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Zusammenfassung

Immungenetische Informatik in der allogenen Immuntherapie

Der Bereich Immungenetik ist ein Gebiet, das in hohem Ausmaÿ von den Organi-

sations- und Analyse-Möglichkeiten der Bioinformatik pro�tieren kann. In der

hämatopoietischen Stammzelltransplantation spielen die funktionelle Wirkun-

gen von genetischen Polymorphismen eine bedeutende Rolle. Hier führt eine

genetische Inkompatibilität zum Krankheitsbild der Graft versus Host Disease.

Auf der anderen Seite sind diese Variationen für die gewünschten Graft versus

Leukemia E�ekte verantwortlich.

In dieser Arbeit werden die Wirkungen solcher Polymorphismen innerhalb

und auch auÿerhalb des Major Histocompatiblitätskomplexs (MHC) comput-

ertechnisch analysiert, um ihre funktionelle Bedeutung vorherzusagen. Diese

Vorgehensweise erfordert das Vernetzen von ö�entlichen Gen-, Protein-, und

Polymorphismen-Datenbanken. Darüber hinaus werden die physiochemischen

Eigenschaften von Aminosäuren berücksichtigt, um die Strukturähnlichkeiten

von Proteinen zu quanti�zieren. Um MHC-Peptidinteraktionen vorherzusagen,

wurden Peptidbindungsdaten statistisch analysiert. Wegen des groÿen Daten-

volumens wurden die Prinzipien des Data Warehousing angewendet.

Die resultierende Systeme bieten die Fähigkeit:

1. Strukturähnlichkeiten zwischen zwei MHC Proteinvarianten zu quanti�zieren

und zu quali�zieren,

2. MHC-Peptidinteraktionen vorherzusagen,

3. die MHC Vielfalt so zu organisieren, dass die Anzahl der MHC Varianten,

für die eine Peptidbindungsvorhersage möglich ist, erweiterbar ist, und

4. Peptidziele für immuntherapeutische Anwendungen gegen Leukemie zu

identi�zieren, die keine Graft versus Host Disease hervorrufen.

Alle Programmanwendungen sind online unter www.peptidecheck.org zu erre-

ichen.
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Summary

Computational immunogenetics in allogeneic immunotherapy

The �eld immunogenetics is an area which can bene�t greatly from the pos-

sibilities o�ered by computational biology for data organization and analysis.

The functional consequences of genetic polymorphisms play a major role in

hematopoietic stem cell transplantation, and other forms of immunotherapy.

Here, genetic incompatibility can lead to the complication known as graft ver-

sus host disease. However, such genetic variations are also responsible for the

bene�cial graft versus leukemia e�ect.

In this work, the e�ects of polymorphism inside and outside of the ma-

jor histocompatibility complex (MHC) are analyzed computationally to predict

their functional signi�cance. This approach requires the networking of public

gene, protein, and polymorphism databases. Furthermore, the physicochemical

properties of amino acids were considered to quantify the structural similar-

ity of protein variants. To predict MHC-peptide interactions, peptide binding

databases were statistically analyzed. Because of the volume of data processed,

the principals of data warehousing had to be applied.

The resulting systems provide the ability to

1. quantify and qualify the structural similarity between two MHC protein

variants,

2. predict MHC-peptide interaction,

3. manage MHC diversity to expand the number of variants for which peptide

binding prediction is possible, and

4. identify anti-leukemia peptide targets for immunotherapeutic application

without causing graft versus host disease.

All of these programs are accessible as web tools and are available online at

www.peptidecheck.org.
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Part I. Preface

In accordance with the standards set by the Leibnitz Universität Hannover, this

cumulative dissertation is a collection of articles which were published in, or

prepared for established scienti�c journals with strict peer review systems. In

addition to four original papers, I have included two book contributions and

a review article. All articles concern computational approaches to analyzing

the genes of the major histocompatibility complex and the protein interactions

which are determined by this gene region. The work presented in each article was

undertaken with the goal of furthering the development of immunotherapeutic

solutions to the problem of leukemia.

The articles in this dissertation are preceded by a cumulative analysis (Part

II), which aims to generalize and summarize the issues, results, and conclusions

found within the articles. The Appendix has provided me with an opportunity

to describe computer science concepts and implementations which were impor-

tant for this work, but could not be included in the articles themselves. As a

result, the Appendix is not simply a repository for supplementary tables, but

also includes detailed descriptions the how particular programming concepts

contributed to the performance and design of the systems. However, because

these issues are of a technical nature, and do not involve the natural sciences, I

feel that this text is appropriately placed in the Appendix, as opposed to in the

main body.

This cumulative dissertation includes the following articles. Original papers

are given in bold face. A description of to what extent I personally contributed

is given after each article in brackets.

• DeLuca, D.S. and Blasczyk, R. (2007) The immunoinformatics of cancer

immunotherapy, Tissue Antigens, 70, 265-271. [Review, concept and text

by DeLuca.]

• Elsner, H.A., DeLuca, D., Strub, J. and Blasczyk, R. (2004)

HistoCheck: rating of HLA class I and II mismatches by an
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internet-based software tool, Bone Marrow Transplant, 33, 165-

169. [Concept and text by Elsner. Labor by DeLuca.]

• DeLuca, D.S. and Blasczyk, R. (2007) HistoCheck: Evaluating Structural

and Functional MHC Similarities. In Flower, D.R. (ed), Immunoinformat-

ics. Humana Press, 395-405. [Concept and text by DeLuca.]

• DeLuca, D.S., Khattab, B. and Blasczyk, R. (2007) A modular

concept of HLA for comprehensive peptide binding prediction,

Immunogenetics, 59, 25-35. [Concept by Blasczyk. Text and labor by

DeLuca.]

• DeLuca, D.S. and Blasczyk, R. (2007) Implementing the Modular MHC

Model for Predicting Peptide Binding. In Flower, D.R. (ed), Immunoin-

formatics. Humana Press, 261-271. [Concept and text by DeLuca.]

• DeLuca, D.S., Eiz-Vesper, B., Ladas, N., Khattab, B., and Blasczyk,

R. (2008) High thoughput minor histocompatibility antigen pre-

diction, Bioinformatics (to be submitted). [Concept by Blasczyk.

Text by DeLuca. Labor by DeLuca (70%).]

• DeLuca, D.S., Beisswanger, E., Wermter, J., Horn, P.A., Hahn,

U., Blasczyk, R. (2008) Development and immunoinformatic ap-

plication of the MHC ontology, Bioinformatics (to be submit-

ted). [Concept and text by DeLuca. Labor by DeLuca (80%).]

Although the original papers are su�cient to meet the requirements of this

dissertation, I felt it was important to include the book contributions and the

review as well. The review article in Tissue Antigens provides a useful intro-

duction to the issues surrounding immunotherapy. Furthermore, it establishes

the state-of-the-art of minor histocompatibility antigen prediction as a prelude

to the article prepared for Bioinformatics on the same topic. For the topics of

HistoCheck and the modular concept of HLA, each original paper is followed

by a book contribution. The book contributions were published as part of the

2



1 INTRODUCTION

series, Methods in Molecular Biology, and supplement the original papers by

going into more detail about methods and implementation. The �nal paper

involves the development of an ontology, to which our cooperation partners at

the University of Jena contributed greatly. Here, we transferred a concept from

computer linguistics to the area of immunogenetics to improve the design of the

systems described in the other papers. In summary, all articles were selected

with care to contribute to this dissertation in a cohesive and synergetic manner.

Part II. Cumulative Analysis

1 Introduction

The work presented here combines computer science technologies with biological

concepts for the purpose of furthering understanding of the immune processes

involved in hematopoietic stem cell transplantation (HSCT).

1.1 Clinical and Immunogenetic Background

Hematopoietic Stem Cell Transplantation

HSCT is perhaps the most clinically relevant form of immunotherapy currently

practiced, second only to vaccination. In treating hematopoietic malignancies,

irradiation of the patient's bone marrow is performed with the goal of elimi-

nating cancerous cells, and with the side e�ect of destroying healthy stem cells.

Following irradiation, HSCT replenishes these stem cells, providing the patient

with, in e�ect, a donated immune system. The issue of histocompatibility then

plays a central role in the three main problems faced by the patient: rejection,

graft versus host disease (GvHD), and relapse. Directly following engraftment,

there is a risk that the graft is unable to establish itself because the native im-

mune system reacts with antigens presented on the surface of graft cells. When

the graft is established, the donated immune cells cause an immune response to

3



1.1 Clinical and Immunogenetic Background 1 INTRODUCTION

the patient's tissues, in particular liver, skin, and intestinal cells. This is the

cause of GvHD. If the donated immune system is not able to eliminate residual

leukemic cells, then the patient goes into relapse. GvHD and relapse have a

kind of inverse relationship. When genetic polymorphisms lead to a signi�cant

presence of reactive antigen in the patient, then the risk of GvHD is higher.

However, higher levels of antigen contribute to the graft's ability to react with

residual leukemia cells, preventing relapse[1]. This positive immune reaction is

known as the graft versus leukemia (GvL) e�ect. The Holy Grail of HSCT is to

establish a therapy which favors the GvL reaction and limits GvHD.

Antigen-Targeted Immunotherapy

In the context of a HSCT, it is possible to stimulate the donated T cells ex vivo

prior to implantation in the patient. This is known as adoptive transfer[2, 3, 4].

The purpose of adoptive transfer is to apply antigen to T cells prior to im-

plantation for the purpose of causing antigen-speci�c proliferation, with the

hope of eliciting a speci�c immune response within the patient. The e�orts of

this dissertation concern anti-leukemia responses, although it can be noted that

anti-pathogen responses are also being pursued by other groups. Because of the

threat of GvHD, immune responses speci�c to healthy patient tissues should

be avoided through the careful selection of antigen. Furthermore, donated T

cells will be tolerant to antigens which are present on the surface of donor cells.

Therefore, to elicit the desired immune response, antigens must be selected

which are absent in the donor, but present in the patient. Di�erences in the

antigen pro�les between donor and patient can be cause by single nucleotide

polymorphisms (SNPs). Antigens having these characteristics which are pre-

sented by proteins encoded by the major histocompatibility complex (MHC)

are known as minor histocompatibility antigens (mHag) [5] and are introduced

below.

4



1.1 Clinical and Immunogenetic Background 1 INTRODUCTION

Major and Minor Histocompatibility Antigens

The major histocompatibility complex (MHC) is a gene complex located on

chromosome six in humans, which had been identi�ed early on as a determinant

for compatibility following tissue transplantation. The genes found here encode

proteins which are able to bind peptide fragments within the cell and transport

them to the cell surface. On the cell surface, the MHC-peptide complex is avail-

able for binding by T lymphocytes (a.k.a. T cells) which can initiate an immune

response, leading to the destruction of the target cell, and the activation of fur-

ther lymphocytes. T cells express a protein on their cell surface known as the T

cell receptor (TCR), whose structure is variable among T cells. The interaction

between the TCR and the MHC-peptide complex determine whether the im-

mune response is initiated or not. To prevent T cells from reacting with normal

tissues, they mature in the thymus, where self-reactive T cells are eliminated.

In this way, T cells normally react only with foreign structures presented in the

MHC.

In humans MHC is known as human leukocyte antigen (HLA). HLA has a

high rate of polymorphisms. To date, there are over 3000 alleles known to be

coded among about a dozen highly-investigated genes[6]. These polymorphisms

lead to structural di�erences in the HLA proteins which cause immune reac-

tivity following HSCT. The TCRs of the donated T cells were selected in the

donor's thymus to be tolerant of the HLA structures of the donor. If the patient

expresses a di�erent HLA structure, then the donated T cells cause an immune

reaction. If the patient and donor are HLA identical, then there is less chance

of a reaction. However, polymorphisms in other loci can lead to a di�erential

expression of peptides which are presented by HLA. In this case, donated T cells

will not reactive negatively to the HLA molecule itself, but to the peptides pre-

sented within. Such peptides are designated minor histocompatibility antigens

(mHag)[7].
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1.2 Bioinformatic Starting Block 1 INTRODUCTION

1.2 Bioinformatic Starting Block

This dissertation covers computational techniques for analyzing genetic poly-

morphisms within and beyond the MHC for the purpose predicting their func-

tional signi�cance. The following paragraphs are meant to describe the resources

available for taking on this task.

The nucleotide sequences of alleles within the HLA are provided by public

databases[6]. These sequences are translated algorithmically to provide pro-

tein sequences. Understanding the function and signi�cance of amino acids

at particular positions is of great importance for predicting immune reactions.

Fortunately, x-ray crystallography has provided immunogeneticists with the 3-

dimensional structure of over a hundred HLA protein variants[8]. These models

are extremely informative with respect to the structure and function of all amino

acid positions within the HLA molecule.

The interaction of HLA proteins with the peptides they bind is determined

by physiochemical environment provided in the structural domain known as the

peptide binding domain (or groove). To identify which positions in the protein

sequence are directly involved in peptide binding, the crystallographic data has

been mathematically analyzed, either via solvent accessibility calculations, or

simple atomic distance calculations[9]. The sub domains within the peptide

binding groove which are responsible for binding the individual amino acids

of the peptide are known as pockets. These pocket de�nitions are a further

important resource for making further predictions about the e�ects of variation

on HLA function.

Another indispensable source of information for analyzing HLA-peptide in-

teraction is the results of peptide elution and sequencing experiments. These

experiments have been performed by the greater immunogenetics community,

and compiled into large databases[10, 11, 12, 13]. For example, there are over a

thousand peptide sequences which have been determined to bind HLA-A*0201.

Inspection of these peptide sequences reveals certain motifs. Each HLA variant

has a particular binding speci�city, and motif preference[14]. This phenomenon

6



1.3 Challenges and Objectives 1 INTRODUCTION

allows us to utilize these data to create prediction algorithms to predict HLA

binding for a given peptide.

In the case of mHags, we must look beyond the polymorphism in HLA and

consider any polymorphism throughout the genome which can lead to di�erential

peptide expression. Single nucleotide polymorphism (SNP) data are provided to

the public by the dbSNP hosted at NCBI, NIH (USA). These polymorphisms

can be found in coding or non-coding regions. They can lead to an amino

acid exchange (non-synonymous), or be silent. They can cause frame shifts via

nucleotide insertion or deletion. They can destroy a wild type stop codon, or

cause the addition of a premature stop codon. For investigating mHags, these

data must be �ltered to �nd only those mutations which can lead to a protein

di�erence. The SNP data are linked via protein Ids to protein sequences in the

public Entrez Protein database. By combining this information, it is possible

to produce a database of polymorphic peptide sequences. This is exactly what

we did, as reported in Section 9.

In addition to the SNP requirements, mHags must be processed by the pro-

teasome, and then bound by HLA proteins and presented on the surface of the

cells. Analysis by in vitro digestion assays has provided a source of experimental

data for the bases of proteasomal cleavage prediction algorithms[15, 16, 17, 18,

19, 20]. In addition, HLA peptide binding prediction has been long studied, and

represents one of the oldest applications of computational biology in the area of

immunogenetics[21, 22, 23, 24, 25, 26, 27, 20]. These prediction algorithms are

essential for taking on the challenge of prediction mHag peptides.

1.3 Challenges and Objectives

For the immunotherapeutic treatment of leukemia, genetic polymorphism is si-

multaneously a barrier and an opportunity. Polymorphisms within the MHC

lead to graft rejection and GvHD. Polymorphism outside of the MHC can lead

to GvHD, but also to the destruction of leukemia cells (GvL). Immunogeneti-

cists are posed with the challenge of interpreting polymorphism typing results
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1.3 Challenges and Objectives 1 INTRODUCTION

for individual donor/patient pairs. The experimental data, which could pro-

vide insight into the immune processes, is currently in the form of thousands

of nucleotide sequences of HLA alleles, thousands of amino acid sequences of

HLA bound peptides, and millions of reported polymorphisms throughout the

genome. Examining these data by hand is impossible due to the sheer volume.

Computer systems o�er a chance to overcome this problem.

The objective of this dissertation is to utilize computer algorithms and

databases to examine how polymorphism a�ects immunogenicity in the context

of immunotherapy. The ultimate goal is to identify leukemia-speci�c antigens

which can be utilized in immunotherapy to eliminated leukemia without causing

GvHD. This endeavor requires the ability to

1. quantify and qualify the structural similarity between two MHC protein

variants,

2. predict MHC-peptide interaction,

3. manage MHC diversity to expand the number of variants for which peptide

binding prediction is possible, and

4. identify anti-leukemia peptide targets for immunotherapeutic application

without causing graft versus host disease.

Each step is a prerequisite for the next. Comparing structural and functional

similarity of MHC protein variants is required in order to understand how amino

acid di�erences a�ect peptide binding. By doing this, in combination with

predicting MHC-peptide binding in general, we aim to expand the number of

variants for which peptide binding prediction is possible. This ensures that

clinical applications can be individualized, and not developed exclusively for

carriers of the most common variants. Because MHC-peptide binding is a critical

step in immune reactivity during immunotherapy, these predictions contribute

to the ultimate goal of identifying leukemia speci�c antigens.
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2 RESULTS AND DISCUSSION

2 Results and Discussion

The result of these e�orts is a collection of algorithms, databases, and web

servers which provide insight into the functional signi�cance of HLA and non-

HLA polymorphisms for immune reactivity.

2.1 HLA Protein Structure

The web-based HistoCheck program was created for the purpose of comparing

HLA alleles to evaluate their functional similarity (see Sections 5 and 6). The

motivation for this program is that clinicians are often faced with a transplan-

tation situation in which an HLA mismatch is unavoidable. Here, the question

is: Which mismatch is preferable? HistoCheck utilizes the protein sequence in-

formation from the IMGT/HLA database to identify which amino acids di�er

between the two variants. For each amino acid mismatch, HistoCheck evaluates

both the functional relevance of the position of the mismatch, as well as the

physicochemical similarity of the amino acids themselves.

The functional relevance of each position in the HLA protein was provided by

crystallographic data[8]. Here, two functions were considered: peptide binding,

and TCR interaction. As a result, a given position was tagged as PEP (peptide

binding), TCR (interacting with TCR), or PEP/TCR (having both functions).

Positions having neither function were not tagged. While the position of an

amino acid exchange is critical to the e�ect, the characteristics of the amino

acids involved also play an important role. For example, an amino acid exchange

involving two physiochemically similar residues is likely to have little e�ect upon

the function of HLA protein. To quantify amino acid similarity, Risler scores

are provided to the user by HistoCheck. These scores are based upon the rate

of amino acid substitutions among evolutionarily related proteins. A low score

re�ects a high rate of substitution among related proteins, and therefore a high

level of functional similarity. Conversely, high scores represent low similarity.

An algorithm was proposed to summarize and quantify the extent of functional

9



2.2 HLA Peptide Binding 2 RESULTS AND DISCUSSION

variation. This algorithm is de�ned and explained in the Methods of Section

5. For visualization, a 3-dimensional model of the HLA protein is provided and

the relevant positions are highlighted. Instructions on how to interpret the data

provided by HistoCheck are given in Section 6.

Whether there is a direct correlation between the �nal score given for two

HLA alleles and the level of GvHD following HSCT has not been determined.

While this detracts greatly from the expressiveness of this score, it does not

degrade the overall value of the HistoCheck website. In particular, the pri-

mary data given to the user (position of mismatches, amino acids involved),

as well as the visualization on the crystallographic structure provide practical

information about an HLA mismatch. The �nal interpretation is left up to the

user. For the following work in this dissertation, the experience of implement-

ing the HistoCheck website was essential because the programming methods

and data structures involved provided a stepping stone to the implementation

of the modular concept of HLA.

2.2 HLA Peptide Binding

Programming HistoCheck was the �rst step in analyzing the e�ects of polymor-

phisms on HLA protein structure. The next step was to investigate how these

variations a�ect peptide binding. Here, databases of peptide sequences from

experimentally determined HLA binders were very important. By utilizing a

published peptide sequence database[10], a prediction algorithm was generated

based upon the frequencies of amino acids at each position in the peptide. This

was done for each HLA protein for which enough peptide binding data was

available (more than 15 peptides per HLA variant). However, because of the

high costs of eluting and sequencing peptides, we went further to develop an

algorithm which considers the structural similarities among HLA proteins and

exploits these similarities to expand the number of HLA variants for which bind-

ing prediction is possible. This was dubbed, a modular concept of HLA (see

Sections 7 and 8).

10



2.2 HLA Peptide Binding 2 RESULTS AND DISCUSSION

By using the x-ray crystallography-based pocket de�nitions, we generated

a database of HLA �modules�, which consist of non-sequential lists of amino

acids which represent the physiochemical environment for a given position in

the bound peptide. To make a prediction for a given HLA protein, the peptide

binding data for each module was utilized. We then demonstrated that it is

possible to make an accurate prediction for an HLA protein variant, even if

there is no peptide binding data available for this variant.

The accuracy of the predictions was measured using by calculating the area

under the receiver operating characteristic curve (AROC). The ROC curve is the

relation between the sensitivity and speci�city of the prediction algorithm (see

Materials and methods, Section 7). The algorithms sensitivity and speci�city

are measured by the so-called jackhammer technique. Here, the entire set of

known binding peptides is used to train the prediction algorithm, excluding

peptide reserved for testing, and any peptide of high similarity. The testing

peptide is then applied to the prediction algorithm to evaluate accuracy. This

is repeated to test with every peptide in the training/testing set, and ensures

that the testing and training datasets are strictly separated.

The resulting AROC values were very high for both module-based and matrix-

based peptide binding prediction (see Table 3 in Section 7), con�rming the

accuracy of this approach. Furthermore, Figure 2 of Section 7 demonstrates

that highly accurate predictions can be made using the modular approach for

alleles for which no peptide binding data are available. Whereas the standard

approach to HLA peptide prediction could only make predictions for 28 alleles

using the given data, the modular technique was able to increase this number

to 144. These results bring us one step closer to providing complete population

coverage for individualized immunotherapies which rely on such predictions.

The generation of HLA modules provided insight into the nature of HLA

diversity. A total of 2,525 modules were created for 1,098 Class I alleles. Because

there are nine modules for each allele, this represents a 71% conservation of

modular sequences. Furthermore, the level of module diversity di�ers greatly

11



2.3 Minor Histocompatibility Antigens 2 RESULTS AND DISCUSSION

from pocket to pocket (see Figure 1, Section 7). For example, only 82 modules

were generated for pocket 8, which has a minimal e�ect in determining the

peptide binding speci�city. In contrast, for pocket 6, which is considered to

be an �anchor position� (i.e. highly signi�cant for determining speci�city), 458

modules were generated.

The modular concept of HLA provided a new way to approach the question

of which alleles should be considered when acquiring new peptide binding data.

Three systems of ranking HLA variants were proposed. The variants are ranked

based upon how much information they deliver to the module-based system of

peptide binding prediction when the bound peptides are determined. By uti-

lizing this ranking system, resources can be utilized as e�ciently as possible.

Firstly, alleles were ranked based upon the number of new modules having pep-

tide binding data which would be entered into the system. A second ranking

system was based upon the number of new anchor modules (modules for pock-

ets 2 and 9) with associated binding data. Finally, perhaps the most easily to

understand ranking is that which is based upon the number of new alleles for

which prediction would be possible when the peptide binding data is incorpo-

rated. The results of these ranking schemas are given in Table 5 of Section 7.

For example, the determination of the peptide binding motif for B*4808 alone

would allow for the peptide binding prediction of 16 additional alleles

2.3 Minor Histocompatibility Antigens

The ability to predict HLA-peptide binding was an important prerequisite for

the investigation of mHags. This comes from the obvious fact that mHags are

HLA-bound peptides. However, these peptides must ful�ll additional require-

ments in order to be functional mHags: they must be polymorphic, they must

be naturally processed by the proteasome, and they must cause an immune re-

sponse in an allogeneic transplantation setting. To simulate this, we created

the PeptideCheck web resource (Section 9). To use a term from the world of

IT (Information Technology), we created a data warehouse to manage all of the

12
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biological data. A schematic is given in Appendix A.

The source of polymorphism data was the dbSNP hosted by NCBI. NCBI

provides so-called eUtilities, which allow programmers to access data in an au-

tomated fashion, using the HTTP web protocol. Since we are only interested in

polymorphisms which lead to an amino acid di�erence, it was possible to utilize

the eUtilities query to pre-�lter the data in this regard. The data was down-

loaded in XML format, stored temporarily, and then processed and reorganized

into database tables using a combination of Java and Caché Object Script. As

given in Table 1 of Section 9, almost 49,000 SNP entries were collected, of which

almost 23,000 were listed as validated. The signi�cance of the validation label

was underscored, when we performed SNP typing on selected candidates (Table

5, Section 9). Strikingly, zero of 5 non-validated SNPs could be con�rmed. In

contrast, 4 of 6 validated SNPs could be con�rmed in our lab.

The SNP data was used in combination with almost 24,000 protein sequences

to create a database of almost 2 million allogeneic peptide candidates. Predic-

tion algorithms, such as those from Section 7, as well algorithms from other

groups, including proteasomal processing algorithms were applied to all pep-

tides. The resulting system provides a method of querying peptides to �nd

those which ful�ll the genetic, polymorphic, and functional requirements neces-

sary to be considered mHags.

Comparison to Validated mHags

To validate this system, the mHag candidates were compared to the currently

known, experimentally determined mHags described in dbMinor[28]. The Pep-

tideCheck ranking system was able to reproduce the experimental results, rank-

ing three of the known mHags in the top 0.25 % of possible peptide candidates:

HA-1, HA-3, and HA-8. Remarkably, this ranking scheme placed HA-3 at posi-

tion 2 of over 800,000 candidates.

Not all of the known mHags from the dbMinor could be reproduced by the

PeptideCheck system (see Table 2, Section 9). Of the 21 polymorphism known to
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produce mHags, 5 were types of polymorphism which are not easily reproduced

computationally, or are simply not available. For example, several mHags are

caused by gene deletion, for which there is currently no data available. Some

mHags are caused by SNPs which are listed in dbSNP, but occur in non coding

regions, and result in di�erential peptide expression via mechanisms such as

alternative splicing. Such phenomena are di�cult to compute, and thus not

included in PeptideCheck. Two of the known mHags are caused by SNPs which

were never reported to the dbSNP, and therefore excluded from our system.

A �nal limitation of PeptideCheck is that only peptides having nine amino

acids are considered. For a long time, this length was considered to be the

canonical length of peptides, and the majority of reported HLA-bound peptides

are nonamers. As a result, HLA peptide binding prediction algorithms, such

as the ones developed during this dissertation, often focus only on nonamers.

However, many of the known mHags vary in length. The prediction of variable-

length peptides would be an important improvement for the further development

of PeptideCheck.

GvL Targeted mHags

Because our goal was to �nd targets for immunotherapy, the system utilizes tis-

sue expression to provide a list of GvL-inducing peptides which are unlikely to

cause GvHD. Gene expression analysis using A�ymetrix arrays was performed

on CML, CD34+ (GvL target cells), as well as on epithelial and epidermal

cells (GvHD targets). Additional external expression data was also used (e.g.

GeneNotes[29]). By subtracting GvHD associated expression from GvL associ-

ated expression, a list of 687 SNP-containing genes was generated. The SNPs

were then �ltered with the requirement that they were validated by genotypic

frequency data, and that peptide carriers (homozygous positive + heterozygous

positive) were at least 10% of the population and that non-peptide carriers (ho-

mozygous negative) were also at least 10% of the population (data provided by

HapMap[30]). Finally, those peptides with the highest HLA binding prediction
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scores, and ful�lling reasonable proteasomal cleavage prediction scores were re-

ported as GvL-relevant peptide candidates. These candidates, listed in Table

4 of Section 9, represent the best targets for the ex vivo proliferation of GvL-

speci�c T cells for immunotherapeutic application, according to the criteria of

this system.

2.4 Ontology

A look at the schematic of the PeptideCheck database (Appendix A and B)

reveals the complexity involved when processing large amounts of biological

data. To help manage the complexity of the HLA system, we produced an

MHC Ontology (Section 10). An ontology is a collection of de�ned terms which

are joined through de�ned relations. Ontologies are written in a format which

is easily computer-accessible (easily incorporated into computer programs).

In the case of HLA, this is necessary to manage the relationships that dif-

ferent HLA alleles have among each other. The HLA nomenclature is able to

do this to a limited extent. In some cases, the genetic similarities among HLA

alleles can be inferred by the HLA name alone (see the Introduction of Section

10). However, a formal de�nition was lacking, and so the MHC Ontology was

produced.

The resulting MHC Ontology has an important subdivision, named the HLA

Ontology. Because of the rapid rate of expansion of HLA data, it made sense to

maintain a relatively stable, upper level ontology (MHC Ontology), which then

imports the HLA component from an external Ontology (the HLA Ontology).

In this way, every time that the HLA data from the IMGT/HLA Database are

updated, the HLA Ontology can be automatically refreshed, and imported into

the MHC Ontology. To achieve this automation, a java program was written

to create the HLA Ontology dynamically in OWL format. The stable, MHC

Ontology, was composed �by hand� using the Protégé ontology editor. The

MHC Ontology consists of 106 classes and 7 relations. The HLA Ontology

utilizes the relations from the MHC Ontology and consists of 6649 classes, as of
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IMGT/HLA release 2.20.0.

The formal, computer-readable de�nition of HLA allelic hierarchy has al-

lowed for improvement in the interface of the PeptideCheck web resource. The

ontology has been incorporated into the Module Explorer section of the Pep-

tideCheck website. This allows the user to more easily access the HLA alleles

of interest. Importantly, the problem of A*02 alleles spilling over into the A*92

group has been resolved. Although it is not evident from the nomenclature,

A*92 alleles actually belong to the A*02 two-digit group. This is also true for

B*15 alleles spilling over into B*95. Because this system is automatically up-

dated with every IMGT/HLA database update, the ontology provides a reliable

means of representing and organizing HLA alleles.

3 Conclusions

Managing Polymorphism

The concept of polymorphism poses not only a challenge for HSCT, but also

for bioinformatics. The extreme level of variation in the HLA system makes

the attempts of nomenclature committees seem futile. Here the MHC and HLA

Ontologies have proven helpful. The large number of HLA protein variants

makes it impossible to quantify the functional discrepancies for every mismatch

situation. The HistoCheck website provides a convenient way to analyses these

discrepancies no matter how many new alleles are added to the database. Elut-

ing and sequencing peptide binding data for each HLA variant would require

extreme amounts of �nancial resources. The modular concept of HLA provides

a means of applying resources e�ciently to maximize the impact of new data

for HLA peptide binding prediction.

Outside of the MHC, polymorphisms throughout the genome play a role

in HSCT via mHags. Although the volume of data when considering the all

SNPs of the genome is several orders of magnitude greater than that for HLA,

modern computers have little problem processing millions of entries, as long as
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programmers pay careful attention to e�ciency and optimization. In the case of

PeptideCheck, the �exibility o�ered by the InterSystems Caché databases was

very important for achieving such optimizations. It was almost surprising to

see that even when considering such quantities of peptide candidates, ranking

based upon HLA peptide binding score was able to reproduce validate mHags.

Lessons Learned

Several lessons were learned throughout the course of these investigations. A

very large number of external resources were required to create these bioin-

formatics solutions. Most of these resources could be tapped via automated

online systems. In particular, accessing data in XML format via HTTP is a

very convenient way for bioinformaticians to utilize the resources they provide

for each other. By providing such services, resources such as NCBI or HapMap

can increase the e�ciency of their contribution to further computer-dependant

research.

The contribution of x-ray crystallographic data was indispensable in creat-

ing HistoCheck and the modular concept of HLA. This is a di�cult and costly

procedure, but the bene�ts for computational analysis justify theses costs. The

importance of quality over quantity was underscored by the SNP typing results

in Section 9. Here, only validated SNPs from the dbSNP could be reproduced.

The correlation between HLA peptide binding prediction scores, and the likeli-

hood of identifying mHags was surprisingly strong (Section 9).

Final Word

In conclusion, computational biology is an important tool for deepening our

understanding of concepts in immunogenetics, when it is combined with exper-

imental data and validation. Using computer systems to organize and present

biological data is practical and necessary. Using database and algorithms to

simulate biological processes and yield new knowledge is more challenging, but

possible. The PeptideCheck system shows that at least a signi�cant portion of
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biological events can be simulated, even if not every peptide target can be found.

Some processes are easily represented in computer systems (e.g. �nding pep-

tides encoded by missense SNPs), while the high level of complexity makes other

processes elusive (e.g. �nding peptides encoded by alternate splicing events).

There is a high likelihood that an e�ective treatment for leukemia will one

day result from the e�orts in the �eld of immunogenetics. Computer systems

will help.
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Abstract

Wereviewhere thedevelopments in the field of immunoinformatics and their present

and potential applications to the immunotherapeutic treatment of cancer. Antigen

presentation plays a central role in the immune response, and as a result in

immunotherapeutic methods such as adoptive T-cell transfer and antitumor

vaccination. We therefore extensively review the current technologies of antigen

presentation prediction, including the next generation predictors, which combine

proteasomal processing, transporter associated with antigen processing and major

histocompatibility complex (MHC)-binding prediction. Minor histocompatibility

antigens are also relevant targets for immunotherapy, and we review the current

systems available, SNEP and SiPep. Here, antigen presentation plays a key role, but

additional types of data are also incorporated, such as single nucleotide poly-

morphismdata and tissue/cell-type expression data. Current systems are not capable

of handling the concept of immunodominance, which is critical to immunotherapy,

but efforts have beenmade tomodel general aspects of the immune system.Although

tough challenges lie ahead, when measuring the field of immunoinformatics on its

contributions thus far, one can expect fruitful developments in the future.

Introduction

The cells of the immune system hold great potential to be

harnessed for their therapeutic effects against cancer. Potential

therapies include adoptive transfer of ex vivo-expanded

antigen-specific T cells (1–3), as well as in vivo vaccination

(4). In the case of adoptive transfer, a highly specific reactivity

can be achieved using peptide-pulsed or transfected cells, as

well as using artificial antigen-presenting cells (5–8). In

addition to successful immunotherapeutic applications in

mouse tumor models (9), clinical plausibility in humans is

continually becoming established (10–14). The identification

of the optimal antigens to use either in ex vivo T-cell

stimulation or as anticancer vaccines is a crucial step in the

developmentof immunotherapies (15, 16).Here, there ismajor

potential for support from the field of computational biology.

Immunoinformatics is emerging as a field with growing

significance and application in the clinical setting (17). For

example, intense effort has been made to computationally

represent the antigen presentation process (18–20). For

immunotherapy, antigen targets can be of a tumor-specific

nature (21). In this case, experiments are necessary to

identify tumor-specific target proteins, at which point

antigen presentation prediction can be very useful for

identifying immunoreactive domains. Further experimen-

tation by major histocompatibility complex (MHC)-binding

assays and cytotoxic T lymphocyte (CTL) assays is then

required to select the functionally relevant antigens from the

list of theoretical candidates (22).

In the context of hematopoietic stem cell transplantation,

minor histocompatibility antigens (mHags) arise from the

polymorphic genetic profile of a particular patient with

respect to that of a stem cell donor (23). The graft vs

leukemia (GvL) effect, which occurs when donor lympho-

cytes eliminate the residual malignant cells of the patient,

can be considered the most established form of immuno-

therapy (24). Exploiting the GvL effect, while minimizing

graft vs host disease (GvHD), is the major challenge of the

hematopoietic stem cell transplantation field. Here, immu-

noinformatics contributes to the effort to identify GvL-

inducing mHags by mining polymorphism data, expression

profiles as well as antigen presentation predictions (25, 26).

Antigen presentation

Antigenpresentation is the process leading to thepresentation

of potential T-cell epitopes on the cell surface byMHC. In the

ª 2007 The Authors
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case of presentation by MHC class I, this process involves

protein degradation, peptide transport into the endoplasmic

reticulum via transporter associated with antigen processing

(TAP), and MHC binding (27). The solved crystal structures

of these components are depicted in Figure 1. Algorithms

have been developed to predict each of these fundamental

steps in this process, aswell as combination algorithms,which

integrate the individual types of prediction. An overview of

such algorithms is shown in Table 1.

Protein cleavage

The proteasome is the central focus of the efforts of

immunoinformatics to describe protein degradation. There

are two sources of data, which are used to train cleavage

prediction systems. On the one hand, there are peptide

sequences generated by the in vivo degradation of specific

proteins (28–30). These data are extremely insightful into

the manner in which the proteasome operates. In particular,

it is clear from these digestion assays that, while there are

favored cleavage sites, the same protein can be cleaved at

different sites. The result is a pool of peptides, which in

many cases overlap in the original protein sequence. The

limiting aspect of this high-quality data is simply that few

proteins have been analyzed in this way and that a larger

training set is desirable. This has caused other immunoin-

formaticians to turn to a more plentiful source of data:

naturally presented peptides eluted from MHC proteins. It

is assumed that such natural peptides must have been

cleaved by the proteasome and can therefore be used in

training predictors in combination with the source protein

sequences. The inclusion of peptides, which have been

eluted fromMHC proteins having differing binding motifs,

should weaken an MHC-binding bias inherent in this data.

However, as we will discuss later, these kinds of systems

may still be predicting MHC binding to some extent. The

unavoidable consequence of this kind of data, however, is

the fact that cleavage sites in proteins will be missed, when

the resulting peptide does not bind MHC, and is not

included in the eluted peptide dataset as a result.

In addition to the proteasome, aminopeptidases are

responsible for shortening the peptides, which are ultimately

presented by MHC (31, 32). These enzymes act on the

N-terminus of the peptide. Because there is currently no

system for predicting aminopeptidase digestion, a certain

gray area surrounds the determination of the N-terminus of

predicted peptides. Because of this fact, it is arguable that

predicting digested protein fragments should concentrate

mainly on the C-terminus, with the assumption that for

a given C-terminal cleavage site, peptidases will produce

an array of peptides with differing N-terminal sites. This

is supported by the observation of naturally presented

peptides that result from the same C-terminal cleavage site

but have differing lengths (33). There is another caveat

concerning peptide length that should be mentioned here.

The requirement by some prediction systems that a peptide

be C-terminally cleaved but not contain internal, ‘peptide-

destroying’ cleavage sites may be too strict. The in vivo

digestion assays show the existence of peptides stemming

from overlapping sequences in the original protein. This

strongly suggests that an internal cleavage site does not

disqualify a sequence region as a potential peptide. This

is further supported by the latest attempts at including

the internal cleavage site as a disqualifier, which did not

improve proteasomal cleavage prediction performance (20).

Transporter associated with antigen processing

After proteasomal cleavage, peptide sequences are trans-

ported into the endoplasmic reticulum by the TAP protein.

This process is assisted by various chaperones, such as

tapasin, calreticulin and the disulfide isomerase ERp57 (34).

The peptide-binding motif of human TAP has been

deciphered by combinatorial libraries. This and other

Figure 1 The major players in antigen presentation – human leukocyte

antigen (HLA), transporter associated with antigen processing (TAP) and

the proteasome. The crystal structures of three proteins central to the

antigen presentation process are depicted in their relative sizes to one

another. The HLA protein is in complexwith b2microglobulin in green and

a decamer peptide in red. TAP1 is shown in isolation because the details

of TAP complex formation are still unknown. The ADP-binding site is

shown in red. The barrel-like 20S subunit of the yeast proteasome is

colored according to secondary structure. The following PDB files were

used: 1HHH (71), 1RYP (72), and 1JJ7 (73).
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studies showed significant amino acid preferences, particu-

larly at the C-terminus and the three N-terminal positions

(35, 36). Peptides of up to 16 amino acids are preferred, with

lengths of 8–12 binding most efficiently (37). For the

purpose of predicting the rate at which TAP transports

a particular peptide into the ER, TAP-peptide-binding

affinity can be used as an estimator of transport rate,

because these two values have been shown to correspond

(38). In the pioneering work of Peters et al., weight matrices

were fitted toTAP-peptide affinity data (39). Phenylalanine,

tyrosine, and argininewere shown to be particularly favored

at the C-terminus. We will discuss the implications of this

effort in the section on combined predictions below.

Putting it together with MHC-binding prediction

The final step in antigen presentation is a classical subject of

immunoinformatics: MHC binding. This is the most

restrictive step involved in antigen presentation. It is

estimated that only 1 out of 200 peptides will bind a given

MHC class I allele with sufficient strength to elicit a CTL

response (40). Many approaches have been taken to predict

MHC–peptide binding (41–48), and it is useful at this point

to discuss the prediction of all steps together, which are

needed for comprehensive prediction of the entire pre-

sentation pathway.

The means of evaluating multistep antigen presentation

prediction is to use a dataset of naturally processed MHC-

bound peptides in combination with the original peptide

sequences (the SYFPEITHI database being the accepted

gold standard for curated naturally processed peptides). In

the work of Tenzer et al., the stabilized matrix method

(SMM) for TAP transport was combined with a novel

SMM-based cleavage prediction and MHC-binding pre-

diction algorithm (18). The novel cleavage prediction

method, dubbed ProteaSMM, showed improvements over

older methods such as PAPROC and NETCHOP 2.0. Further-

more, a significant improvement was demonstrated when

combining prediction steps. In particular, the combined

prediction showed marked improvement over proteasomal

processing prediction alone. However, a ‘breakthrough’

improvement over MHC-binding prediction alone was not

observed. This is also true for NETCTL, the artificial neural

network-based attempt at multistep antigen presentation

prediction, in which only a minimal improvement over

MHC-binding prediction alone was shown (20). It is

difficult to make conclusions here about how this reflects

the biology of these processes, or whether this is a result of

training or testing artifacts. On the one hand,MHC-binding

predictors could have hidden proteasomal cleavage and

TAP transports element to them if these motifs are found

directly in the presented peptides. On the other hand, MHC

binding is considered the bottleneck in the presentation

pathway, and one would therefore expect that the respective

prediction step would weigh the most heavily.

Vaccination

The appeal of antitumor vaccination is the fact that it takes

advantage of in vivo processes and has the potential to

harness the full power of the immune system, in contrast to

the more artificial ex vivo expansion of T cells. The use of

synthetic peptide vaccines enables one to achieve a high level

of specificity, with relative ease of production (49). It has

been shown that the peptides predicted to bind MHC can

elicit a tumor-killing CTL response (50). An effective

methodology for determining new tumor-specific peptide

epitopes involves the application of antigen prediction

algorithms to a tumor-associated protein, then experimen-

tal confirmation of the MHC-binding affinity, and finally

stimulation of CTLs with peptide-loaded dendritic cells (51).

Class II MHC-bound epitopes play an important role in

the antitumor response by the activation of CD41 T cells

and help maintain effective CTL response (52, 53).

Historically, predicting peptide binding of class II MHC

has beenmuchmore challenging than that of class I (54–56).

Table 1 Overview of antigen presentation prediction systemsa

Resource Proteasomal processing TAP binding HLA binding Availability

Multistep epitope prediction

NETCTL 1.2 (20) NETCHOP 3.0 (65) SMM (39) NETMHC 3.0 (45) http://www.cbs.dtu.dk/services/NetCTL/

IEDB (66) SMM (18) SMM (39) ANN, ARB, and SMM http://www.immuneepitope.org/

EPIJEN v1.0 (19) Quantitative matrix (67) Tap additive

model (68)

MHCPRED (69) http://www.jenner.ac.uk/EpiJen/

Minor histocompatibility antigen prediction

SiPep (25) None None BIMAS (41), SYF (43),

nHLAPred (70)

http://www.sipep.org/

SNEP (26) None None SYF (43) http://elchtools.de/SNEP/

ANN, artificial neural networks; ARB, average relative binding; HLA, human leukocyte antigen; IEDB, immune epitope database and analysis resource;

SMM, stabilized matrix method; SYF, SYFPEITHI; TAP, transporter associated with antigen processing.
a Numbers in parentheses are literature citations.
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The reason for this lies in the fact that class II proteins bind

to peptides of variable length and that the core anchor

residues cannot be readily identified. Application of

artificial neural networks has been a successful endeavor,

at least for predicting the high-affinity side of the peptide

binder spectrum (54). A review of class II predictions has

shown that such neural network-based predictions are

effective when sufficient peptide-binding data are available

but that motif-based versions are favored for small peptide

datasets (56). Clearly, prediction for class II alleles needs to

be improved and expanded to include more allelic variants,

considering the central role that it plays in the immune

response. This holds true not only for antitumor vaccination

but presumably for the immune response to mHags as

well (23).

mHags prediction

mHags are peptides, which are presented byMHCon the cell

surface of an individual, and cause an alloreactive immune

response as a result of their absence in the individual from

whom the attacking lymphocytes originate. A database of

known minors is hosted by the Leiden University Medical

Center and can be accessed online at http://www.lumc.nl/

5033/dbminor/. In the context of a hematopoietic stem cell

transplantation, such antigens can cause GvHD (57) as well

as the therapeutic GvL effect (24). Finding target antigens

that minimize the former and maximize the latter is the goal

of immunoinformatic efforts, which combine antigen pre-

sentation with additional biological data including poly-

morphism and gene expression data (25, 26).

Polymorphism data are necessary to identify gene

variants, which could result in the differential expression

of peptides. The majority of known ‘minors’ result from

a single nucleotide polymorphism (SNP) in a coding region

of a gene, resulting in an amino acid substitution. However,

insertions, deletions, frameshift mutations, mutations

resulting in stop codons, mutations eliminating stop

codons, splice site and promoter mutations and whole gene

deletions (58) are all conceivable. Most of these kinds of

mutations are computable with conventional means using

databases such as the dbMHC.What will remain difficult in

the immediate future is the identification of peptide

variations that result from mutations outside of the gene

encoding the peptide (e.g. mutations that disable activator

proteins). The SiPep web service, which aims to predict

mHags, used the dbMHC as well as data from the HapMap

project to compute variant peptides (25). In this system,

coding nonsynonymous mutations are considered. Because

most known minors do result from this type of poly-

morphism, it is not unreasonable to concentrate solely on

them. Future applications, however, would do well to

consider the other types of relevant mutations. Another

mHag prediction system is SNEP (25), which also focuses

on coding nonsynonymous SNPs. In this system, the

CONFLICT andVARIANT annotations in SWISS-PROT

provide the polymorphism data.

For leukemia treatment, if mHags are to be used to

expand T cell for adoptive transfer, they should induce

GvL without GvHD. This would be the case when the

minor is either restricted to the malignant cells or

restricted to the cells of the hematopoietic origin. This

latter case is acceptable because the patient’s blood system

will be replaced by the graft. Indeed, hematopoietic ex-

pression is the criteria recommend by the authors of SiPep.

In this system, the types of tissue in which the peptide

candidates are expressed are obtained from Stanford

University’s SOURCE database (http://hrweb.stanford.

edu/source/). SNEP does not address the issue of cell- or

tissue-specific gene expression. Additionally, while SNEP

is limited to the MHC-binding step of antigen pre-

sentation, SiPep includes proteasomal processing. Another

advantage of SiPep is the inclusion of SNP frequency data.

Our own unpublished investigation of SNP frequencies

from dbSNP entries resulted in the following: of an 100

patients typed for nonvalidated SNPs, no SNP could be

confirmed; for SNPs that were validated with frequencies

from the HapMap project, the majority were confirmed.

This strongly underscores the importance of such fre-

quency data. The SNEP system however relies on SWISS-

PROT, and not on dbSNP, so the polymorphism data it

used could be of a higher quality than nonvalidated

dbSNP data, in particular for the VARIANT entries that

are validated.

Immunodominance – the next frontier

Despite the great advances in the prediction algorithms

mentioned above, the understanding of immunodomi-

nance is still a distant, elusive goal. The ability to predict

TAP binding is an important milestone because peptide

presentation has been shown to vary greatly dependent on

TAP affinities (59). There are of course additional factors

that influence the peptide landscape found on the cell

surface, many of which are probably still unknown. For

example, before proteasomal processing, the expression

levels and turnover rates of proteins could influence the

final concentrations in which they are ultimately presented

on the cell surface. The utilization of existing protein

turnover prediction programs should be considered (60).

Furthermore, it has been shown that the cleavage

specificities vary between the constitutive proteasome

and the immunoproteasome (28). Clearly, the induction

of immunoproteasome expression by cytokines could

influence immunodominance. In vitro assays for protea-

somal digestion and human leukocyte antigen binding

have shown poor correlation to the respective in silico

predictions from the late 1990s (61). This underscores
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a need for further assays to evaluate the latest generation

of prediction algorithms. To make things more compli-

cated, there is evidence that the dominant peptides

presented in a given MHC protein change depending on

which additional MHC proteins an individual carries (62).

A path that could take us closer to understanding

immunodominance is in silico modeling of the immune

system. Biological processes, including the immune system,

can be modeled using differential equations (63) or agent-

based models (64). Differential equations can be used to

mathematically describe the concentrations, number or

levels of biological entities with respect to each other and

with respect to time. While such models are very elegant,

they are quite difficult to implement correctly and are very

inflexible. For these reasons, there is a tendency toward

agent-based systems of modeling the immune system. Here,

individual entities are represented in the computer, given

coordinates in space, and behaviors are defined, which

describe how the entities interface with the immediate

surrounding environment. Each time step is then calculated

iteratively, and the progress of the system can be observed.

Currently, such immune system simulations have found

more applications outside of the field of immunology than

inside (64). This is the innovative field of artificial immune

systems, in which immune system-inspired computer

algorithms are applied to ‘real-world’ engineering applica-

tions. This field is based on a dialogue between immunol-

ogists and computer scientists, and although the computer

scientists are benefiting more than the immunologists from

this field at the moment, there is good hope that further

advances in immune system simulations will be useful in

generating scientific knowledge.

Concluding remarks

The immunoinformatic community has made an impor-

tant contribution to the effort to develop T-cell-based

cancer therapies by providing comprehensive antigen

presentation systems. Breakthroughs in the biological

model of antigen presentation will have to be met with

further experimental data-driven bioinformatics. The

hurdle of reliable class II peptide binding prediction is

a high priority, considering its significance in the immune

system. The quality of mHag prediction systems has the

potential to improve as more and more of the entries in

the underlying databases become validated. Whether

immune system modeling can take the quantum leap to

predict immunodominance is unknown. Perhaps, the

vision of agent-based representations of peptide sets, com-

peting for access to the antigen presentation machinery,

will become a reality. This, together with the extension of

the model to include T cell receptor (TCR) interaction and

signaling downstream of the TCR, could provide useful

insights into this complicated biological process.
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HistoCheck
Evaluating Structural and Functional MHC Similarities

David S. DeLuca and Rainer Blasczyk

Summary

The HistoCheck webtool provides clinicians and researchers with a way of visualizing and
understanding the structural differences among related major histocompatibility complex (MHC)
molecules. In the clinical setting, human leukocyte antigen (HLA) matching of hematopoietic
stem cell donors and recipients is essential to minimize “graft versus host disease” (GvHD).
Because exact HLA matching is often not possible, it is important to understand which alleles
present the same structures (HLA–peptide complexes) to the T-cell receptor (TCR) despite having
different amino acid sequences. HistoCheck provides a summary of amino acid mismatches,
positions, and functions as well as 3-dimensional (3D) visualizations. In this chapter, we describe
how HistoCheck is used and offer advice in interpreting the query results

Key Words: Histocheck; HLA; MHC; class I; class II; peptide; binding; GvHD; donor; stem
cell transplantation; matching; T-cell receptor

1. Introduction
The collection of genes known as the major histocompatibility complex

(MHC) was discovered during studies initiated by J. Dausset, R. Payne and
J. J. van Rood, which attempted to describe a genetically inherited system of
alloantigens (antigens resulting from genetic discrepancies during transplan-
tation) in the 1950s (1–3). During the early 1960s, multi-transfused patients
and parous women were shown to often have circulating antibodies against
alloantigens, now known to be encoded by the human form of MHC—human
leukocyte antigen (HLA). Consequently, anti-HLA antibody screening is a
standard practice when matching organ donors and recipients. Later, it became
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clear that MHC-derived proteins restrict the specificity of the antigen receptor
expressed on the surface of T lymphocytes and thus play a major role in the
regulation of the immune response (4).

In the context of organ transplantation between non–HLA-identical donors
and recipients, the recipient’s T cells identify the donor’s HLA proteins as
foreign and initialize an immune response against the transplant. Consequently,
the survival rate among recipients of HLA-matched organs is significantly
higher than when mismatches are present (5,6).

HLA matching for organ donors and recipients is complicated by HLA’s
high rate of polymorphism. The latest release of the IMGT/HLA database
contains 2,088 alleles (7). Exact matching across multiple HLA loci (e.g.,
HLA-A, HLA-B, HLA-C, and HLA-DRB1) is very difficult. For kidney, heart,
cornea, and pancreas transplantations, “low-resolution” matching is used—
HLA alleles are only required to belong to the same serological group.
For hematopoietic stem cell transplantations during leukemia therapy, “high-
resolution” matching is required; patient and recipient alleles are required to
produce the same protein sequence. After total body irradiation for elimi-
nating malignant hematopoietic cells, leukemia patients need to receive a new
hematopoietic and immune system through stem cell transplantation. From the
perspective of the donor’s immune cells, the recipient’s entire body is foreign,
which leads to the so-called graft versus host disease (GvHD).

The likelihood of finding a high-resolution match for stem cell transplan-
tation is low, and therefore, clinicians often seek a “next-best” match. This
requires an understanding of which amino acid differences are not expected to
result in a functional change to the HLA protein. Here, the selective binding
of HLA to short peptide sequences, as well as the T-cell receptor (TCR), is of
the greatest interest. Amino acid differences in regions of the protein that do
not play a role in peptide or TCR binding could be acceptable between stem
cell donor and recipient.

The peptide binding groove is encoded by exons 2 and 3 for class I HLA
and exon 2 for class II HLA. The binding groove is formed by a beta-sheet
“floor” with two alpha-helical “walls.” Peptides bind by squeezing in between
the alpha helices, typically deeply anchored at the second amino acid from the
N terminus, as well as the C-terminal position. The TCR contacts the binding
groove from above, interacting with the surface amino acids of the alpha helices
and peptide (8).

HistoCheck (http://www.histocheck.org) is an online tool which helps clini-
cians and researchers visualize the amino acid substitutions of HLA alleles
so that they can make informed judgments about their functional similarity.
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HistoCheck provides crystallography-based 3-dimensional (3D) visualizations
of the allelic mismatches by highlighting amino acids substitution positions.
The user is provided with dissimilarity scores (DSSs) for the amino acids
involved as well as an over-all DSS for the two alleles (9).

2. Implementation
HistoCheck is written in Java, runs on a Tomcat application server,

utilizes servlets, Java server pages, and a MySQL database. The HLA alleles
and their sequences are updated regularly via the IMGT/HLA database:
ftp://ftp.ebi.ac.uk/pub/databased/imgy/mhc/hla/ (7).

2.1. Three-Dimensional Visualization

GIF images of the HLA structures with highlighted mismatches are generated
on a linux server using RasMol version 2.7.1.1. A description of RasMol
script commands can be found in the University of Massachusetts web
server http://www.umass.edu/microbio/rasmol/distrib/rasman.htm. Chime can
be integrated into the HTML of a website using the EMBED tag. Here is an
example:

<embed src="PDB_FILE_NAME.pdb" bgcolor=black display3d=
cartoon color3d=chain height="590" width ="600" startspin="false"
script="script SCRIPT_NAME.spt;">

Commands used in the ∗.spt file correspond largely with standard RasMol
commands.

2.2. The DSS Algorithm

In addition to providing information on the specific amino acid substitu-
tions involved between two HLA alleles, HistoCheck generates a DSS, which
attempts to quantify the overall functional differences between the two alleles
(see Note 1) (10). The score is based on the Risler substitution matrix as well as
data on the function of specific amino acids positions (i.e., their role in peptide
binding or TCR interaction) (see Note 2) (11). The score is generated by

1. summing the Risler scores across all mismatches,
2. dividing this score by 100,
3. adding a penalty of 1 for each mismatch that occurs on a position that either interacts

with the TCR or the peptide, or both.

An example calculation is given in Table 1.
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Table 1
Calculating the dissimilarity score for A∗2402 and A∗2304

Position Mismatch Function Penalty Risler score

144 Lysine → Glutamine – 13
151 Histidine → Arginine TCR +1 64
156 Glutamine → Leucine PEP +1 27
166 Aspartic acid → Glutamic acid TCR +1 30
167 Glycine → Tryptophan TCR+PEP +1 87

Total 4 221
Divide Risler scores by 100 221/100 = 2�21

Dissimilarity score 4+2�21 = 6�21

PEP, Peptide contact site; TCR, T-cell receptor.
The dissimilarity score is based on the Risler scores of mismatched amino acids combined

with penalties for positions which interact with the TCR or peptide. Note that although position
157 is involved in both TCR contact and peptide binding, the penalty is only counted once.

3. Application
HistoCheck can be accessed online at http://histocheck.org using any

javascript-enabled browser. Although HistoCheck is available free of charge,
first-time users are required to register for a user name and password, because
the developers are interested in what kinds of medical and research institutes
find HistoCheck userful.

3.1. Comparing a Patient’s HLA to Specific Donor HLA

After signing in to HistoCheck, the user is presented with a query form
(Fig. 1). The first option is the type of display to be used in showing the 3D
structure of HLA. Chime is a web-browser plug-in that presents molecules
interactively in 3D, allowing the user to rotate the molecule and choose between
a variety of display options. Alternatively, a still GIF image can be generated,
which shows the alleles’ 3D structure, but is not interactive.

Next, the user may select one of the following HLA loci: A, B, Cw, DRB1,
DRB3, DRB4, DRB5, DQA1, DQB1, DPA1, and DPB1. The specific alleles
for donor and recipient can then be specified. Two donors may be specified,
for a side-by-side comparison.

The resulting webpage shows a list of amino acid mismatches between
donor and recipient (Fig. 2). For each mismatch, the domain, exon, pocket,
and amino acid position are displayed (see Note 3). To help understand the
significance of each mismatch, additional information is given: the position’s



HistoCheck 399

Fig. 1. The query page for the HistoCheck website. The user may choose display
options and human leukocyte antigen (HLA) alleles for structural comparison. Patient
alleles can be compared directly with donor candidates with the “Get Score” button.
Alternatively, all the alleles of a locus can be ranked by similarity to the patient’s allele
by clicking the “Find best match” button.

role in binding the peptide and/or TCR, as well as the Risler score for the two
amino acids involved (see Note 4). The combination of functional significance
of the position (TCR binding/peptide binding), and the extent of biophysical
dissimilarity between the amino acids, is the basis for the DSS (see Note 5).
The summary table lists the total number of mismatches, the affected pockets,
total number of mismatches that affect peptide binding, the total number of
mismatched positions that interact with the TCR, and the overall DSS.

Underneath the mismatch tables, the HLA mismatches are displayed visually
either as a GIF image or in an interactive Chime window. The mismatched
positions are highlighted yellow. For class I HLA, the structure is based up
HLA-A∗0201 in complex with a decameric peptide from Hepatitis B nucleo-
capsid protein. The �1� �2, and �3 domains are displayed in blue. The �1 and
�2 domains form the peptide binding groove, which also interacts with the TCR.
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The �2-microglobulin domain is shown in green. A decamer peptide is shown
bound to the protein in red. If class II alleles were selected, the 3D structure
is based on crystallographic data from HLA-DRA with HLA-DRB1∗0101. The
�1 and �2 domains of DRB1 are shown in dark blue. The �1 and �2 domains
of DRA are shown in turquoise. The bound 13-mer peptide is shown in green.
The �1 and �1 domains form the peptide binding groove. Although class II
HLA proteins are heterodimers, the user selects only one gene at a time, for
simplicity. In this case, only the mismatches for the protein of the selected gene
are displayed. Because HLA-DRA, encoding for the alpha chain of the various
DR heterodimers, is not polymorphic, it is not offered in the list of genes.

If the Chime display option was selected, the user can rotate the molecule
and zoom in on particularly interesting locations. Chime also provides various
display options. The default option is “cartoons,” which allows one to quickly
orient and locate secondary, tertiary, and quaternary structures. Other options,
such as wireframe, ball and stick, and space-fill can be used for more detail,
once the major landmarks have been identified.

A large GIF image or Chime representation can be obtained by clicking the
“Big GIF” or “Big Chime” links. The “RasMol Script” link provides an rsm
file, which contains the atomic coordinate information from the standard pdb
format, as well as commands which orient the HLA molecule and highlight the
mismatches. The rsm files can be downloaded and viewed locally using the
RasMol viewer, RasTop 2.0.

3.2. Ranking Alleles by their Similarity to a Patient’s HLA

HistoCheck can also be used to find the most similar variants of an allele.
The procedure is almost identical to that described in Section 3.1. However,
after selecting the donor’s allele on the query page, the user may also click
the “Find Best Match” button instead of the “Get Score” button. In this case,
all of the alleles of the given locus are considered and ranked by ascending
DSS (i.e., the most similar alleles are at the top of the list). The ordered list
of alleles appears in the right frame, and the mismatch result page for the best
match is displayed in the center frame.

For example, if HLA-A∗0201 is chosen as the donor’s allele, a report
comparing A∗0201 with A∗0209 appears in the center frame. Because A∗0201
and A∗0209 have no amino acid differences in the key domains (�1 and �2�, the
DSS is zero. These alleles are different at position 236 of the mature protein, but
this position is part of the �3 domain, which does not interact with the TCR or
peptide. Although no mismatches are reported, the footnote “Additional differ-
ences found outside key domains” as well as the 3D image with the highlighted
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Fig. 2. The results page from a HistoCheck query. Here, the user has chosen to
compare HLA-A∗0201 with A∗0210. Three amino acid differences were found at
positions 9, 99, and 107. Positions 9 and 99 are involved in peptide binding. The
SSM score quantifies the functional differences of these alleles. In the crystallographic
structure of HLA bound to a peptide, the three mismatch positions are highlighted.
Two mismatches can be seen on the beta-sheet, and one in a loop structure on the
lower right.

mismatch appears. In the ranking of the most similar alleles to A∗0201 on the
right, one can see that A∗0201 has a zero mismatch score with A∗0209, A∗0266,
and A∗0275. Clicking on the allele’s name in this list brings up the detailed
report for the comparison. Clicking on the fourth allele in the list, A∗0268, one
can see a single amino acid substitution: arginine to lysine. at position 157.
Although this position is in the �2 domain, it does not interact directly with
the peptide or the TCR and is therefore of low significance. Visual inspection
of the 3D structure shows that position 157 is part of the domain’s alpha helix,
but faces away from the peptide binding groove. Furthermore, arginine and
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lysine (both long and basic) are structurally very similar, as reflected by the
very low Risler score (3). It can be concluded that despite a mismatch in the
�2 domain, A∗0201 and A∗0268 can be expected to bind the same peptides and
appear identical to the TCR.

3.3. Interpretation of DSS

As described in Section 2.2, the DSS is based up the functional role of
the mismatched positions, as well as the structural similarity of the amino
acids involved. The example involving A∗0201 mentioned above describes
comparisons where it is quite clear that the amino acid differences are unlikely
to affect HLA function. The best matches are of course those with DSS of
zero, indicating that there are no differences in the key domains. Amino acid
substitutions which are in the key domains, but which are not involved in
peptide binding or contact with the TCR, are likely to be tolerable. Mismatches
in peptide or TCR-binding regions could only be expected to be tolerable
when the Risler score is very low (below 10). See (see Notes 1–3) for more
information on interpreting the DSS.

3.4. Chime Installation

Interactive protein viewers are useful tools for understanding protein structure.
Chime is a web-browser plug-in, allowing for integration into websites.
Chime works with Internet Explorer, Netscape, and FireFox. Downloading
Chime requires free registration at the MDL website. Good instructions
on downloading and installing Chime can be found at the University of
Massachusetts website http://www.umass.edu/microbio/chime/ getchime.htm..

Although the Chime installation is straightforward for all versions of Internet
Explorer, problems may arise when installing for the newest Netscape and
FireFox browsers. A trick for installing chime in these browsers is worth men-
tioning here. The instructions given below refer to MDL Chime version 6.2 SP6.

1. Install Chime normally for Internet Explorer.
2. Copy the npchime.dll file from the Internet Explorer plug-in folder (C:\Program

Files\Internet Explorer\plugins\�.
3. Paste the file into the plug-in folder of FireFox or Netscape. For FireFox the folder

is likely to be C:\Program Files\Mozilla Firefox\plugins\.
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Notes
1. This manuscript describes the functionality of HistoCheck at end of 2005. The next

version of HistoCheck will involve several improvements. New crystallographic
data are available, which have been re-analyzed to determine the functional roles
of HLA amino acid positions. This analysis includes locus-specific definitions for
TCR and peptide interactions. Furthermore, static correlations between certain HLA
mismatches and GvHD have been identified. These “special mismatches” will be
highlighted in HistoCheck’s mismatch report, and the reference papers will be
sighted.

2. Alternatives to the current DSS will be offered. The BLOSUM62 scoring matrix, for
example, has delivered improvements in the area of sequence alignments. Whether
this matrix is better than the Risler matrix for comparing HLA alleles has not been
determined. This question is complicated by the fact that such matrices are based
on the assumption that the rate of amino acid substitution among related proteins
is proportional to amino acid similarity. The HLA binding groove is an exception
to this rule because of the evolutionary pressure for diversity, driven by the need
to respond to rapidly mutating pathogens. For this reason, a dissimilarity algorithm
will be provided, which weighs the HLA positions according to the variability
analysis provided by Reche et al. (13).

3. A refreshing aspect of HistoCheck in the age of black-box-bioinformatics (i.e.,
artificial neural networks and hidden Markov models) is that the primary biological
data are provided to the user. These so-called “hard data” include the nucleic acid
and protein sequences that have been validated by numerous work groups and
are, in effect, irrefutable. The mismatched positions reported by HistoCheck are
primary data, and the user is left with the freedom to interpret them. Other aspects
of HistoCheck can be considered secondary data (also called “soft” or “semi-soft”
data). The crystallographically determined structures of HLA are models, whose
limitations should be recognized. In particular, the fluidity and elasticity of protein
structures are not represented in these models. It can be expected that the confor-
mation of loops, for example, differs greatly in aqueous versus crystal environments.
That said, comparison of many crystallographic HLA structures shows that the
protein backbone is remarkably conserved. Although “semi-soft,” crystallographic
models are extremely informative, concerning tertiary/quaternary protein structure,
using this data to draw conclusions about TCR interactions and peptide binding can
be considered secondary or even tertiary data.

4. Risler’s similarity scores are also soft data. The scores are based on the rate of
amino acid substitution among structurally similar proteins. HistoCheck’s DSS is
an attempt to summarize secondary data concerning amino acid substitutions. That
this score is highly theoretical and removed from primary data is indisputable. In
a preliminary analysis performed with more than 1,700 HLA class I mismatched
transplant pairs from the hematopoietic stem cell transplant component of the
13th International Histocompatibility Workshop (Effie Petersdorf, Fred Hutchinson
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Cancer Research Center, Seattle, WA), the DSS was not superior in predicting
the severity of GvHD compared to just counting the number of HLA class I
mismatches (unpublished data). Furthermore, a small preliminary study did not
show a correlation between the DSS and T-cell alloreactivity in vitro (12). Because
this study was performed in an allogeneic transplantation setting, in which non-
HLA differences (i.e., minor histocompatibility antigens) affected alloreactivity, it
is unclear to which extent non-HLA differences overshadowed HLA similarities.
To clarify this point, further studies involving autologous cells, modified to express
additional HLA proteins, are necessary.

5. HistoCheck’s DSS is an elementary mathematical model that represents a first step
in quantifying the structural differences between HLA alleles. HistoCheck users are
encouraged to study the primary data that this website provides, such as number
and location of amino acid substitutions, and to examine the 3D structures provided
in order to make informed conclusions about the similarity/dissimilarity of HLA
alleles.
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Abstract A variety of algorithms have been successful in
predicting human leukocyte antigen (HLA)-peptide binding
for HLA variants for which plentiful experimental binding
data exist. Although predicting binding for only the most
common HLA variants may provide sufficient population
coverage for vaccine design, successful prediction for as
many HLA variants as possible is necessary to understand
the immune response in transplantation and immunotherapy.
However, the high cost of obtaining peptide binding data
limits the acquisition of binding data. Therefore, a prediction
algorithm, which applies the binding information from well-
studied HLA variants to HLA variants, for which no peptide
data exist, is necessary. To this end, a modular concept of
class I HLA-peptide binding prediction was developed.
Accurate predictions were made for several alleles without
using experimental peptide binding data specific to those
alleles. We include a comparison of module-based prediction
and supertype-based prediction. The modular concept
increased the number of predictable alleles from 15 to 75
of HLA-A and 12 to 36 of HLA-B proteins. Under the
modular concept, binding data of certain HLA alleles can
make prediction possible for numerous additional alleles.
We report here a ranking of HLA alleles, which have been
identified to be the most informative. Modular peptide
binding prediction is freely available to researchers on the
web at http://www.peptidecheck.org.

Keywords Histocompatibility Antigens class I .

Variation (genetics)/immunology

Abbreviations
MHCBN major histocompatibility complex binding

database
AROC area under the receiver operating

characteristic curve
SE sensitivity
SP specificity
TP true positive
TN true negative
FP false positive
FN false negative
P1, P2, ...,
P9

portions of the HLA binding groove
responsible for binding positions 1, 2, ..., 9
of the peptide

Introduction

The process of peptide presentation on the cell surface is
central to the specificity of the immune response. Under-
standing peptide binding by the human leukocyte antigen
(HLA) and its presentation to the T cell receptor is essential
in the areas of peptide-based vaccination (Rothbard 1992)
and immunotherapy, where the concepts graft versus host
disease (Goulmy et al. 1996) and graft versus leukemia play
a major role. (Hambach and Goulmy 2005).

Many different kinds of algorithms have been developed
or adapted to predict which peptide sequences will bind HLA
proteins. The algorithms most often associated with MHC–
peptide binding prediction are matrix/motif-based (Parker
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et al. 1994; Rammensee et al. 1999; Reche et al. 2004),
hidden Markov models (Noguchi et al. 2002), and artificial
neural networks (Buus et al. 2003; Nielsen et al. 2003).
Matrix- and motif-based predictions rely on scores for the 20
amino acids at each position in the peptide. Hidden Markov
models are capable of considering sequential dependencies
among the amino acids in the peptides. Artificial neural
networks are a form of nonlinear regression capable of
finding patterns in the peptides that affect binding. These
algorithms rely on large amounts of experimental data, i.e.
example peptide sequences that have been proven to bind to
certain HLA binding grooves. However, there are more than
1,700 distinct HLA proteins (Robinson et al. 2003). HLA
polymorphism leads in a varying degree to different
specificity for peptide sequences. Because of the high costs
of obtaining peptide binding data, peptides have only been
determined for a handful of the HLA variants. For these few,
well-studied variants, conventional algorithms are capable of
accurately predicting peptide binding. However, future
applications in adoptive immuno- and cell therapy require
that peptide binding to all HLA variants be understood to
develop patient-specific treatments. The application of this
peptide-specific T cell approach is the focus of many
research groups, for example those involved in the AlloStem
project financed by the European Union.

It is possible to predict binding without the use of
peptide data. Molecular dynamics simulations can model
peptide binding by calculating the forces exerted on every
atom. Unfortunately, this technique is prohibitively com-
putationally intensive, requiring months of processor time
to simulate few picoseconds of interaction (Rognan et al.
1994). The latest molecular dynamic techniques require
only 8 h of computation, with mediocre accuracy (Davies
et al. 2003). However, with thousands of HLA variants
and an endless supply of peptide sequences, a much faster
prediction is necessary. Several groups have approached
this problem using machine learning techniques (Yanover
and Hertz 2005; Zhu et al. 2006). These studies have
shown an improvement in predictive accuracy when
pooling peptides that bind within an HLA supertype, as
defined by Sette and Sidney (1999). In this study, we
attempt to pool peptide binding data not by grouping
whole alleles (into supertypes) but by grouping structural
subunits of the HLA molecule that have the same amino
acid composition (modules). We also compare this
approach to supertype-based pooling.

Modular concept of HLA

The aim of this work is to develop fast and accurate
predictions for as many HLA variants as possible by

developing a modular concept of HLA. Although HLA
polymorphism can be caused by point mutation, it is mainly
a result of recombination (Kotsch and Blasczyk 2000).
Therefore, although a specific HLA is unique, it may be
identical to a second HLA in one region and identical to a
third HLA in another region. In this study, we explore the
possibility of breaking down HLA into modules and
correlating these modules with available peptide binding
data. In this way, peptide binding data specific for a small
number of HLA variants can be applied to an expanded
number of variants. Evidence of the effectiveness of this
approach has been previously demonstrated for A*6601,
6602, and 6603 (Bade-Doeding et al. 2004, 2005) and for
HLA-DR (Sturniolo et al. 1999).

The part of HLA’s peptide binding groove that interacts
with a specific position in the bound peptide is known as a
pocket. Analysis of crystallographic data in class I HLA
has provided definitions of which positions in HLA are
responsible for binding certain positions in the peptide
(Chelvanayagam 1996). Because of the side chain orien-
tation in the protein’s three-dimensional structure, the
positions responsible for peptide binding are not sequen-
tial. For example, the particular residues in HLA that
interact with the N-terminal amino acid (P1=peptide
position 1) in the peptide are at positions 5, 7, 33, 59,
62, 63, 66, 99, 159, 163, 167, and 171 (Chelvanayagam
1996). These positions are used to define a module. A
module is the sequence of amino acids found at these
positions in a specific HLA allele. For a 9-mer peptide, a
given allele will have nine modules (P1, P2, ..., P9). This is
based upon the nine pockets defined by Chelvanayagam.
A similar approach based upon the six specificity pockets
(A–F) would also be possible but is not examined here.
Because of similarities among HLA alleles, different
HLAs can share modules when they possess the same
amino acids at the defined positions (Table 1). In this
work, the modular concept is applied strictly to class I
HLA alleles and 9-mer peptides.

The purpose for developing a modular model of the
HLA binding groove is to expand the number of alleles for
which peptide binding prediction is possible. We report
here an expansion of predictable HLA alleles by a factor
of five. To achieve the goal of binding prediction across all
HLA alleles, more peptide binding data must be gathered.
The question—Which alleles should be studied to further
populate the peptide binding database?—can be answered
in the context of the modular concept of HLA. Because
modules can be shared among many or few alleles, it
follows that peptide binding data for certain alleles would
contribute more to the number of predictable alleles than
others. In this work, we therefore also report a list of
alleles that should be studied to efficiently contribute to
comprehensive peptide binding prediction.
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Materials and methods

Peptides

HLA peptide binding data were provided by the major
histocompatibility complex binding (MHCBN) database
(Bhasin et al. 2003). This database attempts to combine
peptide binding data from a variety of sources, covering a
variety of isolation and affinity-determination methods. It
not only includes naturally presented peptides eluted from
MHC class I molecules as found in the SYFPEITHI

database (Rammensee et al. 1999) but also manually
selected peptides that were used for the purpose of testing
the ability of a specific sequence to bind HLA, e.g. for
analyzing viral escape (Gotch et al. 1988). The binding
abilities are summarized into four categories: strong,
moderate, weak, and nonbinders. Strong, moderate, and
weak binders were all considered to be binders for this
work. Nonamers were exclusively used in this work. The
peptides, their sequences, allele restriction, and source can
be publicly accessed on the Internet (http://www.imtech.res.
in/raghava/mhcbn/). Although this database does contain

Table 1 Modules for HLA-B*5302

Known
peptides

P1 pocket 1, 5, 7, 33, 59, 62, 63, 66, 99, 159, 163, 167, 171 150
Module MYFYRNIYYLWH
Alleles B*1537, B*3521, 24, B*3932, B*5101, 4, 6–9, 12–14, 17–20, 22, 24, 26, 28–30, 32, 33, 35, 37, 38, B*5302, 6, B*5605, 6,

B*7801–3
P2 pocket 2, 7, 9, 24, 25, 26, 34, 35, 36, 45, 62, 63, 66, 67, 70, 99, 159, 163, 167 445
Module YYAVGVRFTRNIFNYYLW
Alleles B*3501–9, 11, 12, 14, 17, 18, 21, 22, 24, 27, 29, 30, 32, 34, 36–39, 41–44, 51, 52, 54–58, 61, B*5101, 2, 4–6, 8, 9, 12–15,

17–20, 24, 26, 28–30, 32, 33, 35, 37, 38, B*5301–6, 8, 10, B*7801, 2, 4
P3 pocket 3, 7, 9, 62, 66, 70, 97, 99, 114, 152, 155, 156, 159, 163 277
Module YYRINRYDVQLYL
Alleles B*1505, 20, 31, 91, B*3501, 3, 7, 10, 13, 19, 20, 24–29, 32, 34, 36, 39, 41, 42, 46, 47, 49, 52, 54–57, B*4403, 7, 13, 26,

29, 30, 36–40, B*4802, B*5301–5, 9, 10
P4 pocket 4, 62, 65, 66, 69, 70, 155, 156, 159 708
Module RQITNQLY
Alleles B*0813, 25, B*1301–4, 6, 9–13, B*1401, 2, 5, 6, B*1502, 3, 5, 6, 9, 10, 13, 18, 20, 21, 23, 25, 29, 31, 36, 37, 39, 40, 42,

44, 48, 52, 55, 61, 62, 64, 69, 72, 80, 86, 88–91, 93, 98, B*1801–12, 14, 15, 18, 20, B*2712, 16, 18, 23, 29, B*3501–7, 9–
13, 15–17, 19–37, 39, 41, 42, 46–52, 54–58, 60, B*3702, B*3801–11, B*3901–7, 9, 10, 12–17, 19, 20, 22–24, 26–32, 34,
B*4001–14, 18–21, 24–28, 30, 31, 33–40, 42–61, B*4403, 7, 10, 13, 26, 29–31, 36–40, B*4701–5, B*4801–4, 6, 7, 9–13,
B*4901–4, B*5001, 2, 4, B*5101–4, 6, 7, 9, 10, 12–19, 21–24, 26, 28, 30–35, 37, 38, B*5201–8, B*5301–10, B*5518,
B*5901, B*7801–5, B*9503

P5 pocket 5, 69, 70, 73, 74, 97, 114, 116, 152, 155, 156, 159 340
Module TNTYRDSVQLY
Alleles B*1310, B*1505, 20, 31, 52, 91, B*1801, 4–12, 18, 20, B*3501, 7, 10, 15, 19, 20, 23–28, 32, 35, 41, 42, 46–50, 52, 54, 57,

B*3907, B*4020, 52, 59, 60, B*4802, B*5301–3, 5, 9, 10
P6 pocket 6, 7, 9, 22, 24, 66, 69, 70, 73, 74, 97, 99, 114, 116, 133, 147, 152, 155, 156 261
Module YYFAITNTYRYDSWWVQL
Alleles B*1505, 20, 31, B*1804, B*3501, 7, 10, 15, 19, 20, 24, 26–28, 32, 35, 41, 42, 46, 47, 49, 52, 54, 57, B*5301–3, 5, 9, 10
P7 pocket 7, 73, 77, 97, 114, 116, 133, 146, 147, 150, 152, 155, 156 82
Module TNRDSWKWAVQL
Alleles B*1310, B*1809, B*3527, B*5301, 2, 9, 10, B*5801, 4, 9, 11, Cw*0203
P8 pocket 8, 73, 76, 77, 80, 97, 143, 146, 147 126
Module TENIRTKW
Alleles A*2414, 52, B*1513, 16, 17, 23, 24, 67, 95, B*2730, B*3801, 5–7, 9–11, B*4406, 18, 25, B*4901, 3, 4, B*5104, 6,

B*5301, 2, 4, 6–8, 10, B*5705, B*5801, 4, 9, 11
P9 pocket 9, 70, 73, 74, 76, 77, 80, 81, 84, 95, 96, 97, 114, 116, 123, 124, 142, 143, 146, 147 75
Module NTYENIAYIQRDSYIITKW
Alleles B*1513, B*5301, 2, 6, 8, 10

HLA-B*5302 is an example of an allele for which peptide binding prediction is possible by using peptide binding data from related alleles. The
nine modules here are lists of amino acids from B*5302 that play a role in binding a particular position in a nonamer peptide. The rows “P[1–9]
pocket” contain the definitions of which amino acids positions are responsible for binding the respective position in the peptide according to
Chelvanayagam. Each module from B*5302 occurs in other alleles as well. These alleles are listed in the rows designated “Alleles.” The
numbers of peptides that are associated with each module are listed in the “Known peptides” column.
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nonbinders, it does not provide enough nonbinding non-
amers for testing across many alleles. Therefore, random
sequences of peptides were generated and assumed to be
nonbinders (Supplementary Table 4). This assumption will
be true for the vast majority of sequences, because less than
1% of possible peptide sequences are thought to bind HLA
class I (Yewdell and Bennink 1999). The use of random
nonbinders has several precedents (Donnes and Elofsson
2002; Reche et al. 2004). Random nonamers were
generated by randomly choosing human proteins from the
Entrez protein database. Segments of nine amino acids were
then randomly chosen from the proteins.

Predictive performance

Predictive performance was calculated using the area under
the receiver operating characteristic curve (AROC). The
ROC curve is based upon the prediction’s sensitivity:

SE ¼ TP= TPþ FNð Þ
and specificity:

SP ¼ TN= TNþ FPð Þ
where TP=true positives: correctly predicted binders; FN=
false negatives: binders incorrectly predicted to be non-
binders; TN=true negatives: correctly predicted non-
binders; FP=false positives: nonbinders incorrectly
predicted to bind. The ROC curve is a plot of SE versus
1-SP over a range of thresholds. Performance was only
tested when 15 or more peptides were available for training.
Peptides used in testing were excluded from the matrix
scores by the “take one out” technique. Before performing
the prediction for a given peptide, the peptide and all
peptides with only one amino acid difference were removed
from the training data, and the matrices were calculated
without these peptides. To test the modular concept, a “no
self” evaluation was done. In this case, the values in the
modular matrix were generated and tested for a given allele,
without using peptide binding data for that allele. For
example, predictions were made for A*0201 using binding
data from other alleles (A*0202–0206, 0209, 0211, 0214,
0207, 2603, 6601, 6802, 6901) but excluding peptides
proven to bind A*0201. Supertype-based prediction was
evaluated similarly: The peptides data of all alleles of a
supertype—as defined by Sette and Sidney (1999)—were
pooled together, excluding the peptide binding data for the
allele in question, and matrices were generated as described
for the control matrix (see Matrices and prediction below).

Modules

For our purposes, a pocket is the list of positions in HLA
which are responsible for binding a particular amino acid

position in the peptide. In this study, the pockets were
defined per Chevanajagam’s analysis of crystallographic
HLA data (Chelvanayagam 1996). A module is the sequence
of amino acids found at the pocket positions for a given
allele. Modules were generated by combining the pocket
definitions provided by Chevanajagam with the HLA protein
sequences available in the IMGT/HLA (International Immu-
nogenetics Information System) database, version 2.10.0
(Table 1; Chelvanayagam 1996; Robinson et al. 2003).
Although many related alleles produce the same module
sequences, only unique sequences were stored in the
database table. A second database table was used to correlate
the module sequences with the alleles that posses them.

Matrices and prediction

Two kinds of peptide binding prediction were performed:
standard (control) matrix and modular matrix. Both of these
matrices are 9×20 and contain values for each amino acid
at each position in the nonamers peptide. The following
pseudocode demonstrates how the matrix values were
generated:

Matrix

For each allele
Retrieve all peptides that bind this allele
For each peptide binder
For each position in the peptide
Count the number of occurrences of each amino acid

Divide all the scores by the number of peptides for this
allele

Modular matrix

For each module
Retrieve all alleles that have this module
For all alleles with this module
Retrieve all binders
For each binder
Count the amino acid at the position corresponding to
this module

Divide the scores by the number of binders found for
this module

A score for a peptide’s binding ability is generated by
multiplying the nine corresponding values from the matrix.
This score is indicative of the likelihood that this peptide is
a binder and can be compared to a threshold to predict
binding. The values in the control matrix are the frequen-
cies of the amino acids at the particular positions among
binding peptides. In the modular matrix, the values are
based upon the frequencies of the amino acids, among
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binding peptides, specific to a particular module. Because
different alleles can have certain modules in common, the
module-specific values are based upon peptides that bind to
all the alleles that have such module.

Most informative alleles

To determine which alleles would provide the most new
modular information when their binders are purified and
sequenced, three kinds of ranking were performed. For the
maximum module occurrence analysis, a score was made
for each allele by considering the modules it contains, for
which no peptide binding data are available, and counting
the number of occurrences of each module amongst all
alleles. The maximum anchor occurrence analysis was
performed the same way, but only the anchor positions 2
and 9 were considered. For the purpose of the maximum
predictable alleles analysis, a predictable allele was defined
as having more than five peptides available for its modules
at both anchor positions 2 and 9. To do this, first, the total
number of predictable alleles was calculated. Then each
given allele was assumed to have peptide binding data, and
the number of predictable alleles was recalculated. The
difference between the new number and the original
number was used as the ranking score.

Results

Module generation

A total of 2,525 modules were created for 1,098 class I
HLA alleles. This represents only 29% of the theoretically
possible number of modules if all alleles were to have nine
unique modules. Conversely, it can be said that 71% of
class I HLA sequences are conserved on a modular basis.
The number of different modules at each peptide position
varies and is dependent on the number of amino acids in
contact with the peptide as well as the rate of polymorphism
at those positions (Fig. 1). For example, pockets P4 and P8,
which do not tightly bind the peptide, produced only 72 and
82 modules respectively compared to 458 for P6.

Partial or complete modular matrices could be generated
for all class I HLA proteins. Unfortunately, the majority of
these matrices are incomplete. Of the 1,098 HLA class I
proteins, 342 matrices that had at least one peptide for each
of the nine modules were created. The modular matrix for
A*0201 is shown in Table 2 as an example. Most of the
alleles that contribute peptide binding data to the A*0201
matrix come from other A*02 alleles. However A*2603,
6601, and 6802 also share a module at P8 with A*0201.
The fact that A*0209 shares all nine modules with A*0201
comes as no surprise, because these two alleles are identical

in the α1 and α2 domains, which are responsible for
peptide binding and T cell interaction.

Predictive accuracy

It was possible to calculate the performance of the matrices
for 28 alleles (Table 3). In all cases, the predictive
performance of the modular matrix was either within one
percentage point of the control matrix or significantly
better. To put these scores in context with previously
published binding predictors, AROC values were generated
using the established NetMHC algorithm (Nielsen et al.
2003). A local copy of NetMHC version 2.2 was evaluated
using the peptide data that was applied to our own
predictors. The resulting AROC values are listed in Table 3
for those alleles where a comparison with NetMHC is
possible.

To test whether the modular technique can be applied to
alleles for which no peptide binding data are available,
matrices were generated for an allele without using the
peptides that bind such allele. It was possible to generate
and test such matrices for six alleles: A*0201, A*0206,
B*2705, B*3501, B*5102, B*5301 (Fig. 2). All six
predictions produced AROC scores greater than 0.9. A
marginal drop in accuracy was observed for five alleles.
For one allele, B*5102, modular prediction outperformed
the standard matrix despite the fact that no B*5102 peptides
were used in training. Module-based prediction demon-
strated an advantage over the supertype-based prediction
for B27 (B*2705) and B7 (B*3501, B*5102, B*5301) but
not A2 (A*0201, A*0206).

Gained predictive power

Using a minimum of 15 peptides, prediction was possible
for 28 alleles using the control matrix and 144 alleles with
the modular technique (Table 4). The modular concept

Fig. 1 Number of modules generated for each position in the peptide
(left axis). The number of modules is dependant on the number of
amino acid positions considered in the pocket definition (right axis),
as well as the rate of polymorphism at those positions
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increased the number of predictable alleles from 15 (4.5%)
to 75 (22.3%) of HLA-A and 12 (2.0%) to 36 (5.9%) of
HLA-B proteins. The known peptides from Cw*0401 could
be applied to Cw*0405, 07, and 12 as well.

Most informative alleles

Table 5 shows a ranking of alleles based upon how much
new information they would provide to the modular

concept if their peptides were to be made known. For the
sake of clarity, only one allele from each two-digit group is
listed in the table. The full rankings have been submitted as
supplementary information (Supplementary Tables 1, 2, and
3). Across the three forms of ranking, 8 HLA-A alleles, 17
HLA-B alleles, and 20 HLA-C alleles are listed. A*7401
scored well in all three types of ranking, making it a
particularly valuable allele to modular prediction. Of
similar interest are the alleles B*4808 and Cw*1601, which
ranked well in both the maximum anchor modules and
maximum predictables categories.

B*4201 is an interesting candidate for peptide determi-
nation not only because its anchor modules occur 18 times
among HLA proteins, making prediction possible for 11
proteins (Table 5), but also because its modules belong to
multiple serological groups (Table 6). The module for P1,
for example, is shared among 14 HLA*B groups: B*07,
B*08, B*15, B*35, B*38, B*39, B*42, B*51, B*54, B*55,
B*56, B*59, and B*67. Even the highly variable, P2 and
P9 anchor modules span four and three groups, respective-
ly. Despite this homology, insufficient peptide binding data
are available for prediction. Conversely, determining the
peptide binding motif of B*4201 would benefit modular
binding prediction across many groups.

Table 2 Modular matrix for A*0201

Amino acids Positions in peptide

P1 P2 P3 P4 P5 P6 P7 P8 P9

A 15 3 10 5 10 10 15 10 6
C 1 0 1 2 0 2 1 1 1
D 0 0 4 5 3 2 1 1 0
E 1 0 2 12 3 2 3 6 0
F 7 0 5 1 6 4 9 5 0
G 7 0 7 12 10 4 2 8 0
H 2 0 1 1 1 1 3 3 0
I 6 10 4 3 5 7 6 3 11
K 12 0 2 8 2 2 0 5 0
L 8 62 12 5 9 12 12 10 30
M 2 8 3 0 1 2 1 1 1
N 1 0 6 2 3 2 3 3 0
P 1 0 3 11 8 10 5 5 0
Q 1 1 3 5 5 3 2 4 0
R 4 0 1 4 3 1 2 4 0
S 8 0 6 6 3 5 4 7 0
T 2 5 2 3 4 4 5 8 3
V 5 5 5 4 9 14 9 3 41
W 1 0 4 0 3 0 1 2 0
Y 7 0 6 0 3 1 2 2 0
Contributors Numbera P1 P2 P3 P4 P5 P6 P7 P8 P9
A*0201 735 + + + + + + + + +
A*0202 75 + + − − − − − + −
A*0203 65 + + − − − − − + +
A*0204 38 + + − + − − − − −
A*0205 23 + − − − − − − + −
A*0206 81 + − − + + − + + +
A*0209 5 + + + + + + + + +
A*0211 4 + + + + − − − − −
A*0214 8 + − − + + − + + −
A*0207 19 − − − + + − + + +
A*0210 3 − − − + + − + + +
A*0217 1 − − − + − − − − −
A*6901 3 − − − − − − + + −
A*2603 2 − − − − − − − + −
A*6601 10 − − − − − − − + −
A*6802 40 − − − − − − − + −

Each column represents a position in the peptide. The rows are given
with the one letter code for the amino acids. The values represent
the frequencies of those amino acids at those positions based upon
the peptides that are available for each module. The lower portion
of the table shows which alleles contributed to the scores above and
the a number of peptides used. The plus symbols indicate that this
allele shares a module with A*0201 at the given peptide position.

Table 3 AROC values

Standard matrix Modular matrix NetMHC

A*0201 0.94 0.94 0.96
A*0202 0.94 0.95
A*0203 0.95 0.96
A*0204 0.82 0.85
A*0205 0.92 0.93
A*0206 0.95 0.95
A*0207 0.97 0.98
A*0301 0.94 0.94 0.97
A*1101 0.95 0.95 0.97
A*2402 0.96 0.96
A*2902 0.95 0.96
A*3101 0.96 0.96 0.91
A*3301 0.93 0.93
A*6801 0.95 0.96
A*6802 0.93 0.94
B*0702 0.96 0.96 0.98
B*2703 0.97 0.98
B*2704 0.90 0.89
B*2705 0.98 0.98 0.99
B*2706 0.94 0.96
B*3501 0.97 0.97
B*4002 0.95 0.98
B*5101 0.94 0.93
B*5102 0.92 0.94
B*5103 0.90 0.93
B*5301 0.97 0.96
B*5401 0.96 0.97
Cw*0401 0.98 0.97
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Discussion

Modules

Despite the pronounced level of diversity among HLA
alleles, the alleles display a significant amount of homology
on the modular level. Intergene homologies are also
present, as the P7 and P8 modules for B*5302 in Table 1
demonstrate. As expected, the positions that are most
important for binding (i.e. 2 and 9) and are highly variable
limit the interallelic application of peptide binding data.
Nonetheless, it is profitable to determine which anchor
positions lack peptide binding data instead of working
solely at the allele level.

The most interesting feature of Fig. 1 is the strong
correlation between the number of positions involved in
peptide binding and the importance of that position for the
specificity of the binding. The anchor positions 2, 9, and
auxiliary anchor 6 are well reflected. Each position in the
binding groove carries with it a certain level of variability
(an average of 3.9 amino acids per position, when
considering only positions in the pocket definitions).
Therefore, the number of modules found for a given pocket
grows with the number of positions in its pocket definition.
This is the main factor affecting the number of modules as
given in Fig. 2. The other dimension that affects the number
of modules is the rate of polymorphism at the positions in
each module. For example, a position with very high
polymorphism will disproportionally increase the number
of modules for the pocket that contains such position. The
biological question that arises is, “Has evolutionary
pressure affected the variability of the HLA binding pocket
selectively at positions involved in binding specificity?”
Variability analysis of amino acids sequences can be
performed using Shannon’s entropy (Reche and Reinherz
2003). When analyzing modules, however, entropy calcu-

lations do not reveal a correlation with anchor positions
when the entropies are averaged across all positions of the
module (supplementary figure).

Prediction

The modular concept relies on the assumption that the
positions in the peptide bind independently—that they are
not affected by which amino acids occur at neighboring
positions. Although this is not entirely the case, a great deal
of independence is demonstrated by the success of the
many motif- and matrix-based prediction algorithms, which
do not consider such neighboring relationships. It cannot be
excluded that certain module constellations create unrealis-
tic biological environments. However, in light of the
positive performance results of the modular matrix, this
does not appear to be a problem.

Table 3 shows that, in all cases, the predictive
performance of the modular matrix was either within
one percentage point of the control matrix or significant-
ly better. For alleles, such as A*0201, the modular

Fig. 2 Predictive performance using binding data from related alleles.
The scores for the standard matrix and modular matrix predictions
were generated as in Table 3. For modular matrices (no self) and
supertypes (no self), scores were generated using peptide binding data
from related alleles, and excluding peptide binding data for that allele

Table 4 Alleles for which prediction is possible

Standard matrix Modular matrix

Total=28 Total=144

A*0201 A*0201 A*0304 A*2911 B*3507
A*0202 A*0202 A*0305 A*3101 B*3524
A*0203 A*0203 A*0306 A*3301 B*3532
A*0204 A*0204 A*0313 A*3303 B*3542
A*0205 A*0205 A*0314 A*3304 B*4002
A*0206 A*0206 A*1101 A*3305 B*4035
A*0207 A*0207 A*1102 A*3306 B*4056
A*0301 A*0209 A*1105 A*3307 B*4057
A*1101 A*0214 A*1107 A*6801 B*5101
A*2402 A*0218 A*1109 A*6802 B*5102
A*2902 A*0221 A*1112 A*6816 B*5103
A*3101 A*0222 A*1113 A*6819 B*5117
A*3301 A*0224 A*1115 A*6821 B*5118
A*6801 A*0225 A*2402 A*6822 B*5124
A*6802 A*0228 A*2405 A*6824 B*5126
B*0702 A*0230 A*2420 A*6825 B*5128
B*2703 A*0231 A*2421 A*6827 B*5130
B*2704 A*0240 A*2426 B*0702 B*5132
B*2705 A*0251 A*2427 B*0721 B*5133
B*2706 A*0258 A*2435 B*0722 B*5135
B*3501 A*0259 A*2437 B*0730 B*5301
B*4002 A*0261 A*2438 B*0733 B*5302
B*5101 A*0263 A*2439 B*0735 B*5401
B*5102 A*0266 A*2443 B*2703 B*5507
B*5103 A*0267 A*2901 B*2704 Cw*0401
B*5301 A*0268 A*2902 B*2705 Cw*0405
B*5401 A*0271 A*2906 B*2706 Cw*0407
Cw*0401 A*0272 A*2909 B*2713 Cw*0412

A*0301 A*2910 B*3501
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matrix hardly differs from the standard matrix. This is
because the majority of the peptide binding data comes
directly from A*0201 binders—The few peptides from
related alleles (A*0202, A*0203, etc) are not numerous
enough to significantly influence the matrix. Although
this is the case for several of the alleles in Table 3, it is
interesting to note that contributions from related alleles
were sometimes helpful but never harmful to prediction
accuracy.

To orient our results on an established HLA binding
predictor, we tested NetMHC with our peptide data. The
AROC scores for NetMHC with the MHCBN peptides were
very good for A*0201, A*0301, A*1101, A*3101,
B*0702, and B*2705 (see Predictive accuracy), demon-
strating the effectiveness of this technique when one
considers that NetMHC was not trained on exactly this set
of peptide binding data. The NetMHC algorithm out-
performed the matrix and modular matrix in every case
except B*3101. NetMHC’s poorer performance for B*3101
can be explained by the presence of a secondary P9 anchor
of lysine in the MHCBN, which is absent in the training
data for NetMHC. The fact that the modular matrix is not
able to outperform the neural network-based approach in
most cases is not surprising, and it should be emphasized
that the purpose of this experiment is to expand the number
of predictable HLA alleles using the structural data
provided in the pocket definitions.

The results of the “no self” analysis (Fig. 2) demonstrate
that peptide binding prediction for an allele is possible
using binding data only from other alleles. Modular
prediction for B*5102 significantly outperformed the
standard matrix despite the fact that no B*5102 peptides
were used in training. This can be attributed to the fact that
there are 32 binding nonamers available for B*5102, but by
utilizing modular data, hundreds of peptides are considered:
343 peptides at P1, 445 at P2, 224 at P3, 708 at P4, and 224
at P5–P9.

The comparison of the modular matrix-based “no self”
analysis with the supertypes “no self” analysis show that
our technique offers an improvement over B7 and B27
supertypes but not the A2 supertype. The case of A2
exemplifies that our approach to generating modules is at
times too strict—A single amino acid mismatch, even
between functionally similar residues, results in two
distinct modules, and as such, the one module cannot
benefit from the peptide binding data of the other.
However, it is likely this strictness that leads to the
improvement in prediction over the B7 and B27 super-
types. For example, the module matrix for B*5102
includes binding P1 and P2 binding data from B*3501
but not for other positions. It is particularly important
that the P9 motif of B*3501 (L/M/F/Y) is excluded from
the B*5102 prediction, because it differs significantly
from B*5102’s P9 motif (I/L/V). The absence of such

Table 5 Ranking of the alleles which would provide the best new module data

Rank Maximum modules Maximum anchor modules Maximum predictables

Allele New module
occurrences

Allele New anchor
occurrences

Allele Newly
predictable alleles

1 Cw*1502 135 Cw*1511 25 B*4808 16
2 A*3201 84 A*7401 25 B*1568 15
3 Cw*0202 84 A*3201 25 B*4028 12
4 Cw*0707 83 Cw*1601 25 B*4201 11
5 Cw*0501 79 Cw*1202 23 B*0734 11
6 A*7401 77 B*4808 22 B*4104 11
7 Cw*1208 64 Cw*0202 21 B*3533 10
8 Cw*0410 64 A*0308 20 Cw*0502 10
9 B*4101 58 Cw*0314 19 Cw*1601 10
10 Cw*0810 55 B*4201 18 Cw*0707 9
11 A*2304 55 B*0734 18 Cw*0810 9
12 B*4801 51 B*4104 18 Cw*0410 9
13 Cw*1701 48 B*5605 17 Cw*1203 8
14 A*3108 47 Cw*1701 16 A*7401 8
15 B*5518 47 B*4028 16 B*4901 7

Based on the modular technique, a ranking of the alleles can be made, which reflects the amount of new information that they would provide if
their binders were purified and sequenced. This list provides a way of prioritizing which alleles should be studied next. Alleles at the top of the
maximum module occurrences list contain the highest number of modules that are shared by the most other unstudied alleles. Similarly, the
maximum anchor occurrences list is based upon the highest number of unstudied anchor positions (P2 and P9). The maximum predictable alleles
list ranks the alleles which would maximize the number of alleles for which binding data for P2 and P9 are simultaneously available (thereby
making the alleles predictable). For the sake of clarity, only one allele from each two-digit group is listed.
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selective exclusion is likely responsible for the slightly
lower performance of the supertype-based prediction in
this case. The modular matrix’s P9 motif is that of
B*5101 (I/L/V), which is identical to B*5102.

In conclusion, the modular approach provides a high
specificity when deciding how to employ peptide data of
related alleles, and the supertype approach a high sensitivity.
The modular approach addresses the problem of classifying
alleles that, on one side of the binding groove, fit into one
supertype and on the other side of the binding groove, in a
different supertype. The modular approach does not make use
of known binding motifs, which is a valuable source of
information for the generation of supertypes (Sette and
Sidney 1999). This is, at the same time, an advantage
because such binding motifs are not always available.

Most informative alleles

Table 5 shows a ranking of alleles based upon how much
new information they would provide to the modular
concept if their peptides were to be made known. Although
maximizing the number of modules is productive for
completeness, it is not perfect for maximizing predictive
capabilities. This is because of the proportional relationship
between the variability of an amino acid position in HLA
and that position’s significance for peptide binding (Reche
and Reinherz 2003). The modules that are shared among
the most alleles are found in the least polymorphic areas
and, therefore, have a minimal effect on peptide binding.
For example, P8 plays a minor role in peptide binding, and
its modules are shared amongst the most alleles. Maximiz-

Table 6 Modules for B*4201

Known
peptides

P1 pocket 1, 5, 7, 33, 59, 62, 63, 66, 99, 159, 163, 167, 171 180
Module MYFYRNIYYRWY
Alleles B*0719, 31, 34, 43, B*0801, 02, 04, 06, 07, 09, 12–16, 18, 20, 22–24, B*1544, 93, B*1811, B*3535, 60, B*3801, 02, 05–

07, 09–11, B*3901, 03–06, 10, 12, 14–20, 24, 26–31, 34, B*4201, 02, 04–06, B*5136, B*5401, 02, 04, 07, B*5501–05,
07, 10–17, 19, B*5610, 12, B*5901, B*6701

P2 pocket 2, 7, 9, 24, 25, 26, 34, 35, 36, 45, 62, 63, 66, 67, 70, 99, 159, 163, 167 3
Module YYSVGVRFERNIYQYYTW
Alleles B*0719, 31, 34, 43, B*4201, 04–06, B*5510, B*6701
P3 pocket 3, 7, 9, 62, 66, 70, 97, 99, 114, 152, 155, 156, 159, 163 1
Module YYRIQSYNVQDYT
Alleles B*4201, 05, 06
P4 pocket 4, 62, 65, 66, 69, 70, 155, 156, 159 1
Module RQIAQQDY
Alleles B*0704, 19, 25, B*4201, 02, 04–06, B*4506, B*5613, B*8201, 02, B*8301
P5 pocket 5, 69, 70, 73, 74, 97, 114, 116, 152, 155, 156, 159 1
Module AQTDSNYVQDY
Alleles B*4201, 02, 05
P6 pocket 6, 7, 9, 22, 24, 66, 69, 70, 73, 74, 97, 99, 114, 116, 133, 147, 152, 155, 156
Module YYFSIAQTDSYNYWWVQD
Alleles B*4201, 05
P7 Pocket 7, 73, 77, 97, 114, 116, 133, 146, 147, 150, 152, 155, 156 76
Module TSSNYWKWAVQD
Alleles B*0801, 04, 05, 10, 11, 15, 18, 21–24 B*4102 B*4201, 02, 05
P8 pocket 8, 73, 76, 77, 80, 97, 143, 146, 147 318
Module TESNSTKW
Alleles B*0702–06, 08–10, 16, 17, 19–26, 28–35, 37, 39–43, B*0801, 04, 05, 07, 10, 11, 13, 14, 18, 20–25, B*1405, B*1507, 45,

55, 68, B*1814, B*3505, 16, 17, 22, 30, 31, 51, 58, B*3903, 14, 24, 29, B*4002, 03, 05, 08, 09, 15, 16, 18, 24, 27, 29, 32,
35, 39, 40, 50, 56–58, B*4102, 04, B*4201, 02, 05, 06, B*48, 08, 10, 12, 13, B*5504

P9 pocket 9, 70, 73, 74, 76, 77, 80, 81, 84, 95, 96, 97, 114, 116, 123, 124, 142, 143, 146, 147 1
Module QTDESNLYLQSNYYIITKW
Alleles B*0705, 06, 34, 40, B*4201, 02, 05, B*5504

HLA-B*4201 is an example of a highly informative allele, which would contribute significant modular peptide binding data if it were to be
analyzed. The nine modules here are lists of amino acids from B*4201 that play a role in binding a particular position in a nonamer peptide. The
rows “P[1–9] pocket” contain the definitions of which amino acids positions are responsible for binding the respective position in the peptide
according to Chelvanayagam. Each module form B*4201 occurs in other alleles as well. These alleles are listed in the rows designated “Alleles.”
The numbers of peptides that are associated with each module are listed in the “Known peptides” column.
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ing the anchor positions ensures that the newly provided
information is relevant for peptide binding. The alleles in
this list should be studied in the long-term interest of
comprehensive peptide binding.

The question of which alleles to study to maximize the
number of predictable alleles in one step is answered in the
“Maximum predictables” column (Table 5). This list
considers previous peptide binding data, which could be
used in combination with new data to maximize the number
of predictable alleles in the short term. For example,
peptide binding data for B*4808 would make the prediction
of B*4009 possible by providing data for the module at P9,
which these two alleles have in common. Peptide binding
data are already available for B*4009’s P2 anchor position
via B*4001 and B*4002. In this way, previous data could
be combined efficiently with new binding data to maximize
the number of predicable alleles. Additionally, studying
these alleles is also useful for further confirmation or
refutation of the modular concept of HLA.

Application in immunotherapy

Because of HLA diversity, individualized immunotherapy
may offer leukemia patients the best chances for preventing
relapse without developing GvHD in hematopoietic stem
cell transplantation protocols. This involves stimulating
donor T cells to react with the minor histocompatibility
antigens, which are presented on the surface of the patient’s
malignant cells but are not presented in GvHD-susceptible
tissues. HLA peptide binding prediction plays a central role
in identifying which peptides can be used as T cell targets
to produce a GvL effect. To accurately predict T cell targets,
a system involving TAP binding prediction and proteaso-
mal processing prediction is necessary as well (Bhasin and
Raghava 2004; Donnes and Kohlbacher 2005; Doytchinova
and Flower 2006; Guan et al. 2006; Larsen et al. 2005;
Tenzer et al. 2005; Zhang et al. 2006). Incorporated into
such a system, the modular concept of HLA is a promising
step in making peptide binding prediction for all patients a
reality. Further information on the modular model of HLA,
as well as tools for finding personalized alloreactive
peptides, can be found on the Internet at http://www.
peptidecheck.org.
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Implementing the Modular MHC Model for Predicting
Peptide Binding

David S. DeLuca and Rainer Blasczyk

Summary

The challenge of predicting which peptide sequences bind to which major histocompati-
bility complex (MHC) molecules has been met with various computational techniques. Scoring
matrices, hidden Markov models, and artificial neural networks are examples of algorithms that
have been successful in MHC–peptide-binding prediction. Because these algorithms are based
on a limited amount of experimental peptide-binding data, prediction is only possible for a
small fraction of the thousands of known MHC proteins. In the primary field of application for
such algorithms—vaccine design—the ability to make predictions for the most frequent MHC
alleles may be sufficient. However, emerging applications of leukemia-specific T cells require
a patient-specific MHC–peptide-binding prediction. The modular model of MHC presented here
is an attempt to maximize the number of predictable MHC alleles, based on a limited pool of
experimentally determined peptide-binding data.

Key Words: Modules; pockets; HLA; MHC; class I; class II; peptide; binding; prediction

1. Introduction
The major histocompatibility complex (MHC) is a highly polymorphic

collection of genes encoding membrane surface proteins, which plays an
important role in the immune system. MHC binds short peptide sequences and
presents them on the cell surface for inspection by T cells (1). In humans, MHC
is known as human leukocyte antigen (HLA).

Because of MHC’s role in recognizing pathogenic and cancerous peptides,
these genes are under high environmental pressure to be very polymorphic.

From: Methods in Molecular Biology, vol. 409: Immunoinformatics: Predicting Immunogenicity In Silico
Edited by: D. R. Flower © Humana Press Inc., Totowa, NJ
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Presently, 2,088 HLA alleles have been identified (2). Predicting which peptide
sequences will bind to specific MHC alleles is dependent on the amount of
experimentally determined peptide-binding data available for each allele. Such
data are only available for a small fraction of all the alleles. The goal of the
modular concept is to take advantage of similarities among alleles by utilizing
existing peptide-binding data to make predictions for alleles, for which no
peptides are available.

Although MHC polymorphism can be caused by point mutation, it is mainly a
result of gene conversion and recombination (3). Therefore, although a specific
MHC is unique, it may be identical to a second MHC in one region and
identical to a third MHC in another region. Such similarities can be exploited
by breaking down MHC into modules and correlating these modules with the
available peptide-binding data (4,5). In this way, peptide-binding data specific
for a small number of MHC variants can be applied to an expanded number of
variants.

The part of the MHC–peptide-binding groove that interacts with a specific
position in the bound peptide is known as a pocket. Originally these pockets
were designated A–F (6). Further analysis of crystallographic data in class
I HLA has provided more complete definitions of which positions in HLA
are responsible for binding certain positions in the peptide (7,8). Because
of the side chain orientation in the protein’s three-dimensional structure, the
positions responsible for peptide binding are not sequential. For example, the
particular residues in HLA class I that interact with the N-terminal amino acid
(P1 = peptide position 1) in the peptide are at positions 5, 7, 33, 59, 62, 63, 66,
99, 159, 163, 167, and 171 (7). These positions are used to define a module.
A module is the sequence of amino acids found at these positions in a specific
MHC allele. For a 9-mer peptide, a given allele will have nine modules (P1,
P2, � � � P9). Because of similarities among MHC alleles, different MHCs can
share modules when they posses the same amino acids at the defined positions
(Tables 1 and 2).

The result of this modular concept is an expanded number of MHC alleles,
for which peptide binding can be predicted.

2. Implementation
The modular prediction algorithm available via the PeptideCheck

(http://www.peptidecheck.org) website was written in Java and runs on a
Tomcat application server, utilizing servlets, java server pages, and a MySQL
database.
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Table 1
Modules for A∗0101 and A∗7401 at P1

A∗0101

Position 5 7 33 59 62 63 66 99 159 163 167 171
Amino acid M Y F Y Q E N Y Y R G Y
Other alleles with
this module:

A∗0102, A∗0103, A∗0106, A∗0107, A∗0110

A∗7401
Position 5 7 33 59 62 63 66 99 159 163 167 171
Amino acid M Y F Y Q E N Y Y T W Y
Other alleles with
this module:

A∗0256, A∗0301-14, A∗1104, A∗3001–6, 8, 9, 11, 12, A∗3101,
3, 4, 6, 9, A∗3201–4, 6–8, A∗3601–3, A∗7402, 3, 5–10

The positions listed here are positions in the HLA protein, which are likely to affect the
binding of amino acids at P1 in the peptide. The amino acids listed are those amino acids
which occur at the given positions in A∗0101 and A∗7401, respectively. These lists of nonse-
quential amino acids are the modules at P1. The alleles listed under “Other alleles with this
module” possess the same amino acids at these positions and therefore possess the same P1
modules.

Table 2
Number of modules for each peptide position

Peptide positions 1 2 3 4 5 6 7 8 9
Number of modules 176 365 424 72 298 458 282 82 405

The total number of modules for each peptide position is less than the number of HLA
proteins, because related alleles share certain modules. These numbers are based on all class
I HLA-A, HLA-B, and HLA-C proteins from the IMGT/HLA database version 2.10.0, which
contains 1,098 class I proteins.

2.1. HLA Sequence Data

HLA protein sequences are available in the IMGT/HLA database and
are regularly updated (2). Sequences can be downloaded directly from the
file transfer protocol (FTP) server under ftp://ftp.ebi.ac.uk/pub/databases/
imgt/mhc/hla/. Nucleotide and protein sequences are available in various
formats. Sequence alignments for all HLA genes are available as zip files.
Because many of the HLA sequences are incomplete (e.g., only certain exons
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have been determined), sequence alignments are necessary. Programmers may
either download the individual sequences, and align them locally, or download
the alignment files, and extract the sequence information.

2.2. Peptides

The module-based peptide-binding prediction requires collections of peptide,
which have been experimentally proven to bind MHC. Databases such as
SYFPEITHY, MHCBN, and AntiJen are good sources of peptide-binding data
(9–11). Although some databases provide binding affinities, the algorithms
described here require only that a distinction is made between binders and
nonbinders. Nonbinders are often a limiting factor. Alternatively, random
sequences of peptides can be generated and assumed to be nonbinders. This
assumption will be true for the vast majority of sequences because less than 1%
of possible peptide sequences are thought to bind HLA class I (12). The use
of random nonbinders has several precedents (13,14). In this implementation,
random nonamers were generated by randomly choosing human proteins from
the Entrez protein database. Segments of nine amino acids were then randomly
chosen.

2.3. Modules

At the heart of the modular concept lies the pocket definition. For our
purposes, a pocket is the list of positions in HLA, which is responsible for
binding a particular amino acid position in the peptide. In this study, the pockets
were defined as per Chelvanayagam’s analysis of crystallographic HLA data
(7). Alternative definitions have been provided by Saper and Reche (6,8).

A module is the sequence of amino acids found at the pocket positions
for a given allele. Modules are generated by combining the pocket defini-
tions provided by Chelvanayagam or others with the HLA protein sequences
(Table 1). Although many related alleles produce the same module sequences,
only unique sequences should be stored in the database. A second database
table can be used to correlate the module sequences with the alleles that
posses them.

2.4. Matrices and Prediction

The simplest implementation of modular peptide-binding prediction is using
a scoring matrix. When predicting binding to nonamers, the matrices are 9×20
and contain values for each amino acid at each position peptide (Table 3). The
following pseudocode demonstrates how to generate the matrix:
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Modular Matrix
For each module

Retrieve all alleles that have this module
For all alleles with this module

Retrieve all binders
For each binder

Count the amino acid at the position corresponding to
this module

Divide the scores by the number of binders found for this module

A score for a peptide’s binding ability is generated by multiplying the nine
corresponding values from the matrix. This score is indicative of the likelihood
that this peptide is a binder and can be compared to a threshold to predict
binding. In the modular matrix, the values are based on the frequencies of
the amino acids, among binding peptides, specific to a particular module (see
Note 1). Because different alleles can have certain modules in common, the
module-specific values are based on peptides that bind to all the alleles which
have that module.

2.5. Evaluating Predictive Performance

Predictive performance can be calculated using the area under the receiver
operating characteristic curve (AROC). The ROC curve is based on the
prediction’s sensitivity

SE = TP/
�TP +FN�

and specificity

SP = TN/
�TN +FP�

where TP = true positives—correctly predicted binders; FN = false
negatives—binders incorrectly predicted to be nonbinders; TN = true
negatives—correctly predicted nonbinders; and FP = false positives—
nonbinders incorrectly predicted to bind. The ROC curve is a plot of SE versus
1 SP over a range of thresholds (Fig. 1).

Using the same peptides for training as well as testing is for obvious reasons
taboo. Peptides used in testing should be excluded from the matrix scores.
This can be done by splitting the peptide data into separate training and testing
pools (e.g., two-thirds for training and one-third for testing). A method that
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Fig. 1. Receiver operating characteristic (ROC) curves. The ROC curve is a function
of specificity as well as sensitivity. The area under the ROC curve (AROC) is the
standard measure of accuracy for major histocompatibility complex (MHC)–peptide-
binding prediction. Random prediction refers to the expected results when randomly
guessing whether the peptide is a binder or nonbinder.

delivers better result, especially when few peptides are available, but is more
computationally intensive is the “jackknife” technique. Before performing the
prediction for a given peptide, the peptide and all peptides with only one amino
acid difference are removed from the training data, and the matrices were
calculated without these peptides.

A goal of the modular concept is to make prediction possible for alleles, for
which no peptide data are available. To test the modular concept, a “no-self”
evaluation is necessary. In this implementation, the values in the modular matrix
were generated and tested for a given allele, without using peptide-binding data
for that allele. For example, predictions were made for A∗0201 using binding
data from other alleles (A∗0202–0206, 0209, 0211, 0214, 0207, 2603, 6601,
6802, and 6901) but excluding peptides proven to bind A∗0201.

3. Application
The module-based HLA–peptide-binding prediction is available as part of

the PeptideCheck website (http://www.peptidecheck.org).
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3.1. Predicting HLA–peptide Binding

In the simplest case, the user can enter a peptide sequence and choose an
HLA allele. The result is a score representing the probability that the given
peptide is bound by the given allele. Alternatively, the user may enter a protein
sequence, and all possible resulting peptides are scored. Conveniently, more
than one HLA allele can be chosen at a time.

The prediction algorithm generates a score. To determine whether this score
is indicative of binding or nonbinding, it must be compared to a threshold.
Choosing a threshold is dependent on experimental context. For example,
if the user is intent on finding peptides that will have the highest chance
of binding in the laboratory, a very high threshold is recommended. If the
question is whether a peptide is or is not a minor histocompatibility antigen
(peptide derived from a variant region of a non-HLA protein) then a balanced
threshold is necessary. The threshold suggested in the PeptideCheck website is
the point at which the sensitivity and specificity curves cross. Unfortunately,
it is not possible to suggest thresholds for all predictable alleles. One can
only generate sensitivity and specificity curves when peptide-binding data are
available. However, modular peptide-binding prediction allows for prediction
when no data are available (see Note 2). In this case, no threshold can be
suggested, and it is recommended that the user compares scores to find peptides
that represent the most likely binders.

3.2. Predicting Peptide Presentation Profile/Individual’s
Peptide-binding characteristics

In the area of leukemia-specific T-cell therapy, it is important to compare the
peptide-binding profile of the patient. Peptide-binding profiles can be created
by entering the patient’s HLA genotype. In the case of a full heterozygosity,
this includes two alleles from each of the HLA-A, HLA-B, and HLA-C loci.
The user can either provide a peptide, one or more protein sequences, or a
single-nucleotide polymorphism (SNP) profile for analysis. The resulting table
displays the best binders, the proteins that they stem from, the binding score,
and to which alleles they bind.

3.3. Exploring Modular Relations Between HLA Alleles

To understand the relations between various HLA alleles, it can be useful to
compare them at the modular level. This is particularly useful when choosing
which HLA alleles to study when determining peptide-binding motifs. After
selecting an allele, the user is presented with the list of modules that this allele
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possesses. Clicking on a module brings up the list of alleles that possess this
module. If binding motifs are available, they are also displayed. In this way,
the user can choose an allele and find information about its binding motif
based on the binding data for other alleles. Conversely, the user may determine
which other alleles would benefit from the binding data of the target allele, if
its peptides were to be purified and sequenced. In this way, researchers can
choose those alleles for study, which are the most informative on a modular
level. Prioritizing alleles in this way will ensure that peptide-binding data be
found most efficiently to maximize modular peptide prediction.

Notes
1. Although the modular concept of HLA has been shown to be successful in expanding

the number of predictable HLA alleles, the implementation described here has
several drawbacks. The matrix scores are based on the assumption that there is a
correlation between the rate of occurrence of particular amino acids at particular
positions in the peptides and the importance of those amino acids in peptide binding.
Although this may be true for pool sequences, many of the peptides in the peptide
databases are of synthetic origin. The synthetic peptides are based on known binders
but contain specific amino acid substitutions, with the goal of uncovering the roles of
certain positions in the peptide. These synthetic peptides invalidate the assumption
mentioned above. Drawing a correlation between peptide sequences and binding
affinity is certainly a solution to this problem.

2. The modular concept will be expanded in the future to make prediction possible for
more alleles, through the clustering of modules. There are module sequences that
differ only slightly from each other, and which bind the same amino acids, despite
small differences. Such modules will be clustered together in future implementa-
tions to maximize the usability of the provided peptide-binding data. Module-based
supertypes are also an interesting consequence of such an analysis.
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ABSTRACT 
The search for minor histocompatibility antigens (mHags) has implications not only for preventing graft versus host disease, but 
also for therapeutic applications involving leukaemia-specific T cells. We have created a web-based system, named 
PeptideCheck, for analyzing peptide elution data to search for mHags as well as for prediction mHags from polymorphism and 
protein databases. Comparison with known mHag data reveals that some but not all of the previously known mHags can be 
reproduced. By applying a system of filtering and ranking, we were able to produce an ordered list of potential mHag candidates 
in which HA-1, HA-3, and HA-8 occur in the best 0.25 per cent. By combining SNP, protein, tissue expression, and genotypic 
frequency data, together with antigen presentation prediction algorithms, we propose a list of the best peptide candidates which 
could potentially induce the graft versus leukemia effect without causing graft versus host disease. 
Availability: http://www.peptidecheck.org 
Contact: Transfusionsmedizin@mh-hannover.de 
 

1 INTRODUCTION  
 
The role of minor histocompatibility antigens (mHags) in the context of hematopoietic stem cell transplantation is 
being intensely studied (Hambach and Goulmy, 2005). These antigens, which can potentially result from any 
polymorphic gene, have been implicated in causing the deadly graft versus host disease (GvHD) and present a 
hurdle for successful treatment of leukemia and other hematopoietic diseases following hematopoietic stem cell 
transplantation (HSCT) (Goulmy, et al., 1996). However, these immunological targets also prevent relapse when 
expressed on the surface of the patient’s malignant cells (Spierings, et al., 2004). Here they are targeted by donor 
T cells, causing the so called graft versus leukemia effect (GvL). As we have reviewed previously, bioinformatics 
has become an important tool in investigating mHags (DeLuca and Blasczyk, 2007). We present here, a 
computation approach to predicting minor histocompatibility antigens, with special attention given to those 
antigens, which cause GvL. This system, named PeptideCheck, considers gene expression, polymorphism data, 
and antigen presentation prediction algorithms.  
 
A given antigen can promote GvHD or GvL depending on its expression pattern across cell and tissue types. 
Because liver and epithelial cells are particularly affected by GvHD, it is logical that antigens which are expressed 
in these cells contribute to GvHD. On the other hand, antigens expressed exclusively in leukemia cells could have 
a targeted anti-tumor effect without causing GvHD. In fact, antigens specific to hematopoietic cells are also 
interesting targets for the GvL effect, as long as they only occur in the patient’s original blood system, but not in 
the blood system of the donor after HSCT. This is the situation when hematopoietically expressed antigens are 
also mHags – i.e. they result from polymorphic mismatches between donor and recipient.  
 
In principle, mHags can result from any genetic polymorphism which leads differential amino acid expression. In 
term of single nucleotide polymorphisms (SNP), examples include non-synonymous nucleotide replacements 
leading to an amino acid exchange, frame-shift causing nucleotide insertions or deletions, as well as mutations 
which either disrupt stop codons, or result in premature stop codons. The NCBI’s dbSNP polymorphism database 
and the HapMap project are important resources for such data (Consortium, 2003; Smigielski, et al., 2000).  
 
In addition to having to fulfill these genetic requirements, mHag candidates must be presented on the cell surface 
by the antigen presentation machinery (Rock and Goldberg, 1999). This process begins with proteasomal 
cleavage or proteins into peptide fragments. These peptides are then selectively loaded into MHC molecules by 
the transporter associated antigen processing (TAP) protein. Finally, the MHC-peptide complexes are carried to 
the cell surface whether they can interact with the T cell receptors found on the surface of T lymphocytes. 
Because each of these steps is selective and dependant on motifs found in the peptide sequences, it has been 
possible to develop algorithms for predicting the fate of peptide regions. Here, we employ the strategy of utilizing 
the processing scores to filter out a list of the most promising peptides. Finally the best candidates are those 
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which have high processing scores for all applied algorithms, relevant SNP frequencies, and appropriate tissue-
specific gene expression.  
 
For the technique of integrating databases and algorithms to explore mHags, the state of the art includes systems 
such as SNEP (Schuler, et al., 2005) and SiPep (Halling-Brown, et al., 2006). SNEP extracts polymorphism data 
and sequences from SWISS-PROT (Boeckmann, et al., 2003) and calculates HLA binding using SYFPEITHI 
(Schuler, et al., 2007). SiPep utilizes dbSNP data, tissue expression data and combines proteasomal processing 
with HLA binding predictions. These systems however, are impractical for high throughput analysis. With 
PeptideCheck, we go several steps further to integrate user-defined gene expression analysis, and batch 
processing to analyze large amounts of user or public data conveniently. 

2 METHODS 
 
Prediction algorithms 
The following prediction algorithms were applied to the peptide candidates: Proteasomal processing prediction by 
NetChop (Kesmir, et al., 2002), and the PepCleave predictor (Ginodi, et al., 2008). TAP binding by Peters et al. 
HLA binding prediction was performed with matrixes, modular matrices (DeLuca, et al., 2007),. 
 
Data sources 
SNP Data was imported from NCBI using the HTTP-based querying service, eUtilities. Only human non-
synonymous coding SNPs were considered. The NCBI eFetch service was queried using the database dbSNP 
(Build 128), the format XML, and the TERM:  
 
( Homo+sapiens [Organism])+AND+( snp+protein [Filter])+AND+ 
(  ( ( in+del [SnpClass]+OR+ mixed [SnpClass])+AND+ 
  ( coding+nonsynonymous [Function+class]+OR+  
   reference [Function+class]) 
 )+ 
 OR+( coding+nonsynonymous [Function+class])+ 
) 
 
eUtilities were also used to retrieve protein sequences from NCBI for proteins containing SNPs. 
 
The genes from the dbSNP which were marked as coming from the Y chromosome were included and tagged as 
Y-linked..Futher Y-linked genes were fed into PeptideCheck by querying NCBI Entrez using the term: "y-
linked"[title] AND (human[orgn]) and not ("pseudogene"[title]). 
 
Generating peptides 
Amino acid exchanges were made in the protein sequence. All possible peptides of length 15 containing both 
variants of the SNP were generated ands stored in an InterSystems Caché database. For immunoPaproc, 15 
amino acids were required for the calculations, whereby the first 9th amino acid represents the C terminus. For 
immuneepitope database predictions, entire protein sequences were considered. For those SNPs which result in 
a frame shift or involved stop codons, peptides from the entire protein sequence were included. Such peptides 
were tagged as located “Before Mutation” (BM), “After Mutation” (AM) or “Containing Mutation” (CM) respectively. 
 
SNP frequencies 
The genotypic SNP frequency data provided by the dbSNP was supplemented with frequency data directly from 
the HapMap project (Consortium, 2003). The data is automatically downloaded from the online repository found at 
http://www.hapmap.org/downloads/frequencies/latest/rs_strand/non-redundant/, and then unzipped and stored. 
We chose to change the representation of genotypic frequency data to make it more practical in the context of 
allogeneic transplantation. We define PP frequency (presence of peptide) to be the sum of the homozygous and 
heterozygous frequencies of the individuals expression a peptide variant, and the AP frequency (absence of 
peptide) to be the frequency of individuals who are homozygous negative for the given peptide. 
 
Expression 
The cell and tissue expression data presented here were acquired from three sources. The first source is our own 
analysis of CML, CD34+, primary intestinal epithelial (PIE), normal human epidermal keratinocytes (NHEK) cells 
using GeneChip HG-U133A probe array (Affymetrix) with human renal proximal tubule cells (RPTEC) cells as 
control signal. The array contains a probe set for 22,283 oligonucleotide sequences and was utilized according to 
the manufacturer’s recommendations. RNA extracts from each cell type were processed to cDNA by reverse 
transcription, followed by in vitro transcription using biotinylated nucleoside triphosphates. After hypridization to 
the array and scanning, the results were interpreted using the MAS 5.0 software (Affymetrix).  
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A further source of expression data was the LeGeneD (Leukemia Gene Database 
http://www.bioinformatics.org/legend/) which are designated LEU in our system. The third source of data comes 
from GeneNotes (Shmueli, et al., 2003), and the cell types are listed as Bone Marrow and Liver in PeptideCheck. 
 
GvL ligand ranking 
Extracting GvL-relevant ligand candidates from all the peptides in the database involves a combination of filtering 
and ranking. Firstly, peptides are filtered by the criteria entered by the user – cell/tissue expression, antigen 
presentation prediction scores, SNP types and frequencies. The genes encoding list of filtered peptides are then 
ranked by the number of candidate antigens per gene. The resulting peptides can then be browsed gene for 
gene. 
 
SNP validation 
The validation of the SNPs was performed by PCR-sequencing-based typing sequencing (Horn, et al., 2006). The 
PCR products were subsequently sequenced in both forward and reverse directions by a cycle sequencing kit 
(Big Dye terminator, Applied Biosystems, Foster city, CA) using an Applied Biosystems 3730 sequencer and the 
data were analyzed by the SeqMan II program version 5.7 (GATC, Konstanz, Germany). Because each SNP was 
associated with a particular HLA ligand, only samples which were positive for the correct HLA allele were tested 
for the given SNP. 
 

3 RESULTS 
 
Quantity and quality of data 
In total, 48,905 SNP entries were imported from the dbSNP. These SNPs are found within 15,898 genes – 
roughly half of the estimated number of genes in humans. Because genes can be associated with multiple protein 
sequences at NCBI, 23,798 proteins were imported. The total number of unique peptide sequences contained in 
the system is 1,854,676. These and other statistics can be found in Table 1. 
 

Table 1 – Number of entries database tables. 
Data from dbSNP build 128 

Total SNPs 48,905 
SNPs causing AA exchange 48,194 
SNPs causing stop codon a 6,918 
SNPs removing stop codon a 469 
Single nucleotide insertions 2,936 
Single nucleotide deletions 3,410 
Total validated SNPs 22,918 
SNPs validated by HapMap b 19,046 
SNPs validated by Frequency b 17,532 

Additional entries 
Total Genes 15,898 
Total Proteins 23,798 
Total Peptides 1,854,676 

a. SNPs involving stop codons do not include frameshift mutations. 
b. Validations as given in the dbSNP. 

 
It should be noted that the ratios of proteins to genes in the system simply reflects the way that protein and gene 
data are reported to NCBI, and do not necessarily reflect biological events (e.g. mutations or alternative splicing, 
etc.). 
 
Three sources of gene expression data have been included so far. Our own Affymetrix analysis resulted in 2853 
CML expressed, 2714 CD34 expressed, 1953 PIE, 2833 NHEK, 2960 RPTEC, . Furthermore, 48 leukemia 
expressed genes were included. Additionally, 5514 bone marrow and 5575 liver genes were included. Finally, 12 
Y chromosome associated genes were included. It should be noted that any user may upload any additional gene 
expression data.  
 
 



 O
xf

or
d 

U
ni

ve
rs

ity
 P

re
ss

 2
00

8 
4 

Ta
bl

e 
2 

–Q
ua

nt
ity

 o
f d

at
a 

fro
m

 k
no

w
n 

m
H

ag
s 

re
fle

ct
ed

 in
 th

e 
P

ep
tid

eC
he

ck
 d

at
ab

as
e 

db
M

in
or

 
Pe

pt
id

eC
he

ck
 

N
am

e 
  

 
  

 
 

  
G

en
e 

Se
qu

en
ce

a
H

LA
SN

P
b

Va
lid

at
ed

 
Pr

ot
ei

n
Ex

pr
es

si
on

C
le

av
ag

e
c

H
LA

 d  
H

A
-1

 
 

 
 

 
 

H
M

H
A

1 
V

LH
D

D
LL

E
A

A
*0

2
rs

18
01

28
4 

Ye
s 

N
P

_0
36

42
4

- 
-1

.8
0 

-2
3.

02
H

A
-1

/B
60

 
 

 
 

 
 

 
 

H
M

H
A

1
K

E
C

V
LH

D
D

L
B

*6
0

rs
18

01
28

4 
Ye

s
N

P
_0

36
42

4
-

-1
1.

88
 

 
H

A
-2

 
 

 
 

 
 

E
A

L2
37

48
 

YI
G

E
V

LV
S

V
A

*0
2

- 
-

- 
-

-4
.4

9 
-2

0.
21

H
A

-3
 

 
 

A
K

A
P

13
 

V
TE

P
G

TA
Q

Y
A

*0
1

rs
71

62
16

8 
(r

s2
06

18
21

) 
Ye

s 
N

P
_0

06
72

9 
B

on
e 

M
ar

ro
w

, L
iv

er
 

-2
.7

7 
-1

9.
57

 

H
A

-8
 

 
 

 
 

 
 

 
K

IA
A

00
20

 
R

TL
D

K
V

LE
V

A
*0

2
rs

21
73

90
4

Ye
s

N
P

_0
55

69
3

B
on

e 
M

ar
ro

w
, C

D
34

, 
C

M
L,

 N
H

E
K

, R
P

TE
C

 
-2

.3
4

-2
1.

17

H
B

-1
H

 
 

 
 

 
 

 
 

H
M

H
B

1 
E

E
K

R
G

S
LH

V
W

B
*4

4
rs

57
82

4 
(rs

16
15

57
) 

Ye
s

N
P

_0
67

00
5

R
P

TE
C

-1
.7

1

H
B

-1
Y 

 
 

 
 

 
 

 
H

M
H

B
1 

E
E

K
R

G
S

LY
V

W
B

*4
4

rs
57

82
4 

(rs
16

15
57

) 
Ye

s
N

P
_0

67
00

5
R

P
TE

C
-1

.7
1

A
C

C
-1

 
 

 
 

 
 

 
B

C
L2

A
1 

D
YL

Q
YV

LQ
I

A
*2

4
rs

11
38

35
7

Ye
s

N
P

_0
00

40
40

 
-1

0.
13

 
-2

2.
65

A
C

C
-2

 
 

 
 

 
 

B
C

L2
A

1 
K

E
FE

D
D

IIN
W

B
*4

4
rs

38
26

00
7 

Ye
s

N
P

_0
00

40
40

 
B

on
e 

M
ar

ro
w

, C
D

34
, 

C
M

L,
 R

P
TE

C
 

-2
.3

2 
S

P
11

0 
(H

w
A

-9
) 

S
P

11
0 

S
LP

R
G

TS
TP

K
 

 
 

 
 

A
*0

3
rs

13
65

77
6

- 
- 

- 
-1

0.
00

P
A

N
E

1 
(H

w
A

-1
0)

 
C

E
N

P
M

 
R

V
W

D
LP

G
V

LK
 

 
 

 
 

 
 

A
*0

3
- 

-
-

-
-4

.0
5

U
G

T2
B

17
/A

29
 

U
G

T2
B

17
 

 
 

 
 

 
 

 
A

E
LL

N
IP

FL
Y 

A
*2

9
G

en
e 

de
le

tio
n

-
-

-
-2

.3
4

U
G

T2
B

17
/B

44
 

 
 

 
 

 
 

 
 

 
U

G
T2

B
17

A
E

LL
N

IP
FL

Y
B

*4
4

G
en

e 
de

le
tio

n
-

-
-

-2
.3

4
LR

H
-1

 
P

2R
X

5 
TP

N
Q

R
Q

N
V

C
 

B
*0

7 
rs

58
18

90
7

 
 

N
o 

N
P

_0
02

55
2 

 
B

on
e 

M
ar

ro
w

, L
iv

er
 

-1
.3

6 
-2

7.
91

 
LB

-E
C

G
F-

1H
 

 
 

 
 

TY
M

P
R

P
H

A
IR

R
P

LA
L

B
*0

7
- 

-
- 

 
-6

.2
0 

 
C

TS
H

/A
31

 
 

 
 

 
 

 
 

C
TS

H
A

TL
P

LL
C

A
R

 
A

*3
1

rs
22

89
70

2
Ye

s
N

P
_0

04
38

1
-7

.3
7 

-2
2.

58

C
TS

H
/A

33
 

 
 

 
 

 
C

TS
H

W
A

TL
P

LL
C

A
R

A
*3

1
rs

22
89

70
2 

 
Ye

s 
P

ep
t. 

To
o 

lo
ng

 

B
on

e 
M

ar
ro

w
, C

M
L,

 
P

IE
, L

iv
er

, N
H

E
K

, 
R

P
TE

C
 

-1
.8

8

LB
-A

D
IR

-1
F 

 
 

 
 

 
 

 
 

 
TO

R
3A

S
V

A
P

A
LA

LF
P

A
A

*0
2

rs
22

96
37

7
-

-
-

-0
.2

0
A

C
C

-6
 

 
 

 
 

 
 

 
H

M
S

D
M

E
IF

IE
V

FS
H

F 
B

*4
4

E
xo

n 
de

le
tio

n
-

-
-

1.
19

 

A
1/

H
Y 

 
 

 
 

 
 

 
U

S
P

9Y
 

IV
D

C
LT

E
M

Y
A

*0
1

Y-
lin

ke
d

-
N

P
_0

04
64

5
Y-

lin
ke

d,
 B

on
e 

M
ar

ro
w

, 
C

D
34

, C
M

L,
 L

iv
er

, 
R

P
TE

C
 

-4
.1

9
-2

1.
09

A
2/

H
Y 

 
 

 
 

 
JA

R
ID

1D
 

FI
D

S
YI

C
Q

V
A

*0
2

Y-
lin

ke
d

-
N

P
_0

04
64

4 
 

-9
.1

0 
-2

4.
47

B
7/

H
Y 

 
 

 
 

JA
R

ID
1D

 
S

P
S

V
D

K
A

R
A

E
L 

B
*0

7
Y-

lin
ke

d
-

N
P

_0
04

64
4 

B
on

e 
M

ar
ro

w
, C

M
L,

 
Li

ve
r, 

R
P

TE
C

 
0.

25
 

A
33

/H
Y 

 
 

 
 

 
 

TM
S

B
4X

 
E

V
LL

R
P

G
LH

FR
 

A
*3

3
Y-

lin
ke

d
-

-
-

-0
.4

5 
B

8/
H

Y 
 

 
 

 
 

 
U

TY
LP

H
N

H
TD

L
B

*0
8

Y-
lin

ke
d

-
N

P
_0

09
05

6 
 

3.
62

 
B

60
/H

Y 
 

 
 

 
 

 
U

TY
R

E
S

E
E

E
S

V
S

L 
B

*6
0

Y-
lin

ke
d

-
N

P
_0

09
05

6 
 

Y-
lin

ke
d,

 B
on

e 
M

ar
ro

w
, 

C
D

34
, C

M
L,

 R
P

TE
C

 
1.

24
B

52
/H

Y 
R

P
S

4Y
1 

TI
R

YP
D

P
V

I 
B

*5
2 

Y-
lin

ke
d 

- 
N

P
_0

00
99

9 
 

B
on

e 
M

ar
ro

w
, L

iv
er

 
-5

.8
1 

-4
2.

40
 

D
R

B
3*

03
01

/H
Y 

R
P

S
4Y

1 
V

IK
V

N
D

TV
Q

I 
D

R
B

3*
03

 
Y-

lin
ke

d 
- 

N
P

_0
00

99
9 

 
B

on
e 

M
ar

ro
w

, L
iv

er
 

2.
13

 
 

D
R

B
1*

15
01

/H
Y 

D
D

X
3Y

 
S

K
G

R
YI

P
P

H
LR

 
D

R
B

1*
15

 
Y-

lin
ke

d 
- 

N
P

_0
04

65
1 

  
B

on
e 

M
ar

ro
w

, L
iv

er
 

-3
.9

3 
 

D
Q

5/
H

Y 
D

D
X

3Y
 

H
IE

N
FS

D
ID

M
G

E
 

D
Q

B
1*

05
 

Y-
lin

ke
d 

- 
N

P
_0

04
65

1 
B

on
e 

M
ar

ro
w

, L
iv

er
 

-3
.4

8 
 

Th
is

 ta
bl

e 
re

fle
ct

s 
in

fo
rm

at
io

n 
on

 th
e 

kn
ow

n 
m

H
ag

s 
as

 re
po

rte
d 

in
 th

e 
db

S
N

P
 (l

ef
t s

id
e)

 a
nd

 in
 P

ep
tid

eC
he

ck
 (r

ig
ht

 s
id

e)
 to

 il
lu

st
ra

te
 th

e 
ex

te
nt

 to
 w

hi
ch

 
P

ep
tid

eC
he

ck
 c

an
 r

ef
le

ct
 r

ea
l m

H
ag

s.
 a

. T
he

 s
eq

ue
nc

e 
gi

ve
 is

 t
he

 im
m

un
og

en
et

ic
 p

ep
tid

e.
 T

he
 p

ol
ym

or
ph

ic
 r

es
id

ue
 is

 g
iv

en
 in

 b
ol

d 
ita

lic
s.

 b
. S

N
P

 
en

tri
es

 g
iv

en
 w

ith
 a

 
 w

er
e 

id
en

tic
al

 b
et

w
ee

n 
db

S
N

P
 a

nd
 P

ep
tid

eC
he

ck
. I

n 
th

e 
ca

se
s 

w
he

re
 P

ep
tid

eC
he

ck
 u

se
s 

a 
di

ffe
re

nt
, b

ut
 e

qu
al

ly
 c

or
re

ct
 r

s 
en

try
, i

t i
s 

gi
ve

n 
in

 
pa

re
nt

he
si

s.
 “

Y-
lin

ke
d”

 d
oe

s 
no

t 
re

fe
r 

to
 d

bS
N

P
 d

at
a,

 b
ut

 s
im

pl
y 

th
at

 t
he

 a
llo

ge
ni

ci
ty

 r
es

ul
tin

g 
fro

m
 g

en
de

r 
di

ffe
re

nc
e.

 c
. 

P
ro

te
as

om
al

 p
ro

ce
ss

in
g 

sc
or

e 
by

 P
ep

C
le

av
e.

 
H

ig
he

r 
va

lu
es

 a
re

 b
et

te
r 

an
d 

sc
or

es
 o

ve
r 

-4
 c

an
 b

e 
co

ns
id

er
ed

 g
oo

d.
 d

. M
at

rix
-b

as
ed

 H
LA

 b
in

di
ng

 s
co

re
 f

or
 t

he
 m

H
ag

 a
ss

oc
ia

te
d 

al
le

le
. 

H
ig

he
r 

va
lu

es
 a

re
 b

et
te

r, 
an

d 
sc

or
es

 g
re

at
er

 th
an

 -2
7 

ar
e 

qu
ite

 g
oo

d.
 

©  



© Oxford University Press 2008 5 

 

Coverage of known mHags 
Because the goal of this system is to identify possible mHag candidates, it is interesting to investigate whether 
known mHag peptides are found within the database. The sequences and reference data of known mHags was 
downloaded from the Minor Histocompatibility Knowledge Database (dbMinor) hosted at the Leiden University 
Medical Center website (Spierings, et al., 2006). We searched for these peptide sequences in PeptideCheck to 
determine whether the data correlate to the published data (Table 2). 
 
There were 29 minors listed in dbMinor which result from 21 unique polymorphisms. All 14 reported coding non-
synonymous SNPs from dbMinor were also reflected within the PeptideCheck database. Of the 7 missing SNPs, 
2 were simply not reported to the dbSNP (HA-2 and LB-ADIR-1F), excluding them from our system as a result. 
Because we considered only coding non-synonymous SNPs, it was expected that polymorphisms such as 
alternative splicing, gene deletion, etc. would not be encompassed in the model. The 5 remaining missing SNPs 
can be attributed to this kind of model limitation. The mHag encoded by SP110 results from transpeptidation 
(Warren, et al., 2006). The mHag encoded by CENPM results from alternative transcription lead to the 
incorporation of an additional exon (Brickner, et al., 2006).The two mHags encoded by UGT2B17 are caused by 
gene deletion (Murata, et al., 2003). Furthermore, alternative splicing, causing an exon deletion in HMSD causes 
the mHag, ACC-6 (Kawase, et al., 2007). The minor A33/HY from the gene TMSB4X was not found because it is 
encoded by an unconventional open reading frame (Torikai, et al., 2004). The same applies to LB-ADIR-1F. (van 
Bergen, et al., 2007) 
 
In several cases, the dbSNP entries used by PeptideCheck to generate known mHags differed from those of the 
dbMinor, revealing outdated or erroneous SNPs in dbMinor. For HA-3 the originally reported dbSNP entry 
rs7162168 claims an amino acid exchange at position 1216 in the sequence found in NP_006729. However the 
actual position of the exchange is 452, which is given in a different dbSNP entry retrieved by our system: 
rs2061821. For HB-1H and HB-1Y, the reported rs57824 was outdated, but our system identified the correct 
replacement: rs161557. 
 
Table 3 – Ranked mHag candidates 
HLA-A*0101 binders 
Rank Gene Peptide Clea- 

vage HLA Pep. 
Pos. 

AA 
Pos. dbSNP Alt. 

res. Expression 

1 MMP8 SSDPGALMY 2.17 -15.39 228 229 rs12792229 Y Bone Marrow 

2 AKAP13 VTEPGTAQY 
(HA-3) -2.35 -15.85 451 452 rs2061821 M Bone Marrow, Liver 

3 TACSTD2 EVDIGDAAY -1.21  -16.83 216 216 rs2061821 D Bone Marrow 
4 TJP3 ETDGEGDAY -0.21 -17.05 841 847 rs10408494 G - 
5 TPO VADKILDLY 2.36 -17.08 445 445 rs10189135 M - 
6 HIRIP3 EAAPPGELY 2.11 -17.10 516 521 rs11643314 W Bone Marrow 
7 MGC35048 LTEEEAALY 0.02 -17.19 213 220 rs7191155 P - 
8 ASPSCR1 AADVLVARY -1.59 -17.31 485 487 rs13087 E Bone Marrow, Liver 
9 COG3 VSDLAATAY -0.91 -17.62 746 747 rs2274285 N Bone Marrow, Liver 

10 GPR153 ATELLANQY -2.95 -17.64 324 325 rs13374337 I Bone Marrow, Liver 
HLA-A*0201 binders 

Rank Gene Peptide Clea- 
vage HLA Pep. 

Pos. 
AA 

Pos. dbSNP Alt. 
res. Expression 

1 DEFA4 ALLPAILLV -2.91 -16.72 5 8 rs28661751 A Bone 
Marrow,CD34,CML 

2 PTGS1 LLLPLPVLL -2.61 -17.26 15 17 rs3842787 P CD34, CML, NHEK, 
PIE, RPTEC 

3 MC1R LLLEASALV -2.56 -17.29 99 104 rs2229617 G - 

4 IGFBP7 LLLGAAGLL -2.88 -17.96 9 11 rs11573021 F 
Bone Marrow, 
CD34, CML, Liver, 
NHEK, RPTEC 

5 ABCB8 ILALGAALV -2.27 -18.13 136 136 rs4148844 V Bone Marrow, Liver 

6 WFS1 ILVAGLALV -1.96 -18.43 572 576 rs1805069 S Liver, NHEK, 
RPTEC 

7 CPZ LLLLLTVLV -2.92 -18.47 6 6 rs2302583 P Bone Marrow, Liver 
8 SH3RF2 ALAKATTLV -2.86 -18.51 708 710 rs1056149 G - 
9 PKDREJ LLLILIVLL -2.89 -18.54 1723 1729 rs9626829 I - 

10 FLJ14346 ALGGALALA 0.12 -18.54 114 118 rs1043059 V - 
A total of 822,299 peptides were filtered with the requirements of being coded by a validated SNP and having a PepCleave 
score > -3.0. Peptides were then ranked by their matrix-based HLA binding score. The known mHag, HA-3 can be found at rank 
2 under the A*0101 binders. The polymorphic position in the peptide is given in italic bold. Cleavage refers to PepCleave 
scores. HLA refers to matrix-based HLA binding scores. Pep. Pos is the position of the peptide within the protein sequence. AA 
pos. is the position of the polymorphic residue within the original protein sequence. Alt. res. Is the alternate residue given by 
the dbSNP entry. 
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Ranking of ligand candidates 
To find mHag candidates, the peptides were filtered and ranked. As filtering criteria, the peptides were required to 
be encoded by a validated missense SNP and have a PepCleave Proteasomal processing score above -3.0. The 
peptides were then ranked by according to their HLA binding scores. The best 10 candidates for A*0101 and 
A*0201 are given in Table 3. 
 
As a result of this ranking, several of the known mHags could be reproduced. The total number of peptides 
considered (those resulting from missense SNPs) was 822,299. The mHag, HA-3 was ranked at place 2 binding 
to HLA*0201. The HLA*0101 binding known mHags HA-8 and HA-1 were found at places 330 and 1,748 
respectively. To put these numbers in relation, it should be noted that even place 1,748 is within the top quarter of 
the top one per cent of the peptides considered. 
 
The major motivation for creating PeptideCheck was to help identify GvL-relevant ligand candidates. GvL-
relevance is determined by a cell expression which is specific to hematopoietic tissues, and not present in tissues 
at risk to GvHD. For Proteasomal processing, the PepCleave score of -3.0 was used. This score was determined 
by the orientation provided by Table 2. A HLA binding score of -20 was applied, which is associated with a 
specificity of over 99% (DeLuca, et al., 2007) for HLA-A*0201. Further requirements include both PP and AP 
frequencies of at least 10%. These filters resulted in the 13 GvL-relevant ligand candidates listed in Table 4. 
 
Table 4 – GvL relevant ligand candidates binding HLA-A*0201 

Frequency Gene Peptide Clea-
vage HLA Pep. 

Pos. 
AA 

Pos. dbSNP Alt. 
Res. PP AP Expression 

LY64 LLAILLFLA -0.19 -19.91 641 648 rs2230524  10 90 CML 
LY64 LLFLAVKYL -3.68 -21.61 645 648 rs2230524  10 90 CML 
SLC4A1 SLALPFILI -3.17 -21.23 856 862 rs5026  15 84 Bone Marrow 
SLC4A1 LALPFILIL -4.00 -21.18 856 862 rs5026  15 84 Bone Marrow 
EGFL6 IAVNGVLLV 1.88 -21.98 532 535 rs16979033 D 23 77 CML 
EGFL6 IAVDGVLLV 1.12 -20.98 532 535 rs16979033 N 88 12 CML 
RIF1 ATVENAVLL -1.22 -21.62 1360 1362 rs2123465  65 35 Bone Marrow 
RIF1 LLAQISALA -0.14 -20.85 2417 2418 rs1065177  63 67 Bone Marrow 
MMP8 SLKTLPFLL -3.51 -20.22 3 3 rs17099450  18 82 Bone Marrow 
CARD8 YLVPSDALL -2.45 -20.82 229 10 rs2043211 stop 38 62 Bone Marrow 
STARD9 ILPGALTRV -3.85 -20.14 2860 2860 rs8031218  82 18 Bone Marrow 
FLJ21144 GEGEGVLLV -2.96 -21.90 170 172 rs11208299  52 48 CD34, CML 
LOC401115 CLPAASAAV -3.80 -21.90 123 131 rs10003030  85 15 Bone Marrow 
The polymorphic position in the peptide is given in italic bold. Cleavage refers to PepCleave scores. HLA refers to matrix-
based HLA binding scores. Pep. Pos is the position of the peptide within the protein sequence. AA pos. is the position of the 
polymorphic residue within the original protein sequence. Alt. res. is the alternate residue given by the dbSNP entry. The SNP 
for CARD8 results in a premature stop codon and the reported peptide is downstream from this mutation. 
 
SNP typing results 
To determine whether the SNPs of candidate peptides occur with clinically relevant frequencies, sequencing-
based SNP typing was performed on from healthy blood donors. The genes were chosen based upon the number 
of associated SNPs which lead to peptides with high prediction scores. Sequencing-based typing was performed 
for a set of SNPs which were reported in the database as validated either by HapMap or by frequency data from 
the dbSNP. Additionally a set of SNPs with no validation data were typed. In both cases, only those donors were 
typed for a given SNP when they were previously shown to carry the HLA allele predicted to bind the SNP-derived 
peptide. A selection of SNP typings are shown in Table 5. Of the 6 previously validated SNPs, all but one were 
confirmed. None of the non-validated SNPs could be found after 8 to 30 typings. 
 
Table 5 – Confirmation of SNPs 

Ref. Residue Alt. Residue Gene SNP Validated Res. N Res. N Heteroz. Total Confirm. 

EGFL6 rs16979033 Yes D 17 N 0 0 17 No 
F13A1 rs5982 Yes P 6 L 1 1 7 Yes 
TBXAS1 rs4526 Yes A 8 T 0 0 8 No 
ZNF117 rs3807069 Yes Y 0 C 4 4 8 Yes 
BTN3A1 rs4712990 Yes T 1 P 5 2 8 Yes 
TREM1 rs2234237 Yes T 41 S 0 7 48 Yes 
BRCA2 rs11426352 No Del 30 - 0 0 30 No 
EGF rs11569144 No Del 13 - 0 0 13 No 
TBXAS1 rs2286199 No Del 8 - 0 0 8 No 
ITGA9 rs5848136 No Del 12 - 0 0 12 No 
CD86 rs10703820 No Del 8 - 0 0 8 No 
Validated = listed as validated by the dbSNP or HapMap. Ref. Residue = reference residue; Alt. Residue = alternative residue. 
N = number of positive typings. Heteroz. = number of samples typed to be heterozygous. Confirm. = conclusion of whether or 
not the SNP could be independently confirmed in this study. 
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Web interfaces 
PeptideCheck is freely available online at http://www.peptidecheck.org. 
 
There are 3 ways to query data from PeptideCheck: 

1. Search with Peptides: user enters peptide sequence to retrieve gene, SNP data and antigen 
presentation scores 

2. Search with Genes: user enters gene symbol, and receives all SNPs and peptide data for this gene 
3. GvL Ligand Finder: user enters expression, SNP, and prediction score requirements and receives a 

ranked list of GvL-relevant ligand candidates 
 
Search with Peptides 
The Search with Peptides function is particularly useful for those who have experimentally eluted and sequence 
peptides, and wish to find information about these peptides such as protein origin, SNP data, expression data, 
and presentation prediction scores. These data can be entered as a single peptide, or a long list of peptides. The 
peptides can be filtered by making appropriate prediction score requirements, as well as requiring which types of 
SNPs should be included. The result is a table of the peptides which match the sequence and other criteria 
together with gene, SNP, expression and presentation score data. 
 
Search with Genes 
If the user is interested in peptide presentation and polymorphism data for one or more specific genes, than they 
may use the Search with Genes option. A list of gene symbols can be given and processing score filtering can be 
optionally included. The resulting data is similar to that when searching with Peptides.  
 
GvL Ligand Finder  
The goal is to find peptide which can be effective mHags. Source genes are narrowed down by choosing an 
expression profile. This step may be excluded. Next, the user makes decision about SNP criteria: these include 
the genotype frequency thresholds, type of SNPs (ins, del, missense, etc). Finally the user chooses which 
prediction algorithms to consider, and which threshold to use. Default thresholds are suggested by the system. 
After entering the filtering criteria, the user is presented with a ranked list of peptide candidates. Peptides are 
ranked by the number of peptide candidates found for a given gene. The information displayed includes gene 
symbol, expression profile, chromosome, total ligands (per gene), peptide sequence, prediction scores, peptide 
position (position of peptide in original protein sequence), amino acid position (position of SNP in original protein 
sequence), PP/AP(Presence of Peptide frequency, Absence of Peptide frequency), SNP type (missense, 
insertion, etc), dbSNP rs Link, validation (hap map or by frequency), local position (position of exchange within the 
peptide), and the protein accession number with link to NCBI. 
 
It is also possible for users to upload new tissue or cell type expression data. They can do this by uploaded an 
Affymetrix result file for automatic interpretation. Alternatively, then can simply upload a list of genes and define 
with which cell types they are associated. The resulting expression data is then active when the user searches for 
peptides. 

4 DISCUSSION 
 
By providing this compilation of databases and algorithms online at www.peptidecheck.org, we hope to offer the 
mHag community a resource which can offer practical assistance in discovering and analyzing GvL-relevant 
peptides. This is the first system offering combined antigen presentation prediction algorithms for mHag analysis 
and in a manner convenient for high throughput investigation of sequences from experimentally eluted peptides. 
 
The novel representation of SNP frequency as PP (presence of peptide) and AP (absence of peptide) frequencies 
is specific to the situation of allogeneic transplantation, and is practical for quickly determining the clinic relevance 
of SNP data. Our own SNP typing confirmation demonstrates the futility of searching for non-validated SNPs. This 
underscores the value of the HapMap frequency data, which is reflected in the PP and AP scores in the system. 
When searching for peptides, the PeptideCheck users can conveniently provide thresholds for these values. 
 
The comparison of the data in this system to that of the dbMinor, which contains data on known mHags, has 
helped to clarify the extent to which bioinformatic systems can simulate immunogenetic processes. Clearly coding 
non-synonymous mutations leading to a single amino acid exchange are well suited to be reproduced using 
computer algorithms. The situation becomes more complicated when frame shifts, splice cites, or promoter 
regions are involved. Despite this, PeptideCheck does also incorporate insertion / deletion SNPs. Here we have 
chosen to generate peptides from the full length of the protein sequence, and to designate them as occurring 
before or after the beginning of the frame shift, or as containing the SNP cite. Most likely, peptides occurring after 
the frame shift are most likely to be immunogenetic. Since there is no data on this, we simply choose to label the 
peptides accordingly, and allow the PeptideCheck user to decide. 
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The matrix-based HLA binding prediction algorithm produced strikingly high scores for known mHags. Ranking 
our lists of peptide candidates based upon these scores proved to be very successful, if success is measured by 
the presence of known mHags near the top of the list.  
The greatest limitation of this system currently is the fact that HLA binding scores are only made for peptides 
having nine amino acids. However, this analysis was necessary to determine if there is merit in the computational 
approach to mHag identification. This being the case, we will expand the system to include peptides of different 
lengths. Furthermore, a database of gene deletion frequencies would greatly augment this system.  
 
An important advantage of this automated approach is that it is adaptable to potential forms of individualized 
medicine. As the price of SNP microarrays decreases, the ability for large scale SNP typing for an individual 
patient and donor pair becomes reality. Using this input to generate GvL-relevant ligand candidates which could 
be then synthesized and utilized for ex vivo T-cell stimulation during adoptive transfer offers great potential. 
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Abstract 
Biomedical ontologies have become an increasingly important tool in bioinformatics. In the 

field of immunogenetics, the complications caused by extreme levels of polymorphism are 

being met by bioinformatic software and databases. Here we apply the principles of ontology 

development to the challenges presented by computationally representing alleles of the 

major histocompatibility complex, resulting in the MHC Ontology.  Importantly for human 

immunogenetics, a detailed level of HLA classification is included. We demonstrate the utility 

of this ontology in several bioinformatic applications. Currently the MHC Ontology serves as 

a database schema, supports user and software interactions, and the semantic  annotation 

of scientific documents. Through continual collaboration, this ontology has the potential to 

serve as a basis for data interoperability between centralized immunogenetic databases, and 

the applications used by researchers and laboratories.  

 

Availability: The MHC Ontology is available via the BioPortal: 

http://www.bioontology.org/tools/portal/bioportal.html, and at: http://purl.org/stemnet/ 

 

Use of type face 
Ontology classes are written in bold 

Relations are written in italics 

Annotation elements are written in bold italics 
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Introduction 
 

Emergence and relevance of ontologies in biology 
 

In computer science, the concept of ontology refers to a set of terms within a knowledge 

domain which are linked together and organized based upon their relation to each other. The 

most important relation is the is a relation which allows a child term to inherit all of the 

characteristics of its parent. This fundamental approach has been adopted by biologists in 

recent years to help formalize scientific terminology in complicated biological domains such 

as genetics, cell taxonomy, and protein taxonomy. The Open Biomedical Ontologies (OBO) 

library (http://www.bioontology.org/repositories.html#obo) is an umbrella resource for 

coordinating ontology projects (Smith, et al., 2007). In addition to the benefits of providing a 

defined set of vocabulary for the scientific community, the remarkable achievement of 

ontology development lies in organizing real world concepts into a format which is easily 

assessable to computer systems. This computability makes ontologies a relevant and 

important concept in bioinformatics.  

 

Challenges of human immunogenetics 

 
Many of the challenges posed by the (human) major histocompatibility complex to 

researchers of pathology, transplantation, and immunology result from the high level of 

polymorphism in this area of chromosome six. In particular, genetic typing of human 

leukocyte antigen (HLA) alleles to ensure patient/donor compatibility following hematopoietic 

stem cell transplantation relies heavily on computer systems for data storage, organization 

and interpretation. HLA typing can be performed with various levels of precision (Little, 

2007). This leads to a hierarchical categorization of HLA alleles as depicted in Table I. The 

classic method of HLA tying is via serological testing. This method is the least precise, 

because many HLA proteins share the structural domains which are recognized by the 

antibodies during typing. Serological typing provides the serological group of an HLA protein. 

Genetics-based HLA typing can determine which HLA allele is present in a more specific 

manner, but is also performed with various levels of precision, resulting in so-called high, 

low, or medium resolution results.   
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Table I. Hierarchical nature of HLA alleles and nomenclature under the example 
A*0201 

Serological 
Groups a

A2-reactive 
Proteins b

Alleles coding 
for A*0201 c

A1  
A2         
A203  
A210  
A3  
A9  
A10  
A11  
A19  
A2403  
A28  
A36  
A43  
A80 

A*0201    
A*0202  
A*0203  
A*0204  
A*0205  
A*0206  
A*0207  
A*0208  
A*0209  
A*0210  
A*0211  
A*0212  
A*0213  
A*0214 
A*0216  
A*0217  
etc 

A*02010101 
A*02010102L 
A*020102 
A*020103 
A*020104 
A*020105 
A*020106 
A*020107 
A*020108 
A*020109 
A*020110 
A*020111 
A*020112 
A*020113 
A*020114 
A*020115 
A*020116 
A*020117 

a. Here the serological splits are not listed. A full list of serological groups and splits can be found at 
the Anthony Nolan HLA Informatics Group Website. b. These proteins were defined to be A2 reactive 
in the HLA Dictionary(Schreuder, et al., 2005). c. The known alleles encoding the same proteins as 
the reference allele A*02010101 as of IMGT/HLA Database Release 2.20.0, 11 January 2008. 
 
Determination of the serological group (e.g. A2) as well as “two-digit” genetics-based typing 

results (e.g. A*02) are considered low resolution typing. Serological groups have subclasses 

known as “serological splits”. Splits are subsets of HLA antigens which are reactive with 

antibodies of higher specificity, making for a more precise determination. Donor and recipient 

alleles are considered to be a low resolution match when each allele has been determined to 

belong to the same serological or two digit group. Therefore, the definition of allelic groups is 

highly clinically relevant when dealing with HLA alleles. The HLA nomenclature has been 

designed to make the group of an allele immediately apparent by noting the group in the first 

two digits of the allele name (Marsh, 2003). Recently, as the number of determined HLA 

alleles has increased, the third and fourth digits of the HLA allele have been proven to be 

inadequate. Each two digit group can contain 100 four digit groups. This has resulted in the 

A*02 group “spilling over” into the A*92 group(Marsh, et al., 2002). While those who have 

years of experience with the HLA system know that an A*92 allele is actually an A*02 allele, 

this is likely to create much confusion for the next generation of researches and clinicians. 

Currently, the only further example of a group extension is B*15 spilling over into B*95. 

Computer systems dealing with the HLA system must also consider these exceptions. The 

creation of an ontology is a good opportunity to formally define allelic grouping for use by 

people and computers.  
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Text mining for scientific knowledge and document retrieval 
 

An important motivation for creating an MHC ontology is for its application in text mining as 

part of the StemNet project (http://www.stemnet.de/)(Hahn, et al., 2007). The aim of StemNet 

is to create a knowledge resource which combined biological databases with unstructured 

biological literature. The mapping of concepts in natural language texts to structured 

database entries requires an automated annotation process. Here, the MHC ontology 

provides an annotation vocabulary, hierarchical organization of concepts, as well as the 

importation relations between terms.  

Methods 
Construction and implementation 
The MHC ontology is represented in OWL DL, a sublanguage of the Web Ontology 

Language (OWL) (http://www.w3.org/TR/owl-features/), which is an extension of the 

Resource Description Framework (RDF) (http://www.w3.org/RDF/). Basically the MHC 

ontology is a directed acyclic graph (DAG) based on rdfs:subClassOf relations between 

classes and their parent classes. In the ontology domain specific terms are represented in 

terms of OWL classes with a Unified Resource Identifier (URI). Class URIs consist of a 

general namespace and the name of the class within that namespace (called local name). 

Because of character restrictions within URIs, we used the RDF property rdfs:label to 

provide an unformatted, human-readable version of the class name in addition to the class 

URI.  

 

Metadata describing the resource MHC ontology as such are provided using Dublin Core 

Metadata Initiative (DCMI) Metadata terms (http://dublincore.org/) such as dc:creator, 

dc:date,  dc:subject and dc:title. The term dc:source is use as holder for literature or 

database references and is used throughout the ontology. Furthermore, we defined the 

custom OWL annotation properties definition, synonym, and reference to provide textual 

definitions of classes, exact synonyms of class names, and references to similar terms in 

other terminologies.  

 

While the upper level of the MHC Ontology was created manually using the Stanford 

University ontology editor, Protégé (http://protege.stanford.edu), subclasses of the 

Human_MHC_Allele class and its subclasses were automatically generated extracting terms 

and taxonomic relations from external databases. These terms have been put into an 

external OWL file we call the HLA Ontology. The HLA Ontology is included in the MHC 

Ontology using an owl:imports statement. The generation algorithm for the HLA Ontology 
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was written in Java. Extracted data were exported into the OWL format using the Jena 2 

Ontology API (Carroll, et al., 2004). An additional version of the HLA Ontology was created in 

a novel XML format, specific to the HLA system. These versions of the ontology were 

exported in XML using the JDOM API (http://www.jdom.org/).  

 

Sources of data 
To ensure compatibility with the greater ontology community, top-level classes, such as allele 

and gene were created in equivalence with terms in the Sequence Ontology (SO)(Eilbeck, et 

al., 2005). Subclasses for the Canine_MHC_Allele class were provided by the DLA 

Nomenclature Reports, as provided by the Immuno Polymorphism Database (IPD) 

(http://www.ebi.ac.uk/ipd/)(Kennedy, et al., 2001; Robinson, et al., 2005). The listing of 

murine MHC genes found at the IMGT web resource (http://www.ebi.ac.uk/imgt/) was the 

basis of the Mouse_MHC_Allele class and subclasses(Lefranc, 2001). The structure of the 

HLA Ontology is based on files provided via FTP by the IMGT/HLA database 

(http://www.ebi.ac.uk/imgt/hla/), as well as the HLA Dictionary for serological definitions 

(Schreuder, et al., 2005). Definitions of serological splits were provided by the website of the 

HLA Informatics Group at the Anthony Nolan Trust 

(http://www.anthonynolan.org.uk/HIG/lists/broad.html). 

 

Applications 
A website control for choosing alleles based upon the ontology was written using Java 

Server Pages in combination with AJAX and the database engine supplied by the Jena 2 

API. A control for stand-alone applications for selecting multiple alleles was written in Visual 

Basic and query ontology entries in an InterSystems Caché database.  
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Results 
 

The MHC Ontology can be accessed online under http://purl.org/stemnet/. It has also been 

submitted to the National Center for Biomedical Ontology’s BioPortal 

(http://www.bioontology.org/bioportal.html). The major characteristics of the ontology are 

summarized in Table II. This first release of the MHC Ontology is given the version number 

1.0. The HLA Ontology represents the HLA system as of the IMGT/HLA Database Release 

2.20.0, 11 January 2008. 

 

Table II – MHC Ontology facts sheet 
Ontology Name MHC Ontology HLA Ontology 
Namespace http://purl.org/stemnet/MHC http://purl.org/stemnet/HLA 
Prefix MHC HLA 
Scope MHC alleles, genes and proteins in 

human, mouse, canine, and dog 
HLA alleles 

Format OWL DL OWL DL 
Number of Classes 106 6649 
Dependencies Dublin core a, HLA Ontology Dublin core a

Data Sources IPD b, IMGT c  IMGT/HLA d, HLA Dictionary e, 
Anthony Nolan Trust f

Relations rdfs:subClassOf, encoded_in, encodes, has_part, part_of, variant_of, 
has_variant, from_species 

Annotations rdfs:label, dc:creator, dc:date, dc:publisher, dc:source, dc:subject, 
dc:title, definition, synonym, reference 

Additional Files  HLA.xml, HLA_twodigit.xml, 
HLA_twodigit.owl g

a. Dublin core: http://protege.stanford.edu/plugins/owl/dc/protege-dc.owl. b. Immuno Polymorphism 
Database(Robinson, et al., 2005). c. The international ImMunoGeneTics database(Lefranc, 2001). d. 
Official source of HLA nomenclature and sequences(Marsh, 2003). e. Source of serological 
associations(Schreuder, et al., 2005). f. Definitions of serological splits were provided by the website 
of the HLA Informatics Group at the Anthony Nolan Trust 
(http://www.anthonynolan.org.uk/HIG/lists/broad.html). g. These files can be accessed at 
http://purl.org/stemnet/ 
 
The MHC ontology consists of 106 classes and 7 relations. The MHC Ontology’s namespace 

is http://purl.org/stemnet/MHC. Additionally, the imported HLA Ontology contains 6649 

classes. Its namespace is http://purl.org/stemnet/HLA, and has been given the prefix “HLA” 

when imported into the MHC Ontology. The relations are summarized in Table III and include 

from_species, encoded_in, has_part, has_variant along with their respective inverse 

relations. 
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Table III – Relations of the MHC Ontology 
Relation Domain Range Properties Example 
encoded_in Polypeptide, Protein Nuceleotide_Sequence Inverse of 

encodes 
MHC_Chain 
encoded_in 
MHC_Allele 

encodes Nucleotide_Sequence Polypeptide, Protein Inverse of 
encoded_in 

MHC_Allele encodes 
MHC_Chain 

has_part owl:thing owl:thing Inverse of 
part_of 

MHC_Protein 
has_part MHC_Chain 

part_of owl:thing owl:thing Inverse of 
has_part 

MHC_ClassII_Beta 
part_of 
MHC_ClassII_Protein

variant_of Allele Gene Inverse of 
has_variant 

MHC_Allele 
variant_of MHC_Gene 

has_variant Gene Allele Inverse of 
variant_of 

MHC_Gene 
has_variant 
MHC_Allele 

from_species Protein, 
Nucleotide_Sequence, 
Polypeptide 

Organism Functional HLA_Class_I_Allele 
from_species Human 

 
To ensure compatibility with other established ontologies, and to prevent redundancy, many 

of the classes of the MHC Ontology are linked to external ontology entries via reference 

annotation statements. MHC Ontology classes and their corresponding classes in external 

ontologies are listed in Table IV. Currently, the only reference to an immunogenetic resource 

is MHC Molecule in the ontology of the Immune Epitope Database which is reference by the 

class MHC_Protein in the MHC Ontology (Sathiamurthy, et al., 2005). Many of the MHC 

Ontology entries correspond to terms in the Sequence Ontology (SO) (Eilbeck, et al., 2005). 

Further reference terms were found in the NCI Thesaurus, as well as in the ontology of 

Chemical Entities of Biological Interest (ChEBI) (http://www.ebi.ac.uk/chebi/) (Degtyarenko, 

et al., 2008). The organism classes of the MHC Ontology are linked to entries in NCBI’s 

Taxonomy database (www.ncbi.nlm.nih.gov/Taxonomy/) (Wheeler, et al., 2000).  

 

Table IV – References to external ontologies 
MHC Ontology 
Class 

External Ontology Class(es) 

MHC Protein IEDB: MHC Molecule 
Allele NCI:C16277 Allele, SO:0001023 allele 
Gene SO:0000704 gene 
Pseudogene SO:0000336 pseudogene 
Protein CHEBI:36080 proteins 
Polypeptide SO:0000104 polypeptide 
Chain CHEBI:16541 protein polypeptide chains, SO:0001063 

immature_peptide_region 
Jawed_Vertebrates TaxonomyID:7776 Gnathostomata 
Human TaxonomyID:9606 Homo sapiens 
Dog TaxonomyID:9615 Canis lupus familiaris 
Mouse TaxonomyID:10090 Mus musculus 
Organism NCI:C14250 Organism 
IEDB = Immune Epitope Database. NCI = The National Cancer Institute Thesaurus; SO = Sequence 
Ontology; CHEBI = Chemical Entities of Biological Interest; TaxonomyID = These are IDs given to 
entries in the NCBI Taxonomy database. 
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Hierarchical structure of HLA alleles 
 

The hierarchical structure of HLA alleles, as described in the introduction and Table I, was 

implemented in the HLA Ontology. Alleles belonging to an HLA locus were divided into 

serological groups and then subdivided into serological splits. In parallel, the other typical 

categorization of HLA was implemented: a categorization based upon the number of digits of 

the allele name known to the observer. Two-digit alleles are siblings of serological groups. 

Two-digit alleles as well as serological groups are then subdivided into four-digit, six-digit, 

and finally eight-digit allelic classes. The following exceptions to this rule were made: 1) 

Alleles whose names begin with A*92 were placed in the A*02 group. 2) Alleles whose 

names begin with B*95 were placed within the B*15 group. 3) The two-digit group levels for 

MIC, TAP, and DP were excluded.  

 

Representation of the MHC and HLA Ontology 
 

The MHC Ontology is represented in two files: MHC.owl and HLA.owl.  

An additional file HLA_twodigit.owl is provided that represents the HLA Ontology without the 

serological group classes. Because serological typing is becoming a legacy technology the 

serological groups in the HLA Ontology are necessary in some applications, but obsolete in 

other. For example, serological groups are often mentioned in the literature and therefore 

these texts must be annotated using serological groups. Sequencing software, on the other 

hand, has no use for serological groups, and filtering them out dynamically could hinder 

performance.  

 

Our experience has shown that additional formats can be very convenient for representing 

the ontological data. Thus, additional files, HLA.xml, HLA_twodigit.owl, and HLA_twodigit.xml 

can be found under http://purl.org/stemnet/. These files provide non-OWL XML 

representations of the HLA Ontology, which can be practical for bioinformatians and 

programmers which are not interested in carrying the overhead of OWL-parsing libraries. 

XML parsing libraries on the other hand are ubiquitous. Although OWL is a form of XML, the 

representations in HLA.xml and HLA_twodigit.xml are much simpler and more intuitive than 

the OWL equivalents and should be used for purposes for which the expressiveness of OWL 

is not needed.  
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User interfaces 

 
Once the relations between HLA concepts had been formally defined in the computer-

readable OWL format, creating user interfaces for HLA-centered programs become much 

easier. We demonstrated this by creating a new webpage dialog window which displays the 

content of an ontology so that the user may choose one entity (see Figure 1).  

Figure 1 – A web popup control for choosing ontology elements 

 
The allele chooser receives a top class as a parameter. In this case, Class I chains are of interest and 
so the top element is HLA_Class_Ia_Chain. In step 1, the user clicks on the “Choose Allele” button to 
reveal a tree structure in which subclasses can be opened. In step 2, the user has reached the leaf 
level and may select the desired chain. Step 3 shows that the user’s selection has been assigned, and 
the program can use this input for whatever purpose. 
 
This dialog solved the problem of choosing a specific HLA allele or protein from a list of 

thousands of entries. The hierarchical nature of ontologies allows them to be represented as 

a tree structure. In this way, the user is not overwhelmed by a long list of allele or protein 

names, but simply opens the categories of interest, revealing only the relevant subset. This 

also has performance benefits with respect to the time it takes to load a webpage. Since the 

dialog is based upon AJAX, only the relevant information is loaded with each click by 

communicating with the server in the background. This saves the significant lag time required 

to load the entire ontology into the browser, especially when dealing with large ontologies. 

The dialog is not only functional for the HLA Ontology, but can load any ontology which has 

been represented in OWL. Other formats could be incorporated without requiring major 

modifications. This dialog can be seen in use on the www.peptidecheck.de webpage, under 

the Module Explorer page, and also at www.histocheck.de when choosing proteins for 

comparison. 
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In some applications, the user wants to perform an action on a group of alleles. This is 

particularly true when working at low resolution – or on the “two-digit” group level. For this 

purpose we have developed a Visual Basic-based dialog which uses the HLA ontology to 

allow the user to conveniently select multiple alleles (see figure). 

Figure 2 – A visual basic control for selecting multiple classes in an ontology 

 
 
The advantage of this ontology-driven dialog becomes clear when one wants to perform an 

action involving all A*02 alleles. Because the A*92 alleles are also part of the A*02 group as 

defined in the ontology, they will also be included when choosing the whole of A*02. 

 

Database schema 
 

The PeptideCheck and HistoCheck websites are now driven by the MHC Ontology. Currently 

each allele entry in the database is tagged with its appropriate entry in the ontology. This 

allows for the use of allele chooser mentioned above. The encoded_in relation is an 

important link in the database between the entries of HLA chains and alleles. Because the 

HistoCheck website depicts entire HLA Proteins, consisting of alpha and beta chains for 

class II, the relations has_part for subclasses of MHC_Class_II_Protein has proven 

valuable.  
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Discussion 
One of the first challenges when examining the semantics of MHC is the confusion between 

MHC as a region of the genome, and MHC as a protein on the surface of cells. It is common 

to hear or read something like “the peptide is bound by MHC class I”. Figures depicting the 

proteins involved in peptide presentation often contain the labels, T cell receptor, peptide and 

“MHC”. However, MHC stands for major histocompatibility complex, and as such, it would me 

more accurate to reserve the term MHC to denote a gene complex, and not a protein. The 

MHC is a gene region containing genes which encode peptide presenting proteins, as well as 

other kinds of proteins, such as those involved in the proteasome. This distinction must be 

made consistently, and for this reason we have included classes such as 

Human_MHC_Class_I_Region_Allele in the MHC Ontology. The class I region is a portion 

of the MHC which contains genes such has HLA-A, B, C, etc, but also MIC. Although MIC 

genes are not HLA Class I genes (MIC is considered “class I-similar”), they are encoded in 

the Human MHC Class I Region. The term HLA in this ontology refers to genes which 

encode proteins which present peptides on the surface of cells. The analog in mouse is of 

course, H2, and DLA in dogs. The term chosen in the ontology for these alleles which is 

organism independent is MHC_Allele_Encoding_Peptide_Presenting_Protein.  

 

Furthermore, the scientific community rarely makes a distinction in nomenclature between 

gene names and the names of the proteins encoded by those genes. The HLA nomenclature 

refers only to alleles, and as such there is no distinct terminology for HLA proteins or chains. 

For the ontology, we have appended the word “Chain” to each appropriate class name (e.g. 

B_4402_Chain). The relevant rdfs:label however does not contain the word chain (e.g. 

B*4402), and is, outside of the hierarchical context, indistinguishable from the allele label.  

 

The concept of expression in biology is another point of difficulty. Gene expression is defined 

by the NCI Thesaurus as “Typically involves transcription of genetically encoded information 

into an intermediary message (messenger RNA) and subsequent translation into a functional 

protein.” In this case, it is not entirely clear whether null alleles are expressed. They could 

very likely be transcribed and translated into functionless peptide chains which would soon 

be digested. However, we choose to consider such alleles as non-expressed and have 

classified them as Null_Allele, a direct child of Allele. Accordingly, there are no members of 

the class Human_MHC_Chain, encoded by Null_Alleles. The HLA nomenclature accounts 

for five forms of alternatively expressed alleles. Of the classes included in 

Alternatively_Expressed_Allele, we have chosen to only create the correlatives 

HLA_Cytoplasm_Chain, HLA_Low_Chain, HLA_Secreted_Chain under the class 

Alternatively_Expressed_Chain (see Table V). Because there is no conclusive 
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experimental evidence describing chain products of alleles included in HLA_Aberrant_Allele 

and HLA_Questionable_Allele, we have excluded equivalent classes under Chain. 

 

Table V – Alternatively Expressed Alleles and Chains 
Class Subclass Definition 

Alternatively_Expressed_Allele 

Alternatively expressed HLA alleles encode proteins, whose 
protein sequence are not drastically affected by the mutation, 
but contain mutations which lead to sub-normal cell surface 
expression. HLA alleles of this nature are named with suffixes 
'L', 'S', 'C', 'A' or 'Q'  

 HLA_Aberrant_Allele An allele whose expression is aberrant meaning that there is 
some doubt as to whether a protein is expressed.  

 
HLA_Cytoplasm_Allele 

An allele which encodes a protein which collects in the 
cytoplasm after translation and is not expressed on the surface 
of the cell.  

 HLA_Low_Allele An allele which encodes a protein which is represented only at 
low levels on the surface of the cell.  

 HLA_Questionable_Allel
e 

Allele whose expression is questionable given that the 
mutation seen in the allele has previously been shown to effect 
normal expression levels  

 HLA_Secreted_Allele An allele which encodes a protein which is soluble and 
secreted from the cell, but not present on the cell surface.  

Alternatively_Expressed_Chain Chain encoded by an alternatively expressed allele 
 HLA_Cytoplasm_Chain A chain which collects in the cytoplasm after translation and is 

not expressed on the surface of the cell.  
 HLA_Cytoplasm_Chain A chain which is represented only at low levels on the surface 

of the cell.  
 HLA_Secreted_Chain A chain which is soluble and secreted from the cell, but not 

present on the cell surface.  
 
The context of the MHC Ontology within the community of Biomedical Ontologies must be 

attentively considered. This underscores the importance of Table IV. Further 

immunogenetically relevant ontologies include the IEDB(Sathiamurthy, et al., 2005) ontology 

and the IMGT Ontology(Giudicelli, et al., 2005). After inspection of these ontologies, it is 

clear that overlap with the MHC Ontology is minimal. While these Ontologies complement 

each other effectively at the moment, as these ontologies grow, vigilance is required to avoid 

redundancy and ensure compatibility.  

 

These results show that ontologies improve the organization of complex concepts in 

immunogenetics. In the long term, development of an international standard would lead to 

the homogeneous database structures in centers and labs across the world. Utilizing such 

ontologies has a high potential for ensuring efficient networking and collaboration. A 

spectrum of immunoinformatic tools for the MHC system has been established, and will 

continue to grow. Applications include typing software, bone marrow registry analysis (Muller, 

2002), histocompatibility prediction (Elsner, et al., 2004), T cell and B cell epitope prediction 

(Buus, et al., 2003; Duquesnoy and Askar, 2007), and minor histocompatibility antigen 

prediction algorithms (Halling-Brown, et al., 2006; Schuler, et al., 2005). When serving as an 
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infrastructure upon which further immunoinformatic tools can be built, the MHC Ontology will 

allow such tools would be easily integrated for use in research institutes and clinical 

laboratories. 
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Part IV. Appendix

A Data Warehousing

To instantiate PeptideCheck, a system of databases and algorithms had to be

implemented with a large level of complexity. To manage such complex systems,

computer scientists have developed the concept of data warehousing. A data

warehouse is a network of data sources and repositories in combination with

algorithms which transfer and restructure the data. Data warehousing as a

concept is not a magic bullet solution complex systems, but more of a logical

approach borne out of the necessity faced by any programmer dealing with a

large amount of diverse data. A schema of the data warehousing involved in

PeptideCheck is found in Figure 1.

Figure 1 depicts a list of data sources on the left side which are processed

by the �rst extract transformation load (ETL1). The ETL1 is responsible for

simply acquiring the data from these sources. For example, in the case of SNP

data from the dbSNP the ETL1 is a program which connects to the dbSNP

via the HTTP Internet protocol, and downloads the data to the PeptideCheck

server and stores it as a series of XML �les. These �les represent the operational

data store (ODS). The ODS is the primary temporary storage location for data

coming into PeptideCheck. Another example of data in the ODS is the genotypic

frequency data from HapMap in the form of ZIP archives.

The ETL2 must extract data from the ODS and store it in the PeptideCheck

database as raw data. This portion of the database, containing raw, unprocessed

data is known as the warehouse. Examples of ETL2 processing include XML

parsing in the case of dbSNP and Entrez Protein data, or MSF (sequence align-

ment) parsing in the case of the IMGT/HLA database.

The ETL3 is responsible for reorganizing the data in the warehouse into a

form of storage which is clean, intuitive, and e�cient for querying. In Pep-

tideCheck, the ETL3 for SNP processing is one of the most complicated pieces
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Fig. 1: PeptideCheck as Data Warehouse

of programming. The reason for this is that the SNP data in the dbSNP is

not organized around biological principles, but rather around the processes of

data submission by scientists. The dbSNP entries (so-called rs entries) are spe-

ci�c to a particular gene, but can contain multiple types of polymorphism at

multiple locations, as well as duplications and errors. For example, the ETL3

must check whether the reported reference amino acid can actually be found

at the reported position in the protein sequence. Furthermore, we have chosen

the form of SNP storage which is �SNP-site oriented�. In other words, an SNP

is de�ned as a position in a particular protein sequence containing a mutation

(protein sequence, and not nucleotide sequence, since we are only interested in

functional peptides). Another very important task performed by the ETL3 is

the application of antigen presentation prediction algorithms, and the storage

of the resulting scores.

The �nal data representation in PeptideCheck consists of a series of highly

organized and cleansed tables, or Data Marts. A key requirement of the storage

design is that the data can be queried quickly. This is particularly challenging,
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since the PeptideCheck user may choose any combination of prediction algo-

rithms, thresholds, SNP requirements, etc. The solution was to create a system

of custom database indexes, which is a unique feature of the InterSystems Caché

database.

The ETL4 provides the �nal data transfer to the user. Since PeptideCheck

is a web-based system, the ETL4 consists of the internet browser used to login

to the website, as well as the Java Server Pages (JSPs) and Caché Server Pages

(CSPs), and �nally their connection to the database for querying. Server pages

are programs which can response to internet browser requests via HTTP and

provide dynamic content to the user. In the case of PeptideCheck, the dynamic

content is produced by interpreting the input data of the user (e.g. peptide

ranking/�ltering criteria), querying the database, and responding with HTML

output.

An additional aspect of the data warehousing concept is the Metadata Repos-

itory. This is a monitoring system, which is responsible for logging the actions

of all the ETLs. Ideally, this provides the ability to track changes to the system

during updates, to investigate the cause of errors, or to restore the system to

a previous state. PeptideCheck's Metadata repository is limited to a series of

log �les, provided by the Log4J Java API from the open-source Apache Soft-

ware Foundation. These log �les provide a way of tracing through the actions

performed by the system. However, it must be noted that there is presently

no automated or convenient way to �lter this data, or to use it for restoring

previous states of data.
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B Database Tables

The following is a list of tables found in the PeptideCheck database. Pep-

tideCheck uses an InterSystems Caché database, which supports object oriented

database design. The tables are organized into packages, called schema.

Schema: HLA

Table: Classes

Name Type Relation Description

Id Integer Primary key

Name String Java class name of the the associated

prediction algorithm

CacheProjection String Name of the Caché class which inherits from

the Predictor.Interface

BitIndexName String Name of associated bitmap index

Group_Id Integer ∞→ 1 : Groups.Id Link to the Groups tabe, which describes

which kind of predictor this is (HLA binding,

proteasome cleavage, etc)

Table: AllelesClasses

Name Type Relation Description

Id Integer ∞→ 1 :

HLAMatrixPredictor

Primary key

Name String Allele name (The nomenclature can di�er

between algorithms)

ClassId Integer ∞→ 1 : Classes.Id Link to the Class table
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Table: Groups

Name Type Relation Description

Id Integer 1→∞ : Classes.Id Primary key

Name String Name of the group (e.g. HLA Peptide

Binding Prediction; Proteasomal Pross.

Predict., etc)
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Schema: PeptideCheck

Table: SNPS

Name Type Relation Description

Id Integer Primary key

Proteins_Id Integer ∞→ 1 :

Proteins.Id

Link to the Proteins table

Rs_rsId Integer Id of an dbSNP entry

Rs_validation_

byFrequency

Boolean True when validated by frequency

Rs_Validation_

byHapMap

Boolean True when validated by HapMap

Component_

Chromosome

String(2) Chromosome number or letter

GeneAlias_Id Integer ∞→ 1 :

GeneAlias_Id

The Alias id from the GeneAliases

table

FxnSet_protAcc String Protein accession number from NCBI

FxnSet_residue String(1) One-letter amino acid code

FxnSet_aaPosition Integer SNP position in the protein sequence

FxnSet_allele String Nucleotide

AAList_Id Integer ∞→ 1 :

AAList.Id

Link to the AAList table

Type TinyInteger 1= Missense; 2=Stop; 3=NonStop;

4= Insertion; 5= Deletion

Spec Integer ∞→ 1 :

SnpsSpec.id

Link to the table which identi�es

whether this entry refers to the

reference allele
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Table: SnpsSpec

Name Type Relation Description

Id Integer 1→∞ : Snps.Id Primary key

Name String Name describing SNP entry type (reference,

mutation, etc)

Table: Proteins

Name Type Relation Description

Id Integer ∞→ 1 : Snps.Id Primary key

GBSeq_locus String The protein accession number from NCBI

GBSeq_sequence String The protein sequence

Table: GeneAliases

Name Type Relation Description

Id Integer Primary key

Alias_Id Integer ∞→ 1 : Snps.Id This Id is associated with multiple gene

symbols which refer to the same gene

External_Id String The numerical Id from Entrez Gene
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Table: AAList

Name Type Relation Description

Id Integer ∞→ 1 : Snps.Id;

1→∞ :

PeptideDe�nitions.Id

Primary key

PFValue Float HapMap frequencies converted to �peptide

frequency� value*

Allele String The protein sequence

IsValidated Boolean True if validated by HapMap or by frequency

as given in SNPs table

Residue String Amino acid

Type Integer ∞→ 1 :

AAListTypes.Id

Which type of SNP (Missence, Stop,

Non-Stop, etc)

SNPSite_Id Integer ∞→ 1 : SNPSite.Id Link to the SNPSite table

Proteins_Id Integer ∞→ 1 : Proteins.Id Link to the Proteins table

* Note that in Section 9, this value is refered to as PP

Table: AAListTypes

Name Type Relation Description

Id Integer 1→∞ : AALists.Id Primary key

Name String Name of this type of SNP

Table: SNPSite

Name Type Relation Description

Id Integer 1→∞ : AAList.Id Primary key

Pos Integer The position in the protein referenced in the

AAList

GeneAlias_Id Integer ∞→ 1 :

GeneAliases.Id

Link to the gene alias
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Table: PeptideCandidates

Name Type Relation Description

Id Integer 1→∞ :

PeptideDe�nitions.Id

Primary key

Peptide String The peptide sequence

GeneAliasId Integer ∞→ 1 :

GeneAliases.Id

Link to the gene alias

Schema: Predictors

Interface: AllelePredictors

Name Type Relation Description

AlleleId Integer 1→∞ : Alle-

lesClasses.Id

Link to the AlellesClasses table

ScoreStarts Integer The starting score used for creating the

ranged index

ScoreEnds Integer The ending score fro the ranged index

PeptideBitMap BitMap Index Index containing the Ids of the

PeptideCandidates

Interface: CleavagePredictor

Name Type Relation Description

ScoreStarts Integer The starting score used for creating the

ranged index

ScoreEnds Integer The ending score fro the ranged index

PeptideBitMap BitMap Index Index containing the Ids of the

PeptideCandidates
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Schema: Expression

Table: ExpressionData

Name Type Relation Description

Id Integer Primary key

CellType Integer ∞→ 1 : CellType.Id Link to the CellType entry

GeneAlias_Id Integer ∞→ 1 :

GeneAliases.Id

Link to the gene

Table: CellType

Name Type Relation Description

Id Integer 1→∞ :

ExpressionData.Id,

A�ymetrix.Id,

A�yResults.Id

Primary key

Name String Name of the cell type (e.g. CML)

Table: A�yMetrix

Name Type Relation Description

Id Integer Primary key

A�y_Id String 1→∞ :

A�yResults.Id

This is the ID provided by the a�ymetrix

result �le

CellType Integer ∞→ 1 : CellType.Id Link to the CellType table (e.g. CML)

GeneAlias_Id Integer ∞→ 1 :

GeneAliases.Id

Link to gene

IsDataUnLogical Boolean Flag, true when this A�ymetrix result could

be linked to a gene

Information String The raw text provided for the A�ymetrix

result

GeneSymbol String The gene name parsed from the result �le
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Table: A�yResults

Name Type Relation Description

Id Integer Primary key

A�y_Id Integer ∞→ 1 : A�yMetrix.Id Link to the A�yMetrix table

CellType Integer ∞→ 1 : CellType.Id Link to the CellType table (e.g. CML)

Signal Float Signal strength from the probe detection

Detected Boolean True when a signal was provided
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C Prediction Algorithms and Inheritance

When developing PeptideCheck, it was expected that a number of peptide bind-

ing and processing prediction algorithms would be incorporated. It was also

expected, that these algorithms could become outdated, as prediction strategies

improved. However, because such algorithms always serve the same function

within PeptideCheck, it made sense to build the system such that new algo-

rithms could be inserted as modules (or plug-ins), with minimal additional pro-

gramming. The concept in object oriented programming that allows us to do

this is inheritance. Inheritance is supported both by Java, and by the InterSys-

tems Caché database.

There are two categories of prediction algorithms relevant to PeptideCheck:

HLA allele associated, and non-HLA allele associated (e.g. proteasomal process-

ing prediction). Both types of prediction require a peptide sequence as input,

and produce a prediction score as output. The di�erence for the HLA binding

prediction is that each score must also be associated with a speci�c HLA allele.

Proteasomal processing, on the other hand, is HLA independent.

Java

In java, an interface was created called PeptidePredictor. This de�nes the core

functionally of a prediction algorithm.

Java Interface: PeptidePredictor

Return Value Method Name

PParams getParameters()

double getScore(java.lang.String seq)

void init(PParams _params, DDatabase db)

boolean isPositive(double score)

void setParameters(PParams params)

The PParams object is a structure that contains prediction settings (e.g.
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threshold). Because most algorithms must be initialized by either connecting to

a database, or loading some kind of initialization data from a �le, the init method

has also de�ned in this interface. The isPositive method returns a boolean value

as a prediction result (e.g. is a binder, is not a binder). Typically, the value is

found by comparing the threshold in the PParams object to the result of the

getScore method.

In line with the goal of minimizing programming when adding new algo-

rithms, the next step was the implementation of an abstract class. The abstract

class allows for the implementation of methods which are expected to be the

same for all extending classes, but permits that some methods are left unimple-

mented.

Java Abstract Class: AbstractPredictor implements PeptidePredictor

Return Value Method Name

PParams getParameters()

boolean isPositive(double score)

void setParameters(PParams params)

void setThreshold(double t)

It should be noted that the methods init and getScore from the PeptidePre-

dictor interface are not implemented in AbstractPredictor. These methods must

remain abstract because they are di�erent for each prediction algorithm. The

methods getParameters, isPositive, and setParameters are implemented because

their behavior is common to all prediction algorithms. In the event that a

particular algorithm requires di�erent behavior, the method can of course be

overridden in the �nal class.

The AbstractPredictor class can be extended to a speci�c proteasomal cleav-

age algorithm. For HLA peptide binding prediction algorithms, however, special

behavior is required because these algorithms are associated with speci�c HLA

alleles. Therefore, an additional abstract classes was created which is speci�c

to peptide binding algorithms: AbstractPBPredictor.
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Java Abstract Class: AbstractPBPredictor implements AbstractPredictor

Return Value Method Name

int compareTo(java.lang.Object o)

Collection <PParams> getPossiblePredictions(DDatabase _db)

Note that AbstractPBPredictor implements AbstractPredictor, because the

basic functions provided by AbstractPredictor are useful for algorithms involv-

ing HLA alleles as well. The compareTo method was added, which allows the

algorithms to be sorted alphabetically by allele name. This can be convenient

for displaying the prediction results in the correct format. The other addition

method is the getPossiblePredictions method, which returns a collection of PPa-

rams. This method is useful because PeptideCheck must often make predictions

for every available HLA allele.

Caché

The database must also be able to cope with new prediction algorithms. For-

tunately, the Caché database provides for object orientation. To add a new

java-based prediction algorithm to the database, an entry in the HLA.Classes

table must be made (See Appendix B). To expedite this process, a web in-

terface was created allowing the administrator to easily enter the appropriate

information (Figure 2).

The class parameters are important values for generating the indexes on

the prediction scores. When the information is saved, the a new Caché class

is generated by the Class Generator (provided by Caché), which implements

either the Predictors.AllelePredictor or Predictors.CleavagePredictor interface

as de�ned in Appendix B. The prediction classes can then be managed by the

web interface depicted in Figure 3.
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Fig. 2: Adding a new prediction algorithm

Fig. 3: Administration of prediction algorithms
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