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Abstract 
Breast cancer is the most common lethal malignancy of women all over the world. Mutations in 

known breast cancer susceptibility genes including BRCA1 and BRCA2 mutations can confer a high 

life-time risk for breast cancer up to 85%, whereas CHEK2, ATM and NBN mutations are proposed 

to be associated with a lower penetrance. The products of these genes are involved in DNA double-

strand break signaling and repair, and considerable efforts have been made during the past years to 

identify the mutational spectra of these genes in familial and sporadic breast cancer. However, the 

known genes explain only a minor proportion of breast cancer cases whereas epidemiological 

studies indicate that most breast cancer may be, at least in part, due to an inherited susceptibility. 

Presently large association studies are being conducted worldwide and have already uncovered 

some common genetic variants that increase breast cancer risk.  

Hereditary and environmental factors may have acted synergistically in many cases to modulate the 

probability and progression of the disease. For instance, ionizing radiation is for long time being 

recognized as a potent carcinogen that leads to DNA double strand breaks (DSBs) – the most severe 

type of DNA damage – and increases breast cancer risk in exposed young women. Variations in the 

genes involved in the cellular responses towards ionizing radiation are thus under special 

consideration as possible breast cancer susceptibility alleles. The connection between cellular 

radiosensitivity and susceptibility towards breast cancer may be relevant in regard of the chronic 

exposure to radiation of the Byelorussian population after the Chernobyl accident. 

The genetic epidemiology of breast cancer has not been investigated in the Republic of Belarus, 

before, so the presented thesis for the first time reveals the mutational spectrum of breast cancer 

susceptibility alleles in the Byelorussian population. Presented thesis report seventeen susceptibility 

alleles at eleven genomic loci in a large case-control series of 1759 breast cancer cases and 1019 

population controls. Three mutations in the BRCA1 gene (5382insC, 4153delA, T300G) and one 

mutation in the BRCA2 gene (6174delT) accounted for a total of 79 Byelorussian breast cancer 

patients (4.5 %) and 9.1% of hereditary breast cancer. In contrast with published data, the 

BRCA1*4153delA mutation was clearly associated with an increased breast cancer risk in my study 

population (OR 4.7, p=0.02). Furthermore, five founder mutations in the CHEK2 (n=3), NBN and 

ATM genes were each associated with breast cancer and together accounted for 147 Byelorussian 

breast cancer cases (8.4 %). The results on CHEK2 mutations indicate higher risks for truncating 

mutations compared with one missense mutation. The functional consequences of CHEK2 and NBN 

mutations were studied in more detail using EBV (Epstein-Barr virus) immortalised lymphoblastoid 

cell lines established from selected mutation carriers. A functional impact of p.R215W variant at the 

NBN protein level revealed that only about one-third of the wild-type level of full-length nibrin 

could be attributed to the p.R215W allele in cell lines from heterozygous patients with NBS 
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(Nijmeen Breakage Syndrome) and with breast cancer. A functional assessment of the p.I157T 

missense variant at the CHEK2 protein level showed no distinctions from wild-type in terms of 

expression and radiation-induced phosphorylation, indicating a possible downstream defect. 

Transcript analysis of CHEK2dele(9,10) revealed full expression of the deletion product and at low 

level, i.e. about 5% of the dele(9,10) allele, an additional splice variant with three exons deleted. 

Immunoblot analyses showed an unexpectedly large reduction of CHEK2 phosphorylation in 

lymphoblastoid cells from a CHEK2dele(9,10)/657del5 compound heterozygous and a similarly 

marked reduction in cells from a 657del5 homozygous NBS patient possibly reflecting a functional 

interaction between the proteins NBN and CHEK2. 

The study was then extended to investigate the role of common polymorphisms as potential 

modifiers of breast cancer risk. XRCC4 is proposed as a candidate breast cancer susceptibility gene 

in the presented study as its splicing mutation IVS7-1G>A appeared associated with an approximate 

doubling of breast cancer risk in the Byelorussian population. In addition, common low-penetrance 

alleles at five genomic loci, including two near the FGFR2 and TOX3 genes, two coding variants in 

CASP8 and TGFB1, and one locus on chromosome 2q35, were investigated. The CASP8 p.D302H 

substitution appeared protective in familial breast cancer cases, and the rare allele of rs3803662 in 

TOX3 was significantly associated with overall breast cancer risk in the Byelorussian case-control 

series.  

When the clinical characteristics and the frequencies of the detected mutations were compared 

between breast cancer patients stratified by different regions, no markedly heterogenity was found, 

so that the observed significant differences in the age at diagnosis and family history between 

regions can not be explained due to founder effects or gene-environment interactions of identified 

genetic factors. 

Taken together, the data indicate that there are at least three classes of breast cancer susceptibility 

alleles: (i) rare mutations associated with high risks and familial aggregation, (ii) mutations with 

low to moderate frequencies associated with two- to fourfold increase in risk, and (iii) common 

single nucleotide variants associated with some 20-50% increases in risk. When all genes analysed 

in the present study were taken into consideration, over 99% of patients were carriers of at least one 

known susceptibility allele, and this appears as a strong indication that most if not all breast cancers 

in the Republic of Belarus arise in patients with some heritable predisposition.This study should 

provide a valuable basis for further research in the biological relevance of some of the genes, 

possible gene-gene and gene-environment interactions, and their potential exploitation in the 

prevention and therapy of breast cancer. 

Key words: breast cancer, human genetic, mutation, population. 
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Zusammenfassung 
Brustkrebs ist die häufigste bösartige Tumorerkrankung von Frauen überall auf der Die bisher 

bekannten für Brustkrebs disponierenden Genveränderungen schließen Mutationen in BRCA1 und 

BRCA2 ein, die eine hohe lebenslange Erkrankungswahrscheinlichkeit für Brustkrebs bis zu 85 % 

mit sich bringen, oder Mutationen in CHEK2, ATM und NBN mit einer niedrigeren Penetranz. Den 

Produkten dieser Gene werden zentrale Funktionen in dem Signalnetzwerk der DNA-

Doppelstrangbrüche und -Reparatur zugeordnet, und die vorliegende Arbeit ist Teil umfangreicher 

Bemühungen, die während der letzten Jahre unternommen worden sind, um die Mutationsspektren 

dieser Gene in sporadischem und familiärem Brustkrebs zu identifizieren. Allerdings erklären die 

bekannten Gene nur einen geringen Anteil von Brustkrebsfällen, wohingegen epidemiologische 

Studien anzeigen, dass möglicherweise ein weitaus größerer Teil der Brustkrebsfälle mindestens 

teilweise durch eine ererbte Prädisposition mitverursacht ist. Derzeit werden weltweit große 

Assoziationsstudien durchgeführt, und diese haben bereits einige genetischen Varianten mit einem 

erhöhten Brustkrebsrisiko assoziiert. 

Erbliche und umweltbedingte Faktoren könnten auch synergisch in vielen Fällen gewirkt haben, um 

die Wahrscheinlichkeit und das Fortschreiten der Krankheit zu bestimmen. Zum Beispiel sind 

ionisierende Strahlen seit langer Zeit als ein starkes Karzinogen bekannt, das zu DNA 

Doppelstrangbrüchen (DSB) - der stärksten Form des Chromosomenschadens - führt und die 

Erkrankungswahrscheinlichkeit von Brustkrebs bei betroffenen jungen Frauen vergrößert. 

Varianten in den Genen, die an der Zellantwort auf ionisierende Strahlung teil nehmen, sind derzeit 

besonders im Blickfeld als mögliche für Brustkrebs disponierende Allele. Sie waren darüber hinaus 

in der hier präsentierten Studie vor dem Hintergrund der chronischen Exposition von Teilen der 

weißrussischen Bevölkerung gegenüber niedrig dosierter Strahlung nach dem Chernobyl 

Katastrophe von besonderem Interesse. 

Da die genetische Epidemiologie des Brustkrebses in der Republik Weißrusslands vorher nicht 

untersucht worden war, offenbart die präsentierte Arbeit zum ersten Mal das Mutationsspektrum 

von für Brustkrebs relevanten Genen in der weißrussischen Bevölkerung. Sie zeigt siebzehn 

Prädispositionsallele an elf genomischen Loci in einer großen Fall-Kontrolle Studie von 1759 

Brustkrebspatientinnen und 1019 Bevölkerungskontrollen aus Weißrussland auf. Drei Mutationen 

im BRCA1 Gen (5382insC, 4153delA, T300G) und eine im BRCA2 Gen (6174delT) waren für 

insgesamt 79 Patienten (4.5 %) und 9.1 % des erblichen (familiären) Brustkrebses verantwortlich. 

Im Kontrast zu veröffentlichten Daten wurde für die BRCA1*4153delA Mutation erstmals ein 

erhöhtes Brustkrebs-Risiko belegt (OR 4.7, p=0.02). Außerdem wurden fünf Mutationen der Gene 

CHEK2 (n=3), NBN und ATM jeweils signifikant mit Brustkrebs assoziiert und waren zusammen 

für 147 weißrussische Brustkrebs-Fälle (8.4 %) verantwortlich.  
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Die Ergebnisse der CHEK2 Mutationen weisen auf höhere Risiken für proteinverkürzende 

Mutationen (insbesondere IVS2+1G>A und CHEK2dele(9,10)) im Vergleich zu einer 

Aminosäuresubstitution (p.I157T) hin. 

Die funktionellen Konsequenzen einiger CHEK2 und NBN Mutationen wurden von mir anhand von 

EBV (Epstein-Barr Virus) immortalisierten lymphoblastoiden Zelllinien ausgewählter 

Mutationsträgerinnen genauer untersucht. Ein funktioneller Einfluss von p.R215W-Variante auf 

NBN Protein Ebene zeigte, dass nur ungefähr ein Drittel des Wildtyps vom gesamten Nibrin 

synthetisiert werden konnte vom R215W-Allel in Zelllinien von heterozygoten NBS (Nijmeen 

Breakage Syndrome) Patienten und Brustkrebspatienten. Eine funktionelle Rolle der p.I157T 

Variante auf CHEK2 Protein Ebene zeigte keinen Unterscheid vom Wildtyp in Bezug auf 

Expression und strahleniduzierte Phosphorylierung was einen möglichen abwärts gelegenen Defekt 

anzeigte. Die Transkript-Analyse von CHEK2dele (9,10) offenbarte eine volle Expression des 

Deletionsproduktes und eines Spliceproduktes das ungefähr 5 % des Allels entsprach und zusätzlich 

eine Deletion von drei Exons aufwies. Immunoblot-Analysen zeigten die unerwartet große 

Verminderung der CHEK2 Phosphorylierung in lymphoblastoiden Zellen von einer 

CHEK2dele(9,10)/657del5 heterozygoten Trägerin und diese Reduzierung wurde auch in Zellen 

von einem 657del5 homozygoten NBS Patienten, was vielleicht eine funktionelle Interaktion 

zwischen den Proteinen NBN und CHEK2 widerspiegelt. 

Die Untersuchungen wurden dann ausgedehnt auf die Analyse häufiger Polymorphismen und ihrer 

Rolle in der genetischen Disposition für das Mammakarzinom. Die Untersuchungen ergaben 

XRCC4 als potenzielles Kandidatengen für Brustkrebs, da die Spleißmutation IVS7-1G>A etwa 

doppelt so häufig unter Patientinnen als unter Kontrollpersonen in der weißrussischen Bevölkerung 

zu finden war. Außerdem wurden, teilweise im Rahmen des internationalen Breast Cancer 

Association Consortiums,  putative Risiko-Allele an fünf genomischen Loci untersucht, davon zwei 

in bzw. nahe den Genen FGFR2 und TOX3 , zwei kodierende Varianten in CASP8 und TGFB1, und 

ein uncharakterisierter Genort auf Chromosom 2q35. Die Aminosäuresubstitution D302H in 

CASP8 erschien protektiv bei familiärem Brustkrebs, und das seltene Risikoallel rs3803662 in 

TOX3 war mit dem Auftreten von Brustkrebs signifikant assoziiert. 

Ebenfalls wurden die genetischen und die verfügbaren klinischen Daten der Patientinnen nach 

regionalen Gesichtspunkten analysiert. Dabei konnte keine deutliche Heterogenität festgestellt 

werden, so dass die beobachteten signifikanten Unterschiede im Diagnosealter und der 

Familienanamnese zwischen den kontaminierten und nicht kontaminierten Gebieten durch Effekte 

von Gen-Umwelt-Interaktionen von identifizierten genetischen Faktoren nicht erklärt werden 

konnten. 
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Zusammengenommen zeigen die Ergebnisse, dass es mindestens drei Klassen von für Brustkrebs 

disponierenden Allelen gibt: (i) seltene Mutationen, verbunden mit hohem Risiko und 

familiärerHäufung, (ii) Mutationen mit einer niedrigen oder moderaten Frequenz, verbunden mit 

zwei - bis vierfach erhöhtem Brustkrebsrisiko, und (iii) Polymorphismen, deren einzelne 

Nukleotidvariantenmit einer Riskozunahmen von ungefähr 20-50 % assoziiert sind. In der 

Gesamtschau aller bisher bekannten genetischen Dispositionen wurde deutlich, dass bei mehr als 

99% aller Patientinnen in meiner Studie mindestens ein disponierendes Allel zu finden war, so dass 

vermutlich die große Mehrzahl, wenn nicht sogar alle, Brustkrebsfälle in der weißrussischen 

Republik unter dem Einfluss einer erblichen Disposition entstanden sind. Diese Arbeit bildet eine 

wertvolle Grundlage für die weiterführende Erforschung der biologischen Relevanz dieser 

Dispositionen, ihrer Gen-Gen- sowie Gen-Umwelt-Interaktionen, sowie ihrer Bedeutung für die 

zukünftige Krebsvorsorge und als potenzieller therapeutische Angriffspunkte. 

Sclüsselworte: Brustkrebs, Humangenetik, Mutation, Population. 
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ATM (gene and protein)  A-T mutated 
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EDTA     Ethylendiamintetraacetate 
EGTA     Ethylenglycoltetraacetate 
EtBr     Ethidium bromide 
EtOH     Ethanol 
FHA     Fork-Head associated domain 
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G     Guanine 
g     Gram 
GTC     Guanidinium thiocyanate 
GTS     Glycine-Tris-SDS buffer 
Gy     Gray 
h     Hours 
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HPLC     High Performance Liquid Chromatography  
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m-     milli- 
mA     Milliampere 
min     Minute 
MgCl2     Magnesium chloride 
ml     Millilitre 
MnCl2     Manganese chloride 
mM     millimolar 
mRNA     messenger RNA 
µ-     mikro- 
n-     nano-
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NaCl     Sodium chloride 
Na2CO3    Sodium carbonate 
NaF     Sodium fluoride 
NaHCO3    Sodium hydrogencarbonate 
NaOAc    Sodium acetate 
NBS     Nijmegen Breakage Syndrome 
NHEJ     Non-homologous end-joining 
OD     Optical density 
p-     pico- 
PAGE     Polyacrylamide gel electrophoreses 
PBS     Phosphate Buffered Saline 
PCR     Polymerase chain reaction 
PEG     Polyethylenglycol 
pH   Potential of hydrogen (pondus hydrogenii) 
PMSF     Phenylmethylsulfonylfluoride 
RNA     Ribonucleic acid 
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rRNA     Ribosomal RNA 
rpm     rounds per minute 
RT     Reverse transcription / Room temperature 
RT-PCR    Reverse transcription followed by PCR 
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Ser     Serine 
T     Thymine 
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All genes/proteins abbreviations were taken from NCBI data base in accord with the last 
nomenclature update. 
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1. Introduction 

1.1. A primer 
“Cancer is a genetic disease of the somatic cells”. This statement (Shiloh 2003) assumes an 

increasing importance (sense) with every new oncogene and tumor-suppressor gene discovery. The 

way to cancer is complicated and paved with alterations in the sequence and organization of the cell 

genome that range from single-nucleotide substitutions to chromosomal aberrations. Sequence 

alterations arise from spontaneous changes, replication errors and damage of DNA (Hoeijmakers, 

2001). DNA damage agents can be endogenous – from normal cell metabolism - or exogenous - 

from the environment. Damaging agents such as ionizing radiation and reactive chemicals are able 

to induce a plethora of DNA lesions. Some are extremely cytotoxic; others are mutagenic and can 

affect the production, structure and function of cellular proteins with consequences that range from 

cell malfunction to malignant transformation. Therefore many mutagens are also carcinogens and 

there is a high correlation between both effectualities (Davidson et al. 2002). A cell can protect 

itself from hazards by means of basic cellular response – recognition and repair of damage, using 

activation of phylogenetically conserved signaling cascades (checkpoint pathways). The activated 

checkpoint pathways delay cell cycle progression to facilitate DNA repair. In addition, the type and 

amount of damage might defeat the survival response machinery and in this case programmed cell 

death (apoptosis) will be triggered. A defect in the genome maintenance mechanisms including 

DNA repair, apoptosis and cell cycle checkpoint pathways leads to accumulation of genetic changes 

(mutations and aberrations), genetic instability (one of the hallmarks of cancer cells) and finally to 

the transformation of a normal cell to a cancer cell and the development from normal tissue to non-

malignant and eventually to invasive, malignant tumours. 

Breast cancer is the most frequent malignancy in women all over the world, with a cumulative 

lifetime risk estimated to be 10 to 20% (Claus at al. 1991; Eeles et al. 1994). As the major affliction 

of women, breast cancer has a rising incidence rate. Molecular analysis of breast cancer tumors 

suggests that the development of disease includes accumulation of various genetic alterations, 

activation of oncogenes as well as inactivation of tumour-suppressor genes, and genomic instability 

(Black, 1994; El-Ashry et al. 1994; Chin et al. 2004). Most breast cancers have been thought to be 

“sporadic”, but some are the result of a familial predisposition, due to mutations in BRCA1 and 

BRCA2 genes (breast cancer susceptibility genes 1 and 2), which account for approximately 30% of 

patients with a strong family history of breast or ovarian cancer and might be responsible for 3-5% 

of all breast and ovarian cancers population-wide (Claus et al. 1996, Pharoah et al. 1997, Peto et al. 

1999, Anglian Breast Cancer Study Group 2000) Women with mutations in these genes in the 

general population are at a significantly higher risk of developing breast and/or ovarian cancer, 

though the risk might also be influenced by nongenetic (environmental) factors (Antoniou et al. 
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2002). Because mutations in BRCA1 and BRCA2 explain only a fraction of familial cases, it was 

hypothesised that other less penetrant genes might explain the remainder of genetically predisposed 

breast cancers (Nathanson and Weber 2001, Pharoah et al. 2002). Recent data including those 

presented in this thesis indicate that mutations in ATM (ataxia-telangiectasia mutated), CHEK2 

(checkpoint kinase 2) and NBN (Nijmegen Breakage Syndrome protein) are low-penetrance breast 

cancer susceptibility alleles (The CHEK2 Breast Cancer Case-Control Consortium 2004, 

Bogdanova et al. 2005, Renwick et al. 2006; Walsh et al. 2006; Cybulski et al. 2006). Furthermore, 

mutations in the BRIP1 (BRCA1 interaction partner) and PALB2 (for ‘partner and localizer of 

BRCA2’) genes have been associated with breast cancer (Seal et al. 2006, Rahman et al. 2007, 

Erkko et al. 2007). The protein products of all these genes and a large number of others function in 

a complex signalling network that is activated in response to DNA damage – the DNA Double 

Strand Break (DSB) repair pathway. Several studies suggested links between deficient repair of 

DSBs and genetic predisposition to breast cancer and one major argument is that the products of 

BRCA1 and BRCA2 function in this common biochemical pathway (Parshad and Sanford 2001; 

Speit and Trenz 2004). In search for further low-penetrance genes that alter susceptibility to breast 

cancer large association studies, including those presented in this thesis, are presently being 

conducted worldwide. It is hypothesized that the life-time risk for breast cancer is modulated by 

variants and maybe their combinations in numerous other genes, several of which may participate in 

the cellular DNA damage response.  

 

1.2 Factors that influence the lifetime risk of breast cancer 
As mentioned above, breast cancer is a leading cause of cancer mortality among women all over the 

world with the life-time risk about 10%-20%. Incidence rates increase dramatically with age. While 

the rate of increase in breast cancer incidence is greatest in women under age 50, the majority of 

cases in Western populations occur after age 50. Women of higher socioeconomic status, married 

women, or women living in urban versus rural areas have the highest rates (WHO www.who.int/en, 

Heck and Pamuk 1997, Pukkala and Weiderpass 1999). Risk factors, that influence the development 

of the disease, could be mainly divided into three large groups: 

1. Lifestyle-Related Factors 

2. Risk Factors You Cannot Change 

3. Environmental Factors. 

Lifestyle-related factors include: 

Hormonal factors:  

Pregnancies/Breast-feeding: Women who have had no children or who had their first child after age 

30 are at higher risk of breast cancer (Layde et al. 1989, Ewertz et al. 1990, Kelsey et al. 1993). 
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Having multiple pregnancies and becoming pregnant at an early age reduces breast cancer risk 

(Collaborative Group on Hormonal Factors in Breast Cancer 2002). Some studies suggest that 

breast-feeding may slightly lower breast cancer risk (Reimer 1996, Bedinghaus1997). 

• Use of oral contraceptive?: It is still not certain whether oral contraceptives might play a 

part in breast cancer risk but some studies have suggested a possible increase in breast 

cancer risk at an early age (before age 45) among long-term oral contraceptive users, and 

those who started taking it at a young age (Marchbanks et al. 2002, Kahlenborn et al 2006, 

Cerhan 2006, Reid 2007). This is contrary to ovarian cancer risk which is significantly long-

term reduced by oral contraceptive use (Collaborative group on epidemiological Studies of 

Ovarian Cancer Lancet 2008). 

• Hormonal substitution?: Some studies reveal that long-term use (several years or more) of 

hormone replacement therapy (HRT) after menopause, particularly estrogens and 

progesterone in combination may increase risk of breast cancer (Collaborative Group on 

Hormonal Factors in Breast Cancer 1996, Li et al. 2003).  

Alcohol: Use of alcohol has been linked to an increased risk of developing breast cancer and the 

risk increases with the amount of alcohol consumed (Garfinkel et al. 1988, Smith-Warner et al. 

1998, Zhang et al. 2007). 

Obesity: Obesity has been found to be a potential breast cancer risk factor, especially for women 

after menopause (Bernstein et al. 1994, Zheng et al. 1998, Bartsch et al. 1999, Morimoto et al. 

2002) 

 

To Risk Factors You Cannot Change belongs: 

Gender Simply being a woman is the main risk factor for developing breast cancer. Men can 

develop breast cancer as well, but the risk is about 100 times less than in women (Prechtel K and 

Prechtel V 1997, Giordano et al 2004, La Pinta et al 2008). 

Age: risk of developing breast cancer increases with age (Perkins et al 2007). 

Mammographic density: Extent of radiodense tissue on a mammogram (mammographic densities) 

is significantly associated with increased breast cancer risk (Russo et al. 2001, Boyd et al. 2007, 

Martin and Boyd 2008).  

Menstrual periods: Women who started menstruating at an early age (before age 12) or who went 

through menopause at a late age (after age 55) may have a slightly higher risk of breast cancer 

(Trichopoulos et al. 1972, MacMahon et al 1982, Brinton et al. 1988, Collaborative Group on 

Hormonal Factors in Breast Cancer 1997). 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Prechtel%20K%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Prechtel%20V%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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Genetic factors: Mutations in known breast cancer susceptibility genes include BRCA1 and BRCA2 

conferring a high life-time risk for breast cancer up to 85%, or in CHEK2, ATM, NBS1, BRIP1 and 

PALB2 mutations with a lower penetrance (see 1.7.) 

Environmental factors: Both genetic and environmental factors play a role in a risk of developing 

the disease and they may act synergistically in many cases to modulate the probability and 

progression of breast cancer. One environmental factor, for which strong evidence of an association 

with breast cancer risk exists, is ionizing radiation exposure as outlined in more detail in the next 

two chapters. 

 

1.3 Inherited predisposition to breast cancer and the environment  
Several clinical characteristics may serve as an indicator for a possibly inherited form of breast 

cancer. In general, these include an unusually early age at onset, about 10 to 20 years earlier than 

the average age of onset; bilateral breast cancer; the occurrence of a second ipsilateral breast cancer; 

male breast cancer in the family; the occurrence of additional cancer diagnoses in a single 

individual or among close relatives; the occurrence of characteristic co-morbidities which are 

associated with known rare genetic syndromes; and the occurrence of multiple affected family 

members from one lineage, maternal or paternal. Known genes with mutations of high penetrance 

include BRCA1 and BRCA2, the TP53 gene encoding tumour suppressor p53 in the context of Li-

Fraumeni syndrome, PTEN (also known as MMAC1 for „mutated in multiple advanced cancers 1“) 

in the context of Cowden syndrome, MSH2 and MLH1 (mismatch repair genes) in context of Muir-

Torre syndrome, BLM gene in context of Bloom syndrome, or LKB1 (also known as STK11 - 

Serine/threonine kinase 11) in the context of Peutz-Jeghers syndrome. Although breast cancer 

appears to be part of the above-mentioned syndromes, germline mutations of the PTEN, LKB1, 

MSH2, MLH1 or BLM genes have not been found in breast-cancer-only families or sporadic breast 

cancer patients, thus far. Moreover these genes explain only a very small proportion of familial 

cases and there is evidence that additional genetic factors with lower penetrance modulate the life-

time risk for breast cancer in the majority of patients (Burke et al. 1999, Nathanson and Weber 

2001, de Jong et al. 2002, Pharoah et al. 2002). It was shown that inherited disposition towards 

breast cancer is complex, and many genetic variants and polymorphisms have been postulated to 

play a role in this condition (Martin and Weber 2000, de Jong et al. 2002), but for being a bona fide 

breast cancer gene at least two criteria should be fulfilled:  

1. mutations in the gene should co-segregate with breast cancer in families, or: 

mutations in the gene should have been validated as breast cancer susceptibility 

alleles in powerful association studies, 

2. dysfunction of the mutant gene product should be biochemically proven.  
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Until today there are few genes that meet these criteria: beside BRCA1/BRCA2 also ATM, NBS1, 

CHEK2 and recently described PALB2, BRIP1 (see 1.7). Remarkably, their products interact with 

each other in intracellular pathways of radiation-induced cell cycle arrest and DNA repair (see 

1.5.1). Some other genes involved in hormonal regulation or biotransformation appeared to be 

associated with moderate effects on breast cancer risk, but the results of such studies are not always 

conclusive and further research is required (Dunning et al. 1999, Kristensen et al. 2000, de Jong et 

al. 2002, Mitrunen et al. 2000, Egan et al. 2004, Gold et al. 2004, Cui et al. 2005, Einarsdottir et al. 

2006, Breast Cancer Association Consortium 2006). 

The penetrance of a genetic disposition towards breast cancer is age-dependent and may be 

modulated by several additional genetic, environmental and accidental factors (Nathanson and 

Weber 2001, Antoniou et al. 2002, Pharoah et al. 2002). A significant increase in breast cancer risk 

is observed in women with a previous history of exposure to high or multiple doses of ionizing 

radiation (Hall and Angele 1999, Ronckers et al. 2005). Ionizing radiation is for long time being 

recognized as a potent carcinogen that leads to the intracellular formation of reactive oxygen 

species and other radicals which in turn cause single and double strand-breaks in chromosomal 

DNA (Cox 1994, Leach et al. 2001, Mikkelsen and Wardman 2003). As a consequence, ionizing 

radiation induces genomic instability in many cell types including breast epithelial cells (Morgan et 

al. 1996, Ponnaiya et al. 1997). The link between exposition to high doses of radiation and a 

subsequent development of breast cancer has been shown in numerous epidemiological studies. The 

evidence is primarily based on investigations of either of two types of cohorts. The first group 

consists of women with breast cancer and a previous history of radiation exposure: these include, 

for example, women suffering from the consequences of the atomic bomb (Tokunaga et al. 1987, 

Ronckers et al. 2005) but also women with a history of therapeutic irradiation in a young age 

because of tuberculosis, thymic hyperplasia or Hodgkin lymphoma (Hildreth et al. 1989, Hrubec et 

al. 1989, Bhatia et al. 1996). The second group consists of patients with a rare inherited radiation 

sensitivity syndrome and their blood relatives: well-known examples are the recessive disorders 

ataxia-telangiectasia (A-T) and Nijmegen Breakage Syndrome (NBS), both of which are 

characterized by an extremely high cellular radiation sensitivity (Shiloh 2003, Hall and Angele 

1999). As will be outlined below, heterozygous carriers from A-T or NBS families face an 

increased breast cancer risk (Swift et al. 1987, Seemanova 1990, Swift et al. 1991, Seemanova et al. 

2007). Risk of breast cancer from exposure to very low levels of ionizing radiation, such as for 

example chest X-rays and mammograms, is still controversial. Assessing cancer risk from low-dose 

radiation presents several obstacles, including the difficulties in measuring lifetime exposure, the 

large sample series needed to quantify effects, and the appropriateness of linear extrapolation from 

high to low dose. For increasing power to detect the effects of low-level environmental exposures is 
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for example to identify genetically susceptible subgroups, or groups with common, low-penetrance 

susceptibility genes that interact with radiation exposure to increase risk of breast cancer. A few 

recent studies indicate that carriers of pathogenic alleles in DNA repair and damage recognition 

genes may have an increased risk of breast cancer following exposure to ionising radiation, even at 

low doses (Andrieu et al. 2006, Cardis et al. 2007, Broeks et al. 2007). Such observations could 

have important implications for the protection of patients and their close relatives, but still need to 

be further substantiated. A possible interaction between genetic susceptibility and ionizing radiation 

may also impact on the genetic epidemiology of breast cancer in the Republic of Belarus, in regard 

of the chronic exposure to low-dose radiation of the Byelorussian population after the Chernobyl 

accident. 

 

1.4 Breast cancer in the Republic of Belarus and ionizing radiation 

Among the entire spectrum of malignant neoplasms, breast cancer has a special rank in the 

morbidity structure of Byelorussian population. In the last 15 years, the morbidity from this 

pathology in the Byelorussian female population dramatic increased and breast cancer incidence has 

remained that high until today, with an apparent peak of 29,0 in 1998, over twelve years after the 

Chernobyl accident (Public Health Ministry of the Republic of Belarus 2002, 2006). The Chernobyl 

accident took place on 26 of April 1986 and led to the release of more than 1019 Becquerel (Bq) of 

radioisotopes with high levels of fallout over Belarus, Northern Ukraine and part of the Russian 

Federation. An estimated 70% of the radioactive blow-outs fell out on the territory of Belarus 

(Figure 1.1). An increase in the incidence of thyroid cancer observed among those exposed in 

childhood and adolescence in the most contaminated territories of Belarus, Russia and Ukraine has 

initially been the only scientifically demonstrated radiation-related increase in cancer incidence. 

This observation provided important information on the risk of thyroid cancer related to 131I and on 

factors, such as iodine deficiency and stable iodine supplementation, which can modify this risk. 

Reports on increases in the incidence of other types of cancer are difficult to interpret because of 

methodological limitations. As the majority of these studies cover a relatively short time period, it is 

not possible to fully evaluate the radiological impact of the accident, and it is premature to draw 

conclusions on the risk of cancers other than that of thyroid. Predictions, based on the experience of 

other populations exposed to ionizing radiation, suggest that a substantial number of cancers could 

occur, especially in the most contaminated areas. 

During 1988-2002, breast cancer was ranking first among female cancers in Belarus according to its 

frequency ratio. Although it is not clear how much of the incidences may be connected to 

irradiation and how much due to increased detection, a comparison of different regions within 

Belarus indicated that there is an association with the degree of contamination (Public Health 
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Ministry of the Republic of Belarus 2006, Pukkala et al. 2006). Breast cancer morbidity among 

female population in Belarus remains on average level in comparison with other countries. 

Nevertheless breast cancer morbidity increases every year in many industrial developed countries 

and in regions with negative environmental conditions, including Belarus, and in the last 20 years 

increased by over 50% from the year 1985 to the year 2005 (Public Health Ministry of the Republic 

of Belarus 2006). In a recently published study a significant and possibly radiation-related increase 

in breast cancer was found among women from the regions most contaminated by radiation. This 

increase was two times higher in comparison with women in less contaminated areas, and was most 

pronounced among women who were below the age of 45 at the time of the Chernobyl accident 

(Pukkala et al. 2006).  

 

 
 

It is known that exposure to ionizing radiation leads to a whole spectrum of chromosomal 

rearrangements that follow double-strand DNA breakage and can give rise to several oncogenic 

events. Furthermore, an individual’s capacity to repair DNA double-strand breaks determines the 

extent of the chromosomal rearrangements due to unrepaired damage in the exposed cells. It seems 

very likely, from the recent genetic studies (1.3), that inherited variation in DNA double-strand 

break repair genes will shape the individual’s relative risk towards malignancies after radiation 

exposure, and one of the malignancies which are most intimately connected with radiation-induced 

DNA double-strand breaks appears to be breast cancer. As one step to elucidate this further, it is 

important to determine the mutational spectrum of genetic predispositions towards breast cancer in 

Byelorussian females. 

Figure 1.1 Distribution of 
cumulative doses in regions of 
South and Eastern Belarus and 
in Northern Ukraine. 
Uninhabited after accident 
areas are marked (screen); 
doses are whole body doses in 
mSv, lagged by 5 years and 
cumulated up to 2001 
(Pukkala et al, 2006). 
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1.5 Cellular responses to ionizing radiation 
1.5.1 Detection and signalling of DNA double strand breaks (DSBs)At the molecular level, the 

most severe form of radiation-induced damage is DNA double-strand breakage that is under 

permanent control of the cell repair machinery. Exposure to ionizing radiation activates the complex 

signalling network including sensors of damage and a large number of downstream mediators and 

effectors. As a result of this signalling, some mechanisms block cell cycle progression by arrest at 

defined checkpoints to allow for repair of massive DNA damage or for apoptosis if the damage 

cannot be repaired (Figure 1.2). 

 

 
 
Figure 1.2 Cell-cycle checkpoints and DNA repair pathways. After exposure to ionizing radiation, cell-
cycle progression is blocked at defined checkpoints. Checkpoint activation pauses the cell cycle and gives 
the cell time to repair the damage before continuing to divide. Checkpoint activation is controlled by two 
master kinases ATM and ATR (although ATX may also take part). ATM responds to DNA DSBs and 
disruptions in chromatin structure, whereas ATR primarily responds to persistent single-stranded DNA 
(ssDNA), which commonly occurs at stalled replication forks, but also to DSBs. It was shown that ATR 
activation is regulated by ATM in a cell-cycle dependent manner in response to DSBs (Jazayeri et al. 2006).  
These kinases phosphorylate downstream targets in a signal transduction cascade, leading to cell cycle arrest. 
In G1-phase of cell cycle, arrest occurs before or at so-called “Restriction point” (R). In S-phase, cells are 
arrested at each point to avoid replication. In phase G2, irradiated cells complete with each other before 
proceeding into Mitosis (M). ATRIP- ATR Interaction Partner; ATX or hSMG-1- protein involved in 
nonsense-mediated mRNA decay (NMD) as part of the mRNA surveillance complex as well as in the DNA 
DSBs repair; KU70 or XRCC6 and KU80 or XRCC5 - „X-ray repair cross-complementing”, this complex 
functions as a single-stranded DNA-dependent ATP-dependent helicase and may be involved in the repair of 
nonhomologous DNA ends such as that required for double-strand break repair, transposition, and V(D)J 
recombination (the process that generates diversity in B-cell and T-cell receptors in the vertebrate immune 
system); DNA-PKcs - DNA dependent protein kinase, required for non-homologous end-joining (see below) 
Modified from Kastan und Lim, 2000. 
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The cellular response to DNA damage is a very complex process, and it usually starts with the 

“sensing” or “detection” of the damage, followed by a series of events that include signal 

transduction and activation of effectors, which execute various cellular functions. DSBs are 

naturally formed and sealed during physiological DNA processing in replication and it is safe to 

assume that cellular DSB repair mechanisms maintain continuously at low-level activity. But when 

DSBs are inflicted on the genome by damaging agents, such as free radicals or ionizing radiation, 

they rapidly, within minutes, set in motion a DNA-damage response (Jackson, 2002). In this multi- 

branched signalling network of transducers and effectors, the quick effect is achieved by the 

operation of many pathways and the transducers are also involved in the assembly of DNA repair 

complexes at the site of the damage, so DBS repair and signalling are functionally linked. In the 

case of DSBs, the initial and primary transducer is ATM (although related protein kinases are also 

involved – ATR, DNA-PKcs, and ATX), which transmits the message via a standard signalling 

mode: protein phosphorylation. Activated in response to damage is a complex signaling network, 

including sensor complex MRN (MRE11/RAD50/NBN, see below for the details), and a large 

number of downstream transducers and effectors including BRCA1, BRCA2, CHEK2, p53 and 

others, that regulate cell cycle and facilitate repair, or in the event of incomplete repair, apoptosis 

(Figure 1.3). One hallmark of this response is the activation of cell-cycle checkpoints. Deficiencies 

in these pathways lead to malfunction of cell cycle, DNA repair and/or apoptosis. 

 

 
Figure 1.3 Pathways involved in the response to DNA DSBs. DSBs in DNA induce transcriptional 
changes, cell-cycle checkpoints and DNA repair processes. Loss of fidelity in repairing DSBs leads to 
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chromosomal rearrangements and genomic instability, which are con attributes of cancer cells. ATM 
orchestrates the DSB response by phosphorylating substrates required for the G1/S, intra S and G2/M 
checkpoints. MRN complex (MRE11 - meiotic recombination protein 11- is a nuclear protein with 3' to 5' 
exonuclease activity and endonuclease activity involved in homologous recombination, telomere length 
maintenance, and DNA double-strand break repair; RAD50 is a member of the structural maintenance 
chromosomes (SMC) protein family, important for DNA double-strand break repair, cell cycle checkpoint 
activation, telomere maintenance, and meiotic recombination; NBN forms a multimeric complex with 
MRE11/RAD50 nuclease at the C-terminus and recruits or retains them at the vicinity of sites of DNA 
damage) acts as a break sensor and functions in the activation and propagation of signalling pathway that, in 
addition, influences recombinational DNA repair through promoting recombination between sister 
chromatids (Kobayashi et al. 2005). MDC1- Mediator of DNA damage checkpoint 1- is required to activate 
the intra-S phase and G2/M phase cell cycle checkpoints in response to DNA damage, regulates function of 
BRCA1 (Lou et al. 2003), is required for CHEK2 activation (Lou et al. 2003a), controls the formation of 
damage-induced 53BP1 foci (Stewart et al. 2003), interacts with phosphorylated histone H2AX near sites of 
DNA double-strand breaks and facilitates recruitment of the ATM kinase and MRN complex to DNA 
damage foci (Lukas et al. 2004), and regulates DNA damage repair by influencing DNA-PK 
autophosphorylation. BRCA1 is directly involved in the repair of damaged DNA, is thought to transiently 
interact with RAD51 (homolog of the RecA, plays role in homologous pairing and strand transfer of DNA), 
which in turn is also found to interact with BRCA2 (Henning and Stuerzbecher, 2003). BRCA2 is shown to 
regulate both the intracellular localization and DNA-binding ability of RAD51 and required in homologous 
recombination. PALB2 (also known as FANCL) interacts with BRCA2, is implicated in its nuclear 
localization and stability and is required for some functions of BRCA2 in homologous recombination and 
double-strand break repair at the S phase checkpoint (Simpson et al. 2007). BRIP1 (also known as BACH1, 
FANCJ) – interacts with BRCA1 and is required for DNA damage-induced checkpoint control during the 
G2/M phase of the cell cycle (Yu et al. 2003). CHEK2 - (also known as Cds1) is activated by ATM in 
response to DNA damage and phosphorylates cell cycle regulators such as p53, Cdc25 and BRCA1 (Caspari 
et al. 2000). TP53 (or p53) - is a tumor suppressor, regulates the cycle of cell division and can bind directly 
to DNA, plays a critical role in determining whether the DNA will be repaired or the cell will undergo 
apoptosis if the DNA cannot be repaired (Lacroix 2006). TP53 controls the expression of p21 (also known as 
CIP1, WAF1 or CDKN1A - cyclin-dependent kinase inhibitor), which binds to and inhibits the activity of 
cyclin-CDK2 or -CDK4 complexes, and thus functions as a p53-dependent regulator of cell cycle 
progression at G1; can interact with proliferating cell nuclear antigen (PCNA), a DNA polymerase accessory 
factor, and plays a regulatory role in S phase DNA replication and DNA damage repair; p21 was also 
reported to be specifically cleaved by CASP3-like caspases, which thus leads to a dramatic activation of 
CDK2, and may be instrumental in the execution of apoptosis following caspase activation (Gartel and 
Radhakrishnan, 2005). MDM2 (murine double minute oncogene also known as HDM2 for human 
homologue) is an important negative regulator of the p53 (together with its structural homolog MDM4, also 
called MDMX). MDM2 functions as an E3 ubiquitin ligase that recognizes the N-terminal trans-activation 
domain (TAD) of the p53, targeting also itself for degradation by the proteasome and as an inhibitor of p53 
transcriptional activation (Momand et al. 2000). 53BP1 - the p53-binding protein is central in both the S and 
G2 checkpoints after exposure to ionizing radiation. 53BP1 participates in the organization of nuclear foci 
and facilitates the phosphorylation of specific substrates by the CHEK2 and ATM (including p53 and SMC1, 
required for sister chromatid cohesion), interacts with BRCA1 and may take part in DNA repair) (DiTullio et 
al. 2002). 
 

1.5.2. Mechanisms of DNA double strand break repair 

Broken chromosomes can be repaired either by a mechanism similar to homologous recombination 

(HR) in a high-fidelity repair process between sister chromatids, or by a non-homologous repair 

mechanism such as Non-homologous End Joining (NHEJ) in a rapid error-prone process that 

quickly seals the breaks at the expense of creating local microdeletions (Figure 1.4). 

Homologous recombination repair (HRR) in S/G2 cell-cycle phases entails the invasion of an 

undamaged DNA molecule by a damaged molecule of identical or very similar sequence, followed 
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by resynthesis of the damaged region using the undamaged molecule as a template. A sister 

chromatid may be used as the template for repair, or less frequently the paternal and maternal 

copies of chromosomes may provide the required homology. HRR allows the replacement of 

damaged regions without loss or alteration of base sequence. In HR, the DNA ends are first resected 

in the 5´ to 3´ direction by nucleases. The resulting 3´ single-stranded tails then invade the DNA 

double helix of a homologous, undamaged partner molecule, and are extended by the action of 

DNA polymerase, which copies information from the partner. Following branch migration, the 

resulting DNA crossovers (Holliday junctions) are resolved to yield two intact DNA molecules 

(Figure 1.4). 

There are several types of homologous repair: gene conversion, break-induced replication and 

single-strand annealing (SSA). The SSA pathway takes place when direct repeat sequences flank 

the two DNA ends and leads to loss of one of the two direct repeats and the intervening DNA. In 

contrast, NHEJ of two DNA ends in phases G1/S does not require an undamaged partner and does 

not rely on extensive homologies between the two recombining ends. In this process, sometimes 

after limited degradation at the termini, the two ends are ligated together. Consequently, NHEJ is 

often prone to error, and small sequence deletions are usually introduced.  

 

 
 
Figure 1.4 Pathways of DSB repair. The termini of a DNA DSB introduced by ionising radiation or other 
means are bound either by the KU heterodimer /DNAPKcs complex or by RAD52. In the NHEJ rejoining 
pathway, repair is completed by DNA ligase IV/XRCC4/XLF (XRCC4-like factor, also named Cernunnos) 
in presence of Artemis (also known as DCLRE1C - DNA cross-link repair, apart DNA repair is also 
involved in V(D)J recombination). DNA strand invasion of the intact sister chromatid, facilitated by RAD51, 
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initiates repair by homologous recombination. Resection and annealing of short regions of complementary 
sequence initiates repair by the SSA pathway in which ligation is preceded by the trimming of 
noncomplementary single-stranded DNA tails. The scheme is based on Rijkers, 1998. 
 
 
One of the first steps during homology-directed DSB repair (HHR and SSA) is recognition of 

damage by the protein complex MRN, which is proposed to perform multiple structural and 

enzymatic functions in DNA end processing and alignment (Valerie et. al. 2003; Stracker et.al, 

2004). Following DSB induction, MRN rapidly forms foci at the damaged sites. These foci include 

additional players in the DSB response, such as RAD51 and BRCA1. During the central step in 

HHR, RAD51 (supported by the paralogous cofactors XRCC2, XRCC3, as well as by RAD51IP, 

RAD52, RAD54 and BRCA2) forms nucleoprotein filaments with the 3´ overhanging ssDNA of the 

resected DSB (this process is probably initiated by RAD51-BRCA2 complex) and catalyses 

homologous pairing and strand exchange. SSA, a nonconservative mechanism of homology-

directed DSB repair, does not depend on RAD51, but requires RAD52, which forms heptameric 

rings on ssDNA ends and promotes paring before tail removal by the structure-specific 

endonuclease ERCC1-XPF (XPF also known as ERCC4 - Excision repair cross-complementing 

rodent repair deficiency) (Valerie et al. 2003). In the NHEJ pathway, that is thought to be the 

predominant repair mode in mammalian cells, KU70 and KU80 bind the DSB, followed by 

recruitment and activation of the catalytic subunit of the DNA-dependent protein kinase (DNA-PK), 

which mediates synapsis and recruits XRCC4, DNA ligase IV and XLF. End processing may 

involve nuclease activity of protein Artemis, which is activated by DNA-PKcs and ATM and shows 

an epistatic relationship with MRE11 (Riballo et al. 2004). Despite the disadvantages of its low 

fidelity, this pathway can act quickly, as required of an emergency mechanism, and, unlike HR, it 

does not depend on sister DNA molecule, which exist in the cell only after DNA replication. 

 

1.6 Links between DSB repair and breast cancer susceptibility 
Initial studies suggested that NHEJ was the predominant mechanism of DSB repair in higher 

eukaryotes, but it is now established that HR also has a very crucial role. Research in clarifying the 

enzymology of DNA DSB repair pathways has indicated key roles for these pathways in preventing 

mutations, chromosomal instability and cancer. DNA repair systems are responsible for maintaining 

the integrity of genome and have a critical role in protecting against mutations that can lead to 

cancer. Absent or incorrect repair can initiate carcinogenesis through the activation of oncogenes, 

the inactivation of tumor-suppressor genes, or loss of heterozygosity (LOH). Repair of damaged 

DNA involves many proteins performing functions directly at damaged DNA as well as the 

interaction and interplay with proteins involved in regulation of DNA replication and progression 

through the cell cycle (Lehmann 1998). Studies have shown that genes directly involved in DNA 
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repair and the maintenance of genome integrity, or genes indirectly involved in DNA repair through 

the regulation of the cell cycle, are critical for protecting against the mutations that lead to cancer 

(Bohr 1995; Mohrenweiser 1998). 

At least two major lines of evidence suggest links between deficient repair of DSBs and genetic 

predisposition to breast cancer. First, studies of the key breast cancer susceptibility genes BRCA1 

and BRCA2 indicate that their products function in one common biochemical pathway, which plays 

an important role in DSB repair and chromosome stability (Haber 2000, Valerie et al. 2003, 

Yoshida and Miki 2004, Gatz and Wiesmüller 2006). Second, increased frequencies of chromatid 

breaks and gaps after exposure to radiation in G2-phase of cell cycle have been observed in cultured 

cells from predisposed individuals, sporadic breast cancer patients and their first degree relatives 

with two- to threefold higher incidence of cancer (Parshad and Sanford 2001, Patel et. al 1997, 

Scott 2004).  

Several groups have postulated that DSB-initiated cromosomal instability (CIN) is a major motive 

power for breast cancer progression (Shen et al., 2000, DePinho and Polyak 2004). Support for this 

hypothesis comes from the observation that CIN, initiated by DSB, leads to genome-wide LOH, 

which significantly increases in consecutive steps toward tumour progression to later stages (Shen 

et al. 2000). Interestingly, the fact that in the genome-wide screen the loci of p53 and ATM were 

lost at the earliest stage indicated that the ATM-p53 signaling pathway involved in DSB repair and 

checkpoint control (Figure 1.3) is critically important in the suppression of breast tumorigenesis as 

a barrier against genomic instability before malignant conversion. Moreover it was shown that in 

clinical speciment from different stages of breast tumours (and other human tumours), the early 

precursor lesions (but not normal tissue) commonly express markers of an activated DNA damage 

response – phosphorylated kinases ATM and CHEK2, and p53, which leads to the same hypothesis 

that the DNA damage response network becomes activated in very early stages of tumorigenesis 

and defects in this checkpoints might allow cell proliferation, increasing CIN and tumour 

progression (Bartkova et.al 2005). 

DSB repair pathways and checkpoints appear to be particularly important in breast tumorigenesis, 

and this tissue specificity may partly be explained by the dual role of reproductive hormones – 

estrogens as a growth stimulation factor and strand break inducing agent. Epidemiological and 

experimental data indicate that metabolites of estrogens may cause oxidative DNA damage and 

strand breaks (Yager and Davidson 2006). Hormonal stimulated proliferation in breast epithelium 

can further lead to replication fork stalling, DSBs and recombinational repair for restart of 

replication. Deregulated recombinational repair in turn can cause structural chromosomal 

aberrations, gene amplifications and LOH as a major genotoxic effect of estrogens (Cheng et al. 

2005, Liehr 2001). 
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1.7. Breast cancer predisposition alleles and their impact on disease risk  
1.7.1. Diversity of breast cancer susceptibility alleles 

Breast cancer is often associated with mutations in different genes in pathways critical to genomic 

integrity. BRCA1 and BRCA2 mutations confer very high risks of breast and ovarian cancer. PTEN, 

p53, LKB1 MSH2, MLH1 and BLM mutations lead to very high breast cancer risks associated with 

rare inherited cancer syndromes. Mutations in CHEK2, ATM, NBS1, BRIP1, PALB2 and possibly 

RAD50 are associated with an approximately doubling of breast cancer risks (Meijers-Heijboer et 

al. 2002, Walsh et al. 2006, Gorski et. al 2003, Heikkinen et al. 2006, Seal et. al. 2006, Renwick et 

al. 2006, Rahman et al. 2007, Erkko et al. 2007, and this work). And several common genetic 

variants may exist which are associated with less than 1.5-fold increases in breast cancer risk (Cox 

et al. 2007, Easton et al. 2007, Stacey et al. 2007). 

 

1.7.2. High-risk breast cancer susceptibility alleles  

1.7.2.1. BRCA1 and BRCA2 

BRCA1 and BRCA2 are the two major familial breast cancer susceptibility genes, mutations of 

which are associated with early-onset breast and/or ovarian cancer. Both genes are large and 

complex and encode products that promote DSB repair. Hundreds of mutations have been found in 

both genes, with a lot of them being “private” mutations found in only a single family. Most of the 

mutations are predicted to result in a truncated protein product, thus the deleterious nature of these 

mutations is easy to interpret. Because missense mutations are rare, their clinical significance is not 

well known. Mutations in BRCA1 and BRCA2 genes account for approximately 30% of families 

with a strong family history of cancer and might be responsible for 3-5% of all breast and ovarian 

cancers population-wide. Women with mutations in BRCA1 and BRCA2 are at a significantly higher 

risk of developing breast and/or ovarian cancer, though the risk is also influenced by nongenetic 

factors (Burke and Austin 2002). Mutation in either of both genes also appears to increase a 

person’s risk for other type of tumors such as prostate cancer, colon cancer, pancreatic cancer, 

tumors of Fallopian tube, or melanoma, though the penetrance for these cancers is much lower than 

for breast or ovarian cancer. Moreover, precancerous lesions (dysplasia) within the Fallopian tube 

have been linked to BRCA1 gene mutations, and BRCA2 mutations confer higher risk for male 

breast cancer. Founder mutations with a high penetrance have initially been described in 

Ashkenazim in BRCA1 (185delAG, 5382insC) and in BRCA2 (6174delT) (reviewed by Berchuck et 

al. 1999, Figure 1.5). 

 



Introduction  30 
 

 
 

In Central and East Europe, among a plethora of different gene alterations, the BRCA2 deletion 

6174delT and the BRCA1 frameshift insertion 5382insC appear to be frequent, together with the 

RING finger substitution c.T300G (Cys61Gly) in the BRCA1 gene (Backe et al. 1999, Gorski et al, 

2005a). 

 

1.7.2.2 BRCA1 gene and protein 

The BRCA1 gene is located on chromosome 17q21-12 and constitutes an essential tumour 

suppressor gene (Figure 1.6) (Hall et al. 1990, Miki et al. 1994) which encodes a 220 kDa nuclear 

protein functioning in cell cycle control and DNA repair (reviewed by Zhang and Powell, 2005). 

Being part of a large genomic surveillance and repair complex termed „BASC“ (Wang et al. 2000), 

BRCA1 interacts with several other proteins that regulate cellular responses to chromosomal breaks 

and other types of DNA damage, including ATM, CHEK2 and p95/nibrin (product of NBN gene). 

Female-specific effects of BRCA1 mutations in gynaecological cancers may be partly explained by 

the ability of the BRCA1 protein to bind and inhibit the estrogen receptor alpha (Fan et al. 1999, 

Zheng et al. 2001) and/or to control the process of X-chromosome inactivation (Ganesan et al. 

2002).  

 
 
Figure 1.6 Schematic diagram of BRCA1. Survey of functionally important sites, including the sites of 
BRCA1 protein phosphorylation. The BRCT domain was defined by its location in the COOH terminus of 
BRCA1, and it is an important protein interaction domain for many phosphorylated DNA repair proteins (in 
BRCA1 responsible for interaction with BRIP1). The RING domain at the NH2 terminus of the protein has 

Figure 1.5 A schematic 
diagram of BRCA1 and 
BRCA 2 genes showing 
the sites of founder 
mutations. 
The number of exons and 
the length of genes are 
shown. 
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the features of an E3 ubiquitin ligase. BRCA1 may function in cooperation with BARD1 as an ubiquitin 
ligase toward the radiation-activated histone H2AX (Mallery et al. 2002) or towards the progesterone 
receptor (Poole et al. 2006) and/or the estrogen receptor alpha (Eakin et al. 2007); nuclear localization 
signals (NLSs) at the NH2 terminus are shown and are necessary for BRCA1 transport into nuclei. The 
DNA-binding domain of BRCA1 has been mapped to a central region of the protein (amino acids 452-
1092). There is a CHEK2-dependent phosphorylation site at Ser988 within this domain. A P cluster region 
adjacent to the DNA-binding domain has multiple ATM and ATR target sites of phosphorylation. Further 
interaction sites with RAD50, RAD51, BRCA2 and p53 are also shown. 
 

1.7.2.3 BRCA2 gene and protein 

The BRCA2 gene, mapped and identified on chromosome 13q12 (Wooster et al. 1995), codes for a 

390 kDa nuclear protein. The official name of this gene is “breast cancer 2, early onset.” The 

BRCA2 gene was found to be identical to the XRCC11 (“X-ray cross-complementing 11”) gene 

(Kraakman-van der Zweet et al. 2002). Furthermore, as inherited hypomorphic BRCA2 mutations in 

the homozygous state cause certain forms of Fanconi anemia (Fanconi anemia D1, FA-D1), a 

cancer-prone chromosomal instability recessive syndrome (Howlett et al. 2002), BRCA2 is also 

identical to FANCD1. 

The 3,418 residue BRCA2 gene product does not exhibit significant similarity to any previously 

known protein (Figure 1.7). Eight 30- 40 residue motifs (Bork et al. 1996) –  the so-called BRC 

repeats – are encoded in exon 11 and conserved between several mammalian species, which 

suggests they have an essential function (Bignell et al. 1997). In fact, some BRC repeats have been 

shown to mediate the binding of BRCA2 to RAD51 (Bork et al. 1996, Bignell et al.1997, Wong et 

al. 1997). Interactions of BRCA2 with RAD51 are fundamental for the maintenance of cell division 

and chromosome structure. 

 

 
Figure 1.7. Schematic diagram of BRCA2. Survey of the functionally important sites, including 
phosphorylation site at Ser 3291 (by a cyclin-dependent kinase). The PALB2 binding motif in the highly 
conserved transactivation region of N-terminus, which also important for interaction with other proteins, 
such as CAF1 - Chromatin assembly factor I, required for the assembly of histone octamers onto newly-
replicated DNA or in DNA repair; and with EMSY – member of the family of chromatin regulation proteins 
and in response to DNA damage colocalized with H2AX. Overexpression of the EMSY (the repressor 
protein for BRCA2) may mimic the effect of BRCA2 inactivation (Raouf et al. 2005). The BRCA1 binding 
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domain has been mapped to a central region of the protein. There is also binding motif for BRAF35 
(BRCA2-associated factor 35, a structural DNA-binding protein) within this region (Marmorstein et al., 
2001). The COOH-terminal region has an important role in the tumor-suppressor function of BRCA2, 
mediates ssDNA binding and the association of the BRCA2-RAD51 complex with sites of DNA damage. 
BRCA2 has two unrelated RAD51-binding domains: a partly degenerate 30-40–amino acid motif (BRC 
repeat), eight copies of which are interspersed throughout the middle 1000 residues of BRCA2 (exon 11), 
and a distinct RAD51 binding region encoded by exon 27 (NLSs region). The BRC repeats of BRCA2 are 
holding RAD51 in an essentially inactive, monomeric form. After DNA damage RAD51– BRCA2 
complexes localize to the DNA break sites. Unknown phosphatases dephosphorylate Ser3291 of BRCA2, 
what probably activates the COOH-terminal region, which in turn supports the oligomerization of RAD51 on 
the nucleoprotein filament for processing of homologous recombination (Lord and Ashworth, 2007).  
 
 

1.7.2.4 Role of BRCA1 and BRCA2 in DBS repair and cell-cycle checkpoints  

BRCA1 and BRCA2 are involved in a multitude of pivotal cellular processes. In particular, both 

genes contribute to DNA repair and transcriptional regulation in response to DNA damage, required 

for maintenance of chromosomal stability; they transcriptionally regulate some other genes 

involved in DNA repair, the cell cycle, and apoptosis. Many of these functions are mediated by a 

large number of cellular proteins that interact with BRCA1 or BRCA2. The elucidation of the 

precise molecular functions of BRCA1, BRCA2 and their “partners” is important to improve our 

understanding of hereditary as well as sporadic mammary carcinogenesis. 

Major clues to the role of BRCA1 and BRCA2 proteins in DBS repair have come from assays based 

on cultured cells. BRCA1 and BRCA2 mutant cells exhibit a high degree of spontaneous and 

induced chromosome aberrations, are sensitive to ionizing radiation and DNA damage agents, and 

have elevated mutation rates (Jasin, 2002, Kim et al. 2004). Initial evidence suggesting a role of 

BRCA1 in the repair of damaged DNA was derived from the observation that BRCA1 is 

hyperphosphorylated at multiple residues by different kinases (ATM, ATR, CHEK2) in response to 

DNA damage and relocated to sites of replication forks (Wang et al. 2000, Welcsh et al 2000). 

However, how each type of phosphorylation affects the functions of BRCA1 remains obscure. 

Subsequent studies demonstrated the involvement of BRCA1 and BRCA2 in complexes that 

activate the repair of DSBs and initiate HR, linking the maintenance of genomic integrity to tumor 

suppression. BRCA1 may recruit BRCA2, which facilitates RAD51 filament formation in response 

to DBSs. BRCA1 is also observed to colocalize with RAD51, which seems to be required for the 

strand invasion in HR (as described above). Direct interactions between BRCA2-RAD51 and 

BRCA2-BRCA1 proteins have been reported; however, the association of RAD51 with BRCA1 at 

the site of DNA damage may be mostly indirect through BRCA2 (Venkitaraman, 2003). BRCA1 

has also been found associated with another DNA damage response protein, RAD50, which forms a 

tight complex with MRE11 and p95/NBS1 (described above). This complex is implicated in both 

HR and NHEJ (figure 1.4) and BRCA1 apparently functions as a regulator of MRE11/RAD50/NBN 

(MRN) complex (Wu et al, 2000). Protein foci of MRE11 or RAD50 colocalize with 
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phosphorylated H2AX and MDC1 foci after DNA damage. BRCA1 can also colocalize with H2AX 

and is recruited to these sites before RAD50 or RAD51 (Paull et al. 2000), suggesting that BRCA1 

may determine the recruitment of kinases responsible for H2AX phosphorylation to DNA lesions 

before RAD50 and/or RAD51. A study of Foray et al. has revealed that BRCA1 contributes to the 

ATM-dependent activation of c-Abl - tyrosine kinase, which is ubiquitously expressed and 

localized in the cytoplasm and nucleus. Nuclear c-Abl is activated by diverse genotoxic agents and 

induces apoptosis and also implicated as a regulator of transcription and DNA repair (Foray et al. 

2002). BRCA1 may also function as a co-activator of p53-mediated gene transcription and appears 

to be required for a p53-independent S phase block of cell cycle by transactivation of p21 

(Somasundaram et al. 1997). In summary, BRCA1 has multiple roles in response to DSBs.  

In some contrast, BRCA2 seems to have a single main and more direct function in homologous 

recombination acting downstream of BRCA1 via its interaction with RAD51. In irradiated cells, 

BRCA2, co-localizes with phosphorylated H2AX and EMSY, which negatively regulates BRCA2 

function in transcriptional activation and is amplified in sporadic breast cancers (Raouf et al. 2005). 

It was also shown that, after DNA damage, BRCA2 co-localized with BCCIP (BRCA2 and 

CDKN1/p21 interacting protein), which may be an important cofactor for BRCA2 in tumor 

suppression via HR (being also co-localized and interacting with RAD51) and a modulator of 

CDK2 kinase activity via p21 (Lu et al. 2005). Some further evidence suggests that BRCA2 

mediates G2/M-phase control by interacting with BRAF35 which binds to branched DNA 

structures (Marmorstein et al. 2001). Thus, there are now multiple interaction partners of BRCA2 

known, the role of which in the DNA damage response and in breast cancer susceptibility remain to 

be fully clarified. 

 

1.7.3 Breast cancer susceptibility alleles with moderate penetrance and their role in DSB 

repair 

1.7.3.1 Genes harbouring breast cancer susceptibility alleles with moderate penetrance 

Although BRCA1 and BRCA2 have attracted most attention as high risk factors for inherited breast 

cancer, these two genes account for only a small proportion of the genetic risk while other more 

common but less penetrant gene alterations may explain the remainder of genetically predisposed 

breast cancers. Mutations in CHEK2, ATM, NBS1, BRIP1, and PALB2 have more recently been 

identified as low-penetrance alleles with an approximately 2-to 3 fold increase in risk. 

 

1.7.3.2 ATM 

The ATM (“ataxia-telangiectasia mutated”) gene has been identified in 1995 as the causative gene in 

ataxia-telangiectasia (A-T), an autosomal recessive radiation sensitivity syndrome (Savitsky et al. 
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1995a,b). Hallmarks of this disorder include, aside of severe neurological and immunological 

symptoms, a marked cancer predisposition (Gatti et al. 1991). While about 1 in 4 children with A-T 

suffer from leukemia or lymphoma, those patients that survive into late adulthood are at high risk to 

develop solid carcinomas including breast cancer (Stankovic et al. 1998). Heterozygous carriers of 

an ATM gene mutation, estimated to constitute about 1% of the population, do not develop the 

clinical symptoms of ataxia or telangiectasia, but they show increased chromosomal radiosensitivity 

(Tchirkov et al. 1997, Neubauer et al. 2002). The involvement of A-T heterozygosity in breast 

cancer susceptibility has been suspected for long, beginning as early as in the middle of the 70´s 

(Swift et al. 1976). Epidemiological studies revealed a two- to sixfold increase in risk for breast 

cancer among blood relatives of A-T patients compared with spouses (Swift et al. 1987, Swift et al. 

1991, Athma et al. 1996, Inskip et al. 1999, Olsen et al. 2001, Thompson et al. 2005). However, it 

has been difficult to confirm these risk estimates at the population level in diverse case-control 

studies of familial or unselected breast cancer patients, which raised a considerable debate about the 

role of ATM gene mutations in breast cancer susceptibility (Broeks et al. 2000, Dörk et al. 2001). A 

recent sequencing study on familial breast cancer cases without BRCA1/2 mutations (Renwick et al. 

2006) has provided strong evidence that truncating ATM mutations or, more general, ATM 

mutations which cause A-T in the homozygous state, are breast cancer susceptibility alleles 

associated with an approximately two- to three-fold increase in risk of the disease, and results in 

this thesis support this view. 

The ATM gene encodes a 350 kDa protein that localizes to the nucleus in mitotic cells. The ATM 

kinase is a key protein in signaling the presence of and responding to DSB (Shiloh 2003, Yang et al 

2004). ATM belongs to a conserved family of proteins, most of which possess a serine/threonine 

kinase activity, and all of these proteins share three motifs: the FAT and FATC domains of 

unknown functional significance (except that the FAT domain of ATM contains the site of 

autophosphorylation during ATM activation – serine 1981, see below and figure 1.8) and a domain 

with a motif typical for phosphatidylinositol 3-kinases (PI3K) – the catalytic site in the active 

kinases of the family. The mammalian members of this family, which are known at present to be 

involved in the DNA damage response are DNA-PKcs, ATM, ATR and ATX. ATR and ATX 

respond to both UV (ultra violet light) damage and DSBs, and ATR also responds to stalled 

replication forks, whereas ATM and DNA-PKcs respond primarily to DSBs. These pathways are 

related to each other by sharing a set of substrates (such as CHEK2 and Chk1, the checkpoint kinase 

1) and serving the similar purpose at a different time (Brumbaugh et al, 2004; Abraham, 2001). It 

was shown that ATM and the nuclease activity of MRE11 are required for the processing of DSBs 

to generate the replication protein A (RPA)-coated ssDNA that is needed for ATR recruitment and 

the subsequent phosphorylation and activation of Chk1. Efficient ATM-dependent ATR activation 
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in response to DSBs is restricted to the S and G2 cell cycle phases and requires CDK kinase 

activity. Thus, in response to DSBs, ATR activation is regulated by ATM in a cell-cycle dependent 

manner (Jazayeri et al. 2006). 

ATM resides in undamaged cells present in inactive dimeric or higher order multimeric form 

(Bakkenist and Kastan 2004). DNA damage induced by ionizing radiation triggers the auto- or 

trans-phosphorylation of the serine amino acid residue at position 1981 (Ser1981) in the ATM 

polypeptide. This leads to the dissociation of inactive ATM complex into catalytically active ATM 

monomers (Figure 1.8), which in turn activate, in response to chromosome breakage, other 

oncologically relevant target proteins such as BRCA1, p53, CHEK2, nibrin and others. These 

signaling events then mediate diverse downstream cellular responses. 

 

 
Figure 1.8. Scheme of ATM protein kinase activation and function. The ATM protein kinase initiates a 
complex signal transduction cascade to halt the cell cycle and facilitate repair in response to double-strand 
DNA breaks (DSBs). 
 

The MRN complex is an essential mediator of ATM recruitment to DSB and activation by DSB (it 

is both a sensor and effector of ATM activation and signaling in response to DSB). MRE11 is a 

DNA binding protein, which has 3’,5’-exonuclease activity. RAD50 forms homodimers that 

associate with two MRE11 molecules to form a tetrameric MRE11-RAD50 complex (MR). This 

complex has a kind of structure that forms bridges between free DNA ends or sister chromatids. 

Then the p95/nibrin subunit (recruited to the sites of DSB possibly by the direct interaction 

with phosphorylated histone H2AX) joins to form the MRN complex and, guided by the nibrin 

carboxyl terminus and possibly by interaction with RAD50, inactive ATM dimers are recruited to 

DSB sites. Activation of ATM may be triggered by a conformational change in nibrin (reviewed by 

Abraham and Tibbetts, 2005). MRN may also trigger a conformational change in ATM that 
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stimulates substrate recruitment. Activated ATM monomers phosphorylate either colocalized 

substrates or diffuse away from DSBs and phosphorylate other mediators and effectors. ATM 

targets serine or threonine residues followed by glutamine (S/TQ motifs). The hallmark of ATM’s 

response to DSB is a rapid increase in its kinase activity immediately following DSB formation. 

ATM-mediated phosphorylation either enhances or represses the activity of its targets, thereby 

affecting specific processes in which these proteins are involved. Loss of ATM function results in 

„radioresistant“ DNA synthesis, i.e. unhalted progression through S-phase (Painter and Young 

1980), and leads to an accumulation of chromosomal aberrations, which in turn can cause malignant 

cell growth. 

 

1.7.3.3. NBN 

Another radiation sensitivity syndrome related to A-T is the Nijmeen Breakage Syndrome (NBS), 

an autosomal recessive disorder that is predominantly found in populations of Slavic descent 

including Poland, Czech Republic and Russia. The clinical hallmarks of NBS are microcephaly, 

growth retardation, immunodeficiency and a high cancer disposition towards leukemias and 

lymphomas (van der Burgt et al. 1996). Because female NBS patients do not pubertize without 

hormone substitution and most of them do not survive into adulthood, breast cancer is not a known 

feature of NBS. However, heterozygous blood relatives, i.e. carriers of one NBS mutation, appear to 

face an increased cancer risk, including breast cancer (Seemanova 1990, Seemanova et al. 2006, 

2007). Most cases of NBS are due to germline mutations in the NBN gene (previously termed 

NBS1, Varon et al. 1998). The NBN protein, nibrin, is a 95 kDa nuclear protein, which belongs to 

the many targets of the ATM kinase (Gatei et al. 2000, Lim et al. 2000, Wu et al. 2000, Zhao et al. 

2000). Nibrin is phosphorylated at multiple sites after radiation exposure and is present in radiation-

induced foci, together with RAD50 and MRE11 (as part of the MRN complex) and BRCA1, which 

form at the sites of DNA double strand breaks (Carney et al. 1998, Zhong et al. 1999) (Figure 1.9). 

Nibrin contains several functional regions: a forkhead-associated (FHA) domain and a “BRCA1 C-

terminal” (BRCT) domain at the N-terminus, several SQ motifs (consensus phosphorylation sites by 

ATM and ATR kinases) in its central region, and MRE11-and ATM-binding sites at the C-

terminus. Nibrin is required for several processes protecting chromosomal stability, including 

sensing DNA double-strand breaks, cell cycle checkpoint regulation and telomere maintenance 

(Digweed and Sperling, 2004). 

In approximately 90% of NBS cases, the NBN gene defect could be attributed to the 657del5 

mutation, a frameshift deletion (Varon et al 1998). This Slavic founder mutation (Varon et al 1998, 

2000) was later suggested in some association studies to be associated with increased breast cancer 

risk in Polish and Russian populations (Gorski et al. 2003,2005a; Steffen et al. 2004,2006; Buslov 
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et al. 2005) and work included in this thesis has corroborated this assumption (Bogdanova et al. 

2008). NBN has since been established as one of breast cancer susceptibility genes with about three-

fold increase risk in disease. 

 

 

 
 

 

1.7.3.4 CHEK2  

The CHEK2 (previously termed Chk2) protein is a cell cycle regulator originally identified in yeast 

(“checkpoint kinase 2”, also known as Rad53 or Cds1). The CHEK2 gene encodes the human 

homolog. The CHEK2 protein is a central mediator of cellular responses to DNA damage (Bartek et 

al. 2001; Ahn et al. 2004). The Chk2/Rad53/Cds1 family of proteins is characterized by the 

presence of one or more FHA domains, a Ser/Thr kinase domain, and N-terminal regions rich in 

Ser-Gln and Thr-Gln (SQ/TQ) amino acid motifs. Ionizing radiation activates the CHEK2 protein 

via ATM-mediated phosphorylation (Matsuoka et al, 2000; Falck et al, 2001), and activated 

CHEK2 kinase can subsequently phosphorylate several substrates including Cdc25A (name refers 

to "cell division cycle”, controls entry into and progression through S-phase and mitosis), p53, 

BRCA1 and FoxM1 (forkhead box M1 – transcription factor that regulates expression of cell cycle 

genes essential for DNA replication and mitosis). The activated Chk2 substrates then mediate cell 

cycle arrest, apoptosis and the expression of DNA repair enzymes (for example, phosphorylation of 

Figure1.9. DNA damage response 
involving NBN (p95/NBS1).Nbs1 acts in 
the ATM-dependent cell cycle checkpoint 
activation cascade, possibly as a signal 
modifier/adaptor in multiple pathways 
(Electronic database information: 
www.nijmegenbreakagesyndrome.net).NB
S1 is recruited to the sites of DSB by some 
interaction with phosphorylated histone 
H2AX (γ-H2AX) and subsequently 
interacts with RAD50 and MRE11 in a 
multimeric complex that forms foci at sites 
of DNA damage. This complex has DNA 
binding and nuclease activity, is essential 
for normal radiation sensitivity and has a 
role in lesion processing and repair. At 
least two different SQ motifs are 
phosphorylated by ATM in response to 
DSBs. Intra-S phase checkpoint then 
appears to be mediated by two parallel 
routes, one of them involving ATM, NBS1 
and SMC1. NBS1 also modulates ATM-
mediated phosphorylation of other 
substrates, such as p53 and CHEK2. More 
over, NBS1 has been proposed as a p53-
independent MDM2 binding protein and 
links MDM2 to the MRN- regulated DNA 
repair response (Alt et al 2005). 



Introduction  38 
 
FoxM1 by CHEK2 may increase transcription of XRCC1 and BRCA2) (Bartek and Lukas, 2003; 

Tan et al. 2007) (Figure 1.10). Furthermore, CHEK2 has also been reported to regulate E2F1 

transcription factor activity in response to the DNA damaging agent etoposide (Stevens et al. 2003). 

On the other hand, E2F1 expression results in an increase in CHEK2 protein levels and may be 

essential for p53 activation and apoptosis induction (Rogoff et al. 2004). Ectopic expression of 

E2F1 induces the ATM dependent phosphorylation of CHEK2 and stimulates the kinase activity of 

CHEK2 (Powers et al. 2004). NBS1 is also required for the induction of CHEK2 phosphorylation 

induced by E2F1 (Powers et al. 2004). Moreover, CHEK2 may play a critical role in the induction 

of the pro-apoptotic transcription factor p73 following DNA damage (Urist et al. 2004). The 

upstream regulation of CHEK2 may also be more complex. A recent study suggests that a mitotic 

checkpoint kinase TTK participates in the regulation of DNA damage by functioning upstream of 

CHEK2 and phosphorylating it (Wei et al. 2005). DNA dependent protein kinase is also suggested 

to be involved in the activation of CHEK2 in response to DNA damage (Li and Stern 2005). 

 

 
 

The dimeric CHEK2 protein functions as central mediator of signal transduction pathways induced 

by DNA damage and shares some of its downstream effectors with Chk1. Through targeting their 

substrates, Chk1 and CHEK2 regulate fundamental cellular function, and being the critical 

messengers of the genomic integrity checkpoints, they initiate a secondary wave of phosphorylation 

events (after ATM and ATR, which initiate a signaling cascade) to extend signaling. CHEK2 

phosphorylation of BRCA1 regulates DNA double-strand break repair, and deletion of CHEK2 

potentiates the incidence of mammary carcinomas in BRCA1 conditional mutant mice (McPherson 

Figure 1.10: Central role of the CHEK2 
protein in the cellular response to ionizing 
radiation / induced DNA double strand 
breaks. This type of damage activates the 
ATM kinase that phosphorylates CHEK2 on 
Thr68 and further residues. The activated 
CHEK2 kinase in turn regulates the activity 
of other oncoproteins (such as p53, BRCA1 
and BRCA2) which, in the healthy state, 
finally results in cell cycle arrest (preventing 
entry into S-phase and mitosis) and DNA 
double strand break repair. 
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et al. 2004). In addition, the activation of CHEK2 by ATM may also regulate PML-dependent 

apoptosis after gamma irradiation-induced DNA damage (Yang et al. 2002). In vitro, CHEK2 is 

capable of phosphorylating all members of the Cdc25 family (Matsuoka et al 1998). After DNA 

damage, CHEK2 participates in the phosphorylation of p53 on Ser20, attenuating the binding of 

p53 to MDM2 and allowing accumulation and subsequent activation of p21 and G1 arrest (Hirao et 

al 2000). Noteworthy, inherited mutations of CHEK2, like those of ATM and NBN, confer tumor 

susceptibility. Initial findings showing germline CHEK2 mutations in a subset of cancer-prone Li-

Fraumeni cases with wild type of p53 (Bell et al 1999a) further underscored the function of cell 

cycle checkpoints in preventing genetic instability and cancer. A recurrent mutation in the CHEK2 

gene (1100delC) was first proposed to be an important cause of breast cancer in 2002 (Meijers-

Heijbor et al. 2002, Vahteristo et al. 2002). Since then, numerous studies including this thesis have 

reported on the prevalence of this mutation and other functionally relevant CHEK2 mutations in 

various populations, identifying CHEK2 as a low-penetrance breast cancer susceptibility allele with 

approximately two-fold increased risk for breast cancer (The CHEK2 Breast Cancer Case-Control 

Consortium 2004, Bogdanova et al. 2005, Gorski et al. 2005a, Cybulski et al. 2006, Walsh et al. 

2006, Cybulski et al. 2006, reviewed by Nevanlinna and Bartek 2006). 

 

1.7.3.5 PALB2 and BRIP1: The, Fanconi Anemia pathway and its interaction with DSB 

repair 

PALB2 encodes a recently discovered protein that interacts with BRCA2, is implicated in its nuclear 

localization and stability and is required for some functions of BRCA2 in homologous 

recombination and double-strand break repair (Xia et al. 2006). Biallelic PALB2 mutations are 

responsible for a subset of Fanconi anemia cases characterized by a phenotype similar to that 

caused by biallelic BRCA2 mutations, and constitute a new FA complementation group FA-N (Xia 

et al. 2007, Reid S et al. 2007). BRIP1 that interacts with BRCA1 was also found and described as 

one of the FA genes, biallelic mutations in which are responsible for the Fanconi anemia subtype 

FA-J (Levran et al. 2005). Most of the FA proteins form a multiprotein E3 ubiquitin ligase, known 

as FA nuclear core complex that activates FANCD2 (Fanconi anemia, complementation group D2) 

via monoubiquitination. This ubiquitinylation requires ATM/ATR-dependent phosphorylation in at 

least two sites: cell cycle checkpoint kinase ATR is required for the efficient monoubiquitination of 

FANCD2 and also for the function of histone H2AX (Pichierri et al. 2004). H2AX, recently 

identified as a component of FA network, seems to play a crucial role mediating 

monoubiquitinylated FANCD2 recruitment to chromatin (Bogliolo et al. 2007). As described above, 

following DNA damage, ATM phosphorylates H2AX, which forms a megabase length tract 

marking DNA damaged sites and recruiting other proteins of DNA repair pathways: BRCA1/2, 
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RAD51, MRE11, NBS1, MDC1, monoubiquitinated FANCD2 and p53 (Fillingham et al. 2006, 

Tanaka et al. 2006, Bouquet et al. 2006). BRCA1 in turn, helps to mediate the recruitment of 

FANCD2 by phosphorylated H2AX to damaged chromatin. By contrast, BRCA2, PALB2 and 

BRIP1 appear to function downstream of the FANCD2 activation step. PALB2 binds to the extreme 

N terminus of BRCA2 and stabilizes BRCA2 in key nuclear structures, allowing it to function in 

DNA repair and at the S phase checkpoint and also function as FANCD1 downstream (figure 1.11). 

Heterozygosity for mutations in PALB2 and BRIP1 was found to be associated with increased breast 

cancer risk (Rahman et al. 2007, Seal et al. 2006), and a PALB2 founder mutation is associated with 

breast cancer in Finland (Erkko et al. 2007). Thus, PALB2 and BRIP1 appear to be the latest 

additions to the growing list of genes associated with a moderately, approximately 2-fold increased 

risk of breast cancer, where they join the CHEK2 (the first gene of this type described), NBN and 

ATM genes. 

 

 
 

Figure 1.11. Schematic diagram of the Fanconi anemia–BLM-BRCA pathway and its interaction with 
BRCA1 pathway. The Fanconi anemia core complex consists of at least eight Fanconi anemia proteins 
(FANCA, FANCB, FANCC, FANCE, FANCF, FANCG, FANCL and FANCM) and is essential for the 
monoubiquitination and activation of FANCD2 (‘D2’ in the figure) after DNA damage. Activated FANCD2 
is translocated to DNA repair foci, where it colocalizes with other DNA damage response proteins, including 
BRCA1, BRCA2 and RAD51, and participates in homology-directed repair. DNA damage activates ATM 
and CHEK2, which in turn activate p53 and BRCA1 by phosphorylation. PTEN binds to the RAD51 
promoter and may regulate its transcription (Shen et al., 2007). H2AX has been reported to be essential for 
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the recruitment of repair/DNA damage response proteins to the site of DNA damage or replication break 
sites. H2AX is functionally connected to the FA/BRCA pathway to resolve stalled replication forks thus 
preventing chromosome instability. Once the DNA lesions are repaired, no signal for ATR activation is 
present and the FA pathway is inactivated. BRCA1 mediates FANCD2 foci formation and colocalizes with 
FANCD2 at damaged sites, but it does not interact with FANCD2 directly and is dispensable for FANCD2 
monoubiquitination. The range of chromosomal abnormalities in FA cells closely resemble those of Bloom 
syndrome (Joenje et al. 2001), a genetic disease that also features genomic instability and cancer 
predisposition. In fact, the FA core complex, was purified as part of a larger multiprotein complex with BLM 
(Meetei et al. 2003, Ciccia et al. 2007, Ling et al. 2007), termed BRAFT (for BLM, replication protein A 
(RPA), FA and topoisomerase IIIα). BLM is a 3′-to-5′ DNA helicase that can resolve many DNA structures. 
Topoisomerase IIIα (Topo IIIα) is a type I topoisomerase that works with the BLM helicase to resolve 
recombination intermediates, such as double-Holliday junctions. The BLM-associated protein BLAP binds 
double-Holliday junctions and promotes loading of Topo IIIα onto the DNA. Replication protein A (RPA) 
binds ssDNA and participates in replication, repair and activation of ATM and ATR (scheme based on 
Rahman et al. 2007) 
 

 

1.7.4 Additional breast cancer candidate genes involved in DNA repair  

The functional analyses of hitherto identified breast cancer genes demonstrate an intriguing 

connection between the repair of radiation-induced DNA double-strand breaks and breast cancer 

risk. In fact, disturbances of chromosome break repair appear to play a major role in the 

development of breast cancer, comparable with the role of mismatch repair in colon cancer or UV-

induced damage repair in skin cancer. Why dysfunction of chromosome break repair is of such 

particular importance for breast tumors is still unknown. However, these findings show the way for 

the identification of additional breast cancer predisposition alleles since known genes involved in 

the same pathways whose role is to preserve genomic integrity. Clearly other genes in this pathway 

are worth to be subject of intense genomic analysis. Furthermore, there may be thus far 

unrecognized members of this pathway, mutations in which may also be associated with breast 

cancer. 

Some candidates can be assumed among proteins that bind to BRCA1 or BRCA2. One of the 

partners of BRCA1, the protein BARD1 („BRCA1-associated RING domain“), is thought to 

mediate a radiation-induced inhibition of mRNA polyadenylation (Kleiman und Manley 2001) and 

may be involved in sporadic or hereditary breast cancer (Thai et al. 1998, Karppinen et al. 2006). 

But more recent studies have not provided evidence for breast cancer susceptibility alleles in 

BARD1 (Jakubowska et al. 2008). Another interaction partner of both the BRCA1 and BRCA2 

proteins is RAD51, a protein essential for homologous recombination. A single-nucleotide 

polymorphism (SNP) in the 5' untranslated region (UTR) of RAD51, 135G-->C, has been suggested 

as a possible modifier of breast cancer risk in BRCA1 and BRCA2 mutation carriers (Antoniou et al. 

2007). Because the RAD51 protein interacts with RAD52 in homologous recombination, common 

truncated variants of RAD52 may also be candidate modifiers (Bell et al. 1999b). Another binding 

partner of BRCA1 is the RAD50 protein which is a part of the nuclear MRN repair complex. The 

MRE11 and RAD50 genes both underlie rare hereditary radiation sensitivity syndromes, which 
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resemble ataxia-telangiectasia and Nijmegen Breakage syndrome, respectively (Stewart et al. 1999, 

Waltes 2002). It is possible, therefore, that variations in these both genes may be associated with 

radiation sensitivity and breast cancer risk, and a protein-truncating allele of RAD50 identified in 

northern Finland appeared to confer an approximate 4-fold increased risk of familial breast cancer 

in this population (Heikkinen et al. 2006). Finally, proteins involved in the upstream regulation of 

these gene products could be strong candidates for breast cancer susceptibility. For example, ATR, 

that is inducible by replication blocks and has several target proteins in common with the 

homologous ATM kinase, such as p53 or BRCA1. ATR appears to act as a maintenance kinase in 

ionizing radiation- induced signaling. However, a study of ATR sequence variants has not revealed 

alterations associated with breast cancer (Heikkinen et al. 2005). Another regulator of BRCA1 is 

53BP1, a p53-binding protein that modulates the radiation-induced phosphorylation of BRCA1 and 

CHEK2, and appears to be essential for the recruitment of BRCA1 into radiation-induced repair 

foci (DiTullio et al. 2002). MDC1 also regulates BRCA1 functions (Lou et al 2003), is required for  

response of DNA damage, and facilitates recruitment of the ATM and MRN complex to DNA 

damage foci (Stucki and Jackson 2005). Further proteins involved in DNA double strand break 

repair include the XRCC proteins, one of which is the XRCC11/BRCA2 protein. The XRCC genes 

have initially been identified by complementation of radiation sensitivity of CHO cells and are 

regarded as suppressors of radiation-induced chromosome aberrations. The XRCC4 protein 

(together with DNA ligase IV), as well as XRCC6/KU70, XRCC5/KU80, for example, act to repair 

DNA double strand breaks in the “non-homologous end joining” pathway (see 1.4.1) and thereby 

prevent oncogenic translocations. Several common gene variants of XRCC1, XRCC2, XRCC3, 

XRCC4, XRCC5, XRCC6 and LIG4/DNA-Ligase IV were identified as potential modifiers of breast 

cancer risk (Price et al. 1997, Lunn et al. 1999, Goode et al. 2002, Kuschel et al. 2002, Rafii et al. 

2002, Fu et al. 2003), though a large international Consortium study has refuted some of the 

proposed associations (Breast Cancer Association Consortium 2006). As the XRCC9 gene has been 

uncovered to be the gene underlying one form of Fanconi anemia – FANCG (de Winter et al. 1998), 

BRCA2 was identified as the gene responsible for Fanconi anemia type D, i.e. the FANCD1 gene 

(Howlett et al. 2002), PALB2 as FANCN, and finally the FA pathway is connected with the BRCA1 

pathway via H2AX, some speculations have been raised that other Fanconi anemia proteins may 

also be candidates for breast cancer susceptibility.  

 

1.7.5 Polymorphic variants and breast cancer susceptibility 

Since the identification of BRCA1 and BRCA2, researches tried to identify additional high-

penetrance breast cancer genes („BRCA3“) or genetic modifiers by using traditional linkage studies, 

but except for the identification of the CHEK2 gene, they unfortunately have failed. These 
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observations have led to the conclusion that breast cancer susceptibility may be largely ‘polygenic’ 

and the progress in identifying the relevant loci has been slow. As linkage studies lack power to 

detect alleles with moderate effects on risk, large case-control association studies were required. 

Such studies have confirmed the role of mutations in the candidate DNA repair genes ATM, NBS, 

CHEK2, BRIP1 and PALB2 that confer an approximately twofold risk of breast cancer. These genes 

share two important features in their impact on breast cancer:  

1. a single deleterious mutation in any one is sufficient to significantly increase breast 

cancer risk;  

2. there are many deleterious mutations, and each variant is individually rare in 

population (reviewed by Walsh and King 2007).  

It is still the majority of familial breast cancer cases, however, which remains unexplained by any of 

these genes. Advances in association studies have been furthered by the recent progress in the 

discovery of single nucleotide polymorphisms (SNPs); their vast density throughout the genome, 

ease of genotyping and moderate cost contribute greatly to their utility. Association testing is 

efficient when the SNPs being analyzed represent the entire genetic variation of the gene. Evidence 

has been obtained that nearby SNPs are organized into regions of high linkage disequilibrium (LD) 

separated by short segments of very low LD. Regions of high LD contain redundant information 

and can be reduced to smaller subsets of tagging- SNPs (tSNPs), such that tSNPs identify all 

common haplotypes within the region of high LD. Technological advances have provided 

possibility to investigate hundreds of thousands of SNPs in one go, that giving a basis for 

identifying moderate risk alleles without prior knowledge of position or function. However, because 

recombination tends to occur at distinct ‘hot-spots’, the majority of common genetic variants can be 

evaluated for association using a few hundred thousand SNPs as tags for all the other variants. 

Recently, common missense variants in two genes, CASP8 (caspase 8, an important initiator of 

apoptosis and is activated by external death signals and in response to DNA damage) and TGFB1 

(transforming growth factor beta 1, controls proliferation, differentiation, and other cell functions), 

have been shown to be associated with breast cancer risk through a sufficiently powered multicenter 

analyses, including our group (Cox et al. 2007). This study demonstrated the importance of large-

scale analysis, because individual studies often have not enough statistical power to identify 

common variants conferring modest increases in the risk of breast cancer. Towards this goal, to 

facilitate such collaborative studies in breast cancer, the Breast Cancer Association Consortium 

(BCAC) was established in April 2005. The consortium currently includes over 25 international 

collaborating research groups, with a potential combined sample size of more than 30,000 cases and 

30,000 controls. A recent study of the BCAC revealed novel independent breast cancer 

susceptibility loci that were identified through a whole-genome scan and contain plausible 
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candidate genes (FGFR2 - fibroblast growth factor receptor 2, influence mitogenesis and 

differentiation; TNRC9 – also known as TOX3 high mobility group box family member 3, binds to 

DNA, regulates transcription; MAP3K1 - mitogen-activated protein kinase, involved in cellular 

response to a number of mitogenic and metabolic stimuli, including insulin and many growth 

factors; and LSP1 - lymphocyte-specific protein 1, an intracellular F-actin binding protein). 

Tagging SNPs at these and two further loci: 2q35 qnd 8q24, exhibited strong and consistent 

evidence of association with breast cancer (Easton et al. 2007, Stacey et al. 2007); more details can 

be found in the results section of this thesis. To date it is not known how these genes interact with 

each other or with lifestyle factors, each of which may increase the risk (Easton et al. 2007). But 

these reports indicate that many additional common susceptibility alleles may be identifiable by this 

approach. 
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1.8 Aim of the project 
The main aim of this thesis was to examine the role of heritable genetic factors in the development 

of breast cancer, with a particular focus on the Byelorussian population and their potential chronic 

exposure to low-dose ionizing radiation after the Chernobyl accident. Towards this goal, the 

prevalence of founder mutations in major DNA double-strand break repair genes and the prevalence 

of common polymorphic variants identified as breast cancer susceptibility alleles should be 

comparatively investigated in a case-control series of some 1000 breast cancer patients and 1000 

population controls from Hannover Medical School and in a similarly sized case-control series to be 

established from different regions in the Republic of Belarus. This study should delineate the 

geographic distribution of candidate mutations and provide risk estimates for the identified 

susceptibility alleles. Where appropriate, some of the mutations should further be characterized by 

functional assessment of the radiation-induced DNA damage response in patient lymphoblastoid 

cell lines. Furthermore, clinical evaluation of patient data should uncover genotype-phenotype 

correlations with regard to age at diagnosis, bilaterality, family history and tumour characteristics in 

mutation carriers. Altogether, the results should for the first time reveal the mutational distribution 

of breast cancer susceptibility genes in the Byelorussian population and provide an initial data set to 

increase our insights into the radiobiology of breast cancer. 
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2. Materials 
2.1 Chemicals and reagents 

Acrylamide, 40% / Bisacrylamide 19:1  Biorad-Laboratories, München 

Acrylamid, 40%     Biorad-Laboratories, München 

Agarose      Invitrogen Life Technologies, 

Agarose-1000      Invitrogen Life Technologies 

Aprotinin      Serva, Feinbiochemika, Heidelberg 

Ammonium persulfate (APS)    Biorad-Laboratories, München 

β-Glycerophosphat     Merck, Darmstadt 

Bisacrylamide, 2%     Biorad-Laboratories, München 

Boric Acid      Gibco_BRL, Eggenstein 

Bromphenolblue     Sigma Chemie, Steinheim 

Coomassie Brilliant Blue G250   Serva, Feinbiochemika, Heidelberg 

Chloroform      J.T.Baker, Deventer, Niederlande 

DEPC (diethylpyrocarbonat)    Sigma Chemie, Steinheim 

DTT (dithiothreitol)     Sigma Chemie, Steinheim 

EDTA       Sigma Chemie, Steinheim 

EGTA       Serva, Feinbiochemika, Heidelberg 

Ethidium bromide     Sigma Chemie, Steinheim 

Ethanol, abs. 99,8%     Merck, Darmstadt 

Formaldehyde, 37%     Merck, Darmstadt 

Formamide      Merck, Darmstadt 

Glycerin, 87%      Merck, Darmstadt 

Glycerin, abs.      Merck, Darmstadt 

Glycine      Merck, Darmstadt 

Guanidiniumthiocyanat    Fluka Feinchemikalien, Neu-Ulm 

HPLC-grade water     J.T.Baker, Deventer, Niederlande 

Isopropanol      Merck, Darmstadt 

Potassium chloride     Merck, Darmstadt 

Leupeptin      Serva, Feinbiochemika, Heidelberg 

Magnesium chloride     Merck, Darmstadt 

Mercaptoethanol     Sigma Chemie, Steinheim 

3-Methacryloxypropyltrimethoxysilane  Merck, Darmstadt 

Methanol      Merck, Darmstadt 

Sodium acetate     Merck, Darmstadt 



Materials   47 
 
Sodium carbonate, water free    Merck, Darmstadt 

Sodium chloride     Merck, Darmstadt 

Sodium fluoride     Sigma Chemie, Steinheim 

Sodium hydrogencarbonate    Merck, Darmstadt 

Sodium thiosulfate     Sigma Chemie, Steinheim 

Sodium metavanadate    Sigma Chemie, Steinheim 

Nonidet P-40      Sigma Chemie, Steinheim 

Phenol       Merck, Darmstadt 

Phenol/ Chloroform/ Isoamyl alcohol  ICN Biomedicals, Eschwege 

Polyethylenglycol 8000    Sigma Chemie, Steinheim  

Phenylmethanesulphanylflouride 

(PMSF)      Serva, Feinbiochemika, Heidelberg 

SDS (Sodium Dodecyl Sulphate)   Serva, Feinbiochemika, Heidelberg 

Seakem-Agarose     Biozym, Hess. Oldendorf 

NNN’N’Tetrqmethylethan-1,2-diamin 

(TEMED)      Serva, Feinbiochemika, Heidelberg 

Tris       Merck, Darmstadt 

Tris-HCl      Merck, Darmstadt 

Triton       Sigma Chemie, Deisenhofen 

Tween 20      Sigma Chemie, Deisenhofen 

Xylencyanol FF     Sigma Chemie, Deisenhofen 
 

All chemicals not mentioned above will be outlined in certain paragraphs. 

 
2.2 Enzymes, biological substances 
 
Ampicillin      Invitrogen BV, Groningen, Niederlande 

Desoxyribonucleoside triphosphates (dNTPs) Boehringer, Mannheim Biochemika 

Low-fat milk powder     Marvel, UK 

Oligodesoxyribonucleotides (primers)  GE Healthcare, Freiburg 

       Invitrogen, Eggenstein 

       Eurogentec, Seraing, Belgium 

 

The synthetic oligonucleotide primers used either for PCR or sequencing of gDNA and/or cDNA 

are listed in attachment 1. 
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Proteinase K      Merck, Darmstadt 

Restriction endonucleases and implements  New England Biolabs, Schwalbach 

Taq DNA-Polymerase and implements  Promega, Mancheim 

       Qiagen, Hilden 

Antibodies: 

Mouse-anti-human β-Actin     A5441 (1:3000), Sigma, St.Louis, USA 

Rabbit-anti-human Nibrin    hp95/Nibrin/NBS total (1:5000);  

       Novus Biologicals, Littleton 

pRabbit -anti-human Nibrin Phospho-p95/NBS (Ser343), (1:500);  

Cell Signaling, New England Biolabs GmbH 

Frankfurt am Main 

Rabbit-anti-human CHEK2    CHEK2 total (1:1000); Cell Signaling,  

New England Biolabs GmbH 

Frankfurt am Main 

pRabbit-anti-human CHEK2    pCHEK2 (Ser19),(1:1000); Cell Signaling,  

New England Biolabs GmbH 

Frankfurt am Main 

pRabbit-anti-human CHEK2    pCHEK2 (Ser33/35), (1:1000); Cell Signaling,  

New England Biolabs GmbH 

Frankfurt am Main 

pRabbit-anti-human CHEK2    pCHEK2 Thr68 (1:500); Cell Signaling,  

New England Biolabs GmbH 

Frankfurt am Main 

DNA molecular weight ladders: 

1 kb DNA Ladder      Invitrogen/Gibco BRL, Eggenstein 

100 bp DNA Ladder      Invitrogen/Gibco BRL, Eggenstein 

 

Protein molecular weight ladders: 

Rainbow Coloured Protein Molecular 

Weight Marker (14,3 – 220 kDa)   GE Healthcare, Freiburg 

 

Cell culture medium and implements: 

Cyclosporin A      Sigma Chemie, Deisenhofen 

DMSO       Sigma Chemie, Deisenhofen 

Fetal calf serum (FCS)    Seromed (Biochrom), Berlin 
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Hygromycin      Boehringer, Mannheim Biochemika 

Cryocontainer      Greiner, Frickenhausen; 

       Sarstedt, Nümbrecht 

Penicillin-Streptomycin (500x)   Boehringer, Mannheim Biochemika 

RPMI 1640 with L-Glutamine   Invitrogen/Gibco-BRL, Eggenstein 

Sterile filter (Minisart 0,45 und 0,20µm)  Sartorius, Göttingen 

MEBM medium and supplements for HMEC 

(growth factors and reagents)    Lonza, Belgium 

Trypsin reagents     Lonza, Belgium 

Cell culture flask      Nunc, Wiesbaden 

 

2.3 Kits 

ABI PRISM™ Big Dye Terminator Cycle  Applied Biosystems, Weiterstadt 

 Sequencing Ready Reaction Kit 

 With AmpliTaq®DNA Polymerase, FS 

310 Genetic Analyzer Buffer with EDTA  Applied Biosystems, Weiterstadt 

3100 Avant POP-6™     Applied Biosystems, Weiterstadt 

First Strand cDNA Synthesis Kit   GE Healthcare, Freiburg 

Protein Assay Dye Reagent Concentrate  Biorad-Laboratories, München 

 

Western Blot Chemiluminescence Reagents 

“PIERCE” – Super Signal West Dura Extended  

Duration Substrate     Pierce/ Perbio Sciences, USA 

 

2.4 Materials and equipment  

2.4.1 Films 

Hyperfilm ECL     GE Healthcare, UK 

 

2.4.2 Equipment 

ABI PRISM 3100 Avant Genetic Analyzer  Applied Biosystems, Darmstadt 

  Capillary, 36 cm   Applied Biosystems, Darmstadt 

  Printer     Hewlett Packard Deskjet 6122 

  Computer    DELL GX 270 

  Monitor    17in FLTAT 1703 FRGRAY 
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ABI PRISM 7000 Sequence Detection System Applied Biosystems, Darmstadt 

  Printer     Hewlett Packard Deskjet 9900xi 

  Computer    DELL LATITUDE C810 LAPTOP 

 

Autoclav LVSA 50/70    Zirbus, Bad Grund  

 

Autoradiography cassette    GE Healthcare, UK 

 

Electrophoresis chamber 

   horizontal: Horizon 58/11.14/20.25/  Gibco-BRL, Eggenstein 

   vertical: PEQLAB TwinEx ws   PeqLab, Erlangen 

Incubators: 

MEMMERT, Model 400   MEMMERT, Schwabach 

‚Hera safe’     Heraeus Sepatech, Osterode 

O2/CO2 Incubator Sanyo MCO-20AIC via Landgraf Laborsysteme, Langenhagen  

Centrifuges: 

 Beckmann J2.21 

  (Rotors JA14 und JA20)  Beckmann, München 

 Beckmann L5-6 

  (Rotors SW28, SW50.1)  Beckmann, München 

 Eppendorf centrifuge 5415C   Eppendorf, Hamburg 

 Eppendorf centrifuge 5415D   Eppendorf, Hamburg 

 Eppendorf centrifuge 5810R   Eppendorf, Hamburg 

 Mini Spin     Eppendorf, Hamburg  

Gel documentation system    Biostep GmbH, Jahnsdorf 

 Camera PIPER FK 751 12IQ-IR 

 Computer Belnea 

 Printer Mitsubishi P91D 

 Transilluminator (312 nm) UV light 

 

GenAmp® PCR system 2700    Applied Biosystems, Darmstadt 

Microwave      Panasonic 

pH-Meter      Jürgens, Hannover 

(Bio) Photometer     Eppendorf, Hamburg 
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Pipettes 

 Easy pet      Eppendorf, Hamburg 

Reference     Eppendorf, Hamburg 

 Research     Eppendorf, Hamburg 

 Research Pro     Eppendorf, Hamburg 

 Serological pipettes    Sarstedt, Nümbrecht 

PTC-200 Thermal Cycler MJ Research  Biozym, Hess. Oldendorf 

Power Suppliers  

 Biometra Standart Power Pack P25 

 Biometra Whatman PS 304   Biometra, Göttingen 

Scales       Sartorius, Göttingen 

       Stuart Scientific über Dunn, Asbach 

Shake incubator     Jürgens, Hannover 

Tank Transfer Unit  

with power supply EPS 2A200    GE Healthcare, Freiburg 

Thermo mixer Comfort    Eppendorf, Hamburg 

Thermo mixer HLC     Landgraf Laborsystems, Langenhagen 

Thermo mixer 5436     Eppendorf, Hamburg  

Thermostat Plus     Eppendorf, Hamburg 

Platform Shaker     Stuart Scientific, United Kingdom 

UV-Transilluminator     Bachofer Laboratoriumsgeräte 

Varioklav       H+P Labortechnik, Oberschleissheim 

Vortex Genie-Mixer     Jürgens, Hannover 

Water bath      GFL, Burgwedel 

7500 Fast-Real Time PCR System   Applied Biosystems, Darmstadt 

  Printer     Epson Colour 900 

  Computer    DELL LATITUDE D510 LAPTOP 

 

2.4.3 Small materials 

Capillary tips 200μl     Biozym Scientific, Hess. Oldendorf 

Crystal tips      Eppendorf, Hamburg 

Falcon-tubes      Sarstedt, Nümbrecht 

Fast Optical 96-well Reaction Plates   Applied Biosystems, Darmstadt 

Filter paper      Whatman, Maidstone 

Gloves       Safeskin Corp., San Diego, USA 
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       Ansell GmbH, München 

Kleenex      Kimberly-Clark 

 

Membrane 

 Hybond™-C extra (Nitrocellulose)  GE Healthcare, Freiburg 

Optical Adhesive Films     Applied Biosystems, Darmstadt 

Parafilm      American National Can, Greenwich 

 

Pipette tips    

1000μl (blue) and 200μl (yellow)    Sarstedt, Nümbrecht 

 

Pincers       Jürgens, Hannover 

Reaction tubes (1.5ml and 0.5ml)   Sarstedt, Nümbrecht; 

Scalpel       Jürgens, Hannover 

Sealing Tapes, optically clear    Sarstedt, Nümbrecht 

96-well Multiply®-PCR Plates   Sarstedt, Nümbrecht 

 

2.5 Solutions, medium and buffers 

loading buffer (6 x)  

     0.25 %  Bromphenolblue 

     0.25 %  Xylencyanol FF 

     100 %   Formamid 

 

10 x TBE    0.9 M  Tris-HCl 108 g Tris-HCl 

     0.9 M  Boric Acid 54 g Boric Acid  

     0.02 M  EDTA  7.2 g EDTA  

         pH 8.3; ad 1L 

 

10 x PBS    1.4 M  NaCl  80 g 

     27 mM  KCl  2 g 

     90 mM  Na2HPO4 14,4 g 

     15 mM  KH2PO4 2,4 g 

       water  pH 7.4; ad 1L 

 

10 x GTS    1.9 M  Glycine  144 g Glycine 
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     0.25 M  Tris  30 g Tris 

     1 %  SDS  10 g SDS 

       water  ad 1L 

10 x Carbonate-Puffer  0.1 M  NaHCO3 8.4 g NaHCO3 

(Transfer Buffer)   30 mM  Na2CO3 3.18 g Na2CO3 

       water  ad 1L 

 

Blocking-Buffer    1 x  PBS  

      5 %  (w/v) low-fat milk powder 

      0.05 % (w/v) Tween 20 

 

Wash-Buffer 

(PBS-T)     1 x  PBS 

      0.05 % (w/v) Tween 20 

 

Cell culture medium for lymphoblastoid cells 

RPMI-Medium 1640    500 ml 

Add: 

Penicillin     50000 U 

Streptomycin     50 mg 

FCS      10-20 % (v/v) 

 

Cell culture medium for HMEC (Human mammary epithelial) cells 

MEBM-Medium (basal medium) 

Mammary Epithelial Basal Medium  

(no growth factors)    500ml 

Add (growth supplements): 

BPE (pitnitary extract)   2ml 

hEGF (human epidermal growth factor) 0.5ml 

Hydrocortisone    0.5ml 

GA-1000 (gentamycin/amphotericin) 0.5ml 

Insulin      0.5ml 

Reagent pack for trypsinization of HMEC 

100ml  Trypsin/EDTA 

100ml  HEPES-BSS (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid buffered saline) 

MEGM (growth medium) 
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100ml  TNS (trypsin neutralizing solution) 

 

2.6 Sterilization of solutions and equipments 

All solutions, which were not heat sensitive, were sterilized at 121°C, 105 Pa for 20 min in an 

autoclav (Zirbus, Bad Grund). Heat sensitive solutions were filtered through a disposable sterile 

filter (0.2 to 0.45 µm pore size, Millipore, Schwalbach,). Plastic ware was autoclaved, as described 

above. 

 

2.7 Patients and controls 

For the purpose of this study, DNA samples from breast cancer patients and cancer-free control 

individuals were subjected to molecular genetic analysis, and lymphoblastoid cell lines (LCLs) 

were established from selected patients for further analyses at the RNA or protein level (LCLs were 

initially established from peripheral B-lymphocytes through EBV immortalization by Britta 

Wieland and placed at my disposal for further culturing and studies) Genomic DNA (gDNA) was 

extracted from peripheral lymphocytes of 5 ml EDTA blood samples and additional gDNA samples 

were obtained in some cases from established LCLs. 

The scope of this project does not include treatment or therapeutic experiments on human 

individuals. The experiments with patient samples and research using patient data comply with the 

recommendations of the World Medical Council. All genetic tests were performed after thorough 

information about the research project has been provided and written informed consent of the 

respective individual has been obtained. Informed consent of the probands was approved by the 

Ethics Commission of the State Organization “Institute for Hereditary Diseases”, Ministry of 

Health, Republic of Belarus, and the project received additional approval from the Ethics 

Commission at Hannover Medical School (No. 3221). All individuals who wish to be informed in 

more detail were offered a genetic counseling session before, during or after the end of a mutation 

screening. Genetic counseling inform about the connection between ionizing radiation and breast 

cancer, familial risks, sensitivity and specificity of the genetic testing, and options concerning a 

possible positive test result.  

A total of 1759 breast cancer patients were recruited during the course of this thesis who were 

unselected by age or family history and were diagnosed in the Republic of Belarus during the years 

1998-2007 at the Byelorussian Institute for Oncology and Medical Radiology “Aleksandrov N.N.” 

(Minsk) or at one of five Regional Oncological Centers (Brest, Vitebsk, Grodno, Gomel, Mogilev). 

The median age of the breast cancer patients was 48 years. The controls were 1019 cancer-free 

volunteers from the same population who had been ascertained at the Institute for Inherited 

Diseases in Minsk, Belarus. The median age of the control individuals was 46 years. According 
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whole body doses accumulated after the Chernobyl accident in the study regions (Pukkala et al, 

2006), the investigated cohorts could be divided into five subgroups: 0 not contaminated; I <5mSv; 

II 5-19.9 mSv; III 20-39.9 mSv and IV >40 mSv (table 2.1, figure 2.1). Roughly half of both the 

cases and the controls from contaminated regions originated from each of the two centers in the 

Gomel and Mogilev oblasts (table 2.1, figure 2.1). The median age at onset of breast cancer was 48 

years for all patients but a marked heterogeneity was noted when patients were stratified by region 

of origin. The difference in the age at diagnosis for patients in non-contaminated regions – 50 years 

versus the age at diagnosis in contaminated regions – 44 years, was highly significant:  p< 0.00001, 

median test). According dividing into subgroups median age at diagnosis in contaminated regions 

was 42 years for subgroup I, 46 for II, 44 for III and 43 for IV respectively. 298 (17%) of all 

patients reported at least one first-degree relative affected with breast cancer, 64 patients (3.6%) had 

a bilateral breast cancer. Of the bilaterally affected cases, 15/64 (23%) reported a family history of 

the disease, 35/64 (55%) patients were from contaminated areas. 20 patients (1.1%), with 12/20 

from contaminated areas, beside breast cancer had also ovarian carcinoma and 14 (0.8%), with 9/14 

from contaminated regions, had a relative affected with ovarian carcinoma (figure 2.2 and 2.3).  

Table 2.1 Study groups 

Series Total (n) Series Total (n) 
Cases  1759 Controls 1019 

Familial 298   
Not contaminated areas (0) 976 Not contaminated areas (0) 604 

Familial** 132/976   
Minsk 292 Minsk 246 
Brest 256 Brest 146 

Grodno 228 Grodno 104 
Vitebsk 200 Vitebsk 108 

Contaminated areas* (I-IV) 783 Contaminated areas* (I-IV) 415 
Familial** 166/783  

Gomel 416 Gomel 207 
Mogilev 367 Mogilev 208 

Cases from contaminated areas (n) Controls from contaminated areas (n) 
I II III IV I II III IV 

269/783 298/783 175/783 41/783 180/415 197/415 31/415 7/415 
*regions contaminated with long-lived radionuclides after Chernobyl accident 
** subset of cases with at least one first-degree relative affected with breast cancer 
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Figure 2.1 Diagrams showing distribution of studied subjects in different regions. First panel: proportion 

of cases and controls from contaminated and non-contaminated areas; second panel: proportional distribution 

of cases and controls according division into subgroups. 

 
Figure 2.2 Distribution of multisite cancer in the studied subjects, stratified by family history of the 

disease. Numbers on diagram provide total numbers of cases with unilateral, bilateral and breast/ovarian 

disease. 
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Figure 2.3 Distribution of familial and multisite cancer among the studied patients, stratified by 

region. Numbers on diagram refer to the total numbers of cases in each category.  
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3. Methods 
3.1 Extraction of genomic DNA 

3.1.1 Isolation of peripheral lymphocytes from whole EDTA blood 

To isolate lymphocytes, 5 ml patient's blood (in 0.1 mM EDTA tubes) was mixed with 10 ml 

erythrocyte lysis buffer and centrifuged (3000 rpm, 15 minutes, 4°C). Sediment was washed twice 

with 5 ml of erythrocyte lysis buffer, centrifuged (3000 rpm, 15 minutes, 4°C), transferred in new 

autoclaved 1.5 ml tubes and resuspended in 400µl proteinase K reaction mix with subsequent 

proteolysis at 56°C over night. 

 

Erythrocyte lysis buffer (usually fresh, autoclaved, stored at 4°C ): 

155 mM  ammonium chloride, 

10  mM  KHCO3,  

0.1 mM  EDTA, pH 7.4 

 

proteinase K reaction mix (per sample): 

190µl   sterile HPLC grade water 
150µl  proteinase K (10 mg / ml) 
 40µl   10 x STE 
 20µl   10 % SDS 
 
10 x STE buffer: 
0.5 M  Tris-HCl 
1 M  NaCl 
0.01 M  EDTA 
Ad 1 L with bidistilled water (pH 7,5) 
 
 

3.1.2 Phenol-chloroform extraction and ethanol precipitation of gDNA 

Protein impurities were removed by vigorous shaking of samples after proteinase K reaction with an 

equal volume (400µ) of phenol/chloroform/isoamyl alcohol mixture (25:24:1, with TE buffer 

brought to pH 8.0). The emulsion was then centrifuged for 10 min, 13000 rmp, at 4°C, and the 

upper aqueous phase was collected in new autoclaved tubes, mixed once again with an equal 

volume of phenol/chloroform/isoamyl alcohol, centrifuged for 10 min, 13000 rpm, at 4°C, and 

again the upper aqueous phase was transferred into new autoclaved tubes, then mixed with an equal 

volume of pure chloroform and centrifuged (10 min, at 4°C, 13000 rpm). Finally, the upper aqueous 

phase was collected for precipitation. Nucleic acids were precipitated by addition of 3M sodium 

acetate (pH 4.8) and 3 volumes of absolute ethanol (100 %). The mixture was then carefully 

swayed, incubated for 30 min at 4°C to complete DNA precipitation and centrifuged (10 min, 4°C, 
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13000 rpm). The pellet was washed with 70% ethanol (to remove residual salts) and centrifuged (10 

min, room temperature, 13000 rmp). After washing, the supernatant was aspirated and the pellet 

was dried at 50°C for ~5 min. The dried pellet was resolved in 1 x TE buffer and the sample was 

stored at 4°C. 

 

10 x TE-Buffer: 
0.1 M  Tris-HCl 
0.01 M  Na2EDTA 
Ad 1 L with bidistilled water (pH 8.0) 
 

3.1.3 Isolation of gDNA from cell lines 

For the goals of this study, gDNA was also isolated from selected established cell lines. The main 

step is also proteolysis using proteinase K following phenol-chloroform extraction (see sections 

3.1.1 and 3.1.2). Cells with medium were transferred into a 15 ml Falcon tubes, centrifuged at 3000 

rpm, washed 2 times with ice-cold 1 x PBS (sterile phosphate balanced saline) and for the last 

washing step transferred into new autoclaved 1.5 ml tubes, finally I added 400µl of proteinase K 

reaction mix and proceeded as described in 3.1.2. 

 
3.1.4 Purification of DNA 

3.1.4.1 Sodium acetate- ethanol precipitation  

Sodium acetate- ethanol precipitation was also used to remove nucleoside triphosphates and buffer 

components from PCR products or sequencing reactions. To the samples was added 1/10 volume of 

3 M NaAc and 3 volume of absolute ethanol with subsequent vortexing, incubation for 1 hour at RT 

or over night at 4°C and centrifugation for 30 min at 13000 rpm (at 4°C). The pellet was washed 

with 70% ethanol, centrifuged 30 min at 13000 rpm (4°C). After washing and drying, the pellet was 

dissolved in 20 µl of 95% formamide (for a subsequent sequencing reaction), or for other purposes 

in 1 x TE, bidestilled water or special buffer. 

 

3.1.4.2 Polyethylenglycol precipitation 

Before sequencing reactions, PCR products were purified by adding 1 volume of polyethylenglycol 

(PEG) solution with subsequent vortexing, incubation for 10 min at RT, and centrifugation at 13000 

rpm for 10 min at RT. The supernatant was aspirated and the pellet was washed with 100µl of 

absolute ethanol. After centrifugation with 13000rpm for 10 min at RT, the supernatant was 

aspirated and the pellet was dried at 50°C for 5-7 min. The dried pellet was resolved in 10-20µl 

sterile HPLC grade water. 
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PEG solution: 

262 g   Polyethylenglycol 8000 

1.2 g   Magnesiumchloride hexahydrate 

4.2 g   Sodium acetate 

Ad 1000 ml bidistilled water 

 

3.2 Polymerase chain reaction (PCR) 

3.2.1 Principle of method 

Polymerase chain reaction (PCR) is a technology to amplify selected pieces of DNA. The invention 

of PCR is ascribed to Kary Mullis who, at the time he considered PCR in 1983, was working in 

Emeryville, California for Cetus, one of the first biotechnology companies. There, he was charged 

with making short chains of DNA for other scientists. Mullis has written that he conceived of PCR 

while cruising along the Pacific Coast Highway 1 at one night in his car (Mullis 1990). He was 

playing in his mind with a new way of analyzing changes (mutations) in DNA when he realized that 

he had instead invented a method of amplifying any DNA region. Mullis has said that before his trip 

was over, he was already savoring the prospects of a Nobel Prize. He indeed shared the Nobel Prize 

in Chemistry with Michael Smith in 1993. As Mullis has written in the Scientific American: 

"Beginning with a single molecule of the genetic material DNA, the PCR can generate 100 billion 

similar molecules in an afternoon. The reaction is easy to execute. It requires no more than a test 

tube, a few simple reagents, and a source of heat." (Mullis 1990). 

At present PCR is one of the most important techniques in the field of molecular biology. It is a 

very sensitive and powerful technique (Saiki et al., 1988) that is widely used for the exponential 

amplification of specific DNA sequences in vitro by using sequence-specific synthetic 

oligonucleotides (primers). The general principle of PCR starts from a pair of oligonucleotide 

primers that are designed so that a forward or sense primer directs the synthesis of DNA on one 

strand in a 5´-3´direction, and a reverse or antisense primer on the complementary strand vice versa. 

From the second cycle on, the daughter strands can themselves serve as templates for PCR products 

with restricted lengths defined by both primers. During the several extension cycles of PCR, the 

Taq DNA polymerase (a heat stable polymerase) (Chien et al. 1976) catalyses the synthesis of new 

DNA strands complementary to the template DNA from the 5' to 3' direction by a primer extension 

reaction, resulting in the exponential production of the selected DNA region flanked by the two 

primers. It allows the rapid and unlimited amplification of a specific nucleic acid sequence that may 

be present at very low concentration in any sample. 

 

 

http://en.wikipedia.org/wiki/Biotechnology
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3.2.2 PCR amplification of DNA  

A mix for PCR was prepared with final concentrations of 0.2 mM dNTPs, 1.5 mM MgCl2, 1.0 U 

heat stable DNA polymerase (Taq DNA polymerase from Thermus aquaticus), 0.5µM each primer, 

1 x specific amplification buffer, recommended by manufactures of enzyme, 50 ng genomic DNA 

and sterile HPLC-grade water up to 15-25 µl end volume in either0.5 ml PCR tubes or 96-well 

plates. Amplification was performed in a peltier-controlled thermocycler (mostly PTC-200 from 

Biozym/ MJ Research) where an initial denaturation of 15 min (for HotStar Polymerase) or 5 min 

(for GoTaq Polymerase) was followed by an orderof 33 to 40 cycles of denaturation-annealing-

extension steps, depending on the primer pair. Denaturation and extension steps were performed for 

1 min. Denaturation temperature was 95°C, extension temperature 72°C. Annealing temperature 

was adjusted according to primer composition and was selected for each primer pair in a primer 

optimization procedure. 

 

initial denaturation   95°C   5/15 min 

 

 annealing  54-68°C 1 min 

 elongation  72°C  1 min 

 denaturation  94°C  1 min 

 

final elongation  72°C  5 min 

 

Primers were designed using published data or using reference sequences obtained from the NCBI 

Genbank. Primers were generally chosen to be 20-25 nucleotides long, to consist of similar 

proportions of A/T and G/C nucleotides, to avoid repetitive sequences and to end with a G or C. 

The PCR volume and the corresponding input of template were dependent on the purpose of 

amplification and subsequent experimental procedures. For ARMS-PCR and for PCR followed by 

restriction enzyme reactions, we used 50-100 ng of genomic DNA as template in a total volume of 

15µl; for multiplex PCR 100-150 ng genomic DNA in a total volume of 20µl, and for PCR 

followed by sequencing 150-200 ng in a total volume of 25µl. Each PCR assay was done including 

so called “water control” (no template control) for check of PCR quality. 

 

33-40cycles 
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3.3 Enzymatic cleavage of DNA using restriction endonucleases 

3.3.1 Restriction endonucleases  

Restriction enzymes are proteins (more specifically, endonucleases) that are produced by bacteria or 

archaea as part of their restriction/ modification system. Restriction endonucleases cleave double-

stranded DNA at sequence-specific sites. Most of them are “type II” restriction endonucleases that 

act as homodimers to recognize palindromic, i.e. complementary symmetric, sequences of 4-8 bp 

(Pingoud and Jeltsch 2001). Hundredsof restriction endonucleases have been found, from many 

different species. The term restriction comes from the fact that these enzymes were discovered in E. 

coli strains that appeared to be restricting the infection by certain bacteriophages. Restriction 

enzymes therefore are believed to be part of a mechanism evolved by bacteria to resist viral attack 

and to help in the removal of viral sequences, in concert with the protection of own DNA by 

corresponding sequence-specific methyltransferases (the restriction/ modification system). Thus, in 

the living bacterial cell, restriction enzymes destroy the DNA of certain bacteriophages, thus 

placing a “restriction” on the number of viral strains that can cause infection; while the bacterium's 

own DNA is protected from cleavage by methyl (CH3) groups. The enzyme makes two 

phosphodiester bond incisions, one through each of the sugar-phosphate backbones of the double 

helix without damaging the bases, resulting in fragments with either blunt or sticky ends depending 

on the enzyme. 

 

3.3.2 Procedure 

Restriction enzyme cleavage reactions were performed by incubating double-stranded PCR 

products with an appropriate amount of restriction enzyme in its respective buffer (optionally BSA 

was added) as recommended by the supplier, and at the optimum temperature for the specific 

enzyme. Usually, 4 µl PCR products were incubated without further purification with 1 µl 10x 

buffer and 1.5 U of the respective enzyme in a total volume of 10 µl. These reactions were usually 

incubated over night to insure complete cleavage. Enzymes used for this thesis are summarized in 

table 3.1. 
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Table 3.1 Restriction enzymes applied in this study. 

Enzyme Recognition site Optimal temperature (°C) 

AvaII 5’-G∇GWCC-3’  * 37° 

DdeI 5’-C∇TNAG-3’ 37° 

MseI 5’-T∇TAA-3’ 37° 

PstI 5’-CTGCA∇G-3’ 37° 

RsaI 5’-GT∇AC-3’ 37° 

ScrFI 5’-CC∇NGG-3’  * 37° 

Tsp509I 5’-∇AATT-3’ 65° 

* underlined single letters code: N – any nucleotide, W – A or T. ∇ cleavage site 

 

3.4 DNA Sequencing 
3.4.1 Principle of the method 

DNA sequencing is the process of determining the order of nucleotides in a given DNA fragment. 

Currently, most DNA sequencing is performed using the chain termination method developed by 

Frederick Sanger (Sanger et al 1977). This technique uses sequence-specific termination of a DNA 

synthesis reaction using modified nucleotide substrates. In chain-termination sequencing (Sanger 

sequencing), the extension is initiated at a chosen site on the template single stranded DNA by 

using a short oligonucleotide 'primer' complementary to the template at that region. The 

oligonucleotide primer is extended using a DNA polymerase. Included with the primer and DNA 

polymerase are the four desoxyribonucleosidetriphosphates, along with a low concentration of at 

least one chain terminating nucleosidetriphosphate (most commonly a di-desoxyribonucleoside 

triphosphate labelled with a separate fluorescent dye). Limited incorporation of the chain 

terminating nucleotide (which fluoresces at a different wavelength) by the DNA polymerase at 

different positions in repeated cycles results in a series of related DNA fragments that are 

terminated only at positions where that particular nucleotide is used. The end-labelled fragments are 

then size-separated by electrophoresis either in a slab gel or in a narrow glass tube (capillary) filled 

with a viscous polymer.  

 

3.4.2 Sequencing procedure 

During presented thesis, non-radioactive sequencing reactions were performed with the Sanger 

method using a Big Dye Terminator Cycle Sequencing-Kit v. 1.1 (Applied Biosystems, Darmstadt). 

The sequencing reaction was carried in a total volume of 10µl, usually containing 2μl of purified 

PCR products, 1µl of sequencing primer (5µM) and 1.5 μl BigDye reaction mix (contains reaction 

buffer, dNTPs, four differentially labelled ddNTPs and polymerase). It was important to set up the 

mix with fluorescence-free HPLC grade water (Baker). Elongation and chain termination takes 

http://en.wikipedia.org/wiki/Wavelength
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place during the following program in a thermocycler: 5 min denaturing followed by 25 cycles as 

follows: 95°C for 30 sec, denaturing; 50°C for 15 sec, annealing; 60°C for 4 min, elongation.  

After the sequencing reaction in the thermocycler, the reaction products were precipitated with 

sodium acetate and 100 % ethanol as described in section 3.1.5.1. After washing and drying, pellet 

was dissolved in 20 µl of 95% formamide, incubated either at RT (1 hour) for processing on the 

same day or at 4°C (over night) in darkness. Finally, samples were denatured at 95°C for 3 min, 

immediately placed on ice and then transferred into 96-well plates to be loaded into the sequencing 

analyzer, mainly the ABI PRISM 3100 Avant Genetic Analyzer (Applied Biosystems). 

Electrophoresis run parameters were defined using the Data Collection Software and the raw 

fluorescence data were evaluated and further processed by using the Sequencing Analysis Software 

Package (Applied Biosystems). 

 

3.5 RNA analyses 

3.5.1 Precautionary measures 

Precautions were used while isolating and handling RNA in order to prevent degradation. All used 

solutions, glassware and plastics were treated with 0.1% DEPC water and sterilized to ensure the 

inactivation of unwanted nucleic acids and proteins including RNase, which is an extremely stable 

enzyme requiring no cofactors to exert its effect of RNA digestion and degradation. Everything was 

handled only while wearing gloves. RNA was always dissolved in autoclaved DEPC water and 

stored at –80°C or kept on ice while handling.  

 

DEPC water: 

0.1 % DEPC was shaken vigorously to dissolve the DEPC (dieethylpyrocarbonate). The required 

plastic ware was incubated with DEPC water for 1 hour under a fume and finally autoclaved to 

inactivate residual DEPC. 

 

3.5.2 Isolation of total RNA from cultured cells 

Suspension cells were collected by centrifugation at 3000 rpm for 5 min, and the pellet was rinsed 

once with 1xPBS. Adherent cells were trypsinizated from the culture dishes, collected in a tube and 

similarly washed with 1xPBS. The cell pellet could be stored at –20°C up to 2 weeks before the 

RNA was isolated. Total RNA from cell pellets was extracted using TRI Reagent® (AB Gene, 

Göttingen). This phenol-based reagent contains a guanidine thiocyanate in a monophasic solution, 

including some combination of denaturants and RNase inhibitors, and was used in a single-step 

disruption/separation procedure described first by Chomczynski and Sacchi (1987). Cell samples 

were homogenized in the TRI Reagent, then 0.2 ml of chloroform was added, and the samples were 
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vortexed and incubated on ice for 5 min. After centrifugation at 13000 rpm for 15 min at 4°, the 

mixture separated into three phases (aqueous phase, narrow interphase, organic phase). The 

colourless upper aqueous phase was transferred into a new tube. The RNA was then precipitated 

from the aqueous phase by adding 500 μl of isopropanol, followed by vortexing and spinning at 

13000 rpm for 5 min. Finally, the pellet was washed with 85% ethanol and dissolved in 15-30 μl 

autoclaved DEPC water. The entire procedure could be completed in no more than one hour to 

produce high yields of intact RNA from several samples for subsequent use. The amount and purity 

of RNA was estimated using photometry at 230, 260 and 280 nm (Biophotometer, Eppendorf), as 

described in 3.6, and 2 µl of the RNA solution were analysed on a 1% agarose gel to evaluate the 

28S and 18S rRNA bands as markers for the integrity of the isolated RNA. The RNA solution was 

then stored at -80°C. 

 
3.5.3 Reverse transcription and subsequent PCR (RT-PCR) 

RT-PCR is a technique, which generates cDNA fragments from RNA templates and thereafter 

amplifies the cDNA by PCR. 8 μl RNA dilution containing approximately 1 μg of total RNA was 

used as a template for the first strand cDNA synthesis. The procedure employed random hexamer 

priming and M-MuLV Reverse Transcriptase purchased from Amersham/GE Healthcare and was 

performed according the protocol of the manufacturer without any modifications. In brief, the RNA 

sample was denatured for 10 min at 68°C and placed on ice. 7 µl Enzyme mix containing the 

reverse transcriptase, dithiothreitol and dNTPs was added, and the sample was incubated for 1 hour 

at 37°C, followed by a final denaturation at 95° for 10 min. An aliquot of the synthesized cDNA 

was directly used without further purification for subsequent PCR amplifications. 

 

3.6 Determination of nucleic acids concentration 

The concentration of isolated nucleic acids was determined photometrically by measuring their 

optical density (OD) at 260 and 280 nm (Biophotometer, Eppendorf, Hamburg). 2µl of samples 

were added to 98 µl sterile HPLC water (1:50 dilution). The concentration was determined based on 

the fact that absorption of 1 at 260nm is roughly equivalent to a double stranded DNA concentration 

of 50µg/ml or an RNA concentration of 40µg/ml. For example, with DNA the formula was applied: 

Absorption (OD260) × 50 µg/ml × Dilution Factor (50) ≈ Sample Concentration µg/ml. The purity of 

nucleic acids in solution can be estimated by the relative extinction at 260 nm and 280 nm 

(OD260/280nm ). Protein contaminations result in a ratio of < 1.7., the ratio between the absorptions at 

260 nm and 280 nm for DNA should be in the range from 1.7 to 2.0 for an acceptable purity of 

nucleic acids (Maniatis et al. 1982). 
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3.7 Agarose gel electrophoresis  

3.7.1 Agarose gel electrophoresis of DNA and RNA 

Electrophoresis is a technique by which a mixture of charged macromolecules, especially nucleic 

acids or proteins, can be separated in an electric field according to their electrophoretic mobility 

which is directly proportional to the macromolecule’s charge to mass ratio. 

Nucleic acids can be separated according to their lengths by gel electrophoresis through agarose 

gels, with the separation range being dependent on the agarose concentration (in the presented work 

were used 1-3% w/v agarose in TBE). The 1-3 g of agarose was dissolved in 100 ml 1 x TBE 

buffer, boiled in the microwave, then cooled down to about 50-80°C before adding ethidium 

bromide (10 mg/ml, final concentration of 0.1 µg/ml) or Gel-Red (1,000 fold in DMSO, final 

dilution 1:50,000), thoroughly mixed by gentle swirling and then poured into an electrophoresis tray 

with appropriate comb(s). After solidification of the agarose, the tray was transferred to a horizontal 

electrophoresis chamber and the gel was covered with 1xTBE buffer. The 4-8 µl of sample were 

mixed with 2-4 µl of 6x loading buffer, applied onto the gel, and run at 100-150 V at RT. To 

determine the size of the nucleic acids fragments on agarose gels, molecular weight ladders were 

loaded in parallel. After gel electrophoresis, the DNA was visualized on a UV transilluminator. 

 

3.8 Allelic discrimination assays  

3.8.1 Principle of the method 

Allelic discrimination is a process by which two variants of a nucleic acid sequence are detected 

and discriminated in a chosen sample, and this method is now widely  used for single-nucleotide 

polymorphism (SNP) detection and screening. In presented thesis, allelic discrimination was 

achieved by using fluorogenic 5’ nuclease assays in a probe technology that exploits the 5´-3´ 

nuclease activity of AmpliTaq Gold® DNA Polymerase to allow direct detection of the PCR 

product by the release of a fluorescent reporter as a result of PCR. Fluorogenic probes are 

constructed for two possible allelic sequences and, after mixing of the primers, reagents and DNA 

samples, the PCR is run on a thermal cycler. During the PCR, the fluorogenic probes anneal 

specifically to their complementary sequence between the forward and reverse primer sites on the 

generated PCR product. During the extension step, the DNA polymerase cleaves those probes that 

are perfectly hybridized to the matching allelic sequence(s) present in each sample. Because the 

fluorescence signals are generated in significant amounts only if the target sequences for the probes 

are amplified during PCR, non-specific amplification is not detected. Furthermore, the double-

labelled probes require the cleavage by the polymerase as the fluorescence from the 5´-reporter dye 

(such as FAM or VIC) is quenched via Förster transfer (fluorescence resonance energy transfer, 

FRET) by a 3´-quencher dye (such as BHQ- Black Hole Quencher). The cleavage of each perfectly 
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matched probe separates the reporter dye from the quencher dye, which results in increased 

fluorescence by the reporter, what is detected during the PCR amplification (figure 3.1). Imperfectly 

matched probes are not cleaved, thereby allowing for allele-specific signals, and by quantifying and 

comparing the fluorescence signals (using the software from manufactures), it is possible to 

determine the allelic distribution in each sample. 

 

 
 

3.8.2 Procedure  

Allelic discrimination assays were performed in 96-well plates. Initially, the plate was prepared by 

supplying an aliquot of DNA sample to each well and adding a PCR master mix with total volume 

of 7μl. Then background fluorescence was measured (pre-read step), followed by the PCR 

amplification. PCR amplification curves could be inspected in real time on the SDS7000 or the 

7500 FAST Sequence Detection System platforms (Applied Biosystems). After PCR, fluorescence 

was measured again (post-read step) and the initial background fluorescence was subtracted. The 

results of each allelic discrimination run were analyzed using the 7500 Fast System Software, 

graphics software from the supplier (Applied Biosystems). During the analysis, the software (7500 

Fast System Software, Applied Biosystems) automatically applies transformations to the raw data 

and determines the spectral contribution of each dye in the unknown sample. 

PCR master mix (per well): 

1.5μl (50-100ng) DNA sample 

Figure 3.1 The fork-like-structure-
dependent, polymerisation -associated, 
5´–3´ nuclease activity of AmpliTaq 
Gold DNA Polymerase during one 
extension phase of PCR. Both the dual-
labelled probe and the PCR primers 
anneal to the target sequence during the 
PCR annealing step. The proximity of 
the fluorescent reporter with the 
quencher prevents the reporter from 
fluorescing. During the PCR extension 
step, the polymerase extends the primer. 
When the enzyme reaches the dual-
labelled probe, its 5'–3' exonuclease 
activity cleaves the fluorescent reporter 
from the probe (if the probe matches). 
The fluorescent signal from the free 
reporter is measured. (Scheme is taken 
from TaqMan Allelic Discrimination 
protocol, Applied Biosystems ). 
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plus either 

-for predesigned assays: 

2.8μl   2x TaqMan Genotyping Master Mix (containing dNTPs, AmpliTaq Gold 

DNA polymerase, MaCl2), and 

0.07μl or 0.14μl 80x or 40x SNP Genotyping Assay Mix, respectively (containing probes 

labelled with VIC und FAM dyes, constructed for two possible alleles; and primers for the region of 

interest) 

or 

-for self-designed assays 

2.8μl   2x TaqMan Genotyping Master Mix (containing dNTPs, AmpliTaq Gold 

DNA polymerase, MaCl2), and 

0.0667μl  each primer (15μM) 

0.045 μl  each fluorogenic probe 

Add 7μl  sterile HPLC grade water 

Pre- and post-read steps were done at 60°C during 1 min. 

 

Routine PCR conditions were the following: 

initial denaturation   95°C   15 min 

 denaturation  95°C  15 sec 

 annealing  60-65°C 30 sec 

 elongation  72°C  30 sec 

 

The quality of genotyping was controlled in several ways: 

- every plate included a no template control for PCR specificity, 

- for each assay, the replication of one plate was performed to reproduce obtained results, 

- results for some TaqMan assays were interinstitutionally controlled for by using a “Coriell plate”- 

DNA collection from CEPH families with known genotypes, and data were compared between 

members of the Breast Cancer Association Consortium. 

40/60 cycles 
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- results for some TaqMan assays were controlled by using restriction enzyme cleavage or direct 

sequencing of selected samples with certain genotype, which were 100% concordant if compare 

both techniques. 

 

3.9 Reverse transcription and real time PCR analysis (qRT-PCR) using SYBR Green I  

3.9.1 Principle of the method 

Real-time polymerase chain reaction, also called “quantitative” real time polymerase chain reaction 

(qRT-PCR) or “kinetic” polymerase chain reaction, is a technique based on PCR, which is used to 

amplify and simultaneously quantify a targeted DNA molecule. It enables both detection and 

quantification (either as absolute number of copies or as relative amount when normalized to DNA 

input or additional normalizing genes) of a specific sequence in a DNA sample. The procedure 

follows the general principle of PCR as described in 3.2.; its key feature is that the amplified DNA 

is quantified as it accumulates in the reaction in real time after each amplification cycle. Relative 

concentrations of DNA present during the exponential phase of the reaction are determined by 

plotting fluorescence against cycle number on a logarithmic scale (so that an exponential increase 

will give a straight line). A threshold for detection of fluorescence above background can be 

automatically determined or manually defined. The cycle at which the fluorescence from a sample 

crosses the threshold is called the cycle threshold, Ct. Since the quantity of DNA approximately 

doubles every cycle during the exponential phase, relative amounts of DNA can be calculated, e.g. a 

sample whose Ct is 3 cycles lower (“earlier”) than another's, might have had about 23 = 8 times 

more template. Absolute amounts of RNA or DNA can be determined by comparing the results to a 

standard curve produced by RT-PCR of serial dilutions of a known amount of RNA or DNA. In 

order to more accurately quantify relative gene expression, the measured amount of RNA from the 

gene of interest is divided by the amount of RNA from a housekeeping gene measured in the same 

sample, to normalize for possible variation in the amount and quality of RNA between different 

samples. This normalization permits accurate comparison of expression of the gene of interest 

between different samples, provided that the expression of the reference (housekeeping) gene used 

in the normalization is very similar across all the samples. Furthermore, the addition of an 

independent dye (such as ROX) into the PCR master mix controls for pipetting errors during the 

handling of different samples. 

SYBR Green I is a DNA-binding dye which binds to all double-stranded DNA, causing enhanced 

fluorescence of the dye. The intensity of the signal is thus proportional to the amount of dsDNA 

present in the reaction. Therefore, in each step of the PCR reaction, the signal intensity increases as 

the amount of product increases. Thus it provides a very simple and reliable method to monitor the 

accumulating PCR products in a real time course. Another advantage of this technique is that no 
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modification in oligonucleotide primers are required which facilitates primer design/synthesis and 

more important it lowers the running cost of PCR reaction. However, careful optimization of the 

reaction conditions for each primer set is required as non-specific by-products would also be 

detected.  

 

3.9.2 Procedure 

In this thesis, the expression of genes of interest was quantitated using the ABI Prism 7000 

Sequence Detection System (Applied Biosystems) and the 2x POWER SYBR Green PCR Master 

Mix (Qiagen). Briefly, according to manufactures instructions, the Master-Mix for reactions was 

prepared by combining the following components on ice:  

 

10 μl 2x SYBR Green Mix  

2 μl Primer mix (forward and reverse, 5μM/μl)  

2 μl cDNA template  

6 μl HPLC water 

 

The cDNA samples for standard curves were prepared in serial dilutions: 1; 1:10; 1:100; 1:1000. All 

samples were amplified in quadruplicates. The program for the real time PCR was created consisted 

of the following steps:  

 

initial denaturation 95°C   15 min 

 

 denaturation  95°C  30 sec 

 

 annealing/elongation 63°C  1 min 

 

Data analysis was performed using the ABI PRISM 7000 SDS (Applied Biosystems) software with 

the standard curve method, and the expression of the investigated gene was normalized to 

cyclophylin mRNA expression. Results and standard deviations were illustrated by box plots 

prepared with Microsoft Office Excel.  

 

 

 

40 cycles 
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3.10 Lymphoblastoid cell culture  

Peripheral B-Lymphocytes have a limited life-span of about 5-7 days. A simple routine use 

procedure to overcome this limitation exploits the efficient immortalisation (“transformation”) of 

peripheral B-lymphocytes by Epstein-Barr virus (EBV, a human lymphotropic herpes virus) and 

thus the establishment of permanent lymphoblastoid cell lines (LCL). Converted ex vivo to 

continuously dividing, efficiently immortalized lymphoblastoid cells, B-lymphocytes from selected 

patients can then be used for a plethora of assays, including isolation and investigation of DNA or 

RNA, harvesting of proteins for functional investigations, or flow cytometry and 

immunohistochemistry. 

Peripheral blood lymphocytes from selected Byelorussian breast cancer patients or control persons 

were isolated by a Ficoll gradient, and Britta Wieland from our group kindly established EBV-

infected cell lines for this project. All cell lines were cultured at 37°C and 95% humidity in the 

presence of 5% CO2 in a SANYO incubator. Lymphoblastoid cell lines were maintained in RPMI 

1640 medium (Invitrogen) supplemented with 15% heat-inactivated fetal calf serum (BIOCHROM 

AG Seromed®, Berlin), 100 units/ml penicillin, 100 µg/ml streptomycin, 1 mM sodium pyruvate 

and 2 mM glutamine (Invitrogen, Karlsruhe). Cell culture was fed every 2-3 days. 

For certain functional assays cells were irradiated. One day before irradiation cells were fed with 

fresh medium, and the cultures were brought to the same volume (usually 10 ml of cell culture). 

Dependent on the assay planned, cells were irradiated with 6 or with 10 Gy using a Mevatron Mx2 

irradiator (Siemens). At least one flask was left unirradiated as a control. After irradiation, cells 

were incubated in 5% CO2 at 37 °C for 30 min, 6 hours or 24 hours, according goals of experiment, 

followed by centrifugation and extraction of RNA, DNA or protein. 

For long-term storage, confluent cells were collected by centrifugation at 1000 rpm for 5 min at 

4°C, twice washed with sterile ice cold PBS and resuspended in freezing solution (2 ml freezing 

solution for cells from a confluent 10 ml culture). The cell suspension was transferred to appropriate 

cryovials and these were placed into a cryocontainer with isopropanol and kept for 24 hours at –

80°C. Thereafter, the cells were transferred to liquid nitrogen for long-term storage. For thawing, 

cryotubes were placed at 37°C in a water bath. Immediately after thawing, the cell suspension was 

transferred into a 15 ml vial containing 5 ml regular growth medium and centrifuged at 1000 rpm 

for 5 min at room temperature. The cell pellet was resuspended in growth medium and transferred 

into a T25 flask or culture dish. 

 

Freezing solution: 

20 % fetal calf serum 

10% glycerin 
in regular growth medium
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3.11 Human mammary epithelial cell culture (HMEC) 

Normal human mammary epithelial cells for experimental applications were obtained from Lonza 

(Belgium) cryopreserved in the seventh passage and were cultivated till passage 12. Cells were 

cultured at 37°C and 95% humidity in the presence of 5% CO2 in an incubator (Sanyo), using 

MEBM medium (Lonza) exclusively supplemented with growth factors and reagents (store at -

20°C) provided by Lonza and using the protocol recommended by manufacturer. Cell culture was 

fed every 2-3 days until cells were 60-80% confluent with many mitotic figures through the flask 

before subculturing. 

For certain functional assays (see chapter 4.5), the cells were irradiated with 5 Gy using a Mevatron 

Mx2 irradiator (Siemens). One day before irradiation cells were fed with fresh medium. At least one 

flask was left unirradiated as a control. After irradiation, cells were incubated in 5% CO2 at 37 °C 

for up to 24 hours, according the goals of experiment. HMEC are adhesive cells and were collected 

for experiments by trypsinization (also was used for subculturing, according manufactures 

prescriptions). Briefly, for the collection of cells after irradiation the medium was aspirated, cells 

were rinsed with 5 ml of HEPES-BSS to neutralize the complex proteins in growth medium which 

may inactivate trypsin. Subsequent 3 ml of trypsin/EDTA were used to remove cells from culture 

flasks surface, and the trypsinization process was microscopically examined (takes about 3-6 min) 

until 90% of cells were rounded up. This was followed by neutralization of trypsin with 3 ml of 

TNS and adding fresh warm medium for further culturing of the cells, or by centrifugation and 

extraction of RNA (see chapter 3.5.1). 

 

Freezing solution: 

10 % DMSO in regular growth medium. 

 

3.12 Protein extraction and analyses 

3.12.1 Isolation of total protein from lymphoblastoid cell lines 

Lymphoblastoid cells were cultured at 37°C in a humidified incubator with 5% CO2 (as described 

above), and 5-10 ml of cell culture containing about 2 x 107 cells were treated with irradiation  

before isolation of total proteins. Cells were transferred to a separate 15 ml Falcon tubes, 

centrifuged at 1000 rpm, washed twice with ice-cold sterile PBS and after the last wash step were 

transferred into new autoclaved eppendorf tubes, centrifuged at 3000 rpm 5 min and finally were 

suspended in 50-100µl (2-3 fold volumes of pellet) of lysis buffer. The samples were homogenized 

by pipetting, incubated for 30 min on ice (mixed gently every 10 min) and centrifuged for 15 min at 

13000 rpm. The supernatant was taken as the whole cell lysate, which was either directly used for 

Western blotting after Bradford determination of protein concentration or stored at -80°C. 
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Lysis buffer (store at 4°C): 

50 mM  Tris-Cl  (pH 7.4) 

150 mM  NaCl 

0,1 %   NP-40 (v/v) 

10 %   glycerol (v/v) 

25 mM  Na-β-glycerophosphate 

2mM  EGTA (tock solution 20mM) 

2mM  EDTA (stock solution 0.5M) 

 

Directly before use, proteinase inhibitors were added from concentrated stock solutions to the 

following final concentrations: 

1 mM PMSF, stock solution 100 mM in ethanol 

10 mM Na3VO4, stock solution 2 M in water 

5 µM Leupeptin, stock solution 5 mM in water 

20 mM NaF, stock solution 1M in water 

8 µg/ml Aprotinin, stock solution 1.6 mg/ml in water 

 

3.12.2 Determination of protein concentration 

Protein concentration in cell lysates was determined with the Bio-Rad protein assay, a modified 

Bradford assay (Bio-Rad, Munich), following the manufacturer´s recommendations. Briefly, 1 ml 

Bio-Rad protein assay solution was mixed with sample (2 µl) and the absorbance was measured at 

595 nm in a Bio-Photometer (Eppendorf). For the standard (calibration) curve, 0, 2, 4, 6, 8 and 10µl 

of 1mg/ml BSA were added to 1 ml Bio-Rad reagent and were measured in parallel. Sample 

concentration was estimated as OD/2α, where α is OD of 1 µl BSA in 1 ml Bio-Rad solution 

(Bradford 1976). 

 

3.12.3 Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

3.12.3.1 Gel preparation 

Proteins can be separated largely on the basis of their relative molecular mass by electrophoresis in 

SDS-polyacrylamide gels under denaturing conditions. For SDS-polyacrylamide gel 

electrophoresis, I used the vertical electrophoresis system from PeqLab to cast the gel and perform 

the electrophoresis. For the analysis of proteins with molecular weights between 60-100 kDa (1 Da 

approximately equals 1,66 x·10-27 kg), 7.5 % SDS-polyacrylamide gels were employed.  

Inner and outer glass plates were assembled in a casting tray. 
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For the separation gel 

0.1 %   SDS (w/v) 

400 mM  Tris-Cl (pH 8,8) 

0.1 %   APS (w/v) 

0.08 %  TEMED (v/v) 

and acrylamide / bisacrylamide (19:1) up to the desired concentration (7.5%) were mixed and 

adjusted with water to a final volume of 10 ml (APS and TEMED were added last to initiate 

polymerization). The gel solution was quickly poured into the vertical gel chamber and carefully 

overlayed with 70% ethanol. After complete polymerization of the separation gel, the ethanol was 

poured off and the 5% stacking gel was poured onto the separation gel.  

 

Stacking gel: 

5 %   Acrylamide: bisacrylamide (v/v) 

0.1 %   SDS (w/v) 

130 mM  Tris-Cl (pH 6,8) 

0.1 %   APS (w/v) 

0.1 %   TEMED (v/v) 

 

A comb was inserted into the stacking gel to form the sample slots and the gel was allowed to 

polymerize. After polymerization, the comb was removed; the gel chamber was then disconnected 

from the casting tray and inserted into electrophoresis chamber. 

 

3.12.3.2 Electrophoresis  

Protein samples (50 - 80 µg) were mixed with loading buffer at a ratio of 5:1, boiled for 5 min at 

95°C and chilled on ice. Samples were briefly centrifuged and loaded onto the gel. For molecular 

weight determination, a protein molecular weight marker was loaded parallel to the samples onto a 

separate lane (BioRad Precision Protein Standards, Munich). The gel was run initially at 80 V until 

the samples entered the separation gel, then for 2-3 hours at 100-120 V constant voltage at 4°C, 

until the bromphenol blue had nearly reached the bottom of the gel. 

Loading buffer (before use, can be stored at –20°C): 

40µl   10 % SDS 

25µl  0.5 M Tris (pH 6.8) 

10µl  2-β-mercaptoethanol 

4µl    bromphenol blue (1 mg / ml bidistilled water) 

3µl    glycerol 
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Running buffer: 

1 x GTS – buffer 

 

3.12.4 Western blotting 

Electrophoretically separated proteins were subsequently blotted onto nitrocellulose membranes 

(Hybond-C, GE Healthcare) in carbonate containing transfer buffer using a Protean 3 TE 62 

blotting chamber (GE Healthcare) following manufacturer's instructions. After the electrophoresis 

system was disassembled, the stacking gel was cut off and the separation gel was assembled with 

the nitrocellulose membrane, which was cut to the size of the gel, and equilibrated in Transfer 

buffer (1x carbonate buffer) for 10 min. Three sheets of Whatman filter paper (Maidstone) were cut 

and soaked in the transfer buffer. The gel with the membrane was placed subsequently onto the pre-

soaked filter papers. Another three sheets of presoaked filter paper were applied to complete the 

“sandwich”, and the whole was placed into the blotting chamber. The gel/membrane assembly was 

held securely between the two halves of the blot module ensuring complete contact without bubbles 

of all components. The blot module was filled with transfer buffer and run at 4°C by 35 V for 150 

min. 

After blotting was completed, successful transfer was proven by staining the membrane with 0.2% 

Ponceau Red (Sigma, Steinheim) for 3 min at RT. The membrane was destained by washing 10-15 

min with distilled water before the immunoreactions were performed. 

 

3.12.5 Immunological detection of membrane-bound proteins 

Proteins can be detected on the membrane with antibodies, which bind to a specific region of the 

protein (epitope). All antibodies used were diluted according to manufacturer's instructions in 

PBST-5% low-fat milk powder (w/v). The incubations and washing steps were performed on a 

shaker. The membrane was first blocked in PBST-5% low-fat milk powder (w/v) for at least 1 hour 

at room temperature or overnight at 4°C followed by an incubation step with a primary antibody for 

2 hours at room temperature or overnight at 4°C. This incubation was followed by three washes 

with PBST (15 min each) to remove unbound antibody and then the membrane was incubated with 

the appropriate secondary antibody diluted in PBST-5% low-fat milk. After incubation with the 

secondary antibody conjugated to horseradish peroxidase for 1 hour at RT, the membrane was 

washed as before. The membrane was rinsed with water to replace PBST and incubated in the dark 

for 5 min with developing solution, which either was made freshly in the dark by mixing self-

prepared ECL solutions 1 and 2 (1:1) or was mixed from the components of the SuperSignal West 

Dura Extended Duration Substrate (PIERCE/ Perbio Sciences). In general, the self-prepared ECL 

solutions were sufficient for highly expressed proteins such as β-actin whereas the extended-
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duration substrate was used for proteins closer to the detection limit. Afterwards, the membrane was 

placed bubble free in a transparent plastic bag and exposed to an X-ray film (Amersham/ GE 

Healthcare). Oxidation of luminol by horseradish peroxidase in the presence of hydrogen peroxide 

leads to emission of photons, which can be detected by a light sensitive film. Depending on signal 

strength the exposure ranged from 5 sec to 30 min, after which no further improvement could be 

achieved. In general, at least three different exposure times were chosen per blot. After protein 

detection, the membrane was stored wet at 4°C for its eventual reuse. For the detection of other 

proteins/antigens, the membrane was washed several times with PBST over night and the procedure 

was repeated with another antibody. 

 

ECL Solution 1: 

2.5 mM luminol 

400 µM p-coumaric acid 

100 mM Tris·Cl pH 8.5 

 

ECL Solution 2: 

0.02 % H2O2 (v/v) 

100 mM Tris·Cl 

Store ECL solution 1 and 2 at 4°C 

 

Stock solutions (store at –20°C): 

250 mM Luminol in DMSO 

90 mM p-coumaric acid in DMSO 

 

3.13. Statistical methods 

Statistical analyses were conducted using Statistix7.0 (Statistix for Windows Analytical Software) 

for calculating of odds ratios with 95% confidence intervals, the Yates’ corrected chi-square and p-

values in 2-by-2 tables. Statistix7.0 software was also used for median tests to determine the 

differences in the median age between groups. 

Crude and adjusted Mantel-Haenszel odds ratios were calculated in 2x2 stratified analyses using 

EpiCalc v1.02 Software Package (Gilman J, Myatt M 1998, Brixton Books). The methods used to 

calculate the Mantel-Haenszel summary odds ratios and respective confidence intervals are 

described in:Rothman KJ. Modern Epidemiology. (1986) Little brown and Company, ISBN 0-316-

75776-4, pp. 177-236. 
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4. Results 
4.1. Screening for founder BRCA1 and BRCA2 mutations  

4.1.1. Rationale 

Although plenty of different mutations have already been identified in the two genes BRCA1 and 

BRCA2, it is still controversial how different mutations contribute to breast, ovarian and other 

cancers. Clearly some mutations are responsible for the very high risks identified in some families, 

but others have been reported with lower risks and many unclassified variants are likely to be within 

the normal polymorphic variations found in many genes and may not be relevant to cancer. It is also 

likely that different mutations may determine different types of cancers with different pathologies 

and different outcomes. Moreover the same mutations may behave differently in different 

populations of women depending on gene-gene and gene-environment interactions.  

BRCA1/BRCA2 mutation detection is complex because of the large size of both genes and the 

absence of mutational hot spots. Three mutations in BRCA1 (5382insC, 4153delA and p.C61G) and 

the frameshift mutation 6174delT in BRCA2 gene were investigated in this study in the whole series 

of Byelorussian breast cancer patients and controls. These mutations were chosen in regard that 

they are common in Caucasians and mainly prevalent in Central Europe, Poland, Russia and Baltic 

countries. Belarus is geographically placed between these countries and its population also belongs 

to Caucasians. Thus, the obtained results for the first time should provide knowledge about these 

known mutations and their frequency in the Byelorussian population. 

 

4.1.2 BRCA1 5382insC 

For screening of 5382insC in the BRCA1 gene, a simple restriction enzyme based PCR assay was 

used that had previously been established in our group (Britta Skawran, Diploma thesis). A genomic 

region surrounding the mutation site was amplified by 35 cycles of PCR using GoTaq –Polymerase 

(Promega) and 60ºC annealing (for primers see attachment 1). Subsequently, the PCR products 

were digested at 37°C over night with DdeI (New England BioLabs). Restriction digest products 

were separated on 3% Agarose-1000 and visualized on the UV transilluminator after ethidium 

bromide staining (figure 4.1 A). In the presence of the mutation, the 270 bp PCR product was 

cleaved by DdeI to fragments of 248 and 22 bp (to small to be distinguished from primers), whereas 

wild-type remained uncut. All samples positive for the 5382insC were verified by direct sequencing 

(figure 4.1 B).  
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B 
 

Genotyping was successfully completed for 100% of cases. In the breast cancer cases series, the 

insertion was found in 44 cases (2.5%), and 18 mutation carriers reported a family history of breast 

cancer (at least one first-degree relative also affected with breast cancer), two patients had bilateral 

disease and one patient also had an ovarian carcinoma. 22/44 cases were from contaminated areas 

with 12/22 from areas with more than 5 mSv whole body cumulative dose (subgroups II-IV, table 

2.1), and 7 of these had a first-degree relative with breast cancer (table 4.1). The approximately 

two-fold increase in familial cases in the highly contaminated areas was not statistically significant 

(p=0.28). Thirty-four patients with 5382insC were diagnosed below the age 50, the median age at 

diagnosis among mutation carriers was 42.5 years versus 48 in non-carriers (median test p=0.001). 

The age at diagnosis seemed lower in carriers from contaminated regions (median 41.5) compared 

with 45.5 years in non-contaminated oblasts, but again the difference was not significant (median 

test p=0.55). Frequencies of the 5382insC allele in contaminated and non-contaminated regions are 

presented in table 4.1, and the ages at diagnosis for carries and non carriers in different regions are 

shown in table 4.2. The 5382insC allele was also found in 1 out of 1019 control individuals, this 

carrier was from a non-contaminated region. In summary, this study confirmed a high prevalence of 

the 5382insC mutation in ~1/40 Byelorussian breast cancer patients and a highly significant 

association with breast cancer (OR: 26.0, 95%CI: 3.6-189.9, p<0.00001). 

 

4.1.3 BRCA1 4153delA 

For screening of 4153delA in BRCA1 gene, an allele-specific PCR (ARMS, Newton et al. 1989) 

was performed using a mutation-specific forward primer so that PCR products were obtained only 

in the presence of the 4153delA allele (for primer sequences see attachment 1). Thirty-five cycles of  

Figure 4.1 Identification and confirmations of the 
5382insC mutation by screening of PCR products, 
using DdeI and direct sequence. Panel A – fragment 
of 3% agarose-1000 gel; S – size marker; lanes 1 and 
5 heterozygous carriers of the mutation; lanes 2-4 
wild-type controls. Panel B – sequences fragments of 
BRCA1 exon 20 by wild-type control and 5382insC   
heterozygous carrier, anti-sense strands, with ▼ 
designed start of frameshift. 
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PCR amplification were performed using HotStar - Taq-Polymerase in betain containing buffer 

(“Q-Solution”, Qiagen) and 58°C annealing. PCR was followed by 2% agarose gel electrophoresis, 

and the gel was stained with GelRed. In the presence of the 4153delA mutation, a 131 bp PCR 

product was obtained. A 269 bp fragment of the ATM gene (exon 42) was used as an internal 

control for amplification (figure 4.2 A). All positive samples were verified by direct sequencing of 

the BRCA1 gene fragment, using primers flanking the mutation (figure 4.2 B).  

Genotyping was successfully for 100% of cases. The 4153delA allele was found in 16 breast cancer 

cases (0.9%) all were heterozygous for the mutation. Six of them reported a family history of breast 

cancer, none of the carriers had bilateral disease and/or ovarian carcinoma but one patient has a 

relative affected with ovarian carcinoma.  

 

     
A         B 

Figure 4.2 Identification and verification of 4153delA mutation. Panel A – fragment of 2% agarose gel 
with allele-specific PCR fragment of BRCA1 gene and ATM gene serves as an internal control: S – size 
marker, line 4,5 heterozygous carrier of p.C61G mutation, lanes 1-3 wild type controls. Panel B - sequencing 
of PCR products from patient a heterozygous carrier of 4153delA (anti-sense strand with ▼designating 
beginning of frameshift).  
 

Ten carriers of the 4153delA mutation were from contaminated areas, with 6 out of 10 from areas 

with more than 5 mSv whole body cumulative dose (subgroups II-IV, table 2.1), and four reported 

first-degree relatives with breast cancer (table 4.1). Thirteen were diagnosed below the age 50, 

median age in carriers was 41.5 years versus 48 in non-carriers (median test p=0.05). The median 

age in mutation carriers from contaminated areas was 38 years compared with 46.5 years in carriers 

from non-contaminated areas, a marginally significant difference (median test p=0.04). Frequencies 

of the 4153delA allele in contaminated and non-contaminated regions are presented in table 4.1, and 

differences in the age at diagnosis for carries and non carriers in different regions are shown in table 

4.2. The 4153delA allele was also found in 2 out of 1019 control individuals (one carrier from 

contaminated and another one from non-contaminated regions). In summary, this study revealed a 

high prevalence of the 4153delA mutation observed in ~1/110 Byelorussian breast cancer patients, 

and a significant association with breast cancer (OR: 4.7, 95%CI: 1.1-20.3, p=0.04). As will be 
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discussed later, the association of 4153delA with breast cancer has been a matter of debate in 

previous studies. 

 

4.1.4 BRCA1 p.C61G 

The mutation p.C61G (also known as nucleotide substitution T300G) generates a novel restriction 

enzyme site in exon 5 of the BRCA1 gene, and in our initial series of breast cancer cases, this 

mutation was detected after digesting amplified DNA with the restriction enzyme AvaII. Thirty-five 

cycles of PCR with 59°C annealing temperature for primers flanking mutation site (attachment 1) 

was performed using GoTaq - Polymerase. PCR products were incubated overnight  with AvaII at 

37ºC followed electrophoresis in a 2% agarose gel, stained with ethidium bromide. In the presence 

of the mutation 234 bp PCR product was cleaved to 157 bp and 77 bp products, while wild type 

remains uncut (figure 4.3 A). In the following, the majority of samples from breast cancer patients 

were screened for the p.C61G mutation using a more rapid and economic ARMS assay. A 

mutation-specific forward primer was created so that PCR products were obtained only in the 

presence of the p.C61G mutation (for primers sequence see attachment 1). Thirty-five cycles of 

PCR amplification were performed using HotStar - Taq-Polymerase at 62°C annealing. 

Subsequently, PCR products were separated on 2% agarose gels which were stained with ethidium 

bromide. In the presence of the mutation, a 221 bp PCR product was obtained. As an internal 

amplification control, a 353 bp fragment of the MDC1 gene was used (figure 4.3 B). A subset of 

some 200 samples was screened using both techniques for quality control and comparison of the 

results, which were 100% concordant. All positive samples were verified by direct sequencing of 

exon 5 in BRCA1 gene. Sequencing reaction was performed using the reverse primer (figure 4.3 C). 

PCR for following sequence reaction was performed by using GoTaq-Polymerase, 35 amplification 

cycles at 58° annealing temperature (primer sequences used for this approach see attachment 1). 

 

 
A 

Figure 4.3 Screening for C61G mutation in BRCA1 
gene. Panel A – fragment of 2% agarose gel with AvaII 
enzymatic digestion; S – size marker, line 1 heterozygous 
carrier of C61G mutation, lanes 2-4 wild type controls. 
Panel B - ARMAS PCR, fragment of MDC1 gene serves as 
an internal control: S, size marker, lanes 3,4 mutation 
carriers, lines 1,2 wild-type controls. Panel C - sequencing 
of PCR products from patient a heterozygous carrier of 
C61G (anti-sense with N designating mutation). 
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Genotyping was successfully completed for 100% of cases. The p.C61G allele was obtained in 15 

breast cancer cases (0.85%), 3 of them reported family history of breast cancer (all from non-

contaminated regions), and none of the carriers had bilateral disease and/or ovarian carcinoma.  

6/15 cases were from contaminated areas with 4 out of 6 from areas with more than 5 mSv whole 

body cumulative dose (subgroups II-IV, table 2.1), and none reported first-degree relatives with 

breast cancer (table 4.1). Thirteen patients were diagnosed below the age 50, median age at 

diagnosis in carriers was 46.5 years versus 48 in non-carriers (median test p=0.39).The median age 

in mutation carriers from contaminated areas was 43 years compared with 48 years in non-

contaminated areas (median test p=0.28). Frequencies of the p.C61G allele in contaminated and 

non-contaminated regions are presented in table 4.1, and the ages at diagnosis for carries and non 

carriers in different regions are shown in table 4.2. The p.C61G allele was also found in 1/1019 

controls (carrier was from contaminated area). In summary, this study confirmed a relatively high 

prevalence of the p.C61G missense mutation present in ~1/110 Byelorussian breast cancer patients, 

and a significant association with breast cancer (OR: 8.8, 95%CI: 1.2-66.4, p=0.02). 

 

4.1.5. Proportion of all studied BRCA1 mutations in breast cancer patients 

Taken together, the three founder BRCA1 mutations 5382insC, 4153delA and p.C61G were 

identified in 75/1759 (4.3%) of unselected breast cancer patients from Belarus. Frequencies of all 

investigated BRCA1 mutations stratified by region are summarized in table 4.1. 

 
Table 4.1 Frequencies of BRCA1 mutations 5382insC, p.C61G and 4153delA in contaminated and non-
contaminated regions 

5382insC p.C61G 4153delA p** Any BRCA1 
mutation p** Cohort Total 

(n) (n) (%) 
p** 

(n) (%) 
p** 

(n) (%)  (n) (%)  
cases a 783 22 2.8 6 0.77 10 1.28 38 4.85 
familial 
cases a* 166 7 4.2 

 
0 - 

 
4 2.41 

 
11 6.63 

 

cases b 976 22 2.25 0.55 9 0.92 0.93 6 0.62 0.23 37 3.80 0.33 
familial 
cases b* 132 11 8.3 0.14 3 2.27 0.17 2 1.52 0.89 16 12.12 0.15 

* subset of patients with at least one first-degree relative also affected with breast cancer 
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** compared in cases between contaminated and non-contaminated regions in two-by-two tables 
a  cases from contaminated regions 
b  cases from non-contaminated regions 

 

The median ages at diagnosis for carriers of all three studied BRCA1 variants stratified by region are 

presented in table 4.2. In total, the diagnosis of breast cancer was made significantly earlier in the 

identified BRCA1 mutation carriers compared with non-carriers. Because we also noted a 

significantly lower age at diagnosis in contaminated versus non-contaminated areas, the mutation 

carrier group was further stratified by geographic region. A lower age at diagnosis for BRCA1 

carriers was observed in both geographic groups, but the effect of the BRCA1 mutation seemed to 

be less significant in contaminated areas (Table 4.2.). 

 
Table 4.2 BRCA1 mutation prevalence stratified by median age at diagnosis 

Median age at diagnosis / Median test *(p value) age p* 
non-carriers 44  

5382insC 41.5 0.26 
p.C61G 43 0.65 

contaminated regions 

4153delA 38 0.20 

combined carriers versus non carriers in contaminated regions 40.5/44 0.082 

non-carriers 50  
5382insC 45.5 0.01 
p.C61G 48 0.02 

non-contaminated regions 

4153delA 46.5 0.10 

combined carriers versus non carriers in non-contaminated regions 46/50 0.0001 

Total carriers versus non carriers 44/48 0.0001 

*carriers versus non-carriers 
 

4.1.6 BRCA2* 6174delT  

A screening of the 6174delT frameshift deletion in the BRCA2 gene was initially performed using 

cleavage with AluI and PflmI, and later by an ARMS-assay in subsequent samples using a mutation-

specific forward primer. In the first DNA series from breast cancer patients thirty-five cycles of 

PCR with 58°C annealing temperature for primers flanking mutation site (for primer sequence see 

attachment 1) was performed using HotStar - Polymerase. PCR products were subjected incubated 

overnight by 37ºC with AluI and PflmI followed by electrophoresis in a 3% agarose gel, which was 

stained with ethidium bromide. PCR product of 438 bp was cleaved to 310 bp and 128 bp products 

by AluI, and cleavage fragment of 128 bp, containing site for PflmI was cut in 107 bp and 21 bp in 

wild type sequence and remains uncut in the presence of the mutation (figure 4.4 A). Subsequent 

samples from breast cancer patient were screened for the deletion using ARMS. A mutation-specific 

forward primer was created so that PCR products were obtained only in the presence of the 
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6174delT allele (in attachment 1 presented the sequences of used primers). Thirty-five cycles of 

PCR amplification were performed using HotStar - Taq-Polymerase at 64° annealing temperature. 

Subsequently, the PCR products were separated on a 2% agarose gel, stained with GelRed. In the 

presence of the mutation, a 189 bp PCR product was obtained. As an internal control for 

amplification, a 436 bp fragment of the ATM gene (exon 52) was used (figure 4.4 B). Subsets of the 

samples (n=230) were analysed using both techniques to compare the results, which were 100% 

concordant. All positive samples were verified by direct sequencing of a fragment flanking 

6174delT mutation in BRCA2 gene. Sequencing reaction was performed using the forward primer 

(figure 4.4 C). PCR for following sequence reaction was performed by using GoTaq-Polymerase, 

35 amplification cycles at 58°C annealing temperature (primers sequences used for this approach 

see attachment 1). 

Genotyping was successfully completed for 100% of cases. The 6174delT mutation was found in 

4/1759 breast cancer cases (0.23%), all of them heterozygotes. One of them reported a family 

history of breast cancer (from contaminated region), and none of the carriers had bilateral disease 

and/or ovarian carcinoma. 3/4 cases were from contaminated areas (2 out of 3 from areas with more 

than 5 mSv whole body cumulative dose - subgroups II-IV, table 2.1) and none reported first-

degree relatives with breast cancer. 

 

    
A        B 
 

    
C 
 
Figure 4.4 Screening for 6174delT mutation in BRCA2 gene. Panel A – fragment of 3% agarose gel with 
AluI and PflmI enzymatic digestion; S – size marker, line 1 heterozygous carrier of mutation, lanes 2-4 wild 
type controls. Panel B - ARMS assay, ATM (exon 51) serves as an internal control: S, size marker, lanes 1,2 
deletion carriers, lines 3-5 wild-type controls. Panel C - sequencing of PCR products from patient a 
heterozygous carrier of 6174delT and wild type control (sense with ▼designating mutation). 



Results   84 
 
Three patients were diagnosed below the age 50, median age at diagnosis in carriers was 44 years 

versus 48 in non-carriers (median test p=0.58). Because the low frequency of 6174delT allele in the 

case series, controls were not tested. 

 

4.1.7 BRCA2 missense variant C5972T (T1915M) 

While BRCA2 mutation 6174delT belongs to the class of protein-truncating mutations, as well as 

BRCA1 mutations 5382insC and 4153delA, which are deleterious and increase the risk of breast 

cancer over a lifetime up to 80%, there are additional substitutions known in the BRCA2 gene the 

consequences of which are more difficult to predict. Missense variants are often difficult to classify 

as mutation apart from the few cases where the amino acid substitution clearly affects protein 

function (as for example for the RING finger substitution p.C61G in BRCA1). A pathogenic 

missense substitution would be expected at a greater allele frequency in breast cancer cases than in 

population controls. The BRCA2 C5972T (p.T1915M) substitution that changes the amino acid 

sequence at codon 1915 from threonine to methionine and was reported as predisposing to early 

onset breast cancer in Polish population (Gorski et al. 2005b). This variant was present in 

approximately 6% of Polish population and was associated with significant increase in risk for 

breast cancer patient diagnosed before age 40 (OR=1.4; p=0.04) and the effect was most 

pronounced in woman with ductal carcinoma in situ (DCIS). In order to investigate the effect of 

T1915M allele in the Byelorussian population, the frequencies of this missense variant were 

determined in case and control cohorts using TaqMan technique with newly designed probes 

(Allelic Discrimination assay, see 3.8). The assay was run in 96-well plates on a 7500FAST Real-

time PCR Thermocycler (Applied Biosystems) with forty amplification cycles and 

annealing/hybridisation temperatures of exon-specific primers and fluorescence-labelled probes (see 

attachment 2) at 62°C. Homozygous and heterozygous genotypes were evaluated from their relative 

fluorescence using the 7500 FAST System SDS Software. Distributions of genotypes (C/C – wild-

type; C/T – heterozygous carrier and T/T – homozygous carrier of rare variant) among cases and 

controls and a representative assay are shown on figure 4.5 
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Figure 4.5 C5972T genotypes distribution among studied cases and controls. Panel A – example of 5´-
nuclease allelic discrimination assays. Clustering of three genotypes: rare homozygotes (TT, red) are 
represented by fluorescence along the x-axis, common homozygotes (CC, blue) are clustering along the y-
axis, and heterozygotes (CT, green) show fluorescence emission from both dyes. NTC - no template control. 
Panel B – distribution of all three genotypes among cases and controls in studied population (numbers – 
amount of individuals who are carriers of certain genotype). 
 

Genotyping was successfully completed in 100% of cases and controls. The p.T1915M variant was 

present in 6.0% of investigated cases and in 9.7% of controls (OR: 0.60, 95%CI: 0.45-0.79, 

p=0.0004), which would be in line with a protective effect for this allele (table 4.3). In the study 

two probands (one case and one control) were homozygous for the rare variant (T/T), both were 

from non-contaminated regions. There was little difference in carrier frequencies if stratified by 

region albeit the allelic effect seemed less significant in contaminated areas (OR: 0.56, 95%CI: 0.4-

0.8, p=0.004 for non-contaminated areas and OR: 0.64, 95%CI: 0.4-1.0, p=0.06 for contaminated 

areas). There was no clear association between this variant and early onset breast cancer (for 

patients diagnosed at age 40 years or below) (OR: 1.1, 95%CI: 0.71-1.73, p=0.74, table 4.4) or 

familial breast cancer (OR: 1.4, 95%CI: 0.9-2.2, p=0.23). 

Among the heterozygous carriers of the p.T1915M variant were also four carriers of 5382insC 

allele in BRCA1, one carrier of 4153delA variant in BRCA1 and one carrier of 6174delT in BRCA2. 

The concurrence of p.T1915M with BRCA1 mutations was in the expected range (OR 1.05, p=0.99) 

Seven patients with p.T1915M had bilateral disease, two breast/ovarian cancer and one reported 

relative affected with ovarian cancer. 
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Table 4.3. Genotype frequency distribution for the p.T1915M variant in breast cancer patients and 

control individuals. 

C/C C/T T/T 
Genotype/ (n) of carriers 

Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole cohort) (N=1019) 920 90.30 98 9.61 1 0.09 

Population controls from non-contaminated 
regions (N=604) 545 90.23 58 9.60 1 0.17 

Population controls from contaminated 
regions (N=415) 375 90.36 40 9.64 0 - 

Breast cancer patients (whole cohort) 
(N=1759) 1653 93.97 105 5.97 1 0.06 

Breast cancer patients from non-contaminated 
regions (N=976) 920 94.26 55 5.64 1 0.10 

Breast cancer patients from contaminated 
regions (N=783) 733 93.60 50 6.40 0 - 

 
Table 4.4. Frequencies of the T1915M variant in breast cancer patients stratified by age at diagnosis. 

Genotype C/C C/T T/T 

Group Total (n) (%) Total (n) (%) Total (n) (%) 

Cases at or below age 40  (n=433) 405 93.53 28 6.47 0 - 

Cases over age 40  (n=1326) 1248 94.10 77 5.83 1 0.07 

 

 

4.2 Search for the A-T nonsense mutation p.E1978X and for ATM missense variants p.S49C, 

p.S707P, p.L1420F, p.P1054R and p.F858L in breast cancer cases and population controls 

4.2.1. Rationale 

Studies based on relatives of A-T patients had shown that heterozygous carriers of ATM variants are 

clinically unaffected but are at an increased risk of cancer, especially the female obligate 

heterozygotes who have a two- to seven-fold increased risk of breast cancer (Swift et al. 1987, 

Pippard et al. 1988, Borresen et al. 1990, Swift et al. 1991, Easton 1994, Athma et al. 1996, Olsen 

et al. 2001, Thompson et al. 2005). In contrast, mutation screening of ATM in breast cancer case-

control sets outside A-T families had produced mixed results and had suggested allelic 

heterogeneity of ATM and that only a specific class of variants might contribute to breast cancer risk 

in heterozygotes (FitzGerald et al. 1997, Teraoka et al. 2001, Gatti et al. 1999, Chenevix-Trench et 

al. 2002). More recently, during the course of this thesis, it has been shown in a UK study using a 
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familial breast cancer case-control population that, as a whole, A-T causing biallelic ATM mutations 

were breast cancer susceptibility alleles in monoallelic carriers outside AT families, and the 

combined ATM mutation prevalence and contribution to breast cancer incidence was similar to 

CHEK2 1100delC; both conferring an estimated two-fold increased risk of breast cancer (Renwick 

et al. 2006). A potential association of certain missense variants such as c.7271T>G or p.Ser49Cys, 

has been reported in other large case control studies (Bernstein et al. 2006, Stredrick et al. 2006). In 

a study from the Breast Cancer Association Consortium, the Ser49Cys substitution was not 

significantly associated with overall breast cancer risk, but a modest association was not excluded 

either, and this SNP appeared to increase the risk of PR positive breast cancer (Cox et al. 2007). 

Results from association studies of other common polymorphisms (SNPs) in ATM and risk of breast 

cancer have been controversial so far. Because of our relatively large sample size, we decided to 

investigate the effect of ATM gene alterations on breast cancer in more detail. 

 

4.2.2 ATM truncation mutation p.E1978X (c.5932G>T) 

The nonsense mutation E1978X leads to a premature termination codon but also to the skipping of 

exon 42 and a downstream frameshift, thereby resulting in truncated proteins. This mutation has 

been found in low abundance in European A-T cohorts and was reported in 44% of Russian A-T 

patients (Birrell et al. 2005). The relatively high prevalence of the c.5932G>T variant in Russians 

compared with other ethnic groups suggested that this founder-effect mutation may be of Russian 

origin and prompted us to investigate its frequency in Belarus.  

E1978X allele creates an MseI restriction endonuclease site that we used to rapidly screen the 

samples from Byelorussian breast cancer patients and population controls for the presence of the 

mutation. Thirty-five cycles of PCR with 58°C annealing temperature for primers flanking mutation 

site (attachment 1) was performed using HotStar - Polymerase. PCR products were incubated 

overnight at 37ºC with MseI followed by electrophoresis in a 2% agarose gel, stained with ethidium 

bromide. There are several cleavage sites for MseI in amplified fragment and c5932G>T variant 

generates a novel one. PCR product of 269 bp was cleaved into fragments of 208 bp, 34 bp and 27 

bp. In the presence of the mutation 208 bp cleavage product was cut into 167 bp and 41 bp 

fragments, while wild type 208 bp product remains uncut (figure 4.6 A fragments of 41 bp, 34 bp 

and 27 bp were to small to be distinguished from primers). All positive samples were verified by 

direct sequencing of ATM exon 42 (the same primers were used as for mutational screening). 

Thirty-five cycles of PCR were performed using GoTaq-Polymerase by 58° annealing temperature. 

Sequencing reaction was performed using the forward primer (figure 4.6 B). 
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Figure 4.6 Screening for the p.E1978X mutation in the ATM gene. Panel A – fragment of 2% agarose gel 
with MseI enzymatic digestion; S – size marker, line 1,2 heterozygous carrier of mutation, lanes 3-5 wild 
type controls. Panel B - sequencing of PCR products from patient a heterozygous carrier of p.E1978X (sense 
with ▼designating mutation). 
 

Genotyping was successfully completed for 100% of cases and controls. The p.E1978X allele was 

observed in 9 breast cancer cases (0.5%). One of them reported a family history of breast cancer 

(from contaminated region), and none of the carriers had bilateral disease and/or ovarian carcinoma. 

6 cases were from contaminated areas (3 out of 6 from areas with more than 5 mSv whole body 

cumulative dose - subgroups II-IV, table 2.1). Seven patients were diagnosed below the age 50, 

median age at diagnosis in carriers was 43 years versus 48 in non-carriers (median test p=0.10), 

median age in mutation carriers from contaminated areas was 42.5 years compared with 47 years in 

non-contaminated regions. The p.E1978X allele was also found in 1/1019 controls (carrier was 

from contaminated area). Interestingly, two patients were also carriers of the p.C61G mutation in 

the BRCA1 gene and one was a carrier of the CHEK2dele(9,10) allele that will be described later. In 

summary, this study identified an about five-fold higher prevalence of the p.E1978X mutation in 

Byelorussian breast cancer patients compared with controls, though the difference did not reach 

statistical significance (OR: 5.2, 95%CI: 0.76-41.4, p=0.15). As will be discussed later, additional 

work in Russian and Ukrainian breast cancer series was performed to corroborate these results. 

 

4.2.3 ATM variants S49C, S707P, L1420F, P1054R and F858L 

4.2.3.1 Rationale and methodology 

Unlike the nonsense mutation E1978X, the missense substitutions S49C, S707P, L1420F, P1054R 

and F858L do not represent classical A-T mutations, and their effect on ATM function still remain 

to be clarified. However, there was some prior evidence for an association of each of these variants 

with breast cancer (Dork et al. 2001, Teraoka et al. 2001, Bretsky et al. 2003, Tamimi et al. 2004, 

Buchholz et al. 2004, Lee et al. 2005, Stredrick et al. 2006). These missense variants were 

genotyped during the course of this thesis as part of a Breast Cancer Association Consortium study 

using a 5´-nuclease allelic discrimination assay with mutation-specific fluorescence-labelled MGB 

probes from Applied Biosystems (Foster City, CA, U.S.A see attachment 2). The assays were run in 
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96-well plates on a 7500FAST Real-time PCR Thermocycler (Applied Biosystems) with 

annealing/hybridisation temperatures at 60/62°C, in general forty cycles of amplification were used 

(see attachment 2). Homozygous and heterozygous genotypes were evaluated from their relative 

fluorescence using the 7500 FAST System SDS Software. The call rate was above 98% for all 

SNPs (see below for details).  

 

4.2.3.2 S49C  

In case of the genotyping for the Ser49Cys missense alteration (rs1800054), the call rate was 99.7% 

for cases and 99.9% for controls. Distributions of genotypes (C/C – wild-type; C/G – heterozygous 

carrier; G/G – homozygous carrier of rare variant) among cases and controls are shown in Table 

4.5.  

The p.S49C (rs1800054) variant was present in 1.7% of investigated cases and in 2.0% of controls 

(allele carrier OR: 0.80, 95%CI: 0.46-1.41, p=0.53) (table 4.5). One proband (control) was 

homozygous for the rare variant (G/G). There was no detectable difference in carrier frequencies 

when stratified by region (OR: 0.78, 95%CI: 0.35-1.74, p=0.69 for non-contaminated areas, and 

OR: 0.89, 95%CI: 0.39-2.05, p=0.95 for contaminated areas). Median age at diagnosis among 

p.S49C carriers was 44 years versus 48 in not carriers (p=0.29). 

 

Table 4.5. S49C allele distribution in cohorts of breast cancer patients and controls. 

C/C C/G G/G 
Genotype/ (n) of carriers 

Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole cohort) 
(N=1018) 998 98.0 19 1.9 1 0.1 

Population controls from non-contaminated 
regions (N=603) 592 98.2 10 1.7 1 0.2 

Population controls from contaminated 
regions (N=415) 406 97.8 9 2.2 0 - 

Breast cancer patients (whole cohort) 
(N=1753) 1724 98.4 29 1.7 0 - 

Breast cancer patients from non-
contaminated regions (N=976) 962 98.6 14 1.4 0 - 

Breast cancer patients from contaminated 
regions (N=777) 762 98.1 15 1.9 0 - 

 

 The S49C allele appeared to be present in Byelorussian cases and population controls at a similar 

frequency. There was also no association between this variant and familial breast cancer (OR: 0.78, 
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95%CI: 0.27-2.25, p=0.83). Among the breast cancer patients heterozygous for p.S49C , there were 

four carriers of the 5382insC allele in BRCA1, one carrier of the 4153delA variant in BRCA1 and 

one carrier of I157T in CHEK2; the increased prevalence of p.S49C among BRCA1 mutation 

carriers was significant (5/75 compared with 29/1753, OR 4.2, 95%CI 1.6-11.3, p= 0.002). None of 

the patients carrying p.S49C had bilateral disease or breast/ovarian cancer, and four reported a first-

degree relative affected with breast cancer.  

 

4.2.3.3 S707P  

The Ser707Pro variant is caused by a nucleotide substitution c.2119T/C in exon 15 of ATM 

(rs4986761). Genotyping was successful in 99.7% of cases and controls. Distribution of genotypes 

(T/T – wild-type; T/C – heterozygous carrier; C/C – homozygous carrier of rare variant were not 

present in Byelorussian population) among cases and controls is shown on table 4.6. The p.S707P 

(rs4986761) variant was present in 1.5% of investigated cases and in 2.2% of controls (OR: 0.71, 

95%CI: 0.40-1.25, p=0.29) (table 4.6). There was no difference in carrier frequencies when 

stratified by region (OR: 0.66, 95%CI: 0.31-1.37, p=0.35 for non-contaminated areas and OR: 0.80, 

95%CI: 0.32-1.96, p=0.79 for contaminated areas). Median age at diagnosis among S707P carriers 

was 51 years versus 48 in non-carriers (p=0.21). 

Table 4.6. S707P allele distribution in cohorts of breast cancer patients and controls. 

 

The S707P allele appeared to be present in Byelorussian population controls at similar frequency as 

in cases. There was no detectable association between this variant and familial breast cancer (OR: 

1.73, 95%CI: 0.72-4.12, p=0.32). Among the patients heterozygous for p.S707P were also three 

carriers of I157T in CHEK2 (see chapter 4.4. about CHEK2 mutations); three patients had bilateral 

disease, one breast/ovarian cancer, and seven reported first-degree relatives affected with breast 

cancer. 

 

 

T/T T/C Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) 

Population controls (whole cohort) (N=1016) 994 97.8 22 2.2 
Population controls from non-contaminated 

regions (N=602) 588 97.7 14 2.3 

Population controls from contaminated regions 
(N=414) 406 98.1 8 1.9 

Breast cancer patients (whole cohort) (N=1754) 1727 98.5 27 1.5 
Breast cancer patients from non-contaminated 

regions (N=976) 961 98.5 15 1.5 

Breast cancer patients from contaminated regions 
(N=778) 766 98.5 12 1.5 
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4.2.3.4 L1420F 

The Leu1420Phe substitution is caused by a nucleotide substitution c.4258C/T in exon 31 of ATM 

(rs1800058). The call rate was 99.1% for cases and 99.8% for controls. Distributions of genotypes 

(C/C – wild-type; C/T – heterozygous carrier; homozygotes rare variant were not present in 

Byelorussian population) among cases and controls are shown in Table 4.7.  

The p.L1420F (rs1800058) variant was present in 4.8% of investigated cases and in 5.8% of 

controls (OR: 0.82, 95%CI: 0.58-1.15, p=0.29) (table 4.7). There was no significant difference in 

carrier frequencies when stratified by region (OR: 0.85, 95%CI: 0.53-1.37, p=0.59 for non-

contaminated areas and OR: 0.76, 95%CI: 0.46-1.27, p=0.36 for contaminated areas). Median age 

at diagnosis among p.L1420F carriers was 47 years versus 48 in non-carriers (p=0.21). 

 

Table 4.7. L1420F allele distribution in cohorts of breast cancer patients and controls. 

C/C C/T 
Genotype/ (n) of carriers 

Total (n) (%) Total (n) (%) 

Population controls (whole cohort) (N=1017) 959 94.2 58 5.8 

Population controls from non-contaminated regions (N=602) 571 94.9 31 5.2 

Population controls from contaminated regions (N=415) 388 93.5 27 6.5 

Breast cancer patients (whole cohort) (N=1743) 1661 95.2 82 4.8 

Breast cancer patients from non-contaminated regions (N=971) 928 95.6 43 4.4 

Breast cancer patients from contaminated regions (N=772) 733 95.0 39 5.1 

 

The L1420F allele appears to be present in Byelorussian population controls at similar frequencies 

as in cases. There was no significant association between this variant and familial breast cancer 

(OR: 1.49, 95%CI: 0.88-2.54, p=0.18). Among breast cancer heterozygous carriers of L1420F 

variant, there was one carrier of 4153delA variant in BRCA1, three carriers of CHEK2dele(9,10) 

mutation, and seven carriers of I157T in CHEK2 (see chapter 4.4. about CHEK2 mutations); two 

patients had bilateral disease one breast/ovarian cancer and one reported a first-degree relative 

affected with ovarian cancer. 

 

4.2.3.5 P1054R  

The missense substitution Pro1054Arg is caused by a nucleotide substitution c.3061C/G 

(rs1800057) in exon 24 of ATM. Genotyping was successful in 99.9% of case and 100% of controls. 

Distribution of genotypes (C/C – wild-type; C/G – heterozygous carrier; G/G – homozygous carrier 

of rare variant) among cases and controls is shown in Table 4.8.  
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The p.P1054R allele was present in 2.8% of investigated cases and in 3.5% of controls (OR: 0.80, 

95%CI: 0.52-1.24, p=0.37) (table 4.8). Carrier Odds Ratios were slightly but non-significantly 

different when stratified by region (OR: 1.09, 95%CI: 0.58-2.02, p=0.92 for non-contaminated 

areas and OR: 0.57, 95%CI: 0.31-1.06, p=0.10 for contaminated areas), but in a case-only 

comparison between regions no difference was found (OR: 0.98, 95%CI: 0.55-1.73, p=1.00). 

Median age at diagnosis among P1054R carriers was not different for carriers and non-carriers: 47.5 

years versus 48 years (p=0.86). 

 

Table 4.8. P1054R allele distribution in cohorts of breast cancer patients and controls. 

C/C C/G G/G Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole 
cohort) (N=1019) 983 96.5 36 3.5 0 - 

Population controls from non-
contaminated regions (N=604) 588 97.4 16 2.7 0 - 

Population controls from 
contaminated regions (N=415) 395 95.2 20 4.8 0 - 

Breast cancer patients (whole 
cohort) (N=1758) 1708 97.2 49 2.8 1 0.1 

Breast cancer patients from non-
contaminated regions (N=976) 948 97.1 28 2.9 0 - 

Breast cancer patients from 
contaminated regions (N=782) 760 97.2 22 2.7 1 0.1 

 

There was no significant association between this variant and familial breast cancer (OR: 0.79, 

95%CI: 0.35-1.78, p=0.71). Among patients heterozygous for the p.P1054R variant, there were 

also one carrier of the 4153delA allele and one carrier of 5382insC in BRCA1, two carriers of I157T 

and one of IVS1+2G>A in CHEK2; two patients had bilateral disease, one breast/ovarian cancer 

and seven reported a first-degree relative affected with breast cancer. 

 

4.2.3.6 F858L 

p.F858L, a nucleotide substitution 2578T/C in exon 18 (rs1800056) of ATM gene, occurs in strong 

linkage disequilibrium with p.P1054R on the same allele and was screened only in individuals who 

are carriers of the p.P1054R variant. The call rate was 100%. Distributions of genotypes (T/T – 

wild-type; T/C – heterozygous carrier; C/C – homozygous carrier of rare variant were not present in 

Byelorussian population) among cases and controls are shown in Table 4.9. 

The p.F858L allele was present in 62% of the investigated cases harboring p.P1054R 

(corresponding to 1.8% in the whole case series) and in 44.4% of the investigated controls with 

p.P1054R (corresponding to 1.6% in the whole control series) (OR: 2.04, 95%CI: 0.85-4.87, 

p=0.16) (table 4.9). There was no significant difference in carrier frequencies if cases were stratified 
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by region (OR: 1.71, 95%CI: 0.50-5.92, p=0.59 for non-contaminated areas and OR: 2.62, 95%CI: 

0.74-9.21, p=0.23 for contaminated areas). Median age at diagnosis among p.F858L carriers was 47 

years versus 50 in non-carriers (p=0.38) and 48 in the whole cohort (p=0.40). 

No association was found between this variant and familial breast cancer (OR: 1.43, 95%CI: 0.61-

3.36, p=0.56). Among breast cancer patients heterozygous for p.F858L were one carrier of 

4153delA and one carrier of 5382insC in BRCA1, one carrier of IVS1+2G>A in CHEK2; two 

patients had bilateral disease, one breast/ovarian cancer and seven reported first-degree relative 

affected with breast cancer. 

Table 4.9. Carrier frequencies in breast cancer patients and controls for the p.F858L variant. 

T/T T/C Genotype/ (n) of carriers 
Total (n) (%)* Total (n) (%)* 

Population controls (N=36 p.P1054R carriers / 
N=1019 whole cohort) 20/36 55.6/2.0 16/36 44.4/1.6 

Population controls from non-contaminated regions 
(N=16 p.P1054R carriers / N=604 whole cohort) 9/16 56.3/1.5 7/16 43.8/1.2 

Population controls from contaminated regions 
(N=20 p.P1054R carriers / N=415 whole cohort) 11/20 55.0/2.7 9/20 45.0/2.2 

Breast cancer patients (N=50 p.P1054R carriers / 
N=1758 whole cohort) 19/50 38.0/1.1 31/50 62.0/1.8 

Breast cancer patients from non-contaminated 
regions (N=28 p.P1054R carriers / N=976 whole 

cohort) 
12/28 42.9/1.2 16/28 57.1/1.6 

Breast cancer patients from contaminated regions 
(N=22 p.P1054R carriers / N=782 whole cohort) 7/22 31.8/0.9 15/22 68.2/1.9 

* percentages in screened samples/whole cohort 

 

4.3 Search for 657del5, R215W and I171V alleles in the NBN gene 

4.3.1 Rationale 

Breast cancer is not observed in NBS patients who fail to mature through puberty and usually die 

early in life, but blood relatives of NBS patients have been reported to be at a generally increased 

risk for lymphoid and epithelial malignancies (Seemanova et al. 2007). Association studies of NBN 

gene alterations in breast cancer series have not generally supported the suggestion that NBN 

mutations may contribute to breast cancer susceptibility, but during the course of this thesis, more 

recent investigations in the Polish and Russian populations had provided suggestive evidence that 

the founder mutation c.657del5 could be associated with an increased breast cancer risk (Gorski et 

al 2003, 2005; Steffen et al 2004, 2006; Buslov et al 2005). The p.R215W mutation has been 

suggested to increase the risk for colorectal cancer, while its impact on breast cancer has remained 

uncertain (Steffen et al 2004, 2006). Recent investigations in the Polish population raised the 

hypothesis that the missense substitution p.I171V could be associated with a nine-fold increased 

breast cancer risk (Roznowski at al 2008).  
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A splice site mutation in intron 11 has been associated with gastric and colorectal cancer risk in a 

Japanese study population but was not found in breast cancer cases (Ebi et al. 2007). To clarify the 

role of NBN in breast cancer, we chose to investigate the NBN gene alterations previously known 

from European populations for their prevalence in Byelorussian cases and controls and for their 

potential functional impact on the cellular radiation response.  

 

4.3.2 Mutation analysis of 657del5 and R215W 

Mutation analysis of c.657del5 in NBN was performed by an ARMS assay using a mutation-specific 

forward primer so that a 391bp PCR product was obtained only in the presence of the c.657del5 

mutation (for primer sequence see attachment 1). A 353 bp fragment of the MDC1 gene was used as 

an internal control for amplification (figure 4.7 A). All positive samples were verified by direct 

sequencing of exon 6 in the NBN gene using the reverse primer (see attachment 1) (figure 4.7 B).  

For p.R215W screening, PCR products were screened by restriction enzyme analysis using a 

mutagenic forward primer (for primers sequence see attachment 1) to create a site for allele-specific 

restriction enzyme cleavage. PCR products were incubated by 37°C overnight with RsaI. 

Restriction enzyme reaction products were separated on a 3% agarose gel and were evaluated by 

ethidium bromide staining. 

 

  
A      B 
 
Figure 4.7 Screening for c.657del5. Panel A - ARMS PCR, MDC1 served as an internal control: S, size 
marker, lanes 1,2 deletion carriers, lanes 3-4 wild-type controls. Panel B - sequencing of PCR product from a 
heterozygous carrier of c.657del5 (anti-sense strand with ▼designating the deletion start). 
 

In the presence of the p.R215W mutation, the 178 bp wild-type PCR product was cleaved by RsaI 

to fragments of 153 and 25 bp, whereas the mutant product remained uncut (figure 4.8 A). Any 

positive samples were verified by direct sequencing (figure 4.8 B). For this purpose, exon 6 of the 

NBN gene were amplified using primers flanking R215W (see attachment 1) and sequencing 

reaction was performed using forward primer. 
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A        B 
Figure 4.8 Screening for the p.R215W allele in NBS1 gene. Panel A – Fragment of 3% gel with RsaI 
digestion: S, size marker, lanes P – p.R215W substitution carriers, C – wild-type control. Panel B – 
sequencing of PCR product from patient a heterozygous carrier of p.R215W (sense with N designating the 
substitution). 
 

Genotyping was successfully completed in 100% of cases and controls. The c.657del5 mutation 

accounted for 16 cases (0.91%) and was found in only one of 1014 population controls (females 

were excluded as controls for NBN mutational screening if they had a child with a 

neurodegenerative disorder) (OR: 9.3, 95%CI: 1.2-70.2, p=0.02) (table 4.10). Eight of the 16 

patients carrying the c.657del5 allele had been diagnosed below age 50, and 1 patient reported a 

first-degree family history of breast cancer. Three patients were from the contaminated regions (one 

from the subgroup II and two from the subgroup I) and none of them had relatives affected with 

breast cancer. One patient had bilateral disease. Median age at diagnosis in deletion carriers was not 

significantly different from non-carriers: 49.5 years compared with 48 years, although carriers from 

contaminated areas had median age at diagnosis 46 years (all three carriers were diagnosed below 

age 50) compared with 50 in non-contaminated regions, but this was not statistically significant 

(p=0.57, table 4.11). One patient was also carrier of the splicing mutation IVS2+1G>A in CHEK2. 

The p.R215W substitution was found in 9 cases (0.5%). Four of the 9 patients carrying the 

p.R215W substitution had been diagnosed below age 50, and 2 patients reported a first-degree 

family history of breast cancer, none of the patients reported bilateral disease or ovarian carcinoma. 

The p.R215W missense substitution was also observed in 5 population controls (p=1.00) (table 

4.10). The median age at onset of breast cancer was not significantly different between p.R215W 

carriers and non carriers (50 years compared with 48 years, p=0.70). One patient was also carrier of 

the p.C61G mutation in BRCA1. 

 

4.3.3 Missense variant p.I171V in NBN 

Simple PCR assay was used followed by restriction enzyme analysis for I171V screening. PCR 

amplification of 35 cycles was performed using HotStar –Taq DNA Polymerase. PCR products then 

were incubated overnight at 37°C with Tsp509I, subsequently restriction enzyme reaction products 

were separated on a 3% agarose gel and were evaluated after ethidium bromide staining. In the 
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presence of the p.I171V substitution, the 170 bp wild-type product was cleaved to fragments of 127 

and 43 bp, whereas mutant product remained uncut (figure 4.9 A). Any positive samples were 

verified by direct sequencing (figure 4.9 B). For this purpose, exon 5 of NBN was amplified and the 

forward primer was used for the sequencing reaction (for primer sequence see attachment 1). 

Genotyping was successfully completed in 100% of cases and controls. The p.I171V substitution 

accounted for 22/1759 cases (1.3%). Two of the p.I171V heterozygous patients reported a first-

degree family history of breast cancer (both from contaminated areas), a proportion not higher than 

among non-carriers (OR 0.5, 95%CI 0.1-2.1, p=0.48). None of the carriers had bilateral disease. 

Thirteen of the 22 heterozygous patients had been diagnosed at or below age 50. The median age at 

onset of breast cancer was not significantly different between p.I171V carriers and non carriers 

(49.5 years in carriers compared with 48 years in non-carriers) and was not different in 

contaminated and non-contaminated regions (50 and 49 years respectively). Nine patients of the 22 

were from contaminated regions and all of them from the subgroups II-IV. Importantly, the 

p.I171V allele was also found at a polymorphic frequency in 19/1014 (1.9%) of control individuals. 

The reported association with breast cancer could thus not be confirmed in our Byelorussian case-

control series (OR: 0.66, 95%CI: 0.36-1.23, p = 0.25) (table 4.10).  

 

 
A        B 
 
Figure 4.9 Identification and confirmation of NBN gene variant p.I171V. Panel A – fragment of 3% 
agarose gel: S, size marker; P, heterozygous patient; C – wild-type control; and panel B – sequencing of PCR 
products from heterozygous patient (sense strand with Y designating the mutated position). 
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Table 4.10 Frequency of NBN alleles c.657del5, p.R215W and p.I171V in cases and controls 

NBS1*657del5 R215W I171V Cohort Total 
(n) (n) (%) 

p** 
(n) (%) 

p** 
(n) (%) 

p** 

controls a 413 0 -  1 0.24  6 1.45  
cases a 783 3 0.38 0.13 1 0.13 1.00 9 1.15 0.86 

familial cases a* 166 0 -  1 0.60 0.48 2 1.20 1.00 
controls b 602 1 0.17  4 0.66  13 2.16  

cases b 976 13 1.33 0.03 8 0.82 0.96 13 1.33 0.29 
familial cases b* 132 1 0.76 0.28 1 0.76 1.00 0 -  

Controls 1014 1 0.09  5 0.49  19 1.87  
Cases  1759 16 0.90 0.02 9 0.51 1.00 22 1.25 0.25 

Familial 298 1 0.34 0.75 2 0.67 1.00 2 0.67 0.48 
* subset of patients with at least one first-degree relative also affected with breast cancer 
** compared with population controls 
a  cases and controls from contaminated regions 
b  cases and controls from non-contaminated regions 
 
Table 4.11 NBN mutation prevalence and median age at diagnosis 

Median age at diagnosis / Median test *(p value) age p* 
non-carriers 44  

c.657del5 46 0.57 
p.R215W Only one patient diagnosed at 23 

contaminated regions 

p.I171V 50 0.32 
non-carriers 50  

c.657del5 50 0.74 
p.R215W 50 0.99 

non-contaminated regions 

p.I171V 49 0.80 
*carries versus non-carriers 

 

 

4.3.4 Effect of the p.R215W missense substitution and the c.657del5 allele on protein function 

The effect of the p.R215W substitution and NBS1*657del5 was further studied in lymphoblastoid 

cell lines (LCLs) that were established from the patients heterozygous for these variants. LCLs were 

established by Epstein Barr virus (EBV) immortalisation
 
and the expression of NBS1 protein was 

determined by immunoblot analyses of lymphoblastoid cell protein extracts. To determine 

radiation-induced Nbs1(Ser343) phosphorylation, cell extracts were prepared 30 min after 

irradiation of the LCLs with 6 Gy. Whole cell extract was loaded at 50μg/lane on 7.5% SDS-PAGE 

gels. After transfer the membranes were probed with either a 1:5000 dilution of anti-Nbs1 

(Oncogene Research) or a 1:500 dilution of p95/Nbs1 (Ser-343) antibody (New England Biolabs), 

respectively, and the same blot was subsequently probed with a monoclonal antibody raised against 

β-actin (1:5000, Sigma) to control for loading. Signal ratios Nbs1/ β-actin were densitometrically 

determined and the relative expression level of Nbs1 was estimated for each of LCLs from patients 

harbouring a NBN mutation relative to the mean of LCLs from healthy individual (figure 4.10). 
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Figure 4.10 Expression of nibrin (NBS1, also termed NBN or p95) in lymphoblastoid cells. Identification 
of NBS1 protein (upper panel) and of radiation induced phosphorylation at NBS1(Ser343) (middle panel) by 
immunoblot analysis of total cell extracts from six different LCLs without or with previous exposure to 6 Gy 
irradiation. β-actin is shown as a loading control (lower panel). From left to right: HA325, healthy control 
individual; HA416, breast cancer patient heterozygous for p.R215W; HA450, NBS patient compound 
heterozygous p.R215W/c.657del5; HA226, NBS patient homozygous c.657del5; HA227 and HA228, NBS 
carriers heterozygous for c.657del5.  
 
Predictably, in the c.657del5 homozygous LCL no full-length Nbs1 protein was observed, 

consistent with previous data on cell lines from NBS patients. Nbs1 protein levels were ~15% in the 

cells from the NBS patient with the 657del5/R215W genotype, ~70% in cells from the breast cancer 

patient with the wildtype/R215W genotype, and ~70% in cells from NBS heterozygotes with the 

wild-type/ 657del5 genotype (figure 4.10, upper panel).  

By using a phosphospecific antibody to assess radiation-induced phosphorylation of Nbs1 at Ser-

343, the results paralleled those for total Nbs1 protein yielding: some 35% of Nbs1(p-Ser343) 

immunoreactivity in the cells from the NBS patient with the 657del5/R215W genotype, about 60% 

in cells from the breast cancer patient with the wildtype/R215W genotype, and about 80% in the 

wildtype/657del5 heterozygotes (figure 4.10, middle panel). The results obtained for the p.R215W 

heterozygous breast cancer patient were thus in the similar range as those observed for c.657del5 

heterozygotes and were consistent with only about one-third of the wild-type amount of full-length 

nibrin from the p.R215W allele. 

 

4.4. CHEK2 mutations 1100delC, I157T, IVS2+1G>A and dele9,10(5kb) 

4.4.1 Background and rationale 

Germ-line mutations in the cell-cycle checkpoint kinase CHEK2 have been associated with breast 

cancer. In particular, a frameshift mutation in the CHEK2 gene, 1100delC, was identified as a low-

penetrance breast cancer susceptibility allele (Meijers-Heijboer et al 2003, Vahteristo et al 2002) and 
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heterozygous carriers of the mutation have a two-to threefold increased risk for breast cancer 

(CHEK2–Breast Cancer Case-Control Consortium 2004, Weischer et al 2007). Some studies 

furthermore indicated that a heterozygous carrier status for this CHEK2 mutation may be associated 

with a worse prognosis (de Bock et al 2004, Meyer et al 2007, Schmidt et al 2007). Other CHEK2 

mutations were less extensively characterized. During the course of this project, two research 

groups reported suggestive evidence for an increased breast cancer susceptibility associated with 

two other CHEK2 mutations, the splicing mutation IVS2+1G>A and the missense substitution 

I157T (Kilpivaara et al 2004, Cybulski et al 2004, Gorski et al 2005). Since then, a large deletion in 

CHEK2 including the exons 9 and 10, CHEK2dele9,10(5kb), has been identified in breast cancer 

patients of Czech and Slovak origin (Walsh et al 2006) and was subsequently found in breast cancer 

patients from Poland (Cybulski et al 2007). We therefore decided to test whether these mutations 

associated with breast cancer risk in Belarus. 

 

4.4.2 Screening for 1100delC mutations 

Because several copies of exon 10 of CHEK2 are dispersed in pseudogenes throughout the human 

genome, the analysis of this gene region is challenging and for screening of the 1100delC frameshift 

mutation in CHEK2 an ARMS assay was established using a reverse primer specific for the 

expressed sequence of the CHEK2 gene and a forward primer specific for the CHEK2*1100delC 

allele. A genomic region within mutation site was amplified by 33 cycles of PCR using HotStar –

Polymerase (Quagen) by 61ºC annealing temperature (primers used for this approach see 

attachment 1). Subsequently, PCR products were separated on 2% agarose gel and visualized in UV 

after GelRed staining (figure 4.11 A). PCR product of 227 bp was obtained only in the presence of 

the CHEK2*1100delC mutation. A 601 fragment of the ATM gene (exon 9) was used as an internal 

control for amplification. All samples positive for 1100delC were sequenced to verify the presence 

of the mutation (figure 4.11 B, for primers sequences see attachment 1).  

Genotyping was successfully completed for 99.9% of cases and 99.6% of controls. The 1100delC 

mutation accounted for 9/1757 cases and was found in 3 of 1015 population controls (OR: 1.74, 

95%CI: 0.47-6.43, p=0.59) (table 4.12). The increase of 1100delC carriers in the breast cancer 

series was not significant in the total series, but approached some effect for breast cancer patients in 

non-contaminated regions (8/976 vs. 0/600, p=0.06). 
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A         B 
 
Figure 4.11.   Screening for CHEK2*1100delC. Panel A – detection of the frameshift mutation 1100delC 
by allele-specific PCR in two carriers (lanes 1,2) but not in wild-type controls (lanes 3,4), S – size marker. 
Panel B – identification of the CHEK2*1100delC mutation in a heterozygous patient by direct sequencing of 
the anti-sense strand; an ▼marks the start of the frameshift. 
 

Three of the 9 patients carrying the 1100delC allele had been diagnosed below age 50. Median age 

at diagnosis among carriers of mutation was 54 years versus 48 in non carriers (p=0.05). Only one 

patients was from a contaminated region (from subgroup III), and none had relatives affected with 

breast cancer ore bilateral disease. One patient (from contaminated region) was also a carrier of 

both the p.C61G mutation in BRCA1 and the p.R215W substitution in NBN. 

Table 4.12 Frequency of CHEK2 mutation 1100delC in cases and controls 

CHEK2*1100delC Cohort Total 
(n) (n) (%) OR** 95%CI** p** 

controls a  600 0 - 
cases a 976 8 0.8 

n.a n.a 0.06 

familial cases a* 0 - - - - - 

controls b 415 3 0.7 
cases b  781 1 0.1 

0.18 0.02-1.70 0.24 

familial cases b* 0 - - - - - 

Total controls 1015 3 0.3 

Total cases  1757 9 0.5 
1.74 0.47-6.43 0.59 

Total familial cases * 298 0 - - - - 

* subset of patients with at least one first-degree relative also affected with breast cancer 
** compared between cases and controls in two-by-two tables 
a  cases and controls from  non-contaminated regions 
b  cases and controls from contaminated regions 
n.a. not applicable due to dividing by null 
 
 

4.4.3 Mutation analysis of the IVS2+1G>A and p.I157T mutations 

A genomic region covering both the IVS2+1G>A and p.I157T mutations in intron 2 and exon 3 of 

the CHEK2 gene was amplified by PCR using mutagenic primers to allow for a subsequent 

restriction-enzyme screening of these two mutations (attachment 1). Thirty-six cycles of PCR 

amplification were performed with annealing at 60°C using HotStar – Taq Polymerase. PCR 
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products were separately digested over night by 37°C with either ScrFI or PstI to identify carriers 

of IVS2+1G>A or p.I157T, respectively. Reaction products were separated on a 3% agarose gel and 

were evaluated after ethidium bromide staining. In the presence of the p.I157T mutation, the 194 bp 

product was cleaved by PstI to fragments of 20 and 170 bp, whereas wild-type product remained 

uncut. In case of the IVS2+1G>A mutation, the wild-type product was cleaved by ScrFI and the 

mutant PCR product remained uncut (figure 4.12 A, B). All positive samples were confirmed by 

direct sequencing of PCR products (figure 4.12 C) using the intronic primers (attachment 1). 

Sequencing reactions were performed using the forward primer.  

 

 
A        B 
 

 
 

 
     C 
 
 
 
Genotyping was successfully completed in 99.6% of cases (7 DNA samples gave no PCR product) 

and in 100% of controls. As shown in table 4.13, the prevalence of IVS2+1G>A was 0.9% 

(16/1752) among the patients. One of the patients reported a first-degree relative affected with 

breast cancer, one was also carrier of I171V allele in NBN and the second one was also carrier of 

NBN*657del5 allele. Five carriers of IVS2+1G>A were from contaminated regions (2 patients from 

subgroup I, two from subgroup II and one from subgroup III) Six patients heterozygous by 

IVS2+1G>A were diagnosed at or below age 50. The IVS2+1G>A mutation was not found in any 

of the 1019 control individuals. The absence of IVS2+1G>A in controls did not allow for a reliable 

Figure 4.12 Identification and 
confirmation of CHEK2 gene 
mutations IVS2+1G>A and 
I157T. Screening of PCR 
products using restriction 
enzymes ScrFI and PstI. Upper 
figure A: S, size marker; P, 
heterozygous patient; C, wild-
type control. Panel B: scheme of 
restriction enzyme digest. Panel 
C - subsequent direct sequencing 
of PCR products from 
heterozygous patients (sense 
strand with N designating the 
mutated position). 
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calculation of odds ratios, however, the association of IVS2+1G>A with breast cancer was highly 

significant (p=0.005). The missense substitution p.I157T was identified in 4.9% (86/1752) of the 

cases and 2.3% (23/1019) of the population controls (OR= 1.5, 95% CI 0.9-2.5, p=0.001) (table 

4.13). 23.3% out of 86 patients with I157T reported a first-degree family history of breast cancer, 

compared with 17% out of 1752 in the total series (p=0.18). Five p.I157T carriers had a bilateral 

breast cancer, two patients beside breast cancer reported ovarian carcinoma, and one had a relative 

affected with ovarian carcinoma. Forty-two carriers (49%) were from contaminated regions (13/42 

from subgroup I, 17/42 from subgroup II, 11/42 from subgroup III and one from IV) and 13 of 

them reported family history of breast cancer. Two of the 86 patients, carriers of p.I157T were 

homozygous for the mutation and one of them had bilateral disease. Two others were compound 

heterozygotes for p.I157T and IVS2+1G>A, or p.I157T and CHEK2dele(9,10), respectively, the 

latter one had bilateral disease. One patient heterozygous for p.I157T was also carrier of the p.C61G 

allele in BRCA1, another one was also carrier of 4153delA mutation in BRCA1 and two others 

carriers of the p.I171V variant in NBN. Fifteen controls (65%) were from contaminated regions and 

8 of them from the areas with more than 5 mSv whole body cumulative dose - subgroups II-IV. 

Two controls were homozygous for p.I157T (one from contaminated region – subgroup I and 

another one from non-contaminated).  

 
 
Table 4.13 Frequency of CHEK2 mutations IVS2+1G>A and p.I157T in cases and controls 
* subset of patients with at least one first-degree relative also affected with breast cancer 

** compared with population controls 
a  cases and controls from contaminated regions 
b  cases and controls from non-contaminated regions 
n.a. not applicable through dividing by zero 

IVS2+1G>A p.I157T Cohort Total 
(n) (n) (%) OR** 95%CI** p**  (n) (%) OR** 95%CI** p** 

controls a 415 0 -    15 3.6    

cases a 780 5 0.6 n.a. n.a. 0.24 42 5.4 1.52 0.83-2.77 0.22 

familial 
cases a* 166 0 - - - - 13 7.8 1.70 0.88-3.38 0.17 

controls b 604 0 -    8 1.3    

cases b 972 11 1.1 n.a. n.a. 1.0 44 4.5 3.50 1.65-7.5 0.001

familial 
cases b* 132 1 0.8 n.a. n.a. 0.02 7 5.3 1.26 0.55-2.89 0.75 

Controls 1019 0 -    23 2.3    

Cases 1752 16 0.9 n.a. n.a. 0.005 86 4.9 2.2 1.4-3.6 0.001

Familial 298 1 0.3 0.32 0.04-2.45 0.41 20 6.7 1.5 0.9-2.5 0.15 
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The median age at diagnosis among breast cancer patients was not different between carriers and 

non-carriers neither for the p.I157T mutation (48.5 compared with 48, p=0.4) nor for IVS2+1G>A 

mutation (53 years in carriers compared with 48 in non-carriers, p=0.4) as well as between carriers 

in contaminated and non-contaminated areas for both mutations (for IVS2+1G>A p=0.09 and for 

p.I157T p=0.06) and between carriers and non-carriers in different regions; generally carriers of 

I157T and IVS2+1G>A tended to have a higher age at diagnosis in comparison with non carriers 

and whole breast cancer patients cohort (table 4.14). 

 

Table 4.14 CHEK2 IVS2+1G>A and p.I157T by median age at diagnosis 
Median age at diagnosis / Median test *(p value) age p* 

non-carriers 44  
IVS2+1G>A 44 0.99 contaminated regions 

I157T 45.5 0.75 

combined carriers versus non carriers in contaminated regions (both loci) 45/44 0.77 

non-carriers 50  
IVS2+1G>A 57.5 0.12 non-contaminated regions 

I157T 50 0.69 

combined carriers versus non carriers in non-contaminated regions (both loci) 51/50 0.54 

Total carriers versus non carriers (both loci) 49/48 0.31 
 

4.4.4 Screening for CHEK2dele9,10(5kb)  

The large CHEK2 deletion of about 5.8 kb spanning the exons 9 and 10, initially described as a 

Czech founder mutation, reportedly accounts for 0.9% of breast cancer patients in Poland (see 

above 4.4.0). Screening for the presence of the CHEK2dele(9,10) mutation was performed using a 

previously established allele-specific duplex polymerase chain reaction assay (Cybulski et al 2007), 

and was subsequently confirmed in positive patients by long-range polymerase chain reaction 

(Walsh et al 2006). Allele specific duplex PCR in mutation-negative cases amplified only two PCR 

fragments of 379 and 522 bp from the wild-type allele. The forward primer of the first pair flanking 

the intron 8 breakpoint and the reverse primer of the second pair flanking the intron 10 breakpoint 

amplified an additional PCR product of 450 bp in mutation- positive cases (figure 4.13 A). In all 

duplex PCR-positive samples, the presence of the deletion was confirmed by long-range PCR using 

one primer pair flanking the deletion (attachment 1), so that PCR product of 1.8kb was yielded only 

in the presence of deletion, and PCR products were subsequent loaded on 1% agarose gel and 

visualised after GelRed staining (figure 4.13 B). 
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Figure 4.13 Identification and confirmation of CHEK2dele(9,10) mutation. Panel A – fragment of 2% 
agarose gel with allele-specific duplex polymerase chain reaction assay: lane 1 – heterozygous carrier of 
CHEK2dele(9,10), lanes 2,3 – wild-type control. Panel B – verification of the mutation by long-range PCR 
in carriers (lanes 1,2) and in wild-type control (lane 3). 
 

Genotyping was successfully completed in 99.7% of cases and in 99.9% of controls. As shown in 

table 4.15, the prevalence of the CHEK2dele(9,10) mutation was 1.1% (20/1749) among the 

patients. Four patients reported a first-degree relative affected with breast cancer, one of them 

reported bilateral breast cancer and was also carrier of I157T allele, and none of the patients had 

breast and/or ovarian cancers. Eight mutation carriers were from contaminated regions (4 patients 

from subgroup I, one from subgroup II and three from subgroup III). Twelve patients heterozygous 

for CHEK2dele(9,10) were diagnosed below age 50. The median age at diagnosis was not different 

between carriers and non-carriers for CHEK2dele(9,10) mutation (44.5 compared with 48, p=0.53) 

as well as between carriers in contaminated and non-contaminated regions p=0.07, although the 

median age at diagnosis among mutation carriers in contaminated areas is 42.5 years and in non-

contaminated 51. Between carriers and non-carriers when stratified by region also no difference was 

found (in non-contaminated 51 in carriers versus 50 in non-carriers, p=0.98; in contaminated 42.5 

compared with 44, p=0.15). The CHEK2dele(9,10) mutation was further found in one of the 1018 

control individuals, and this was the same person who also carried the c.657del5 in the NBN gene. 

The association of CHEK2dele(9,10) with breast cancer was highly significant (OR= 11.8, 95% CI 

1.6-87.8, p=0.005) (table4.15). 

 
Table 4.15 Frequency of CHEK2dele(9,10) in cases and controls 

CHEK2dele(9,10) Cohort Total 
(n) (n) (%) OR** 95%CI** p** 

controls a  415 0 - 
cases a 777 8 1.0 

n.a. n.a. 0.09 

familial cases a* 166 3 1.8 2.23 0.53 – 9.43 0.49 

controls b 603 1 0.1 
cases b  972 12 1.2 

7.53 0.98 – 58.02 0.05 

familial cases b* 132 1 0.8 0.57 0.07 – 4.49 0.91 

Total controls 1018 1 0.1 

Total cases  1749 20 1.1 
11.76 1.58 – 87.8 0.005 

Total familial cases * 298 4 1.3 1.22 0.40 – 3.68 0.96 
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* subset of patients with at least one first-degree relative also affected with breast cancer 
** compared between cases and controls in two-by-two tables 
a  cases and controls from contaminated regions 
b  cases and controls from non-contaminated regions 
n.a. not applicable due to dividing by zero 
 
When all four CHEK2 mutations were combined, the presence of any CHEK2 mutation was 

strongly associated with breast cancer (OR= 2.97, 95% CI 1.95-4.53, p<0.00001), and this increase 

in risk was mainly driven by the relatively few mutation carriers among controls from non-

contaminated regions (table 4.16). 

 

Table 4.16 Combined frequencies of CHEK2 mutations 1100delC, IVS+1G>A, p.I157T and 
CHEK2dele(9,10) in cases and controls 

1100delC, IVS+1G>A, I157T and CHEK2dele(9,10) combined Cohort Total 
(n) (n) (%) OR** 95%CI** p** 

controls a  415 18 4.3 
cases a 780 56 7.2 

1.71 0.99 – 2.94 0.07 

familial cases a* 166 16 9.6 1.57 0.85 – 2.90 0.19 

controls b 604 9 1.5 
cases b  972 75 7.7 

5.53 2.75 – 11.12 <0.00001 

familial cases b* 132 9 6.8 0.90 0.48 – 2.04 1.0 

Total controls 1019 27 2.7 

Total cases  1752 131 7.5 
2.97 1.95 – 4.53 <0.00001 

Total familial cases * 298 25 3.4 1.28 0.81 – 2.03 0.35 

* subset of patients with at least one first-degree relative also affected with breast cancer 
** compared between cases and controls in two-by-two tables 
a  cases and controls from contaminated regions 
b  cases and controls from non-contaminated regions 
 

 

4.4.5. Transcript analysis of the CHEK2dele(9,10) mutation 

While the effect of the CHEK2 mutations 1100del C and IVS2+1G>A have been investigated by 

previous investigators, the consequences of the CHEK2dele(9,10) allele are largely unknown. In 

order to assess the consequence of the CHEK2dele(9,10) allele at the transcript level, total RNA 

was isolated from LCLs established from individual who was a heterozygous carrier of the 

CHEK2dele(9,10)/NBN*657del5 genotype. The RNA was reverse transcribed, and a region of the 

cDNA spanning the exons 6-14 was amplified with exonic primers (see table 4.17). Subsequently, 

RT-PCR products were separated on a 2% agarose gel, stained with GelRed (figure 4.14, A), for 

amplification control. Direct sequencing was performed using forward primer (figure 4.14, B).   
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A       B 
 
Figure 4.14. RT-PCR analysis of CHEK2 transcripts from total RNA of a CHEK2dele(9,10) carrier. 
Panel A – Fragment of 2% gel with PCR products spanning exon 6 -14 of the CHEK2 mRNA transcript, 
lines 1,3: wild-type control individual, lane 2: PCR product from the CHEK2dele(9,10) heterozygous carrier. 
A white arrow designates a faint smaller band indicative of aberrant splicing. Panel B – direct sequencing of 
RT-PCR product from the patient carrying CHEK2dele(9,10) (sense strand with ▼ designating the start of a 
frameshift in part of the products).  
 
Table 4.17 Primer used for sequencing of CHEK2dele(9,10) allele   

Primer name Sequence Annealing t° 
Predicted 

product size 

CHEK2-6F 5’-CCCAGCTCTCAATGTTGAAACAG-3’ 

CHEK2-14R 5’-GATGACAGAGTGAAAGAAGGTAC-3’ 
59°C 888 bp 

 

The analysis of RT-PCR products after agarose gel electrophoresis confirmed the presence of a 

smaller deletion product in approximately the same amount as the product of wild-type length, and 

there was no evidence for a nonsense-mediated decay of CHEK2mRNA harbouring the deletion. In 

addition, some smaller splice product was seen at a low level in the sample with CHEK2dele(9,10) 

(figure 4.14, A). When this minor band was excised from the gel, reamplified and also sequenced as 

described before; the direct sequencing of this small product showed a deletion not only of exons 9 

and 10 but also the downstream exon 11, consistent with an alternative splicing event. The exon 11 

skipping which was observed exclusively in the patient sample, restores the reading frame in the 

context of the CHEK2dele(9,10) deletion, however the shortened product was observed at about 5% 

of wild-type and has lost 117 codons encoding a large part of the CHEK2 kinase domain. 

 

4.4.6 Effect of p.I157T and CHEK2dele(9,10) on protein level and radiation-induced protein 

phosphorylation 

The physiologic impact of p.I157T mutation is controversial, this substitution was relatively 

common in healthy control individuals and was proposed as a polymorphism (Vahteristo et al. 

2001), but on the other hand it is located in the conserved FHA domain. Biochemical data from 

other study suggest that this mutation may be deleterious (Li et al. 2002) and, while it does not 
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result in a size change of CHEK2, may affect associations of CHEK2 with certain substrate proteins 

(as for example with TP53, BRCA1 or Cdc25C).  

In order to study the physiological impact of the p.I157T mutation and of the 

CHEK2dele(9,10)/NBN*657del5 carrier status,  LCLs were established from breast cancer patients 

homozygous for I157T and from the heterozygous carrier of the CHEK2dele(9,10)/NBN*657del5 

mutations. Expression of CHEK2 protein was determined by immunoblot analyses of 

lymphoblastoid cell protein extracts. To determine radiation-induced CHEK2 phosphorylation, cell 

extracts were prepared 30 minutes after irradiation of the LCLs with 6 Gy. Whole cell extract was 

loaded at 50μg/lane on 7.5% SDS-PAGE gels. After transfer the membranes were probed with 

either a 1:1000 dilution of anti-CHEK2 (Cell Signaling) or anti-pCHEK2 (dilution 1:000 of Ser-19, 

dilution 1:500 of Thr-68, dilution 1:500 of Ser-33/35) antibody (Cell Signaling), respectively. The 

same blot was subsequently probed with a monoclonal antibody raised against β-actin (1:5000, 

Sigma) to control for loading. After incubation with secondary antibody, signals were detected 

using enhanced chemiluminescence (Pierce/ Perbio Science) for CHEK2/pCHEK2 and normal 

luminol chemiluminescence for β-actin followed by autoradiography. Signal ratios CHEK2/β-actin 

were densitometrically determined and compared between the cell lines. The relative expression 

level of CHEK2 was estimated for each of the LCLs from patients harbouring a CHEK2 mutation 

relative to the mean of LCLs from two healthy individuals (figures 4.15, 4.16). 

 

  
A       B 
 
 

  
C       D 
 
Figure 4.15 Expression of CHEK2 protein in lymphoblastoid cells. Identification of CHEK2 protein 
(panel A) and of radiation-induced phosphorylation at CHEK2 Thr-68 (panel B), Ser-19 (panel C), or Ser-
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33/35 (panel D) by immunoblot analysis of total cell extracts from four different LCLs without or with 
previous exposure to 6 Gy irradiation. β-actin is shown as a loading control. HA325 and HA460: healthy 
control individuals; HA464 and HA456: breast cancer patients homozygous for p.I157T.  
 
In the p.I157T homozygous LCLs, full-length CHEK2 protein was observed at a similar level as in 

control LCLs (figure 4.15, panel A). By using a phosphospecific antibody to assess radiation-

induced phosphorylation of CHEK2 at Thr-68, Ser19 and Ser33/35, the results paralleled those for 

total CHEK2 protein, yielding no detectable difference between p.I157T homozygous carriers and 

control LCLs regarding Ser19 and Thr68 phosphorylation and only a slight, if any, decrease in 

Ser33/35 phosphorylation. Thus, CHEK2 protein levels and radiation-induced CHEK2 

phosphorylation were in the same range for wild-type controls and p.I157T homozygotes (figure 

4.15, panels B, C, D).  

 

 
A 
 
 
 

 
B 
 
 

Figure 4.16 Expression and radiation-induced 
phosphorylation of CHEK2 in lymphoblastoid cells 
with different CHEK2 and NBN mutational status. 
Total CHEK2 protein (panel A) and specific radiation 
induced phosphorylation at CHEK2 Ser-19 (panel B) and 
Ser-33/35 (panel C) by immunoblot analysis of total cell 
extracts from different LCLs without or with previous 
exposure to 6 Gy of irradiation. β-actin is shown as a 
loading control. HA226, NBS patient homozygous for 
657del5; HA227 and HA228, NBS carriers heterozygous 
for 657del5; HA455 breast cancer patient carrier of 
CHEK2(dele9,10)/NBS*657del5 genotype; HA460 
healthy control individual. 
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C 
 
 

In the CHEK2dele(9,10)/NBN*657del5 carrier LCL, full-length CHEK2 protein was observed, but  

protein level was reduced to approximately 50% in comparison with LCLs from wild-type genotype 

and there was no apparent phosphorylation shift after irradiation with 6 Gy (figure 4.16, panel A).  

By using a phosphospecific antibody to assess radiation-induced phosphorylation of CHEK2 at Ser-

19 and Ser-33/35, the obtained results showed some 30% of CHEK2 (p-Ser19 and p-Ser33/35) 

immunoreactivity in the cells from the dele(9,10)/657del5 compound heterozygous patient. We 

observed also a dramatic reduction to about 20% in cells from the NBS patient with the 

657del5/657del5 genotype, whereas both NBS parents heterozygous for 657del5 mutation had 

apparent phospho-protein levels in the same range as for wild-type control individuals (figure 4.16, 

panels B, C). Altogether, the data from LCLs suggest that the dele9,10/657del5 genotype may 

produce some 50% of the wild-type amount of full-length CHEK2 protein but may allow for only 

about one-third of phosphorylated CHEK2 what in turn may markedly affect CHEK2 protein 

function. 

 

4.5. Analysis of BRCA2 mRNA levels using real-time PCR  

In a recently published study, CHEK2 dependent phosphorylation of FoxM1 protein on Ser-361 

caused increased stabilization of the latter with a corresponding increase of XRCC1 and BRCA2 

gene transcription in mouse embryonic fibroblasts and in osteosarcoma U2OS cells (Tan et al. 

2007). We wondered whether such an increase in BRCA2 mRNA levels could be an effect of 

CHEK2 in human mammary epithelial cells, and whether it could be useful to assess the effect of 

CHEK2 mutations. 

Total RNA was isolated from irradiated and non-irradiated HMEC and from LCLs from wild-type 

control individuals and breast cancer patient homozygous for the p.I157T variant in the CHEK2 

gene. Complementary DNA was prepared by reverse transcription using random hexamer primers 

(see chapter 3.5). The expression of BRCA2 mRNA transcripts was analysed by polymerase chain 

reaction using SYBR Green as fluorescent marker as described in chapter 3.9. The primers used for 
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this approach were the same as in the published article (see table 4.18), and the expression level of 

investigated transcripts was normalised to cyclophilin mRNA expression, a house-keeping gene to 

compensate for possible differences in sample amounts and/or quality. The efficiency of the primer 

pairs (table 4.20) was verified by the standard curve method using serial dilutions. For estimating 

the relative expression level of the gene of interest (BRCA2) a semiquantitative method was used, 

which is based on calculating of DCt value, defined as the difference in the Ct (threshold cycle) 

values of target (BRCA2) and reference genes (cyclophilin). 

Analysis of mRNA levels from non-irradiated and irradiated (5 Gy) HMEC was assessed 24 hours 

after treatment by RT-PCR and revealed evidence for an about 2 fold increase in the expression of 

BRCA2 transcripts after irradiation (figure 4.17, A). However, when lymphoblastoid cells (LCL) 

from two different control individuals were irradiated with 6Gy and harvested after 24 hours, the 

real-time PCR analysis from LCLs did not show an increase of BRCA2 expression and as the results 

from irradiated cells were almost in the same range as from non-irradiated, no significant difference 

was found (figure 4.17, B, three independent experiments). Hence, this assay could not be applied 

to investigate the effect of the I157T mutation under the conditions chosen. 

 

Table 4.18 Primers used for QRT 
Primer name Sequence Annealing t° 

BRCA2-S 5’-GCCTTGGATTTCTTGAGTAGACTGC-3’ 

BRCA2-AS 5’-GTGTTTCGTATTTGGTGCCACAAC-3’ 
63°C 

hCYC-S 5’-GCAGACAAGGTCCCAAAGACAG-3’ 

hCYC-AS 5’-CACCCTGACACATAAACCCTGG-3’ 
63°C 

 

Tan and co-authors showed the increased expression of BRCA2 on protein and mRNA levels at 6 

and 18 hours after IR-treatment. In order to determine whether the chosen incubation time 

influences the detection and quantification of BRCA2 transcript expression in LCLs, real time PCR 

was also performed at 6 hours after treatment with 6Gy. This experiment was done three times with 

two LCLs, from a wild-type control individual and from a breast cancer patient homozygous for the 

I157T variant in the CHEK2 gene. Again, the results did not show any significant increase of 

BRCA2 expression, and were almost in the same range as after 24 hours, although a less than ~ 1.6 

fold induction of BRCA2 mRNA could not be excluded in the 6 hrs experiment (figure 4.17, C). 
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B 

 

 
C 

 

Because only lymphoid cells and not mammary epithelial cells were available from CHEK2 

mutation carriers, this assay was not applicable for the analysis of mutation-specific effects. It is 

possible that the observed differences are cell-type specific, and they may relate to the total 

expression levels of BRCA2. In general, the expression of BRCA2 transcripts in lymphoblastoid 

cells was very low, and when calculated from the standard curves, accounted for less than 1% 

compared with the housekeeping gene expression (cyclophilin). 

 
4.6. Missense substitutions p.Q559R, p.E672Q and p.G998E in the PALB2 gene  

PALB2 (“partner and localizer of BRCA2”) is one of the most recently discovered Fanconi anemia 

genes (Reid et al. 2007). Biallelic PALB2 germline mutations are responsible for a subset of 

Fanconi anemia (FA-N) cases characterized by a phenotype similar to that caused by biallelic 

Figure 4.17 Real time PCR for 
mRNA levels in HMECs and 
LCLs. Expression of BRCA2 
mRNA without and after exposure 
to IR. Panel A – HMEC cells 
untreated HMEC/- or exposed to 
IR (5Gy), harvested at 24 hours 
after treatment. Panel B – QRT-
PCR RNA analysis from LCL cells 
untreated wt/- or treated with 6Gy, 
collected at 24 hours after IR 
exposure. Panel C – mRNA levels 
of BRCA2 in LCLs from wild-type 
control: wt and breast cancer 
patient homozygous for I157T, 
harvested 6 hours after exposure to 
6Gy or from unexposed. As “−” 
designated not irradiated cells 
as”+” – irradiated. 
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BRCA2 mutations (Reid et al. 2007, Xia et al. 2007). During the course of the thesis, monoallelic 

PALB2 mutations were also found in individuals with breast cancer from familial breast cancer 

pedigrees that were negative for BRCA1 and BRCA2 mutations. The breast cancer population 

attributable fraction of PALB2 mutations in UK population was estimated to be 0.23% and the 

percentage of familial relative risk due to PALB2 to be 0.24 %. (Rahman et al. 2007). A truncating 

mutation, being a possible founder mutation, in PALB2 was also detected in familial and sporadic 

breast cancer cases and in one prostate cancer family in the Finnish population (Erkko et al. 2007). 

PALB2 mutations showed an incomplete segregation in affected relatives and were estimated to 

confer a 2 to 3 fold increase in breast cancer risk, and it was suggested that the risks of breast cancer 

associated with PALB2 mutations may be age-dependent.  

In parallel work of our group, three missense variants p.Q559R, p.E672Q and p.G998E initially 

described by Rahman (Rahman et al. 2007) were detected to be in linkage disequilibrium across 

exons 5-9 of the PALB2 gene, and a haplotypic combination of all three substitutions showed 

evidence for an association with increased breast cancer risk, with some evidence of an early age of 

breast cancer onset in triple carriers versus non- carriers (M. Blaut, MD thesis in preparation). In 

order to validate these findings, we also genotyped the three variants in Byelorussian cases and 

population controls by using self-established 5´-nuclease allelic discrimination assays with FAM 

and Yakima-Yellow labelled probes (Eurogentec,primers and probes see attachment 2). The assays 

were run in 96-well plates on a 7500FAST Real-time PCR Thermocycler (Applied Biosystems) 

with annealing/hybridisation temperatures at 60°/62°/65°C for p.Q559R, p.E672Q and p.G998E 

respectively and forty cycles of amplification. Homozygous and heterozygous genotypes were 

evaluated from their relative fluorescence using the 7500 FAST System SDS Software. A 

representative assay is shown in figure 4.18. The call rate was above 99% for all SNPs (see below 

for details).  

 

 
 
 
Genotyping was successfully for 99.9% of cases and 100% of controls for SNP c.1676A>G 

(p.Q559R). This variant was found in 372/1757 breast cancer cases (21.2%) and in 196/1019 

Figure 4.18 5´-nuclease allelic 
discrimination assay for 
PALB2 variant p.E627Q. 
Clustering of three genotypes: 
common homozygotes (blue) are 
represented by fluorescence 
along the y-axis, rare 
homozygotes (red) are 
represented by fluorescence 
along x-axis and heterozygotes 
(green) show fluorescence 
emission from both dyes and 
cluster between axes x and y. 
NTC - no template control.  
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(19.2%) of controls (table 4.19; OR 1.11, 95% CI=0.93-1.33, p=0.25). There was also no difference 

found if stratified by region: OR 1.18, 95% CI=0.94-1.49, p=0.17 for non-contaminated regions and 

OR 1.04, 95% CI=0.78-1.37, p=0.85 for contaminated regions, neither was an association found 

with familial breast cancer (OR 1.03, 95% CI=0.76-1.40, p=0.90). Median age at diagnosis for 

carriers and non-carriers was 48 years, and no genotype-specific differences became apparent if 

stratified by region (in non-contaminated areas for carriers and non carriers 50 years and for 

contaminated regions 45.5 years for carriers versus 44 in not carriers). In the second stage, all 

carriers of the p.Q559R allele in cases and controls were screened for the presence of the 

c.2014G>C (p.E672Q) variant. Further, all samples carrying the p.E672Q substitution were 

analysed for the presence of the c.2933G>A (G998E). No significant differences were detected in 

allele frequencies between cases and controls with any of these SNPs though a c.2933A/A 

homozygous variant was detected only in breast cancer cases (OR 1.10 95% CI=0.77-1.56, p=0.67 

for p.E672Q and OR 1.10 95% CI=0.65-1.52, p=1.00 for p.G998E). The p.E672Q allele was 

present in 28.5% of investigated cases (representing 6.0% in the whole case series) and in 26.5% of 

investigated controls (representing 5.1% in the whole control series) (table 4.19). There was no 

significant difference in carrier frequencies if stratified by region (OR: 1.33, 95%CI: 0.83-2.14, 

p=0.28 for non-contaminated areas and OR: 0.83, 95%CI: 0.48-1.42, p=0.59 for contaminated 

areas). Median age at diagnosis among p.E672Q carriers was 50.5 years versus 48 years in non-

carriers (p=0.36) and no difference was found in the median age at diagnosis among carriers and 

non-carriers if stratified by region: 52 years versus 49.5 (p=0.16) for non-contaminated areas and 43 

years versus 46 (p=0.71) for contaminated regions.  

 

Table 4.19 Frequency of PALB2 alleles p.Q559R, p.E672Q and p.G998E in cases and controls 
Series Cases (N=1757) Controls (N=1019) 

Locus/genotype contaminated 
areas (n) 

non-
contaminated 

areas (n) 

contaminated 
areas (n) 

non-contaminated 
areas (n) 

G/G 8 13 2 9 
A/G 144 208 78 107 

p.Q559R 
(c.1676A>G) 

A/A 631 754 335 488 
 Cases (N=372) Controls (N=196) 

C/C 1 2 1 0 
G/C 39 64 23 28 

p.E672Q 
(c.2014G>C) G/G 112 154 55 88 

 Cases (N=106) Controls (N=52) 
A/A 2 0 0 0 
G/A 27 37 20 16 

p.G998E 
(c.2933G>A) G/G 24 16 9 7 
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The p.G998E variant was present in 18.2% of investigated cases (3.9% in the whole case series) and 

in 18.4% of investigated controls (3.5% in the whole control series) (table 4.19). There was no 

significant difference in risk if stratified by region (OR: 1.25, 95%CI: 0.68-2.29, p=0.58 for non-

contaminated areas and OR: 0.79, 95%CI: 0.43-1.44, p=0.53 for contaminated areas), nor in the 

distribution of cases among different regions: OR: 1.22, 95%CI: 0.74-2.07, p=0.51. Median age at 

diagnosis among p.G998E carriers was 52 years versus 48 in not carriers (p=0.25) and no difference 

was found in the median age at diagnosis between carriers and non-carriers when stratified by 

region: 55.5 years versus 50 (p=0.096) for non-contaminated areas and 44.5 years versus 45.5 

(p=1.00) for contaminated regions. Also, no significant difference was found in regard of the 

median age at diagnosis between carriers from different regions: 44.5 years in contaminated regions 

versus 55.5 in non-contaminated (p=0.076). For both loci was no association detected between 

variant carrier status and familial breast cancer (OR: 0.87, 95%CI: 0.50-1.50, p=0.70 for p.E672Q; 

OR: 0.80, 95%CI: 0.39-1.63, p=0.66 for p.G998E). 

 

4.7 Splice variant IVS7-1G>A in the XRCC4  

XRCC4 is a non-homologous end-joining protein employed in DNA double strand break repair and 

in V(D)J recombination and, as an important caretaker of the overall genome stability, is thought to 

play an important role in the human carcinogenesis. Some non-coding variants of XRCC4 were 

reported to be associated with breast cancer susceptibility (Allen-Brady et al. 2006, Chiu et al. 

2008). The IVS7-1G>A XRCC4 variant was reported to be significantly associated with bladder 

cancer risk (Figueroa et al. 2007), and in primary work of our group showed evidence for an excess 

of rare homozygotes in German breast cancer cases compared with controls (K. Gerriets, MD thesis 

submitted). This mutation was found to abolish the conserved acceptor site of the last intron of 

XRCC4 gene and results in the exclusive activation of cryptic acceptor site six nucleotides 

downstream in lymphoblastoid cells from carriers of the mutation. The aberrant splicing leads to the 

loss of two amino acids and the substitution of the third in the variant protein. Lymphoblastoid cells 

from homozygous mutation carriers show grossly normal levels and phosphorylation of the shorter 

XRCC4 protein (K. Gerriets, MD thesis submitted) but may exhibit an increased frequency of 

micronuclei after irradiation (Janet Hall, pers. comm.). 

For screening the IVS7-1G>A variant, a simple restriction enzyme based PCR assay was used. A 

genomic region covering the splice acceptor site was amplified by 35 cycles of PCR using GoTaq –

Polymerase at 60ºC annealing temperature (primers used for this approach see attachment 1). 

Subsequently, PCR products were cleaved at 65°C for 8 hours with Tsp509I (New England 

BioLabs). Reaction products were separated on 2% agarose and visualized by UV after ethidium 

bromide staining (figure 4.19 A). In the presence of the A/A genotype, the 247bp PCR product was 
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cleaved by Tsp509I to fragments of 162bp and 85bp, whereas wild-type samples remained uncut. 

Some samples carrying IVS7-1G>A were directly sequenced to verify the presence of the mutation 

(figure 4.19 B, C, D). For this purpose the same primers were used as for PCR. 

 

    
A        B 

     
C        D 
 
Figure 4.19 Screening for the IVS7-1G>A splice site mutation in the XRCC4 gene. Panel A –2% agarose 
gel with Tsp509I cleavage products; S – size marker, lanes 4,5 heterozygous carriers of mutation (G/A), 
lanes 1,2 homozygous carriers of mutation (A/A) and lane 3 wild type control. Panel B: sequencing of PCR 
product from control individual. Panels C and D sequencing of PCR products from heterozygous and 
homozygous carriers of IVS7-1G>A respectively (sense strand with ▼ designating of mutation).  
 

Genotyping was successfully completed for 100% of cases and controls. The IVS7-1G>A variant 

presented with an allele frequency of 23.4% in cases  and 19.8% in controls, with a higher 

prevalence of the A/A genotype in carriers among cases: 34 (8.3%) out of 411 carriers in 

comparison with 7 (3.5%) out of 202 carriers among controls (OR: 1.27, 95%CI: 1.06-1.51, 

p=0.01). If stratified by region, a significant difference between cases and controls was obtained 

only for non-contaminated regions: OR: 1.35, 95%CI: 1.07-1.71, p=0.01, for contaminated OR: 

1.16, 95%CI: 0.89-1.51, p=0.29 (table 4.20). There was also no association found between this 

variant and familial breast cancer (OR: 0.80, 95%CI: 0.60-1.06, p=0.14) (table 4.20). 

Median age at diagnosis among heterozygous mutation carriers and non-carriers was not different – 

48 years in both groups, but among carriers of rare allele in homozygous state median age was 51.5 

years though this was not a significant difference (p=0.07). If stratified by region it was the same 

tendency that rare homozygotes had a slightly later age at diagnosis although statistical significance 

was not obtained (for non-contaminated regions: median age at diagnosis among G/G genotype 
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carriers - 50, among G/A -50, among A/A- 52.5 years; for contaminated regions: median age at 

diagnosis among G/G genotype carriers - 44, G/A- 45 and A/A – 46.5 years). 

 
Table 4.20 Frequency of XRCC4 mutation IVS7-1G>A in cases and controls 

IVS7-1G>A Series Total 
(n) G/G G/A A/A OR, 95%CI** p** 

controls a 415 326 85 4 
cases a 783 597 172 14 

1.16, 95%CI: 0.89-1.51 0.29 

familial cases a* 166 128 34 4 0.94,95%CI:0.63-1.41 0.85 

controls b 604 491 110 3 
cases b 976 751 205 20 

1.35,95%CI:1.07-1.71 0.01 

familial cases b* 132 100 27 5 1.10, 95%CI: 0.70-1.66 0.81 

Total controls 1019 817 195 7 

Total cases 1759 1348 377 34 
1.27, 95%CI: 1.06-1.51 0.01 

Total familial cases * 298 228 61 9 0.80, 95%CI: 0.60-1.06 0.14 

 
* subset of patients with at least one first-degree relative also affected with breast cancer 
** compared between cases and controls in two-by-two tables 
a  cases and controls from contaminated regions 
b  cases and controls from non-contaminated regions 
 

Among carriers of IVS7-1G>A  were 58 patients who also harboured previously identified breast 

cancer risk alleles: 9 carriers of 5382insC, 6 carriers of p.C61G and 4 carriers of 4153delA in the 

BRCA1 gene; furthermore 20 carriers of p.I157T (inclusive 2 homozygotes), 5 carries of 

IVS1+2G>A and 5 carriers of the CHEK2dele(9,10) allele in the CHEK2 gene; 3 carriers of the 

NBN*657del5 allele, one carrier of the p.R215W allele in the NBN gene and 5 carriers of the 

p.E1978X allele in the ATM gene. These risk alleles co-occurred with IVS7-1A at a marginally 

lower frequency than with the more common IVS7-1G allele (OR 0.73; 95%CI 0.53-1.00, p=0.05). 

Thus, if carriers of previously identified mutations in the genes BRCA1, BRCA2, CHEK2, ATM and 

NBN were excluded, the observed association of IVS7-1G>A with breast cancer became even 

stronger (OR 2.14, 95%CI: 1.82-2.53, p<0.0001). Ninety patients carrying IVS7-1G>A had 

bilateral disease, three patients had breast/ovarian cancer syndrome and five reported first degree 

relatives affected with ovarian cancer. 

 

4.8 Low-penetrance alleles p.D302H in CASP8 and p.L10P in TGFB1 

4.8.1 Rationale and methodology 

During the course of this thesis, there had been indications that the D302H polymorphism 

(rs1045485) in CASP8, the gene encoding caspase-8, which results in an aspartic acid to histidine 

substitution at codon 302, could reduce breast cancer risk what was recently confirmed by a study 

of the Breast Cancer Association Consortium, a collaboration of 25 international research groups in 
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which we had the chance to take part (Cox et al. 2007). Weaker evidence was found in the same 

study for a TGFB1 (Transforming growth factor-beta) L10P variant. The Leu10Pro polymorphism 

resides in the signal peptide sequence of TGFβ and the peptide with Proline at residue 10 reportedly 

causes a 2.8 fold increase in secretion compared with the Leucine isoform (Dunning et al. 2003). 

The analysis of the Leu10Pro variant by the Breast Cancer Association Consortium showed a 

significant dose dependent association of the Pro allele with increased risk of invasive breast 

cancer, and it was estimated to account for approximately 0.2 % of the excess familial risk of breast 

cancer in populations of European ancestry (Cox et al. 2007). Therefore we decided to validate 

these results in the case-control series from Belarus. 

Both variants D302H and L10P were genotyped by using 5´-nuclease allelic discrimination assays 

with mutation-specific FAM- or VIC-labelled probes and TaqMan Universal PCR Master Mix from 

Applied Biosystems (Foster City, U.S.A., primers and probes see attachment 2). The assays were 

run in 96-well plates on a 7500FAST Real-time PCR Thermocycler (Applied Biosystems) with 

annealing/hybridisation temperatures at 60°, forty cycles for L10P and sixty cycles of amplification 

for D302H respectively. Homozygous and heterozygous genotypes were evaluated from their 

relative fluorescence using the 7500 FAST System SDS Software. Examples are shown in figures 

4.20, and 4.21. The call rate for investigated Byelorussian series of cases and controls was above 

98% for both SNPs (see below for details). 

 

4.8.2 CASP8*D302H  

In genotyping the CASP8*D302H substitution among Byelorussian cases and controls, the call rate 

was 99.0% for cases and 98.0% for controls. A representative assay is shown on figure 4.20.  

 

 
 

 

D302H variant was found in 396/1742 breast cancer cases (22.7%) and in 251/999 (25.1%) of 

controls (table 4.21). The association of this SNP with breast cancer was tested by comparing the 

allele frequencies between breast cancer cases and controls, and the difference was not significant 

in regard of the whole series (OR 0.87, 95% CI=0.74-1.02, p=0.09), though the odds ratio appeared 

Figure 4.20 D302H genotype 
distribution among studied cases and 
controls. Clustering of three 
genotypes: common homozygotes 
(GG, blue) are represented by 
fluorescence along the y-axis, rare 
homozygotes (CC, red) along x-axis, 
and heterozygotes (CG, green) show 
fluorescence emission from both dyes 
and cluster between axes x and y. NTC 
- no template control. 
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consistent with the previously proposed protective effect (Cox et al. 2007). There was also no 

difference found if stratified by region: OR 0.89, 95% CI=0.72-1.10, p=0.32 for non-contaminated 

regions and OR 0.84, 95% CI=0.65-1.08, p=0.19 for contaminated regions. However, a significant 

association was found for D302H in familial breast cancer (40/295 versus 312/1477, carrier OR: 

0.57, 95% CI=0.40-0.81, p=0.002) (table 4.21). The median age at diagnosis for carriers was 47 

years and for  non carrier 48 years (p=0.065), this was also not different if stratified by region (in 

non-contaminated areas for carriers 49 and non carriers 50 years and for contaminated regions 43 

years for carriers versus 44 in not carriers). 

 

Table 4.21. D302H genotype distribution in breast cancer patients and controls. 

G/G G/C C/C Series/Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole 
series) (N=999) 748 74.9 227 22.7 24 2.4 

Population controls from non-
contaminated regions (N=591) 447 75.6 126 21.3 18 3.1 

Population controls from 
contaminated regions (N=408) 301 73.8 101 24.8 6 1.5 

Breast cancer patients (whole 
series) (N=1742) 1346 77.3 368 21.1 28 1.6 

Familial cases *(N=295) 255 86.4 38 12.9 2 0.7 
Non Familial cases (N=1447) 1135 78.4 288 19.9 24 1.7 

Breast cancer patients from non-
contaminated regions (N=968) 745 77.0 206 21.3 17 1.8 

Breast cancer patients from 
contaminated regions (N=774) 601 77.7 162 20.9 11 1.4 

* subset of patients with at least one first-degree relative also affected with breast cancer, the distribution of 
genotypes in familial versus non familial cases was significantly different by Chi-square test (p=0.007) 
 

Among breast cancer patients, carriers of D302H variant were also seven carriers of 5382insC, five 

carriers of 4153delA and six carriers of p.C61G in BRCA1, four carriers of CHEK2dele(9,10), one 

of IVS1+2G>A and eighteen carriers of p.I157T in CHEK2; if these were excluded, the association 

of the D302H variant with breast cancer became no difference: OR 0.89, 95%CI 0.73-1.07, p=0.23. 

Fifteen patients had bilateral disease, seven breast/ovarian cancer and one reported a relative 

affected with ovarian cancer.  

 

4.8.3 p.L10P in TGFB1 

Genotyping was successful in 99.6% for cases and 99.5% for controls. It was noted that the assay 

for this variant which is embedded in a highly GC-rich portion of TGFB1, only worked with the 

improved TaqMan Genotyping PCR Master Mix provided by the company (Applied Biosystems), 

whereas TaqMan Universal PCR Master Mix had to be supplemented with additional polymerase 
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and a higher initial denaturation had to be performed to achieve satisfactory results and a reliable 

discrimination. A representative assay is shown on figure 4.21.  

 

 
 
 
 
The L10P variant was found in 1142/1751 breast cancer cases (65.2%) and in 666/1014 (65.7%) of 

controls (table 4.22) so that the proposed association of this SNP with breast cancer could not be 

detected (OR 1.02, 95% CI=0.91-1.14, p=0.75). There was a slight difference between cases if 

stratified by region: OR 1.14, 95% CI=0.99-1.32, p=0.08 for non-contaminated regions and OR 

0.88, 95% CI=0.74-1.04, p=0.15 for contaminated regions, and this difference was significant in a 

case-only comparison of different regions in a way that cases from contaminated areas were less 

likely to harbour the TGFB1*L10P substitution: OR 0.82, 95% CI=0.94-0.78, p=0.006. Median age 

at diagnosis for carriers and for non-carriers was 48 years; it was also not different if stratified by 

region (in non-contaminated areas for both carriers and non-carriers 50 years, and for contaminated 

regions 44 years for carriers versus 44.5 in non-carriers). 

 

 
Table 4.22. L10P genotype distribution in breast cancer patients and controls. 

C/C C/T T/T Series/Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole series) 
(N=1014) 348 34.3 507 50.0 159 15.7 

Population controls from non-
contaminated regions (N=601) 210 34.9 301 50.1 90 15.0 

Population controls from 
contaminated regions (N=413) 138 33.4 206 49.9 69 16.7 

Breast cancer patients (whole 
series) (N=1751) 609 34.8 843 48.1 299 17.1 

Breast cancer patients from non-
contaminated regions (N=974) 323 33.2 460 47.2 191 19.6 

Breast cancer patients from 
contaminated regions (N=777) 286 36.8 383 49.3 108 13.9 

 

Rare homozygosity for the variant L10P was present in more cases than controls although this 

difference was not significant. Among breast cancer carriers of rare variant were also seven carriers 

Figure 4.21 L10P genotypes 
distribution among studied cases 
and controls. Clustering of three 
genotypes: common homozygotes 
(CC, red) are represented by 
fluorescence along the x-axis, rare 
homozygotes (TT, blue) along y-axis 
and heterozygotes (CT, green) show 
fluorescence emission from both 
dyes and intermediate clustering. 
NTC - no template control.
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of 5382insC, one carrier of 4153delA and six carriers of p.C61G in BRCA1, three carriers of 

6174delT in BRCA2, three carriers of CHEK2dele(9,10), one of IVS1+2G>A and nine carriers of 

p.I157T in CHEK2; if these patients with previously detected higher-risk and moderate risk alleles 

were excluded, the odds ratio was not really changed and became 1.0 and it was also not significant. 

Eleven patients had bilateral disease, four breast/ovarian cancer and four reported a relative affected 

with ovarian cancer.  

 

4.9 Genetic variants rs2981582 in FGFR2, rs3803662 at the TOX3 locus and rs13387042 on 

chromosome 2q35 

4.9.1 Rationale and methodology 

The three new loci within the FGFR2 gene on chromosome 10q26, adjacent to the TOX3/TNRC9 

gene on chromosome 16q12, and on chromosome 2q35 have been found during the course of this 

thesis in large genome-wide searches by the Breast Cancer Association Consortium and others to be 

associated with an increased risk of breast cancer (Easton et al. 2007, Hunter et al. 2007, Stacey et 

al. 2007). For each of these SNPs, the minor allele in Europeans was associated with an increased 

risk of breast cancer in a dose-dependent manner, with a higher risk of breast cancer in homozygous 

than in heterozygous carriers. Associations with family history and bilaterality are to be expected 

for susceptibility loci and there was evidence of an association with family history of breast cancer 

for rs2981582 and rs3803662, as the susceptibility allele was commoner in women with a first-

degree relative with the disease than in those without, and rs2981582 was also associated with 

bilaterality (Easton et al. 2007).  

Genotyping for all three loci was done in the frame of a Breast Cancer Association Consortium 

study using a 5´-nuclease allelic discrimination technique as described in 4.6. The methods were run 

with annealing/hybridisation temperatures at 60° for the TOX3 and 2q35 loci, at 62° for FGFR2 and 

forty cycles. Representative assays are shown in figures 4.22, 4.23 and 4.24. The call rate was 

above 99% for all SNPs (see below for details). 

 

4.9.2 FGFR2 (rs2981582)  

In case of the FGFR2 locus, the call rate was 100% for Byelorussian cases and controls. 

Distributions of genotypes (C/C – wild-type; C/T – heterozygous carrier; T/T – homozygous carrier 

of rare variant) among cases and controls are shown in Table 4.23 and on figure 4.22.  
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Heterozygosity or homozygosity for the rare allele if the FGFR rs2981582 polymorphism was 

present in 61.3% of investigated cases and in 60.7% of controls (per allele OR: 1.07, 95%CI: 0.96-

1.20, p=0.25) (table 4.23). Homozygosity for the rare allele T of rs2981582 was found more often 

in breast cancer cases (15.4%) compared with controls (12.9%) but this difference was not 

significant (carrier OR 1.22, 95%CI: 0.96-1.55, p=0.12). There was no significant difference in 

allele frequencies if stratified by region (OR: 1.09, 95%CI: 0.94-1.26, p=0.29 for non-contaminated 

areas and OR: 1.04, 95%CI: 0.88-1.24, p=0.67 for contaminated areas). Median age at diagnosis 

among carriers was 47 years versus 48 in non-carriers and the difference between the groups was 

borderline significant (p=0.055). Homozygote carriers of rare allele have median age at diagnosis of 

48 years, what was not differing from non carriers. If stratified by region, we observed no 

difference in median age at diagnosis for contaminated regions: carriers – 44 years and not carriers 

– 43.5, but a significant difference was found in non-contaminated regions with carriers diagnosed 

at a lower age than non-carriers (49 years among carriers versus 51 in non-carriers, p=0.003) 

 

Table 4.23. Distribution of rs2981582 SNP genotypes in breast cancer patients and controls 

C/C C/T T/T Series/Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole series) 
(N=1019) 401 39.4 487 47.8 131 12.9 

Population controls from non-
contaminated regions (N=604) 242 40.1 289 47.9 73 12.1 

Population controls from 
contaminated regions (N=415) 159 38.3 198 47.7 58 14.0 

Breast cancer patients (whole 
series) (N=1759) 681 38.7 807 45.9 271 15.4 

Breast cancer patients from non-
contaminated regions (N=976) 385 39.5 441 45.2 150 15.4 

Breast cancer patients from 
contaminated regions (N=783) 296 37.8 366 46.7 121 15.5 

 

There was no significant association between this variant and familial breast cancer (OR: 0.88, 

95%CI: 0.68-1.13, p=0.35). Among breast cancer patients who were rare homozygous carriers of 

Figure 4.22 SNP rs 2981582 
genotype distribution among 
studied cases and controls.. 
Clustering of three genotypes: 
common homozygotes (CC, blue) are 
represented by fluorescence along 
the y-axis, rare homozygotes (TT, 
red) – along x-axis and heterozygotes 
(CT, green) show fluorescence 
emission from both dyes and 
intermediate clustering between axes 
x and y. NTC - no template control. 
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rs2981582 were also three carriers of 4153delA, seven carrier of 5382insC and three carriers of 

p.C61G in BRCA1, one carrier of 6174delT in BRCA2, three carriers of CHEK2dele(9,10), thirteen 

carriers of p.I157T and six carriers of IVS1+2G>A in CHEK2, one carrier of the NBN*657del5 

allele and one of p.E1978X in ATM; if these patients with previously detected high- or moderate-

risk mutations were excluded, the odds ratios were 1.06 and significance was also not achieved 

(p=0.65). Eight patients had bilateral disease, four breast/ovarian cancer, fifty-six reported first-

degree relatives affected with breast cancer and five with ovarian cancer. 

 

4.9.3 TOX3 (rs3803662) 

Genotyping for rs3803662 at the TOX3/TNRC9 locus was successfully completed in 99.7% for 

cases and 99.2% in controls. Distributions of genotypes (C/C – wild-type; C/T – heterozygous 

carrier; T/T – homozygous carrier of rare variant) among cases and controls are shown on figure 

4.23 and in Table 4.24.  

 

 
 
 
The rare allele of TOX3 rs3803662 was present in 50.4% of investigated cases and in 45.8% of 

controls (table 4.24). This SNP was tested by comparing the allele frequencies between breast 

cancer cases and controls and a borderline significant difference was found towards an increased 

frequency of the rare allele among cases (per-allele OR: 1.15, 95%CI: 1.02-1.30, p=0.03). 

Homozygosity for the rare allele T-rs3803662 also was present more often in breast cancer cases 

(9.8%) compared with controls (8.7%). The observed difference in allele frequencies appeared to be 

confined to non-contaminated areas where significance was borderline (OR: 1.17, 95%CI: 1.00-

1.37, p=0.058), while for contaminated areas no difference was observed (OR: 1.13, 95%CI: 0.93-

1.36, p=0.24). Median age at diagnosis among carriers and non-carriers was 48 years (p=0.94). If 

stratified by region, there was also no difference in median age at diagnosis, which for 

contaminated regions was 44 years for both carriers and non-carriers, in non-contaminated regions 

50 years among both carriers and non-carriers. 

Figure 4.23 SNP rs3803662 
genotype distribution among 
studied cases and controls. 
Clustering of three genotypes: 
common homozygotes (CC, blue) 
are represented by fluorescence 
along the y-axis, rare homozygotes 
(TT, red) – along x-axis and 
heterozygotes (CT, green) show 
fluorescence emission from both 
dyes and intermediate clustering. 
NTC - no template control. 
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The rs3803662 variant was not significantly associated with familial breast cancer (OR: 1.23, 

95%CI: 0.96-1.58, p=0.12). Among breast cancer patients who were rare homozygous carriers of 

the rs2981582 variant, six were also carriers of 5382insC, one carrier of p.C61G in BRCA1, one 

carrier of 6174delT in BRCA2, five carriers of CHEK2dele(9,10), eleven carriers of p.I157T and 

one carrier of IVS1+2G>A in CHEK2, and four were carriers of the NBN*657del5 allele; the 

apparently 2.6 fold increased occurrence of NBN*657del5 carriers among TOX3 rare homozygotes 

did not reach statistical significance (p=0.08). When the above-mentioned patients with previously 

detected high- or moderate-risk mutations were excluded, the odds ratios were 1.09, but statistical 

significance was not achieved (p=0.20). Four patients had bilateral disease, thirty-eight reported 

first degree relatives also affected with breast cancer and one patient had breast/ovarian cancer.  

 
Table 4.24. Distribution of rs3803662 SNP genotypes in breast cancer patients and controls 

C/C C/T T/T Series/Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole 
Series) (N=1011) 548 54.2 375 37.1 88 8.7 

Population controls from non-
contaminated regions (N=596) 317 53.2 228 38.3 51 8.6 

Population controls from 
contaminated regions (N=415) 231 55.7 147 35.4 37 8.9 

Breast cancer patients (whole 
Series) (N=1754) 870 49.6 713 40.7 171 9.8 

Breast cancer patients from non-
contaminated regions (N=973) 470 48.3 404 41.5 99 10.2 

Breast cancer patients from 
contaminated regions (N=781) 400 51.2 309 39.6 72 9.2 

 

 

4.9.4 Chromosomal locus 2q35 (rs13387042)  

Genotyping for rs13387042 on 2q35, a locus not associated with any gene, was successfully 

completed in 100% of the cases and 99.8% of the controls. Distributions of genotypes (G/G – wild-

type; G/A – heterozygous carrier; A/A – homozygous carrier of rare variant) among cases and 

controls are presented in table 4.25 and are illustrated in figure 4.24.  

The rare allele of the rs13387042 polymorphism on chromosome 2q35 was present in 66.7% of 

investigated cases and in 67.6% of controls (table 4.25). Aassociation of this SNP with breast 

cancer was tested by comparing the allele frequencies between breast cancer cases and controls but 

there was no significant difference found (per-allele OR: 1.00, 95%CI: 0.89-1.11, p=0.90). 
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Homozygosity for the rare allele A of rs13387042 was present slightly more often in breast cancer 

cases (19.7%) than in controls (19.3%). There was little difference in allele frequencies if stratified 

by region (for non-contaminated areas OR: 1.04, 95%CI: 0.90-1.20, p=0.61 and for contaminated 

areas OR: 0.93, 95%CI: 0.79-1.10, p=0.43), and comparison of carrier frequencies stratified by 

region among cases also showed no significant difference: OR: 0.93, 95%CI: 0.81-1.06, p=0.30. 

Median age at diagnosis among carriers and non- carriers was 48 years (p=0.68). If stratified by 

region, there was also no difference in median age at diagnosis: for contaminated regions 44 years 

for carriers and not carriers, in non-contaminated regions 50 years among carriers and not carriers. 

Nevertheless some difference was found in the median age at diagnosis for homozygous carriers of 

rare A-rs13387042 genotype in comparison with heterozygotes: 45 years versus 49 (p=0.008, 

median test), and this tendency was more pronounced if stratified by region: in contaminated 

regions median age for rare homozygous was 41 years versus 45 in heterozygous (p=0.0005), 

whereas in non-contaminated significance was not achieved (49 versus 50, p=0.18).  

 

Table 4.25. Distribution of rs13387042 SNP genotypes in breast cancer patients and controls 

G/G G/A A/A Series/Genotype/ (n) of carriers 
Total (n) (%) Total (n) (%) Total (n) (%) 

Population controls (whole series) 
(N=1017) 330 32.5 491 48.3 196 19.3 

Population controls from non-
contaminated regions (N=602) 202 33.6 282 46.8 118 19.6 

Population controls from 
contaminated regions (N=415) 128 30.8 209 50.4 78 18.8 

Breast cancer patients (whole 
series) (N=1759) 585 33.3 828 47.1 346 19.7 

Breast cancer patients from non-
contaminated regions (N=976) 316 32.4 461 47.2 199 20.4 

Breast cancer patients from 
contaminated regions (N=783) 269 34.4 367 46.9 147 18.8 

 

Figure 4.24 SNP rs13387042 
genotype distribution among 
studied cases and controls. 
Clustering of three genotypes: 
common homozygotes (GG, red) 
are represented by fluorescence 
along the x-axis, rare homozygotes 
(AA, blue) – along y-axis and 
heterozygotes (GA, green) show 
fluorescence emission from both 
dyes and intermediate clustering 
between axes x and y. NTC - no 
template control.  
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The rs13387042 variant was not found to be associated with familial breast cancer (carrier OR: 

0.94, 95%CI: 0.72-1.22, p=0.66). Among breast cancer patients who were rare homozygous 

carriers of rs13387042, there were also seven carriers of 5382insC, three carriers of p.C61G and one 

carrier of 4153delA in BRCA1, one carrier of 6174delT in BRCA2, four carriers of 

CHEK2dele(9,10), eleven carriers of p.I157T and three carriers of IVS1+2G>A in CHEK2, and 

three carriers of NBN*657del5 allele. When the above-mentioned patients with previously detected 

high- or moderate-risk mutations were excluded, the odds ratios were 0.95 and this effect was not 

significant with p=0.36. Thirteen patients had bilateral disease, four patients reported breast/ovarian 

cancer, sixty-eight reported first degree relatives affected with breast cancer and three had relatives 

with ovarian carcinoma. 

In summary, the described variants were not significantly associated with familial breast cancer 

with the exception of CASP8 (see chapter 4.8.1), and only the SNP adjacent to TOX3 was found to 

be associated overall with breast cancer in Byelorussian population. Summarized results for the 

tested SNPs are presented in table 4.26. 

 

Table 4.26. Summary of results from investigated SNPs 
Locus/SNP ID Carrier OR, (95% CI), p value Per-allele OR, (95% CI), p value 

CASP8, rs1045485 OR: 0.88, (0.73-1.05), p=0.17 OR 0.87, (0.74-1.02), p=0.09 

TGFb, rs1982073 OR: 0.98, (0.83-1.15), p=0.84 OR 1.02, (0.91-1.14), p=0.75 

FGFR2, rs2981582 OR: 1.03, (0.88-1.20), p=0.77 OR: 1.07, (0.96-1.20), p=0.25 
TOX3, rs3803662 OR: 1.20, (1.03-1.40), p=0.02 OR: 1.15, (1.02-1.30), p=0.03 

2q35, rs13387042 OR: 0.96, (0.82-1.14), p=0.69 OR: 1.00, (0.89-1.11), p=0.90 
 

For some loci, a significant difference was found in the median age at diagnosis between carriers 

and non-carriers, which was particularly strong for homozygous carriers of rare A-rs13387042 

genotype. In general, the results for all tested polymorphic variants were in line with published data, 

but as a single study the power appeared as too low to prove the statistical association for some of 

these with breast cancer in the Byelorussian population. This shows the importance of large-scale 

studies and motivates our participation in the international Breast Cancer Association Consortium 

when the goal is to identify common variants conferring low increases in the risk for breast cancer. 

 

4.10. Resume 

It was predicted that most breast cancers are sporadic, and only some are the result of inherited 

predisposition, due to mutations in BRCA1 and BRCA2 genes. Mutations in both genes account for 

approximately 30% of families with a strong family history of cancer and might be responsible for 

3-5% of all breast and ovarian cancers population-wide (figure 4.25). In the studied Byelorussian 
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population, four founder BRCA1 and BRCA2 mutations accounted for 4.5% of unselected breast 

cancer patient and 9.1% of hereditary breast cancer. Further previously described mutations in other 

genes predisposing to breast cancer with moderate penetrance include ATM, NBN, CHEK2, PALB2 

and BRIP1. These genes might explain next ~ 15-20% of all familial cases and up to 10% of all 

breast cancers population-wide. In Byelorussian investigated series, mutations in the “moderate 

penetrance genes” ATM, NBN, CHEK2 were responsible for additional 9.3% of unselected breast 

cancer cases and 9.4% of familial breast cancers. Importantly, this study confirmed the association 

of a single truncating ATM mutation with breast cancer, the matter of a long-standing debate. 

Nevertheless the most breast cancers are still to be clarified. 

 

 
 

During the course of the work, it was hypothesized that variants and maybe their combinations in 

numerous other genes may modulate the life-time risk for breast cancer as low-penetrance alleles. 

World-wide studies were performed to identify new genetic risk factors, and some studies using 

latest technologies in very large multi-center and multi-ethnic cohorts for genome-wide association 

searches were successful to identify new genetic loci predisposing to breast cancer (the most 

strongly associated variants are described in the present thesis). Taking in account the accumulation 

of knowledge about the role of low- penetrance alleles in their contribution to breast cancer risk and 

the results provided by the present work, it turned out that almost all breast cancer patients in the 

present study (99.95%) carry as minimum one breast cancer susceptibility allele (figure 4.26).  

Figure 4.25 Part of familial 
breast cancers among all 
breast cancers population-
wide and impact of known 
high and moderate 
susceptibility genes on 
disease risk. (Figure is taken 
from Balmain et al. 2003.) 
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Figure 4.26 Distribution of breast cancer predisposing alleles in the investigated Byelorussian breast 

cancer patients. Red: BRCA1, BRCA2, green: ATM, NBN, CHEK2, blue: XRCC4, yellow: CASP8, 

TGFB1, FGFR2, TOX3, 2q35. 
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5. Discussion 
5.1 High-risk susceptibility alleles in Byelorussian breast cancer patients and controls 

5.1.1 Founder mutations in BRCA1 and BRCA2 and breast cancer risk 

BRCA1 and BRCA2 are considered as gatekeeper tumour suppressor genes that are involved in the 

prevention of multiple tumour types but seem to be particulary important in the breast epithelium. 

BRCA1 and BRCA2 participate in the biological response to DNA damage, which involves the 

activation of cell cycle checkpoints and the recruitment of the machinery for DNA repair (see 

chapter 1.7.2). Germline mutations in BRCA1/2 may account for about 5-10% of all breast cancer 

patients overall in population (Nicolletto et al. 2001). BRCA1/2 mutation carriers also run a greater 

risk of developing breast cancer before menopause and a significantly higher risk of developing 

contralateral breast cancer (Nicolleto et al. 2001). Of the plenty BRCA1 and BRCA2 mutations, 

many are unique, but there are also numerous examples of founder mutations, which have been 

reported in genetically isolated populations, such as Ashkenazim, Icelandic, Greenlandic Inuits and 

others. Founder mutations have also been noted in Slavic countries, including a small sample of 

West Byelorussian breast/ovarian cancer families (Oszurek et al. 2001). However, the relative 

contribution of such mutations at the population level in Belarus, their impact on the background of 

low-level radiation exposure, and – in case of 4153delA – their overall risk for breast cancer had not 

been determined. 

During the course of the thesis, three founder BRCA1 mutations 5382insC, 4153delA and p.C61G 

overall were identified in 75/1759 (4.3%) of unselected breast cancer patients from six oncological 

centers in Belarus. The 5382insC mutation accounted for the majority - 2.5% among all studied 

breast cancer patients and 58.7% of all investigated mutations. Two other BRCA1 mutations were 

less common, so 4153delA was observed in 16/1759 (0.9%) of breast cancer patients (32.2% of all 

identified mutations) and p.C61G in 15/1759 (0.9%).  The BRCA2*6174delT mutation was found in 

4/1759 breast cancer cases (0.2%). As expected for known familial breast cancer susceptibility 

alleles, the three BRCA1 mutations were more common in the familial versus non-familial cases 

(9.1% versus 3.3%). Among the few 6174delT carriers in BRCA2 was only one, who reported 

family history of breast cancer, and none of the carriers had bilateral disease and/or ovarian 

carcinoma. Although BRCA1 and BRCA2 carriers have increased risk to develop contralateral breast 

cancer and cancers at other sites, so ovarian cancer; only two out of 64 patients with bilateral 

disease and one patient out of 20 with breast/ovarian cancers were carriers of 5382insC, and only 

one carrier of 4153delA reported relative affected with ovarian cancer, indicating that other 

mutations may exist which confer increased bilateral breast cancer and ovarian cancer risk. BRCA1 

and BRCA2 mutation carriers are known to have a younger age at breast cancer diagnosis, what was 

also found in presented study. Patients diagnosed at or below age 50 (1048/1759) carried any 
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screened BRCA1 mutation more often (61/1048) than patients diagnosed over 50 (14/711, OR: 3.1, 

95%CI: 1.7-5.5, p=0.0001). A similar trend was noted, though not significant, for BRCA2 allele 

6174delT: three patients out of four were diagnosed below the age 50, median age at diagnosis in 

carriers 44 years versus 48 in non-carriers (p=0.58).  

To get more insight into the breast cancer risk conferred by each of these mutations, here 

approached as odds ratios, the distributions of all three BRCA1 mutations (5382insC, p.C61G and 

4153delA) were studied not only in cases but also in a control series. The highest odds ratio was 

associated with truncating mutation 5382insC (OR=26), while it was found to be lower for missense 

mutation p.C61G (OR=8.8) or the other truncating mutation 4153delA (OR=4.7); however, the 

confidence limits around these estimates are wide (see chapter 4). Nevertheless, all three BRCA1 

mutations were significantly associated with breast cancer, including the 4153delA mutation which 

had previously been discussed to predispose to ovarian cancer only (see below). 

All of the above-described BRCA1 and BRCA2 mutations are believed to be deleterious: p.C61G is 

a missense mutation located in the RING finger domain of the BRCA1 protein which is required for 

its function as an E3 ubiquitin ligase (Daniel 2002, Venkitaraman 2002); 5382insC is a frame shift 

mutation that truncates the protein within the BRCT domain of the BRCA1 protein, lacking 34 

amino acids, an important protein interaction domain for many phosphorylated DNA repair proteins 

(Lu and Arrick, 2000, Yu et al. 2003); 4153delA is a frame shift mutation, which leads to a 

premature stop codon in exon 11. The BRCA2*6174delT mutation also results in a truncated 

protein, leading to a stop codon in exon 11 of BRCA2) and belongs to founder mutations although 

some researches classify 6174delT as low risk allele (Nathanson et al. 2001, Satagopan et al. 2001) 

due to its reduced penetrance. Indeed, this variant had a low frequency in Byelorussian breast 

cancer cases, thus controls cohort was not tested as this study was not powerful enough to give a 

good estimate for its disease predisposing effect in the Byelorussian population. Concerning 

mutations in BRCA1, the obtained data suggest that the breast cancer risk may vary somewhat 

between studied mutations, but the presence of any is significantly associated with an increase in 

risk for the disease. And these observations are worthy of particular discussion in regard of 

4153delA mutation. 

There is some evidence that, for unknown reasons, 4153delA patients may have been referred more 

frequently with ovarian cancer than with breast cancer (Gorski et al. 2000, 2004, 2005a; Gronwald 

et al. 2005), thus the studies which are based only on breast cancer cases may lead to an 

underestimation of the medical importance of 4153delA. From a biological perspective, there is 

little reason why the frameshift mutation 4153delA should not be associated with breast cancer like 

other BRCA1 frameshift mutations. However, in selected breast cancer cases from Russia (bilateral 

disease/unilateral with early onset and/or familial history of breast cancer), 4153delA mutation was 
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found in three (1%) of studied patients (3/302) (Sokolenko et al. 2007) and the same group found no 

selectivity of this variant toward ovarian cancer versus breast cancer (Krylova et al. 2006). 

Although this study was small, it may support our observations that the reported only about two-

fold, if any, increase in breast cancer risk (Gorski et al., 2005a) may be an underestimation due to a 

relatively low frequency of carriers among breast cancer cases in Polish population. In the 

Byelorussian population, the 4153delA allele was associated with a clearly increased risk of breast 

cancer in the range of a moderate-penetrance mutation with an OR of 4.7. Although the confidence 

limits in our study include the ratios in previous reports (95%CI: 1.1-20.3, p=0.04),it is the first 

study to unequivocally show the association of 4153delA with breast cancer. 

In summary, the obtained data show that founder BRCA1 and BRCA2 mutations present at a 

significant frequency in the Byelorussian population, accounting for 4.5% of unselected breast 

cancer patients and 9.1% of “hereditary” (familial) breast cancer, what provides an important basis 

and perspective for the breast cancer genetic counselling in Belarus. 

 

5.1.2 Missense variant T1915M in BRCA2: association with breast cancer? 

The BRCA2*T1915M allele is an unclassified missense variant with the amino acid substitution at 

codon 1915 from threonine to methionine. It is located outside of the DNA-binding domain and 

affects a less conserved residue of unknown functional significance. This variant was reported as 

predisposing to early onset breast cancer in the Polish population (Gorski et al. 2005b). 

Homozygosity for the Met-isoform was present in approximately 6% of Polish population (OR: 1.1, 

p=0.7) and reportedly was associated with a significant increase in risk for breast cancer diagnosed 

before age 40 (OR=1.4; p=0.04), and the effect was most pronounced in woman with ductal 

carcinoma in situ (DCIS) OR=2.8, p<0.0001. Allele T1915M was described previously, but initially 

was no association with breast cancer found (OR: 0.36 95%CI 0.11-1.19, Healey et al. 2000). In 

earlier work of our group also no significant association of T1915M allele with breast cancer and 

specially with early onset had been obtained in a series of German hospital-based cases and 

population controls. Rather, a trend towards a protective direction was found, although not 

significant. These findings are supported by the data set from the Byelorussian series, where the 

T1915M variant was significantly associated with breast cancer as a protective allele (OR: 0.60, 

95%CI: 0.45-0.79, p=0.0004). The potential increase in risk for carriers was significant in the Polish 

study for breast cancer in women with both copies of rare variant (OR: 4.7, p=0.02). In our studies, 

homozygous patients for the Met allele were very rare, and was therefore not possible for us to 

evaluate the risk for homozygous carriers. Furthermore, it is not excluded that T1915M allele could 

exert some predisposing effect in combination with other alleles (Johnson et al. 2007). In summary: 

the C5972T allele appears to be overrepresented in Byelorussian population controls rather than in 
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breast cancer patients, indicating that it does not increase breast cancer risk under a simple 

dominant or co-dominant model. Furthermore one patient was compound heterozygous carrying 

C5972T/6174delT genotype and displayed no Fanconi anemia phenotype, suggesting that C5972T 

allele do not truncated protein function. While the observations from published studies and those 

presented here are controversial so far, further research is required and may be worthwhile to 

elucidate a possible protective effect of the T1915M variant. 

 

5.2 ATM gene alterations and breast cancer susceptibility 

5.2.1 Classical mutations, causing A-T 

The ATM kinase is a regulatory component of the cell-cycle check point and DSB repair machinery 

that senses DNA damage and mediates diverse downstream cellular responses (see chapter 7.1.3). 

Studies based on relatives of A-T patients have shown that heterozygous carriers of ATM variants 

are clinically not affected but face an increased risk of cancer, especially the female carriers who 

reportedly have an up to seven-fold increased risk of breast cancer (Swift et al. 1987, Pippard et al. 

1988, Swift et al. 1991, Easton 1994, Athma et al. 1996, Olsen et al. 2001, Thompson et al. 2005). 

Mutation screening of ATM in breast cancer case controls sets outside A-T families, in contrast, 

presented mixed and controversely debated results, and it was suggested that only a specific class of 

dominant-negative variants contribute to breast cancer risk in heterozygotes (FitzGerald et al. 1997, 

Broeks et al. 2000, Teraoka et al. 2001, Gatti et al. 1999, Chenevix-Trench et al. 2002). But during 

the course of this thesis, it has been convincingly shown in a UK study using a familial breast 

cancer case-control population that a large diversity of A-T causing biallelic ATM mutations might 

act as breast cancer susceptibility alleles in monoallelic carriers outside A-T families, and the 

combined ATM mutation prevalence and contribution to breast cancer incidence was similar to 

CHEK* 1100delC allele, both conferring an estimated twofold risk of breast cancer (Renwick et al. 

2006). If this were true, it would be predicted that any A-T causing mutation common enough to be 

effectively screened in a population, should be found enriched among breast cancer patients. 

Among European A-T family cohorts, the A-T mutation E1978X was present at a relatively high 

prevalence in 44% of Russian A-T patients suggesting that this mutation may be of Russian origin 

(Birrell et al. 2005). This mutation is known as functionally deleterious in leading to the skipping of 

exon 42 and/or a premature truncation, and was found in Byelorussian breast cancer cases and 

controls (presented in thesis) at a frequency lower than 1%  with OR: 5.2, 95%CI: 0.7-41.4, p=0.15. 

Median age at diagnosis in carriers was 43 years versus 48 in non-carriers, although the difference 

was not significant (p=0.10). One potentially interesting fact was that 2 out of nine E1978X carriers 

were also carriers of the p.C61G mutation in BRCA1 and this was about 27-fold more than expected 

from the combined carrier frequencies for both loci  (95%CI 2.4-296.1, p=0.003). Possible 
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explanations include some interaction of both loci, what is supported by the fact that the protein 

products ATM and BRCA1 interact in the same signalling pathway, or a finding by chance what 

could be supported by the observation that significance was lost if the carrier status for any BRCA1 

mutation and E1978X was combined: OR 5.2, 95%CI 0.5-57.7. However, it should be noted that 

one of the further tested ATM variants, p.S49C, also appeared to associate with BRCA1 mutations 

(see chapter 5.2.2 below). Subsequently, and beyond the results presented in this thesis, the E1978X 

mutation was investigated in an additional set of Byelorussian breast cancer patients and in smaller 

case-control sets from two other Slavic populations (Russian and Ukrainian) what leads to a 

combined Mantel-Haenzel OR of 7.4, corroborating the association of the E1978X mutation with 

breast cancer (p=0.04, 95%CI: 1.00-55.5) for all studied populations. Thus, the findings in this 

thesis revealed that single A-T causing mutations, though rare at the population level, can make a 

significant contribution to breast cancer. One parallel study from Finland provides similar evidence 

that a frameshift insertion known from A-T families, 6903insA, in ATM is associated with breast 

cancer in Finnish patients (Pylkäs et al. 2007). It may be effective also in other populations if cancer 

case-control series were investigated for specific founder mutations identified in A-T families, 

similar to the E1978X in Slavic populations. 

 

5.2.2 ATM missense variants 

Prior evidence had suggested an association of some ATM missense variants (p.S49C, p.S707P, 

p.L1420F, p.P1054R, p.F858L) with breast cancer (Dörk et al. 2001, Teraoka et al. 2001, Bretsky et 

al. 2003, Tamimi et al. 2004, Buchholz et al. 2004, Lee et al. 2005, Stredrick et al. 2006). However, 

in a UK study using familial breast cancer cases and controls, Renwick and co-authors have 

concluded that polymorphic variants in ATM gene contribute very less to the identification of 

women at substantial risk of breast cancer (Renwick et al. 2006). The identification of moderate to 

low risks requires very large sample sizes, and so the role of ATM missense variants is currently 

pursued in the frame of the Breast Cancer Association Consortium. In the first Breast Cancer 

Association Consortium study, the p.Ser49Cys substitution was not significantly associated with 

overall breast cancer risk, but a modest association was not excluded either, and this SNP appeared 

to influence the risk of PR positive breast cancer (Cox et al. 2007).  

In my thesis, the investigated SNPs in ATM (p.S49C, p.S707P, p.L1420F, p.P1054R, p.F858L) are 

polymorphisms with carrier frequencies between 1-5%, and overall were found in 12.6% of 

unselected breast cancer patients and in 15.0% of controls. The p.L1420F substitution accounted for 

the majority – 4.8% among all studied breast cancer patients and 5.8% of all investigated cases. 

Second ranked p.P1054R in 2.8% of breast cancer patients and 3.5% of controls. Only one variant – 

p.F858L was found to be slightly but non-significantly more frequent in breast cancer cases than in 
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controls 1.8% versus 1.6%. There were no differences in median age at diagnosis for carriers and 

not carriers of certain allele with the possible exception of the p.S49C variant (44 years in carriers 

versus 48 in not carriers), but the difference was not significant. None of the screened SNPs showed 

significant differences in the prevalence of substitutions by region, and no association was found 

with familial and bilateral breast cancer. There was some evidence of an increased prevalence of the 

p.S49C allele among BRCA1 mutation carriers, and this finding was nominally significant (5/75 

compared with 29/1753, OR 4.2, 95%CI 1.6-11.3, p= 0.002). A similar tendency had been observed 

for p.E1978X (see above), however, no other of the tested ATM missense substitutions accumulated 

in BRCA1 mutation carriers. 

The impact of ATM polymorphisms on protein function still has to be clarified but some variants 

were described to have possible functional effect on in vitro cellular radiosensitivity. The functional 

consequences of p.S707P, p.L1420F, p.P1054R and p.F858L have been studied in lymphoblastoid 

cell lines established from breast cancer patients who carried these polymorphisms, by assaying 

micronuclei formation and comparison with wildtype cell lines (Gutierrez-Enriquez et al. 2004). 

The cell lines from variant carriers showed higher mean levels of micronuclei formation after 

ionising radiation exposure to that found in control cell lines. In particular, the linked variants 

p.P1054R and p.F858L had a higher level of micronuclei after radiation treatment when compared 

to the wildtype cell lines or remaining cell lines with other ATM substitutions (Gutierrez-Enriquez 

et al. 2004). As an intrinsic weakness of such studies, the authors did not exclude that increasing 

micronuclei levels observed in their study could be related to the presence of other undetected 

variants in the ATM gene or in other genes participating in the cellular response to ionising 

radiation. In summary: the association between common polymorphisms (SNPs) in ATM and risk of 

breast cancer is controversial so far, although large case control studies were conducted. The results 

from this thesis can exclude only major risks associated with these variants. Possibly, polymorphic 

variants in ATM gene do not contribute to breast cancer risk or act in synergy with other alleles 

which may also contribute only very small risks and in combination can cause wide risk variations 

which may also be population-dependent. 

 

5.3 NBN gene mutations and risk of breast cancer 

Nibrin (product of NBN gene) is required for several processes protecting chromosomal stability, 

including sensing DNA double-strand breaks, cell cycle checkpoint regulation and telomere 

maintenance (see chapter 1.7.3). Mutations of the NBN gene are responsible for the majority of 

patients with Nijmegen Breakage Syndrome (NBS), a radiation sensitivity disorder (van der Burgt 

et al. 1996, Digweed et al. 2004). The major NBS mutation is a five-basepair-deletion of the NBN 

gene, 657del5, which predominantly occurs in populations of Slavic descent (Varon et al. 1998, 
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2000). Another NBN gene mutation, p.R215W, has been described in two severely affected NBS 

siblings who were compound heterozygous for c.657del5/p.R215W (Seemanova et al. 2006).  

The role of NBN gene mutations in breast cancer susceptibility was less clear. Breast cancer is not 

observed in NBS patients whose clinical features include failure of puberty and markedly reduced 

survival. Blood relatives of NBS patients have been reported to be at a generally increased risk for 

lymphoid and epithelial malignancies (Seemanova 1996, Seemanova et al. 2006). Initial association 

studies of NBN gene alterations in breast cancer series have not generally supported the suggestion 

that NBN may contribute to breast cancer susceptibility (Carlomagno et al. 1999, Kuschel et al. 

2002, Forsti et al. 2004, Millikan et al. 2005, Zhang et al. 2005) , but more recent investigations in 

the Polish and Russian populations provided evidence that the founder mutation 657del5 could be 

associated with an increased breast cancer risk (Gorski et al. 2003, 2005a; Steffen et al. 2004, 2006; 

Buslov et al. 2005). The mutation p.R215W has been suggested to increase the risk for colorectal 

cancer, while its impact on breast cancer has remained uncertain (Steffen et al. 2004, 2006).  

In the study presented here, the 657del5 mutation accounted for 16/1759 breast cancer patients and 

was found in only one of 1014 Byelorussian population controls (females were excluded as controls 

for NBN mutational screening if they had breast cancer or had a child with a neurodegenerative 

disorder) (OR: 9.3, 95%CI: 1.2-70.2, p=0.02). The p.R215W substitution was found in 9/1759 

cases, but R215W was also observed in 5 population controls (OR: 1.04, 95%CI: 0.35-3.11, 

p=1.00). The data observed thus seemed to provide support for an association of the 657del5 

mutation with breast cancer (p = 0.02), whereas such an effect was not detected for R215W (p = 

1.00). In another series of 1076 German breast cancer cases and 1017 female population controls, 

that was analysed in parallel by our group, the 657del5 mutation was very rare and was detected 

only in 1 patient who had familial breast cancer, and in none of the controls. The R215W 

substitution accounted for 9 German cases (0.8 %) compared with 2 population controls (0.2 %; 

OR= 4.3, 95%CI 0.9 – 19.8, p = 0.09) (Bogdanova et al. 2008). In a further analysis of these data 

sets, no significant increase of R215W in familial, bilateral or premenopausal cases in patient series 

from Germany and Belarus was found. When both studies were combined, the relative risks for 

breast cancer associated with R215W appeared smaller than those for 657del5 in Byelorussian and 

German populations (657del5 combined OR: 10.1, 95%CI 1.4-75.3 versus R215W combined OR: 

1.8, 95%CI 0.8-4.3). Stratified analysis for both NBS mutations yielded a Mantel-Haenszel odds 

ratio of 2.9 (95%CI 1.4-6.3) in all breast cancer cases (p=0.006). Altogether, the obtained results are 

in line with previous reports suggesting that the 657del5 mutation and perhaps also the R215W 

mutation confer an increased breast cancer risk (Gorski et al. 2003, 2005a; Steffen et al. 2004, 2006; 

Buslov et al. 2005). Because the potential contribution of the 657del5 allele is limited by its very 

low frequency in populations of non-Slavic descent, evidence has come mainly from studies in 
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Eastern Europe, thus far. The results from the Byelorussian series support these initial findings and 

provide the strongest evidence to date that NBN*657del5 is a breast cancer susceptibility allele. 

Some previous studies that have failed to detect an increased risk for NBN gene alterations either 

were limited by focussing on the rare 657del5 allele in non-Slavic populations (Carlomango et al. 

1999)
 
or screened for common NBN gene alterations that are not NBS-causing variants and may be 

functionally neutral (Kuschel et al. 2002, Forsti et al. 2004, Millikan et al. 2005, Zhang et al. 2005).  

The biological and clinical impact of the two investigated mutations is indicated by their previous 

identification in NBS patients and by findings of reduced NBN protein levels in cell lines from 

these patients as well as from one patient with breast cancer in this study (see chapter 4.3). The 

657del5 mutation results in a frameshift and subsequent loss of NBN protein, although some 

residual activity of a shorter NBN isoform can result from internal reinitiation of translation (Maser 

et al. 2001). The results obtained for nibrin protein levels in lymphoblastoid cells from the R215W 

heterozygous breast cancer patient in the presented study were in the same range as those observed 

for 657del5 heterozygotes, and levels were strongly reduced in a p.R215W/c.657del5 compound 

heterozygous cell line, suggesting that the R215W allele may produce only about one-third of the 

wild-type amount of full-length nibrin. The R215W mutation, located in the C-terminus of the one 

BRCT domain, was recently reported to impair the binding of histone γ-H2AX to NBN protein after 

induction of DNA damage that in turn leads to a delay in DNA-DSB rejoining. In this assay, the 

R215W mutation may be acting with a dominant-negative effect (what could explain the severe 

phenotype observed in 657del5/R215W NBS patients) (di Masi et al. 2008). Authors found by 

analysis of the three-dimensional model of the NBN BRCT domains (figure 5.1) evidence that the 

phosphorylated tail of γ-H2AX binds through molecular contacts provided by both BRCT domains 

in NBN. The molecular determinants of γ-H2AX recognition are evolutionary conserved in NBN 

and required electrostatic interaction between several key residues in the γ-H2AX tail and both 

BRCT domains in NBN (K160 residue of the first BRCT domain and the phosphate group of the γ-

H2AX; Y142 residue and phosphorylated S139 of the histone, and a hydrophobic patch made up by 

residues contributed by both BRCT domains -I159, L238, and L312; and also a hydrogen bond 

between mentioned Y142 histone tail residue and the Q234 residue of the second NBN BRCT 

domain) (figure 5.1). The R215 residue, would be located at the C-terminus of the first NBN BRCT 

domain in a region which connects two BRCT domains and is probably important for the relative 

orientation of the NBN BRCT domains and therefore for γ-H2AX recognition. In 

immunoprecipitation experiments the authors found that mutated NBS1 is unable to bind γ-H2AX 

shortly after IR, and the immunofluorescence analysis indicated that NBN-R215W does not form 

foci up to 6 hours after IR treatment, although some co-localization with γ-H2AX occurred at 24 h 

after IR (di Masi et al. 2008). Interestingly, there were also significantly higher levels of unrepaired 



Discussion   136 
 
damage in NBS/R215W cells, as compared to normal and NBS fibroblasts (di Masi et al. 2008). All 

these data would be in line with the view that R215W is a biologically – and clinically -relevant 

mutation. As a caveat, the molecular model illustrated in Figure 5.1 has to be proven by 

biochemical analyses of the NBN structure. 

 

 
 

Although the relative risk for breast cancer associated with p.R215W appears to be small, and in our 

studies was confined to a German case-control set and not seen in Belarus, taking in attention the 

possible functional relevance of the R215W substitution, the potential role of this variant should not 

be neglected at the present time, and large multi-center studies might be required to formally show 

whether the R215W substitution is associated with cancer.  

In concern of missense substitution p.I171V, another variant within the BRCT domain of the NBN 

protein, the relevance of its screening had been suggested by a previous study that reported an about 

nine-fold increase in general breast cancer risk and an about six-fold increased proportion of 

familial breast cancer in Polish carriers of the I171V substitution (Roznowski et al. 2008). 

Association of the I171V with breast cancer was therefore tested in two case-control series from 

Belarus and Germany. Both studies are large, and each one should have had an over 99% power to 

detect the reported nine-fold increase in risk and 80% power to detect a 2-3 fold increased risk. 

Nevertheless, no association was observed for I171V allele with breast cancer in the series under 

investigation (for Byelorussian population OR: 0.7, 95%CI 0.4-1.2, p=0.25; for German population: 

OR: 1.4, 95%CI 0.5-3.7, p=0.7; combined OR: 0.83, 95%CI 0.49-1.39, p=0.56). Thus, from the 

results in this thesis we can exclude a nine-fold increase in risk and the data were more consistent 

with a very small, if any, allelic effect. The difference in the carrier frequencies among controls 

between the Byelorussian (1.8%) or the German (0.7%) series, and the previously published Polish 

study (0.2%) was notable. The Polish study used 500 anonymous newborns as population-based 

Figure 5.1. Molecular 
model of the tandem 
BRCT domains in NBN. 
The phosphorylated tail of 
the γ-H2AX histone is 
shown in green. NBN´s 
first BRCT domain is 
coloured in orange and the 
second in red (taken from 
di Masi et al. 2008). 
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controls while the Byelorussian study recruited adult healthy volunteers and the German study 

ascertained random blood donors as hospital-based controls. Because a higher prevalence of NBS-

causing variants would be expected in a newborn series rather than in an adult population, the 

difference remains unexplained. Another possible explanation for the discrepancy between our 

results and the Polish breast cancer study (except of the too low frequency of I171V in the Polish 

control series) is that I171V could be in linkage disequilibrium with a yet undefined modifier 

variant that selectively occurs in the Polish population and is not present in Belarus or Germany. A 

third possibility would be that I171V could confer a very minor risk compatible with all studies, in 

the range of OR 1.1-1.3. For such small risks, very large multi-center studies might be required to 

formally show whether the p.I171V substitution is associated with breast cancer and the functional 

of this missense variant is also not clear. 

In summary: the data obtained for missense variant p.I171V did not support an association with 

breast cancer in two large case-control series from Germany and Belarus. Further work is warranted 

to clarify its reported impact in other malignancies (Mosor et al. 2006, Ziotkowska et al. 2007, 

Nowak et al. 2008). The potential role of this variant should be treated with caution since p.I171V 

occurs at a highly conserved residue within the BRCT domain of nibrin, and although the described 

I171V homozygosity did not result in a NBS phenotype, it was associated with aplastic anaemia 

and reportedly contributed to genomic instability (Shimada et al. 2004). The c.657del5 truncating 

mutation was clearly associated with an increased breast cancer risk in this study, and the p.R215W 

substitution may represent a cancer susceptibility allele with lower penetrance. It seems justified to 

add the NBN gene to the growing list of genes involved in DNA double-strand break repair which if 

mutated confer a 2-4 fold increased risk for breast cancer (Walsh and King 2007). However, not all 

NBN gene alterations are of equal importance for breast cancer risk, and each substitution has to be 

interpreted individually. 

 

5.4 Prevalence of studied CHEK2 variants and their risk for breast cancer 

The CHEK2 protein is a central mediator of cellular responses to DNA damage which regulates the 

activities of other oncoproteins (such as p53, BRCA1 and BRCA2) that, in the healthy state, finally 

result in cell cycle arrest (preventing entry into S-phase and mitosis) (see chapter 1.7.3). The first 

germline CHEK2 mutations were reported as early as in 1999 in both sporadic and hereditary 

human cancers. The initial findings suggested that CHEK2 is a tumour suppressor gene conferring 

predisposition to sarcoma, breast cancer and brain tumours, and provided a link to the central role of 

p53 inactivation in human cancer (Bell et al. 1999a). More recent studies have confirmed that germ-

line mutations in the CHEK2 gene are associated with breast cancer (Nevanlinna and Bartek 2006). 

In particular, a frame-shift mutation in the CHEK2 gene, 1100delC, was identified as a low-
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penetrance breast cancer susceptibility allele (Vahteristo et al. 2002, Meijers-Heijboer et al. 2003) 

and heterozygous carriers of the mutation have a two-to threefold increased risk for breast cancer 

(CHEK2–Breast Cancer Case-Control Consortium 2004, Weischer et al. 2007). Rare homozygotes 

of the CHEK2 1100delC mutation do not appear to have additional symptoms apart from cancer 

proneness (van Puijenbroek et al. 2005). 

The 1100delC mutation was here found in 9/1757 of breast cancer patients and in 2/1015 of 

population controls in the Byelorussian series (OR: 2.6, 95%CI: 0.6-12.0, p=0.34), and although the 

association of this variant and breast cancer was not significant in this study, the results are in line 

with the two- to threefold increased risk reported in several, though not all, previous breast cancer 

studies. It was also reported that exposure to ionising radiation may be associated with disease in 

CHEK2*1100delC heterozygotes (Bernstein et al. 2006), therefore it was interesting to investigate 

the presence of 1100delC in contaminated regions of Belarus compared with non-contaminated. 

However, results stratified by region showed no significant difference though carrier frequency in 

non-contaminated areas tended to be higher with 0.51% in comparison with contaminated 0.25% 

(OR 0.26, 95%CI 0.02-2.93, p=0.58). Thus, further studies examining the joint roles of 

CHEK2*1100delC carrier status and radiation exposure are needed. It was also reported, that the 

patients carrying 1100delC variant appear to be at an increased risk for contralateral breast cancer 

(Broeks et al. 2004), and first-degree relatives of bilateral cases have an estimated three-fold 

increase in breast cancer risk (Johnson et al. 2005). However, in the Byelorussian series of breast 

cancer cases none of the nine 1100delC carriers had bilateral disease or reported first-degree 

relatives affected with breast cancer. 

The role of variants in CHEK2 other than 1100delC was less clear for breast cancer risk. Early 

studies have led to the conclusion that other CHEK2 mutations do not make a major contribution to 

breast cancer susceptibility (Allinen et al. 2001, Schutte et al. 2003, Dufault et al. 2004). However, 

more recent investigations suggested that the missense substitution p.I157T as well as the splicing 

mutation IVS2+1G>A might confer an elevated risk of prostate cancer (Seppälä et al. 2003, 

Cybulski et al. 2004), and the common p.I157T mutation might be associated with increased breast 

cancer risk (Kilpivaara et al. 2004). A first part of results presented in my thesis has been published 

in parallel to this work (Bogdanova et al. 2005) showing evidence for an increased breast cancer 

susceptibility associated with both the splicing mutation IVS2+1G>A and the missense substitution 

p.I157T in Byelorussian and German populations. Thereafter, a large deletion of 5395 bp in CHEK2 

including the exons 9 and 10, CHEK2dele9,10(5kb), has been identified in breast cancer patients of 

Czech and Slovak origin (Walsh et al. 2006)
 
and was subsequently found in breast cancer patients 

from Poland, Germany and Belarus (Bogdanova et al. 2007, Cybulski et al. 2007). The possible 

risks conferred by the IVS2+1G>A, p.I157T and CHEK2dele9,10(5kb) mutations had not been 
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extensively studied. Therefore, we aimed to corroborate the initial findings in additional case-

control series from Belarus what has lead to my observation that these three CHEK2 mutations are 

strongly associated with breast cancer in Byelorussian population, though with some differences in 

their prevalence and mutation-specific risk estimates. 

Previous data including our published findings suggested that the IVS2+1G>A splicing mutation 

might be a predisposing CHEK2 mutation in breast cancer patients from Eastern Europe 

(Bogdanova et al. 2005, Gorski et al. 2005, Cybulski et al. 2007), and one group before us has 

reported a statistically significant association, thus far (Cybulski et al. 2007). Our previous findings 

from the Byelorussian population were replicated in a study of additional patients and population 

controls with a combined frequency for the IVS2+1G>A of 0.9% (16/1752) among the 

Byelorussian patients. The IVS2+1G>A mutation was not found in any of the 1019 Byelorussian 

control individuals, indicating that this mutation is indeed associated with breast cancer (p=0.005). 

The missense substitution p.I157T had been suggested as a common breast cancer susceptibility 

allele in patients from Eastern Europe (Kilpivaara et al. 2004, Bogdanova et al. 2005, Gorski et al. 

2005)
 
though with considerable variation between studies. In the present thesis, the I157T variant 

was identified in 4.9% (86/1752) of the cases and 2.3% (23/1019) of the population controls (OR= 

2.2, 95% CI 1.4-3.6, p=0.001). 23% out of 86 patients with I157T reported a first-degree family 

history of breast cancer, compared with 17% out of 1752 in the total series, suggesting only a subtle 

trend towards familial breast cancer (p=0.18). This is consistent with observations for the 1100delC 

mutation which demonstrated only a weak association with familial cancer and partial segregation 

of this allele in families (CHEK2–Breast Cancer Case-Control Consortium 2004). Initial studies had 

failed to establish an association of I157T and IVS2+1G>A genetic variants with breast cancer may 

be because heterogeneous and smaller cohorts (Allinen et al. 2001) a very low frequency of the 

I157T allele (Schutte et al. 2003) or a sampling bias toward multiple case families who were 

negative for BRCA1 and BRCA2 gene mutations (Schutte et al. 2003, Dufault et al. 2004). Our 

results and results reported by another group (Cybulski et al 2005a, 2007) now clearly demonstrate 

a role for the CHEK2 mutations I157T and IVS2+1G>A in inherited breast cancer susceptibility. 

We subsequently investigated the frequency of the CHEK2dele9,10(5kb) mutation, a large deletion 

of some 5395 bp that eliminate two exons encoding for part of the kinase domain. The 

CHEK2dele9,10(5kb) allele among Byelorussia patients was also significantly higher than among 

controls (OR 11.8, 95% CI 1.6-87.8, p<0.005). Thus, there is a clear association of the deletion with 

breast cancer in Byelorussian population and the obtained data are in line with other findings 

(Walsh et al. 2006, Cybulski et al. 2007).  

When the data sets for all mutations were combined, the median age at diagnosis was not significant 

different between carriers and non-carriers for any CHEK2 mutation.  Apart from the large deletion, 
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CHEK2 mutation carriers tended to show a slightly higher age at diagnosis in comparison with non-

carriers, and for 1100delC carriers the difference approached borderline significance with p=0.05 

(54 years in carriers versus 48 years in non-carriers). This may be partly due to the relatively high 

prevalence of BRCA1 mutations in the Byelorussian case series which are associated with 

significantly lower age at diagnosis; there were only three patients carrying both, CHEK2 and 

BRCA1 mutations. When stratified by family history, the frequency of CHEK2 mutations in patients 

with at least one first-degree relative affected by breast cancer was not significantly higher (with the 

possible exception for IVS2+1G>A mutation stratified by region, see chapter 4.4). Similarly, in 

other published studies to date, no clear trend in risk with the strength of the family history for those 

CHEK2 mutations was found (Kilpivaara et al. 2004, Cybulski et al 2005, 2007, Walsh et al. 2006), 

indicating a reduced penetrance of these mutations. In contrast with another studies (Broeks et al. 

2004, Johnson et al. 2005), we also did not detect an association with bilateral disease. The low-

penetrance susceptibility associated with the investigated CHEK2 mutations is thus apparent in 

women unselected for family history or bilateral disease and may be explained by an interaction of 

CHEK2 mutations with susceptibility alleles in other genes to increase the inherited predisposition 

to breast cancer (Oldenburg et al. 2003, Kilpivaara et al. 2004, CHEK2–Breast Cancer Case-

Control Consortium 2004).  

In summary: the presence of a CHEK2 mutation was associated with increased breast cancer risk in 

the Byelorussian population, and this association was statistically significant for three out of four 

mutations tested (p=0.34 for 1100delC, p=0.005 for IVS+1G>A, p=0.001 for I157T and p=0.005 

for CHEK2dele(9,10), respectively). The odds ratios were 11.8 (95%CI 1.6-87.8) for variant 

CHEK2dele(9,10), 2.6 for 1100delC (95%CI 0.6-12.0) and 2.2 for the missense variant I157T 

(95%CI 1.4-3.6), while for IVS+1G>A splicing variant an OR could not reliably be calculated due 

to its absence in over 1000 controls. All the data would be consistent with a previously estimated 

two- to three-fold increase in risk. Although the I157T missense substitution appeared to confer a 

lower risk than the truncating mutations, its association with breast cancer was significant (p= 

0.001). If any CHEK2 mutation carrier frequencies were combined, the calculated OR for all four 

variants corroborated the strong association of such mutations with breast cancer (OR= 3.0, 95% CI 

2.0--4.6, p<0.00001). Similar data were obtained in a replication study of these CHEK2 mutations 

in breast cancer patients from Russia (M. Bermisheva, pers. comm.). The results extend our 

knowledge about CHEK2 mutations and help to better define the population frequency and the 

magnitude of risk associated with these common inherited breast cancer susceptibility alleles. It is 

important to note that CHEK2 mutations meanwhile also have been associated with other epithelial 

cancers, such as prostate or colon carcinomas (Cybulski et al. 2004, Kilpivaara et al. 2006), and 

thus the mutations studied in this thesis might represent more general cancer susceptibility alleles.  
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5.4.1 Physiological impact of p.I157T homozygosity and CHEK2 dele(9,10)/NBS1*657del5 

carrier status on CHEK2 protein function 

Following ionizing radiation-induced DNA damage, CHEK2 is rapidly phosphorylated at multiple 

sites in the SQ/TQ-rich region by ATM (Matsuoka et al 2000) and becomes localized to nuclear 

foci (Ward et al. 2001). ATM phosphorylation of Thr68 appears to be a prerequisite for subsequent 

autophosphorylation at Thr383 and Thr387 in the activation loop of the kinase domain. This 

activation mechanism is evolutionarily conserved and necessary for the subsequent CHEK2 

dependent activation of substrates involved in cellular response to DNA damage. However, there 

are additional ATM phosphorylation sites on CHEK2, including those on Ser19, Ser33 and Ser35, 

that have emerged as similarly important regulatory sites (Buscemi et al. 2006). 

The physiologic impact of the IVS2+1G>A mutation has been clarified by observations that this 

genetic variant results in an aberrantly spliced CHEK2 mRNA encoding a truncated protein (Dong 

et al. 2003). The 1100delC allele also leads to the production of a shorter, non functional CHEK2 

protein that is truncated within its kinase domain. The p.I157T mutation in the FHA domain of the 

CHEK2 protein occurs at polymorphic frequency in some populations (Vahteristo et al. 2001), but 

biochemical data from a few studies suggest that this variant may be deleterious (Falk et al. 2001, 

Li et all. 2002) and, though it does not result in apparent changes in the size of CHEK2, may affect 

associations of CHEK2 with substrate proteins. We aimed to address this in the first cell lines that 

we have been able to establish from patients homozygous for the p.I157T substitution. Immunoblot 

analyses showed full-length CHEK2 protein and no difference in radiation-induced CHEK2 

phosphorylation (at Thr-68, Ser19 and Ser33/35 sites) in comparison with wild-type lymphoblastoid 

cell lines (see chapter 4.4). This indicated that there is no effect in the expression level or regulation 

of the p.I157T CHEK2 protein but it does not exclude effects at the level of protein interaction and 

downstream pathways. As a possible functional test, we chose conditions from a recently published 

study of Tan with co-authors. In this work, the authors reported the CHEK2 dependent 

phosphorylation of FoxM1 protein on Ser-361 what caused increased stabilization of the latter with 

a corresponding increase of XRCC1 and BRCA2 gene transcription in mouse embryonic fibroblasts 

and osteosarcoma U2OS cells (Tan et al. 2007). However, although my initial experiments were 

consistent with such a radiation-induced increase of BRCA2 expression in mammary epithelial cells, 

we failed to show any changes in BRCA2 expression after irradiation in lymphoblastoid cells from 

either a homozygous carrier of p.I157T or control individuals (see chapter 4.5). Expression of 

BRCA2 transcripts in lymphoblastoid cells was very poor, less than 1% from housekeeping gene 

expression (cyclophilin) in contrast with the other experiment done on HMECs where results 

revealed increased in about 2 fold expression of BRCA2 transcripts at 24 hours after treatment with 

IR. The reasons for the failure to confirm the published data in LCLs may be tissue/cell specific 
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expression of BRCA2, particularly low BRCA2 expression in LCLs which was almost at the limit of 

detection, and therefore an unfavourable signal-to-noise ratio in the RT-PCR studies. Nevertheless 

it is reasonable to speculate that the p.I157T mutant may be defective in protein function, because 

this variant is located in the FHA domain of CHEK2, which may be involved in protein-

phosphoprotein interactions. Some of these interactions may be essential for transmitting DNA 

damage signals to CHEK2, and any alteration of CHEK2 association with upstream signaling 

proteins could lead to the failure of CHEK2 activation following DNA damage, as for example in 

the case of R145W allele that is also located in FHA domain (figure 5.2). CHEK2 activation 

appears to require the FHA domain and is defective by the R145W mutation, which retains some 

kinase activity in vitro but is incapable of being activated following gamma radiation in vivo, most 

likely because it is not phosphorylated at Thr-68 by ATM kinase. However, this activation process 

was found to be not affected in I157T (Wu et al. 2001), consistent with my findings in the p.I157T 

homozygous cell lines. CHEK2 phosphorylation following DNA damage in ATM-dependent 

manner, results in an altered electrophoretic mobility (phosphorylation shift) which was shown to 

be abolished in the R145W mutant (Wu et al. 2001) but not in I157T (Wu et al. 2001, and chapter 

4.4.5 in this thesis). 

 

 
 

In addition, the FHA domain may also mediate transmitting signals from CHEK2 to downstream 

effectors such as TP53, BRCA1, and Cdc25C. The R145W variant and, interestingly, also the 

I157T mutant FHA domains were found to fail in detectably binding to BRCA1 in experiments with 

hydroxyurea induced DNA damage (Li et al. 2002). Thus it was suggested that Ile157 possibly 

forms part of an accessory hydrophobic surface that acts to stabilize an overall interaction in which 

specificity is provided through the phospho-dependent binding site (Li et al. 2002, see Fig. 5.2). 

The importance of the accessory surface may not be limited only to CHEK2-BRCA1 interactions 

Figure 5.2. Structural model of the FHA 
domain in CHEK2. Both Arg145 and 
Ile157 are located on the more conserved 
face of the FHA domain sandwich, and 
they are remote from the site of 
phosphopeptide binding. (taken from Li et 
al. 2002). 
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since CHEK2 activates also TP53 and Cdc25C. But these hypotheses still remain to be 

experimentally proven. 

Concerning the physiological impact of CHEK2dele(9,10), my analysis of lymphoblastoid cDNA 

from a heterozygous carrier showed the presence of a smaller deletion product in approximately the 

same amount as the product of wild-type length, and there was no evidence for a nonsense-mediated 

decay of CHEK2mRNA harbouring the deletion. In addition, some smaller splice transcript was 

seen at a low level in the sample with CHEK2dele(9,10) which by direct sequencing exhibits a 

deletion of 3 exons (including also exon 11). This transcript was present in a relative proportion of 

less than 5% of the wildtype. This skipping of exon 11 restores the reading frame in the context of 

the CHEK2dele(9,10) deletion, but protein which may then be synthesised will lack of 117 amino 

acids of the CHEK2 kinase domain and should have about 35 kDa. Such protein product was not 

detected on my western blots what could be because of its very low level of expression. I also failed 

to detect a truncated protein corresponding to the normally spliced CHEK2dele(9,10) mutation, 

although antibodies against amino-terminal epitopes were used. As this transcript was not subject to 

nonsense-mediated decay (NMD) and was observed at a relative level similar to wildtype, the 

shortened protein of about 49 kDa might have been expected. However, it has been reported that 

truncated proteins are often unstable, as recently exemplified for the CHEK2*1100delC mutant 

after inhibition of NMD (Anczukow et al. 2008), and this instability may be due to a translational 

repression of transcripts that escape NMD, such as the CHEK2dele(9,10) mutation (You et al. 

2007).  

At the protein level, CHEK2 was observed in full-length in LCLs from the proband with 

CHEK2dele(9,10) heterozygous genotype but the protein level was approximately reduced by half 

in comparison with LCLs of wild-type genotype -as might have been expected for a heterozygote –, 

and moreover the phosphorylation shift was not detected (see chapter 4.4). The latter was 

unexpected and pointed to a role for the NBN*657del5 mutation that had also been identified in the 

same individual. Radiation-induced CHEK2 phosphorylation (at Ser19 and Ser33/35 sites) in LCLs 

from dele(9,10)/657del5 compound heterozygote indeed showed a reduction of about 60%-70% of 

pCHEK2 protein in comparison with wild-type, which in turn may markedly affect CHEK2 protein 

stability and function. Remarkably was the finding that cells from NBS obligate heterozygtes for 

the 657del5 mutation had phospho-protein levels in the same range as for wild-type controls, but 

cells from a homozygous NBS patient with the 657del5/657del5 genotype had a dramatic reduction 

(to about 10% of wild-type) of phospho-protein levels. These observations suggest a possible 

interaction between CHEK2 and NBN, i.e. full-length NBN is required for the full activation of 

CHEK2, in particular its phosphorylation at Ser19 and Ser33/35. Cells with mutations in both genes 

may be functionally more compromised, and correspondingly the respective patients may be at an 
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increased risk of cancer. However, the results of presented study suggest that the number of such 

patients will be relatively low. 

In summary, the two investigated CHEK2 mutations differed in their effects at the functional level. 

The p.I157T substitution exhibited by immunoblot analyses no distinction from wild-type in the 

size of CHEK2 protein or its radiation induced phosphorylation, but since the analysis of BRCA2 

expression in LCLs did not prove to be a reliable assay of CHEK2 function, further studies of the 

cell lines from I157T homozygotes and control probands will be needed to clarify the possible 

impact of this missense variant on protein function. The results obtained for a 

CHEK2dele(9,10)/657del5 compound heterozygote demonstrated an allele-specific suppression of 

the deletion product at the protein but not at the mRNA level, and showed a surplus reduction in the 

radiation-induced CHEK2 protein phosphorylation, what may be explained by a possible interaction 

between NBN and CHEK2 mutations. 

 

5.5 Missense substitution in PALB2 and relevance for breast cancer 

PALB2 (partner and localizer of BRCA2) gene encodes a recently discovered protein that binds to 

and colocalizes with the BRCA2 protein in nuclear foci and likely permits the stable intranuclear 

localization and accumulation of BRCA2 (see chapter 1.7.3). Thus, the protein is important in the 

regulation of homologous recombinational repair (chapter 1.5.2). Biallelic PALB2 germline 

mutations are responsible for a subset of Fanconi anemia (FA-N) with similar phenotype like that 

caused by biallelic BRCA2 mutations (Reid et al. 2007, Xia et al. 2007). Monoallelic PALB2 

mutations were also found in individuals with breast cancer from familial breast cancer pedigrees 

that were negative for BRCA1 and BRCA2 mutations. A truncating mutation, possibly a founder 

mutation, in PALB2 was also detected in familial and sporadic breast cancer cases and in one 

prostate cancer family in the Finnish population (Erkko et al. 2007). PALB2 mutations showed an 

incomplete segregation in affected relatives and were estimated to confer a 2 to 3 fold increase in 

breast cancer risk, and it was suggested that the risks of breast cancer associated with PALB2 

mutations may be age- dependent (Xia et al. 2007, Rahman et al. 2007). Three investigated 

missense PALB2 variants Q559R, E672Q and G998E (originally described by Rahman et al. 2007) 

were in parallel work of our group detected to be in linkage disequilibrium, and the combination of 

all three rare genotypes appeared associated with increased breast cancer risk with some evidence of 

early age of breast cancer in carriers versus non carriers (MA Blaut, MD thesis in preparation). 

These three variants were genotyped in Byelorussian cases and population controls and the 

association with breast cancer was not confirmed (see chapter 4.6). Median age at diagnosis for 

carriers versus non carrier was also not significantly different neither for certain genotypes nor if 
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stratified by region, so was no evidence obtained for an association with early onset breast cancer. 

For all three variants was no association detected between carrier status and familial breast cancer. 

While the relative risk conferred by inactivating (truncating) mutations for PALB2 was estimated to 

be about 2-3fold increased, it was also proposed that polymorphic variants in this gene contribute 

little, if anything, to the identification of woman at substantial risk (Rahman et al. 2007). This is 

supported by the results obtained in Byelorussian cases and controls. Another possible explanation 

of different results obtained in German and Byelorussian populations is that the polymorphic 

variants could confer a very minor risk that escaped detection in the Belarus study and large multi-

center studies are required to find an association and estimate the risk. It is also possible that some 

PALB2 variants modify the risk of BRCA2 mutations, but the number of BRCA2 mutation carriers 

in the present study was much too small to address this question. The investigated PALB2 variants 

p.E672Q and p.G998E have been suggested to be related to a possibly altered protein function by 

bioinformatic criteria, although any functional assays remain to be done (Rahman et al. 2007). In 

summary: because only few studies in this field exist so far and somewhat controversial results 

were obtained from Byelorussian and German populations, further research is necessary to show 

whether the studied substitutions in PALB2 associated with minor risks of breast cancer and which 

of them may have functionally relevance. 

 

5.6 XRCC4 variant IVS7-1G>A and its impact on breast cancer risk 

XRCC4 encodes protein that functions together with DNA ligase IV in the repair of DNA double 

strand breaks by non-homologous end joining (see chapters 1.5.2 and 1.7.4). The transition of 

Guanine to Adenine in the last nucleotide of intron 7 abolishes the consensus acceptor site and 

results in the utilisation of an internal alternative splice site. The aberrant splicing changes three 

amino acids in the mutant protein: deletion of arginine and serine (at position 298 and 299, 

respectively) and substitution of asparagine to lysine at position 300. In primary work of our group 

(K. Gerriets, MD thesis submitted), carrier frequencies were not different between cases and 

controls in German collective, but it was indicated significant excess of homozygous among breast 

cancer cases. In the Byelorussian breast cancer case- control series, the IVS7-1G>A variant was 

found at a frequency of 23.4% in cases and 19.8% in controls (OR: 1.19, 95%CI: 1.04-1.37, 

p=0.01) with about twice as many homozygotes in the case group. If stratified by region a 

significant difference between cases and controls was obtained only for non-contaminated regions 

(see chapter 4.7). This trend is similar to the observations for other SNPs and will be discussed 

later. 

Allen-Brady with co-authors reported a possible role of XRCC4 haplovariants in association with 

breast cancer risk and suggests that it could be age- dependent (Allen-Brady et al. 2006). In a study 
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of German patients, some evidence was indeed found of a lower age at diagnosis for carrier of the 

uncommon IVS7-1A/A genotype, but in the Byelorussian population carriers of the same genotype 

tended to be older than heterozygous carriers or non-carriers, although a significant difference was 

not achieved (p=0.07). During the course of the thesis, the IVS7-1G>A XRCC4 variant was also 

found to be significantly associated with bladder cancer risk (Figueroa et al. 2007), and in that study 

there was no evidence found for an interaction with age either. 

It was some evidence in Byelorussian study that some IVS7-1G>A allele carriers also harboured 

previously identified BRCA1 or BRCA2 founder mutations (19/411, 4.6%), this proportion was the 

same as in non-carriers (OR: 1.00, 95%CI 0.13-7.5, p=1.0). However if carriers of previously 

identified mutations not only in high penetrance genes BRCA1/2 but also in the CHEK2, ATM and 

NBN were excluded, the observed association of IVS7-1G>A with breast cancer became even 

stronger (OR 2.1, 95%CI: 1.8-2.5, p<0.0001), suggesting that IVS7-1G>A constitutes an 

independent risk factor. 

There are only few studies about the possible role of the IVS7-1G>A splice variant in the XRCC4 

gene and cancer risk, so far, and results from German and Byelorussian populations were not 

entirely consistent, although both point to a risk increase in carriers of this splice mutation. These 

findings need to be replicated in other populations, particularly since homozygote variants were rare 

in the hitherto published studies (Wu et al. 2006, Figueroa et al. 2007). The NCBI SNP databank 

suggests that the mutant splice site allele (A) may be particularly common in Asians, suggesting 

that case-control studies in these populations will have a high statistical power, and preliminary 

findings in populations from Russia support this observation (M. Bermisheva, pers. 

communication).  

Previous work of our group (K. Gerriets, MD thesis submitted) addressing the functional relevance 

of the IVS7-1G>A variant had shown by immonoblot analysis that IVS7-1A/A allele produces full-

length XRCC4 protein and becomes normally phosphorylated after exposure to ionising radiation in 

an ATM-dependent manner. These findings could be supported by the fact that XRCC4 is 

activated/phosphorylated on distinct residues which are not changed by splice mutation IVS7-

1G>A. Thus, the splice isoform is at least partially active and the effect of the IVS7-1G>A 

mutation, if any, appears to be more subtle. In summary: obtained results provide evidence for an 

association between IVS7-1G>A genetic variant in XRCC4 gene and breast cancer in Byelorussian 

population, thus XRCC4 can be proposed as one of the low penetrance genes predisposing to breast 

cancer. However, future replication studies are required to confirm these findings and more 

thorough analysis are needed to elucidate the impact of the shortened isoform on protein function. 
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5.7 Low-penetrance loci, identified to be associated with breast cancer  

Breast cancer has a strong inherited component but a large proportion arise in a genetically 

susceptible minority from underlying genetic factors which are little known. During the course of 

the thesis, evidence has been accumulating that part of the heritable disposition is due to common 

low-penetrance susceptibility alleles. Recently conducted genome-wide association studies have 

reported common polymorphisms that are strongly associated with breast cancer risk (Cox et al. 

2007, Easton et al. 2007, Hunter et al. 2007, Stacey et al. 2007, Gold et al. 2008). Two of these 

studies were conducted by Breast Cancer Association Consortium, established in 2005 to facilitate 

such collaborative studies in breast cancer and currently comprising over 25 international research 

groups including our team (Easton et al. 2007). The genotyping of SNPs chosen by this consortium 

and data analysis was first done in a case-control series from the German population (HaBCS), and 

the most interesting findings were further investigated in a case-control series from the 

Byelorussian population (HMBCS), as part of the thesis presented here. Variants D302H in CASP8 

(rs1045485), L10P in TGFB1 (rs1982073), and the three non-coding variants rs2981582 in FGFR2, 

rs3803662 at TOX3/TNRC9 and rs13387042 on chromosome 2q35 which were most significantly 

associated with breast cancer in the large genome-wide studies, were chosen to be screened in the 

series of Byelorussian cases and controls. Caspase-8 is an important initiator of apoptosis and is 

activated in response to DNA damage as well as external death signals (Ding et al. 2000, 

Hengartner 2000). Transforming growth factor-b (TGFb) is a polypeptide cytokine that has a role in 

regulating cell growth, differentiation and migration. It regulates normal mammary gland 

development and function by activating the TGFb signaling pathway, and it also modulates the 

ATM pathway (Kirshner et al. 2006, Wiegmann et al. 2007). There is a dual role of action in which 

the TGFb signaling suppresses tumour initiation but can also promote tumour progression and 

metastasis when antiproliferative effect of the TGFb signaling pathway has been overridden by 

other oncogenic mutations (Bierie and Moses 2006, Derynck et al. 2001).  

The D302H polymorphism in CASP8 results in a substitution of an aspartic acid to histidine and in 

our consortium study appeared to reduce breast cancer risk (Cox et al. 2007), but the functional 

consequences of this substitution are not yet known, and further experiments are required to 

establish whether D302H itself causative, or another variant in strong linkage disequilibrium with it. 

Weaker evidence for breast cancer association was found in the same study for the TGFbeta1 L10P 

variant. The Leu10Pro polymorphism resides in the signal peptide sequence of TGFbeta which has 

been associated with increased levels of protein and mRNA in individuals with the rare Pro allele; 

the peptide with Pro at residue 10 causes a 2.8 fold increase in secretion compared with the Leu 

form (Dunning et al. 2003). The association study of the Leu10Pro variant showed a significant 

dose dependent association of the Pro allele with increased risk of invasive breast cancer and it was 
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estimated to account for approximately 0.2 % of the excess familial risk of breast cancer in 

populations of European ancestry (Cox et al. 2007). Both SNPs, in CASP8 and in TGFB1, gave no 

significant association with breast cancer in our case-control series from the Byelorussian 

population (and neither in German cases and controls if data was calculated from single study), 

neither over all nor stratified by region, but the D302H substitution was significantly associated 

with familial breast cancer in the Byelorussian population as a protective allele (see chapter 4.8). 

Thus, the data are in the same direction as published in the frame of the BCAC (Cox et al. 2007). 

Locus rs2981582 in intron 1 of FGFR2 – the gene encoding fibroblast growth factor receptor 2 

which influence mitogenesis and differentiation - and locus rs3803662 close to TOX3, also known 

as TNRC9 encoding a high mobility group box family member 3 which may bind to DNA and 

regulate transcription, were found to be most significantly associated with breast cancer in the 

subsequent genome-wide study of the Breast Cancer Association Consortium (Easton et al. 2007) 

and were confirmed in independent research (Hunter et al. 2007, Stacey et al. 2007) where also as 

an additional locus rs13387042 on chromosome 2q35 was found to be associated with breast cancer 

risk. For the LD block containing rs13387042, not any known genes or human RNAs was found. 

Moving proximally (left) outside the LD block, the nearest known genes are TNP1 – transition 

protein 1 (during histone to protamine replacement) (181 kb proximal), IGFBP5 (345 kb proximal) 

and IGFBP2 (376 kb proximal) – insulin-like growth factor binding proteins 5 and 2. Moving 

distally outside the LD block, the nearest known gene is TNS1 (tensil 1), a protein that localises to 

focal adhesions, crosslinks actin filament and contains a Scr homology 2 (SH2) domain, which is 

often found in molecules involved in signal transduction (761 kb distal). Further analysis in the LD 

blocks containing these genes did not show any signals that could account for the observed 

association with rs13387042 (Stacey et al. 2007). 

All three non-coding variants were found to be not significantly associated with familial breast 

cancer in presented thesis and only SNP in TOX3 was confirmed to be associated over all in 

Byelorussian population with breast cancer. However, for the other two loci (FGFR2 and 2q35), a 

significant difference was found in median age at diagnosis between carriers and non- carriers, 

which was particularly pronounced for homozygous carriers of rare A-rs13387042 genotype. Thus, 

the obtained results in this thesis are in the same line with the published data, but as a single study 

there was insufficient power to prove the general statistical association of these low-penetrance 

susceptibility alleles with breast cancer. 

To date it is not known how the described loci interact with each other or with lifestyle factors that 

may modulate the risk, or which functional consequences have some of the found variants and, in 

several cases, even the disease-causing variant itself remains to be defined. However, the published 

reports emphasize the importance of large-scale studies when the goal is to identify common 



Discussion   149 
 
variants conferring modest increases in the risk of breast cancer. The most recent study of the 

Breast Cancer Association Consortium furthermore shows that some of the common variants may 

also play a role in the further progression of breast carcinomas as is exemplified by the strong 

association of the FGFR2 risk allele with ER positive tumours (Garcia-Closas et al. 2008). In other 

recent study was found that described SNP withing intron 2 of the FGFR2 gene (rs2981582) alter 

the binding of transcription factor C/EBPβ what in turn cause an increase in FGFR2 gene 

expression (Meyer et al. 2008). 

Recently a new genome-wide association study using cases and controls from a genetically isolated 

population of Ashkenazi Jews identified another new locus potentially associated with breast cancer 

risk (Gold et al. 2008). This study reported the association of breast cancer with the RNF146/ 

ECHDC1 region at 6q22.33 chromosome. RNF146 encodes ring finger protein 146, also called 

dactylidin, aprotein that is differentially expressed in neurodegenerative diseases, is ubiquitously 

expressed with cytoplasmic localization, and possibly functions as a ubiquitin protein ligase (E3). 

Protein degradation through the ubiquitin proteasome system regulates such processes as cell cycle, 

apoptosis, transcription, protein trafficking, signaling, DNA replication and repair, and 

angiogenesis. Defects in this pathway have been well documented in breast cancer (Mani and 

Gelmann 2005) and as well known examples BRCA1, BRCA2, BARD1, and MDM2 ubiquitin 

ligases, deregulation of which found in subsets of human breast cancers (Chen et al. 2006). 

Although RNF146 is little studied in cancer, it belongs to a class of genes including BRCA1, 

BRCA2, and BARD1 suggesting that it could play a role in tumorigenesis of breast or other 

malignancies. On the other hand, ECHDC1 encoding enoyl-CoA hydratase domain containing 1 

may function in fatty acid metabolism and mitochondrial fatty acid oxidation. It has been also little 

studied in breast cancer. It is established that inhibition of fatty acid oxidation can induce apoptosis 

in breast cancer cell lines, and this effect was increased 300-fold in TP53-silenced cell lines (Zhou 

et al. 2003, Menendez and Lupu 2005). Thus, it could also play some role in breast tumorigenesis. 

However, it could not be determined whether the breast cancer association reported in the study of 

Gold and co-authors (2008) was arising from the ECHDC1 gene, RNF146 gene, or another locus in 

linkage disequilibrium. Future genetic association studies in divergent populations could prove 

helpful to define the responsible gene more precisely. 

In summary, recent technological advances have provided unanticipated possibilities to analyse 

hundreds of thousands of SNPs in association studies, thus providing a basis for identifying low risk 

alleles without prior knowledge of position or function In the tradition of early founders of modern 

biology and genetics, for instance Gregor Mendel or Charles Darwin, the identification and careful 

description of such associations will lay the ground for a better understanding of biological and 

biochemical mechanisms and finally pave the way for future cancer therapies. 
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5.8 Regional differences in Byelorussian investigated series 

One distinctive feature of the Byelorussian case-control series investigated in this thesis is the fact 

that a relatively large proportion of individuals has been chronically exposed to low-dose ionising 

radiation as a long-term consequence of the Chernobyl accident over 20 years ago. As outlined in 

the introduction, ionising radiation is a risk factor for breast cancer. The radiation exposure could 

affect the relative frequency of mutation carriers in different ways. One possibility is that the 

penetrance of mutations (for example in damage repair genes) is increased by gene-radiation 

interaction which then may result in a relative increase of these mutations in the case group of 

environmentally exposed. Another possibility is that the environmental exposure may act 

independently as an additional risk factor which then may increase the total number of diseased 

non-mutation carriers thereby decreasing the relative proportion of mutation carriers among cases. 

We aimed to investigate this further by comparing the carrier frequencies in both contaminated and 

non-contaminated regions. 

Both the case and control series were divided in two subgroups, according to the estimated whole 

body doses accumulated after the Chernobyl accident in the respective study regions (see chapter 

2.7): 1) non-contaminated (0); 2) contaminated regions (with subdividing ranking from very low 

contamination with 5mSv to high contamination with doses >40 mSv, I-IV). This regional division 

was based on the data published by Pukkala et al. (2006). The first findings about regional 

differences in the case-control series came from the comparison of median ages at onset of breast 

cancer which for non-contaminated regions was 50 years and for contaminated regions 44 years. 

This difference was statistically highly significant with p <0.00001, indicating that the patient 

groups stratified by these criteria are indeed different. The next observation was concerning the 

proportion of patients with a family history of breast cancer. This group was termed “familial cases” 

and included the subset of patients with at least one first-degree relative affected with breast cancer. 

Regional discrepancy was exhibited as a higher proportion of familial cases in contaminated versus 

non-contaminated areas and was statistically significant with OR 1.72 (95%CI: 1.34-2.21, 

p<0.00001). Both facts, the younger age at diagnosis and a stronger family history in contaminated 

regions could theoretically be explained by a higher prevalence of mutations in breast cancer 

susceptibility genes BRCA1/2 in these regions (founder effect), because both genes are two major 

predisposing to familial and early-onset breast and/or ovarian cancers. However carrier frequencies 

for the mutations tested were not significantly different between both regions: OR 1.36, 95%CI: 

0.87-2.14, p=0.22, and these most common mutations were very rare among the controls in both 

regions (attachment 3). Thus, founder effects for BRCA1 and BRCA2 mutations are very unlikely to 

explain the regional differences. The same tendency was seen for breast cancer susceptibility alleles 

with moderate penetrance (ATM, NBN, CHEK2): combined mutations in these genes were slightly 
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less frequent in cases from contaminated regions than in non-contaminated regions (8.4% versus 

9.9%) although statistical significance was not achieved (OR 0.83, 95%CI 0.60-1.16, p=0.32). In 

the control group, there seemed to be more combined carriers of high-penetrance and moderate risk 

alleles in contaminated regions (4.8% versus 2.7%) but this observation was also not statistically 

significant (OR 1.86, 95%CI 0.95-3.64, p=0.1). Even though the products of these genes are 

involved in DNA damage pathways: as the potentially higher carrier frequency in contaminated 

areas was not reflected in the case group, there was no evidence for a gene-radiation interaction in 

these patients. For the studied low-penetrance alleles there was mainly the same allelic distribution 

between regions (attachment 3), without detectable difference with the interesting exception of 

TGFB1 where the L10P variant was less frequent in cases from contaminated regions than in non-

contaminated (per-allele OR in cases: 0.82, 95%CI: 0.72-0.94, p=0.006) whereas there was no 

difference in controls (OR 1.06, 95%CI 0.88-1.26, p=0.59), so that the association of this variant 

with breast cancer was confined to non-contaminated regions.  

It was also aimed to investigate possible gene-gene interactions between those 11 loci which were 

shown in other studies and by us to be associated with breast cancer (see attachment 4). An analysis 

done for two-way SNP interactions in the series of breast cancer cases showed some decrease in the 

observed carrier frequencies for pI157T/ 2q35 rs13387042 combined carriers (attachment 4) in 

comparison with the expected carrier rate, and this association was borderline significant if 

heterozygotes and homozygotes for the rare alleles were combined (Chi-square test: p=0.04) (table 

5.1). By contrast, in the series of Byelorussian control individuals there was no significant 

difference between observed and expected carrier frequencies for these combined genotypes (table 

5.2).. The potential gene-gene interaction for pI157T/rs13387042 combined carriers in breast cancer 

cases was not differing between regions (Chi-square test: p=0.79). 

 

Table 5.1 Combined carrier frequencies for p.I157T and rs13387042 among Byelorussian 

breast cancer patients. 

Gene/locus 2q35 (rs13387042) 

Genotype 
Homozygotes for 

common allele 
Heterozygotes 

Homozygotes for rare 

allele 

WT/WT 504 (551) 859 (785) 307(334) 

pI157T/WT 44 (29) 32 (41) 10 (17.6) 

CHEK2 

pI157T/pI157T 1 (0.6) 1 (0.8) 0 (0.4) 

In black shown observed number of carriers, and in blue shown expected carrier numbers. 
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Table 5.2 Combined carrier frequencies for p.I157T and rs13387042 among Byelorussian 

control individuals 

Gene/locus 2q35 (rs13387042) 

Genotype 
Homozygous for 

common allele 
Heterozygous 

Homozygous for rare 

allele 

WT/WT 324 (320) 479 (479) 191 (199.7) 

pI157T/WT 6 (6.5) 10 (10) 5 (4.1) 

CHEK2 

pI157T/pI157T 0 (0.65) 2 (1) 0 (0.4) 

In black shown observed number of carriers, and in blue shown expected carrier numbers. 
 

While these two potentially interacting variants were found to be associated with breast cancer, the 

functional importance of such an interaction remains uncertain particularly due to the unknown 

gene for locus rs13387042 on chromosome 2q35 and no knowledge to date if this SNP causative or 

some other. 

Thus, in general, the distribution of the mutations was not much different between regions and the 

current observations can not explain the observed heterogeneity in the age at diagnosis and familial 

history in regions in terms of genetic factors. If anything, it appeared that the currently known risk 

alleles tended to be less prevalent in cases from contaminated regions and, if this were to be 

confirmed, it could reflect an independent action of additional risk factors in these areas. Thus, it is 

not excluded that there is a role of environmental factors in breast cancer development, what may 

be relevant for investigated Byelorussian population in regard of chronic exposure to ionizing 

radiation after the Chernobyl accident, but this study does not allow to draw conclusions about a 

possible synergistic role of both genetic and environmental factors. In particular, the present results 

do not support the hypothesis that such environmental factors act more effectively on genetically 

predisposed persons what may lead to regional differences due to gene-gene and gene-environment 

interaction. However, as a note of caution, we should keep in mind that we have no information 

about biodosimetry data of the patients to reconstruct individual doses, beyond their geographic 

region of living. While the ground contamination in the geographic area of origin has been well-

documented (Pukkala et al. 2006), and we observed significant differences between patient groups 

stratified by region in terms of age and family history of breast cancer, the geographic origin might 

be considered as an important factor but it is not the only factor determining the individual dose. 

This limits our study in its present design but allows for future projects to examine the gene-

radiation relationship in more detail. For example, the present results can provide a basis to follow 

up the blood relatives in the respective Byelorussian families who are carriers of a defined mutation, 

and to determine their risks in future cohort studies similar to those that have recently been initiated 
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in the European Union with the aim to identify risks associated with medical diagnostic radiation in 

BRCA1 mutation carriers (Andrieu et al. 2006).   
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6. Conclusions 
The objective of this thesis was to investigate the contribution of founder mutations in major DNA 

double-strand break repair genes and the prevalence of common polymorphic variants as breast 

cancer susceptibility alleles in case-control sets from the Republic of Belarus, and to characterize 

some of the identified variants by functional assessment of the radiation-induced DNA damage 

response in patient lymphoblastoid cell lines. 

These studies demonstrated that: 

• Four germline mutations in the BRCA1 and BRCA2 genes accounted for 4.5% of unselected 

Byelorussian breast cancer patient and 9.1% of hereditary breast cancers. Breast cancer risk 

appeared heterogeneous for the studied BRCA1 mutations, but the presence of any, including 

4153delA was significantly associated with an increase in risk for the disease. 

• Single truncating ATM mutations can contribute to breast cancer outside A-T families, so a 

significant association of the p.E1978X nonsense mutation with breast cancer in three 

combined populations of Slavic descent could be shown. 

• The c.657del5 truncating NBN mutation was clearly associated with an increased breast 

cancer risk in this study, and the p.R215W substitution of nibrin may also represent a cancer 

susceptibility allele, although large multi-center studies might be required to formally show 

whether the p.R215W substitution associates with cancer. 

• CHEK2 mutations were strongly associated with the breast cancer the radiation response in 

cell lines suggested an interaction with mutations in NBN. 

• A significant association was observed between the IVS7-1G>A splice variant in the repair 

gene XRCC4 and breast cancer risk in the Byelorussian population. This variant may be 

proposed as a low penetrance breast cancer allele, but the findings need to be confirmed in 

other populations. 

• Additional low-penetrance alleles investigated in this study were not overall significant 

associated with breast cancer in Byelorussian population, with the exception of a variant 

located close to the TOX3/TNRC9 gene. Another variant, p.D302H in the gene encoding 

caspase-8, was underrepresented in cases with familial breast cancer.  

• Possible gene-gene interactions were identified between variants in ATM and BRCA1, and 

between variants in CHEK2 and the 2q35 locus. However, since these interactions were not 

significant under conditions of multiple testing, further research is needed to validate these 

findings. 

• The frequency distribution of the mutations across different regions of Belarus was not 

markedly heterogeneous, so that the observed significant differences in the age at diagnosis 
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and family history between regions can not be explained due to founder effects or gene-

environment interactions of hitherto identified genetic factors. 

As the genetic epidemiology of breast cancer has not been investigated in the Republic of Belarus, 

before, the presented study for the first time reveals the spectrum of breast cancer susceptibility 

alleles in the Byelorussian population. These data may serve as a basis for subsequent studies in 

several aspects. The impact of some gene variants on the respective protein function has still to be 

clarified. So, a functional assessment of the p.I157T missense variant at the CHEK2 protein level 

revealed no distinctions from wild-type in terms of expression and radiation-induced 

phosphorylation, indicating a possible downstream defect. More analysis also required to elucidate 

the impact of the shortened XRCC4 isoform due to the IVS7-1G>A splice mutation on differential 

protein functions. The functional interaction between the NBN and CHEK2 proteins as deduced 

from the immonoblot findings need to be tested in other model systems. Also observed 

heterogeneity in the age at diagnosis and familial history between geographic regions across 

Belarus should be investigated in more details, probably by prospective studies of the blood 

relatives in the respective Byelorussian families who are carriers of a defined mutation. Some more 

precise estimates of the individual radiation dose could be helpful for the determination of risks 

possibly associated with gene-environmental interaction. 

Altogether the results obtained in this study imply that virtually all breast cancer patients in Belarus 

are genetically predisposed and carry at least one of the identified high-, moderate- or low- 

penetrance breast cancer susceptibility alleles. It may be also effective for other Slavic populations 

to investigate the mutations described in the presented thesis. 

At the present stage, the results of this study should provide an important and valuable basis for 

deeper research into the biological relevance of some of the genes, their impact on prognosis and 

mortality, possible gene-gene and gene-environment interactions, and their potential exploitation in 

the future prevention and therapy of breast cancer.  
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Attachment 1 Sequences of primers used in the thesis for identification and verification of mutations 

Gene Locus Primer Primer sequence Size of PCR product Use1 
BR5i5 5´- CTCTTAAGGGCAGTTGTGAG- 3´ 
BR5i3 5´- TTCCTACTGTGGTTGCTTCC- 3´ 

234 bp 1,3 

C61ARMS 5´- CCAGAAGAAAGGGCCTTCACTGG- 3´ 
exon 5 (C61G) 

C61R 5´- CCTGTATAAGGCAGATGTCC- 3´ 221 bp 2 

4153ARMS 5´- GGAATTGGTTTCAGATGATCAG- 3´ 
BR11R 5´- CACTTCTATAAATAGACTGGG- 3´ 

131 bp 2 

BS5B 5´- CTACTAGGCATAGCACCGTTGC- 3´ 
exon 11 (4153delA) 

BR11R 5´- CACTTCTATAAATAGACTGGG- 3´ 
423 bp 3 

BS10 5´- CCAAAGCGAGCAAGAGAATCTC- 3´* 

BRCA1 

exon 20 (5382insC) 
BS9 5´- GGGAATCCAAATTACACAGC- 3´ 

270 bp 1,3 

6174delT 5´- GTGGGATTTTTAGCCCAGCAAG- 3´* 

BS20 5´- CTGAGTTTACACAGTGCTCTGGG- 3´ 
438 bp 1 

6174ARMS 5´- GTGGGATTTTTAGCACAGCTAGG- 3´ 
6174delR 5´- GTTCTGGAGTACGTATAGCAG- 3´ 189 bp 2 

BS19A 5´- CTTCATAAGTCAGTCTCATCTG- 3´ 

BRCA2 exon 11 (6174delT) 

BS20 5´- CTGAGTTTACACAGTGCTCTGGG- 3´ 
837 bp 3 

ATM8F 5´- CTTTCAGCATACCACTTCATAAC- 3´ exon 9 
ATM8R 5´- CATAAGTAGCTCCTAGAGGGAAC-3´ 

601 bp 6 

ATM41F 5´- TGTATTCAGGAGCTTCCAAATAG- 3´ 
exon 42 (E1978X) 

ATM41R 5´- GCTTAGTCCAGTAAGTAAATTCAG- 3´ 
269 bp 1,3,6 

ATM51FF 5´- CTTAGGAAGGTGTGTGAATTGCACAG -3´ 

ATM 

exon 52 
ATM51RR 5´- CAAGCACAGGGTAGAATATTGGGCTG -3´ 

436 bp 6 

NBS171FF 5’-GATGTAAACAGCCTCTTTGTAG-3’ NBN 
 

exon 5 (I171V) 

NBS171RR 5’-TCAACTGCTTTCAGGAGTTCAG-3’* 
170 bp 1 
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NBS171F 5’-TCCTGAAAGCAGTTGAGTCC-3’ 
NBS171R 5’-ACAAGCATTAAAGAGGGAGTTAAC-3’ 

133 bp 3 

657ARMS 5’-CAGGACGGCAGGAAAGAAATCT- 3’ 
PAR16 5’-GGTACACAGAACATATTCAACTG -3’ 

391 bp 2 

R215RSA 5’-AAGTAAAAATGTTGATCTGTCAGTA-3’* 
exon 6 (657del5) 

PAR16 5’-GGTACACAGAACATATTCAACTG -3’ 
420 bp 3 

R215RSA 5’-AAGTAAAAATGTTGATCTGTCAGTA-3’* 

NBS6i-3 5’-TGAAATACGTTAACAACTACTG-3’ 
178 bp 1 

R215RSA 5’-AAGTAAAAATGTTGATCTGTCAGTA-3’* 
exon 6 (R215W) 

PAR16 5’-GGTACACAGAACATATTCAACTG -3’ 
420 bp 3 

KIA9-2F 5´- GTCACTTCTGAGCCCACATA- 3´ MDC1 exon 9 
KIA9-4R 5´- AGGGACAGTTGATTCAGGGT- 3´ 

351 bp 6 

CHEK2ARTF 5’-GCAAGAAACACTTTCGGATTTTCCGG-3’ 
CHEK2ARTR 5’-CCACTGTGATCTTCTATGTCTGCA-3’* 

194 bp 1 

CHEK2F 5’-CCTTCTTAGGCTATTTTCCTAC-3’ 
exons 2-3 (I157T and 

IVS2+1G>A) 
CHEK3R 5’-AACCATATTCTGTAAGGACAGG-3’ 

580 bp 3 

CHLdel2F 5’-TGTAATGAGCTGAGATTGTGC-3’ 
CHLc2R 5’-CAGAAATGAGACAGGAAGTT-3’ 

379 bp 4 

CHLdelR 5’-GTCTCAAACTTGGCTGCG-3’ 
CHLcF 5’-CTCTGTTGTGTACAAGTGAC-3’ 

522 bp 4 

CHEK2delF 5’-GAACCACTATTTACATAAC-3’ 

exons 9-10 (dele(9,10)) 

CHEK2delR 5’-GTCTCAAACTTGGCTGCG-3’ 
1.8 Kbp 5 

CHEK2As2 5’-CCCTTTTGTACTGAACTTTTAGATGAT-3’ 
CHEK210R 5’-ATCACCTCCTACCAGTCTGTGC-3’ 

227 bp 2 

CHEKBsp 5´- CCCTTTTGTACTGAATTTTAGAGTA- 3´ 

CHEK2 

exon 10 
(1100delC) 

CHEK10RR 5´- GGCATGGTGGTGTGCATC- 3´ 
380 bp 3 
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XRCC4-8F 5’-CTGTCATTTCACTTATGTGTCTC-3’ 
XRCC4 exon 8 

(IVS7-1G>A) XRCC4-8R 5’-CTACAAGTGATCTGATACAAAAG-3’ 
247 bp 1,3 

 

1 approach for which primers were used: 
 
1 – routine PCR followed by restriction enzyme cleavage 
2 – ARMS-PCR 
3 – PCR followed by direct sequencing 
4 – allele-specific duplex PCR 
5 – mutation specific long range PCR 
6 – as internal control for ARMS assay 
* mismatch primer with modified nucleotide position underlined 
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Attachment 2 Summary of TaqMan assays used in the thesis for SNP genotyping 

Locus SNP ID Assay ID or Primer sequence (5’→3’) Assay ID or Probe sequence (5’→3’) 
Annealing/ 

hybridization 
t° 

Number 
of cycles 

T1915M 
(BRCA2) rs4987117 F: 5’-GGATGATTCAGAGGATATTCTTCATAACTC-3’ 

R: 5’-GTTGTAAAATTTCTTCACTCTGAATGTCAG-3’ 
Probe1: 5’-AATGTAGCACGCATTCACATAAG-3’*1 
Probe2: 5’-AATGTAGCATGCATTCACATAAG-3’*2 62° 40 

S49C 
(ATM) rs1800054 C_2283262_20_Applied Biosystems C_2283262_20_Applied Biosystems 60° 40 

S707P 
(ATM) rs4986761 C_45273748_10 _Applied Biosystems  C_45273748_10 _Applied Biosystems  60° 40 

L1420F 
(ATM) rs1800058 C_45273752_10_ Applied Biosystems C_45273752_10_ Applied Biosystems 60° 40 

P1054R 
(ATM) rs1800057 C_45273750_10_ Applied Biosystems C_45273750_10_ Applied Biosystems 60° 40 

F858L 
(ATM) rs1800056 C_2283286_20_ Applied Biosystems C_2283286_20_ Applied Biosystems 60° 40 

Q559R 
(PALB2) rs152451 C_ _ _2392113_10_Applied Biosystems C_ _ _2392113_10_Applied Biosystems 60° 36/40 

E672Q 
(PALB2) rs45532440 F: 5’-GTTTGGCCTTTTGGGATGTG-3’ 

R: 5’-GAGAGAGACATCTTAAAGAGGGAAGCT-3’  
Probe1: 5’-AAGGTCCTCTTCTAAGTCCTCC-3’*1 
Probe2: 5’-AAGGTCCTCTTGTAAGTCCTCC-3’*2 62° 40 

G998E 
(PALB2) rs45551636 F: 5’-ACCTGTGATAAAATCATTCTTCATCTAATAGT-3’ 

R: 5’-GACCCTTTCTGATCAACAAGTAGAAGT-3’ 
Probe1: 5’-CTTACCCTCCATCTTCTG-3’*1 

Probe2: 5’-CTTACCCTTCATCTTCTGCA-3’*2 65° 40 

D302H 
(CASP8) rs1045485 F: 5’-GCTTTGACCACGACCTTTGAAG-3’ 

R: 5’-GTTACTGTGGTCCATGAGTTGGTAGAT-3’ 
Probe1 (302H): 5’-CAAGCCCCACCATGACTGCACA-3’**3 
Probe2 (D302): 5’-CAAGCCCCACGATGACTGCACA-3’**4 62° 36/40 

L10P 
(TGFb) rs1982073 C_22272997_10_ Applied Biosystems C_22272997_10_ Applied Biosystems 61° 40 

FGFR2 rs2981582 C_2917302_10_ Applied Biosystems C_2917302_10_ Applied Biosystems 63° 40 

TOX3 rs3803662 C_25968567_10_ Applied Biosystems C_25968567_10_ Applied Biosystems 60° 40 

2q35 rs13387042 C_32048042_10_ Applied Biosystems C_32048042_10_ Applied Biosystems 60° 40 

*- Probes design and labelling was done via Fa. Eurogentec (red: LNA, labelling: 1 - 5’-FAM, 3’-BHQ; 2- 5’-YY, 3’-BHQ) 
**- Probes design was done on Cambrige University, labelled via Fa. Applied Biosystems (3 - 5’- VIC, 3’- TAMRA; 4- 5’-FAM, 3’-TAMRA) 
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Attachment 3. Summarized Odds Ratios of investigated variants stratified by region 
 

* - compared between cases and controls in two-by-two tables 
n.a. - not applicable due to dividing by null 
** - can not be calculated because of mutational screening performance only in cases series 
 

Contaminated regions Non contaminated regions Gene Locus OR*per allele 95%CI* p* OR*per allele 95%CI* p* 
5382insC n.a n.a 0.0013 13.91 1.87-103.43 0.0016

C61G  3.20 0.38-26.65 0.46 n.a n.a 0.043 BRCA1 
4153delA  5.36 0.68-41.98 0.14 3.73 0.45-31.06 0.36 

BRCA2 6174delT -** -** -** -** -** -** 
ATM E1978X 3.20 0.38-26.65 0.46 n.a n.a 0.44 

657del5 n.a n.a 0.13 8.11 1.06-62.18 0.034 NBN R215W 0.53 0.03-8.45 1.00 1.24 0.37-4.12 0.96 
1100delC 0.18 0.02-1.70 0.24 n.a n.a 0.06 

I157T 1.52 0.83-2.77 0.22 3.50 1.65-7.5 0.001 
IVS1+2G>A n.a. n.a. 0.24 n.a. n.a. 1.0 CHEK2 

dele(9,10) n.a. n.a. 0.09 7.53 0.98 – 58.02 0.05 
XRCC4 IVS7-1G>A 1.16 0.89-1.51 0.29 1.35 1.07-1.71 0.01 
CASP8 D302H 0.84 0.65-1.08 0.19 0.89 0.72-1.10 0.32 
TGFB1 L10P 0.88 0.74-1.04 0.15 1.14 0.99-1.32 0.08 
FGFR2 rs2981582 1.04 0.88-1.24 0.67 1.09 0.94-1.26 0.29 
TOX3 rs38003662 1.13 0.93-1.36 0.24 1.17 1.00-1.37 0.058 
?/2q35 rs13387042 0.93 0.79-1.10 0.43 1.04 0.90-1.20 0.61 
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Attachment 4 Combined carrier frequencies for investigated variants in high-penetrance loci (BRCA1/2), moderate risk loci (ATM, NBN, CHEK2) 
and low-penetrance loci (XRCC4, CASP8, TGFB1, FGFR2, TOX3, 2q35) in Byelorussian case series 

*- patient carriers additional CHEK2*1100delC. 
In black shown obtained number of carriers and blue shows expected carrier numbers.  

Gen BRCA1 BRCA2 NBN CHEK2 ATM XRCC4 CASP8 TGFB1 FGFR2 TOX3 ?/2q35 

Locus 5382 
insC p.C61G  4153 

delA 
6174 
delT 

657 
del5 p.R215W 1100 

delC p.I157T IVS1+2 
G>A 

dele 
(9,10) p.E1978X IVS7-1 

G>A p.D302H p.L10P rs2981582 rs38003662 rs13387042 

5382insC                  

p.C61G  0 
(0.4)                 

4153delA  0 
(0.4) 0 (0.1)                

6174delT 0 
(0.1) 0 (0.03) 0 

(0.04)               

657del5 0 
(0.4) 0 (0.1) 0 

(0.2) 0 (0.04)              

p.R215W 0 
(0.2) 1 (0.1)* 0 

(0.1) 0 (0.02) 0 (0.1)             

1100delC 0 
(0.2) 1 (0.1) 0 

(0.1) 0 (0.02) 0 (0.1) 1 (0.05)*            

p.I157T 0 
(2.2) 1 (0.75) 1 

(0.8) 0 (0.2) 0 (0.8) 0 (0.45) 0 
(0.45)           

IVS1+2G>A 0 
(0.4) 0 (0.1) 0 

(0.15) 0 (0.04) 1 
(0.15) 0 (0.1) 0 (0.1) 1 (0.8)          

dele(9,10) 0 
(0.5) 0 (0.2) 0 

(0.2) 0 (0.05) 0 (0.2) 0 (0.1) 0 (0.1) 1 (1) 0 (0.2)         

p.E1978X 0 
(0.2) 2 (0.1) 0 

(0.1) 0 (0.02) 0 (0.1) 0 (0.05) 0 (0.5) 0 (0.45) 0 (0.1) 1 (0.1)        

IVS7-1G>A 9 
(10.3) 6 (3.5) 4 

(3.8) 0 (1) 3 (3.8) 1 (2) 1 (2) 20 (20.6) 5 (3.8) 5 (4.7) 5 (2)       

p.D302H 9 
(10.1) 5 (3.4) 5 

(3.7) 0 (0.9) 2 (3.7) 1 (2) 1 (2) 18 (20) 1 (3.7) 6 (4.6) 0 (2) 96 (95)      

p.L10P 30 
(28.7) 11 (10) 9 

(10.4) 3 (2.6) 12 
(10.4) 8 (5.9) 7 (6) 57 (57.4) 7 (10) 15 (13) 8 (5.9) 261 (268) 273 

(264)     

rs2981582 18 
(27) 8 (9.2) 13 

(9.8) 3 (2.5) 12 
(9.8) 4 (5.5) 5 (5.5) 54 (54) 10 (9.8) 14 (12) 4 (5.5) 248 (252) 244 

(248) 
692 

(703)    

rs38003662 22 
(22) 9 (7.5) 8 (8) 3 (2.0) 11 (8) 4 (4.5) 6 (4.5) 45 (44) 7 (8) 15 (10) 7 (4.5) 224 (209) 193 

(202) 
592 

(573.6) 522 (539)   

rs13387042 35 
(29) 7 (10) 8 

(10.6) 3 (2.7) 12 
(10.6) 5 (6) 5 (6) 42 (58.4) 10 (10.6) 16 (13) 3 (6) 276 (273) 257 

(268.6) 
769 

(762) 707 (716) 589 (584)  
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