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Inhaltsübersicht 

Die optimierte Funktion und Stabilität von Implantaten ist heute insbesondere auch 
aufgrund der ansteigenden Lebenserwartung der Bevölkerung ein wichtiges 
Forschungsthema. Um den Bedarf an optimierten Prothesen zu decken, wird nicht 
nur an der Verbesserung der Basismaterialien von Implantaten geforscht, sondern es 
werden auch bekannte Implantate durch chemische und biochemische 
Funktionalisierungen weiter verbessert. Die vorliegende Arbeit stellt Beispiele für 
solche Funktionalisierungen vor. Die hier vorgestellten Strategien wurden im 
Rahmen eines Kooperationsprojektes entwickelt, dass sich mit der Optimierung von 
Mittelohrprothesen beschäftigt. Ziel ist eine modular mit verschiedenen 
Funktionalisierungen bestückte Prothese, die in ihren unterschiedlichen Bereichen 
optimal auf ihre Aufgaben vorbereitet ist. Als Basismaterial diente Bioverit® II, eine 
für die Konstruktion von Mittelohrprothesen üblicherweise genutzte 
Glasglimmerkeramik. Für orientierende Vorversuche wurden Glassubstrate 
verwendet. Die entwickelten Systeme und die erhaltenen Ergebnisse sollten 
grundsätzlich auch auf andere Basismaterialien übertragbar sein. 
Als erste biochemische Funktionalisierung sollte eine Anbindungsstrategie für das 
Signalhormon Bone Morphogenic Protein 2 (BMP2) entwickelt werden, das die 
Differenzierung zu knochenbildenden Zellen fördert. Hiermit soll im Falle der 
Mittelohrprothese eine bessere Anbindung an vorhandene Knochenreste erreicht 
werden, um so eine Extrusion der Prothese zu vermeiden. Dieser Ansatz ist aber auch 
generell zur Verbesserung der Integration von anderen Knochenersatzmaterialien 
von Interesse. Im ersten Teil der Arbeit wurde zur Testung zunächst als 
Modellsystem die Anbindung des Proteins Alkaline Phosphatase untersucht, 
besonders im Hinblick auf den Einfluss unterschiedlich strukturierter 
Silicatoberflächen in Kombination mit verschiedenen Linkern, die funktionelle 
Gruppen zur Anbindung tragen (Epoxy-, Harnstoff- und Aminfunktionen). Als beste 
Kombination stellte sich hier eine Aminopropyl-Funktionalisierung auf einer 
mesoporösen Oberfläche heraus. Im zweiten Teil der Arbeit konnte dieses 
Anbindungssystem erfolgreich auf das BMP2 übertragen werden, und zwar sowohl 
auf den gleichen silicatischen Substraten als auch auf Bioverit® II; dabei wurde auf 
Bioverit® II eine erhebliche Steigerung der gebunden BMP2-Menge erreicht. Die 
Materialien wurden im Rahmen der Zusammenarbeit im Projekt im Hinblick auf ihre 
biologische Aktivität in vitro und in vivo (Tierversuche im Kaninchenmodell) 
untersucht.  
Als chemische Funktionalisierung wurde im dritten Teil der Arbeit die bereits 
etablierte mesoporöse Beschichtung zusätzlich als Reservoir für ein lokale 
Medikamentengabe (local drug release) genutzt, denn gemeinsam mit der 
Implantation einer Mittelohrprothese soll auch eine Infektionsbekämpfung erfolgen. 
Diese Untersuchungen wurden mit dem bei Mittelohrinfekten häufig systemisch 
angewendeten Antibiotikum Ciprofloxacin durchgeführt. Durch Modifikationen der 
Oberfläche des mesoporösen Materials konnte einerseits die Beladungsmenge 
erheblich gesteigert werden, andererseits auch eine kontrollierte Freisetzung des 
Medikaments über Zeiträume von bis zu 60 Tagen erreicht werden. Die Wirksamkeit 
des Systems wurde mittels Bakterienkulturen nachgewiesen, dessen 
Biokompatibilität in Zellkulturuntersuchungen. Erste positiv verlaufene Tierversuche 
fanden in der Maus statt. 
Stichworte: mesoporöses Siliciumdioxid, Immobilisierung von Proteinen, Alkaline 
Phosphatase, Bone Morphogenetic Protein 2, kontrolliertes Drug Release, Mittelohr-
prothesen.   



Abstract 

Due to the increasing life expectancy of the population, the optimal function and 
stability of implants is an important topic today. In order to fulfil this need, current 
research not only improves the base materials for implants, but already existing 
implants are enhanced by chemical and biochemical functionalizations. This work 
presents examples of such functionalizations. These strategies were developed within 
a collaborative project that deals with the optimization of middle ear prostheses. The 
aim of the project is to develop a modularly functionalized prosthesis which in its 
different regions is optimally prepared for its tasks. As a base material, Bioverit® II 
was chosen, a glass-mica ceramic which is commonly applied for the construction of 
middle ear prostheses. Orienting experiments were carried out on glass substrates. 
The systems developed and the results obtained should in general also be transferable 
to other base materials. 
As a first biochemical functionalization, a strategy for the immobilization of the 
signalling protein bone morphogenic protein 2 (BMP2) was developed. BMP2 supports 
the differentiation to bone-forming cells. In this way, a stronger fixation of the 
prosthesis shall be achieved by the attachment to bone residues, in order to avoid 
extrusion of the prosthesis. This approach should be generally valid also for the 
integration of other bone substitution materials. In the first part of this work, the 
immobilization of the protein alkaline phosphatase was studied as a model system, 
with a special focus on the influence of different structural properties of silicate 
surfaces in combination with different linkers, which carry functional groups for the 
attachment (epoxy, urea and amine functions). It was found that the most effective 
combination for immobilization is the functionalization of a mesoporous surface 
coating with aminopropyl residues. In the second part of this work, this 
immobilization strategy was successfully transferred to BMP2, which was attached on 
similar silicate surfaces, but also on Bioverit® II, where the amount of immobilized 
BMP2 was strongly increased. The materials were characterized biologically in vitro 
and in vivo (animal experiments in rabbits) within the framework of cooperation of 
the project. 
In the third part of this work, a chemical functionalization is described, which uses 
the already established mesoporous silica coating as a reservoir for local drug release. 
Together with the implantation of a middle ear prosthesis, an infection shall be 
combatted. These investigations were carried out using the antibiotic ciprofloxacin, 
which often is applied systemically in the case of middle ear infections. By different 
modifications of the surface of the mesoporous material, the loaded amount was 
strongly increased and a controlled release of the drug, extending to up to 60 days, 
could be achieved. The efficacy of this system was demonstrated by bacterial culture 
tests, the biocompatibility by cell culture investigations. First positive animal 
experiments were carried out in the mouse model. 
Keywords: mesoporous silica, protein immobilization, alkaline phosphatase, bone 
morphogenetic protein 2, controlled drug release, middle ear prosthesis.  
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1 Introduction 

Due to the increasing life expectancy of the population, the desired implantation 
times for implants increase. For that reason, sustainable implants need an adapted 
functionality and stability. In order to fulfil this need, not only the base material of 
implants is optimized, but existing implants are enhanced by further 

functionalizations, which can be classified into three categories: mechanical, chemical 
and biochemical. This work is an example of improving implants by innovative 
chemical and biochemical functionalization techniques. 

Especially in the field of bone replacement materials an optimal function is essential. 
Hip or knee prostheses for example must bear high mechanical stresses. Besides 

optimal material performance, this requires the best possible integration of the 
prosthesis in the surrounding tissue. To achieve tight adhesion of the surrounding 
bone on such prostheses, these can for example be covered with hydroxyapatite or 
growth factors can be immobilized on the implants surface. Such growth factors, 

belonging to the family of bone morphogenetic proteins (BMPs), induce the formation 
of bone forming cells at the implant/tissue-interface. On the other hand, there are 
cases where not a very high, but an adapted bioactivity is required. An example is the 

special implantation site of the middle ear where middle ear prostheses are used to 
restore the sound-transmitting function of the ossicular chain. Here, high bioactivity 
can lead to the extensive formation of bone which overgrows the whole prosthesis, 
thus leading to “bony fixation” and inferior sound transmission.  

A further challenge in the field of adapted implant functionality is to avoid the failure 
of implants due to accompanying infections. One idea in this area is to equip the 

prosthesis in such a way that the implant can “defend” itself against invading 
bacteria. Such a “self-defense” can for example be achieved by antibacterial coatings 
or by local drug release systems. The latter rely on the idea of loading a certain drug 

into a material which is to be released at the targeted tissue. Besides better efficacy, 
these systems have the advantage of a reduced stress for the body due to low doses as 
compared to systemic treatments. The challenge of designing such drug release 
systems lies in the control of the release kinetics. Often a very fast release of the 

inserted drug, the so called “initial burst” effect, is observed, but not always desired. 
With functioning “self-defense”, the time for the first healing could be shortened and 
many second or revision operations could be prevented.  
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established detection assay. The binding of the enzyme to the surface is conducted by 
means of silanization procedures. Apart from finding a functional group suitable for 
the attachment of the alkaline phosphatase, a major focus of interest lies in the 

influence of differently structured silicate surfaces. Uncoated glass slides were tested 
in comparison with unstructured and with mesoporous silica coatings on standard 
glass slides.  

In a second step the established immobilization procedure was transferred to the 
growth factor BMP2. In this case, in addition to glass, Bioverit® II is used as base 

material. The BMP2 functionalization is to be applied locally, in order to induce a 
controlled local bone formation between the middle ear prosthesis and the residual 
stapes bone on the window to the inner ear. The immunochemical and the biological 
activity of immobilized BMP2 were tested by ELISA and BRE-luc tests. These 

materials are currently being tested in animal experiments on rabbits. 

The final part of this work uses the mesoporous silica coating as a reservoir for local 

drug release. Together with the implantation of a middle ear prosthesis, an infection 
shall be combatted. For this purpose, a drug release system was established for the 
antibiotic ciprofloxacin, which often is applied systemically in the case of middle ear 

infections. The efficacy of this system was demonstrated by bacterial culture tests, the 
biocompatibility by cell culture investigations. First positive animal experiments were 
carried out in the mouse model. 

The work described here was carried out within the work package D1 “Functionalized 
Middle Ear Prostheses” within the Collaborative Research Area SFB 599 for 
“Sustainable bioresorbable and permanent implants of metallic and ceramic 

materials”. It was a collaboration between the Medical School of Hannover (MHH), 
the Helmholtz Center for Infection Research (HZI) and the Leibniz University of 
Hannover (LUH)*. A strong contact was also established to the work package D7 and 

                                                
*Members of the work-package D1: Prof. Dr. Peter Behrens, Dipl. Chem. Olga Kufelt, Anne 
Christel and Dipl. Chem. Nina Ehlert, Institut für Anorganische Chemie, Leibniz Universität 
Hannover; Prof. Dr. Thomas Lenarz, Dr. Martin Stieve, Dr. Hamidreza Mojallal, Dr. Julia C. 
Vogt, Dr. Julia Schöne, Iwa Hlozanek, Hals-Nasen-Ohren-Klinik, Medizinische Hochschule 
Hannover; Dr. Gudrun Brandes, Institut für Zellbiologie im Zentrum Anatomie, Medizinische 
Hochschule Hannover; Prof. Dr. Peter P. Müller, Dipl. Chem. Muhammad Badar, Helmholtz 
Zentrum für Infektionsforschung. 



especially to PD Dr. A. Hoffmann from the Helmholtz Center of Infection Research 
(HZI)†.  

The presentation of this doctoral thesis includes, apart from this introduction, a 
chapter giving a general description of the background of the work and a “Summary 
and Outlook” chapter, both framing the central part on “Results and Discussion”. This 

part is presented in the way of three sections, each as a manuscript for submission to 
appear in a peer-reviewed journal. Before each “manuscript”, a short introduction to 
the specific topic addressed is given, and the own contributions are delineated from 

those of the co-workers. 

 

                                                
† PD Dr. Andrea Hoffmann, PD Dr. Gerhard Gross, Helmholtz Center for Infection Research. 
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Figure 2-2. Normal middle ear structures (taken from [1]). 

The ossicular chain is constructed from three bones the malleus, the incus and the 

stapes (Figure 2−3). These bones, also named ossicles, form the connection between 

the eardrum and the so called oval window to the inner ear. The malleus, resembling 
the shape of a hammer, is connoted with its shaft to the eardrum, and with its head it 
forms the joint to the short branch of the incus. The incus then is connected to the 

stapes at the end of its long branch within the second joint of the ossicles. Finally, the 
stapes is linked flexibly by the annular to the membrane of the oval window, which is 
the interface to the inner ear.  

 
Figure 2-3. Detailed view of the ossicles: stapes, incus and malleus (taken from [5]). 
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The ossicles are hung up in the tympanic cavity by different tendons and two muscles, 

one connected to the malleus and one to the stapes (Figure 2−4). How these 

connections are constituted in detail has not yet been totally investigated. However, it 
is known that the anchorage of the middle ear is highly sophisticated, because 
mechanical disturbances, for example while walking, are not evoking an impression of 
noise [6]. Moreover, the muscles are playing an important role in the protection of the 

inner ear in case of high level of noise and pressure variations [7]. 

 
Figure 2-4. Joints and muscles in the middle ear (taken from [5]). 

An incoming sound pressure wave leads to a vibration of the ear drum, creating 

motions of the ossicular chain which are transmitted via the oval window to the inner 
ear. The inner ear is filled with a liquid, so that by transmission via the ossicular 
chain, air waves become liquid waves. The middle ear is thus playing the role of an 
impedance converter, because air has much lower wave resistance than a liquid. 

A simple mechanism is used to achieve amplification of the sound signal by the 
middle ear. The surface area of the tympanic membrane (60 mm2) is many times that 

of the oval window (3 mm2) which results in a sound concentration [8]. For a long time 
it was supposed that the ossicles are applying the "lever principle" for an additional 
sound amplification [6], but new investigations show that the ossicles are vibrating as 

one unit [7, 8]. The joint, tendons and muscles of the middle ear are acting as a 
complex adapting system to balance the static, ambient air pressure at the ear drum 
[7]. 
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The amplification factor of the middle ear is 22-fold. Due to this amplification, only 
40 % of the sound waves reaching the outer ear canal are reflected during the passage 
to the liquid of the inner ear. In addition, the amplification factor depends on the 

frequency. It is best at the natural resonance frequency of the ear drum lying between 
1000 and 2000 Hz, which corresponds to the frequency of human speech [6]. 

2.1.2. Typical diseases of the middle ear 

A typical disease of the middle ear is an inflammation like otitis media which can be 
caused by bacteria like Streptococcus pneumoniae or Haemophilus influenzae. Other 
bacteria occurring in the middle ear are Pseudomonas aeruginosa and Staphylococcus 

species [9, 10]. During an infection a fluid formation in the normally air-filled space 
interrupts the sound transmission. In most cases the inflammation can be healed by 
antibiotics. However, it some cases such inflammations can become chronically. If so, 

the bones of the ossicular chain can become destroyed and are then ineffective for 
sound transmission. A loss of the middle ear function leads not to complete deafness 
because of sound transmission by bone conduction, but to hardness of hearing with a 
reduction of ca. 26 dB [6].  

Conductive hearing loss can also be caused by other diseases. Occlusions may occur in 
the external ear canal, for example evoked by impacted earwax, or in the eustachian 

tube. These can be corrected by a simple removal procedure. Another common disease 
is otosclerosis, which affects the ear surrounding bone and can result in an immobility 
of the stapes. Moreover, when displaced outer skin (squamous epithelial cells) 

intrudes the mucosa of the middle ear and sheds dead skin cells, these can build up 
over a long time and form a cholesteatoma. It can expand and erode the middle ear 
structures [6]. 

In general, fixed, disconnected or missing ossicles or large holes in the tympanic 
membrane lead to a conductive hear loss. In these cases, grafting or implant surgery 
is applied to rebuild the sound transmission function of the middle ear. Holes in the 

tympanic membrane are normally closed by autogenous grafts taken from the ear 
surrounding skin or from muscle tissue. Ossicular chain reconstruction can be 
realized by autogenous, allogenic or alloplastic materials. 
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a cholesteatoma denies the replantation of the ossicles because the cholesteatoma 
may arise from these again [8]. Also, autogenous materials like cartilage or cortical 
bone are not stable enough [12]. The application of allogenic materials has decreased 

due to the possible transmission of diseases like immunodeficiency syndrome or 
Creutzfeldt-Jakob disease [12]. In addition these materials have the disadvantage of a 
low accessibility and a limited storage life [8]. On this account alloplastic materials 

are often needed for ossicular chain replacement surgery. Several different types of 
biomaterials are employed in the middle ear, mainly metals, ceramics and plastic. 

Titanium has proved its good biocompatibility and has the advantage of good sound 
transmission properties at high frequencies due to its low weight [8, 12, 13 ]. 
Furthermore, titanium prostheses can be designed easily for difficult anatomical 
situations. They have the tendency to bend easily and are sometimes difficult to 

position. Although in literature an extrusion rate of only 0 to 2 % can be found [8], 
other sources give values of about 30 %. Gold prostheses can be formed as easily as 
titanium ones and have the benefit of the inhibition of bacterial growth, which can be 

an appropriate feature when implanting in a chronically infected area [8, 14 ]. 
However, due to its higher weight gold has worse sound conductive properties than 
titanium [8]. Typical titanium prostheses have a weight of about 4 mg, whereas gold 
prostheses have a mass of 56 mg.  

Plastics used for middle ear reconstruction are polytetrafluorethylene in combination 
with carbon, aluminium or hydroxyapatite (Proplast®) or polyethylene, which was 

polymerized under high pressure and heat (Plastipore®). The latter is also called a 
HDPS (high density polyethylene sponge) and is a porous material with pore 

diameters between 20 and 40 μm. The porous nature of the material is supposed to 

enhance the anchorage of the materials by tissue ingrowth [8]. The suitability of 
plastic materials for middle reconstruction is discussed controversial. On the one 
hand foreign body reactions addressed to the implant were reported, for example in 

form of fibrous tissue around the implant [8, 12, 14]. This effect was observed in 
combination with an extrusion rate of over 60 % and poor hearing results after long 
term implantation. The results were improved significantly by adding a piece of 

cartilage between the prosthesis, but extrusion rates from 7 to 15 % remain [8, 12, 
15]. On the other hand Plastipore® was stated to be second most applied material for 
middle ear reconstruction [8] and several work-groups reported satisfactory long-term 
hearing results [12, 16]. 
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Typical ceramics applied in the middle ear are alumina, hydroxyapatite and glass 
ceramics. Alumina is a bioinert material when applied as a non-porous sintered 
ceramic and shows good biocompatibility and suitability for ossicular replacement 

surgery. Moreover, this material is producing good hearing results and exhibits an 
extrusion rate of less than 3 % after 4 years; extrusion occurs mainly in seriously 
infected middle ears. A thin cell layer, a so called mucosa, which is advantageous, is 

formed on the prosthesis after several weeks [8, 17]. In an investigation with typical 
micro-organisms of the middle ear aluminium oxide showed favorable preliminary 
inhibition effect on bacterial growth [9]. 

Hydroxyapatite provides a good biocompatibility in combination with a high 
bioactivity, which leads sometimes to fixation of the material to the middle ear 
boundaries. Furthermore, the material degrades in 4 % of cases, but does not show 

extrusions [8]. The material is brittle and therefore not easily being shaped during 
operation. On this account, hydroxyapatite is often used in combination with other 
materials as hybrid prosthesis. For example, the head may be formed from 

hydroxyapatite and the piston consists of Plastipore®, plastipore-covered steel or 
HAPEX® (a composite of hydroxyapatite crystals mixed with HDPS). These hybrid 
prostheses have the feature of a good fixation to the ear drum and the piston can be 
trimmed easily [12, 16, 15]. 

Glass ceramics consisting of various combinations of the oxides of silicon, calcium, 
phosphorus, sodium, potassium and magnesium are known to have a good 

biocompatibility, but can also have a poor biostability. In the case of Ceravital® middle 
ear prostheses, a complete dissolution of the material was observed after long time 
implantation [18]. Bioverit® II is another available glass ceramic. It has proved its 

biostability after 13 years of implantation [12]. In addition, it has shown the desired 
workability and bony fixation to other ossicles, which can be beneficial for a better 
fixation of the implant [8]. However, if uncontrolled, the formation of new bone may 
result in an overall bony fixation of the prosthesis, which prevents sound conduction. 

In an animal experiment in a rabbit model, Bioverit® II exhibited good results 
especially in combination with a nanoporous silica coating, which supported the 
formation of mucosa around the implant while reducing uncontrolled bone formation 

[3]. Moreover, Bioverit® II has a preliminary inhibitory effect on microorganisms 
appearing in the middle ear [9]. 
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2.1.4. Development of innovative ossicular chain replacement prostheses 
Different approaches exist to improve sound conduction of middle ear implants. 
Several researchers are investigating the enhancement of sound conduction by 

optimization of the implant geometry [19]. The effect of topographic structure is also 
in focus, in the micrometer range [19] as well as in the nanometer range [3, 20, 21]. 
Goldenberg states that the development of new materials is more important that 

innovative design [16], whereas Stieve and Lenarz are presuming that the question of 
interest is not the base material itself but its shape and functionalization [4]. 
Prostheses should be equipped with features like drug reservoirs, special surface 
structures or immobilized biomolecules for defending against infections, better 

fixation and avoiding uncontrolled formation of scar tissue. Jahnke and co-workers 
carry out investigations leading in this direction. They suggest that the fixation of the 
prosthesis shall be improved by immobilizing bone growth factor (BMP2 – bone 

morphogenetic protein 2) to the implant surface so that new bone can form a tight 
fixation towards the residual stapes bone. In general, they propose the attachment of 
cell surface receptors onto implant materials in order to mimic human tissue 

response. The attachment of bone growth factors is a strategy also followed by 
Zahnert and co-workers [19]. 

Within the work package D1 “Functionalized middle ear prostheses” of the 

collaborative research center 599 “Sustainable bioresorbable and permanent implants 
of metallic and ceramic materials” a strategy has been developed to create an 
optimized implant which carries adapted functionalities in a modular fashion (Figure 

2−6).  
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Figure 2-6. Concept of a modularly, functionalized middle ear prosthesis. 

In a first step a mesoporous or as it is also called, a nanoporous silica coating has been 
applied to middle ear prostheses made from Bioverit® II .This coating has proved its 

ability in reducing the bioactivity of the base material Bioverit® II. In an animal 
experiment in the rabbit model, it was shown that the coating increases the formation 
of the desirable mucosa around the implant and decreases uncontrolled bone 

formation (Figure 2−7).  

 
Figure 2-7. Formation of mucosa and spongiosa on the surface of Bioverit® II middle 

ear prostheses in the rabbit model [3]. 
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Further biocompatibility testing of Bioverit® II implants spray-coated with a 
nanoporous silica film investigated in a special mouse model showed also good results 
[21]. The material was implanted for up to twelve weeks in the middle ear of mice. In 

this study the mesoporous silica film lead to an increased formation of new bone 
around the implant, but this was ascribed to the special implantation situation in the 
mice middle ear. The middle ear was nearly filled with the cylindrical implant and it 

had much more bone contact. In addition, the formation of new bone was activated by 
damaging the middle ear wall with a hole in order to position the implant in the 
cavity. 

This nanoporous silica layer established in prior work forms the basis for carrying out 
further functionalizations, as described in this work. The immobilization of BMP2 at 
the end of the prosthesis directed to the residual stapes bone should generate a better 

fixation thus reducing extrusion rates. The pores of the mesoporous silica coating can 
be used as a drug reservoir for antibiotics. This would allow to fight infections present 
in the middle ear at the time of operation. 
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lyotropic phase The shape of these micelles (spherical, cylindrical) depends on the 
concentration, temperature and type of surfactant. 

However, more often the cooperative self-assembly-mechanism (CSA) is assumed 
because at standard synthesis conditions the concentration of the SDA is too low to 

form a lyotropic crystal (Figure 2−8, route b). Here, the added inorganic precursor 

forms condensed oligomers that interact with the SDA and aggregate. Due to the 
influence of the inorganic oligomers the self-assembling tendency of the SDA is 
increased so that they form lyotropic phases below the concentration required. So in 

simple aqueous solutions, the mesostructure is formed by a mutual cooperative 
assembly of organic and inorganic components. At the end, the removal of the SDA is 
carried out by calcination or extraction, for example with ethanol, to yield the 

mesoporous material. 

The arrangement of the SDA aggregates influences the structure of the porous 
network. Mesoporous materials can exhibit hexagonal, cubic or lamellar structures. A 

typical example is the family of M41S-materials: MCM-41 (hexagonal), MCM-48 

(cubic) and MCM-50 (lamellar) (Figure 2−9). The highly ordered structure of these 

materials can be demonstrated by X-ray measurements showing typically five to ten 
reflections. Further possible structures are combined in the family of MSU-materials 
[26, 27, 28]. These materials are constructed by pore channels of same size but with 
no further periodic arrangement. Other similar examples are materials of type LMU-1 

[29] or KIT-1 [30]. The structure can also be described as worm-like and typically 
shows only one broad reflection in X-ray diffraction measurements.  

 
Figure 2-9. Structures of mesoporous M41S-materials, a) MCM-41 (hexagonal), b) 
MCM-48 (cubic) und c) MCM-50 (lamellar) (taken from [24]). 

2.2.2. Preparation of mesoporous silica films: the EISA mechanism  
The typical products of the synthesis of mesoporous materials are powders. In that 
form, an application as implant material is not possible. The use of mesoporous 
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materials in form of thin films on implant materials however, offers the general 
possibility of a biomedical application. A common method to deposit thin mesoporous 
silica films is the evaporation induced self-assembly (EISA) process. Within this 

process a substrate is dipped into a solution of a volatile solvent (e.g. ethanol), a silica 
precursor (e.g. TEOS), the surfactant, water and hydrochloric acid and withdrawn 
perpendicular to the surface. The concentration of the SDA in this solution is below 

the critical micelle concentration (CMC). The hydrochloric acid adjusts the pH value 
near the isoelectric point of colloidal silica to slow down further condensation of the 
inorganic phase during coating. The formation of the mesostructured film can now be 
correlated to a fixed position on the substrate as it is withdrawn from the dipping 

solution (Figure 2−10). At the point where the substrate leaves the reservoir, free 

SDA molecules and silica oligomers, or sol particles, are present. At higher positions, 

the evaporation of the volatile solvent occurs and the concentration of the surfactant 
increases progressively to form micelles, leading to a lyotropic phase. When all solvent 
is evaporated, the system is in the modulable steady state (MSS). At this point the 
liquid phase is equilibrating with its environment. The formed micelles obtain their 

final arrangement influenced by the relative humidity of the surrounding atmosphere 
[31]. Finally with further drying the condensation of the inorganic phase proceeds and 
the mesostructure becomes fixed.  

Besides the composition of the dipping solution and the ambient conditions another 
crucial factor that influences the result of the dip-coating process is the dipping speed. 

The faster the speed is the thicker are the produced films. The thickness of the film 
has to be adjusted in such a way that the diffusion of the solvent leaving the film is 
faster than the condensation of the inorganic network, because otherwise the solvent 
would become trapped inside the film. A typical dip-coating film has a layer thickness 

of less than 1 μm [31]. 
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Figure 2-10. Steady-state film thickness profile during dip-coating (taken from [25] 

according to [32]). 

2.2.3. Functionalization of silica surfaces 
The first topic of the following part will be the organo functionalization of silica 
surfaces in general. In a second part a more detailed description of the reaction 

mechanisms of trialkoxysilanes with silanol groups of silica surfaces will be given. 

Functionalization of mesoporous silica surfaces is a common tool of tailoring surface 

properties for desired applications, such as immobilization of proteins or drug 
delivery.  

Basically two different approaches exist to modify silica surfaces with organic groups. 
The most applied one is a post-synthesis procedure also called grafting. Within this 
method mostly commercially available trialkoxysilanes from type (R´O)3SiR, more 
rarely silazanes HN(SiR3)2 or chlorosilanes of various type, are allowed to react with 

the silanol groups of the silica surface. The advantage of this procedure is the 
preservation of the mesostructure which can be fixed by a preliminary calcination 
step. Various organic groups can be attached to the internal and external surface of 

the mesoporous network, for example thiol, amino, urea, epoxy, carboxyl, sulfonic 
acid, alkoxy or vinyl functions. One possible consequence of adding organic groups to 
the pore walls is a decrease of the materials porosity. Depending on synthesis 
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conditions, it is possible that the pore entrances are targeted firstly by the silane and 
thus, especially with large functional groups, pore blocking occurs. In this case the 
result is an unfavorable inhomogeneity of functional groups on the surface [24]. 

A selective grafting approach was shown by Ruiz-Hitzky and co-workers [33]. The 
first grafting step was carried out before the removal of the surfactant addressing to 

the external surface. After extraction of the surfactant a different functionality was 
grafted on the internal surface. 

When grafting methods are applied to plane silica surfaces (e.g. glass), self-assembled 
monolayers (SAMs) can form [34]. A SAM consists of a 2-dimensional structural 
arrangement of a monolayer of silane molecules which form due to intermolecular 
interactions. Examples are alkylsiloxane monolayers or fatty acids on oxide materials 

[35]. 

The second functionalization method is co-condensation, a one-pot procedure. Here 

the organic functionality is added to the reaction mixture, typically as a 
trialkoxysilane, together with the tetraalkoxysilane and the SDA. A uniform surface 
coverage with organic groups, the prevention of pore blocking and the covalent 

fixation to the pore walls are advantages of this method. However, some 
disadvantages occur. The organosilanes can only be added to the reaction mixture up 
to 40 mol-%, because otherwise the formation of the mesostructure is disturbed. In 
general the ordering of the mesostructure degrades with increasing organosilane 

fraction. An even distribution of organic groups can only be achieved if the 
alkoxysilane has a similar hydrolysis rate as the tetraalkoxysilane [36]. Moreover, the 
removal of the SDA after the synthesis is hampered, because destruction of the 

established organic functions has to be prevented. By means of extraction, 20 % of the 
surfactant may remain trapped, probably inside the micropores within the silica walls 
[36]. A reduction of porosity is occurring within the co-condensation method as well 

[24]. Furthermore, some functionalities like epoxy, nitril, amides or ester groups are 
not stable at synthesis conditions and can therefore not be applied within this 
procedure [ 37 ]. The products of grafting and co-condensation methods are 

schematically depicted in Figure 2−11. 
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Figure 2-11. Surface functionalization products of mesoporous silica by grafting (left) 
and co-condensation (right) (adapted from [24]). 

A further approach of establishing organic groups in mesoporous silica is the 
construction of the mesoporous framework with organosilica precursors of type 

(R’O)3Si-R-Si(OR’)3. These periodic mesoporous organosilicas (PMOs) exhibit a defined 
mesostructure with a narrow pore size distribution in which the organic functions 
become an essential part of the material [24].  

In the following part the modification of silica surfaces by coupling of trialkoxysilanes 
is focused. The modification of silica surfaces via grafting methods with organosilanes 

is well established. The connection mechanism of the silane to the silica surface 
depends on synthesis conditions (type of solvent, silane and substrate, concentration 
of the silane, temperature, humidity and time). The common mechanism suggested for 
the reaction in dry toluene at low concentrations of silane and minimum 

concentration of water is shown in Figure 2−12. First, the trialkoxysilane becomes 

hydrolyzed by water present on the silica surface. This hydrolysis is self-catalyzed 

when amines are the functional group. The hydroxyl groups formed in this way then 
connect to the surface silanol groups by hydrogen bonding. By heating, this 
attachment can be transformed into a covalent bonding by condensation, leading to 
siloxane bridges. The condensation can again be catalyzed by amine functions within 

the molecule [35]. In case of a lack of water in the system, this will lead to the 
formation of an incomplete monolayer [38].  
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Figure 2-12. Silanization in case of low concentration of silane and with minimum 
water content on a mesoporous silica surface (adapted from [38]). 

Smirnov and co-workers stated that two types of polycondensation reation occur, 

horizontal (intermolecular condensation of the trialkoxysilane) and vertical (formation 
of siloxane bridges to the surface) [39]. They studied the silanization of quartz slides 
with an amino trimethoxysilane in acetone and showed that the amino group density 
can be increased by an intermittent water treatment. They presumed that first the 

vertical condensation occurs, thereafter water proceeds to hydrolyze remaining 
methoxy residues; then, after a second silane treatment the horizontal polymerization 

is favored (Figure 2−13). 
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Figure 2-13. Two-step silanization with intermediate water treatment (adapted from 
[39]). 

Concerning highly ordered monolayer formation two different models exist. First is 
the deposition of a liquid-like, non-oriented film that remodels to an ordered structure 

and grows continuously. The second theory presumes the initial formation of close-
packed small areas, “islands”, which grow together to a dense film. This mechanism is 
favored by increasing the concentration of the silane, because the intermolecular 

condensation becomes more probable. Also with increasing water content, the 
formation of islands is preferred [40]. In general, increasing water content also leads 

to intermolecular condensation reactions in solution (Figure 2−14a). The formed 

aggregates then deposit on the surface (Figure 2−14b) [39]. The tendency of 

polymerization strongly depends on the synthesis conditions for each silane. In 
addition, the effect of the functional group of the silane on the silanol groups has to be 

considered. One example are amine functions, which can form hydrogen bonds to 
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silanol groups; in this case protonated ammonium groups were found to be oriented 
towards the surface and neutral ones away from it [41, 42].  

When the hydrolysis of the trialkoxysilane is carried out in water excessive 
polymerization will proceed [38]. Isolated monomers, cyclic oligomers, and larger 

branched oligomers are formed by alkoxysilanes (Figure 2−14c) in water depending on 

the type of silane, concentration, pH value, temperature, storage condition, and time 
[41]. In contrast, some silanes are stable in water for several hours (e.g., glycidyl-
trimethoxypropylsilane at pH 7). Multilayer formation can occur in case of high 

concentrations of silane or long reaction times. It is possible that multilayers deposit 
on top of the monolayer which was formed in the early state of reaction (Figure 

2−14d). Another alternative is direct fixation of higher condensed silica oligomers to 

the surface silanol groups in case of fast uncontrolled condensation in solution (Figure 

2−14e). 
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Figure 2-14. Silanization in case of high water or silane content. a) condensation of 
the silane forming larger molecules, b) deposition of higher silica oligomers at 

increased concentrations of silane, c) uncontrolled condensation of the silane in 
solution in case of extended reaction time or high concentration, d) Formation of a 
disordered multilayer on top of the monolayer at longer reaction times (right) or high 

concentration of silane (left), e) deposition of higher silica oligomers on the surface in 
case of fast intermolecular condensation in solution. 
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2.2.4. Mesoporous materials for immobilization of proteins 
Biomolecules can be immobilized by entrapment in polymeric capsules or gels, by 
physical adsorption (via VAN DER WAALS, electrostatic or hydrogen bonding 

interactions) or covalent attachment (for example, formation of imine bonds or 
disulfide bridges) to a support [43]. Another possibility is cross-linking of the protein 
itself [44]. Often, polymers bearing functional residues are used as immobilization 

supports, but inorganic supports are also considered as immobilization material. 
Clays, layered double hydroxides, silica gels, controlled pore glasses, amorphous 
aluminium phosphate, alumina and zeolites are examples of utilizing an inorganic 
material as a host for biomolecules [45, 46]. For applications in living systems, 

general biocompatibility is an important issue which has been proven for silica 
materials in previous work [3, 20, 21, 47, 48]. 

Mesoporous silica was first used as support for enzyme immobilization in 1996 [49]. It 
is suitable for protein immobilization because of its high surface area, defined pore 
geometry, connectivity and adjustable size [44, 46]. In addition, the presence of 

microchannels allows faster diffusion [49]. Further factors controlling protein 
adsorption are particle shape and size, concentration of the protein and temperature 
during adsorption [50]. The advantage of protein immobilization on solid supports like 
mesoporous silica lies in their application. The possibility of separation, storage, reuse 

and stability, especially in organic media, are crucial factors for industrial processes.  

In general, a protein can develop three different types of interaction with a silica 

surface: electrostatic interactions, hydrogen bonding and VAN DER WAALS 
interactions. All these depend on the chemical nature of the silica support and protein 
at the surrounding conditions. On this account three different strategies are followed 

concerning protein immobilization in mesopores.  

Firstly, the protein can simply be physically adsorbed on the unmodified surface 

(Figure 2−15). Here larger pores are leading to higher amounts adsorbed, but always 

bear the disadvantage of leaching. However, if the further reaction is conducted in 
organic media the water soluble protein is trapped inside the pores and leaching does 

not occur. Moreover it is possible that the activity of an enzyme is even increased by 
adsorption in mesopores. On the one hand the adsorption of reactants can be 
facilitated by the hydrophilic surrounding of the silica, and on the other the 
adsorption of enzymes on the surface prevents enzyme aggregation [49, 51 ]. A 
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detailed strategy for adsorption of enzymes on mesoporous materials was developed 
by Hodnett and co-workers [52]. 

 

 
Figure 2-15. Protein immobilization strategies (adapted from [49]). 

The second possibility of protein immobilization is encapsulation. This is a two step 
procedure. First the protein is adsorbed into the porous system and then the pore 

entrances are closed in a second silanization step (Figure 2−15). This is an effective 

way of keeping the protein in the pore, but has the disadvantage of a possible 
destruction of the protein during the synthesis.  

The third and most effective way of controlling protein immobilization is chemical 
binding to the surface. This can be established by electrostatic or covalent binding. 
The functional groups necessary for this kind of strong fixation are introduced by the 

mentioned grafting and co-condensation methods. Possible organic functions are 
thiol-, carboxyl-, alkyl chloride-, epoxy- and amino-functions. Hydrophobic 
interactions can be utilized with alkyl-, phenyl-, or vinyl-functions. Epoxy residues 
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can react with amino functions of the protein to form covalent bonds [53] (Figure 

2−16a). Aldehyde groups offer the possibility of forming imine bonds (Figure 2−16b) 

with amines present in proteins. In order to achieve bond formation between amino 
functions and carboxyl residues, often additional cross-linkers or activators have to be 

used. Besides carbodiimides [54] (Figure 2−16c), homo or hetero-bifunctional cross-

linkers carrying succinimidyl esters [55] (Figure 16d, e) or maleimide functions are 

most common [56] (Figure 2−16f). Furthermore, covalent coupling of proteins can be 

achieved by means of click chemistry [57] and formation of disulfide bridges [58].

 
Figure 2-16. Possible reactions for the covalent immobilization of proteins on silica 
surfaces (adapted from [44, 53, 56, 58]).  

2.2.5. Mesoporous materials for controlled drug delivery 
Controlled drug delivery systems are tools for the transportation of drugs to the 
targeted tissue and for keeping a therapeutic drug level for a desired time. Often 

polymers are used for this purpose [59]. However, because of some disadvantages in 
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biocompatibility and degradation behaviour new materials are constantly being 
investigated as drug delivery systems.  

Three different types of silica have been considered as drug delivery devices: silica 
based xerogels, mesoporous silica (also in form of nanoparticles) and mesoporous 
hollow silica spheres [60]. In this part a short overview of mesoporous drug delivery 

materials shall be given. Detailed information can be found in recent reviews [61, 62, 
63]. 

Mesoporous silica is a promising candidate for drug delivery systems because of its 
unique properties. The size and shape of the pores of the well-defined porous network 
and their connectivity are important factors in delivery control. The ratio of pore to 
drug size is supposed to be adjusted properly. Whether the pores are much larger 

than the drug molecules, or the pores are much smaller, the adsorption of large drug 
amounts is inhibited [61]. Normally, a pore size just a bit larger than the drug 
molecule is optimal. Due to the variability in mesoporous silica synthesis, the pore 

size can be adapted to the size of drug molecule. In addition, larger pores connected 
through smaller pore windows are supposed to have slower release behaviour. In case 
of similar particle morphology, it can be found that smaller pores exhibit a slower 

release profile. Concerning particle size, one can state that the smaller the particles 
are the faster is the release, due to diffusion control. Another quality of mesoporous 
materials is their high surface area. A higher surface area accounts for a higher 
amount of drug loaded.  

The most important feature of mesoporous silica in control of drug delivery is the 
possibility of surface functionalization as already mentioned above. The silanol groups 

present on the silica surface can be modified by means of grafting or co-condensation 
methods as described in section 2.2.3, whereas post-synthesis grafting methods have 
shown better results so far [61]. A wide range of functionalities is possible, allowing 

host guest interactions like electrostatic attractions (positively or negatively charged), 
hydrogen bonding, aromatic or hydrophobic interactions or formation of labile ester 
functions, tailored for the desired drug [61, 64]. Here again, the density of these 
functionalities has to be adjusted carefully because not the type of charge is the 

crucial factor but the net charge of the surface at a defined pH value [65].  

These functionalizations have not only the purpose of increasing the amount of 

inserted drug, but also to control the release behaviour. In most cases an initial burst 

release profile can be observed (Figure 2−17a). This release behaviour can be useful if 
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an acute infection is present and a high dose of drug is needed at the beginning. 
Unfortunately the small doses released later are often too low to have a therapeutic 
effect. Release profiles controlled by hindered diffusion or dissolution of the drug are 

slowed down (Figure 2−17c) Therefore, covering the inserted drug in the porous 

system with an additional layer is a strategy for controlled release [60]. A favorable 
case for many applications would be a constant drug release over the necessary time 

(Figure 2−17d) maintaining the therapeutic drug levels for a long time period. A 

combination of large initial release dose with sufficient doses released later could also 

be effective in surgery (Figure 2−17b). A more sophisticated approach is a stimulus-

responsive drug release system (Figure 2−17e). Here drug doses are released after a 

stimulus from outside or changes of surrounding conditions such as temperature 

change, illumination or change of pH value. These systems are to be applied 
especially when the drug carrier has to reach the targeted tissue before the release of 
the drug, or when the need for the application of the drug itself triggers the drug 

release (e.g., infections cause acidic pH values that would stimulate the release of 
drug). 

 

 
Figure 2-17: Drug release profiles (adapted from [61]). 
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2.3. Detection methods for immobilized proteins 

2.3.1. Chemical detection – para-nitrophenylphosphate assay for alkaline 

phosphatase  
Alkaline phosphatase is a hydrolyzing enzyme which catalyzes the hydrolysis of 
phosphoric acid esters. It cleaves phosphate groups of molecules like proteins, 

nucleotides and alkaloids and to produce alcohols. Alkaline phosphatase is present in 
most organisms. In the human body, alkaline phosphatase is found prodominantly in 
the liver, kidney, bile duct and in bones in the form of different isoenzymes. It can be 

detected in the blood serum where an increased amount of the enzyme indicates 
diseases of liver and bones, mainly. For example, bone defects cause elevated levels of 
alkaline phosphatase. 

Alkaline phosphatase is a metalloenzyme which is made up of two subunits. Three 
divalent cations are necessary (three zinc ions or one magnesium and two zinc ions) at 
its catalytic center. The metal ions facilitate the covalent binding of the substrate-

phosphate group at the active center [66, 67]. 

The most frequently used methods for the detection of enzymes are based on 

fluorogenic and chromogenic substrates. During the application of these assays, a 
nonfluorescent or colorless substrate turns into a fluorescent or colored product. Often 
electron-poor conjugated aromatic phenols carrying a functional residue that can be 

cleaved during the enzyme-catalyzed reaction are used as substrates [68].  

One method to determine the activity of the alkaline phosphatase is based on the 
reaction with the substrate para-nitrophenylphosphate. After dephosphorylation, the 

yellow product para-nitrophenolate anion or para-nitrophenone respectively is 

formed, which can be detected spectrophotometrically at 405 nm (Figure 2−18) [69]. 

The amount of para-nitrophenone formed is directly proportional to the activity of the 
enzyme. The measurement of enzymatic activities is given in “units” with one unit 
being defined as the amount of enzyme that transforms one micromole of substrate 

per minute at given conditions ( 1 U = 1 μmol min−1). 
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Figure 2-18. Reaction of the para-nitrophenylphosphate assay for quantification of 
alkaline phosphatase. 

In this work the para-nitrophenylphosphate assay is used as an indirect method to 
determine the amount of immobilized active enzyme on the surface. The activities 
detected with the enzyme-bearing glass substrate are compared to calibration curves, 

which rely on the relation between activity and free enzyme in solution. In this way, 
the activity of immobilized enzyme can be correlated with an amount of free enzyme 
in solution. This value corresponds to the amount of active alkaline phosphatase on 
the surface. It is possible that more enzyme has been immobilized, but is inactive, for 

example due to steric hindrance. It is important to carry out the calibration 
measurement at the same time as the measurement of the immobilized enzyme using 
identical solutions, because surroundings and synthesis conditions are crucial factors 

for enzyme activity. 

2.3.2. Biochemical detection – enzyme-linked immunosorbent assay for 

BMP2 
For the detection of the immobilized BMP2 an enzyme-linked immunosorbent assay 
(ELISA) can be applied. This method relies on the specific recognition of an antibody 
by an antigen. An antigen is an antibody generating substance that evokes an 

immune response in vivo. Antibodies can be proteins or polysaccharides, for example. 
In the simplest set-up, an enzyme is covalently linked to an antibody, which is specific 
for the substance to be quantified. In case of antigen being present this enzyme-linked 

antibody forms an antigen-antibody-enzyme complex. After removal of unbound 
antibody, the corresponding enzyme substrate is added and the enzyme is allowed to 
react with the substrate. The amount of the product correlates with the amount of 

protein. Often used enzymes include horseradish peroxidase or alkaline phosphatase. 
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They convert colorless substrates into colored products, which can be determined 
spectrophotometrically.  

The method for BMP2 detection is based on an indirect ELISA. In this set-up, a 
specific antigen is immobilized on a plate (optimized for high protein adsorption) and 
the antibody is allowed to bind to the antigen. In a subsequent step the enzyme-linked 

antibody is applied and can form colored products to be detected (Figure 2−19). 

 
Figure 2-19. Principle of an indirect ELISA; after each step of the procedure washing 

occurs. 

In the special case of the detection of immobilized BMP2 the sample contains antigen 
(namely, BMP2) already immobilized on the desired substrate. After blocking of 
nonspecific binding sites over night with 10 % fetal calf serum in phosphate buffered 

saline and washing, a monoclonal mouse anti-human BMP2 antibody (the antibody is 
produced in mice and recognizes human BMP2) is added. After washing, the sample is 
combined with a goat anti-mouse antibody peroxidase conjugate. This enzyme-linked 

antibody is raised in goats against the mouse antibody and is allowed to react with 
the horseradish peroxidase substrate 3,3’,5,5’-tetramethylbenzidine. After addition of 
sulfuric acid, a stable yellow diimine is formed which can be detected 

spectrophotometrically at 450 nm (Figure 2−20) [70]. 
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Figure 2-20. Reaction of the substrate 3,3’,5,5’-tetramethylbenzidine for the 
colorimetric detection of BMP2 (according to [70]). 

The washing steps within this procedure are carried out with Tween-20® in tris-
buffered saline. Tween-20®, a polyoxyethylene derivative of sorbitan monolaurate, is a 

nonionic polysorbate surfactant (Figure 2−21). Tris-buffer (tris-hydroxymethyl-

aminomethane) can be used in a pH range between 7 and 9.2 (here: 7.5) and is 
therefore often used to simulate physiological conditions [71]. 

 
Figure 2-21. Chemical structure of Tween-20®. 

2.3.3. Biological detection – BRE-luc test for the detection of immobilized 
BMP2 

For the detection of immobilized and biologically active BMP2, a recently developed 

cellular test system was applied [72]. The principle of this BRE-luc test is as follows. 
Suitable mouse cells (C2C12) were stably transfected with an expression construct 
containing a specific DNA sequence (called promoter which contains the BMP-
responsive elements, cf. below) and the luciferase reporter gene (luc). This means 

that a plasmid was introduced into the mouse cells and stably inserted into their 
genomes. Due to this expression construct, the cell is able to produce the desired gene 
(luciferase from fireflies) under certain conditions which relate to the specific DNA 

sequence. 

The expression vector is carrying a promoter with BMP-responsive elements. A 

promoter is a sequence of DNA positioned near a certain gene (here: the luciferase 
gene) that allows for the transcription of this gene. The transcription in a cell is 
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carried out by the enzyme RNA polymerase. As the name implies, BMP-responsive 
elements are activated only by the presence of BMP. Once the extracellular BMP 
protein is binding to the surface of the cells, within the cells the BMP-related Smad 

signalling pathway is induced. Smads target the BRE-responsive elements and 
therefore the luciferase reporter gene is switched on, which leads to production of 
luciferase. Similar to alkaline phosphatase, the activity of the produced enzyme is 

measured, in this case using luciferin as substrate. During this reaction photons are 
emitted that can be detected as chemoluminescence in the cell lysates 24 to 48 hours 
after BMP exposure. The signal is dose-dependently related to the amount of BMP 
which has interacted with the cells and can be applied for the detection of BMP2, 

BMP4 and BMP7. The assay with a detection range of 0.5 to 1 ng ml−1 is at least 100-

fold more sensitive than the classical alkaline phosphatase activity assay (about 1000 

ng ml−1). And, because the alkaline phosphatase is an indirect BMP target gene, the 

assay needs three to six days to give reliable information. The alkaline phosphatase is 
present when fully developed bone cells occur, whereas the BRE-luc test is conducted 

with undifferentiated precursor cells. 

This general method has recently been adapted to the detection of immobilized BMP2 
on inorganic substrates [71]. 
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3 Results and discussion 

3.1. Immobilization of alkaline phosphatase on modified silica 

coatings  

Preface 

This section deals with the immobilization of the enzyme alkaline phosphatase on 

structurally different silicate substrates. Uncoated glass sides as well as an 
unstructured and a mesoporous silica film, both coated on glass slides, were 
investigated as substrates. The main objective was to develop an immobilization 

strategy for proteins which can be transferred to implants. A major question was 
whether the structural properties of the surface exert an influence on enzyme 
immobilization, especially whether the high surface area of the mesoporous film 

increases the amount of bound enzyme. Furthermore, a suitable linking agent had to 
be identified among from different trialkoxysilanes carrying different functional 
groups like epoxy, urea and amino. Another aim of this investigation is the 
optimization not only of type of functional group, but also of its density, which is 

influenced by the concentration of the silane during the modification step. 

This section will be submitted as an original research article to the journal 

Microporous and Mesoporous Materials. The authors are Nina Ehlert, Dr. Peter P. 
Müller, Dr. Martin Stieve and Prof. Peter Behrens. 

The idea to develop a general immobilization strategy for proteins which can in 
principle be transferred to implants was developed within the work package D1 
consortium by Prof. Peter Behrens, Dr. Peter P. Müller and Dr. Martin Stieve. The 
approach to test this strategy with alkaline phosphatase as a cheap and robust model 

enzyme was developed by the author of this thesis, Prof. Peter Behrens and Dr. Peter 
P. Müller. The author of this thesis has designed the experiments in agreement with 
the supervisor and has carried out all experimental work, including the preparation of 

the samples, their characterization and the adaptation of the nitrophenyl phosphate 
assay. Furthermore, the results have been interpreted with the aid of the supervisor. 
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Abstract  

The influences of silica surface structures and various silane linker molecules on the 

capacity to bind active proteins were investigated. For this purpose, microscope glass 
slides were coated with unstructured or mesoporous silica films. The binding of the 
protein to the surface was mediated by trialkoxysilanes with different functional 

groups like amino, epoxy, and urea functions. As a model protein, alkaline 
phosphatase (ALP) was chosen. Enzyme assays showed that all the functionalized 
trialkoxysilanes tested were able to immobilize active ALP on silica surfaces. Using 

the 3-aminopropylsilyl modification resulted in the highest activity of bound ALP, 
especially in combination with a mesoporous surface coating. Interestingly, 
unstructured silica films had only low capacity to immobilize active enzyme whereas 
both mesoporous silica coatings and plain glass bound higher amounts of active ALP. 

By using mesoporous coatings functionalized with 3-aminopropylsilyl residues 
maximal binding capacities for active ALP were achieved. This combination appeared 
most promising for further development of bioactive surfaces for practical applications 

such as industrial enzymatic applications or surgical implant functionalization.  

Keywords: mesoporous coating, protein immobilization, alkaline phosphatase (ALP), 

silanization. 

Introduction 

The immobilization of biomolecules on solids plays a decisive role for a variety of 

applications, and improvements are made continually for example in the fields of 
biosensors [73, 74], drug delivery [75-77] or for optimal tissue integration of implants 
into living systems. Especially the latter topic is getting ever more important, as there 

is an increasing demand of implants due to higher life expectancy. Apart from other 
important approaches, as the application of specific surface structures in the micro- or 
the nanometer range [3] or chemical modification of implant surfaces [ 78 , 79 ], 

coatings with biochemically active substances like drugs or proteins cannot only 
improve the biocompatibility of implants, but can be employed to promote the healing 
process and enhance implant functionality. For example, a coating with antibiotics 
can avert the occurrence of infections after implantation [80-82]; the modification of 

an implant surface with BMP2 (Bone Morphogenetic Protein2) can induce the 
differentiation from precursor to bone-forming cells, thus allowing better fixation of 
bone replacement implants [83, 84]. Here we present the use of mesoporous silica 
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coatings for implant materials which can be used as a base system for further 
functionalization, especially for the immobilization of proteins. We have recently 
shown in several animal experiments that such mesoporous silica coatings are 

biocompatible [3, 20, 21]. 

Protein immobilization has been developed for various materials [78, 85]. Due to its 

high surface area [24], mesoporous silica materials have shown promising results, 
using various immobilization strategies [43, 46, 49, 86-89]. A major problem is the 
stable attachment of the protein to the surface. Biomolecules only adsorbed physically 

are easily removed, for example by body fluids. Therefore, fixation of proteins by 
strong covalent or ionic bonds is usually preferred, although the strong fixation can 
influence the conformational properties of the proteins or render their active parts 
inaccessible, thus reducing their activity. Nevertheless, industrial processes have 

shown that the immobilization of enzymes in mesopores can have the advantage of 
easy separation and increased stability due to protection from denaturation in the 
pores [49]. The activity of bound proteins generally can be influenced by multiple 

parameters, such as the surface structure (topography, roughness, porosity) [90, 91] of 
the substrate, the material surface properties [49, 86] and the chemical nature of the 
bonding [49]. 

The present approaches of immobilizing proteins on glass or silica surfaces [92] or on 
mesoporous silica [43, 49, 86-89] are following different routes like the mentioned 
simple adsorption [86, 88] or the use of reactive functional groups which are attached 

to the substrate by the reaction of trialkoxysilanes with surface silanol groups [43, 49, 
89, 92]. However, it has not yet been convincingly demonstrated that mesoporous 
silica exhibits true advantages in comparison with other silica surfaces (e.g. plain 

glass or unstructured sol-gel-derived coatings). In spite of the large surface area of 
mesoporous silicas, protein immobilization inside mesopores as well as the access of 
the substrate molecules might be hampered by diffusion limitations.  

Here we present a basic study on the strong immobilization of alkaline phosphatase 
(ALP) onto differently structured silica surfaces, namely plain glass slides, glass 
slides coated with an unstructured or with a mesoporous silica layer. The design of 

our study is summarized in Figure 3−1. We tested different functional groups 

attached to the silica surface by a silane like amino, epoxy and urea functions. 
Judging from the activity of the immobilized ALP, we can thus compare the influence 

of the different surfaces and the different linking agents. As the protein to be 
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The solution was prepared by adding TEOS to a solution of EO20PO70EO20 in ethanol, 
water and hydrochloric acid. The solution was stirred for about 10 minutes before 
coating the specimens. The glass slides were coated using a dip-coating procedure (DC 

Small Dip-Coater from NIMA, Coventry, England) taking place at constant air 
humidity of 80 %, adjusted by 50 m% glucose solution [25, 31]. They were dipped into 
the solution for 30 seconds, withdrawn with approximately 1 mm/min and left at 

constant air humidity for five minutes. Afterwards, the specimens were dried at 60 °C 
over night. The organic material was subsequently removed by calcination at 415 °C 
for 4 h to yield mesoporous silica. The amorphous coatings were synthesized in a 
similar procedure, but omitting the EO20PO70EO20 surfactant. In this case the glass 

slides were left in the dipping solution for 2 minutes. 

Chemical modification of the substrates 

The cleaned or coated glass slides were incubated in aqueous solutions of 3-

aminopropyl-trimethoxysilane with different concentrations between 0.1 to 10 m% or 
in 10 m% solutions with other linker molecules, namely [3-(2-aminoethylamino)-
propyl]trimethoxysilane, 3-[2-(2-aminoethylamino)ethylamino]propyl-trimethoxy-

silane, (3-glycidyloxypropyl)trimethoxysilane or N-[2-(trimethoxysilyl)-proply]urea 

(Figure 3−1). Prior to incubation, the silane solution was allowed to hydrolyze for 15 

min. After an incubation time of 2 minutes the glass slides were rinsed sufficiently 

with water to remove the excessive silane and were then transferred directly into the 
solution containing ALP. 

Characterization methods 

X-ray diffraction patterns were recorded on a Stoe (Darmstadt, Germany) θ/θ-

diffractometer in reflection geometry using CuKα radiation and a secondary beam 

monochromator (graphite). 

The thickness of the mesoporous silica film was measured with a stylus profiler 
DETAK6M from Veeco instruments Inc. (Plainview, USA) with a force of 8 mg, 

duration of 200 seconds and length of 10 000 μm per measurement. 

Static contact angle measurements were performed on a Surftens universal contact 

angle goniometer (OEG, Frankfurt/Oder, Germany) with water as the probing liquid. 
On every glass slide, the contact angle was measured at ten different positions, all at 
least five millimeters away from the edges of the glass slide. Each experiment was 
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repeated ten times and the average was calculated. The standard deviation did not 
exceed 4°. 

Immobilization of alkaline phosphatase  

The modified glass slides were incubated in a 0.026 mg ml−1 solution of the ALP (from 

porcine kidney, 123 Units per mg protein, one unit will hydrolyze 1.0 μmole of p-

nitrophenylphosphate per min at pH 9.8 at 37 °C, Sigma-Aldrich no. P4439) for 4 min 
at 0 °C and afterwards washed three times with a solution of magnesium chloride and 
diethanolamine (same concentrations as in the substrate assay) to remove physically 
adsorbed ALP. 

Alkaline phosphatase activity assay and quantification of immobilized ALP 

The enzymatic activity of ALP was tested by a simple colorimetric assay with the 
substrate p-nitrophenylphosphate. The ALP immobilized on glass slides was allowed 

to react for five minutes with the substrate (1.25 mM) in a buffer of diethanolamine 
(1060 mM) and magnesium chloride (0.53 mM). The reaction was stopped by adding 
3 M sodium hydroxide followed by the extinction measurement 405 nm. For this 

purpose, a spectrophotometer UV mini 1240 (Shimadzu, Duisburg, Germany) was 
used. All values given are an average of five measurements. The baseline correction 
was carried out with the unreacted nitrophenylphosphate substrate solution. 

The extinction values were compared to a calibration curve which was established 
individually for each series of experiments. Different soluble equivalents of an ALP 

solution (0.026 mg ml−1) were added to the substrate solution and allowed to react for 

five minutes. Extinction values were determined and a linear calibration curve was 
calculated. The amount of ALP immobilized determined in this way was referred to 
the macroscopic surface area of the glass slide and these values are then given in 

ng cm−2. Values given are the result of five independent experiments. For positive 

control experiments a nitrocellulose membrane (blotting-cellulose nitrate membrane, 
Sigma-Aldrich no. 15363) was cut into same size as standard glass slides and the 

incubation and assay were done under identical conditions. 

Results 

X-ray diffraction 

As expected, the uncoated glass slides and the unstructured films do not show any X-
ray reflections, due to the absence of a periodic arrangement in their structures. In 
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contrast, the mesoporous films show a reflection at 2θ  = 1.6° (Figure 3−2). This 

reflection is evoked by the electron density contrast between the empty cavities after 

removal of the organic material and the silica wall material. As no additional peaks 
appear, the pores in this coating have no ordered arrangement as a hexagonal, cubic 
or lamellar packing, and no preferred orientation with regard to the substrate. The 
mesopore structure is thus disordered, similar to bulk mesoporous materials of the 

LMU-1 [29] or KIT-1 [30] type. Therefore, pore mouths are present on the surface of 
the coating, as has also been shown by us in related work by high-resolution scanning 
electron microscopy [100], and the pore system can be accessed from the surface. 

Animal experiments [3, 20, 21] have shown that such mesoporous coatings on 
standard biomaterials (Bioverit® II) are biocompatible and that they can alter tissue 
reactions in living beings.  

 
Figure 3-2. XRD pattern of a mesoporous coating on a glass slide. 

Contact angle measurements 

To investigate the changes of surface properties due to silanization, contact angle 
measurements were performed. The static water contact angles after modification 
were compared to glass slides treated the same way but without the silane (Figure 

3−3). The efficiency of silanization can be monitored by an increase of the contact 

angle. The mesoporous film had the most hydrophilic surface with a contact angle of 
8°, which is in line with published results [101] where the strong hydrophilicity of 

mesoporous silicas was inferred from determinations of the number of surface silanol 
groups (Sears number). This can be explained with the high surface area due to the 
inner pores of the film. The unstructured coating had a more hydrophobic contact 
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hydrophobic in its pristine state. Ureido and epoxy functionalization lead to a further 
increase in hydrophobicity, whereas amino functionalization tended to decrease the 
contact angle. Recently, it was shown that surface topographies, i.e. nanostructures 

and nanopores, can directly influence contact angles [102]. Little is known so far 
about these influences so that they have been omitted from the discussion above, 
which relates mainly to the chemical character of the modifications. 

Activity of surface-immobilized alkaline phosphatase 

The results of the nitrophenylphosphate assay are shown in Figure 3−4. Because of 

the rather large standard deviations of the measurements all conclusions must be 
drawn with care. All types of silane linkers are able to immobilize ALP on silica 
surfaces and at least the part detected by the assay is biochemically active. For 

comparison, on the uncoated glass surface only 4 ng cm−2 of ALP were found; without 

modification by a silane, the unstructured silica layer as well as the mesoporous ones 

were able to adsorb only negligible amounts of about 2 ng cm−2 of the immobilized 

ALP. For all substrates, the simple aminopropyl linker appears to be the most 
effective immobilization agent. Comparing the different substrates, it is interesting to 
note that the unstructured silica coating consistently gave lower activity values than 

the plain glass slides and than the mesoporous coating. More importantly, with the 
most effective linking agent, the aminopropylsilane, the activity measured for the 
samples based on a mesoporous coating were considerably higher than those for the 

other substrate surfaces. Therefore, further investigations were carried out using the 
3-aminopropyl-silane system. 
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ALP per cm−2 of the substrate. However, we can compare the amount of 63 ± 8 ng cm−2 

ALP obtained by our optimized method (applying an aminopropylsilyl modification to 

a mesoporous coating) with a control experiment using a nitrocellulose membrane, 
which is known to effectively bind proteins and, especially, to have a very high 
capacity for binding ALP. Applying the same concentrations and conditions as in our 

other experiments, a nitrocellulose membrane bound 116 ± 7 ng cm−2 of ALP. 

Comparing the mean thickness of the membrane of about 140 μm (specification from 
Sigma Aldrich Chemie GmbH, Taufkirchen, Germany) to that of the mesoporous silica 

film, which lies between is 30 to 150 nm, suitably modified mesoporous silica coatings 
can effectively bind ALP and, presumably, other proteins. 

The main result of this study lies in the influence of surface structural properties on 
the efficiency of binding active protein. The amorphous silica coating showed the 
lowest capacity in binding ALP, whereas the mesoporous surface coating is able to 

bind similar and in some cases higher amounts of active ALP as the uncoated glass 
slides. This finding could appear unexpected in that the increase of surface area from 
plain glass to the amorphous coating has a negative effect on the ability to immobilize 
the protein, although tentatively an increase of surface area, for example by 

increasing the roughness of the substrate surface by means of a coating with 
nanoparticles [90], should evoke an increase in the binding capacity. When discussing 
possible reasons, one has to keep in mind that here we determined the amount of 

active enzyme bound to the surface. Many peculiar properties of the binding systems 
then come into play. For example, the irregular pore geometry of the unstructured 
coating might inhibit the formation of specific conformations of the enzyme molecules. 

On the other hand, the regular and defined geometry of the pores of the mesoporous 
coating might induce a higher activity when the fit of the enzyme in the pores is 
appropriate. Plain glass slides might actually bind much less enzyme than the 
mesoporous coatings, but leave the enzyme intact and easily accessible so that the 

measured activity of bound ALP is similar. 

The binding mechanism between amino functions on a surface and a protein has not 

been clarified yet. The type of binding is possibly electrostatic, between protonated 
amino groups and anionic groups of the protein; covalent bonds, however, cannot be 
excluded regarding the nucleophilicity of unprotonated amino groups. Hydrophobic 

interactions may also play a role, as it was recently proposed for BMP2 (bone 
morphogenetic protein 2) [103]. Such interactions could occur with the propyl residues 
of our linking agent or with hydrophobic parts of the silica surface (regions where only 
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fully interlinked [SiO4/2] tetrahedra and no silanol groups are present). The 
elucidation of the binding mechanism was not the aim of this study. It is then also 
difficult to tell why one specific combination (aminopropylsilane modification of 

mesoporous coatings) yields much higher values of active immobilized ALP. However, 
these results were consistently reproduced and we have been able to successfully 
transfer this binding mode to the immobilization of BMP2 (bone morphogenetic 

protein 2), a signaling molecule of importance in bone regeneration and implant 
construction [104, 105]. 

It has to be mentioned that mesoporous silica films exhibit only low stability under 
conditions of relevance for biological applications [106]. We have investigated this 
stability problem in another context [100]. However, with regard to the short time 
scales used in the investigations presented here, the films can be considered as stable.  

Conclusions 

In our studies, all functionalized trialkoxysilanes tested were able to immobilize ALP 

on silica surfaces. Especially, it was shown that mesoporous coatings were more 
effective in binding ALP than unstructured sol-gel coatings. The combination of a 
mesoporous coating equipped with amino functions resulted in the highest activity of 

bound ALP. In fact, using this optimized binding method, mesoporous silica layers 
gave results which compare favourably with a standard substrate (nitrocellulose 
membrane). Meanwhile, this protein attachment strategy has successfully been 
transferred to the immobilization of BMP2 [107]. 
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3.2. Amino-modified silica surfaces efficiently immobilize Bone 
Morphogenetic Protein 2 (BMP2) for medical purposes 

Preface 

In this second section of the chapter on Results and Discussion, the results dealing 
with the immobilization of BMP2 on different glass and ceramic surfaces are 

presented. The immobilization strategy established for the alkaline phosphatase was 
transferred successfully to the attachment of BMP2. Again, glass substrates (plain, 
with unstructured or with mesoporous coating) were used; in addition, the glass-mica 

ceramic Bioverit® II was employed as a typical biomaterial established in bone 
replacement and especially in middle ear surgery. The BMP2 is supposed to induce a 
controlled local bone formation between a middle ear prosthesis and the residual 
stapes bone (which typically remains after removal of the ossicular chain) in order to 

achieve a stronger fixation. 

The procedure for BMP2 attachment should be as simple as possible, so that the 

reaction can be carried out directly before or even during the operation. This is due to 
the low storage stability of proteins and to the fact that a middle ear prosthesis may 
have to be shortened during the implantation to adapt it to the space of the specific 

middle ear; in this case an unfunctionalized surface would be presented.  

This section will be submitted as an original research article to the journal 
Biomaterials. The authors are Nina Ehlert, Dr. Andrea Hoffmann, Dr. Gerhard Gross, 

Dr. Peter P. Müller, Dr. Martin Stieve, Britta Hering, and Prof. Peter Behrens. 

The idea to develop an immobilization strategy for BMP2 and to apply this strategy to 

middle ear implants was developed within the work package D1 consortium by Prof. 
Peter Behrens, Dr. Peter P. Müller, Dr. Martin Stieve and Prof. Thomas Lenarz. The 
author of this thesis has designed the experiments in agreement with the supervisor 

and has carried out the experiments concerning the preparation of the samples and 
their basic characterization. SEM investigations were carried out together with Britta 
Hering from the Institute of Inorganic Chemistry in Hannover. The immunochemical 
(ELISA) and specific biological in vitro tests (BRE-luc) were carried out by PD Dr. 

Andrea Hoffmann and Dr. Gerhard Gross from the Helmholtz Center for Infection 
Research in Braunschweig. The results have been discussed and interpreted with her 
and with the supervisor of this thesis. The manuscript presented here was developed 



3   Results and discussion                                                                                               49 

in cooperation with Dr. Andrea Hoffmann, Dr. Peter P. Müller and Prof. Peter 
Behrens. 

The positive results of this work have encouraged the D1 consortium to test implants 
with attached BMP2 in animal experiments on rabbits, using two sites, namely a 
subcutaneous location and the functional site in the middle ear. For this purpose, the 

author of the present thesis has produced large numbers of partially or fully BMP2-
coated implants (30 pieces). These implant samples were always prepared directly 
before the operation which took place on 18 different days. Great care was taken with 

regard to the reproducibility of the procedure. First results from the histological 
evaluation of the explanted samples from the subcutaneous site (performed by Iwa 
Hlozanek, Dr. Gudrun Brandes and Dr. Martin Stieve) clearly show a distinct 
biological reaction induced by the BMP2. The results of these animal studies are 

evaluated further and will be published in two papers. 

  



50                                                                                               3   Results and discussion 
 

Abstract  

Due to its ability to induce differentiation of bone-forming precursor cells, the growth 

factor Bone Morphogenetic Protein 2 (BMP2) is often used for better enhanced 
integration of bone implants. With the aim to reduce possible high dose side effects 
and to lower the costs thereby targeting an affordable implant, we developed a simple 

and fast method for the immobilization of BMP2 on silica-based surfaces using silane 
linkers (carrying amino or epoxy functions). We put special emphasis on the influence 
of the nanoscale surface topography of the silica layer. Therefore we chose glass and 

Bioverit® II as base materials and coated these substrates with unstructured or 
nanoporous amorphous silica layers for comparison. Immobilized BMP2 was 
quantified by two different methods: a standard ELISA and a cell-based test which 
probe for immunologically and biologically active BMP2, respectively. The results 

show that the amino function has the highest capacity of immobilizing the protein and 
that the immobilized amounts of BMP2 on unstructured and nanoporous silica 
surfaces are similar. Strikingly, a considerably higher amount of BMP2 can be 

immobilized on coated Bioverit® II surfaces as compared to coated glass substrates, 
which is probably due to the macroscopic roughness of the Bioverit® II substrates. 

Keywords: BMP2, immobilization, nanoporous silica, silanization, Bioverit® II, 
mesenchymal progenitor cells 

Introduction 

Enhancing the surface properties of implants for a better integration into their 
biological environment is in focus of biomaterial research these days. Especially, the 
improvement of the cell-surface interactions of bone replacement implants by 

tailoring surface properties is elaborated. Due to their high potent osteoinductive 
property which induces mesenchymal progenitor cells to differentiate into osteoblasts 
and chrondroblasts, Bone Morphogenetic Proteins (BMPs) play a key role in bone 

formation and repair. On this account, these growth factors are often used for a better 
integration of bone replacement prostheses and for inducing a fast healing process of 
critically sized defects. In particular, BMP2 has proved its high ability for the 
induction of bone formation in both, ectopic [108, 109] and orthotopic sites [104, 105, 

110-115]. 

Although BMP2 must be present in a certain minimum local concentration to induce 

new bone formation, excess doses of free BMP2 are not amenable to practical surgery 
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because BMP2 possibly has dangerous side effects in other regions of the body, 
including induction of immune responses [116]. In addition, high doses of BMP2 are 
very costly. Also, BMP2 loses its bioactivity in solution after a short time in vivo [117, 

118].  

Two approaches have been developed in order to achieve a low but sufficient supply of 

active BMP2. The protein may either be incorporated into a polymer or mineral 
carrier phase which may be degradable or non-degradable (within a certain period of 
time). [83, 105, 108, 110, 113, 114, 118, 119] The delivery then is controlled either by 

the diffusion of the BMP2 within the carrier or by its degradation. The other approach 
consists in connecting the BMP2 firmly and persistently to the implant surface, which 
has the advantage of preventing the BMP2 from affecting untargeted tissue. This 
approach can be realized by chemically attaching the protein to the implant surface, 

either by covalent or by strong ionic bonding. Several techniques are based on the 
modification of the surface by an aminosilane as aminopropyl trimethoxysilane; the 
reactive amino function is then used for the coupling to the protein to the surface by 

using succinimidyl 4-(N-maleidomethyl)cyclohexane-1-carboxylate (SMCC) [ 120 ], 
hexamethylene diisocyanide [121] or carbonyldiimidazole (CDI) [111, 112, 122, 123] as 
linking agents. Another complex procedure starts with a phosphonic acid monolayer 
on a titanium surface and applies polymer chemistry for the fixation of the protein 

[71]. BMP2 can also be bound to dextran-coated titanium surfaces by a reductive 
amination method [124]. Additionally, strategies have been described based on the 
strong physisorption of BMP2 on nanocrystalline diamond [ 125 , 126 ] or the 

immobilization of the protein on plasma activated polystyrene [127]. 

Recently, it has been discussed controversially whether strongly bound BMP2 can still 

be biologically effective. The group of Shiba showed that the BMP2 activity as 
assessed by induction of BMP2-dependent signalling cascades and induction of 
cellular differentiation is enhanced when the binding to the surface is reversible [128]. 
However, their system involved a genetically altered, non-naturally occurring BMP2 

variant that had been created by molecular-biological techniques. In contrast, some 
promising work has been presented showing that BMP2 fixed on a surface still can be 
biologically active [111, 112, 120, 121, 124, 127]. 
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two different methods: a standard ELISA and a cell-based test. ELISA measures 
immunologically active BMP2, i.e. total BMP2 bound, whereas the cell test quantifies 
biologically active BMP2 only. This cell test relies on the signalling cascade initiated 

by biologically active BMP2. 

Materials and Methods 

Nanoporous and unstructured silica films 

In this study two different types of base materials were used, namely Bioverit® II (3di 
GmbH, Jena, Germany) and glass (Glasbearbeitung Henneberg & Co., Martinroda, 

Germany), both in shape of square disks (10 mm x 10 mm) with a height of 1.0 to 1.3 
for the Bioverit® II and 0.95 mm for the glass disks. The substrates were coated with 
unstructured or nanoporous silica layers. Prior to use, all specimens were cleaned in 
absolute ethanol (Merck, Darmstadt, Germany) and acetone. All chemicals except for 

the ethanol were purchased from Sigma-Aldrich Chemie GmbH (Munich, Germany) 
and were used without further purification. 

The solution used for the preparation of nanostructured silica coatings contained 
ethanol, water, hydrochloric acid, tetraethoxysilane (TEOS) as a silica source and 
poly(ethylene glycol)-poly(propylene glycol)-block-co-polymer, PEG-PPG-PEG, (Sigma-

Aldrich, EO20PO70EO20, average Mn ~ 5.800, similar to Pluronic® P-123, BASF) as the 

structure-directing agent [99]. A solution with the molar composition TEOS : EtOH : 
H2O : HCl : EO20PO70EO20 = 1 : 48.9 : 26.9 : 0.06 : 0.0135 was prepared by adding the 

TEOS to the EO20PO70EO20 dissolved in the mixture of ethanol, water and 
hydrochloric acid and was stirred for about 10 minutes before coating the specimens. 
The unstructured silica coatings were prepared by using similar solutions, but 
without the EO20PO70EO20. 

The Bioverit® II and the glass disks were coated using a dip-coating procedure, 
employing a DC Small Dip-Coater with 75 mm travel from NIMA (Coventry, 

England), operated in a climate box at a constant humidity adjusted by 50 m% glucose 
solution. The samples were immersed in the coating solution and then withdrawn 
perpendicular to the surface of the solution with a speed of approximately 1 mm/min. 

The samples were then left at constant humidity for five minutes, followed by a 
drying step at 60 °C for 30 minutes. For the Bioverit® II samples, this procedure was 
repeated twice, resulting in three layers of silica. The multiple coating of the 
Bioverit® II substrates is necessary in order to fill the cavities present on the material 
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surface and to create a continuous layer. For the glass substrates only a single coating 
is needed. Afterwards, the specimens were dried at 60 °C overnight, followed by 

calcination at 415 °C for 4 h (rate of heating/cooling 1 °C min−1).  

Characterization 

The presence of the nanostructured layers was confirmed by X-ray diffraction (XRD) 
and scanning electron microscopy (SEM). The samples were measured on a Stoe 

(Darmstadt, Germany) θ-θ-diffractometer in reflection geometry. A secondary beam 

monochromator (graphite) was applied to produce CuKα radiation. SEM images were 

collected on a field-emission scanning electron microscope type JSM-6700F from Jeol 
(Eching, Germany) with an acceleration voltage of 2 kV and a working distance of 
15 mm. The thickness of the mesoporous silica film was measured with a stylus 

profiler DETAK6M from Veeco instruments Inc. (Plainview, USA) with a force of 

9 mg, duration of 100 seconds and a length of 3 000 μm per measurement. 

Surface modification  

The calcined samples were modified by a chemical functionalization step. After 
cleaning with absolute ethanol the specimens were immersed for 2 minutes in 10 m% 
aqueous solutions of the silanes 3-aminopropyl trimethoxysilane or glycidyloxypropyl 
trimethoxysilyl silane, respectively. They were then rinsed with water and dried 

under a flowing argon atmosphere for 10 minutes.  

Immobilization of the BMP2  

After surface modification the substrates were covered with a solution of recombinant 

human BMP2 produced by and purified from E.coli bacteria [ 134 ] with a 

concentration of 250 μg ml−1 in 50 mM 2-(N-morpholino)ethanesulfonic acid (MES) 

buffer pH 5.0 and left overnight at 4 °C under gentle shaking. The washing procedure 

consisted of eight washings with 0.125 M sodium tetraborate buffer (pH 10.0) 
containing 0.066 v% sodium dodecyl sulphate, followed by one washing step with 
phosphate buffered saline (PBS). For negative control experiments, the procedure was 

identical, except that MES buffer solution was used instead of protein. 

Quantification of the amount of bound BMP2 

Two quantification methods were applied: An indirect enzyme-linked immunosorbent 

assay (ELISA) was applied according to reference [71]. In brief, non-specific protein 
binding sites were blocked by incubation with 10 v% fetal calf serum in phosphate-
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buffered saline (“10 % FCS”). Monoclonal mouse anti-human BMP2 antibody was 
added (R&D, cat.no. MAB3551) followed by washing with tris-buffered saline 
containing 0.1 v% Tween-20, and incubation with goat-anti-mouse antibody, 

peroxidase-conjugate. After removal of unbound antibody detection was performed 
with 3,3´,5,5´-tetramethylbenzidine (TMB Plus; KemEnTec) and stopped with 2 M 
sulphuric acid. Absorbance was read at 450 nm versus 620 nm. In addition, the so-

called BRE-luc (BMP2 responsive element-luciferase) assay for the determination of 
biologically active bone morphogenetic proteins was used. This was carried out 
according to ref. [72]. The assay used a mouse muscle satellite cell line, C2C12, 
transfected with an inhibitor of differentiation promoter-luciferase construct [135], 

resulting in a BMP2-dose-dependent increase in luciferase activity in the cell lysates. 

C2C12 mesenchymal progenitor cells were stably transfected with the luciferase 

reporter plasmid (kindly provided by Peter ten Dijke, Leiden) using DOSPERTM 
according to the manufacturer’s protocol (Roche, Mannheim, Germany). A selection 
plasmid conferring G418-resistance (pAG60) was cotransfected and cells were selected 

with 750 µg ml−1 G418. Individual clones were picked, propagated, and tested for 

presence of the reporter by stimulation with BMP2 and detection of luciferase activity 
(cf. below). For the test, C2C12-BREluc cells were seeded at 35,000 c/well of 24-well 

plates in medium containing 10 % FCS without G418. 2 hours after seeding, medium 
was removed and each well was washed once with 500 µl medium containing 2 % 
FCS, 4 mM glutamine and penicillin/streptomycin (“test medium”). Thereafter, 500 µl 

of test medium was added. 2 µl of BMP2 diluted in test medium was added for the 
standards to give final amounts of 200, 50, 20, 5, and 1 ng BMP2 per well. 2 µl test 
medium was added for the negative control. To correct for putative influence of the 
different surface coatings on cell behavior, these standards were performed in parallel 

with all materials tested. Cells were incubated for 2 days and harvested by washing 
once with PBS then frozen at – 70 °C. 70 µl of CAT lysis buffer (from CAT ELISA kit, 
Roche, Mannheim, Germany) with protease inhibitors (Roche, Mannheim) was added. 

The lysates were centrifuged for 10 min at 20,000 g, 4 °C and 7.5 µl were used for 
detection of luciferase activity (Promega, Mannheim, Germany: E1500: 25 µl/ sample). 
The amounts of BMP2 bound to the surfaces of glass or Bioverit were calculated from 
the standards by linear regression analysis. 

For both methods, all experiments were carried out in triplicate. The values observed 
were corrected for the values obtained on blanks, which again were an average of 

three measurements. The samples for the blank values were exposed to the same 
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preparation procedure, but without BMP2. Due to the small number of experiments, 
which are due to the high costs in preparing the BMP2, a full statistical treatment of 
the observed values was not performed. Values obtained in repetitive experiments in 

different experimental campaigns are given separately in order to obtain an idea of 
the reproducibility of both the preparation and the detection methods. 

Results 

Stability testing of the silica coating 

To make sure that the nanoporous silica coating is stable throughout the whole 

coupling procedure with the BMP2 and especially during the washing steps at pH 10, 

we carried out X-ray diffraction investigations (Figure 3−2). We measured standard 

glass slides with a nanoporous coating before and following incubation in MES buffer 

plus washing with 0.125 M sodium tetraborate buffer (pH 10.0). After calcination, the 

nanoporous film exhibits one peak at 1.5 °2θ  and a broad reflection at 2.8 °2θ, 

corresponding to a disordered arrangement of nanopores [100]. The intensity of the 

peak at 1.5 °2θ  in just slightly decreased after the washing procedures. Intensity 

reduction of this reflection was supposed to be caused by a reduction of the layer 
thickness of the nanoporous coating or it could be ascribed to a structural 

rearrangement within the layers, leading to a reduction of the number of regular 
pores (for example by relocation of silicate units). 

 
Figure 3-7. X-ray diffraction patterns of standard glass slides dip-coated with 
nanoporous silica layer. Comparison of glass slides before (black) and after (grey) the 

immobilization treatment (incubation in MES buffer and washing with borate buffer). 
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< 1 ng cm−2 BMP2. With the epoxysilyl modification, conflicting results were obtained. 

Whereas in the BRE-luc test, the amount of BMP2 was below the detection limit of 

< 1 ng cm−2, the ELISA detected 120 ng cm−2 in case of the unstructured and 

100 ng cm−2 in case of the nanoporous silica surface. We were able to reveal by further 

experiments that this discrepancy is caused by a malfunction of the ELISA which is 

possibly caused by a direct binding of antibody molecules to the epoxy functions of the 
silanized surface despite previous blocking with fetal calf serum. Due to the low 
biological activity detected by the cellular test system this chemical modification 

strategy was abandoned. 

On Bioverit® II substrates, considerably higher amounts of immobilized BMP2 can be 

achieved compared to the glass surfaces. The bioactivity test detected about 

70 ng cm−2 for the amino-modified unstructured and more than 100 ng cm−2 for the 

amino-modified nanoporous surface. To validate this result, the experiment was 

repeated twice for the nanoporous surface; in both cases even higher amounts of 150 

and 154 ng cm−2 bound BMP2 were detected. All tests carried out for comparison 

(omitting the silane or the silica layer or both) gave values below 4 ng cm−2 (data not 

shown). In contrast, the ELISA test was not able to detect any BMP2. Obviously, this 

test is disturbed by the presence of Bioverit® II due to unknown reasons. 

Discussion 

In the present study we have addressed three topics concerning BMP2 

immobilization: firstly, the question whether there is a simple route of immobilizing 
BMP2 to the surface of a silica-based material, secondly, whether the immobilized 
amount of BMP2 can be increased by applying a nanoporous layer on the ceramic 

surface. And finally, we wanted to know whether the BMP2 fixed to the surface is still 
biologically active. The biological effectiveness of immobilized BMP2 is not clear yet. 
Although there are some positive results [111, 112, 120, 121, 127], it was also found 
that the BMP2 has to be coupled reversibly to surface and needs to be released into 

solution to have biological effects [128]. The group of Shiba made first experiments on 
the release behaviour of immobilized BMP2 on titanium and found more prominent 
activation of BMP signalling and induction of differentiation in cells in vitro on 

samples with reversibly bound but genetically modified BMP2. In contrast, Wang et 
al. [124] were able to immobilize BMP2 on dextran-grafted titanium surfaces, which 
showed not only significantly higher promoted osteoblast spreading, alkaline 
phosphatase activity and calcium mineral deposition, but also a reduced bacterial 
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adhesion due to the dextran-grafting. In our case, it is not quite clear whether the 
BMP2 acts in the immobilized state or from solution. Although apparently the BMP2 
is fixed strongly to the support (otherwise it would not survive the extensive washing 

procedures) the stability of the mesoporous silica layer appears to be quite low as has 
also been discussed in the recent literature [106] The stability of mesoporous silica 
films will depend crucially on the conditions of preparation and calcination and 

possibly on further modifications. Our own results described above indicate a 
somewhat higher stability as described in ref. [106] Especially, the X-ray diffraction 
features from the mesostructure may disappear before the silica layer has been 
dissolved. Obviously, when in our system the BMP2 acts only in a dissolved state, 

then the rate of release as resulting from the combination of strong fixation to and 
dissolution of the support appears to be quite favorable. We have started experiments 
investigating a possible release of the immobilized BMP2 from our mesoporous films 

in cell culture medium at different time intervals up to one week. 

We decided to use a simple silanization method for the immobilization procedure and 

tested two different functional groups. Tests on silica coated glass and ceramic 
surfaces showed that the aminopropyl silanization is a successful method of binding 
BMP2 to the silica surface. This result is in line with those of Jennissen and co-
workers [112]. They were able to immobilize BMP2 on titanium surfaces using an 

elaborate and laborious method. Titanium surfaces treated with chromosulfuric acid 
were first boiled at reflux in a solution of aminopropyl triethoxysilane in toluene 
under an inert gas atmosphere for several hours. BMP2 was coupled to this surface 

either directly or employing carbonyldiimidazole (CDI) as an intermediate agent. In 
comparison to that our route for the modification of the silica surface consists of a 
simple dipping method carried out in aqueous solution within 2 minutes. With this 

method, we were able to immobilize repeatedly 100 to 150 ng cm−2 BMP2. In the work 

of Jennissen and co-workers, 596 ng cm−2 bound BMP2 were achieved without the use 

of CDI as a coupling agent, a value that increased to 819 ng cm−2 when CDI was 

employed [112]. In this work, the determination of the immobilized amount of BMP2 
was conducted based on radiolabeled 125I-BMP2. This method detects all BMP2 
molecules on the surface, whether these are still immunologically and biologically 

active or not. In contrast, we can safely conclude that the values given for the 
immobilized BMP2-amount of our samples denotes biologically active protein since  
the employed BRE-luc test relies on the activation of intracellular signalling protein 

cascades which are only induced by biologically active BMP2. In fact, our samples 



3   Results and discussion                                                                                               61 

probably contain more immobilized BMP2, when biologically inactive BMP2 molecules 
are included. Jennissen and co-workers further showed that at least some of the 
immobilized BMP2 on their samples is biologically effective in vivo. In animal 

experiments on dogs, they found that samples with immobilized BMP2 can induce 
bone formation around a dental implant [112].  

As another option for the immobilization of BMP2 on biomaterials, we cite the work of 

Matzuzaka et al., who detected 44.2 ng cm−2 BMP2 on plasma-activated polystyrene 

[127] as determined by a frequency shift method, and that of Park et al., who bound 

800 ng cm−2 BMP2 (detected by radio-labeling) to a chitosan matrix by using the 

crosslinking agent succinimidyl 4-(N-maleidomethyl)cyclohexane-1-carboxylate 
(SMCC) [136]. 

The type of binding between the substrate and the BMP2 is not clear. We consider 
first the interaction between the silica layer and the aminosilane. In order to 

covalently bind aminopropylsilyl function by establishing siloxane bonds, the material 
has to be heated [38, 36] which is not part of our dipping procedure. It is more 
probable that a layer of intermolecular condensed aminopropylsilane is formed and 

connected to the silanol groups of the silica surface by hydrogen bonds with its amino 
residues [36]. With regard to the interactions between the aminopropylsilyl linkers 
and the BMP2, several binding modes are possible. In neutral or slightly acidic 
solutions (the pH of the MES-buffer used for coupling is 5.0), the amino groups will be 

partially protonated and electrostatic interactions can occur with negatively charged 
or polarized elements of the BMP2 molecules. Recently, it was also proposed that 
BMP2 interacts strongly with alkyl residues placed on a surface by hydrophobic 

interactions [122]. Such interactions could occur with the propyl residues of our 
linking agent or with hydrophobic parts of the silica surface (i.e. areas which contain 
only fully interlinked [SiO4/2] tetrahedral). The formation of amide bonds between the 
surface amino groups and carboxylic groups of the BMP2 appears improbable. 

Jennissen and co-workers postulate that such a true covalent binding occurs after 
activation of with CDI, so that a linkage is formed from the surface amino groups to 

the ε-amino groups of lysine residues within the protein [111].  

ELISA tests are a well-established method to determine the concentrations of proteins 
in solution with high specificity. However, our results show that results from ELISA 

tests have to be evaluated carefully when solid surfaces (of implant materials) come 
into play. When conflicting results between the ELISA for BMP2 and the BRE-luc test 
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are observed, the latter is surely more reliable. Also, the BRE-luc test provides 
evidence for biologically active BMP2 and is very sensitive since up to 1 ng BMP2 per 
sample can be detected. This contrasts favourably with other methods for detection of 

BMP2 biological activity like, e. g., determination of Alkaline Phosphatase activity. In 
contrast, other methods detect either immunologically active BMP2 (ELISA), all 
BMP2 molecules present (radiolabelling methods) or simply a mass increase 

(frequency shift method). 

With regard to the structural influence of the substrate, our study showed that on 

silica-covered Bioverit® II large amounts of BMP2 can be immobilized (70 ng cm−2 on 

the unstructured silica layer versus 100-150 ng cm−2 on nanoporous silica coatings).  

These are considerably larger amounts than on plain glass (2 ng cm−2 for the 

nanoporous coatings, 3-4 ng cm−2 for the unstructured coating). This could be due to 

several reasons: Firstly, the effective surface area per square centimetre is larger for 

the Bioverit® II material due to its strong roughness in the micrometer range 

(compare Figure 3−3); secondly, the silica layer is thicker, as it was prepared by three 

subsequent dipping procedures in order to cover the whole surface. The fact that the 
nanoporous layer binds slightly more BMP2 than the unstructured silica coating can 
be traced back to its higher roughness in the nanometer range and to the larger 
number of silanol groups present on this material [101]. The finding that on glass 

substrates this tendency is supposed to be reversed has to be considered carefully 
because of the small masses of BMP2 detected are near the detection limit. 

To clarify whether the immobilized BMP2 can induce bone formation in vivo, the 
samples have to be tested in animal experiments. These are currently being evaluated 
both in rabbits and in mice.  

Conclusions 

We have developed a simple, fast and effective binding system for the immobilization 

of BMP2, based on the established bone reconstruction material Bioverit® II. Coating 

of Bioverit® II with a nanoporous silica layer and subsequent modification with 3-

aminopropyl trimethoxysilane reliably gives BMP2-functionalized surfaces which 

carry 100 ng cm−2 to 150 ng cm−2 of biologically active BMP2, as judged by the highly 

BMP2-specific cellular in vitro test. It is noteworthy that the BMP2 coupling 
procedure employed is so simple that after further optimization it could potentially 

also be carried out by a surgeon in the operation room. This could be advantageous to 
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avoid long-term storage of coupled BMP2 or when implants have to be reshaped 
during operation, making it necessary to carry out the BMP2 functionalization on the 
“fresh” implant surface. 
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3.3. Mesoporous silica films for controlled release of ciprofloxacin 
from Iimplants 

The last part of this work deals with the use of mesoporous silica coatings for drug 

delivery, again with regard to the application on implants. Here, the mesoporous 
silica coating acts as a reservoir for local drug release. Together with the implantation 
of a middle ear prosthesis, an infection shall be combatted. These investigations were 

carried out using the antibiotic ciprofloxacin, which often is applied systemically in 
the case of middle ear infections. This work shows how different modifications of the 
silica coating act together to obtain a high loading the antibiotic and a controlled 

release of it.  

The idea to develop a strategy for local antibiotic delivery and to apply this feature to 
middle ear prostheses was implants was developed within the work package D1 

consortium by Prof. Peter Behrens, Dr. Peter P. Müller, Dr. Martin Stieve and Prof. 
Thomas Lenarz. The author of this thesis has designed the experiments in agreement 
with the supervisor and has carried out the experiments concerning the preparation 

of the samples and their basic characterization. Also, an assay for the detection of 
released ciprofloxacin was established. STEM investigations were carried out by Dr. 
Armin Feldhoff from the Institute of Physical and Electrochemistry Chemistry in 

Hannover. In vitro cell and bacteria culture experiment were performed by 
Mohammad Badar and Dr. Peter P. Müller at the Helmholtz Center for Infection 
Research in Braunschweig. The latter also has developed the mouse model used in a 
first in vivo test. The manuscript presented here was developed in cooperation with 

Prof. Peter Behrens and Dr. Peter P. Müller. 
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Abstract 

To generate bioactive coatings for medical implants a novel procedure has been 
developed using a coating of mesoporous silica for controlled drug delivery. 

Mesoporous silica layers were coated on plan glass slides and on a commercially 
available glass mica ceramic implant material. The mesoporous material was loaded 
with the antibiotic drug ciprofloxacin. The drug release characteristics were 

investigated using mesoporous coatings on glass slides. The drug capacity was low 

initially but could be increased nearly ten-fold (to about 2 μg cm−2 of the macroscopic 

surface) by functionalizing the mesoporous surface with sulfonic acid groups. In cell 

culture assays the surfaces showed good biocompatibility. The antibacterial efficacy 
was proven in experiments using luminescent bacteria. A first in vivo test in a newly 
developed mouse model demonstrated high antibacterial efficacy. To achieve a 

controlled drug release over an extended time period further coatings were added. 
Covering the surface of the drug loaded mesoporous silica layer by dip-coating with 
bis(trimethoxysilyl)hexane resulted in a retarded release for up to 31 days. By an 
additional evaporation coating with dioctyltetramethyldisilazane, the release of 

ciprofloxacin was prolonged for up to 63 days.  

 

Introduction 

Mesoporous silica materials are currently being investigated as controlled drug 
release systems due to their unique properties as high surface area, tunable pore size 

with narrow distribution in the nanometer range and adaptable surface chemistry 
based on functionalization of the silanol groups present on the silica surface. Another 
important feature of mesoporous silica is its good biocompatibility, as shown for 
example in several animal experiments [3, 20, 21]. Mesoporous silicas are usually 

studied in the form delivered by solution-phase syntheses, namely as powders, or, in 
some cases, as mesoporous hollow silica spheres [63, 137, 138]. These material forms 
are, however, difficult to apply in combination with a pre-formed implant or 

prosthesis. For this purpose, mesoporous silica films, deposited on the surface of the 
implant, present a promising practical approach. For example, ossicular replacement 
prostheses, substituting the ossicular chain, often have to be implanted into an 
infected middle ear. Local delivery of an antibiotic could help in combating the 

infection and thus assist in the healing process. 
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The loading and the release of drugs from mesoporous silica can be controlled in 
different ways, as shown in many investigations. In addition to the size and the shape 
of the pores and particles [139, 140, 141], the chemical interaction of the materials 

surface with the drug is the most important factor [61]. Silica surfaces can be 
equipped with functional residues by grafting, i.e. the post-synthetic reaction with the 
silanol groups on the surface, or by co-condensation in a one-pot synthesis; both 

methods are currently being discussed in view of their advantages and disadvantages 
[61, 142-144]. The different modifications can be used to optimize the amount of drug 
taken up and delivered by mesoporous silica-based drug delivery systems. 
Furthermore, they can influence the kinetics of drug release. A variety of 

modifications is possible. For example, a hydrophobic character can be imparted to 
the silica surface by the attachment of unreactive groups (e.g. trimethylsilyl [145-
147]). In addition, negatively charged groups (like carboxyl [148, 149]), positively 

charged ones (as protonated amino groups [143, 144, 150]) or reactive groups (as 
epoxy [151] or thiol residues [152]) can be used to tailor the surface properties in order 
to match the properties of the drug to be delivered. The density of these 

functionalities has to be adjusted carefully. Especially in the attachment of charged 
groups, the net charge of the surface is a crucial factor, but also the unreacted silanol 
groups retain their influence [65]. For that reason the pH value at adsorption and 
release conditions has always to be considered in aqueous media. For example, the 

loading of a drug consisting of negatively charged molecules can be enhanced when 
positive charges are placed on the surface [150, 153 , 154]; drug molecules with 
extended hydrophobic parts can be attracted to the surface by hydrophobic residues 

[145, 155]. The release of a drug to an aqueous medium can be retarded by a 
protective outer hydrophobic layer which hinders the surrounding aqueous media 
from entering the pores [60, 147]. 

Here we report a practical approach for fighting bacterial infections by local delivery 
of ciprofloxacin, a broad spectrum antibiotic, from a specially developed mesoporous 

silica coating (see scheme in Figure 3−10). Such silica coatings can be applied to 

different implant materials, e.g. Bioverit® II, thus providing the implant with the 
ability to defend itself against a bacterial infection. We use a sulfonic acid 
modification to increase the amount of loaded ciprofloxacin in a mesoporous silica 

layer and show its biocompatability and its effectiveness in combating bacteria in 
vitro. A first in vivo test in a mouse model with unmodified ciprofloxacin loaded 
material was carried out to prove its suitability in living systems. Furthermore, we 
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are able to avoid the typical initial burst release behavior of drug delivery systems 
and retard the delivery of the drug by a two-step procedure involving dip- and 
evaporation-coating of the silica films with hydrophobic substances.  

 
Figure 3-10. Scheme for the different modifications carried out to achieve a high 
loading and a controlled release of ciprofloxacin from a mesoporous silica film. 

+ H3O
+

H2O2

dip-coating

EtOH, water, 
HCl

+

+

+

+
+

+

+
+
+

O

O

O

S

O

O

O

S

O

O

O

S

O

O

O

S

FF

N

HN

COOH

O

N

FF

N

HN

COOH

O

N

FF

N

HN

COOH

O

N

MeO

MeO

MeO

Si

OMe

OMe

OMe

Si

MeO

MeO

MeO

Si

OMe

OMe

OMe

Si

FF

N

N

COOH

O

N

FF

N

HN

COOH

O

N
H

FF

N

N

COOH

O

N

FF

N

HN

COOH

O

N
H

O

O

O
O

O

O

SH

Si

Si

Si
O

OH

O

SH

SH

OH

OH

OH

OH

OH

OH
OH

OH

OH
OH

OH

OH

OH

OH

MeO

MeO
MeO

Si SH
MeO

MeO
MeO

Si SH

O

O

O
O

O

O

Si

Si

Si
O

OH

O

OH

OH

OH

O

O

O

S

O

O

O

S

O

O

O

S

O

O

O

S

O

O

O

S
simplified

+

+

+

+
+

+

+
+
+

evaporation-
coating

O

O

O

S

O

Si Si

+

+

+

+
+

+

+
+
+

52 °C

H
N

SiSi

H
N

SiSi
Me

MeMe

Me

Me

Me Me

O

O

O

S



68                                                                                               3   Results and discussion 
 

Experimental 

Mesoporous silica layer 

Two different types of base materials were used as substrates for the coatings, namely 

glass (Glasbearbeitung Henneberg & Co., Martinroda, Germany) and Bioverit® II (3di 
GmbH, Jena, Germany). The 3-mercaptopropyltrimethoxysilane, 1,3-di-n-
octyltetramethyldisilazane and the bistrimethoxysilylhexane were ordered from 

ABCR GmbH & Co. KG (Karlsruhe, Germany). Absolute ethanol was purchased from 
Merck (Darmstadt, Germany) All other chemicals were obtained from Sigma-Aldrich 
Chemie GmbH (Munich, Germany).  

For the compilation of in vitro release profiles standard glass slides (76 x 26 mm), for 
cell culture experiments glass disks (10 mm x 10 mm) with a height of 0.95 mm, and 
for the in vivo experiments Bioverit® II cylinders with a diameter of 1 mm and a 

height of 1.0 to 1.3 mm were employed. The different substrates were first coated with 
nanoporous silica layers. Prior to the coating, all specimens were cleaned in an 
ultrasonic bath, first in acetone and then in absolute ethanol for ten minutes each. All 

chemicals were used without further purification. 

The solution used for the preparation of nanostructured silica coatings contained 

ethanol, water, hydrochloric acid, tetraethoxysilane (TEOS) as a silica source and 
poly(ethylene glycol)-poly(propylene glycol)-block-co-polymer, (Sigma-Aldrich, 

EO20PO70EO20, average Mn ≈ 5.800, similar to Pluronic® P-123, BASF) as the 

structure-directing agent [99]. The dip-coating solution had a molar composition of 
TEOS : EtOH : H2O : HCl : EO20PO70EO20 = 1 : 48.9 : 26.9 : 0.06 : 0.0135. It was 
prepared by adding TEOS to the EO20PO70EO20 dissolved in the mixture of ethanol, 

water and hydrochloric acid and was stirred for about 10 minutes before coating the 
specimens. The glass samples were coated using a dip-coating procedure, employing a 
DC Small Dip-Coater with 75 mm travel from NIMA (Coventry, England), operated in 
a climate box at a constant humidity adjusted by 50 w/w glucose solution. The 

samples were immersed in the coating solution and then withdrawn perpendicular to 
the surface of the solution with a speed of approximately 1 mm/min. The samples 
were then left at constant humidity for five minutes. For the Bioverit® II samples, a 

spray-coating procedure was applied using the same solution. The samples were 
sprayed lying on the plane side and spray-coated with a thin layer of the solution 
followed by a drying step at 60 °C for 30 minutes. A specimen was exposed to this 
procedure three times, lying on the plane circular side each time. The multiple coating 
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of the Bioverit® II substrates is necessary in order to fill the cavities present on the 
rough surface of this biomaterial and to create a continuous layer. For the glass 
substrates, a single coating is sufficient. After coating, the specimens were dried at 60 

°C over night, followed by calcination at 415 °C for 4 h (rate of heating/cooling 1 °C 

min−1).  

Sulfonic acid modification 

The sulfonic acid modification was carried out according to ref. [156]. The following 
synthesis was applied in parallel for five glass slides. The glass slides were cooled to 

0 °C in 45 ml of dichlormethane before 5.9 ml of 3-mercaptopropyltrimethoxysilane 
were added and the solution was gently stirred for 22 h without renewing the ice 
bath. Then the glass slides were washed with dichlormethane and absolute ethanol 

and dried at 100 °C for 5 h. 50 ml of hydrogen peroxide (30 m%) were added and 
allowed to react for 48 h followed by washing with water and absolute ethanol. Finally 
the glass slides were dried at 60 °C for 2 h and cooled to room temperature before the 
insertion of the ciprofloxacin. 

Drug insertion procedure 

The insertion of the ciprofloxacin was carried out in a 60 mM solution at pH 4 at 37 °C 

for 3 days. The solution was prepared as follows. 10 g of ciprofloxacin were added to 
about 300 ml of water and the pH value was decreased with hydrochloric acid (2M) 

until a clear yellow solution was formed (pH ∼ 2). Then the pH was adjusted to 4 with 

sodium hydroxide solution (1M), thereby approaching a volume of 500 ml. Finally the 
solution was filled up to 500 ml. A volume of 45 ml was used for the insertion 
procedure of 5 glass slides. 

After the insertion, the glass slides were rinsed with 50 ml of water for each side to 
wash of the high concentrated solution at the outer surface of the glass slide. 

Afterwards the glass slides were dried for 2 hours at room temperature at constant 
air humidity adjusted with 50 m% glucose. Then, they were either modified further or 
transferred to the release experiment. 

Controlled release modifications 

To produce a hydrophobic layer from the reaction of bis(trimethoxysilyl)hexane on the 
surface, a dip-coating procedure, following ref. [60], was used. For this purpose, a 

solution containing bis(trimethoxysilyl)hexane, ethanol, water and 0.1 M hydrochloric 
acid was stirred for 30 minutes. Glass slides were dipped into the solution 
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individually and withdrawn with an approximate speed of 2 cm s−1 to avoid leaching 

of the inserted ciprofloxacin. The samples were dried for 12 h at room temperature at 

constant air humidity adjusted with 50 m% glucose. Then, they were either modified 
further or transferred to the release experiment. 

For the further modification with 1,3-di-n-octyl-tetramethyldisilazane (97 %) the glass 
slides were coated by an evaporation procedure. 6 ml of dioctyltetramethyldisilazane 
(1,3-di-n-octyltetramethyl-disilazane) were put into a 300 ml Erlenmeyer flask (broad) 
and heated to 52 °C for 10 h. During this time, the five glass slides were hanging 

above the liquid at the upper end of the closed flask with a distance of about 15 cm 
[147]. After drying for 10 minutes at ambient conditions, the samples were 
transferred to the release experiment. 

Release experiments 

The release measurements were conducted as follows. Five glass slides were put into 
a preheated solution (37 °C) of 45 ml of 0.1 M phosphate buffered saline (PBS). The 

samples were kept at 37 °C. The measurements took place after fixed time intervals of 
15, 35, 55, 75, 135, 195 and 315 minutes. Afterwards, the measurements were 
performed ca. every 24 h. 

The quantitative determination of the ciprofloxacin in the release solution was carried 
out on a spectrophotometer UV-mini 1240 (Shimadzu, Duisburg, Germany) at 

275 nm. The whole medium was replaced after each measurement to simulate the 
dynamic fluidic conditions in the body. 

In vitro testing 

For biocompatibility testing mesoporous coated, sulfonic acid modified and 
ciprofloxacin loaded glass discs were transferred to a 24-well plate. Plane glass discs 
were used as a control. Briefly, a near to confluence culture of NIH3T3 cells was 

diluted to 1:5 and 1 ml of this cell suspension was added to each of the wells 
containing glass discs. These discs were incubated with these cells at 37 ºC in an 
incubator. Pictures were taken with an Axio Observer.A1 microscope (Carl Zeiss, 

Oberkochen, Germany) at 24 and 72 h intervals after inoculation of the cells. The 
experiment was repeated three times. 

For testing of efficacy against bacteria the glass discs with the mesoporous coating, 
the sulfonic acid modification and with the loaded ciprofloxacin were transferred to a 
24-well plate. Plane glass discs were used as control. Each of these discs was 
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incubated with 100 µl of bacterial OD600 =0.2 suspension of Pseudomonas aeruginosa 
(PAO1 CTX-lux) in PBS for 15 min at room temperature. After 15 min, 0.9 ml of LB 
(Luria broth [157]) was added into each well and the multiwell plate was placed on a 

shaker at 60 rot min−1 at 37 ºC. The plate was observed under the IVIS (Xenogen 

Corp., Alameda, CA) after six hours and the luminescence for each well was measured 

individually. 

Mouse model 

First animal experiments of ciprofloxacin-loaded Bioverit® II-based implants were 

carried out in a mouse model. Cylindrical Bioverit® II implants were spray-coated to 
produce a mesostructured silica layer and then calcined to give a mesoporous coating. 
For insertion of the antibiotic, they were kept in a 60 mM ciprofloxacin solution at pH 

4 at 37 °C for 1 week for insertion. After washing and drying they were immersed into 
a bacterial suspension. Each sample was incubated separately in an Eppendorf tube 
containing 10 µl of a bacterial suspension with optical density OD600 =0.2 of 

Pseudomonas aeruginosa with a recombinant lux operon (PAO14 CTX-lux and PAO14 
PQS-lux) in PBS for 15 min at room temperature  and then implanted subcutaneously 
into a BALB/c mouse. One sample of plain Bioverit® II (as a control) was incubated in 
the same way with PBS only. A total of four Bioverit® II samples with a nanoporous 

coating were implanted, two of which carried ciprofloxacin. In addition a control 
sample of plain Bioverit® II was implanted as well. Implantations were carried out in 
Balb/c mice. The details of the implantation procedure will be published elsewhere (M. 

Badar et al, in preparation). The experiments were done under the permission of the 
official authorities, Bezirksregierung Braunschweig, application number 33.42502/07-
10.05. 

Characterization methods 

The nanostructured layers were investigated by X-ray diffraction (XRD) and scanning 

transmission electron microscopy (STEM). The samples were measured on a Stoe θ-θ-

diffractometer (Darmstadt, Germany) in reflection geometry. A secondary beam 

monochromator (graphite) was applied to produce CuKα radiation. STEM images 

were collected on a field-emission transmission scanning electron microscope type 
JEM-2100F from Jeol (Eching, Germany). Static contact angle measurements were 
performed on a Surftens universal contact angle goniometer (OEG, Frankfurt/Oder, 

Germany) with water as the probing liquid. On every glass slide, the contact angle 
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was measured at 5 different positions, all at least five millimeters away from the 
edges of the glass slide, and a representative image was chosen. 

Results and discussion 

Characterization of the mesoporous silica layer 

The mesoporous structure of the silica layer is shown in Figure 3−11. The STEM 

investigations of a cross section of the mesoporous silica film on a glass substrate 

show a 40 nm thick layer of a mesoporous material with channellike pores which run 
mainly parallel to the surface. Pore diameters are ca. 5 nm. In former SEM 
investigations it was shown that pore mouths are present on the surface of the 

coating, so that the pore system can be accessed from the surface of the layer [2, 100]. 
X-ray diffraction measurements gave results similar to those as described in detail 
elsewhere [132], thus also confirming the presence of the mesostructure. Further 

investigations with a profilometer revealed that a silica film on a glass slide has a 
layer thickness varying between 30 and 150 nm. 

 
Figure 3-11. STEM image of a cross section of the mesoporous silica layer on a glass 
substrate (bottom). 

The different surface modifications carried out during the whole procedure were 
monitored by static contact angle measurements. The results show drastic changes in 

surface properties (Figure 3−12). Initially, the hydrophilic surface of the mesoporous 

silica layer can be discerned from the decrease of the contact angle from about 20° 

(Figure 3−12a) for the cleaned glass substrate to less than 5° for the mesoporous silica 

layer (Figure 3−12b). After the first modification steps resulting in sulfonic acid 

groups on the surface, the surface stays hydrophilic with only a slight increase of the 

contact angle which remains below 5° (Figure 3−12c). Although propyl groups are also 



3   Results and discussion

introduced onto the surfac
surface chemistry. After
exhibits hydrophobic pro

3−12d). The contact an

dioctyltetramethyldisilaza

than 90°. 

Figure 3-12. Static contac
equipped with a mesopo
groups, d) covered with a 
in addition covered w

dioctyltetramethyldisilaza

Controlled release profiles

Spectrophotometrically m

release profiles of differen

Figure 3-13. Release profi
substrate functionalized 

derived from bis(trim
dioctyltetramethyldisilaza

n                                                                       

ce, the hydrophilic sulfonic acid groups see
r dip-coating with bis(trimethylsilyl)hex
operties with contact angles between 50

ngle increases further upon evaporati

ane in the last step (Figure 3−12e), yieldi

ct angle measurements from a) a cleaned 
orous silica layer, c) after modification w

dip-coated layer derived from bis(trimetho
with a layer obtained by evaporatio

ane. 

s  

monitored experiments in PBS gave infor

nt functionalized mesoporous silica films (F

files of ciprofloxacin loaded mesoporous sili
successively with sulfonic acid groups,

methoxysilyl)hexane and a layer 
ane by evaporation. 

                        73 

em to dominate the 
xane, the surface 
0° to 55° (Figure 

ion coating with 

ing values of more 

 
glass substrate, b) 
with sulfonic acid 
oxysilyl)hexane, e) 
on coating with 

rmation about the 

Figure 3−13).  

 
ica layers on glass 
, dip-coated layer 

derived from  



74                                                                                               3   Results and discussion 
 

From the unmodified mesoporous silica layer, 0.2 μg cm−2 ciprofloxacin were released. 

Upon modification with sulfonic acid groups, this value increased nearly ten-fold to 

1.9  μg cm−2. The modified as well as the unmodified mesoporous layer both showed a 

typical initial burst release profile, where most of the drug was released within the 
first few hours, with just small amounts being released after the first 24 hours. After 

12 days, practically 100 % of the ciprofloxacin from the sulfonate-modified layer had 
been released. However, the release profiles could be tailored by further 
functionalization steps. Samples which were dip-coated with bis(trimethoxysilyl) 

hexane show a slower release. After the first 12 days, ca. 90 % of the total amount had 
been released. The release rate then decreases so that quite similar doses are still 
obtained up to 31 days. With the additional surface coating produced by the 
evaporation of dioctyltetramethyldisilazane on top of the sample, an even more 

prolonged release profile is established. Here, after 12 days less than 50 % of the total 
amount is released. A constant release rate can be observed for more than 30 days, 
followed by regular smaller doses up to 63 days. The surface coatings did not influence 

the total amount of drug released, which in all cases is about 2  μg cm−2 of 

ciprofloxacin. This fact demonstrates that only very small amount of the ciprofloxacin 
is lost during the additional functionalization steps. The release profiles depicted in 

Figure 3−13 all show different release rates in different regions. During the initial 

burst, the sample which was only sulfonated, discharged ca. 95 % of the total loading 
whereas the samples which were coated lost only ca. 30 %. The sample which was 

only equipped with the dip-coated layer produced from bis(trimethoxysilyl)hexane, 
showed a rather fast release in the first ten days and a slower release afterwards. The 
behavior of the sample which has an additional coating produced from evaporation of 

dioctyltetramethyldisilazane, is similar, but the release rates are smaller and the 
change from a medium to a slow release occurs only after ca. 30 days. 

In vitro testing 

Mesoporous coated, sulfonic acid modified and ciprofloxacin loaded sample showed 
good biocompatibility in cell culture assays using the standard murine fibroblast cell 
line NIH3T3. Microscopic observation indicated that the cells could efficiently adhere 

and proliferate on all modified surfaces.  

Results of experiments with luminescent bacteria illustrate the antibacterial 

efficiency of ciprofloxacin-loaded samples. After six hours in LB medium, 
ciprofloxacin-loaded samples showed only about one eighth of radiance caused by 
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4 Summary and outlook 

The aim of this work was to develop new strategies for the functionalization of 
implant surfaces. By way of example of a middle ear prosthesis, the base material of 
which consists of Bioverit® II, two different strategies could be established, namely a 
route for the immobilization of biomolecules (especially the signaling protein BMP2) 

and a system for controlled local drug delivery.  

Due to high costs for BMP2, immobilization techniques were first tested with the 

enzyme alkaline phosphatase, which is cheap and the activity of which can easily be 
determined by a well-established assay. As substrates for these investigations 
structural different silicate surfaces were chosen. Uncoated glass slides were used in 

comparison with unstructured and mesoporous silica films deposited on glass slides. 
Also, different silane linking agents were tested. The major questions of this 
investigation were whether structural properties of the surface have an influence on 
enzyme immobilization, specifically whether the high surface area of the mesoporous 

film increases the amount of bound enzyme, and which functional group on the silane 
linker is best suited for the attachment of a protein. We were able to show that in 
general it is possible to immobilize the alkaline phosphatase by means of all 

functional groups on the three different surfaces by a simple and fast dipping 
procedure. The best combination showing an outstanding amount of active 
immobilized enzyme was the mesoporous silica surface equipped with an 
aminopropylsilyl linker.  

In a second step, this established immobilization strategy was transferred to the 
binding of the growth factor BMP2. This time not only (coated) glass surfaces were 

used as substrates, but also the standard biomaterial Bioverit® II. The quantification 
of active BMP2 was much more complex and was carried out in cooperation with the 
Helmholtz Center for Infection Research in Braunschweig. In addition to an ELISA 

test, a specially developed cell-based test (BRE-luc test) was applied. Only the latter 
gave reliable quantifications of the amount of biologically active BMP2 bound to the 
surface. Here again the aminopropylsilyl function was found to be the best linker, 
although the investigations were not as extensive as in the case of ALP 

immobilization. On Bioverit® II substrates, high amounts of immobilized BMP2 were 

found (150 ng cm−2). In designing the procedure for BMP2 attachment, care had to be 

taken to make it as simple as possible, so that the reaction can be carried out directly 
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before or even during the operation. This is due to the low storage stability of proteins 
and to the fact that a middle ear prosthesis may have to be shortened during the 
implantation to adapt it to the space of the specific middle ear; in this case an 

unfunctionalized surface would be presented. So, it is noteworthy that the procedure 
developed here is so simple that it can in principle be carried out in the operating 
theatre.  

In addition to the work presented here in this thesis which deals with the materials 
chemistry of implants, in vivo animal tests were performed in a rabbit model. Blank 

Bioverit® II samples as well as specimen partially or fully with BMP2 were implanted 
in two body regions, namely subcutaneously under the skin of the neck and at the 
functional site as a middle ear prosthesis. For these studies, large numbers of 
implants (15 blank Bioverit® II samples, 15 partially and 15 fully coated with BMP2) 

were prepared according to the route described in section 3.2. The results are still 
under evaluation. So far, it can be stated that at the subcutaneous site, a clear tissue 
reaction can be observed. The fibrous capsule surrounding the implant is significantly 

thicker in regions where BMP2 has been applied. This can especially be recognized 
very well in the borderline regions of partially coated samples. However, no ectopic 
bone formation was observed with BMP2-bearing samples, as was the case in other 
experiments, where collagen sponges impregnated with BMP2 were implanted into 

muscle tissue of mice [158]. Currently, our samples are also being tested in this site. 
The animal experiments were carried out in collaboration with Iwa Hlozanek, Dr. 
Gudrun Brandes and Dr. Martin Stieve (Medical School Hannover) as well as Dr. 

Andrea Hoffmann and Dr. Gerhard Gross (Helmholtz Center for Infection Research 
Braunschweig) and the results will soon be published. 

The stability of thin mesoporous silica films in aqueous and especially in biological 
environments is currently being debated. Bulk MCM-41 and SBA-1 and SBA-3 
(impregnated with ibuprofen) were found to dissolve about 10 – 15 % in simulated 
body fluid at 37 °C after 80 hours [147, 140], whereas mesoporous silica films showed 

complete dissolution within a timescale of approximately two hours in cell culture 
medium at 37 °C [106]. The more rapid dissolution of silica films in cell culture 
medium is supposed to occur as a result of the presence of active nucleophils in the 

medium. Preliminary own investigations have shown that the structural order of the 
coating is lost rapidly (within six to twelve hours) but that a silica layer still persists 
on the surface of a glass or Bioverit® II surface. Therefore, it cannot be excluded that 

the biologically active BMP2 found in cell and animal studies has dissolved from the 
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prosthesis and that the structural breakdown influences the release kinetics. 
Investigations which should further clarify these questions are currently being carried 
out together with Dr. Andrea Hoffmann from the Helmholtz Center for Infection 

Research The release behavior for BMP2 from mesoporous silica coatings is currently 
studied in cell culture medium (10 % fetal calf serum in phosphate buffered saline) in 
order to find out how much of the protein is released into solution at different stages 

within the first week.
A second strategy of implant functionalization was realized by using the mesoporous 
silica coating as a reservoir for the release of the antibiotic ciprofloxacin, which often 
is applied systemically in the case of middle ear infections. By functionalizing the 

silica surface with sulfonyl groups, the loaded amount of ciprofloxacin could be 

increased nearly tenfold (up to 2 μg cm−2) as compared to the blank mesoporous layer. 

These materials were tested in vitro in bacterial cultures. A high effectiveness against 
Pseudomonas aeruginosa (PAO1 CTX-lux) was observed after 6 hours, and 
experiments with fibroblasts showed a good general biocompatibility of these 
materials. Microscopic observation indicated that the cells could efficiently adhere 

and proliferate on the materials surfaces. A first in vivo animal experiment carried 
out using an especially developed mouse model also provided evidence for the high 
efficacy of the drug delivery system. 

By means of a combined dip- and evaporation-coating with hydrophobic substances, 
the release of ciprofloxacin could be prolonged up to over sixty days. In order to prove 

the anti-bacterial efficacy over that long period of time further bacterial culture 
experiment are planned. In this investigation, the ciprofloxacin-loaded materials 
equipped with different retarding coatings are every day placed in a distinct volume of 
fresh cell culture medium. The medium remoced is then tested for its efficacy against 

bacteria. The in vitro and the in vivo investigations on the drug delivery materials are 
carried out in collaboration with Mohammad Badar and Dr. Peter P. Müller from the 
Helmholtz Center for Infection Research in Braunschweig. 
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