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Zusammenfassung 
 
Der dynamische Umbau des Aktin-Zytoskeletts ist für eine Vielzahl zellulärer Prozesse wie 
der Endozytose, der Zytokinese und der Zellbewegung verantwortlich. Proteine der 
Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) Familie werden in allen motilen 
eukaryotischen Zellen exprimiert und sind nachweislich wichtige Regulatoren der 
Aktinpolymerisation in Aktin-reichen Zellfortsätzen wie Lamellipodien und Filopodien. Obwohl 
Ena/VASP Proteine bereits vor mehr als 2 Jahrzehnten entdeckt wurden, wird die 
Wirkunsweise dieser Proteine auf die Aktinpolymerisation nach wie vor sehr kontrovers 
diskutiert. 
In dieser Arbeit wurde durch Analyse des Wachstums einzelner Aktinfilamente durch in vitro 
TIRF-Mikroskopie und spektroskopische Methoden der molekulare Mechanismus von 
Ena/VASP Proteinen während der Filamentelongation entschlüsselt. Es konnte gezeigt 
werden, dass verschiedene Ena/VASP Proteine aus Säugern und Dictyostelium (hVASP, 
EVL, Mena und DdVASP) die Elongationsrate von Aktinfilamenten in vitro aktiv 
beschleunigen – dies allerdings in sehr unterschiedlichem Maße. Während dieses Prozesses 
sind Ena/VASP Proteine jedoch nicht wie Formine prozessiv mit dem schnell wachsenden 
Ende des Filaments verbunden. Stattdessen binden sie das Filamentende nur transient, 
transferieren ihre gebundenen Aktin Untereinheiten und bleiben anschließend an der Seite 
des Filaments haften während das Filamentende wieder spontan weiter elongiert werden 
kann. Aus diesem Grund kann das Wachstum der Aktinfilamente in Gegenwart von 
Ena/VASP effizient durch Capping Proteine (CP) terminiert werden. Besonders 
bemerkenswert war der Befund, dass das Clustering von VASP an Oberflächen zu 
prozessivem Filamentwachstum führt, welches dann seinerseits de facto nicht mehr durch 
CP inhibiert werden kann. Wir nehmen an, dass dieses Szenario den in vivo Zustand bei der 
Ausbildung von Lamellipodien und Filopodien widerspiegelt. Außerdem konnte in dieser 
Arbeit gezeigt werden, dass zwei WH2-ähnliche Aktin-Bindungsmotive, die G- und F-Aktin 
Bindestelle (GAB und FAB), für die beschleunigte Aktinpolymerisation verantwortlich sind, 
wobei die FAB darüber hinaus essentiell für die CP-Resistenz ist. Die detaillierte 
biochemische Analyse der GAB/Aktin Interaktion zeigte, dass dieses WH2-Bindungsmotiv 
aus dem schnell elongierenden DdVASP eine mehr als 1000-fach höhere Affinität zu G-Aktin 
als die GAB des langsam elongierenden hVASP besitzt, was auf einen direkten 
Zusammenhang zwischen der G-Aktin-Bindung und der Elongationsrate hindeutete. Zur 
Untermauerung dieser Hypothese wurde die GAB aus hVASP durch WH2-Motive anderer 
Proteine mit jeweils unterschiedlichen Aktin-Affinitäten ersetzt. Tatsächlich zeigten die 
Aktinfilament-Elongationsraten der konstruierten Proteinchimären eine direkte Korrelation mit 
der Aktin-Affinität ihrer WH2-Motive. Auf der Grundlage dieser Arbeit konnte so ein 
allgemeingültiger, auf G-Aktin-Rekrutierung beruhender Elongationsmechanismus der 
Ena/VASP-vermittelten Aktinpolymerisation formuliert werden, der voraussagt, dass 
Ena/VASP Proteine bei vorliegenden Aktinkonzentrationen von mehreren hundert µM in der 
Zelle effektive Filamentelongatoren sind, da unter diesen Bedingungen alle G-Aktin 
Bindestellen saturiert sind. 
 
Schlagwörter: Aktin-Zytokelett, TIRF-Mikroskopie, Elongationsfaktor. 

 



Abstract 
 
The dynamic rearrangement of the actin cytoskeleton triggers a plethora of cellular 
processes like endocytosis, cytokinesis and cell migration. Proteins of the 
Enabled/vasodilator-stimulated phosphoprotein family (Ena/VASP) are ubiquitously found in 
motile eukaryotic cells and are known to be critical regulators of actin assembly in actin-rich 
cell protrusions such as lamellipodia and filopodia. Although these proteins are already know 
for more than two decades, there is still considerable controversy regarding their precise 
effects on actin assembly.  
We therefore analyzed the molecular mechanism by which Ena/VASP proteins from 
mammalian cells and Dictyostelium discoideum affect the assembly of single actin filaments 
using state-of-the-art in vitro TIRF microscopy and spectroscopic approaches to reconcile the 
long lasting inconsistencies in the field. We found that Ena/VASP members from mammals 
and Dictyostelium (hVASP, EVL, Mena and DdVASP) directly enhance the elongation rate of 
single actin filaments in polymerization assays, albeit to very different extends. During 
elongation, Ena/VASP is not processively associated with the growing end of the filament like 
a formin, but it only transiently binds to the end, transfers its bound actin subunits and 
subsequently stays attached to the side of the growing filament. Thus, this filament 
elongation process can be readily inhibited by capping proteins (CP) in solution. Most 
notably, clustering of Ena/VASP on a surface drastically changed its mode of action, now 
triggering processive filament elongation that became virtually resistant to CP, and hence 
possibly mimicking the role of Ena/VASP at the leading edge of migrating cells. We also 
found that the filament-elongation activity relies on two WH2 domain-related actin-binding 
sites within the C-terminal part of the protein, namely the G- and F-actin-binding sites (GAB 
and FAB), and showed that the FAB is crucial for CP resistance. Biochemical analysis of the 
actin/GAB interaction revealed that the actin affinity of the GAB from the fast elongating 
Dictyostelium orthologue is more than three orders of magnitude higher than that of the slow 
elongating mammalian counterpart, suggesting that the actin affinity of the GAB might 
determine the VASP-mediated elongation rate in vitro. Consistent with this hypothesis, 
replacement of the GAB motif of hVASP by related WH2 domains from other proteins with 
different actin affinities in fact showed a direct correlation between their affinity to G-actin and 
the mediated elongation rates. These results allow us to formulate a general, affinity-based 
mechanism for fast and processive Ena/VASP-mediated actin assembly, suggesting that all 
Ena/VASP family members are equally potent filament elongators at physiological actin 
concentrations in the range of hundreds of µM in the leading edge of the migrating cell since 
all actin-binding sites are saturated under these conditions. 
 
Keywords: actin cytoskeleton, TIRF-microscopy, elongation factor. 
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1. Introduction 

1.1 The cytoskeleton 

The cytoskeleton is a main feature of eukaryotic cells. It consists of an extensive network of 

filamentous proteins which organize intracellular structure and cell shape and are implicated 

in many important cellular processes. The fast remodeling of cytoskeletal polymers is 

required for directed movement of the cell and its interaction with the environment. The major 

components of the cytoskeleton are microtubules, intermediate filaments and actin filaments 

(Figure 1). Actin filaments are thin filaments with a diameter of 7 nm that undergo rapid 

polymerization and depolymerization (Figure 1A). They are responsible for the overall cell 

shape and mediate a multitude of cellular processes such as cytokinesis, cell migration as 

well as endo- and exocytosis, and constitute tracks for myosin motor proteins. Actin binds 

and hydrolyses ATP, which regulates the lifetime of actin filaments. Microtubules (MT) 

consist of α- and β-tubulin dimers that polymerize into stiff, hollow cylindrical filaments with a 

diameter of 25 nm (Figure 1B). They arise from the so called microtubule organizing center 

(MTOC) and are implicated in mitosis, vesicle transport and cytokinesis, and constitute tracks 

for kinesin and dynein motor proteins. Tubulin binds and hydrolyses GTP, which regulates 

microtubule lifetime. Intermediate filaments are heterogeneous protein fibers that consist of 

different classes of proteins like keratins, desmins and lamins, which are responsible for the 

tensile strength and overall shape of the cell (Figure 1C). In contrast to microtubules and 

actin filaments, intermediate filaments do not bind nucleotides and also lack polarity; hence 

no motor proteins for this filament class are known. Moreover, the turnover and assembly of 

intermediate filaments is much slower, which makes them the most static component of the 

cytoskeleton. 

 
 
Figure 1: Components of the eukaryotic cytoskeleton. The eukaryotic cytoskeleton consists of 
actin filaments (A), microtubules (B) and intermediate filaments (C), which localize to different sides 
of the cell and contribute differently to cellular architecture and function. Images were taken from 
http://cellix.imba.oeaw.ac.at. 

1 



                                                                                                                                 Introduction 
 

1.1.1 Actin 

Actin is a disk-shaped 43 kDa protein, and is the most abundant protein among all 

eukaryotes, representing roughly 10% of total protein in the cell, and about 30-40% in muscle 

cells. It is highly conserved in different species, differing by not more than 20% in its amino-

acid composition even in evolutionary distant organisms. Despite its ubiquitous presence in 

all eukaryotic cells, it was discovered rather late in the 1940s in muscle tissue and found to 

be the major component of the cytoskeleton in non-muscle cells even twenty years later 

(Hatano and Oosawa, 1966; Ishikawa et al., 1969). While lower eukaryotes like 

Saccharomyces cerevisiae and Schizosaccharomyces pombe have only one actin gene, 

different actin isoforms that are encoded by different genes are present in higher eukaryotes: 

α-actin isoforms are found in muscle, whereas β- and γ-isoforms coexist in other cell types 

and are implicated in the formation of different cytoskeletal structures. β-actin is the major 

actin isoform in protrusive structures like lamellipodia and filopodia, whereas γ-actin is 

enriched in stress fibers (Hoock et al., 1991; Tondeleir et al., 2009). There are 6 actin genes 

in man, 10 in Arabidopsis thaliana, 35 in mouse and 33 in Dictyostelium discoideum 

(Vandekerckhove et al., 1978; Joseph et al., 2008; Schleicher et al., 2008). 

 

1.1.2. Actin structure 

The actin monomer consists of four subdomains (1-4) with a nucleotide-binding cleft in-

between subdomain 2 and 4 at the so-called minus- or “pointed” end. Actin binds ATP or 

ADP complexed with a divalent cation, mostly Mg2+ or Ca2+ (Figure 2). Subdomains 1 and 3 

mark the so called plus- or “barbed” end of the protein.  

 

 
Figure 2: Structure of Ca-ATP-G-actin. (A) Molecular model of G-actin. The disk shaped actin 
monomer consists of four subdomains, with subdomain 1 and 3 forming the barbed- and 2 and 4 
the pointed end. The ATP-binding cleft is located in-between subdomains 2 and 4 at the pointed 
end. (B) Actin binds ATP and a bivalent cation, in this case Ca2+, in its ATP-binding cleft. PDB 
code: 1NWK. 
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The most remarkable property of actin is its ability to polymerize into double-helical, semi-

flexible filaments (filamentous or F-actin) with a diameter of approximately 7 nm and a 

relatively large persistence length of 10 to 20 µm (Holmes et al., 1990; De La Cruz et al., 

2000; Ismabert et al., 1995). 13 actins subunits form one turn, corresponding to a length of 

35.7 nm. Due to the polarity of the monomer, the actin filament ends differ in their 

polymerization kinetics (see below). EM-analysis of isolated actin filaments decorated with 

the actin-binding heads of Myosin II revealed that both ends elongate with different rates 

(Pollard and Mooseker, 1981). These experiments were also eponymous for the ends of the 

actin filament, which were named the (fast growing) barbed end and the (slow growing) 

pointed end (see below) due to the arrowhead-like appearance of the Myosin II decorated 

actin filament. 

Although the first structures of monomeric actin (globular or G-actin) in complex with the 

actin sequestering protein DNaseI were derived 1990 by Mannherz and colleagues, a 

detailed model for F-actin with atomic resolution was unavailable for a long time. The most 

popular model was the frequently refined “Holmes model” of F-actin, which combined data 

from fiber-diffraction and EM experiments as well as the atomic model of G-actin (Holmes et 

al., 1990; Lorenz et al., 1993; Lorenz et al., 1995). Recently, a more detailed structure with a 

3Å resolution of the actin filament was derived by fiber-diffraction, showing that the actin 

monomer undergoes a considerable conformational change upon polymerization, resulting in 

a 20° tilt of subdomain 4 that leads to a much flatter appearance of the filament than initially 

proposed (Oda et al., 2009, Figure 3). 

 
 
Figure 3: Structure of F-actin. (A) Molecular model of F-actin, showing one 
entire turn in the actin-helix. (B) Comparison of the molecular models of G- 
and F-actin. Note that subdomains 2 and 4 are tilted towards the filament 
axis in F-actin, resulting in a flattened structure of the actin subunit within the 
filament. (From Oda et al., 2009). PDB codes are indicated in the figure. 
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1.1.3. Biochemical properties of actin 

Actin polymerizes spontaneously in the presence of mM amounts of monovalent and divalent 

cations. Since actin is a highly negatively charged protein (charge = -11.1 at pH 7), it is 

possible to obtain G-actin in vitro by using buffers with very low ionic strengths lacking Na+ or 

K+  ions at a slightly basic pH. Addition of mM amounts of K+-salts or, rarely used, lowering of 

the pH, results in compensation of the negative charges of the actin monomers and triggers 

spontaneous polymerization into filaments. The formation of actin filament nuclei is, however, 

energetically disadvantageous, since actin dimers and trimers easily disassemble into 

monomers. After a fourth actin subunit is added to an existing trimer, the elongation reaction 

proceeds until equilibrium is reached (Figure 4).  

 

 
 
Figure 4: Actin filament nucleation. Actin dimers and trimers 
easily disassemble into monomers. The formation of an actin 
seed consisting of 4 subunits favors elongation. Estimated rate 
constants have units of µM-1s-1 for association and s-1 for 
dissociation reactions (from Pollard and Earnshaw, 2008). 

 

The barbed and the pointed ends of the actin filament grow with different rates, since both 

ends have very different association and dissociation rates for ATP- and ADP actin (Figure 

5). Thus, the critical concentrations (Cc=k-/k+) for polymerization of ATP-actin at the barbed 

and pointed end are different, with Cc (barbed) = 0.12 µM and Cc (pointed) = 0.62 µM (Pollard, 

1983). For this reason actin monomers are continuously “treadmilling” in equilibrium, with 

actin monomers being added to the barbed end and released from the pointed end. If only 

ADP-actin is present, no treadmilling is observed since the critical concentrations for both 

ends are virtually identical. 
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Figure 5: Actin filament elongation kinetics. Rate constants of 
ATP- and ADP actin association and dissociation to and from the 
filament ends (from Pollard 1986). Ratios of the rate constants 
yield the critical concentrations. 

 

When ATP-actin is incorporated into the growing barbed end of the filament, ATP is rapidly 

hydrolyzed to ADP+Pi
 in an irreversible process. The lifetime of this ADP+Pi intermediate is 

quite long, with phosphate-release rates in the range of minutes (Figure 6, Carlier and 

Pantaloni, 1986). Finally, the γ-phosphate is released from the filament in a reversible 

reaction. This process discriminates newly polymerized and old filaments in vivo and is an 

important marker for proteins that selectively disassemble filaments, e.g. ADF/cofilin (see 

below). 

 

 

Figure 6: Actin ATPase activity. 
Comparison of the rates for ATP 
hydrolysis and γ-phosphate release 
(from Blanchoin and Pollard, 2002 
and Carlier and Pantaloni, 1986) 

 

1.1.4. Cellular actin structures 

Actin filaments can be organized into very different cellular structures, each of them 

contributing to specific functions like membrane protrusion, substrate attachment, contraction 

or environment sensing. 

The leading edge of a migrating cell consists of the lamellipodium, a flat, sheet like structure 

with a length of a few µm composed of a dense meshwork of actin filaments which point with 

their barbed ends towards the membrane (Abercrombie et al., 1970a; Small 1988). 

Lamellipodium sheets that detach from substrata show a distinct, rough appearance and are 
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referred to as membrane ruffles (Ingram, 1969; Abercrombie et al., 1970b; Harris, 1973). The 

insertional assembly of actin subunits at the barbed ends of lamellipodial actin filaments and 

the simultaneous depolymerization at their pointed ends results in protrusion of the plasma 

membrane (Borisy and Pollard, 2003). However, there is still considerable controversy 

concerning the overall arrangement of the lamellipodial actin filaments and the mechanism 

that eventually leads to membrane protrusion (see chapter 1.1.10.; Small et al., 2008; 

Koestler et al., 2008; Chhabra and Higgs, 2007). Embedded in the lamellipodium, actin 

filaments are occasionally organized into dense, parallel bundles – so called filopodia - that 

protrude from the leading edge and form spiky, finger-like extensions of several µm in length 

(Figure 7, left). Filopodia consist of up to 50 actin filaments and are 100 – 300 nm in diameter 

(Small et al., 2002; Faix and Rottner, 2006; Matilla and Lappalainen, 2007). Some cell types 

contain similar structures that are almost entirely embedded in the lamellipodium, which are 

referred to as microspikes. Filopodia are implicated in many cellular processes: They 

mediate substrate attachment via integrins to form initial adhesion sites, they are used as 

pathogen-sensing organelles by macrophages and dendritic cells and they form precursor 

structures for dendrite development. Additionally, they are important for nerve growth-cone 

guidance and are last but not least required for the zippering of epithelial sheets and many 

phagocytic processes (Matilla and Lappalainen, 2008; Faix et al., 2009). 

Besides the parallel filopodial actin bundles, many antiparallel bundles are embedded in a 

zone behind the protruding lamellipodium – the lamellum –, as well as in the rear of the cell 

and in the cytokinetic cleavage furrow (Figure 7, right). These structures are referred to as 

actin arcs, stress fibers (if attached to focal adhesions) and the cytokinetic (contractile) ring, 

respectively. All of them can mediate contraction by virtue of incorporated myosin motors 

which produce forces big enough to deform membranes (Naumanen et al., 2008). These 

contractions are employed to retract the trailing edge of the cell during cell migration and to 

withstand shear forces in tissues and dividing cells during mitosis. 

 
 
Figure 7: Intracellular actin structures. (left) A fish fibroblast expressing 
GFP-VASP and mCherry actin shows numerous filopodia emerging from 
the leading edge. Scale, 2 µm. Courtesy of Vic Small. (right) A TRITC-
phalloidin stained U2OS cell shows a network of stress fibers and actin 
arcs. Scale, 10 µm. Adapted from Naumanen et al. (2008). 
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1.1.5. Actin-binding proteins in the leading edge of the cell 

The eukaryotic cell is able to rapidly remodel the actin cytoskeleton upon external and 

internal signals. Assembly and disassembly of actin filaments at the leading edge of the cell 

is strictly regulated in vivo by a vast number of proteins that interact directly with monomeric 

and filamentous actin. These proteins can be separated into different classes, depending on 

their activity and interactions with monomeric or filamentous actin: 

 

• G-actin sequestering proteins 
Cells have to provide a large amount of unpolymerized, monomeric actin to quickly 

trigger site-specific polymerization upon external or internal signals (Pollard and Borisy, 

2003; Pollard et al., 2000; Pantaloni et al., 2001). Since monomeric actin polymerizes 

spontaneously at physiological salt concentrations to form F-actin, specialized proteins 

are necessary to keep actin in its monomeric state (Pollard and Borisy, 2003). The major 

G-actin sequestering proteins are the small peptide Thymosin β4 (Tβ4) and the ADP-ATP 

exchange factor profilin (Dominguez, 2007; Jokusch et al., 2007). Profilin is a globular 15 

kDa protein that binds the barbed end of actin monomers in a 1:1 complex with µM 

affinity, therefore inhibiting the formation of multimeric nucleation seeds and hence 

polymerization. Besides this function, it also facilitates the exchange of ADP to ATP 

within the actin monomer to refill the ATP-actin pool of the cell. Profilin is recruited by 

many proteins containing stretches of poly-proline to sites of active actin assembly (see 

chapter 1.1.7. and 1.1.9). Thymosin β4 and its actin-binding mechanism are described in 

more detail in chapter 1.1.8. 

 

• Actin nucleation factors 
The initiation of actin polymerization requires the presence of specialized proteins or 

protein complexes to overcome the kinetic barrier of actin polymerization as well as the 

inhibitory effect of G-actin sequestering proteins mentioned above. The first identified of 

these factors referred to as actin nucleators was the Arp2/3 complex (Welch et al., 

1997a; Welch et al., 1997b; Machesky et al., 1997). This extraordinary multiprotein 

complex consists of seven proteins, two of which, ARP2 and ARP3 (Actin Related 

Proteins), closely resemble the structure of actin (Robinson et al., 2001, Schleicher et al., 

2008). In a series of stimulating publications, the basic mechanism of Arp2/3 mediated 

actin nucleation was rapidly revealed: After its activation by so called nucleation 

promoting factors (NPFs) such as Scar/WAVE (Suppressor of cyclic AMP receptor 

mutation and WASP and Verprolin homologous protein) and WASP proteins (Wiskott-

Aldrich Syndrome Protein), the Arp2/3 complex binds either a filament barbed end at the 

tip or the side of a filament and nucleates a new “daughter” filament that starts to grow 
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from the two actin-related proteins towards the membrane in an Y-shaped angle of 

approximately 70° (Mullins et al., 1997; Mullins et al., 1998; Welch et al., 1998; Svitkina et 

al., 1999 Machesky et al., 1999). These findings, in combination with the localization of 

the Arp2/3 complex at the lamellipodium tip, led to the formulation of the dendritic 

nucleation model explaining actin-based protrusion (see chapter 1.1.10). 

An entirely different nucleating mechanism is accomplished by a relatively new protein 

family, the formins. These proteins are thought to stabilize the transient dimeric and 

trimeric actin nucleation seed intermediates by virtue of their dimerized FH2 (Formin 

Homology 2) domain which wraps around the filament barbed end (Pring et al., 2003; Xu 

et al., 2004; Otomo et al., 2005). Different formin isoforms can be found in a variety of 

cellular localizations, from the tips of filopodia to the cytokinetic ring (Faix and Grosse, 

2006). The mechanism of formin-mediated actin assembly will be described in more 

detail in chapter 1.1.7. 

The most diverse class of filament nucleators is composed of the so called WH2-

containing proteins. WH2 motifs (WASP Homology domain 2) were first identified in the 

NPF WASP and are short, Tβ4-related peptide sequences of about 20 to 25 amino acid 

residues that bind actin monomers and filaments (Paunola et al., 2002). Over the last 

years, many different WH2-containing proteins were identified, and some of them were 

shown to be very potent actin-filament nucleators (Qualmann and Kessels, 2009). The 

WH2 motif and the WH2-containing protein VASP will be described in detail in chapters 

1.1.8. and 1.1.9. 

 

• Actin elongation factors 
Over a long period of time, models explaining actin-based protrusion did not consider the 

possibility that actin filaments might be actively elongated by specialized proteins. The 

discovery of formins and their subsequent biochemical characterization revealed that 

these dimeric proteins did not only nucleate new filaments, but also processively “stair 

stepped” at the tip of the growing barbed end and accelerated filament elongation by 

delivery of profilin-actin complexes (Goode and Eck, 2007; Chesarone and Goode, 

2009). Since this work focuses on the mechanisms of filament elongation factors, formins 

will be introduced in detail in chapter 1.1.7. 

Other proteins that were supposed to accelerate filament elongation are Ena/VASP 

proteins. These tetrameric proteins harbor G- and F-actin-binding sites, which led to the 

postulation of an elongation mechanism comparable to the one of formins (Dickinson and 

Purich, 2002; Ferron et al., 2007). However, most studies only considered theoretical 

models, and concrete experimental evidence for an active role of Ena/VASP proteins in 

actin filament elongation was missing (Dickinson and Purich, 2002; Ferron et al., 2007; 
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Dickinson, 2008). The dissection of the molecular mechanism by which Ena/VASP 

proteins affect actin filament assembly and the characterization of their biochemical 

properties constitute an essential part of this work. Ena/VASP proteins will be introduced 

in detail in chapter 1.1.9.  

 

• Capping proteins 
Once a new actin filament has been nucleated, it continues to grow until the G-actin 

concentration drops below the critical concentration of the barbed end. Cells use specific 

proteins, referred to as capping proteins (CP), to bind actin-filament barbed ends, 

therefore arresting filament elongation and preventing polymerization of the entire G-actin 

pool. In vitro, this effect results in an increase of the critical concentration of actin and in 

inhibition of filament depolymerization from barbed ends (Caldwell et al., 1989). CPs can 

be subgrouped into different protein families. Macrophage capping protein CapG, 

gelsolin, fragmin and severin are a diverse group of monomeric capping proteins. A 

second group of CPs consists of heterodimeric proteins with a molecular mass in the 

range of 30 kDa per subunit that bind actin-filament barbed ends with high nM affinity 

(Cooper and Sept, 2008). Their activity is supposed to be regulated by PIP2 and the 

uncapping-protein carmil (Haus et al., 1991; Schafer et al., 1996; Uruno et al., 2006).  

 

• Actin depolymerization factors 
It is obvious that actin, once polymerized, must be somehow depolymerized and recycled 

to refill the cellular G-actin pool. This task is accomplished by specialized 

depolymerization factors such as ADF/cofilin (Actin Depolymerizing Factor), which binds 

to ADP-actin filaments with high affinity and untwists the actin filament, resulting in 

severing and subsequent depolymerization. Cofilin activity is strictly regulated by 

phosphorylation by LIM-kinase and slingshot phosphatase, which in turn are regulated by 

small GTPases from the Rho family (Van Troys et al., 2008). ADF/Cofilin is described in 

chapter 1.1.6. in more detail.  

 

• Bundling and cross-linking proteins 
Within a typical cell, actin filament bundles can be arranged in different orientations and 

structures. Actin filaments in filopodia or microvilli for instance are compacted into dense 

parallel bundles by proteins like fascin, villin or fimbrin to generate stiff structures that 

protrude from the cell periphery (Faix and Rottner, 2006; Matilla and Lappalainen, 2007). 

The parallel orientation of the filaments ensures exclusive elongation at the front of the 

bundle to generate forces high enough to push the membrane outward. Ena/VASP 

tetramers were also supposed to contribute to filament bundling at the tips of filopodial 
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actin filaments (Schirenbeck et al., 2006; Matilla and Lappalainen, 2007; Chhabra and 

Higgs, 2007). Stress fibers which are important for cell adhesion are instead composed of 

antiparallel actin filaments with periodic accumulations of the bundling protein α-actinin 

(Naumanen et al., 2007). 

1.1.6. ADF/Cofilin 

ADF/cofilins (Actin Depolymerization Factor) are small (15-19 kDa), ubiquitous proteins, that 

are composed of a single ADF-H domain (Actin Depolymerizing Factor-Homology). These 

domains can also be found in the G-actin-binding protein twinfilin and in the F-actin-binding 

protein Abp1. Cofilin binds to both, F-and G-actin, with preferences for ADP-actin monomers 

and filaments. The 3D structure of many cofilin isoforms from yeast, Acanthamoeba, 

Arabidopsis and mammals have been determined by x-ray crystallography or NMR, showing 

that all isoforms have the same overall-structure of 5 β-sheets surrounded by three or four α-

helices (Figure 8A; Hatanaka et al., 1996; Fedorov et al., 1997; Leonard et al., 1997; 

Bowman et al., 2000; Pope et al., 2004). The ADF/cofilin family in mammals consists of the 

three paralogues cofilin-1, cofilin-2 and ADF (van Troys et al., 2008). 

 

 

Figure 8: Structure and F-actin-
binding of ADF/cofilin (from Carlier 
et al., 1999): (A) Ribbon structure of S. 
cerevisiae cofilin depicting regions for 
F- and G-actin-binding. (B) Surface 
model of the “Holmes-model” of F-actin 
(a) and a cofilin-decorated filament (b). 
Binding of cofilin unwinds the filament 
and disrupts the interactions of 
subdomains 1 and 2 along the helix. 

 

1.1.6.1. Biochemical properties of ADF/cofilin 

ADF/cofilin is an important regulatory protein that accelerates actin-filament turnover (Carlier 

et al., 1997). It binds ADP-actin filaments in a cooperative fashion and modulates the 

mechanical properties of the filament: The persistence length of the actin filament is lowered 

by a factor of 5, the subunit tilt is altered and the interactions of subdomains 1 and 2 along 

the long pitch helix are disrupted (see Figure 8B; McGough et al., 1997; McGough and Chiu, 

1999; McCullogh et al., 2008; Galkin et al., 2003). Cofilin also accelerates the γ-phosphate 

release from ADP-Pi filaments (Blanchoin and Pollard, 1999). As a consequence, cofilin-

decorated filaments tend to break much more easily to produce short fragments that can 

either depolymerize rapidly or serve as new nucleation seeds. Recent studies showed that 

cofilin acts synergistically with the F-actin-binding proteins coronin and Aip1 to rapidly 
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depolymerize F-actin (Kueh et al., 2008) and preferably disassemble Arp2/3-formed actin-

filament branches (Chan et al., 2009). Interestingly, it was shown that the F-actin-binding 

protein coronin also protects newly polymerized ATP-actin filaments from cofilin, making 

coronin both a negative as well as positive regulator of cofilin activity (Gandhi et al., 2009). In 

vitro, the presence of cofilin selects for complex filament structures like bundles, since single 

filaments are severed much faster than bundled filaments (Michelot et al., 2007). A 

controversially discussed study by the Pollard laboratory has found several different effects 

of cofilin on actin assembly and disassembly: At low nM concentrations, cofilin is proposed to 

sever filaments, whereas it stabilizes filaments at higher/equimolar concentrations, and at 

very high concentrations, cofilin even seems to promote the nucleation of new actin filaments 

(Andrianantoandro et al., 2006). 

 

1.1.6.2. Function and regulation of ADF/cofilin in vivo 

The disassembly of actin filaments is a critical step in cell motility and necessary to refill the 

cellular pool of G-actin, which in turn is needed for constant actin polymerization e.g. at the 

leading edge of a migrating the cell. Consistently, cells expressing low levels of ADF/cofilin 

showed defects in both, polymerization and depolymerization of actin (Mouneimne et al, 

2004; Hotulainen et al., 2005). The local activation of cofilin by the slingshot phosphatase 

(see below) in cells in turn stimulates actin polymerization, most likely due to enhanced 

filament turnover (Ghosh et al., 2004). Cofilin localizes to sites of active actin assembly and 

is found within the entire lamellipodium (Lai et al., 2008). 

The activity of cofilin is regulated either directly by phosphorylation and dephospohorylation 

or indirectly by F-actin-binding proteins that compete with cofilin for filament binding. 

Phosphorylation of cofilin by LIM- or TES-kinases leads to inactivation of the proteins, 

whereas dephosphorylation by the slingshot-phosphatase (SSH) reactivates cofilin (Huang et 

al., 2006; Scott and Olson, 2007). The activities of these kinases and the phosphatase are in 

turn regulated by small-GTPases like Cdc42, Rho and Rac that link intracellular signaling to 

a great number of cytoskeleton-associated proteins (see Figure 9; van Troys et al., see 

2008). 
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Figure 9: Regulation of cofilin (from van Troys et al., 2008). The 
activity of cofilin is directly regulated by phosphorylation, which in turn is 
regulated by small Rho-family GTPases. Abbreviations: CIB, calcium- 
and integrin binding protein; MRCK myotonic dystrophy kinase-related 
Cdc42-binding kinase; PPase: Phosphatase; CIN: chronophin 
phosphatase; PAK: p21 activated kinase; Spry-4: Sprouty-4. 

 

Another important aspect of cofilin regulation is the finding that most actin filaments are 

associated with F-actin-binding proteins in vivo. Proteins like Aip1 and coronin were shown to 

synergize the effects of cofilin in filament disassembly (Rodal et al., 1999; Kueh et al., 2008; 

Gandhi et al., 2009). On the other hand, tropomyosin-decorated actin filaments are resistant 

to cofilin-mediated filament severing, therefore stabilizing actin filaments in the lamellum and 

explaining the absence of cofilin in this region (DesMarais et al., 2002; Iwasa and Mullins, 

2007). The effects of other F-actin-binding proteins like fascin or α-actinin on cofilin-mediated 

filament severing were not yet analyzed.  

1.1.7. Formins 

Non-muscle cells contain a large pool of monomeric actin, mainly complexed with profilin or 

Tβ4, which is assembled into filaments upon external or internal signals. Two of the so far 

best studied actin nucleators are the Arp2/3 complex (see chapter 1.1.5. and 1.1.10.) and 

formins. Over the last decade, formins became recognized as potent nucleators of linear 

actin filaments that control a large variety of important cellular and morphogenetic functions 

(Faix and Grosse, 2006; Goode and Eck, 2007). They are ubiquitous multidomain proteins 

that are implicated in the regulation of many cytoskeleton-dependent processes such as 

cytokinesis, cell adhesion, cell motility, filopodia formation and morphogenesis. Many of them 

can interact with both, microtubules and actin filaments (Bartolini et al., 2008; Basu and 

Chang, 2007). Since the focus of this work is on the active assembly of actin filaments, the 

interactions of formins and actin will be described in more detail.  
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1.1.7.1. Biochemical and structural properties of formins 

Proteins of the formin family form homodimers and harbor several characteristic domains. 

They are defined by their dimeric, doughnut shaped FH2 domain and an adjacent proline-rich 

FH1 domain (Figure 10A and B). The FH2 core domain was shown to be sufficient to 

nucleate new actin filaments in vitro (Kovar et al., 2003; Pruyne et al., 2002). In contrast to 

the Arp2/3 complex, formins nucleate linear actin filaments and subsequently elongate these 

filaments in a processive fashion by tracking their barbed end with their FH2 domain and 

concomitant recruitment of profilin-actin complexes with their adjacent FH1 domains (Figure 

10C). This unique property was first observed by Kovar and colleagues using in vitro TIRF 

microscopy with purified proteins (see chapter 1.1.11.3; Kovar et al., 2003, Kovar et al., 

2004, Kovar et al., 2006). 

 

 
 
Figure 10: Overview of formin structure and function (from Pollard, 2007). (A) Formins 
consist of an N-terminal regulatory domain, a central proline-rich FH1 domain and the C-
terminal FH2 domain. Dimerization and F-actin interaction is mediated by the FH2 and GBD 
domain (GTPase Binding Domain). (B) Crystal structure of the FH2 dimer from yeast formin 
Bni1p. (C) Simplified scheme of formin-mediated actin filament elongation. The FH1 domain 
recruits profilin-actin complexes that are inserted into the growing filament-barbed end by the 
FH2 domain. The FH2 domain processively translocates at the barbed end as the filament 
elongates.  

 
How formins modulate actin assembly at the molecular level is still not fully understood, but 

in most cases their properties are changed considerably by the small G-actin-binding protein 

profilin. The FH1 domain, composed of consecutive stretches of polyproline residues, binds 

profilin-actin complexes with µM affinity and is therefore able to recruit and deliver new ATP-

G-actin subunits to the FH2 domain for incorporation into growing filaments barbed ends 

(Evangelista et al., 1997; Watanabe et al., 1997; Chang et al., 1997; Sagot et al., 2002). 
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Moreover, it was shown for the yeast formin Bni1p that the rate of barbed-end elongation 

increases with the number of polyproline tracks within the FH1 domain, suggesting that the 

establishment of a locally increased actin concentration at the barbed end is responsible for 

the enhanced elongation rates (Paul and Pollard, 2008). Although binding of profilin to 

isolated FH1-FH2 fragments increases the elongation rates of formin-bound filaments, the 

effect of profilin on formin-mediated actin polymerization differs greatly between various 

formin isoforms (Kovar and Pollard, 2004; Romero et al., 2004; Kovar et al., 2006). The 

conserved FH2 domain nucleates new actin filaments, most likely by stabilizing an actin 

dimer (Pring et al., 2003), and remains bound to the barbed ends of the filaments with low 

nM affinity (Pruyne et al., 2002; Moseley et al., 2004). In addition, the FH2 domains of the 

formins Bni1p, mDia1, dDia2, Cdc12 and FLR efficiently block the inhibitory activities of 

capping protein and gelsolin, which also interact with low nM affinities with actin filament 

barbed ends (Zigmond et al., 2003; Harris and Higgs, 2004; Schirenbeck et al., 2005; Neidt 

et al., 2009). 

 

 
 
Figure 11: Structural basis of processive, formin-mediated actin assembly (from 
Goode and Eck, 2007). The FH2 dimer (colored green and blue) binds the barbed end of 
the actin filament. Processivity is achieved by a dynamic equilibrium of the FH2 dimer 
between a closed and an open state. (A) In the closed state, both FH2 domains are bound 
tightly to the barbed end, preventing monomer association or dissociation and are therefore 
“capping” the barbed end. (B) Free migration of one of the two FH2 domains (green) leads 
to binding in the “open” state, which allows incorporation of a new monomer. (C) This 
binding again triggers the closed state. (D) After dissociation of the previously bound FH2 
domain (blue), the formin again converts into the open state. Repetition of these events 
results in processive association of the formin with the growing barbed end. 

 
Crystallographic studies combined with sophisticated in vitro assays and theoretical 

calculations have led to a model of formin-mediated actin assembly, in which the FH2 dimer 
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translocates stepwise at the growing filament end, alternately allowing new actin subunits to 

incorporate onto the barbed end (Figure 11; Otomo et al., 2005; Kovar et al., 2006; Paul and 

Pollard, 2009). This working model implicates that formins exist in two distinct binding modes 

during processive barbed end elongation. In the “closed” binding mode, both FH2 domains 

have contact with the barbed end and the addition of new actin monomers is inhibited. 

During migration of one of the two FH2 domains, the formin binds in the “open” mode, 

allowing new monomers to incorporate into the barbed end, which in turn leads to the 

“closed” confirmation. Subsequently, the previously bound FH2 domain migrates freely, 

again allowing a monomer to incorporate into the filament. This model explains both, the 

ability of formins to processively assemble actin filaments and the diversity in elongation 

rates between formin isoforms. One can distinguish different types of formins: Those that 

spend a long time in the “closed” confirmation, therefore greatly inhibiting filament elongation 

in the absence of profilin, like Cdc12 or mDia2, and those that spend a long time in the 

“open” confirmation, only weakly inhibiting monomer addition to the barbed end, like mDia1 

or the nematode formin CYK1 (Kovar et al., 2006; Neidt et al., 2008, Neidt et al., 2009). This 

property is described by the “gating factor”, which represents the time a formin spends in the 

open state (Vavylonis et al., 2006; Pollard and Paul, 2009). This parameter can be easily 

determined by measuring the filaments elongation rates using in vitro TIRF microscopy. 

However, the nature of the different gating factors is still elusive. It was initially assumed that 

the gating factor is largely determined by the length of the linker region connecting the two 

FH2 domains within the FH2 dimer, thereby determining its flexibility (Figure 10B), as the 

linker length apparently correlated directly with the elongation rates of various formins (Higgs 

2005). However, a recent study using Bni1p-chimeras with different linker regions from other 

formins could not corroborate this hypothesis (Paul and Pollard, 2009). 

1.1.7.2. Cellular localization and regulation of formins 

Formins contribute to a large variety of actin-based processes in the cell. They localize to the 

tips of filopodia in Dictyostelium and mammalian cells, to the cytokinetic ring of S. pombe, 

Drosophila and C. elegans and to the bud neck and cell poles of S. cerevisiae (Chang et al., 

1997; Imamura et al., 1997; Swan et al., 1998; Tominaga et al., 2000; Tolliday et al., 2002; 

Peng et al., 2003; Ingouff et al., 2005; Schirenbeck et al., 2005, Block et al., 2008).  

A large subgroup of formins, the so-called Diaphanous-related formins (DRFs), is regulated 

by small GTPases which are important regulators of the actin cytoskeleton. DRFs have a 

conserved domain organization, with an N-terminal GTPase-binding domain (GBD) followed 

by a diaphanous inhibitory domain (DID) and a C-terminal diaphanous autoregulatory domain 

(DAD) (Figure 12; Higgs, 2005; Faix and Grosse, 2006). In the inactive state, the DRF is 

autoinhibited by interaction of the DID with the DAD, cannot bind or nucleate actin filaments 

and usually does not localize to sites of actin assembly (Alberts et al., 2001; Li and Higgs, 
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2003). This autoinhibition is released by high-affinity binding of an activated Rho-GTPase to 

the GBD which disrupts the DID-DAD interaction and allows appropriate subcellular 

localization (Figure 12B; Watanabe et al., 1999; Lammers et al., 2005; Lammers et al., 2008, 

Block et al., 2008; Yang et al., 2008). The GBDs of different formins have very different 

affinities to Rho-GTPases, which results in a high specificity of a given GTPase-formin 

interaction and therefore to a very strict regulation of formin isoforms by different signaling 

pathways (Figure 12C; Rose et al., 2005; Lammers et al., 2008). 

 

 
C 
 

  

Organism and gene Rho GTPase Subcellular localization 
S. cerevisiae   
Bni1p Rho3p, Rho1p bud tip and neck 
Bnr1p Rho3p, Rho4p bud neck 
S. pombe   
For3p Cdc42p, Rho3p cell tip, polarisome 
Cdc12p —  cleavage furrow cytokinesis 
D. discoideum   
ForC  — macropinosomes 
dDia2 Rac1  filopodial tips 
M. musculus   
mDia1 RhoA-C  membrane ruffles, filopodial tips 
mDia2 Rif, Cdc42 and RhoA filopodial tips 
mDia3 Cdc42, RhoA and Rac1 cleavage furrow, metaphase, microtubules 

 
Figure 12: Interactions of GTPases and formins: (A) Crystal structure of the RhoC-mDia1 complex 
(from Rose et al., 2005). (B) Scheme of the activation of DRFs by activated small GTPases from the 
Rho subfamily. Binding of the GTPase to the GBD disrupts the DID-DAD interaction, which leads to 
the opening of the molecule. The active formin can interact with actin and other accessory proteins at 
specific subcellular compartments. (C) Overview of a selection of formins, their corresponding Rho-
GTPases and their subcellular localization (adapted from Faix and Grosse, 2006). 

 

1.1.8. The Thymosin β4/WH2 motif 

Thymosin β4 is a small 5 kDa peptide and can be found in concentrations of up to 0.4 mM in 

mammalian cells (Huff et al., 2001). It consists of a C-terminal α-helix which binds the 

pointed end of G-actin to prevent filament nucleation and an N-terminal region which binds to 
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a hydrophobic pocket between subdomains 1 and 3 at the barbed end of the actin monomer 

(Figure 13; Irobi et al., 2004).  

 

 
 
Figure 13: Structure of the Tβ4-actin complex. The Tβ4 
peptide binds to the hydrophobic cleft between subdomains 1 
and 3 and inhibits nucleation due to the interaction of the C-
terminal α-helix with the pointed end of the filament. The 
structure was obtained with a gelsolin G1-Tβ4 N-terminal fusion 
protein (from Irobi et al, 2004). PDB code: 2FF6. 

 

Many cytoskeleton associated proteins harbor short-amino acid sequences consisting of 

17-29 residues homologous to the N-terminal region of Tβ4. This region is referred to as the 

WH2 motif (WASP Homology domain 2) because it was first recognized as an essential 

element for the regulation of Arp2/3-mediated filament nucleation mediated by the 

mammalian Wiskott-Aldrich syndrome protein (WASP) family (Paunola et al., 2002). 

However, a considerable diversity between Tβ4 and other WH2 motifs has sparked a 

controversial debate in the field whether or not those actin-binding regions belong to a 

common family of actin-interacting domains (Edwards 2004). Numerous studies on the 

structure and biochemical properties of these small actin adaptors over the past years 

strengthened the hypothesis that all WH2-like actin-binding motifs interact with actin 

monomers at the same binding side (Figure 14A, Hertzog et al., 2004; Cherau et al., 2005; 

Aguda et al., 2006; Dominguez, 2007, Rebowski et al., 2008).  
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Figure 14: Diversity of WH2 motifs. (A) Crystallization of different WH2-actin complexes revealed 
that all WH2 motifs bind actin monomers in the same orientation and at the same binding site. The 
slight displacement of the WH2 of human hVASP (lower right) results from additional binding of 
profilin, which is not shown in the figure. (B) Sequence alignment of a selection of different WH2 
motifs illustrates the conserved hydrophobic amino acids (yellow) and the conserved LxxT/V motif 
(red letters). (C) Binding of the long WH2 motif from WIP to actin. The three hydrophobic amino acids 
highlighted in blue bind to the barbed end, whereas the LKKT motif (magenta) binds to the side of the 
monomer. (D) WH2-containing proteins exert diverse functions. Besides the sequestering protein 
Tβ4, WH2 motifs are also found in actin nucleators, elongators and scaffolding proteins (adapted from 
Dominguez, 2007). PDB codes: WASP-WH2: 2A3Z; WIP-WH2: 2A41; MIM-WH2: 2D1K; WAVE-
WH2: 2A4O; Cibolout-WH2: 1SQK; hVASP-WH2: 2PBD. Abbreviations: DdVASP, Dictyostelium 
VASP; mWIP: murine WASP-interacting protein; hVASP: human VASP. 
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The binding of WH2 motifs to actin is mainly mediated by 2-3 conserved hydrophobic amino 

acids that extend into the hydrophobic cleft between actin subdomains 1 and 3 at the barded 

end, and by interactions of the widespread LxxV/T motif (x = basic amino acid; mostly LKKT) 

with the side of the actin monomer (Figure 14B and C, Huff et al., 2004; Cherau et al., 2005, 

Aguda et al., 2006; Ferron et al., 2007). The absence of the C-terminal helix of Tβ4 in most 

WH2 motifs results in the loss of the actin sequestering activity and enables WH2 motifs to 

bind monomeric actin in order to nucleate and/or elongate actin filaments in a profilin-like 

fashion (Hertzog et al., 2004). 

Up to now, more than 60 WH2-containing modular proteins were discovered. Astonishingly, 

these proteins differ greatly in the number and the arrangement of their WH2 motifs and are 

implicated in very different actin-related processes (Figure 14D). Biochemically, one can 

distinguish between actin sequestering proteins (Tβ4), actin nucleators like Spire and Cobl, 

nucleation promoting factors that deliver monomeric actin like WASP, JMY (Junction-

mediating and -regulatory protein), Lmod and WHAMM (WASP homolog-associated protein 

with actin, membranes and microtubules), scaffolding proteins like MIM (Missing in 

metastasis) and IRSp53 (insulin receptor tyrosine kinase substrate p53) and filament 

elongators like Ena/VASP (Mattilla et al., 2003; Quinlan et al., 2005; Ahuja et al., 2007, Lee 

et al, 2007; Co et al, 2007, Cherau et al., 2008, Ferron et al., 2007; Zuchero et al., 2009). 

Many of them are thought to be key components of the actin-assembly machinery in the 

leading edge of migrating cells, promoting nucleation, elongation, bundling and resistance 

against capping protein in order to drive cell protrusion (Cherau et al., 2005; Ferron et al., 

2007; Chesarone and Goode, 2009; Qualmann and Kessels, 2009). Interestingly, three 

WH2-containing proteins have been found in bacterial pathogens that “hijack” the 

cytoskeleton of the host cell to trigger their internalization: The Vibrio outer proteins VopF 

and VopL as well as the Chlamydia translocated actin-recruiting phosphoprotein TARP. 

These proteins are secreted into the host cell and nucleate actin assembly in the absence of 

additional activating factors, corroborating the hypothesis that WH2-mediated actin 

nucleation is a general, independent molecular mechanism (Liverman et al., 2007; Tam et 

al., 2007). 

An emerging question at the moment is: what determines the different biochemical functions 

of WH2 containing proteins? Recent structural and biochemical studies on the WH2-

containing nucleators Spire and Cobl suggest that it is rather their overall arrangement into 

aligned WH2 repeats with different linker length, instead of an intrinsic biochemical property 

of the WH2 motif itself, which renders them potent F-actin nucleators (Figure 15; Quinlan et 

al., 2005; Ahuja et al, 2007; Rebowski et al., 2008).  
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Figure 15: Schematic illustration of potential 
structures of nucleation seeds formed by 
Cobl and Spire. The WH2 motifs of Cobl are 
separated by linkers with different lengths, which 
allow the peptide to wrap around and stabilize an 
actin trimer. Spire possesses four WH2 repeats 
separated by short, identical linkers, leading to 
the formation of an unusual linear actin 
minifilament. WH2 motifs are colored blue. 
(Adapted from Ahuja et al., 2007). 

 

In the case of Spire, the spatial arrangement of the four WH2 motifs in close proximity to 

each other leads to the formation of an unusual linear actin tetramer. Since the KIND domain 

(kinase non-catalytic C-lobe domain) of Spire can bind the FH2 domain of the formin 

Cappuccino with high affinity, it was hypothesized that two of these linear actin tetramers are 

fused to form an actin filament upon binding of two Spire molecules to the FH2 dimer 

(Quinlan et al., 2007; Quinlan et al., 2008). In contrast to Spire, the WH2 domains of Cobl are 

separated by linker regions with very different lengths, allowing it to wrap around and 

stabilize a natural actin trimer which is also formed during spontaneous nucleation. Deletion 

of the extended linker of Cobl indeed abolished its nucleating activity, supporting this 

structural model (Ahuja et al., 2007). Nevertheless, all WH2 motifs of actin nucleators have a 

relatively high actin monomer affinity in common, ranging from Kds of 1 µM for the WH2 motif 

in WASP to 39 nM for WH2 motifs in Cobl (Cherau et al., 2005; Co et al., 2007; Ahuja et al., 

2007). The WH2 motifs of scaffolding proteins like MIM and IRSp53 show comparable G-

actin-binding properties with Kds in the same range, but are additionally able to bind F-actin 

with µM affinity (Cherau et al., 2005; Millard et al., 2007). However, the precise effects of 

most of the WH2-domain containing proteins on filament nucleation, elongation and bundling 

still need to be determined on the single filament level. 

The only WH2-containing filament elongators known so far are Ena/VASP proteins and – 

potentially – N-WASP (Dickinson and Purich, 2006; Co et al., 2007; Ferron et al., 2007; 

Dickinson 2008). Both proteins have a unique WH2 arrangement in common, in which a G-

actin-binding WH2 motif is followed by a modified WH2 motif that allows for F-actin binding 

(Figure 14D). Ena/VASP proteins will be discussed in more detail in the next chapters. 

1.1.9. Ena/VASP proteins 
 
The protein VASP (Vasodilator stimulated phosphoprotein) was first described as a PKA 

substrate in platelets (Halbrugge et al., 1989; 1990). VASP, EVL (Ena/VASP-like) and Ena 

(Enabled) are grouped together in the conserved family of Enabled/vasodilator-stimulated 

phosphoprotein (Ena/VASP) proteins, which are found in vertebrates, invertebrates and 

Dictyostelium cells. All members of the family share a conserved domain architecture: an N-

terminal Ena/VASP homology 1 (EVH1) domain required for subcellular localization followed 
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by a central proline-rich domain (PRD), and finally a C-terminal EVH2 domain encompassing 

two WH2-like actin-binding motifs, referred to as the G-actin-binding site (GAB) and the F-

actin-binding site (FAB) as well as a tetramerization domain at the C-terminus (Figure 16). All 

members of this protein family localize to sites of active actin assembly, including the tips of 

lamellipodia and filopodia and focal adhesions (Sechi and Wehland, 2004).  

 

1.1.9.1. Biochemical and structural properties of Ena/VASP proteins 

Ena/VASP proteins contain long stretches of intrinsically disordered amino-acid sequences. 

The only structured domains are the N-terminal EVH1 domain and the tetramerization 

domain at the C-terminus of the protein. The PRD as well as the GAB and FAB motifs 

appear to be largely unstructured. 

Typical ligands for the N-terminal EVH1 domain of Ena/VASP to target the protein to specific 

sites are either FP4 motifs or LIM domains (named after the proteins Lin11, Isl-1 and Mec-3). 

The crystal structures of the EVH1 domain from EVL in complex with a FP4 motif of the 

bacterial surface protein ActA and the EVH1 domain of Mena (mouse Ena) in complex with 

Tes were solved by Prehoda et al., 1999 and Boeda et al., 2008 (Figure 16). Homologous 

EVH1 domains can also be found in WASP, Spred and Sprouty (Bundschu et al., 2006). A 

recent study showing that Tes binds specifically to the EVH1 of Mena and thereby replaces 

bound FP4-Ligands (like zyxin and vinculin, Figure 16) gives rise to a great number of 

possible new regulatory interactions for Ena/VASP localization (Boeda et al., 2007).  

The proline-rich domain is the most divergent region of the mammalian Ena/VASP proteins 

and binds to numerous adaptor proteins, some of them bearing SH3 domains or WW motifs 

(Krause et al., 2003; Sechi and Wehland, 2004), but presumably mainly recruits profilin-actin 

complexes for filament assembly (Reinhard et al., 1995; Kang et al., 1997). Recently, the 

crystal structure of the PRD of VASP in complex with profilin and the structure of a PRD-GAB 

peptide in complex with profilin-actin were solved, showing that profilin is recruited by the 

PRD and that PRD and GAB can bind simultaneously to profilin-actin complexes (Figure 16; 

Kursula et al., 2008; Ferron et al., 2007). The binding of profilin-actin to the polyproline region 

of hVASP was reported to be 5-fold stronger than the binding of profilin alone (Cherau et al., 

2006). Although it was previously proposed that profilin-actin recruitment by VASP could be 

used to speed up actin filament elongation as in formins, actually only minor effects of 

profilin-actin on VASP mediated actin assembly were experimentally detected (Barzik et al., 

2005; Ferron et al., 2007, Dickinson, 2008; Pasic et al., 2008). 
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Figure 16: Domain organization 
and binding partners of Ena/VASP. 
All Ena/VASP family members consist 
of an N-terminal EVH1 domain, a 
central proline-rich domain (PRD) and 
a C-terminal EVH2 domain. Mena 
additionally harbors a LER-rich region 
N-terminal of the PRD. The globular 
EVH1 domain binds to proteins with 
FP4- and, newly identified, LIM-motifs 
as found in Tes (*). The central PRD 
binds SH3- and WW containing 
proteins as well as profilin and 
profilin-actin complexes. The EVH2 
domain mediates binding of G- and F-
actin and tetramerization of 
Ena/VASP proteins. The crystal-
structure of a PRD-GAB peptide 
revealed that profilin-actin can bind 
the PRD and GAB simultaneously 
(Ferron et al., 2007). PDB codes: 
EVH1: 1EVH; PRD-GAB profilin-actin: 
2PBD; Tetramerization domain: 
1USD. 

 

In the early years after the discovery of Ena/VASP proteins, several studies investigated the 

effects of the EVH2 domain on actin assembly in vitro. It soon became evident that VASP 

forms stable tetramers by virtue of its C-terminus, that it binds to both, G- and F-actin, that it 

promotes actin assembly and prominently bundles actin filaments (Bachmann et al., 1999; 

Huettelmaier et al,. 1999; Bearer et al., 2002; Walders-Harbeck et al., 2002). Despite these 

findings, its precise mode of action remained controversial, as VASP function in vitro was 

strongly dependent on the salt concentration and the experimental conditions used (Trichet 

et al., 2008; Gertler and Bear, 2009).  

One frequently used tool to quantify actin polymerization is the pyrenyl-actin (“pyrene actin”) 

polymerization assay (see chapter 1.1.11.1.). Although much information can be extracted 

from these assays, the versatility of VASP-actin interactions caused many ambiguous 

results. While it was reported for instance that VASP enhances filament nucleation under low 

salt conditions (Huettelmaier et al., 1999, Laurent et al., 1999), others found no indication for 

a nucleating activity of VASP at higher salt conditions (Barzik et al., 2005). Ena/VASP 

proteins artificially targeted to the mitochondrial surface also did not lead to a detectable 

actin accumulation, apparently supporting the latter finding (Bear et al., 2000). However, a 

similar experimental setup using zyxin fused to a mitochondrial tag resulted in VASP 

recruitment and actin accumulation - an effect that was also recently observed after targeting 

of Dictyostelium VASP (DdVASP) to late endosomes (Fradelizi et al., 2001; Schmauch et al., 

2009). An even bigger controversy arose concerning the potential ability of VASP to enhance 
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actin filament elongation and its ability to compete with capping protein for barbed end 

binding. Again, some laboratories detected enhanced barbed end elongation by VASP, using 

spectrin actin seeds in pyrene assays and VASP-coated beads (Skoble et al., 2001; Plastino 

et al., 2004; Barzik et al., 2005), whereas others failed (Bear et al., 2002; Samarin et al., 

2003). The crystallization of profilin-actin in complex with a PRD-GAB peptide from hVASP 

confirmed the assumption that both peptides can bind profilin and actin simultaneously, 

suggesting that VASP may be a processive filament elongator like the formins (Figure 17; 

Ferron et al., 2007; Dickinson et al., 2008). However, a recent study employing in vitro TIRF 

microscopy on single actin filaments found no indications for any processive interaction of 

VASP with the filament barbed end or for enhanced filament elongation (Pasic et al., 2008). 

Early investigations in cells with reduced Ena/VASP levels at the leading edge lead to the 

suggestion that VASP may prevent CP from binding to barbed ends (Bear et al., 2002). This 

working hypothesis was apparently substantiated by pyrene assays with spectrin-actin seeds 

and by in vitro TIRF microscopy (Bear et al., 2002; Barzik et al., 2005; Pasic et al., 2008). 

However, again other studies found no evidence for a specific anti-capping activity by 

Ena/VASP proteins (Boujemaa-Paterski et al., 2001; Samarin et al., 2003; Schirenbeck et al., 

2006). Possible explanations for these controversial findings will be discussed in detail (see 

Discussion). 

 
Figure 17: Model of VASP-mediated 
filament elongation (from Ferron et 
al., 2007). Schematic representation of 
the assumed mechanism of VASP-
mediated actin assembly, based on the 
co-crystallization of a PRD-GAB peptide 
with profilin and actin (see Figure 16). 
The PRD of VASP recruits profilin-actin 
complexes. The “loading site”, which is 
the polyproline motif closest to the GAB, 
transfers the profilin-actin complex to 
the GAB, which results in profilin 
dissociation. The remaining actin 
monomer is subsequently transferred to 
the filament barbed end, which is 
tethered by the FAB. Eventually, the 
FAB releases the filament and binds the 
newly assembled barbed end, which 
allows the process to start again. 

 

1.1.9.2. Cellular localization and function of Ena/VASP proteins 

VASP and its mammalian isoforms Ena and EVL localize to the leading edge of the 

protruding lamellipodium, to filopodium tips, to focal adhesions and puncta along stress fibers 
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as well as to the immunological synapse and the surface of certain pathogens like Listeria 

monocytogenes (Figure 18A and B; Sechi and Wehland, 2004, Krause et al., 2004, Bear and 

Gertler, 2009). The single isoform in Dictyostelium (DdVASP) also localizes to sites of active 

actin assembly like filopodium and lamellipodium tips (Schirenbeck et al., 2006). The 

localization of Ena/VASP proteins to different actin-rich structures is mediated by its EVH1 

domain, by interactions of actin filaments with the EVH2 domain as well as by binding of SH3 

or WW-Motif containing proteins to the PRD. The activity of Ena/VASP proteins seems also 

to be regulated by phosphorylation by the kinases PKA, PKG and PKC (Butt et al., 1994, 

Lambrechts et al., 2000; Drees and Gertler, 2008). 

 
 
Figure 18. Localization of VASP. (A) VASP (green) localizes to the tips of lamellipodia and 
filopodia and to focal adhesions (from Gertler et al., 2009). It is also recruited to the surface 
of L. monocytogenes (red) to enhance actin-based propulsion. (B) Scheme of VASP 
localization to different actin structures. In filopodia, VASP is part of the filopodium tip 
complex alongside IRSP53, Myosin X, formins and others (Faix et al., 2009). It is also a 
major component of the lamellipodium tip. It is recruited to focal adhesions by Zyxin and it is 
also found in defined areas within stress fibers, which precise formation mechanism is still 
elusive. VASP is shown as blue triangles. 

 

After the identification of Ena/VASP proteins in platelets, in vivo studies soon revealed that 

they have numerous effects on actin-based processes. Ena/VASP proteins localize 
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prominently to focal adhesions which mediate substrate attachment via integrins (Gertler et 

al., 1995, Vasioukhin et al., 2000). Their attachment and detachment are key events in cell 

motility, anchoring the moving cell to substrata and forming fixed spots for stress fiber-

dependent contraction (Lauffenburger and Horwitz, 1996). Ena/VASP proteins are recruited 

exclusively by interactions of their EVH1 domain with zyxin and vinculin during early stages 

of focal adhesion formation (Brindl et al., 1996; Drees et al., 2000; Zaidel-Bar et al., 2003). 

As recently reported, the isoform Mena is specifically recruited by Tes, which additionally 

excludes binding of FP4-containing proteins (Boeda et al., 2007). Morphogenetic studies on 

triple-knockout mice lacking all three Ena/VASP isoforms have also revealed that VASP 

proteins play important roles in establishing endothelial barriers and cadherin/β-cathenin cell-

cell junctions (Furman et al., 2007). However, the contribution of Ena/VASP proteins in focal-

adhesion and cell-cell junction formation is still elusive. 

In addition to its enrichment at adhesion sites, it has also been shown that VASP density at 

the leading edge of migrating fibroblasts and keratocytes directly correlates with the 

protrusion rate of the lamellipodium (Rottner et al., 1999, Bear et al., 2002; Lacayo et al., 

2007, Koestler et al., 2008). Targeting of VASP to the leading edge of the cell is mediated by 

EVH1-receptors such as lamellipodin, PREL1/RIAM, Abi and possibly by direct interactions 

with the PRD of WASP (Castellano et al., 2001; Tani et al., 2002; Krause et al., 2004; 

Lafuente et al., 2004; Jenzora et al., 2005). Additionally, proper F-actin interaction via the 

EVH2 domain is required for localization to the leading edge, suggesting that both, EVH1 

interaction and F-actin binding by the EVH2 domain are necessary to target the protein to 

protrusive actin structures (Loureiro et al., 2002; Bear et al., 2002, Applewhite et al., 2007). 

VASP was shown to have a global negative effect on fibroblast motility, since mislocation of 

VASP to mitochondria resulted in enhanced cell motility (Bear et al., 2000, Bear et al., 2002). 

However, others again reported opposite effects (Moeller et al., 2004). There is nevertheless 

general agreement that the presence of VASP in the lamellipodium results in a much more 

dynamic protrusion of the leading edge. Additionally, displacement of VASP from the 

lamellipodial tip changes lamellipodium architecture, resulting in shorter, more densely 

branched filaments, whereas enhanced targeting to the membrane produces longer, less 

branched filaments, suggesting that VASP alters Arp2/3-complex activity (Bear et al., 2002). 

However, an effect of VASP on Arp2/3-mediated filament branching could not be 

corroborated in vitro (Boujemaa-Paterski et al., 2001). These observations, together with in 

vitro data, led to the hypothesis of a specific anti-capping activity of VASP proteins to protect 

growing actin filament barbed ends from capping proteins and therefore indirectly promoting 

the growth of actin filaments towards the plasma membrane (Sutherland et al., 2002, Bear et 

al., 2002; Barzik et al., 2005;). Although early cell biological observations and biochemical 

studies also proposed a possible direct involvement of VASP in filament elongation (Fradelizi 
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et al. 2001; Jonckheere et al., 1999), this issue was initially neglected and it was widely 

accepted that VASP was primarily an anti-capping protein. Ena/VASP proteins were also 

shown to enhance Listeria motility in cells and cell extracts after binding to the surface 

protein ActA (Laurent et al., 1999; Geese et al., 2002; Samarin et al., 2003). However, this 

effect was initially explained by CP resistance and/or altered Arp2/3-branching kinetics rather 

than by a direct involvement of VASP in filament elongation. 

In addition to its role in lamellipodial actin assembly, all three mammalian isoforms as well as 

the orthologue from Dictyostelium were shown to localize prominently to filopodium tips and 

contribute to filopodium formation in Dictyostelium, fibroblasts and neurons (Han et al., 2002; 

Schirenbeck et al., 2006; Kwiatkowski et al., 2007, Dent et al., 2007, Applewhite et al., 2007). 

Deletion of the FAB in the Dictyostelium orthologue greatly abolished filopodia and also 

resulted in a loss of filament-bundling activity of VASP in vitro, suggesting that VASP´s 

function in filopodium formation might be bundling and crosslinking of filament barbed ends 

in the filopodium tip complex (Schirenbeck et al., 2006). Neurons from Ena/VASP deficient 

mice lacking Mena, VASP and EVL (mmvvee-mice) failed to form functional filopodia (Dent 

et al., 2007). Studies with MVD7 mouse fibroblasts, which do not express Mena and VASP, 

have shown that the FAB, GAB and the Tet domain all contribute to filopodium formation 

(Applewhite et al., 2007). Many studies suggested that Ena/VASP proteins promote 

filopodium formation by protecting branched lamellipodial actin filaments from capping 

proteins, therefore allowing them to grow and converge into compact actin bundles which 

may then protrude to form filopodia. This model is also known as the “convergent elongation 

model” of filopodia formation and will be described in more detail below (Svitkina et al., 2003; 

Meijllano et al., 2004; Yang et al., 2007). 

1.1.10. Models of actin-based protrusion 

The directed assembly of actin filaments is essential to drive protrusion of cellular structures 

like lamellipodia and filopodia as well as propulsion of a number of intracellular pathogens 

like L. monocytogenes (Pollard and Borisy, 2003; Carlier and Pantaloni, 2007; Insall and 

Machesky, 2009). The identification of a growing number of actin interacting proteins at sites 

of active actin assembly led to different models of actin-based protrusion. 

The foundation for our current understanding of lamellipodial actin assembly was laid by the 

discovery of the actin nucleating Arp2/3 complex in the lamellipodium (Welsh et al., 1997; 

Machesky et al., 1997). Besides its localization to lamellipodia, the Arp2/3 complex is also 

recruited and activated by L. monocytogenes and promotes actin nucleation at its surface to 

form - in combination with Ena/VASP proteins – actin comet tails that propel the bacterium 

through the cytosol (Welsh et al., 1997; Welsh et al., 1999; Laurent el al., 1999). In vitro 

studies showed that Arp2/3 complex promotes nucleation of new barbed ends by forming 

filament branches (Blanchoin et al., 2000; Amann and Pollard, 2001). On the basis of this 
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nucleation mechanism, the dendritic nucleation model of lamellipodial actin filaments was 

postulated (Figure 19; Svitkina and Borisy, 1999; Pollard and Borisy 2003; Pollard 2007): 

Lamellipodium protrusion is initiated by activating the Rho GTPase Rac which in turn 

activates WASP/Scar proteins (Aspenström et al., 1996). After binding to and activation of 

the Arp2/3 complex by WASP, it binds the side or tip of the filament and nucleates a 

daughter filament that grows towards the membrane in a 70° angle. After incorporation of a 

limited number of actin subunits, filament elongation is inhibited by binding of heterodimeric 

capping proteins to the barbed end. In this scenario, a dense meshwork of short, capped 

actin filaments is formed that can push the membrane forward (Pollard and Borisy 2003). 

The aging filaments are subsequently severed by ADF/Cofilin, which binds specifically to 

ADP-actin filaments in a cooperative manner and facilitates filament breakage and 

disassembly (Prochniewicz et al., 2005; Cao et al., 2006; Pavlov et al., 2007; McCullough et 

al., 2008). Disassembled ADP-actin monomers are finally charged with ATP by the small G-

actin-binding protein profilin to refill the ATP-G-actin pool required for polymerization at the 

leading edge (Didry et al., 1998; Blanchoin et al., 2000). 

 

 
 
Figure 19: Dendritic nucleation model of lamellipodium protrusion (from Pollard and Borisy, 
2003): 1-4 Extracellular signals activate GTPases that activate WASP-family proteins, which in 
turn bind to and activate Arp2/3 complex. 5-7 Newly nucleated filaments grow towards the 
membrane and push it forward. Capping proteins soon inhibit barbed end elongation. 8+9 
ADF/Cofilin severs aging filaments. 10+11 Profilin recovers ATP-actin from ADP-actin. 12 Cofilin 
activity is regulated by LIM phosphorylation (and Slingshot dephosphorylation).  
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Although this model is supported by reconstituted motility systems using beads coated with 

the Arp2/3 activating VCA domain (Verprolin Central Acidic) of WASP and the above 

mentioned purified proteins (Wiesner et al., 2003), its in vivo relevance has been questioned 

in the recent past. Novel electron microscopic studies of the lamellipodium architecture in 

combination with improved fixation procedures have revealed that Arp2/3 complex-induced 

actin filament branches are absent in many different cell types. Instead, a great number of 

long, unbranched filaments were observed (Small et al., 2008; Koestler et al., 2008). 

Furthermore, it could previously be shown that the fixation method used by Svitkina and 

colleagues (1999) produces actin branches even with purified F-actin, suggesting that the 

observed branches might be artifacts (Resch et al., 2002). Taking these findings into 

account, it seems more likely that actin branches only exist transiently, and that protrusion of 

the lamellipodium is driven by the elongation of a defined number of appropriately oriented 

filaments that are protected from capping protein rather than by the pushing-force of many 

short and branched filaments. 

Based on the dendritic nucleation model, Svitkina and colleagues also proposed an attractive 

model for filopodium formation coined the convergent elongation model (Figure 20; Svitkina 

et al., 2003; Mejillano et al., 2004). This model predicts the elongation and convergence of a 

selected number of lamellipodial actin filaments into filopodial actin bundles by protection of 

their barbed ends from the inhibitory effect of CP by VASP. The protected and continuously 

growing filaments eventually merge into compact actin filament bundles crosslinked by the 

actin-bundling protein fascin. Actin polymerization at the tips of these bundles can produce 

sufficient force to push the membrane outward in order to form nascent filopodia. 

However, a number of independent studies recently provided solid evidence clearly arguing 

against the convergent elongation model of filopodium formation. It could be shown for 

instance, that filopodia form normally in cells where lamellipodia formation was suppressed 

(Steffen et al., 2006; Gomez et al., 2007 Sarmiento et al., 2008; Nicholson-Dykstra and 

Higgs, 2008). These data imply that filopodial actin filaments may exclusively be formed 

through nucleators other than the Arp2/3-complex. In line with this finding, in Dictyostelium 

cells, the Diaphanous-related formin dDia2 was shown to be critical for filopodium formation 

(Schirenbeck et al., 2005). In mammalian cells, the formins mDia1 and mDia2 have been 

implicated in the assembly of filopodial actin filaments, supporting a “de novo nucleation” 

model of filopodium formation (Faix and Grosse, 2006, Block et al., 2008, Yang et al., 2008), 

in which filopodial actin filaments are exclusively nucleated by proteins of the formin family. 

This model implicates the formation on a “filopodium tip complex”, composed of actin 

nucleators, elongators and potentially membrane-deforming proteins, to trigger the formation 

of filopodia solely by nucleation and subsequent elongation of newly formed filaments (Faix 

and Rottner, 2006). 

28 



                                                                                                                                 Introduction 
 

 
Figure 20: Schematic representation of the convergent elongation model (from Mejillano et al., 
2004): Upper row: During lamellipodium protrusion, a dense meshwork of branched and subsequently 
capped actin filaments is formed to push the membrane forward. Lower row: Activation of anti-capping 
proteins (VASP) protects lamellipodial actin filaments from CP which results in continuous elongation 
and eventually the convergence into filopodial actin bundles crosslinked by fascin. Note that 
nucleation of new filaments is only mediated by Arp2/3 complex in this model.  

1.1.11. Biochemical approaches to study actin dynamics in vitro 

Over the past decades, many methods were established to quantify actin polymerization 

processes in vitro. Besides classical biochemical approaches like spindown-, densiometric- 

and light-scattering experiments, fluorimetric and microscopic assays soon became essential 

tools in analyzing the transition from G- to F-actin.  

1.1.11.1. Pyrenyl-actin assays 

One of the first fluorimetric assays to quantify the kinetics of actin polymerization was the 

pyrenyl-actin polymerization assay (“pyrene assay”) (Cooper et al., 1983). For this assay, 

actin monomers are covalently labeled at their reactive Cys-374 residue with the 

fluorescence dye Pyrenyl-iodacetamide and subsequently mixed with unlabeled actin 

monomers to a final fraction of 3-30 % labeled actin, depending on the approach and the 

detector sensitivity of the fluorimeter. Polymerization of actin is initiated by transferring 

labeled actin monomers into polymerization buffer. The pyrene-fluorescence increases about 

20-fold when incorporated into an actin filament, allowing the time-resolved quantification of 

F-actin by fluorescence spectroscopy (Figure 21). This approach is used to determine many 

different parameters of actin assembly and disassembly, e.g. the on-rates of barbed end and 

pointed end assembly (in combination with proteins that cap either barbed ends (capping 

proteins) or pointed ends (spectrin)), the critical concentration of actin and its 
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depolymerization-rate after dilution of F-actin below the critical concentration as well as 

nucleation rates. Typical pyrene assays are shown in figure 21. 

 

 
Figure 21. Examples for different pyrene actin assembly and disassembly assays. 
(A) Monitoring of spontaneous actin assembly after transfer of pyrene-labeled actin monomers into 
polymerization buffer. The curves represent actin polymerization at different concentrations of the 
Arp2/3 complex (Mullins et al., 1998). (B) Spontaneous depolymerization of pyrenyl-F-actin after 
dilution below the critical concentration of actin. The curves show the inhibition of barbed-end 
depolymerization by different amounts of the capping protein CP-β1 (Schafer et al., 1996). 
(C) Determination of the critical concentration using different concentrations of pyrenyl-F-actin. Since 
actin polymerizes only at concentrations above the critical concentration, a kink appears in a plot of 
actin concentration against pyrenyl-actin fluorescence (Carlier et al., 1986).  
 

Although a great number of information can be extracted from pyrene assays, these bulk 

experiments do not provide information on the kinetics of single actin filaments, nor do they 

allow visualizing changes of filament architecture, e.g. filament branching by the Arp2/3 

complex or filament bundling by fascin etc. Furthermore, the biochemical properties of 

proteins that concomitantly alter nucleation and elongation cannot be precisely quantified, 

and single molecule effects on actin filament assembly are evened out using these bulk 

assays. 

 

1.1.11.2. Biomimetic motility assays 

Marie-France Carlier and co-workers developed a microscopic assay to reconstitute actin-

based motility, using small beads coated with proteins that activate the Arp2/3 complex 

(Wiesner et al., 2003). Addition of a mixture of actin, profilin, CP, ADF/cofilin and the Arp2/3 

complex in polymerization buffer resulted in massive nucleation of actin at the bead surface 

that eventually led to the propulsion of the bead and the formation of an actin tail, which was 

assembled at the bead surface and disassembled at the rear (Figure 22).  

The propulsion rates of the microspheres strictly depend on numerous parameters like 

coating density, viscosity of the solution, bead size and last but not least the protein 

composition of the motility medium. This assay allows observing global effects of accessory 

proteins on propulsion speed and actin-tail formation, and was an important assay supporting 
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the dendritic nucleation model of lamellipodium protrusion. However, this method does not 

allow evaluating the precise effect of a given accessory protein on actin filament dynamics.  

 

 
 
Figure 22. Biomimetic motility of functionalized beads. Beads coated with the Arp2/3 
activating VCA domain of WASP trigger the nucleation and elongation of actin filaments at 
the bead surface to push the beads trough the medium. The used motility medium contains 
actin, Arp2/3 complex, gelsolin, ADF/cofilin and profilin. Figures a-c show an altered actin 
tail length and density depending on the viscosity of the medium (Wiesner 2003). 

 

1.1.11.3. In vitro TIRF microscopy 

It is of great interest to observe the polymerization and depolymerization of single actin 

filaments directly, since this is the only way to verify interactions of binding proteins with the 

filament in real time. Single actin filaments can be visualized by fluorescence microscopy 

using the actin-binding peptide phalloidin conjugated to a fluorescent dye (mostly TRITC-

phalloidin). However, phalloidin changes the binding behavior of many accessory proteins, 

e.g. the Arp2/3 complex, and it nucleates new actin filaments, prevents depolymerization and 

enhances filament stiffness (Blanchoin et al., 2000; Mahaffy et al., 2008).  

This obstacle was overcome by the in vitro TIRF microscopy (Total internal reflection 

fluorescence) of actin filaments. TIRF microscopy is a special technique which greatly 

reduces background fluorescence by generating an evanescent wave at the coverslip 

surface that migrates only a few hundred nanometers into the specimen. In the actin-

polymerization TIRF-assay, fluorescently labeled actin monomers in a viscous polymerization 

buffer are applied to a specially treated flow cell which is coated with NEM-inactivated 

myosin heads. Nucleated filaments are captured by the myosin at the surface of the coverslip 

and continue to grow freely. Using TIRF-microscopy, the captured filaments can be excited 

and visualized at the coverslip surface while the fluorescently labeled monomers in solution 

are not excited, resulting in an optimal signal-to-noise ratio. This technique is described in 

appendix 1 in more detail.  
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Figure 23. In vitro TIRF microscopy on single actin filaments. (A) Time-lapse micrographs 
of single actin filaments growing from a pool of 1 µM G-actin (30 % Oregon Green labeled) in 
the presence of nM amounts of the formin mDia2. The different elongation rates of formin-
associated and freely-growing barbed ends are clearly distinguishable (Kovar et al., 2006). 
(B) Time-lapse micrographs of the depolymerization of single actin filaments after addition of 
twinfilin (Kovar et al., 2005). (C) Time-lapse micrographs of actin bundles formed on the 
surface of 2 µm polystyrene beads coated with the formin mDia1. The filaments growing at the 
bead surface are processively elongated by mDia1 which results in buckling of the bundles (at 
t=190 min) (Michelot et al., 2007). 

 

This method is perfectly suited to evaluate the effects of accessory proteins on the single 

filament level. It allows measuring the on- and off-rates of actin polymerization and 

depolymerization directly (Kuhn and Pollard, 2005). Furthermore, it is possible to quantify 

mechanical properties of single filaments as well as the mechanism of the formation of 

complex actin structures (Amann and Pollard, 2001; Popp et al., 2006; McCullogh et al., 

2008). 
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2. Results 

2.1. Manuscript 1: Analysis of Actin Assembly by In vitro TIRF Microscopy  

Breitsprecher D, Kiesewetter AK, Linkner J, Faix J (2009) Methods Mol Biol. 571:401-415. 

(see appendix) 

 

Abstract:  
Since directed movement towards an extracellular chemoattractant requires rapid and 

continuous reorganization of the actin cytoskeleton to form complex structures such as a 

protruding lamellipodium, it is of great interest to analyze and understand the individual 

contribution of proteins specifically involved in this process. Over the last decade, enormous 

progress has been made towards understanding the versatile molecular mechanisms 

underlying actin-based cell motility and the regulation of site-specific F-actin assembly and 

disassembly. In spite of this wealth of knowledge and due to the constant discovery of novel 

regulatory factors, many questions remain to be answered. In this chapter, we describe a 

powerful method that allows studying the effects of actin-binding proteins on the assembly of 

single filaments by in vitro total internal reflection fluorescence (TIRF) microscopy using 

purified proteins and fluorescently labeled actin. 

 

 
 
Figure 24: in vitro TIRF microscopy of actin assembly. (A) Principle of objective-based TIRF 
microscopy. (B) Time lapse micrographs of spontaneous filament assembly using 1.3 µM G-actin 
(30% labeled with Alexa-488-C5 maleimide) in TIRF buffer on a NEM-myosin II coated coverslip. 
(C) Scheme of the visualization of single actin filaments using TIRF-microscopy. (D) Determination of 
elongation rates of single filaments. The elongation rate in subunits per second can be calculated from 
the slope of a plot of filament length vs time. 
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2.2. Manuscript 2: Arp2/3 complex interactions and actin network turnover in 
lamellipodia 

Lai FP, Szczodrak M, Block J, Faix J, Breitsprecher D, Mannherz HG, Stradal TE, Dunn GA, 

Small JV, Rottner K (2008) EMBO J 27:982-992. (see appendix) 

 

Abstract: 
Cell migration is initiated by lamellipodia-membrane-enclosed sheets of cytoplasm containing 

densely packed actin filament networks. Although the molecular details of network turnover 

remain obscure, recent work points towards key roles in filament nucleation for Arp2/3 

complex and its activator WAVE complex. Here, we combine fluorescence recovery after 

photobleaching (FRAP) of different lamellipodial components with a new method of data 

analysis to shed light on the dynamics of actin assembly/disassembly. We show that Arp2/3 

complex is incorporated into the network exclusively at the lamellipodium tip, like actin, at 

sites coincident with WAVE complex accumulation. Capping protein likewise showed a 

turnover similar to actin and Arp2/3 complex, but was confined to the tip. In contrast, 

cortactin-another prominent Arp2/3 complex regulator-and ADF/cofilin-previously implicated 

in driving both filament nucleation and disassembly-were rapidly exchanged throughout the 

lamellipodium. These results suggest that Arp2/3- and WAVE complex-driven actin filament 

nucleation at the lamellipodium tip is uncoupled from the activities of both cortactin and 

cofilin. Network turnover is additionally regulated by the spatially segregated activities of 

capping protein at the tip and cofilin throughout the mesh. 

 

 
Figure 25: Filament severing by GFP-cofilin. (A) Time lapse micrographs of the polymerization of 
1.3 µM actin (30% Alexa 633-labelled, red) in presence of 400 nM GFP-cofilin (green). GFP-cofilin 
preferably binds and severs the aged filament containing ADP-F-actin. (B) Kymograph of GFP-cofilin 
mediated actin filament severing. 
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2.3. Manuscript 3: Clustering of VASP actively drives processive, WH2 domain-
mediated actin assembly 

Breitsprecher D, Kiesewetter AK, Linkner J, Urbanke C, Resch GP, Small JV, Faix J (2008) 

EMBO J 27:2943-2954. (see appendix) 

 
Abstract: 
Vasodilator-stimulated phosphoprotein (VASP) is a key regulator of dynamic actin structures 

like filopodia and lamellipodia, but its precise function in their formation is controversial. 

Using in vitro TIRF microscopy, we show for the first time that both human and Dictyostelium 

VASP are directly involved in accelerating filament elongation by delivering monomeric actin 

to the growing barbed end. In solution, DdVASP markedly accelerated actin filament 

elongation in a concentration-dependent manner but was inhibited by low concentrations of 

capping protein (CP). In striking contrast, VASP clustered on functionalized beads switched 

to processive filament elongation that became insensitive even to very high concentrations of 

CP. Supplemented with the in vivo analysis of VASP mutants and an EM structure of the 

protein, we propose a mechanism by which membrane-associated VASP oligomers use their 

WH2 domains to effect both the tethering of actin filaments and their processive elongation in 

sites of active actin assembly. 

 

 
 
Figure 26: Models of VASP-mediated actin assembly. (A) Processive filament elongation by 
formins is shown for comparison. (B) Proposed mechanism for non-processive filament elongation by 
VASP in solution. VASP tetramers loaded with actin monomers hit a free barbed end, transiently bind 
and deliver bound actin subunits to it, resulting in non-processive filament elongation. Subsequent 
side binding of VASP results in decoration of the filament and mediates bundle formation. 
(C) Proposed mechanism for processive filament elongation on a surface: 1) VASP tetramers tethered 
to the surface bind actin filaments and deliver monomers via their WH2 domains to the barbed end. 
2) After delivery, VASP remains bound to the side of the filament as the barbed end elongates in 
response to the delivery of actin monomers by other VASP molecules. 3) VASP molecules eventually 
detach from the filament due to continuous elongation of the barbed end and are subsequently 
available for a new cycle of actin addition. During the detachment period, the growing filament is 
constantly tethered to the surface by other VASP molecules. 
 

 

 

35 



                                                                                                                                        Results 
 

2.4. Manuscript 4: Filopodia: Complex models for simple rods 

Faix J, Breitsprecher D, Stradal TE, Rottner K (2009) Int J Biochem Cell Biol 41:1656-1664. 

(see appendix) 

 

Abstract: 
Filopodia are prominent cell surface projections filled with bundles of linear actin filaments 

that drive their protrusion. These structures are considered important sensory organelles, for 

instance in neuronal growth cones or during the fusion of sheets of epithelial tissues. In 

addition, they can serve a precursor function in adhesion site or stress fibre formation. Actin 

filament assembly is essential for filopodia formation and turnover, yet the precise molecular 

mechanisms of filament nucleation and/or elongation are controversial. Indeed, conflicting 

reports on the molecular requirements of filopodia initiation have prompted researchers to 

propose different types and/or alternative or redundant mechanisms mediating this process. 

However, recent data shed new light on these questions, and they indicate that the balance 

of a limited set of biochemical activities can determine the structural outcome of a given 

filopodium. Here we focus on discussing our current view of the relevance of these activities, 

and attempt to propose a molecular mechanism of filopodia assembly based on a single core 

machinery. 

 

 
 
Figure 27: Filopodium formation requires a balance of biochemical activities. These activities 
include nucleation of actin filaments, as induced for instance by formins, their elongation and 
concomitant tethering to membranes, potentially mediated by various factors such as formins or 
VASP, bundling or cross-linking, represented by fascin and perhaps myosin X at filopodia tips, and 
their disassembly. We propose the ultrastructure of filopodia to be modulated by these core 
biochemical activities, which are all operating simultaneously, and in a balanced fashion during 
continuous protrusion of filopodia. 
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2.5. Manuscript 5: Affinity-based mechanism of fast Ena/VASP-mediated actin filament 
elongation 

 
Breitsprecher D, Kiesewetter AK, Curth U and Faix J (2009) (manuscript in preparation) 

 
Abstract: 
Ena/VASP proteins are ubiquitous actin regulators that are implicated in a variety of 

fundamental cellular processes including cell migration, axon guidance and endothelial 

zippering. They are clustered at the tips of lamellipodia and filopodia where they processively 

assemble actin filaments in the presence of capping proteins to drive their protrusion. 

However, the molecular details underlying the mechanism employed by Ena/VASP proteins 

are still elusive, as VASP proteins from distinct species display drastic differences in their 

ability to accelerate filament elongation in vitro. Employing a domain-swapping approach 

generating chimeras from fast and slow elongating VASP proteins, we show here that 

filament elongation directly correlates with the saturation of the G-actin recruiting WH2 

domains in vitro. Based on these results and under consideration of the physiological 

concentrations of the respective reaction partners, we propose a general affinity-based 

mechanism predicting rapid Ena/VASP-mediated actin filament elongation in vivo. 

 

2.5.1. Introduction 

The precise control of actin filament elongation is a key event in eukaryotic cells to establish 

coordinated cell movement driven by the formation of protrusive structures like filopodia and 

lamellipodia, to assemble the contractile ring at the cleavage furrow during cell division and 

to coordinate endocytosis and phagocytosis (Faix et al., 2009; Chesarone and Goode, 2009; 

Insall and Machesky 2009; Chhabra and Higgs 2007). The only proteins known so far that 

directly enhance filament elongation by interaction with the growing barbed end and 

recruitment of monomeric actin for polymerization are formins and Ena/VASP proteins. 

Proteins of the Ena/VASP family were previously shown to regulate the protrusion rate of 

lamellipodia (Rottner et al., 1999; Koestler et al., 2008) as well as the length of actin 

filaments and their branching density within lamellipodia (Bear et al., 2002) and Listeria 

comet tails (Plastino et al., 2004). Ena/VASP proteins are implicated in the formation of 

filopodia in mammals and Dictyostelium (Schirenbeck et al., 2006; Dent et al., 2007; 

Applewhite et al., 2007) and were also shown to enhance the actin-driven propulsion of 

Listeria monocytogenes (Loisel et al., 1999; Laurent et al., 1999; Geese et al., 2002) as well 

as of beads coated with ActA (Samarin et al., 2003). Additionally, they are required for 

neuritogenesis and cortex development (Kwiatkowski et al., 2007, Kwiatkowski et al., 2009) 
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and are implicated in tumor development and progression (Hu et al., 2008; Phillipar et al., 

2009). 

Ena/VASP proteins display a conserved tripartite architecture encompassing a N-terminal 

EVH1 domain required for subcellular targeting followed by a central proline-rich domain 

(PRD) implicated in recruitment of profilin-actin complexes (Jonkheere et al., 1999; Ferron et 

al., 2007), and a C-terminal EVH2 domain mediating tetramerization and interaction with 

monomeric and filamentous actin (Huettelmaier et al., 1999; Bachmann et al., 1999; 

Breitsprecher et al., 2008). The two actin-binding motifs within the EVH2 domain, referred to 

as the G-actin binding site (GAB) and the F-actin binding site (FAB), display sequence 

homology to WH2 motifs which are present in many actin regulators (Paunola et al., 2002; 

Dominguez 2007, Dominguez 2009).  

Recently, it was shown that VASP accelerates actin filament barbed-end elongation in vitro, 

making it the second known actin filament elongator besides formins (Breitsprecher et al., 

2008). However, the mechanisms employed by these two protein classes to enhance 

filament elongation are entirely different: formins remain processively associated with the 

growing filament barbed end by virtue of their dimeric FH2 domain which in turn also protects 

the filament from heterodimeric capping proteins (CP) (Zigmond et al., 2003; Harris and 

Higgs, 2004; Schirenbeck et al., 2005). Moreover, formin-mediated enhanced filament 

elongation depends on the recruitment of profilin-actin complexes by the adjacent proline-rich 

FH1 domain (Chang et al., 1997; Sagot et al., 2002, Kovar et al., 2006). By contrast, 

although VASP captures growing barbed ends (Pasic et al., 2008), it is not processively 

associated with the barbed end in solution, it does therefore not prevent CP from barbed end 

binding, and additionally profilin appears not to be mandatory to speed up filament elongation 

in vitro (Samarin et al., 2003; Schirenbeck et al., 2006; Breitsprecher et al., 2008). Most 

notably, mimicking localization of VASP to membranes by clustering the protein on a surface 

changes its mode of action and triggers processive filament elongation even in the presence 

of very high concentrations of CP. Collectively, this suggests that a multitude of VASP 

tetramers cooperate in tethering and elongating actin filaments to surfaces, which is likely to 

take place at sites of actin assembly at the cell periphery as well as at the surface of 

L. monocytogenes (Breitsprecher et al., 2008, Laurent et al., 1999; Footer et al., 2008, Faix 

et al., 2009). Although the filament elongation activity of VASP could be addressed to its 

GAB and FAB motifs, the underlying general mechanisms of VASP-mediated actin assembly 

remained obscure, as VASP from human (hVASP) showed a drastically reduced elongating 

activity when compared to the orthologue from the highly motile soil amoeba Dictyostelium 

discoideum (DdVASP) in in vitro assays (Breitsprecher et al., 2008). 

Here we chose a domain shuffling approach by replacing the GAB, FAB and their connecting 

linker region of hVASP by those of the fast-elongating DdVASP to gain insights into the 
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molecular mechanism of Ena/VASP-mediated filament elongation. We found that the DdGAB 

has the most profound effect on filament elongation when transplanted into the backbone of 

hVASP. Biochemical analysis of the actin/GAB interaction revealed that the actin affinity of 

the GAB from the fast elongating Dictyostelium orthologue is more than three orders of 

magnitude higher than that of the slow elongating mammalian counterparts, suggesting that 

the actin affinity of the GAB might determine the VASP-mediated elongation rate in vitro. 

Consistent with this hypothesis, replacement of the GAB motif of hVASP by related WH2 

domains from other proteins with different actin affinities in fact showed a direct correlation 

between the affinity to G-actin and the measured filament elongation rates. Our results allow 

us to formulate a general mechanism for affinity-based, WH2 domain-mediated actin 

assembly performed by Ena/VASP proteins, showing that the filament elongation rate is 

directly correlated to the saturation of the GAB with actin. Our results strongly suggest that 

the differences in the activities of Ena/VASP orthologues result from low actin concentrations 

used in vitro, and that therefore all Ena/VASP isoforms rapidly elongate actin filaments at 

high G-actin concentrations in vivo to drive actin-based protrusion. 

 

2.5.2. Results  

2.5.2.1. VASP, Mena and EVL enhance filament elongation to similar extends.  

 
It was previously shown that hVASP only weakly accelerates actin elongation in vitro, 

whereas the Dictyostelium orthologue DdVASP strongly enhanced the growth of single 

filaments by a factor of 7 (Breitsprecher et al, 2008). Mammalian cells express two additional 

Ena/VASP proteins, referred to as Ena (Enabled) and EVL (Ena/VASP-like), the latter of 

which is abundantly expressed in the fast migrating neutrophils, suggesting that this 

particular paralogue might mediate faster filament elongation. In a search for the underlying 

reason causing differences in filament elongation, we compared DdVASP and the three 

mammalian Ena/VASP proteins and found that the WH2-like GAB motif sequences and the 

lengths of the linkers separating the GAB and FAB motifs differ greatly. Recently it was 

shown that the lengths of the linkers separating the three WH2 motifs in the protein Cobl are 

essential for its nucleation activity (Ahuja et al., 2007). Since models of VASP-mediated actin 

assembly propose that a GAB-bound actin monomer is handed over directly to the barbed 

end of the FAB bound filament (Dickinson 2008; Breitsprecher et al., 2008; Ferron et al., 

2007), we assumed that the short 18 residues linker of hVASP might impair this transfer and 

hence cause the lower elongation activity of hVASP when compared to DdVASP. Notably, 

the linkers of VASP, EVL and Mena differ considerably in their length, encompassing 18, 27 

and 35 residues, respectively (Figure 28 B). This notwithstanding, the sequences of their 
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GAB and FAB motifs are almost identical, suggesting that they display comparable actin-

binding properties, which in turn makes them well suited candidates to investigate the effects 

of the linker lengths on filament elongation. We therefore employed TIRF microscopy to 

visualize the effect of recombinant Ena/VASP isoforms on single filament elongation in vitro. 

However, similar to hVASP, the EVH2 domain from Mena and full length EVL only slightly 

increased the elongation rate of actin filaments approximately 1.5 fold, both non-processive 

in solution and processively in the presence of CP when clustered on beads (Figure 28C and 

D). Thus, all three mammalian Ena/VASP isoforms posses virtually the same actin filament 

elongation properties and mediate considerably slower elongation rates when compared to 

DdVASP (Figure 28E). 

 

 
 
Figure 28: Effects of hVASP, Mena and hEVL on actin filament elongation. (A) General 
domain organization of Ena/VASP proteins and sequence alignment of the corresponding GAB-
linker-FAB region within the EVH2 domains of DdVASP and hVASP. (B) Sequence alignment of 
the GAB-linker-FAB region of hVASP, hEVL and Mena. The linker length differs in all three 
proteins. Conserved amino acids are marked with an asterisk. (C) Elongation rates of 1.3 µM 
OG-actin (30 % labeled) in presence of different concentrations of hVASP, Mena EVH2 and 
hEVL determined by single-filament TIRFM in TIRF buffer. (D) Mena EVH2 and hEVL both 
processively elongate actin filaments in the presence of 200 nM heterodimeric CP on saturated 
beads. Arrows indicate growing filaments. (E) Comparison of the maximal elongation rates of the 
three mammalian Ena/VASP isoforms and DdVASP on beads and in solution. 
 

Analysis of the actin polymerization properties of the three Ena/VASP isoforms using pyrene 

assays revealed that Mena, EVL and hVASP also slightly increase the spontaneous 

nucleation of actin filaments, raising the concentration of barbed ends from about 0.5 nM for 

spontaneous actin assembly to 1.5-2.5 nM at 3 µM G-actin (Figure 29A and B). 

Quantification of the bundling properties of the three constructs using low speed 
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sedimentation showed that hVASP and EVL had identical effects on bundle formation and 

triggered massive filament bundling already at low Ena/VASP:actin ratios, whereas the EVH2 

domain of Mena had a much weaker bundling activity (Figure 29C). However, this effect 

might result from the usage of the EVH2 domain of Mena, since it was shown before that the 

EVH2 domain of VASP alone also has a reduced bundling activity when compared to the full-

length protein, most likely due to a increased negative charge that impairs actin filament 

binding (Laurent et al., 1999; Huettelmaier 1999). 

 
 
Figure 29: Effects of hVASP, Mena and hEVL on actin filament nucleation and bundling. 
(A) Representative pyrene-assays of the polymerization of 3 µM G-actin (10 % pyrene labeled) 
in presence of 500 nM of the Ena/VASP proteins indicated. (B) Number of barbed ends formed 
in the presence of Ena/VASP proteins obtained from the slopes measured by pyrene assays 
and the elongation rates obtained by TIRF-microscopy for different Ena/VASP concentrations. 
(C) Bundling properties of hVASP, EVL and Mena EVH2. 5 µM actin were polymerized in 
presence of different amounts of Ena/VASP constructs indicated. The bundling activity was 
quantified by low-speed sedimentation assays and SDS-PAGE analysis of pellets and 
supernatants. Each experiment was repeated three times. Error bars represent s.d. 

 

2.5.2.2. Replacement of the GAB and FAB motifs of hVASP with those from DdVASP reveal 

the molecular requirement for fast filament elongation. 

 

Next, we tested whether the differences of both WH2-like actin binding motifs GAB and FAB 

from DdVASP and hVASP determine the elongation rate of VASP-mediated filament 

elongation. For this we constructed chimeric proteins in which the GAB and FAB of hVASP 

were replaced either alone or in combination with the corresponding motifs of DdVASP 

(Figure 30A). Chimera hVASP DdGABFAB, harboring both WH2 motifs from the 
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Dictyostelium protein, mediated virtually the same elongation rates as DdVASP, both in 

solution and clustered on beads (Figure 30B-D, Table 1). 

 
 
Figure 30: Replacement of the GAB and FAB in hVASP with the corresponding 
DdVASP motifs accelerates actin filament elongation. (A) Scheme of hVASP chimeras 
bearing different domains of DdVASP. DdVASP components are colored, hVASP 
components are shown in grayscale. (B) TIRFM micrographs of the assembly of 1.3 µM OG 
actin (30 % labeled) in TIRF buffer containing 500 nM of the chimeras indicated. 
(C) Elongation rates of the chimeras in solution in a concentration rage from 25 nM to 1 µM. 
(D) TIRFM micrographs of the assembly of 1.3 µM OG actin (30 % labeled) in TIRF buffer in 
presence of 200 nM CP and beads saturated with the hVASP chimeras indicated (left). Scale 
= 10 µm. Time is indicated in seconds. Plots of the length of individual filaments versus time 
yield filament elongation rates (right). (E) Low-speed sedimentation analysis of the bundling 
activity of the different chimeras. Note that chimeras containing the hFAB motif bundle much 
more efficiently that those bearing the DdFAB motif. Error bars represent s.d.  
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Similar results were obtained with hVASP DdGAB-L-FAB, additionally containing the entire 

linker region of DdVASP, corroborating our previous findings which showed that the linker 

region does not strongly affect filament elongation (Figure 30C, Table 1).  

 

 
 
Table 1: Elongation rates of VASP-mediated actin assembly 
in solution and on VASP-coated beads. 

 

Low-speed sedimentation assays with different concentrations of the chimeras revealed that 

the bundling activity of constructs bearing the human FAB motif was indeed much higher 

than that of chimeras bearing the DdFAB motif (Figure 30E). Chimera hVASP DdFAB 

mediated only a moderate acceleration of filament elongation up to 23.2 sub/sec, suggesting 

that the contribution of the FAB motif to filament elongation is smaller than that of the GAB 

motif (Figure 30B-D, Table 1). 

 

 
 
Figure 31: Differential acceleration of filament elongation by hVASP chimeras. 
(Left) Seeded pyrene assays of the spontaneous polymerization of 2 µM G-actin (10 % Pyrene 
labeled) and 50 nM F-actin seeds in polymerization buffer in the presence of 750 nM of the 
VASP constructs indicated. (Right) Comparison of filament-elongation rates obtained by seeded 
pyrene assays and TIRF-microscopy. 
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The differential enhancement of filament elongation by the VASP chimeras was confirmed by 

seeded pyrene actin polymerization assays, and the results obtained with this assay largely 

correspond to those obtained by TIRF microscopy (Figure 31).  

2.5.2.3. The GAB motifs from hVASP and DdVASP display drastically different affinities to G-

actin 

 
Since the transplantation of the DdGAB motif into the hVASP backbone was already 

sufficient to enhance actin filament elongation 4-fold, we hypothesized that differences in the 

actin-binding properties of the GAB motifs from hVASP and DdVASP might be responsible 

for the different elongation rates. Therefore, we employed pyrene assays to analyze the 

effects of the WH2-like GABs of both proteins during actin assembly and in steady state at 

different concentrations of GAB peptides fused to MBP. Since many WH2-containing 

proteins have specific functions in actin assembly depending on the arrangement of their 

WH2 motifs, we simultaneously employed the same assays to analyze the effects of the 

entire EVH2 domains of hVASP and DdVASP, encompassing the GAB, FAB and Tet motif 

and which were shown to be already sufficient to maximally enhance filament elongation 

(Breitsprecher et al., 2008). 

Excess amounts of MBP DdGAB did not sequester G-actin at equimolar concentrations and 

showed only a slight sequestering effect at a very high molar excess (Figure 32A). 

Additionally, excess amounts of MBP DdGAB decreased spontaneous actin nucleation as 

assessed by pyrene assays (data not shown). In contrast, the DdEVH2 domain, 

encompassing the GAB, FAB and tetramerization domain, strongly promoted actin assembly 

in pyrene actin polymerization assays at molar rations lower than DdEVH2:actin 1:1, 

corroborating our previous finding that the EVH2 alone is sufficient to maximally enhance 

filament elongation (Figure 32B and C; Breitsprecher et al., 2008). Additionally, excess 

amounts of the DdEVH2 domain in polymerization and steady-state experiments lead to a 

massive sequestration of actin and a reduced polymerization rate already at molar ratios 

above DdEVH2:actin 1:1 (Figure 32A-C). Since pyrene actin polymerization assays monitor 

both, spontaneous nucleation and elongation of actin filaments, the decreased 

polymerization rate by excess amounts of DdEVH2 might result from decreased nucleation, 

elongation or both. 

We reasoned that the DdEVH2 might bind monomeric actin with high affinity, resulting in a 

lower number of bound actin monomers per tetramer at excess amounts of DdEVH2, in turn 

leading to decreased filament elongation. Indeed, the elongation rate of single actin filaments 

dropped at excess amounts of DdEVH2 as assessed by TIRF microscopy (Figure 32D). 

Additionally, in agreement with the finding that WH2 domains exhibit profilin-like effects on 

actin assembly and inhibit spontaneous actin filament nucleation (Hertzog et al., 2004), the 
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total number of growing actin filaments in the TIRF assays decreased with increasing 

DdEVH2 concentrations (data not shown). 

 
 
Figure 32: Analysis of G-actin-binding and sequestering activities of the EVH2 
domains of hVASP and DdVASP. (A) Actin (4 µM, closed symbols; 3 µM, open symbols; 
10% pyrene labeled) was polymerized in the presence of different concentrations of MBP-
DdGAB or DdEVH2 over night. Pyrene fluorescence was measured to quantify F-actin. 
(B) Kinetics of the polymerization of 3 µM actin (10% Pyrene labeled) in presence of 
increasing amounts of DdEVH2. (C) Maximal polymerization rates determined from B 
decrease at molar ratios above DdEVH2:actin 1:1. Excess amounts of hEVH2 did not inhibit 
actin polymerization. (D) Filament elongation rates determined by TIRF microscopy at 
different excess amount of DdEVH2. (E) Enhanced fluorescence of single filaments 
polymerized by DdVASP. 1 µM G-actin (30% Alexa488-labeled) was polymerized in TIRF 
buffer in presence of 200 nM DdVASP or hVASP and visualized by TIRFM. The relative 
filament fluorescence was analyzed by profile-plotting using ImageJ. Representative 
micrographs are depicted. For each condition at least 50 filaments were analyzed. Boxes 
indicate 25th percentile, median and 75th percentile of all values; error bars indicate 10th and 
90th percentile. * p < 0.0001. (F) Determination of the Kds of the binding of GFP-DdGAB and 
GFP-hGAB to actin by analytical ultracentrifugation. 
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In contrast to the DdEVH2, excess amounts of the hVASP EVH2 domain (hEVH2) did neither 

markedly inhibit actin polymerization nor sequester actin monomers. The polymerization rate 

determined by pyrene assays rather dwelled at an intermediate level even at excess 

amounts of hEVH2 (Figure 32C). This in turn suggests that its G-actin-binding affinity is 

much lower when compared to DdEVH2.  

To test whether filament-bound VASP is still able to recruit actin monomers, we analyzed the 

relative fluorescence intensity of single actin filaments polymerized in the presence and the 

absence of DdVASP and hVASP by TIRF microscopy. These experiments showed that the 

filaments which were formed in presence of DdVASP were significantly brighter than the 

control filaments, whereas filaments formed in presence of hVASP showed only a slight 

increase in their fluorescence intensity (Figure 32E). These results corroborate our proposed 

mechanism for VASP-mediated filament elongation in solution, in which VASP binds the 

actin filament barbed end, transfers its bound subunits and subsequently stays attached to 

the side of the filament (Breitsprecher et al., 2008), and further suggest that the differences in 

DdVASP- and hVASP-mediated actin assembly are primarily due to different affinities of their 

respective GABs to G-actin.  

To test this hypothesis, we determined the G-actin affinities of the GAB motifs from hVASP 

and DdVASP. Common assays to quantify actin-WH2 interactions are fluorescence titrations 

with monomeric NBD-, pyrene- or acrylodan-labeled actin. However, the binding of MBP-

hGAB and MBP-DdGAB constructs to actin did not cause a detectable change in the 

fluorescence signal of either of the labeled actin species mentioned above (data not shown). 

Therefore, we expressed GFP-GAB fusion proteins encompassing all residues in-between 

the last poly-proline stretch and the FAB of VASP and performed analytical 

ultracentrifugation, monitoring either GFP-fluorescence or absorption for quantification of G-

actin-binding. Both GAB motifs bound to monomeric actin, albeit with markedly different 

affinities (Figure 32F). We determined the Kd for the DdGAB/actin interaction with single 

exponential fitting to 6 nM, whereas the Kd for the hGAB/actin interaction was in the range of 

22 µM, corroborating our previous assumption that the actin affinities of the human and 

Dictyostelium orthologues must differ greatly. 

2.5.2.4. Replacement of the GAB of hVASP by high-affinity actin-binding WH2-motifs reveals 

the general mechanism of VASP mediated actin assembly. 

 

Our finding that the binding affinity of the DdGAB to G-actin is about 3 orders of magnitude 

higher than that of the hGAB prompted us to speculate whether high-affinity G-actin binding 

is the key for fast WH2-mediated actin filament elongation in vitro. To analyze the effects of 

the G-actin affinity of the GAB in more detail, we replaced the GAB in hVASP with WH2 core 

motifs from other proteins that are per se not implicated in actin filament elongation, namely 
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the second WH2 motif from N-WASP, the WH2 motif from WIP, the WH2 motif from 

Thymosin β4 (Tβ4) and the second and third WH2 motif from the actin nucleator Cobl. The 

Kds for these motifs have been previously determined at identical buffer conditions and span 

a range from 40 nM to 3.1 µM (Figure 33A; Cherau et al., 2005; Ahuja et al., 2007, Co et al., 

2007), suggesting that these chimeric VASP proteins will differentially accelerate actin 

assembly in vitro. All five WH2 motifs share the conserved amino acid residues typical for 

WH2 domains, including the LxxV/T motif and the N-terminal, hydrophobic residues that bind 

to the barbed end of actin (Figure 33A; Cherau et al., 2005). 

All WH2 chimeras promoted actin assembly in an Ena/VASP-mediated fashion, enhancing 

actin elongation in solution and processively elongating actin filaments even in presence of 

CP when clustered on polystyrene beads (Figure 33B and C). As hypothesized, we found a 

direct correlation between the maximal filament elongation rate and the respective G-actin-

binding affinities of the individual WH2 motifs. Namely, the elongation rates were faster with 

increasing actin affinities of the WH2 motifs both in solution and on VASP-saturated beads. 

This Kd-dependence was more pronounced with the proteins in solution, where the chimeras 

bearing the rather weakly binding WH2 motifs from Cobl (Cobl3; Kd = 432 nM) N-WASP (Kd = 

900 nM) and Tβ4 (Kd = 3.1 µM) accelerated actin assembly only up to 24 and 20 sub/sec, 

respectively, whereas the chimera with the higher affinity WH2 motif from WIP (Kd = 160 nM) 

accelerated filament elongation already up to 32 sub/sec (Figure 33C). Surprisingly, 

construct hVASP Cobl2, which was expected to strongly accelerate filament elongation in 

solution up to 4-fold due to its high affinity to actin (Kd = 40 nM), enhanced filament 

elongation merely 2-fold up to 21 sub/sec in solution. Due to the previously reported strong 

sequestering activity of the Cobl-WH2 motifs (Ahuya et al., 2007), we employed pyrene-

assays to elucidate whether chimera hVASP Cobl2 also has a sequestering activity, which in 

turn would explain the rather low elongation rate. hVASP Cobl2 strongly sequestered G-actin 

already at low concentrations as assessed by pyrene assays and steady state 

measurements of the F-actin fluorescence (Figure 34). Sequestering of actin in turn results in 

decreasing concentrations of free actin monomers in our TIRF assay with increasing 

amounts of hVASP Cobl2, therefore most likely limiting the maximal elongation rate of this 

chimera. However, the reason for the sequestering activity of this particular WH2 motif is 

currently unclear. Comparable effects were not observed for the other hVASP WH2 chimeras 

or hVASP DdGAB at concentrations used in TIRF assays (data not shown). Actin 

sequestering by hVASP Cobl2 was, however, negligible when it was coated to polystyrene 

beads due to the much lower overall-amount of hVASP Cobl2 in the reaction mixture. In this 

case, the elongation rate of processively growing filaments mediated by hVASP Cobl2 

reached 35 sub/sec, a value in a range that was also initially expected for its activity in 

solution (Figure 33D). The chimeras hVASP WIP, hVASP N-WASP, hVASP Tβ4 and hVASP 
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Cobl3 enhanced processive filament growth on beads to a slightly higher extend compared 

to the maximal elongation rate obtained in solution. To explain these differences, we 

calculated the saturation Θ of the WH2 motifs at 1.3 µM actin either for 1 µM of the 

respective chimeras in solution or for chimeras clustered on beads, showing that Θ indeed 

changes depending on the experimental setup due to different concentration ratios.  

 
 
Figure 33: Exchange of the GAB with WH2 domains from other actin-binding proteins 
revealed the molecular basis of fast, VASP-mediated actin assembly. (A) The GAB of 
hVASP was exchanged for WH2 motifs indicated with previously determined Kds (Ahuja et al., 
2007; Cherau et al., 2005; Co et al., 2007). (B) All chimeras processively elongated actin 
filaments from 1.3 µM G-actin (30% OG labeled) in the presence of 50 nM CP when clustered 
on beads as assessed by TIRF-microscopy. (C) Maximal elongation rates of hVASP chimeras 
and WT in solution. *The Cobl2 chimera was excluded from fitting since it strongly sequestered 
G-actin already at low concentrations (see Figure 7). (D) Maximal elongation rates of hVASP 
chimeras and WT on beads. (E) Correlation between the theoretical saturation of the WH2 
motifs with actin on beads and in solution. Note that the saturation of the WH2 motif is higher 
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when clustered on a bead surface (at an excess of actin). (F) Elongation rate enhancement of 
actin assembly of hVASP-WH2 mediated actin assembly in solution and on beads directly 
correlates with Θ (obtained from E). n >30 for bead assays and n > 50 for assays in solution. 
Error bars represent standard deviations. 

  

While the concentration of free actin was not altered by binding to WH2 motifs with hVASP 

chimeras clustered to the beads due to the low overall amount of WH2 motifs and therefore 

an excess of actin monomers in the reaction mixture, the concentration of free actin was 

changed when equimolar concentrations of the hVASP WH2 chimeras were present in 

solution, leading to slightly lower saturations of the WH2 motifs with actin, and hence 

resulted in slightly slower elongation rates (Figure 33E). Most notably, plotting of all 

calculated Θ values against the enhancement of filament elongation by the hVASP chimeras 

revealed a linear correlation, demonstrating that solely the saturation of the WH2 motif with 

actin is responsible for different elongation properties of the hVASP WH2 chimeras (Figure 

33F).  

 
 
Figure 34: hVASP-Cobl2 sequesters G-actin. (left) Pyrene actin assembly assay of 3 µM 
G-actin (10 % pyrene-labeled) in presence of hVASP-Cobl2. (right) Plot of the F-actin 
fluorescence at steady state of 3 µM actin at different concentrations of DdVASP, hVASP and 
hVASP-Cobl2. Only hVASP-Cobl2 sequestered actin already at nM-concentrations. 
 

2.5.2.5. Nucleation properties of VASP and VASP-chimeras 

 
Recent studies showed that WH2-domain containing proteins like Spire, Lmod, Cobl or JMY 

are capable of nucleating filaments from G-actin employing different mechanisms (Quinlan et 

al., 2005; Ahuja et al., 2007; Cherau et al., 2008; Zuchero et al., 2009; Chesarone and 

Goode, 2009). It was previously reported that VASP has only a weak nucleation activity in 

pyrene assays (Huettelmaier et al., 1999; Walders-Harbeck et al., 2002; Laurent et al., 1999; 

Samarin et al., 2003). However, the finding that filaments grew even in the presence of high 

concentrations of CP on VASP coated beads indicated that this protein is also able to 

nucleate new filaments (Breitsprecher et al., 2008). Moreover, as the saturation of the 

mammalian Ena/VASP members with actin seems to be much higher at physiological actin 

49 



                                                                                                                                        Results 
 

concentrations, it is worthwhile to address the question whether VASP may also be 

responsible for de novo actin nucleation in vivo. 

The nucleation properties of chimera hVASP DdGAB were of particular interest, since this 

construct is already saturated with G-actin under our experimental conditions (Figure 33E), 

therefore most likely mimicking the state of hVASP WT at high actin concentrations in vivo. 

We used pyrene actin polymerization assays and TIRF microscopy to quantify the nucleation 

properties of the different VASP chimeras and wild type proteins. We found that all VASP 

constructs enhanced polymerization from G-actin, albeit with very different initial rates 

(Figure 35A and B). Calculation of the number of barbed ends formed in the presence of 

different VASP constructs within the first 200 seconds of polymerization showed that mutant 

hVASP DdGAB had the most pronounced effect on nucleation, raising the concentration of 

barbed ends up to 6 nM already at low nM concentrations (Figure 35C), which corresponds 

to a nucleation efficiency of 30% for the VASP tetramer (Figure 35D). Comparable nucleation 

efficiencies can be found for strong actin nucleators such as the Arp2/3 complex or formins 

(Marchand et al., 2001; Neidt et al., 2008). Constructs hVASP WT, hVASP DdGABFAB, and 

hVASP DdFAB had only minor effects on actin nucleation, raising the number of ends up to 2 

nM only at considerable higher VASP concentrations, whereas DdVASP and hVASP 

DdGAB-L-FAB had virtually no effect on spontaneous actin nucleation (Figure 35C and D). 

Differential nucleation by hVASP, hVASP DdGAB and hVASP DdGABFAB could also be 

observed on saturated beads (Figure 35E and F). The number of filaments formed by VASP 

in solution was directly proportional to the number of newly nucleated filaments on coated 

beads within 10 minutes, suggesting that clustering of VASP did not affect its nucleation 

properties (Figure 35G). Surprisingly, high affinity actin binding by the DdGAB alone was not 

sufficient to enhance spontaneous nucleation, since DdVASP WT, hVASP DdGABFAB and 

hVASP DdGAB-L-FAB did not maximally enhance nucleation. Instead, the highest nucleation 

activities were obtained for constructs bearing the hFAB motif (Figure 35G). Those 

constructs were also shown to bundle actin filaments more efficiently than those bearing the 

DdFAB motif, indicating a higher F-actin affinity of the hFAB motif (Figure 30E). The reason 

for the very high nucleation activity of the hVASP DdGAB chimera might therefore be the 

combination of the high-affinity G-actin-binding DdGAB motif and the strong F-actin-binding 

hFAB motif. While the DdGAB motifs recruit G-actin very effectively, therefore raising the 

local actin concentration, actin dimers and trimers might be stabilized by the hFAB. 

Consistently, hVASP WT, harboring the low-affinity G-actin-binding hGAB, showed a five 

times lower nucleation activity when compared to hVASP DdGAB but, however, due to the 

proposed stabilizing effect on nucleation seeds, it still enhanced nucleation activity when 

compared to the constructs bearing the DdFAB motifs (Figure 35C-G). Furthermore, hVASP 
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DdGABFAB nucleated new filaments about 2 times more efficient than DdVASP WT (Figure 

35C and D).  

 

 
 
Figure 35: hVASP chimeras differentially nucleate actin filaments. (A) Kinetics of the 
polymerization of 4 µM G-actin (10 % pyrenyl-labeled) in the presence of 1 µM of VASP proteins 
indicated. (B) Plot of the dependence of the initial actin assembly rate on the concentration of VASP 
constructs. Assembly rates for hVASP DdGAB concentrations higher than 1 µM were not accessible 
due to light scattering caused by filament bundling. (C) Plot of the nucleation efficiency of the VASP 
chimeras indicated. Values were calculated from assembly rates from B and elongation rates 
determined by TIRFM (Figure 28C and 30C). (D) Nucleation efficiency of chimeric hVASP 
tetramers. (E) Micrographs of the assembly of 1.3 µM actin (30% OG labeled) on representative 
beads coated with VASP chimeras indicated. Pictures were taken after 10 minutes of 
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polymerization. Scale bar 10 µm. (F) SDS-PAGE of VASP-chimeras eluted from beads shown in D. 
(G) The number of filaments nucleated on VASP-coated beads was directly proportional to the 
number of barbed ends nucleated by VASP in solution. Error bars represent s.d. 

 
This might be caused by the shorter linker between GAB and FAB in the chimeric protein. If 

the formation of filaments from GAB-bound actin monomers and FAB-bound nucleation 

seeds is a diffusion-dependent process, the nucleation efficiency is expected to drop with 

increasing linker lengths. However, this correlation was not observed for the three Ena/VASP 

isoforms VASP, Mena and EVL, where Mena was the best nucleator despite having the 

longest linker region and the weakest bundling/F-actin-binding activity (Figure 29). 

2.5.3. Discussion 

 

Cells utilize the power of actin polymerization to mediate their locomotion by the formation of 

actin rich protrusions like lamellipodia and filopodia. The spatial and temporal enhanced 

elongation of actin filaments by specialized proteins is a key event in the formation of these 

highly dynamic structures (Faix et al., 2009, Matilla and Lappalainen, 2007; Chhabra and 

Higgs, 2007, Insall and Machesky, 2009). Filament assembly driven by actin filament 

elongating proteins is required to prevent capping of barbed ends by CP and therefore 

allowing filament growth exclusively in specific sites. As yet, only two classes of proteins 

have been identified that directly accelerate the polymerization of actin filaments, namely 

formins and Ena/VASP proteins. Whereas the mechanism of formin-mediated actin filament 

elongation is already quite well understood (Paul and Pollard, 2009; Goode and Eck, 2007), 

the molecular mechanism underlying Ena/VASP-mediated actin assembly is still elusive.  

In this work, we describe a general, affinity-based mechanism by which Ena/VASP proteins 

differentially enhance actin-filament elongation, both non-processively in solution and 

processively on functionalized surfaces. The comparison of hVASP chimeras encompassing 

WH2 motifs with different actin affinities revealed that enhanced filament elongation by 

Ena/VASP proteins results from direct binding and incorporation of actin monomers by their 

WH2-like actin-binding motifs, and moreover, that their G-actin affinity correlates directly with 

the filament elongation rate. 

Previously, it was shown that hVASP and DdVASP both accelerated actin-filament 

elongation in vitro, albeit to markedly different extends: while DdVASP enhanced the growth 

of single filaments 7-fold, hVASP had rather small effects accelerating filament elongation 

not even two-fold (Breitsprecher et al., 2008). In this line, the two remaining mammalian 

Ena/VASP members EVL and Mena analyzed here showed comparable low filament-

elongating activities as hVASP. To elucidate the molecular requirement for the massive 

enhancement of actin-filament elongation by DdVASP, the two WH2-like actin-binding motifs 

GAB and FAB from hVASP were replaced by those from DdVASP and analyzed by TIRF 

52 



                                                                                                                                        Results 
 

microscopy in vitro. These analyses showed that both DdVASP motifs separately enhance 

filament elongation. The combination of both motifs in the hVASP backbone was already 

sufficient to elicit equally high elongation rates as those mediated by wild type DdVASP. The 

finding that the G-actin affinity of the DdGAB motif was more than three orders of magnitude 

higher than that of the hGAB motif prompted us to speculate that the elongation rate of 

VASP-mediated actin assembly might be directly correlated with the actin affinity – and 

therefore the saturation of the VASP tetramer with actin subunits. This hypothesis was 

substantiated by subsequent experiments using hVASP chimeras encompassing, instead of 

the GAB, WH2 motifs from other actin-binding proteins with varying actin affinities. These 

experiments moreover revealed a linear correlation between enhancement of filament growth 

and the calculated saturation of the VASP tetramer with actin. 

A theoretical model describing the processive elongation of actin filaments by elongation 

factors is the so-called “actoclampin” model of clamped elongation (Dickinson and Purich, 

2002; Dickinson 2008). The hypothetical actoclampin protein mediates filament elongation by 

two actin-binding modules, one processively tracking and tethering the growing filament end 

and the other binding and delivering monomeric actin for elongation. Rate limiting factors for 

filament elongation are therefore either the translocation speed of the filament binding 

module or the number of actin monomers recruited and delivered by the monomer binding 

module. This model can in principle be transferred to the action of both, formins and 

Ena/VASP proteins. However, due to the considerable structural and biochemical differences 

concerning their interaction with G- and F- actin, it is obvious that these two protein families 

employ different mechanisms to enhance filament elongation (Chesarone and Goode, 2009; 

Ferron et al., 2007; Breitsprecher et al., 2008; Kovar et al., 2006). Formins consist of a 

conserved, dimeric FH2 domain that tightly binds to and processively translocates at the 

growing end of the filament while actin monomers are recruited by the adjacent FH1 domains 

in form of profilin-actin complexes that are subsequently added to the growing barbed end to 

speed up filament assembly. Profilin is mandatory to enhance filament elongation by formins 

in vitro, since the FH2 domain alone has only a negligible affinity towards G-actin (Kovar et 

al., 2006; Pring et al., 2003). Therefore, in the absence of profilin, formin-assembled actin 

filaments grow slower than spontaneously assembled actin filaments, which would 

correspond to a rate-limiting effect on filament elongation of the translocating filament binding 

module in the actoclampin model (Kovar et al., 2004; Kovar et al., 2006, Dickinson 2008). 

This parameter is quantified by the “gating factor” of the FH2 domain, which describes the 

fraction of the time the formin spends in the open state, allowing actin monomer 

incorporation (Paul and Pollard, 2009). 

In contrast to formins, we have recently shown that VASP does not processively translocate 

at the growing barbed end of the filament in solution – and does therefore not prevent CP 
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from capping barbed ends – but that it only transiently binds the barbed end and 

subsequently stays attached to the side of the filament when the protein is soluble 

(Breitsprecher et al., 2008). Most notably, clustering of VASP on a surface changes its mode 

of action and triggers processive filament elongation even in the presence of CP, a finding 

that might resemble its task in vivo, where it is clustered to the plasma membrane in sites of 

rapid membrane protrusion (Rottner et al., 1999, Koestler et al., 2008; Breitsprecher et al. 

2008). Enhanced filament elongation by VASP relies on the small, WH2 like actin-binding 

motifs GAB and FAB within the C-terminus of the protein (Breitsprecher et al., 2008; 

Dominguez 2007, Ferron et al., 2007). Furthermore, we have shown that profilin is not 

mandatory to enhance VASP-mediated filament elongation in vitro despite the presence of 

several proline-rich regions comparable to those in the FH1 domain of formins. 

In this work, we addressed the differences in filament elongation by hVASP and DdVASP to 

different actin-affinities of their WH2-like GABs. While the hGAB binds G-actin with a Kd of 

only 22 µM, the affinity of the DdGAB to monomeric actin was found to be very high (Kd of 6 

nM). Since insertion of the DdGAB into the hVASP backbone was already sufficient to speed 

up filament elongation 4-fold, we hypothesized that the high-affinity actin binding and 

therefore the saturation of the protein with actin is key for rapid Ena/VASP-mediated filament 

elongation, and that each GAB within the tetramer delivers only one actin monomer. On the 

basis of this result and after analyzing chimeric proteins encompassing WH2 motifs from 

other actin-binding proteins with different actin affinities, we conclude that i) the function of 

the GAB in filament elongation can be mimicked by other WH2 motifs, corroborating a 

profilin-like function of WH2 motifs in barbed end elongation (Hertzog et al., 2004), ii) the 

general modular arrangement of a G-actin-binding WH2 motif and a F-actin-binding site are 

sufficient to promote processive actin filament elongation in the presence of CP after 

clustering on surfaces, and iii) that the elongation rate mediated by these filament elongators 

is directly proportional to the saturation of the WH2 motifs with actin. 

Our hypothesis of an affinity-based elongation mechanism by Ena/VASP proteins also 

strongly suggests that the mammalian members EVL, Mena and hVASP are similarly active 

filament elongators as DdVASP in vivo. At the given high actin concentrations in the range of 

several hundred µM in cells, e.g. 300 µM in neutrophils, 160 µM in Dictyostelium and 220 µM 

in platelets (Pollard et al., 2000) and apparently similar concentrations of monomeric actin 

near the plasma membrane in the leading edge (Koestler et al., 2009) all mammalian 

Ena/VASP proteins are expected to be fully saturated with G-actin in vivo (Figure 36). Thus, 

under these conditions Ena/VASP proteins should allow for rapid assembly of actin filaments 

with elongation rates several times faster than spontaneous actin assembly – an effect which 

is observable for DdVASP in vitro due to its high actin-affinity. The calculation of the fraction 

of GAB-bound actin monomers to the DdGAB and hGAB revealed that the DdGAB is already 
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fully saturated with actin at low µM actin concentrations which are being used in TIRF 

assays, whereas the hGAB is only saturated to 10%. However, hVASP would reach 

saturation at physiological actin concentrations and therefore also maximally enhance 

filament elongation (Figure 36). Consistently, replacement of the hGAB of hVASP with the 

DdGAB did not result in a significant enhancement in the protrusion rates of lamellipodia and 

filopodia in MVD7 cells transfected with GFP-hVASP and GFP-hVASP DdGAB constructs 

(data not shown), most likely since both GABs are fully saturated with actin in vivo. Our 

results let us propose that the growth of a majority of lamellipodial and filopodial actin 

filaments is actively accelerated by the action of Ena/VASP proteins during rapid membrane 

protrusion in motile cells. Application of our model on findings from previous in vivo and in 

vitro studies are in line with our hypothesis: biomimetic motility assays performed with ActA-

coated beads in the presence of 7 µM actin and profilin have shown an increase of 

propulsion speed by a factor of 2.5 when VASP was added, which is consistent with a direct 

involvement of Ena/VASP in enhancing filament elongation, as VASP is expected to be 

saturated with actin and profilin-actin to approximately 50% (Figure 36, Samarin et al., 2003). 

Reconstitution of Listeria motility using pure proteins at the same actin concentration even 

showed a ten-fold increase in protrusion rates after addition of VASP (Loisel et al., 1999). 

MVD7 cells infected with Listeria also showed an enhancement of bacterium protrusion by a 

factor of 7 upon expression of either Mena or VASP (Geese et al., 2002). Consistently, in 

vivo experiments in Rat2 fibroblasts showed a reduction of lamellipodium protrusion rates by 

a factor of 4 when VASP was mislocated to mitochondria, and several other studies showed 

that the protrusion rate of the lamellipodium directly correlates with VASP density at the 

leading edge (Rottner et al., 1999; Bear et al., 2002; Koestler et al., 2008). However, due to a 

lack of proof for a direct involvement of all Ena/VASP members in accelerating actin 

assembly in these studies, it was proposed that Ena/VASP enhances protrusion of 

lamellipodia and propulsion of ActA coated beads and Listeria in reconstituted motility assays 

indirectly by preventing capping of barbed ends by CP, by lowering the number of Arp2/3-

dependend filament branches or by mediating rapid attachment-detachment cycles of actin 

filaments to allow both the binding of F-actin and insertion of monomers by brownian motion 

(Laurent et al., 1999; Bear et al., 2000; Bear et al., 2002; Samarin et al., 2003). In contrast, 

we propose that all of these results can be largely explained by enhanced actin-filament 

elongation by Ena/VASP proteins. 

Future experiments to unambiguously test this hypothesis will require reconstituted bead-

motility assays, using ActA coated beads, Arp2/3 complex, cofilin and CP as well as hVASP 

and hVASP DdGAB at low, intermediate and high actin concentrations between 3 and 15 

µM. Since we hypothesize that hVASP DdGAB is already saturated under each of these 

conditions, we expect to detect no differences in the extent of bead motility acceleration after 
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addition of hVASP DdGAB when compared to the actin control. In contrast, we expect to 

detect a much stronger acceleration by hVASP WT at high actin concentrations than at low 

actin concentrations, as the saturation of VASP would be noticeably higher when more G-

actin is present. 

One important question remains to be addressed: what is the evolutionary need for a high-

affinity DdVASP in Dictyostelium cells? One possible explanation might be that the most 

fundamental processes of Dictyostelium cells are fast migration and phagocytosis, and that 

actin monomers are primarily “funneled” into the actin polymerization machinery in the front 

of the cell.  

 
 
Figure 36: Model for saturation-based Ena/VASP-mediated actin filament 
elongation. The saturation of the GAB with G-actin and the PRD with profilin-G-actin 
(from Ferron et al., 2007) at different actin concentrations used in in vitro assays and 
under physiological conditions is shown. Curves were calculated for an excess of 
actin, using the equation Θ = [actin]/(Kd+[actin]). Since the elongation rate of VASP 
directly correlates with its saturation with actin, it is likely that all Ena/VASP proteins 
similarly enhance actin polymerization at physiological G-actin concentrations above 
100 µM. 

 

Another controversially discussed issue is the ability of Ena/VASP proteins to nucleate actin 

filaments (Plastino et al., 2008). A common feature of many proteins encompassing a 

multitude of WH2 motifs is their ability to trigger de novo nucleation of actin filaments 

(Chesarone and Goode, 2009). Cobl and Spire, which harbor three and four adjacent WH2 

motifs, respectively, were shown to efficiently compensating the kinetically unfavorable step 

of the spontaneous formation of dimeric and trimeric nucleation seeds by aligning actin 

monomers into polymerization competent seeds that subsequently elongate into filaments 

(Qualmann et al., 2005; Ahuja et al., 2007). However, despite the presence of 8 WH2-like 

actin-binding motifs in the VASP tetramer, early analyses have shown that hVASP only 

weakly nucleates actin filaments in vitro (Huettelmaier et al., 1999; Laurent et al., 1999; 

Samarin et al., 2003; Barzik et al., 2005). Therefore, this potential activity was neglected over 
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the last years. Interestingly, in vivo studies with Ena/VASP proteins lead to conflicting results: 

studies with VASP mislocated to mitochondria or with Listeria impaired for Arp2/3-complex 

recruitment reported no evidence for a significant nucleation activity of VASP (Bear et al., 

2000; Skoble et al., 2000), whereas other studies using VASP targeted to mitochondria or 

late endosomes reported intermediated to massive actin accumulations at these structures 

(Fradelizi et al., 2001; Schmauch et al., 2009). 

Analysis of hVASP WT and chimeric proteins bearing the GAB and FAB motifs from 

DdVASP by pyrene actin-polymerization assays revealed that most constructs indeed only 

slightly increased de novo filament nucleation in vitro with nucleation efficiencies in the range 

of maximally 5%. However, chimera hVASP DdGAB, encompassing the high-affinity actin-

binding GAB as well as the high-affinity hFAB, triggered a remarkable increase in the number 

of barbed ends with a nucleation efficiency of 30%, which renders this construct a potent 

filament nucleator. Comparable nucleation efficiencies were previously obtained for strong-

nucleating formins like Cdc12 or for the Arp2/3 complex (Marchand et al., 2001; Neidt et al., 

2009). This finding is from particular interest, as we hypothesize that hVASP DdGAB is 

already saturated with G-actin under our in vitro conditions, therefore most likely reflecting 

the saturation of hVASP at physiological actin concentrations. In this regard, it seems likely 

that Ena/VASP proteins are also involved in the de novo nucleation of actin filaments in vivo.  

 

 
 
Figure 37: Dissection of affinity-based nucleation and elongation activities of Ena/VASP 
proteins. The Ena/VASP tetramer consists of the GAB (blue), which primarily recruits actin 
monomers for filament elongation, and the FAB (red), which mediates F-actin binding and 
presumably nucleation by stabilization of actin seeds. Depending on the affinity of the GAB for 
G-actin and the FAB for F-actin, different VASP constructs promote mainly elongation, nucleation, 
or both.  
 

The mechanism of actin nucleation employed by VASP seems to be different to those of 

already characterized nucleators, which either recruit and align actin monomers (like Cobl 

and Spire), mimic nucleation seeds (like the Arp2/3 complex) or stabilize actin dimers or 

trimers (like formins) (Chesarone and Goode, 2009). Since the presence of the high affinity 
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DdGAB alone was not sufficient to trigger efficient nucleation, we propose that maximal 

nucleation effectiveness of VASP relies on both, stabilization of nucleation intermediates like 

actin dimers by virtue of the FAB, and recruitment of actin monomers for subsequent 

elongation by the GAB. Hence, chimera hVASP DdGAB, in which GAB and FAB have the 

highest G- and F-actin affinities, respectively, shows the highest nucleation efficiency of all 

constructs tested, while those proteins harboring only one of the two high affinity actin-

binding sites have only moderate effects on actin nucleation (Figure 37). Thus, based on 

these results a potential nucleation activity of Ena/VASP proteins in vivo should be 

reexamined. 

58 



                                                                                                                                        Results 
 

2.5.4. Material and methods 

 

In vitro TIRF microscopy 

Time-lapse evanescent wave fluorescence microscopy was essentially performed as 

described (Breitsprecher et al., 2008). Images from an Olympus IX-81 inverted microscope 

were captured every 5 s with exposures of 100 ms with a Hamamatsu Orca-R2 CCD camera 

(Hamamatsu Corp., Bridgewater, NJ). The pixel size corresponded to 0.11 µm. 
The recorded data were analyzed with ImageJ software using the plugin MtrackJ. Every 

experiment was repeated at least 3 times. For each measurement, at least 30 barbed ends 

of individual filaments were manually tracked. In case of filaments growing on beads, the 

total length of the filament was measured for at least 10 time frames. Filament growth rates 

were diagrammed as plots of length versus time and the average elongation rate in 

subunits/sec was calculated from linear regressions of the slopes. Carboxylated 2 µm-

diameter polystyrene microspheres (Polyscience, Eppelheim, Germany) were coated with 5 

µM of the different VASP constructs according to Samarin et al. (2003) and the saturation of 

the beads was confirmed by SDS-PAGE. 

 

Pyrene actin assays  

For spontaneous assembly assays, dilution series of proteins to be assayed were prepared 

in VASP-storage buffer (200 mM KCl, 20 mM Hepes, 1 mM DTT, pH 7.3) and 10X 

polymerization buffer was added (250 mM KCl, 10 mM MgCl2, 10 mM EGTA, and 100 mM 

imidazole, pH 7.3). KCl and H2O were added to reach final KCl concentrations of 50 or 70 

mM. Anti-foam 204 (Sigma) was added to the mixture to reach a final concentration of 

0.005%. 180 µl aliquots were placed in an 8-well microtiter assembly strip (Thermo 

scientific). 18 µl of a 20, 30 or 40 µM solution of 10% pyrene labeled G-actin (in 2 mM 

Tris/HCl, pH 8.0, 0.2 mM ATP, 0.1 mM CaCl2, and 0.5 mM DTT) were placed in another 8-

well microtiter assembly strip (Thermo scientific). The assembly reaction was started by 

transferring 162 µl of the protein solution to 18 µl of pyrene-labeled actin. The polymerization 

of actin was followed by measuring the fluorescence increase of pyrene-actin (excitation at 

364 nm and emission at 407 nm) in a fluorescence plate reader (Thermo scientific) for at 

least 1500 seconds. 

For seeded polymerization assays, a 2 µM solution of F-actin in 1x polymerization buffer was 

vortexed for 10 sec just prior to the experiment and added to the protein solution to reach a 

final concentration of 50 nM F-actin seeds. The reaction was started as described above. 

After the measurement, the reaction mixtures were stored at 4°C over night, the steady state 

fluorescence was measured the next day and the kinetic data were normalized if the proteins 

did not sequester G-actin. 
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Determination of barbed end concentration: 

At every time point the rate of actin polymerization (slope) is equal to k+ x [ends] x [G-actin], 

where k+ is the association rate constant of the barbed end obtained by TIRF microscopy at 

the respective concentrations of VASP proteins. The concentration of ends at the maximum 

polymerization rate was calculated.  

 
Actin bundling assays 

50 µl of a 10 µM G-actin solution was supplemented with a mixture of 10 µl 10x 

polymerization buffer (500 mM KCl, 10 mM MgCl2, 10 mM EGTA, and 100 mM imidazole, pH 

7.3), 10 µl of protein in storage buffer (200 mM KCl, 5 mM DTT, 20 mM Hepes pH 7.3) and 

30 µl ddH2O and incubated for 1h at room temperature. F-actin bundles were sedimented by 

centrifugation for 30 min at 15.000 rpm. 60 µl of the supernatant were mixed with 60 µl SDS-

buffer and the remaining supernatant was removed. The pellet was resuspended in 100 µl 

H2O and 100 µl SDS-buffer were added. Protein amounts in pellets and supernatants were 

quantified using SDS-PAGE and band intensities were quantified using ImageJ. 

 

Calculation of the saturation of WH2 motifs with actin 

To obtain values for the saturation of the different WH2 motifs with actin with VASP chimeras 

immobilized on beads, we used the equation Θ = [actin]/(Kd+[actin]), assuming that 

[actin]>>[WH2]. For experiments with VASP proteins in solution the equations [WH2-actin] = 

([actin0]+[WH20]+Kd)*[WH2-actin]+[actin0]*[WH20])1/2 and Θ = [WH2-actin]/[WH20] were used.  

 
Analytical ultracentrifugation 

Sedimentation velocity experiments were performed in a Beckman Coulter Optima XL-I 

analytical ultracentrifuge equipped with a fluorescence detection system (AU-FDS, Aviv 

Biomedical, NJ, USA) using an An50Ti rotor at 20°C and 50000 rpm. 

To characterize the interaction of GFP-hGAB and G-actin the experiments were carried out 

in G buffer. The concentration profiles were measured with the UV/VIS absorbance optical 

system of the XL-I at a wavelength of 490 nm in double sector cells and filled with 100 µl 

sample. In case of the characterization of the interaction between GFP-DdGAB and G-actin 

the concentration profiles were measured using the AU-FDS with an excitation wavelength of 

488 nm and emission was detected through a pair of long-pass (> 505 nm) dichroic filters. In 

order to prevent protein adsorption to surfaces, experiments were performed in G buffer 

containing 0.05% Tween20. The cells were filled with 100 µl sample.  

To analyze the protein-protein interactions the measured concentration profiles were 

evaluated with the program package SEDFIT. A constant concentration of G-actin was 

titrated with increasing amounts of the respective GFP-GAB fusion protein and the 
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concentrations of free and bound GFP-GAB were determined from the areas under the 

respective peaks in the c(s) distribution. The evaluation of the fluorescence data was 

performed on the assumption that binding of G-actin does not change the fluorescence 

quantum yield of GFP-DdGAB. 
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2.6. Contributions 

 

Manuscript 1: Analysis of Actin Assembly by In vitro TIRF Microscopy. 
Dennis Breitsprecher established the method “in vitro TIRF microscopy of single actin 

filament assembly” in the lab, designed the figures and wrote parts of the manuscript. 

 

Manuscript 2: Arp2/3 complex interactions and actin network turnover in lamellipodia. 
Dennis Breitsprecher performed biochemical analysis on the effect of GFP-tagged and 

untagged cofilin on actin assembly and disassembly using pyrene assays and TIRF 

microscopy. 

 
Manuscript 3: Clustering of VASP actively drives processive, WH2 domain-mediated 
actin filament elongation. 
Dennis Breitsprecher purified GST-WT VASP, GST-VASP mutants, His-tagged CapZ and 

untagged profilin isoforms, designed the experiments, performed all biochemical and TIRF 

assays on VASP-mediated actin assembly and wrote the manuscript. 

 

Manuscript 4: Filopodia: Complex models for simple rods. 
Dennis Breitsprecher wrote parts form the chapters “Formins” and “Ena/VASP” and designed 

the figures. 

 
Manuscript 5: Affinity-based mechanism of fast Ena/VASP-mediated actin filament 
elongation (manuscript in preparation). 
Dennis Breitsprecher purified GST-tagged Ena/VASP chimeras and performed biochemical 

assays, including pyrene assays, TIRF assays and F-actin sedimentation experiments, and 

wrote the manuscript.  
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3. Discussion 

3.1. In vitro TIRF microscopy as a tool for the biochemical characterization of actin 
filament dynamics 

The assembly and turnover of actin filaments is a key process in the development and 

maintenance of cell shape and motility. During the last three decades, enormous progress 

has been made in characterizing the kinetics of actin assembly and disassembly in vitro, 

greatly improving our understanding of the biochemical properties of actin-based processes. 

The pyrene assay is an excellent tool to characterize the spontaneous polymerization and 

depolymerization of actin. Most of our knowledge about the kinetic parameters of actin 

assembly goes back to seminal studies by Thomas Pollard and Marie-France Carlier who 

employed pyrene assays to determine the on- and off-rates for barbed end and pointed end 

polymerization of ADP- and ATP-actin, the equilibrium constants to the G-actin to F-actin 

transition and to accurately measure depolymerization kinetics. (Pollard, 1983; Pollard and 

Weeds, 1984; Pollard, 1984; Pantaloni et al., 1984; Carlier et al., 1984a; Carlier et al., 1984b; 

Carlier et al., 1985, Pantaloni et al., 1985; Pollard, 1986). Due to the ongoing improvement of 

pyrene assay applications, this convenient test is still a very valuable tool to analyze actin 

polymerization kinetics. 

However, with the discovery of a growing number of proteins that alter the kinetics of actin 

polymerization, some drawbacks of these assays became evident: (i) Labeling of actin 

monomers with fluorescent dyes at Cys 374 impairs the binding of some important regulatory 

proteins, e.g. the ubiquitous profilins resulting a 10-fold weaker affinity of labeled actin to 

profilin (Schutt et al., 1993; Vinson et al., 1998). As a result, filaments that are formed mainly 

by profilin actin (e.g. by the action of formins) have a much lower fluorescence signal which 

strongly influences the outcome of pyrene assays. (ii) The addition of actin-binding proteins 

that influence both, nucleation and elongation kinetics of actin, leads to ambiguous results. 

The most prominent examples are formins, which enhance filament nucleation and alter the 

on-rate of barbed end assembly. Without knowing either elongation or nucleation properties 

of the formin used, a discrimination of these parameters is impossible (Higgs 2005). (iii) 

Albeit a vast number of kinetic data can be extracted from pyrene assays, it is impossible to 

obtain information about the overall architecture of actin filaments e.g. the formation of 

bundles or branches and changes in the bending flexibility. Therefore, microscopic methods 

are needed to address the mechanical and kinetic properties of single actin filaments. 

Although the direct observation of single filaments by electron microscopy (EM) or 

fluorescence microscopy in vitro using TRITC-labeled phalloidin was early established 

(Pollard and Mooseker, 1981; Kron et al., 1986; Yanagida et al., 1984), the major drawback 

of this approach could not be eliminated for almost two decades: To use these techniques, 
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the polymerization process needs to be inhibited, either by fixation of the specimen for EM or 

by the addition of phalloidin and subsequent dilution of the reaction mixture for fluorescence 

microscopy. Thus, a direct observation of assembly and disassembly of single actin filaments 

was not possible. 

This problem was subsequently solved by Pollard and colleagues, who established a novel 

microscopic assay allowing the direct observation of growing, fluorescently labeled actin 

filaments using TIRF microscopy (Amann and Pollard, 2001). This was achieved by using 

labeled actin monomers with fluorescent dyes covalently bound to the reactive Cys 374 and 

coverslips coated with NEM-treated Heavy Mero Myosin (HMM) (manuscript 1). This 

experimental setup allowed the exact measurement of the on-rates of barbed end and 

pointed end elongation (Kuhn and Pollard, 2005). In the following years, this technique 

spread rapidly and was an essential tool to analyze the biochemical properties of formins, 

profilin, cofilin, coronin, Arp2/3 complex, twinfilin and VASP (Moseley et al., 2005; Kovar et 

al., 2006; Michelot et al., 2007; Neidt et al., 2008; Paul and Pollard, 2008 Kueh et al., 2008; 

Pasic et al., 2008; Breitsprecher et al., 2008; Neidt et al., 2009; Gandhi et al., 2009). 

In this work, in vitro TIRF microscopy was employed to unravel the different mechanistic 

aspects of Ena/VASP-mediated actin assembly. 

 

3.2. Advantages and limitations of in vitro TIRF microscopy on single actin filaments 

Observation of the assembly of single actin filaments allows the precise measurement of the 

on-rate of both, barbed end and pointed end elongation (Amann and Pollard, 2001; Kuhn and 

Pollard, 2005). Moreover, the biggest advantage of in vitro TIRF microscopy is the ability to 

visualize single-molecule effects directly or indirectly, either by well considered modifications 

of the experimental setup or by multicolor microscopy of single, fluorescently labeled 

molecules, which requires extremely sensitive EMCCD cameras and state-of-the-art 

microscopes to detect very weak fluorescence signals. However, numerous experiments 

from previous studies showed that it is not mandatory to detect single molecules directly in 

order to gain information about their modes of action. The most prominent examples are the 

elegant studies from Kovar and colleagues on formins leading to a plethora of information 

about the elongation mechanism employed by these filament elongators, merely using 

fluorescently labeled actin, profilin and different formin isoforms (Kovar and Pollard, 2004; 

Kovar et al., 2006, Neidt et al., 2008; Neidt et al., 2009). The authors immobilized formin 

molecules on the surface of coverslips, showing that single formins processively elongate F-

actin and produce piconewton forces that result in the buckling of actin filaments. 

Furthermore, they showed that filaments assembled by formins were dimmer in presence of 

profilin-actin, allowing the clear-cut discrimination of spontaneously growing from formin-

assembled actin filaments. As mentioned above, this effect is based on the lower affinity of 
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profilin to labeled actin, which initially complicated the analysis of pyrene assay data. 

However, this effect is very helpful for the in vitro TIRF assays allowing to accurately 

measuring the elongation rates of formin-mediated actin assembly as well as dissociation 

rates and processivity parameters. 

In the present study, in vitro TIRF microscopy served as a very powerful tool to quantify the 

effects of different accessory proteins on single actin filament assembly. Numerous novel 

microscopic approaches have been established to characterize the effects of VASP-

mediated actin assembly, showing its ability to elongate actin filaments via a mechanism that 

is entirely different to the one employed by formins (manuscript 3 and 5). We could also 

show that GFP-tagged cofilin severs actin filaments as the untagged protein, and that it 

preferably binds and severs aged ADP-actin filaments, while the growing barbed end 

consisting of ATP- and ADP+Pi actin is not severed (manuscript 2). 

One approach that turned out to be critical elucidating the interactions of VASP with the 

growing barbed ends of single filaments was its immobilization on coverslips at different 

extends. While formins efficiently capture barbed ends of single filaments and subsequently 

elongate them resulting in filament buckling (Kovar and Pollard, 2004), such effects were not 

observed for VASP. Instead, filament barbed ends were frequently captured by VASP 

molecules attached to the coverslip surface but continued to grow freely, while the part of the 

filament that was initially captured remained bound to the coverslip (manuscript 3, 

supplementary figure 2). This finding, together with the observations that VASP in solution 

enhances filament elongation in a concentration dependent manner and that VASP bundles 

actin filaments, led to our model of a non-processive, VASP-mediated actin filament 

elongation in solution (manuscript 3, figures 1, 2 and 7). The most important assay 

developed during this study was the coating of polystyrene beads with VASP to different 

extends and subsequent analysis of actin filament assembly at their surface. Using this 

approach, we found that VASP processively elongates actin filaments upon clustering, 

whereas coating densities below saturation were not sufficient to trigger this effect 

(manuscript 3. figures 4 and 5). Under these conditions, VASP-mediated filament elongation 

could no longer be inhibited by CP. 

Based on these data, we proposed a mechanism by which a multitude of VASP tetramers 

clustered on surfaces cooperate in driving processive filament elongation even in the 

presence of high concentrations of CP (manuscript 3, figures 4, 5 and 7). Subsequent 

analysis of chimeric VASP proteins bearing G-actin-binding sites with varying actin affinities 

finally resulted in the formulation of a general model of VASP-mediated filament elongation 

(manuscript 5). 

Irrespective of the enormous potential of in vitro TIRF microscopy for analyzing the dynamics 

of single actin filaments, it is not suited as a stand-alone technique for extensive biochemical 
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characterization of actin-binding proteins. One major drawback – as for most microscopic 

assays – is the small viewing area. Therefore, the collection of sufficient data for statistical 

analysis may be time consuming and the micrographs also represent only a small part of the 

entire reaction volume. Although this is unproblematic when analyzing filament growth rates 

in solution – which can be robustly reproduced - it might falsify data of coated polystyrene 

beads, since the coating density of a given bead cannot be determined. Additionally, since 

only fluorophores at the coverslip surface are visualized in the TIRF-assays, unspecific 

protein-surface interactions might lead to biased results when compared to bulk assays.  

A very important biochemical parameter of an actin-binding protein is its ability to nucleate 

actin filaments. Unfortunately, an exact determination of the nucleation activity is impossible 

to obtain by TIRF microscopy. Although a rough estimate of filament nucleation can be 

achieved by simply counting filament barbed ends, this assay does not allow quantifying the 

biochemical parameters. Thus, the combination of data obtained by TIRF and pyrene assay 

is necessary to extract the biochemical properties of proteins affecting filament nucleation. 

The increase in pyrenyl fluorescence is a direct measure for the overall amount of F-actin in 

solution. The slope of the increase at every time point can be described by the simple 

equation: slope = k+ x [ends] x [actin] (neglecting the slow pointed end growth rate) and 

corresponds to the polymerization rate in µM*s-1. For proteins that additionally modulate the 

elongation rate of actin filaments – like Ena/VASP and formins -, k+ (in µM-1s-1) can be 

obtained by TIRF microscopy. Knowing this parameter, the concentration of barbed ends in 

solution and hence the nucleation efficiency can be easily calculated from the initial rate 

obtained from the pyrene assay. Unfortunately, this quantification of actin nucleation is only 

occasionally used, and many studies still just provide series of polymerization curves to 

demonstrate filament nucleation rather than nucleation efficiencies which would allow for 

meaningful comparison of the results with other studies. 

In this work, pyrene assays were instrumental to quantify the nucleation properties of 

different hVASP chimeras and allowed us to draw additional conclusions on the potential role 

of VASP on actin assembly in vivo (manuscript 5). Moreover, pyrene assays are a necessary 

tool to determine changes in the critical concentration (the equilibrium constant) of actin 

polymerization, which again can not be obtained by TIRF microscopy. This analysis was 

particular useful for the characterization of the chimeric VASP protein hVASP Cobl2, which 

mediated unexpectedly low elongation rates in solution as assessed by TIRF assay. This 

finding could be solved by showing that this VASP chimera strongly sequestered monomeric 

actin already at low concentrations, consequently resulting in a significant lower amount of 

free actin monomers in solution and hence impaired filament elongation (manuscript 5). 

Overall, in vitro TIRF microscopy has proven to be a powerful method for characterizing 

protein-actin interactions which can be exploited to elucidate the mechanisms of proteins 
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regulating actin polymerization. In particular, the meaningful modification of the experimental 

setup, e.g. by applying coated microspheres or coverslips, greatly increases the versatility of 

this assay. 

3.3. Analysis of VASP-mediated actin assembly – a history of controversies 

Ena/VASP proteins have initially been identified as substrates for protein kinases A and G 

(PKA and PKG) within platelets where they participate in regulation of platelet aggregation 

(Halbrugge et al., 1990; Walter et al., 1993). The first biochemical characterizations of VASP 

revealed that VASP nucleates actin filaments in a salt-dependent manner, that it tetramerizes 

and that it binds G-actin, F-actin and profilin-actin by virtue of its PRD and EVH2 domain 

(Jonkheere et al., 1999; Bachmann et al., 1999; Huettelmaier et al., 1999). However, 

following biochemical studies led to a number of conflictive results on the precise effect of 

VASP on actin filament assembly both in vitro and in vivo (summarized in Trichet et al., 

2008). The three most controversially discussed issues regarding the activity of VASP imply 

nucleation and elongation of filaments as well as its ability to prevent CP from barbed end 

binding (Table 2). In the following chapters, the dispute regarding these three activities will 

be highlighted on the background of the present work. 

 

 Yes No 

Ena/VASP 

nucleates 

actin filaments 

Determined by pyrene assays 

(Huettelmaier et al., 1999; Schirenbeck et 

al., 2005; present work). 

On VASP-coated beads (present work). 

On ActA coated beads (Fradelizi et al., 

2001; Plastino et al., 2004a). 

On zyxin- decorated mitochondria 

(Fradelizi et al., 2001). 

With VASP targeted to late endosomes 

(Schmauch et al., 2009) 

Determined by pyrene assays at high salt 

concentrations (Barzik et al., 2005). 

On Listeria impaired of Arp2/3 complex 

recruitment (Skoble et al., 2000). 

On ActA-decorated mitochondria (Bear et al., 

2000). 

Ena/VASP 

enhances 
elongation of 

actin filaments 

Determined by in vitro TIRF microscopy, 

non-processive in solution and processive 

on beads (present work). 

By pyrene assay using F-actin seeds 

(present work). 

By pyrene assay using monomeric actin 

(Skoble et al., 2001). 

A slight increase of filament elongation 

was observed by pyrene assay using F-

actin seeds (Barzik et al., 2005). 

By pyrene assay with actin NPFs 

immobilized on beads (Samarin et al., 

Determined by pyrene assay using F-actin 

seeds (Bear et al., 2002). 

By pyrene assay with actin NPFs free in 

solution 

(Samarin et al., 2003). 

By in vitro TIRF microscopy (Pasic et al., 

2008). 
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2003). 

By measuring actin incorporation into 

comet tails on moving beads (Plastino et 

al., 2004b). 

Ena/VASP 

protects 
barbed ends 

from CP 

Determined by in vitro TIRF microscopy 

on VASP coated beads (present work). 

Determined by assay (Bear et al., 2002; 

Barzik et al., 2005). 

By in vitro TIRF microscopy with VASP in 

solution (Pasic et al., 2008). 

Determined by in vitro TIRF microscopy with 

VASP in solution (present work). 

By pyrene assay (Samarin et al., 2003). 

VASP does not uncap filaments, determined 

by pyrene assay (Schirenbeck et al., 2006). 

 

 
Table 2: Comparison of biochemical properties of Ena/VASP determined in previous studies and this 
work (modified from Trichet et al., 2008). 
 

3.3.1. Nucleation activity of Ena/VASP proteins 

To date, three different classes of actin filament nucleating proteins are known: The Arp2/3 

complex and its nucleation promoting factors (NPFs) such as N-WASP belong to so called 

class I nucleators, employing a molecular mimicry with actin related proteins (ARPs) to mimic 

a nucleation seed that forms the matrix for a new filament (Volkmann et al., 2001). Formins 

comprise the class II nucleators and are thought to stabilize actin dimers and trimers via their 

barbed end binding FH2 domain, thereby promoting the spontaneous assembly of actin 

filaments (Pring et al., 2003; Otomo et al., 2005,). Members of the third class of actin 

nucleators such as Spire, Lmod and Cobl, harbor several WH2 motifs or other G-actin-

binding modules in close proximity to each other, therefore promoting the formation of 

nucleation seeds (Ahuja et al., 2007; Quinlan et al., 2005; Cherau et al., 2008; Chesarone 

and Goode, 2009). 

Ena/VASP tetramers harbor in total eight WH2 or WH2-like actin-binding motifs, namely the 

GAB and FAB, suggesting that they might be indeed responsible for de novo nucleation of 

actin filaments. Early studies employing pyrene assays have shown that human VASP 

nucleates actin filaments from G-actin at low ionic strength. However, this effect was nearly 

abrogated at high salt concentrations of 150 mM KCl (Huettelmaier et al., 1999). The 

nucleation activity of VASP was confirmed in other biochemical studies (Samarin et al., 2003, 

Bearer et al., 2000), as well as in in vivo approaches where VASP was targeted to 

mitochondria or late endosomes (Fradelizi et al., 2001; Schmauch et al., 2009). However, 

several other studies found again no involvement of VASP in filament nucleation, neither in 

pyrene assays using 100 mM KCl (Barzik et al., 2005) nor in vivo after sequestration of 

VASP to mitochondria or on the surface of Listeria that were impaired of Arp2/3 complex 

recruitment (Bear et al., 2000; Skoble et al., 2000). 
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Figure 38: Saturation of the GAB with actin at different Kds and actin concentrations. 
The curves illustrate the saturation of the GAB with G-actin at different actin concentrations 
over a wide range of Kds. At very high G-actin concentrations as present in cells, even GABs 
with weak G-actin affinities are saturated with actin to about 50%. 1) Actin concentration of 
the in vitro TIRF assay. 2) Actin concentration in biomimetic motility assays (Samarin et al., 
2003; Loisel et al., 1999. 3) Average G-actin concentration in motile cells (Koestler et al., 
2009; Pollard et al., 2000). 4) Estimated local G-actin concentration at the tip of the 
lamellipodium. 

 

The biochemical analysis performed in the present work supports a possible role of 

Ena/VASP proteins in de novo filament nucleation both in vitro and in vivo. We analyzed the 

nucleation properties of hVASP and DdVASP, as well as hVASP chimeras bearing the GAB 

and FAB from Dictyostelium, either alone or in combination (manuscript 5). Since the DdGAB 

has a very high affinity to G-actin, we initially expected DdVASP to be a much better filament 

nucleator than hVASP, since the DdVASP tetramer is expected to be fully saturated with 

G-actin under the used actin concentrations of 1-3 µM (Figure 38). Unexpectedly, despite its 

lower affinity to G-actin, hVASP turned out to be a much better nucleator in vitro than 

DdVASP, which had only minor effects. We attributed the higher nucleation activity of hVASP 

to the hFAB motif, which is also responsible for a stronger bundling activity of hVASP, 

suggesting that nucleation activity by VASP depends primarily on its ability to bind to F-actin. 

The nucleation mechanism of VASP could therefore be comparable to the one of formins, 

which stabilize actin dimers or trimers, therefore promoting filament formation. Consistently, 

different formin isoforms showed a direct correlation of their barbed end affinities and their 

ability to nucleate filaments (Neidt et al., 2008). Most remarkably, the hVASP chimera 

hVASP DdGAB, bearing the high-affinity DdGAB and the human FAB, had the most 

pronounced effect on the formation of new barbed ends and showed nucleation activities as 

other potent filament nucleators like the Arp2/3 complex, enhancing spontaneous nucleation 

by a factor of 50 with a nucleation efficiency of 30 % (manuscript 5, Marchand et al., 2001). 
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This is most likely due to the enhanced local concentration of actin monomers by the DdGAB 

and the additional F-actin seed stabilization by the human FAB. Although we have shown 

that the hGAB is not saturated with actin monomers under our in vitro conditions, it is 

presumably fully occupied in the physiological context at high G-actin concentrations of 

several hundred µM in the leading edge of the cell (manuscript 5; Koestler et al., 2009). Thus 

it seems likely that VASP may also contribute to the nucleation of new actin filaments in 

lamellipodial and filopodial tips. However, this hypothesis needs to be verified in future in vivo 

studies. 

3.3.2. Elongation activity of Ena/VASP proteins 

After the identification of the F- and G-actin-binding sites of Ena/VASP proteins, the so called 

“clamped-filament elongation model” was postulated by Dickinson and colleagues, 

suggesting that both, proteins of the Ena/VASP family and formins might processively 

elongate filaments when immobilized on surfaces (Figure 39) (Dickinson and Purich, 2002; 

Dickinson et al., 2004, Dickinson 2008). According to this model, the growing filament barbed 

end is processively tracked by F-actin-binding sites while actin monomers are recruited and 

inserted onto the barbed end by virtue of G-actin-binding sites. Recruitment of profilin-actin 

complexes by the PRD will additionally enhance actin monomer delivery.  

 

 
Figure 39: Clamped-filament elongation model (from Dickinson and Purich, 2002). 
A surface tethered filament elongator consisting of G- and F-actin-binding sites processively 
tracks the growing filament while actin monomers are inserted onto the barbed end. 
 

Although this model was strongly supported by a recent crystallographic study, showing that 

profilin-actin can bind to a poly-proline-GAB peptide from hVASP (Ferron et al., 2007), 

experimental evidence for an active role of VASP in enhancing filament elongation was until 

very recently missing. Instead, it was proposed that VASP enhances protrusion of 

lamellipodia and propulsion of ActA coated beads and Listeria in reconstituted motility assays 

indirectly by preventing capping of barbed ends by CP, by lowering the number of Arp2/3 

mediated branches or by mediating rapid attachment-detachment cycles of actin filaments to 

allow both the binding of F-actin and insertion of monomers by Brownian motion (Laurent et 

al., 1999; Bear et al., 2000; Bear et al., 2002; Samarin et al., 2003). Pyrene assays and 

in vitro TIRF microscopy approaches frequently failed to show a robust enhancement of 
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filament elongation by mammalian VASP in solution (Barzik et al., 2005; Bear et al., 2002, 

Samarin et al., 2003, Pasic et al., 2008). 

However, our present work suggests that all three mammalian Ena/VASP isoforms, VASP, 

Mena and EVL, as well as the Dictyostelium orthologue DdVASP are able to accelerate actin 

filament elongation and to processively assemble actin filaments in the physiological context. 

We propose that all members of the Ena/VASP family are able to enhance filament 

elongation at least by a factor of 4 when they are saturated with actin monomers, employing 

a mechanism that resembles the theoretical clamped elongation model initially proposed by 

Dickinson and Purich remarkably well (2002). Our work also allows us to reconcile previous 

results into a coherent picture of a conserved mechanism of VASP-mediated actin assembly 

across species (manuscript 5). 

Our findings showing that the low G-actin affinity of the GAB from human VASP with a Kd in 

the range of 20 µM explains why it was previously difficult to observe enhanced filament 

elongation by VASP using in vitro assays, because for technical reasons these can only be 

carried out at concentration less than 4 µM G-actin. At this concentration, the low-affinity 

GAB of human VASP is only saturated with actin to about 10% (Figure 38). Since Mena and 

EVL contain GABs highly related to human VASP, we assume that these proteins behave 

similarly. For some reason many studies attached great importance to using physiological 

salt concentrations in vitro but neglected the impact of the low concentrations of the reaction 

partners in these assays.

As VASP-mediated actin assembly was shown to be salt-dependent, and because actin 

nucleation and elongation also depend on parameters such as pH and viscosity of the 

solution, it is likely that even small variations in the experimental setups or protein activities in 

previous studies frequently resulted in considerable alterations in the experimental readout. 

Additionally, one has also to bear in mind that the effects of mammalian Ena/VASP proteins 

at the used actin concentrations are expected to be rather small. Moreover, in the light of our 

recent work, the concentrations in the range of 25 nM VASP in a number of previous in vitro 

studies seem extremely low (Pasic et al., 2008, Barzik et al., 2005). Since we have shown 

that the effect of VASP on actin assembly in solution is concentration dependent and 

maximal at a VASP to actin ratio between 0.2 and 0.5, it seems rather unlikely that such 

small amounts of VASP can actually cause detectable effects on filament elongation.  

In contrast to previously performed pyrene and TIRF assays, biomimetic motility assays with 

purified proteins showed that VASP enhances the propulsion of ActA-coated beads and 

Listeria by a factor of about 2.5 (Loisel et al., 1999; Samarin et al., 2003). Due to the lack of 

proof for a direct enhancement of filament elongation by VASP, this effect was explained by 

other modes of action (see above). However, in light of the new results and based on our 

calculations, the actin concentrations in a range of 7-10 µM used in these assays are 

71 



                                                                                                                                  Discussion 

expected to result in an ∼50% saturation of the human VASP GAB with G-actin, and hence a 

approximately two-fold increase of filament elongation. Moreover, due to the usage of 

profilin-actin in these assays, which was shown to bind the PRD of VASP with a KD of 7.5 µM 

(Ferron et al., 2007), the local concentration of actin monomers would be raised even more, 

enhancing the effect of VASP on filament elongation and therefore the propulsion of the 

particles. Therefore, these assays perfectly resemble our model for a saturation-based 

filament elongation mechanism employed by Ena/VASP proteins (manuscript 5). Consistent 

with the model, the protrusion rate of lamellipodia was previously shown to directly correlate 

with the abundance of VASP in the leading edge (Rottner et al., 1999, Lacayo et al., 2007, 

Koestler et al., 2008), and another study using Rat2 fibroblast revealed that sequestration of 

VASP to the surface of mitochondria reduced the protrusion speed of lamellipodia by a factor 

of 3-4 (Bear et al., 2002). Taking into account that Ena/VASP proteins are powerful filament 

elongators, it seems therefore worthwhile to reconsider previous results on their in vivo 

function in cell motility. 

3.3.3. Anti-capping activity of Ena/VASP proteins 

The most controversially discussed issue concerning the different activities of Ena/VASP is 

its so called “anti-capping activity”, which was first postulated by Bear and colleagues (2002). 

They employed pyrene assays to evaluate the effect of VASP on actin assembly in the 

presence of CP, showing that addition of VASP restored CP-inhibited actin polymerization, 

which was supported by additional in vitro studies (Barzik et al., 2005, Pasic et al., 2008). 

Despite conflicting reports failing to proof such an activity (Boujemaa-Paterski et al., 2001; 

Samarin et al., 2003), it soon became widely accepted that VASP promotes actin based 

protrusion by preventing barbed end capping by CP. 

The present work clearly demonstrates that immobilized, clustered Ena/VASP proteins very 

efficiently protect actin filament barbed ends from CP while actively delivering actin 

monomers for processive filament elongation, and that CP resistance is mediated by the FAB 

motif. The processivity of all Ena/VASP members is very high, allowing the assembly of 

filaments longer than 30 µm corresponding to about 10.000 subunits even at equimolar actin 

and CP concentrations (manuscript 3, Figure 5). However, we have also clearly shown that 

such an activity cannot occur in bulk assays in solution, since VASP is not continuously 

associated with the barbed end under these conditions. Thus, we found no delay in barbed 

end capping by CP on the single filament level using TIRF microscopy (manuscript 3, 

Figure 3). However, the question remains why some groups detected such activities using 

pyrene assays? A reasonable explanation for this effect is based on our observations using 

TIRF assays in the presence of CP and VASP. CP inhibits filament elongation by tight 

interaction with the barbed end of the filament, resulting in many short, capped filaments. In 

the presence of VASP, not only single filaments were observed, but in addition, also 
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relatively large filament bundles (unpublished data). Interestingly, we observed filament 

growth on the sides of these bundles in presence of CP suggesting that under these 

conditions VASP-mediated filament elongation is resistant against CP. As soon as these 

growing filaments protruded beyond the bundle tip, their growth rapidly stalled indicating 

barbed end capping of single filaments (Figure 40). Thus, the increased pyrene fluorescence 

caused by VASP in bulk polymerization assays using actin and CP reported in previous 

studies might by primarily caused by growth of single actin filaments on the surface of rapidly 

forming filament bundles. 

 

 
 
Figure 40: Polymerization of actin in the presence of VASP and CP. Time lapse 
micrographs showing the polymerization of 1.3 µM actin (30% Alexa-488 labeled) in 
presence of 200 nM hVASP alone (left) or additionally supplemented with 10 nM 
Cap32/34 (right). Arrows indicate barbed ends. Two headed arrows mark filament 
bundles. Filaments grew on hVASP-formed bundles but became rapidly capped 
when protruding into solution. Time is indicated in sec. Scale bar 10 µm. 

 

3.4. Conclusions and outlook  

The present work demonstrates that proteins of the Ena/VASP family regulate the assembly 

of actin filaments by directly enhancing filament elongation in a processive manner when 

clustered on surfaces. Only under these conditions, they also prevent inhibition of filament 

growth by CP, which in turn might serve to eliminate the formation of unproductive actin 

filaments. Since Ena/VASP proteins are ubiquitously expressed in motile cells and 

accumulate at sites of actin assembly, we hypothesize that Ena/VASP proteins might be an 

important if not the predominant actin filament elongator in the protruding fronts of motile 

cells. Although the present study already uncovered many details on the mechanism of 

Ena/VASP mediated actin assembly, some issues still remain to be solved on the molecular 

level in order to build a coherent and resilient model of VASP-mediated actin assembly:  

 

• The WH2-like FAB motif, which is able to bind both G- and F-actin and protects 

filament barbed ends from CP, is an as yet poorly characterized actin-binding site. 

Since a related motif can also be found in the Arp2/3-complex activators WASP and 

N-WASP (Dominguez, 2007), it would be of high interest to solve its atomic structure 
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in complex with actin and characterize its interactions with both, G-and F-actin in 

more detail. A structure of an EVH2-actin complex would additionally improve our 

understanding of the elongation mechanism employed by Ena/VASP proteins, 

although it might be very difficult to obtain, as large parts of the EVH2-domain seem 

to be disordered. Furthermore, it is still unclear how the FAB contributes to filament 

elongation. Although we have shown that the FAB is able to recruit G-actin 

(manuscript 3), it might also well be that it is also involved in mediating interactions 

with the barbed end to modulate elongation by a yet unknown mechanism. 

• An as yet unresolved issue is the role of ATP-hydrolysis during processive filament 

elongation by Ena/VASP. It was previously reported that ATP-hydrolysis it required 

for formin processivity (Romero et al., 2004, Romero et al., 2007). However, several 

studies found no involvement of ATP-hydrolysis in formin-mediated actin assembly, 

making this interesting hypothesis rather unlikely (Kovar et al., 2006, Paul and 

Pollard, 2009). The clamped elongation model from Dickinson and Purich implies that 

altered affinities from the FAB to ATP-and ADP-F-actin are essential for processively 

tracking the barbed end. If this were true for Ena/VASP-mediated actin assembly, it 

needs to be experimentally confirmed. 

• The contribution of profilin-actin in Ena/VASP-mediated actin assembly needs to be 

worked out in more detail. Although we have shown that the PRD is not required for 

filament elongation in vitro, an addition of profilin-actin complexes onto the filament by 

the poly-proline region seems likely in vivo (Ferron et al., 2007). Additionally, it would 

be interesting to know whether profilin-actin recruited by the PRD of Ena/VASP is 

solely used for its own filament elongation mechanism, or if the profilin-actin 

complexes might also be delivered to other proteins like formins (Schirenbeck et al., 

2005) or WASP, considering the fact that all these proteins do not act in isolation, but 

instead operate within the framework of large macromolecular assembly complexes 

in the tips of lamellipodia or filopodia. 

• It will be important to determine the kinetic parameters for G-actin/GAB and 

F-actin/FAB binding and release in order to gain a comprehensive picture of the 

elongation process mediated by Ena/VASP. Furthermore, it is necessary to test 

whether actin and profilin-actin recruitment by VASP tetramers occurs in a 

cooperative fashion, which in turn would enhance its saturation with actin and hence 

promote its activity on elongation. This task could be performed with single molecule 

techniques like fluorescence correlation spectroscopy. 

• The mechanism by which Ena/VASP proteins capture actin filament barbed ends is 

still elusive and needs to be worked out in more detail (manuscript 3; Pasic et al., 

2008). It is conceivable that VASP either binds filament barbed ends directly by a so 
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far not discovered actin-binding site, or that it uses the GAB-bound (or FAB-bound) 

actin monomer as a kind of an adaptor for subsequent binding to the barbed end. 

 

In addition to the knowledge of the biochemical properties of Ena/VASP proteins, in vivo 

studies can provide other valuable insights into their role in cell motility and interaction with 

other proteins: 

 

• The identification of Ena/VASP proteins as ubiquitous actin filament elongators gives 

rise to the question whether they interact specifically with filament nucleators. Recent 

studies suggested a direct interaction of the formin Cappuccino with the actin 

nucleator spire (Quinlan et al., 2007; Dahlgaard et al., 2007). An interaction of 

Ena/VASP proteins with WASP was reported previously and might be worthwhile to 

be analyzed in more detail (Castellano et al., 2001). Another possibility is its direct 

interaction with formins. Yeast-two-hybrid analysis with the EVH2 domain of DdVASP 

and the formin dDia2 already suggested that these two proteins interact and 

cooperate in filopodium formation (manuscript 4; Schirenbeck et al., 2006). 

• The question whether Ena/VASP proteins mediate filament nucleation of actin 

filaments in vivo still needs to be addressed. Our finding that the FAB determines the 

nucleation activity of Ena/VASP proteins (manuscript 5), and the finding that 

phosphorylated VASP displays an even higher F-actin affinity (Laurent et al., 1999) 

suggests that phosphorylation might alter the nucleation activity of Ena/VASP 

proteins in vivo. Consistently, Ena/VASP phosphorylation by PKA triggered 

filopodium formation in growth cones, whereas deletion of the FAB resulted in 

reduced filopodia formation in MVD7 and Dictyostelium cells (Lebrand et al., 2004; 

Schirenbeck et al., 2006; Applewhite et al., 2007). However, the latter effect could 

also be explained by altered CP resistance or a reduced localization of the protein to 

sites of active actin assembly (manuscript 3). In spite of these findings, the regulation 

of Ena/VASP by phosphorylation is still elusive and needs to be investigated in more 

detail in different cell types. 

• One issue of particular high interest is the involvement of Ena/VASP proteins in 

cancer cell development and invasion. Recently, it was reported that different splice 

variants of Mena are important diagnostic tumor markers since they are 

overexpressed in invasive tumor cells (Goswami et al., 2009). Collectively, these 

results highlight the important role these actin-binding proteins in the regulation of cell 

protrusion and motility. 

• As we assume that, due to the high concentration of actin in vivo, all members of the 

Ena/VASP family are fully saturated with actin monomers, consequently expected to 
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equally enhance filament elongation, raises the question as to why Dictyostelium cells 

have evolved a VASP protein with such a high affinity for G-actin. A possible 

explanation might be that, in contrast to mammalian cells, the highly motile 

Dictyostelium amoebae funnel their intracellular pool of G-actin by means of a high-

affinity elongator preferentially to actin-assembly driving cell protrusion. To test this, 

one could for instance express mammalian VASP in Dictyostelium VASP-null mutants 

and test whether it fully restores the wild type phenotype.  

• The finding that VASP processively elongates actin filaments on beads in presence of 

CP while the growth of filaments pointing with their barbed ends away from the bead 

surface is inhibited lead us to propose additional roles of CP in the leading edge of 

migrating cells. As yet, CP was suggested to be involved in lamellipodial protrusion 

by capping filaments nucleated by the Arp2/3 complex to form a dense, dendritic 

network of short filaments that pushes the membrane forward (Pollard and Borisy, 

2003, Carlier et al., 2003). However, this model does not explain the strict localization 

of CP to the tip of the lamellipodium while Arp2/3 is found in the entire structure 

(manuscript 2). Moreover, according to our data we propose that actin filaments in the 

leading edge are processively elongated by Ena/VASP in the presence of high 

concentration of CP, questioning the role of CP in the dendritic nucleation model 

(Pollard and Borisy, 2003). Notwithstanding, it was shown that CP has a critical role 

in the formation of these structures, as depletion of CP abolished lamellipodia (Iwasa 

and Mullins, 2007; Mejillano et al., 2004). Collectively, our findings rather suggest that 

CP contributes to the regulation of lamellipodium architecture by eliminating 

“unproductive” filaments. 
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