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Abstract

Ultracold dilute atomic gases are highly controllable systems whose prop-
erties are fundamentally determined by the interatomic interactions. In
typical experiments on ultra cold gases particles interact dominantly via a
short-range isotropic potential. However, during the last years a new gen-
eration of experiments is starting to explore systems, where an additional
interaction, the long-range and anisotropic dipole-dipole interaction plays a
significant or possibly dominant role. The effects induced by the anisotropy
of the dipole-dipole interaction are crucially enhanced if the dipolar gas is
confined in a deep optical lattice. In this thesis we study novel phenomena
in such systems of dipolar gases in deep optical lattices.

The nonlocal nonlinearity introduced by the dipole-dipole interaction
plays a crucial role in the physics of dipolar Bose-Einstein condensates. In
particular, it may distort significantly the stability of straight vortex lines.
Remarkably, in the presence of a periodic potential along the vortex line, the
spectrum of transverse modes shows a roton-like minimum, which eventually
destabilizes the straight vortex when the BEC as a whole is still stable,
opening the possibility for new scenarios for vortex line configurations in
dipolar gases. We have analyzed this instability, and showed that it leads
to a second-order-like phase transition from a straight vortex line into novel
helical or snake-like configurations, depending on the dipole orientation.

Strong 1D lattices usually lead to unconnected two-dimensional gases.
The long-range character of the dipole-dipole interactions leads to a novel
scenario where non-overlapping gases at different sites may interact signifi-
cantly. We show that the excitations of non-overlapping condensates in 1D
optical lattices acquire a band-like character, being collectively shared by
different sites. In particular, the hybridization of the modes significantly en-
hances the rotonization of the excitations, and may induce roton-instability.
We discuss the observability of this effect in on-going experiments.

Fermionic polar molecules in deep 1D optical lattices may form self-
assembled filaments when the electric dipoles are oriented along the lattice
axis. These composites are bosons or fermions depending on the number of
molecules per chain, leading to a peculiar and complex Bose-Fermi mixture,
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which we discuss in detail for the simplest case of a three-well potential. We
show that the interplay between filament binding energy, transverse filament
modes, and trimer Fermi energy leads to a rich variety of possible scenarios
ranging from a degenerate Fermi gas of trimers to a binary mixture of two
different types of bosonic dimers. We study the intriguing zero temperature
and finite temperature physics of these composites for the particular case
of an ideal filament gas loaded in 1D sites, and discuss possible methods to
probe these chain mixtures.

Keywords: Bose-Einstein Condensation, Dipole-Dipole Interaction, Op-
tical Lattices.



Zusammenfassung

Verdünnte ultrakalte Gase sind gut kontrollierbare Systeme deren Eigen-
schaften grundlegend durch interatomare Wechselwirkungen bestimmt wer-
den. In typischen Experimenten mit ultrakalten Gase sind diese Wech-
selwirkungen hauptsächlich kurzreichweitig und isotrop. Allerdings hat in
den letzten Jahren eine neue Generation von Experimenten damit begonnen
Systeme zu erforschen, in denen eine zusätzliche Wechselwirkung, die lang-
reichweitige und anisotrope Dipol-Dipol Wechselwirkung, eine signifikante
oder sogar dominierende Rolle spielt. Die Auswirkungen, die von der An-
isotropie der Dipol-Dipol Wechselwirkung verursacht werden, werden be-
deutend verstärkt, wenn sich das dipolare Gas in einem optischen Gitter
befindet. In dieser Arbeit werden neuartige Phänomene studiert, die in
solchen Systemen von dipolaren Gasen in optischen Gittern auftreten.

Die nonlokale Nichtlinearität, die mit der Dipol-Dipol Wechselwirkung
einhergeht spielt eine entscheidende Rolle in der Physik dipolarer Bose-
Einstein Kondensate. Insbesondere kann sie die Stabilität von geraden
Vortex Filamenten signifikant beeinflussen. Bemerkenswerterweise weist
das Spektrum transversaler Moden in Anwesenheit eines periodischen Po-
tential entlang des Vortex Filaments ein Roton-artiges Minimum auf, das
unter Umständen den geraden Vortex destabilisieren kann, während das
Bose-Einstein Kondensat als ganzes stabil bleibt. Dies eröffnet in dipo-
laren Gasen die Möglichkeit für neue Szenarien von Vortex Filament Struk-
turen. Wir haben diese Instabilität studiert und gezeigt, dass sie zu einem
Phasenübergang zweiter Art führt, bei dem das gerade Vortex Filament in
Abhängigkeit von der Ausrichtung der Dipole in eine neuartige helix- oder
schlangenlinien-artige Konfiguration übergeht.

Üblicherweise führen starke 1D Gitter zu unverbundenen zwei-dimen-
sionalen Gasen. Der langreichweitige Charakter der Dipol-Dipol Wechsel-
wirkung führt zu neuartigen Situationen in denen nicht-überlappende Gase
auf verschiedenen Gitterplätzen signifikant wechselwirkungen können. Wir
zeigen, dass Anregungen in nicht-überlappenden Kondensaten in 1D op-
tischen Gittern einen band-artigen Charakter aufweisen, da sie von den ver-
schiedenen Gitterplätzen gemeinsam geteilt werden. Insbesondere verstärkt
die Hybridisierung dieser Moden entscheidend die Rotonisation der Anre-
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gungen und kann eine Roton-Instabilität verursachen. Wir diskutieren die
Beobachtbarkeit dieses Effekts in laufenden Experimenten.

Fermionische polare Moleküle in tiefen 1D optischen Gittern können
selbstbildende Filamente formen, wenn ihre elektrischen Dipole in Rich-
tung des Gitters ausgerichtet sind. Diese Verbindungen können, abhängig
von der Anzahl der Moleküle pro Filament, Bosonen oder Fermionen sein,
was zu einer seltsamen und komplexen Bose-Fermi Mischung führt, die
wir für den einfachsten Fall eines Drei-Mulden Potentials im Detail disku-
tieren. Wir zeigen, dass das Wechselspiel von Filament Bindungs-Energien,
transversalen Filament Moden und Trimer Fermi-Energie zu einer reichen
Vielfalt von möglichen Szenarien führt. Diese reichen von einem entarteten
Fermi Gas von Trimeren zu einer binären Mischung aus zwei verschiedenen
Arten von bosonischen Dimeren. Wir studieren die faszinierende Physik von
Verbindungen bei Null und bei endlicher Temperatur für den speziellen Fall
eines idealen Filament Gases, das in 1D Gitterplätze geladen wurde, und
diskutieren mögliche Methoden um diese Filament Mischungen zu unter-
suchen.

Schlagwörter: Bose-Einstein Kondensation, Dipol-Dipol Wechselwirkung,
Optische Gitter
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Chapter 1

Introduction

Since the first production of liquid Helium by H. K. Onnes in 1908 (No-
bel prize 1913), low temperature physics provides promising systems for the
investigaton of quantum effects related to electrons and atoms normally con-
cealed by thermal motion. After considerations on ideal quantum gases in
the 1920’s lead to the prediction of a new state of matter, the Bose-Einstein
condensation [1, 2], weakly interacting quantum gases has been studied as
superfluid and superconducting systems intensively by the condensed mat-
ter community in the 50’s and 60’s [3, 4]. Thanks to new laser-based cooling
and trapping techniques developed in the 70’s and 80’s [5, 6, 7] (Nobel prize
1997 to S. Chu, C. Cohen-Tannoudji and W.D. Phillips) it was finally pos-
sible to reveal the quantum statistics of ultra cold atoms in 1995 with the
first observation of Bose-Einstein condensation [8, 9, 10], (Nobel prize 2001
to E. A. Cornell, C. E. Wieman and W. Ketterle [11, 12]). Later quantum
degenerated atomic Fermi gases followed [13, 14, 15, 16].

These ultracold atomic gases generated with methods from quantum
optics are highly controllable quantum many body systems and lead hence
to a better understanding of the properties of condensed matter systems like
weakly interacting Bose [17] and Fermi gases [18]. In our days also the regime
of strongly correlated systems can be investigated with cold gases. In the last
years atomic Fermi gases has been used to study classical condensed matter
problems like Cooper-pairing and Fermi-superfluidity, described for weak
attractive interactions by the famous BCS theory of superconductivity [19,
18], and the related BCS-BEC crossover [18, 20]. In addition it has become
possible to create quantum gases with several components (e.g. different
atoms or atoms in different internal states), the so called spinor gases [21,
22]. As highly controllable systems, cold atoms have important applications
in e.g. quantum information [23], quantum metrology [24, 25] and atom
interferometry [26, 27].

With the implementation of optical lattices a few years ago, lattice struc-
tures from condensed matter and solid state systems can be reproduced in a
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highly controllable and defect-free way [28]. In this context the superfluid to
Mott-insulator transition [29, 30] and the observation of Bloch oscillations
[31] have been realized. Using thight traps and/or optical lattices atomic
gases can be confined to low dimensional systems (Sec. 1.3.1) which opens
the possibility to observe a variety of interesting condensed matter phenom-
ena.

During the last years a new generation of experiments is starting to ex-
plore systems, where an additional interaction, the long-range and anisotropic
dipole-dipole interaction offers a fascinating novel physics [32, 33]. The ef-
fects induced by the anisotropy of the dipole-dipole interaction are crucially
enhanced if the dipolar gas is confined in a deep optical lattice. In this thesis
we will study novel phenomena in such systems of ”Dipolar gases in deep
optical lattices”.

In this first chapter, we start with a presentation of the basic features
of ideal Bose and Fermi gases followed by a description of Bose-Einstein
condensates in weakly interacting gases. Then we briefly introduce different
kinds of traps and optical lattices and consider Bose-Einstein condensates
in confined system. Since a large part of the thesis deals with vortex lines
in Bose-Einstein condensates we also discuss the physics of such objects in
an introductory section. Last but not least we specify the dipole-dipole
interaction potential and some important properties of the dipolar Bose-
Einstein condensate.

1.1 Ideal quantum gases

The physics of ideal quantum gases is well known and has been summarized
in various textbooks [17, 34, 35]. An important quantity for a statistical
analysis is the distribution function indicating the mean number of particles
occupying a single particle state i at temperature T

〈ni〉 =
1

eβ(ǫi−µ) ± 1
, (1.1)

with a (+)-sign if the particles are fermions and a (−)-sign for bosons. Here
β ≡ 1/kBT , µ is the chemical potential and ǫi the energy of the quantum
state i. The sign in the denominator reflects the fact that in the case of
fermions maximally one particle can occupy the state i, while in the bosonic
case an arbitrarily high occupation number 〈ni〉 is possible. The chemical
potential acts as a variational parameter fixed by the conservation of the
total particle number1

N =
∑

i

〈ni〉. (1.2)

1These formulas can be derived easily from the grand-canonical partition-function Z
via N = d(lnZ)/dµ.
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In order to make this equation more transparent we introduce a very impor-
tant quantity, the density of states, which counts the states in an infinitesi-
mally small energy-interval [ǫ, ǫ+ ∆ǫ] and is defined as

D(ǫ) =
∑

i

δ(ǫ− ǫi). (1.3)

The density of states is usually calculated in the thermodynamic limit,
where the energy levels are continuously distributed and the sum can be
replaced by an integral. In free space the thermodynamic limit is defined
by N → ∞, V → ∞, but N/V finite, while in an isotropic harmonic trap
with frequency ω it is kBT ≪ ~ω. The density of states does not depend on
the statistics, but, in addition to the energy-distribution (ǫp = p2/2m (free),
ǫi = d

2(~ω i + 1/2) (trap)) it depends crucially on the dimension d of the

system. Hence we find from (1.3) D(ǫ) ∝ ǫ(d−2)/2 (free) and D(ǫ) ∝ ǫ(d−1)

(trap), respectively. Using the density of states, equation (1.2) reads

N =

∫ ∞

0
dǫ D(ǫ)n(ǫ), (1.4)

where n(ǫ) is the mean number of particles in the energy interval [ǫ, ǫ+ ∆ǫ]
and is given by equation (1.1). In the following section we shall analyse this
equation in order to reveal some characteristic features of the Fermi and
Bose gas, respectively.

1.1.1 The ideal Fermi gas

At zero temperature the Fermi distribution function (1.1) reduces to the
Heaviside step function n(ǫ) = Θ(ǫ−µ), so that all energy levels with ǫ < µ
are filled with one particle, while higher levels are empty. Then the gas is
called a degenerate Fermi gas and one can determine the highest occupied
energy level µ(T = 0) ≡ ǫF called the Fermi energy from

N =

∫ ǫF

0
dǫ D(ǫ). (1.5)

The Fermi energy depends only on the density of states derived for some spe-
cial cases in the previous section. Hence in d dimensions ǫF ∝ ~

2

mn
2/d (free)

with the particle number density n = N/V , and ǫF ∝ ~ωN1/d (trap). The
Fermi energy is an important energy-scale, and gives a criterion, whether
the Fermi-gas can be treated as ideal or not. If the total interaction energy
is small in comparison with the Fermi energy Eint ≪ ǫF , the interactions
can be neglected. The Fermi temperature associated with ǫF via kBTF ≡ ǫF
is the corresponding temperature scale. That means that a Fermi-gas can
be considered as degenerate at temperatures T ≪ TF . 2 On the other hand

2Note, that this temperature may be even of the order of room temperature if the
density of the Fermi gas and therefore the Fermi-energy are sufficiently high.



4 Ideal quantum gases

at T ≫ TF the system looses its quantum character and has to be treated
classically. An important length scale is given by the inverse Fermi mo-
mentum k−1

F defined by ǫF = ~2k2
F /2m, which is proportional to the mean

interparticle distance.

The spatial density distribution n(~r) of N particles in an harmonic trap
is given by the eigenstates of the harmonical oscillator [36], which are oc-
cupied by the N particles. At T = 0 the density n(~r) can be derived in
the local density approximation, where ǫ = p2/2m + Vho(~r) by integrating
the distribution function (1.1) in momentum space [18]. Introducing the
Thomas-Fermi radius Ri =

√
2ǫF /mωi, giving the width of the density dis-

tribution, in the i-th direction, where ωi is the corresponding trap frequency
we find in d dimensions the density profile as an inverted parabola

n(~r) ∝ N(∏d
i Ri

)
[
1 −

d∑

i

(
x2

i

Ri

)]d/2

. (1.6)

with Ri ∝ N1/2d. A profile of this form is called Thomas-Fermi profile.

1.1.2 The ideal Bose gas

Remember that for a given total particle number N and temperature T
equation (1.4) is a transcendental equation for the chemical potential µ and
reads for bosons

N =

∫ ∞

0
dǫ

D(ǫ)

eβ(ǫ−µ) − 1
. (1.7)

Note, that this equation makes sense only if µ < 0. Solving (1.7) we find
that µ(T,N) changes with decreasing temperature only until a critical tem-
perature Tc is reached. Below Tc the chemical potential remains constant
µc ≡ µ(Tc). (e.g. µc = 0 (free gas)) and equation (1.7) has no solution.
Interestingly the critical temperature depends only on the density of states
D(ǫ) and is therefore of the same order as the temperature TF of the corre-

sponding Fermi-gas, hence Tc ∝ ~
2

mn
2/d (free) and Tc ∝ ~ωN1/d (trap). In

order to find the reason why equation (1.7) has no solution at T < Tc we
have to go back to equation (1.2), where the energy-levels are not considered
as continuous. At µ = µc the number of particles N0 in the ground-state
(i = 0) formally diverges and has to be treated separately. That means that
at T < Tc the ground state is macroscopically occupied and N0 is of the
order of the total number of particles Nex in all excited states. This phe-
nomenon is called Bose-Einstein condensation [1, 2] and the particles N0 in
the ground state form the Bose-Einstein condensate (BEC). The fraction of
particles in the BEC can be calculated via N0/N = 1−Nex/N , whereas Nex

is given again by (1.7) with energy levels counted as continuous and with
µ = µc. Hence the fraction of particles in the BEC also depends only on the
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density of states
N0

N
= 1 − 1

N

∫ ∞

0
dǫ

D(ǫ)

eβ(ǫ−µc) − 1
, (1.8)

and obeys as a function of temperature

N0/N = 1 − (T/Tc)
d/2 (free) (1.9)

N0/N = 1 − (T/Tc)
d (trap) (1.10)

In lower-dimensional systems it may happen that the integral on the right
hand site of equation (1.8) diverges, namely if the density of states is D(ǫ) ∝
ǫλ and λ ≤ 0. Then the fraction of particles in the condensate and the
critical temperature tend to zero and no BEC is formed. In particular it
follows from the expressions for D(ǫ) given above that there is no Bose-
Einstein condensation in one and two dimensions in free space and in a
one-dimensional harmonic trap.

The spatial density distribution in an harmonic oscillator [17, 36] trap in
the case of bosons is simple. The particles in the BEC are characterized by
the ground-state wave function of the harmonic oscillator which is simply a
Gaussian function and reads in d dimensions

Ψ(~r) =
d∏

i=1

1
(
πl2i
)1/4

exp

{
− x2

i

2l2i

}
, (1.11)

where li =
√

~/mωi for frequencies ωi. The rest of the particles thermally
distributed in higher oscillator levels is spacially more expanded and is called
thermal cloud. The radius of the BEC is the averaged width of the Gaussian
lho = (

∏
i li)

1/d, which is in typical experiments around 1 µm, while the
radius of the thermal cloud is approximately RT ≈ lho(kbT/~ωho)

1/2.

1.2 The weakly interacting Bose gas

In real experiments one usually has even in the case of very dilute ultra
cold gases at least weak interactions. That is why we have to ask ourselves,
whether a BEC as defined in the previous section for ideal gases can develop
in the case of interactions as well. Therefore we need a more general defini-
tion of Bose-Einstein condensation which still holds in the interacting case
[35]. Remember that for an ideal gas a BEC was defined as a macroscopically
occupied single-particle quantum state. This definition can be generalized
[37] to quantum many-body states described by the density-matrix

ρ(~r, ~r′, t) = 〈Ψ̂†(~r, t)Ψ̂(~r′, t)〉, (1.12)

where Ψ̂(~r, t) is the Bose field operator at position ~r and time t. If at time t
one of the eigenvalues of the density-matrix is macroscopic, i.e. of the order
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of the sum of all other eigenvalues and much larger than any of them, then
this eigenvalue defines the number of particles N0 in the BEC.3 If on the
contrary all eigenvalues of ρ are more or less of the same order a BEC does
not exists. Actually macroscopic means that the eigenvalue is of the order of
the total number of particles N , with N → ∞ in the thermodynamic limit.
But in experiments with finite sized systems this limit is strictly speaking
not well defined. However, if we have for example 108 atoms in a trap and
say 5 × 107 of them are in the ground state, while the number of particles
in none of the excited state is larger than 103, we can confidently consider
the system as Bose-condensed.

An alternative definition of Bose-Einstein condensation in quantum ma-
ny-body systems is based on the concept of off-diagonal long-range order
(ODLRO) [38]. Instead of diagonalizing ρ(~r, ~r′) at time t in ODLRO one
is interested in the limit |~r − ~r′| → ∞. If the density matrix is finite in
this limit, particles far away from each other are still correlated, resembling
coherence, and can be expressed by a macroscopic wave-function Ψ(~r, t) via

lim
|~r−~r′|→∞

ρ(~r, ~r′) = Ψ∗(~r, t)Ψ(~r′, t). (1.13)

This wave-function Ψ(~r, t) can be identified with an order parameter char-
acterizing the BEC. The concept of order parameters appears in the context
of phase transitions in ordered media and spontaneous symmetry breaking.
Note, that cooling below Tc can be considered as a phase-transition from
the normal phase to the BEC phase, where the U(1) gauge symmetry of the
energy-functional is spontaneously broken [39, 40] and the system chooses
a certain phase.4. It has been shown [42] that in one and two dimensions
in free space, there is no ODLRO, and hence no BEC. Furthermore, the
concept of ODLRO is not well defined in finite sized systems.

In a similar definition [43, 17] of the condensate wave function we take the
non-vanishing vacuum expectation value of the Bose field operator Ψ(~r, t) ≡
〈Ψ̂(~r, t)〉 as an order parameter. This definition is in analogy to the rela-
tion between the electric field operator and the classical electric field and
is applied usually in the context of ultra cold atom gases. We will use this
mean field approach in the remainder of this thesis in order to describe the
ground-state wave function, the condensed part of the Bose gas. The non-
condensed part Ψ̂′(~r, t) will be still treated as an operator so that the Bose
field operator can be decomposed into

Ψ̂(~r, t) = Ψ(~r, t) + Ψ̂′(~r, t) (1.14)

At sufficiently small temperatures and densities the non-condensed part can
be treated as a small perturbation.

3Note, that a situation with two or more (finite number) macroscopic eigenvalues de-
scribes a fragmented BEC.

4This is similar to the well-known example of spontaneous symmetry breaking of the
magnetization in an Heisenberg ferromagnet [41]
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Equation (1.14) follows also from the Bogoliubov approximation. The
Bose field operator can be decomposed into Ψ̂(~r, t) =

∑
i Ψ(~r, t)iai with

single-particle wave-functions Ψ(~r, t)i and annihilation operators ai. In the
presence of a condensate the expectation value of the ground-state is macro-
scopic (N → ∞) and hence

〈a†0a0〉0 = N0 ≈ (N0 + 1) = 〈a0a
†
0〉0. (1.15)

This means that a0 and a†0 commute and can be treated as c-numbers a0 ≈
a†0 ≈

√
N0. Thus the condensate is described by a macroscopic complex

wave-function, whereas particles in excited states still require an operator
treatment as noted in (1.14).

1.2.1 The Gross-Pitaevskii equation

In order to derive an equation for the condensate wave-function Ψ(~r, t) we
take the many-body Hamiltonian for N weakly interacting bosons [17]

Ĥ =

∫
d3rΨ̂†(~r, t)

[
− ~2

2m
∇2 + Vext(~r)

]
Ψ̂(~r, t) (1.16)

+
1

2

∫
d3rd3r′Ψ̂†(~r, t)Ψ̂†(~r′, t)V (~r − ~r′)Ψ̂(~r, t)Ψ̂(~r′, t),

with an external potential Vext confining the bosons and the two-particle
interaction potential V (~r, ~r′).5 This Hamiltonian determines the time evo-
lution of the Bose field. From the corresponding Heisenberg equation we
find (by replacing the Bose field operator with the classical field according
to (1.14)) the non-linear Schrödinger-equation

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
∇2 + Vext(~r) +

∫
d3r′V (~r − ~r′)|Ψ(~r′, t)|2

]
Ψ(~r, t).

(1.17)
In dilute ultra cold gases the interatomic potential is usually short-range and
can be approximated by a delta-function pseudo-potential characterized by
the s-wave scattering length a [17, 44, 45, 46]

V (~r − ~r′) = gδ(~r − ~r′) (1.18)

with the coupling constant g = 4πa~2/m. The scattering length a, and
hence g, are positive in the case of repulsive interactions and negative if
the interatomic interactions are attractive. For most atom species it can
be tuned with an external magnetic field to almost every value by using
Feshbach resonances [47, 48, 49, 50]. With the contact interaction potential

5If the Bose gas is dilute only binary collisions are relevant and three-particle collisions
can be neglected.
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(1.18) equation (1.17) becomes the well known Gross-Pitaevskii equation
(GP) [51, 52]

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2

]
Ψ(~r, t). (1.19)

The general solution is a complex function Ψ(~r, t) =
√
n(~r, t) exp[iφ(~r, t)],

where n(~r, t) is the density and φ(~r, t) the phase of the condensate. Later
in section 1.4 we will see that the phase is related to the velocity field of the
condensate. Note, that the mean-field approach leading to this equation is
valid only if the gas is sufficiently dilute and weakly interacting. Since the
interactions are proportional to the scattering length and the mean density

n0, a condition for the validity of equation (1.19) is given by an
1/3
0 ≪ 1. In

order to guarantee the conservation of the total number of particles N , we
demand that the condensate wave-function Ψ(~r, t) satisfies the constraint

∫
d3r|Ψ(~r, t)|2 = N. (1.20)

Since the Bose-field operator Ψ̂(~r, t) reduces the number of particles by
one its off-diagonal matrix element 〈N − 1|Ψ̂(~r, t)|N〉 and hence the con-
densate wave-function Ψ(~r, t) oscillates at a frequency corresponding to the
chemical potential µ ≈ E(N)−E(N−1), associated with removing one parti-
cle from the ground state [53]. Thus the time-dependence of the ground-state
can be seperated by Ψ(~r, t) = Ψ(~r) e−iµt/~ leading to the time-independent
Gross-Pitaevskii equation

µΨ(~r, t) =

[
− ~2

2m
∇2 + Vext(~r) + g|Ψ(~r, t)|2

]
Ψ(~r, t). (1.21)

As in the ideal gas the chemical potential is µ = ∂E/∂N and acts as a
Lagrangian multiplier minimizing the free energy at small temperatures F =
E−µN associated with the conservation of the total particle number. Here
E is the energy functional consisting of kinetic energy, potential energy and
interaction energy

E =

∫
d3r

[
~2

2m
|∇Ψ(~r)|2 + Vext(~r)|Ψ(~r)|2 +

1

2
g|Ψ(~r)|4

]
. (1.22)

Note, that an energy functional of the same form appears in the famous
Ginzburg-Landau theory describing superconductivity close to the critical
temperature [54]. Using a variational method, one can derive the time-
independent GP-equation also from this energy-functional via

i~
∂Ψ(~r, t)

∂t
=

δE

δΨ∗(~r, t)
. (1.23)
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The GP equation has the form of non-linear Schrödinger equations (NLSE)
describing experimentally relevant non-linear phenomena [55] in various
physical fields such as optics, fluid dynamics, plasma physics and condensed
matter physics. These NLSEs admit soliton solutions like kinks (1D) or
vortices (2D) and are hence important for studying theoretically situations,
where such phenomena occur.

In the absence of interactions (g = 0) the GP equation (1.19) reduces
to the well-known single particle Schrödinger equation. In the absence of
an external potential (Vext = 0) the time-independent GP equation has a
simple homogeneous solution of constant density n0 obeying

µ = gn0. (1.24)

1.2.2 Excitations of the BEC and stability analysis

The ground state of a weakly interacting Bose gas is at sufficiently low tem-
peratures described by the macroscopic order parameter Ψ0, obtained as a
solution of equation (1.19). Following Bogoliubov [43] and Landau [56] we
study collective elementary excitations corresponding to small oscillations
around the ground state value as quasi-particles with energy ǫ and wave
number p = ~q. The behaviour of the system under excitations is charac-
terized by the dispersion law ǫ(q) and provides useful information about the
stability of the ground state. Considering the excitations as small perturba-
tions the wave function

Ψ(~r, t) =
[
Ψ0(~r) + u(~r)e−iǫt/~ + v∗(~r)eiǫ

∗t/~

]
e−iµt/~ (1.25)

with complex functions u(~r) and v(~r) is still a solution of the GP equation
(1.19). Inserting this ansatz in (1.19) and linearizing in u and v we obtain
coupled eigenvalue equations for the excitation energy ǫ

ǫu(~r) =

[
− ~2

2m
∇2 + Vext(~r) − µ+ 2g|Ψ0(~r)|2

]
u(~r) + gΨ0(~r)

2v(~r) (1.26)

−ǫv(~r) =

[
− ~2

2m
∇2 + Vext(~r) − µ+ 2g|Ψ0(~r)|2

]
v(~r) + gΨ0(~r)

2u(~r) (1.27)

called Bogoliubov-de Gennes equations (BdG). This formalism decribing the
quasi-particle excitations by macroscopic wave functions u and v was intro-
duced by Pitaevskii in the context of vortex-lines excitations, the so called
Kelvin-modes [52]. Later in chapter 2 we will investigate Kelvin-modes by
using the same formalism. As noted earlier, in the case without trapping
(Vext = 0) the homogeneous solution Ψ0 =

√
n0 of equation (1.19) obeys

µ = gn0. In this case the complex functions u and v can be approached as
plane-waves u, v ∝ exp{−i~q~r} with wave-number ~q and the BdG equations
can be solved analytically. This leads to the dispersion law of the famous
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Bogoliubov form, well known in the context of quantum fluctuations of the
Bose field operator derived by diagonalizing the Hamiltonian (1.16) of the
weakly interacting Bose gas with Bogoliubov transformations [57]. This
dispersion relation reads

ǫ(q) = ±
√

~2q2

2m

(
~2q2

2m
+ 2gn0

)
, (1.28)

and goes quadratically in q for large momenta since the interaction term can
be neglected in this regime. For small q the dispersion law is approximately
linear, resembling phonons,with sound velocity c =

√
gn0/m. The disper-

sion relation has a positive and a negative energy branch. The corresponding
eigenfunctions u(~r) and v(~r) are normalized with respect to

∫
d3r

(
|u(~r)|2 − |v(~r)|2

)
= ±1 (1.29)

whereas the states with norm (+1) normally correspond to the positive
energies, while norm (-1) states belong to negative energies. The (+) and
the (-) families are physically equivalent and discussed in detail in [58].

As mentioned earlier a homogeneous BEC with attractive interactions
(a < 0) is unstable against collapse. This may be understood now from
equation (1.28) considering the phonon regime. If q → 0 for negative cou-
pling constant, the excitation energy will be imaginary ǫ → ±iǫ, leading to
an exponential increase Ψ ∝ exp{+ǫt/~} of the wave function, which is the
reason for the collapse of an attractively interacting Bose-Einstein conden-
sate. This phenomenon is called phonon instability and is an example for a
dynamical instability occuring in many different situations.

Another type of instability is called thermodynamical instability and de-
cribes a situation, where the assumed ground state Ψ0 is not the state of
lowest energy but possibly only a local minimum of the energy functional. In
order to analyze this more quantitatively, we consider the total free energy
of the system following from expression (1.22). Inserting the wave-function
(1.25) and linearizing again in u and v we obtain the energy contribution of
the excitations

Eu,v =

[∫
d3r

(
|u(~r)|2 − |v(~r)|2

)]
ǫ. (1.30)

This energy can be negative if ǫ < 0 in the case of a positive norm state
(or equivalently for negative norm states and ǫ > 0)). This means that
the excited state is energetically more favorable than the originally assumed
ground state. Thus Ψ0 becomes energetically unstable under small pertur-
bations, against the lower energy configuration. In the remainder of the
thesis we will encounter both types of instability the thermodynamical one
in the context of vortex-line in chapter 2 and the dynamical instability in
chapter 4.
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1.3 Traps and optical lattices

In the previous section we approximated the external potential confining
neutral atoms in a trap by an harmonical oscillator potential. In real ex-
periments different kinds of traps occur, classified as dissipative and con-
servative traps. Dissipative traps like the magneto-optical trap (MOT) [59]
exploit radiation pressure and are used to cool atoms down to a few mi-
crokelvin. Then in order to reach Bose-Einstein condensation evaporative
cooling techniques are applied and one can cool to temperatures of the order
of nanoKelvin. In evaporative cooling the atoms in high energy levels are
basically thrown away, so that only the cool low-energy atoms remain in the
trap and the temperature of the gas is reduced. However, by removing the
hot particles from the trap one looses atoms and to prevent high losses one
cannot start with these methods at too high temperatures. These techniques
are applied in conservative traps like magnetic or optical traps.

Magnetic traps [11, 12, 60, 61] are based on the Zeeman effect depending
on the internal states of the atoms. In order to avoid losses caused by Majo-
rana spin-flips, usually Ioffe-Pritchard-like traps with finite local minima are
used. These traps can be approximated by an harmonic oscillator potential.

Optical traps have the big advantage that the trapping does not depend
on an internal atom state since the atoms are trapped with far detuned laser
light. The laser as an external electric field induces an electric atomic dipole
moment which leads to an energy shift (Stark shift [62]) proportional to the
intensity profile of the laser and hence pushes the atoms to the regions with
high (low) light intensity for a red-(blue-)detuned laser. In optical dipole
traps [63, 64, 65, 66] the light beam usually has a Gaussian profile and the
potential around the extremum can therefore again be approximated by an
harmonic oscillator potential. However, it is possible to realize in this way
various trapping geometries, and sometimes it can be also useful to combine
magnetic and optical traps, for example to create double-well potentials [69].

Similar to an optical dipole trap, two counter-propagating laser beams
with the same amplitude, wave-length and polarization, forming a stand-
ing wave, create an optical lattice potential [67, 68, 28]. The atoms are
trapped in the minima6 of the standing wave resembling lattice structures
well known from condensed matter physics. Later we will discuss atoms in
optical lattices in more detail.

1.3.1 Lower dimensional systems

By confining atomic gases strongly in one (pancake-shape) or two (cigar-
shape) directions using highly anisotropic traps one can generate system of
reduced dimensionality. Such low dimensional systems of ultracold atomic

6This is valid for blue-detuned lasers only, whereas for red-detuned lasers the atoms
are trapped analogeously in the maxima of the standing wave.
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gases provide rich physical phenomena, investigated already theoretically
[70, 71, 72, 73, 74] and experimentally [75, 76, 77, 78, 79] and play an
important role in the field of condensed matter physics [80, 81]. We shall
now analyse the physics of BECs in a quasi two-dimensional geometry and
derive the corresponding GP equation.

A system is effectively two-dimensional if ~ωz ≫ µ, meaning that the
system is frozen in the ground-state of the trap in the confined z-direction.
Since the trapping potential is approached as an harmonic oscillator the
wave-function of the BEC reads

Ψ(~r, t) = ψ(x, y, t) φ0(z) with φ0(z) =
1

(πl2z)
1/4

exp

(
− z2

2l2z

)
, (1.31)

where lz is the very small width of the system in z-direction. Inserting this
ansatz in the three-dimensional GP equation (1.19) and multiplying with
φ0(z) we can carry out the z-integration and obtain the two-dimensional
GP equation

i~
∂

∂t
ψ(x, y, t) =

[
− ~2

2m
∇2

x,y + Vext(x, y) + g2D|ψ(x, y, t)|2
]
ψ(x, y, t),

(1.32)
where we have introduced an effective two-dimensional coupling constant
g2D = g/

√
2πlz. In free space with homogeneous density this equation can be

solved easily as in (1.24) and the 2D condition becomes ~ωz ≫ g2Dn0. Note,
that in two dimensions the coupling constant is a dimensionless quantity,
obtained directly from the three-dimensional scattering length. Considering
the scattering process in three dimensions is necessary for a≪ lz. We do not
consider situations with a ∼ lz, where one should employ a 2D scattering
theory. Note further, that this procedure is much more restrictive for the
case of fermions [74], since one can employ it only if all particles are in the
ground state of the trap in z-direction. This is the case only if ǫF ≪ ~ωz.

1.3.2 Optical lattices

As noted earlier, optical traps can be used to give an atomic gas a lattice
structure similar to electrons in metals. This opens novel interesting possi-
bilities for theoretical and experimental research on ultracold atomic Bose
as well as Fermi gases [18, 28, 82, 83]. Contrary to traditional crystals in
condensed matter physics, atoms in optical lattices are highly controllable
systems. The optical lattice is defect-free and can be changed in intensity
and wave length, which is usually large enough to make experimental obser-
vations. Since the atoms are neutral, also interactions are easier to control
(via Feshbach resonances) than in the case of charged electrons.

A one dimensional optical lattice generated by two counterpropagating
laser beams with wave-length λol and amplitude V0 is described by the po-
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tential
Vol(z) = sER sin2 (Qz) , (1.33)

where Q = 2π/λol is the wave number and ER = ~2Q2/2m the recoil energy
of the lattice. The parameter s is the amplitude of the lasers in units of the
recoil energy (s = V0/ER) and gives the depth of the optical lattice potential.
For deep optical lattices, one may approximate the individual lattice wells
(lattice sites) as harmonic ocsillators, with a characteristic oscillator length
lz associated to the lattice parameters via lz ≈ bs−1/4/π, where b = λ/2 is
the period of the lattice.

Similarly, in three dimensions the optical lattice potential reads

V 3D
ol (~r) = sER

[
sin2 (Qxx+ φx) + sin2 (Qyy + φy) + sin2 (Qzz + φz)

]
,

(1.34)
with arbitrary phases φi. Note that an optical lattice is used normally in
combination with an overall trap confining the whole system.

If the lattice is sufficiently strong the system is in the so called tight-
binding regime, where the atoms are localized at the lattice sites and the
overlap between wave-functions in different sites is small. Hence, the wave-
function of a Bose-Einstein condensate in a strong one dimensional lattice
(1.33) may be written as

Ψ(~r, t) =
∑

j

w(z − bj)ψj(x, y, t), (1.35)

where ψj(x, y, t) is the wave function of the condensate on the j-lattice site,
and w(z) is the Wannier-function associated with the lowest energy-band.
In the tight binding regime an occupation of higher bands is energetically
too costly. In this sense a lattice site can be considered as a quasi 2D
system studied in the previous subsection, where the system is always in the
ground state of the harmonical oscillator in the strongly confined direction.
Inserting this ansatz into the GP equation (1.19), we obtain a discretized
non-linear Schrödinger equation [84]

i~
∂

∂t
ψj(x, y, t) =

[
− ~2

2m
∇2

x,y + Vext(x, y) + ḡ|ψj(x, y, t)|2
]
ψ(x, y, t)

−J(ψj−1(x, y, t) − 2ψj(x, y, t) + ψj+1(x, y, t)), (1.36)

where ḡ = gb
∫
dzw(z)4 is the renormalized coupling constant of the contact

interaction and the last term gives the reduced kinetic energy in lattice
direction describing hopping between neighbouring sites. The higher inertia
induced by the lattice can be expressed by an effective mass m∗ ≡ ~2/2b2J ,
which is inverse proportional to the hopping parameter (tunneling energy)

J =

∫
dz w(z)

[
− ~2

2m

d2

dz2
+ Vol(z)

]
w(z + b) ≡ 2b2

~2

m

m∗
. (1.37)
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A simple calculation shows that J and hence m/m∗ depends exponentially
on the lattice width lz, such that J → 0 if lz . 1/6. In terms of the
effective mass the tight binding approximation becomes wrong ifm/m∗ → 1,
since the wave-function is not well localized and the gap between the lowest
energy-band and the second energy-band is of the order of other relevant
energy scales in the system. In that case a restriction on the lowest band is
not valid anymore.

1.4 Vortex filaments

When rotated at sufficiently large angular frequency, a superfluid develops
vortex lines of zero density [85, 56], around which the circulation is quan-
tized due to the single-valued character of the corresponding wavefunction
[86]. Quantized vortices constitute indeed one of the most important con-
sequences of superfluidity, playing a fundamental role in various physical
systems, as superconductors [19, 87] and superfluid Helium [88]. Due to
the enormous progress in the control and manipulation of ultra cold gases,
Bose-Einstein condensates offer an extraordinarily controllable system for
the analysis of superfluidity, and in particular quantized vortices [53, 89].
Vortices and even vortex lattices have been created in BECs in a series of
milestone experiments [90, 91, 92].

First of all we shall investigate the mathematical nature of vortex fila-
ments from a topological point of view [41, 93]. In condensed matter systems
vortex filaments are defined as line-defects in ordered media [94, 95, 96] in
three dimensions7 with finite core ξ. Let the complex scalar field

Ψ(~r, t) = |Ψ(~r)| e−iΦ(~r), (1.38)

be the order parameter of such a system, where |Ψ(~r)| → const. and the
phase depends only on the polar angle Φ(~r) → Φ∞(θ) at large ρ ≫ ξ [93].
Far away from the core the order parameter space is U(1)∼= S1 and Ψ∞ ∝
eiΦ∞(θ). Now consider points on a circle at infinity S1

∞ around the vortex line
such that Ψ∞ is a map S1

∞ → U(1). Since this map describes loops in the
topological space U(1) it is classified by homotopy classes. The set of these
equivalence classes π1 is called the fundamental group or first homotopy
group [41]. Using π1(U(1)) = Z we classify the map Ψ∞ by an integer
N ∈ Z [41]. Equivalently, if the order parameter is single valued the phase
Φ∞(θ) must satisfy

Φ∞(2π) = Φ∞(0) + 2πN, (1.39)

so that for θ encircling S1 once Φ∞(θ) encircles S1 N times. The integer N
is called the winding number or degree of the map Ψ∞. Two vortex lines

7Actually vortices are two-dimensional topological solitons [93]. The third dimension
is not important for the topological character.
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are equivalent under homotopy if they can be continuously transformed into
each other, requiring that they have the same winding number. Since the
winding number is a topological invariant of S1

∞ → U(1), it is also called
the topological charge of the field configuration [93]. It is a very important
quantity, because it gives a deep insight in the physics of vortex filaments. If
two vortex lines with winding numbers N1 and N2 are merged together one
gets a vortex line with total winding N = N1 +N2. However, we will show
later that multi-vortex lines with winding N > 1 are thermodynamically
unstable under small perturbations against a field configuration of N single
vortex lines having winding number N = ±1. If two defects with opposite
winding numbers +N and −N merge together the resulting field configura-
tion has zero winding and is homotopycally equivalent to the homogeneous
medium. Note, that a field configuration of non-zero winding has always a
divergent energy-contribution. The centrifugal part of the kinetic energy is
proportional to

1

2

∫ 2π

0
dθ

∫ ∞

ρ0

ρdρ
(∂θΦ∞(θ))2

ρ2
, (1.40)

with ρ0 ≫ ξ where the ρ-integral is logarithmically divergent. However,
fortunately the divergent energy depends only on N and not on the positions
of the vortices. Therefore it can be regularized just by removing a divergent
constant [97, 98].

Other topological defects can be classified similarly. For an order pa-
rameter space M an m-dimensional defect in d dimensions is classified by
the n-th homotopy group πn(M), where n = d − m − 1 (e.g. the vortex
filament is a 1D defect (m=1) in 3D (d=3) classified by π1(S

1)). Exam-
ples for other topological defects are textures in 3He [99], monopoles [100],
skyrmions [101, 102, 103] and domain walls, recently created in experiments
using spinor condensates [104].

The definition of the vortex line we gave at the beginning of the chapter
is quite general. It is applicable not only to condensed matter systems but
also to cosmological global U(1)-strings occuring in the context of phase-
transitions in the early universe [105], described by the Goldstone model
[106] or the abelian Higgs model [107]. In both cases the Higgs field should
be interpreted as an phenomenological order parameter. Note, that there are
subtle differences between global U(1)-strings and vortex filaments in super-
fluids [108, 109]. The vortex line has a non-relativistic superfluid backround
and carries angular momentum, while the global U(1)-string is defined in
a Lorentz-invariant vacuum backround. However, it has been shown that
introducing a special external background field spinning global U(1)-strings
can describe a system of superfluid vortices [108].

In addition vortices or vortex-like excitations appear in the context of
hydrodynamics [110], in the earth’s atmosphere [111], and even in neutron
stars [112].
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In this thesis we are interested in vortices in superfluids and Bose-
Einstein condensates. At first we shall derive results coming from the fact
that the motion of a superfluid liquid is a potential flow. Later, considering
Bose-Einstein condensates, we will study the quantum nature of the vortex
lines.

1.4.1 Rotating superfluids

Let us consider a liquid in a rotating cylindrical vessel[56], [88]. An ordinary
liquid rotates as a whole together with the vessel due to the friction against
the vessel walls. In a superfluid only the normal component ρn is brought
into rotation, while the superfluid component ρs remains at rest (rot ~vs =
0). Hence superfluid motion is a potential flow with a velocity potential φ
defined via ~vs = gradφ.

However, for sufficiently large Ω such a state becomes energetically un-
favorable. In a frame rotating with Ω the energy to minimize is

Erot = E − ~Ω~L. (1.41)

Hence for sufficiently large Ω the term −~Ω~L causes the state with ~Ω~L > 0
to be thermodynamically more favorable than that with ~L = 0. This leads
to a rotation of the liquid as a whole with

~v = ~Ω × ~r ⇒ rot ~v = 2Ω. (1.42)

This seems to be a contradiction to the fact that superfluid motion is a
potential flow. The solution of this problem is the assumption that potential
flow is lost only at certain lines of singularity in the liquid called vortex lines
or vortex filaments.8 Outside these lines the potential flow (rot ~vs = 0) is
conserved. This motion is called potential rotation.

Considering vortex filaments from a purely kinematic point of view, as
lines of singularity in the irrotational velocity distribution of the liquid we
find their velocity circulation as

∮
d~l ~vs ≡ 2πχ. (1.43)

Since ~vs is irrotational the circulation is independent of the choice of in-
tegration. There are no free ends of a vortex filament. (They end at the
boundary of the vessel, at infinity in infinite systems or they build vortex
rings.) Now we are able to calculate the velocity distribution in a liquid
moving around the vortex filament. The simplest case is a straight vortex
line in an infinite liquid, where the streamlines are circles perpendicular to
the line ∮

d~l ~vs = 2πrvs ≡ 2πχ. (1.44)

8This was proposed by Onsager in 1949 [86] and developed by Feynman in 1955 [85].
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This implies the velocity distribution of a straight vortex line

vs =
χ

r
, (1.45)

where r is the distance from the line. For a vortex filament of any shape
a formula is found in analogy to the familiar Biot-Savart law, since a line
current J obeys

∮
~H d~l = 4πJ/c. Substituting vs ↔ H and χ/2 ↔ J/c this

is exactly (1.43). Hence the velocity distribution for a vortex filament of an
arbitrary shape is

~vs =
1

2
χ

∫
d~l × ~R

R3
, (1.46)

where the integration is along the filament and ~R is the radius vector from
d~l to the point where the velocity is observed.

1.4.2 Vortex filaments in Bose-Einstein condensates

So far we derived our results from the fact that the motion of the liquid is
a potential flow. Now we have a look on the quantum nature of the vortex
lines. The fraction of particles in the ground state (BEC) belongs to the
superfluid part of the liquid ρs [56] and hence the velocity of the condensate
is the velocity of the superfluid part ~vs. In general, the time-independent
condensate wave function is the complex scalar field

Ψ(~r) =
√
n0(~r) e− i Φ(~r), (1.47)

with n0(~r) = |Ψ0(~r)|2 being the density of the condensate. For a homoge-
neous condensate with constant density this leads to the current density

~jcond =
i ~

2m
(Ψ∇Ψ∗ − Ψ∗∇Ψ) =

~

m
n0∇Φ, (1.48)

and with ~jcond = n0~vs one obtains the superfluid velocity

~vs =
~

m
∇Φ. (1.49)

The corresponding velocity potential is for the case of a BEC simply the
phase of the condensate wave function φ = ~

mΦ. Now we use the condensate-
velocity (1.49) to calculate the circulation defined by (1.43)

χ =
1

2π

∮
d~l ~vs =

~

2πm
∆Φ = n

~

m
, (1.50)

where ∆Φ is the change of phase going around the contour. Returning to
the original point (closed contour) ∆Φ must be an integer multiple of 2π.9

9Note,that the condensate wave function Ψ is single-valued.
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Hence the circulation is quantized in units of ~

m with quantum number n.
This quantum number corresponds to the winding number N introduced
before, since it counts how many times the condensate wave-function, which
is the order-parameter of this system encircles the vortex line. A straight
vortex filament has the velocity field (1.45) with circulation given by (1.50)

~vs =
~

m

n

r
~eϕ, (1.51)

Comparing this with the phase of the condensate via equation (1.49) yields
Φ(~r) = n · ϕ. Then the wave-function of a Bose-Einstein condensate with n
circulation quanta is

Ψ(~r) =
√
n0(ρ) e− i nϕ, (1.52)

where we assume that the density n0(ρ) = |Ψ(ρ)|2 is rotationally invari-
ant. It is not surprising that this order parameter satisfies the asymptotic
conditions given below equation (1.38), since it describes a medium with
topological line-defects.

Remember that a BEC with weak contact interactions is generally de-
scribed by the Gross-Pitaevskii equation (1.19). For a condensate with n
vortex lines it takes the form [113, 46]

[
− ~2

2M

(
∂2

ρ +
1

ρ
∂ρ

)
+

~2n2

2mρ2
− µ+ g|Ψ(ρ)|2

]
|Ψ(ρ)| = 0. (1.53)

Note, that this is a one-dimensional differential equation in the radial co-
ordinate. The other coordinates have been integrated out, already. Using
limρ→∞ |Ψ(ρ)| =

√
n0 we go to dimensionless units via

|Ψ0(ρ)| =
√
n0 f(ρ) with ρ→ ρ

ξ
and ξ2 =

~

mgn0
,

where ξ is the healing length and gives the width of the vortex core. We
obtain

1

2

(
∂2

ρ +
1

ρ
∂ρ

)
f +

(
1 − n2

2ρ2

)
f − f3 = 0. (1.54)

The limits are limρ→∞ f = 1 and limρ→0 f ≈ ρ|n| so that n0(~r) tends to zero
on the vortex line. We rescale f(ρ) = ρnφ(ρ) in order to simplify numerical
calculations and get rid of the centrifugal barrier

1

2

(
∂2

ρ +
2n+ 1

ρ
∂ρ

)
φ+ φ− ρ2nφ3 = 0. (1.55)

The singularity at ρ→ 0 in the second term is spurious since ∂ρφ(ρ) → ρ2n−1

and can be evaluated by using the de l’Hospital rule. Figure 1.1 shows the
numerical solution of equation (1.55) for n = 1 obtained with the imaginary
time evolution method (appendix A).
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Figure 1.1: Dimesionless condensate wave-function f as a function of ρ in
units of the healing length ξ for n = 1.

From equation (1.54) one can derive an interesting relation between the
total dimensionless potential energy density U of the system and the winding
number n of the field configuration (Virial theorem) [93]. By multiplying
with 2ρ2 df/dρ and integrating over the hole plane we find

U ≡
∫
d2x(1 − |f(ρ)|2)2 = 2πn2. (1.56)

1.4.3 Critical angular velocity

In section 1.4.1 we have discussed that vortex lines occur only if the angular
velocity Ω of the rotating vessel is sufficiently large. In order to determine
the critical angular velocity Ωc where a straight vortex line (n = 1) is ener-
getically favorable we consider the change of energy caused by such a straight
vortex filament [56]

∆E = E1vortex − E0 =

∫
dV

1

2
ρs v

2
s (1.57)

=
1

2
ρsLz

∫
dr rv2

s 2π = Lzρsπχ
2

∫
dr

1

r
. (1.58)

Under a macroscopic treatment we can assume that the lower integration
limit a is of the order of atomic distances to get rid of the logarithmic
divergence. The upper limit is the radius R of the vessel. In the region of
integration the density ρs is almost constant. This gives the energy

∆E = Lzρsπ
~2

m2
ln
R

a
. (1.59)

The angular momentum of the liquid is

L =

∫
dV ρsvsr = ρsχ

∫
dV = Lzρsπ

~

m
R2. (1.60)
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Inserting the expressions (1.59) and (1.60) in the equation for the energy in
the rotating frame (1.41), we obtain the critical angular velocity

Ωc =
~

mR2
ln
R

a
. (1.61)

This means that for Ω > Ωc the change of energy in the rotating frame
∆Erot becomes negative and the one-vortex configuration is favorable.

From these formulas one can also estimate why only vortex lines with
n = 1 are thermodynamically stable. For larger n, ∆E increases with n2

while ΩL evolves with n. Hence ∆Erot increases and a vortex line with
n > 1 is energetically unfavorable.

But what happens in the case of faster rotations? More and more vortex
lines will appear distributed over the liquid. If the density of the vortex lines
ν is sufficiently large, rigid body rotation of the superfluid part is simulated

rot~vs = 2Ω ⇒ 2πχ = 2Ω. (1.62)

Using (1.43), we determine the number of vortex lines

∮
d~l ~vs = ν · 2πχ. = 2πν

~

m
(1.63)

From these two equations it follows that

ν =
mΩ

π~
, (1.64)

which means that by increasing the angular velocity the number of vortices
grows. Thereby one can observe scattering between the vortex lines and the
quasi-particles from the normal part of the liquid ρn. Thus, there is a mo-
mentum transfer between ρs and ρn, which leads to friction and superfluidity
disappears.

However, superfluids rotating with high angular velocity are remarkable
physical systems, where a variety of novel quantum phases may occur [89].
Normally the vortices arrange in a triangular lattice (Abrikosov lattice) pre-
dicted first in the context of superconductors by Abrikosov [114] and recently
experimentally imaged in an atomic BEC [92]. Novel lattice structures has
been observed in two-component BECs [115], at very high vortex density
regimes [116] and theoretically predicted in dipolar BECs [117]. Further,
at very high vortex density a phase transition from the triangular vortex
lattice into novel uncondensed phases (e.g. a vortex liquid phase [118]) has
been predicted. These novel phases are closely related to the incompressible
liquids of the fractional quantum Hall effect [118, 119, 120].
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1.5 Dipolar quantum gases

The physics of ultracold atomic and molecular gases is crucially determined
by the interparticle interactions. Typical experiments in quantum gases
have studied up to now particles which interact dominantly via short-range
isotropic potentials. At the very low energies involved in these experiments,
such interactions are characterized by a single parameter, namely the s-wave
scattering length. However, a new generation of recent experiments is open-
ing a fascinating new research area, namely that of dipolar gases [32, 33], for
which the dipole-dipole interaction (DDI) plays a significant or even domi-
nant role. These experiments include on one hand those dealing with the
DDI effects due to magnetic dipoles in degenerate atomic gases, as it is the
case of recent exciting experiments especially in Chromium Bose-Einstein
condensates [121, 122], but also on Rubidium spinor BECs [123], Potassium
[124] and Lithium [125]. On the other hand, recent experiments on cold
molecules [126, 127, 128, 129] like the creation of heteronuclear molecules
in the lowest vibrational states [130, 131, 132], although not yet brought
to quantum degeneracy, open fascinating perspectives for the generation of
polar molecules with very large electric dipole moments. These gases are
expected to be largely dominated by the DDI. Last but not least, the DDI
in Rydberg atoms is extremely large [133] and may allow for e.g. the con-
struction of fast quantum gates [134].

Contrary to the isotropic van-der-Waals-like short-range interactions,
the DDI is long-range and anisotropic (partially attractive) and leads to
fundamentally new physics in ultra cold gases, modifying e.g. the stability
[135, 136, 137] and excitations of BECs [138, 139, 140, 141]. Similarly, the
DDI significantly changes the properties of Fermi gases in three [142, 143, 33]
or lower dimensions [144, 145, 146] and the physics of strongly-correlated
gases [147, 148, 149, 150, 151]. Time-of-flight experiments in Chromium
condensates allowed for the first observation of DDI effects in quantum de-
generate gases [152]. They have been remarkably enhanced by means of
Feshbach resonances [153], where it is possible to supress short-range inter-
actions completely in order to generate a pure dipolar gas. In addition, the
DDI has been recently shown to play an important role in the physics of
spinor Rubidium BEC [123], and to lead to an observable damping of Bloch
oscillations of Potassium atoms in optical lattices [124].

The long-range character of the DDI leads to nonlocal nonlinearity in
dipolar BECs that resembles that encountered in plasmas [154] and nematic
liquid crystals [155]. This nonlocality leads to novel nonlinear physics in
dipolar BECs, including the possibility of obtaining stable 2D bright soli-
tons [159, 160] and stable 3D dark solitons [161]. Long-range anisotropic
interactions also lead to interesting phenomena in the physics of classical
ferrofluids [157, 158].

In addition, the partially attractive character of the nonlocal nonlinear-
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Figure 1.2: Anisotropy of the dipole-dipole interaction [32]: (a) Non-
polarized dipoles; (b) Dipoles oriented in z-direction; (c) Two dipoles side
by side repel each other; (d) Two dipoles on top of each other attract each
other.

ity due to the anisotropy of the DDI has remarkable consequences for the
stability of dipolar BECs, which may become unstable against collapse in
3D traps, as recently shown in experiments with Chromium BECs [162].
On the contrary, 2D traps may allow for an instability without collapse,
characterized by the formation of a gas of inelastic 2D solitons [163]. In-
terestingly, the momentum dependence of the DDI allows for a second type
of instability, called roton instability. It is related to the appearance of a
roton-like minimum in the dispersion law of elementary excitations [138].
This minimum resembles the roton minimum in the dispersion law of liquid
helium [164], which is related to the structure factor of the liquid [165]. Ro-
ton instability leads to local collapses [140] or stabilized modulated density
profiles in sufficiently tight traps [141].

1.5.1 The dipole-dipole interaction potential

In general, two particles with dipole moments oriented in the directions ~e1
and ~e2 and with relative distance ~r as shown in Fig. 1.2 (a) interact via the
dipole-dipole potential [32]

Vd(~r) = d2 (~e1 · ~e2)r2 − 3(~e1 · ~r)(~e2 · ~r)
r5

(1.65)

with coupling constant d2. For atoms with a permanent magnetic dipole
moment µ the coupling constant is d2 = µ0µ

2/4π , while for polar molecules
with electric dipole moment dǫ it reads d2 = d2

ǫ/4πǫ0. The electric dipole
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moment of polar molecules is usually of the order of dǫ ∝ ea0, where e is
the electron charge and a0 the Bohr radius. It is therefore much larger than
the magnetic dipole moment of an atom, which is typically of the order
of the Bohr magneton µB. One can estimate the ratio d2

ǫ/ǫ0 : µ0µ
2 to

be of the order of 104. Typical values appearing in the experiments noted
earlier are for example µ = 6µB for Chromium [121] and µ = 1µB for
Rubidium [123] and Potassium [124]. Potassium-Rubidium [130] molecules
have a permanent dipole moment dǫ ≃ 0.6 D and the dipole moment of
Lithium-Caesium [131] is close to 6 D.10

If all dipoles are oriented in the same direction (Fig. 1.2 (b)) by an
external field, say the z-direction, the potential (1.65) simplifies to

Vd(~r) = d2 1 − 3 cos2 θ

r3
, (1.66)

where θ is the angle between the relative position of the particles and the
dipole direction. From this expression the long-range character (∝ 1/r3)
and the anisotropy of the DDI becomes obvious. For two particles placed
on top of each other (head-to-tail configuration) the angle θ is 0, the factor
in (1.66) is (1 − 3 cos2 θ) = −2 and the interaction is maximally attractive
(Fig. 1.2 (d)), while particles sitting side by side (θ = π/2) repel each other
(Fig. 1.2 (c)), since the factor (1−3 cos2 θ) = 1 is positive. For intermediate
values of θ the term takes values between 1 and −2 and for the special case
of the so called magic angle θ = arccos(1/

√
3) ≈ 54.7, the DDI vanishes.

The dipole-dipole interaction can be tuned [166, 32] by rotating an ex-
ternal field that orients the dipoles much faster than any other relevant
time-scale in the system. This leads to a time-averaged DDI

Vd(~r) = d2 1 − 3 cos2 θ

r3
3 cos2 φ− 1

2
, (1.67)

where φ is the polar angle between the rotation axes and the orientation
of the dipole (see Fig 1.3 ). The prefactor α(φ) ≡ (3 cos2 φ − 1)/2 takes
values within the range from 1 to -1/2. The total DDI averages to 0 if φ is
the magic angle and changes sign for larger values of φ. Note, that in this
case the averaged DDI becomes attractive for dipoles sitting side by side
and repulsive for dipoles in a head to tail configuration leading to otherwise
inaccessible physics as we will see in chapter 2.

In the remainder of this thesis we will often use the Fourier transform
of the DDI. This has several advantages and is convenient for numerical
calculations (e.g. one gets rid of the singularity at the origin in expression
(1.66)). The Fourier transform of the DDI can be calculated easily by iden-
tifying the angular dependence of the DDI with the spherical harmonics

10One Debye is 1 D ≃ 3.335 × 10−30 C·m .
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Figure 1.3: Tuning [166] of the dipole-dipole interaction with an external
field rotating with frequency Ω much larger than any other time-scale in the
system.

(1 − 3 cos2 θ) =
√

16π/5 Y20 and reads

Ṽd(~k) = d2 4π

3
(3 cos2 θk − 1), (1.68)

where θk is the angle between ~k and the dipole direction.

1.5.2 Dipolar Bose-Einstein condensates

Dipolar Bose-Einstein condensates obey an extended version of the Gross-
Pitaevskii equation (1.19), where an extra potential term taking the dipole-
dipole interaction into account is added. Thus at sufficiently low temper-
atures and away from shape resonances11 the physics of a dipolar BEC
[135, 168] is provided by a non-local non-linear Schrödinger equation (NLSE)
of the form

i~
∂Ψ(~r)

∂t
=

[
−~2∇2

2m
+ Vext(~r) + g|Ψ(~r)|2

+

∫
d~r′ |Ψ(~r′)|2 Vd(~r − ~r′)

]
Ψ(~r), (1.69)

where the last term is the dipolar contribution to the mean field interaction
and is usually calculated in Fourier space. Using the convolution theorem

11Close to the shape resonances, the form of the pseudo-potential must be in general
corrected. See [167] and reference therein.
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of the Fourier transformation the dipolar term simplifies to
∫
d~r′ |Ψ(~r′)|2 Vd(~r − ~r′) =

∫
d3k

(2π)3
˜|Ψ(~r′)|2 Ṽd(~k) e

i~k~r, (1.70)

with the Fourier transform of the density ˜|Ψ(~r′)|2. However, it is very diffi-
cult even numerically to solve this non-local non-linear equation for arbitrary
cases, since it has both differential and integral terms.

In the absence of an external potential, equation (1.69) has a homoge-
neous solution Ψ0(~r, t) =

√
n0 e

−iµt/~ with constant density n0 and similar
to equation (1.24) it reduces to

µ =
(
g + Ṽ (q = 0)

)
n0, (1.71)

specifying the chemical potential µ of a gas with a relevant contribution
Ṽ (q = 0) from the dipole-dipole interaction.

Considering elementary excitations in section 1.2.2 we obtained that only
a gas with repulsive contact interactions is stable, while attractive interac-
tions lead to phonon instability. Since the dipole-dipole interaction is par-
tially attractive we shall investigate in which cases a dipolar BEC is unstable
with respect to phonon instability. Proceeding as for the case of short-range
interacting gases, we study elementary excitations of the free homogeneous
dipolar Bose-Eintein condensate. From the corresponding Bogoliubov-de
Gennes equations we obtain a dispersion relation similar to (1.28)

ǫ(q) = ±
√

~2q2

2m

[
~2q2

2m
+ 2

(
g + Ṽ (~q)

)
n0

]
. (1.72)

In order to discuss stability conditions following from this dipersion relation
we express the strength of the DDI in units of the coupling constant of the
contact interaction g by the dimensionless parameter

β =
gd

g
, (1.73)

Here gd = α8πd2/3 is the dipolar coupling and α is a possible prefactor
associated with the dipolar tuning. Stable phonons, excitations with low
momenta q are only possible if the total contribution induced by interactions
is positive for all directions 2 + β(3q2z/|~q|2 − 1) > 0. If gd > 0 phonons with
~q lying on the xy plane are unstable if β > 2, while for gd < 0 phonons with
~q along z are unstable if β < −1. Hence, absolute phonon stability demands
−1 < β < 2.12

Note, that ground state properties and stability of dipolar condensates
can be different in the trapped case, depending crucially on the particular
trap geometry [137, 169, 170].

12The phonon instability is well explained in more detail with an intuitive physical
picture in [32].
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1.6 Overview

The Thesis is organized as follows:

In chapter 2 we analyze the case of a dipolar BEC in a one-dimensional
optical lattice, and in particular the physics of straight vortex lines perpen-
dicular to the two-dimensional planes defined by the lattice sites. We show
that due to the long-range character of the DDI, different parts of the vor-
tex line interact with each other, and hence the 3D character of the vortices
plays a much more important role in dipolar gases than in usual short-range
interacting ones. Specifically, we discuss that the DDI may severely modify
the dispersion law for transverse modes, which may even acquire a roton-
like minimum. This minimum may touch zero energy for sufficiently large
and tuned DDI and strong lattices, leading to a thermodynamical instabil-
ity of the straight vortex line. We show that this instability may occur in
situations in which the whole BEC is stable, opening the possibility for the
observation of twisted vortex line configurations in dipolar BECs.

In chapter 3 we continue the investigation of vortex lines in dipolar BEC.
We consider again a vortex line in a one-dimensional optical lattice and
dipoles oriented parallel or perpendicular to vortex line and lattice direction.
With an intensive numerical analysis we determine the ground state of the
system for different values of the dipolar strength and the lattice depth. We
show that the thermodynamical instability found in chapter 2 leads to a
second-order-like phase transition from a straight vortex line into an helical
or snake-like vortex line depending on the dipole orientation. In particular,
we calculate the width of the helix or snake as a function of the dipolar
coupling and the effective mass associated with the lattice. In addition
we investigate whether the dipole-dipole interaction can stabilize a doubly-
quantized vortex against splitting into two single ones.

Chapter 4 is devoted to the analysis of non-overlapping dipolar BECs
placed at different sites of a deep two-well potential or 1D optical lattice.
Due to the long-range character of the DDI, contrary to the case of purely
short-range interacting gases, the deep potential does not lead to indepen-
dent 2D BECs. In particular, we show that the elementary Bogoliubov exci-
tations of disconnected BECs placed in a two-well potential couple through
the DDI leading to hybrid modes which are collectively shared by both
wells. Interestingly this hybridization may significantly alter the stability
of the system against roton instability. We show that this effect is signif-
icantly enhanced for the case of a 1D optical lattice with multiple sites,
where a band-like spectrum is induced by the inter-site DDI. We analyze in
detail the stability diagram, and finish with a discussion of the experimental
observability in different experiments.

In chapter 5 we consider dipolar induced filamentation of fermionic polar
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molecules in a deep one-dimensional optical lattice. We show that due to the
attractive intersite DDI polar molecules in different lattice sites placed on
top of each other can bind into self-assembled chains of different length. De-
pending on the number of molecules in the chain, the filament has fermionic
or bosonic character. This has particularly relevant consequences when the
number of available lattice sites is odd. Here we focus on the simplest non-
trivial case, namely a three-well potential. We show that the competition
between trimer/dimer binding and trimer Fermi energy results in a non-
trivial dependence of the character of the dipolar chain liquid as a function
of the number of molecules per site and as a function of temperature.
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Chapter 2

Transverse instability of

straight vortex lines in

dipolar Bose-Einstein

condensates

As discussed in the introduction dipolar gases present a rich non-linear
physics, since the dipole-dipole interaction leads to nonlocal nonlinearity.
This nonlocal character also has remarkable consequences for the physics
of rotating dipolar gases. It has been shown that the critical angular fre-
quency for vortex creation may be significantly affected by the dipole-dipole
interaction [171]. In addition, dipolar gases under fast rotation develop
vortex lattices, which due to the dipole-dipole interaction may be severely
distorted [172], and even may change its configuration from the usual tri-
angular Abrikosov lattice into other arrangements [173, 174]. However, the
previous analysis of vortices in dipolar BEC have been constrained to situ-
ations where the 3D character of the vortex is unimportant.

Vortex lines are indeed 3D structures, which, resembling strings, may
present transverse helical excitations, which were studied for classical vor-
tices by Lord Kelvin already in 1880, and are thus known as Kelvin modes
[175]. These excitations have been also studied for quantized vortices in
superfluids by Pitaevskii [52]. Interestingly, the dispersion law for Kelvin
modes at small wave vector q follows a characteristic dependence [56] ǫ(q) ∼
−q2 ln qξ, where ξ is the healing length. Kelvin modes play an important
role in the physics of superfluid Helium [88, 176], and even of neutron stars
[177]. Recently, Kelvin modes were experimentally observed in BEC [178].

In this chapter we analyze the influence of the dipole-dipole interaction
on vortex lines in a one dimensional optical lattice and in particular on the
dipersion relation for the Kelvin modes as shown in figure 2.1.
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Figure 2.1: (a) Vortex line in an optical lattice with lattice spacing b. The
wave-number of the Kelvin mode is q, whereas the corresponding wavelength
satisfies 2π/q ≫ b. (b) The vortex line has a finite core with healing length
ξ and a velocity field ~v perpendicular to the line.

2.1 Dipolar BEC in an 1D optical lattice

In the following, we consider a dipolar BEC of particles with mass m and
electric dipole d (the results are equally valid for magnetic dipoles) oriented
in the z-direction by a sufficiently large external field, and that hence interact
via a dipole-dipole potential: Vd(~r) = αd2(1 − 3 cos2 θ)/r3, where θ is the
angle formed by the vector joining the interacting particles and the dipole
direction. As mentioned in the introduction the coefficient α can be tuned
within the range −1/2 ≤ α ≤ 1 by rotating the external field that orients the
dipoles much faster than any other relevant time scale in the system [166].
At sufficiently low temperatures (and away from shape resonances 1) the
physics of the dipolar BEC is provided by a non-local non-linear Schrödinger
equation (NLSE) of the form (1.69)

i~
∂Ψ(~r)

∂t
=

{
−~2∇2

2m
+ Vol(z) + g|Ψ(~r)|2

∫
d~r′|Ψ(~r′)|2Vd(~r − ~r′)

}
Ψ(~r), (2.1)

where g = 4π~2a/m, with a > 0 the s-wave scattering length. The BEC is
in a 1D optical lattice, Vol(z) = sER sin2(Qz), where ER = ~2Q2/2m is the

1Close to the shape resonances, the form of the pseudopotential must be in general
corrected. See [167] and reference therein.
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recoil energy and Q is the laser wave vector. In the tight-binding regime
(sufficiently strong lattice) we can write Ψ(~r, t) =

∑
j w(z − bj)ψj(~ρ, t),

where b = π/Q, ~ρ = {x, y} and w(z) is the Wannier function associated
to the lowest energy band. Substituting this ansatz in equation (2.1) we
obtain a discrete NLSE (1.36) with an additional dipolar term, which shall
be discussed in detail in appendix B. We may then return to a continuous
equation (see appendix B), where the presence of the lattice amounts for
an effective mass along the lattice direction and for a renormalized coupling
constant [179]:

i~
∂Ψ(~r)

∂t
=

{
−~2∇2

⊥

2m
− ~2∇2

z

2m∗
+ g̃|Ψ(~r)|2+

∫
d~r′|Ψ(~r′)|2Vd(~r − ~r′)

}
Ψ(~r), (2.2)

where Ψ(~r) = ψj(~ρ)/
√
b is the coarse-grained wavefunction. The renor-

malized coupling constant is g̃ = bg
∫
w(z)4dz + gdC, 2 with the dipolar

coupling constant gd = α8πd2/3, and m∗ is the effective mass as defined
in the introduction 1.3.2 (equation (1.37)). Recall that m∗ increases with
the lattice depth s and that the tight binding approximation looses its va-
lidity if m/m∗ → 1. In addition the validity of equation (2.2) is limited to
z-momenta kz ≪ 2π/b, in which one can ignore the discreteness of lattice.

We consider first an homogeneous solution Ψ(~r, t) =
√
n0 exp[−iµt/~], as

discussed in the introduction 1.5.2. Analogeously we define a dimensionless
parameter β = gd/g̃, but now with the rescaled coupling constant g̃. In 1.5.2
we have found that the BEC is stable only if

−1 < β < 2. (2.3)

Otherwise, the attractive part of the dipole-dipole interaction would lead
to phonon instability and the collapse of the condensate. This condition is
still valid for the dipolar gas in a one dimensional optical lattice discussed
in this chapter, because the lattice mainly effects the kinetic energy due to
the effective mass.

2.2 Straight vortex line

We consider at this point a condensate with a straight vortex line (n=1)
along the z-direction as introduced in section 1.4.2. The corresponding
ground-state wavefunction is of the form (1.52)

Ψ0(~r, t) = φ0(ρ) e
iϕ e−iµt/~, (2.4)

2C ≃
P

j 6=0
|w̃(2πj/b)|4, where w̃ is the Fourier-transform of w(z).
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where ϕ is the polar angle on the xy plane. For the case of a vortex line the
NLSE (2.2) reduces to equation (1.53) with an additional dipolar term

∫
d~r′ |Ψ0(~r

′)|2 Vd(~r − ~r′) = −αd
24π

3
|φ0(ρ)|2. (2.5)

This result is derived in detail in appendix C Hence, the function φ0(ρ)
fulfills

µφ0(ρ) =
~2

2m

(
−Dρ +

1

ρ2

)
φ0(ρ) + ḡ|φ0(ρ)|2φ0(ρ), (2.6)

where Dρ = 1
ρ∂ρρ∂ρ and we have introduced the regularized coupling con-

stant
ḡ ≡ g̃ − gd

2
. (2.7)

Note that, due to the homogeneity of Ψ in the z-direction, in equation (2.6)
the dipole-dipole interaction just regularizes the local term (a similar feature
was observed in Ref. [138]). The density of the vortex core is given by
|φ0(ρ)|2, which goes to zero at ρ = 0, and becomes equal to the bulk density
n0 at distances larger than the corresponding healing length ξ = ~/

√
mḡn0.

We can solve equation (2.6) numerically (appendix A), as shown in section
1.4.2 when discussing vortex lines in usual short-range interacting BECs.
Analogeously, we find a solution as shown in figure 1.1.

Note that due to the regularization of the contact interaction, the size ξ of
the vortex core depends on the dipole-dipole interaction. In particular, this
dependence is exactly the opposite as that expected for 2D vortices, since
in 2D similar arguments provide ḡ = g+gd. Hence, even for equal densities,
the cores of 2D and 3D vortices can be remarkably different in a dipolar gas,
differing significantly from the behavior of short-range interacting gases,
where both 2D and 3D vortices would have the same core size.

2.3 Kelvin modes

The effects of the long-range character of the dipole-dipole interaction be-
come even more relevant in the physics of Kelvin modes. We consider exci-
tations of the straight vortex line (n = 1) of the form

Ψ(~r, t) = Ψ0(~r, t) + χ(~r, t) eiϕ e−iµt/~, (2.8)

Introducing this ansatz into (2.2) and linearizing in χ, one obtains

i~∂tχ(~r, t) =
[
− ~2

2m
∇2

⊥ − ~2

2m∗
∇2

z − i
~2

mρ2
∂ϕ +

~2

2mρ2
− µ

+(2g̃ − gd

2
) |φ0(ρ)|2

]
χ(~r) + g̃φ2

0(ρ)χ
∗(~r) (2.9)

+

∫
d~r′V (~r − ~r′)φ0(ρ

′)φ0(ρ)
[
χ∗(~r′) + χ(~r′)

]
,



Transverse instability of vortex lines in dipolar BECs 33

0 0.5 1
0

0.5

1

1.5

2

ε(
q)

/µ

2

1.5

0

0.5

1

ξq
0.5 10

Figure 2.2: Dispersion ǫ(q) as a function of qξ, in the absence of an additional
optical lattice, and various values of β = 0 (solid line), 1.0 (dashed line),
and −0.98 (dotted line).

where φ0(ρ) is the ground state solution (straight vortex line) obtained nu-
merically in the previous section. Following the famous work of Pitaevskii
[52] we write the excitations as a sum over all possible modes characterized
by the quantum numbers l and q

χ(~r, t) =
∑

l,q

[
ul(ρ) e

i(lϕ+qz−ǫt/~) − v∗l (ρ) e
−i(lϕ+qz−ǫ∗t/~)

]
, (2.10)

where ǫ is the excitation energy assiciated with l and q. Several simplification
based on the integral representations of the Bessel functions of the first kind
Jl(qρ) [180, 181] (appendix C), finally yield the corresponding Bogoliubov-de
Gennes equations for ǫ

ǫul(ρ) =

[
~2

2m

(
−Dρ +

(l + 1)2

ρ2
+

m

m∗
q2
)
− µ+ 2ḡφ0(ρ)

2

]
ul(ρ)

−ḡφ0(ρ)
2vl(ρ) (2.11)

+
3β

2 − β
ḡq2

∫ ∞

0
dρ′ρ′φ0(ρ

′)φ0(ρ)
[
ul(ρ

′) − vl(ρ
′)
]
Fl(qρ, qρ

′)

ǫvl(ρ) = −
[

~2

2m

(
−Dρ +

(l − 1)2

ρ2
+

m

m∗
q2
)
− µ+ 2ḡφ0(ρ)

2

]
vl(ρ)

+ḡφ0(ρ)
2ul(ρ) (2.12)

+
3β

2 − β
ḡq2

∫ ∞

0
dρ′ρ′φ0(ρ

′)φ0(ρ)
[
ul(ρ

′) − vl(ρ
′)
]
Fl(qρ, qρ

′),



34 Kelvin modes

0.002

0
0 0.2 0.4

ξq

(q
)/

ε
µ

Figure 2.3: Dispersion ǫ(q) as a function of qξ for m/m∗ = 0.143 and β =
−0.8.

with Fl(x, x
′) = Il(x<)Kl(x>) , where Il and Kl are modified Bessel func-

tions, and x> =max(x, x′), x< =min(x, x′). The transverse vortex line exci-
tations with l = −1 are called Kelvin modes and we want to analyze this case
in detail (note appendix C). By numerical diagonalization we determine for
every q the lowest eigenenergy ǫ, that provides the dispersion law discussed
below. The first line at the right-hand site of equations (2.11) and (2.12) is
exactly the same as that expected for a vortex in a short-range interacting
BEC [52], but with the regularized value ḡ. The last term at the right-hand
site of both equations is directly linked to the long-range character of the
dipole-dipole interaction and, as we show below, leads to novel phenomena
in the physics of Kelvin modes in dipolar BECs.

In absence of dipole-dipole interaction (or equivalently from equations
(2.11) and (2.12) without the last integral term) the dispersion law at low
momenta (qξ ≪ 1) is provided by the well-known expression

ǫ(q) = −~2q2

2m∗
ln

[√
m

m∗
qξ

]
. (2.13)

The integral terms of equations (2.11) and (2.12) significantly modify the
Kelvon spectrum in a different way depending whether β is positive or neg-
ative. In order to isolate the effect of the dipole-dipole interaction on the
core size with respect to the effect of the integral terms in equations (2.11)
and (2.12) we fix ḡ and change the parameter β which is proportional to the
dipole-dipole coupling constant. Figure 2.2 shows that for increasing β > 0
the excitation energy clearly increases, i.e. the vortex line becomes stiffer
against transverse modulations.
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In order to obtain an intuitive picture of why this is so, one may sketch
the vortex core as a 1D chain of dipolar holes. Dipolar holes interact in
exactly the same way as dipolar particles, and hence maximally attract
each other when aligned along the dipole direction, i.e. the z-direction. In
this sense, the configuration of minimal dipolar energy is precisely that of a
straight vortex line along z. A wiggling of the line produces a displacement
of the dipolar holes to the side, and hence an increase of the dipolar energy.
As a consequence, the dipole-dipole interaction leads to an enhanced stiffness
of the vortex line. From this intuitively transparent picture, we can easily
understand that exactly the opposite occurs when β < 0. In that case, the
dipolar holes maximally repel each other when aligned along the z-direction.
Hence it is expected that the dipolar energy decreases when departing from
the straight vortex configuration. This results in a reduced energy of the
excitations for β < 0 ( figure 2.2), i.e. it becomes easier to wiggle the vortex
line.

In principle, a sufficiently large dipole-dipole interaction could destabilize
the straight vortex line. However, in the absence of an addiontional optical
lattice along the z-direction, the destabilization would occur for values of
β < −1, i.e. in the regime of phonon instability in which the whole dipolar
BEC is unstable against local collapses. An increase of the potential depth
of the additional lattice leads to a reduction of the role of the kinetic energy
term mq2/m∗ in equations (2.11) and (2.12) that enhances the effect of the
dipolar interaction on the dispersion law. As a consequence, as shown in
figure 2.3, in addition to the −q2 ln(qξ) dependence at low q, a roton-like
minimum eventually appears at intermediate q. This changes the character
of the lowest Bogoliubov modes at this value of q. For a sufficiently small
(m/m∗)cr the roton minimum eventually reaches zero or negative energy, and
the straight vortex line becomes unstable against a novel type of instability.

Figure 2.4 summarizes our results. As mentioned above, for β < −1 and
β > 2 the whole BEC collapses due to phonon instability. For 0 < β < 2, the
dipole-dipole interaction makes the vortex stiffer against Kelvin modes (i.e.
ǫ(q) grows for all q, as shown for a particular case in figure 2.2). For −1 <
β < 0 the vortex is softer against transverse excitations (i.e. ǫ(q) decreases),
and ǫ(q) develops a roton feature when m/m∗ decreases approaching the
curve (m/m∗)cr (thick curve in figure 2.4 obtained by calculating for each
value of β the value of m/m∗ for which ǫ(q) vanishes at least for some q).
For m/m∗ < (m/m∗)cr the excitation energy of the Kelvin waves is negative
for some values of q. Excited vortex lines with these wave numbers q are
energetically more favourable than the straight line. Hence the straight
vortex filament becomes thermodynamically unstable.

Roton minima occur in superfluid Helium [85], and have been also pre-
dicted in trapped dipolar BECs [138, 139]. In the latter case, roton instabil-
ity leads to local collapses which destabilize the whole BEC [140] (although
a trap may stabilize the gas leading to novel ground states [141]). We stress
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Figure 2.4: Stable/unstable regimes for straight vortex lines.

that although the roton feature in the Kelvin wave spectrum is also induced
by the dipole-dipole interaction, its physics fundamentally differs from the
roton-maxon feature discussed in Refs. [138, 139, 141]. The roton-like mini-
mum occurs due to the long-range interaction between different positions in
the vortex line, and the related instability is not linked to a destabilization
of the whole gas, which is indeed stable when the Kelvin wave instability
appears, but to an instability of the vortex line against twisting.

2.4 Conclusion

Because of the nonlocal interaction between different parts of the vortex
line, the 3D character of the vortices is more crucial in dipolar BECs than
in short-range interacting ones. Remarkably, the DDI significantly distorts
the stability of the vortex line. In particular, under appropriate conditions
(involving an additional 1D lattice), the Kelvin modes become unstable.
This intrinsically dipole-induced instability opens the possibility for novel
vortex line configurations in dipolar BECs, which we discuss in the following
chapter.



Chapter 3

Phase-transition from

straight into twisted vortex

lines in dipolar Bose-Einstein

condensates

In the previous chapter and in [182] we have analyzed the case of a dipo-
lar Bose-Einstein condensate in an one-dimensional optical lattice, and in
particular the physics of straight vortex lines perpendicular to the two-
dimensional planes defined by the lattice sites. We have shown that due
to the long-range character of the dipole-dipole interaction, different parts
of the vortex line interact with each other, and hence the three-dimensional
character of the vortices plays a much more important role in dipolar gases
than in usual short-range interacting ones. Specifically, we discussed that,
interestingly, the dipole-dipole interaction may severely modify the Kelvin-
wave dispersion, which may even acquire a roton-like minimum. This min-
imum may touch zero energy for sufficiently large dipole-dipole interaction
and strong lattices, leading to the instability of the straight vortex line even
for those situations in which the BEC as a whole is stable. However, the
certainly very relevant question concerning the nature of this instability was
not addressed. In this chapter we discuss in detail this instability, showing
that, interestingly, it has a thermodynamical character, and it is linked to a
second-order-like phase transition from a straight vortex line into an helical
or snake-like vortex line depending on the dipole orientation.

3.1 System and numerical method

In this chapter we consider the same configuration as in the previous chap-
ter (figure 2.1). The dipoles are oriented along the z-direction parallel to
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Figure 3.1: Density distribution n(x, y, z = 0) in the xy-plane of the ground
state with a vortex for β = −0.8 and m/m∗ = 0.15. The dipole is assumed
in the z-direction and the unit of length is the healing length ξ.

the vortex line by an external field and hence the dipolar Bose-Einstein
condensate in the optical lattice obeys the non-linear Schrödinger equation
(2.2)

i~
∂Ψ(~r)

∂t
=

{
−~2∇2

⊥

2m
− ~2∇2

z

2m∗
+ g̃|Ψ(~r)|2+

∫
d~r′|Ψ(~r′)|2Vd(~r − ~r′)

}
Ψ(~r), (3.1)

with the dipolar potential Vd(~r) = αd2(1 − 3 cos2 θ)/r3. In addition the
dipole-dipole interaction is tuned by a very fast rotating field such that it
changes its sign as discussed in section 1.5.1 (α < 0). This tuning we have
used already in the previous chapter in order to obtain the instability of the
vortex line.

In order to determine the new lowest-energy configuration of the vortex
line, we have performed fully three-dimensional numerical calculations of
the non-linear Schrödinger equation (2.2). We start our calculations from an
initially imposed straight vortex line and let the system evolve in imaginary
time (appendix A). Since the straight line configuration is always a local
minimum one has to add a small random noise to perturb the system and
find the global minimal energy configuration. We performed our calculations
employing a cylindrical numerical box placed several healing lengths apart
from the vortex core to minimize boundary effects (figure 3.1).
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Outside the numerical box, there is no velocity field and no circulation.
This has the same effect as an image vortex (with opposite winding number)
at a distance of twice the cylinder radius. The potential energy of two well
seperated vortices with winding number n1 and n2 at distance L ≫ ξ is
proportional to [93, 183]

V (L) ∝ 2V1 − 2πn1n2 logL (3.2)

where V1 is the potential energy of a single vortex. Hence the interaction
between a vortex and an antivortex is attractive and the potential energy
decreases logarithmically with L. These attraction to the image vortex
would move the vortex away from the trap center. However, if the cylinder is
sufficiently large the image vortex is far away and its influence is negligible.

The employ of the fast fourier transformations [184] in our numerical
calculations (see appendix A) implies the use of periodic boundary condi-
tions, which could induce spurious effects due to the long-range character of
the dipole-dipole interaction. This may be avoided by placing the boundary
of the numerical box (black in figure 3.1) sufficiently far from the conden-
sate. Another possibility technique would be to introduce a cut-off for the
dipole-dipole interaction (as suggested in [185]).

As shown in figure 3.1 the cylindrical box configuration permits a suf-
ficiently flat density in the region where the vortex core is created. This
allows us to avoid unwanted density effects, which will obscure the analysis
of the vortex stability.

3.2 Helical vortex lines

In this section we perform the numerical analysis of the system discussed in
the previous chapter in order to confirm and extend the results and study
the impact of the Kelvin-mode instability. The intriguing dependence of the
dispersion of Kelvin-waves on the lattice characterized by m/m∗ and the
dipole strength β = 8παd2/3g as discussed in section 2.3 is explained by the
competition of the two processes involved in the inter-site physics, namely
tunneling and intersite dipole-dipole interaction. On one hand, the hopping
energy is minimized when vortex cores at neighboring sites are placed right
on top of each other. Hence tunneling tends to maintain the vortex line
straight. On the other hand, for β < 0 the cores maximally repel each
other when aligned along the z-direction. Hence dipole-dipole interaction
and tunneling compete, and the vortex line becomes softer.

From this intuitive picture it becomes clear that when m/m∗ becomes
sufficiently small the tunneling cannot balance the dipole-dipole interaction
any longer, and as a consequence the straight vortex line becomes thermody-
namically unstable, as already mentioned in our discussion of the Bogoliubov
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Figure 3.2: Vortex line configurations of the ground state for β = −0.8 and
m/m∗ = 0.15 (straight) and m/m∗ = 0.04 (helical), respectively. For both
cases the dipole is assumed in the z-direction. The unit of length is

√
2ξ.

analysis in the previous chapter. In this section we show that this instabil-
ity is related to a transition from a straight vortex into a twisted vortex
line. This twisting, which we confirm below numerically, may be expected
by analyzing the dipole-dipole interaction between vortex cores at neighbor-
ing sites. The energy is minimized by laterally displacing the vortices with
respect to each other a finite distance on the xy-plane. These lateral dis-
placements between nearest neighbors lead to a twisting of the vortex line.
Note that due to the symmetry of the problem, we may expect an helical
structure, as we confirm with the numerical calculation.

As expected, the imaginary time evolution leads to a ground state config-
uration of a straight vortex line for those values of β and m/m∗ lying inside
the stable regime of figure 2.4. On the contrary, for those regions within
the instability regime a qualitatively new ground state is found, where we
observe a departure from the straight form into an helical configuration, as
in figure 3.2.

Hence at the line (m/m∗)cr there is a phase transition from straight into
helical ground state vortex lines. In order to characterize this phase transi-
tion we have performed an exhaustive analysis of the helical configurations,
which may be characterized by a pitch with wavenumber Q and a radius
r0. We confirmed that the wave number Q is indeed comparable to the
minimum qrot in the dispersion law obtained from the Bogoliubov analysis
of section 2.3. For several fixed values of β we performed a large number of
three-dimensional numerical simulations for different m/m∗, to analyze the
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Figure 3.3: Helix amplitude r0 (see text) as a function ofm/m∗ for β = −0.8.

behavior of the amplitude r0 inside the unstable region and at the transition
to the stable region. Our results (for β = −0.8) are depicted in figure 3.3.
We observe a gradual decrease of r0 when m/m∗ approaches the stability
border (m/m∗)cr. For values close to the stability border, r0 ≪ ξ and hence
it becomes in practice (both numerically and experimentally) impossible to
discern a significant vortex twisting. Our simulations are hence compati-
ble with a second-order-like phase-transition from an helical into a straight
lowest-energy vortex-line configuration.

Note that inside the instability region an increase of the lattice strength
(i.e. a decrease of m/m∗) results in a larger bending which comes together
with a shallower binding energy for the line. If the binding energy becomes
lower than other typical energy scales involved in the system (inhomogene-
ity, boundary effects) then the 3D vortex line breaks into uncorrelated 2D
vortices. The latter is, of course, also expected in the absence of dipole-
dipole interaction if the tunneling becomes sufficiently small. Note that in
figure 2.4 we did not consider any other additional energy scale, and hence
the 3D vortex line could be considered all the way down to very small m/m∗.
However, in our numerical simulations we do have boundary effects intro-
duced by our finite cylindrical numerical box. As a consequence we have
observed (also for the results of the next section) that for very small m/m∗

inside the instability regime the boundary effects may completely unbound
the vortex line into uncorrelated 2D vortices at each layer. However, here we
are more concerned with the phase transition boundary, where the binding
is still dominant even when the vortex is bent.

3.3 Snake-like vortex-lines

In chapter 2 and in the previous section 3.2, we have discussed the case
in which the dipoles are oriented along the z-direction. In that situation,
the cylindrical symmetry of the problem largely simplified the Bogoliubov
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Figure 3.4: Anisotropic density distribution n(x, y, z = 0) in the xy-plane of
the ground state with a vortex for β = −1.2 and m/m∗ = 0.04. The dipole
is assumed in the y-direction and the unit of length is the healing length ξ.

analysis. The helical instability demands β < 0, and it is hence necessary the
employ of the tuning mechanism discussed in the introductory section 1.5.1.
However, the tuning is not strictly necessary to observe the destabilization of
the straight vortex line. A perhaps experimentally simpler scenario is offered
by the case in which the dipoles are oriented perpendicular to the vortex line
(and hence also perpendicular to the over-imposed lattice potential). Then
the dipole-dipole interaction is again repulsive in z-direction and competes
with the kinetic energy in what concerns the stability of the straight vortex-
line in a similar way as described in the previous sections. In this section we
analyze this particular case (orientation along y). We show that the vortex
line may be also destabilized in this experimentally less involved case.

As for section 3.2, we have evolved an initially straight vortex in imagi-
nary time using equation (2.2) employing similar numerical conditions. How-
ever, the analysis in the new configuration is largely handicapped due to the
distortion of the density of the condensate induced by the fact that the dipole
is now on the xy plane, and hence breaks the polar symmetry. Figure 3.4
shows this anisotropy in the density profile. These density modulations may
be reduced (but not fully eliminated) by considering larger numerical boxes.
However, the latter may make the 3D numerical simulation prohibitively
long.

In spite of these difficulties we observed the departure from the straight
vortex line for sufficiently large β (note that in this configuration β > 0
and hence it may take values up to 2 before entering into the regime of
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Figure 3.5: Vortex-line configurations of the ground state for β = 1.2 and
m/m∗ = 0.075 (straight) and m/m∗ = 0.04 (snake-like), respectively. For
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Figure 3.6: Snake amplitude A0 (see text) as a function of m/m∗ for β =
−1.2.
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Figure 3.7: Density distributions n(x, y, z = 0) in the xy-plane of a non-
dipolar (β = 0)(top) and a strong dipolar (β = 1.8) (bottom) n = 2-vortex-
configuration evolving in real time after 1,4 and 20 timesteps. The dipole
is assumed in the z-direction and the unit of length is the healing length ξ.
Remember, that ξ depends on the dipole (section 2.2).

phonon instability discussed in section 1.5.2). Due to the broken cylindrical
symmetry, for sufficiently large β and small m/m∗ the straight vortex line is
destabilized into a snake-like configuration on the yz plane rather than into
an helix, as in the previous section, as shown in figure 3.5. We have analyzed
the amplitude of the helix when approaching the stability regime. Our
results shown in figure 3.6 are compatible with a second-order-like behavior
as in the previous section, although, as mentioned above, a rigorous analysis
is largely handicapped by the appearance of strong density modulations in
the simulations.

3.4 Doubly-quantized vortices in dipolar gases

As discussed in the introduction a doubly quantized vortex is unstable. This
matches with the fact that two n = 1 vortices repel each other [93, 183], as
discussed in the context of image-vortices in section 3.1. However, a doubly-
quantized vortex can be stable in two-component Bose-Einstein condensates
[186, 187]. In chapter 2 we saw that for the case of positive dipoles (2 > β >
0) the dipole-dipole interaction could stabilize the vortex-line. Hence, we
want to investigate whether a strong dipole-dipole interaction may stabilize
a doubly quantized vortex.

Therefore we create a doubly-quantized vortex and compute the ground-
state configuration with the imaginary time evolution method (appendix A).
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Then we let the ground-state configuration evolve in real time1. Figure 3.7
shows the results. The upper pictures show the evolution for the usual case
without dipole-dipole interaction, while on the lower pictures one can ob-
serve the influence of the dipoles with β = 1.8. Even in the case of strong
dipoles the vortices move apart from each other. Hence a doubly-quantized
vortex cannot be stabilized by the dipole-dipole interaction. Recently this
has been shown in [188] analyzing dipolar vortices for different trap geome-
tries.

3.5 Conclusion

Summarizing, we have shown that the intrinsically dipole-induced instability
discussed in chapter 2 opens the possibility for novel vortex-line configura-
tions in dipolar BECs. In particular, we have shown with an intensive 3D
numerical analysis that the presence of an additional optical lattice along
the vortex line may allow for the observation of the dipole-induced destabi-
lization of the straight vortex line due to the softening of a roton minimum
in the Kelvin-wave spectrum. If this occurs the straight vortex-line configu-
ration ceases to be that of minimal energy, and there is a second-order-like
phase transition into an helical or snake-like vortex line, depending on the
dipole orientation. In addition we have studied doubly-quantized vortices
in dipolar gases and found that they are unstable as in usual short-range
interacting gases.

1Technically we employ the real time evolution in the same way as the imaginary time
evolution in 3D (appendix A)
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Chapter 4

Hybrid multisite excitations

in dipolar condensates in

optical lattices

The long-range character of the dipole-dipole interaction leads to funda-
mentally new physics for quantum gases in optical lattices, since it induces
interactions between neighboring sites. As a consequence, dipolar bosons
in optical lattices are described by extended versions of the Bose-Hubbard
Hamiltonian, and may present a wealth of novel phases, as supersolid [169]
or Haldane-phases [189]. In addition, contrary to the case of short-range
interactions, very deep optical lattices do not lead to independent low-
dimensional gases, since non-overlapping atoms at different sites interact.
As a consequence nonoverlapping BECs in two-well potentials may scatter
[190], pair superfluidity may appear in ladder-like lattices [191], and even
filament condensation may occur [192]. The effects of the intersite dipole-
dipole interaction have been observed experimentally for the first time in
very recent experiments in Florence on Bloch oscillations [124].

In this chapter we consider a stack of nonoverlapping quasi-two-dimen-
sional condensates in an one-dimensional optical lattice (figure 4.1). We
show that excitations in different lattice sites are coupled via the long-range
dipole-dipole interaction. We study the influence of this coupling on the
dispersion relation and the stability of the condensates for the case of at-
tractive short-range interactions. In addition we discuss the observability of
this effect in on-going experiments.

We start with an investigation of a single two-dimensional condensate.
If the dipoles are oriented perpendicular to the condensate the dipole-dipole
interaction in the plane is repulsive, and if sufficiently strong, it can prevent
even a BEC with attractive contact-interaction from collapsing. The contact
interaction can be tuned by using Feshbach resonances. In such a configura-
tion the dispersion law could show a roton minimum so that the system may
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Figure 4.1: Scheme of the system under consideration.

be unstable, although the dipole-dipole interaction prevents the phonon in-
stability. We have calculated the critical value of the dipolar moment, where
the system is stable with respect to both kinds of instability.

Due to the anisotropic long-range character of the dipole-dipole interac-
tion there is an attractive interaction between particles in different layers.
Hence a second dipolar Bose-Einstein condensate placed at given distance is
coupled to the first one via dipole-dipole interaction and excitations cannot
considered separately anymore. A dispersion law for the coupled system is
derived analogously to the single condensate and now the critical value of
the dipolar moment is significantly larger, so that the second condensate
could destablize the system with respect to roton-instability.

The increase of the critical dipole strength and the corresponding pos-
sible destablization is enhanced by taking more condensates into account.
This is necessary in the case of a one-dimensional optical lattice, whereas
at some point additional layers does not effect the dispersion law and the
stability further, since the coupling becomes sufficiently small if the layers
are to far away from each other. Then the critical dipolar strenght is satu-
rated and we know the value where a stack of 50 to 100 pancake condensates
appearing in related experiments is stable.

4.1 Single quasi-2D dipolar BEC

In the following, we consider a BEC of particles with mass m and electric
dipole d (the results are equally valid for magnetic dipoles) oriented along z
by an external field, and that hence interacts via a dipole-dipole potential as
introduced in section 1.5.1: Vd(~r) = d2(1−3 cos2(θ))/r3, where θ is the angle
formed by ~r with the z axis. At sufficiently low temperatures the physics of
the dipolar BEC is provided by a non-local non-linear Schrödinger equation
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(NLSE) of the form (1.69)

i~
∂

∂t
Ψ(~r, t) =

[
− ~2

2m
∇2 + V (~r) + g|Ψ(~r, t)|2

+

∫
d3r′Vd(~r − ~r′)|Ψ(~r′, t)|2

]
Ψ(~r, t), (4.1)

where g = 4π~2a/m, with a the s-wave scattering length, and V (~r) is the
trap potential. In the following, as in section 1.5.2, we use the conve-
nient dimensionless parameter β = gd/g, that charakterizes the strength
of dipole-dipole interaction compared to the short range interaction, where
gd = 8πd2/3. Note that β may be easily controlled experimentally by means
of Feshbach resonances, as recently shown in Ref. [162].

Homogeneous solution

We consider first the case of a quasi-2D homogeneous BEC confined in z
by the harmonic oscillator potential V (~r) = mω2

zz
2/2, which is sufficiently

strong. As discussed in 1.3.1 the wave function is of the form

Ψ(~r, t) = Ψ⊥(~ρ)Φ0(z)e
−i(µ/~+wz)t with Φ0(z) =

1√√
πlz

e−z2/2l2z , (4.2)

where µ is the chemical potential and Φ0(z) is the ground state of the
transversal oscillator. The oscillator length lz =

√
~/mωz corresponds to

the width of the lattice sites.
In order to solve the NLSE with this ansatz we multiply with Φ0(z) and

integrate over the whole z-axis

µΨ⊥(~ρ) =

{
−

~2~∇2
ρ

2m
+
g|Ψ⊥(~ρ)|2√

2πlz

+

∫
dz

∫
d~r′|Ψ⊥(~ρ′)|2Vd(~r − ~r′)|Φ0(z

′)|2|Φ0(z)|2
}

Ψ⊥(~ρ), (4.3)

where the contact interaction part is rescaled by the prefactor
∫
dz|Φ0(z)|4 =

(
√

2πlz)
−1 representing the quasi-two-dimenional character of the system.

Using the convolution theorem the integral over d3r′ in the dipolar term
reads as (section 1.5.1)

∫
d~r′ |Ψ(~r′)|2 Vd(~r − ~r′) =

∫
d3k

(2π)3
˜|Ψ(~r′)|2 Ṽd(~k) e

i~k~r. (4.4)

The Fourier-transformation of the 3D density ˜|Ψ(~r)|2 is simply the product

of the Fourier-transformations of the 2D density ñ0(~kρ) and ˜|Φ0(z)|2(kz) =
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e−k2
z l2z/4. We insert these functions into (4.3), carry out the integrals over z

and kz and obtain

µΨ⊥(~ρ) =

{
−

~2~∇2
ρ

2m
+

(g + gd)|Ψ⊥(~ρ)|2√
2πlz

−3gd

4

∫
d2k

(2π)2
ñ0(~kρ)kρerfc[

kρlz√
2

]ek
2
ρl2z/2ei

~kρ~ρ

}
Ψ⊥(~ρ), (4.5)

The ground state of a homogeneous 2D BEC is of the form Ψ⊥(~ρ) =
√
n0,

where n0 is the 2D density. Introducing this form into equation (4.5), one
obtains

µ =
(g + gd)n0√

2πlz
. (4.6)

Note that the 2D condition is satisfied for µ≪ ~ωz. This condition is always
satisfied in our calculations.

Elementary excitations

In order to study the elementary excitations and the stability of the system
we proceed as shown in the introduction 1.2.2. Inserting a plane wave ansatz

Ψ(~r, t) =
[√

n0 + uq e
i~q·~ρ−iǫt/~ − v∗q e

−i~q·~ρ+iǫt/~

]

× Φ0(z) e
−i(µ/~+ωz)t (4.7)

into the NLSE (4.1), linearizing in uq, vq, multiply with Φ0(z) and integrate
z we obtain

i~
∂χ(~ρ, t)

∂t
=

{
−

~2∇2
ρ

2m
− µ+ 2g̃n0 + g̃dn0

}
χ(~ρ, t) + g̃n0χ

∗(~ρ, t) (4.8)

+

∫
dz

∫
d~r′|Φ0(z

′)|2Vd(~r − ~r′)
[
χ(~ρ′, t) + χ∗(~ρ′, t)

]
Φ2

0(z)n0,

with g̃ = g/
√

2πlz and g̃d = gd/
√

2πlz, respectively. In order to shorten the
expressions we have introduced

χ(~ρ, t) = uqe
i~q~ρe−iǫt/~ − v∗qe

−i~q~ρeiǫt/~ (4.9)

By using again the convolution theorem and the Fourier-transformations as
above, the last dipolar term simplifies and (4.9) reduces to

i~
∂χ(~ρ, t)

∂t
=

{
−

~2∇2
ρ

2m
− µ+ 2g̃n0 + g̃dn0

}
χ(~ρ, t) + g̃n0χ

∗(~ρ, t)

+
gdn0

2

∫
d2k

(2π)2

∫
d~ρ′
[
χ(~ρ′, t) + χ∗(~ρ′, t)

]

×ei~kρ(~ρ−~ρ′)

(
2√
2πlz

− 3kρ

2
erfc[

kρlz√
2

]ek
2
ρl2z/2

)
(4.10)
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We transform into dimensionless equations by expressing energies in units
of the chemical potential (4.6) and using the corresponding length unit, the
healing length ξ = ~/

√
mµ .1 The ansatz (4.9) defines an eigenvalue problem

for the energies ǫ. So in order to find the dispersion relation ǫ(q) we have to
diagonalize the matrix in

ǫ

(
uq

vq

)
=

(
q2 + 1 − fβ(q) −1 + fβ(q)

1 − fβ(q) −(q2 + 1 − fβ(q))

)(
uq

vq

)
, (4.11)

with

fβ(q) =
β

1 + β

3
√

2π

4
|q|lz erfc[

qlz√
2
] eq

2l2z/2. (4.12)

We find

ǫ(q) = {q2
[
q2 + 2(1 − fβ(q))

]
}1/2 (4.13)

Re-inserting dimensions we obtain the Bogoliubov spectrum of elementary
excitations

ǫ(q) = {Eq [Eq + 2A]}1/2 (4.14)

where

Eq =
~2q2

2m
and A = µ− gdn0√

2πlz
F (

qlz√
2
), (4.15)

with

F (x) =
3
√
π

2
|x|erfc(x)ex2

. (4.16)

Note that without dipole-dipole interaction (β = 0) we recover the usual
Bogoliubov spectrum for a 2D BEC with purely short-range interaction.
In particular, if a < 0 and β = 0, ǫ(q)2 < 0 for q → 0, recovering the
well known phonon instability (and subsequent collapse) in homogeneous
BEC with a < 0. If the dipole is sufficiently large, such that g + gd > 0,
then the dipole-dipole interaction prevents the instability at q → 0. How-
ever, due to the q-dependence of the dipole-dipole interaction (given by the
monotonously increasing character of the function F ), the dispersion ǫ(q)
may show for intermediate gd values a roton-like minimum at a finite value
of qlz (Fig. 4.2). For sufficiently low dipole-dipole interaction ǫ(q)2 < 0 at
the roton-like minimum, leading to dynamical instability (roton instability).
For |β| > βcr (with βcr dependent on the ratio gn0/lz~ωz) roton instability
is prevented, and the 2D homogeneous BEC is stable.

4.2 Two coupled quasi-2D dipolar BECs

In the following we show that βcr is significantly modified in the presence of
other neighboring quasi-2D dipolar BECs. We consider the case of an optical

1Note that the healing length depends on the dipolar coupling constant.
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Figure 4.2: Roton minimum in the dispersion relation ǫ/~ωz of a single 2D
BEC with β = −1.072, lz = 0.09µm, a = −2 nm, and a 3D density of
n0/

√
2πlz = 1014cm−3.

lattice along z (Fig. 4.1) described by a potential V (~r) = sEr sin2(πz/∆),
where ∆ is the intersite spacing, and s provides the lattice depth in units
of the recoil energy Er = ~2π2/2m∆2. As in the previous discussion we
consider no trapping on the xy-plane (we discuss the potentially important
role of the harmonic confinement on the xy-plane at the end of this chapter).
As discussed in section 1.3.2, at each lattice node, V (~r) may be approximated
by an effective harmonic oscillator potential Veff (z), with effective oscillator
length lz ≈ ∆s−1/4/π. The lattice is considered strong enough so that we can
assume that there is no spatial overlap between wave-functions in different
lattice sites, and hence we may neglect any hopping. We assume the dipole-
dipole interaction small enough to neglect pairing [191] or filamentation
[192].

We start our discussion on inter-site effects with the two-well case. This
simplified scenario already captures many features of the effect discussed.
In addition, two-well potentials may be experimentally realized and are cur-
rently of considerable interest [193, 194]. The quasi-2D BEC in the i-th
layer is given by the extended NLSE:

i~
∂

∂t
Ψi(~r, t) =

[
− ~2

2m
∇2 + Veff (z) + g|Ψi(~r, t)|2

+
∑

j

∫
d3r′Vd(~r − ~r′)|Ψj(~r

′, t)|2

Ψ(~r, t), (4.17)

where for a two-well potential, i, j = 1, 2. Note that, crucially, the dipole-
dipole interaction couples now the i-th layer to the j-th one.
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Homogeneous solution

As for the single-site discussion, we consider a strong z-confinement at each
site, and hence we may employ a quasi-2D ansatz

Ψi(~r) = Ψ⊥(~ρ, t)Φ0(z − zi) e
−i(µ/~+wz)t, (4.18)

where we consider the same 2D density at both sites, Φ0(z) has the form
discussed above, and zi is the position of the i-th lattice node. We insert
this ansatz into the NLSE (4.17). The dipole-dipole interaction couples the
i-th layer to the j-th one, and hence instead of the dipolar term in equation
(4.3) we have

∫
dz

∫
d~r′|Ψ⊥(~ρ′)|2Vd(~r − ~r′)|Φ0(z

′)|2|Φ0(z)|2Ψ⊥(~ρ) → (4.19)

∑

j

∫
dz

∫
d~r′|Ψ⊥(~ρ′)|2Vd(~r − ~r′)|Φ0(z

′ − zj)|2|Φ0(z − zi)|2Ψ⊥(~ρ)

Fourier-transforming and using the convolution theorem, this term reduces
to
∫
dz

∫
d~r′|Ψ⊥(~ρ′)|2Vd(~r − ~r′)|Φ0(z

′ − zj)|2|Φ0(z − zi)|2Ψ⊥(~ρ) = (4.20)

gd

2

∫
d2k

(2π)2
ñ0(~kρ)e

i~kρ~ρ

∫
dkz

2π

(
2 −

3k2
ρ

k2
ρ + k2

z

)
e−k2

z l2z/2e−ikz |zi−zj |Ψ⊥(~ρ)

The exponential e−ikz |zi−z′j | leads to a prefactor in the dipolar coupling be-
tween BECs in different layers depending on the distance |zi−zj | = |i− j|∆
between them. Since we consider the same 2D density at both sites the
ground state of both homogeneous condensates is as in the previous section
Ψ⊥(~ρ) =

√
n0. Introducing this ansatz into (4.20) and proceeding as in the

single site case we obtain the 2D chemical potential

µ̃ = µ+ λ(∆), (4.21)

with µ the chemical potential of an individual well and

λ(∆) =
gdn0√
2πlz

e−∆2/2l2z . (4.22)

Note that the inter-site interaction is a Gaussian function of the inter-site
spacing and not of the form 1/∆3. The Gaussian dependence appears since
the inter-site interactions are actually between two planes with an extension
much larger (in our homogeneous approximation infinitely larger) than the
inter-site distance.
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Elementary excitations

As above we are interested in the elementary excitation of these systems. For
∆ → ∞ the Bogoliubov modes at each site are independent and described
by the single-site expression (4.14). For finite ∆ the inter-site coupling leads
to an hybridization of the modes at both sites with significant consequences,
as we discuss below. As for the single-site discussion we insert a plane wave
ansatz

Ψi(~r, t) =
[√

n0 + uqi e
i~q·~ρ−iǫt/~ − v∗qi e

−i~q·~ρ+iǫt/~

]

× Φ0(z − zi) e
(−i(µ̃/~+ωz)t (4.23)

into the NLSE (4.17), and linearize in uqi, vqi. The excitations in each layer
can be described by the 2D Bogoliubov-equation (4.9). This implies one
equation for each layer. But additionally one has several coupling terms.
The excitations in the i-th layer χi are coupled via dipole-dipole interaction
to the densities |Ψ0j |2 in all the other layers and the i-th ground-state Ψ0i is
coupled to all the other excitations χj and χ∗

j . Then in the case of two BECs
one has three additional dipolar terms in the Bogoliubov-equation. The first
of these three terms is calculated in the same way as the contribution of the
second layer to the equation for the ground state (4.20). Hence it reduces
to
∫
dz

∫
d~r′|Ψ⊥(~ρ′)|2Vd(~r − ~r′)|Φ0(z

′ − z2)|2|Φ0(z − z1)|2χ1(~ρ, t)

=
gdn0√
2πlz

e−∆2/l2zχ1(~ρ, t), (4.24)

where we have used again

χi(~ρ, t) = uqie
i~q~ρe−iǫt/~ − v∗qie

−i~q~ρeiǫt/~ (4.25)

The computation of the contribution of the other two terms is more involved.
Using the convolution theorem and Fourier-transforming of the density and
the dipolar potential, we obtain after carrying out the dz and the dkz integral
∫
dz

∫
d~r′|Φ0(z

′ − z2)|2Vd(~r − ~r′)
[
χ2(~ρ

′, t) + χ∗
2(~ρ

′, t)
]
Φ2

0(z − z1)n0

=
gdn0√
2πlz

e−∆2/l2z [χ2(~ρ, t) + χ∗
2(~ρ, t)] (4.26)

−3gdn0

8

∫
d2k

(2π)2

∫
d~ρ′
[
χ2(~ρ

′, t) + χ∗
2(~ρ

′, t)
]
ei

~kρ(~ρ−~ρ′)F1(kρ),

where we have introduced the function

F1(kρ) = kρ e
k2
ρl2z

2

[
e−kρ∆erfc

(
kρlz√

2
− ∆√

2lz

)
+ ekρ∆erfc

(
kρlz√

2
+

∆√
2lz

)]
.
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Introducing these additional terms as well as the new chemical potential
(4.21) we get instead of (4.10)

i~
∂χ1(~ρ, t)

∂t
=

[
−

~2∇2
ρ

2m
+ µ0

]
χ1(~ρ, t) + µ0χ

∗
1(~ρ, t) (4.27)

+
gdn0√
2πlz

e
−∆2

l2z [χ2(~ρ, t) + χ∗
2(~ρ, t)]

−3gdn0

4

∫
d2k

(2π)2

∫
d~ρ′
[
χ1(~ρ

′, t) + χ∗
1(~ρ

′, t)
]
ei

~kρ(~ρ−~ρ′)kρ erfc[
kρlz√

2
] e

k2
ρl2z

2

−3gdn0

8

∫
d2k

(2π)2

∫
d~ρ′
[
χ2(~ρ

′, t) + χ∗
2(~ρ

′, t)
]
ei

~kρ(~ρ−~ρ′)F1(kρ)

i~
∂χ2(~ρ, t)

∂t
= (1 ↔ 2) (4.28)

where µ0 = (g+ gd)n0/
√

2πlz is the chemical potential of one 2D BEC. The
short form (1 ↔ 2) indicates that wherever an index 1 appears on χ in the
first equation, it has to be replaced by an index 2 and vice versa. Rewriting
these equations in terms of ui and vi we obtain from the first equation two
equations for the positive and negative frequency part, respectively.

ǫu1q =

[
~2q2

2m
+ µ0

]
u1q − µ0v1q +

gdn0√
2πlz

e
−∆2

l2z [u2q − v2q] (4.29)

−3gdn0

4
[u1q − v1q] |q| erfc[

|q|lz√
2

] e
q2l2z

2 − 3gdn0

8
[u2q − v2q]F1(kρ)

ǫv1q = −
[

~2q2

2m
+ µ0

]
v1q + µ0u1q +

gdn0√
2πlz

e
−∆2

l2z [u2q − v2q] (4.30)

−3gdn0

4
[uq1 − vq1] |q| erfc[

|q|lz√
2

] e
q2l2z

2 − 3gdn0

8
[u2q − v2q]F1(kρ)

The second equation behaves in the same way. In section 4.1 we wrote
everything in units of the chemical potential and the healing length. But
as commented already, the healing length depends on the dipolar coupling
constant. Hence we choose now the lattice spacing ∆ as the length unit,
which is fixed by the external potential and the corresponding energy scale
E0 = ~2/(m∆2) = 2

π2ER as the unit of energy. In these units, equations
(4.29) define the eigenvalue problem

ǫ




u1q

v1q

u2q

v2q


 = M




u1q

v1q

u2q

v2q


 . (4.31)
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Figure 4.3: Dispersion law (in units of E0 = ~2/m∆2) for a single site
(dashed) and for two wells (solid) for β = −1.2, ∆ = 0.53 µm, s = 13.3,
a = −2 nm, and n0/

√
2πlz = 1014/cm3.

with the (4 × 4)-matrix

M =




q2

2 +A−G0 −A+G0 C1 −G1 −C1 +G1

A−G0 − q2

2 −A+G0 C1 −G1 −C1 +G1

C1 −G1 −C1 +G1
q2

2 +A−G0 −A+G0

C1 −G1 −C1 +G1 A−G0 − q2

2 −A+G0




with

A = (1 + β)
g̃n0√
2πlz

and C1 = β
g̃n0√
2πlz

e
−∆2

l2z (4.32)

and the functions

G0(q) = β
3g̃n0

4
|q| erfc[ |q|lz√

2
] e

q2l2z
2 (4.33)

G1(q) = β
3g̃n0

8
|q| e

q2l2z
2

[
e−q∆erfc

(
qlz√

2
− ∆√

2lz

)
+ eq∆erfc

(
qlz√

2
+

∆√
2lz

)]

The term g̃n0 (with dimensions) is given by the scattering length a and
the 3D density n3D as g̃n0 = 4πa

∆ n3D ∆3
√

2πlz. The diagonalization of the
matrix in (4.31) yields two positive energy eigenvalues

ǫ±(q) =
1

2
{q2

[
q2 + 4A− 4G0(q) ± 4(C1 −G1(q))

]
}1/2, (4.34)

which are the Bogoliubov modes and can be rewritten with the proper di-
mensions in a form similar to equation (4.14)

ǫ±(q) = {Eq [Eq + 2A± 2C(∆)]}1/2 , (4.35)

where

C(∆) = λ(∆) − gdn0√
2πlz

F̃

(
qlz√

2
,

∆√
2lz

)
, (4.36)
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with

F̃ (x, y) =
3
√
πxex

2

4

∑

α=±1

e−2αxyerfc(x− αy). (4.37)

Note that for ∆ → ∞, C(∆) = 0 and we recover two degenerate inde-
pendent modes. For finite ∆ the modes at the two wells hybridize, and two
different branches appear for each q, one stiffer than the modes for ∆ → ∞,
and the other softer. The latter is particularly interesting, since the soft
mode is more prone to rotonization (figure 4.3). Interestingly, under proper
conditions, two parallel non-overlapping BECs may become roton-unstable
even if they were stable separately. As a consequence, a larger βcr is neces-
sary to stabilize the two-well system.

4.3 Stack of Ns quasi-2D dipolar BECs coupled via

dipole-dipole interaction

The hybridization (and consequent destabilization) in two-well potentials
becomes even more pronounced for the case of dipolar BECs at Ns > 2 sites
of a 1D optical lattice, since a site i couples with all its neighbors j (of course
with decreasing strength for growing |i− j|). For simplicity of our analysis
we consider the case in which all lattice sites present the same 2D density
n0. In that case, one may generalize the two-site analysis to the multi-site
case, to reach a set of coupled Bogoliubov-de Gennes in dimensionless units

ǫ




u1q

v1q
...

uNq

vNq




= M




u1q

v1q
...

uNq

vNq



, (4.38)

with the (2Ns × 2Ns)-matrix 2

M =

0

B

B

B

B

B

B

B

B

B

B

B

@

q2

2
+ M0 −M0 M1 −M1 . . . MN−1 −MN−1

M0 − q2

2
− M0 M1 −M1 . . . MN−1 −MN−1

M1 −M1
q2

2
+ M0 −M0 . . . MN−2 −MN−2

M1 −M1 M0 − q2

2
− M0 . . . MN−2 −MN−2

...
...

...
...

. . .
...

...

MN−1 −MN−1 MN−2 −MN−2 . . . q2

2
+ M0 −M0

MN−1 −MN−1 MN−2 −MN−2 . . . M0 − q2

2
− M0

1

C

C

C

C

C

C

C

C

C

C

C

A

,

with M0 = A−G0 and Mi = Ci −Gi, where

A = (1 + β)
g̃n0√
2πlz

and Cn = β
g̃n0√
2πlz

e
−n∆2

l2z (4.39)

2In the matrix we denote the number of sites with N ≡ Ns.
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and the functions

G0(q) = β
3g̃n0

4
|q| erfc[ |q|lz√

2
] e

q2l2z
2 (4.40)

Gn(q) = β
3g̃n0

8
|q| e

q2l2z
2

[
e−qn∆erfc

(
qlz√

2
− n∆√

2lz

)

+eqn∆erfc

(
qlz√

2
+

n∆√
2lz

)]
(4.41)

Note that the entries of the matrix M are functions of its index, which
makes it numerically accessible for arbritary number of lattice sites Ns. If
we consider only the first (4 × 4)-block-matrix we recover the matrix from
(4.31). After diagonalizing M numerically, we obtain the corresponding
band-like set of Ns elementary excitations (figure 4.4).

Note that the band-like spectrum has an upper phonon-like boundary.
Rewriting the Bogoliubov de-Gennes equations (4.38) in terms of fqi =
uqi + vqi

ǫ2fqi = Eq(Eq + 2A)fqi + 2Eq

∑

j 6=i

C(∆|i− j|)fqj . (4.42)

we find, for large Ns an approximate sound velocity

cs ≃
√

[A+
∑

n

C(∆|n|))/m] (4.43)

for the upper mode. The lower mode of the Ns-manifold becomes signifi-
cantly softer than the individual modes for independent sites. As a conse-
quence the roton instability extends to larger βcr when Ns increases, until
saturating for a sufficiently large Ns (due to the decreasing dipole-dipole
interaction for increasing distance between sites).

Figure 4.5 summarizes our results on the stability as a function of β (we
recall that g < 0). As mentioned above if g + gd < 0 (|β| < 1) the system
is unstable against phonon instability. For 1 < |β| < |βcr(Ns)| the system
is unstable against roton instability. |βcr| increases when Ns grows until
saturating for sufficiently large Ns. For |β| > |βcr(Ns)| the quasi-2D BECs
are stable.

The value of qrot when the roton becomes unstable is of particular impor-
tance. Figure 4.6 shows a typical variation in qrot∆ at the curve β = βcr(Ns)
as a function of Ns. Note that qrot at βcr shows a maximum for small Ns.
For small Ns, βcr (and hence the on-site repulsive dipole-dipole interac-
tion) increases significantly, and hence the value of qrot at βcr increases.
For larger Ns βcr tends to saturate, as mentioned above, and the repulsive
on-site dipole-dipole interaction remains approximately constant along the
curve βcr(Ns). As a consequence, the increase in Ns just increases the at-
tractive contribution of the dipole-dipole interaction of neighboring sites,
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and the dipole-dipole interaction becomes less effective in compensating the
attractive on-site short-range interaction. As a result of that, qrot decreases
until saturating at a value lower than that for a single site.

4.4 Experimental realization

Typical experiments work with an harmonic xy-trapping (of frequency ωxy).
Although we have assumed homogeneous quasi-2D gases, we may estimate
the effect of the xy-trapping by considering an effective cut-off at low mo-
menta qcut ≃ 1/lxy, where lxy =

√
~/mωxy is the harmonic oscillator length

characterizing the xy-trap. Note that this estimation is actually quite con-
servative, since for weak transversal confinements the transversal size of the
interacting condensate is actually larger than lxy, approaching the Thomas-
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Fermi radius in the Thomas-Fermi regime. In a good approximation we may
consider that all features occurring at momenta q < qcut are suppressed by
the trap. As a consequence one expects that the xy confinement suppresses
roton instability for frequencies ωxy > ωcut. For typical densities 1014cm−3,
and typical intersite separation ∆ = 0.53µm, we estimate for 52Cr that for
a single site βcr is achieved at a scattering length a ≃ −31a0, and that
for this case ωcut ≃ 66Hz. For the same case but Ns = 4 (which is the
maximum of the corresponding qrot curve), βcr is achieved for a ≃ −24a0,
and ωcut ≃ 160Hz. For the latter case an instability rate of Γ−1 ≃ 5ms is
expected for a = −24.5a0. For 39K, the numbers are more restrictive (due
to the lower magnetic moment). For Ns = 25 (maximum of the qrot curve),
βcr is achieved for a ≃ −0.52a0, and ωcut ≃ 4Hz. For this case, one expects
Γ−1 ≃ 180ms at a = −0.53a0.

Note that the fact that qrot shows a maximum may have interesting
consequences in experiments, since this suggests that for some intermediate
trapping frequencies the instability may be just present for a given window
of values of Ns. Note also that the previous discussion just refers to the
destabilization when the roton touches zero. For even larger values of |a|, a
larger region of q may become unstable. However if the xy-trap just allows
for the resolution of the upper boundary of the unstable region and not
the lower one, roton and phonon instability may become experimentally
undistinguishable.

4.5 Conclusion

The nonlocal character of the dipole-dipole interaction leads to a novel sce-
nario where non-overlapping gases at different sites interact significantly.
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Contrary to the case of pure short-range interaction, the dipole-dipole inter-
action leads to the hybridization of the excitations at different sites, which
acquire a collective band-like character. In particular, the hybridization
of the modes leads to a significant enhancement of the rotonization of the
excitations, and may induce roton-instability for values of the short-range
interaction at which a single site is stable. Finally, we have discussed the
experimental requirements for the observation of the roton instability.

Recently, using a similar analysis, [195] discussed the roton-softening
due to intersite interactions in the context of recent experiments in Florence
[124]. Although we consider that roton softening plays no significant role in
the damping observed in Ref. [124] due to the xy-confinement, a weaker ωxy

(along the lines discussed above) could allow for the instability discussed by
Wang and Demler, and by us in this thesis.
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Chapter 5

Bose-Fermi mixtures of

self-assembled filaments of

fermionic polar molecules

As discussed in the introduction dipolar quantum gases of heteronuclear
molecules, especially at their lowest rovibrational state, may present a very
large electric dipole moment (& 1 Debye) [130, 131, 132]. Although quantum
degeneracy has not been yet achieved, the rapid pace of development allows
to expect degenerate gases of polar molecules in the next future. These gases
are expected to be largely dominated by the dipole-dipole interaction.

Deep 1D optical lattices may slice a gas into non-overlapping samples.
As mentioned already in the previous chapter, the dipole-dipole interaction
leads to intersite effects. There we considered weak dipoles (e.g. atomic mag-
netic dipoles) and studied collective excitations shared by non-overlapping
sites [196]. For bosonic polar molecules the non-local dipolar effects are
much stronger, leading to interesting effects as pair-superfluidity for ladder-
like lattices [191] and filament Bose-Einstein condensdation [192].

Filamentation is indeed an interesting possibility introduced by the di-
pole-dipole interaction. This phenomenon, first suggested in the context of
ferrofluids by de Gennes and Pincus [197], has attracted a considerable the-
oretical interest for the case of classical dipoles (For a review see e.g. [198].
Dipolar chains in classical ferrofluids were recently observed in superpara-
magnetic iron colloids [199] and single-domain magnetite colloids [200]. In
Ref. [192] it was shown that a similar filamentation process may occur for
bosonic polar molecules in deep lattices, which may organize into chains sus-
tained by an attractive inter-site dipole-dipole interaction, forming a dipolar
chains liquid (DCL) which may Bose-condense [192]. (We discuss this issue
in more detail in section 5.2.)

In this chapter we consider DCLs of fermionic polar molecules. Far
from being a trivial extension of the bosonic case, fermionic polar molecules
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Figure 5.1: Polar fermionic molecules in a three-well potential may remain
unpaired, form fermionic trimers, or bosonic dimers between nearest neigh-
bors or next-nearest neighbors.

lead to a very different and rich physics. Whereas for bosonic molecules the
chains are obviously bosons, for fermionic molecules the bosonic or fermionic
character of the filaments depends on the number of molecules in the chain.
This has particularly relevant consequences when the number of available
lattice sites is odd. Here we focus on the simplest non-trivial case, namely
a three-well potential (figure 5.1). For simplicity we restrict our discussion
to the ideal gas regime, where inter-filament interactions are neglected. Al-
though this approximation is of limited quantitative validity (and would
demand mesoscopic samples in specific 1D arrangements as discussed be-
low), it contains already many of the qualitatively new features which may
be expected for more general scenarios of polar Fermi molecules in deep 1D
and 2D optical lattices. In particular, the competition between trimer/dimer
binding and trimer Fermi energy results in a non-trivial dependence of the
character of the DCL as a function of the number of molecules per site N .
If N is smaller than a critical Nc the DCL is a Fermi-degenerate gas of
trimers. However for N > Nc the trimers coexists with a Bose mixture
formed by pseudo-spin-1/2 dimers and spinless dimers, leading to a peculiar
Bose-Fermi mixture. We show that these Bose-Fermi DCLs may be probed
by monitoring the spatial distribution of the molecules.

5.1 Single filaments of polar molecules

We consider polar molecules with mass m and electric dipole d in a deep
three-well potential along the z-direction, with inter-site spacing ∆. This
arrangement may be created by e.g. selectively emptying all sites of a strong
1D optical lattice except three neighboring ones. The potential barriers are
large-enough to prevent any inter-site hopping. Due to reasons discussed
below, the analysis of the problem simplifies notably if the gas is considered
as strongly confined along the y-direction (e.g. in a single node of a lattice
as that in the z-direction). Along the remaining x-direction we consider
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a shallow harmonic confinement with frequency ω. The molecules interact
via the dipole-dipole interaction Vd(r) = d2(1 − 3 cos2 θ)/r3, where θ is the
angle formed by ~r with the dipole orientation. We assume that the dipoles
form an angle α with the z direction, such that sin2 α = 1/3. Although this
particular orientation and the 1D character of the sites are not needed for the
formation of the DCL gas, which may occur also in stacks of 2D sites [192],
this particular scenario allows both for a strong attraction between dipoles
placed on top of each other and for a vanishing dipole-dipole interaction
between molecules at the same site. This largely reduces the inter-filament
interaction, allowing for a simplified ideal gas scenario, as discussed below.

The attraction between polar molecules placed on top of each other may
be strong-enough to bind two or more polar molecules into self-assembled
chains (figure 5.1). Whereas for bosonic molecules these chains are in any
case bosons [192], for fermionic molecules the fermionic/bosonic character
of the filaments depends on the odd/even number of molecules in a given
chain. In particular, the three-well configuration allows for fermionic trimers
(and of course monomers), and two different kinds of bosonic dimers, namely
those between two molecules at nearest neighbors (type I dimers), and those
between two molecules at the uppest and lowest site (type II dimers) (fig-
ure 5.1). Note that dimers I are actually pseudo-spin-1/2 bosons, since
dimers in sites 1 and 2 are not equivalent to dimers in sites 2 and 3.

The ground-state of a single filament of M molecules is calculated sim-
ilarly as for bosonic molecules [192]. Let r̂j be the position1 and p̂j the

momentum operator of a molecule at site j. Introducing P̂ =
∑M

j=1 p̂j/M ,

R =
∑M

j=1 rj/M , qj = pj − P, sj = rj − R = {xj , yj , zj}, the Hamilto-

nian splits into Ĥ = ĤCM + Ĥrel, where ĤCM = P̂2/2Mm + Mmω2R2
x/2

describes the filament center-of-mass and

Ĥrel =

M∑

j=1

[
q̂2

j

2m
+
m

2

(
ω2
⊥(y2 + z2

j ) + ω2x2
)
]

+
∑

i,j>i

Vd [si − sj ] . (5.1)

the relative motion. The on-site yz confinement is approximated by a strong
isotropic harmonic oscillator of frequency ω⊥. The wavefunction of the j-
th molecule is chosen as ψj(xj − xj0)ϕj(yj)ϕj(zj − zj0), where ϕj(η) =

exp
(
−η2/2l2⊥

)
/
√
l⊥
√
π, with l⊥ =

√
~/mω⊥ and

ψj(η) =
1√√
πR0

e−η2/2R2
0 , (5.2)

where R0 is the variational width of the x wavepackets2. For deep lattices
one may approximate l⊥ → 0 (energy corrections are . 1% for depths > 14

1For the case of operators we use the bold font to denote the vector character.
2If U0 is sufficiently large a molecule is locally bound in the dipolar potential induced

by the molecule in the next layer and the wave-function should be a good ansatz.



66 Single filaments of polar molecules

recoil energies ~2π2/2m∆2). The variational parameter R0 is determined by
minimizing the energy of the relative motion of a filament with M molecules

E =
M∑

j=1

~

2mR2
0

+
M∑

j=1

m

2
ωR2

0 (5.3)

+
M∑

i,j>i

∫
dxdx′

Vd (x− x′, j − i)

πR2
0

e−(x−xj0)
2/R2

0 e(x
′−xi0)2/R2

0 ,

where for the case of dipoles forming an angle α with the z direction, such
that sin2 α = 1/3, the dipolar potential reads

Vd(x, z) =
d2

(x2 + z2)3/2

(
1 − (

√
2z + x)2

x2 + z2

)
. (5.4)

From this expression we see that for dipoles sitting site by site in the same
layer (z = 0) the dipole-dipole interaction vanishes. Minimizing the energy
of straight filaments (xj0 = xi0 = 0) with respect to R0 we obtain the
filament binding energy 3. We denote as −ET , −ED,I and −ED,II the
binding energies for, respectively, trimers, dimers I, and dimers II. These
energies grow with the dipole strength U0 = md2/~2∆. There exists a
critical U∗

0 such that for U0 < U∗
0 the composites unbind (R0 & lHO =√

~/mω). In free space a bound state exists even for arbitrarily small values
of U0 [201]. Note that U∗

0 (T ) < U∗
0 (D, I) ≪ U∗

0 (D, II) (figure 5.2) due to
the different strength of the dipole-dipole interaction in each composite. In
the following we consider the regime U0 > U∗

0 (D, II), where R0 ≪ lHO for
all of the possible composites of figure 5.1.

Transverse filament excitations contribute to the gas entropy, being rel-
evant at finite temperature T . In addition, and much more as for the case
of bosonic molecules [192], transverse modes are important for fermionic
molecules also at very low T since they may significantly reduce the trimer
Fermi energy. For a chain of M molecules, we obtain the low-lying modes
ξν=1,...,M after expanding the chain energy E around its minimum, and di-
agonalizing Ann′ = ∂2E/∂xn∂xn′ , where n, n′ = 1, . . . ,M . From equation
(5.3) we calculate the diagonal entries of this matrix

Ann =
1

2

M∑

i=1,i6=n

∫
dxdx′

Vd (x− x′, n− i)

πR2
0

2

R2
0

(
2
x2

R2
0

− 1

)
e−x2/R2

0 ex
′2/R2

0

(5.5)
and the off-diagonal (n 6= n′) entries

Ann′ =
1

2

∫
dxdx′

Vd (x− x′, n− n′)

πR2
0

4

R4
0

xx′ e−x2/R2
0 ex

′2/R2
0 . (5.6)

3For simplicity we neglect that the minimal-energy configuration is slightly tilted from
the vertical with an angle ∼ π/10.
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Figure 5.2: Binding energy (in units of E0 = ~2/m∆2) of the different
composites of figure 5.1 as a function of U0 = md2/~2∆.

The tranverse excitation modes are ξν=1,...,M =
√
aν , where aν are the eigen-

values of Ann′

Summarizing, a filament is characterized by its length M and corre-
sponding binding energy EM , by a transversal excitation mode ξν and by
the energy level n, which it occupies in the external harmonic oscillator trap.

5.2 Bosonic filaments

In this section we discuss as a starting point the statistcal analysis of bosonic
polar molecules as performed in [192]. We consider two-dimensional gases
of bosonic polar molecules placed at the different sites of a one-dimensional
optical lattice. In [192] it was shown that for a sufficiently low tempera-
ture (T < TC) a Bose-Einstein condensate of the longest filaments available
occur. We recovered the result from [192] and extended it by investigat-
ing the influence of the transversal modes on the statistics of bosonic polar
molecules. The modes were obtained performing a two-dimensional variant
of the procedure shown in section 5.1 [202]. Since the energies of the low-
est modes are very small in comparison with the thermal energy kBTC , the
filaments can easily occupy these states and the development of a BEC is
handicapped. Our analysis confirms this fact, and as shown in figure 5.3,
the presence of the transverse modes significantly reduces the value of TC .
However, this effect on the critical temperature vanishes for huge values of
U0, where the energy of the lowest modes is already as large as kBTC .

As discussed below the ideal-gas treatment is of limited validity. From
an estimation of the total interaction energy similar to (5.15) one can show
that a two-dimensional filament gas with long filaments as discussed in [192]
and in [202] always violates the ideal gas condition for realistic traps and
densities. The analysis in [192] has in addition some other serious problems.
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Figure 5.3: Condensation temperature as a function of U0 for a filament
gas of N = 40000 bosonic polar molecules (m = 100amu) with (orange)
and without (blue) transversal bending modes for a system of L = 81 two-
dimensional layers in an external trap of ω/2π = 3.5Hz.

It completely neglects all filaments with holes, which are of the form of our
type II dimers. From the model for the single filaments described in the
previous section it follows that the binding energy of such filaments can
be larger than the binding energy of shorter filaments without holes. In
addition [192] considers only one chemical potential for the whole system.
Since we neglect tunneling the number of particles per site is conserved and
as we discuss later we need a chemical potential for each lattice site. In the
remainder of this chapter we focus on fermionic polar molecules in three-well
potentials confined to one dimension.

5.3 Quantum statistics of filaments

In the following we consider the filament statistics of fermionic molecules,
assuming an ideal filament gas. This largely simplifies the analysis of the
problem, while allowing for the discussion of key qualitative features of these
systems, in particular the competition between different Bose and Fermi
composites. This approximation is just quantitatively valid for mesoscopic
samples in the arrangement discussed above, as we discuss at the end of this
paper.

The fermionic or bosonic character of the chains is reflected by the av-
erage occupations for trimers, dimers I, dimers II and monomers:

NT (n, νT ) =
[
eβ[−ET +ξνT

+ǫn−(2µ1+µ2)] + 1
]−1

(5.7)

ND,I(n, νD,I) =
[
eβ[−ED,I+ξνD,I

+ǫn−(µ1+µ2)] − 1
]−1

(5.8)

ND,II(n, νD,II) =
[
eβ[−ED,II+ξνD,II

+ǫn−2µ1] − 1
]−1

(5.9)
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NS,j(n) =
[
eβ[ǫn−µj ] + 1

]−1
(5.10)

where NS,j denotes the average occupation of individual molecules at site
j, ξνT ;D,I;D,II

the transverse filaments modes of the different composites,
ǫn = ~ω(n + 1/2) the harmonic oscillator levels and β = 1/kBT the in-
verse temperature. In the previous expressions we have assumed symmetric
configurations such that the number of dimers I in sites 1–2 is the same as
the number of dimers I in sites 2–3, and equal to ND,I(n, νD,I). Note that
µ1 = µ3 is the chemical potential for molecules at the uppest and lowest sites,
whereas µ2 denotes the chemical potential for molecules in the middle site.
These different chemical potentials are necessary to fulfill the normalization
conditions, in which we assume N molecules per lattice site. Imposing sym-
metry between the uppest and the lowest sites, these conditions acquire the
form:

N = NT +ND,I +ND,II +NS,1, (5.11)

N = NT + 2ND,I +NS,2, (5.12)

where NT , ND,I , ND,II , NS,1 and NS,2 denote respectively the total number
of trios, dimers I in sites 1–2 (or 2–3), dimers II, monomers in site 1 (or 3) and
monomers in site 2. We insert the occupation numbers (5.7–5.10) and sum
over all degrees of freedom, harmonic oscillator levels n and the tranversal
bending modes ν. In order to simplify the expressions we calculate the
sums over the harmonic oscillator levels in the continuum limit ~ω ≪ kBT
by using the integral

∫
dx

β~ω

1

eβa ex ± 1
= ∓kBT

~ω
ln
(
1 ± e−βa

)
. (5.13)

Then we obtain µ1(N,T ) and µ2(N,T ) numerically with a root finding
method [184] and from (5.7–5.10) the occupation numbers. The occupation
numbers and hence the quantum statistics depend on the external param-
eters: temperature T , number of particles per site (filling) N , strength of
the dipole-dipole interaction U0 and the frequency of the external harmonic
oscillator trap ω. In the following we discuss the influence of these param-
eters. We start with fixed dipolar coupling and trap frequency and analyze
the quantum statistics at sufficiently low temperatures for different fillings.

Due to the attractive dipole-dipole interaction between molecules in the
filament, the most bound chain is the trimer. The difference in binding
between dimers and trimers induces that for sufficiently small N and at
low-enough T the DCL becomes a degenerate Fermi gas of trimers. The
trimers fill up oscillator levels (and also transverse trimer modes) up to the
corresponding Fermi energy EF (N), which equals N~ω for rigid filaments
but it is actually smaller due to the transverse trimer modes (figure 5.4).
However, if the number of molecules per site is sufficiently large, the growth
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Figure 5.4: Occupation numbers at very low temperatures for N > Nc. The
Fermi energy is larger than the difference in binding energy and the particles
start to occupy dimers.

in Fermi energy overcomes the binding energy difference. This transition
may be easily estimated by comparing the average energy per molecule for
the case of two trimers and that for the case of 2 dimers I and one dimer
II. This leads to a condition for the critical number of molecules per site
Nc(U0, ω),

EF (Nc) = 2ET − 3(ED,I + ED,II)/2 (5.14)

(which we have confirmed numerically). Note that Nc grows with growing
U0 and decreasing ω. For N < Nc the DCL is a degenerate trimer gas,
whereas for N > Nc the trimer gas coexists (figure 5.4) with a mixture of
pseudo-spin-1/2 bosons (dimers I) and spin-less bosons (dimers II).

5.4 Spatial density distributions

The peculiar properties of the DCL translate into the spatial molecular dis-
tribution integrated over the three sites. For N < Nc and N < ξ1T

/~ω, only
trimers in their internal ground state are formed, and hence the gas behaves
as a spin-less Fermi gas of particles of mass 3m, presenting a Thomas-Fermi
density profile (1− (x/R)2)1/2 with R/lHO =

√
2N/3 (figure 5.5, top). For

ξ1T
/~ω < N < Nc, the DCL is still a trimer gas, but transversal modes may

be populated.

In that case the density profile departs from the Thomas-Fermi profile
(figure 5.5, center), due to the appearance of internally excited trimers in
low harmonic oscillator levels. For N > Nc the density profile changes
dramatically. Note that since we consider 1D gases, dimer BEC is strictly
speaking precluded. However, due to finite size the dimers quasi-condense
(at low-enough T ) occupying the few lowest levels of the harmonic oscillator.
Hence when N surpasses Nc a Bose cloud nucleates at the trap center. As
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a result the distribution of the polar molecules shows a Gaussian-like peak
at the trap center (figure 5.5, bottom).

For N ≫ Nc and U0 > U∗
0 (D, II) the DCL is at low T a basically pure

Bose gas of dimers I and II (except for a small trimer fraction). Since both
dimers have mass 2m, the difference between them cannot be discerned from
the analysis of the integrated density profile of the molecules. However the
different binding energy and excited dimer modes for both types of dimers
may be studied spectroscopically to reveal the dual nature of the mixture.
If N ≫ Nc but U∗

0 (D, I) ≪ U0 < U∗
0 (D, II), dimers II are precluded,

and hence the DCL will become at low T a Bose-Fermi mixture of dimer-I
bosons and degenerate monomers at sites 1 and 3 (which act as a pseudo-
spin-1/2 fermions). Again, this exotic mixture could be revealed from the
corresponding dual density profile.

5.5 Finite temperature analysis

The DCL presents as well an intriguing finite temperature physics due to
the role of filament modes and the different binding energy of dimers and
trimers. This is particularly clear from a finite T analysis of a DCL with
N < Nc (figure 5.6). Note that whereas at very low T the DCL is purely a
trimer Fermi gas, at finite T it becomes more favorable to populate dimers
than to populate higher excited trimer states. As a consequence the system
presents a striking thermal enhancement of the bosonic modes. Interestingly,
contrary to the standard situation, this leads to a maximal central peak
density for a given finite T as shown in figure 5.7. For even larger T the
central density decreases again due to the occupation of dimers at higher
oscillator modes, and the breaking of the filaments into individual molecules.

5.6 Validity of the ideal gas approach

The discussed ideal gas analysis allows for a relatively easy understanding
of key qualitative features characterizing fermionic polar molecules in deep
optical lattices under more general conditions, as the competition between
filament-binding energy and Fermi energy of fermionic chains, the relevant
role of the filament modes at zero and finite T , or the formation of peculiar
mixtures of different types of composite bosons and fermions. However, the
quantitative validity of the ideal gas approximation is rather limited (also for
bosonic molecules [192]), even for the previously discussed 1D arrangement
with the particular choice for the dipole orientation. We may estimate the
importance of the inter-filament interactions by comparing the inter-trimer
interactions with the Fermi energy of rigid trimers (ǫF = N~ω). For deeply
bound chains (R0 ∼ ∆/2) and at inter-filament distances x > ∆ we may
approximate the interaction between molecules at different chains as that
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Figure 5.7: Temperature dependence of the central density. We consider the
parameters of figure 5.5 with N < Nc.
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between two point dipoles (1.71). Adding up these interactions we may
estimate the mean inter-trimer dipole-dipole interaction

Vff (x̄) = −2
d2

4πǫ0
∆2

(
1

(∆2 + x̄2)5/2
+

2

(4∆2 + x̄2)5/2

)
, (5.15)

where x̄ is the mean inter-trimer distance. For the case of d = 0.8 De-
bye, m = 100 atomic mass units, ∆ = 0.5µm, and ω/2π = 1Hz, we obtain
U0 ≃ 2, and Nc ≃ 230. For this value x̄ ≃ 1.7∆ and Vff ≃ 0.33ǫF . The
ideal gas approximation is hence quantitatively valid only for dilute meso-
scopic samples (as those considered in our numerical calculations). Once
the dimer Bose gas nucleates at the trap center the ideal gas condition is
quickly violated, due to the larger bosonic densities, although the formation
of the dual density profile (similar to that in figure 5.5) still holds. For
stacks of 2D sites the ideal gas approximation fails even for extremely low
2D densities. However, the formation of dimer mixtures beyond a given crit-
ical density should also occur for 2D arrangements. These mixtures may be
considered as weakly-interacting for 2D densities n such that nr2∗ < 1 with
r∗ = md2/~2. For the previous values this demands n . 1.1× 108cm−2. For
N ≫ Nc (and U0 > U∗

0 (D, II)) weakly-interacting dimers will form a BEC
of three different bosons (dimers I in 1–2, I in 2–3, and II), whose properties
will largely depend on the precise determination of the different inter-dimer
interactions, which will be the subject of a future work.

5.7 Conclusion

Fermionic polar molecules in three-well potentials are expected to form a
rather peculiar filament gas. Depending on the filling per site and the inter-
action strength we expect that the character of the chain gas ranges from a
pure trimer gas at low fillings, to a bosonic mixture of pseudo-spin-1/2 and
spin-less dimers for large-enough fillings and dipole strengths. Note, finally,
that molecules in even larger number of sites may form a quantum gas mix-
ture of increasing complexity. Dipolar chain liquids are hence an exciting
perspective for on-going experiments with polar fermionic molecules.



Chapter 6

Conclusion and Outlook

In this thesis we have studied novel properties of quantum gases in deep
optical lattices induced by the dipole-dipole interaction. Because of its
long-range and anisotropic character the dipole-dipole interaction may sig-
nificantly change the physics of ultracold quantum gases. We have shown
that in the presence of an additional one-dimensional optical lattice, the
influence of the of the dipole-dipole interaction is crucially enhanced. In
particular, concerning vortex lines in Bose-Einstein condensates it may lead
to an instability of transverse excitations and novel ground-state configura-
tions of the vortex filament. In combination with the long-range behaviour
of the dipole-dipole interaction it may lead to roton-instability in a stack
of non-overlapping BECs and one can observe band-like excitation spectra
because of the dipolar coupling between the lattice sites. Last but not least
we have shown that sufficiently strong dipoles like polar molecules placed at
the different sites of an optical lattice may bind into composites and obey
for the case of fermions a very interesting and rich quantum statistics.

In the following, we give a brief outlook on possible future projects based
on the results of this thesis.

In chapters 2 and 3 we discussed in detail the physics of the vortex line in
a dipolar gas. However, we have not considered several vortex lines interact-
ing with each other. It should be interesting to study the dipolar influence
on these vortex line interactions and in particular the interaction between
two helical vortex filaments. Recently, the physics of dipolar vortices in
harmonic traps and the influence of the trap geometry has been studied in
[188] (also for the n = 2-vortex).

As mentioned already in chapter 4 an analysis of the roton-instability is
interesting for ongoing experiment in Florence and Stuttgart. However, for
simulating an experiment, a more careful quantitative analysis is necessary,
taking into account both the xy-trapping, and the z-trapping, which we
plan to investigate in a further work. The first step extending our work,
namely the numerical calculation of the ground state with an imaginary
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time evolution method in a trapped situation has been done by now in [203].
However, the roton-instability can be discussed only considering elementary
excitations which is still an open problem in the trapped case.

The quantum gas of self-assembled chains of fermionic polar molecules
investigated in chapter 5 provides a variety of phases already in the ideal
gas regime. Hence it would be fascinating to analyse the filament gas in
one or two dimensions in a weakly or even strongly interacting regime with
numerical methods. In a first step we study at the moment two weakly
interacting two-dimensional gases of fermionic dipoles in a double well po-
tential. Since the Fermi gases are attractively coupled via the dipole-dipole
interaction, they may form, for the case of weak dipolar interactions, weakly
bound Cooper pairs and the system can be described by BCS theory. If the
dipoles are sufficiently strong the Fermions may bound into bosonic dimers
as in chapter 5 and can form a dimer-BEC. In this way one could find by
slowly increasing the strength of the dipole-dipole interaction a continuous
BCS-BEC crossover. However, it is crucial to understand first the scattering
properties in detail.

All in all, one can state that dipolar gases in deep optical lattice will
provide fascinating and novel physics also in the near future.



Appendix A

Imaginary time evolution

method

The imaginary time evolution method (ITE) is used in order to find the
ground state of a physical system. The time-dependence of the system is
determined by the Hamiltonian H.

We consider an initial state |ψini〉. Evolving during a short time ∆t,

|ψ(∆t)〉 = e−iH∆t|ψini〉 (A.1)

If |ψini〉 is not an eigenstate of H one can write

e−iH∆t|ψini〉 =
∑

n

e−iEn∆t|φn〉〈φn|ψini〉 (A.2)

where En are the eigenvalues and |φn〉 the eigenstates of H. If |ψini〉 is not
too different from the ground-state |φ0〉 it has some overlap (〈φ0|ψini〉 6= 0)
and one can separate

e−iH∆t|ψini〉 = e−iE0∆t|φ0〉〈φ0|ψini〉 +
∑

n6=0

e−iEn∆t|φn〉〈φn|ψini〉 (A.3)

If we now evolve in imaginary time (i∆t→ ∆t) we can get rid of the n 6= 0-
states after a sufficient number of time-steps since En > E0. The system
converges into the ground state |φ0〉 with energy E0.

As discussed in the introduction, the time-dependence of the ground-
state |φ0〉 in a quantum gas is determined by the chemical potential µ, such
that E0 ≡ µ.

A chemical potential µ̃ can be calculated at each imaginary time step
from the normalization condition

Norm ≡ 〈ψ(t+ ∆t)|ψ(t+ ∆t)〉 = e−2µ̃∆t〈ψ(t)|ψ(t)〉, (A.4)
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where |ψ(t)〉 should be normalized. Then

µ̃ =
− ln(Norm)

2∆t
. (A.5)

When the imaginary time evolution has converged to the ground state, the
chemical potential calculated in this way µ̃ corresponds to the real chemical
potential µ of the system. This gives us the truncation condition,

µrel ≡
∣∣∣∣
µ̃(t+ ∆t) − µ̃(t)

µ̃(t+ ∆t)

∣∣∣∣ < ǫ, (A.6)

for a very small ǫ (e.g. ǫ = 10−12). If the relative chemical potential µrel

tends to zero the state has converged into the ground state ψ(t) = |φ0〉 and
µ̃ = µ.

Summarizing, for the imaginary time evolution method one has to per-
form the following steps:

1. Start with a normalized state |ψini〉 and some value for µ̃.

2. Evolve a short step ∆t in imaginary time and calculate |ψ(t+ ∆t)〉.

3. Calculate the Norm and the new value for µ̃ and check whether µrel

is smaller than ǫ.

4. If µrel is larger than ǫ, normalize |ψ(t + ∆t)〉 and go back to step 2.
Repeat steps 2-4 until µrel < ǫ.

Imaginary time evolution in 1D

In one dimension we discretize the operator H as follows. We consider
|ψ(∆t)〉 in position space ψ(x, t) and split the time-evolution operator in
equation (A.1)

eiH∆t/2ψ(x,∆t) = e−iH∆t/2ψini(x) (A.7)

Since ∆t is very small we can expand the exponential and obtain in imagi-
nary time

(1 +H∆t/2)ψ(x,∆t) = (1 −H∆t/2)ψini(x) (A.8)

By discretizing the x-axis we identify

M ~ψ(∆t) = ~R, (A.9)

where the vector ~R is the known right-hand site in equation (A.8), ~ψ(∆t)
is unknown and M is the matrix (1 +H∆t/2) which is usually tridiagonal
because of the second derivative appearing in the kinetic energy. In order to
determine ~ψ(∆t) one can take in this case for instance the routine ”tridag”
from Numerical Recipes [184]. This procedure was used in the calculation
of the straight vortex line (sections 1.4.2 and 2.2) in order to solve (1.55)
and (2.6).
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Imaginary time evolution in 3D

In chapter 3 we perform an imaginary time evolution in three dimensions. In
this section we discuss in detail how to do the time evolution (step 2) for this
case. Instead of solving a tridiagonal matrix equation we use Fourier trans-
formations to handle the kinetic energy terms in the Hamiltonian. Therefore
we write |ψ(∆t)〉 in position space as ψ(~r,∆t) and seperate

H =
p2

2m
+ V (~r) (A.10)

Applying the Baker-Campbell-Hausdorff eA+B = eA eB e−[A,B]/2 formula we
neglect the commutator terms since they are of the order of ∆t2 and hence
equation (A.1) reads in imaginary time

ψ(~r,∆t) = e−p2/2m∆t e−V (~r)∆tψini(~r) +O(∆t2) (A.11)

where the second exponential containing the potential energy acts just as a
multiplication at each position ~r. After this multiplication we call the vector
ψV (~r) ≡ e−V (~r)∆tψini(~r) and rewrite equation (A.11)

ψ(~r,∆t) = e−p2/2m∆t ψV (~r). (A.12)

In order to evaluate the action of the momentum operator in the exponential
we apply a Fast Fourier transformation (FFT) [184] on ψV (~r) multiply and
transform back to position space

ψ(~r,∆t) = FFT−1
[
e−p2/2m∆t FFT [ψV (~r)]

]
. (A.13)
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Appendix B

Dipolar gases in

one-dimensional lattices

In this appendix we discuss in detail the derivation of the coarse-grained
Hamiltonian employed in chapters 2 and 3. A BEC in a deep one dimensional
optical lattice (section 1.3.2) is described by a discretisized wave-function
and obeys a discrete nonlinear Schrödinger equation. We will show in detail
that this equation can be transformed into a continuous equation, where the
influence of the lattice is taken into account only by an effective mass m∗

for motions in lattice direction and a renormalized coupling constant for the
short-range interactions g̃.

Gross-Pitaevskii equation

In the following we consider an interacting system with the following two-
body interaction

U(~r) = gδ3(~r) + Vd(~r), (B.1)

where the first term is the contact interaction and the second is the dipole-
dipole interaction (dipoles oriented in z-direction) (1.66)

Vd(r) = d2x
2 + y2 − 2z2

r5
(B.2)

with the Fourier transform (1.68)

Ṽd(k) =
gd

2

(
3

k2
z

k2
ρ + k2

z

− 1

)
=
gd

2

(
2 − 3

k2
ρ

k2
ρ + k2

z

)
(B.3)

where gd = 8πd2/3. At sufficiently low temperatures the physics of the dipo-
lar condensate is provided by the Gross-Pitaevskii equation (GPE) (1.69)



82

i~
∂Ψ(~r)

∂t
=

[
−~2∇2

2m
+ Vext(~r) + g|Ψ(~r)|2

+

∫
d~r′ |Ψ(~r′)|2 Vd(~r − ~r′)

]
Ψ(~r), (B.4)

Discrete Gross-Pitaevskii equation

In the following we consider a BEC placed in a 1D lattice along the z-
direction (1.33)

Vext(z) = sER sin2 (Qz) , (B.5)

where ER = ~2Q2/2m the recoil energy. In the tight-binding regime (for a
sufficiently strong lattice potential) we can write (1.35)

Ψ(~r, t) =
∑

j

w(z − bj)ψj(~ρ, t), (B.6)

where b = π/Q is the lattice spacing, ~ρ the position in the xy-plane and
w(z) is the Wannier function associated with the lowest band. The GPE
equation (discrete nonlinear Schrödinger equation) of the dipolar BEC reads
analogously to (1.36) [84]

i~
∂

∂t
ψj(~ρ, t) =

[
− ~2

2m
∇2

~ρ + ḡ|ψj(~ρ, t)|2 + Vdd(~ρ, j, t)

]
ψj(~ρ, t)

−J(ψj−1(~ρ, t) − 2ψj(~ρ, t) + ψj+1(~ρ, t)), (B.7)

where (1.37)

J =

∫
dz w(z)

[
− ~2

2m

d2

dz2
+ Vext(z)

]
w(z + b) ≡ 2b2

~2

m

m∗
(B.8)

nj(ρ, t) = |ψj(ρ, t)|2, (B.9)

fj(z) = f(z − bj) = |w(z − bj)|2, (B.10)

ḡ = gb

∫
dz w(z)4, (B.11)

Vdd =

∫
V (~r − ~r′)

∑

j′

nj′(ρ
′, t)fj′(z

′)d3r′ fj(z)dz. (B.12)

Approximation #1 In deriving the discrete GPE we have made the as-
sumption in the interaction term that in the tight-binding regime we ap-
proximate w(z+bj)w(z+bj′) ≈ δjj′f(z+bj)) [179]. We use the convolution
theorem to rewrite

Vdd(~ρ, j, t) =

∫
V (~r − ~r′)

∑

j′

nj′(ρ
′, t)fj′(z

′)d3r′ fj(z)dz (B.13)

=
1

(2π)3

∫
d3kṼ (~k)|f̃(kz)|2

∑

j′

ñj′(kρ, t)e
[ikzd(j−j′)+i~kρ~ρ],
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where Ṽ (~k), f̃(kz) and ñj′(kρ) denote the Fourier transform of V (~r), f(z)
and nj(~ρ),respectively. We define the disctrete Fourier transform

ñ(~k) =
∑

j

exp [−ikzbj] ñj(kρ) (B.14)

which fulfills

1. ñ(kρ, kz + 2πm/b) = ñ(kρ, kz) with m = 0,±1,±2, ...

2.
b

2π

∫

IBZ
ñ(~k) exp [ikzbj] dkz = ñj(kρ)

where IBZ is the first Brillouin zone (−π/b, π/b). We split the integral of
kz in the following way

∫ +∞

−∞
F (kz) exp [ikzbj)] dkz =

∑

m

∫

IBZ
F (kz + 2πm/b) exp [ikzbj)] dkz

(B.15)
to obtain that

Vdd(ρ, j) =

∫

IBZ
Ṽ(~k)ñ(~k) exp

[
i ~kρ~ρ+ ikzbj

]
d3k (B.16)

with
Ṽ(~k) =

∑

m

Ṽ (kρ, kz + 2πm/b)|f̃(kz + 2πm/b)|2 (B.17)

Approximation #2: We assume that b is the smallest scale of distance.
Since the vortex core has a size of the order of the healing length, the
dominant contribution is provided by kρ ∼ 1/ξ, where ξ is the healing
length. We assume b≪ ξ.

Approximation #3: In addition, we will be interested (when perform-
ing the Bogoliubov analysis) in kz-momenta q such that q ∼ 1/ξ (figure 2.1).
Therefore for m 6= 0, Ṽ (kρ, kz + 2πm/b) ≈ Ṽ (0, kz + 2πm/b) = gd. Then

Ṽ(~k) = Ṽ (~k)|f̃(kz)|2 + Cdd(kz), (B.18)

with

Cdd(kz) = gd

∑

m6=0

|f̃(kz + 2πm/b)|2

≈ gd

∑

m6=0

exp
[
−(kz + 2πm/b)2σ2/2

]

≈ gd

∑

m6=0

exp
[
−(2πm/b)2σ2/2

]

= gd

(
Θ3

[
0, exp{−2π2σ2/b2}

]
− 1
)
≡ Gd, (B.19)
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where Θ is the elliptic theta function. In the previous expressions we have
assumed, as usual, a Gaussian form (with width σ ≃ b/πs1/4) for the func-
tion f . Note, that for typical parameters Gd is a very small number. The
final form of the discrete GPE reads

i~
∂

∂t
ψj(~ρ, t) = −J(ψj−1(~ρ, t) − 2ψj(~ρ, t) + ψj+1(~ρ, t))

+

[
− ~2

2m
∇2

~ρ + ḡ|ψj(~ρ, t)|2
]
ψj(~ρ, t) (B.20)

+

∫

IBZ
Ṽ (~k)|f̃(kz)|2ñ(~k, t) exp

[
i ~kρ~ρ+ ikzbj

] d3k

(2π)3
ψj(~ρ, t)

where we redefine the contact interaction

ḡ +
Gd

b
→ ḡ; (B.21)

Effective continuous model

Since we consider (in our Bogoliubov analysis) kz ≪ π/b we can actually
consider an effective continuous model. To this aim we rewrite the tunneling
part [179]

−J(ψj+1 − 2ψj + ψj−1) → −Jb2∂2
zψ ≡ − ~2

2m∗
∂2

zψ (B.22)

where we have employed the effective mass associated with the lowest band
E(κ) = −2J cos(κb) at quasi-momentum κ→ 0, namely ~2/2m = Jb2. We
redefine

1√
b
ψj(~ρ) → ψ(~r), (B.23)

where now ψ(~r) is the new coarse-grained wavefunction. As a consequence

ḡn→ g̃n, (B.24)

where g̃ = ḡb and

∫

IBZ
Ṽ (~k)|f̃(kz)|2ñ(~k) ei

~kρ~ρ+ikzbj d3k

(2π)3
→
∫
Ṽ (~k)ñ(~k) ei

~k~r d3k

(2π)3
. (B.25)

In this expression we have employed that since, as discussed above, we con-
sider that at most kz ∼ 1/ξ, and ξ ≫ σ, then |f̃(kz)| ≃ 1. Additionally, in
the last equation we have used that

ñ(~k) →
∫

exp [ikzz] ñ( ~kρ, z)dz = ñ(~k). (B.26)
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In conclusion, the final effective continuous GPE (which we consider in
chapters 2 and 3) read

i~
∂Ψ(~r)

∂t
=

{
−~2∇2

⊥

2m
− ~2∇2

z

2m∗
+ g̃|Ψ(~r)|2+

∫
d~r′|Ψ(~r′)|2Vd(~r − ~r′)

}
Ψ(~r), (B.27)

where we have applied the convolusion theorem in the dipolar term. The
renormalized coupling constant is

g̃ = gb

∫
|f(z)|2dz + Gd (B.28)

≈ g√
2π

(
b

σ

)
+ gd

(
Θ3

[
0, exp{−2π2σ2/b2}

]
− 1
)
,

where in the last equation we have assumed, as above, a Gaussian approxi-
mation for the Wannier function.
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Appendix C

Calculations to the dipolar

vortex line

When studying vortex lines we have used several times the integral repre-
sentation of the Bessel functions of the first kind [180], which is particularly
important when performing Fourier transformations with cylindrical sym-
metry ∫ 2π

0
dφ e±i z cos(φ−φ′) einφ = 2π(±i)nJn(z) einφ′

, (C.1)

for integer n. The Bessel functions satisfy the orthonomality condition

∫ ∞

0
dkρ kρJ0(kρρ

′)J0(kρρ) =
1

ρ
δ(ρ− ρ′). (C.2)

Since the Fourier transform of the dipole-dipole interaction potential
(1.68) is crucial for the calculations shown in this appendix we specify it
again

Ṽd(k) =
gd

2

(
3

k2
z

k2
ρ + k2

z

− 1

)
=
gd

2

(
2 − 3

k2
ρ

k2
ρ + k2

z

)
(C.3)

with gd = 8παd2/3, where α is a possible prefactor induced by the dipolar
tuning (section 1.5.1).

Straight vortex line

The straight vortex line (n = 1) has the form (2.4)

Ψ0(~r, t) = φ0(ρ) e
iϕ e−iµt/~, (C.4)

As a typical example how to treat the dipole-dipole interaction potential
we discuss in detail equation (2.5), which gives the dipolar contribution to
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the physics of the straight vortex line.
∫
d~r′ |Ψ0(~r

′)|2 Vd(~r − ~r′) =

∫
d3k

(2π)3
˜|Ψ0(~r′)|2 Ṽd(~k) e

i~k~r

=

∫
d3k

(2π)3
˜|φ0(ρ)|22πδ(kz) Ṽd(~k) e

i~k~r

=

∫
d2k

(2π)2
˜|φ0(ρ)|2 Ṽd( ~kρ, 0) ei

~kρ~ρ

=

∫
d2k

(2π)2
˜|φ0(ρ)|2

(
−αd

24π

3

)
ei

~kρ~ρ

= −αd
24π

3
|φ0(ρ)|2 (C.5)

Kelvin modes

In order to derive the eigenvalue equations for the Kelvin modes (2.11) and
(2.12), one can proceed analogously. We start with the linearized differential
equation (2.9) for the vortex line excitations χ(~r)

i~∂tχ(~r, t) =
[
− ~2

2m
∇2

⊥ − ~2

2m∗
∇2

z − i
~2

mρ2
∂ϕ +

~2

2mρ2
− µ

+(2g̃ − gd

2
) |φ0(ρ)|2

]
χ(~r) + g̃φ2

0(ρ)χ
∗(~r) (C.6)

+

∫
d~r′V (~r − ~r′)φ0(ρ

′)φ0(ρ)
[
χ∗(~r′) + χ(~r′)

]
,

In order to be more accurate in this calculation we write the excitations at
first in the form [52]

χ(~r) =
∑

l,k

bl(q, ρ) e i qz e i lϕ, (C.7)

characterized by the quantum numbers l and q. Later we will rewrite them
and recognize expression (2.10). We simplify the dipolar term using again
Fourier transformation and the convolution theorem, and find

∫
d~r′ V (~r − ~r′)φ0(ρ

′)bl(q, ρ
′) e i qz′ e i lϕ′

(C.8)

=

∫
d3k

(2π)3
Ṽ (kρ, kϕ, kz + q) h̃(~k) e i qz e i~k~r, (C.9)

where

h̃(~k) =

∫
d3r φ0(ρ

′) bl(q, ρ
′) e i lϕ′

e− i~k~r′ (C.10)

= 2πδ(kz)

∫ ∞

0
dρ′ ρ′φ0(ρ

′) bl(q, ρ
′)

∫ 2π

0
dϕ′ e i lϕ′

e− i qρρ cos (ϕ′−qϕ)
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Using the Bessel function of the first kind we get

h̃(~k) = (2π)2δ(kz) e i lkϕ

∫ ∞

0
dρ′ ρ′φ0(ρ

′) bl(q, ρ
′)Jl(kρρ

′) (C.11)

Now we are able to calculate the dipolar part (C.8)

∫
d~r′ V (~r − ~r′)φ0(ρ

′)bl(q, ρ
′) e i qz′ e i lϕ′

=

∫
d3k

(2π)3
Ṽ (kρ, kϕ, kz + q) (2π)2δ(kz) e i lkϕ e i qz e i~k~r

×
∫ ∞

0
dρ′ ρ′φ0(ρ

′) bl(q, ρ
′)Jl(kρρ

′)

=

∫ ∞

0
dρ′ ρ′φ0(ρ

′) bl(q, ρ
′)

∫ ∞

0

dkρ

2π
kρJl(kρρ

′) Ṽ (kρ, kϕ, q)

×
∫ 2π

0
dkϕ e i l(kϕ−ϕ) e i kρρ cos (kϕ−ϕ) e i qz e i lϕ

=

∫ ∞

0
dρ′ ρ′φ0(ρ

′) bl(q, ρ
′) e i qz e i lϕ

× αd2 4π

3

∫ ∞

0
dkρ kρJl(kρρ

′)Jl(kρρ)

[
3q2

k2
ρ + q2

− 1

]
. (C.12)

Note that the equations do not mix different q’s and l’s. Hence we
consider the equations for one q and one l

i ~ ḃl(q, ρ) =

[
− ~2

2m

(
1

ρ
∂ρ + ∂2

ρ

)
+

~2(l + 1)2

2mρ2
+

~2q2

2m∗
− µ

+(2g̃ − αd2 4π

3
) |φ0(ρ)|2

]
bl(q, ρ) + g̃φ0(ρ)

2 b∗−l(−q, ρ) +

αd2 4π

3

∫ ∞

0
dρ′ ρ′φ0(ρ

′) {bl(q, ρ′) + b∗−l(−q, ρ′)}

×
∫ ∞

0
dkρ kρJl(kρρ

′)Jl(kρρ)

[
3q2

k2
ρ + q2

− 1

]
φ0(ρ). (C.13)

We separate equation (C.13) into positive and negative frequency parts

bl(q, ρ) = u(ρ) e− i ǫt/~ (C.14)

b∗−l(−q, ρ) = −v(ρ) e i ǫ∗t/~. (C.15)

and simplify the dipolar term finally using the following integral [181]

∫ ∞

0
dkρ kρJl(kρρ

′)Jl(kρρ)

[
3q2

k2
ρ + q2

− 1

]
= 3q2 Fl(qρ, qρ

′) − 1

ρ
δ(ρ− ρ′),

(C.16)
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with the product of modified Bessel functions

Fl(qρ, qρ
′) =

{
Il(qρ

′)Kl(qρ) if ρ′ < ρ
Kl(qρ

′) Il(qρ) if ρ′ > ρ
. (C.17)

Then equation (C.13) reduces to the Bogoliubov de-Gennes equations (2.11)
and (2.12) discussed in chapter 2

ǫul(ρ) =

[
~2

2m

(
−Dρ +

(l + 1)2

ρ2
+

m

m∗
q2
)
− µ+ 2ḡφ0(ρ)

2

]
ul(ρ)

−ḡφ0(ρ)
2vl(ρ) (C.18)

+
3β

2 − β
ḡq2

∫ ∞

0
dρ′ρ′φ0(ρ

′)φ0(ρ)
[
ul(ρ

′) − vl(ρ
′)
]
Fl(qρ, qρ

′)

ǫvl(ρ) = −
[

~2

2m

(
−Dρ +

(l − 1)2

ρ2
+

m

m∗
q2
)
− µ+ 2ḡφ0(ρ)

2

]
vl(ρ)

+ḡφ0(ρ)
2ul(ρ) (C.19)

+
3β

2 − β
ḡq2

∫ ∞

0
dρ′ρ′φ0(ρ

′)φ0(ρ)
[
ul(ρ

′) − vl(ρ
′)
]
Fl(qρ, qρ

′),

with ḡ = g̃ − gd/2 according to equation (2.7) and β = gd/g̃.

Numerical calculation of the Kelvin modes

We solve at this point the coupled integral-differential equations for ul(ρ)
and vl(ρ). Fortunately they are linear, such that we can transform them
easily in an eigenvalue problem by discretizising the ρ-axis. Then ul(ρ) and
vl(ρ) correspond to the eigenvectors and ǫ are the eigenvalues.

However, before solving the Bogoliubov de-Gennes equations (2.11) and
(2.12) numerically one should get rid of the centrifugal barrier by a rescaling
similar to that employed in the case of the straight vortex discussed in section
1.4.2

φ0(ρ) = ρ φ̄0(ρ) (C.20)

u(ρ)l = ρl+1ūl(ρ) (C.21)

v(ρ)l = ρl−1v̄l(ρ) (C.22)

This implies for the terms containing the derivatives

[
−
(

1

ρ
∂ρ + ∂2

ρ

)
+

(l + 1)2

ρ2

]
ul(ρ) = −ρl+1

[
(2l + 3)

ρ
∂ρ + ∂2

ρ

]
ūl(ρ)

[
−
(

1

ρ
∂ρ + ∂2

ρ

)
+

(l − 1)2

ρ2

]
vl(ρ) = −ρl−1

[
(2l − 1)

ρ
∂ρ + ∂2

ρ

]
v̄l(ρ).
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We insert these expressions into equations (2.11) and (2.12) and divide by
ρl+1 in the first equation and by ρl−1 in the second one. In addition we
transform into dimensionless units similar as in section 1.4.2.

φ0(ρ) →
√
n0 φ0(ρ) with ρ→ ρ

ρ0
and ρ2

0 =
~

2mḡn0
,

Note, that
√

2ρ0 = ξ is the healing length with the shifted coupling constant
ḡ. Then the dimensionless rescaled Bogoliubov de-Gennes equations reads
as

ǫūl(ρ) =

[
−
(

(2l + 3)

ρ
∂ρ + ∂2

ρ

)
+

m

m∗
q2 − µ+ 2ḡρ2φ̄0(ρ)

2

]
ūl(ρ)

−ḡφ̄0(ρ)
2v̄l(ρ) +

3β

2 − β
ḡq2+l (C.23)

×
∫ ∞

0
dρ′ρ′l+1φ̄0(ρ

′)φ̄0(ρ)
[
ūl(ρ

′)ρ2 − v̄l(ρ
′)
] Fl(qρ, qρ

′)

(qρ)l

ǫv̄l(ρ) =

[
−
(

(2l − 1)

ρ
∂ρ + ∂2

ρ

)
+

m

m∗
q2 − µ+ 2ḡρ2φ̄0(ρ)

2

]
v̄l(ρ)

+ḡρ4φ̄0(ρ)
2ul(ρ) +

3β

2 − β
ḡq2+l (C.24)

×
∫ ∞

0
dρ′ρ′l+1φ̄0(ρ

′)φ̄0(ρ)
[
ρ2ūl(ρ

′) − v̄l(ρ
′)
] Fl(qρ, qρ

′)

(qρ)l
,

where µ and φ(ρ) are results of the imaginary time evolution of the straight
vortex line. The chemical potential µ and ḡn0 are very close to one as they
should be in these units.

It seems to be the case that there still appear a divergent term in (C.23)
for ρ→ 0. But then ρ′ > ρ and the relevant term behaves as

lim
ρ→0

Fl(qρ, qρ
′)

(qρ)l
= lim

ρ→0

Il(qρ)Kl(qρ
′)

(qρ)l
, (C.25)

which gives with l’Hospital

lim
ρ→0

Il(qρ)Kl(qρ
′)

(qρ)l
=

1

Γ(l + 1)

(
1

2

)l

Kl(qρ
′). (C.26)

That is a finite value and there are no divergencies. Hence it is not too hard
to solve the rescaled dimensionless Bogoliubov-de Gennes equations (C.23)
numerically.

We solved these equations for l = 1 for given dipole β and lattice m/m∗

and for differerent values of q to obtain the dispersion relation ǫ(q). Mul-
tiplying the resulting ǫ(q) with −1 leads to the Kelvin mode dispersion for
l = −1. As one can see directly from (2.11) and (2.12) it is equivalent



92

to change l → −l and to interchange ul(ρ) and vl(ρ) in combination with
ǫ → −ǫ. This means an interchange of the (+) and (-) families of the
excitations discussed in the introduction below equation (1.29).
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