatal. 

Since the L. major USP mutant parasites are able to synthesize UDP-Gal via the de novo pathway, we 

anticipated a mild phenotype. Interestingly, while the amount of LPG exposed by carbohydrate 

staining seems unaffected by the lack of USP, staining by the monoclonal antibody WIC79.3 was 

noticeably increased when compared to wild type. This signal increase could thus be attributed to an 

increase of the monogalactosylated phosphoglycan repeat units (-6[Galβ1-3]Galβ1-4Manα1-P-) 

recognized by WIC79.3 at the expense of polygalactosylated repeat units (-6[Galβ1-3]2-3Galβ1-

4Manα1-P-) as previously observed in the LPG5B- mutant lacking a UDP-Gal transporter (Capul et 

al., 2007). Since L. major is known to express the most complex LPG with a highly galactosylated 

backbone of varying side chain lengths, high amounts of activated galactose are needed to fuel its 

biosynthesis (Mcconville et al., 1990; Mcconville et al., 1995). These preliminary results suggest thus 

an impact of USP on side chain galactosylation and ultimately on the Golgi UDP-Gal pool. More 

detailed analysis of LPG and other glycoconjugates are however necessary to confirm these 

observations and establish a role of USP in UDP-Gal production. 

In comparison, a strong decrease in WIC79.3 reactivity was observed in the UGP deletion (Δugp) 

mutant and most likely reflects a strong decrease in the amount of LPG, as observed by carbohydrate 
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staining of total extracts, possibly combined with a decrease in side chain galactosylation. With 

respect to UDP-Glc, its abundance might be of importance concerning the substitution of the LPG core 

glycan by glucose-6-phosphate, which seems to be a prerequisite to further elongate this core by 

galactopyranose (Ferguson MAJ., personal communication). The reduction of LPG biosynthesis might 

in this case be a sign of a reduced UDP-glucose pool. Studies comparing the nucleotide sugar pools in 

both UGP and USP mutants would probably bring support to this hypothesis. 

  

Leishmania major possibly maintained a salvage pathway in order to fuel its high demand on UDP-

Gal needed for phosphoglycan side chain galactosylation among others. In this regard, the absence of 

USP could be most obstructive for the promastigote life style. Within the insect, L. major USP might 

be of importance to metabolize sugars released by hydrolysis of blood cell glycan structures or present 

in plant saps (Pimenta et al., 1997). In contrast, the phagolysosome surrounding the amastigote stage 

is thought to be poor in carbohydrates. Nevertheless,  studies of hexose transporters in Leishmania 

mexicana (Rodriguez-Contreras et al., 2007; Feng et al., 2009), demonstrated that these proteins are 

essential for the replication of the parasites into macrophages and suggest thus an important role for 

monosaccharide salvage in the amastigote stage. Investigation of the virulence of the Δusp mutant in 

macrophages and mice will be undertaken and might bring an answer to some of these issues. 

 

The contribution of USP to the UDP-Glc/UDP-Gal biosynthesis was further supported by the deletion 

of a USP allele in the Δugp mutant (Δugp/usp+/-) and ensuing absence of LPG. Moreover, despite 

several attempts, deletion of the second USP allele remained unsuccessful suggesting a lethal 

phenotype. This observation strongly resembled the T. brucei and T. cruzi UDP-galactose 4-epimerase 

(GALE) deletion mutants, where inability of UDP-galactose formation turned out to be essential as 

well, whereas already single allele knockouts exhibited 30% reduction of their cell surface 

determinants in T. brucei and 60% reduction in T. cruzi (Roper et al., 2005; Macrae et al., 2006). 

These examples of haploid insufficiency suggest that a similar regulation of biosynthetic enzyme level 

may also exist in L. major parasites, where the stepwise deletion of genes contributing to UDP-gal 

formation, accounts for a stepwise reduction of LPG expression and basal enzyme activity in cell 

lysates of L. major wild type, Δugp and Δugp/usp+/-. This direct correlation between gene and 

enzymatic activity, implies that Trypanosoma GALE, or Leishmania UGP and USP are working at 

maximum activity, without any redundancy. 

A recently published strategy that involves the use of a conditionally destabilized fusion domain to the 

protein of interest, allowing inducible degradation on protein level, might be used to obtain a 

Δugp/Δusp deletion mutant. Indeed, no strategies for conditional gene knock out or use of RNAi are 

available for Leishmania (Madeira et al., 2009).  
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If confirmed, the lethal phenotype of the Δugp/Δusp deletion mutant could be attributed to either 

UDP-Gal and/or UDP-Glc. Besides its implication in UDP-Gal biosynthesis, UDP-Glc is the likely 

donor substrate for substitution of the LPG glycan core by a glucose-6-phosphate residue, as 

mentioned above. The importance of this modification found in approximately 30% of the molecules 

is currently unknown. 

Furthermore, UDP-Glc is indispensable for glucosylation by the UDP-glucose:glycoprotein 

glucosyltransferase of the oligosaccharide Man9-7GlcNAc2 found on newly synthesized glycoproteins. 

The resulting monoglucosylated Glc1Man9-7GlcNAc2 interacts with the chaperones calnexin and 

calreticulin that ensure proper folding and quality control in the endoplasmic reticulum. Although 

calreticulin-deficient mice die during embryonic development (Mesaeli et al., 1999), eukaryotic cells 

in culture can generally survive in the absence of calnexin or calreticulin. In the parasites T. cruzi and 

T. brucei, components of the ER glucosylation dependent quality control system can be deleted with 

only moderate effects on parasite growth, differentiation and infectivity (Jones et al., 2005; Labriola 

et al., 1999; Conte et al., 2003). In Leishmania, the importance of the calnexin calreticulin “quality 

control” cycle has not been addressed. However, the gene encoding the putative UDP-Glc transporter 

Hut1-like, required for this cycle, seems lethal in this organism (Capul et al., 2007). 

Finally UDP-Glc is presumably involved in the biosynthesis of base J (β-D-glucosyl 5-

hydroxymethyluracil), a hypermodified base found in the DNA of all kinetoplastid flagellates and 

some unicellular flagellates closely related to trypanosomatids (van Leeuwen et al., 1998). The 

biosynthesis of base J is thought to occur in two steps: first, a specific thymidine in DNA is converted 

into hydroxymethyldeoxyuridine, and then this compound is glucosylated. Strong indirect evidence 

suggests that the first step is catalyzed by two thymidine hydroxylases JBP1 and JBP2. JBP2 appears 

mainly responsible for de novo synthesis whereas JBP1 is a DNA binding protein mediating the 

maintenance of the J present. The glucosyltransferase catalyzing the subsequent transfer of the glucose 

residue remains elusive. The functions of base J are also still unknown. In all kinetoplastid flagellates, 

this base is predominantly found in the telomeres suggesting that it has a conserved telomeric function. 

In the case of Leishmania, more than 98% of base J is found in the telomeres and the function of 

base J is apparently essential since a knock out of JBP1 seems lethal. In consequence, the biosynthesis 

of UDP-glucose might be crucial for survival of Leishmania.  

To dissect the role of UDP-Gal biosynthesis on one hand, and UDP-Glc biosynthesis on the other 

hand, the Δugp/Δusp mutant lacking both nucleotide sugars might be compared to a mutant 

exclusively deficient in UDP-Gal obtained by deletion of USP and UDP-glucose 4-epimerase. 
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Abbreviations 
 

α anti 
Ara arabinose 
ADS alkyldihydroxyacetonephosphate synthase 

 
ble phleomycin resistance gene 
  
Da dalton 
  
e.g. exempli gratia 
et al. et alii 
ER endoplasmatic reticulum 
EtN ethanolamine 
  
FBP fructose-1,6-biphosphatase 
Fuc fucose 
  
Gal galactose (galactopyranose) 
GalA galacturonic acid 
GalF galactofuranose 
GALK galactokinase 
GalNAc N-actetyl-galactosamine 
GALE UDP-galactose/glucose 4-epimerase 
GALT Galactose-1-phosphate:UDP-glucose 
GDP-MP GDP-mannose pyrophosphorylase 
GFP green fluorescent protein 
GIPLs glycosylinositolphospholipids 
Glc glucose 
GlcA glucoronic acid 
GLCK glucokinase 
GlcN glucosamine 
GlcNAc N-actetyl-glucosamine 
GLF gene coding for UDP-galactofuranose/pyranose 
gp63 glycoprotein 63 
GPI glycosylphosphatidylinositol 
  
hyg hygromycin 
HX hexokinase 
  
kb kilobase 
kDa kilodalton 
  
LPG lipophosphoglycan 
Lm/ Lmj Leishmania major 
  
mAb monoclonal antibody 
Man mannose 
MS mass spectrometry 
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NAD+ nictotinamide adenine dinucleotid (oxidized) 
NADH nictotinamide adenine dinucleotid (reduziert) 
neo neomycin 
NMR nuclear magnetic resonance 
NS nucleotide sugar 
  
OD optical density 
  
pac puromycin acetyltransferase 
PFK phosphofructokinase 
PHLEO phleomycin 
PI phosphatidylinositol 
Pi phosphate 
PPi pyrophosphate/ diphosphate 
PGM phosphoglucomutase 
PMM phosphomannomutase 
PPG proteophosphoglycan 
  
Rha rhamnose 
  
sAP secreted acid phosphatase 
sat seothricin acetyl transferase 
STD saturated transfer difference 
  
UDP uridine-5’-diphosphate 
UGM UDP-galactofuranose/pyranose mutase 
UGP UDP-glucose pyrophosphorylase 
USP UDP-sugar (monosaccharide) pyrophosphorylase 
UTP uridine-5’-triphosphate 
UTR untranslated region 
  
Xyl xylose 
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