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Kurzfassung

Im letzten Jahrhundert haben zwei revolutionäre Theorien die Physik bereichert: die Quan-
tenmechanik und die allgemeine Relativitätstheorie. Letztere hat die Existenz von Gravita-
tionswellen vorhergesagt, die von massereichen astrophysikalischen Objekten emittiert wer-
den können. Der wohl vielversprechendste Detektortyp für den ersten direkten Nachweis von
Gravitationswellen ist durch große Laserinterferometer gegeben. Diese Interferometer sind in
zweierlei Hinsicht groß: zum einen in der Spannweite ihrer Arme sowie in Größe und Gewicht
ihrer verspiegelten Testmassen. Durch eine Fülle technischer Verbesserungen wird die Sen-
sitivität der Interferometer mehr und mehr gesteigert werden, so dass erwartet wird, dass
bereits die nächste Generation solcher Detektoren durch Quanteneffekte im Messprozess lim-
itiert sein wird. Das stellt natürlich die Frage nach der Existenz von Quanteneffekten in der
Dynamik der Testmassen des Detektors. Diese theoretische Arbeit möchte eine Verbindung
herstellen zwischen der Sensitivitätssteigerung von Gravitationswellendetektoren und der
Möglichkeit makroskopische Quantenzustände in den Detektoren zu generieren.

Im ersten Teil dieser Arbeit wird das Quantenrauschen in einem Sagnac Interferome-
ter, das mit einem zusätzlichen verstimmten Resonator in seinem Ausgang ausgestattet ist,
theoretisch untersucht. Diese Technik des verstimmten Signal-Recyclings wurde bereits in
Zusammenhang mit einem Michelson Interferometer untersucht und findet im Gravitation-
swellendetektor GEO600 Anwendung. Zusammen mit der Analyse des Quantenrauschens in
einem einfachen Sagnac Interferometer legt dies die Grundlage für diesen Teil der Arbeit:
Wir werden die Sensitivität des Sagnac Interferometers bezüglich der Detektion einer bes-
timmten Gravitationswellenquelle und in Hinblick auf ein realistisches klassisches Rauschen
optimieren. Da ein Michelson Interferometer mit verstimmtem Signal-Recycling die Grav-
itationswellendehnung in echte Spiegelbewegung umwandeln kann, vergleichen wir diese
Umwandlung mit der bei einem Sagnac Interferometer. Dann setzen wir die Untersuchungen
über den ponderomotiven Squeezer fort und untersuchen das konditionierte Ausgangssqueez-
ing eines Resonators, der sowohl für sein Hauptlaserfeld als auch für ein zweites Unterlaserfeld
verstimmt ist.

Ausgestattet mit dem Wissen über den Quantenmessprozess in Interferometern aus dem
ersten Teil besteht der zweite Teil dieser Arbeit aus einer theoretischen Analyse, die sich
mit dem konditionierten Zustand von Ort und Impuls der Testmassen beschäftigt. Wir
werden begründen, warum es einfacher ist, die so genannte Wiener Filter Methode zu be-
nutzen, um den konditionierten Zustand zu erhalten als stochastische Mastergleichungen
aufzustellen. Mit der Hilfe von Wiener Filtern werden wir den allgemeinsten Ausdruck für
die konditionierte Kovarianzmatrix eines gaussischen Zustands unter einem linearen marko-
vischen Messprozess errechnen. Dann werden wir auf die Interferometrie zurückkommen
und theoretisch nachweisen, unter welchen Umständen die konditionierten Zustände der
Testmassen in einem Michelson Interferometer nahe an reine Quantenzustände kommen
und Quanteneigenschaften wie Squeezing und Verschränkung zeigen können. Dies hängt
natürlich vom Niveau des klassischen Rauschens ab. Wir werden dies aber quantifizieren,
indem wir eine notwendige Beziehung zwischen dem Spektrum des klassischen Rauschens
und einer Standardreferenz in der Interferometrie, dem Standardquantenlimit, herstellen
werden.

Stichworte: Gravitationswellendetektor, Laserinterferometrie, makroskopische Quanten-
mechanik





Abstract

In the last century two revolutionary new concepts have enriched the field of theoretical
physics: the theory of quantum mechanics and the general theory of relativity. The latter
one has predicted the existence of gravitational waves, which can be emitted from massive
astrophysical objects. The most promising detector design for the first direct observation of
gravitational waves is given by large-scale laser interferometers. These interferometers are
large in terms of the extension of their arms as well as in terms of the size and the weight
of their mirror-endowed test masses. Due to a vast choice of possible technological improve-
ments the sensitivity of those interferometers will be increased more and more. It is expected
that the sensitivity of the planned next generation of laser interferometer gravitational-wave
detectors already becomes limited by quantum effects in the measurement process. This
certainly raises the question about the existence of quantum effects in the dynamics of the
test masses of the detector. This thesis will theoretically provide a link between the increase
of the sensitivity of gravitational-wave detectors and the possibility of preparing macroscopic
quantum states in such detectors.

In the first part of this thesis, we theoretically explore the quantum measurement noise
of an optical speed meter topology, the Sagnac interferometer, equipped with an additional
detuned cavity at the output port. This detuned signal-recycling technique was already
investigated when applying it to a Michelson interferometer and is used in the gravitational-
wave detector GEO600. Together with the quantum noise analysis of the simple Sagnac
interferometer, it is the basis of our study: we optimize the Sagnac interferometer’s sensitivity
towards the detection of a certain gravitational-wave source in the vicinity of a realistic
classical noise environment. Motivated by the fact that the Michelson interferometer, as a
position meter, with detuned signal-recycling can transduce the gravitational-wave strain
into real mirror motion, we compare the transducer effect in a speed and in a position meter.
Furthermore, we theoretically investigate the conditional output squeezing of a cavity which
is detuned with respect to its carrier and its subcarrier. Therewith we pursue the theoretical
analysis of the ponderomotive squeezer.

With the knowledge gained in the first part about the quantum measurement process
in laser interferometers, the second part of this thesis comprises a theoretical analysis of
the conditional state in position and momentum of the interferometer’s test masses. We
motivate not to obtain the conditional states from a stochastic master equation but with
the help of the so-called Wiener filtering method. Using this method, we calculate the most
general expression for the conditional covariance matrix of the Gaussian state of a test mass
under any linear Markovian measurement process. Then we specify to the interferometry
and theoretically show under which circumstances the conditional states of the test masses in
a Michelson interferometer become close to pure quantum states, showing quantum features
as squeezing or even entanglement. This certainly depends on the level of the classical noise.
But we quantify this by giving a necessary relation between the spectrum of the classical
noise and a standard reference in interferometric experiments, the standard quantum limit.

Keywords: Gravitational-wave detector, laser interferometry, macroscopic quantum me-
chanics
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1 Introduction

One of the most popular theories in physics was celebrating its 100th birthday at the be-
ginning of this century: the theory of quantum mechanics. Quantum mechanics is usually
understood as a purely non-deterministic theory. That means that it can only make statis-
tical predictions on the outcome of an experiment: the absolute square of the so-called wave
function represents the probability for observing one of the possible results. And indeed,
the predictions which can be obtained from the theory match perfectly all experimental
observations. As long as one accepts the statistical nature of the quantum mechanical mea-
surement theory – although it does not always follow the laws of probability theory – and
does not raise the question about the actual situation of the observed object itself before
and at the instant of the measurement, no problems arise. But many people had and still
have problems with the sense or the interpretation of quantum mechanics [133]. Different in-
terpretations actually co-exist, which can not be distinguished experimentally. One of them
is the Bohmian mechanics. David Bohm suggested in the 50’s that particles are guided by
their wave function and follow certain trajectories which are not specified until the boundary
conditions are known [8, 9]. This concept had already been developed by Louis de Broglie
in the 20’s. There is also the many-worlds interpretation [51] introduced by Hugh Everett
also in the 50’s, who proposed that all possible results of a measurement process could in
principle exists – but in its own world. This means that there is a perhaps infinite number
of different universes, where each possible measurement result that does not occur in our
universe appears in another universe. But interestingly the interpretation which is probably
most far away from common sense has become accepted: the Copenhagen interpretation. Its
name actually comes from Niels Bohr and Werner Heisenberg’s collaboration in Copenhagen
around 1927. They have proposed that the measurement itself causes the wave function to
collapse to a certain value exactly at the instant when the measurement takes place. This
raises the very interesting question which is still open, namely about which one of the fol-
lowing two concepts is forced to be violated by the theory of quantum mechanics: locality or
realism, or even both. This question which is important for the interpretation of quantum
mechanics, is currently under experimental tests [61].

Quantum measurement effects in the context of macroscopic and heavy objects [20] be-
came interesting probably for the first time when people started to hunt for the first direct
detection of gravitational waves. Gravitational waves are often nicely described as ripples in
space-time propagating at the speed of light. They are in fact a direct consequence of the
general theory of relativity, which was founded by Albert Einstein in 1916 and is the other
popular theory of the last century. In the framework of general relativity, gravitational waves
are described by a weak metric perturbation on an otherwise static background metric. This
can result in a vacuum wave equation for this metric perturbation. Note that the wave
equation can be written in a frame independent way but is usually given in the so-called
transverse-traceless coordinate gauge. The gravitational wave’s amplitude is given by the
dimensionless quantity h = 2 δL/L, which is a relative length change of the distance L and
therefore it is often referred to as a strain. The gravitational-wave field is of quadrupole
nature, having two degrees of freedom which are its two polarizations. An incident gravita-
tional wave (in z-direction) would periodically deform a ring of free falling test masses (in
the x-y-plane) to ellipses, depending on the polarization of the gravitational wave: for the
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plus-polarization the circle will be stretched in x-direction and simultaneously squeezed in
y-direction and then after half a period this process is reversed. For the cross-polarization
this squeezing and stretching will happen in exactly 45◦ between x-direction and y-direction.
Gravitational waves are emitted from massive astrophysical objects if they cause a change
in the quadrupole momentum of the mass distribution. Examples are: burst signals from
supernovae explosions; signals from inspiraling or merging binary systems (consisting of e.g.
two neutron stars, two black holes or a system of a neutron star and a black hole); periodic
signals from pulsars; or finally the stochastic background signal from for instance the infla-
tional stage of the early universe. A good introduction to the general theory of relativity
and the theory of gravitational waves can be found in many different textbooks as e.g. in
Refs. [7, 65,111,129].

The first attempts towards the direct observation of gravitational waves were carried out
by Joseph Weber starting in the late 50’s. He used large metal cylinders, so-called reso-
nant bar detectors [128]. Today the efforts on the direct detection of gravitational waves
additionally rely on large-scale laser interferometers as it was proposed by Gerstenshtein
and Pustovoit in the 60’s (cf. Ref. [58]). These detectors maximize the response to the
plus-polarization of a gravitational wave but are insensitive to its cross-polarization. Due
to several advantages of using laser-interferometric detectors compared to using resonant
bar detectors, the direct search for gravitational waves concentrates more on laser inter-
ferometers. The major advantage is probably that with a laser interferometer it is much
easier to realize long detector arms which certainly are more effected by the gravitational-
wave strain. Another advantage is the interferometer’s broadband detection ability in the
frequency space. There is a large network of operating ground-based laser interferometer
gravitational-wave detectors spanned all over the world: the three LIGO detectors [48, 112]
located in the USA; the VIRGO detector [52] located in Italy; the GEO600 detector [50]
located in Germany; and the TAMA project [5] located in Japan. All of these detectors are
realized by large Michelson-type interferometers – having extensions of 300m up to 4 km
in arm length – with suspended, but due to a low eigenfrequency of the pendulum approx-
imately free falling, macroscopic, mirror-endowed test masses ranging from 1 kg to 21 kg.
The next generation of such detectors, such as Advanced LIGO [1], will even exceed the
first generation, for example in terms of its test masses’ weight of 40 kg and the available
laser power. It has been planned from the bottom up and is now virtually ready for its con-
struction. Moreover, there is much effort in investigating even more advanced technologies.
The noise contaminating the detection of gravitational waves – as a quantum measurement
– is usually classified into two main categories: (i) the fundamental quantum noise which
in interferometric experiments arises from the light; and (ii) the rest which comes from so-
called classical noise sources. Remarkably, the sensitivity of the first generation of detectors
is already limited by quantum noise at high frequencies. Furthermore, it is expected that
already the next generation of detectors will be quantum-noise limited at almost all fre-
quencies within their detection band (∼ 10Hz – some kHz). Therefore, the quantum noise
in gravitational-wave detection becomes more and more an important factor. With clever
optical designs of the detector, it is possible to shape the quantum noise spectral densities:
different optical topologies show different so-called optomechanical properties, which in turn
is reflected in different quantum noise behavior. The challenge is to lower the quantum noise
in the frequency band, where on the one hand the theoretically predicted gravitational-wave
forms provide with highest possibility the strongest signal and on the other hand the quan-
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tum noise also dominates the total noise. Early in this decade an important observation
has given a great opportunity in shaping the quantum noise, namely the fact that a certain
interferometer configuration shows the so-called optical spring effect [22]. Note that this
effect can also help in the production of squeezed light which originates from the coupling
between the light and the motion of the test-mass mirrors [37]. Because a single optical
spring usually transforms a device into an unstable system [22], it will probably be replaced
by the so-called double optical spring in future experiments.

The question arises whether the macroscopic objects themselves, such as the test masses
of a gravitational-wave detector, can also start to behave quantum mechanically in their de-
gree of freedom which is subject to a quantum-noise limited measurement. This question is
related to a big issue in modern physics, namely to the question whether macroscopic objets
are in principle able to show quantum behavior or not. In the microscopic regime, quantum
physics is probably the most successful area of natural science: An exceptional consistency
between theoretical and experimental research has been found. But at macroscopic scales
considering heavy objects none of these effects have ever been verified. There are even theo-
ries predicting that quantum mechanics of macroscopic and heavy objects fundamentally fails
due to, for instance, the gravity decoherence [95] or the spontaneous reduction model [59].
This would directly lead to the question where exactly to draw the line between the micro-
scopic and the macroscopic world which could be answered by those theories. Throughout
this thesis we will use the term ’macroscopic’ to be a synonym for a macroscopic and heavy
object larger than a single molecule if not otherwise stated. Macroscopic and heavy objects
if they are explicitly considered in this thesis are usually mirrors weighing between 1 g and
several kg. But the discussion about macroscopic quantum states will be held independent
of the actual mass of the object.

This thesis is divided into two parts: the first one can be found in Sec. 2 and is strongly
related to gravitational waves and their detection. Here we will deal with advanced inter-
ferometer configurations which allow to manipulate the arising quantum noise. Therefore,
as they are used as a laser interferometer gravitational-wave detector, they allow to increase
the sensitivity at the relevant frequencies. Whereas the second part of this thesis, in Sec. 3,
is only related to the detectors themselves. It is especially concerned with the test masses
in such a detector: we will be interested in the states of these test masses. We hope that
gravitational-wave detectors will not only open a new window to the universe in the sense
of detecting astrophysical sources but also to open a window to the world of macroscopic
quantum mechanics. Both parts of this thesis have a big overlap: in both of them we will
deal with the same quantum measurement process and we are required to have a low classical
noise floor. At the beginning of each part, we will give a brief introduction to the specific
subject. In Sec. 4 we will then summarize our conclusions on both parts of this thesis by
highlighting the main results of this work.

In this first chapter we will start with reviewing some important theoretical basics from
quantum mechanics and quantum measurement theory which will be used throughout both
parts of this thesis. In Sec. 1.1 we will remind the reader of some principles of quantum
mechanics and generally describe characteristics of quantum measurement processes. Then
we will describe the dynamics of a concrete quantum measurement process in Sec. 1.2 using
two different approaches. In Sec. 1.3 we will motivate a simple model for the quantum
Brownian motion. Finally, in Sec. 1.4 we will briefly introduce the theory of quantum
entanglement.
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1.1 Quantum mechanics and the measurement process

Whenever measurements are as precise as up to the quantum scale which means that
they are of such an accuracy that terms of the order of the reduced Planck constant
~ ≈ 1.05457 10−34 J s cannot be neglected, fundamental quantum effects become of ma-
jor importance and we can speak of a quantum measurement. Later on in Sec. 3.2.1 we will
give an explicit definition of this quantum measurement process. One, or probably even the
most important statements of quantum mechanics in this context is the so-called Heisen-
berg uncertainty principle [67]. In 1927, Werner Heisenberg formulated this inequality for
the measurement uncertainty of two non-commuting observables. Mathematically speaking,
the Heisenberg uncertainty principle results from the commutation relation of the operators
which are associated with the observables. As an example, the operator of the position

time-domain susceptibility C−
o1o2

(t, t′) =
[
ô
(0)
1 (t), ô

(0)
2 (t′)

]

frequency-domain susceptibility Ro1o2(Ω) = i
~
∫∞

0
dt ei Ωt C−

o1o2
(0, −t)

time-domain correlation function Co1o2(t− t′) = 〈ô1(t) ô2(t
′)〉sym

single-sided cross-spectral density π δ(Ω− Ω′) So1o2(Ω) = 〈ô1(Ω) ô†2(Ω
′)〉sym

the latter two satisfying Co1o2(t− t′) = 2
∫∞
0

dΩ
2π

Sô1ô2(Ω) e−iΩ(t−t′)

frequency-domain transform ô1(t) =
∫∞
−∞

dΩ
2π

e−i Ωt ô1(Ω)

Table 1: Collection of specific functions among any two linear Heisenberg operators ô1(t)
and ô2(t), as used throughout this thesis. The brackets 〈. . .〉 denote the quantum-mechanical
expectation value and the subscript ’sym’ stand for symmetrization of the operators within
the brackets. The time-domain functions depend only (t − t′) if the Hamiltonian of the
system does not explicitly depend on time.

observable x̂ and the one of the momentum p̂ fulfill the canonical commutation relation

[x̂, p̂] ≡ x̂ p̂− p̂ x̂ = i ~ . (1.1)

From the Schwarz inequality, one can derive the Heisenberg uncertainty principle for the
second-order moments of position and momentum to give

Vxx Vpp − V 2
xp ≥

~2

4
, (1.2)
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by making also use of Eq. (1.1). Here we have defined the second-order moments of the state
which are often also called variances by

Vxx ≡ 〈(x̂− 〈x̂〉)2〉 , (1.3)

Vpp ≡ 〈(p̂− 〈p̂〉)2〉 , (1.4)

Vxp ≡ 1

2
〈(x̂− 〈x̂〉) (p̂− 〈p̂〉) + (p̂− 〈p̂〉) (x̂− 〈x̂〉)〉 , (1.5)

where the quantum-mechanical expectation value 〈. . .〉 has to be taken. Note that a Gaussian
state is completely determined by its first- and second-order moments. Eq. (1.2) tells us now
that the position and the momentum can never be measured or even defined – this depends
on the interpretation of quantum mechanics – simultaneously to arbitrary precision.

For Gaussian states the Heisenberg uncertainty product becomes minimal, that means
equal sign in Eq. (1.2), if and only if the system is pure. A pure system is the first candidate
among all Gaussian systems which should be considered as a real quantum system because
it cannot be described as a mixture of different states. This is in contrast to a thermally
excited system described by a highly mixed state which should definitively be considered
as classical. The probability to find a pure system in its eigenstate is actually equal to
one. Another intrinsic feature of a pure state is that its density matrix operator is given
by a projection operator which is idempotent. Furthermore, the ground state of a harmonic
oscillator as an example is always represented by a pure state.

Since throughout this thesis we will only deal with Gaussian states, we will use the value
of the uncertainty product which is given by (Vxx Vpp − V 2

xp) as a measure of the purity and
therefore to describe the quantum-ness of the state of an object under linear observation.
This seems to be reasonable because trying to reconstruct, as commonly done, the number
of quanta, the so-called occupation number, may not always be the most fundamental figure
of merit in this context: squeezed states, for example, can have high occupation numbers,
yet they should be considered as quantum – probably even more quantum than vacuum
states. Moreover, the definition of an occupation number requires a well-defined, real-valued
eigenfrequency, which is not always given, as for example in the case of a free mass or in
other examples as given in the second part of this thesis. On the other hand, if a state has
no correlation in position and momentum, i.e. Vxp = 0, its Heisenberg uncertainty product
can be converted back into an effective occupation number by using the relation

Neff =
1

~
√

Vxx Vpp − 1

2
. (1.6)

This effective occupation number should be interpreted as follows: suppose that the variances
in position and momentum are given and produced by a perfect harmonic oscillator in
a quadratic potential having an arbitrary but real-valued eigenfrequency ωeff . Then the
effective occupation number is obtained by minimizing the total energy divided by the energy
of each quanta with respect to that eigenfrequency ωeff . This strategy reads

Neff = min
ωeff

{
1

~ωeff

(
Vpp

2 m
+

mω2
eff Vxx

2

)
− 1

2

}
, (1.7)

where the minimum is achieved at

ωeff =

√
Vpp

m2 Vxx

. (1.8)
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Thus, the effective occupation number is the minimal occupation number one could obtain
when assuming to have a harmonic oscillator with no correlation in position and momentum
and an effective eigenfrequency as given in Eq. (1.8). It might be worth noting that the
effective occupation number in fact also determines the von Neumann entropy of a state [134]
given by

S = (Neff + 1) log(Neff + 1)−Neff logNeff . (1.9)

But this should just be regraded as an interesting fact which we will not further stress in
the course of this thesis.

Furthermore, it is advisable to gather the second-order moments of position and momen-
tum of the Gaussian state into the so-called covariance matrix which is given by

V =

(
Vxx Vxp

Vxp Vpp

)
. (1.10)

Then the uncertainty product is given by the determinant of the covariance matrix and
Heisenberg uncertainty principle simply reads detV ≥ ~2/4. In general, the squeezing of the
Gaussian state is given by the smaller eigenvalue of its covariance matrix V, and is therefore
equal to (

√
detV e−r), where the quantity r is the squeezing factor given by

r = arccosh
trV

2
√

detV
. (1.11)

Note that the factor (−20 r/ ln 10) provides the squeezing strength in dB. Furthermore, we
say that the state represented by the covariance matrix V is squeezed at the angle ϕ given
by

ϕ = arctan

(
Vxx − Vpp −

√
(trV)2 − 4 detV

2 Vxp

)
+

π

2
, (1.12)

where ϕ actually defines the angle between the position and the squeezed quadrature and
determines the rotation into the eigensystem. With these definitions we are able to draw a
squeezing ellipse corresponding to the covariance matrix into a coordinate system of position
and momentum. This ellipse has the eigenvalues (

√
detV e±r) as its semi-major and semi-

minor axis, respectively, where the angle between its semi-minor axis and the position axis
is given by ϕ. Then the area of the squeezing ellipse is equal to π times the uncertainty
product.

Note that the Heisenberg uncertainty product together with the squeezing factor and
angle form another complete set which determines the Gaussian state – apart from the first-
order moments. This set often becomes even more important in order to characterize the
quantum states than the set of second-order moments, i.e. the covariance matrix. As we will
see, all the equations which transform between the two sets – Eqs. (1.2), (1.11) and (1.12) –
are used throughout this thesis.

A commonly used distribution to describe a quantum mechanical state is the so-called
Wigner function. In general, this function is a quasi-probability distribution in phase space.
But for Gaussian states the Wigner function is also always positive and is moreover totally
given in terms of the covariance matrix as

W (x, p) =
1

2π
√

detV
e−

1
2

(x, p)V−1 (x, p)T

. (1.13)
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Figure 1: Wigner function of the ground state (left panel) of a mechanical harmonic oscillator
in normalized position and momentum coordinates. Wigner function of a squeezed state
(right panel) of an oscillator: squeezed by the factor of r = arccosh

√
2 and in 45◦ between

normalized position and normalized momentum quadrature.

Fig. 1 shows two characteristic Wigner functions of a mechanical harmonic oscillator in
a pure Gaussian state: the ground state and a specially squeezed ground state. We will
encounter the first one of these two states again in Sec. 1.3 as the unconditional ground
state of a mechanical harmonic oscillator and the other one in the second part of this thesis
as the conditional ground state of a free mass.

1.1.1 Measurement’s back action and the standard quantum limit

Let us say we have a system with two non-commuting observables, such as position and
momentum as in the previous section. Following the Copenhagen interpretation of quantum
mechanics, a measurement collapses the wave function of the measured object into a state
with a certain uncertainty in these two observables. In other words, if we perform a quantum
measurement with a certain precision in one of these observables the uncertainty in the other
observable might have to increase in order to save the Heisenberg uncertainty principle.
Therefor the measurement has to act back onto the measured object. This effect is usually
called quantum back action. A typical example is the diffraction in single slit experiments,
which occurs if the wavelength of the light, or the de Broglie wavelength of a non-massless
particle as an electron or even an atom, is of the order of the size of the slit. One can think
about such an experiment in the following way: the slit measures the position of the particle
at the instance when passing through the slit which simultaneously perturbs the momentum
causing on the one hand the natural extension of the beam and on the other hand prohibits
certain positions in a second measurement on a screen which causes the interference pattern.

In repeated quantum measurement processes, where the back-action perturbed observ-
able couples into the measured observable via free evolution, the back action causes addi-
tional noise. This was first realized by Braginsky in the 60’s, where he had shown that the
back-action noise together with the measurement noise can result into the so-called standard
quantum limit [12, 18] for the measurement’s sensitivity, if both back-action noise and mea-
surement noise are uncorrelated. Here the measurement noise, which is also often called shot
noise, is a necessary result of the fact that the measurement can collect only a finite amount
of information in a finite amount of time. Note that the standard quantum limit always
arises in measurement processes where the Heisenberg operators of the measured observable
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do not commute at different times.

At this stage, we shall consider the example of measuring the position of a free falling ob-
ject with rest mass m. The Heisenberg operator of the object’s position under free evolution
can be written as

x̂(t) = x̂ +
p̂

m
(t− t0) . (1.14)

Using the commutation relation between position and momentum as given in Eq. (1.1), it is
easy to show that the Heisenberg position operators at different times do not commute but
obey the relation

[x̂(t), x̂(t′)] =
i ~
m

(t′ − t) . (1.15)

A measurement of the position at time t = 0 reduces the wave function of the free mass into a
state with position and momentum widths Vxx = 〈x̂(0) x̂(0)〉−〈x̂(0)〉2 and Vpp = 〈p̂(0) p̂(0)〉−
〈p̂(0)〉2, respectively. Here Vxx represents the error of the measurement, or the measurement
noise, showing us how precisely we can know the position, while Vpp ≥ ~2/(4 Vxx) gives
us the momentum uncertainty due to the measurement’s back action, lower limited by the
Heisenberg uncertainty principle. Assuming no correlation between position and momentum,
i.e. Vxp = 0, one has, right before a next measurement at time τ , the position width

〈x̂(τ) x̂(τ)〉 − 〈x̂(τ)〉2 = Vxx +
Vpp

m2
τ 2 ≥ ~ τ

m
, (1.16)

which limits the accuracy of the second position measurement. The right hand side of the
inequality in Eq. (1.16) is obtained by finding the right balancing between measurement
noise and back action noise and it represents the standard quantum limit. Repeating the
measurement many times and taking the continuous limit, we can convert Eq. (1.16) into
a limit of the noise spectral density in a continuous position measurement process by un-
derstanding it as the mean-squared noise on the measurement’s bandwidth Ω = 1/τ . Then
the single-sided spectral density – which is basically equal to two times the mean-squared
noise over the bandwidth – of the free-mass standard quantum limit in a continuous position
measurement is given by

SSQL(Ω) =
2 ~

m Ω2
, (1.17)

having units of m2/Hz. The standard quantum limit has been established as a standard
reference in quantum measurement processes. Aiming at the precision of a measurement,
as in gravitational-wave detection, definitely requires a low standard quantum limit which
can be achieved by increasing the mass. But in the last years the interest in reaching the
standard quantum limit with the objective of actually seeing and experimentally proving
it has increased, which in turn requires a high standard quantum limit. Note that we will
encounter Eq. (1.17) in nearly all sections within this thesis – sometimes in a slightly different
format. In Sec. 3.2.1 we will give a more rigorous derivation of Eq. (1.17) for an arbitrary
linear Markovian measurement process in terms of the measurement’s spectral densities.

1.1.2 Quantum non-demolition measurements

When people started to think about the standard quantum limit as a limit [120] in the
60’s, certain people really insisted on the free-mass standard quantum limit to provide a
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real limit to continuous quantum measurements which can never be circumvented [28]. But
after a rather controversial debate it was eventually realized that the standard quantum
limit can in principle be surpassed [72]. Today we know that a measurement can surpass the
standard quantum limit if (i) the measurement is made through monitoring of a quantum
non-demolition observable [16], or (ii) the quantum mechanics of the measuring device is
taken into account and quantum correlations in back-action and shot noise are used, for
instance by using back-action-noise evasion techniques [117].

A quantum non-demolition observable is a conserved quantity of the system such as its
conjugated momentum or its energy. If a quantity is conserved it cannot be altered – not
even by the measurement’s back action. Usually the term ’quantum non-demolition’ in the
context of measurement processes was introduced for a measurement which totally does not
affect the probe. But instead of totally suppressing the back-action simply removing its noise
from the measurement output also allows to surpass the standard quantum limit. Today
the term ’quantum non-demolition’ is usually used in a more broader sense and each device
for which its measurement noise just beats the standard quantum limit – or in a continuous
measurement process its spectrum – at a certain level, bears this name. Furthermore, the
term ’quantum non-demolition’ is still used even if the spectral density of the standard
quantum limit is only beaten within a certain frequency range. We will also use this modern
convention. In this thesis, especially in the first part, we will become acquainted with some
of those quantum non-demolition devices.

1.1.3 Collapse of the wave function

The measurement device back-acting on the measured object is not the only quantum mea-
surement effect we have to consider. Following again the Copenhagen interpretation of
quantum mechanics, a measurement reduces the wave function of an object and collapses
it into a certain state. The reality of such a wave function collapse was, and is still today,
under strong debate. The question has always been whether it is a fundamental physical
phenomenon or it just emerges due to some other process, such as decoherence. As an ex-
ample, Roger Penrose suggested that the state reduction could be caused by gravity [95]:
a quantum superposition of a macroscopic and heavy object as an example would lead to
an ambiguity in defining the space-time. If only one version of the space-time exists this
would cause a gravitationally induced collapse of the wave function. Other models rely on a
spontaneous reduction of the wave function from an unknown origin such as the Ghirardi-
Rimini-Weber model [59]. These models would also account for the – in my opinion only very
small – possibility that quantum states of macroscopic and heavy objects are fundamentally
banned.

Is a rose still red if we stop looking at it? No question, it is hard to believe that an
observer really can influence the measured object’s state. The common sense would prefer
that there is the passive observer and an object, which is in some state independent from
the fact whether the observer notice it or not. Furthermore, Erwin Schrödinger’s famous
gedanken experiment with the cat that may be in a superposition of dead or alive [109]
somehow also calls the attention to the question of what an observer, which can cause a
state reduction actually has to be composed of. Is it obliged to be a human being? All these
questions really challenge realism. But for this thesis they should be only considered as
philosophical questions and we do not want to go too much into the details. For us it should
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be enough to assume that the state of a measured quantum object is what the observer
knows about this object. In a continuous measurement, the wave function is continuously
reduced and a certain trajectory of the measured object can be observed. This follows the
concept of a posteriori [6] states. Such kind of states are also called conditional states and
we will mainly deal with them in the second part of this thesis.

1.2 Quantum dynamical interaction between a mechanical oscil-
lator and light

A well-known example of a realistic quantum measurement process is borrowed from quan-
tum optics: the high-precision position measurement with laser light, on which we will
concentrate our discussion throughout this thesis. In this example, the coupling between the
measured object, a suspended high-reflective mirror, and the meter, the laser light, is via
radiation pressure. Note that we will always consider the linear regime of this coupling. For
such an interaction, both parts of the wave-particle dualism, which is strongly manifested in
quantum mechanics, are essential: the laser light becomes phase-shifted due to the motion
of the mirror – wave interpretation – and on the other hand the radiation pressure of the
photons – particle interpretation – is in turn exciting the mirror motion. Here the measure-
ment’s back action is clearly the laser light’s fluctuating radiation pressure which imposes a
force onto the mirror and causes the radiation-pressure noise in the measurement output. In
the end, the measurement process consists of counting the number of photons by recording
the photo current of the photo diode. The photons of a coherent beam arrive according
to a Poissonian distribution. The photon counting error represents the measurement noise,
which is in this case also called photon shot noise. If these two quantum noise sources are
uncorrelated they result in the standard quantum limit of this measurement with a spectral
density as given by Eq. (1.17), if the mirror can be approximated as a free falling mass in the
direction of incident laser beam – due to a very low eigenfrequency of the pendulum created
by the mirror’s suspension.

In this section, we will briefly review two different approaches dealing with the dynamical
interaction via radiation pressure between the quantum fluctuations in laser light and mov-
able mirrors. Then we will show, by means of an example, that they yield equivalent results.
Note that we will not go too much into the details here because both of the approaches are
described and used throughout the literature. The first approach is based on a Hamiltonian
from which linearized quantum Langevin equations are derived. For further reading see e.g.
Refs. [56,57,93,125,126]. The second approach is based on travelling waves. The term ’trav-
elling’ may be somehow misleading and should be understood more in the way that we will
evaluate the laser field at different locations. The laser field under free evolution is at a cer-
tain position and a certain time equal to the field at some displacement ∆x at the time ∆x/c
the wave needed to propagate to this displacement, where c ≡ 299792458 m/s is the speed of
light in vacuum. From this fact we are able to obtain matrix relations which tell us how the
field operators transform. For further reading please refer to e.g. Refs. [22,29,37,78,110].

As an example, we will consider – in Sec. 1.2.1 using linearized quantum Langevin equa-
tions and in Sec. 1.2.2 using the travelling waves approach – the quantum dynamics of a
Fabry-Pérot cavity which has a movable end mirror and is not resonant for the frequency of
the driving laser field. This detuning of the cavity makes the power inside the interferometer
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dependent on the motion of the mirror, creating an optical spring. The general principle un-
derlying this effect has already been explained by Braginsky and colleagues, namely in the
70’s in their works in the context of microwave resonators, and later in the 90’s in connection
with optical fields [13, 17]. In Sec. 1.2.4, we will spend some time on reviewing this effect.

Note that this section is mostly intended to give a pedagogical introduction to the topic.
We will carry out some example calculations to show how the things work. The advanced
reader may want to skip this section.

1.2.1 Quantum Langevin equations

The first way of describing the dynamics of radiation-pressure interaction starts, as promised,
with a Hamiltonian [93]

Ĥ = ~ωc ĉ†ĉ︸ ︷︷ ︸
Ĥcavity

+
p̂2

2 m
+

mω2
m x̂2

2︸ ︷︷ ︸
Ĥmirror

− ~ωc

L
ĉ†ĉ x̂

︸ ︷︷ ︸
Ĥint

+ i ~
√

Pin γc

~ω0

ei ϑ
(
ĉ† e−i ω0t − ĉ ei ω0t

)
︸ ︷︷ ︸

Ĥdriving

. (1.18)

In Ĥcavity, ĉ denotes the annihilation operator of the resonant mode of the laser field in
the cavity with the eigenfrequency ωc. Here the cavity has a bandwidth γc and a length
L. The coherent laser input field drives the cavity at the frequency ω0, at the phase ϑ and
with an optical power of Pin. The cavity’s movable end mirror of mass m is assumed to
be a simple harmonic oscillator with the eigenfrequency ωm ¿ c/(2 L), having a position
operator x̂ and a momentum operator p̂. Here the interaction of mirror and cavity mode
works via the light’s radiation pressure and is described by the interaction Hamiltonian Ĥint.
The radiation-pressure force at the mirror in Ĥint is motivated by the fact that classically it
would correspond to the energy of the cavity mode divided by the cavity length.

Recall that in the quantum mechanical Heisenberg picture, operators, instead of states,
evolve in time. The equations of motion for an arbitrary operator ô under any Hamiltonian
Ĥ, which does not explicitly depend on time, is obtained from

d

dt
ô(t) =

i

~
[Ĥ, ô(t)] . (1.19)

Using the commutation relations [x̂, p̂] = i ~ (cf. Eq. (1.1)) and [ĉ, ĉ†] = 1 as well as
Eq. (1.19) and the input-output theory for quantum damping [56,57], we obtain the follow-
ing set of coupled quantum Langevin equations in the interaction picture with respect to
(~ω0 ĉ†ĉ) (cf. e.g. Refs. [93,125,126])

m
d2

dt2
x̂(t) = −mω2

m x̂(t) + ~
ωc

L
ĉ†(t) ĉ(t) , (1.20)

d

dt
ĉ(t) =

(
−i ωc + i ω0 − γc

2
+ i

ωc

L
x̂(t)

)
ĉ(t) +

√
γc â(t) +

√
Pin γc

~ω0

ei ϑ , (1.21)

where we have already inserted d/dt x̂(t) = p̂(t)/m. Furthermore, â represents the annihi-
lation operator associated with the vacuum fluctuations of the continuum of modes outside
the cavity having the only non-vanishing two-point time-domain correlation function

〈â(t) â†(t′)〉 = δ(t− t′) . (1.22)
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In the next step, we will linearize Eqs. (1.20) and (1.21) around the steady state of the
system which is given by

x̃ss =
~ωc

Lm ω2
m

|c̃ss|2 , (1.23)

p̃ss = 0 , (1.24)

c̃ss =

√
Pin γc

~ω0

ei ϑ

γc/2− i ∆
, (1.25)

where the cavity is detuned with respect to ω0 by

∆ = ω0 +
~ω2

c

L2 mω2
m

|c̃ss|2 − ωc . (1.26)

Note that now c̃ss is implicitly given when inserting Eq. (1.26) into Eq. (1.25). Without
any loss of generality we can choose the phase ϑ of the coherent driving field in such a
way that c̃ss becomes real. Introducing the hermitian amplitude field quadrature operator
ĉ1(t) = (ĉ(t) + ĉ†(t))/

√
2 and phase field quadrature operator ĉ2(t) = i (ĉ†(t)− ĉ(t))/

√
2, the

linearized quantum Langevin equations read

m
d2

dt2
x̂(t) = −mω2

m x̂(t) +

√
2 Pin ω2

c γc ~
ω0 L2 (∆2 + (γc/2)2)

ĉ1(t) , (1.27)

d

dt
ĉ1(t) = −γc

2
ĉ1(t)−∆ ĉ2 +

√
γc â1(t) , (1.28)

d

dt
ĉ2(t) = −γc

2
ĉ2(t) + ∆ ĉ1 +

√
γc â2(t) +

√
2 Pin ω2

c γc

ω0 L2 ~ (∆2 + (γc/2)2)
x̂(t) . (1.29)

Here â1(t) = (â(t) + â†(t))/
√

2 and â2(t) = i (â†(t) − â(t))/
√

2 are the incoming amplitude
and phase field quadrature operators, respectively. Since Eqs. (1.27)–(1.29) are given in
the interaction picture with respect to (~ω0 ĉ†ĉ), switching into frequency domain turns
the operators into a function of the modulation frequency Ω around ω0. Throughout this
thesis we will use the convention for frequency-domain transformation as given in Tab. 1.
If we assemble Eqs. (1.28) and (1.29) into vector notation, we can easily solve them in
the frequency domain for the cavity mode quadrature vector (ĉ1(Ω), ĉ2(Ω)) and obtain the
decoupled equation

(
ĉ1(Ω)
ĉ2(Ω)

)
=

(
γc/2−i Ω

∆2+(γc/2−i Ω)2
− ∆

∆2+(γc/2−i Ω)2

∆
∆2+(γc/2−i Ω)2

γc/2−i Ω

∆2+(γc/2−i Ω)2

)
×

[
√

γc

(
â1(Ω)
â2(Ω)

)
+

√
2 Pin ω0 γc

L2 ~ (∆2 + (γc/2)2)

(
0

x̂(Ω)

)]
, (1.30)

where we have approximated ω2
c/ω

2
0 ≈ 1. Furthermore, we have assumed a steady state

where the initial values of ĉ1, 2(t) can be neglected. The output field quadrature operators
are given by the input-output relation [56,57]

b̂i(Ω) =
√

γc ĉi(Ω)− âi(Ω) , (1.31)



1 INTRODUCTION Page 15

for i = 1, 2. Eq. (1.31) together with the equation

−mΩ2 x̂(Ω) = −mω2
m x̂(Ω) +

√
2 Pin ω0 γc ~

L2 (∆2 + (γc/2)2)
ĉ1(Ω) (1.32)

give us then the linearized equations of motion of the system in the frequency domain, where
initial values are neglected. Finally, we can insert Eq. (1.30) into Eq. (1.31) as well as the
first component of the vector from Eq. (1.30) into Eq. (1.32).

1.2.2 Travelling waves approach

In the framework of the two-photon formalism [29,110], the quantized electric field of the light
wave at a certain location in or outside the cavity can be written in terms of its quadrature
fields Ê1, 2(t) which describe modulations around the carrier frequency ω0 varying at a much
longer timescale than 1/ω0 (cf. e.g. Refs. [22, 37,78]). This fact reads

Ê(t) = Ê1(t) cos(ω0t) + Ê2(t) sin(ω0t) . (1.33)

The quadrature fields read in a suitable normalization

Êi(t) =

√
8π P

A c

[(
cos ϑ
sin ϑ

)]

i

+

√
4π ~ω0

A c

∫ ∞

0

dΩ

2π

(
âi(Ω) e−i Ωt + â†i (Ω) ei Ωt

)
, (1.34)

for i = 1, 2 and with the effective beam area A. Here the first term denotes the quadrature
fields of the monochromatic carrier light with optical power P and phase ϑ, while â1(Ω) and
â2(Ω) are the amplitude and phase quadrature operators, respectively, of the fluctuating
fields at a modulation frequency which we will usually call the sideband frequency Ω, having
the only non-vanishing commutators

[â1(Ω), â†2(Ω
′)] = −[â2(Ω), â†1(Ω

′)] = 2π i δ(Ω− Ω′) δij (1.35)

and the only non-vanishing vacuum correlation functions

〈âi(Ω) â†j(Ω
′)〉sym ≡ 1

2
〈âi(Ω) â†j(Ω

′) + â†j(Ω
′) âi(Ω)〉 = π δ(Ω− Ω′) δij , (1.36)

where throughout this thesis the subscript ’sym’ will stand for symmetrization. It is conve-
nient to assemble the two quadrature operators into vector notation ~a(Ω) = (â1(Ω), â2(Ω))T

and assign different vectors to different locations by giving them different names. The sim-
plest transformation certainly is propagating such a quadrature vector ~a(Ω) through a free

space of length L, where the fluctuating quadrature fields at L are described by ~b(Ω). Then

we have Ê~a(t) = Ê
~b(t− L/c) and this transforms the vector ~a(Ω) into a vector ~b(Ω) as

~b(Ω) = ei ΩL/c

(
cos(ω0L/c) − sin(ω0L/c)
sin(ω0L/c) cos(ω0L/c)

)
~a(Ω) . (1.37)

The coupling between mirror motion and in-coming and out-going quadrature vectors at
the mirror is slightly more complicated. One the one hand, the momentum flow of the
optical field induces a force on the mirror and on the other hand, the mirror’s motion phase
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modulates the carrier field. Thus, we are firstly interested in the fluctuating part of the total
momentum flow of the optical field at the mirror. The total momentum flow carried by each
field incident on the mirror is

Π̂(t) =
A
c

(
Ê1(t) cos(ω0t) + Ê2(t) sin(ω0t)

)2

. (1.38)

After time averaging and removing the static parts, we obtain in the frequency domain

Π̂~a
fluc(Ω) =

√
2 P ω0 ~

c2
(cos ϑ, sin ϑ) ~a(Ω) . (1.39)

Using momentum conservation at the mirror we can write down the equations of motion of
the mirror motion in the frequency domain

−m Ω2 x̂(Ω) = −mω2
m x̂(Ω) +

∑

~a

(
±Π̂~a

fluc(Ω)
)

, (1.40)

where the summation is done over all fields entering and exiting the mirror and ωm is the
mechanical eigenfrequency of the mirror. Note that the sign of Π̂fluc(Ω) belonging to each
field depends on the direction of propagation relative to the mirror’s direction of propagation.
In turn, a displacement x̂(t) of the mirror produces a phase change of 2 x̂(t) ω0/c in the
reflected field, where we have

Êi(t± 2 x̂(t)

c
) ≈ Êi(t)± 2 x̂(t) ω0

c

[(
sin ϑ
− cos ϑ

)]

i

, (1.41)

in leading order of x̂(t). The sign accounts for whether the mirror moves in or against the
direction of field propagation. Therefore, a quadrature vector ~a(Ω) incident on the mirror

transforms into a reflected quadrature vector ~b(Ω) as

~b(Ω) = ~a(Ω)±
√

8 P ω0

c2 ~

(
sin ϑ
− cos ϑ

)
x̂(Ω) . (1.42)

This formulation turn calculating the quantum fields in complex optical devices into simple
matrix algebra.

Now we will come back to the Fabry-Pérot cavity of length L which is detuned from the
driving input laser field by ∆ and use the above formulation to get the equations of motion.
The coherent input laser field has again an optical power Pin at the frequency ω0. The input
mirror is fixed and has a power reflectivity ρ2

ITM and a power transmissivity τ 2
ITM = 1−ρ2

ITM.
The movable end mirror is assumed to be highly reflective. In Fig. 2 the relevant locations
of the quadrature fields are labeled by their quadrature vector. Here we understand L as
the total length of the cavity where the end mirror is already moved due to the steady state
radiation-pressure force of the light and we have

ω0 =
2π c

L
+ ∆ . (1.43)

We can easily put up the following coupled set of equations in the frequency domain for the
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ITM ETM

laser

~a

~b

~c ~d

~e~f

x̂

Figure 2: Schematic plot of a Fabry-Pérot cavity. It is formed by two parallel mirrors:
the partly-transparent input mirror (ITM) and the high-reflective end mirror (ETM). The

ETM is movable in x̂ direction. The vectors ~a to ~f are quadrature vectors representing the
modulation fields at different locations.

quadrature vectors and the end mirror’s displacement operator x̂

~b = −ρITM ~a + τITM
~f , (1.44)

~c = ρITM
~f + τITM ~a , (1.45)

~d = ei ΩL/c

(
cos(∆L/c) − sin(∆L/c)
sin(∆L/c) cos(∆L/c)

)
~c , (1.46)

~e = ~d−
√

8 Pin ω0 τ 2
ITM

c2 ~ (1 + ρ2
ITM − 2 ρITM cos (2∆L/c))

(
0
−1

)
x̂(Ω) , (1.47)

~f = ei ΩL/c

(
cos(∆L/c) − sin(∆L/c)
sin(∆L/c) cos(∆L/c)

)
~e , (1.48)

x̂(Ω) = − 1

m(Ω2 − ω2
m)

√
8 Pin ω0 ~ τ 2

ITM

c2 (1 + ρ2
ITM − 2 ρITM cos (2∆L/c))

(1, 0)
(

~d + ~e
)

, (1.49)

where we have chosen ϑ without loss of generality. Eqs. (1.45)–(1.48) can be solved for ~c to
dependent only on ~a and x̂. Then we rewrite Eqs. (1.44)–(1.49) as

~b = − 1

ρITM

~a +
τITM

ρITM

~c , (1.50)

~c =

(
1− ρITM e2iΩL/c

(
cos(2∆L/c) − sin(2∆L/c)
sin(2∆L/c) cos(2∆L/c)

))−1

×
(

τITM ~a−
√

8 Pin ω0 τ 2
ITM ρ2

ITM e2iΩL/c

c2 ~ (1 + ρ2
ITM − 2 ρITM cos (2∆L/c))

(
sin(∆L/c)
− cos(∆L/c)

)
x̂(Ω)

)
,

(1.51)

x̂(Ω) = − 1

m(Ω2 − ω2
m)

√
8 Pin ω0 ~ τ 2

ITM e2iΩL/c

c2 (1 + ρ2
ITM − 2 ρITM cos (2∆L/c))

(cos(∆L/c), − sin(∆L/c)) ~c .

(1.52)

Now we first need to insert Eq. (1.51) into Eqs. (1.50) and (1.52). Then we expand simulta-
neously in τ 2

ITM and 1/c up to the zeroth order which is here a special kind of linearization.
When we then additionally use the definition of the cavity bandwidth γc = c τ 2

ITM/(2 L), we
find that Eq. (1.52) is totally equivalent to Eq. (1.32) and Eq. (1.50) to Eq. (1.31).
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1.2.3 Susceptibilities

Note that all equations of motion for the different optical-mechanical coupled – we will often
also use the term ’optomechanically coupled’ – systems analyzed in this thesis are obtained
by using the above method of propagating modulation fields through the optical device. As
outlined in Ref. [23], we can go one step further and in turn put this formulation back into
a formulation governed by a perturbed Hamiltonian and express the equations of motion
in terms of so-called susceptibilities. In fact, as shown in Ref. [18], any linear quantum
measurement can be described in this way.

First of all, we will gather the functions in front of ~a and x̂ in Eq. (1.32) which is equal to
the linearized Eq. (1.52), as well as in Eq. (1.31) which is equal to the linearized Eq. (1.50)
and give names to them – at this stage still without any meaning. Then we have

ŷζ(Ω) ≡ b̂1(Ω) sin ζ + b̂2(Ω) cos ζ

= Ŷ
(0)
1 (Ω) sin ζ + Ŷ

(0)
2 (Ω) cos ζ︸ ︷︷ ︸

Ŷ
(0)
ζ (Ω)

+
(
Rcav

Y1F (Ω) sin ζ + Rcav
Y2F (Ω) cos ζ

)
︸ ︷︷ ︸

Rcav
YζF (Ω)

x̂(Ω) , (1.53)

x̂(Ω) = Rcav
xx (Ω)

(
F̂

(0)
RP(Ω) + Rcav

FF (Ω) x̂(Ω)
)

. (1.54)

Here we have additionally assumed to perform a perfect balanced homodyne detection on
the output field at a certain frequency-independent angle ζ. Therefor the output field needs
to become superposed with another high-power light field, which has the same frequency
as the carrier field and is usually called the local oscillator, on a beam splitter. Then each
of the two outputs of the beam splitter is measured via a photo detection and the two
photocurrents are subtracted from each other. By adjusting the phase of the local oscillator,
the homodyne detection enables us to observe a specific quadrature of the output field given
by the homodyne angle. Then the measurement-output operator is given by ŷζ in Eq. (1.53).
In that equation we can already see that the operators

Ŷ
(0)
1 (Ω) = ycav

1 (Ω) â1(Ω) + ycav
2 (Ω) â2(Ω) , (1.55)

Ŷ
(0)
2 (Ω) = −ycav

2 (Ω) â1(Ω) + ycav
1 (Ω) â2(Ω) , (1.56)

account for the output quadrature operators in the case of a fixed end mirror, where we have
the coefficients

ycav
1 (Ω) =

Ω2 −∆2 + (γc/2)2

∆2 + (γc/2− i Ω)2 , (1.57)

ycav
2 (Ω) = − ∆γc

∆2 + (γc/2− i Ω)2 , (1.58)

while the operator
F̂

(0)
RP = f cav

1 (Ω) â1(Ω) + f cav
2 (Ω) â2(Ω) , (1.59)

in Eq. (1.54) describes the radiation-pressure forces which would act on the fixed end mirror.
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The remaining functions are given by

Rcav
xx (Ω) = − 1

m(Ω2 − ω2
m)

, (1.60)

Rcav
Y1F (Ω) =

1

~
f cav

2 (Ω) =

√
2 Pin ω0 γ2

c

L2 ~ (∆2 + (γc/2)2)

−∆

∆2 + (γc/2− i Ω)2 , (1.61)

Rcav
Y2F (Ω) =

1

~
f cav

1 (Ω) =

√
2 Pin ω0 γ2

c

L2 ~ (∆2 + (γc/2)2)

γc/2− i Ω

∆2 + (γc/2− i Ω)2 , (1.62)

Rcav
FF (Ω) =

2 Pin ω0 γc

L2 (∆2 + (γc/2)2)

−∆

∆2 + (γc/2− i Ω)2)
, (1.63)

which have been obtained by comparing Eq. (1.31) with Eq. (1.53) as well as Eq. (1.32) with
Eq. (1.54).

Now we will clarify the meaning of Eqs. (1.53) and (1.54), and especially the meaning
of the functions given in Eqs. (1.60)–(1.63). For this purpose, let us consider the following
Hamiltonian [23]

Ĥ = ĤM + ĤL−x̂ F̂RP︸ ︷︷ ︸
ĤI

. (1.64)

This should actually represent the Hamiltonian on a product Hilbert space H = HM ⊗HL

of two linear independent systems on the two different Hilbert spaces HM and HL which are
coupled by an explicitly given – in terms of the Schrödinger operators x̂ acting only on the
Hilbert space HM and F̂RP acting only on the Hilbert space HL – interaction Hamiltonian
ĤI. We can treat the interaction Hamiltonian as a perturbation of the total Hamiltonian.
The Heisenberg evolution of any observable ô can be written as a perturbation series of the
interaction Hamiltonian in the interaction picture ĤI(t) = −x̂(0)(t) F̂

(0)
RP(t) as

ô(t) = ô(0)(t) +
i

~

∫ t

−∞
dt1

[
ĤI(t1), ô(0)(t)

]

+

(
i

~

)2 ∫ t

−∞
dt1

∫ t1

−∞
dt2

[
ĤI(t2),

[
ĤI(t1), ô(0)(t)

]]
+ . . . (1.65)

where the superscript ’(0)’ denotes free evolution under ĤM or ĤL, respectively. For a
linear observable in a linear system having c-number commutators together with all other
operators of its Hilbert space, this perturbation series breaks down after the first order.
Thus, the linear operator x̂ acting only on HM as well as the linear operators ŷζ and F̂RP

acting only on HL, evolve as

ŷζ(t) = ŷ
(0)
ζ (t) +

i

~

∫ t

−∞
dt′ C−

YζF (t, t′) x̂(t) , (1.66)

F̂RP(t) = F̂
(0)
RP(t) +

i

~

∫ t

−∞
dt′ C−

FF (t, t′) x̂(t) , (1.67)

x̂(t) = x̂(0)(t) +
i

~

∫ t

−∞
dt′ C−

xx(t, t′) F̂RP(t) . (1.68)

Here the time-domain susceptibilities C−
YζF (t, t′), C−

FF (t, t′) and C−
xx(t, t′) are defined as

shown in Tab. 1 and depend only on the difference (t− t′) since ĤM and ĤL do not depend
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explicitly on time. Since the frequency-domain susceptibility is specially related to the time-
domain susceptibility, it is also given in Tab. 1. Then, in the frequency domain, Eqs. (1.66)–
(1.68) read

ŷζ(Ω) = Ŷ
(0)
ζ (Ω) + RYζF (Ω) x̂(Ω) , (1.69)

F̂RP(Ω) = F̂
(0)
RP(Ω) + RFF (Ω) x̂(Ω) , (1.70)

x̂(Ω) = x̂(0)(Ω) + Rxx(Ω) F̂RP(Ω) . (1.71)

Inserting Eq. (1.70) into Eq. (1.71) and with Rxx(Ω) = Rcav
xx (Ω) and RFF (Ω) = Rcav

FF (Ω) the
equivalence to Eq. (1.54) is not hard to spot. This also applies to Eq. (1.69) and Eq. (1.53)
which when using RYζF (Ω) = Rcav

YζF (Ω) are also totally equivalent.

Let us pause for the moment and recall what we have actually done. In particular, what
can we learn from this? We have shown that the equations of motion for the measurement
output (cf. Eq. (1.53)) and the mirror motion (cf. Eq. (1.54)) could have originated from
the Hamiltonian given in Eq. (1.64), where ĤM is the Hamiltonian of the free mirror and
ĤL the one of the free light. Free in the sense of before the coupling of the mirror and
the light. Furthermore, we can use a linearized version of the interaction Hamiltonian in
Eq. (1.18). As we have already seen right after setting up Eqs. (1.53) and (1.54), Ŷ

(0)
ζ and

F̂
(0)
RP describe the free evolution of the measurement output and the radiation-pressure force,

respectively. Furthermore, it has turned out that the functions in Eqs. (1.60)–(1.63) are the
susceptibilities of the system.

1.2.4 Optical spring effect

A closer look at Eq. (1.54) reveals that x̂(Ω) is subject to a frequency-dependent restoring
force Rcav

FF (Ω) x̂(Ω) which is usually called the optical spring [17]. A possible way of explaining
this phenomenon is by looking at the optical power inside the cavity and how it depends on
the detuning (cf. Fig. 3). The optical power has a maximum when the carrier is resonant

Detuning

Intra-cavity Power

optical anti-spring

Ωc > Ω0

optical spring

Ωc < Ω0

Figure 3: Intra-cavity power depending on the detuning of the cavity with respect to the
light. This function is called Airy peak. The differently shaded regions mark either optical
spring or optical anti-spring regimes.

in the cavity. When the cavity is detuned in such a way that it is too long for the carrier
to be able to resonate, i.e. ωc < ω0, we have the following situation: when the cavity
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length increases even more, the optical power decreases. Less optical power imposes a
weaker radiation-pressure force onto the mirror. But as the cavity becomes shorter, the
carrier frequency fits better into the cavity and the optical power increases. Therefore, the
radiation-pressure force also increases. A restoring force! Because the optical power lags
behind the cavity motion, the dynamics is anti-damped. Although this model provides a
very nice way of understanding the optical spring effect, it is not the whole story.

The similarity to a mechanical spring becomes more apparent when expanding Rcav
FF (Ω)

up to first order in Ω

Rcav
FF (Ω) ≈ − 2 Pin ω0 γc ∆

L2 (∆2 + (γc/2)2)2

(
1 + i Ω

γc

∆2 + (γc/2)2

)
≡ −K + i Ω Γ , (1.72)

where K and Γ are real constants. This weakly coupled approximation requires that optical
frequency scales, such as detuning ∆ and bandwidth γc, are dominating the dynamics. Note
that converting the equations of motion of a velocity-damped mechanical spring with a spring
constant K and a damping rate Γ as given by

m ẍ(t) = −K x(t)− Γ ẋ(t) + F (t) , (1.73)

into frequency domain, it just yields

−m Ω2 x(Ω) = −K x(Ω) + i Ω Γ x(Ω) + F (Ω) . (1.74)

Therefore, Eq. (1.72) gives rise to a damped spring term in the equations of motion of the
mirror (cf. Eq. (1.54)) which is not of mechanical but of optical origin. Often, a Rcav

FF (Ω) 6= 0
is also called ponderomotive rigidity. In the approximation given in Eq. (1.72), Rcav

FF (Ω) either
introduces a restoring force (K > 0) with an anti-damping (Γ < 0) or an anti-restoring force
(K < 0) with a damping (Γ > 0). This depends on the sign of the detuning ∆, i.e. on
whether the cavity is red or blue detuned with respect to the carrier. It is a peculiar feature
that the viscous damping does not introduce additional thermal fluctuation (higher than ~)
as one would expect from the fluctuation-dissipation theorem. This is simply because the
spring is established by ground state fields. One is therefore usually tempted to say that the
optical spring can introduce a non-dissipative damping force.

Another fact is that the optical spring modifies the resonant structure of the system.
The system has still two resonance frequencies but usually both, the mechanical ωm and the
optical ω0−∆−i γc/2, are shifted due to the coupling of mirror and light. The new resonance
frequency which originates from the mechanical resonance is usually called optomechanical
resonance frequency. Note that in the weakly coupled regime (cf. Eq. (1.72)) the optical
resonance is not shifted and the optomechanical resonance is just a sum, where m ω2

m →
m ω2

m + K and a mechanical damping γm would be shifted as m γm → m γm + Γ. Since also
the imaginary part of the resonances is shifted, the system can become unstable, i.e. the
damping turns into a positive build up. We have found that starting with a damped system,
it remains stable as long as the input power fulfills

Pin <
{ −L2ω2

m(∆2+(γc/2)2)
2

8ω0γc∆
if ∆ < 0

L2γm(∆2+(γc/2)2)(ω4
m+2ω2

m(γc/2(γc/2+γm)−∆2)+((γc/2)2+∆2)(∆2+(γc/2+γm)2))
8ω0∆(γc+γm)2

if ∆ > 0
.

(1.75)
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Note that a free mass, with ωm, γm → 0, is turned inescapably into an unstable system. For
an oscillator, there does exist a stable optical spring regime where an increase in mechanical
resonant frequency is associated with an increase in damping. But this regime requires that
the optical frequency scales are much lower than the mechanical frequency. Such a regime
was experimentally investigated e.g. in Ref. [107].

1.3 Quantum Brownian motion of a mechanical harmonic oscilla-
tor

A harmonic oscillator, even in its quantum-mechanical ground state, is never at rest due
to Heisenberg’s uncertainty principle (cf. Sec. 1.1). This fact requires the equal-time com-
mutator among the oscillator’s position and momentum to vanish. But using Eq. (1.54)
and p̂(Ω) = −i m Ω x̂(Ω) we calculate [x̂(t), p̂(t)] = 0. This tells us that Eq. (1.54) cannot
completely describe the Gaussian quantum dynamics of the harmonic oscillator.

One easy way out of this problem which takes the zero-point motion of an oscillator being
in a Gaussian state into account, is using the following strategy: let us introduce a small
loss – i.e. a damping γm which is small with respect to the oscillator’s eigenfrequency ωm

– into the center-of-mass dynamics of the mechanical harmonic oscillator and couple it to
some thermal bath which becomes quantum at the temperature of absolute zero. In this
way we obtain a Gaussian state in center-of-mass position and momentum of the oscillator
at temperatures greater zero, but with zero-point fluctuations at zero temperature. Note
that this formulation can of course not cover the regime of non-Gaussian number states with
occupation number unequal to zero.

Practically speaking, we will introduce an operator ξ̂(t) which acts as a force onto the
oscillator. Then we will appropriately design its two-point correlation function as well as
its commutator such as it is shown in Refs. [25, 26, 57, 60]. Therefor we need to modify
the Langevin equations of motion of the oscillator’s position – here as an example without
coupling to the light – to

m
d2

dt2
x̂(t) + mω2

m x̂(t) + γm p̂(t) = ξ̂(t) , (1.76)

where the momentum can be obtained from p̂(t) = m d/dt x̂(t). If we turn into frequency
domain and assign the following artificial commutator and correlation function to ξ̂(Ω)

[
ξ̂(Ω), ξ̂†(Ω′)

]
= 2 mγm ~Ω 2π δ(Ω− Ω′) , (1.77)

〈ξ̂(Ω) ξ̂†(Ω′)〉sym = 2 mγm ~ωm coth

(
~ωm

2 kBT

)
2π δ(Ω− Ω′) , (1.78)

where kB ≈ 1.3806504 10−23 J/K is the Boltzmann constant, the equal-time commutator
between position and momentum yields [x̂(t), p̂(t)] = i ~ (cf. Eq. (1.1)) as it is required from
quantum mechanics. Moreover, in Ref. [25] it has been proven that the above formulation
and using Eqs. (1.77) and (1.78) provides an adequate and consistent description of the
quantum Brownian motion of a weakly damped oscillator, i.e. with γm ¿ ωm. Note that
Eqs. (1.77) and (1.78) become in turn inconsistent with this formulation in a strongly damped
system. But throughout this thesis we will only consider weakly damped oscillators. At high
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temperatures with kBT À ~ωm, the state, which is usually called a classical or a thermal
state, is determined by

V thermal
xx =

kBT

mω2
m

, V thermal
pp = mkBT , (1.79)

and no correlation between position and momentum V thermal
xp = 0. Whereas in the limit of

temperature around the absolute zero, the oscillator reaches its ground state with position
and momentum width of

V ground
xx =

~
2 mωm

, V ground
pp =

~mωm

2
, (1.80)

and again V ground
xp = 0. Let us introduce the ground-state normalized operators

x̂norm =

√
2 mωm

~
x̂ , p̂norm =

√
2

mωm ~
p̂ , (1.81)

for the position and the momentum, respectively. With these operators we obtain a coor-
dinate system in which the oscillator’s ground-state squeezing ellipse becomes a circle. The
Wigner function of the oscillator’s ground state in such normalized coordinates can be found
in the left panel of Fig. 1. In the free-mass limit of the oscillator, i.e. with ωm → 0, it
becomes ambiguous to define a ground state, since here the state is totally fuzzy in position
with V ground

xx →∞ and simultaneously infinitely sharp in momentum with V ground
pp → 0.

Note that both, the ground and the thermal state, are independent of γm. In the limit of
a strong measurement present, which exerts a strong back-action force on the oscillator, its
zero-point motion can be neglected. In the same manner other classical forces acting onto
the oscillator allow to disregard the quantum Brownian motion.

1.4 Quantum entanglement

Deep-seated in the theory of quantum mechanics is the phenomenon that the state of two or
more objects may be linked together in such a way that each object can loose some individual
properties. Even when the objects are spatially separated, the quantum correlations are
so strong that one cannot describe one object without fully mentioning the other. This
situation is called quantum entanglement [109] – the term was chosen by Erwin Schrödinger
in 1935 – and the objects are said to be in an entangled state. At first glance this situation
seems to be incomprehensible and it caused the physicists Albert Einstein, Boris Podolsky
and Nathan Rosen to doubt whether quantum mechanics is complete at the time when
quantum mechanics was developed. They realized that the sum of the positions of two
objects commutes with the difference in their momenta. Therefore, these two degrees of
freedom do not need to fulfil any Heisenberg uncertainty relation and can both be measured
with arbitrary precision. Using the measurement performed at one of the objects to infer
the position or momentum onto the other, one could think that in principle one object can
have simultaneously well-defined position and momentum. This is strictly forbidden by the
Heisenberg uncertainty principle. Today this gedanken experiment is known as the Einstein-
Podolsky-Rosen paradox [47] which is in fact not a paradox with our current understanding
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of quantum physics. It is broadly accepted that the objects are not defined individually in
the entangled quantities but only with respect to each other.

Entanglement is simply a consequence of coherence and the superposition principle. The
characteristic nature of an entangled state is always its inseparability which also applies to
its density matrix. Probably the most well-known example of a maximally entangled state
in discrete variables is the Bell state

|Ψ〉 =
1√
2

(|0〉 |0〉+ |1〉 |1〉) , (1.82)

which is obviously non-separable. But it is not always so evident whether a state is entangled
or not – especially in the case of continuous variables. A famous criterion for the separability
of a density matrix is the positive partial transpose criterion proposed by Asher Peres [96]
and proved by the Horodeckis [69]. Most of the subsequent entanglement criteria are based
on this criterion.

Generally, entanglement could arise either when the two or more objects have a common
origin, when they have been in a strong quantum interacting or when they share a strong
common quantum force. The entanglement gets always lost again when the systems interact
with their environment. As an example, the mirror-light interaction from the previous
section certainly produces entanglement between mirror and output field variables. This
entanglement vanishes if for example the mirror is subject to too much thermal noise. In
Sec. 3.5 we will learn that the two end mirrors of a Michelson interferometer can be entangled
due to the fact that they share the common and differential mode radiation-pressure force.

In the following we will briefly review the condition for the non-separability of bipar-
tite two-mode Gaussian states and the condition for having bipartite two-mode Gaussian
Einstein-Podolsky-Rosen states. Note that we specify our discussion to the entanglement
between two mechanical objects in position and momentum. With slight modifications the
following discussion also applies to the entanglement in any other two conjugate variables
by taking the commutator among these variables into account. Then we can also describe
the entanglement between mechanical system variables and coherent laser beam variables as
used in Sec. 3.2.6 or between variables of two coherent laser beams as used in Sec. 2.4.2.

1.4.1 Separability of bipartite two-mode Gaussian states

For Gaussian states, things simplify a lot and entanglement can be discovered just by looking
at the corresponding covariance matrix which consists of the state’s second-order moments.
This is sufficient because two Gaussian states with the same covariance matrix but different
first-order moments are locally equivalent. Let us consider two Gaussian systems each with
position and momentum operator fulfilling [x̂(i), p̂(j)] = i ~ δij with i, j = 1, 2 (cf. Eq. (1.1)).
The total (4× 4) covariance matrix of the composed system can be written in block matrix
form as

Vtotal =

(
V11 V12

VT
12 V22

)
. (1.83)
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The Heisenberg uncertainty relation appears in the form of the requirement that the matrix
(Vtotal + i ~/2 J) has to be positive definite, where we have defined

J =




0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0


 . (1.84)

By applying so-called local linear unitary Bogoliubov operations, every (4 × 4) covariance
matrix can be transformed into its standard form

Vtotal →




Va 0 Vc1 0
0 Va 0 Vc2

Vc1 0 Vb 0
0 Vc2 0 Vb


 . (1.85)

These local linear unitary Bogoliubov operations are elements of the four dimensional sym-
plectic group. The transformation in Eq. (1.85) is done by a set of (2 × 2) rotation and
squeezing matrices applied separately on each Gaussian subsystem. Eq. (1.83) and Eq. (1.85)
are further connected by the relations

detV11 = V 2
a , (1.86)

detV22 = V 2
b , (1.87)

detV12 = Vc1 Vc2 , (1.88)

detVtotal =
(
VaVb − V 2

c1

) (
VaVb − V 2

c2

)
. (1.89)

Note that such a composed Gaussian state is pure if and only if detVtotal = ~4/16 as well
as detV11 = detV22 and Σ+ = ~2/2, where we have defined

Σ± = detV11 + detV22 ± 2 detV12 . (1.90)

The quantities Σ± are invariant under any transformation within the two single subsystems
if the transformation matrix has a determinate equal to one.

As shown in Refs. [46,113], a bipartite Gaussian state is separable if and only if the total
covariance matrix after partial transposition still fulfils the Heisenberg uncertainty relation.
Here partial transpose is equivalent to the matrix operation with Λ = diag (1, 1, 1, −1),
where the partially transposed covariance matrix is given by ΛVtotal Λ. Therefore, our state
is separable if and only if the matrix (ΛVtotal Λ + i ~/2 J) is positive definite. As this
is equivalent to demand that (Vtotal + i ~/2 ΛJΛ) is positive definite, and since ΛJΛ is
invariant under local linear unitary Bogoliubov operations, it is sufficient to care only about
the total covariance matrix in its standard form given in Eq. (1.85). As then calculated
in Refs. [46, 113] the partially transposed total covariance matrix still fulfils the Heisenberg
uncertainty relation if and only if the following relation is true:

~2

4
+

4

~2
detVtotal − Σ− ≥ 0 , (1.91)

Thus, a pure state is entangled if and only if detV12 < 0 which is equivalent to detV11 >
~2/4. In other words, if we have a pure bipartite two-mode Gaussian state, entanglement
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becomes unveiled by the fact that the Gaussian subsystems are not pure. The ’purity’ of
each subsystem is lost due to the correlation among these two subsystems.

A widely used quantitative measure for the strength of the entanglement within an ar-
bitrary bipartite system, the logarithmic negativity, was introduced in Ref. [123]. It is an
upper bound for distillable entanglement and because it is possible to convert it into a bit
rate for entanglement channels, it becomes very important in quantum information theory.
For a bipartite two-mode Gaussian state the logarithmic negativity reads

EN = max[0,− log2 σ−] , (1.92)

where

σ− =

√
1

2~2

(
Σ− −

√
Σ2− − 4 detVtotal

)
. (1.93)

The higher the value of EN , the stronger the state is entangled.

1.4.2 Bipartite two-mode Gaussian Einstein-Podolsky-Rosen states

A stronger requirement on the correlations between the two parts of a bipartite two-mode
Gaussian state gives the request for the state not only being non-separable but also repre-
senting an Einstein-Podolsky-Rosen-paradox. Let us again consider two Gaussian systems
each with position and momentum operator and define the common mode operators by
x̂c ≡ x̂1 + x̂2 and p̂c ≡ (p̂1 + p̂2)/2 as well as the differential mode operators by x̂d ≡ x̂1− x̂2

and p̂d ≡ (p̂1 − p̂2)/2. Then we have the commutation relations [x̂c, p̂c] = [x̂d, p̂d] = i ~ and
[x̂c, p̂d] = [x̂d, p̂c] = 0. The condition for an Einstein-Podolsky-Rosen state simply reads

V c
xx V d

pp <
~2

4
or V d

xx V c
pp <

~2

4
. (1.94)

It is easy to accept that a bipartite two-mode Gaussian state fulfilling Eq. (1.94) violates
Heisenberg uncertainty relation after partial transposition – recall that partial transposition
causes V c

pp ↔ V d
pp. Furthermore, a state fulfilling Eq. (1.94) exactly meets the condition for

the gedanken experiment as proposed by Einstein, Podolsky and Rosen.

Note that there is a generalization of the condition for an Einstein-Podolsky-Rosen state
by Reid [105]. He suggested to look at two arbitrary orthogonal quadratures within the two
subsystems. This concept is commonly used in optics [11], where the amplitude and the
phase quadrature of a coherent laser beam are not naturally defined as the position and
the momentum of a mechanical system usually are. Other people have suggested to extend
the concept of Einstein-Podolsky-Rosen entanglement to something which they refer to as
steering [73].
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2 Part I: Quantum non-demolition gravitational-wave detectors

Laser interferometer gravitational-wave detectors are probably the most sensitive devices to
the displacement of a macroscopic and heavy object the human mankind has ever built.
There is an enormous effort to increase the quality of the technical components of these
detectors even more – such as the mirror and beam splitter materials, the suspension systems,
the stability of the laser source, etc. – in order to decrease the amount of classical noise.
Already in the next generation of gravitational-wave detectors, such classical noise sources
will have taken a back seat at almost all frequencies. Then the new goal will be to reduce
the quantum noise which is introduced by the light’s quantum nature into the test-mass
motion. This can be achieved by using different quantum non-demolition [16, 20] methods.
Such methods have been discussed in many works where either the currently used topology,
the Michelson interferometer, is proposed to be extended – for a subtotal list see Tab. 2 –
or on the other hand completely new optical configurations have been introduced.

It is well-known that the accuracy of observing the differential mode of motion between
the two end mirrors in a simple Michelson interferometer via the modulation fields leak-
ing out at the dark port is limited by the free-mass standard quantum limit – as given in
Eq. (1.17), where m has to be replaced by the reduced mass m/2. But the quantum noise can
already surpass this limit when using a conventional balanced homodyne detection scheme
instead of a standard photo detection (cf. e.g. Ref. [78]). Recall that the quantum noise of
a gravitational-wave detector is composed of radiation-pressure noise dominating the spec-
trum at low frequencies and photon shot noise which dominates at high frequencies. The
radiation-pressure noise is caused by amplitude fluctuations of the light. These fluctuations
can in turn be observed via the homodyne detection at the dark port. Choosing the homo-
dyne phase appropriately, the radiation-pressure noise can be completely removed from the
output – at least at a single sideband frequency. In Ref. [78] it has been further proposed to
filter the output light with the help of appropriately designed filter cavities before perform-
ing the homodyne detection. The authors have shown that two lossless filter cavities are
sufficient to completely remove the radiation-pressure noise from the output. The remaining
quantum noise, the photon shot noise, can then be lowered by increasing the optical power.
Another idea is to inject squeezed (vacuum) states into the interferometer’s dark port [27].
Again in Ref. [78] it was shown that when filtering the squeezing before sending it into the
interferometer, the total quantum noise spectrum can be reduced by the squeezing factor.
It has already been successfully experimentally demonstrated that this can improve the dis-
placement sensitivity of a power- and signal-recycled table-top Michelson interferometer as
reported in Ref. [121]. There are a number of other interesting ideas to further increase the
sensitivity of quantum-noise limited gravitational-wave detectors such as: using intra-cavity
readout schemes [13, 15, 76]; realizing time-domain back-action evasion techniques by either
performing a stroboscopic measurement [19] or a quantum variational measurement [127];
reading out the test-mass speed [14]; developing optical speed-meter topologies [77] by either
adding a sloshing cavity [99, 100] to a Michelson interferometer or by using a Sagnac topol-
ogy [31, 92]; inventing double readout schemes [103, 104]; constructing displacement noise
free interferometers [32, 33, 74]; and finally inserting a nonlinear Kerr media into the arm
cavities [102].

In this chapter, we will start in Sec. 2.1 with reviewing one of the quantum non-demolition
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scheme benefit frequency band Refs.

balanced homodyne push quantum noise down at a certain frequency e.g. [78]
detection to shot noise level in radiation-pressure

dominated regime

variational output push quantum noise down in radiation-pressure e.g. [78]
to shot noise level dominated regime

squeezed input at reduce quantum noise at certain frequency e.g. [27,78]
fixed squeeze angle by the squeezing factor

squeezed input with reduce quantum noise overall frequencies e.g. [63,78]
frequency-dependent by the squeezing factor

squeeze angle

signal recycling increase sensitivity around resonances [22–24]

speed meter quantum noise in radiation-pressure [14,77,99]
parallel to SQL dominated regime [31,92,100]

double carrier increase sensitivity at low frequencies [103,104]
and around resonances

Table 2: Examples of quantum non-demolition add-ons for a simple Michelson interferometer.
Note that combinations among the rows of this table are also possible.

techniques from Tab. 2, namely the signal-recycled Michelson interferometer configuration
where the signal-recycling cavity is detuned. In Sec. 2.2 we will explore a completely different
optical topology, the Sagnac interferometer as one representative of the group of speed-meter
topologies, also equipped with a detuned signal-recycling cavity. Then in Sec. 2.3 we will
recall the transducer configuration, an interesting application to an interferometer with a
closed signal-recycling port, and compare the position-meter with the speed-meter topology.
In Sec. 2.4 we will explore a special version of a ponderomotive squeezer, namely the double-
optical-spring ponderomotive squeezer. This device is intended to provide a quite unorthodox
way of generating squeezed vacuum input for a gravitational-wave detector.

2.1 Signal-recycled Michelson interferometer

Let us now start our discussion with reviewing the extensively theoretically [22–24] as well
as experimentally [87, 114] investigated Michelson interferometer with resonant cavities in
the arms but a detuned signal-recycling cavity as depicted in Fig. 4. The signal-recycling
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topology was originally proposed by Meers in Ref. [85]. An additional mirror, the so-called
signal-recycling mirror, is placed at the dark output port of the interferometer, reflecting
parts of the signal modulation fields back into the interferometer and forming a signal-
recycling cavity together with the input mirrors of the interferometer’s arm cavities. The
signal, which is the arm cavity mirror’s differential displacement, becomes recycled which
means that it is basically amplified due to an increase in interaction time between the light
and the mirrors. When the signal-recycling cavity is neither resonant nor anti-resonant with
respect to the carrier frequency, the optical configuration is called detuned signal-recycling.
Even though the circulating optical power in the arm cavities of a Michelson interferom-
eter with detuned signal-recycling is not modified, Buonanno and Chen have shown that
the detuned signal-recycling technique also induces an optical spring effect on the differen-
tial motion of the arm cavities mirrors [22]. The signal-recycling technique in a Michelson

laser

ETM

ITM

ITM ETM

PRM

SRM

BS

Figure 4: Schematic plot of a power- and signal-recycled Michelson interferometer with arm
cavities. The laser light is split at the beam splitter (BS) which has become enhanced by
the power-recycling cavity which is formed by the power-recycling mirror (PRM) and the
input mirrors (ITM). The ITMs direct each of the beams into the north and the east arm
cavity, respectively, which they form together with the high-reflective end mirrors (ETM).
The signal-recycling mirror (SRM) is placed behind the dark port and reflects parts of the
output back into the interferometer.

interferometer without arm cavities, was already successfully tested in the 30 m prototype
gravitational-wave detecor in Garching, Germany [54,66]. Furthermore, the optical spring ef-
fect has been demonstrated in the 40m prototype gravitational-wave detecor [87] located on
the campus of the California Institute of Technology, Pasadena. Note that also the GEO600
detector – located near Hanover, Germany – as the only first generation detector already
has implemented a signal-recycling cavity which can in principle be detuned. But here, it is
much harder to see the optical spring effect probably because the GEO600 detector, just like
the 30m prototype detector in Garching, is not equipped with arm cavities. Motivated by
the good results obtained at the 40m prototype, the signal-recycling technique is planned
to be installed in the next generation of detectors such as the Advanced LIGO detectors in
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order to make use of the optical spring effect. The Advanced LIGO detectors are planned to
replace the two long – out of the three existing – LIGO detectors in 2013. One of these long
initial LIGO detectors is located in Hanford, Washington and the other one is located in Liv-
ingston, Louisiana. While the delivery of the first components to the two sites will already
start next year in 2009, the decommissioning of initial LIGO and simultaneously the start of
installation of Advanced LIGO is planned to be in 2011 [2]. Throughout this chapter we will

mirror mass m 40 kg
circulating carrier power P 800 kW

laser wavelength 2π c/ω0 1064 nm
cavity length L 4 km

cavity half bandwidth γ 2π 15 Hz

Table 3: Advanced LIGO baseline-design parameter values used for the numerical calcula-
tions.

use Advanced LIGO parameters [1]: the baseline design envisages 4 km long arm cavities –
the vacuum tubes are borrowed from the current operating initial LIGO detectors – with
a half-bandwidth of 2π 15Hz, producing a circulating laser beam with an optical power of
800 kW at a wavelength of 1064 nm incident on 40 kg heavy test-mass mirrors which form
the arm cavities. These parameters are also listed in Tab. 3.

Buonanno and Chen have shown theoretically in Ref. [24] that it is possible to find a
simple map between the following two systems: (i) the differential motion of the arm cavity
mirrors in a Michelson interferometer with detuned signal-recycling and the dark port output
fields and (ii) the motion of the end mirror in a single cavity with only this end mirror movable
and the cavity output fields. Furthermore, it was shown in Ref. [64] that an arm-cavity
equipped interferometer’s output is only negligible influenced by the motion of the beam
splitter. This is due to the fact that the carrier light incident on the beam splitter is weak
and the arm cavities prevent fluctuations from building up. In the Michelson interferometer
with detuned signal-recycling, the optical spring can shift the mechanical eigenfrequency
of the test masses’ differential motion from the pendulum frequency to the optomechanical
resonance frequency. This optomechanical resonance and the optical resonance appear both
as dips in the noise spectral density of the interferometer. Therefore, the sensitivity towards
gravitational waves can be increased dramatically around these resonances, even allowing
to surpass the free-mass standard quantum limit. The price one has to pay is that the
sensitivity is lost at frequencies lower and higher than these two resonances.

2.1.1 Test-mass dynamics and measurement output

Let us recall that the Heisenberg equations of motion in the frequency domain for the total
differential mode of motion

x̂ = (x̂N
ETM − x̂N

ITM)− (x̂E
ETM − x̂E

ITM) (2.1)
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between the mirrors in the north and the east arm, as well as for the measurement-output
quadrature operator ŷζ at a homodyne detection angle ζ, read as follows

ŷζ = Ŷ
(0)
1 (Ω) sin ζ + Ŷ

(0)
2 (Ω) cos ζ +

[
RMich

Y1F (Ω) sin ζ + RMich
Y2F (Ω) cos ζ

]
x̂ , (2.2)

x̂ = RMich
xx (Ω)

[
F̂

(0)
RP(Ω) + RMich

FF (Ω) x̂
]

+ h L . (2.3)

Here the operators Ŷ
(0)
1 (Ω) = yMich

1 (Ω) â1 + yMich
2 (Ω) â2 and Ŷ

(0)
2 (Ω) = −yMich

2 (Ω) â1 +
yMich

1 (Ω) â2 account for the shot noise in case of fixed mirrors, where we have (cf. Ref. [24])

yMich
1 (Ω) =

λ2 − (ε2 − Ω2)

(Ω− λ + i ε)(Ω + λ + i ε)
, (2.4)

yMich
2 (Ω) =

2λ ε

(Ω− λ + i ε)(Ω + λ + i ε)
, (2.5)

while the operator F̂
(0)
RP = fMich

1 (Ω) â1 + fMich
2 (Ω) â2 describes the radiation-pressure forces

which would act on fixed mirrors caused by the incoming vacuum fields at the dark port.
Here â1 and â2 are the amplitude and phase quadrature operators, respectively, of the in-
coming vacuum fields at the dark port [78] obeying the correlation as given in Eq. (1.36).
Furthermore, we have assumed the gravitational wave is incident with an amplitude de-
scribed by the function of sideband frequency, h(Ω), from right above the interferometer
plane with a polarization that maximizes the response of the Michelson interferometer, the
plus polarization.

The susceptibilities of the system are given by [24]

RMich
Y1F (Ω) =

1

~
fMich

2 (Ω) =

√
ε θ m

2 ~
λ

(Ω− λ + i ε)(Ω + λ + i ε)
, (2.6)

RMich
Y2F (Ω) =

1

~
fMich

1 (Ω) = −
√

ε θ m

2 ~
ε− i Ω

(Ω− λ + i ε)(Ω + λ + i ε)
, (2.7)

RMich
FF (Ω) =

θ m

4

λ

(Ω− λ + i ε)(Ω + λ + i ε)
, (2.8)

where θ = 8 P ω0/(mL c) has units of frequency cubed. Here P refers to the circulating
optical power in each arm cavity and L is the length of these arm cavities. The carrier with
angular frequency ω0 is resonant in the arm cavities and when the mirrors are held fixed,
the optical resonant frequency of the differential optical mode that is closest to the carrier
frequency is given by ω0 − λ− i ε, where, in terms of interferometer parameters, λ and ε are
determined by (cf. Ref. [24])

λ = γ
2 ρSR sin 2φ

1 + ρ2
SR + 2 ρSR cos 2φ

and ε = γ
1− ρ2

SR

1 + ρ2
SR + 2 ρSR cos 2φ

. (2.9)

Here ρSR is the signal-recycling mirror’s amplitude reflectivity, φ the detuning phase of the
carrier frequency with respect to the signal-recycling cavity and γ the half-bandwidth of the
arm cavities. When fixing the characteristic frequency 3

√
θ, this half-bandwidth γ determines

how much optical power has to pass the beam splitter which is actually equal to the optical
input power multiplied by the power-recycling gain.
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In the free-mass limit assuming a very low eigenfrequency of the suspension-induced
pendulum, the mechanical susceptibility of the differential motion with an effective mass
m/4 is given by

RMich
xx =

4

m Ω2
. (2.10)

Recall that the mechanical as well as the the optical resonances are shifted due to the optical
spring and the differential motion of the arm cavity mirrors turns inescapably into an unstable
system. Thus, this degree of freedom needs to be stabilized. But as Buonanno and Chen have
shown in Ref. [23], one can cope with the instability by incorporating a linear feedback control
system which ideally would not modify the interferometer’s sensitivity towards gravitational
waves.

2.1.2 Sensitivity towards gravitational waves

The equations of motion Eqs. (2.2) and (2.3) can be gathered into an input-output relation.
Namely, if we revert to the quadrature vector notation from Sec. 1.2.2 and define the input
quadrature vector ~a = (â1, â2)

T , the equations of motion can be put into the following form

ŷζ = (sin ζ, cos ζ)
(
TMich

quant ~a + ~tMich
h h L

)
. (2.11)

The Michelson interferometer’s quantum-noise-transfer matrix TMich
quant linearly transforms the

quantum noise into the output, while the signal-transfer vector ~tMich
h linearly transforms the

gravitational-wave signal (hL) into the output. Both can be deduced from Eqs. (2.2) and
(2.3) as

TMich
quant =

(
yMich

1 yMich
2

−yMich
2 yMich

1

)
+

RMich
xx

1−RMich
xx RMich

FF

(
RMich

Y1F

RMich
Y2F

) (
fMich

1 , fMich
2

)
, (2.12)

~tMich
h =

1

1−RMich
xx RMich

FF

(
RMich

Y1F

RMich
Y2F

)
. (2.13)

Then the Michelson interferometer’s quantum-noise limited sensitivity to gravitational waves
can be inferred from its single-sided noise spectral density given by

SMich
h (Ω) =

(sin ζ, cos ζ)TMich
quant

(
TMich

quant

)†
(sin ζ, cos ζ)T

L2 (sin ζ, cos ζ)~tMich
h

(
~tMich
h

)†
(sin ζ, cos ζ)T

. (2.14)

Turning out the signal-recycling technique by setting ρSR = φ = 0 which causes λ = 0 and
ε = γ (cf. Eq. (2.9)) and performing a phase quadrature detection with ζ = 0, then SMich

h (Ω)
is limited from below by the spectral density of the Michelson interferometer’s free-mass
standard quantum limit which is given by

SSQL
h (Ω) =

8 ~
m Ω2 L2

. (2.15)

Note that Eq. (2.15) is equal to Eq. (1.17) – but at the Michelson interferometer’s reduced
mass m/4 and divided by L2 due to the h-referredness.

If we plot SMich
h (Ω) versus sideband frequency – as done for two example configurations

in Fig. 5 – one can clearly spot the resonance frequencies as dips in the noise curves: at
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Figure 5: Example quantum noise spectral densities for a Michelson interferometer with de-
tuned signal-recycling versus frequency f = Ω/(2π). Here basically Advanced LIGO param-
eter are used (cf. Tab. 3). The free optical resonance frequency for broadband configuration
is at λ = 2π 290 Hz and ε = 2π 120 Hz while the homodyne detection angle is ζ = 0.7 π. The
narrowband configuration has λ = 2π 197 Hz and ε = 2π 51 Hz and the phase quadrature is
detected, i.e. ζ = 0. The black line denotes the free-mass standard quantum limit (SQL).

lower frequencies the optomechanical resonance and at higher frequencies the shifted opti-
cal resonance. The position of these resonances in the frequency band depends especially
on the free optical resonances from Eq. (2.9) and the characteristic frequency 3

√
θ which

is proportional to the cubic root of the optical power. The depth of the optomechanical
resonance frequency additionally depends on the homodyne detection angle. Varying these
parameters can shape the quantum noise curves differently: the broadband configuration in
Fig. 5 is good for the detection of sources emitting a gravitational-wave spectrum which is
spread over a wide frequency band while the narrowband configuration is highly sensitive
in a specific frequency band, namely around the optomechanical resonance frequency, and
looses sensitivity especially in the low frequency regime. Note that the deep dip in the
narrowband noise curve, produced by the optomechanical resonance, is usually covered by
classical noise anyway. However, the broadband configuration as plotted in Fig. 5 is actu-
ally the optimal choice – if a realistic classical noise budget is included – for the detection
of inspiraling neutron star binaries which produce an analytically well-known and intense
gravitational-wave signal following the power law of h(f) ∝ f−7/6. Full particulars about the
optimization towards the signal of inspiraling neutron star binaries and the classical noise
budget used can be found in Sec. 2.2.4. The broadband configuration is usually also called
the Advanced LIGO configuration.

2.2 Signal-recycled Sagnac interferometer

Originally, the interferometric experiment performed by Georges Sagnac in 1913 has been
intended to observe the correlation of angular momentum and phase-shift [106]. Today, such
an experiment has become a standard interferometer setup which is still mainly used to sense
rotations, for example as the reference for modern inertial guidance systems. Until now, a
Sagnac interferometer has never been rigourously employed experimentally as a large-scale
detector for gravitational waves. Using a Sagnac interferometer as a large-scale gravitational-



2 PART I: QUANTUM NON-DEMOLITION GRAVITATIONAL-WAVE DETECTORS Page 34

wave detector can only be considered as a third-generation detector because it requires to
change the optical layout – the next generation of gravitational-wave detectors are already
planned to use the Michelson topology. People in the gravitational-wave community are
probably discouraged of the Sagnac design because of the following reasons: on the one hand
this configuration might be more difficult to realize due to more optical components involved;
people have much more experiences using Michelson interferometers; and there are some
disadvantageous noise properties present as its low tolerance to the beam splitter reflectivity
error and the beam splitter tilt and a slightly higher sensitivity to optical losses [43] than
in a Michelson interferometer. On the other hand, several clever designs on how to realize a
Sagnac interferometer with a simpler optical layout have been proposed recently: for example
how to turn a Michelson interferometer into a Sagnac by using polarizing optics [84]. And
it is nevertheless always advisable to theoretically explore other configurations such as the
Sagnac interferometer. In Ref. [92], we have extended the analysis carried out in Ref. [31] by
adding a detuned signal-recycling cavity to a Sagnac interferometer and have studied first its
ideal quantum noise performance while then introducing classical noise and optimizing the
quantum noise towards the detection of specific gravitational-wave sources. Note that our
analysis is quite general and can also be applied to the whole group of so-called speed-meter
configurations (cf. Tab. 2).

Fig. 6 shows a Sagnac interferometer as we will consider it in this section: it has two arms
which are folded in order to make the Sagnac interferometer sensitive to length changes which
is indispensable for the detection of gravitational waves [115]. The two arms are formed by

ITM

ITM

laser

PRM

SRM

BS

Figure 6: Schematic plot of a power- and signal-recycled Sagnac interferometer with folded
ring-cavity arms. The laser light, coming from the left, passes the power-recycling mirror
(PRM) and then becomes split into two beams at the beam splitter (BS), where the right
circulating (green) part gets inducted through the input mirror (ITM) into the north arm
first and then travels through the east arm while a left circulating (blue) part travels the
other way round. The signal-recycling mirror (SRM) reflects back parts of the output into
the interferometer.

ring cavities consisting each of four suspended mirrors: the input mirror and the mirror
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located nearby as well as two far end mirrors. Therefore, the north (east) arm cavity is
basically spanned in south-north (west-east) direction with an arm length L. One could also
think about even fixing the small distance of the input mirror and the mirror located nearby
as well as the distance between the two far end mirrors. This could for example be realized
by bounding them on a common suspended platform. Ring cavities can also be realized
in an triangular shape as considered in Ref. [31]. The light is split into two beams at the
beam splitter and travels through the ring cavities in opposite order and opposite direction.
The mirror placed at the dark port realizes the signal-recycling technique just as for the
Michelson interferometer (cf. Sec. 2.1).

The signal-recycled Sagnac interferometer has two optical resonances which are shifted
with increasing laser power due to the stronger optomechanical coupling. It has turned out
that in the free test-mass limit, i.e. with a low eigenfrequency of the mechanical pendu-
lum created by the suspension of the mirrors, this mechanical resonance frequency is not
shifted. That means that we do not find an optomechanical resonance produced by an opti-
cal spring effect as it is the case in a Michelson interferometer with detuned signal-recycling
(cf. Sec. 2.1). The test masses’ dynamics is therefore not modified – they remain approx-
imately free but are subject to an optical inertia which increases the dynamical reduced
mass of the mirrors [92]. This is due to the fact that a Sagnac interferometer configuration
as depicted in Fig. 6 is at low frequencies sensitive to the speed of its test-masses [31] –
exactly as in a speed meter [77, 99, 100]. The idea of using speed meters in the context of
quantum measurements was to totally avoid the quantum back action and to build a real
quantum non-demolition device. At first glance it seemed to be very promising to reach
this goal by measuring the speed because usually the momentum as a conserved quantity
is proportional to speed. Measuring a conserved quantity does not introduce back-action
noise (cf. Sec. 1.1.2). But if the detector couples to speed, one can show that the conjugate
momentum is actually not proportional to speed [75]. Nevertheless, a speed meter is able to
surpass the standard quantum limit by removing parts of the radiation-pressure noise from
the measurement output. Therefore, using a speed-meter topology we are actually not able
to avoid the back action itself but can lower the back-action noise.

The optical inertia effect can easily be understood by following the next three hand-
waving arguments: The phase gained by a laser beam is proportional to the time-dependent
displacement in the cavity. The right circulating beam in the Sagnac interferometer feels
the total length change of the north arm cavity first and then – after some time delay
tarm ≈ 1/γ = τ 2

ITM c/(4 L), where τITM is the amplitude transmissivity of the input mirror
and L the cavity length – the one of the east arm cavity, while the right circulating beam
travels through the arm cavities in opposite direction. These facts read

δaR
2 ∼ δxN(t) + δxE(t + tarm) , δaL

2 ∼ δxE(t) + δxN(t + tarm) . (2.16)

If we take the difference between these two phase changes and expand in powers of tarm, we
find that at first order the output phase at the beam splitter is proportional to the speed of
the differential displacement in the two arms

δa2 = δaL
2 − δaR

2 ∼ δẋN(t)− δẋE(t) + . . . , (2.17)

which is simply the speed-meter effect. Similarly, the fluctuating part of the radiation-
pressure force in the north arm is caused by amplitude fluctuations in the right circulating
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beam and additionally by amplitude fluctuations in the left circulating beam which has
already traveled through the east arm and is therefore time delayed by tarm. And again vice
versa for the radiation-pressure force in the east arm. Therefore, we have

δFN
RP ∼ δaR

1 (t) + δaL
1 (t + tarm) , δFE

RP ∼ δaL
1 (t) + δaR

1 (t + tarm) . (2.18)

Again, after Taylor expansion, the difference of the radiation-pressure force in both arms is
also at first order proportional to the time derivatives of the amplitude fluctuations in right
and left circulating beams

δFN
RP − δFE

RP ∼ δȧL
1 (t)− δȧR

1 (t) + . . . . (2.19)

In the detuned signal-recycling cavity, the amplitude and the phase quadrature of the mod-
ulation fields become mixed and then together with Eq. (2.17) and with Eq. (2.19) we learn
that the radiation pressure depends on the acceleration of the mirrors. But on the other
hand the radiation-pressure force itself drives together with other (external) forces the mirror
motion. The equations of motion becomes

m
(
δẍN − δẍE

) ∼ δFN
RP − δFE

RP + Fexternal ∼ mopt

(
δẍN − δẍE

)
+ Fexternal . (2.20)

Thus, the radiation pressure introduces the extra mass term mopt. Since the above treatment
was quite general, it shows that the optical inertia effect is common to all detuned speed-
meter topologies. Note that this effect will be stronger at time-scales much higher than
the arm-cavity storage time tarm or equivalently in the frequency domain, at frequencies
much lower than the arm cavity half-bandwidth γ. Otherwise the higher order terms in tarm

become more significant in the dynamics. Therefore, increasing γ will certainly facilitate the
observation of the optical inertia effect. Later on in this section, we will prove this optical
inertia effect in the signal-recycled Sagnac interferometer more rigourously.

2.2.1 Free resonant structure

The signal-recycled Sagnac interferometer consists of two coupled resonators. Thus we can
expect to find two optical resonance frequencies in the differential optical mode. The con-
dition for such an optical resonance is simply that the field, which has been propagated
through the whole interferometer plus signal-recycling cavity, interferes constructively with
the in-coming field. We find that for a carrier with frequency ω0 the differential optical
mode without optomechanical coupling – corresponding to fixed mirrors – is resonant at the
frequencies (that are closest to the carrier frequency) of ω0 + λ1, 2 − i ε1, 2 with

λ1, 2 = γ
±2

√
ρSR cos φ

1 + ρSR ± 2
√

ρSR sin φ
and ε1, 2 = γ

1− ρSR

1 + ρSR ± 2
√

ρSR sin φ
, (2.21)

where ρSR is the signal-recycling mirror amplitude reflectivity, φ = ω0l/c stands for the
detuning phase of the signal-recycling cavity of length l with respect to the carrier frequency
ω0. Furthermore, γ denotes the ring cavity’s half-bandwidth. Note that the two real and
the two imaginary parts of the two resonance frequencies are related by

λ2 = −γ2 λ1

λ2
1 + ε2

1

and ε2 = γ2 ε1

λ2
1 + ε2

1

, (2.22)
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which is still true when exchanging ’1’ and ’2’ in the subscripts. The relations in Eq. (2.22)
become for instance important when optimizing the interferometer’s sensitivity with respect
to certain gravitational-wave sources. As we will see later on, the noise spectral density of
the interferometer can be expressed in terms of these resonance frequencies. A grid search
over the parameter space (ρSR, φ) is much less efficient than over the resonance frequencies
themselves because an equally spaced φ gives a strongly weighted (λ1, ε1, λ2, ε2) space. With
the help of Eq. (2.22), we can perform a grid search over the parameter space (λ1, ε1). But
keep in mind that there is a third independent parameter, namely the cavity half-bandwidth
γ, which crucially influences the relative position of the two resonances if we have fixed λ1

and ε1.

We can infer two extreme examples from Eq. (2.22): the degenerated resonance case,
where

λ2 = −λ1 and ε2 = ε1 , (2.23)

exists only if λ2
1 + ε2

1 = γ2 which is in turn only true for sin φ = 0, i.e. for a non-detuned
signal-recycling cavity. Whereas the well-separated resonance case

|λ1| À |λ2| and ε1 À ε2 , (2.24)

is available for |λ1|, ε1 À γ, i.e. for a strong signal-recycling with a high reflectivity of the
signal-recycling mirror and sin φ ≈ −1.

2.2.2 Test-mass dynamics and measurement output

Let us have a look at the Heisenberg equations of motion in the frequency domain obtained
by using the method introduced in Sec. 1.2.2. After performing the relevant calculations we
have found that it can be written exactly in the same format as in the case of a detuned
cavity (cf. Eqs. (1.53) and (1.54)). Here we consider the total differential mode of motion
x̂ = x̂N

breath − xE
breath between all the mirrors which is the difference in north and east arm

cavity’s breathing mode. The breathing mode gives the total expansion of the cavity: here
all mirrors move in normal direction with respect to their surface, either all inwards or all
outwards with respect to the cavity’s geometry. Then we have

ŷζ = Ŷ
(0)
1 (Ω) sin ζ + Ŷ

(0)
2 (Ω) cos ζ +

(
RSag

Y1F (Ω) sin ζ + RSag
Y2F (Ω) cos ζ

)
x̂ , (2.25)

x̂ = RSag
xx (Ω)

(
F̂

(0)
RP(Ω) + RSag

FF (Ω) x̂ + F̂external

)
, (2.26)

where the first equation describes the measurement-output operator ŷζ at a homodyne de-
tection angle ζ. In the language of Sec. 1.2.3, the operators

F̂
(0)
RP = fSag

1 (Ω) â1 + fSag
2 (Ω) â2 , (2.27)

Ŷ
(0)
1 (Ω) = ySag

1 (Ω) â1 + ySag
2 (Ω) â2 , (2.28)

Ŷ
(0)
2 (Ω) = −ySag

2 (Ω) â1 + ySag
1 (Ω) â2 , (2.29)

are free quantities, i.e. before mirrors and light are coupled. Here â1 and â2 are the amplitude
and phase quadrature operators, respectively, of the incoming vacuum fields at the dark
port [78] obeying the correlation as given in Eq. (1.36). As Buonanno and Chen have done
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for the signal-recycled Michelson interferometer in Ref. [24], we have also managed to express
each coefficient function in Eqs. (2.27)–(2.29), i.e. ySag

1 , ySag
1 , fSag

1 and fSag
2 , as well as the

susceptibilities RSag
FF , RSag

Y1F and RSag
Y2F from Eqs. (2.25) and (2.26) totally in terms of the optical

resonances as given in Eq. (2.21) and the characteristic frequency 3
√

θ which is defined below.
Then the coefficient functions and the susceptibilities read as follows

ySag
1 (Ω) = − (Ω2 + ε2

1 − λ2
1) (Ω2 + ε2

2 − λ2
2) + 2 (ε2

2λ
2
1 + ε2

1λ
2
2)

(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)
, (2.30)

ySag
2 (Ω) = − 2 Ω2 (ε1 + ε2) (λ1 + λ2)

(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)
, (2.31)

fSag
1 (Ω) = ~ RSag

Y2F (Ω) =
−i Ω

√
mθ ~ (ε1 + ε2) /2 ((ε1 − i Ω) (ε2 − i Ω)− λ1λ2)

(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)
,

(2.32)

fSag
2 (Ω) = ~ RSag

Y1F (Ω) =
−Ω2

√
m θ ~ (ε1 + ε2) /2 (λ1 + λ2)

(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)
,

(2.33)

RSag
FF (Ω) = − mθ Ω2 (λ1 + λ2)

4 (Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)
. (2.34)

Since there are eight movable mirrors involved we have a mechanical susceptibility of

RSag
xx (Ω) = − 8

m Ω2
(2.35)

in the free-mass limit with a very low pendulum eigenfrequency and damping. The charac-
teristic frequency is identical to the one of a Michelson interferometer, i.e. θ = 8 P ω0/(mL c)
having units of frequency cubed. Here ω0 is the carrier’s angular frequency and P refers to
the carrier power of each circulating beam inside the ring cavities which corresponds to the
circulating power of the carrier in one arm of a Michelson interferometer when assuming the
same optical power for Sagnac and Michelson before the beam splitter. Furthermore, L is
the arm length which is given by the length of the long edge of the ring cavities.

Interestingly, in the real limit of the well-separated resonance case (cf. Sec. 2.2.1), i.e.
with λ2, ε2 → 0 while λ1, ε1 then become both infinitely large, Eqs. (2.30)–(2.34) analytically
coincides with the corresponding functions of the signal-recycled Michelson interferometer,
i.e. with Eqs. (2.4)–(2.8), when setting λ1 → −λ and ε1 → ε. In other words, for certain
signal-recycling parameters a Sagnac can become very similar to a Michelson interferometer.
But in the weakly coupled approximation, where λ1, ε1, λ2 and ε2 are all reasonably large,
we can power expand RSag

FF in terms of the sideband frequency Ω and find

RSag
FF (Ω) ≈ −Ω2 mθ (λ1 + λ2)

4 (ε2
1 + λ2

1) (ε2
2 + λ2

2)︸ ︷︷ ︸
mopt

, (2.36)

being real and having neither a constant part nor a part which is linear in sideband frequency,
just in contrast to an optical rigidity (cf. Eq. (1.72)). The series starts with a term quadratic
in sideband frequency as given in Eq. (2.36) which introduces a dynamical mass term into
the equations of motion. This gives rise to the optical inertia effect which we have already
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mentioned above. Finally, in the degenerated resonance case we obtain RSag
FF → 0, and we

can recover the formulas as discussed in Ref. [31].

Eq. (2.26) shows that the optomechanical coupling can strongly change the dynamics – or
it is better to say the dynamical mass – of the mirror. The optomechanically coupled system
has new resonance frequencies which are given by the roots of the following characteristic
equation:

0 =
1

RSag
xx (Ω)

−RSag
FF (Ω)

= −mΩ2

8

(
(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)− 2θ (λ1 + λ2)

(Ω + i ε1 − λ1) (Ω + i ε1 + λ1) (Ω + i ε2 − λ2) (Ω + i ε2 + λ2)

)
.

(2.37)

We can say that the optical resonances (cf. Eq. (2.21)) become shifted with increasing power
(cf. Fig. 7), i.e. with stronger optomechanical coupling, while the mechanical resonance in
the free-mass limit at 0Hz is not shifted. This rigorously proves what we have already argued
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Figure 7: Four different examples of the optomechanical induced shift in the optical reso-
nances (obtained numerically solving Eq. (2.37)) of a Sagnac interferometer with detuned
signal-recycling and of Advanced LIGO scale (cf. Tab. 3): therefor the normalized char-
acteristic frequency 3

√
θ/γ is increased from zero (fat black dot) to 6.6 (bright blue dot)

– corresponding to Advanced LIGO parameters as arm cavity bandwidth and circulating
power from Tab. 3. The free optical resonance frequencies are chosen at λ1/γ = 0.25 and
ε1/γ = 0.5 (upper left panel); λ1/γ = 0.5 and ε1/γ = 2 (upper right panel); λ1/γ = 0.5 and
ε1/γ = 0.01 (lower left panel); λ1/γ = 0.01 and ε1/γ = 0.5 (lower right panel). Note that
the axes are also scaled with the arm cavity bandwidth.

above, namely, that in the resonant structure of the signal-recycled Sagnac, there does not
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appear an optomechanical resonance induced by an optical spring effect. A linear shift in
the imaginary parts of the optical resonances is given by ε1, 2 + δε1, 2 with

δε1, 2 = ∓ 2θε1λ1

γ4 − 2 (ε2
1 − λ2

1) γ2 + (ε2
1 + λ2

1)
2

= ∓2θ
(1− ρSR) cos φ

8γ2
√

ρSR

.

That means that the imaginary part of one of the optical resonances indeed decreases –
which one of them actually depends on whether the signal-recycling cavity is blue or red
detuned. But at the same time the other one increases and thus, the system can become
unstable. A precise statement regarding the stability of the system is given by the condition
that all roots of the characteristic equation (cf. Eq. (2.37)) must have negative imaginary
parts. We find that the system remains stable as long as the optical power is restricted to
the constraint

θ

γ3
<

θcrit

γ3
≡ max

{
− γ (ε2

1 + λ2
1)

2λ1 (γ2 − ε2
1 − λ2

1)
,
γ4 + 2 (ε2

1 − λ2
1) γ2 + (ε2

1 + λ2
1)

2

2γλ1 (γ2 − ε2
1 − λ2

1)

}

= max

{
−1 + ρ2

SR + 2ρSR cos(2φ)

8ρSR sin(2φ)
,
1 + ρ2

SR − 2ρSR cos(2φ)

2ρSR sin(2φ)

}
. (2.38)

Since (1− ρSR)2 ≤ 1 + ρ2
SR± 2ρSR cos(2φ) ≤ (1 + ρSR)2, the system remains stable for higher

circulating optical power, i.e. θcrit increases, when the signal-recycling mirror’s reflectivity is
small and when the carrier is more resonant or more anti-resonant in the signal-recycling cav-
ity, i.e. for a weak signal-recycling. Such a weak signal-recycling configuration can be found
in the lower right panel of Fig. 7, where λ1/γ = 0.01 and ε1/γ = 0.5 and thus θcrit/γ

3 ≈ 104.
For devices with optical power scales as high as planned for the next generation gravitational-
wave detectors and a strong signal-recycling, the system becomes inescapably unstable as
depicted in the three other panels of Fig. 7. Thus, a Sagnac interferometer of Advanced
LIGO scale could also have the need for a control system in the detection band. The behav-
ior of the optical resonances in the upper right panel of Fig. 7 probably needs some more
explanation: both optical resonances become purely imaginary while each of them has two
parts, one travelling up the imaginary axis and the other one down. When two of the reso-
nances meet on the imaginary axis, they both move again away from the imaginary axis in
opposite directions.

2.2.3 Sensitivity to gravitational waves

Exactly as in Sec. 2.1, the equations of motion in Eqs. (2.25) and (2.26) can be gathered
into an input-output relation. Recall that we have

ŷζ = (sin ζ, cos ζ)
(
TSag

quant ~a + ~tSag
h RSag

xx F̂external

)
, (2.39)

where ~a = (â1, â2)
T is the input quadrature vector and

TSag
quant =

(
ySag

1 ySag
2

−ySag
2 ySag

1

)
+

RSag
xx

1−RSag
xx RSag

FF

(
RSag

Y1F

RSag
Y2F

) (
fSag

1 , fSag
2

)
, (2.40)

~tSag
h =

1

1−RSag
xx RSag

FF

(
RSag

Y1F

RSag
Y2F

)
. (2.41)
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When we do the following replacement in the equations of motion (cf. Eq. (2.26))

RSag
xx F̂external → h/2 L + ξ̂cl , (2.42)

we have assumed the gravitational wave with amplitude h as incident from right above the
interferometer with a polarization that maximizes the response of a L-shaped interferometer.
Furthermore, we have included classical noise sources which are described by the operator
ξ̂cl obeying the correlation

〈ξ̂cl(Ω) (ξ̂†cl(Ω
′)〉sym = 2π

Scl(Ω)

2
δ(Ω− Ω′) . (2.43)

For the detection of gravitational waves it is advisable to fix the small distance of the
input mirror and the mirror located nearby for each cavity as well as the small distance
between the two far end mirrors of each cavity. Then each ring cavity is prohibited to expand
or shrinking in direction of its small edge, i.e. perpendicular to the edge with arm length
L. The gravitational wave as quadrupole radiation shrinks a ring cavity in one direction
while at the same time expanding it in the perpendicular direction. But since gravitational
waves causes only relative length changes, the length of the small edge of each ring cavity
is hardly influenced by the gravitational wave. What is more important is the fact that the
radiation-pressure noise and the classical noise are actually causing the cavity to expand in
all directions. Fixing the small edges of each ring cavity reduces RSag

xx by a factor of two
which makes it equal to RMich

xx . Then we can replace

RSag
xx F̂external → h L + ξ̂cl (2.44)

in Eq. (2.26). Then (similar to Sec. 2.1), the total sensitivity to gravitational waves can be
inferred from the h-referred noise spectral density

SSag
h (Ω) =

(sin ζ, cos ζ)TSag
quant

(
TSag

quant

)†
(sin ζ, cos ζ)T

L2 (sin ζ, cos ζ)~tSag
h

(
~tSag
h

)†
(sin ζ, cos ζ)T

+
Scl(Ω)

L2
. (2.45)

It turns out that if the extra degree of freedom of the ring cavities is removed, the Sagnac in-
terferometer has the same h-referred standard quantum limit as the Michelson interferometer
(cf. Eq. (2.15)).

If the optical power is high such that θ > θcrit (cf. Eq. (2.38)), the system becomes
unstable and needs to be controlled. It has been shown that an ideal feedback control system
does not give rise to any fundamental change in the sensitivity to gravitational waves [22–24],
intuitively because the signal and the noise are fed back with the same proportion onto the
mirrors. When linearly feeding back the output ŷζ onto the differential motion x̂ with
an arbitrary filter kernel KC(Ω) and without introducing extra noise, the quantum-noise-
transfer matrix and the signal-transfer vector both become multiplied by the same frequency-
dependent factor

TSag
quant →

1−RSag
xx (Ω) RSag

FF (Ω)

1−RSag
xx (Ω) RSag

FF (Ω)−RSag
YζF (Ω) KC(Ω)

TSag
quant , (2.46)

~tSag
h → 1−RSag

xx (Ω) RSag
FF (Ω)

1−RSag
xx (Ω) RSag

FF (Ω)−RSag
YζF (Ω) KC(Ω)

~tSag
h . (2.47)
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Figure 8: Example quantum noise spectral densities for a Sagnac interferometer with detuned
signal-recycling. Here basically Advanced LIGO-like parameter are used (Tab. 3). For the
speed-meter configuration we have chosen γ = 2π 150 Hz, λ1 = 2π 50 Hz, ε1 = 2π 90 Hz and
ζ = 0.18 π; the broadband configuration has γ = 2π 15 Hz, λ1 = −2π 600 Hz, ε1 = 2π 250 Hz
and ζ = 0.7 π; while the narrowband configuration has γ = 2π 15 Hz, λ1 = −2π 400 Hz,
ε1 = 2π 100 Hz and ζ = 0. Note that broadband and narrowband configurations have to
be stabilized, while the speed-meter configuration is self-stable. The black line denotes the
free-mass standard quantum limit (SQL).

It is easy to see that the noise spectral density (cf. Eq. (2.45)) is indeed invariant under this
transformation.

Even though the dynamical interaction between mirrors and light in the Sagnac inter-
ferometer is quite different from the one in a Michelson interferometer, their quantum noise
behavior can become very similar as shown in Fig. 8. This is not the case around the degen-
erated resonance case, i.e. with a signal-recycling cavity close to resonance or anti-resonance
(such as discussed in Ref. [31]), where we can clearly spot the speed-meter feature: the
noise curve follows the standard quantum limit at low frequencies, and can even beat it in
a wide frequency range when using appropriately high optical power and bandwidth. But
abandoning this regime, the speed-meter feature becomes more and more lost and entering
the well-separated resonance case the noise curves are more and more similar to the one of
a signal-recycled Michelson interferometer (compare Fig. 8 with Fig. 5).

2.2.4 Classical noise budget and sensitivity to a specific astrophysical
gravitational-wave source

The most popular gravitational-wave forms are probably those emitted from inspiraling
binary systems composed of compact objects which are always used when designing the
sensitivity of gravitational-wave detectors. This may be due to the fact that they are in fact
one of the few analytically known wave forms. Moreover, in 1993, Russell Hulse and Joe
Taylor were awarded the Nobel Prize in Physics for the first indirect evidence of gravitational-
wave emission by observing a system of two inspiraling neutron stars [71, 116]. Only a
handful of binary neutron star systems have been detected yet but the existence of many
other systems is predicted. The waveform of such compact binary inspirals is given in the
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lowest Post-Newtonian approximation by (cf. e.g. Ref. [40])

|h(f)| = G5/6(M/2)1/2(2M)1/3

√
30π2/3c3/2D

f−7/6 Θ(fmax − f) , (2.48)

where a single neutron star has a mass of M ≈ 1.4 M¯ and D is the distance from the
source to the detector. M¯ ≈ 1.9891 1030 kg stands for the solar mass. There is an upper
cut-off frequency, fmax ≈ 1570 Hz, in Eq. (2.48), beyond which the systems undergoes a
transition from adiabatic inspiral into non-adiabatic merger, and Eq. (2.48) is no longer a
valid approximation. Then the optimal signal-to-noise ratio [53]

S

N
∝

∫ fmax

fmin

f−7/3

Sh(f)
df , (2.49)

is achievable by correlating the data with a known template from Eq. (2.48), where seismic
noise defines a lower bound of fmin ≈ 7 Hz. One can either calculate the achievable range D
of a detector with a fixed signal-to-noise ratio or conversely, calculate the achievable signal-
to-noise ratio for a detector observing an astrophysical object at fixed distance D. The event
rate is roughly the cube of the radius of detectable range D and is therefore at a fixed radius
proportional to signal-to-noise ratio cubed.

Now we assume a standard noise budget which was simulated with the software Bench [3]
for the current Advanced LIGO classical noise budget: each contribution to the total clas-
sical noise budget Scl(Ω) – consisting of suspension thermal noise, seismic noise, thermal
fluctuations in the coating and gravity gradient noise – are gathered in Fig. 9. Including this
classical noise budget, we are able to perform a grid search on the signal-to-noise ratio over
a parameter space spanned by variable parameters such as those from the signal-recycling
and the homodyne detection, in order to optimize the signal-recycled Sagnac interferom-
eter’s sensitivity towards specific astrophysical gravitational-wave sources as neutron star
binary inspirals. For all grid searches performed in this thesis we have used the commercial
simulation software Matlabr.

Note that due to the weighting factor of f−7/3 in Eq. (2.49), the optimization strategy
tends to focus more on the low frequency regime at the expense of the sensitivity at higher
frequencies. Therefore, the detection of gravitational-wave sources with a high frequency
periodical signal, such as the millisecond pulsars, becomes hindered with that optimization
strategy. To compensate for that fact, we can conduct an additional sub-optimization in
order to achieve a better sensitivity in the high frequency regime [80, 103]: it can be ac-
complished by first picking out all configurations obeying a sensitivity which is at least a
certain fraction of the optimal sensitivity. In a second step these configurations are explored
in the high frequency regime using the same power law but considering a smaller frequency
integration interval, as e.g. [150 Hz, 1570 Hz], and selecting the optimal signal-to-noise ratio
on this interval.

A signal-recycled Sagnac interferometer of Advanced LIGO scale can produce a noise
curve which is really congruent with the noise curve of the Advanced LIGO configuration
– therefor compare the yellow curve in Fig. 5 with the red curve in Fig. 9. This is due to
the fact that λ1 = −2π 290 Hz and ε1 = 2π 120 Hz as used for the red curve in Fig. 9 lie
within the regime of well-separated resonances (cf. Sec. 2.2.1), i.e. they are much larger
that γ = 2π 15 Hz. Recall that in that regime the signal-recycled Sagnac and Michelson
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Figure 9: Noise spectral densities of a Sagnac interferometer with detuned signal-recycling of
Advanced LIGO scale (cf. Tab. 3). Configurations have optimized (red) and sub-optimized
(pink) sensitivity towards neutron star binary inspirals if the arm cavity half-bandwidth
is fixed to γ = 2π 15 Hz. We have λ1 = −2π 290 Hz, ε1 = 2π 120 Hz and ζ = 0.7 π for
the optimized configuration and λ1 = −2π 243 Hz, ε1 = 2π 76 Hz and ζ = 0.8 π for the
sub-optimized configuration. Standard Advanced LIGO classical noise budget is given: the
single contributions are labeled in the plot.

interferometers are approximately equivalent in terms of their quantum noise. Therefore,
it does not come as a big surprise that for the Sagnac configuration with γ = 2π 15 Hz,
λ1 = −2π 290 Hz and ε1 = 2π 120 Hz and ζ = 0.7 π, we obtain the same signal-to-noise ratio
as for the Advanced LIGO configuration represented by the yellow curve in Fig. 5 which
has been obtained by optimizing a signal-recycled Michelson interferometer – assuming the
classical noise budget as given by the gray curves in Fig. 9 – towards the signal of neutron
star binary inspirals. It has turned out that the red curve in Fig. 9 gives also the best
sensitivity of a signal-recycled Sagnac interferometer to neutron star binary inspirals for
the given noise budget if the Sagnac interferometer’s arm cavity half-bandwidth is fixed to
γ = 2π 15 Hz. The sub-optimized configuration in Fig. 9 has still 98% of the signal-to-noise
ratio of the Advanced LIGO configuration on the whole frequency range [7 Hz, 1570 Hz],
but a much better sensitivity on the restricted frequency interval [150 Hz, 1570 Hz]. For both
configurations, the optimal and the sub-optimal, we find θ > θcrit and thus, they are required
to be stabilized by a feedback control system within the detection band. One could think
about optimizing the signal-recycled Sagnac configuration with the constraint of a stable
system in order to circumvent relying on the control scheme in the detection band.

In contrast to the signal-recycled Michelson interferometer, in the signal-recycled Sagnac
interferometer the arm cavity half-bandwidth γ not only has influence on technical parameter
but also becomes a quite important factor when optimizing the sensitivity. Let us fix θ but
increase the half-bandwidth γ – assuming a higher power-recycling factor which results in
more optical power at the beam splitter. Note that in order to maintain θ, the power-
recycling factor has to be multiplied by actually the same factor as it is used for the assumed
increase in arm cavity bandwidth. Therefore, the optical power which has to pass the beam
splitter is also increased by this factor. Then we can optimize the sensitivity to neutron star
binary inspirals again, but using different values for γ. The results of this optimization are
presented in the first part of Tab. 4.
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γ in Hz λ1 in Hz ε1 in Hz ζ in radian improvement

st
an

d
ar

d
cl
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si

ca
l
n
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se

2π 15 −2π 290 2π 120 0.7 π 0%
2π 75 −2π 58 2π 32 0.5 π 13%
2π 88 −2π 70 2π 38 0.4 π 29%
2π 100 −2π 74 2π 39 0.4 π 40%
2π 113 −2π 75 2π 39 0.4 π 44%
2π 125 −2π 78 2π 43 0.3 π 45%
2π 138 −2π 76 2π 45 0.3 π 41%
2π 150 −2π 74 2π 48 0.3 π 34%
2π 163 −2π 72 2π 53 0.3 π 25%
2π 175 −2π 69 2π 59 0.2 π 16%
2π 188 −2π 67 2π 66 0.2 π 7%

lo
w

cl
as

si
ca

l
n
oi

se

2π 38 −2π 31 2π 19 0.5 π 85%
2π 50 −2π 38 2π 27 0.5 π 170%
2π 63 −2π 49 2π 36 0.5 π 230%
2π 75 −2π 12 2π 110 0.45 π 10%
2π 88 −2π 11 2π 142 0.4 π 15%
2π 100 −2π 0.1 2π 150 0.4 π 31%
2π 113 −2π 0.1 2π 150 0.35 π 29%
2π 125 −2π 0.1 2π 148 0.3 π 19%
2π 138 −2π 0.1 2π 148 0.25 π 4%

Table 4: Resulting parameters of the optimization towards the signal of inspiraling neutron
star binaries assuming different values for the cavity half-bandwidth γ. Advanced LIGO
parameters are used (cf. Tab. 3) and the circulating power is fixed to P = 800 kW. The last
column gives the improvement in event rate for the signal-recycled Sagnac interferometer
compared to the optimized Michelson interferometer of the same scale. For the upper part
we adopted the current Advanced LIGO noise budget and for the lower part the gravity
gradient noise and the suspension thermal noise are reduced by a factor of ten and the
coating thermal by a factor of three.

As an example, for γ = 2π 125 Hz we find that the optimal choice is a configuration far
outside the regime of well-separated resonances (cf. Fig. 10 and sixth row of Tab. 4), increas-
ing the sensitivity to neutron star binary inspirals by ∼ 13 % compared to the Advanced
LIGO configuration, which corresponds to an improvement of ∼ 45 % in the event rate.
This configuration requires a moderate signal-recycling with ρSR = 0.38 and φ = 0.88 π.
Note that a moderate signal-recycling is common to all the configurations from Tab. 4 with
γ ≥ 2π 75 Hz. In Fig. 10 we can recover the speed-meter feature at low frequencies, where the
quantum noise beats the standard quantum limit over a large frequency band by a big factor
while the sensitivity is not degraded too much at high frequencies. Note that all optimized
configuration from Tab. 4 with γ ≥ 2π 88 Hz are even self-stable, i.e. have a θ < θcrit. The
sub-optimized Sagnac configuration as plotted in Fig. 10 has still a comparable sensitivity to
Advanced LIGO on the full frequency interval but is much more sensitive at higher frequen-
cies – to be precise about ∼ 28 % in the event rate. After adding up all noise contribution
shown e.g. in Fig. 10, it turns out that the total noise spectral density of the optimized
signal-recycled Sagnac interferometer almost follows the borderline set by the classical noise
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in the low frequency regime. Furthermore, we can see in Fig. 10 that at low frequencies, i.e.
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Figure 10: Optimized noise spectral densities with respect to neutron star binary inspirals
for a signal-recycled Sagnac interferometer of Advanced LIGO scale (cf. Tab. 3) including a
standard Advanced LIGO classical noise budget. We have γ = 2π 125 Hz, λ1 = −2π 78 Hz,
ε1 = 2π 43 Hz and ζ = 0.3 π for the optimized configuration and γ = 2π 175 Hz, λ1 =
−2π 171 Hz, ε1 = 2π 95 Hz and ζ = 0.025 π for the sub-optimized configuration.

below ∼ 150 Hz, the quantum noise is already much below the classical noise. That actually
suggests that lowering the quantum noise in the low frequency regime further cannot signif-
icantly improve the sensitivity. This fact motivates to assume a lower classical noise floor
and investigate the Sagnac interferometer’s sensitivity performance again.

2.2.5 Sensitivity to inspiraling neutron star binaries assuming a third-
generation classical noise budget

Because a detuned signal-recycled Sagnac interferometer may be considered as a real candi-
date design for third-generation gravitational-wave detectors, it would be advisable to con-
sider a plausible noise budget for interferometers right beyond the second generation. One
can already presage that technical improvements will reduce the classical noise floor signif-
icantly in the remote future. In order to explore the real potential of the signal-recycled
Sagnac interferometer, we analyze its performance on such a reduced classical noise bud-
get. A limiting factor at lower frequencies is, for instance, the gravity gradient noise. As
suggested in Ref. [70], this effect can be removed from the recorded data by performing
an independent measurement of the ground’s density fluctuations near each test-mass. We
assume it to be 1/10 (in amplitude) the current estimation for Advanced LIGO [4]. Another
limiting factor is given by the thermal noise in the suspension system and in the mirrors.
We assume that the suspension thermal noise can be lowered by a factor of 10 in amplitude,
while the internal thermal noise of the mirrors can be lowered by a factor of 3 in ampli-
tude [4]. Such improvements may possibly be realized by (i) optimizing the design of the
mirror coating structure and the suspension wires, (ii) improving the mechanical quality
factors of mirror coating, substrate and suspension materials, and (iii) applying cryogenic
techniques [10, 21,62,118,119].

The results of the optimization – if different arm cavity bandwidths are given at a fixed
circulating power – with respect to inspiraling neutron star binaries against such an opti-
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mistic classical noise budget are presented in the second part of Tab. 4. Fig. 11 shows an
example where the quantum noise nicely blends with the gap between the standard quantum
limit and the classical noise floor at low frequencies. Remarkably, this configuration improves
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Figure 11: Optimized noise spectral densities with respect to neutron star binary inspirals for
a signal-recycled Sagnac interferometer of Advanced LIGO scale (cf. Tab. 3) including a more
optimistic classical noise budget. We have γ = 2π 63 Hz, λ1 = −2π 49 Hz, ε1 = 2π 36 Hz and
ζ = 0.5 π for the optimized configuration and γ = 2π 75 Hz, λ1 = −2π 82 Hz, ε1 = 2π 80 Hz
and ζ = 0.2 π for the sub-optimized configuration.

the event rate by 230 %, when comparing it to the sensitivity of a Michelson topology which
is also optimized against the low classical noise budget – such a Michelson configuration can
be found in Ref. [103]. The parameters of the optimized configuration plotted in Fig. 11 are
quite close to the degenerate resonance case and are given in the third row of the second
part of Tab. 4. Converting them into signal-recycling parameters, we obtain ρSR = 0.3 and
φ = 0.99 π corresponding to a weak signal-recycling. Note that the optomechanical configu-
ration is again self-stable. Other configurations, which are optimal assuming different arm
cavity bandwidths, are summarized in Tab. 4. The sub-optimized Sagnac configuration as
plotted in Fig. 11 has still a comparable sensitivity on the full frequency interval as the –
against the low classical noise budget – optimized Michelson configuration. We can see, how-
ever, that this sub-optimized Sagnac configuration retains the Advanced LIGO sensitivity
at higher frequencies, which is not true for the optimized Sagnac configuration and totally
hopeless for an optimized Michelson configuration.

2.3 Transducer schemes

In the mid 90’s, Braginsky, Khalily and colleagues introduced a number of quantum non-
demolition configurations for the detection of gravitational waves which involved an alter-
native way of readout, namely the so-called intra-cavity readout schemes [13, 15, 76]. These
configurations where able to beat the free-mass standard quantum limit. The idea of such
schemes is not to measure the phase shift of the light, induced by the gravitational wave,
via monitoring the outgoing modulations fields outside the interferometer but to measure
the redistribution of optical energy directly inside the interferometer. All these schemes
consist of a L-shaped cavity as depicted in Fig. 12. The measurement can either be done by
inserting a nonlinear meter into this cavity or by converting the gravitational-wave strain via
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local meter

Figure 12: Schematic plot of one example of an intra-cavity readout scheme: the optical
bar. A partly-transmissive, tiny mirror is placed into a L-shaped cavity. Its motion can be
observed by a local meter.

radiation pressure into real motion of a tiny extra mirror placed in the cavity (cf. Fig. 12).
This motion can then be sensed by some additional readout, a so-called local meter, which
is attached to the extra mirror. Braginsky and Khalily have called the configuration having
this second readout method implemented the optical bar because it really behaves like its
mechanical analog, the resonant bar detectors [128]. The underlying principle of the optical
bar is actually the optical spring effect. The two end mirrors of the cavity are each rigidly
connected with the tiny extra mirror via optical springs. In the local inertial frame of the
extra mirror the effect of gravitational waves can be described completely as a tidal force
field, which induces forces only on the end mirrors. Since the mirrors are rigidly connected,
they will all move together and we can say that the end mirrors transduce their motion onto
the tiny extra mirror. This enables us to measure the real motion of the extra mirror using
the additional local meter.

2.3.1 Signal-recycled interferometers as transducers

Closing the signal-recycling port by making the signal-recycling mirror high-reflective can
convert every interferometer topology with arm cavities and detuned signal-recycling into
a transducer. Here the optical field connects the input mirror with the end mirror in each
arm. And while in the co-local frame of beam splitter and input mirrors a gravitational-wave
induces forces only on the end mirrors, it could be converted by the optomechanical coupling
into real motion of the input mirrors. Realizing a transducer in this way automatically solves
a practical problem: the closed system of the L-shaped cavity (cf. Fig. 12) does not intuitively
suggest how the light actually gets into the cavity.

After evaluating for the differential motion only between the two input mirrors x̂diff
ITM as

well as for the differential motion only between the two end mirrors x̂diff
ETM of a Michelson

interferometer by assuming that all mirrors have equal masses, it turns out that we can
simply split Eq. (2.3) and write it into vector notation as

(
x̂diff

ITM

x̂diff
ETM

)
=

RMich
xx

2

( −F̂ diff
ITM

F̂ diff
ETM

)
+

RMich
xx RMich

FF

2

(
1 −1
−1 1

)(
x̂diff

ITM

x̂diff
ETM

)
. (2.50)

Analogously, we can split Eq. (2.26) for the Sagnac interferometer. Here we assume again
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that the small distance of the input mirror and the mirror located nearby for each cavity
is fixed and treat this system as a single mirror. We assume the same for the end mirrors.
Then we effectively reduce the number of moving mirrors and the Sagnac interferometer’s
mechanical susceptibility becomes reduce by a factor of two and therefore coincides with the
one of the Michelson, i.e. RSag

xx (Ω) = RMich
xx (Ω) = Rxx(Ω). Then Eq. (2.50) hold also for the

Sagnac interferometer when exchanging the corresponding susceptibilities.

Generally, we can express the differential motion of the input mirrors in terms of the
forces acting on input and end mirrors by solving Eq. (2.50) for x̂diff

ITM which gives

x̂diff
ITM = − 2

1−Rxx(Ω) RFF (Ω)

1−Rxx(Ω)/2 RFF (Ω)
m

︸ ︷︷ ︸
M(Ω)

Ω2

F̂ diff
ITM−

Rxx(Ω)/2 RFF (Ω)

1−Rxx(Ω) RFF (Ω)︸ ︷︷ ︸
T (Ω)

Rxx(Ω)

2
F̂ diff

ETM , (2.51)

where RFF (Ω) could either stand for RMich
FF (Ω) or for RSag

FF (Ω). Here we have defined the
frequency depended transducer massM(Ω) and the transducer function T (Ω). As mentioned
above, the effect of a gravitational wave in the co-inertial frame of beam splitter and input
mirrors can be described as a force on the end mirrors contributing to F̂ diff

ETM. Both differential

motions are driven by the free radiation-pressure force F̂
(0)
RP – given in Sec. 2.1 for the case

of a Michelson interferometer and in Sec. 2.2 for the case of a Sagnac interferometer – which
therefore contributes to both F̂ diff

ITM and F̂ diff
ETM. But note that in the limit of a closed output

port of the interferometer, the free radiation-pressure force vanishes. On the input mirrors,
the back-action force of the local meter acts additionally – contributing to F̂ diff

ITM. Then the
spectral density of the standard quantum limit of a standard local meter would read

SSQL
LM =

2 ~
M(Ω) Ω2

1

(T (Ω))2 L2
, (2.52)

assuming a linear continuous position measurement with no correlation in the back-action
and the shot noise.

Let us summarize some interesting effects [92] for specific values of the optomechanical
susceptibility Rxx(Ω)/2 RFF (Ω) at a certain sideband frequency (cf. Tab. 5). In the case of
a very rigid spring as in the first row of Tab. 5, the transducer function becomes equal to
one half and the transducer mass becomes twice as big as the initial mass. This is actually
the optical bar regime. Since the input mirrors are rigidly connected to the end mirrors,
they all move by one half the amount the end mirrors would have moved if there were no
optical spring present. If RFF (Ω) = 2/Rxx(Ω) at a certain sideband frequency just as in
the second row of Tab. 5, the transducer function is equal to one but the transducer mass
becomes infinitely heavy. At first glance this seems to be a very unexpected situation since
the input mirrors do not respond to any forces which act directly on them because such a
force will totally be canceled by the radiation-pressure force. They are only driven by the
force acting on the end mirror. But recalling classical mechanics we recollect that such a
situation can always appear in the case of two coupled oscillators. Nevertheless, this situation
seems to be a very interesting regime for the case of a transducer since the spectral density
of the standard quantum limit of the local meter goes to zero. That means that around that
sideband frequency for which RFF (Ω) = 2/Rxx(Ω) has been realized, a local meter is able
to measure without introducing any quantum back-action noise and making a real quantum
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Rxx(Ω)/2 RFF (Ω) M(Ω) T (Ω) SSQL
LM (Ω)

→∞ 2 m 1
2

1
2
SSQL

h

1 →∞ 1 → 0
1
2

→ 0 →∞ → 0
1
4

2
3
m −1

2
3
2
SSQL

h

→ 0 m → 0 →∞

Table 5: Different regimes of a transducer generated by different values of Rxx/2 RFF each
at a certain frequency.

non-demolition measurement. Here the back action is really eliminated at a certain sideband
frequency and the measured object is not influenced by the measurement. This is in contrast
to the case of an homodyne detection at a certain quadrature (cf. Tab. 2) which can only
remove the radiation-pressure noise from the measurement output: the measurement still
acts back onto the measured object, but the noise induced is removed from the measurement
output by adjusting the homodyne phase. Finally, in the third row of Tab. 5, we have the
resonant case when RFF (Ω) = 1/Rxx(Ω). Here the transducer mass becomes infinitely light
but the transducer function goes to infinity. Therefore, the spectral density of the standard
quantum limit of the local meter still goes to zero. This regime becomes very interesting
when the local meter performs a weak measurement which is shot noise limited and therefore
produces not much back action. For the sake of completeness we have listed two more cases
in Tab. 5 which are interesting – but which are actually no useful transducer regimes.

Let us re-scale our parameters with the arm cavity half-bandwidth, such as the side-
band frequency Ω → γ Ωγ and the characteristic frequency θ → γ3 θγ, in order to obtain
dimensionless parameters. Then we obtain for the detuned signal-recycled Michelson inter-
ferometer with closed output port, i.e. ρSR → 1, the following relations: λ → γ tan φ and
ε → 0 (cf. Eq. (2.9)) and thus

Rxx(Ω)/2 RMich
FF (Ω) → −θγ tan φ

2 Ω2
γ (Ω2

γ − tan2 φ)
. (2.53)

Together with this relation, the transducer function and the transducer mass are then given
by

T Mich(Ωγ) =
θγ tan φ

2 (Ω2
γ (Ω2

γ − tan2 φ) + θγ tan φ)
, (2.54)

MMich(Ωγ) =
2 (Ω2

γ (Ω2
γ − tan2 φ) + θγ tan φ)

2 Ω2
γ (Ω2

γ − tan2 φ) + θγ tan φ
m , (2.55)

respectively. Similarly, for the detuned signal-recycled Sagnac interferometer with closed
output port we find that λ1 → γ λ0 ≡ γ tan(π/4 − φ/2), λ2 → −γ/λ0 and ε1, 2 → 0 (cf.
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Figure 13: Examples for the frequency behavior of the optomechanical susceptibility
Rxx(Ω)/2 RFF (Ω), comparing a position with a speed meter topology. For the Michel-
son interferometer we have chosen θ/γ3 = 0.3 and tan φ = 1.5 and also for the Sagnac
interferometer θ/γ3 = 0.3 and λ0 = 1.5.

Eq. (2.21)) and thus

Rxx(Ω)/2 RSag
FF (Ω) → θγ (λ0 − 1/λ0)

2 (Ω2
γ − λ2

0) (Ω2
γ − 1/λ2

0)
. (2.56)

Then the signal-recycled Sagnac transfer function and output mass read

T Sag(Ωγ) =
−θγ (λ0 − 1/λ0)

2
(
(Ω2

γ − λ2
0) (Ω2

γ − 1/λ2
0)− 2 θγ (λ0 − 1/λ0)

) , (2.57)

MSag(Ωγ) =
2 ((Ω2

γ − λ2
0) (Ω2

γ − 1/λ2
0)− θγ (λ0 − 1/λ0))

2 (Ω2
γ − λ2

0) (Ω2
γ − 1/λ2

0)− θγ (λ0 − 1/λ0)
m, (2.58)

respectively.

Now we can analyze the frequency dependence of the quantity Rxx(Ω)/2 RFF (Ω), as
shown in Fig. 13, for both, a position meter in the form of the Michelson interferometer and
a speed meter in the form of the Sagnac interferometer. In a relatively flat regime, where
Rxx(Ω)/2 RFF (Ω) remains constant over some bandwidth around a certain frequency, one
can always try to tune the optical power and the cavity half-bandwidth in such a way that
Rxx(Ω)/2 RFF (Ω) reaches one of the interesting values from Tab. 5 around that frequency
and turns the interferometer into some fancy transducer.

As shown in Fig. 13, in the Michelson case Rxx(Ω)/2 RMich
FF (Ω) has a relatively flat regime

around Ω = ΩMich ≡ (γ/
√

2 tan φ) which is below the optical resonance at Ω = γ tan φ. This
happens before at low frequencies Rxx(Ω)/2 RMich

FF (Ω) diverges due to the optical spring effect
and turns the Michelson transducer inescapably into an optical bar (cf. first row of Tab. 5).
In the flat regime we find

Rxx(ΩMich)/2 RMich
FF (ΩMich) =

2 θγ

tan3 φ
. (2.59)

In order to increase the bandwidth of the flat regime around ΩMich, we need to push the
optical resonance frequency to higher frequencies by increasing tan φ or the arm cavity
bandwidth.
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In the Sagnac case, there is not only a relatively flat regime of Rxx(Ω)/2 RSag
FF (Ω) around

Ω = ΩSag ≡ γ
√

(λ2
0 + 1/λ2

0)/2 which is exactly between the two optical resonances (cf.
Fig. 13) at Ω = γ λ0 and Ω = γ/λ0, respectively. Here we obtain

Rxx(ΩSag)/2 RSag
FF (ΩSag) =

2 θγ λ3
0

(1− λ2
0) (1 + λ2

0)
2 . (2.60)

Furthermore, at low frequencies much below the optical resonances, Rxx(Ω)/2 RSag
FF (Ω) does

not increase as in the Michelson case but becomes constant due to the optical inertia effect.
But unfortunately in that regime, Rxx(Ω)/2 RSag

FF (Ω) reaches another level than in the regime
around ΩSag, namely

Rxx(0)/2 RSag
FF (0) =

θγ

2

(
λ0 − 1

λ0

)
. (2.61)

If we want to increase the bandwidth of the flat regime below the optical resonances, the
two optical resonances have to be equal, i.e. λ0 = 1, and the arm cavity bandwidth γ has to
be increased. The increase of λ0 and also the increase of γ pushes the two resonances further
apart which increases the bandwidth of flat regime between the two optical resonances.

Fig. 14 shows the standard quantum limits of a local meter (cf. Eq. (2.52)) in comparison
to reading out a Michelson and reading out a Sagnac interferometer. Here both interferome-
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Figure 14: Examples for the standard quantum limit of a local meter (cf. Eq. (2.52))
when reading out a Michelson and a Sagnac interferometer, respectively. The standard
quantum limit is normalized with the one of the Michelson and Sagnac interferometer, when
conventionally reading out at the dark port, which is given in Eq. (2.15). We have chosen
again θ/γ3 = 0.3 and the detuning in such a way that MMich(ΩMich/γ) →∞ and MSag(0) →
∞ (cf. Tab. 5).

ters have the same optical power, while the detuning of the signal-recycling cavity is chosen
in such a way that MMich(ΩMich/γ) → ∞ and MSag(0) → ∞ (cf. second row of Tab. 5).
For the Michelson interferometer this means tan φ = 3

√
2 θγ and the Sagnac interferometer

should be detuned satisfying λ0 = 1/θγ +
√

1 + 1/θ2
γ. We can see very nicely that at low

frequencies the Michelson becomes an optical bar while the Sagnac becomes a real quantum
non-demolition transducer.
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2.3.2 Double readout configurations

Even when the signal-recycling mirror is partly transparent, the transducer effect is still
present in an interferometer with detuned signal-recycling. But usually it is unwanted since,
as an example, the optical bar effect which is always present in a detuned signal-recycled
Michelson interferometer at low frequencies weakens the sensitivity of the interferometer
with a conventional readout. In Ref. [104] we have suggested a configuration which on the
one hand cures this problem and on the other hand also offers a practical realization of the
local meter by actually combining two interferometers into one scheme. A secondary laser
is injected into the bright port of an ordinary Michelson interferometer with arm cavities
and detuned signal-recycling, establishing the local readout possibility. The secondary laser
can have much less optical power than the first one. It could be resonant for the signal-
recycling cavity but must not resonate in the arm cavities. The arm cavities should be even
anti-resonant for this secondary carrier in order to ban the secondary carrier from entering
the arm cavities. Therefore, we have obtained a second Michelson interferometer which has
the input mirrors of the large-scale interferometer as its end mirrors. Note that because this
secondary interferometer does not have arm cavities, we are automatically forced to take the
beam splitter motion into account [64]. Furthermore, the two carriers should have preferably
opposite polarizations in order to make it easy to separate their outputs at the dark port.
The instability introduced by the optical spring of the large-scale interferometer has to be
stabilized using a feedback control system. Even though the double-readout system is quite
complex, we have been able to show that an ideal feedback control system does not give rise
to any fundamental change in the sensitivity to gravitational waves.

The two outputs at the dark port of the double interferometer, corresponding each to one
of the two carriers, have to be optimally filtered: we have found out that at frequencies below
the optomechanical resonance frequency, the filter should use mainly the local readout’s
output. This is actually the optical bar regime (cf. first row of Tab. 5) in which the large-
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Figure 15: Optimized noise spectral densities with respect to neutron star binary inspirals
for a local readout scheme (of Advanced LIGO scale including a standard Advanced LIGO
classical noise budget) compared to the Advanced LIGO configuration. The secondary laser
establishing the local meter has an optical power of 4 kW at the beam splitter, the bandwidth
of the local meter’s signal-recycling cavity is 2π 4 kHz and the phase quadrature is detected.
The large-scale interferometer in the local readout scheme has λ = 2π 220Hz and ε =
2π 64Hz and a homodyne detection angle of 0.7 π. For other parameters see Tab. 3.
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scale Michelson interferometer converts the gravitational-wave strain into real motion of its
arm cavity mirrors and weakens in fact the sensitivity of its own output. But on the other
hand this real mirror motion can be sensed by the second carrier. At frequencies around and
above the optomechanical resonance in turn, the filter prefers the output of the large-scale
interferometer. In order to find this optimal situation, we have analytically minimized the
combined h-referred noise spectral density at each sideband frequency by varying the two
filter functions. Each of these two filter function has been applied to one of the two outputs
which are then summed up to give the combined output.

Taking into account the current classical noise budget of Advanced LIGO as well as
constraints on the optical power, we have performed an extensive parameter optimization of
our local readout scheme towards the detection of compact binary inspirals [104]. We have
shown that the addition of the local meter with an optical power of 4 kW can improve the
sensitivity at low frequencies significantly while it can also indirectly improve the sensitivity
at high frequencies. The improvement at low frequencies can be seen very well in Fig. 15
which compares the optimized quantum noise of an Advanced LIGO configuration with and
without a local meter. The optimization is here towards the signal of inspiraling neutron star
binaries, when the standard classical noise budget as also shown in in Fig. 15 is assumed. We
have found that the local meter can increase the sensitivity of Advanced LIGO to neutron
star binary inspirals by 29 % in the event rate. Moreover, we have shown that the local meter

1 5 10 50 100 500
2 M � M

ë

1

1.5

2

3

5

7

10

Im
pr

ov
em

en
tF

ac
to

r
in

E
ve

nt
R

at
e

Figure 16: Improvement in the event rate compared to the Advanced LIGO detector (a
Michelson interferometer with detuned signal-recycling which is optimized for the signal of
inspiraling neutron star binaries) versus total binary mass. The signal-recycled interferom-
eter with (colored curves) and without (gray curves) local meter are optimized for three
different binary masses: neutron star with M = 1.4 M¯ (green curve); intermediate-mass
black holes with M = 20 M¯ (blue and dark gray curve) and with M = 60 M¯ (khaki and
bright gray curve). Note that each curve has fixed optimization parameters. The secondary
laser establishing the local meter has an optical power of 4 kW at the beam splitter.

can broaden the detection band of Advanced LIGO which will allow the interferometer to
search for multiple sources simultaneously as well as to examine a wider frequency range of
the same source. As an example, we have explored how the increase in detection bandwidth
can allow us to detect more efficiently the population of compact binary objects with a broad
range of masses – from neutron stars to intermediate-mass black holes – and hence a broad
signal frequency band. Fig. 16 compares the ability of the local readout scheme with the one
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of an ordinary signal-recycled Michelson interferometer to detect different binary inspirals
once the optimization parameters such as the signal-recycling detuning and the homodyne
detection angle are fixed.

We must have come to the conclusion that this scheme should be further investigated as
a low-cost add-on for the Advanced LIGO detector. Or in possible conjunction with other
quantum non-demolition techniques – such as input squeezing (cf. Tab. 2) probably even
for both, the local meter and the large-scale interferometer – it could even be considered
as a real candidate design for a third-generation detector. For further reading and more
details about our used optimization parameters and results we refer the reader to the very
detailed Refs. [101, 104]. Note that it is also possible to strongly detune the local meter in
the local readout scheme which is explored in Ref. [81]. But in that reference the aim is only
at beating the standard quantum limit around the optomechanical resonance frequency of
the large-scale interferometer such as in mechanical resonant bar detectors.

Another idea for a real third-generation detector is to construct a local readout scheme
where the large-scale interferometer has a speed-meter topology with detuned signal-
recycling (cf. Sec. 2.2) and the local meter a Michelson topology. A practical realization of
this scheme could be to construct the large-scale interferometer by taking a Michelson in-
terferometer with an added sloshing cavity [99,100] and adding the detuned signal-recycling
technique to that. The local meter is then realized by a secondary laser injected into the
Michelson interferometer which does not enter the sloshing cavity. It might also be pos-
sible to realize such a scheme by using polarizing optics. This speed meter local readout
scheme will probably be even more interesting because of the advantageous transducer prop-
erties of the speed-meter interferometer at low frequencies: the transducer function is not
restricted to one half but can become much larger (cf. third row of Tab. 5). Even though the
transducer mass decreases then which causes an increase in the radiation-pressure noise, the
signal-to-noise ratio of a weak local meter could be really high – much higher than reading
out a Michelson interferometer. Another option is that the transducer function could become
close to one (cf. second row of Tab. 5) while the transducer mass increases and suppresses
radiation pressure. The question is how good the sensitivity of the large-scale interferometer
with the conventional readout at high frequencies can be in such optimal transducer situ-
ations. This has to be explored in details. We have planned to rigorously investigate such
a scheme and perform an extensive parameter search as it was done for the local readout
scheme in Ref. [104].

2.4 Double-optical-spring ponderomotive squeezer

The ponderomotive squeezer suggested in Refs. [36, 37] is intended to provide a quite un-
orthodox way of generating a squeezed vacuum input for a gravitational-wave detector.
Inserting squeezed vacuum states into the dark port of a laser interferometer gravitational-
wave detector increases its quantum limited sensitivity (cf. Tab. 2) as it was first shown in
Ref. [27]. The conventional method of preparing optical squeezed states is to make use of the
χ(2)-nonlinearity in optical media as employed for example in Refs. [30, 122]. But it is also
well-known that the fluctuating radiation-pressure force generates squeezed optical states
inside an interferometer and the idea is to make use of the squeezed vacuum fields leaking
out at the dark port. The advantage of using the optical spring effect in this context is that
in this case the strength of the generated quantum squeezing is frequency independent up to
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Figure 17: Schematic plot of the double-optical-spring ponderomotive squeezer experiment
as located at the MIT [35]. The laser light is split into two paths by a combination of a
half wave plate (HWP) and a polarizing beam splitter (PBS). In one of the paths the light
is frequency shifted using an acousto-optic modulator (AOM) and phase modulated by an
electro-optic modulator (EOM). Carrier and subcarrier are recombined on a second PBS
before being injected into the cavity with a tiny end mirror.

the optomechanical resonance frequency. Moreover, up to that frequency the squeezing angle
is fixed and the squeezing ellipse does not rotate with the sideband frequency. Furthermore,
the optical spring is also able to suppress classical noise. On the other hand, one has to deal
with the instability introduced by the optical spring [22] and this issue is also important in
the theoretical calculations since every stabilizing control system influences the squeezing:
one effect of a feedback control system for instance is that it requires a detection on the
output which certainly decreases the amount of available squeezing.

It seems to be the ideal solution to employ a second optical spring which removes the
instability introduced by the first optical spring. Note that such a scheme should be regarded
as an ideal and practical realization of a quantum control system. The stable optomechanical
resonance has already been demonstrated experimentally in Ref. [35] and its direct benefits
regarding gravitational-wave detectors was theoretically explored in Ref. [103]. In Ref. [89]
we have investigated the output of a stable double-optical-spring ponderomotive squeezer
which will be described in the following.

2.4.1 Double optical spring

In general, a second optical spring can easily be realized by inserting a frequency-looked
secondary carrier laser field or a subcarrier field which is some frequency-shifted fraction of
the carrier laser field into the bright port of a detuned interferometer or a detuned cavity,
respectively. The carrier and the secondary carrier or the carrier and the subcarrier should
preferably have opposite polarization. In the following we will adopt our formulation to
match the real experimental setup described in Ref. [35] which is located at the Massachusetts
Institute of Technology, Cambridge, and which is depicted in Fig. 17: a laser field is detuned
with respect to a single small-scale cavity formed by a heavy input mirror and a tiny end
mirror. Before being inserted into that cavity, some fraction of the carrier light has become
frequency-shifted using an acousto-optic modulator and phase-modulated by an electro-optic
modulator to form a subcarrier which can further be detuned from resonance to create the
second optical spring. The parameter values of this experiment which are used for the
numerical calculations are listed in Tab. 6. We would like to emphasize that all following
equations are of course also applicable to describe a Michelson interferometer with detuned
arm cavities – when using the reduced mass of the mirrors. With slight modifications (cf.
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Sec. 2.1), they are even applicable to describe a Michelson interferometer with a detuned
signal-recycling cavity. The advantage of using a Michelson interferometer compared to a

mirror mass m 1 g

carrier input power P
(1)
in 2.85 W

subcarrier input power P
(2)
in 0.15 W

laser wavelength 2π c/ω
(1)
0 1064 nm

cavity length L 0.9 m
cavity half bandwidth γ 2π 10 kHz

Table 6: Double optical spring ponderomotive squeezer parameter values used for the nu-
merical calculations are based on the experimental setup located at the MIT [35].

single cavity is that then the output squeezing is less susceptible to laser noise.

If we denote the amplitude and phase quadrature operators of the incoming sideband
fields by â

(i)
1 and â

(i)
2 and the one of the outgoing sideband fields by b̂

(i)
1 and b̂

(i)
2 – associated

with the carrier (i = 1) and the subcarrier (i = 2) field, respectively – we can define an input

double quadrature vector by ~ad = (â
(1)
1 , â

(1)
2 , â

(2)
1 , â

(2)
2 )T and a corresponding output vector

by ~bd = (b̂
(1)
1 , b̂

(1)
2 , b̂

(2)
1 , b̂

(2)
2 )T . Note that in contrast to the usual quadrature vector these

vectors are now 4-dimensional. The vacuum correlations of the input quadrature operators
can be gathered into one equation as

〈â(i)
k (Ω) (â

(j)
l )†(Ω′)〉sym = π δ(Ω− Ω′) δij δkl , (2.62)

and the input-output relation can be written as

~bd = TDOS
quant ~ad + ~tDOS

cl ξ̂cl , (2.63)

where the (4 × 4) matrix TDOS
quant linearly transforms the quantum noise into the output

channels while ~tDOS
cl transforms the classical noise ξ̂cl into the outputs. The quantum-noise-

transfer matrix is given by

TDOS
quant =

(
Y(1) 0
0 Y(2)

)
+

Rcav
xx

1−Rcav
xx (R

cav (1)
FF + R

cav (2)
FF )

×



R
cav (1)
Y1F

R
cav (1)
Y2F

R
cav (2)
Y1F

R
cav (2)
Y2F




(
f

cav (1)
1 , f

cav (1)
2 , f

cav (2)
1 , f

cav (2)
2

)
, (2.64)

where the coefficient matrices read

Y(i) =

(
y

cav (i)
1 y

cav (i)
2

−y
cav (i)
2 y

cav (i)
1

)
. (2.65)

Furthermore, the classical-noise-transfer vector is given by

~tDOS
cl =

1

1−Rcav
xx (R

cav (1)
FF + R

cav (2)
FF )




R
cav (1)
Y1F

R
cav (1)
Y2F

R
cav (2)
Y1F

R
cav (2)
Y2F


 . (2.66)
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The susceptibilities are given in Eqs. (1.60)–(1.63), where here the superscript ’(1)’ always
denotes carrier quantities and ’(2)’ subcarrier quantities. Then the characteristic equation
of the double optical spring reads

0 =
1

Rcav
xx (Ω)

−R
cav (1)
FF (Ω)−R

cav (2)
FF (Ω) . (2.67)

The stabilization process of the double optical spring is nicely explained in great details and
with the help of many pictures in our Ref. [103] and will not be stressed here.

For our analytic calculations, we will consider the input-output relation at sideband
frequencies much below the optical bandwidth (Ω ¿ γ(1) = γ(2) = γ) and therefore also
much below the optomechanical resonance frequencies. This is actually the regime in which
the experiment suggested in Ref. [36, 37] is supposed to be carried out and, furthermore, it
is the regime in which the quantum squeezing is constant in its strength and angle. In this
approximation, the quantum-noise-transfer matrix simplifies to

TDOS
quant =




1 0 0 0

2 (α
(1)
os )2 1 2 α

(1)
os α

(2)
os 0

0 0 1 0

2 α
(1)
os α

(2)
os 0 2 (α

(2)
os )2 1


 , (2.68)

where the coefficients

(α(i)
os )2 =

γ

|∆(i)|
(Ω

(i)
os )2

(Ω
(1)
os )2 − (Ω

(2)
os )2

(2.69)

are the coupling constants between the mirror and the carrier (i = 1) and subcarrier (i = 2),
respectively. Furthermore, we have defined the quantities

Ω(i)
os =

√
4 |∆(i)|P (i)

in ω
(i)
0 γ

L2 ((∆(i))2 + (γ)2)
2 . (2.70)

From Sec. 1.2.4 we know that in the weakly coupled approximation, Ω
(i)
os is equal to the

absolute value of the real part of the optomechanical resonance frequency – for i = 1 produced
by the carrier and for i = 2 produced by the subcarrier. Note that in the following we suppose
the carrier to be always positively detuned and the subcarrier to be always negatively detuned
as well as Ω

(1)
os > Ω

(2)
os which guarantees for a total restoring force induced by the light. Then

the stability condition simply reads

(Ω
(2)
os )2

γ2 + (∆(2))2
≥ (Ω

(1)
os )2

γ2 + (∆(1))2
. (2.71)

In the low frequency approximation (Ω ¿ γ) the classical-noise-transfer vector simplifies to

~tcl =
1

Rcav
xx

√
2

~


0,

α
(1)
os√

(Ω
(1)
os )2 − (Ω

(2)
os )2

, 0,
α

(2)
os√

(Ω
(1)
os )2 − (Ω

(2)
os )2




T

. (2.72)

Keep in mind that, as we can see in Eq. (2.72), the classical noise is suppressed with a larger
difference in the two optomechanical resonance frequencies.
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2.4.2 Output squeezing versus entanglement

Let us start with considering only the quantum noise of the light. It is obvious that the
radiation-pressure fluctuations arising from the modulation fields around the subcarrier’s
frequency will also move the mirror, therefore causing an additional radiation-pressure noise
on the carrier’s sideband fields. Of course the same is true vice versa. Because of this
additional noise, the output states corresponding to the carrier and those corresponding to
the subcarrier turn into mixed states even when we consider only the quantum noise. But the
combined system of the two output states still gives a pure state. Recall from Sec. 1.4 that for
a composite system, where the total system is in a pure state, the existence of entanglement
is equivalent to having mixed states when the individual systems are observed. This simply
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Figure 18: Logarithmic negativity values of the carrier-subcarrier output quantum entangle-
ment at low frequencies and versus carrier and subcarrier detuning. Other parameter values
are taken from Tab. 6. The shaded region marks the stable double-optical-spring regime.

means that the output states around the carrier frequency and those around the subcarrier
frequency are entangled. In Ref. [132] it is outlined that this fact could be used to generate
ponderomotive entanglement. We can characterize the entanglement between the outputs
corresponding to the carrier and the subcarrier, respectively, with the logarithmic negativity
– as introduced in Sec. 1.4 – at a given sideband-frequency, which is constant in the low
frequency approximation (Ω ¿ γ) and reads

EN (Ω) =
1

2 ln 2
arccosh

(
2 (1 + 4 (α(1)

os α(2)
os )2)− 1

)
. (2.73)

This result has independently been derived in Ref. [132]: compare our Eq. (2.73) to Eq. (7)
of that reference. Recall that EN (Ω) = 0 corresponds to no carrier-subcarrier output en-

tanglement which is only true for α
(1)
os = 0 or α

(2)
os = 0. This simply tells us that as long

as we have a detuned carrier and a detuned subcarrier in a cavity sharing the same end
mirror, their output states are always entangled at sideband frequencies below the total
optomechanical resonance frequency and in the absence of classical noise. Fig. 18 shows
this carrier-subcarrier output entanglement for quantum noise only and for parameter val-
ues taken from Tab. 6. In the stable regime, the output of the carrier can be remarkably
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strong entangled with the output corresponding to the subcarrier, where the logarithmic
negativity can theoretically reach values of about EN (Ω) ∼ 8 for Ω ¿ γ. In Fig. 19 the
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Figure 19: Logarithmic negativity of the carrier-subcarrier output quantum entanglement
versus sideband frequency and for two different sets of carrier and subcarrier detuning. Other
parameter values are taken from Tab. 6.

carrier-subcarrier output quantum entanglement is plotted versus sideband frequency. Here
the situation for two stable optical springs is shown: one with a high total optomechanical
eigenfrequency produced by ∆(1) = 2π 25 kHz and ∆(2) = −2π 5 kHz and one with a low total
optomechanical eigenfrequency produced by ∆(1) = 2π 39 kHz and ∆(2) = −2π 5 kHz. We
can see that at frequencies below the total optomechanical eigenfrequency, the entanglement
is frequency independent. In that regime, the optical spring with the lower optomechanical
eigenfrequency produces more entanglement.

In this section we will describe the output squeezing by deriving the minimal noise spec-
trum with respect to the quadrature angle which in turn is then equal to the squeezed
quadrature. As an example, the minimal quantum noise spectrum associated to the carrier
is given in the low frequency approximation (Ω ¿ γ) by

S
(1)
min(Ω) ≡ min

ζ(1)





(sin ζ(1), cos ζ(1), 0, 0)TDOS
quant (TDOS

quant)
†




sin ζ(1)

cos ζ(1)

0
0








=
1 + 4 (α

(1)
os α

(2)
os )2

1 + 2 (α
(1)
os )2 earcsinh ((α

(1)
os )2+(α

(2)
os )2)

≥ e
−2 arcsinh γ

∆(1) . (2.74)

Eq. (2.74) becomes minimized at α
(2)
os = 0 which corresponds to a vanishing subcarrier.

Therefore, the strongest output squeezing is realized in the single optical spring case. With
increasing subcarrier strength, the squeezing strength decreases but recall that at the same
time the carrier-subcarrier output entanglement increases. Here we can already see that
entanglement between the two output fields seems to be unwanted if our aim is to generate
squeezed vacuum. We obtain the output squeezing around the subcarrier frequency by
exchanging ’(1)’ and ’(2)’ in the result of Eq. (2.74). Since we choose our detunings such

that α
(2)
os > α

(1)
os is realized almost everywhere – and especially in the stable regime, we
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Figure 20: Contour plot of the quantum squeezing produced by the carrier (left panel) and
by the subcarrier (right panel) at low frequencies and versus the two different detunings.
Other parameter values are taken from Tab. 6. The shaded region marks again the stable
regime.

produce a subcarrier output squeezing which is usually stronger than the carrier output
squeezing as it can also be seen in Fig. 20. Note that the double-optical-spring stable regime
as marked by the shaded region in e.g. Fig. 20 has actually not been obtained by considering
the simplified stability condition in Eq. (2.71), but by demanding that the imaginary parts
of all roots of the double optical spring’s characteristic equation from Eq. (2.67) are smaller
than zero.

However, the fact that the additional noise is due to quantum entanglement allows us to
remove that noise coherently, because the other partner in the entangled pair is available for
a measurement. The output squeezing corresponding to the carrier can therefore be made
conditioned onto the measurement result of the output field corresponding to the subcarrier
or vice versa. Please note that it is easy to verify that it will make no difference in the final
noise spectrum of some device with an arbitrary linear transfer-function – such as a laser
interferometer gravitational-wave detector – whether: (i) one injects one of the unconditional
squeezer output into that device first and then condition the device’s output onto the second
squeezer output or (ii) one just injects the conditional squeezing – suppose that there is a
squeezing-source which has exactly the noise spectrum of the conditional squeezing – into the
device. The first procedure would be more what can be implemented into real experimental
situations but the second one is how we will treat the problem theoretically.

2.4.3 Conditional covariance matrix

The most obvious way to recover a stronger squeezing of the out-going field corresponding
to the carrier is to measure the amplitude quadrature of the out-going field around the
subcarrier, i.e. to measure b̂

(2)
1 . By doing so, we can obtain information about the additional

radiation-pressure fluctuations coming from the subcarrier field. When we then condition
the measurement of the carrier’s output-squeezing at each sideband frequency on the result
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of measuring the subcarrier’s radiation-pressure noise, we can remove the effect of the second
optical spring completely.

But it has turned out that the amplitude quadrature is not even the optimal one to
observe. In order to find the optimal conditional squeezing, we need to know – at every
sideband frequency – the covariance matrix among (b

(1)
1 , b

(1)
2 ) conditioned on measuring

b̂
(2)
1 cos ζ(2) + b̂

(2)
2 sin ζ(2) with an arbitrary quadrature ζ(2). This can be easily accomplished

by the following mathematical procedure: first apply a rotation to the vector ~bd, rotating
the detected quadrature to the last element of the (4× 4) covariance matrix 〈~bd

~b†d〉. This is

achieved by applying R~bd with the rotation matrix given by

R =




1 0

0
sin ζ(2) − cos ζ(2)

cos ζ(2) sin ζ(2)


 . (2.75)

Then the covariance matrix among (b
(1)
1 , b

(1)
2 ) conditioned on measuring b̂

(2)
1 cos ζ(2) +

b̂
(2)
2 sin ζ(2) at a given sideband frequency is simply equal to the first (2 × 2) block of the

conditional covariance matrix R 〈~bd
~b†d〉RT which is conditioned on its last element. As it

can be found in many textbooks on multivariate statistics (cf. e.g. Ref. [82]), a Gaussian
covariance matrix conditioned on its last element is equal to the Schur complement of that
matrix with respect to its last element. The Schur complement is well-known from linear
algebra. For a general (4× 4) matrix V the first (2× 2) block of the Schur complement with
respect to the last element V44 reads

(
V11 V12

V21 V22

)
− 1

V44

(
V14 V41 V14 V42

V24 V41 V24 V42

)
, (2.76)

where first indices indicate the rows of V and second indices the columns. Quite important
for us is the fact that as long as a (4× 4) matrix represents a pure bipartite Gaussian state,
the first (2×2) block of the Schur complement with respect to the last element also represents
a pure Gaussian state. Here this fact means that for quantum noise only, any homodyne
detection on the subcarrier light would project the carrier output into a pure state.

2.4.4 Conditional quantum output squeezing

The optimal conditional output squeezing is always stronger than the unconditional squeez-
ing. For quantum noise only, it is given for one of the outputs in the low frequency approx-
imation (Ω ¿ γ) by

S
cond (i)
min (Ω) =

S
(i)
min(Ω)

1 + 4 (α
(1)
os α

(2)
os )2

, (2.77)

requiring a detection of the other output at the homodyne detection angle given by

tan ζ(j) = −e−arcsinh((α
(1)
os )2+(α

(2)
os )2) , (2.78)

where i = 1, 2 and j = 2, 1. Eq. (2.77) tells us that the conditional output squeezing sim-

ply increases with higher α
(1)
os and α

(2)
os . Recall that these coefficients increase with higher

optomechanical resonance frequencies and with a smaller separation among the two optome-
chanical resonance frequencies. Note that the factor S

(i)
min/S

cond (i)
min as given in Eq. (2.77)
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Figure 21: Contour plot of the carrier squeezing conditioned on the subcarrier output (left
panel), subcarrier squeezing conditioned on the carrier output (right panel) at low frequencies
and versus the two different detunings. Other parameter values are taken from Tab. 6. The
shaded region marks the stable regime.

describes how much the conditioning is able to improve the squeezing. On the other hand
this factor is also equal to the argument of the function from Eq. (2.73) giving the carrier-
subcarrier output entanglement. We have mentioned this interdependence between output
squeezing and output entanglement already before. But here we can explicitly see that it is
due to the fact that the correlations between carrier and subcarrier – which are responsible
for the carrier-subcarrier output entanglement – can be removed by the conditioning in order
to improve the output squeezing. Comparing Fig. 21 with Fig. 20 we find that the condi-
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Figure 22: Single optical spring and double optical spring (subcarrier conditioned on the
carrier) quantum output squeezing versus sideband frequency. For the single optical spring

the full carrier (P
(1)
in = 3W, P

(2)
in = 0) is injected into the cavity and detuned by ∆ =

2π 38.5 kHz. The double optical spring has ∆(1) = 2π 30 kHz and ∆(2) = −2π 5 kHz. All
other parameters are taken from Tab. 6.

tioning can reveal a strong subcarrier output squeezing of the stable double-optical-spring
ponderomotive squeezer. Including Fig. 18 into this comparison, we can actually see that
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the conditioning is indeed able to reveal more squeezing in regions of high carrier-subcarrier
output entanglement.

Fig. 22 compares the frequency dependence of the quantum output squeezing of an un-
stable single and a stable double optical spring. We have chosen the detunings in such a way
that the real part of the double optical spring’s total optomechanical resonance frequency
coincides with the real part of the single optical spring’s optomechanical resonance frequency.
The quantum noise spectral densities for the carrier and the subcarrier in this special situa-
tion can be found in Fig. 23. Fig. 22 shows that in the quantum noise case the conditional
quantum output squeezing is indeed constant up to the optomechanical resonance frequency.

2.4.5 Conditional output squeezing with classical noise

Until now we have considered only quantum noise. But in a real experiment the squeezing
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Figure 23: Example quantum noise spectral densities for the carrier and the subcarrier with
∆(1) = 2π 30 kHz and ∆(2) = −2π 5 kHz and all other parameters are taken from Tab. 6. Two
classical noise sources at a certain level as given in Ref. [36] are used: suspension thermal
noise and coating thermal noise.

will become weaker with classical noise. In the low frequency approximation, the optimal
minimal conditional noise spectrum of the subcarrier reads

S
cond (2)
min (Ω)=

1 +
(
(α

(1)
os )2 + (α

(2)
os )2

)
2 Scl(Ω)

~ |Rxx(Ω)|2
(
(Ω

(1)
os )2−(Ω

(2)
os )2

)

1+ 2 (α
(1)
os )2 Scl(Ω)

~|Rxx(Ω)|2
(
(Ω

(1)
os )2−(Ω

(2)
os )2

) +2(α
(2)
os )2e

arcsinh

(
(α

(1)
os )2+(α

(2)
os )2+

Scl(Ω)

2~|Rxx(Ω)|2((Ω(1)
os )2−(Ω

(2)
os )2)

) ,

(2.79)
where the optimal detection angle becomes frequency-dependent and reads

tan ζ(2) = −e
−arcsinh

(
(α

(1)
os )2+(α

(2)
os )2+

Scl(Ω)

2 ~ |Rxx(Ω)|2 ((Ω
(1)
os )2−(Ω

(2)
os )2)

)

. (2.80)

Recall that the classical noise is suppressed with a larger difference in the two optomechanical
resonance frequencies, which is completely the other way round compared to the strength of
conditional squeezing. One therefore has to balance between high quantum squeezing and
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high classical noise suppression. Fig. 24 compares the output squeezing of an unstable single
and a stable double optical spring, both in the vicinity of frequency dependent classical noise
as given in Fig. 23. Here only the dominating classical noise sources are considered at a level
as it is expected for the experimental parameters given in Tab. 6 at room temperature [36]:
the spectrum of the suspension thermal noise dominates at low frequencies and the one
of the coating thermal noise at intermediate and high frequencies – both are combined in
Scl(Ω). For the configurations as plotted in Fig. 24 we have again made sure that the double
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Figure 24: Single optical spring and conditional double optical spring (subcarrier conditioned
on the carrier) output squeezing in the vicinity of classical noise as shown in Fig. 23. For

the single optical spring the full carrier (P
(1)
in = 3W, P

(2)
in = 0) is injected into the cavity

and detuned by ∆ = 2π 38.5 kHz. The double optical spring has ∆(1) = 2π 30 kHz and
∆(2) = −2π 5 kHz. All other parameters are taken from Tab. 6.

optical spring has the same total optomechanical resonance frequency as the single optical
spring. For these two configurations the stable double optical spring still produces more
ponderomotive squeezing than the unstable single optical spring. Due to the frequency
dependence of the classical noise the output squeezing becomes also frequency dependent
as shown in Fig. 24. But even though the classical noise dominates almost the entire noise
spectrum, the stable double optical spring can produce remarkably strong ponderomotive
output squeezing.

Note that we have not included the laser noise into our theoretical discussion. Technical
laser noise will significantly perturb the production of the ponderomotive output squeezing
from a single cavity. This is actually the limiting factor which has prevented the experimental
setup from Ref. [35] to produce ponderomotive squeezing until now. But as we have already
mentioned above, this problem could be circumvented by using a Michelson interferometer
topology instead of a single cavity.





3 PART II: MACROSCOPIC QUANTUM MECHANICS Page 67

3 Part II: Macroscopic quantum mechanics

Since the foundation of quantum mechanics, people have been fascinated by the quantum
mechanics of macroscopic and heavy objects. Initially, the considerations were confined to
pure thought experiments as Erwin Schrödinger’s famous gedanken experiment with the
macroscopic cat that may be put into a quantum superposition [109]. But in the last years
it has become more and more likely that quantum effects of macroscopic and heavy objects
could be seen in real experiments. Especially in the gravitational-wave community, a big
effort has been made in building very well-isolated macroscopic and heavy test masses,
namely the end mirrors of large-scale laser interferometers used as prototypes as well as real
detectors, in order to make them less susceptible to thermal noise. Even though the aim
in this community is the lowering of the total noise arising in the detection of gravitational
waves, the classical as well as the quantum noise, the detectors can also provide an ideal
device to study the quantum mechanics of macroscopic objects as we will see in this chapter.

It seems to be a very good assumption to treat the center-of-mass position and momentum
of a macroscopic mechanical oscillator always as being in Gaussian states. This is due to the
fact that a macroscopic object is not a point mass but consists of many atoms which are of
course bonded in a solid state but still can move which then can in turn influence the center
of mass. Due to the well-known central limit theorem from mathematics, a large number of
independent random processes will be approximately Gaussian. Nevertheless, under certain
conditions also Gaussian states should be considered as quantum states and they can show
quantum features such as squeezing and entanglement. If one identifies also a coherent laser

massless particle non-massless particle

microscopic object single photon single electron or atom

discrete variable polarization spin

macroscopic object coherent laser beam test-mass

continuous variables amplitude and phase quadrature position and momentum

Table 7: Comparison between the microscopic and the macroscopic world of massless and
non-massless particles.

beam as a macroscopic object, we find a nice analogy between the microscopic world and
the macroscopic world of massless and non-massless particles as shown in Tab. 7. Note that
quantum states have been experimentally found in all cells of Tab. 7 except in the lower
right one if the object is larger than a single molecule.
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A macroscopic object is in close contact to its environment which is already unavoidable
just because of its size and its high number of degrees of freedom. This coupling causes on
the one hand dissipation and simultaneously fluctuations, as described by the well-known
dissipation-fluctuation theorem. In the previous chapter we have sometimes completely ne-
glected the coupling of the center-of-mass motion of the mirrors to any additional environ-
ment than the light. At most we have considered the mirrors coupled to a highly thermal
bath, i.e. to classical noise sources such as the noise arising from the dissipation in the
mirrors’ suspension. But even at zero temperatures the free mirrors are still subject to a
zero-point motion (cf. Sec. 1.3).

An experiment producing a macroscopic quantum state should be divided into different
stages separated in time: a preparation stage, an optional free-evolution stage and a verifica-
tion stage. During the preparation the test mass will be observed and either a conditional or
a controlled state will be produced. This state could freely evolve for some time and should
then be verified. Here one needs to collect statistics from a huge number of identical trials
as it is required from quantum mechanics.

In this chapter we will start by recalling the theory of conditional states in Sec. 3.1. In
Sec. 3.2 we will then discuss the preparation of conditional macroscopic quantum states in
various situations. Afterwards, we will treat the problem of verifying such conditional quan-
tum states in Sec. 3.3. In Sec. 3.4 we will consider the preparation of feedback-controlled
macroscopic quantum states. Finally, we will investigate the generation of macroscopic
entanglement in position and momentum between the two end mirrors of a Michelson inter-
ferometer in Sec. 3.5.

3.1 Conditional quantum states

The conventional way of describing the state of a quantum system undergoing a continuous
quantum measurement is to construct a stochastic master equation [45, 57, 68, 86]. For a
Gaussian system, which is totally characterized by its first- and second-order moments, the
first-order moments of the state will totally depend on measurement results in the past and
therefore, the state is called a posteriori [6] or conditional state. These first-order moments
undergo a random walk in time as depicted in Fig. 25, while the covariance matrix of the
second-order moments usually results in a so-called Riccati matrix differential equation. One
can solve this equation for the second-order moments. It then turns out that the second-
order moments reach a steady state in time if the system is stable. We will start this section
by describing how to obtain such a stochastic master equation for an explicit example: the
quantum measurement of a mirror’s position with light.

If one is only interested in the steady state of the quantum system, a much simpler
way of revealing the conditional state is by introducing Wiener filtering [131] in the context
of Gaussian quantum systems, which, compared with the approach involving a stochastic
master equation, allows us to determine the conditional state directly from the spectral
densities of the system [90, 91]. Another advantage is that the Wiener filtering method is
aimed directly at experimental efforts. By knowing the right Wiener filter, which has to be
calculated assuming a certain model, one is able to extract the conditional quantum state
from a set of measurement data as a kind of post-processing.
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Figure 25: Illustrative picture of a conditional state. The path of the conditional first-
order moments in phase-space is revealed by a measurement. The conditional second-order
moments leave out some rest uncertainty described by squeezing ellipse (deep-blue). It is
embedded in the large ellipse representing the unconditional uncertainty about the state.

After presenting the derivation of a concrete stochastic master equation, we will continue
with recalling more generally the theory of Wiener filtering which is a well-known result
from classical, linear optimal control theory. We will start with the one-dimensional Wiener
filter and continue with the two-dimensional Wiener filter. We will need the two-dimensional
Wiener filter whenever we have two independent measurement outputs on which we want
to conditioning the measured state. Note that throughout this thesis, we will only use the
Wiener filtering method in order to obtain our results about conditional states. We will
not present how to obtain the steady state conditional variances from a stochastic master
equation even though we have gone through the calculations.

3.1.1 Stochastic master equation

Let us again consider the Hamiltonian from Sec. 1.2.3 which describes an optical field in a
cavity and the cavity’s movable end mirror

Ĥ = ĤM + ĤL + ĤI . (3.1)

But for simplicity we will omit the cavity mode here because then the coupling between the
mirror and the light simplifies to

ĤI = −α x̂ â1 (3.2)

with a coupling constant given by

α =

√
8 P ω0 ~

c2
, (3.3)
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where P is the circulating laser power and ω0 the laser angular frequency. Adiabatically
eliminating the cavity mode is always possible if the cavity bandwidth is reasonably high.
In Eq. (3.2), â1 denotes as usual the amplitude quadrature operator of the optical field and
x̂ the position operator of the mirror. Different to what has been done in Sec. 1.2.3, we will
treat the problem by setting up an equation for the density matrix operator of the system.
In the interaction picture with respect to ĤL, the free time evolution of the optical field is
suppressed, and the density matrix operator of the total system evolves as

d

dt
ρ̂(t) = − i

~

[
ĤM, ρ̂(t)

]
− i

~

[
ĤI(t), ρ̂(t)

]
, (3.4)

where ĤI(t) = −α x̂ â1(t). Suppose that at each time instant t the density matrix operator
is disentangled in mirror and light system, i.e. ρ̂(t) = ρ̂M(t) ⊗ ρ̂L. This is true because at
each time instant another light portion is incident on the mirror – remember that there is
no cavity which could store the light. Then we can expand the solution to Eq. (3.4) for ρ̂ at
time t + dt as

ρ̂(t + dt) =ρ̂(t)− i

~

[
ĤM, ρ̂(t)

]
dt− i

~

∫ t+dt

t

dt′
[
ĤI(t

′), ρ̂(t)
]

+

(
− i

~

)2 ∫ t+dt

t

dt′
∫ t+dt

t

dt′′
[
ĤI(t

′′),
[
ĤI(t

′), ρ̂(t)
]]

+O(dt2)

=ρ̂(t)− i

~

[
ĤM, ρ̂(t)

]
dt +

iα

~

[
x̂ Â1, ρ̂(t)

]

− α2

2~2

[
x̂ Â1,

[
x̂ Â1, ρ̂(t)

]]
+O(dt2) , (3.5)

where we have defined

Â1 ≡
∫ t+dt

t

dt′ â1(t
′). (3.6)

Note that the second equality sign in Eq. (3.5) is justified when defining Â1 as in Eq. (3.6),
because of [â1(t

′), â1(t
′′)] = [x̂, â1(t

′)] = 0. Suppose that we perform a homodyne detection
on the phase quadrature, the measurement-output operator is ŷ, if we define

ŷ ≡
∫ t+dt

t

dt′ â2(t
′), (3.7)

where â2 denotes the phase quadrature operator of the optical field. Note that we can easily
extend this concept to the case when observing an arbitrary quadrature.

Now we project with the projection operator 1⊗ P̂y dt the density matrix operator onto
the space where the measurement-output operator takes the measured value (y dt). Every
projection of that form disentangles the mirror system again from the light. Thus, we can
partially trace over the optical field to obtain the conditional density matrix operator of the
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system which is then given by

ρ̂M(t + dt|ŷ = y dt) ∝
∫ ∞

−∞

dk

2π
e−i k y dt

(
〈ei k ŷ〉 ρ̂M(t)− i

~
〈ei k ŷ〉

[
ĤM, ρ̂M(t)

]
dt

− iα

~

(
〈ei k ŷÂ1〉 x̂ ρ̂M(t)− 〈Â1e

i k ŷ〉 ρ̂M(t) x̂
)

− α2

2~2

(
〈ei k ŷÂ2

1〉 x̂2 ρ̂M(t)− 2〈Â1e
i k ŷÂ1〉 x̂ ρ̂M(t) x̂ + 〈Â2

1e
i k ŷ〉 ρ̂M(t) x̂2

)

+O(dt2)

)
. (3.8)

With the commutation relation [â1(t), â2(t
′)] = i δ(t− t′) we obtain 〈[Â1, ŷ]〉 = i dt and when

we assume the following Gaussian first- and second-order moments for the optical field

〈Â1〉 = 〈ŷ〉 = 0 and 〈Â2
1〉 = 〈ŷ2〉 = dt/2 , (3.9)

we obtain

ρ̂M(t + dt|ŷ = y dt) ∝e−(y dt)2/dt

√
πdt

(
ρ̂M(t)− i

~

[
ĤM, ρ̂M(t)

]
dt− α

~
{x̂, ρ̂M(t)} y dt

− α2

2~2

((
x̂2 ρ̂M(t) + ρ̂M(t) x̂2

) (
dt− (y dt)2

)− 2 x̂ ρ̂M(t) x̂ (y dt)2
)
)

.

(3.10)

In order to obtain the probability density of (y dt), we have to trace over the mirror system

P(y dt) =
e−(y dt)2/dt

√
πdt

(
1− 2

α

~
〈x̂〉 y dt− α2

2 ~2
〈x̂2〉 (

2 dt− 4 (y dt)2
))

. (3.11)

Therefore, we have

〈y dt〉 =
α

~
〈x̂〉 dt and 〈(y dt)2〉 =

dt

2
+O(dt2). (3.12)

Basically, this means that we can write

y dt =
α

~
〈x̂〉 dt + dW/

√
2 , (3.13)

where dW 2 = dt is called Wiener increment. Normalizing Eq. (3.10) with Eq. (3.11) and
expanding up to linear order in dt, we obtain the conditional covariance matrix (cf. e.g.
Refs. [57,86])

ρ̂cond
M (t + dt) =ρ̂M(t)− i

~

[
ĤM, ρ̂M(t)

]
dt− α2

4~2
[x̂, [x̂, ρ̂M(t)]] dt

+
α√
2~

({x̂, ρ̂M} − 2〈x̂〉 ρ̂M) dW . (3.14)

The third term on the right hand side of Eq. (3.14) describes the well-known back action of
the measurement, while the last term, which actually is of stochastic nature, gives rise to
conditioning the state onto the measurement result.
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At this stage we will stop even though we have not obtained the conditional variances
yet. Note that as a good exercise we have actually gone through the whole calculation of
constructing as well as solving the Riccati matrix differential equation for the conditional
covariance matrix in position and momentum from Eq. (3.14). This Riccati matrix differ-
ential equation as well as its solution can be found in Ref. [45]. One can imagine that the
stochastic master equation method becomes much more complicated when analyzing more
complex measurement devices. Remember that we usually already know the equations of
motion in the frequency domain and that we are usually only interested in the steady state
solution of the conditional variances. This leads to a much more convenient method which
we will describe in the following.

3.1.2 Wiener filtering

Let us assume that we already know the equations of motion describing the measured system
as well as the one of the quantum measurement process. Then we generally define ŷ(t)
to be the Heisenberg operator of any linear quantum measurement output and x̂(t) and
p̂(t) the Heisenberg operators of position and momentum, respectively, of the system being
measured. What we want to do is to use the knowledge obtained from the measurement
results or, in other words, we want to estimate 〈x̂(t)〉cond and 〈p̂(t)〉cond using the output
data of ŷ(t) which, in terms of classical dynamics, is a very common problem in engineering.
In order to reconstruct the quantum-mechanical operators x̂(t), p̂(t) by linearly filtering the
operator ŷ(t) with the demand of giving the best estimation, we have to make sure that the
commutation relations

0 = [ŷ(t), ŷ(t′)] ∀t, t′ and (3.15)

0 = [x̂(t), ŷ(t′)] = [p̂(t), ŷ(t′)] ∀t > t′ (3.16)

hold. Usually we are saved, since Eq. (3.15) is satisfied by all simultaneously measurable
variables such as the output of any quantum measurement device [23], while Eq. (3.16) has
to be satisfied due to causality: the measurement-output operator should of course be not
influenced by any future system observable. This means that all ŷ(t′) for 0 < t′ < t can be
regarded as classical quantities, as long as we consider the state of the system at time t.

The optimal filter function for the displacement Kx(t) is determined by the condition
that the quantity

R̂x(t) ≡ x̂(t)−
∫ t

−∞
dt′ Kx(t− t′) ŷ(t′) (3.17)

must be uncorrelated with the past output, i.e. 〈R̂x(t) ŷ(t′)〉 = 0 for all t′ < t. Please
do not confuse R̂x(t) with the frequency-domain susceptibility Rxx(Ω). After rearranging,
Eq. (3.17) can also be understood in the way that we split x̂(t) into two independent parts,
where one of them reveals what we know about x̂(t) from the measurement result, while
R̂x(t) denotes the unknown content of x̂(t), which is not accessible by the measurement.
Inserting Eq. (3.17) into 〈R̂x(t) ŷ(t′)〉 = 0 leads to the Wiener-Hopf equation which can be
found in many textbooks on classical linear optimal control theory (cf. e.g. Refs. [94,97,98])
and which reads

Cxy(t− t′′)−
∫ t

−∞
dt′ Kx(t− t′) Cyy(t

′ − t′′) = 0 ∀t′′ ≤ t . (3.18)
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Here Cxy(t− t′) and Cyy(t− t′) stand for the (symmetric) time-domain, two-point correlation
functions (cf. Tab. 1) between two Heisenberg operators. If we suppose that Kx(t) = 0 for
t < 0, which makes sure that the filter is a causal function, we can rewrite Eq. (3.18) as

Cxy(t)−
∫ ∞

−∞
dt′ Kx(t

′) Cyy(t− t′) = 0 ∀t ≥ 0 . (3.19)

In the frequency domain the condition Eq. (3.19) is satisfied if the function

L(Ω) = Sxy(Ω)−Kx(Ω) Syy(Ω) (3.20)

is analytic in the lower-half complex plane while the Fourier transform of the filter function
Kx(Ω) is analytic in the upper-half complex plane. Furthermore, L(Ω) has to vanish at
plus and minus infinity. We have denoted with Sxy(Ω) and Syy(Ω) the single-sided (cross-)
spectral density (cf. Tab. 1) among the two operators x̂ and ŷ. The obvious solution for
Kx(Ω) is given by

Kx(Ω) =
1

s+
y (Ω)

[
Sxy(Ω)

s−y (Ω)

]

+

, (3.21)

where we have split Syy(Ω) = s+
y (Ω) s−y (Ω) in such a way that s+

y (Ω) and its inverse are
analytic functions in the upper-half complex plane while s−y (Ω) and its inverse are analytic
functions in the lower-half complex plane. Note that [. . .]+ stands for taking the component of
a function whose inverse Fourier transform has support only in positive times. Operationally,
this could be realized by keeping only terms of the function’s partial fraction expansion
whose poles have negative imaginary parts. Note that the decomposition of a function into
[. . .]− + [. . .]+ is only unique up to a polynomial in Ω. But the condition that L(Ω) has to
vanish at plus and minus infinity uniquely defines Kx(Ω) in Eq. (3.21). Back in the time
domain, this provides the causal Wiener filter function [131] for the position which is then
given by

Kx(t− t′) =

∫ ∞

−∞

dΩ

2π

1

s+
y (Ω)

[
Sxy(Ω)

s−y (Ω)

]

+

e−i Ω (t−t′) . (3.22)

Analogously we find the optimal filter function, i.e. the causal Wiener filter function, for the
momentum by exchanging x with p.

Let us assume that we are in the steady state where x̂ and p̂ both have unconditionally
zero mean values. As we have motivated in the appendix of Ref. [90], the first-order moments
of the conditional state are totally determined by the measurement results and can be written
as

〈x̂(t)〉cond =

∫ t

−∞
dt′ Kx(t− t′) y(t′) , (3.23)

〈p̂(t)〉cond =

∫ t

−∞
dt′ Kp(t− t′) y(t′) , (3.24)

where y(t) is the measurement result of ŷ(t) at each time instant. Furthermore, we have
shown in the appendix of Ref. [90] that the conditional second-order moments depend only
on the operators which are uncorrelated with the measurement-output operator, since they
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correspond to the remaining fluctuations if taking the measurement result into account. This
fact reads

V cond
xx = 〈(x̂(t))2〉cond − (〈x̂(t)〉cond)2 = 〈R̂x(t) R̂x(t)〉 , (3.25)

V cond
pp = 〈p̂2〉cond − (〈p̂〉cond)2 = 〈R̂p(t) R̂p(t)〉 , (3.26)

V cond
xp =

1

2
〈x̂(t) p̂(t) + p̂(t) x̂(t)〉cond − 〈x̂(t)〉cond 〈p̂(t)〉cond

=
1

2
〈R̂x(t) R̂p(t) + R̂p(t) R̂x(t)〉 . (3.27)

Because the measurement output spectrum Syy(Ω) is in general a rational function of Ω2

with real coefficients, we can further use the fact that s−y (Ω) = (s+
y )∗(Ω). Then together

with Eq. (3.17) and with Eq. (3.21), we can derive the conditional second-order moments to
result in

V cond
xx =

∫ ∞

0

dΩ

2π

(
Sxx(Ω)− 2 Kx̂(Ω) S∗xy(Ω) + Kx̂(Ω) K∗

x̂(Ω) Syy(Ω)
)

=

∫ ∞

0

dΩ

2π

(
Sxx(Ω)−

[
Sxy

s−y

]

+

[
Sxy

s−y

]∗

+

)
, (3.28)

and similarly we find

V cond
pp =

∫ ∞

0

dΩ

2π

(
Spp(Ω)−

[
Spy

s−y

]

+

[
Spy

s−y

]∗

+

)
, (3.29)

V cond
xp =

∫ ∞

0

dΩ

2π
<

{
Sxp(Ω)−

[
Sxy

s−y

]

+

[
Spy

s−y

]∗

+

}
. (3.30)

Now we are in principle able to deduce the conditional variances from the spectral densities
Syy(Ω), Sxy(Ω) and Spy(Ω) obtained from real measurement data together with the predicted
spectral densities Sxx(Ω) and Spp(Ω) from the theory.

We can see that the conditional variances in Eqs. (3.28)–(3.30) are actually composed
of the unconditional variance from which a certain contribution due to the observation is
subtracted. This contribution depends on the correlation between the measured quantity and
the measurement output operator. Note that the unconditional cross-variance Vxp always
vanishes because <{Sxp(Ω)} = 0. Furthermore, it is probably worth mentioning that, as we
can see from Eqs. (3.28)–(3.30), the conditional variances are invariant under multiplying
the measurement output operator ŷ by any constant real factor.

Note that we have written a package for the commercial software Mathematicar in order
to numerically calculate conditional states resulting from any noise spectrum consisting of
broken-rational functions in Ω2. The package numerically calculates the lists of zeros and
poles of the spectra and derives by only modifying these lists the conditional variances.
Therefore the routine is quite fast, even for long lists of poles and zeros.

In the following sections we will mostly consider conditional states and will therefore
omit the superscript ’cond’ for the sake of convenience unless it can cause confusions.
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3.1.3 Two-dimensional Wiener filter

Imagine that two or even more independent linear quantum measurements are made on one
and the same object. In this case the conditional state depends on all measurement outputs.
Let us restrict the discussion to the two-dimensional case. Then Eq. (3.17) becomes

R̂x(t) ≡ x̂(t)−
∫ t

−∞
dt′ ~KT

x (t− t′) ~y(t′) , (3.31)

where the vector ~yT (t) = (ŷ1(t), ŷ2(t)) is composed of the two measurement-output operators

and the optimal filter functions corresponding to these outputs are gathered in ~Kx(t). Now
the condition that 〈R̂x(t) ŷi(t

′)〉 = 0 for all t′ < t and i = 1, 2 results in a Wiener-Hopf
matrix equation which in turn requires that both entries of the vector function

~L(Ω) =

(
Sxy1(Ω)
Sxy2(Ω)

)
−

(
Sy1y1(Ω) Sy2y1(Ω)
Sy1y2(Ω) Sy2y2(Ω)

)

︸ ︷︷ ︸
Syy

(
K

(1)
x (Ω)

K
(2)
x (Ω)

)
(3.32)

are analytic in the lower-half complex plane and vanish at plus and minus infinity. The aim
is to factorize the rational matrix Syy = Φ− Φ+ which can certainly be achieved, as we have
eventually realized, using the method of symmetric factors extraction, suggested by Davis
in Ref. [44]. But here we will not go into the details of the Davis factorization. Having
obtained this factorization, the vector of optimal filter function is given by

(
K

(1)
x (Ω)

K
(2)
x (Ω)

)
= Φ−1

+

[
Φ−1
−

(
Sxy1(Ω)
Sxy2(Ω)

)]

+

. (3.33)

We have written another Mathematicar package which numerically Davis-factorizes rational
matrices and then numerically calculates the conditional second-order moments of a double
measured system. This two-dimensional concept can easily be extended to the case with
more dimensions.

3.2 Preparation of conditional macroscopic quantum states using
the Wiener filter

We will start our discussion about the preparation of a conditional quantum state of a macro-
scopic and heavy object under continuous measurement with a very general treatment. Then
we will specify more and more to concrete examples: (i) measuring the position of the end
mirror of a cavity with infinitely large bandwidth which is theoretically equivalent to mea-
suring the differential motion between the end mirrors of a simple Michelson interferometer
which is totally balanced in arm length as well as in end mirror weight; (ii) measuring the
position of the end mirror of a cavity with finite bandwidth which is equivalent to measuring
the differential motion between the end mirrors of a Michelson interferometer with arm cav-
ities; (iii) measuring the position of the end mirror of a detuned cavity which is equivalent
to measuring the differential motion between the end mirrors of a Michelson interferometer
with arm cavities and detuned signal-recycling; (iv) and finally measuring the differential
motion between the mirrors of a speed meter.
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3.2.1 General linear Markovian measurement process

Let us start our discussion as promised generally with an abstract continuous linear Marko-
vian measurement process, which monitors the position of a simple harmonic oscilla-
tor [42, 90]. The Heisenberg equations of motion in the frequency domain can be written
as

ŷ = Ẑ + x̂ , (3.34)

x̂ = Rxx(Ω) F̂ , (3.35)

where the two measurement noise operators Ẑ and F̂ have both a white spectrum. This
accounts for the Markovian measurement process: Ẑ and F̂ in the time domain are subject
to a stochastic first order Markov-chain, where at each time instant, they are independent
of their entire history. We assume that Ẑ and F̂ have the single-sided (cross-) spectral
densities SZZ ≥ 0, SFF ≥ 0 and SZF , which are supposed to be real constants satisfying the
Heisenberg relation of the measurement process [18]

SZZSFF − S2
ZF ≥ ~2 , (3.36)

which is imposed by the measurement’s back action. If the measurement process is pure,
which turns the inequality sign in Eq. (3.36) for the measurement noise into an equal sign,
i.e. Sq

ZZSq
FF − (Sq

ZF )2 ≡ ~2, we call it a quantum measurement process. Note that the two

noise operators Ẑ and F̂ , may also contain additional noise that does not directly come from
the measurement process. In Eq. (3.34), ŷ denotes the measurement-output operator and
x̂ is the quantity being measured. Recall that the mechanical susceptibility of a damped
harmonic oscillator is given by

Rxx(Ω) = − 1

m (Ω2 + i γm Ω− ω2
m)

, (3.37)

with the eigenfrequency ωm, the damping rate γm ¿ ωm and the mass m. Note that if
γm 6= 0, SFF has to contain at least the zero-point fluctuations of the oscillator (cf. Sec. 1.3)
in addition to the noise coming from the measurement. Then we can easily assemble the
single-sided spectral densities of the measurement process as

Syy(Ω) = SZZ + 2<{Rxx(Ω)} SZF + |Rxx(Ω)|2 SFF

≡ m2 |Rxx(Ω)|2
(

Ω4 − 2

(
q1 − γ2

m

2

)
Ω2 + q2

2

)
SZZ , (3.38)

Sxy(Ω) = |Rxx(Ω)|2 SFF + Rxx(Ω) SZF

= −m |Rxx(Ω)|2
(

Ω2 − i γm Ω− ω2
m −

SFF

SZF

)
SZF , (3.39)

Sxx(Ω) = |Rxx(Ω)|2SFF , (3.40)

where we have defined the coefficients

q1 ≡ ω2
m +

SZF

mSZZ

, (3.41)

q2 ≡
√

ω4
m + 2 ω2

m

SZF

mSZZ

+
SFF

m2SZZ

. (3.42)
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Note that we always have q2
2 ≥ 0, i.e. q2 is a positive real number, since the two coefficients

fulfil

q2
2 − q2

1 =
SZZSFF − S2

ZF

m2S2
ZZ

≥ ~2

m2S2
ZZ

≥ 0 , (3.43)

which implies that q2 ≥ |q1|. From Eq. (3.38) we can recover a quantum limit of the
measurement process: if we have SZF = 0 and use Eq. (3.36), the spectral density of the
measurement noise is restricted to

Syy(Ω) = SZZ + |Rxx(Ω)|2 SFF ≥ 2 |Rxx(Ω)|
√

SZZ SFF

≥ 2 ~ |Rxx(Ω)| ≡ SSQL(Ω) . (3.44)

Compare the right hand side of Eq. (3.44) – when we have |Rxx(Ω)| = 1/(m Ω2) for a free
mass and SZZ SFF = Sq

ZZ Sq
FF ≡ ~ for a pure measurement – with the free mass standard

quantum limit in Eq. (1.17). Note that for the free mass the first inequality sign in Eq. (3.44)
becomes an equality sign at Ω = Ωq, where the measurement frequency is defined by

Ω2
q ≡

√
Sq

FF

m2 Sq
ZZ

. (3.45)

Therefore, the measurement frequency Ωq is by definition the frequency at which the noise

spectral density of any Markovian quantum measurement process with no correlation in Ẑ
and F̂ touches its free mass standard quantum limit, i.e. Syy(Ωq) = SSQL(Ωq) = 2 Sq

ZZ .

Now it is straightforward to derive the conditional variances assuming p̂ = −i m Ω x̂ and
using the Wiener filter method as explained in Sec. 3.1.2. For this it has actually been crucial
to first spectral factorize Syy(Ω) as done in Eq. (3.38). Then we need to insert the spectral
densities from Eqs. (3.38)–(3.40) into Eqs. (3.28)–(3.30) and evaluate the integrals. Here we
require that SZF > 0 or at least SFF SZZ − S2

ZF > γ2
m m2 S2

ZZ (γ2
m/4− ω2

m − SZF /(mSZZ)).
Then after several cumbersome calculational steps, we finally obtain the conditional variances
which read

Vxx =
SZZ√

2

(√
q2 − q1 +

γ2
m

2
− γm√

2

)
, (3.46)

Vpp = m2 SZZ√
2

(
(
q2 + γ2

m

)
(√

q2 − q1 +
γ2

m

2
− γm√

2

)
− (q2 − q1)

γm√
2

)
, (3.47)

Vxp = m
SZZ

2

(√
q2 − q1 +

γ2
m

2
− γm√

2

)2

. (3.48)

Remember that these expressions are only valid in the weak-coupling regime, i.e. for γm ¿
ωm. When the oscillator is coupled strongly to the thermal bath at such low temperatures
where kBT is of the order of ~, the zero-point fluctuations of the oscillator become non-
Markovian and turn SFF into a frequency-dependent function. We can actually see when
our formulation within the weak-coupling approximation breaks down: exactly when the
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uncertainty product which is given by

Vxx Vpp − V 2
xp =

SFF SZZ − S2
ZF

4

√
q2 − q1 + γ2

m

2
− γm√

2√
q2 − q1 + γ2

m

2
+ γm√

2

≥
( ~2

4
+ SZZ mγm ~ωm︸ ︷︷ ︸

from
Eq. (1.78)

)
√

q2 − q1 + γ2
m

2
− γm√

2√
q2 − q1 + γ2

m

2
+ γm√

2

, (3.49)

becomes for a certain γm smaller than the Heisenberg uncertainty principle allows.

In the perfect oscillator limit with γm → 0, the Heisenberg uncertainty principle is
always satisfied and the conditional covariance matrix is totally determined in terms of
(SZZ , q1, q2,m) and we can put it into the following form

V ≡
(

Vxx Vxp

Vxp Vpp

)
= mSZZ

√
q2
2 − q2

1

2
D




√
2q2

q1+q2

√
q2−q1

q2+q1√
q2−q1

q2+q1

√
2q2

q1+q2


 DT , (3.50)

where we have defined the matrix D = diag (1/
√

m
√

q2,
√

m
√

q2). Note that Eq. (3.50)
gives us now the most general covariance matrix of the conditional Gaussian state of a
lossless harmonic oscillator under any linear Markovian position measurement. The form
of that covariance matrix in Eq. (3.50) is reminiscent of an oscillator at an eigenfrequency
represented by

√
q2, where the matrix D is then basically responsible for the re-scaling in

that eigenfrequency. Here
√

q2 actually coincides with ωeff as defined in Eq. (1.8) if the
conditional variances in position and momentum are considered. From Eq. (3.41) we can
deduce that

√
q2 is indeed equal to the shifted mechanical eigenfrequency and in the case of

no correlation in Ẑ and F̂ , it even simplifies to ωeff =
√

q2 = ωm
4

√
1 + Ω4

q/ω
4
m.

Recall from Sec. 1.1 that a Gaussian state is pure if and only if its uncertainty product
is Heisenberg-limited, i.e. for detV = Vxx Vpp − V 2

xp = ~2/4. In that section we have also
argued why it makes sense to quantify the purity of the conditional state by its uncertainty
product, here given by

detV = m2 S2
ZZ

q2
2 − q2

1

4
=

SFF SZZ − S2
ZF

4
≥ ~2

4
, (3.51)

which – as it has turned out when using the relation of Eq. (3.43) to produce the second
equal sign in Eq. (3.51) – is identical to the purity of the measurement process. This simply
shows that in the Markovian case, any measurement will produce a pure conditional state of
a lossless harmonic oscillator if and only if it is a quantum measurement – that means that
the measurement process has to be pure itself.

The covariance matrix in Eq. (3.50) becomes obviously diagonal and the correlation
between x̂ and p̂ in the conditional state vanishes if and only if q1 = q2. But this is strictly
forbidden due to the Heisenberg uncertainty principle as given in Eq. (3.51). The correlation
in x̂ and p̂ increases – and in turn also the uncertainty product – with a higher difference in
q1 and q2. If we consider again the case of no correlation in Ẑ and F̂ , the difference in q1
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and q2 is equal to the difference between the mechanical eigenfrequency and the new shifted
mechanical eigenfrequency.

In order to realize the conditional state, as given in Eq. (3.50), the measurement data
has to be filtered using the Wiener filter functions for position and momentum which are
given in the frequency domain by

Kx(Ω) =
√

2 i
√

q2 − q1
Ω− Ω3

(Ω− Ω1) (Ω− Ω2)
, (3.52)

Kp(Ω) = i m
(
q2 − ω2

m

) Ω + ω2
m/Ω3

(Ω− Ω1) (Ω− Ω2)
, (3.53)

where Ω1,2 = (±√q2 + q1− i
√

q2 − q1)/
√

2 and Ω3 = i/
√

2 (ω2
m−q2)/

√
q2 − q1. Note that the

poles of the Wiener filter Ω1,2 are actually equal to the zeros of the measurement’s output
spectrum Syy(Ω), which in turn correspond to the frequencies of maximal sensitivity and
are therefore easy to find. Interestingly, we can find the relation |Ω1,2| = √

q2 = ωeff , where
ωeff , as given in Eq. (1.8), minimizes the effective occupation number which can be obtained
from the conditional variances.

3.2.2 Quantum measurement noise versus classical noise

Let us now have a closer look at the noise model which we will use throughout this chapter.

probe detector

classical

sensing

noise

classical

force

noise

output
back action

Figure 26: Schematic block diagram of a linear quantum measurement process. It is il-
lustrated where the two different classical noise sources can couple into the measurement
process. The probe could more concretely be the center-of-mass position of a test mass
while the detector could consist of a coherent laser beam.

Note that from now on we will only consider quantum measurement processes. Generally,
we will then categorize the noise of the quantum measurement process into two groups:
(i) the one which is a result of the measurement process itself and is therefore pure, i.e.
satisfies Sq

ZZ Sq
FF − (Sq

ZF )2 = ~2, will be denoted by quantum noise; and (ii) the noise on top
of this quantum noise will be called classical noise which does not directly come from the
measurement process (cf. Fig 26), usually has no correlation in Ẑ and F̂ , i.e. Scl

ZF = 0, does
not have to satisfy Eq. (3.36) and could further have Scl

FF , Scl
xx À ~. Then the two noise

sources combine as SFF = Sq
FF + Scl

FF and SZZ = Sq
ZZ + Scl

ZZ .

As we know from Sec. 1.1, the noise of a quantum measurement – for instance with
light – is dominated at high frequencies by shot noise which is covered by Sq

ZZ and at low
frequencies by back-action noise which is covered by Sq

FF . The latter one is represented by the
radiation-pressure noise in the case of a measurement with light. If both are uncorrelated, i.e.
Sq

ZF = 0, they result in the standard quantum limit. Then the quantum noise spectral density
Sq(Ω) = Sq

ZZ + |Rxx(Ω)|Sq
FF (cf. Fig. 27) – describing the sensitivity of the measurement –
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Figure 27: Example noise spectral densities (in arbitrary units) of a Markovian measurement
process observing a free mass: the quantum noise spectral density (colored curves) with
Sq

ZZ Sq
FF = ~ and Sq

ZF = 0 at different values of the measurement frequency Ωq; the free-
mass standard quantum limit (black line) is denoted by SQL; as well as the spectral densities
corresponding to a classical force noise (gray line) and a sensing noise (gray line) are marked
in the plot. The gray shadowed region marks the classical noise standard quantum limit
beating which we have chosen to have Ωx/ΩF = 5.

is limited from below by the free-mass standard quantum limit as shown in Eq. (3.44) and
also in Fig. 27. The quantum noise touches the free-mass standard quantum limit at the
frequency Ω = Ωq as defined in Eq. (3.45).

The other noise sources which usually have a classical origin can also be divided into two
parts: a classical force noise Scl

FF is added to SFF which acts directly on the center of mass
of the measured object, and is in real interferometric experiments due to for instance seismic
noise or thermal noise in the suspension of the mirrors. The classical sensing noise Scl

ZZ is
only a pseudo motion of the measured object and may be due to the following reasons: (i) on
the one hand due to thermal fluctuations of the mirror’s shape as for example mirror internal
thermal noise which makes only the mirror surface move with respect to its center of mass;
or (ii) on the other hand be due to optical losses; or (iii) due to photo-detection inefficiency.
Therefore, our sensing noise is somehow generalized from what is conventionally understood
when using the term ’sensing noise’. Note that in the theoretical analysis of the sensitivity
of gravitational-wave detectors – as we have dealt with in the first part of this thesis – there
is usually no need to distinguish between the two classical noise sources, the force and the
sensing noise. Moreover, in principle we did not need to distinguish even between quantum
and classical noise. All of them are just noise sources which complicate the detection of
gravitational waves. But in this part, where we consider conditional macroscopic quantum
states, there is a strong need to distinguish between them because they are all differently
integrated into these conditional states. It might even be misleading to call them ’noise’
although we will do it due to historical reasons.

Throughout this second part we will assume both classical noise sources to have a white
spectrum, that means that Scl

FF and Scl
ZZ are a constant with respect to the sideband fre-

quency. Then they can be characterized by the frequencies, ΩF for the force noise and Ωx for
the sensing noise, at which their noise spectral density intersects with the free-mass standard
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quantum limit (cf. Fig. 27). These classical noise frequencies are defined by the following
relations

Scl
FF = 2 ~m Ω2

F , (3.54)

Scl
ZZ =

2 ~
m Ω2

x

. (3.55)

As an example, the Markovian noise corresponding to the velocity damping of a harmonic
oscillator with a damping rate γm can be described by

Ω2
F =

4 γm kBT

~
(3.56)

at a temperature T with kBT À ~ωm (compare Sec. 1.3). While in the limit of temperature
around the absolute zero, i.e. with T → 0, we obtain

Ω2
F = 2 γm ωm . (3.57)

But in the following we will usually not specify the type of classical noise and only consider
its strength.

Note that the classical force noise together with the classical sensing noise can open
a window in which both are completely below the free-mass standard quantum limit as
indicated by the gray-shadowed region in Fig. 27. This is the case if and only if the classical
noise sources satisfy

Scl
FF Scl

ZZ < ~2 ⇔ Ωx/ΩF > 2 , (3.58)

which, as we have seen, turns into a constraint for the classical noise frequency ratio. If
Eq. (3.58) holds, the classical noise is equal to a factor of (2 ΩF /Ωx) times the free-mass
standard quantum limit at the frequency Ω =

√
ΩF Ωx. Since here the classical noise has the

largest separation to the standard quantum limit, we can understand the factor (2 ΩF /Ωx)
as the classical-noise-standard-quantum-limit-beating factor.

Before we continue, we shall probably give some order-of-magnitude estimations on the
quantum and the classical noise in real experimental situations: the initial LIGO detec-
tors [48, 112] as examples of devices with really macroscopic and heavy test-masses are in
their total noise roughly a factor of 10 away from their standard quantum limit [130]. In
the planned Advanced LIGO detector [1], the measurement frequency is planned to reach
Ωq/(2π) ∼ 100Hz. Note that here the measurement frequency is increased with the arm
cavity bandwidth as shown in Sec. 3.2.6. Furthermore, people expect the suspension thermal
noise to have a ΩF /(2π) ∼ 30 − 40Hz deducting the structural damping – but the coating
thermal noise which will probably be the most challenging sensing noise source may provide
a Ωx that only coincides with ΩF or is just marginally higher (cf. e.g. Fig. 15). Therefore,
even this future detector will probably provide either no or only a very tiny frequency band
in which the classical noise is completely below the standard quantum limit. In lab-scale
experiments with tiny but still macroscopic test-masses, measurement frequencies of sev-
eral kHz have already been realized [35, 36]. Here the classical noise is presumed to have
ΩF /(2π) ∼ 1 kHz but Ωx is far below ΩF (cf. e.g. Fig. 23). Therefore, such devices are
definitely not yet beating the standard quantum limit with their current level of classical
noise.
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3.2.3 Very low finesse cavity with quantum vacuum noise

Let us come back to the example from Sec. 3.1.1, namely, to the simple theoretical situation
of a laser beam incident on a suspended mirror. This corresponds to a mirror in a cavity
(cf. Sec. 1.2) but tuned and with infinitely large bandwidth which allows to adiabatically
eliminate the cavity mode. Then the spectral densities of the pure quantum measurement
process are very simple and read

Sq
ZZ =

~2

α2
, Sq

FF = α2 , Sq
ZF = 0 , (3.59)

with α as given in Eq. (3.3). In this example we have no correlation between the shot and
the back-action noise of the quantum measurement.

In fact, the conditional variances for such a system have been solved by many previous
works. Inserting Eq. (3.59) into Eq. (3.50), we obtain

Vxx =
~√

2 mωm

1√√
Ω4

q

ω4
m

+ 1 + 1

ωm→0−→ ~√
2 m Ωq

, (3.60)

Vpp =
~mωm√

2

√
Ω4

q

ω4
m

+ 1
√√

Ω4
q

ω4
m

+ 1 + 1

ωm→0−→ ~m Ωq√
2

, (3.61)

Vxp =
~
2

Ω2
q

ω2
m√

Ω4
q

ω4
m

+ 1 + 1

ωm→0−→ ~
2

, (3.62)

where the measurement frequency is given by Ωq = α/
√
~m which, as we know from

Eq. (3.44), is the frequency at which the quantum noise touches the free mass standard
quantum limit. Since the conditional variances from Eqs. (3.60)–(3.62) result from a pure
quantum measurement process without any additional noise, they of course always represent
a pure state, i.e. they satisfy Vxx Vpp − V 2

xp = ~2/4. We have found that the conditional
variances completely coincide with those obtained from the stochastic master equation as
given in Eq. (3.14). For that, compare also Eqs. (3.60)–(3.62) with Eqs. (2.8a)–(2.8c) from
Ref. [45].

For ωm 6= 0 we can define the unconditional ground state of the oscillator as in
Sec. 1.3. Then the conditional variances from Eqs. (3.60)–(3.62) represent a pure state
which is squeezed in the oscillator’s ground-state normalized coordinates which are defined
in Eq. (1.81) with a squeezing factor given by (cf. Eq. (1.11))

r = arccosh


 1√

2

√√√√
√

Ω4
q

ω4
m

+ 1 + 1


 , (3.63)

and at a squeezing angle of (cf. Eq. (1.12))

ϕ = arctan


 ω2

m√
2 Ω2

q

√√√√
√

Ω4
q

ω4
m

+ 1 + 1

(
1− Ω2

q

ω2
m

−
√

Ω4
q

ω4
m

+ 1

)
 +

π

2
. (3.64)
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The test-mass squeezing increases with a faster measurement, i.e. with higher Ωq, and

2 4 6 8 10
Wq�Ωm

0

-4

-8

-12

-16

-20

S
qu

ee
zi

ng
@d

B
D

0

Π
�����
8

Π
�����
4

j
@r

ad
D

Figure 28: Test-mass squeezing in ground-state normalized coordinates with respect to the
pendulum: squeezing strength (−20 r/ ln 10) with r as given in Eq. (3.63) (red curve) and
squeezing angle ϕ as given in Eq. (3.64) (blue curve), both versus the dimensionless frequency
ratio consisting of measurement frequency divided by mechanical resonance frequency. The
conditional variances are produced by a pure quantum measurement. Note that ϕ = 0
corresponds to squeezing in (oscillator ground-state normalized) position and ϕ = π/4 to
squeezing in exactly 45◦ between (oscillator ground-state normalized) position and (oscillator
ground-state normalized) momentum.

with a lower mechanical eigenfrequency as shown in Fig. 28. Simultaneously, the squeezed
quadrature turns from 45◦ between the oscillator’s ground-state normalized position and
momentum to the oscillator’s ground-state normalized position quadrature. This is due to
the fact that a higher measurement frequency corresponds to more optical power. With
more optical power, the measurement is able to gain more information about the position of
the test mass while it deteriorates the momentum with more back-action noise.

In the free-mass limit, where ωm → 0, the conditional state spanned by the variances as
given in Eqs. (3.60)–(3.62) is equal to a squeezed unconditional ground state of a mechanical
harmonic oscillator but with an eigenfrequency Ωq. In ground-state normalized coordinates
with respect to an oscillator having the measurement frequency as its eigenfrequency, i.e.
exchange ωm by Ωq in Eq. (1.81), we find a squeezing factor of r = arccosh

√
2 and squeezing

angle of φ = π/4, which means squeezing in exactly 45◦ between measurement-frequency
ground-state normalized position and momentum. This defines the conditional ground state
of a free mass. The Wigner function of such a state can be found in the right panel of Fig. 1.

For a free mass the Wiener filter functions for position and momentum become equal to
simple decaying cosine functions at the measurement frequency and read

Kx(t) =
√

2 Ωq e
−Ωq t√

2 cos

(
Ωq t√

2

)
, (3.65)

Kp(t) =
√

2 m Ω2
q e

−Ωq t√
2 cos

(
Ωq t√

2
+

π

4

)
. (3.66)

Now we can explicitly see why Ωq is actually called measurement frequency: its inverse sets
a timescale for the duration of the measurement which is needed in order to produce the
conditional state. Fig. 29 shows that both filter functions sweep just once through the zero
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Figure 29: Normalized amplitudes of the Wiener filter functions for position and momen-
tum in the free-mass limit versus normalized measurement time. A quantum measurement
process with no correlation in shot and back-action noise is assumed. No additional noise
is considered. These Wiener filter functions produce the conditional ground state of a free
mass.

point as it is required for an optimal shock absorber. It shows further that in the absence
of any classical noise the Wiener filter functions allow to stop measuring the free mass after
∼ 7/Ωq seconds in order to map it onto the conditional state.

3.2.4 Very low finesse cavity with vacuum input and classical noise

We shall extend our discussion by including classical noise in addition to the quantum-
measurement noise. Furthermore, we will consider a perfect balanced homodyne detection
on the output field which introduces correlations into the two quantum-measurement noise
sources, the photon shot noise and the radiation-pressure noise, which gives Sq

ZF 6= 0. Then
the form of the simplified Markovian quantum measurement process in Eqs. (3.34)–(3.35)
still persists. But let us state here again the frequency-domain Heisenberg equations of
motion, where F̂ and Ẑ have to be replaced accordingly, to give

ŷ(Ω) = sin ζ â1 + cos ζ
[
â2 +

α

~
(x̂(Ω) + ξ̂x)

]
, (3.67)

x̂(Ω) = − 1

m(Ω2 + i γm Ω− ω2
m)

(α â1 + ξ̂F ) , (3.68)

with α as given in Eq. (3.3). Here ωm is as usual the pendulum angular eigenfrequency and
γm the pendulum damping rate of the suspended test-mass mirror – a mechanical harmonic
oscillator with mass m. The measurement output operator ŷ includes phase quadrature
fluctuations of the in-going vacuum fields, the motion of the mirror’s center of mass x̂ and
classical sensing noise ξ̂x obeying the frequency-domain correlation

〈ξ̂x(Ω) ξ̂†x(Ω
′)〉sym = 2π

~
m Ω2

x

δ(Ω− Ω′) . (3.69)

The angle ζ denotes the quadrature angle of the homodyne measurement performed on the
output field. The motion of the test-mass’s center of mass in turn is driven by radiation-
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pressure fluctuations as well as by a classical force ξ̂F having the correlation

〈ξ̂F (Ω) ξ̂†F (Ω′)〉sym = 2π ~m Ω2
F δ(Ω− Ω′) . (3.70)

The amplitude â1 and the phase quadrature operator â2 of the in-going vacuum fields obey
the correlation as given in Eq. (1.36). Note that Eqs. (3.67)–(3.68) and therefore the following
analysis are also valid for the dark port fields entering and leaving an equal-arm Michelson
interferometer with movable end mirrors and the differential motion between these mirrors –
but then the mirror mass m in the following discussion has to be substituted by the effective
mass m/2.

For this model we are still able to obtain quite simple analytic expressions for the condi-
tional variances. We need to insert the spectral densities of the measurement process

SZZ =
~2

α2
tan2 ζ +

~2

α2
+

2 ~
m Ω2

x

, SFF = α2 + 2 m ~Ω2
F , SZF = ~ tan ζ (3.71)

into Eq. (3.50). Then we define the two scalars ξF ≡ ΩF /Ωq and ξx ≡ Ωq/Ωx with Ωq =

α/
√
~m. Recall from Sec. 3.2.2 that the force and the sensing noise intersect the standard

quantum limit at ΩF and Ωx, respectively, and for Ωx/ΩF = 1/(ξF ξx) > 2, we have a non-
zero frequency band in between ΩF and Ωx in which the classical noise is completely below
the standard quantum limit – maximally below with the classical-noise-standard-quantum-
limit-beating factor of (2 ξF ξx) = (2 ΩF /Ωx). In the free-mass limit, i.e. with ωm → 0, the
conditional variances from Eq. (3.50) simplify to

Vxx =
~
√

1 + tan2 ζ + 2 ξ2
x√

2 m Ωq

(√
(1 + 2 ξ2

F )(1 + tan2 ζ + 2 ξ2
x)− tan ζ

) 1
2

, (3.72)

Vpp =
~m Ωq√

2

√
1 + 2 ξ2

F

(√
(1 + 2 ξ2

F )(1 + tan2 ζ + 2 ξ2
x)− tan ζ

) 1
2

, (3.73)

Vxp =
~
2

(√
(1 + 2 ξ2

F )(1 + tan2 ζ + 2 ξ2
x)− tan ζ

)
, (3.74)

while the purity of the state is given by

detV =
~2

4

((
1 + 2 ξ2

F

) (
1 + 2 ξ2

x

)
+ 2 ξ2

F tan2 ζ
)

≥ ~2

4
(1 + 2 ξF ξx)

2 . (3.75)

Note that here the uncertainty product is actually independent of the mechanical eigenfre-
quency because it has turned out that in the case of an oscillator, i.e. for ωm 6= 0, Eq. (3.75)
remains the same. It is clear from Eq. (3.75) that one should measure the phase quadrature
with ζ = 0 in order to minimize the uncertainty product. That means that in order to
obtain a small uncertainty product, it is not required to remove the back-action noise from
the measurement output – moreover, for that purpose it would be even destructive to do
so. This fact is understandable, since here the aim is to learn as much as possible about the
mirror motion. The back-action noise is an important content of the mirror motion encoded
in the output.
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Figure 30: Conditional test-mass uncertainty product (in the free-mass limit and with phase
quadrature detection) versus logarithmically spaced measurement frequency in arbitrary
units. Here we have chosen a classical noise level satisfying Ωx/ΩF = 5. At three distinct
points (Ωq = ΩF /3, Ωq =

√
ΩF Ωx and Ωq = 3 Ωx – compare to Fig. 27) the test-mass

squeezing ellipses in the conditional free-mass ground-state normalized position and momen-
tum coordinates are shown. The horizontal axis corresponds to (ground-state normalized)
position and the vertical axis to (ground-state normalized) momentum quadrature. Note
that the area of each squeezing ellipse is here equal to a factor of π/~ times the uncertainty
product.

We can learn from Eqs. (3.72)–(3.74) that the effect of the classical force noise in the
conditional variances is suppressed with a higher measurement frequency while the classical
sensing noise is suppressed with a lower measurement frequency – recall that the measure-
ment frequency is proportional to the square root of the optical power and therefore describes
the measurement strength. Moreover, in the absence of any classical sensing noise the test-
mass state becomes even pure with an infinitely strong measurement. Then all classical
forces acting on the test mass can be neglected in the vicinity of the strong back-action
force and the test mass reaches the conditional ground state at the infinite measurement
frequency. Contrary, in the theoretical absence of classical force noise, the test-mass state
becomes pure in the limit of an infinitely weak measurement. This situation is also obvious:
if the test-mass motion is only driven by the measurement’s back action but this motion is
then unfortunately hidden in the measurement output because it is covered by the classical
sensing noise, the best idea would be not to measure the test mass at all. Here we can see
that the effects of classical force and sensing noise in the conditional variances are indeed – as
stated in Sec. 3.2.2 – totally different. If both classical noise sources are present, the uncer-
tainty product is minimized further with an optimal power which accomplishes a balancing
between classical force and sensing noise, i.e. ξF = ξx. This produces an equal sign in the
second line of Eq. (3.75) and is true for a measurement frequency of Ωq =

√
ΩF Ωx (cf. also

Fig. 30). This simply means that the quantum noise should touch the free-mass standard
quantum limit at the frequency where the classical noise has the maximal separation to that
limit (cf. Fig. 27). The expression of the minimal uncertainty product is then a function of
the classical-noise-standard-quantum-limit-beating factor. We can easily see that the smaller
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Figure 31: Conditional uncertainty produced (upper panel) as well as test-mass squeezing
factor (middle panel) and squeezing angle (lower panel), where all quantities are in the
free-mass limit and plotted versus measurement frequency including a certain classical noise
budget: here we have chosen ΩF = 1/

√
5 and Ωx =

√
5. Examples for different homodyne

detection angles are given. Both, squeezing factor and angle, are normalized with respect to
the conditional ground state of a free mass.

the product (ξF ξx) or equivalently, the bigger the ratio Ωx/ΩF , which both correspond to a
broader frequency band in which the classical noise is completely below the standard quan-
tum limit as well as a stronger classical noise beating the standard quantum limit, the more
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pure the conditional state becomes. Of course, in the quantum-noise limit (ξF = ξx = 0 as
in Sec. 3.2.3) the conditional state is always pure, which means it is Heisenberg-limited for
any measurement frequency Ωq and homodyne detection angle ζ.

We shall discuss the squeezing of the conditional free-mass state given by Eqs. (3.72)–
(3.74) in coordinates which are normalized with respect to the conditional ground state of
a free mass as defined in Sec. 3.2.3. Note that the conditional ground state of a free mass
itself is already squeezed in position and momentum, where the squeezing depends on the
measurement frequency. In this normalization the squeezing factor reads

r = arccosh

(
1√
2

√
1 + 2 ξ2

F +
√

1 + 2 ξ2
x

4
√

(1 + 2 ξ2
F ) (1 + 2 ξ2

x)

)
≥ arccosh

√
2 , (3.76)

when measuring the phase quadrature with ζ = 0. This squeezing factor becomes minimal
exactly when the uncertainty product is minimal, i.e. at ξF = ξx. With increasing measure-
ment frequency, the squeezing angle turns smoothly from zero to π/2, crossing π/4 exactly
at ξF = ξx. This means that for a slow measurement with a small Ωq, the conditional state
is squeezed in conditional free-mass ground-state normalized position, and anti-squeezed in
conditional free-mass ground-state normalized momentum. For a fast measurement, i.e. with
a high Ωq, the situation is reversed and the state is squeezed in conditional free-mass ground-
state normalized momentum, and anti-squeezed in conditional free-mass ground-state nor-
malized position. Recall that increasing the measurement frequency, the conditional ground
state itself becomes in turn more squeezed in position and more anti-squeezed in momentum
(cf. Eqs. (3.60)–(3.62)). At the optimal measurement frequency satisfying ξF = ξx, the
state is squeezed in 45◦ between conditional free-mass ground-state normalized position and
momentum (cf. Fig. 30). Thus, for ξF = ξx, the conditional state of a free mass has always
the same squeezing factor and angle as its conditional ground state, but a higher uncertainty
product which depends on the level of classical noise.

With a variable homodyne detection angle, the situation becomes slightly more compli-
cated. In the quantum-noise limit, i.e. with ξF = ξx = 0, the test-mass squeezing factor is
not restricted to r = arccosh

√
2 anymore but reads in the conditional free-mass ground-state

normalized coordinates

r = arccosh


 1√

2

√
1 + tan2 ζ + 1√√
1 + tan2 ζ + tan ζ


 . (3.77)

From Eq. (3.77) we can deduce that the test-mass squeezing becomes stronger for ζ → π/2
but the squeezing factor increases even faster for ζ → −π/2. We can see in the upper
panel of Fig. 31 that for a fixed homodyne detection angle ζ 6= 0 the uncertainty product
is not minimized with ξF = ξx anymore, but at a certain measurement frequency Ωq 6=√

ΩF Ωx. This measurement frequency coincides with a local minimum of the squeezing
factor – therefor compare the upper and the middle panel of Fig. 31. The squeezing factor
diverges at small as well as at high measurement frequencies. At a fixed finite measurement
frequency, approaching ζ = −π/2 turns the squeezed quadrature from the conditional free-
mass ground-state normalized position to the conditional free-mass ground-state normalized
momentum quadrature (cf. lower panel of Fig. 31). This is actually no surprise because
the amplitude quadrature at ζ = −π/2 carries information about the past back action from
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which the conditioning process can learn about the modified momentum. Note that here the
aim is not at all at removing the back-action noise from the measurement output, which in
contrast is achieved at a certain sideband frequency Ω when the homodyne detection angle
satisfies tan ζ = Ω2

q/Ω
2.

3.2.5 Very low finesse cavity with squeezed input and classical noise

Until now we have only treated in-going coherent vacuum states of the light â1, 2 – but
one could also think about optical squeezed vacuum states coupling to the mirror. This
corresponds to inserting optical squeezed states into an interferometer’s dark port. By doing
so, the quantum limited sensitivity of an interferometer can be enhanced (cf. Tab. 2) as it
was first shown in Ref. [27]. Instead of modifying the correlations of the in-going vacuum
fields (cf. Eq. (1.36)), we can make the following replacement of the in-going amplitude and
phase quadrature operators (as shown in Ref. [78]) in the equations of motion

â1 → â1 (cosh rop + cos 2ϕop sinh rop) + â2 sin 2ϕop sinh rop , (3.78)

â2 → â1 sin 2ϕop sinh rop + â2 (cosh rop − cos 2ϕop sinh rop) , (3.79)

where the factor −(20/ ln 10) rop < 0 gives the optical squeezing strength in dB and the
squeezing angle is denoted by ϕop. Then the entries of the test-mass’ conditional covariance
matrix read in the free-mass approximation (ωm = 0)

Vxx =
~
√

λ2− + 2 ξ2
x√

2 m Ωq

(√
(λ2

+ + 2 ξ2
F )(λ2− + 2 ξ2

x)− sin 2ϕop sinh 2rop

) 1
2

, (3.80)

Vpp =
~m Ωq

√
λ2

+ + 2 ξ2
F√

2

(√
(λ2

+ + 2 ξ2
F )(λ2− + 2 ξ2

x)− sin 2ϕop sinh 2rop

) 1
2

, (3.81)

Vxp =
~
2

(√
(λ2

+ + 2 ξ2
F )(λ2− + 2 ξ2

x)− sin 2ϕop sinh 2rop

)
. (3.82)

Here we have defined λ2
± = cosh 2rop ±cos 2ϕop sinh 2rop. Then the purity of the conditional

state can be inferred from

detV =
~2

4

(
(λ2

+ + 2 ξ2
F )(λ2

− + 2 ξ2
x)− sin2 2ϕop sinh2 2rop

)

≥ ~2

4

(
1 + 4 ξ2

F ξ2
x + 2 (ξ2

F + ξ2
x) cosh 2rop − 2 |ξ2

F − ξ2
x| sinh 2rop

)

≥ ~2

4
(1 + 2 ξF ξx)

2 . (3.83)

The equality of the first inequality sign in Eq. (3.83) is achieved at ϕop = 0 for ξ2
F > ξ2

x and
at ϕop = π/2 for ξ2

F < ξ2
x, i.e. by squeezing either the phase or the amplitude quadrature,

respectively. Note that in Eq. (3.83) for any Ωq, the same minimum as in Eq. (3.75) is reached
if rop = arctanh(|ξ2

F − ξ2
x|/(ξ2

F + ξ2
x))/2 – even when having ξF 6= ξx. Therefore, even with

input squeezing, the conditional state cannot become more pure than with coherent input,
but the demands on the required measurement frequency – and with this the constraints
on the optical power, which is needed in order to obtain a certain uncertainty product, can
be relaxed. In real experiments the optical power is of course always limited and squeezed
input becomes an very important tool.
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It has turned out that the conditional variances are in principle even analytically equiv-
alent in the following two cases: (i) input-squeezing at a flexible but frequency-independent
angle or (ii) flexible amount of available optical power and a flexible but frequency-
independent homodyne detection angle. This can easily be seen by replacing the homodyne
detection angle tan ζ → sin 2ϕop sinh 2rop and the measurement frequency Ωq → λ+Ωq in
Eqs. (3.72)–(3.74). Then we simply end up with Eqs. (3.80)–(3.82). Here we can directly
see that using input squeezing allows to change the parameters within Ωq such as the op-
tical power, the laser frequency and the mirror mass but by modifying the input squeezing
parameter λ+ we can at the same time maintain the measurement frequency. The above
described equivalence justifies that from now on we will only treat the flexible homodyne
detection angle and infinite amount of available optical power case in all following theoretical
calculations but we will keep in mind that with the help of input squeezing we can meet the
requirements on the technical parameters much easier.

Even though a homodyne detection different from the phase quadrature and input squeez-
ing do both not help with increasing the purity of the conditional state, we will see in Sec. 3.5
that, since they increase the squeezing of the conditional test-mass state, they can help with
entangling the two macroscopic test masses in a Michelson interferometer. Furthermore,
with a certain homodyne detection angle or with a certain input squeezing it is possible to
remove the position and momentum correlation in the conditional state, i.e. make sure that
Vxp = 0. This becomes crucial for a quantum-noise limited feedback-controlled state as we
will see in Sec. 3.4.

3.2.6 Cavity with finite bandwidth

If we consider a cavity of length L with a finite cavity half-bandwidth γ and a movable
end mirror, the quantum measurement process becomes non-Markovian, since SZZ , SZF and
SFF are now frequency dependent functions. Therefore, we find that Eq. (3.50) is no longer
the valid expression for the conditional covariance matrix. Here the Heisenberg equations
of motion in the frequency domain modify to the Eqs. (1.53) and (1.54) with ∆ = 0 which
read

ŷ = sin ζ
γ + i Ω

γ − i Ω
â1 + cos ζ

(
γ + i Ω

γ − i Ω
â2 +

√
c γ/L

γ − i Ω

α

~
(x̂(Ω) + ξ̂x)

)
, (3.84)

x̂ = − 1

m(Ω2 + i γm Ω− ω2
m)

(√
c γ/L

γ − i Ω
α â1 + ξ̂F

)
, (3.85)

where the measurement frequency becomes Ωcav
q =

√
c/(m ~Lγ) α. We denote the eight

different zeros of the measurement-output spectral density Syy(Ω) by γ (±a1 ± i b1) and
γ (±a2 ± i b2). These coefficients are for simplicity in the free-mass limit and at ζ = 0 given
by

a1,2 =
1

2

√√
%2 ∓

√
2%± %√

2
− 1 , (3.86)

b1,2 =
1

2

√√
%2 ∓

√
2%∓ %√

2
+ 1 , (3.87)
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Figure 32: Test-mass uncertainty product (red line) compared to the entanglement (blue
line) between the test mass and the tuned cavity mode both versus the dimensionless factor
Ωcav

q /γ which here determines both quantities. We have assumed that no classical noise is
present. Free mass limit is used, i.e. ωm = 0, as well as phase quadrature detection ζ = 0.
Entanglement is quantified by the logarithmic negativity.

where we have defined % =

√√(
2 Ωcav

q /γ
)4

+ 1 + 1. Then we can write down the spectral

density of the measurement output as

Syy =

(
γ4a4

1 + 2γ2 (γ2b2
1−Ω2) a2

1 + (Ω2+γ2b2
1)

2
)(

γ4a4
2 + 2γ2 (γ2b2

2−Ω2) a2
2 + (Ω2+γ2b2

2)
2
)

(γ2 + Ω2)2 (
Ω2γ2

m + (Ω2 − ω2
m)2) .

(3.88)
Furthermore, we have the following relations among the (cross-) spectral densities

Sxx(Ω) =
~

mγ2(Ωcav
q )2

(
γ2 + Ω2

)
(Syy(Ω)− 1) , (3.89)

Sxy(Ω) =

√
~√

mγΩcav
q

(γ − i Ω) (Syy(Ω)− 1) , (3.90)

which are helpful in the calculation of the conditional states.

If we then define the following coefficients from the zeros of the measurement-output
spectral density as

c1 = 2 (b1 + b2 − 1) , (3.91)

c3 =
2

3
(3 a2

1 b1 − b3
2 + 3 a2

2 b2 − b3
1 + 1) , (3.92)

c5 =
2

5
(b5

1 − 10 a2
1 b3

1 + 5 a4
1 b1 + b5

2 − 10 a2
2 b3

2 + 5 a4
2 b2 − 1) , (3.93)

we can write down after cumbersome calculations the conditional variances in the free-mass
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Figure 33: Contour plot (left panel) of the uncertainty product of a test-mass in a tuned
cavity for quantum noise only versus two characteristic ratios: mechanical eigenfrequency
over bandwidth ωm/γ and measurement frequency over bandwidth Ωcav

q /γ. Example contour

lines of 2/~
√

Vxx Vpp − V 2
xp are marked in the plot. Phase quadrature detection ζ = 0 is

assumed. Uncertainty product in the same situation versus mechanical eigenfrequency over
bandwidth for different examples of the ratio between measurement frequency and bandwidth
(right panel).

approximation, in the quantum-noise limit and with phase quadrature detection as

Vxx =
~ γ

6 m (Ωcav
q )2

(c3
1 + 3 c2

1 + 3 c1 + c3) , (3.94)

Vpp =
~ mγ3

120 (Ωcav
q )2

(3 c5
1 + 15 c4

1 + 20 c3
1 + 60 c3 + 60 c5) , (3.95)

Vxp =
~ γ2

16 (Ωcav
q )2

c2
1 (c1 + 2)2 . (3.96)

Here we find for Ωcav
q /γ > 0 that even in the quantum-noise limit the conditional test-mass

state is not Heisenberg-limited (cf. also Fig. 32) in contrast to the Markovian limit, i.e. with
γ → ∞, as discussed in Sec. 3.2.4 – compare especially the uncertainty product obtained
from Eqs. (3.94)–(3.96) with Eq. (3.75). With a finite cavity bandwidth, the light is stored
in the cavity for some time and information about the test-mass state is not able to leave
the cavity instantaneously – which means that they are not accessible for the conditioning.
Therefore, we inescapably need to factor the intra-cavity mode into our discussion. The
Heisenberg equations of motion for the intra-cavity mode’s amplitude and phase quadrature
operators are in the frequency domain given by (cf. Sec. 1.2)

ĉ1(Ω) =

√
2 c γ/L

γ − i Ω
â1 , (3.97)

ĉ2(Ω) =

√
2 γ

γ − i Ω
â2 +

√
c/(2 L)

γ − i Ω

α

~
x̂ . (3.98)

From these equations we have obtained the conditional variances for the cavity mode which
we will not report here. We have then constructed the total (4 × 4) conditional covariance
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Figure 34: Uncertainty product of a test-mass in a tuned cavity versus classical force noise
and without sensing noise (upper panel) as well as versus classical sensing noise without
classical force noise (lower panel), both for different examples of ratios between measurement
frequency and bandwidth. Free mass limit, i.e. with ωm = 0, as well as phase quadrature
detection ζ = 0 are assumed.

matrix of the composite system including test mass and cavity mode, and it has turned
out that we actually have a covariance matrix fulfilling the condition of a pure bipartite
state (cf. Sec. 1.4). Only if we look at one of the individual systems alone, each of them
does not appear pure. This is clear evidence of entanglement between the test mass and
the cavity mode, both conditioned on measuring the output field. We have plotted the
logarithmic negativity of the entanglement between the conditional states of test mass and
cavity mode in Fig. 32. In that figure we have also plotted the conditional uncertainty
product of the test mass. We can see that the test-mass state’s purity decreases and test-
mass-light entanglement increases with smaller bandwidth and with higher measurement
frequency Ωcav

q . But as demonstrated in Fig. 32 and Fig. 33, as long as the cavity bandwidth
is sufficiently larger than the measurement frequency, i.e. Ωcav

q < γ, we can neglect this effect
and adiabatically eliminate the cavity mode, as we have done in the previous sections and
will do in the following sections.

Fig. 33 further shows that in the oscillator case, i.e. with ωm 6= 0, the purity increases
with higher mechanical eigenfrequency ωm depending on the measurement frequency which
in turn depends on the optical power. Let us consult the following hand-waving argument:
with increasing ωm the mechanical oscillator and the optical oscillator, which would resonate
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at modulation-frequency zero, become more separated in the frequency space and therefore
their entanglement decreases. And with decreasing entanglement the test-mass state becomes
more pure.

Including the two classical noise sources from our simple model, the conditional state be-
comes more and more mixed but depending on the ratio between the measurement frequency
and the optical bandwidth as shown in Fig. 34. Recall that the classical force noise increases
with higher ΩF while the classical sensing noise increases with lower Ωx. The case of classi-
cal sensing noise in the absence of classical force noise shows the interesting feature that for
Ωcav

q /Ωx < 1 a lower Ωcav
q /γ produces a lower uncertainty product while at Ωcav

q /Ωx > 1 we
need a high Ωcav

q /γ in order to produce a small uncertainty product. For classical force noise
in the absence of classical sensing noise, a lower Ωcav

q /γ produces always a more pure state.

Note that we will not report here how the situation changes when observing the output
of the cavity with finite bandwidth at another homodyne detection angle which is different
from the phase quadrature.

3.2.7 Detuned cavity

As described in greater detail in Sec. 1.2.4, a cavity which is detuned with ∆ from the
carrier’s frequency makes the power inside the cavity also dependent on the motion of the
test-mass mirrors. This creates an optical spring or an optical anti-spring – depending on
the sign of the detuning – both shifting the free mechanical and the free optical resonance
frequency in the complex plane. Recall that the optical spring as well as the optical anti-
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Figure 35: Contour plot of the test-mass uncertainty product in a detuned cavity versus
two characteristic ratios: detuning over bandwidth ∆/γ and measurement frequency over
bandwidth Ωcav

q /γ. Example contour lines of 2/~
√

Vxx Vpp − V 2
xp are marked in the plot.

We assume no classical noise and the free-mass limit, i.e. with ωm = 0, as well as phase
quadrature detection ζ = 0 are used.

spring usually introduces instability to the system which has to be cured with an appropriate
linear feedback control [23]. But it is straightforward to show that the conditional covariance
matrix does not change under any ideal, linear feedback control (cf. Sec. 3.4).
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The Heisenberg equations of motion for such a system are given in Eqs. (1.53)–(1.54).
Unfortunately, analytic expressions for the conditional covariance matrix are cumbersome.
That is why we can only report numerical results here. Fig. 35 shows that detuning a cavity
from the carrier frequency properly can also increase the purity and therefore decrease the
quantum entanglement between test mass and cavity mode. In the regime of a blue detuned
cavity (∆ > 0) – producing an optical spring – and for Ωcav

q < ∆, Fig. 35 simply agrees
with Fig. 33. Here at fixed measurement frequency Ωcav

q < ∆, a higher detuning ∆ gives a
lower optomechanical resonance frequency, while it corresponds to a higher optical resonance
frequency. Therefore, again the two oscillators are more separated in the frequency space
and their entanglement decreases. Interestingly, for higher Ωcav

q the test-mass state could
locally appear more pure in the red detuned cavity regime, i.e. at a certain ∆ < 0, which
produces an optical anti-spring. Note that the uncertainty product diverges for an infinitely
red detuned cavity (∆ → −∞). For this fact we unfortunately do not have any intuitive
explanation. We will again leave it at reporting only about the situation when observing the
output of the detuned cavity at the phase quadrature.

3.2.8 Double carrier cavity

The double-optical-spring ponderomotive squeezer from Sec. 2.4 provides two measurement
output channels with the carrier and the subcarrier. With the help of the two-dimensional
Wiener filter (cf. Sec. 3.1.3), we have numerically derived the conditional variances of the
end mirror in such a double-optical-spring cavity. We have theoretically investigated the
conditional uncertainty product and have shown that it can be quite close to the Heisenberg
limit – comparably close as a single optical spring. This has supported the investigation
carried out in Ref. [35], where the unconditional state of the mirror in a double-optical-
spring cavity is explored experimentally.

Furthermore, we have even been able to numerically construct the total (6×6) conditional
covariance matrix of the composite system including the test mass as well as carrier and
subcarrier cavity mode. Together with that covariance matrix, we have been able to verify
that considering only quantum noise, the total state is pure. Since the conditional states
of the single systems are not pure, this is a proof for various kinds of entanglement which
cannot be removed by the conditioning: carrier cavity mode – subcarrier cavity mode; mirror
mode – carrier cavity mode; mirror mode – subcarrier cavity mode.

3.2.9 Speed meter

Finally, we will consider an optical speed-meter configuration such as the Sagnac interfer-
ometer with finite arm cavity bandwidth γ from Sec. 2.2 without signal-recycling. Then the
quantum measurement process is again non-Markovian and SZZ , SZF and SFF are frequency
dependent. The Heisenberg equations of motion in the frequency domain can be found in
Eqs. (2.25) and (2.26) with signal-recycling parameter set to zero, i.e. ρSR = φ = 0. Then
we obtain together with λ1 = λ2 = 0 and ε1 = ε2 = γ the Heisenberg equations of motion in
the frequency domain of the measurement output operator and of the differential test-mass
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Figure 36: Uncertainty product of the differential test-mass motion in a speed-meter con-
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for different examples of the ratio between measurement frequency and bandwidth. Phase
quadrature detection ζ = 0 is assumed.

mode position operator, respectively, which read

ŷ = − sin ζ
(γ + i Ω)2

(γ − i Ω)2
â1 + cos ζ

(
−(γ + i Ω)2

(γ − i Ω)2
â2 +

i Ω
√

c γ/L

(γ − i Ω)2

α

~
(x̂(Ω) + ξ̂x)

)
, (3.99)

x̂ = − 4

m(Ω2 + i γm Ω− ω2
m)

(
i Ω

√
c γ/L

(γ − i Ω)2
α â1 + ξ̂F

)
, (3.100)

where the measurement frequency is again given by Ωcav
q =

√
c/(m ~Lγ) α. Note that here

we have p̂ = −i m/4 Ω x̂.

We find that the uncertainty product considering only quantum noise is again totally
described by the two characteristic ratios: mechanical eigenfrequency over bandwidth ωm/γ
and measurement frequency over bandwidth Ωcav

q /γ. We already know from Sec. 2.2 that
a speed meter does not avoid the back action itself but removes the back-action from the
measurement output. Because therefore important information about the test-mass motion
is lost, we expect that a speed meter is not able to prepare a better quantum state than a
conventional topology. And in fact we can see in Fig. 36 that the uncertainty product even
formally diverges in the free-mass limit. This is probably due to the speed-meter effect which
becomes more significant in the free-mass limit. Note that we will not consider the detuned
speed meter as in Sec. 2.2 because we are not able to consider the uncertainty product in the
free-mass limit and would therefore be forced to account for too many different parameters.

3.3 Verification of macroscopic quantum states

It is impossible to verify the conditional state from the output data used for the conditioning.
The conditional second-order moments, V cond

xx , V cond
pp and V cond

xp , are by definition the parts
that are independent from the measurement data of previous times and are therefore the
fluctuations which have not been directly measured in the stage when we collect data for
the conditioning, the preparation stage. A verification could on the one hand justify the
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model we have used and on the other hand it could test whether the wave function collapse
really exists. We are actually left with two options: (i) we could characterize our device
carefully or (ii) we could directly verify the remaining fluctuations after the conditioning by
a second independent measurement in a so-called verification stage. Note that a verification
is also impossible without a preparation stage. Actually, the whole procedure – consisting of
state preparation and verification – has to be repeated several times in order to obtain the
statistics from which the conditional quantum state can be proven. Furthermore, it may be
useful to have an intermediate stage, where the test mass is not measured – or still measured,
but the measurement result is neither used for the conditioning nor for the verification – and
can freely evolve for some time. What we need to do is to give an estimation on how big
the increase in the uncertainty product during the free evolution and the measurement error
during the verification stage will be. We will touch on these issues in the following.

3.3.1 Free-evolution stage

How do the conditional variances look like at time t + τ when we have stopped looking at
it at time t? We have to go back into the construction of the Wiener filter and modify the
requirements for the quantity R̂x(t) from Eq. (3.17), namely to the requirement that at time
t + τ , it is only uncorrelated with past outputs up to time t, i.e. 〈R̂x(t + τ) ŷ(t′)〉 = 0 for all
t′ < t. Then the conditional second-order moments become

Vxx(τ) =

∫ ∞

0

dΩ

2π

(
Sxx −

[
Sxy e−i Ωτ

s−y

]

+

[
Sxy e−i Ωτ

s−y

]∗

+

)
, (3.101)

Vpp(τ) =

∫ ∞

0

dΩ

2π

(
Spp −

[
Spy e−i Ωτ

s−y

]

+

[
Spy e−i Ωτ

s−y

]∗

+

)
, (3.102)

Vxp(τ) =

∫ ∞

0

dΩ

2π
<

{
Sxp −

[
Sxy e−i Ωτ

s−y

]

+

[
Spy e−i Ωτ

s−y

]∗

+

}
. (3.103)

Let us come back to the example of a laser beam incident on a suspended mirror (cf.
Sec. 3.2.4), where the measurement is additionally subject to (white) classical force and
sensing noise. We first assume that the laser is still turned on after the preparation stage,
i.e. when τ > 0, but we are stopping the conditioning process by not taking into account the
measurement results. Therefore, in this non-conditioning stage, the mirror is still not only
driven by the classical force but also by radiation pressure. In the free-mass limit which is
the limit of small oscillator eigenfrequency and damping rate with ωm, γm ¿ Ωq, the increase
in the second-order moments simply becomes a truncated power series in τ

V on
xx (τ) = V cond

xx +
~

2 m Ωq

(
2
√

1 + 2 ξ2
F

√
1 + 2 ξ2

x Ωq τ +
√

2
(
1 + 2 ξ2

F

)3/4 (
1 + 2 ξ2

x

)1/4
(Ωq τ)2

+
(
1 + 2 ξ2

F

) (Ωq τ)3

3

)
, (3.104)

V on
pp (τ) = V cond

pp +
~m Ωq

2

(
1 + 2 ξ2

F

)
Ωq τ , (3.105)

V on
xp (τ) = V cond

xp +
~
2

(√
2

(
1 + 2 ξ2

F

)3/4 (
1 + 2 ξ2

x

)1/4
Ωq τ +

(
1 + 2 ξ2

F

) (Ωq τ)2

2

)
. (3.106)
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Note that Eqs. (3.104)–(3.106) are also a well-defined approximation for an oscillator and
are then valid for τ ¿ 1/ωm. Furthermore, in the case where the laser gets turned off when
τ > 0 we have

V off
xx (τ) = V on

xx (τ)− ~
2 m Ωq

(Ωq τ)3

3
(3.107)

V off
pp (τ) = V on

pp (τ)− ~m Ωq

2
Ωq τ , (3.108)

V off
xp (τ) = V on

xp (τ)− ~
2

(Ωq τ)2

2
. (3.109)

Note that this situation is only interesting from the theoretical point of view: turning out the
carrier laser field in a real experimental set-up is totally infeasible because this would mean
that the radiation pressure force at DC vanishes which then highly perturbs the motion of
the test-mass.

It is advisable to go into the test-mass rotating frame – it would actually be a rotation
with ωm which is zero in our approximation – given by V rot

xx (τ) = Vxx(τ) + τ 2/m2 Vpp(τ) −
2τ/m Vxp(τ), V rot

pp (τ) = Vpp(τ) and V rot
xp (τ) = Vxp(τ)−τ/m V off

pp (τ). Note that the uncertainty
product is conserved, i.e. V rot

xx V rot
pp − (V rot

xp )2 = Vxx Vpp − V 2
xp. Then Eqs. (3.104)–(3.106) get

transformed to

V on
xx (τ) → V cond

xx +
~

2 m Ωq

(
1 + 2 ξ2

F

) (Ωq τ)3

3
, (3.110)

V on
pp (τ) → V cond

pp +
~m Ωq

2

(
1 + 2 ξ2

F

)
Ωq τ , (3.111)

V on
xp (τ) → V cond

xp − ~
2

(
1 + 2 ξ2

F

) (Ωq τ)2

2
, (3.112)

if the laser remains turned on after the preparation stage. Here one should pay attention to
the fact that the cross-variance decreases and therefore approaches an unconditional state
with no correlations in x̂ and p̂. Remember that this decrease in V cond

xp results in an increase
in the uncertainty product V on

xx V on
pp − (V on

xp )2. Furthermore, only in the rotating frame we
can see that the change in the second-order moments is not caused by the sensing noise. The
increase in the uncertainty product reads

V on
xx (τq) V on

pp (τq)− (V on
xp (τq))

2 =
(
V cond

xx V cond
pp − (V cond

xp )2
) ×(

1 +
√

2 τq + τ 2
q +

√
2

3
τ 3
q +

1

12
τ 4
q

)
, (3.113)

when using a measurement frequency of Ωq =
√

ΩxΩF which minimizes the state’s un-
certainty product within the preparation stage, and if the laser remains turned on, where
τq ≡ Ωq τ =

√
ΩF Ωx τ . For this scenario, Fig. 37 shows the washing out of the purity.

Remarkable, after τ = 1/(2 Ωq), the uncertainty product increases only by a factor of two.

The conditional variances with the laser turned off for τ > 0 from Eqs. (3.107)–(3.109)
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Figure 37: Lifetime of conditional state when the laser is still turned on after the preparation
and a measurement frequency of Ωq =

√
ΩxΩF is used.

in the rotating frame are given by

V off
xx (τ) → V cond

xx +
~
m

Ω2
F

τ 3

3
, (3.114)

V rot
pp (τ) → V cond

pp + ~m Ω2
F τ , (3.115)

V rot
xp (τ) → V cond

xp − ~ Ω2
F

τ 2

2
. (3.116)

Note that the second-order moments remain constant in absence of any decoherence, i.e.
when the laser is turned off for τ > 0 and without any classical noise ΩF → 0.

3.3.2 Verification stage using back-action-noise evasion

During the verification stage, it is inevitable to evade the back-action noise [41] in order
to have a free view on the prepared quantum state. It is not necessary to avoid the back
action itself because the quantity we want to observe is the prepared state at the time right
after the preparation or the optional free-evolution stage. It is sufficient to remove the back-
action noise from the measurement output. An back-action evasion technique, variational
measurement, was invented by Vyatchanin and Zubova [127], which only suits signals with
known arrival times. Note that in the context of gravitational-wave detection, one would
prefer frequency-domain variational techniques, as those proposed in e.g. Ref. [78]. For the
variational measurement method, a local oscillator with a certain modulation is used for the
homodyne detection. Integrating the resulting photocurrent for a time interval τ , we obtain
the measurement output

ŷ =

∫ τ

0

dt
(
g1(t) b̂1(t) + g2(t) b̂2(t)

)
. (3.117)

In order to evade the back-action noise, it turns out that we need to require

g1(t) +

∫ τ

t

dt′ χx(t
′ − t) g2(t

′) = 0 , (3.118)

where χx(t
′ − t) is the response function of the test mass to external forces. Eq. (3.118) can

be understood as the back-action evasion condition and fixes the local oscillator modulation
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Figure 38: Test-mass squeezing ellipse of the conditional state (black ellipse) and the ad-
ditional verification noise (green ellipse) in the free-mass limit. We have used ground-state
normalized coordinates with respect to a harmonic oscillator with eigenfrequency Ωq. The
optimal measurement frequency is used and the classical noise satisfies ξF = ξx = 0.4 (left
panel) and ξF = ξx = 0.1 (right panel).

function g1(t). Optimizing the additional noise arising within the verification stage over
g2(t) which can be performed analytically (see the appendices of Ref. [41]), we obtain the
variances

V add
xx = 2

~√
2 m Ωq

(2 ξ2
F )1/4(1 + 2 ξ2

x)
3/4 , (3.119)

V add
pp = 2

~m Ωq√
2

(2 ξ2
F )3/4(1 + 2 ξ2

x)
1/4 , (3.120)

V add
xp = 2

~
2
(2 ξ2

F )1/2(1 + 2 ξ2
x)

1/2 , (3.121)

which are interestingly equal to twice the conditional variances from Eqs. (3.72)–(3.74) at
phase-quadrature readout and with removed back-action.

Now we have to ensure that the fluctuations from the verification process do not cover
the fluctuations which we want to measure, i.e. the conditional variances. Fig. 38 shows the
squeezing ellipse of the conditional state and the one of the additional verification noise in
two scenarios of classical noise.

3.4 Preparation of feedback-controlled macroscopic quantum
states

Position and momentum of an object in a conditional quantum state are far away from being
frozen. Quite the contrary: their first-order moments follow a stochastic process, a random
walk in time. But since the quantum measurement enables us to follow the object’s path in
phase-space, the conditional state can nevertheless be very pure for the observer. Linearly
feeding back the measurement result could really freeze the motion and trap the object into
the quantum state. That may be the reason why preparing a quantum state via feedback
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control is also known as cold damping [83]. Some people are also tempted to call this process
’cooling’ which is quite misleading because on the one hand we consider only one degree of
freedom of the test-mass motion and on the other hand the test mass is not in a thermal
equilibrium. In the illustrative picture from Fig. 25, using feedback could fix the controlled
state’s squeezing ellipse at the origin of the coordinate system by suppressing the path in
phase-space.

Note that in general the control scheme will strongly determine the dynamics of the test
mass, but the system could in a certain frequency band behave as a harmonic oscillator
with an effective eigenfrequency. Recently, the classical noise budget of the Hanford LIGO
detector has allowed a feedback control system to create a 2.5 kg oscillator with such an
effective eigenfrequency of around 150 Hz shifted up from the pendulum eigenfrequency of
1Hz and with an occupation number below 300 [49]. A similar investigation is currently
performed at the GEO600 detector. Furthermore, there is a number of such cold-damping
experiments considering different smaller-scale mechanical structures [34, 38, 68, 79, 88, 124].
All of them try to reach the oscillator’s ground state but are still some orders of magnitude
away from their goal. As a real pure quantum state is approached, the semiclassical model as
used in the above references will certainly break down and the quantum noise effects in the
measurement process have to be included. In that regime it also becomes important to use
an optimal control filter. Using the semiclassical model for the states as they are obtained
in present cold-damping experiments, is totally adequate.

3.4.1 Optimal controller

In general, a conditional state does not change under any linear feedback control what we
will show amongst others in the following. This is the reason why it only makes sense
to consider an unconditional feedback-controlled state if we want to learn anything new.
Moreover, almost all cold damping experiments deal with the unconditional state of the
test mass anyway. In Ref. [42], we have generally obtained the unconditional variances in
position and momentum of a test mass with the minimal uncertainty product – namely,
among all those variances which are produced by a system under linear feedback control.
Furthermore, in that reference, an optimal controller has been derived for a general linear
Markovian measurement process. This controller is optimal in the sense that it allows to
produce an unconditional linear feedback controlled state which is closest to a pure state.
We will recall this derivation in the following.

Let us suppose that we filter the measurement output operator of a quantum measure-

probe detector
output

back action

filtered output

Figure 39: Schematic block diagram of a linear feedback control scheme in its simplest form.
The detector’s output is first filtered and then feed back onto the probe.

ment process with the function C(t), and then apply it as a force
∫ t

−∞ dt′ C(t− t′) ŷcl(t′) onto
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the measured object as depicted in Fig. 39. In the frequency domain we then obtain the
controlled Heisenberg equations of motion given by

ŷcl(Ω) = ŷol(Ω) + RY F (Ω)
(
x̂cl(Ω)− x̂ol(Ω)

)
, (3.122)

x̂cl(Ω) = x̂ol(Ω)−Rxx(Ω) C(Ω) ŷcl(Ω) , (3.123)

where the superscript ’cl’ marks the closed-loop operators and ’ol’ the open-loop operators.
Defining the control kernel as

KC(Ω) =
Rxx(Ω) C(Ω)

1 + Rxx(Ω) C(Ω) RY F (Ω)
, (3.124)

we can deduce whether the closed-loop system is stable and the feedback C is proper, which
is namely the case if and only if KC(Ω) is a causal function and vanishes at infinity faster
than at first order. Then we can – again in the time domain – write down the following
relation between closed-loop and open-loop operators

x̂cl(t) = x̂ol(t)−
∫ t

−∞
dt′ KC(t− t′) ŷol(t′) , (3.125)

p̂cl(t) = p̂ol(t)−
∫ t

−∞
dt′ K̇C(t− t′) ŷol(t′) . (3.126)

We also find that ŷcl(t) is just equal to the convolution of a kernel function – similar to
the one from Eq. (3.124) – and ŷol(t). If we use our knowledge about conditional states by
considering Eq. (3.17) as well as its analog for p̂, we can derive the relations

V ctrl
xx = V cond

xx +

∫ ∞

0

dΩ

2π
|Kx(Ω)−KC(Ω)|2 Syy(Ω) , (3.127)

V ctrl
pp = V cond

pp +

∫ ∞

0

dΩ

2π
|Kp(Ω) + i Ω KC(Ω)|2 Syy(Ω) , (3.128)

V ctrl
xp = 0 , (3.129)

where Kx(Ω) is the frequency-domain Wiener filter for the position as given in Eq. (3.21)
and Kp(Ω) its analog for the momentum. Furthermore, we find that the close loop output

operator does not have any correlation with the quantity R̂x(t) as defined in Eq. (3.17), i.e.
〈R̂x(t) ŷcl(t′)〉 = 0 for all t′ < t, since ŷcl(t′) depends only on ŷol(t′′) for all t′′ ≤ t′. The same
applies to the close loop output operator and R̂p(t). Since R̂x(t) and R̂p(t) totally determine
the conditional state, this rigorously proves that the conditional state does not change under
any linear feedback control as we have stated above.

From Eqs. (3.127)–(3.129) we learn that the controlled unconditional variances V ctrl
xx and

V ctrl
pp are always larger than their conditional counterparts while the cross-variance is zero as

it is required for an unconditional state. This leads us to the following relation

V ctrl
xx V ctrl

pp ≥ V cond
xx V cond

xx ≥ ~2

4
+

(
V cond

xp

)2
, (3.130)

which shows that the unconditional uncertainty product of a controlled state can only reach
the Heisenberg minimum if simultaneously V cond

xp = 0 and V cond
xx V cond

xx = ~2/4. Remarkably,
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√
V cond

xx V cond
pp .

even for a perfect Markovian quantum measurement process with no correlation in its shot
and its back-action noise, for which the conditional state is pure, these two conditions are
impossible to fulfil (cf. Sec. 3.2.1). Therefore, one cannot apply any controller to create
an unconditional perfectly pure state when using a Markovian measurement which has no
correlation in shot and back-action noise.

Generally, if minimizing the Heisenberg uncertainty product of any controlled state given
by (V ctrl

xx V ctrl
pp ) using variational calculus, we find the optimal controlled state with the un-

conditional variances given by [42]

V ctrl
xx = V cond

xx +

√
V cond

xx

V cond
pp

V cond
xp , (3.131)

V ctrl
pp = V cond

pp +

√
V cond

pp

V cond
xx

V cond
xp , (3.132)

where the conditional variances are those which would originate from the same measurement
process as used for the control scheme. Here it is worth to mention that the ratio between
position and momentum fluctuations is the same in the conditional and the unconditional
controlled state, i.e. V ctrl

xx /V ctrl
pp = V cond

xx /V cond
pp . If we re-scale the operators x̂ and p̂ in a

way such that V cond
x′x′ = V cond

p′p′ = 1, the squeezing ellipse of the controlled state becomes a

circle and we have V ctrl
x′x′ = V ctrl

p′p′ = 1 + V cond
x′p′ which is in turn equal to the larger eigenvalue

of the re-scaled conditional covariance matrix (compare also Fig. 40). In general, this fact
provides us with a simple geometric construction for the unconditional optimal controlled
state’s squeezing ellipse: first draw a circle that totally encompasses the conditional state’s
squeezing ellipse in normalized coordinates. Then squeeze or stretch the circle in the position
direction by V cond

xx and in the momentum direction by V cond
pp .

Note that the optimal controller producing the variances in Eqs. (3.131) and (3.132) is
unique. For any Markovian measurement process the optimal controller reads

C(Ω) = C0
Ω− C1

Ω− C2

, (3.133)
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where we have defined C0 = −(ω2
m + Ω4 Ω5), C1 = (Ω3

5 + ω2
m Ω4)/(ω

2
m + Ω4 Ω5), C2 = Ω4 with

the control frequencies Ω4,5 that are purely imaginary and given by

Ω4 = −i [
√

q2 +
√

2(q2 − q1)] , Ω5 = −i
√

q2 . (3.134)

The coefficients q1 and q2 are defined in Eqs. (3.41) and (3.42), respectively. It turns out
that the optimal controller in Eq. (3.133) can be motivated simply from a constant feedback
plus a linear damping and a simple band limiting, which justifies the more or less educated
guesses as done in many previous publications – see e.g. Refs. [34, 39, 83, 126]. The optimal
controller changes the dynamics of the system and provides an effective susceptibility which
is the closed-loop response function of the oscillator’s location to external forces and is given
by

Reff
xx = − Ω− Ω4

(Ω− Ω1) (Ω− Ω2) (Ω− Ω5)
, (3.135)

where Ω1,2 are the zeros of the measurement output spectrum and given right after Eq. (3.53).
Interestingly, we find that we have the relation

|Ω1| = |Ω2| = |Ω5| = √
q2 = 1/m

√
V cond

pp /V cond
xx = 1/m

√
V ctrl

pp /V ctrl
xx = ωeff , (3.136)

where ωeff , as given in Eq. (1.8), minimizes the occupation number as it is shown in Eq. (1.7).
Furthermore, recall from Sec. 3.2.1 that

√
q2 actually gives the new eigenfrequency of the

conditional state.

Since a low uncertainty product of a controlled state requires a small V cond
xp , we recall

from Sec. 3.2.1 that in a Markovian measurement process having V cond
xp ∼ 0 is equivalent to

having q1 ∼ q2. In that regime we obtain Ω4 ∼ Ω5 and Reff
xx becomes equal to a susceptibility

of a harmonic oscillator with poles equal to Ω1,2 ∼ ±ωeff . In this way it becomes really
motivated to use the frequency ωeff as the eigenfrequency of the controlled system and the
effective occupation number from Eq. (1.6) as the occupation number of the controlled state.

3.4.2 Very low finesse cavity with vacuum input and classical noise

Now we can take the specific conditional variances as derived in Sec. 3.2 and use them to
evaluate the controlled variances. Let us consider a weakly damped mechanical oscillator
with the eigenfrequency ωm as a test mass which is monitored by a linear Markovian quantum
measurement process with spectral densities as given in Eq. (3.59). The measurement output
is fed back onto the test mass as described above. If we then assume that the test mass is only
additionally subjected to Markovian classical force noise, it has been shown in Ref. [42] that
we can find a kind of phase transition: if the classical force noise intersects the standard
quantum limit below the eigenfrequency of the oscillator, i.e. ΩF < ωm, there is a well-
defined finite measurement frequency minimizing the uncertainty product, and therefore the
effective occupation number (cf. Fig. 41). On the other hand, if the classical force noise
becomes so high that ΩF > ωm, the uncertainty product reaches its minimum at an infinitely
large optical power (cf. also Fig. 41). Independent from the level of classical noise, the values
of the uncertainty product’s minimum are then given by ~2/4 (1 +

√
2)2 which correspond

to an effective occupation number of Neff = 1/
√

2.

In order to investigate a test-mass which would be a free mass without the control scheme,
which is monitored by a quantum measurement process consisting of a balanced homodyne
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Figure 41: Controlled test-mass uncertainty product for a mechanical oscillator versus mea-
surement frequency. Examples for different levels of classical force noise are given. The black
curve represents the minimal achievable uncertainty product at a given level of classical force
noise.

detection and which is subject to classical force as well as classical sensing noise, we need
to insert Eqs. (3.72)–(3.74) into Eqs. (3.131) and (3.132). In the case of phase quadrature
readout, i.e. with ζ = 0, we obtain

V ctrl
xx V ctrl

pp =
(
1 +

√
2
)2 ~2

4

(
1 + 2 ξ2

F

) (
1 + 2 ξ2

x

)
︸ ︷︷ ︸
compare to Eq. (3.75) with ζ = 0

≥
(
1 +

√
2
)2 ~2

4
(1 + 2 ξF ξx)

2 . (3.137)

Therefore, allowing only a phase quadrature detection we find that the controlled uncertainty
product is always a factor of (1+

√
2)2 larger than the conditional uncertainty product. That

means that even in the quantum noise limit, i.e. with ξF = ξx = 0, the optimal controlled
test-mass is not in a pure state. This is simply due to the fact that measuring the output
field at the phase quadrature does not introduce correlation into shot and back-action noise.
And as we have mentioned above such a measurement cannot produce a pure controlled
state.

With a flexible homodyne detection angle ζ and a moderate level of classical noise, there
is still an optimal choice of the measurement frequency, which is in turn determined for
instance by the optical power, but different from the one producing ξF = ξx. This is shown
in Fig. 42. We can also see that for such a moderate level of classical noise, the most
pure state at a fixed measurement frequency is usually produced at a homodyne detection
angle close to the amplitude quadrature, where the controller can compensate the back-
action noise. The higher the measurement frequency, the more back-action compensation
is needed. As it is also shown in Fig. 42, the minimum of the controlled unconditional
uncertainty product can then approach the conditional uncertainty product much closer than
a factor of (1 +

√
2)2 ≈ 5.8. For a classical noise frequency ratio of Ωx/ΩF = 10 as assumed

in Fig. 42, the controlled uncertainty product with optimal measurement frequency and
optimal homodyne detection angle satisfies already V ctrl

xx V ctrl
pp /(V cond

xx V cond
pp − (V cond

xp )2) ≈ 2.5.

Fig. 43 shows that the more the classical noise is below the standard quantum limit, which
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Figure 42: Controlled test-mass uncertainty product in the free-mass limit versus homodyne
detection angle. Here the classical noise frequency ratio is fixed to Ωx/ΩF = 10. Examples
for different ξF -ξx-combinations are given, which correspond to tuning the measurement
frequency at a fixed classical noise. Each dot corresponds to the minimized uncertainty
product with respect to the homodyne detection angle. The black curve represents the
conditional state with ξF = ξx, i.e. at the optimal measurement frequency.

corresponds to a higher classical noise frequency ratio, the closer the controlled unconditional
uncertainty product can approach the conditional uncertainty product. In the quantum noise
limit the optimal controlled test-mass state can become even equal to a pure state but in
the theoretical limit of an amplitude quadrature detection, i.e. with tan ζ →∞.
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Figure 43: Minimal controlled test-mass uncertainty product in the free-mass limit versus
the classical noise frequency ratio. For each level of classical noise an optimal measurement
frequency and an optimal homodyne detection angle is used.

Other quantum measurement strategies – such as a non-Markovian measurement with
a frequency dependent homodyne detection angle – may allow the controlled uncertainty
product to become even closer to the conditional one at a higher level of classical noise.
That means that we could find a curve which is below the curve plotted in Fig. 43. We can
say that it is therefore not at all hopeless to reach a pure quantum state in cold damping
experiments.
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3.5 Macroscopic entanglement

In the world of microscopic particles, quantum entanglement has become a common obser-
vation. It can be found in discrete variables, such as the polarization of single photos, as well
as in continuous variables, such as the amplitude and the phase quadrature of a coherent
laser beam. In principle this phenomenon should not be restricted by the size and the weight
of an object. It has turned out that a perfect Michelson interferometer seems to be the ideal
device to produced entanglement between macroscopic and heavy objects [90, 91, 108]. In
this section, we want to show that a Michelson interferometer at its standard quantum limit
indeed produces entanglement between the conditional states of its otherwise free test-mass
mirrors, if both common- and differential-mode test-mass motion are measured, but with dif-
ferent quantum-measurement processes. Considering position and momentum of two mirrors
is in direct analogy to the Einstein, Podolsky and Rosen’s gedanken experiment [47].

3.5.1 Michelson interferometer produces test-mass entanglement

Let us consider an equal-arm Michelson interferometer as in Fig. 44 with the carrier laser
light injected from the left. As usual, the two beams split at the beam splitter and are
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Figure 44: Schematic plot of a power-recycled Michelson interferometer. The suspended
test-mass mirrors are supposed to be much lighter than the other suspended optics. The
differential motion of the test-mass mirrors is detected at the dark (south) port and the
common motion at the bright (west) port. A Faraday rotator might be used to access all of
the back reflected light.

reflected by identical suspended test-mass mirrors in the north (n) and east (e) arms before
being recombined at the beam splitter. The south port is kept dark at the zero point, with all
light reflected to the bright port. A power-recycling mirror is positioned in such a way that
it forms a resonant but relatively low finesse cavity for the carrier light with the test-mass
mirrors. If the Michelson interferometer is perfectly balanced in arm length as well as in
end mirror weight, eigenfrequency and loss, a differential arm-length change induces phase-
modulation fields that only emerge at the dark port. Correspondingly, fluctuating vacuum
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fields that enter the interferometer from the dark port only interact with test-mass mirror
displacements in the differential mode. Similarly, an arm-length change in the common
mode induces phase-modulation fields that only emerge at the bright port, while fluctuating
modulation fields that enter the interferometer from the bright port only interact with the
test-masses’ common mode of motion. Note that throughout this section we will assume
that the test-mass mirrors at the end of the interferometer arms are much lighter than all
the other optical components. Especially the motion of the beam splitter is neglected in
all following calculations. Furthermore, we will assume a very low eigenfrequency of the
pendulum created by the suspension of the end mirrors and treat them as free masses.

Contrary to usual interferometric experiments, we assume that perfect balanced homo-
dyne detections are made at both the dark and the bright port each with a certain frequency-
independent quadrature phase. In this way, we have two independent measurement processes
in our interferometer, one monitoring x̂d ≡ (x̂e−x̂n) and the other monitoring x̂c ≡ (x̂e+x̂n).
Note that these two measurement processes are different in terms of their signal storage time
due to the power-recycling cavity and they can be made further different in terms of the
homodyne phase. Defining p̂c,d ≡ (p̂e± p̂n)/2, we have [x̂c, p̂c] = [x̂d, p̂d] = i ~ (cf. Eq. (1.1)).
If both the common and the differential modes are in different but well-prepared quantum
states, which are ideally pure states, such that the wave functions ψc and ψd are different,
then the joint wave function

Ψ(xe, xn) = ψc(xe + xn) ψd(xe − xn) 6= ψn(xn) ψe(xn) (3.138)

must be non-separable.

We have to note that such an entanglement in position and momentum between the two
end mirrors of the Michelson interferometer is a very special kind of entanglement. When
we assemble the individual test-mass common- and differential-mode states, they result in
the state of the entire system: this system is described by the combined (4 × 4) covariance
matrix among (xe, pe, xn, pn) which reads

Vtotal =

(
Ve Ven

Vne Vn

)
(3.139)

with the (2× 2) entry matrices given by

Vn = Ve =

(
(V c

xx + V d
xx)/4 (V c

xp + V d
xp)/2

(V c
xp + V d

xp)/2 V c
pp + V d

pp

)
, (3.140)

Ven = Vne =

(
(V c

xx − V d
xx)/4 (V c

xp − V d
xp)/2

(V c
xp − V d

xp)/2 V c
pp − V d

pp

)
. (3.141)

If the individual common- and differential mode quantum states are squeezed, the combined
state is usually called a two-mode squeezed state. The combined covariance matrix from
Eqs. (3.139) obtained together with Eqs. (3.140) and (3.141) is very similar to the covariance
matrix for the amplitude and the phase quadrature of two output light beams which have
been created by overlapping two continuous Gaussian light beams on a beam splitter as
depicted in Fig. 45. Note that overlapping two light beams which are differently squeezed in
amplitude and phase quadrature on a beam splitter is a very common way of how continuous
variable entanglement is created in optics [11,55]. For the test-mass mirrors we can say that
the common and the differential mode of motion are superposed, resulting in the motion of
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squeezed

input states
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output states

 

Figure 45: Illustrative picture of a two-mode squeezed state as created in optics. Two
differently squeezed beams (in amplitude and phase quadrature) are overlapped on a beam
splitter giving a pair of entangled output beams.

each individual test-mass mirror (cf. Fig. 46). For our two-mode squeezed state, Eq. (1.90)
reduces to

Σ+ =
(
V c

xx V c
pp − (V c

xp)
2
)

︸ ︷︷ ︸
detVc

+
(
V d

xx V d
pp − (V d

xp)
2
)

︸ ︷︷ ︸
detVd

, (3.142)

Σ− = V c
xx V d

pp + V c
ppV

d
xx − 2V c

xpV
d
xp

= 2
√(

V c
xx V c

pp − (V c
xp)

2
) (

V d
xx V d

pp − (V d
xp)

2
)×

(
cosh rc cosh rd − sinh rc sinh rd cos 2(ϕc − ϕd)

)
. (3.143)

Furthermore, we obtain

detVtotal =
(
V c

xx V c
pp − (V c

xp)
2
)

︸ ︷︷ ︸
detVc

(
V d

xx V d
pp − (V d

xp)
2
)

︸ ︷︷ ︸
detVd

. (3.144)

Now all quantities in Eqs. (3.143) and (3.144) are given in terms of the Heisenberg uncertainty
products (detVc, detVd) as well as the squeezing factors (rc, rd) and the squeezing angles
(ϕc, ϕd) – each of common and differential mode. Then together with Eqs. (3.143) and
(3.144), the separability condition as given in Eq. (1.91) becomes

2
√

detVtotal

~2
+

~2

8
√

detVtotal

≥ cosh rc cosh rd − sinh rc sinh rd cos 2(ϕc − ϕd) . (3.145)

The left hand side of Eq. (3.145) is always larger or equal to one and becomes equal to one
if and only if the total state is pure, i.e. detVtotal = ~4/16. Suppose that the common and
the differential mode are both in a pure state, i.e. V c

xx V c
pp− (V c

xp)
2 = V d

xx V d
pp− (V d

xp)
2 = ~2/4,

it is easy to verify that the separability condition from Eq. (3.145) is violated if and only if
common and differential mode are differently squeezed. This is true if they have a different
squeezing factor (rc 6= rd) or a different squeezing angle (ϕc 6= ϕd). On the other hand,
when the common and the differential mode are both not squeezed, i.e. rc = rd = 0, the
state is definitely separable, because the right hand side of Eq. (3.145) becomes equal to one
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and therefore the inequality is fulfilled. In general, using the logarithmic negativity from
Eq. (1.92), we have found that as long as cos 2(ϕc−ϕd) < 0, we have that the higher rc and
rd, the stronger the two test-mass mirrors are entangled.

3.5.2 Test-mass entanglement using conditional states

The homodyne detections on the out-going modulation fields at the dark and the bright port,
respectively, collapse the quantum state of the corresponding mode (common and differential)
of the test-mass mirror’s motion. In the absence of classical noise, each mode will reach a
pure state which is squeezed in position and momentum (cf. Sec. 3.2.3). Therefore, as
long as the measurement processes for the common and differential mode are different, the
test-mass mirrors are entangled. However, in the presence of classical noise, entanglement
becomes less significant or even disappears.

The variances of a conditional state of the differential motion between the two (free-
mass) end mirrors of a Michelson interferometer including a simple classical noise model
are given in Sec. 3.2.4. For the common mode they have to be slightly modified since the
power-recycling cavity – here with a high bandwidth and therefore adiabatically eliminated
cavity mode – with transmissivity τPR enhances the measurement strength given by αc =
2/τPR α > α which is therefore larger than the one associated with the differential mode
given by (αd)2 = α2 = 8 P ω0 ~/c2, where P refers to the circulating laser power in one arm.
Furthermore, the common mode will suffer additionally to the classical force noise and the
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Figure 46: Squeezing ellipses in position and momentum for the common test-mass mode
with Ωc

q = 3 Ωx and for the differential test-mass mode Ωd
q = ΩF /3. Ground-state normalized

coordinates with respect to a harmonic oscillator with eigenfrequency (Ωc
q + Ωd

q )/4 are used.
Classical noise satisfies Ωx/ΩF = 5 and no laser noise is assumed. Corresponding noise
spectral densities can be found in Fig. 27.

classical sensing noise – we suppose that the strength of these two classical noise sources
are equally distributed into common and differential mode – from laser noise. Therefore,
while we can copy Eqs. (3.72)–(3.74) for the differential mode, we have to make some small
replacements in Eqs. (3.72)–(3.74) in order to obtain the conditional variances of the common
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mode as

V c
xx =

~
√

Sl2 + Sl1 tan2 ζc + 2
(

Ωc
q

Ωx

)2

√
2 m Ωc

q

(
√√√√

(
Sl1 + 2

(
ΩF

Ωc
q

)2
)(

Sl2 + Sl1 tan2 ζc + 2

(
Ωc

q

Ωx

)2
)

− Sl1 tan ζc
) 1

2
, (3.146)

V c
pp =

~m Ωc
q

√
Sl1 + 2

(
ΩF

Ωc
q

)2

√
2

(
√√√√

(
Sl1 + 2

(
ΩF

Ωc
q

)2
)(

Sl2 + Sl1 tan2 ζc + 2

(
Ωc

q

Ωx

)2
)

− Sl1 tan ζc
) 1

2
, (3.147)

V c
xp =

~
2




√√√√
(

Sl1 + 2

(
ΩF

Ωc
q

)2
)(

Sl2 + Sl1 tan2 ζc + 2

(
Ωc

q

Ωx

)2
)
− Sl1 tan ζc


 . (3.148)

Here Sl1, 2 are the (frequency-independent) spectra of amplitude and phase laser noise.

If we insert Eqs. (3.72)–(3.74) for the differential and Eqs. (3.146)–(3.148) for the common
mode into Eqs. (3.143) and (3.144) and suppose phase quadrature readout at both output
ports, only three frequency ratios remain: Ωc,d

q /ΩF for common and differential mode, re-
spectively, and Ωx/ΩF . The latter turns out to be the crucial factor for the existence of
test-mass entanglement. Recall that there exists a frequency window with classical noise
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Figure 47: Logarithmic negativity versus Ωx/ΩF ; maximized with respect to Ωc
q and Ωd

q

(example values marked in the plot) for: no laser noise (red line); 5 dB (green line) and
10 dB (blue line) technical laser noise above the vacuum level, in both, amplitude and phase
quadrature. Phase quadrature detection (ζ = 0) is used.

completely below the free-mass standard quantum limit if and only if Ωx/ΩF > 2. However,
we have found that the existence of entanglement sets a slightly higher threshold value for
the classical noise frequency ratio [91]. In Fig. 47, we have plotted the maximum achievable
logarithmic negativity EN which we have introduced in Sec. 1.4 as a function of Ωx/ΩF for
different strengths of technical laser noise. Therefor we have numerically optimized EN by
varying the measurement frequencies Ωc

q and Ωd
q for a given classical noise frequency ratio
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and for a given strength of laser noise. We have given some example values of Ωc
q and Ωd

q

in Fig. 47 as used for this optimization: usually the common mode measurement frequency
needs to be above the frequency window in which the classical noise beats the standard
quantum limit, while the differential mode measurement frequency needs to be below that
window as we have depicted in Fig. 27. Remarkably, even if the laser noise excites a value of
10 dB above the vacuum noise, the generation of entanglement is still possible with a mod-
erate level of classical noise beating the standard quantum limit, namely for Ωx/ΩF & 9.
Fig. 48 shows the achievable test-mass entanglement at the fixed classical noise frequency
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Figure 48: Regions of entangled test-mass states in the plane of common-differential mode
measurement frequencies for a classical noise frequency ratio of Ωx/ΩF = 14. No laser noise
(left panel) and 10 dB (right panel) technical laser noise above the vacuum level, in both,
amplitude and phase quadrature are assumed. Phase quadrature detection is used.

ratio of Ωx/ΩF = 14 and using phase quadrature detection. Although these plots are plot-
ted symmetric in common and differential mode measurement frequency, the common mode
measurement frequency is always larger than the one of the differential mode due to the
power-recycling. With lower classical noise frequency ratio or higher technical laser noise
the allowed region of test-mass entanglement always shrinks.

The entanglement between the two test-mass mirrors – created by overlapping two modes
– increases with the squeezing factor of the individual modes (common and differential)
and with the angle separating the squeezed quadrature of these two modes. Then it is
obvious that one should not observe common and differential mode via phase quadrature
detection [90] but that there is a certain value for each the common and the differential
mode of Ωc,d

q and −π/2 < ζc,d < 0 which is optimal for the entanglement and maximizes
the logarithmic negativity (cf. Fig. 49). These optimal parameters depend of course on the
classical noise, but are usually given by high power and detection close to −π/2 (cf. the
example values as given in Fig. 49). That means that the states are totally dominated by
radiation-pressure noise. But the conditioning is able to cure this disprofit if reading out
close to amplitude quadrature which contains the radiation-pressure noise.

The ultimate limit of entanglement generation with a flexible but frequency-independent
homodyne detection angle and no restriction on the optical power is given by the classical
noise frequency ratio satisfying Ωx/ΩF & 3. We conjecture that if we modify our quantum
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Figure 49: Logarithmic negativity versus Ωx/ΩF . Again maximized with respect to Ωc
q and

Ωd
q using phase quadrature detection (red line) as well as additionally maximized with respect

to ζc and ζd (purple line). In both cases no laser noise is assumed. At some positions optimal
parameter values for Ωc

q, Ωd
q , ζc and ζd are given in the plot.

measurement process in the right way, the threshold value for the classical noise frequency
ratio regarding the generation of entanglement will coincide with the one regarding the
standard quantum limit beating, i.e. Ωx/ΩF > 2. But we have to leave the proof for this
presumption and the discovery of how ’in the right way’ actually has to be, open for future
research. An educated guess is that the right way could be to perform a non-Markovian
quantum non-demolition measurement which does not only remove the back-action noise
from the measurement output but really circumvents the back action force onto the test
mass.

Recall from Sec. 3.2 that the variances of a state prepared with input-squeezing can be
mapped onto the variances of a state prepared with a flexible homodyne detection angle.
Therefore, injecting squeezed vacuum states into the interferometer’s dark port can help
with the preparation of test-mass entanglement in the same way as the flexible homodyne
detection angle does (cf. Fig. 49). But optical input squeezing lowers the required optical
power and will therefore become essential in the preparation of macroscopic entanglement
not only for this technical reason!

The laser noise – entering at the bright port and only affecting the common mode –
can theoretically be almost suppressed with the optimal high optical power and optimal
homodyne detection angle: if we take a look at the conditional common mode variances in
the high power limit, i.e. at the highest order of Ωc

q,
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we can see that they depend only on amplitude laser noise and we can always re-scale Ωc
q
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and tan ζc in order to make them independent of laser noise. Therefore, with laser noise not
too high, the solid curve in Fig. 49 can always be reached. It is peculiar that a higher laser
noise slightly lowers the required measurement frequency again.

Please note that the parameter values for the optical power corresponding to such a
high measurement frequency as well as the fine-tuning of the homodyne detection angle –
as they are both required in order to reach the maximal entanglement – are far away from
any realistic experimental situation. The numerical optimization is more intended to give a
theoretical limit on the possible entanglement generation.

3.5.3 Lifetime of test-mass entanglement after preparation

As we have learned in Sec. 3.3, the uncertainty product of a state increases when we stop
using the measurement results for the conditioning process. With a higher uncertainty
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Figure 50: Logarithmic negativity versus Ωx τ for two different classical noise frequency
ratios. We assume phase quadrature detection and no laser noise. All other parameters are
listed in the plot.

product for the common and the differential mode, the entanglement becomes less and can
totally vanish. This raises the question of how long the entanglement between the two
end mirrors will survive when having finished the preparation stage. Fig. 50 shows for two
different examples of classical noise frequency ratios, where the exact level of classical noise
is still arbitrary, how the entanglement dies out in time τ after the preparation – here the
preparation has stopped at τ = 0. We have assumed that the laser is even turned off at τ > 0.
Furthermore, we have assumed optimal measurement frequencies (as given in Fig. 50) with
phase quadrature detection of the common and the differential mode during the preparation.
The prepared system with the small classical noise frequency ratio Ωx/ΩF = 5.6 remains
roughly entangled for τ = 0.3/ΩF , which, as an example for ΩF /(2π) = 40Hz, corresponds
to a lifetime of about a millisecond.

Some more research needs to be done in this direction – also about the verification stage.
One thing we especially have to think about is whether we want to verify the entanglement
via observing common and differential mode or even via some additional measurement at
each test-mass mirror.
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3.5.4 Test-mass Einstein-Podolsky-Rosen entanglement

A Michelson interferometer can even produce Einstein-Podolsky-Rosen entanglement in posi-
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Figure 51: Regions of non-separable and Einstein-Podolsky-Rosen entangled test-mass states
in the plane of common-differential mode measurement frequencies for two different classical
noise frequency ratios: Ωx/ΩF = 11 (left panel) and Ωx/ΩF = 20 (right panel). Phase
quadrature readout and no laser noise are assumed.

tion and momentum of its test-mass mirrors in the same way it produces non-separable states.
This is exciting since two macroscopic and heavy objects satisfying Eq. (1.94) would exactly
be what Einstein, Podolsky and Rosen had in mind in their Ref. [47]. But for Einstein-
Podolsky-Rosen entanglement, the requirements on the classical noise is even stronger: as-
suming phase quadrature readout and no laser noise, the classical noise has to beat the
standard quantum limit with a classical noise frequency ratio satisfying Ωx/ΩF & 10.5.
Fig. 51 compares the allowed region in the plane spanned by the common and the differen-
tial mode measurement frequency of non-separable with Einstein-Podolsky-Rosen entangled
test-mass states for two different classical noise frequency ratios. As expected, the region in
which the test-masses are Einstein-Podolsky-Rosen entangled is embedded into the region
where the test-masses are non-separable.

3.5.5 Test-mass entanglement using controlled states

A different idea is to make use of feedback quantum controlled – or cold damped – common
and differential test-mass modes in order to produce entanglement between the two test-mass
mirrors. Suppose that we use the measurement results of the homodyne detections at the
bright and the dark port of the Michelson interferometer to feed them back with optimal
filter functions (cf. Sec. 3.4) onto the mirrors.

Since the unconditional controlled uncertainty product is always larger than the one of a
conditional state – recall that for phase quadrature readout this factor is equal to (1+

√
2)2,

we expect that the generation of entanglement is also more difficult with controlled states.
And indeed we have found that the classical noise has to beat the standard quantum limit
with a classical noise frequency ratio satisfying Ωx/ΩF & 17 (cf. Fig. 52). Interestingly,
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as well as ζc and ζd. Here the entanglement is produced by controlled states and no laser
noise is assumed. At some positions optimal parameter values for Ωc

q, Ωd
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given in the plot.

even with the flexible homodyne detection angle, the optimal measurement frequencies at a
given classical noise frequency ratio are not unreasonable high (cf. Fig. 52). It seems that
here the strategy of producing back-action dominated common and differential modes plus
back-action compensation is not the optimal way of generating entangled test masses by
means of controlled common and differential mode states.

Furthermore, within the concept of controlled states we do not find the theoretical laser
noise suppression as in the case of entanglement produced by conditional states. With laser
noise the entanglement generation using controlled states becomes even more difficult. But
also here the jury is still out and more research will hopefully reveal a better understanding
and new ideas to circumvent the problems.
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4 Summary and conclusion

In the first part of this thesis we have investigated several possibilities in order to increase the
sensitivity of quantum-noise limited gravitational-wave detectors further. Based on the work
carried out in Ref. [31], we have started with a special version of a Sagnac interferometer in
Sec. 2.2 which can be used as a gravitational-wave detector. Here the Sagnac interferometer
should be regarded as one representative of the group of optical speed-meter topologies. We
have found out that applying the technique of detuned signal-recycling to such a speed meter
does not have the same optomechanical effect as applying this technique to a position meter
as it was investigated in Refs. [22–24]: the mirrors do not become subject to an optical spring
but their dynamical mass becomes modified. This fact has led us to call this the optical
inertia effect [92]. Note that we have been the first ones having theoretically investigated
the quantum noise in an optical speed meter with detuned signal-recycling. Even though
there is this big difference in the optomechanical structure, we have found that the quantum
noise spectral density of a detuned signal-recycled Sagnac interferometer can become equal
to the one of a detuned signal-recycled Michelson interferometer in a certain limit, the
well-separated resonance case. We have explored the sensitivity performance of a Sagnac
interferometer of Advanced LIGO scale on the signal-recycling parameter space – assuming
a standard and a more optimistic classical noise budget – with respect to neutron star
binary inspirals as a gravitational-wave source. We have compared this to the sensitivity
performance of the planned Advanced LIGO detector. It has turned out that especially
assuming the more optimistic classical noise budget, the detuned signal-recycled Sagnac
interferometer can significantly improve the sensitivity in the low frequency regime. This
makes the signal-recycled Sagnac interferometer a real candidate design for third-generation
gravitational-wave detectors.

Another idea which we have investigated in Sec. 2.3 is to use an interferometer with
detuned signal-recycling but a closed output port as a transducer which was suggested for
a Michelson topology in Ref. [13]. We have compared the standard-quantum-limit-beating
ability of the quantum noise in an ideal local meter [92] which either reads out the motion
of a transducer consisting of a speed meter in the form of the Sagnac interferometer or
the motion of a transducer consisting of a position meter in the form of the Michelson
interferometer. Here we have theoretically pointed out several new interesting transducer
effects. We have shown in which frequency regimes those effects can be realized by the two
different transducer topologies. A practicable local meter design combined with a Michelson
transducer is the local readout scheme [104] which has turned out to be an advisable low-cost
add-on for the Advanced LIGO detector. A more detailed discussion of the local readout
scheme can be found in Ref. [101,104]. Furthermore, we have motivated to investigate a local
readout scheme based on a speed meter topology which could be an even more promising
design for a third-generation gravitational-wave detector.

Finally, in Sec. 2.4 we have theoretically investigated the ponderomotive output-squeezing
of a stable double-optical-spring cavity [89] as it is already installed at the Massachusetts
Institute of Technology (cf. Ref. [35]). Such a squeezing could be used to increase the
sensitivity of a laser interferometer gravitational-wave detector by injecting it into the dark
port of this detector [27]. The output-squeezing of a single optical spring was considered in
the theoretical work of Refs. [36, 37], where the instability effect was cured with a feedback
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control system. The effect of the control system was included into the calculations as control
noise. We have shown that the stable double optical spring can produce more output-
squeezing if the subcarrier output is conditioned onto the carrier output – even more output-
squeezing than an uncontrolled and therefore unstable single optical spring with the same
optomechanical eigenfrequency. Note that a stable double optical spring implemented in
a laser interferometer gravitational-wave detector itself [103] can already help to increase
the sensitivity. A very detailed discussion about our theoretical sensitivity optimization
regarding such a scheme can be also found in Ref. [101].

The second part of this thesis has been devoted in great detail to a survey of the first
principles in the preparation of macroscopic Gaussian quantum state of non-massless ob-
jects [90]. We have motivated and introduced the Wiener filter method in this context – as
an advantage over the stochastic master equations [86] – and have given a simple analytical
expression for the covariance matrix of a system under any continuous linear Markovian
measurement process in Sec. 3.2.1. We have shown that in absence of any additional noise,
the conditional state is totally determined by the measurement noise. The purity of the
conditional state becomes even equal to the purity of the underlying measurement process.
This provides an important insight into the understanding of conditional states which was
probably not communicated before. In a more realistic quantum measurement process the
conditional uncertainty product is further determined by the additional noise, the so-called
classical noise. In Sec. 3.2.4, we have shown that if there is a non-zero frequency band in
which the classical noise is completely below the standard quantum limit, the uncertainty
product is just a factor of 22 away from the condition for producing a pure state. The wider
the frequency band and the strength of this sub-standard-quantum-limit behavior is, the less
mixed and therefore the more quantum the Gaussian state becomes. We have shown that a
balanced homodyne detection as well as input-squeezing incorporated into the measurement
process both do not help to get a more pure state but can significantly steer the test-mass
squeezing. In Sec. 3.2.6, we have shown that a measurement process including a cavity with
finite bandwidth contaminates the conditional test-mass purity due to the entanglement be-
tween the test mass and the cavity mode. But we have also shown that with sufficiently high
bandwidth it is always justified to adiabatically eliminate the cavity mode. We have briefly
considered test-mass state preparation with the help of a single or a double optical spring.
The optical spring can moderate the effect of the cavity mode and increase the purity again.
The optical spring also suppresses classical noise and increases the purity of a test mass
further due to this fact which is reported elsewhere [90,101]. We have found a characteristic
in the state preparation using a speed-meter topology: the uncertainty product diverges in
the free-mass limit. Then we have investigated the free evolution of a conditional state and
have also briefly thrown light on a possibility of how to verify [41] the conditional states in
Sec. 3.3.

In Sec. 3.4, we have investigated a state preparation method which uses the help of a
linear feedback control to produce unconditional states, the cold damping technique [83]. We
have generally expressed the controlled variances in terms of the conditional variances which
has allowed us to obtain the optimal controlled covariance matrix [42]. From this relation we
have also been able to show that the optimal controlled uncertainty product is always larger
or equal to the conditional one. Furthermore, we have obtained the expression for the optimal
control filter in the case of an arbitrary linear continuous Markovian measurement process.
We have shown that using a simple balanced homodyne detection allows this controller
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to produce an uncertainty product which can already get quite close at the conditional
uncertainty product. This fact suggests that cold dampening experiments are in principle
able to prepare the unconditional ground state of the test mass.

Furthermore, in Sec. 3.5 we have motivated that a simple power-recycled Michelson inter-
ferometer is the ideal device to prepare macroscopic entanglement [91,108]. We have shown
that the existence of entanglement in position and momentum between the two end mirrors
is closely related to the factor at which the classical noise beats the standard quantum limit:
a quantum measurement with a flexible but frequency-independent homodyne detection an-
gle and no restriction to the optical power as an example, theoretically requires the classical
noise to be at least a factor of 1.5 below the free-mass standard quantum limit at a certain
sideband frequency. A significantly lower level of classical noise will further allow to prepare
the test masses in an Einstein-Podolsky-Rosen entangled state.

In order to really perform experiments towards macroscopic quantum mechanics, the
crucial factor will be the level of classical noise. Using simple models, we have given ser-
val estimations of how low the classical noise floor has to be in order to perform certain
experiments. Please note, that we have also carried out calculations assuming more realis-
tic frequency-dependent noise models which will be reported elsewhere [101]. It is obvious
that the gravitational-wave community provides the ideal facilities and a lot of knowledge
which will help to prepare macroscopic quantum states. Even though the classical noise
budget in current gravitational-wave detectors is still away from the requirements to see
macroscopic quantum states. Nevertheless, this fact is not at all discouraging: there is a
lot of on-going research in, for example, testing new mirror materials or mirror designs as
well as in cryogenic techniques which will allow to press the thermal noise significantly down
– even below the standard quantum limit. Note that several experiments – small scale as
well as large-scale – aim at reaching the standard quantum limit. One very promising large-
scale facility which could allow the classical noise to beat the standard quantum limit for
the first time is provided by the 10m prototype interferometer which will be set up at the
Albert-Einstein-Institute in Hannover, Germany. There is an on-going debate about the
mirror masses. Light mirrors raise the standard quantum limit but also raise the classical
noise. We strongly believe that the preparation and verification of entangled test masses will
experimentally be possible within the next decade! But as we have also seen, there is still
a lot of experimental as well as even more theoretical research necessary in this interesting
field of physics.

In the end we must come to the conclusion that the research towards gravitational-wave
detectors with highly improved classical noise budgets kills two birds with one stone: It will
on the one hand open the window to a totally new kind of astronomy and on the other hand
provide ideal facilities to study macroscopic quantum mechanics.
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