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[. . . ] nämlich mit dem Vorsatze, in der
Wissenschaft auf die Autorität sich den
Gedanken anderer nicht zu ergeben,
sondern alles selbst zu prüfen und nur der
eigenen Überzeugung zu folgen, oder besser
noch, alles selbst zu produzieren, und nur
die eigene Tat für das Wahre zu halten. [. . . ]

Georg Wilhelm Friedrich Hegel, Einleitung
zur Phänomenologie des Geistes





Zusammenfassung

Zentrales Thema dieser Arbeit sind Konsistenzbedingungen an maximal symme-
trische Branen des H+3 Modells. Sie werden in Form sogenannter Shift Gleichungen
hergeleitet und auf ihre Lösungen untersucht. Das Resultat sind explizite Aus-
drücke für die Ein-Punkt Funktionen in den verschiedenen Bran-Hintergründen.
Das Bran-Spektrum organisiert sich in kontinuierlichen und diskreten Serien.

Zunächst geben wir eine Einführung in die zweidimensionale konforme Feld-
theorie (CFT) im Rahmen der Theorie von Vertexoperatoralgebren und ihren Mo-
duln. Wir versuchen diesen Zugang an die speziellen Bedürfnisse des nichtratio-
nalen H+3 Modells anzupassen.

Zu Beginn des zweiten Teils werden kurz die benötigten Analysetechniken für
CFTen mit Rand bereitgestellt, darunter insbesondere die Cardy-Lewellen Klebe-
bedingung, die den folgenden Konstruktionen wesentlich zu Grunde liegt. Da-
nach führen wir in die Systematik der Bran-Lösungen ein der wir in dieser Arbeit
folgen. Mit der Unterscheidung zwischen regulären und irregulären Ein-Punkt
Funktionen schlagen wir ein neues, zusätzliches Ordnungskriterium für Bran-
Lösungen vor. Weiter argumentieren wir, dass alle Isospin-Abhängigkeiten den
Klebebedingungen unterworfen werden müssen. An dieser Stelle ist das auszu-
führende Programm skizziert und wir beginnen seine Umsetzung mit der Herlei-
tung von neuen 1/2-Shift Gleichungen, welche die vorher bekannten Gleichungen
dieses Typs zu einer vollständige Liste für den Fall von AdS2 Branen komplettie-
ren.

Wir wenden uns dann den b−2/2-Shift Gleichungen zu. Ihre Herleitung funktio-
niert nicht so direkt wie im vorhergehenden Fall: Der ursprüngliche Definitionsbe-
reich einer bestimmten Zwei-Punkt Funktion (der CFT mit Rand) muss auf eine ge-
eignete Region ausgedehnt werden. Dazu ist es unumgänglich, eine Fortsetzungs-
vorschrift anzunehmen. Der natürliche Kandidat ist analytische Fortsetzung. Wir
demonstrieren, dass eine solche mit einigem Aufwand unter Benutzung verallge-
meinerter hypergeometrischer Funktionen durchgeführt werden kann. Auf diese
Weise gewinnen wir eine vollständige Liste von b−2/2-Shift Gleichungen für AdS2

Branen, untersuchen ihre Lösungen und lesen das Bran-Spektrum ab.
Nachfolgend rekapitulieren wir kurz die H+3 /Liouville Korrespondenz und das

Hosomichi-Ribault Proposal, welches Anlass zu unserer nächsten Konstruktion
gibt. Sie realisiert das Hosomichi-Ribault Proposal, welches eine von obiger An-
nahme abweichende Fortsetzungsvorschrift vorschlägt, explizit im H+3 Modell.
Wir zeigen, dass mit unserer Konstruktion wiederum sinnvolle b−2/2-Shift Glei-
chungen hergeleitet werden können und diskutieren deren Lösungen. Das resul-
tierende Spektrum von AdS2-Branen ist dem obigen analog. Abschließend werden
beide Zugänge verglichen. Wir skizzieren ein mögliches Unterscheidungskriteri-
um und spekulieren, wie sich unsere Resultate auf eine gewisse Klasse nichtkom-
pakter nichtrationaler CFTen verallgemeinern könnten.

Schlagworte: Nichtrationale Konforme Feldtheorie, H+3 Modell, D-Branen
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Abstract

The central topic of this thesis is the study of consistency conditions for the
maximally symmetric branes of the H+3 model. It is carried out by deriving con-
straints in the form of so-called shift equations and analysing their solutions.
This results in explicit expressions for the one point functions in the various
brane backgrounds. The brane spectrum becomes organized in certain continu-
ous and discrete series.

In the first part, we give an introduction to two dimensional conformal field
theory (CFT) in the framework of vertex operator algebras and their modules. As
this approach has been developed along with rational CFT, we pay attention to
adapt it to the special needs of the nonrational H+3 model.

Part two deals with boundary CFT only. We start with a review of some ba-
sic techniques of boundary CFT and the Cardy-Lewellen sewing relations that
will be at the heart of all following constructions. Afterwards, we introduce the
systematics of brane solutions that we are going to follow. With the distinction
between regular and irregular one point functions, we propose a new additional
pattern according to which the brane solutions must be organized. We argue that
all isospin dependencies must be subjected to the sewing constraints. At this
point, the programme to be carried out is established and we are ready to derive
the missing 1/2-shift equations for the various types of AdS2 branes in order to
make the list of this kind of equation complete.

Then we address the b−2/2-shift equations. It turns out that their derivation
is not straightforward: One needs to extend the initial region of definition of a
certain (boundary CFT) two point function to a suitable patch. Therefore, a con-
tinuation prescription has to be assumed. The most natural candidate is analytic
continuation. We show that it can be carried out, although it is rather technical
and involves the use of certain generalized hypergeometric functions in two vari-
ables. In this way, we derive a complete set of b−2/2-shift equations for AdS2

branes, study their solutions and extract the resulting brane spectrum.
In a following interlude we review the H+3 /Liouville correspondence and explain

the Hosomichi-Ribault continuity proposal, which motivates our next construc-
tion. Its purpose is the explicit realization of the Hosomichi-Ribault proposal
within the H+3 model. As this proposal suggests a continuation prescription that
differs from the above, one needs to study its implications for the brane solu-
tions. Based on our explicit realization, we show that sensible b−2/2-shift equa-
tions can be extracted from the Hosomichi-Ribault proposal and we study their
solutions and the corresponding brane spectrum. The two approaches are fi-
nally compared. We outline a possible demarcation criterion that still has to be
worked out and speculate about how our results might generalize to a certain
class of noncompact nonrational CFTs.

Keywords: Nonrational Conformal Field Theory, H+3 Model, D-Branes
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1 Introduction

This thesis is mainly concerned with the derivation of certain constraints in non-
compact nonrational two dimensional boundary conformal field theory and the
important question how the strength of these constraints depends on the differ-
ent assumptions one can make. The interest in these kinds of questions stems
from the study of branes in string theory. Two dimensional conformal field the-
ory (CFT)1 is the natural language2 of string theory and branes are its monopole-
like non-perturbative states. Their effect on the CFT description is to introduce a
boundary on the two dimensional worldsheet of the string. As there are numer-
ous motivations for studying strings in curved noncompact target spaces, and
the associated CFTs are the noncompact nonrational ones, this connects directly
to the primary concern of this thesis.

The uses of CFT are not restricted to string theory alone. It also appears in
the study of critical phenomena in statistical physics, supplies quantum field
theorists with a wide range of exactly solvable models and in some cases, its
techniques even reach out into the realm of more general integrable models.
Moreover, mainly through developments in string theory, connections to higher
dimensional gauge theory and complex algebraic geometry (e.g. mirror symme-
try, Verlinde formula) have been uncovered. Several axiomatic approaches to
CFT have even made it an object of mathematical interest by itself, generalizing
well-known and revealing new structures and connections to pure maths.

For this reason, it has become customary to study CFT in its own right. This will
be our viewpoint as well. Although we motivate and introduce the specific model
that our study is based on, the H+3 model, from the viewpoint of a string theory
in curved spacetime with non-vanishing NSNS two form, our main interest will
be solely in the CFT properties of the model. We therefore give a non-technical
overview of CFT, its developments, connections to other fields and its various
distinguished classes in a second part of the introduction. It is in this context
that we explain the importance of studying the H+3 model.

Finally, we give an outline of our thesis with short descriptions of the contents
to be found in the various chapters and appendices.

1Talking about CFT in this thesis, we always mean two dimensional CFT.
2natural from the worldsheet perspective
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1 Introduction

1.1 String Theory

String theory grew out of an attempt to understand the strong interactions using
dual resonance models in the 1960s. While this approach failed with regard to
its original purpose, it left behind the famous Veneziano amplitude and the real-
ization that it can be obtained from a theory of strings, naturally formulated as
a two dimensional nonlinear sigma model3. This model is conformally and Weyl
invariant and therefore, two dimensional CFT established itself as the natural
language of string theory.

As a tribute to the hadronic resonances they once tried to describe, dual res-
onance models incorporate higher spins gently and with ease. So it came that,
when quantum chromodynamics (QCD) was established as the preferable theory
of quarks and their strong interactions, string theory was not immediately dead.
The massless spin two excitation of the closed string was realized to provide a
candidate graviton. In addition, due to its history as a model of quarks being
bound together, the string was always thought to possess gauge theory degrees
of freedom at its ends, so-called Chan-Paton factors. Therefore, one could hope
that string theory might provide a unified and consistent picture of all forces,
gauge and gravity.

But this bosonic string had its problems: Alongside with the graviton, it also
has a tachyon in its spectrum and is therefore immediately inconsistent. Also,
when it gives a unification of forces, what about the particles then? A purely
bosonic string cannot account for fermionic matter. The birth of supersymmetry
helped to overcome these problems: The superstring even enforces the incorpo-
ration of fermions, that is matter, and projects out the tachyon in a natural way.
The only missing ingredient to make it a candidate for a fully consistent unified
theory of all matter and forces was to show that it is free of anomalies. When
Green and Schwarz [1, 2] finally showed that anomalies could be cancelled for
a restricted set of string theories, this must have felt like a revolution indeed.
Today, the Green-Schwarz anomaly cancellation mechanism is still celebratedly
credited as the “first superstring revolution”.

One peculiarity of string theory is that it is most easily formulated in a pre-
ferred number of flat spacetime dimensions, which is called the critical dimen-
sion. As this dimension is d = 26 for bosonic and d = 10 for supersymmetric
strings, one needs to compactify parts of space in order to make contact with
the usual four dimensions. Once, there were hopes that only one consistent com-
pactification would exist which would reproduce in a unique way all aspects of
our four dimensional physics, including coupling constants and other parame-
ters. But these are shattered dreams. The various compactification procedures

3Indeed, this model shows asymptotic freedom, predicts a confining potential and reproduces the
Regge trajectories. Thus, the imagination of two quarks being “glued” together by a string might
appear plausible. However, many other features of the strong interactions are not captured by
dual amplitudes.

2



1.1 String Theory

one can think of lead to an incredibly vast and arbitrary “landscape” of consistent
possibilities. Yet, this should not be a reason to despair, as there are possibil-
ities to circumvent the critical dimension and avoid compactification. Moving
away from the critical dimension in flat spacetime, things get harder because one
needs to include the Liouville mode into the theory. This Liouville sector has
been avoided in the past, because it was not tractable. Actually, Liouville theory
belongs to the noncompact nonrational CFTs (see also section 1.2), which are our
concern in this thesis. In recent years, there has been a lot of progress in the un-
derstanding of quantum Liouville theory, so that it might be possible to explore
strings in the flat background away from the critical dimension now.

Another possibility to circumvent the critical dimension is to use a curved tar-
get space, that is to switch on gravity and put our strings in a curved background.
Perturbatively, if one desires to decouple the Liouville sector, this still needs the
critical dimension. But in a non-perturbatively exact background, strings exist
in dimensions other than the critical one. This can easily be understood if one
realizes that the curved background introduces new parameters in the theory,
for example a curvature radius. In exact backgrounds, this affects the central
charge of the string theory and one can therefore dispose of more parameters
than just the dimensionality of spacetime in order to set the total central charge
to zero. Examples for such models are provided by the WZNW models with com-
pact target, but also the noncompact nonrational SL(2,R)/U(1) coset CFT and
the H+3 model (see also section 1.2) show such behaviour. The latter models are
of course distinguished, because they are more realistic: The spacetime that we
observe is noncompact. Also, for the description of time dependent phenomena,
noncompact targets are inevitable, as time is noncompact.

Having seen a “first superstring revolution”, one may suspect that string theory
has possibly undergone a “second revolution”. This is indeed true. Its subject
is the discovery of Dp-branes, which are non-perturbative states in the string
theory and serve as sources for RR fields [3]. In contrast to the string, they are
not one dimensional objects, but p-dimensional submanifolds in d-dimensional
target space (p ≤ d). The ends of open strings are restricted to move in Dp-
brane worldvolumes only. Thus, Dp-branes are naturally thought of as setting
boundary conditions for open strings. In CFT language, their inclusion amounts
to the introduction of a boundary on the two dimensional worldsheet. The Dp-
brane vacua can be analysed with the methods of boundary CFT (see section 4).

Putting Dp-branes to good use, one has yet another option to circumvent the
compactification problem. This time, it is not by avoiding the critical dimension,
but rather by thinking of our observable spacetime as such a p-dimensional sub-
manifold. The picture is supported by the reinterpretation of the old Chan-Paton
factors that followed: As open string ends are confined to the Dp-brane world-
volume and it is them who carry the gauge theory degrees of freedom, we simply
find a gauge theory (for example, after some engineering, the standard model)
confined to the brane, which therefore plays the rôle of our observable universe.
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Rising up in string theory, these p-dimensional gauge theories should have a de-
scription in terms of two dimensional conformal field theory. Some works have
dealt with such maps between a two dimensional CFT on a particular Riemann
curve to p-dimensional gauge theory (see for example the quite recent [4]), but
there is certainly much more potential here.

Another rather theoretical development that Dp-branes have brought us are
the several Anti-de-Sitter (AdS) to CFT (AdS/CFT) duality conjectures. In their
strongest form they state that string theory on certain AdS spacetimes has a dual
description in terms of a conformal field theory which can be thought of as living
on the conformal boundary of the AdS spacetime. To learn more about these du-
alities, it is necessary to be able to study string theory in those AdS backgrounds,
which are again noncompact and curved, meaning that their corresponding CFTs
are of the noncompact nonrational type.

1.2 Two Dimensional Conformal Field Theory and Mathematical

Physics

CFT originally arose in the attempt to understand universality classes of critical
phenomena in statistical physics [5]. But it is also of great (and sometimes cen-
tral) importance for other branches of physics: The worldsheet formulation of
string theory gives rise to a CFT and it is thus an appropriate language for string
theory. Even more, regarding research in quantum fied theory, CFTs provide ex-
amples of exactly solvable quantum field theories, due to their infinitely many
conserved charges. This also makes them prototypes of integrable models.

CFT and Mathematics

Some results in CFT have triggered or at least influenced new developments in
mathematics, in particular complex algebraic geometry. At other times, new
mathematical developments have given directions to research done in CFT. Promi-
nent examples for this interplay of CFT and mathematics include the Verlinde
formula [6] (for connections to algebraic geometry and the first strict proof, see
[7, 8]; for a treatment in the context of vertex operator algebras, see [9, 10]),
Calabi-Yau geometry and mirror symmetry (Gepner models [11], the Greene-
Plesser construction [12], toric geometry [13]), stochastic (Schramm-) Löwner evo-
lution (SLE) [14, 15, 16, 17], the correspondence between ordinary differential
equations (ODE) and integrable models (IM) (ODE/IM correspondence) [18, 19]
and the Geometric Langlands Programme [20, 21, 22, 23, 24].

The probably most intimate connection between CFT and mathematics, how-
ever, is still the development of the theory of vertex operator algebras (VOAs)4

4Borcherds introduced the central notion of vertex algebras (VAs). It was later slightly extended to
that of VOAs by Frenkel, Lepowsky and Meurman.
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by Borcherds [25] and Frenkel, Lepowsky and Meurman [26]. Indeed, the VOA
construction makes CFT5 an axiomatized framework and thus an object of math-
ematical interest of its own. The theory of VOAs and their modules shows a
very rich mathematical structure, generalizing at the same time the theory of
Lie groups as well as that of commutative associative algebras and the repre-
sentations of these objects [27, 28]. It has lead to the construction of a natural
representation, the moonshine module by Frenkel, Lepowsky and Meurman [26],
for the Fisher-Griess Monster, which is the largest sporadic finite simple group.
Their construction is essentially the construction of a CFT, the so-called Monster
CFT.

It is worth mentioning that other axiomatizations of CFT have been proposed,
most notably by Segal who put forward a categorical approach to CFT and by
Gaberdiel and Goddard who like to use a structure called meromorphic conformal
field theory [29]. The latter also uses vertex operators and in some respects
reminds of the VOAs mentioned above. Yet, compared to Borcherds work, it is
much more adapted to the way CFT is used in physics. The approach that we
have chosen in order to introduce the basic CFT notions and concepts in chapter
2 mainly follows the theory of vertex operator algebras, presented in a manner
which is suitable for physics. Some additional ideas are taken from Goddard and
Gaberdiel, while the spirit remains that of the original operator approach à la
Belavin, Polyakov and Zamolodchikov [5].

Classes of CFTs

In the more physics oriented literature, several interesting classes of CFTs have
been identified:6 Self-dual and self-dual extremal, rational, logarithmic, nonra-
tional and noncompact nonrational CFTs. Let us introduce them briefly.

Self-Dual and Self-Dual Extremal CFTs

Self-dual CFTs are modular invariant theories which nevertheless use one chi-
rality only. They are therefore truly meromorphic. Their central charges must
be multiples of twenty-four, c = 24k with k ∈ Z>0. For k = 1, they have been
classified by Schellekens [30].

For a self-dual extremal CFT, an additional requirement concerning the con-
formal weights of primary fields must be met: The lowest conformal weight of
primary fields other than the identity must be h = k + 1, if the central charge is
c = 24k as above. Interestingly, the Monster CFT by Frenkel, Lepowsky and Meur-
man [26] is an example of such a CFT. The class of self-dual extremal CFTs is of
interest to mathematicians, because of further expected connections to sporadic

5at least certain classes of CFTs
6The members of this list can have nonempty intersections. We have not included superconformal

field theories (SCFTs).
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finite simple groups, codes and lattices [31]. Recently, interest was also revived in
the physics community, due to an article by Witten [32], which conjectures rela-
tions to the quantization of three dimensional gravity with negative cosmological
constant.

Rational CFTs

A particularly well-understood class of CFTs is constituted by the so-called ratio-
nal CFTs (RCFTs). By this term one usually understands CFTs which are consis-
tent using only a finite number of irreducible representations of their underlying
symmetry algebra. Sometimes, in the case of logarithmic CFT (see next subsec-
tion), this is mildly relaxed to also allow indecomposable representations [33, 34].
The most important examples of RCFTs are the minimal models, the compact
WZNW models at integer level and (in the mildly generalized sense) the logarith-
mic cp,q models. The motivation to call these CFTs “rational” comes from the fact
that their central charges and the conformal weights of their primary fields are
in fact rational numbers.

An outstanding problem one still hopes to solve is the classification of all
RCFTs. Those with central charge c = 1 are classified. The c = 1 models ob-
tained from a free boson on a torus and its orbifolds (also called gaussian c = 1
CFTs) have been studied in [35]; A classification of the rational models at c = 1
(unitary and non-unitary) was then almost achieved in [36, 37] and completed
through the usage of W -algebras [38] with surprising consequences for their
moduli space [39]. Concerning central charge c < 1, one knows that there is only
a discrete series of unitary rational models, the so-called unitary minimal models
[40]. They are contained in the series of minimal models [5], which can also be
non-unitary and are RCFTs with c < 1. But this list of RCFTs with central charge
c < 1 is presumably not complete. Results on the classification of c > 1 RCFTs
are also quite rare.

All RCFTs are believed to be WZNW cosets ĝ/ĥ with semi-simple Lie algebra ĝ

and a gauged subalgebra ĥ. The known minimal models at c < 1 fit into this
scheme, since they can be obtained as [ŝu(2)k ⊕ ŝu(2)1] /ŝu(2)k+1 WZNW coset
models, with fractional levels k being allowed for the non-unitary ones. The first
step in a systematic classification of RCFTs would therefore be the classification
of all (ungauged) WZNW models. This would yield a list of models with c ≥ 1.
But already this problem still seems to be much too complex. Some special cases
could have been dealt with however: All ŝu(2)k WZNW models were classified by
Cappelli, Itzykson and Zuber [41] and an A-D-E pattern was found. Gannon has
worked on a generalization of their proof and could classify the ŝu(3)k WZNW
models [42] as well as ŝu(n)2 and ŝu(n)3 [43]. Together with Walton, he also
found some results on diagonal cosets [44], but that appears to be all for now7.

7There are some more results on rational SCFTs. For instance, Cappelli has classified the N = 1 and
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In practice, the formulation of RCFTs as WZNW models is very powerful, be-
cause it makes available some general concepts associated to affine Lie algebras.
These are technologies like, for instance, the Knizhnik-Zamolodchikov equations,
affine singular vectors, integrable representations, the Kac-Walton formula, the
depth rule and level-rank duality. RCFTs are undoubtedly the class of CFTs that
is by far best understood.

Logarithmic CFTs

Logarithmic CFT (LCFT) was discovered by Gurarie in [47], see also [48, 49] for an
overview. Its developement has started in the physical literature, but by now it
has also become an object of mathematical study within the theory of vertex op-
erator algebras [50, 51]. Connections to supergroup WZNW models are also very
interesting [52]. In LCFT, correlation functions can show logarithmic divergen-
cies and the underlying symmetry algebra may be represented by operators with
a Jordan cell structure, which means that not all representations are completely
reducible.

The most prominent representative of LCFT is certainly the triplet model [53,
54], which has been shown to constitute a (mild generalization of) rational CFT
[34], if one allows for indecomposable representations in the definition of ratio-
nality, as suggested by Flohr [33]. The triplet model is the simplest in a whole
series of LCFTs with central charges cp,1 and Flohr has shown that all of them pos-
sess the mildly generalized rationality property just alluded to. Further evidence
that these so-called cp,1 models are rational in a generalized sense is provided
by the existence of fermionic character formulae [55]. The Verlinde formula has
also been generalized in the context of these models [56, 57].

LCFT has turned out to be more than just a theoretical curiosity: It plays an
important rôle in the understanding of certain critical phenomena. Examples
include the fractional quantum Hall effect [58, 59], two dimensional turbulence
[60] as well as two dimensional percolation [61]. Moreover, connections of LCFT
to Seiberg-Witten theory have been noted [62], see also [63, 64], which prospec-
tively opens up the possibility for LCFT to play a rôle in topics of fundamental
mathematics, as for example the classification of four-manifolds [65].

Nonrational and Noncompact Nonrational CFTs

While being very well-behaved and providing many tools for their solution, the
RCFT models discussed above are certainly not the most generic CFTs. Typically,
one will have to deal with an infinity of representations, that is with nonrational
CFT. If the infinite set of occuring representations is even continuous, one talks
about noncompact nonrational CFT, because a continuous spectrum is usually

Gannon the N = 2 minimal models [45, 46].
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associated to noncompact directions in a target space or, respectively, to an un-
derlying non–compact symmetry group. Very little is known about nonrational
CFTs up to now. With this thesis, we make a contribution to their exploration.

Since an underlying symmetry usually facilitates the analysis of a theory, the
noncompact nonrational CFTs with an underlying noncompact symmetry are the
most natural starting point for a study of nonrational CFT, although it is a priori
not clear, how the inevitable continuous spectra might affect their feasibility.
For the time being, this is precisely the status of the exploration of nonrational
CFT: Besides Liouville theory (the “minimal model of nonrational CFT”), some
concrete models with noncompact symmetry are studied, most importantly the
SL(2,R)/U(1) coset theory and the H+3 model, which has an SL(2,C) symmetry.
We introduce it in much detail in chapter 3.

On general grounds, one expects many new features and difficulties in the
study of noncompact nonrational CFTs. As the continuous representations do
not have a highest or lowest weight, there are no singular vectors in the contin-
uous current algebra representations. However, singular vectors are one of the
central tools in the analysis of RCFTs. They allow for an algebraic determination
of the fusion rules and imply powerful differential equations on correlation func-
tions. In addition, such successful concepts as that of integrable representations
and the depth rule, well-known from RCFT, break down when it comes to contin-
uous representations. Furthermore, the operator product expansion (OPE) of two
operators may contain operators that do not correspond to normalizable states
of the theory, but rather to non-normalizable ones. Such non-normalizable states
can usually be defined in a distributional sense on suitable subspaces of the nor-
malizable states [66], but when non-normalizable states appear in intermediate
channels, it is no longer a priori ensured that all expressions can be evaluated:
For example, certain scalar products (the Shapovalov form) may simply not be
defined. In such cases, it is not clear whether one can still maintain an operator
state correspondence, which is again a central notion of common CFT.

The problems of non-normalizable states can be resolved in the H+3 model,
mainly due to its remarkable analyticity properties [66]. It is these analyticity
properties that make the model feasible in the current state of the art. Indeed,
an analytic continuation in the representation labels, known in the literature as
Teschner’s trick, brings back the degenerate representations that possess singu-
lar vectors and thus allows the use of some RCFT techniques in this nonrational
model. In particular, the conformal bootstrap becomes feasible and many explicit
results can be obtained. For the purpose of our analysis, we shall make use of
these extraordinary properties of the H+3 model. Interestingly, the problem we
are going to discuss in this thesis also involves questions of analyticity. This is
however not analyticity in the representation labels, but rather in the H+3 isospin
coordinate.

To conclude our overview of nonrational CFT, let us just state that this topic
certainly still remains in his childhood and a lot of new territory is to be discov-

8



1.3 Topics and Outline of this Thesis

ered here. Current studies (including ours) concentrate on some extraordinarily
well-behaved prototypes that are so gentle to allow restricted use of certain RCFT
techniques. In the present state of the art this is all that can be done.

1.3 Topics and Outline of this Thesis

Objectives

As already said, our original contributions concentrate on the boundary CFT of
the H+3 model. We have two principle goals: Firstly, to get a full and systematic
overview of the maximally symmetric D-branes in the H+3 model [67]. For this pur-
pose, we introduce the distinguishing notions of regular and irregular D-branes
(see section 5.2.1) and stress the importance of the distinction between discrete
and continuous ones (section 5.2.4). Our second goal is a detailed study of the
applicability of the Cardy-Lewellen factorization constraints in this noncompact
nonrational boundary CFT [68, 69]. All of this material is contained in part II of
this thesis.

In part I, we have allowed ourselves to give a very extensive introduction to
CFT within the framework of vertex operator algebras and their modules (chap-
ter 2). This language is applied to the H+3 model in chapter 3. Our motivation
for doing this, besides a general preference for rigour and the emergence of rich
structures from minimal assumptions, is the following: The vertex operator al-
gebra approach has been developed along with rational CFT. What we like to
demonstrate is that the H+3 model, which constitutes a nonrational CFT, basically
still fits into this framework, if one relaxes some (not very many) of the original
requirements. What we cannot capture in this generality is the analytic continua-
tion of the H+3 model to non-physical states. This is really a novelty which is not
accommodated by the established vertex operator approach. Also, the general
OPE is problematic, but that is actually already the case for RCFT.

An expert reader who is primarily interested in our original work will probably
skip the first part and use it for reference only. We give a guide to minimal
reading at the end of the outline (which itself is at the very end of this chapter).
For now, let us come back to the objectives of our original work.

Cardy-Lewellen Factorization Constraints

In works by Cardy and Lewellen [70, 71] it was established that the structure
data of rational boundary CFTs are highly constrained by certain “cutting and
sewing relations”, commonly called Cardy-Lewellen constraints or, interchange-
ably, factorization constraints. We set out to study the rôle of these constraints
in the noncompact nonrational H+3 boundary CFT. Here, the explicit derivation
of the constraints becomes feasible because of the remarkable analytic structure
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of the model. Using Teschner’s trick in a two point function, a degenerate field
label can be reached, what means that the space of its conformal blocks becomes
finite dimensional. Additionally, the two point function under consideration sat-
isfies Knizhnik-Zamolodchikov equations from the current algebra symmetry of
the model. From these pieces of information, the two point function can be com-
puted explicitly. The Cardy-Lewellen constraint is then implemented by taking
a limit where the two point function factorizes into a product of two one point
functions.

In boundary CFT, the one point functions are important structure data and
carry all information about the boundary states (the D-branes). They are actually
fixed to great extent by boundary Ward identities. Their only remaining degree
of freedom is the so-called one point amplitude. This is an interesting object
to study, because it describes the coupling of a closed string in the bulk to a D-
brane. Accordingly, it must depend on the properties of these two objects. Seeing
that closed strings are characterized by an sl(2,C)-’spin’ label j and branes are
labelled by a complex parameter α, a one point amplitude is denoted A(j|α).8 In
the sequel, when talking about a brane solution, we actually mean a solution for
the one point amplitude.

Implementing the Cardy-Lewellen constraint in the way described above re-
sults in a so-called shift equation. Its nature is to relate the one point amplitude
for some string label j to a sum of one point amplitudes taken at shifted string
labels like e.g. j ± 1/2 (the shift is given by the represenation label of the degen-
erate field). Usually these constraints can be solved and the one point functions
obtained. However, a solution will generically not exist for arbitrary boundary
conditions, but restrictions will apply. By the same token, the labels j of strings
that do couple consistently are expected to be constrained.

This approach has been pursued before, most significantly in [72]. Yet, only the
simplest case, which uses a degenerate field with sl(2,C)-’spin’ label j = 1/2 and
from which a 1/2-shift equation descends, has been treated. The solution to only
this one shift equation is however not unique (for example, multiplication with
an arbitrary 1/2-periodic function again yields a solution). Therefore, a further
shift equation would be desirable. The natural candidate from which to derive
that second factorization constraint is the boundary two point function involving
the next simple degenerate field which has sl(2,C) label j = b−2/2.

For that degenerate field however there are some difficulties in constructing the
two point function in a region of the (u, z)-plane9 that also covers the domain
in which the factorization limit is to be taken. While a solution to the Knizhnik-
Zamolodchikov equation can be given in the region z < u, it was unclear how

8It can also depend on some more data, see section 5.2.1.
9The conformal fields of the H+3 theory depend on two complex variables: A space-time coordinate
z and an internal variable u - see chapter 3. The real (u, z)-plane we talk about here, is the plane
spanned by the real-valued crossing ratios formed from internal (u) and space-time (z) positions
of the fields in the boundary CFT correlator.
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it could be continued to the patch u < z, which is the patch relevant to the
factorization limit. In particular, a suitable continuation prescription is needed
here.

These problems were resolved in our works [68, 69] and we were able to de-
rive the desired b−2/2-shift equation for the first time. Yet, new questions arise
from our findings: Two different continuation prescriptions are possible and it
remains unclear which one is preferable. This question is presumably linked to a
conceptual question in nonrational CFT, namely the question whether the Cardy-
Lewellen constraints remain fully intact. Let us explain this point in a little more
detail here.

The first continuation prescription one naturally thinks of is analytic continu-
ation of the boundary two point function, since, in its initial domain z < u, it is
in fact an analytic function of both variables (u, z). To be precise, it is an Appell
function of the first kind (see appendix C; functions of Appell type will play a
central rôle throughout this thesis). We analysed this prescription and the shift
equation it leads to in [69]. There is nothing unusual about the Cardy-Lewellen
constraints within this approach.

Now, general H+3 boundary correlators were studied in a work by Hosomichi
and Ribault [73] by making use of a mapping to Liouville theory. This mapping
constitutes a very remarkable correspondence between Liouville theory and the
H+3 model. It was established for the bulk theories in [74] and then generalized
to the boundary CFTs in [73]. In formulating this mapping for the boundary the-
ories, it was necessary to distinguish between two non-overlapping regimes, the
so-called bulk and boundary regime. Crucially, the mapping breaks down at the
interface of the two regimes and has to be supplemented by a continuation pre-
scription that determines how correlators behave when moving from one regime
into the other. The situation is very reminiscient of what we said above about the
domain of the boundary two point function. Indeed, the two patches z < u and
u < z correspond to bulk and boundary regime, respectively. Now, the proposal
which has been put forward in [73] is that correlators should have a finite limit
and be continuous at the interface of the two regimes. This is the continuity
assumption of [73] that we refer to as the Hosomichi-Ribault proposal. It is of
course a weaker requirement than the analyticity that we assume in [69]. Based on
their assumption, the authors of [73] expect a weakening of the Cardy-Lewellen
factorization constraint in the sense that the boundary two point function will
cease to be fully determined in the bulk regime. Based on this scenario, one can
then speculate that a unique b−2/2-shift equation can in principle not be derived
under the continuity assumption of Hosomichi and Ribault.

We have analysed this question in [68]. There, we were able to continue the
boundary two point function to the region u < z according to the Hosomichi-
Ribault proposal. We found that it is indeed not fully determined by the con-
tinuity assumption. Yet surprisingly, the ambiguity resides in a part which is
irrelevant to taking the factorization limit. Consequently, this limit can still be
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taken in a meaningful way, resulting again in a unique b−2/2-shift equation. This
is the outcome of our investigation [68].

We should say here, that the b−2/2-shift equations that we derived differ slightly
depending on the continuation prescription that is used. Nonetheless, the spec-
trum of consistent branes that we derive fits well with the expectations drawn
from Cardy’s work [75] in both cases. It is merely the regularity behaviour of the
consistently allowed one point functions that changes when passing from one
prescription to the other. This leads us to our second theme: The introduction
of regular and irregular brane solutions. Let us explain the issues about this
regularity behaviour now.

Regular and Irregular Branes and Systematics of Maximally Symmetric

Branes

To begin with, we account briefly for the different kinds of brane solutions that
are found in the existing literature. In [72], the authors showed that there are
two classes of branes: AdS2 and S2 branes. They derived one shift equation for
each class and also proposed solutions. Afterwards, [76] enlarged the picture
and introduced the so-called AdS(d)2 branes, (d) standing for discrete. The au-
thor of [76] was guided by some relation between the ZZ and FZZT branes of
Liouville theory that, in the spirit of the Liouville/H+3 correspondence of [74], was
carried over to the AdS2 branes of [72]. However, we like to point out that these
new branes can also be understood as arising from the following difference in
the derivation of the shift equation: The degenerate field is always expanded in
terms of boundary fields, using its bulk-boundary OPE. Now, assuming a discrete
open string spectrum on the brane, the occuring bulk-boundary OPE coefficient
that corresponds to propagation of the identity in the open string channel can be
identified with the one point amplitude. Hence, the two point function factorizes
into a product of two one point functions. On the other hand, assuming a con-
tinuous open string spectrum, the above identification is lost. Instead, the two
point function becomes a product of a one point function and a residue of the
bulk-boundary OPE coefficient corresponding to the identity propagation. This is
explained in [77] and we review it in section 5.2.4. The first case results in the
AdS(d)2 , whereas the second case leads to the AdS(c)2 shift equations, (c) standing
for continuous. This treatment can always be applied, no matter what gluing con-
dition we are using. This has actually been recognized, but not fully exploited,
by the authors of [78].

Besides this scheme, that we think should be employed more systematically,
there is another pattern that has not been taken much care of up to now. In [78],
a solution to the boundary conformal Ward identities for the one point function,
that is everywhere regular in the internal variable u, was proposed. Opposed to
this solution, [72, 76] and [79] use a one point function that is not everywhere
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regular. While both solutions are correct (see section 5.2), we find that they give
rise to slightly different shift equations (see sections 5.5.1 to 5.5.4 and 6.1.1 to
6.1.4 in case of the discrete as well as 5.6.1 to 5.6.3 and 6.2.1 to 6.2.4 for the
continuous branes). The modifications that arise for the regular dependence op-
posed to the irregular one, change the qualitative behaviour of possible solutions
significantly. Consequently, not only should one distinguish between continuous
and discrete, but also between regular and irregular D-brane solutions. In [69] we
could demonstrate that consistent non-trivial solutions for regular discrete AdS2

branes do indeed exist.

Summary of our Achievements

We give for the first time a systematic treatment of all types of AdS2 branes in
the H+3 model. In particular, we carefully pay attention to the patterns discrete
and continuous as well as regular and irregular. Introduction of the latter notions
was proposed by us in [69]. For all of these branes, we derive two independent
shift equations corresponding to degenerate fields 1/2 and b−2/2, respectively.
Using these, we can fix the solutions for the one point amplitudes uniquely and
determine the spectrum of AdS2 branes. In the derivation of the b−2/2-shift
equations, a continuation prescription needs to be chosen. We motivate and dis-
cuss two different prescriptions and analyse and compare their consequences. A
remarkable feature is that the Hosomichi-Ribault continuity assumption leaves
the two point function partially undetermined. We can show that this does how-
ever not weaken the Cardy-Lewellen constraint. Therefore, a sensible b−2/2-shift
equation, that we derive explicitly, exists also in this approach. Since the result-
ing pictures are both acceptable, we have to leave the question which of the two
prescriptions is the preferred one an open problem; yet, we outline and speculate
about a possible demarcation criterion in the conclusion.

Outline of this Thesis

We start with an introductory chapter, chapter 2, on CFT and vertex operator
algebras. Our aim is to describe in general the construction of a CFT within an
approach that does not only encompass RCFT, but also at least the H+3 model. All
notions and techniques that are needed for an understanding of the H+3 model,
and in particular for our work, are introduced here. Then, in chapter 3, we in-
troduce the H+3 model along the lines of chapter 2 and summarize those results
that are indispensable for our following analysis. This is the content of part
I. The following part II is solely concerned with boundary CFT. In chapter 4,
we give an introduction to the basic techniques of boundary CFT and review
the Cardy-Lewellen constraints. Chapter 5 recapitulates the results about the
boundary H+3 model that were already known before our work and introduces the
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systematics that we will follow in considering the brane solutions, particularly
the pattern regular/irregular. It reviews the different gluing maps, symmetries
and equivalences of branes and discusses the derivation of the 1/2-shift equa-
tions. Due to our systematic application of the patterns discrete/continuous and
regular/irregular, some of the 1/2-shift equations here are new, although their
derivation was in principle and conceptually not problematic (unlike it was for
the b−2/2-shift equations). In the next chapter, chapter 6, we give the details of
our derivation of the b−2/2-shift equations using analytic continuation. The con-
sequences for the D-brane solutions and the brane spectrum are also discussed.
Afterwards, we need to insert a short intermezzo in chapter 7, where we review
the H+3 /Liouville correspondence (for bulk and boundary CFT) and describe the
Hosomichi-Ribault proposal. Chapter 8 is then concerned with the derivation of
b−2/2-shift equations according to the continuity assumption. The strength and
validity of the Cardy-Lewellen constraint is examined in detail. Again, the con-
sequences for the D-brane solutions and the brane spectrum are investigated.
Finally, we summarize our results and give some future directions in the conclu-
sion, chapter 9. The appendices contain some mathematical and technical back-
grounds. Appendix A gives an overview of the general representation theory of
locally compact groups with a special focus on SL(2,C) and SL(2,R). The method
of induced representations is treated in much detail. Appendix B briefly summa-
rizes the different isospin bases that are commonly used for H+3 primary fields. In
appendix C, we give an account of the first Appell function and some related spe-
cial functions (the ordinary hypergeometric and the second Horn function) and
assemble some formulae that we need in our work. For the second Horn func-
tion, we give a new generalized series representation for a special (degenerate)
case that is crucial for our calculations.

For an expert reader who is primarily interested in our original work, let us
give a guide to minimal reading: Part I can mainly be skipped. It is recommended
to go quickly through section 3.2 in order to remind oneself of some basic H+3
model conventions. At some points it may become necessary to have a look at
section 2.7. Moving on to part II, one should in any case start with section 4.2 on
the Cardy-Lewellen constraints, as this is at the very heart of our study. Then,
chapters 5, 6 and 8 can be studied thoroughly. They represent the core of our
original work. Before starting with chapter 8, one will at least read section 7.5.
Finally, a summary and discussion of our results are found in chapter 9. In the
course of this reading, one will at least need to refer to sections 3.5 and 4.9 for
some needed formulae.
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Part I

The Bulk Theory
»B versteht das System der Reihe« heißt
doch nicht einfach: B fällt die Formel
»an = . . . « ein! Denn es ist sehr wohl
denkbar, dass ihm die Formel einfällt und er
doch nicht versteht.

Ludwig Wittgenstein, Philosophische
Untersuchungen Teil 1
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2 Chiral Vertex Operators and Conformal Field

Theory

The approach to CFT we are going to present here is mainly based on the theory of
vertex operator algebras [27], but brought into a form which is more convenient
for physics (for example, formal calculus is practically not needed). Some ideas
have also been taken from Gaberdiel and Goddard [29, 80], but let us stress that
the viewpoint we are taking is contrary to their meromorphic CFT framework,
in that we do not define the theory from its meromorphic correlation functions,
but focus on a space of states and the operator algebra entirely. For us, the
correlation functions are the objects to be extracted. This is very much in the
spirit of the good old operator approach by Belavin, Polyakov and Zamolodchikov
[5].

2.1 The Worldsheet

We start with a two dimensional lorentzian manifold with local coordinates (t, x)
and the topology of a cylinder1, i.e. (t, x) ∈ R×S1. Usually one goes over to light

cone coordinates (x+, x−), whith x± = t ± x. Ultimately, we want to introduce
fields that are defined on the space we are just describing. A field that only
depends on x+ (x−) will then be called chiral (antichiral).

For the complex structure that we now introduce, it is essential to make a Wick
rotation t ֏ it and thus reach euclidean signature. The cylinder can then be
mapped to the complex plane by the exponential map

x± ֏ e−ix± ≡
{

z
z̄
. (2.1)

Note that under this map, time ordering becomes radial ordering, since t1 < t2
implies |z1| < |z2|. Chiral (antichiral) fields are now those that depend only
on z (z̄). A more general field will depend on both coordinates (z, z̄) with the
additional restriction that z̄ = z∗, ∗ denoting complex conjugation. Yet, those
more general fields we shall be interested in, the so-called conformal fields (see
section 2.8), will be built from chiral and antichiral fields. It is therefore most
convenient to study the chiral and antichiral parts separately. Going over to the

1Regarded as a string worldsheet, this just means we are dealing with closed strings.
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2 Chiral Vertex Operators and Conformal Field Theory

more general conformal fields is then easily done by merging the chiral halves
and taking the two dimensional cut z̄ = z∗.

Having talked much about fields already, it is now high time to introduce these
objects properly. For this purpose, we start from even more special objects,
called chiral vertex operators, from which chiral fields will be build later2, in
section 2.4.1.

2.2 Chiral Vertex Operators

2.2.1 Vertex Algebras

In order to define a vertex algebra, we first need a vector space V which is Z-
graded and obeys the following grading restrictions:

V =
∐

h∈Z
Vh , dimVh <∞ ∀h ∈ Z , dimV0 = 1 , Vh = 0 for h < 0 . (2.2)

We fix an element Ω ∈ V0 that generates all of V0 and call it the vacuum. Using
the natural pairing, we obtain linear functionals on V and the Z-graded dual
space

V∗ =
∐

h∈Z
V∗
h . (2.3)

In particluar, this introduces a scalar product on V and a linear functional 〈Ω, ·〉,
which will be needed in the definition of correlation functions below.

Next, we assume an operator/state correspondence, or in more mathematical
terms, a vertex operator map V(·, z). That is, to every state Ψ ∈ V we associate
an operator V(Ψ , z) which acts on the vector space V and is called a (chiral)
vertex operator3. As we like the grading to play a rôle here, we first define this
for a homogeneous element ψ ∈ Vh

V(·, z) :

{

Vh → (End V ) [[z, z−1
]]

ψ ֏ V(ψ,z) =∑n∈−h+Z Vn(ψ)z−n−h (2.4)

and then extend the definition to arbitrary Ψ ∈ V by linearity of V(·, z) in its first
argument. The space (End V ) [[z, z−1

]]

is the space of formal Laurent series.
Formal means that there is no truncation condition here, i.e. we do not require
Vn(ψ) = 0 for n sufficiently large (positive or negative). Note that the space
of formal Laurent series is therefore strictly larger than the space (End V ) ⊗
C
[[

z, z−1
]]

. The formal Laurent expansion of a vertex operator V(ψ,z) given

2Our terminology may appear unconventional at first sight. Nevertheless, we insist on our strict
distinction between chiral vertex operators and chiral fields. This may become clear in section
2.4.1.

3We are going to drop the adjective “chiral” from now on.
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2.2 Chiral Vertex Operators

in (2.4) introduces the modes Vn(ψ) ∈ End (V ). Given a vertex operator for
ψ ∈ Vh, its modes can be extracted by the formal Cauchy integration theorem

Vn(ψ) =
∮

(0)

dz
2π i

zn+h−1V(ψ,z) , (2.5)

where
∮

(0)
dz
2π i is to be understood as an instruction to pick out the (−1)st (oper-

ator valued) coefficient of the formal Laurent series that follows.
The above definition of a vertex operator needs to be supplemented by some

conditions. First of all the truncation condition, that for all ψ ∈ Vh and for all
Φ ∈ V we have

Vn(ψ)Φ = 0 for n≫ 0 . (2.6)

(The symbol n≫ 0 is to be read as “n sufficiently large”). Secondly, the vacuum

property

V(Ω, z) = 1 (2.7)

and finally the creation property

V(ψ,z)Ω ∈ V [[z]] for ψ ∈ Vh ,
lim
z→0
V(Ψ , z)Ω = Ψ ∀ Ψ ∈ V . (2.8)

The first line in (2.8) just tells us that the modes Vn(ψ) in the expansion V(ψ,z) =
∑

n∈−h+Z Vn(ψ)z−n−h give zero when acting on the vacuum as long as n is such
that the z-exponent (−n− h) is negative, i.e.

Vn(ψ)Ω = 0 for n > −h . (2.9)

Therefore, the second line in (2.8) is always well-defined. The restriction (2.9)
is noted to be a special case (with a precise n) of the truncation property (2.6).
Moreover, we are going to learn later, in section 2.2.2, that modes Vn(ψ) raise
the grading of a state by (−n). From this perspective, the truncation property
is needed for the third grading restriction in (2.2) to hold. Note that the third
grading restriction ensures the vacuum to be the state of minimal grading in V .4

From the physics point of view, it is the condition that the energy spectrum be
bounded from below and the vacuum be the state of lowest energy.

The structure we have defined up to now is almost a vertex algebra. The last
(and actually most important) ingredient that it lacks to be a vertex algebra is
the Jacobi (or Jacobi-Cauchy) identity. We are not going to assume the Jacobi
identity here, but rather replace it with two other requirements (which, taken

4For rational CFT this is certainly true. Note that V is what usually is referred to as the vacuum
module and the grading is the grading by conformal weight (these notions will be introduced
later). In the H+3 model, we are going to use states of negative conformal weight as auxiliary, non-
physical states. But they do not occur in the vacuum module, but in some other V -modules; see
section 2.3 for an introduction to modules. Thus, the statement remains true for the H+3 model
and should also hold for many more CFTs.
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2 Chiral Vertex Operators and Conformal Field Theory

together, are actually equivalent to the Jacobi identity, but have the benefit that
they appear much more natural to a physicist). They are: Weak commutativity
(that is a certain form of locality) and the existence of a generator of translations.
Let us start with weak commutativity. In order to explain in which sense it is
“weak”, we need to introduce correlation functions first. This is quickly done:
For any n ∈ Z>0 and any collection of states {Ψ1,Ψ2, . . . ,Ψn}, Ψi ∈ V , i = 1, . . . , n,
let

G(n)(Ψ1,Ψ2, . . . ,Ψn|z1, z2, . . . , zn) =
= 〈Ω, V(Ψ1, z1)V(Ψ2, z2) . . . V(Ψn, zn)Ω〉

(2.10)

be the correlation function (or vacuum expectation value) of V(Ψ1, ·), V(Ψ2, ·),
. . . , V(Ψn, ·). It is a complex-valued function of z1, z2, . . . , zn. For z1, . . . , ẑi, . . . ,
zn fixed (ẑ meaning that z is removed), it is meromorphic in zi by the truncation
condition (2.6). It is linear in the states Ψ1, Ψ2, . . . , Ψn by linearity of the vertex op-
erators in their first argument. This shall be enough about correlation functions
for the moment. The condition of weak commutativity is now easily formulated:
For arbitrary Ψ ,Φ ∈ V we require that5

V(Ψ , z)V(Φ,w) = V(Φ,w)V(Ψ , z) for z ≠ w (2.11)

in the weak sense, i.e. when inserted into any correlation function.
Next, we assume the existence of a generator of translations L−1. It is defined

to act on vertex operators as

eαL−1V(Ψ , z)e−αL−1 = V(Ψ , z +α) , (2.12)

or, in the infinitesimal form

[L−1, V(Ψ , z)] =
d

dz
V(Ψ , z) . (2.13)

In order to extract its definition on states Ψ ∈ V , we further require that the
vacuum is invariant under translations

L−1Ω = 0 . (2.14)

Then it is immediate that
ezL−1Ψ = V(Ψ , z)Ω . (2.15)

We are now in the position to formulate and proof two important lemmata: The
first one is a weak identification theorem for vertex operators and the second one
establishes a property called weak associativity for vertex operators.

5For our purposes, the case of bosonic states suffices.
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2.2 Chiral Vertex Operators

Lemma 1 (Weak Identification Theorem): Whenever we have an operator O(z)
that weakly commutes with all vertex operators V(Φ,w) and that satisfiesO(z)Ω =
ezL−1Ψ , then this operator weakly coincides with the vertex operator associated
to Ψ , i.e. O(z) = V(Ψ , z) holds in all correlation functions.

◮ Proof: Simply note that in any correlation function

〈Ω, V(Φ1, z1) . . . V(Φi, zi)O(z)V(Φi+1, zi+1) . . . V(Φn, zn)Ω〉 =
= 〈Ω, V(Φ1, z1) . . . V(Φi, zi)V(Φi+1, zi+1) . . . V(Φn, zn)O(z)Ω〉 =
=
〈

Ω, V(Φ1, z1) . . . V(Φi, zi)V(Φi+1, zi+1) . . . V(Φn, zn)e
zL−1Ψ

〉

=
= 〈Ω, V(Φ1, z1) . . . V(Φi, zi)V(Φi+1, zi+1) . . . V(Φn, zn)V(Ψ , z)Ω〉 =
= 〈Ω, V(Φ1, z1) . . . V(Φi, zi)V(Ψ , z)V(Φi+1, zi+1) . . . V(Φn, zn)Ω〉 . ◭

As an immediate corollary of this theorem we have the weak relation

[L−1, V(Ψ , z)] = V(L−1Ψ , z) , (2.16)

because ezL−1(L−1Ψ) = ezL−1 [L−1, V(Ψ ,0)]Ω = [L−1, V(Ψ , z)]Ω. Let us now state
the second lemma:

Lemma 2 (Weak Associativity): For any two vertex operators

V(Ψ , z)V(Φ,w) = V (V(Ψ , z −w)Φ,w) (2.17)

holds in the weak sense. This property is referred to as vertex operators being
weakly associative.

◮ Proof: The proof is simply by noting that

V(Ψ , z)V(Φ,w)Ω = V(Ψ , z)ewL−1Φ = ewL−1V(Ψ , z −w)Φ

and applying the identification theorem again. ◭

Of course, we can also expand the right hand side of (2.17) in modes. For
simplicity let us take ψ ∈ Vh. Then, the right hand side of (2.17) becomes6

V (V(ψ,z −w)Φ,w) =
∑

n≤N
V (Vn(ψ)Φ,w) (z −w)−n−h . (2.18)

Note that the existence of some real number N = N(Φ) by which the summation
index n in the previous formula is bounded is guaranteed by the truncation prop-
erty (2.6). An immediate consequence of weak associativity is the following skew

6In this form, (2.17) is also known as operator product expansion (OPE). We return to this in section
2.6.
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2 Chiral Vertex Operators and Conformal Field Theory

symmetry: Since by weak commutativity, the left hand side of (2.17) is symmet-
ric under the interchange of (Ψ , z) and (Φ,w), so must be the right hand side.
Hence,

V (V(Ψ , z −w)Φ,w) = V (V(Φ,w − z)Ψ , z) . (2.19)

Acting with both sides on the vacuum Ω and setting w = 0 we obtain

V(Ψ , z)Φ = ezL−1V(Φ,−z)Ψ . (2.20)

This skew symmetry property will be extensively used later, when defining duals
of intertwining operators. It also ensures that the commutator we are going to
define in the next paragraph is really antisymmetric.

With weak commutativity and weak associativity at hand, it is quite easy to
see that also the following weak identity holds. It is a variant of what in the
mathematical literature is called Jacobi-Cauchy identity. We shall refer to it as
the weak Jacobi identity:

∮

(0)

dw

2π i
|w|>|z|

f(z,w)V(Ψ ,w)V(Φ, z)−
∮

(0)

dw

2π i
|w|<|z|

f(z,w)V(Φ, z)V(Ψ ,w) =

=
∮

(z)

dw

2π i
f(z,w)V (V(Ψ ,w − z)Φ, z) ,

(2.21)

where f(z,w) can be any function that, for fixed z, is meromorphic in w , with
potential poles only at w = 0 or w = z. For states ψ ∈ Vhψ , Φ ∈ V , the weak
Jacobi identity serves us to define the (weak) commutator of one mode with a
vertex operator:

[Vm(ψ),V(Φ, z)] =
∮

(z)

dw
2π i

wm+hψ−1V (V(ψ,w − z)Φ, z) . (2.22)

Using the mode expansion (2.18), this can be recast into7

[Vm(ψ),V(Φ, z)] =
N(Φ)
∑

k=−hψ+1

(

m+ hψ − 1
m− k

)

zm−kV (Vk(ψ)Φ, z) . (2.23)

The real number N(Φ) which bounds the summation index is again due to the
truncation property. Note that in case of m > −hψ all summands with k > m
are zero anyway (for m ≤ −hψ this is however not true; yet, note that in this
situation the binomial coefficient is still well-defined). From this formula, we can
also derive an expression for the commutator of two modes associated to states
ψ ∈ Vhψ , φ ∈ Vhφ . But in order to present it in its most simplified form, we
need to introduce a gradation operator first. We shall come to this in the next
section.

7The following is again a weak identity. Obviously, when working with commutators in the sequel,
equations will usually hold in the weak sense only. We are going to remember this fact tacitly from
now on, so we do not have to repeat this point over and over again. As operator identities shall
only be applied within correlation functions anyway, there is actually no big issue about that.

22



2.2 Chiral Vertex Operators

2.2.2 Vertex Operator Algebras

Up to now we have not introduced any conformal structure, but in the next step
we are going to approach it. For this purpose, we are now assuming that there
is a vertex operator T(z) that is a symmetry current such that L−1 is its corre-
sponding charge. This implies immediately that T(z) has the expansion

T(z) =
∑

n∈Z
Lnz

−n−2 . (2.24)

As L−1 is the generator of translations, the vertex operator T(z) must be the
energy-momentum tensor of the theory. By the creation property it generates a
state

ω = L−2Ω (2.25)

which is known as the conformal vector . From the expansion (2.24) we know that
it is an element of V2. We do not know the meaning or any of the properties
of the modes Ln for n ≠ −1,−2, but this will change soon. Let us make an
assumption about the operator L0. We take it to be the grading operator

L0ψ = hψ for ψ ∈ Vh . (2.26)

Note that the vacuum Ω is annihilated by this operator since Ω ∈ V0. This is
consistent with the creation property (2.8). We call the L0-eigenvalue h ofψ ∈ Vh
the conformal weight of ψ and usually denote it h = hψ.

Having introduced the energy-momentum tensor T(z) = V(ω,z), let us take a
look at the consequences for the modes Ln. From (2.23), using hω = 2, we gain
the relation

[Ln, V(Ψ , z)] =
N(Ψ)
∑

k=−1

(

n+ 1
n− k

)

zn−kV (LkΨ , z) . (2.27)

This means in particlar that

[L−1, V(Ψ , z)] = V (L−1Ψ , z) , (2.28)

which is consistent with (2.16), as well as

[L0, V(Ψ , z)] = z · V (L−1Ψ , z)+ V (L0Ψ , z)

= z d
dz
V(Ψ , z)+ V (L0Ψ , z) .

(2.29)

For any ψ ∈ Vhψ , we can derive the commutator of L0 with the modes of the
vertex operator V(ψ,z) from the last equation:

[L0, Vn(ψ)] = −nVn(ψ) . (2.30)
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2 Chiral Vertex Operators and Conformal Field Theory

Thus, the modes Vn(ψ) raise the conformal weight of the state they act on by
(−n), that is

Vn(ψ) : Vh →Vh−n . (2.31)

This is independent of the state ψ, so we automaticaly get

[L0, Ln] = −nLn . (2.32)

We can derive the analogous formulae for commutators involving L−1 from (2.16)
and (2.13). They read

[L−1, Vn(ψ)] = (−n− hψ + 1)Vn−1(ψ) , (2.33)

from which follows that

[L−1, Ln] = (−n− 1)Ln−1 . (2.34)

We note from (2.32) and (2.34) that commutators involving only L−1 and L0 close
to form an algebra. This is not surprising: We have introduced L−1 as the trans-
lation operator and from (2.29), we can infer that the finite transformation gen-
erated by L0 is (for λ ∈ C)

eλL0V(ψ,z)e−λL0 = eλhψV
(

ψ,eλz
)

, (2.35)

that is, it generates complex dilations. These correspond to the dilations and
rotations in the plane and are well-known to form a group together with the
translations in two dimensions. We also note from (2.32) and (2.34) that adjoining
L1 to L−1 and L0 we have again a closed algebra and that this is the largest algebra
that contains L−1 and L0 together with finitely many other modes from the set
{Ln}. Its commutation relations can be written in one formula as

[Lm, Ln] = (m−n)Lm+n for m,n ∈ {−1,0,1} . (2.36)

This is recognized to be the Lie algebra sl(2,C), the algebra of the global con-

formal group in two dimensions, which is SL(2,C)/Z2. Consequently, L1 has to
be identified with the generator of special conformal transformations. This is
again not surprising, since it is well-known that a chiral energy-momentum ten-
sor together with invariance under translations and complex dilations implies
invariance under the full global conformal group.

Let us recall what we have achieved up to now: We have introduced a new ver-
tex operator corresponding to a state ω of conformal weight 2 (the conformal
vector). It has an interpretation as energy-momentum tensor and introduces a
set of modes {Ln}. Out of this set, we could islolate L−1, L0 and L1 as the gener-
ators of global conformal transformations. We know that this algebra cannot be
enlarged by adjunction of only finitely many of the Ln to form a bigger algebra.
But what we do not know yet is what happens if we take all the modes Ln. Will
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2.2 Chiral Vertex Operators

they close to form an algebra? In order to answer this question, we look back at
equation (2.23) and use it to derive a formula for the commutator between two
arbitrary modes of vertex operators ψ ∈ Vhψ , φ ∈ Vhφ :

[Vm(ψ),Vn(φ)] =
N(φ)
∑

k=−hψ+1

(

m+ hψ − 1
m− k

)

Vm+n (Vk(ψ)φ) . (2.37)

We could not derive this formula earlier, because one needs to use h(Vk(ψ)φ) =
hφ − k, what only follows because of (2.31). With this knowledge, the derivation
of (2.37) is just a straightforward exercise in comparing coefficients. Let us use it
to investigate the commutator between two of the Ln. We obtain

[Lm, Ln] = Vm+n (L−1ω)+ (m+ 1)Vm+n (L0ω)+

+ m(m+ 1)

2
Vm+n (L1ω)+ m(m

2 − 1)

6
Vm+n (L2ω) .

(2.38)

There are no more terms, since Lkω would have conformal weight (2 − k) < 0
for k > 2, but by the third grading restriction Vh = 0 for h < 0. We can simplify
the first two terms due to (2.13) and (2.26). Moreover, since L2ω has conformal
weight zero and dimV0 = 1, L2ω must be proportional to the vacuum. The
constant of proportionality is conventionally chosen to be

L2ω = c
2
Ω . (2.39)

With this input, the algebra becomes

[Lm, Ln] = (m−n)Lm+n + c

12
m(m2 − 1)δ(m+n)+

+ m(m+ 1)

2
Vm+n (L1ω) .

(2.40)

But this is only consistent with antisymmetry of the commutator as well as our
knowledge about the modes Ln expressed in (2.32), (2.34) and (2.36), if Vk(L1ω) =
0 for all k ∈ Z. This in turn is only the case if we require

L1ω = 0 . (2.41)

If an eigenstate of L0 is annihilated by L1 but not by L2, it has a property that we
call quasi-primarity. We shall assume it for the conformal vectorω. Then, the Ln
form the following algebra

[Lm, Ln] = (m−n)Lm+n +
c

12
m(m2 − 1)δ(m+n) . (2.42)

This is the celebrated Virasoro algebra and we have shown that it is the only
consistent way to define a commutator between all modes Ln. The constant c is
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2 Chiral Vertex Operators and Conformal Field Theory

called central charge and its normalization is such that it takes the value 1 in the
CFT of a massless free boson.

The appearance of the Virasoro algebra (2.42) is actually not too surprising.
The conformal algebra in two dimensions consists of the elements Tn = z−n+1 d

dz ,
n ∈ Z, which satisfy the Witt algebra

[Tm, Tn] = (m−n)Tm+n . (2.43)

In view of (2.36) and our desire to include two dimensional conformal transfor-
mations, having this algebra for the modes Ln appears very suggestive and would
be nothing but the extension of (2.36) to all n. What we really have obtained is a
very natural deformation of the Witt algebra that, being not semi-simple, allows
for a central extension. The central term that appears in (2.42) is indeed the most
general term that can possibly occur.

2.3 Virasoro Representation Theory I: Modules for a Vertex

Operator Algebra

In order to make contact with physics, we need a space of physical states on
which the conformal transformations are realized. That is, the space of physi-
cal states will furnish a representation of the Virasoro algebra (2.42). We have
shown in the last section, that a vertex operator algebra by itself provides such a
situation. Yet, we need more states and more structure: In what is to come, we
shall define the notion of the full vertex operator algebra acting on some space
of states, i.e. we define the notion of a module for a vertex operator algebra.

2.3.1 Modules for a Vertex Operator Algebra

The first step in the definition of a module for a given vertex operator algebra V
is again to take a vector space W graded with respect to a discrete index set I
such that

W =
∐

h∈I
Wh , Wh = 0 for h≪ 0 . (2.44)

Note that we do not require the spaces Wh to be finite dimensional8. We also
admit a finite number of the Wh with negative h to be non-zero. The space W is
again accompanied by a vertex operator map V (W)(·, z), but note the crucial dif-
ference to the case before: To every homogeneous state ψ ∈ Vh (!), we associate
a vertex operator V (W)(ψ, z) which acts on the vector space W (!) by

V (W)(·, z) :

{

Vh → (End W) [[z, z−1
]]

ψ ֏ V (W)(ψ, z) =∑n∈−h+Z V (W)n (ψ)z−n−h
. (2.45)

8In the H+3 model these spaces are indeed infinite dimensional.
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Thus, the elements of the vertex operator algebra V have a device by which they
can act on the space W . As before, the modes of V (W)(ψ, z) can be obtained by
the formal Cauchy theorem. Again, we extend the definition to arbitrary Ψ ∈ V
by linearity of V (W)(·, z) in its first argument.

Next, we introduce as much as possible of the structure that we have had for
a vertex operator algebra. Note that the creation property cannot be formulated
here. But we still need to have the truncation condition

V (W)n (ψ)A = 0 for n≫ 0 . (2.46)

for all ψ ∈ Vh and all A ∈W . Also, the vacuum property

V (W)(Ω, z) = 1 , (2.47)

where 1 is now the identity on W , is assumed. Also, we assume weak commu-
tativity for the vertex operators V (W)(·, z), although it is not yet clear how they
can be inserted into a correlation function at all (up to now, this would not make
sense, but we shall come to it in section 2.4, where we introduce intertwiners).
Due to the lack of a creation property, we also do not have a weak identification
theorem and cannot derive weak associativity here. Therefore, we are requiring
weak associativity for this situation:

V (W)(Ψ , z)V (W)(Φ,w) = V (W) (V(Ψ , z −w)Φ,w) . (2.48)

Note that we have to use V(·, z−w) on the right hand side. With weak commuta-
tivity and weak associativity, we have the analogues of the commutator formulae
from before, in particular (2.23). The vertex operator V (W)(ω,z) associated to
the conformal vector is again taken to be the energy-momentum tensor, i.e. its
modes9 are denoted Ln, with L−1 being assumed to be the generator of trans-
lations and L0 the generator of complex dilations (or, respectively, the grading
operator) on W (!). So, we are actually extending the domain of definition of the
Ln to W . The analogue of (2.37) together with quasi-primarity of ω then implies
the Virasoro algebra (2.42) on W by the same reasoning as before.

With the definitions we have given up to now, we are capable of associating
vertex operators to states inV that then act on the spaceW . What is still missing
is of course an operator/state correspondence for the elements of W . How can
we associate vertex operators to them? The key to such a definition is the skew
symmetry property (2.20). We simply define an operator

V (V ,W)(·, z) : W → (Hom(V ,W)
[[

z, z−1
]]

(2.49)

by requiring skew symmetry of its action on V :

V (V ,W)(A, z)Ψ = ezL−1V (W)(Ψ ,−z)A . (2.50)

9More precisely they should be denoted L(W )n .
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It obviously satisfies the creation property

V (V ,W)(A,0)Ω = A . (2.51)

For this kind of operators, we can readily proof a weak commutativity property
with the V (W)(·, z) operators. Namely, using the weak associativity (2.48) we get
for Φ ∈ V :

V (W)(Ψ , z)V (V ,W)(A,w)Φ = V (W)(Ψ , z)ewL−1V (W)(Φ,−w)A
= ewL−1V (W)(Ψ , z −w)V (W)(Φ,−w)A
= ewL−1V (W) (V(Ψ , z)Φ,−w)A

= V (V ,W)(A,w)V (W)(Ψ , z)Φ .

(2.52)

Due to this weak commutativity property, we can establish a weak identification
theorem as before and then proof weak associativity, which now takes the form10

V (W)(Ψ , z)V (V ,W)(A,w) = V (V ,W)
(

V (W)(Ψ , z −w)A,w
)

. (2.53)

As a consequence, analogous commutator formulae as before also hold for the
vertex operators V (V ,W)(·, z).

With the vertex operators V and V (V ,W), we have established an operator/state
correspondence for all states in V and W . Generally when constructing a CFT,
one will first start to build a vertex operator algebra V and then adjoin a family

of modules
{

W (i); i ∈ S
}

labelled by an index set S to it. We have taken notice of
the existence of a scalar product on V in section 2.2.1. Assume a scalar product
on the spaces W (i) as well11. The space of states H of the theory is then the
completion β (with respect to the scalar product on the direct sum) of the direct
sum of these spaces

H = β




⊕

i∈S
W (i)



 . (2.54)

In writing this formula, we include the possibility that V is one of the W (i). This
is however not necessary in general.

In the next section, we are going to describe the concrete construction of a
vertex operator algebra and its modules.

10This weak associativity can be checked to be indeed consistent with weak commutativity (2.52) by
acting on Φ ∈ V with both sides of (2.53) and using weak associativity of the V (W ) as well as skew
symmetry of the V vertex operators on the right hand side.

11Again, this is fine for RCFT and remains to hold for the H+3 model.
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2.3 Virasoro Representation Theory I: Modules for a Vertex Operator Algebra

2.3.2 Virasoro Representations: Construction of Vertex Operator

Algebras and Modules

Every vertex operator algebra contains two states: The vacuum Ω and the confor-
mal vector ω. The associated vertex operators are the identity 1 and the energy
momentum tensor T(z), respectively. Since the modes of T(z) are the Virasoro
generators Ln, we need to consider their action on these states. Recall that the
vacuum is the state of minimal conformal weight, that is

LnΩ = 0 for all n ≥ −1 (2.55)

(remember that the vacuum is annihilated by the generators of global conformal
transformations anyway). Then, the space of states we have to form is (recall that
ω = L−2Ω)

V = span
{

L−nk . . . L−n1Ω;k ≥ 0 and nk ≥ · · · ≥ n1 ≥ 2
}

. (2.56)

The grading is implemented by

Vn = span
{

L−nk . . . L−n1Ω;k ≥ 0, nk ≥ · · · ≥ n1 ≥ 2, n1 + · · · +nk = n
}

(2.57)
and the grading restrictions are obviously obeyed. Associated vertex operators
can be defined via

V
(

L−nk . . . L−n1Ω, z
)

= T(z)−nk+1 . . . T(z)−n1+11 . (2.58)

The meaning of the expression on the right hand side is as follows: In general,

T(z)nA(z) =
∮

(z)

dw

2π i
(w − z)nT(w)A(z) (2.59)

for some product of vertex operators denoted collectively A(z). An expression
like T(z)nk . . . T(z)n11 has to be evaluated iteratively from right to left, that is
first evaluating A1(z) = T(z)n11, then A2(z) = T(z)n2A1(z), and so on. If all of
the ni (i = 1, . . . , k) are negative, as is the case in (2.58), the result is

T(z)−nk . . . T(z)−n11 = k
∏

i=1

1

(ni − 1)!

(

∂
(ni−1)
z T(z)

)

. (2.60)

It is readily checked, that V(Ω, z) = 1 and V(ω,z) = T(z) are consistent with the
definitions. There is actually a general theory behind this construction, the theory
of so-called weak vertex operators and weak vertex operator algebras [27]. Within
that framework, it is quite easily shown that the so defined vertex operators (2.58)
do indeed satisfy all the properties required of a vertex operator. We shall not go
into this here, but rather refer to [27]. For theories with Virasoro symmetry only,
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2 Chiral Vertex Operators and Conformal Field Theory

the vertex operator algebra we have just constructed is what one generically uses.
For theories with extended (i.e. more than just Virasoro) symmetry, see section
2.7.

In the above construction, our strategy was to fix a state of lowest conformal
weight. Such a state has to exist by the grading restrictions. This method, to
construct a whole vector space from one such “primary” state, is also the key
principle in the construction of modules for a vertex operator algebra. From now
on, we call a state A a (Virasoro) primary state if it is annihilated by all positive
Virasoro modes:

LnA = 0 for all n > 0 . (2.61)

A module W (h) is constructed by assuming a primary state Ah of conformal
weight h from which the whole module is generated

W (h) = span
{

L−nk . . . L−n1 Ah;k ≥ 0 and nk ≥ · · · ≥ n1 ≥ 1
}

. (2.62)

The obvious grading is implemented as above. Vertex operators are defined anal-
ogous to before by

V (W)
(

L−nk . . . L−n1Ω, z
)

= T(z)−nk+1 . . . T(z)−n1+11 , (2.63)1 being the identity on W (h) now. Also recall from section 2.3.1 that the energy
momentum tensor and hence the Virasoro generators sensibly act on W (h). The
operator/state correspondence for states in W (h) is now given through the oper-

ators V (V ,W
h), see equations (2.49) and (2.50) in the preceding section. A vertex

operator V (V ,W)(A, z), associated to a primary state A, will be called a primary

vertex operator from now on.
What is still missing in our discussion is the question of reducibility of mod-

ules. We shall take it up in section 2.5. Before, we prefer to extend our notion of
correlation functions, introducing chiral intertwining operators, chiral fields and
descendant states along the way.

2.4 Correlation Functions

In section 2.2.1 we have defined a correlation function of states Ψ1,Ψ2, . . . ,Ψn,
Ψi ∈ V (i = 1, . . . , n) as the vacuum expectation value of their associated vertex
operators

G(n)(Ψ1,Ψ2, . . . ,Ψn|z1, z2, . . . , zn) =
= 〈Ω, V(Ψ1, z1)V(Ψ2, z2) . . . V(Ψn, zn)Ω〉 .

(2.64)

Now, our desire is to be able to also define correlation functions involving oper-
ators that are associated to states Ah1 , . . . , Ahk that are elements of V -modules
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2.4 Correlation Functions

W (h1), . . . , W (hk). Note that the vertex operators V (W
(hi)) are completely useless

for this purpose. Also, the operators V (V ,W
(h)) can only serve as the rightmost

insertions in a correlation function, since they map Ω ∈ V to W (h). But then,
there is no operator at our disposal that brings us back to V and consequently, a
correlation function can again not be defined. Hence, for the purpose of defining
general correlators, we need to introduce a new kind of operator: Intertwiners.
They are the subject of section 2.4.1. Afterwards, in 2.4.3, we shall define de-
scendant states and show how correlation functions involving some of their cor-
responding operators can be obtained from correlators involving only primary
operators. Section 2.4.4 then analyses the correlators of primary operators. In
the following we shall frequently use the abbreviation 〈. . . 〉 instead of 〈Ω, . . .Ω〉.

2.4.1 Intertwining Operators

Given three V -modules W (i), W (j), W (k), a chiral intertwining operator of type
(

i
k j

)

is a map

Y ik (·, z) :

{

W (j)
h →

(

Hom
(

W (i),W (k)
))

[[

z, z−1
]]

A ֏ Y ik (A, z) =
∑

n∈−h+Z Vn(A)
i
kz

−n−h , (2.65)

extended to W (j) by linearity in its first component. As usual, L−1 is assumed to
act as generator of translations and the truncation property

Vn(A)
i
kB = 0 for all B ∈W (i) (2.66)

is required. Note that vacuum and creation property generally do not make sense

here. Furthermore, the following weak associativity with vertex operators V (W
(k))

is assumed (Ψ ∈ V , A ∈W (j)):

V (W
(k))(Ψ , z)Y ik (A,w) = Y ik

(

V (W
(j))(Ψ , z −w)A,w

)

. (2.67)

This establishes the analogues of all preceding commutator formulae again. Note

that V , V (W
(j)) and V (V ,W

(j)) are special intertwining operators12 of type
(

0
0 0

)

,
(

j
j 0

)

and
(

0
j j

)

respectively (a 0 entry indicating a mapping to V ).

Given an intertwining operator of type
(

i
k j

)

, we define its dual, which is an

intertwining operator of type
(

j
k i

)

, via skew symmetry (Ai ∈W (i), Aj ∈W (j))

Y
j
k (Ai, z)Aj = ezL−1Y ik (Aj ,−z)Ai . (2.68)

12We are again dropping the “chiral” from now on.
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2 Chiral Vertex Operators and Conformal Field Theory

Using this relation, one easily establishes the following commutativity property:

V (W
(k))(Ψ , z)Y ik (Aj ,w)Ai = V (W

(k))(Ψ , z)ewL−1Y
j
k (Ai,−w)Aj

= ewL−1V (W
(k))(Ψ , z −w)Y jk (Ai,−w)Aj

= ewL−1Y
j
k

(

V (W
(i))(Ψ , z)Ai,−w

)

Aj

= Y ik (Aj ,w)V (W
(i))(Ψ , z)Ai .

(2.69)

With intertwining operators at our disposal, we can now finally say what we un-
derstand by a correlation function G(n)(A1,A2, . . . ,An|z1, z2, . . . , zn) involving ar-
bitrary states Ai ∈W (i) (where some of the imay also be 0, with the understand-
ing that W (0) = V as above). To this end, we define chiral fields

A(z) =
∑

i,k

αi,kY
i
k (A, z) (2.70)

(αi,k ∈ C). If the state A is a primary state, the chiral field A(z) is called chiral

primary field. Now, define

G(n)(A1,A2, . . . ,An|z1, z2, . . . , zn) = 〈A1(z1)A2(z2) . . .An(zn)〉 (2.71)

with the understanding that this is zero whenever there are two intertwiners
that “do not match”, that is, whenever a product of intertwining operators of

the type Y lm(Ai, zi)Y
j
k (Ai+1, zi+1) with W (k) ≠W (l) occurs, or, whenever k ≠ 0 in

Y ik (A1, z1) or i ≠ 0 in Y ik (An, zn). Implementing weak commutativity for arbitrary
intertwiners and hence for the fields A(z), one is lead to the braiding relations of
Moore and Seiberg [81].

2.4.2 A Special OPE and some Transformation Formulae

The following developments are most crucial for the determination of correlation
functions. Recall that for all operators Y ik that were introduced in the preceding
sections, we have carefully paid attention to establish weak associativity with
vertex operators V (W

(j)) for any module W (j). This means in particular weak
associativity with the energy momentum tensor acting on these modules. There-
fore, by (2.17) and (2.18), the following holds for any (chiral)13 field A(z):

T(z)A(w) =
∑

n≤N(A)
[LnA] (w)(z −w)−n−2 . (2.72)

13Once more we are dropping “chiral” from now on.
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Here, the field [LnA] (z) denotes the operator associated to the state LnA.14 For
a primary state Ah, denoting the singular part of (2.72) only, this gives

T(z)Ah(w) ∼
hAh(w)

(z −w)2 +
∂wAh(w)

z −w . (2.73)

The use of ∼ reminds us that we are only taking the singular part here. (2.72) is
a special example of a type of relation that we call operator product expansion
(OPE) (see section 2.6 for its general form).

Now, remember that along with weak associativity we have emphasized repeat-
edly the validity of commutator formulae for all kinds of operators that we have
introduced. Indeed, (singular parts of) OPEs translate into commutator formulae
and vice versa. As a consequence, recalling (2.27), all primary fields Ah(z) obey15

[Ln,Ah(z)] = zn+1 d
dz

Ah(z)+ h(n+ 1)znAh(z) . (2.74)

From this expression, one derives that the three basic finite global conformal
transformations are realized on primary fields as

eαL−1 Ah(z)e
−αL−1 = Ah(z +α) (2.75)

eλL0 Ah(z)e
−λL0 = eλhAh(e

λz) (2.76)

eβL1 Ah(z)e
−βL1 = (1− βz)−2hAh

(

z

1− βz

)

(2.77)

This can also be extended to arbitrary global conformal (i.e. SL(2,C)/Z2) trans-
formations. Under

M : z ֏ M(z) = az + b
cz + d , with

(

a b
c d

)

∈ SL(2,C) , (2.78)

primary fields transform according to

∆(M)A(z)∆−1(M) = [M′(z)]h A (M(z))

= (cz + d)−2h A (M(z)) .
(2.79)

Here, the representation ∆ is given by

∆(M) = exp
(

b

d
L−1

)

d−2L0 exp
(

− c
d
L1

)

, (2.80)

if d ≠ 0, while for d = 0, it is

∆(M) = (ab)L0 exp (L1) exp (L−1)

(

a

b

)L0

. (2.81)

These are basically all formulae that we will exploit in the following two sections
in order to fix the general form that correlation functions must take.

14In terms of intertwiners, we would have Y ik (LnA,w). The notation (2.70) translates this into [LnA].
15This is also immedaite from (2.73).
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2.4.3 Correlation Functions of Descendant Operators

From (2.72) we see that the field associated to a state LnA appears in the expan-
sion of the field A(z) with the energy momentum tensor T(w). We can easily
obtain it by a contour integration:

[LnA] (z) =
∮

(z)

dw
2π i

(w − z)n+1T(w)A(z) . (2.82)

If the state A is a primary state, we call all states of the form L−nk . . . L−n1 A descen-

dant states and their associated fields descendant fields. Equation (2.82) shows
us that we can always determine the descendant fields from the primary field
that they originate from. This fact is particularly useful in correlation functions.
Consider a correlator of n primary fields A1(z1), . . . , An(zn) and one descendant
[L−kB] (z) (B is again primary). Then,

〈[L−kB] (z)A1(z1) . . .An(zn)〉 =

=
∮

(z)

dw

2π i
(w − z)−k+1 〈T(w)B(z)A1(z1) . . .An(zn)〉 .

(2.83)

Reinterpreting the counterclockwise contour around (z) as a clockwise contour
around the (zi) (i = 1, . . . , n) and then using the OPE (2.73) at each of the n
singularities in (w − zi), yields

〈[L−kB] (z)A1(z1) . . .An(zn)〉 =

= −
n
∑

i=1

∮

(zi)

dw
2π i

(w − z)−k+1 〈T(w)B(z)A1(z1) . . .An(zn)〉

= −
n
∑

i=1

[

1

(zi − z)k−1
∂zi +

(−k+ 1)hi
(zi − z)k

]

〈B(z)A1(z1) . . .An(zn)〉 .

(2.84)

This result generalizes immediately to correlators involving arbitrary descen-
dants. Accordingly, any correlator that involves descendant fields can be ob-
tained by applying appropriate differential operators

L−k(z) = −
n
∑

i=1

[

1
(zi − z)k−1

∂zi +
(−k+ 1)hi
(zi − z)k

]

(2.85)

to a correlation function involving only primary fields. Therefore, the problem
of fixing the form of arbitrary correlators reduces to determining the form of
correlation functions of primary fields only.
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2.4.4 Correlation Functions of Primary Operators

In section (2.2.1), we have introduced a natural pairing on V . This gave us a
linear functional 〈Λ, ·〉 ∈ V∗ for each Λ ∈ V . Define the adjoint vertex operator

[V(Ψ , z)]†, Ψ ∈ V , acting on V∗ as

〈Λ, ·〉֏
〈

Λ, [V(Ψ , z)]† ·
〉

(2.86)

by setting
〈

Λ, [V(Ψ , z)]† Φ
〉

=
〈

Λ, V

(

ezL1
(

−z−2
)L0

Ψ , z−1
)

Φ

�

(2.87)

for all Φ ∈ V . With this action, the dual space V∗ acquires the structure of a
V -module. We shall call it the adjoint module. Let us not go into the proof of this
fact now, but rather refer to [28].

For a quasi-primary state ψ with conformal weight h, the definition (2.87) sim-
plifies to

〈

Λ, [V(ψ,z)]† Φ
〉

=
(

− 1

z2

)h〈

Λ, V

(

ψ,
1

z

)

Φ

�

. (2.88)

Expanding both sides in modes and comparing coefficients in z, one finds

ψ†n = (−)hψ−n . (2.89)

In particular for the Virasoro modes, this means

L†n = L−n . (2.90)

Assuming that the vacuum Ω is the primary state of lowest conformal weight in
V (what is always the case in our considerations), one infers without difficulty
that its adjoint 〈Ω, ·〉 is also a primary state under the action of the operators L†n
with conformal weight zero. Futhermore, if all states in V1 are annihilated by L1

(what is the case in all our considerations), the adjoint vacuum is also translation
invariant, i.e. it is annihilated by L†−1.

With the information just assembled, we are now in position to derive the
global conformal Ward identities for a correlation function 〈A1(z1) . . .An(zn)〉
involving only primary fields Ak(zk). Let i ∈ {−1,0,1}. Since the adjoint vacuum
is annihilated by L†−i and the vacuum by the Li, we have

0 =
〈

Ω, L†−iA1(z1) . . .An(zn)Ω
〉

= 〈Ω, LiA1(z1) . . .An(zn)Ω〉

=
n
∑

k=1

〈Ω,A1(z1) . . . [Li,Ak(zk)] . . .An(zn)Ω〉

=
n
∑

k=1

zik

[

zk∂zk + (i+ 1)hk
]

〈A1(z1) . . .An(zn)〉 .

(2.91)
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In the last step, (2.74) was put to use. For i = −1, the Ward identities express
translation invariance, for i = 0 scale invariance and for i = 1 special conformal
invariance of the correlation functions. In the following, let us make use of the
identities (2.91) and see how they restrict the correlation functions of primary
fields.

One Point Function

From translation invariance, the one point function 〈Ah〉 must be a constant and
scale invariance requires it to be zero unless h = 0. From uniqueness of the
vacuum, we therefore have

〈Ah〉 = 0

〈1〉 = 1 .
(2.92)

Two Point Function

The two point function 〈Ah(z)Ah′(w)〉 can only depend on (z−w) by translation
invariance. Scale invariance then implies that it is proportional to (z−w)−(h+h′).
Finally, special conformal invariance requires the conformal weights to coincide
h = h′. We therefore get

〈Ah(z)Ah′(w)〉 = Cδh−h′(z −w)−2h (2.93)

where C is a constant related to the normalization of the fields. Let us make a
check and use the transformation formula for primary fields (2.79) in the two
point correlator. It yields

〈Ah (M(z))Bh (M(w))〉 = (cz + d)2h(cw + d)2h 〈Ah(z)Bh(w)〉 , (2.94)

if M(z) = az+b
cz+d . Indeed, the right hand side of (2.93) shows the same behaviour:

(M(z)−M(w))−2h = (cz + d)2h(cw + d)2h(z −w)−2h . (2.95)

Three Point Function

Translation and scale invariance request that
〈

Ah1(z1)Ah2(z2)Ah3(z3)
〉

= C123(z1 − z2)
h12(z1 − z3)

h13(z2 − z3)
h23 (2.96)

with h12+h13+h23 = h1+h2+h3. Special conformal invariance then determines

h12 = h1 + h2 − h3 , h13 = h1 + h3 − h2 , h23 = h2 + h3 − h1 . (2.97)

The structure constant C123 is a non-trivial piece of information. It cannot be de-
termined by global conformal invariance, but more elaborate methods are needed
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in order to compute it. The conformal bootstrap is one possibility, but it is usu-
ally not feasible in practice. While other more specialized methods have been
invented, there is in general no silver bullet that will reliably (i.e. always and
“automatically”) determine the structure constants.

Four Point Function

The existence of crossing ratios is the reason why beginning with the four point
function, global conformal invariance alone does no longer suffice to fix corre-
lators up to constants. Instead, arbitrary functions of the crossing ratios are
left undetermined. Crossing ratios are combinations of the coordinates that stay
invariant under arbitrary conformal transformations. In case of the four point

function
〈

Ah1(z1)Ah2(z2)Ah3(z3)Ah4(z4)
〉

, there is only one independent cross-
ing ratio

z = (z1 − z2)(z3 − z4)

(z1 − z3)(z2 − z4)
, (2.98)

all other imaginable combinations are related to it by inversion, translation or a
combination thereof. Translation and scale invariance therefore dictate that the
four point functions looks like

〈

Ah1(z1)Ah2(z2)Ah3(z3)Ah4(z4)
〉

=
4
∏

i<j=1

(zi − zj)−µijF(z) , (2.99)

where
∑

i<j µij = h1 + h2 + h3 + h4 and F(z) remains undetermined. Special
conformal invariance fixes

µij = hi + hj − 1

3
∆ , (2.100)

where ∆ = h1 + h2 + h3 + h4.

2.5 Virasoro Representation Theory II: Submodules and

Reducibility

We have not yet discussed the important question of reducibility of Virasoro rep-
resentations, that is reducibility of V -modules. Given a module W , a submodule

U is a subset that is itself a module. A module W is said to be reducible if it
contains a proper submodule U. In order to obtain an irreducible module, one
has to quotient out the submodule, i.e. form the space W/U. Clearly, this is
again a module.

Recall that the modules we have studied above were all generated from one
heighest weight state. This is the generic situation we are dealing with. Typically,
a submodule U is also generated from one element only, which is a descendant
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in the module W . For a descendant state A(−) to generate a submodule, it is
enough that it is annihilated by all positive Virasoro modes. Such a state is called
singular vector . Let us assume that it is present in our module. Quotiening out
the submodule amounts to setting A(−) to zero. Since it is a descendant of the
highest weight state A, A(−) is of the form L−nk . . . L−n1 A. Setting this to zero,
the corresponding field must be zero as well. By (2.84) this in turn means that
any correlation function of primary fields involving also the primary A(z) must
satisfy a differential equation

L−nk(z) . . .L−n1(z) 〈A(z) . . . 〉 = 0. (2.101)

This puts severe restrictions on such correlators. In the case of four point func-
tions, these differential equations are usually powerful enough to determine the
function of the crossing ratio that is left unknown from global conformal invari-
ance alone. A field A(z) that gives rise to differential equations in the manner
just described is called a degenerate field.

2.6 The General Operator Product Expansion

For a vertex operator algebra we have already seen an example of an operator
product expansion (OPE) in the form of weak associativity relations (2.17), (2.18).
Indeed, weak associativity provides an exact and well defined OPE. Moreover, as
weak associativity could be carried over to the product of vertex operators V
and V (W) with arbitrary intertwining operators, these OPEs are also exact and
well defined. Especially, the OPE of the energy momentum tensor T(z) with an
arbitrary conformal field is if that type; see equation (2.73).

Between arbitrary chiral fields A(z), B(w), we do not have such an exact no-
tion of OPE, because we did not define weak associativity for them. Actually, a
reasonable definition of weak associativity is not possible in this situation but
instead, the fusing matrix of Moore and Seiberg [81] is an appropriate tool here.
We do not go into this, but have decided to take the following route, following
[5]: We define a formal weak operator product, that is we require

Ah(z)Ah′(w) =
∑

h′′

∑

K

C(K)(h,h′|h′′)(z −w)−h−h′+h′′+|K|A(K)
h′′ (w) (2.102)

to hold in all correlators. K is a set of integers K = {k1, . . . , kn} with varying
number of entries n. It takes care of the occurence of descendant fields

A(K)
h′′ (w) =

[

L−kn . . . L−k1Ah′′
]

(w) (2.103)

on the right hand side of (2.102). The modulus of K is simply the sum of its
entries |K| = k1 + · · · + kn. The z,w dependence in (2.102) is fixed from global
conformal covariance. Only the conformal weights h′′ that are summed over on
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2.7 Conformal Field Theory with Lie Algebra Symmetry

the right hand side cannot be fixed from global conformal covariance alone. This
is just like the situation for the three point correlator, see (2.96). The determina-
tion of the set N(h,h′)(h′′) such that h′′ ∈N(h,h′)(h′′) for the purpose of (2.102)
is known as the problem of finding the fusion rules of a CFT. The operator prod-

uct coefficients C(K)(h,h′|h′′) (which we also refer to as OPE coefficients) have a
connection to the structure constants C(h,h′, h′′), namely

C(∅)(h,h′|h′′) = C(h,h′, h′′) . (2.104)

Usually, we shall only write the most singular parts in the OPE, that is only the
contributions of primary fields, and denote the descendant contributions with
dots:

Ah(z)A(h′w) =
∑

h′′
C(h,h′, h′′)(z −w)−h−h′+h′′Ah′′(w)+ . . . . (2.105)

The OPE coefficients that contribute here are really just the structure constants
and we sometimes use these terms interchangeably.

Finally, let us comment on the OPE with a degenerate field. We have explained
in section 2.4.3 that correlators involving a degenerate field are highly restricted
by a differential equation that they have to satisfy. In the same way, OPEs with
a degenerate field are highly restricted. One can usually extract them from an
appropriate four point function. If a degenerate module has a singular vector
A(K) with |K| = k, then there are at most k channels that contribute to the OPE of
any conformal field with the associated degenerate field (i.e. the set N(h,h′)(h′′)
has at most k entries). For our purposes, cases with two or three contributing
channels are of interest; see sections 3.5.2 and 3.5.3.

2.7 Conformal Field Theory with Lie Algebra Symmetry

Up to now we have learned how to realize conformal symmetry by building vertex
operator algebras and associated modules from primary states. In the following
sections, we are going to explain how the same programme can be carried out for
a Lie symmetry. Starting from a Lie algebra whose generators are associated to
corresponding currents, we will arrive at a construction that realizes an emerging
affine Lie algebra and a related Virasoro algebra on a vertex operator algebra and
its (affine) modules.

2.7.1 Vertex Operator Algebra build from Lie Algebra

We start with a set of chiral currents
{

Ja(z);a = 1, . . . ,dim(g)
}

whose charges

Ja0 =
∮

(0)

dz
2π i

Ja(z) (2.106)
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2 Chiral Vertex Operators and Conformal Field Theory

are the generators of a Lie symmetry, that is they form a Lie algebra g:
[

Ja0 , J
b
0

]

= f abcJc0 . (2.107)

We take g to be semi-simple, so we can assume the f abc to be totally antisymmet-
ric. From (2.106), the mode expansion of the currents must be

Ja(z) =
∑

n∈Z
z−n−1Jan . (2.108)

Now we consider the trivial representation of (2.107). It is a one dimensional
vector space out of which we pick a generating element and call it Ω, the vacuum.
We define

JanΩ = 0 ∀n > 0 (2.109)

(note that also Ja0Ω = 0, since Ω is in the trivial representation of g) and form the
space

V = span
{

J
ak−nk . . . J

a1−n1Ω;k ≥ 0 and nk ≥ · · · ≥ n1 ≥ 1
}

. (2.110)

On this we define a Z-grading by

Vn = span
{

J
ak−nk . . . J

a1−n1Ω;k ≥ 0, nk ≥ · · · ≥ n1 ≥ 1, n1 + · · · +nk = n
}

,

(2.111)
that is to say that

Ja−n : Vh ֏ Vh+n and Vh = 0 ∀h < 0 . (2.112)

Vertex operators associated to states in V are defined by

V
(

J
ak−nk . . . J

a1−n1Ω, z
)

= Jak(z)−nk . . . Ja1(z)−n11V . (2.113)

The meaning of the expression on the right hand side is analogous to what we
have seen before in (2.59):

Ja(z)nA(z) =
∮

(z)

dw

2π i
(w − z)nJa(w)A(z) (2.114)

for some product of vertex operators denoted collectively A(z). Expressions like
Jak(z)−nk . . . J

a1(z)−n11 are again evaluated iteratively from right to left. Clearly,
V(Ω, z) = 1, that is the vacuum property holds, and

V(Ja−1Ω, z) = Ja(z) . (2.115)

Interestingly, from the given input, we can establish a very nice result for the
modes Jan = Vn(Ja−1Ω). Using the commutator formula (2.37) (which is at our
disposal with the present input) yields

[

Vm(J
a
−1Ω), Vn(J

b
−1Ω)

]

= Vm+n
(

Ja0 J
b
−1Ω

)

+mVm+n
(

Ja1 J
b
−1Ω

)

. (2.116)
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2.7 Conformal Field Theory with Lie Algebra Symmetry

In the second summand, Ja1 J
b
−1Ω must be proportional to the vacuum, so

Ja1 J
b
−1Ω = kabΩ . (2.117)

Moreover, for Ja0 J
b
−1Ω from the first summand to lie in V , we need to have

Ja0 J
b
−1Ω = f̃ abcJc−1Ω (2.118)

with some constants f̃ abc . Yet, using (2.37) once more, we can argue that

f abcJc0 =
[

Ja0 , J
b
0

]

=
[

V0(J
a
−1), V0(J

b
−1)

]

= V0(J
a
0 J
b
−1Ω) = f̃ abcJc0 , (2.119)

hence f̃ abc = f abc . Therefore, we obtain the remarkable result that the modes Jan
form the affine Lie algebra associated to g

[

Jam, J
b
n

]

= f abcJcm+n +mkabδ(m+n) . (2.120)

Therefore, we call the currents Ja(z) affine currents in the following. A further
analysis of the central term kab reveals that it has to be of the form [82]

kab = kδab . (2.121)

We denote this affine Lie algebra with the symbol ĝk. The constant k appearing
here is called (affine Lie algebra) level. What we now like to show is that V ,
together with the constructions introduced so far, also carries the structure of a
vertex operator algebra. For this, we need to identify a conformal vector ω ∈ V
and establish that the modes Ln of the associated energy momentum tensor do
obey the Virasoro algebra (2.42). Having this, it follows automatically that L1ω =
0 and L2ω = c

2Ω, i.e. that the conformal vector is quasi-primary. Furthermore, it
is then also immediate that L−1 acts as a generator of translations on the energy
momentum tensor and that L0ω = 2ω. Thus, one still needs to show that L−1

acts as a generator of translations on all of the vertex operators (2.113) and that
L0 implements the grading. Let us start to work out what we have just outlined.

As a conformal vector, we identify

ω = 1

2(k+ g∨)J
a
−1J

a
−1Ω . (2.122)

Here and in the following we always sum over doubly occuring Lie algebra indices.
k is the level of ĝk (2.121) and g∨ is the dual Coxeter number of g. It is defined as

−f abcf abd = 2g∨δcd (2.123)

(if the length of the highest root is normalized to be two). Let us now derive an
expression for the modes Ln. According to (2.113), we have

T(z) = V(ω,z) = 1

2(k+ g∨)
∑

n∈Z
z−n−2





∑

m∈Z
JanJ

a
−n+m



 . (2.124)
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2 Chiral Vertex Operators and Conformal Field Theory

Note that there is no ordering ambiguity in the term

Ln =
1

2(k+ g∨)
∑

m∈Z
JanJ

a
−n+m (2.125)

as long as m ≠ 0. For m = 0, the definition of JanJ
a
−n is that the negative modes

are to stand on the left. With (2.125) and (2.120) one readily checks that the
modes Ln satisfy the Virasoro algebra (2.42) with central charge

c = kdim(g)

k+ g∨ . (2.126)

This implies L1ω = 0 and L2ω = c
2Ω byÊ(2.37). Moreover, the commutator be-

tween Lm and Jan comes out to be

[

Lm, J
a
n

] = −nJam+n . (2.127)

Therefore, L0 is really the gradation operator. (2.127) can also be used to check
L1ω = 0 and L2ω = c

2Ω directly. One also straightforwardly confirms that the
vacuum Ω is a primary state of weight zero which is invariant under the action
of L−1. Finally, to show that L−1 is really the generator of translations on V , we
compute

[

L−1, V(J
a
−kΩ, z)

]

=
∑

n∈Z
z−n−k

[

L−1, Vn(J
a
−kΩ)

]

(2.128)

and note that by (2.113)

Vn(J
a
−kΩ) = (−)k−1

(

n+ k− 1

k− 1

)

Jan . (2.129)

Plugging this in,
[

L−1, V(J
a
−kΩ, z)

]

= d

dz
V(Ja−kΩ, z) (2.130)

follows. This extends to arbitrary states J
ak−nk . . . J

a1−n1Ω ∈ V .

Let us summarize: We have shown that the space V (2.110) generated from
the current modes Jan is a vertex operator algebra with energy momentum tensor
given by (2.124) and central charge (2.126). In the literature this goes under the
name Sugawara construction. Additionally, we have seen that the current modes
Jan form an affine Lie algebra (also called current algebra) (2.120) that is entangled
with the Virasoro algebra via (2.127).
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2.7 Conformal Field Theory with Lie Algebra Symmetry

2.7.2 Affine Modules

Next, we wish to construct modules for the vertex operator algebra just defined.
This is accomplished very naturally, in the same way as before in section 2.3.2.
Pick a representation of the Lie algebra g labelled j, say (for a finite dimensional
representation of a semi-simple Lie algebra j would label a highest weight vec-
tor; since we are interested in infinite dimensional representations without any
highest or lowest weights, we do not specify the exact nature of j for the mo-
ment; later, when turning to the H+3 model, there will be an exact and well-defined
meaning, of course). The representation space be spanned by the basis elements
Aj(u). Here, u is an index that labelles the different basis vectors, we might call
it an “isospin coordinate”; again, there will a precise meaning when treating the
H+3 model. Then, we set

JanAj(u) = 0 ∀n > 0 (2.131)

and build the module

W (j) = span
{

J
ak−nk . . . J

a1−n1 Aj(u);k ≥ 0 and nk ≥ · · · ≥ n1 ≥ 1
}

, (2.132)

which is graded in the by now obvious way and comes with the vertex operators

V
(

J
ak−nk . . . J

a1−n1 Aj(u), z
)

= Jak(z)−nk . . . Ja1(z)−n11W (j) . (2.133)

Note that this is not only a module for the Virasoro algebra, but even a module
for the affine Lie algebra (2.120). This is why we shall also call it an affine module.
Condition (2.131) is referred to as Aj(u) being an affine highest weight state or
an affine primary state (in contrast to a Virasoro highest weight state, or Virasoro
primary state (2.61), respectively). From the definition of Virasoro modes Ln
(2.125), every affine primary is also a Virasoro primary, i.e.

LnAj(u) = 0 ∀n > 0 . (2.134)

Moreover, since the Aj(u) form a representation of the zero mode Lie algebra
spanned by the

{

Ja0
}

, Ja0 acts on Aj(u) by the appropriate operator in the repre-
sentation j

Ja0 Aj(u) = DajAj(u) . (2.135)

(This is sometimes referred to as the zero mode representation). We therefore
obtain

L0Aj(u) =
DajDaj

2(k+ g∨)Aj(u) , (2.136)

what is to say that Aj(u) has conformal weight

h = h(j) =
DajDaj

2(k+ g∨) . (2.137)
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2 Chiral Vertex Operators and Conformal Field Theory

Therein, DajDaj is the quadratic Casimir operator for g in the representation j. It
is thus independent of the isospin coordinate u.

The discussion of reducibility of the modules that we have defined here is taken
up in the next section.

2.7.3 Further Restrictions on Correlation Functions

Besides the usual restrictions on correlators from global conformal Ward identi-
ties (see section 2.4.4), there are three more concepts available in the case of Lie
symmetry16: Affine Ward identities, affine singular vectors (which are the current
algebra analogues of the Virasoro singular vectors) and the famous Knizhnik-
Zamolodchikov equations, which basically implement the Sugawara construction
(2.125) on the level of correlation functions.

Affine Ward Identities

Since Ja0Ω = 0 and
(

Ja0
)† = Ja0 , we can derive so-called affine Ward identities

(albeit “Lie algebra Ward identities” were a more appropriate nomination, because
only the zero modes of the currents, i.e. the Lie algebra generators, play a rôle
here). This works in just the same manner as we have demonstrated in section
2.4.4 for global conformal transformations:

0 =
〈

Ω,
(

Ja0
)†

Aj1(z1) . . .Ajn(zn)Ω
〉

=
n
∑

k=1

〈

Ω,Aj1(z1) . . .
[

Ja0 ,Ajk(zk)
]

. . .Ajn(zn)Ω
〉

=
n
∑

k=1

Dajk
〈

Aj1(z1) . . .Ajn(zn)
〉

.

(2.138)

The Lie algebra index runs through a = 1, . . . ,dim(g). Hence, these are dim(g)
many constraints.

Affine Singular Vectors

If an affine moduleW (j) contains a descendant state B(−)j that is annihilated by all
positive current modes Jan , this descendant generates a proper affine submodule.

The moduleW (j) is then reducible and the state B(−)j is called affine singular vec-

tor . In order to make the module irreducible, the proper submodule is quotient

16Virasoro singular vectors (section 2.5) are not available here, as they exist only for the minimal
models, which have central charges c < 1. They are not contained in theories with Lie symmetry,
because for them, c ≥ 1.
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out, hence the singular vector B(−)j is set to zero. The corresponding descendant
field

[

J
ak−nk . . . J

a1−n1 Bj
]

(z) =
∮

(z)

dwk
2π i

(wk − z)−nkJak(wk) . . .

. . .

∮

(z)

dw1

2π i
(w1 − z)−n1Ja1(w1)Bj(z)

(2.139)

must then be set to zero as well. By arguments analogous to those in sections
2.4.3 and 2.5, any correlation function involving the primary field Bj(z) together
with primaries Aj1(z1), . . . Ajn(zn) must satisfy an equation

Jak−nk(z) . . .J
a1−n1(z)

〈

Bj(z)Aj1(z1) . . .Ajn(zn)
〉

= 0 (2.140)

with operators

Jai−ni(z) =
n
∑

ℓ=1





Daijℓ
(zℓ − z)ni



 , (2.141)

where the operator Daijℓ acts on the field ℓ-th field Ajℓ(zℓ) and is therefore taken

in the representation labelled jℓ. A field Bj(z) that gives rise to differential equa-
tions in this manner is called an (affine) degenerate field.

Knizhnik-Zamolodchikov Equations

Due to the Sugawara construction (2.125), from any field Ajℓ(z) we can build the
degenerate field







L−1 −
1

2(k+ g∨)
∑

n∈Z
JanJ

a
−n−1



Ajℓ



 (z) = 0 . (2.142)

Taking Ajℓ(z) to be an affine primary yields
[(

L−1 −
1

k+ g∨ J
a
−1Dajℓ

)

Ajℓ

]

(z) = 0 . (2.143)

Inserting this into a correlator with (n − 1) further primaries, recalling that
[L−1A] (z) = ∂zA(z) and using a simple contour argument once again, one ends
up with



∂zℓ +
1

k+ g∨
n
∑

k≠ℓ

Dajℓ ⊗D
a
jk

(zℓ − zk)





〈

Aj1(z1) . . .Ajn(zn)
〉

= 0 (2.144)

(ℓ ∈ {1, . . . , n}). These are the celebrated Knizhnik-Zamolodchikov equations.
They will be of great importance for our work in chapters 5, 6 and 8, where we
use them to determine various boundary two point functions.
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2.8 Modular Invariance and Conformal Fields: Gluing Together

Chiral Halves

Up to this point, we have only dealt with (chiral) vertex operators and (chiral)
fields. In order to treat a non-chiral theory, we have to add an additional an-
tichiral sector (which is completeley analogous to the chiral sector that we have
discussed so far) and entangle it with its chiral counterpart. This is actually im-
portant for the theory to be consistent at one loop (and higher loops; we will
understand what is meant by loops in a minute). For this purpose, we define
a conformal field Θ(z, z̄) to the (formal) sum of (formal) products of chiral and
antichiral fields:

Θ(z, z̄) =
∑

k,ℓ

MkℓAk(z)Bℓ(z̄) , (2.145)

with constants Mkℓ ∈ C. The indices k, ℓ are representation labels for the under-
lying symmetry algebra (i.e. Virasoro or affine Lie). For the purpose of studying
correlation functions, it is enough to consider one contribution Ak(z)Bℓ(z̄) only,
by linearity. Correlators of such products factorize into a product of a chiral and
an antichiral correlator, so there is nothing new here. Note however that the OPE
for fields Θ(z, z̄) can become more entangled17.

Not all “gluings” (2.145) of chiral and antichiral parts lead to a consistent CFT.
So far, we have always considered a CFT on the sphere. But studying it on higher
genus Riemann surfaces (genus g corresponding to a g-loop closed string am-
plitude), a restriction on the coefficients Mkℓ is inevitable. In order to state this,
consider the chiral torus amplitudes (or characters)

χk =
〈

Ak, e
2π iτ(L0− c

24 )Ak
〉

(2.146)

(we had argued for the existence of a scalar product on the modules W (k)). τ is
the modulus of the torus. An analogous definition is given to the antichiral char-

acters. Since τ and τ′ = aτ+b
cτ+d with

(

a b
c d

)

∈ SL(2,Z)/Z2 correspond to equivalent
tori, the full torus amplitude (or partition function)

Z =
∑

k,ℓ

Mkℓχkχ̄ℓ (2.147)

must be invariant under τ ֏ τ′. This restricts the coefficients Mkℓ severly. Usu-
ally, one considers diagonal theories: Mkℓ ∝ δ(k−ℓ). This is also what we restrict
to in the following.

17In the H+3 model, chiral factorization for the correlation functions was shown to hold [66]. Yet, the
OPE does not factorize, due to the internal isospin space; see (3.6) and (3.30).
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3 Review of the Bulk H
+
3 CFT

The bulk H+3 model has been fairly well studied, see [83, 66, 84] and [85]. Here, we
essentially fix our notation (which follows very closely [72]) and summarize those
facts and formulae that will be indispensable for our work. They can basically
all be found in [83, 66] and [72]. In the last subsection (section 3.5.3), we give
the explicit expressions for the b−2/2-OPE coefficients that are needed for our
calculations in chapters 6 and 8 and that we have found in [67].

3.1 Action and Spectrum

The space H+3 is euclidean three dimensional Anti-de-Sitter space (euclideanAdS3).
Thinking of AdS3 as the group manifold of SL(2,R), i.e. in terms of matrices

(

X0 +X1 X2 −X3

X2 +X3 X0 −X1

)

with
(

X0
)2
−
(

X1
)2
−
(

X2
)2
+
(

X3
)2
= 1 , (3.1)

one sees that under euclidean rotation X3 ֏ iX3, we end up with the space H3 of
matrices that are parametrized by a three dimensional hyperboloid

(

X0 +X1 X2 − iX3

X2 + iX3 X0 −X1

)

with
(

X0
)2 −

(

X1
)2 −

(

X2
)2 −

(

X3
)2 = 1 . (3.2)

Concentrating on the upper shell of that hyperboloid only, gives the space H+3

H+3 =
{

h ∈ SL(2,C);h = h† , tr(h) > 0
}

. (3.3)

Obviously, the group SL(2,C) acts on this space via

g :

{

H+3 → H+3
h֏ ghg† for g ∈ SL(2,C) . (3.4)

This is to say that H+3 is a homogeneous space with respect to SL(2,C). It has
been analysed in [86] how the square integrable functions (with respect to the
existent Haar measure dh) on this space decompose under the SL(2,C) action
with the result (see also [87])

L2(H+3 |dh) =
∫ ⊕

C+
dj
[

Im(j)
]2R(0,j) . (3.5)
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The direct integral is taken over C+ = − 1
2 + iR≥0 and the spaces R(0,j) are rep-

resentation spaces of the unitary principal continuous series representations of
SL(2,C). (The complete list of theses spaces is parametrized by R(k,j) for integer
k and j ∈ C+. They are certain L2 spaces over the Riemann sphere; see appendix
A for a proper description.) A basis of generalized plane waves for functions in
L2(H+3 |dh) according to the decomposition (3.5) is provided by [86]

Aj(u|h) = 2j + 1
π

(

(

1 u
)

· h ·
(

1
ū

))2j

(3.6)

with j ∈ C+ and u ∈ Ĉ, i.e. by vectors Aj(u|·) whose components are la-
belled by elements h ∈ H+3 . These results suggest that the spectrum of high-

est weight states in the H+3 model coincides with
{

Aj(u|·); j ∈ C+ , u ∈ Ĉ
}

and

that the states Aj(u|·) should be understood in a distributional sense [66]. By
this it is meant that Aj(u|·) becomes meaningful only if integrated against a test
function, which is chosen from the Schwartz space S(H+3 ), the dense subspace of
L2(H+3 |dh) of rapidly decreasing functions.

Formulating a bosonic string theory in the H+3 background, i.e. writing down
the corresponding nonlinear sigma model, one needs to incorporate a nontrivial
B-field (NSNS two form)1 [88]. If one chooses the following parametrization of
the space H+3

h =
(

eφ eφγ̄
eφγ eφγγ̄ + e−φ

)

∈ H+3 (3.7)

with real φ and complex γ, the metric becomes

ds2 = dφ2 + e2φdγdγ̄ . (3.8)

In these coordinates, a possible choice of B-field2 reads [72]

B = e2φdγ ∧ dγ̄ . (3.9)

The resulting action

S = k

π

∫

C

dzdz̄
(

∂φ∂̄φ+ e2φ∂γ∂̄γ̄
)

(3.10)

has an sl(2,C) symmetry and according to section 2.7, the associated currents

will build an ŝl(2,C)k affine Lie algebra (2.120) from which the spectrum of the
theory is generated. The action (3.10) has also been derived in [89] from the
viewpoint of gauged WZNW models (viewing H+3 as the left coset SL(2,C)/SU(2)).
The author of [89] carried out a path integral quantization with that action and

1The dilaton may remain constant.
2Only the field strength H = dB is unambiguous.
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thus derived the partition function of the model. Reading off the spectrum of the
theory confirms the expectations from the previous and the present paragraph:
The space of states is an affine module (as in section 2.7.2) generated from the

representations R(0,j) by ŝl(2,C)k currents Ja(z) = ∑

n z
−n−1Jan, a ∈ {+,−,3}

(plus a corresponding antichiral sector). The partition function of [89] can be
obtained from the diagonal combination of affine characters (see section 2.8).
For a discussion of its modular invariance see [90].

3.2 The Vertex Operator Algebra and its Modules

Following section 2.7.1, we build a vertex operator algebra from the vacuum Ω.
Besides Ω, it contains three more Virasoro primaries (that are however not affine
primaries), namely the states Ja−1Ω (a ∈ {+,−,3}) with conformal weight 1. More-
over, with the conformal vector there is also a (Virasoro) quasi-primary with con-
formal weight 2. The associated vertex operator are of course the currents Ja(z)
and the energy momentum tensor T(z). The vertex operator algebra thus en-
codes the symmetries of the theory. The Sugawara construction described in
section 2.7.1 expresses the energy momentum tensor in terms of the currents
and thereby establishes the usual formula for the central charge:

c = 3k

k+ 2
, (3.11)

since g∨ = 2 for the sl(2,C) Lie algebra.
The construction of modules for that vertex operator algebra works as de-

scribed in section 2.7.2. From what we have discussed in the previous section,
we need to provide a module corresponding to each sl(2,C) representation of
the principal continuous series with j ∈ − 1

2 + iR≥0 (plus antichiral counterparts).
Denote such a module W (j). It is build from the state Aj(u|·) that we have in-
troduced above and which transforms in the sl(2,C) representation R(0,j). We
denote its integrated (against a test function) version by Aj(u) for simplicity (we
should actually denote the test function as an index). The Lie algebra sl(2,C) acts
on it by the differential operators

D+
j (u) = −u2∂u + 2ju, D−

j (u) = ∂u, D3
j(u) = u∂u − j , (3.12)

i.e. we have
Ja0 Aj(u) = Daj (u)Aj(u) . (3.13)

Analogous formulae hold for the antichiral sector. Primary fields corresponding
to states Aj(u)⊗ Āj(ū) will be denoted Θj(u, ū|z, z̄). However, from now on we
will always suppress the barred variables. Their OPE with a chiral current reads

Ja(z)Θj(u|w) ∼
Daj (u)Θj(u|w)

(z −w) (3.14)
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3 Review of the Bulk H+3 CFT

and the Sugawara construction induces a relation between conformal weight h
and ’spin’-label j (see (2.137)):

h(j) = j(j + 1)
k+ 2

, (3.15)

since the Casimir operator in the representationR(0,j) isDaj (u)Daj (u) = j(j+1).

Note that for j = − 1
2 + is (s ∈ R) the Casimir is always negative: j(j + 1) =

− 1
4 − s2. As the conformal weight h(j) must be bounded from below by the

grading restrictions, the model does only make sense if we take the level to be
such that k+ 2 < 0 and thus h(j) > 0. Consequently, the level must be negative
and we shall replace it by its negative k֏ (−k) for convenience. With this altered
convention, the formulae for conformal weight and central charge become

h(j) = −j(j + 1)
k− 2

≡ −b2j(j + 1)

c = 3k
k− 2

(3.16)

and we need to take k in the range k ∈ (2,∞). In the equation for h(j) we have
implicitely defined the parameter b for later use.

Note that there is a reflection symmetry, namely h(−j − 1) = h(j). This leads
one to identify the representations with labels j and −j − 1 and gives rise to a
relation between primary fields Θj(u|z) and Θ−j−1(u|z):

Θj(u|z) = −R(−j − 1)
2j + 1
π

∫

C

d2u′|u−u′|4jΘ−j−1(u
′|z) , (3.17)

where the reflection amplitude R(j) is given by3

R(j) = −ν2j+1
b

Γ(1+ b2(2j + 1))

Γ(1− b2(2j + 1))
. (3.18)

3.3 Correlation Functions

In the following we assemble and comment on the expressions for the two and
three point functions. Crucially, the latter involve the structure constants of the
theory which also determine the OPE coefficients. They were derived in [83].

3The following expression can be derived from knowledge of the three point function; see section
3.3.3.
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3.3.1 A Remark on the Ward Identities

The structure of the correlators in isospin and worldsheet coordinates is entirely
fixed from affine and global conformal Ward identities respectively. Looking back
at the affine Ward identities (2.138) and the definition of the operators that real-
ize the sl(2,C) action (3.12), one recognizes that the affine Ward identities take
just the same form (up to signs) as the global conformal Ward identities (2.91) in
this case (of course with the difference that the former act on the isospin vari-
able u, but the latter on the worldsheet coordinate z). This is not at all surprising,
since both algebras that generate the Ward identities (i.e. the underlying Lie al-
gebra and the global conformal algebra) are sl(2,C) for the H+3 model. Therefore,
correlation functions must look almost the same (up to some signs again) in the
variables u and z.

3.3.2 Two Point Function

Due to the reflection symmetry h(j) = h(−j−1), the two point function is a sum
of two terms. Therefore, we have to include one a priori unknown coefficient that
cannot be fixed by choosing the normalization of the fields:

〈

Θj2(u2|z2)Θj1(u1|z1)
〉

= |z2 − z1|−4h(j1)·

·






−
(

π

2j1 + 1

)2

δ(2)(u2 −u1)δ(j1 + j2 + 1)+

+ B−1(j1)|u2 −u1|4j1δ(j1 − j2)







.

(3.19)

The normalization that we chose in the first term may seem a bit awkward at
first sight. Yet, it is convenient for working in the boundary H+3 CFT which is our
ultimate goal. See also the remarks in [66] and [72]. Moreover, as the standard
reference on the boundary theory [72] works with the same normalization as we
do here, it is ensured that we can later conveniently compare our expressions to
theirs.

The z- and u-dependencies in the two point function (3.19) are fixed from the
global conformal and affine Ward identities as usual. They do indeed allow for
both, the ∝ δ(2)(u2 −u1) as well as the ∝ |u2 −u1|4j1 term. Note however, that
the form given above is the only one consistent with the reflection relation (3.17)
of the fields. Using it in the two point function, one can determine the coefficient
B(j) in terms of the reflection amplitude. It must be

B(j) = 2j + 1

π
R(j) . (3.20)
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3.3.3 Three Point Function

Global conformal invariance and the affine Ward identities fix the z- and u-
dependence as usual and determine the three point function up to the structure
constants:

〈

Θj3(u3|z3)Θj2(u2|z2)Θj1(u1|z1)
〉

= C(j3, j2, j1)·
·|z3 − z2|−2h32|z3 − z1|−2h31|z2 − z1|−2h21·
·|u3 −u2|2j32 |u3 −u1|2j31 |u2 −u1|2j21 .

(3.21)

Here, h12 = h1 + h2 − h3, etc. and j12 = j1 + j2 − j3, etc. The crucial part of
information are the structure constants C(j3, j2, j1). They have been derived in
[83] and are given by

C(j3, j2, j1) = G(j1 + j2 + j3 + 1)G(j1 + j2 − j3)G(j1 + j3 − j2)G(j2 + j3 − j1)

ν
j1+j2+j3+1
b G0G(2j1)G(2j2)G(2j3)

.

(3.22)
The parameters νb and G0 are left arbitrary from the original derivation. Still,
they can be fixed by taking one field in the three point correlator to be the identity
and matching the resulting expression with the two point function. (Taking one
field to be the identity is to be understood as a limit here that one has to take
carefully in order to recover the ∝ δ(2)(u2−u1) term; see [66]). With our desired
normalization of the two point function (3.19), the resulting expressions read

νb = π
Γ(1− b2)

Γ(1+ b2)
, (3.23)

G0 = 2b−4G(−1) . (3.24)

Γ is just the ordinary Euler gamma function. The function G is more involved.
It is related to the Υ function (that also occurs in the Liouville three point func-
tion; see [91, 92] and section 7.1) via G(j) = b−b2j(j+1+b−2)Υ−1(−bj), where Υ is
constructed from Barnes’ double gamma function Γ2:

Υ
−1(s) = Γ2(s|b,b−1)Γ2(b + b−1 − s|b,b−1) , (3.25)

log Γ2(s|ω1,ω2) = lim
t→0

∂

∂t

∞
∑

n1,n2=0

1
(s +n1ω1 +n2ω2)t .

(3.26)

The G-function has the following properties [66]:

G(j) = G(−j − 1− b−2) ,

G(j − 1) = Γ(1+ b2j)

Γ(−b2j)
G(j) , G(j − b−2) = b2(2j+1) Γ(1+ j)

Γ(−j) G(j) .
(3.27)
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3.4 Operator Product Expansion

Using these functional relations, it can be analytically continued to the complex
plane and then has poles at

j = n+mb−2 and j = −(n+ 1)− (m+ 1)b−2 , (3.28)

n,m ∈ Z≥0. The last point we like to mention about the structure constants is
that we can determine the reflection coefficient (3.18) with their help. This works
simply by using the reflection relation (3.17) between field Θj and Θ−j−1 in the
three point function and employing the explicit form of the structure constants
(3.22). In particular the relation

C(j, j2, j1) = (2j + 1)ν
−(2j+1)
b

Γ(1− b2(2j + 1))

Γ(1+ b2(2j + 1))
·

· γ(j1 − j2 − j)γ(j2 − j1 − j)
γ(−2j)

C(−j − 1, j2, j1) ,

(3.29)

where γ(z) = Γ(z)
Γ(1−z) , is crucial here. One derives it with the help of (3.27). The

result for R(j) is written in equation (3.18).

3.4 Operator Product Expansion

Due to the continuous spectrum of heighest weight states, the OPE involves an
integral here (rather than a finite sum as in ordinary RCFT). This works fine for
the operators to be fused corresponding to states in the physical spectrum j ∈
− 1

2 + iR≥0 and even for j lying in a strip around that line (we are making this
precise in 3.4.1). This is the generic case and we will describe it first. However,
as soon as the initial strip is left, one has to take care of singularities of the
integrand that happen to cross the contour of integration. In order to reach these
regions of the complex j-plane, one needs to make an analytic continuation of
the OPE. That process is explained in the second subsection. The complete OPE
was first constructed by Teschner in [66].

3.4.1 Generic Case

The OPE takes the form

Θj2(u2|z2)Θj1(u1|z1) ∼
∫

C+
dµ(j)C(j, j2, j1)|z2 − z1|−2h12|u2 −u1|2j12

· [J21(j)Θ
]

−j−1 (u|z1) ,
(3.30)

where, as usual, by ∼ we mean weak equality up to descendant contributions. The
contour of integration is C+ = − 1

2 + iR≥0 and the normalization of the measure
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3 Review of the Bulk H+3 CFT

dµ(j) = − (2j+1)2

π2 dj is due to the normalization of fields chosen earlier in the two
point function. Furthermore, the operator J21(j) is defined by

[J21(j)Θ
]

−j−1 (z) =
∫

C

d2u|u−u2|2(j+j2−j1)|u−u1|2(j+j1−j2)Θ−j−1(u|z) . (3.31)

Using this OPE in the three point function, one readily confirms its consistency. It
is instructive to rewrite the integral a little. Using (3.29) and the reflection relation
(3.17), one can show that the integrand in (3.30) is invariant under j ֏ (−j − 1).
Consequently, the integral can be extended to the full contour C = − 1

2 + iR:

Θj2(u2|z2)Θj1(u1|z1) ∼ 1

2

∫

C
dµ(j)C(j, j2, j1)|z2 − z1|−2h12|u2 −u1|2j12

· [J21(j)Θ
]

−j−1 (u|z1) .
(3.32)

The integrand has poles that stem from the G-functions in the structure con-
stants and from the operator

[J21(j)Θ
]

−j−1 (u|z1). These latter poles come from

the terms ∝ |u − u2|2(j+j2−j1) and so on, since they have poles in j whenever
j = j1 − j2− 1−n for n ∈ Z≥0 (and analogously for the other factors). The list of
poles has been studied in [66] and is given by

j = j±21 − 1−n−mb−2 , j = j±21 +n+mb−2 ,

j = −j±21 − 1−n−mb−2 , j = −j±21 +n+mb−2 ,
(3.33)

where j+21 = j2 + j1 + 1, j−21 = j2 − j1 and n,m ∈ Z≥0. Therefore, as long as



Re(j±21)


 <
1
2
, (3.34)

no poles lie on the contour C. Even more, the poles in the left column of (3.33) lie
entirely to the left of the contour in this case and the poles in the right column
of (3.33) all lie to the right of C. Particularly, for j1, j2 ∈ − 1

2 + iR≥0 (i.e. in the
physical spectrum) the bound (3.34) is obeyed.

3.4.2 Analytic Continuation

As soon as one of the j±21 leaves the region (3.34), some of the poles (3.33) cross
the contour C. The analytic continuation of the OPE (3.32) to these regions in
the j-plane is defined in [66] by deforming the contour in such a way that again
all the poles lie either entirely to its left or to its right, as it is the case in the
initial region (3.34). The integral over this deformed contour can then be rewrit-
ten as one over C plus a sum of residue terms from the poles that have crossed
the original contour. In this way, additional contributions to the OPE are picked
up. Note that the procedure just described is very reminiscent of what one does
when analytically continuing Gauss’ hypergeometric function in the integral rep-
resentation.
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3.5 OPEs Involving Degenerate Fields

3.5 OPEs Involving Degenerate Fields

3.5.1 Reducible ŝl(2,C)k Modules

By the results of [83], the affine modulesW (j) are irreducible for j ∈ C = − 1
2+iR,

but become reducible, if

j = jr ,s = −1
2
+ 1

2
r + b

−2

2
s, (3.35)

where either r ≥ 1, s ≥ 0 or r < −1, s < 0. The primary fields Θjr ,s are conse-
quently degenerate fields. As the structure constants (3.22) are analytic functions
of the “spin”-labels and the OPE has an analytic continuation to spins jr ,s as in
(3.35), correlation functions with Θjr ,s field insertions are well-defined [83]. This
is known in the literature as “Teschner’s trick” (see for example [77]). In the
course of our work, we shall make use of the degenerate fields associated to
j2,0 = 1/2 and j1,1 = b−2/2.

Taking the OPE with a degenerate field Θjr ,s , only a finite set of operators is
produced. One might wonder how this is incorporated by the above OPE (3.32).
The answer is the following: For jr ,s as in (3.35), the OPE coefficients are gener-
ically zero, due to the factor of G(2jr ,s) in the denominator (recall (3.28)). The
continuous part of the OPE (3.32) therefore vanishes. But still, finitely many con-
tributions from poles that cross the contour C are picked up. The analysis is
slightly tedious here, as one needs to look out for double poles in the numerator
of the integrand that cancel the present simple pole of the denominator in order
to yield an overall simple pole. Also, several poles of the numerator coincide and
one needs to separate them carefully by adding small imaginary parts, before the
contour can be deformed in a reasonable way [93]. Through the deformation,
these poles may however become truly separated, that is they will not coincide
again when the imaginary parts are removed. This is why one needs to be ex-
tremely careful when looking out for poles of the numerator that really become
double poles. In the following, we do not go into this tedious business, but rather
refer to the literature [66, 93] and state the results for the OPE coefficients that
are needed later, in chapters 5, 6 and 8.

3.5.2 OPE with Degenerate Field Θ1/2

The OPE coefficients with the degenerate field Θ1/2 are written in [72], using the
same normalization as we do. Since Θ1/2 is degenerate, the OPE is highly re-
stricted. Only the field operators with j+ = j + 1/2 and j− = j − 1/2 do occur.
This can also be seen directly from the OPE (3.32). The corresponding coefficients
are

C+(j) = 1 , C−(j) = 1

νb

Γ(−b2(2j + 1))Γ(1+ 2b2j)

Γ(1+ b2(2j + 1))Γ(−2b2j)
. (3.36)
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3.5.3 OPE with Degenerate Field Θb2/2

The singular vector labelled by b−2/2 restricts the possibly occuring field opera-
tors in the operator product to those with labels j+ := j + b−2/2, j− := j − b−2/2
and j× := −j−1−b−2/2. The corresponding OPE coefficients have been calculated
by us in [67]. We obtain

C+(j) = 1, C−(j) = −ν−b−2

b

[

b2(2j + 1)
]−2
,

C×(j) = −
ν
−2j−1−b−2

b

b4

Γ(1+ b−2)

Γ(1− b−2)

Γ(1+ 2j)Γ(−1− 2j − b−2)Γ(−b2(2j + 1))
Γ(−2j)Γ(2+ 2j + b−2)Γ(1+ b2(2j + 1))

.

(3.37)
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Part II

Branes and Boundaries
[. . . ] the scientist must premise current
theory as the rules of his game. His object is
to solve a puzzle, preferably one at which
others have failed, [. . . ]

Thomas S. Kuhn, Logic of Discovery or
Psychology of Research?
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4 Boundary Conformal Field Theory

In this chapter we review the basic techniques and results of conformal field
theory with boundary that are relevant for our work. We shall always take the
real axis Im(z) = 0 to be the boundary and consider a conformal field theory on
the (closure of the) upper half plane H̄ = {z ∈ C; Im(z) ≥ 0}. Global conformal
transformations z ֏ az+b

cz+d have to leave the boundary invariant and hence, half
of the global conformal SL(2,C)/Z2 symmetry is broken, leaving only

(

a b
c d

)

∈ SL(2,R)/Z2 . (4.1)

In addition, local conformal tranformations need to have real coefficients. This
will entangle chiral and antichiral currents when passing from a given bulk CFT
to its associated boundary CFT and henceforth we can no longer focus on one
chirality only. We will discuss this fact and its consequences in the next section.
Section 4.2 gives an overview of the sewing constraints in boundary CFT which
were found by Cardy-Lewellen [70] and Lewellen [71].

4.1 Basic Techniques of Boundary Conformal Field Theory

4.1.1 Gluing Conditions and Transformation Formulae

In order to discuss a CFT on the upper half plane only, we need to decouple it
from the lower half plane. This is achieved by imposing the condition that no
energy and momentum flow across the boundary, which is the real axis. This
amounts to requiring that

T(z) = T̄ (z) at Im(z) = 0 (4.2)

This is called the conformal gluing condition. Comparing coefficients, it readily
implies that chiral and antichiral Virasoro generators are no longer independent,
but must be related as

Ln = L̄n . (4.3)

Consequently, there is only one set of independent Virasoro generators and the
distinction between chiral and antichiral fields is lost. Let us pick all the chiral
generators to form one set of independent symmetry generators. Then, what pre-
viously (in the bulk CFT) were antichiral parts of conformal fields, now transform
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under the action of chiral generators:
[

Ln, Āh̄(z̄)
]

=
[

L̄n, Āh̄(z̄)
]

. Essentially, pre-
viously antichiral fields are reinterpreted as chiral ones and also their coordinates
z̄ behave like chiral coordinates. A primary field Θh,h̄(z, z̄) = Ah(z)Āh̄(z̄) hence
transforms as

[

Ln,Θh,h̄(z, z̄)
]

=
{

zn+1 d

dz
+ h(n+ 1)zn

}

Θh,h̄(z, z̄)+

+
{

z̄n+1 d

dz̄
+ h̄(n+ 1)z̄n

}

Θh,h̄(z, z̄) .

(4.4)

For the purpose of subjecting correlators of these fields to differential equations
(like Ward identities or singular vector equations) the coordinate z̄ remains inde-
pendent of z. Only after the differential equations have been solved are we taking
the physical cut, which is still z̄ = z∗ (as in bulk CFT). In boundary CFT, the inter-
pretation of this is that one thinks of the antichiral degrees of freedom as being
mapped to chiral ones living in the lower half plane. But it is very important to
keep in mind that this interpretation is only appropriate after having subjected
the correlation functions to the constraining differential equations.

For affine currents Ja(z), we usually also impose gluing conditions, so-called
affine gluing conditions. The related boundary conditions are then referred to as
maximal symmetry preserving boundary conditions. We write them as

Ja(z) = ρabJ̄b(z) at Im(z) = 0 . (4.5)

The map ρ is the gluing map. It must be such that the conformal gluing condition
(4.2) is preserved (recall that the Sugawara construction (2.125) expresses the en-
ergy momentum tensor in terms of the affine currents). Usually, there is more
than one possible choice for ρ. This groups the boundary conditions into a num-
ber of different classes. By the same reasoning as before, an affine gluing con-
dition leaves only one half of the original Lie symmetry generators independent.
Again, we take these to be the chiral ones, with the consequence that previously

antichiral fields are reinterpreted as chiral ones:
[

Jan, Ā̄(z̄)
]

=
[(

ρabJ̄
b
n

)

, Ā̄(z̄)
]

.

Affine primary fields Θj,̄(z, z̄) = Aj(z)Ā̄(z̄) transform as

[

Jan,Θj,̄(z, z̄)
]

= znDajΘj,̄(z, z̄)+ z̄n
(

ρabD̄b̄
)

Θj,̄(z, z̄) . (4.6)

Again, it is very important to note that the physical cut z̄ = z∗ is only taken after
having imposed differential equations (like Ward identities, singular vector or
Knizhnik-Zamolodchikov equations) to correlation functions of the fields. In the
process of solving differential equations, the coordinate z̄ remains independent
of z.
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4.1.2 Boundary Ward Identities

Proceeding as in sections 2.4.4 and 2.7.3, but taking care of (4.4) and (4.6), one
derives the global conformal boundary Ward identities

n
∑

k=1







zi+1
k ∂zk +wi+1

k ∂wk+

+ (i+ 1)
[

zikhk +wikh̄k
]







〈

Θh1,h̄1
(z1,w1) . . .Θhn,h̄n(zn,wn)

〉

= 0,

(4.7)

where i ∈ {−1,0,1}, and the affine boundary Ward identities

n
∑

k=1



Dajk +
(

ρabD̄b̄k
)





〈

Θj1,̄1(z1,w1) . . .Θjn,̄n(zn,wn)
〉

= 0, (4.8)

with a = 1, . . . ,dim(g). We have named the second coordinate wk to indicate that
it is just another (at this instant independent) chiral coordinate. After having
solved theses equations, one imposes wk = z∗k (k = 1, . . . , n).

4.1.3 Boundary Knizhnik-Zamolodchikov Equations

The same reasoning as in section 2.7.3 that lead to (2.144) applies. Implement-
ing the Sugawara construction (2.125) at the level of correlators and accounting
for euqations (4.4) and (4.6), one obtains the boundary Knizhnik-Zamolodchikov

equations



(k+ g∨)∂zℓ +
n
∑

k≠ℓ

Dajℓ ⊗D
a
jk

(zℓ − zk)
+

+
n
∑

k=1

Dajℓ ⊗
(

ρabD̄b̄k
)

(zℓ −wk)





〈

Θj1 ,̄1(z1,w1) . . .Θjn,̄n(zn,wn)
〉

= 0



(k+ g∨)∂wℓ +
n
∑

k≠ℓ

(

ρabD̄b̄ℓ
)

⊗
(

ρabD̄b̄k
)

(wℓ −wk)
+

+
n
∑

k=1

(

ρabD̄b̄ℓ
)

⊗Dajk
(wℓ − zk)





〈

Θj1 ,̄1(z1,w1) . . .Θjn,̄n(zn,wn)
〉

= 0 ,

(4.9)

ℓ ∈ {1, . . . , n}. The same comments about the coordinates zk and wk as before
apply.
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4.1.4 Additional Operators and OPEs

Boundary Field Operators

In addition to bulk field operators Θh(z) (from now on suppressing the antichiral
part), we can also have operators that are inserted on the boundary. Denote them
Ψ(x) (x ∈ R). On primary fields Ψ(x), the Virasoro generators Ln act as

[Ln,Ψ(x)] = xn+1 d

dx
Ψ(x)+ hΨ (n+ 1)xnΨ(x) . (4.10)

Global conformal covariance is reflected in the SL(2,R)/Z2 transformation

∆(g)Ψ(x)∆−1(g) = (cx + d)−2hΨΨ(g · x) , g · x = ax + b
cx + d . (4.11)

Boundary operators can also carry boundary condition changing labels. Consider
a set of boundary conditions labelled by a parameter α. A boundary field Ψβα(x)
changes boundary condition α to the one labelled β. A boundary field without
such labels (as we have written down above) does actually not exist. But most
of the time (at least for our purposes), it will just be of the type Ψαα(x), i.e.
boundary condition preserving. We shall sometimes take the freedom to leave
out such boundary preserving indices.

Bulk-Boundary OPE

Besides the usual OPE between two bulk fields (section 2.6), there are now addi-
tional operator expansions: The boundary OPE between two boundary fields and
the bulk-boundary OPE in which a bulk field is expanded in terms of boundary
fields. We only discuss the latter here. It reads1 (assuming a diagonal CFT, i.e.
h = h̄)

Θh(z) =
∑

Ψ

(z − z∗)−2h+hΨC(h,hΨ |α)
{

Ψ
αα(z)

∣

∣

∣

(z=z∗) + O(z − z
∗)
}

(4.12)

and can be thought of as the bulk OPE of the chiral parts of Θh(z) = Ah(z)Āh(z̄)
after having taken the physical cut. The z-dependence is fixed from conformal
covariance and the O(z − z∗) corrections to the leading term indicate descen-
dant contributions. The sum over boundary fields Ψ is taken over “all Ψ that
contribute” and the determination of that set is the problem of determining the
values of h, hΨ and α for which the bulk-boundary OPE coefficients C(h,hΨ |α)
are non-zero. The bulk-boundary OPE coefficients are related to certain two point
functions in the same manner as the bulk OPE coeffcients (for the leading terms)

1In the nonrational H+3 model, there is a subtlety here which requires the distinction of two different
forms of the bulk-boundary OPE. See section 5.2.4.
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are related to the three point functions (structure constants). This is easily seen
when one writes (4.12) in the following way

Θh(z) =
∑

Ψ

|x − z|2hΨ 〈Θh(z)Ψ(x)〉α
{

Ψ
αα(z)

∣

∣

∣

(z=z∗) + O(z − z
∗)
}

. (4.13)

The factor of |x−z|−2hΨ is included to make the expression on the right hand side
independent of the auxiliary variable x. The correlation function 〈Θh(z)Ψ(x)〉α
measures the overlap of the boundary field2 Ψ(x) with the bulk field Θh(z) in the
presence of boundary condition α. Demanding conformal covariance, it is given
by

〈Θh(z)Ψ(x)〉α = |x − z|−2hΨ (z − z∗)−2h+hΨC(h,hΨ |α) (4.14)

wherein we recover the bulk-boundary OPE coefficient.

4.1.5 Correlation Functions

Correlation Functions in the presence of a boundary condition are again partly de-
termined from Ward identities (see (Conf-Bdry-Ward-Ids) and (Affine-Bdry-Ward-
Ids)). Besides the bulk-boundary OPE coefficient and its related correlator, there
are more additional basic correlators in boundary CFT. We do not discuss the cor-
relators between boundary fields here (since we do not need them later), but com-
ment on the important one point functions and the two point functions. From
now on, we usually talk about correlation functions of bulk fields in the presence
of some boundary condition. For brevity, we shall refer to these as correlation
functions. Whenever we mean a different situation this will be indicated.

One Point Function

Global conformal covariance determines the one point function up to a constant,
the one point amplitude A(h|α):

〈Θh(z)〉α = |z − z∗|−2hA(h|α) . (4.15)

Seen as a special case of the bulk-boundary OPE coefficient, the one point am-
plitude measures the coupling of a bulk field with conformal weight h to the
identity field on the boundary:

A(h|α) = C(h,0|α) . (4.16)

These couplings encode much information about the boundary conditions. Cardy
[75] and Ishibashi [94] have invented the concept of a boundary state in order to
describe boundary conditions in rational CFT. Here, the set of one amplitudes
contains all information to determine the boundary state. Demanding S-duality

2As remarked above, Ψ(x) should more correctly be denoted Ψαα(x).
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of the boundary partition function, one can then use the boundary state formal-
ism to derive the spectrum of boundary operators associated to given boundary
conditions [75]. Thus, the determination of the set of one point amplitudes is
a central problem in boundary CFT and it is also at the heart of our study in
chapters 5, 6 and 8. In RCFT, this problem can generally be addressed by study-
ing the so-called sewing relations (or Cardy-Lewellen constraints, see section 4.2)
that correlation functions need to obey in order to yield a consistent boundary
CFT. We will make use of this approach as well, but we shall see that in the nonra-
tional H+3 model one needs to assume a certain continuation prescription in order
to make this method work. As we can show that two different assumptions are
possible, the status of the sewing relations in nonrational CFT is not completely
settled. We discuss this issue in chapters 6, 8 and in the conclusion, chapter 9.

Remark on the Two Point Function

In the presence of a boundary, it is already in the two point function that global
conformal covariance ceases to be sufficient for the determination of the full
coordinate dependence of correlation functions. From the point of view of differ-
ential equations, determining the two point function is the same as calculating a
chiral four point function in bulk CFT. That is, it involves conformal blocks that
depend on a crossing ratio. The sewing relation we are going to examine in detail
in chapters 5, 6 and 8 (and that we review among others in the next section) is
a constraint on the two point function. The explicit construction of two point
functions is therefore a reoccuring theme in our analysis.

4.2 Cardy-Lewellen Constraints

It is a well-known fact that any bulk CFT (i.e. closed string) amplitude on any de-
sired Riemann surface can be obtained by “sewing together” three point functions
on the sphere (also known under the figurative term "pair of pants"), provided
that the four point function is crossing symmetric and the partition function
modular invariant. Lewellen [71] has shown that in case of boundary CFT four
additional sewing constraints arise. Furthermore, Cardy and Lewellen [70] and
Lewellen [71] have shown that in the case of rational CFT, these sewing relations
can be solved in terms of bulk quantities alone. The bulk structure data which
are needed in this enterprise are the S-matrix that acts on the characters under
modular S-transformations, the bulk OPE coefficients and the conformal blocks.
The method is basically a generalization of the conformal bootstrap to boundary
CFT and provides a tool for the determination of the additional boundary CFT
structure data like the one point amplitude, bulk-boundary and boundary OPE
coefficients out of the given bulk data.
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β α

=

β

∧∨

α

Figure 4.1: S-Duality in BCFT. The amplitude for closed strings to be created from
the brane-vacuum β, propagate and be absorbed by the brane α equals
the one loop vacuum amplitude for open strings with one end at-
tached to the brane β and the other end to brane α.

So what are the additional four constraints? The first one is concerned with
the consistency of the CFT of boundary fields. It demands crossing symmetry
of the four point functions involving boundary operators (i.e. open strings) only.
The second constraint is the S-duality of the boundary partition function that
we have already mentioned above and that is drawn in figure 4.1. Condition
number three concerns the boundary-boundary-bulk (or open-open-closed) am-
plitude (see figure 4.2). Finally, the constraint that is of major interest to us,
is a relation for the closed-closed-open amplitude, see figure 4.3. In this orig-
inal form it is rather tedious to implement, but if we take the open string to
be the identity, it clearly becomes the crossing symmetry relation of a chiral
four point function. It is in this form that we shall implement the constraint in
our work. From the graphical representation in figure 4.3, we can see that the
left hand side (or rather upper side), when the open string is taken to be the
identity, involves terms ∝∑

q C(j1, q|α)C(j2, q|α), where we sum over propagat-
ing open strings q. The expression on the right hand side (lower side) contains
∝ ∑

j C(j1, j2, j)A(j|α) with a sum over closed strings j. Projecting both sides
onto the contribution of the identity open string channel only, the expression
that we have written for the left hand side becomes a product of two one point
amplitudes3 ∝ A(j1|α)A(j2|α). On the right hand side, taking this projection

3Due to a subtlety in the bulk-boundary OPE, one actually needs to distinguish two different possi-
bilities in the case of the nonrational H+3 model, see section 5.2.4. We had already mentioned that
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αα β β
bc

=

ββ α α
bc

Figure 4.2: Sewing relation for the open-
open-closed amplitude. The
open insertions are marked
with a cross and change the
boundry condition.

α

j2

̄2

j1

̄1

bc bc
∑

p

∑

q

=

α

j2

̄2

j1

̄1

b

b

∑

i

∑

k

Figure 4.3: Sewing relation for the
closed-closed-open ampli-
tude. We make use of this
constraint with the open
string insertion being the
identity; see text.

requires some work. It amounts to taking one bulk field close to the boundary,
such that it can be expanded using its bulk-boundary OPE. This is the factor-

ization limit and here, the continuation prescription alluded to before becomes
necessary, since in order to be able to take the factorization limit, one needs to
continue the two point function to a suitable patch. All this will become clear
when we carry out the explicit constructions for the H+3 model in chapters 6 and
8.

The projected form of the constraint involves the one point amplitudes to-
gether with four point conformal blocks and bulk OPE coefficients. Thus, given
the latter two structure data (which are bulk quantities), one gains an equation
that one should be able to solve for the one point amplitudes. Generically, a solu-
tion for the one point amplitude will not exist for arbitrary boundary conditions,
but restrictions will apply. By the same token, the labels j of closed strings that
do couple consistently are expected to be constrained.

In case of RCFT, the procedure described above has been shown to work out in

earlier.
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quite some generality [70, 71]. What happens in the case of generic nonrational
CFT is not at all clear. The H+3 model has the benefit that one can analytically con-
tinue the symmetry representation labels to degenerate field labels (“Teschner’s
trick”; see section 3.4.2). Using degenerate fields, the model looks very much like
a rational CFT. In particular the conformal bootstrap as described in this section
becomes feasible. Luckily, from correlators involving a degenerate field one can
still infer expressions that are of general validity. We shall see this in the next two
chapters. In chapter 5, the constraint of figure 4.3 resulting from H+3 degenerate
field Θ1/2 (recall section 3.5.1) is discussed following [72] and our work [67, 69].
This is however not sufficient to fix the general one point amplitude uniquely; a
further constraint is needed. Our work carried out in [69] is devoted to the study
of an additional constraint from degenerate field Θb−2/2 (section 3.5.1), choosing
an analytic continuation prescription. It is the content of chapter 6. The same
kind of constraint is also examined for a continuous continuation prescription in
chapter 8. See [68] for our original work on this issue.
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In this chapter, we review the basic features of the boundary H+3 model and add
some of our own observations and results. An overview of the gluing conditions
is followed by a discussion of additional patterns that organize the H+3 model
branes. Our contributions here are the systematic distinction between regular
and irregular branes [67] explained in section 5.2.1 and, in section 5.2.2, a clear
discussion of the isospin dependencies and potential isomorphies [69]. Then, we
summarize the relevant bulk-boundary OPEs in section 5.3 and go on with the in-
troduction of the first constraint on the one point amplitudes in section 5.4. This
constraint is not a Cardy-Lewellen sewing relation, but rather H+3 model specific:
The reflection symmetry (3.17) implies a symmetry of the one point amplitude.
We are careful to distinguish between regular and irregular case in the formu-
lae we give. In sections 5.5 and 5.6, we systematically derive the Cardy-Lewellen
constraints (as in figure 4.3 with the open string insertion being the identity) as-
sociated to degenerate field Θ1/2 for all cases of AdS2 branes. The constraint
takes the form of a 1/2-shift equation. Some of these equations had been given
before, but many new ones (irregular discrete ρ1 (section 5.5.2), regular discrete
ρ2 (section 5.5.3), regular discrete ρ1 (section 5.5.4), regular continuous ρ2 (sec-
tion 5.6.2) and regular continuous ρ1 (section 5.6.3)) were given by us for the
first time in [67]. See table 5.1 in section 5.2.1 for an overview. As we shall
see in sections 5.5 and 5.6, the derivation of 1/2-shift equations does not need
a continuation of the relevant two point function. Thus, the problems that we
encountered and solved in [68, 69] do not arise at this level.

5.1 Gluing Conditions

We choose maximal symmetry preserving boundary conditions. This is done by
imposing a gluing condition along the boundary (which is taken to be the real
axis)

Ja(z) = ρabJ̄b(z̄) at z = z̄, (5.1)

where ρ is the gluing map. By the Sugawara construction, we also have

T(z) = T̄ (z̄) at z = z̄, (5.2)

and hence not only is a subgroup of the current algebra symmetry preserved, but
also half of the conformal symmetry. In our case there are four possible gluing
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maps ρ1, . . . , ρ4:

ρ1J̄
3 = J̄3 ρ1J̄

± = J̄±,
ρ2J̄

3 = J̄3 ρ2J̄
± = −J̄±,

ρ3J̄
3 = −J̄3 ρ3J̄

± = J̄∓,
ρ4J̄

3 = −J̄3 ρ4J̄
± = −J̄∓.

(5.3)

We will only be concerned with the first and second case, ρ1 and ρ2. The as-
sociated branes are conventionally called AdS2 branes [72] and we follow this
nomination (although they have euclidean AdS2 worldvolume and should more
accurately be named H+2 branes).

5.2 Various Types of Branes

From the gluing conditions, branes fall into two great classes: AdS2 and S2

branes. In each class, there are more distinctions to make. In our study of the
boundary H+3 model, we will distinguish between discrete and continuous as well
as regular and irregular branes. The adjectives discrete and continuous allude to
the open string spectra an the branes, whereas regular and irregular refer to the
(isospin) u-dependence of the one point functions. We elaborate on these notions
in the following subsections.

5.2.1 Regular and Irregular Branes

In this section we argue that the possible one point amplitudes must be distin-
guished by their regularity behaviour when approaching the boundary in internal
u-space. Let us explain in detail why this is the case for the example that the
gluing map is ρ = ρ2 (the other cases can clearly be treated in just the same way).
It is the affine boundary Ward identites (4.8) that fix the u-dependence of the one

point function G(1)j,α(u|z) :=
〈

Θj(u|z)
〉

α
in the presence of boundary condition

α entirely. The equation for J− tells us that it is a function of u + ū only, which
we can just see as one complex variable since we have not taken the physical cut
yet. The equations for J3 and J+ determine the one point function to be

G(1)j,α(u|z) = (u+ ū)2jAj,α(z) . (5.4)

We call this the regular dependence. One might think that 2j ∈ Z should be
required in order to have trivial monodromy. But note that the physical cut has
still not been taken and monodromy invariance is only required for the physical
amplitude. Now, setting ū = u∗, u + ū becomes a real variable. Therefore, a
monodromy does not exist for the physical amplitude and there is no restriction
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on j here1. The only problem that arises in (5.4) for general j is when (u +
u∗) < 0, because one needs to define (−)2j . This problem does actually not
arise for the 1/2-shift equations (sections 5.5 and 5.6) and we argue in chapter
6 that a preferred definition of (−)2j is suggested when analytically continuing
the two point function in order to obtain b−2/2-shift equations. Thus, the regular
dependence can be treated in a meaningful way.

But one can also choose a different route. In order to circumvent the need for
a definition of (−)2j , the physical cut can be taken in two steps. Setting ū = u∗,
first assume that (u+u∗) = 2u1 > 0 and write

G(1)j,α(u;u1 > 0|z) = (u+ ū)2jA+j,α(z) . (5.5)

Then, assume that (u+u∗) = 2u1 < 0 and define

G(1)j,α(u;u1 < 0|z) = (−u− ū)2jA−j,α(z) . (5.6)

In this way, the lack of an a priori definition of (−)2j is shifted into a new a priori
unknown integration “constant” A−j,α(z), that is thought of as being unrelated
(!) to the first constant of integration A+j,α(z). The ansatz for the one point
amplitude is summarized in the following formula

G(1)j,α(u|z) = |u+ ū|2jAσj,α(z) , (5.7)

with σ = sgn(u + u∗). This form is called the irregular dependence. In this
and the next chapter, we will compute the one point amplitudes resulting from
both these ansätze and find that they are indeed very different in nature. The
corresponding branes will be called regular or irregular, respectively. Let us
mention that in the literature, both kinds of solutions, regular and irregular ones,
have been studied. For example, [72] and [79] look at irregular AdS(c)2 and [76]

treats irregular AdS(d)2 branes, whereas [78] studies regular solutions. But up to
now nobody has pointed out that for every case of boundary condition ρ1, . . . ρ4,
we should actually look for both kinds of solutions. Table 5.1 shows how little
of the ’landscape’ has actually been explored so far (before our work). It also
shows that, except for one case in [78], it has always been only one consistency
condition on which the proposed solutions were based, namely the shift equation
for the degenerate field Θ1/2. The solutions to this equation are not unique and at
least a second consistency condition should be derived that can fix the solution
uniquely. The shift equations for the degenerate field Θb−2/2 that we derived for
all cases of AdS2 branes [69] (and also [68]) can do this job.

1Interestingly, the b−2/2-shift equation will require j ∈ 1
2Z; see chapter 6.
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u-dependence shift equation (continuous) shift equation (discrete)
for Θ1/2? for Θb−2/2? for Θ1/2? for Θb−2/2?

ρ1 |u− ū|2j [79] — — —
(u− ū)2j [78] — [78] [78]

ρ2 |u+ ū|2j [72] — [76] —
(u+ ū)2j — — — —

ρ3 |1−uū|2j — — — —
(1−uū)2j — — [78] [78]

ρ4 (1+uū)2j — — [72] —

Table 5.1: Classes of D-brane solutions and status of their exploration before our
work [67, 68, 69]. Compare also table 9.1, chapter 9. [78] did not pay
attention to the occurence of possible signums σ , which is however in-
evitable, even in the regular cases (see chapter 6). We are therefore re-
considering their results. Note that only one version of u-dependence
appears for ρ4, as the expression is always strictly positive.

5.2.2 AdS2 and S2 Branes

From the u dependence of the one point functions (see table 5.1), we can deter-
mine what subgroup of the SL(2,C) isospin symmetry is preserved by the varying
gluing conditions. Since a primary field Θj(u|z) transforms under an SL(2,C)

isospin transformation u ֏ u′ := au+b
cu+d as

Θj(u|z)֏ Θ
′
j(u

′|z) = |cu+ d|−4j
Θj(u|z) , (5.8)

one needs to check for every u dependence which SL(2,C) subgroup it preserves
up to a factor of |cu + d|−4j . The result is that the dependencies |u ± ū|2j and
(u± ū)2j preserve an SL(2,R) subgroup and are therefore AdS2 branes, whereas
|1− uū|2j and (1± uū)2j preserve an SU(2) subgroup and are thus S2 branes2.
The cases of gluing maps ρ1 and ρ2 should therefore be isomorphic, as should
be those of ρ3 and ρ4. However, such a conclusion, which would suggest to leave
half of the gluing maps unstudied, might be drawn too quickly here. Indeed,
at least one issue is unclear: How can ρ3 and ρ4 belong to isomorphic branes
if the irregular ρ3 dependence allows the inclusion of a signum σ and ρ4 does
not (see table 5.1)? The answer must be that only further consistency checks
will forbid the inclusion of a signum for irregular ρ3. We take this as a hint
that consistency checks will add to the analysis described in this subsection and
therefore consider both gluing maps, ρ1 as well as ρ2, separately. Interestingly,
we shall find that in case of irregular branes the shift equations for both gluing

2The names are also justified from a classical analysis of the worldvolumes of the branes [95, 72], if
one remembers that AdS2 should mean euclidean AdS2.
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maps are isomorphic, whereas in the regular case there are crucial differences
(see sections 6.1.3 and 6.1.4).

5.2.3 AdS2 Boundary Fields

As we are focussing on AdS2 branes, let us give a brief account of their associated

primary boundary fields. Denote such a field Ψβαℓ (t|x), x ∈ R. Living in euclidean
AdS2, these fields fall into representations of SL(2,R). ℓ is the corresponding
“spin” label and t the isospin coordinate. See appendix A for details about the
different SL(2,R) representations. From a semiclassical analysis, the relevant
representations are again the principal continuous series. There are actually two
such series, but only one (given in (A.40)) occurs here [72, 73]. Therefore, ℓ ∈
− 1

2 + iR≥0 and t ∈ R̄. Under isospin transformations, the fields transform as

∆(g)Ψℓ(t|x)∆−1(g) = | − cx + a|2ℓΨℓ(g−1 · t|x) (5.9)

for

g =
(

a b
c d

)

∈ SL(2,R) , g−1 · t = dt − b
−ct + a . (5.10)

Boundary changing operators are more complicated and were shown in [73] to
transform under S̃L(2,R), the universal covering group of SL(2,R). We do not
need them in the sequel.

5.2.4 Discrete and Continuous Branes

Another subtlety one needs to take care of is the possibility of having discrete and
continuous branes. The characterising adjectives “continuous” and “discrete”
relate to the parameter spaces of these solutions or, equivalently, to the open
string spectra on the branes. For example, in [72], a solution for the continuous

AdS2 branes was proposed, whereas [76] proposed a solution for the discrete

AdS2 branes. From now on, we will carefully distinguish these different kinds of
solutions, by adding a superscript (c) in case of a continuous brane and (d) for
a discrete one, as it has already been done in [76]. Let us now explain where the
difference between continuous and discrete branes originates and how it leads to
different factorization constraints. For convenience, let us choose the irregular
u-dependence and fix the gluing map to be ρ = ρ2. The discussion for irregular
ρ1 is completely analogous.

Assuming a discrete open string spectrum on the brane, the bulk-boundary
OPE for Θjr ,s is

Θjr ,s (u2|z2) =
∑

{ℓ0}
|z2 − z̄2|−2h(jr ,s)+h(ℓ0) |u2 + ū2|2jr ,s+ℓ0+1 ·

· Cσ (jr ,s , ℓ0|α) (JΨ)ααℓ0
(u2 |Re(z2)) {1+O(z2 − z̄2)} ,

(5.11)
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where
{

ℓ0
}

is a discrete set of SL(2)-’spin’ labels, Ψααℓ (t|x) are primary boundary
fields (t, x ∈ R) and we have defined

(JΨ)ααℓ (u|x) =
∫

R

dt

2π
|u+ it|−2ℓ−2

Ψ
αα
ℓ (t|x) . (5.12)

Note that under a scaling u֏ λu, this transforms as

(JΨ)ααℓ0
(λu|x) = λ−ℓ0−1(JΨ)ααℓ0

(u|x) , (5.13)

so that the scaling properties of Θjr ,s (u2|z2) on the L.H.S are matched correctly.
Now, the kind of factorization constraint we are seeking for arises when look-
ing at the identity contribution of the bulk-boundary OPE. The corresponding
bulk-boundary OPE coefficient Cσ (jr ,s ,0|α) can be identified with a one-point
amplitude:

Cσ (jr ,s ,0|α) = Aσ (jr ,s|α) . (5.14)

Therefore, starting with a two point function and taking the factorization limit
leads, in the discrete case, to a product Aσ2(jr ,s|α)Aσ1(j|α).

On the other hand, assuming a continuous open string spectrum on the brane,
the bulk-bundary OPE of Θb−2/2 contains

c̃σ (jr ,s , l0|α) = Resℓ=ℓ0Cσ (jr ,s , ℓ|α) (5.15)

rather than C(jr ,s , ℓ0|α). The reason for this is given in [77]. Let us summarize
it here briefly: Since we are using Teschner’s Trick, i.e. we are analytically con-
tinuing the field label j2 to the label of a degenerate representation j2 = jr ,s , we
should look at the generic bulk-boundary OPE

Θj2(u2|z2) =
∫

C+
dℓ |z2 − z̄2|−2h(j2)+h(ℓ) |u2 + ū2|2j2+ℓ+1 ·

· Cσ (j2, ℓ|α) (JΨ)ααℓ (u2 |Re(z2)) {1+O(z2 − z̄2)} ,
(5.16)

where the contour of integration is C+ = − 1
2 + iR≥0. Since j2 = jr ,s is a degen-

erate representation, only a discrete set of open string modes is excited in the
bulk-boundary OPE of its corresponding field operator. Accordingly, when de-
forming the contour in the process of analytic continuation, only finitely many
contributions

{

ℓ0
}

are picked up. They come from poles in the Cσ (jr ,s , ℓ|α) that
cross the contour of integration. Therefore, not the bulk-boundary coefficients
themselves, but only their residua occur. Henceforth, we obtain

Θjr ,s (u2|z2) =
∑

{ℓ0}
|z2 − z̄2|−2h(jr ,s)+h(ℓ0) |u2 + ū2|2jr ,s+ℓ0+1 ·

· c̃σ (jr ,s , ℓ0|α) (JΨ)ααℓ0
(u2 |Re(z2)) {1+O(z2 − z̄2)} .

(5.17)

In the factorization limit, we are looking at the identity contribution again, but
this time, the residuum of the appropriate bulk-boundary coefficient does not
have an obvious relation to a one-point-amplitude. Thus, in the continuous case,
we are left with a product c̃σ2(jr ,s ,0|α)Aσ1(j|α).

74



5.3 Bulk-Boundary OPEs

5.3 Bulk-Boundary OPEs

In this section we give the explicit form of the specific bulk-boundary OPEs
needed for our calculations in chapters 6 and 8. For convenience, let us write
the cases of gluing maps ρ1 and ρ2 in one formula. Also, we just write down the
case of discrete open string spectrum, as the continuous case is easily obtained
by changing Cσ to c̃σ . See also section 5.2.4, where we have introduced the
generic bulk-boundary OPE and discussed the difference between discrete and
continuous branes. Also note that further difference has to be made between the
cases of regular and irregular branes. The formulae given below work for the ir-
regular case, whereas for the discrete case, we need to replace the modulus |. . . |
by ordinary brackets (. . . ) (in both, z and u variables, since we are working with
a regular z dependence as well; see e.g. section 5.5.3). This is necessary to ensure
that the identification Cσ = Aσ , equation (5.14), still holds true.

5.3.1 Bulk-Boundary OPE for Θ1/2

For the irregular dependence, the bulk-boundary OPE reads

Θ1/2(u2|z2) = |z2 − z̄2|
3
2b

2 |u2 ± ū2|Cσ (1/2,0|α)1 {1+O (z2 − z̄2)}+
+ |z2 − z̄2|−

1
2b

2 |u2 ± ū2|2 Cσ (1/2,1|α)·
· (JΨ)αα1 (u2 |Re(z)) {1+O (z2 − z̄2)} .

(5.18)

The upper sign corresponds to gluing map ρ2, the lower sign to ρ1. In order to
obtain the regular dependence, one simply replaces | . . . | by (. . . ) and leaves out
the subscript σ . This ensures (5.14) to remain true.

5.3.2 Bulk-Boundary OPE for Θb−2/2

In the irregular case, one has

Θb−2/2(u2|z2) = |z2 − z̄2|1+b
−2/2 |u2 ± ū2|b

−2
Cσ (b

−2/2,0|α)1 {1+O (z2 − z̄2)}+
+ |z2 − z̄2|−b

−2/2 |u2 ± ū2|2b
−2+1 Cσ (b

−2/2, b−2|α)·
· (JΨ)ααb−2 (u2 |Re(z)) {1+O (z2 − z̄2)}+

+ |z2 − z̄2|−b
−2/2 Cσ (b

−2/2,−b−2 − 1|α)·
· (JΨ)αα−b−2−1 (u2 |Re(z)) {1+O (z2 − z̄2)} .

(5.19)

Again, upper sign corresponds to gluing map ρ2, lower sign to ρ1 and the regular
dependence is obtained by replacing | . . . | by (. . . ) and dropping the σ .
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5.4 A First Constraint on the One Point Amplitude from

Reflection Symmetry

The main constraints on the one point amplitude we want to study are of the
Cardy-Lewellen type (section 4.2). Yet, in the H+3 model the first nontrivial con-
straint arises from the reflection symmetry (3.17). We give the details of its
derivation for irregular as well as regular branes in this section.

5.4.1 Irregular One Point Amplitudes

Due to the reflection symmetry (3.17), the one point amplitude has to obey

π

2j + 1
|u∓ ū|2j Aσ (j|α) =

= −R(−j − 1)
∫

C

d2u′


u−u′




4j 
u′ ∓ ū′





−2j−2
Aσ ′(−j − 1|α).

(5.20)

The upper sign corresponds to gluing map ρ1, the lower sign to ρ2. Note that σ ′ ≡
σ(u′). Since we can always expand Aσ ′(−j − 1|α) = A0(−j − 1|α)+ σ ′A1(−j −
1|α), we need to compute the integrals (ǫ ∈ {0,1}):

I∓ǫ :=
∫

C

d2u′


u−u′




4j 
u′ ∓ ū′





−2j−2
(σ ′)ǫ. (5.21)

Gluing Map ρ1 - Calculation of I−ǫ

Assume u2 > 0. We split the integral into

I−ǫ = (−)ǫ
∫ +∞

−∞
du′1

∫ 0

−∞
du′2

[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(−2u′2)

−2j−2+

+
∫ +∞

−∞
du′1

∫ u2

0
du′2

[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(2u′2)

−2j−2+

+
∫ +∞

−∞
du′1

∫ +∞

u2

du′2
[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(2u′2)

−2j−2

≡ (−)ǫI>1 + I>2 + I>3 .

(5.22)

Being careful about signs and using some Gamma function identities (see ap-
pendix C), we obtain

I>1 = −
π

2j + 1
|u− ū|2j , I>2 = −I>3 . (5.23)
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Now, assume u2 < 0. In this case, we choose the following splitting

I−ǫ = (−)ǫ
∫ +∞

−∞
du′1

∫ u2

−∞
du′2

[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(−2u′2)

−2j−2+

+ (−)ǫ
∫ +∞

−∞
du′1

∫ 0

u2

du′2
[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(−2u′2)

−2j−2+

+
∫ +∞

−∞
du′1

∫ +∞

0
du′2

[

(u1 −u′1)2 + (u2 −u′2)2
]2j
(2u′2)

−2j−2

≡ (−)ǫI<1 + (−)ǫI<2 + I<3 .

(5.24)

This time we get

I<1 = −I<2 , I<3 = −
π

2j + 1
|u− ū|2j . (5.25)

Assembling, we obtain

I−ǫ = −
π

2j + 1
|u− ū|2j (−σ)ǫ. (5.26)

Gluing Map ρ2 - Calculation of I+ǫ

Splitting the integral as before and renaming the integration variables, it is easy
to see that

I+ǫ = I−ǫ (u1 ↔ u2) = −
π

2j + 1
|u+ ū|2j (−σ)ǫ. (5.27)

The Constraint for Irregular One Point Amplitudes

Putting things together, we arrive at the constraint

Aσ (j|α) = R(−j − 1)A−σ (−j − 1|α). (5.28)

Using the definition of the reflection amplitude (3.18), we are led to redefine the
one point amplitude

fσ (j) := νjbΓ(1+ b2(2j + 1))Aσ (j|α) (5.29)

(note that we have dropped the α-dependence of fσ ). For this redefined one point
amplitude, the constraint simply reads

fσ (j) = −f−σ (−j − 1). (5.30)
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5.4.2 Regular One Point Amplitudes

This time, there is no signum, so we only need to compute the integrals:

I∓ =
∫

C

d2u′


u−u′




4j
(u′ ∓ ū′)−2j−2

. (5.31)

Up to a sign and the missing signum, the result is very much the same as before:

I∓ = π

2j + 1
(u∓ ū)2j . (5.32)

Therefore, in the regular case, the constraint for the redefined one point ampli-
tude is

f(j) = +f(−j − 1). (5.33)

5.5 1/2-Shift Equations for the Discrete Branes

In this section we give details concerning the derivation of 1/2-shift equations
for discrete AdS2 branes. The equation for irregular AdS(d)2 with gluing map ρ2

had been given in [76]. This is why we do not go into any detail there. The other
1/2-shift equations in this section are new and have originally been derived by
us in [67].

5.5.1 Irregular AdS
(d)
2 Branes - Gluing Map ρ2

Ansatz for the One Point Functions

The gluing map is ρ2. Choosing the irregular u-dependence, it restricts the one
point function in the presence of boundary condition α to be of the form

〈

Θj(u|z)
〉

α
= |z − z̄|−2h(j) |u+ ū|2j Aσ (j|α). (5.34)

Note that the one point amplitude depends on σ = sgn(u+ ū).

1/2-Shift Equation

Making use of a relation to Liouville theory (that we shall review for other rea-
sons in chapter 7), the following shift equation has been derived in [76] for the
redefined one point amplitude (5.29). It is

− 1

π
Γ(−b2) sin[2πb2] sin[πb2(2j + 1)]fσ

(

1

2

)

fσ
(

j
) =

= sin[πb2(2j + 2)]fσ

(

j + 1

2

)

− sin[πb22j]fσ

(

j − 1

2

)

.

(5.35)
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We can rederive this by studying the two point function with a degenerate field
Θ1/2(u|z), but we do not go into this now. We detail a similar calculation in the
next subsection.

5.5.2 Irregular AdS
(d)
2 Branes - Gluing Map ρ1

Ansatz for the One Point and Two Point Functions

Choosing the irregular u-dependence, the gluing map ρ1 restricts the one point
function in the presence of boundary condition α to be of the form

〈

Θj(u|z)
〉

α
= |z − z̄|−2h(j) |u− ū|2j Aσ (j|α). (5.36)

Our ansatz for the two point function G(2)j,α(ui|zi) =
〈

Θ1/2(u2|z2)Θj(u1|z1)
〉

α
with degenerate field 1/2 (fixing the ui and zi dependence up to a dependence
on the crossing ratios) is

G(2)j,α(u1, u2|z1, z2) = |z1 − z̄1|2[h(1/2)−h(j)] |z1 − z̄2|−4h(1/2) ·
· |u1 − ū1|2j−1 |u1 − ū2|2H(2)j,α(u|z),

(5.37)

with crossing ratios

z = |z2 − z1|2
|z2 − z̄1|2

and u = |u2 −u1|2
|u2 − ū1|2

. (5.38)

Knizhnik-Zamolodchikov Equation

Mapping z1 → 0, z̄2 → 1 and z̄1 → ∞ (i.e. z2 → z), and analogously in the u’s, the
Knizhnik-Zamolodchikov equation (4.9) for z2 is brought to standard form

−b−2z(z − 1)∂zH
(2)
j,α(u|z) = u(u− 1)(u− z)∂2

uH
(2)
j,α(u|z)+

+
[

u2 − (2j + 1)uz + (2j + 1)u+ z
]

∂uH
(2)
j,α(u|z)+

+
[

u+ 1

2
(2j − 1)z − j

]

H(2)j,α(u|z) .
(5.39)

Since Θ1/2 is a degenerate field, H(2)j,α(u|z) also satisfies the singular vector equa-

tion ∂2
uH

(2)
j,α(u|z) = 0 and hence, it is a simple polynomial in u:

H(2)j,α(u|z) = H0(z)+uH1(z) . (5.40)
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Plugging this into (5.39) and comparing coefficients in powers of u, we obtain
three equations (from O(u0), O(u1) and O(u2)). The O(u2) equation is trivially
satisfied, the other two read

−b−2z(z − 1)∂zH0 =
[

1

2
(2j − 1)z − j

]

H0 + zH1 ,

−b−2z(z − 1)∂zH1 = H0 +
[

−3

2
z − jz + j + 1

]

H1 .

(5.41)

Solving the first of these two equations for H1 gives

H1 = −b−2(z − 1)∂zH0 −
[

1

2
(2j − 1)− j

z

]

H0 (5.42)

and thus, knowing H0, we can immediately compute H1 from (5.42). Plugging
(5.42) into the second equation results in a second order differential equation for
H0. It reads

z(1−z)2∂2
zH0 = b2

[

(1− z)− z(1− z)(2− b−2)
]

∂zH0−

− b4
[

(2j − 1+ b−2j)− z−1j(j + 1+ b−2)− z(j2 + j − 3
4
)

]

H0 .
(5.43)

This equation can be transformed to a differential equation of hypergeometric
type. Setting H0 = zp(1− z)qh0 yields

{

z(1− z)∂2
z + [γ − (α+ β+ 1)z] ∂z −αβ

}

h0 = 0 , (5.44)

provided that p = −b2j and q = − 1
2b

2. The parameters are

α = −b2 , β = −b2(2j + 2) ,

γ = −b2(2j + 1) .
(5.45)

Two linearly independent basis solutions are chosen from requiring their asymp-
totics to be those of an s-channel conformal block. Namely, we expand

H(2)j,α(u|z) =
∑

ǫ=±
a
j
ǫF sj,ǫ(u|z) (5.46)

and require that for z → 0 followed by u→ 0:3

F sj,+(u|z) ≃ zh(j+1/2)−h(j)−h(1/2)u0 [1+O(u)+O(z)]
= z−b2j [1+O(u)+O(z)] ,

F sj,−(u|z) ≃ zh(j−1/2)−h(j)−h(1/2)u1 [1+O(u)+O(z)]
= zb2(j+1)u[1+O(u)+O(z)] .

(5.47)

3The order of the limits is important and determines the normalization of our conformal blocks; see
[72, 83].
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This selects the basis solutions

F sj,+(u|z) = z−b
2j(1− z)−b2/2

{

F(α,β;γ|z)−

− u
(

α

γ

)

F(α+ 1, β;γ + 1|z)
}

,

F sj,−(u|z) = zb
2(j+1)(1− z)−b2/2

{

uF(β− γ,α− γ + 1; 1− γ|z)−

− z
(

β− γ
1− γ

)

F(β− γ + 1, α− γ + 1; 2− γ|z)
}

,

(5.48)

where F(α,β;γ|z) is the ordinary Gauss hypergeometric function.

Expansion Coefficients

The only thing left to determine in (5.46) are the expansion coefficients a
j
ǫ. This

is done by using the OPE between Θj(u1|z1) and Θ1/2(u2|z2) on the left hand
side of (5.37). Since |z2 − z1| → 0 implies z → 0 and we have chosen the z → 0
asymptotics of the conformal blocks to be s-channel asymptotics, the comparison
of left and right hand side becomes easy: The z-asymptotics that accompanies

the coefficient a
j
ǫ on the right hand side is adjusted to match the asymptotics

coming with the emergence of the field Θjǫ from the OPE on the left hand side

(j± = j ± 1
2 ). To see this in detail, the z → 0 asymptotics coming from the F sj,+

block on the right hand side in (5.37) is

RHS+ ≃ z−b2j|z1 − z̄1|−2[h(j)+h(1/2)]|u1 − ū1|2j+1a
j
+

= |z2 − z1|−2b2j|z1 − z̄1|−2[h(j)+h(1/2)]+2b2j|u1 − ū1|2(j+1/2)a
j
+

= |z2 − z1|−2b2j|z1 − z̄1|−2h(j+1/2)|u1 − ū1|2(j+1/2)a
j
+ ,

(5.49)

what matches the following asymptotic contribution from the OPE on the left
hand side (see the OPE given in section 3.5.2)

LHS+ ≃ |z2 − z1|−2[h(j)+h(1/2)−h(j+1/2)]|z1 − z̄1|−2h(j+1/2)·
· |u1 − ū1|2(j+1/2)C+(j)Aσ (j+|α)

= |z2 − z1|−2b2j|z1 − z̄1|−2h(j+1/2)|u1 − ū1|2(j+1/2)·
· C+(j)Aσ (j+|α) .

(5.50)

Here, C+(j) is the OPE coefficient C(j + 1/2,1/2, j) and Aσ (j+|α) the one point
amplitude of the field Θj+1/2 appearing in the OPE. In just the same way, the
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z → 0 asymptotics coming from the F sj,− conformal block on the right hand side
of (5.37)

RHS+ ≃ zb2(j+1)u|z1 − z̄1|−2[h(j)+h(1/2)]|u1 − ū1|2j+1a
j
−

= |z2 − z1|2b2(j+1)|u2 −u1|2|z1 − z̄1|−2[h(j)+h(1/2)]−2b2(j+1)·
· |u1 − ū1|2j−1a

j
−

= |z2 − z1|2b2(j+1)|u2 −u1|2|z1 − z̄1|−2h(j−1/2)·
· |u1 − ū1|2(j−1/2)a

j
−

(5.51)

is seen to match the asymptotic contribution resulting from the appearance of
the field Θj−1/2 in the OPE on the left hand side:

LHS− ≃ |z2 − z1|−2[h(j)+h(1/2)−h(j−1/2)]|u2 −u1|2|z1 − z̄1|−2h(j−1/2)·
· |u1 − ū1|2(j−1/2)C−(j)Aσ (j−|α)

= |z2 − z1|2b2(j+1)|u2 −u1|2|z1 − z̄1|−2h(j−1/2)·
· |u1 − ū1|2(j−1/2)C−(j)Aσ (j−|α) .

(5.52)

Consequently, we have the following simple expressions for the expansion coef-
ficients

a
j
ǫ(α) = Cǫ(j)Aσ (jǫ|α) (5.53)

(but as mentioned before, this just reflects the normalization of the conformal
blocks). Thus, as usual in boundary CFT, the correlator’s dependence on the
boundary condition is captured by the expansion coefficients.

Factorization Limit and 1/2-Shift Equation

In the factorization limit, the degenerate field Θ1/2(u2|z2) is taken to approach
the boundary, i.e. one takes Im(z2)→ 0, what implies that z → 1 from below. This
limit can be taken without difficulty, since the behaviour of the conformal blocks
(5.48) for z → 1− is determined from the limiting behaviour of the occuring
hypergeometric functions. Indeed, the limit z → 1− for F(α,β;γ|z) is very well
known. The F sj,+ conformal block goes like

P1F sj,+ ≃ (1− z) 3
2b

2
(1−u) Γ(γ)Γ(α+ β− γ)

Γ(α)Γ(β)
a
j
+(α) , (5.54)

where we have projected onto the identity contribution, since the constraint we
are aiming at makes use of this channel only (see section 4.2). We can do the
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same for the F sj,− conformal block. It behaves like

P1F sj,− ≃ (1− z) 3
2 b

2
(1−u) Γ(1− γ)Γ(α+ β− γ)

Γ(β− γ)Γ(α− γ + 1)
a
j
−(α) . (5.55)

The leading u, z dependence (1 − z)3b2/2(1 − u) becomes, together with the
prefactor in (5.37):

(1− z) 3
2b

2
(1−u)|z1 − z̄1|2[h(1/2)−h(j)]|z1 − z̄2|4h(1/2)|u1 − ū1|2j−1|u1 − ū2|2 =

= |z1 − z̄1|−2h(j)|u1 − ū1|2j|z2 − z̄2|
3
2b

2 |u2 − ū2| ,
(5.56)

where we have used that

1− z = |z1 − z̄1||z2 − z̄2|
|z2 − z̄1|2

, 1−u = σ1σ2|u1 − ū1||u2 − ū2|
|u2 − ū1|2

(5.57)

together with Im(z1) > 0, Im(z2) > 0 and σ1 = σ2. As a result, the right hand
side of (5.37), projected onto the identity contribution yields

P1G(2)j,α(ui|zi) ≃ |z1 − z̄1|−2h(j)|u1 − ū1|2j|z2 − z̄2|
3
2b

2 |u2 − ū2|·

·
{

Γ(γ)Γ(α+ β− γ)
Γ(α)Γ(β)

C+(j)Aσ (j + 1/2|α)+

+ Γ(1− γ)Γ(α+ β− γ)
Γ(β− γ)Γ(α− γ + 1)

C−(j)Aσ (j − 1/2|α)
}

.

(5.58)

Making use of the bulk-boundary OPE (5.18) for Θ1/2 in the two point function
(5.37) and projecting onto the identity, we also obtain

P1G(2)j,α(ui|zi) ≃ |z2−z̄2|
3
2 b

2 |u2−ū2|Cσ (1/2,0|α)|z1−z̄1|−2h(j)|u1−ū1|2jAσ (j|α) .
(5.59)

With the identification Cσ (1/2,0|α) = Aσ (1/2|α) and redefining the one point
amplitude as in (5.29), we finally obtain our desired 1/2-shift equation:

− 1

π
Γ(−b2) sin[2πb2] sin[πb2(2j + 1)]fσ

(

1

2

)

fσ
(

j
) =

= sin[πb2(2j + 2)]fσ

(

j + 1
2

)

− sin[πb22j]fσ

(

j − 1
2

)

(5.60)

Remarkably enough, it is the same as for gluing map ρ2 in section 5.5.1!
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5.5.3 Regular AdS
(d)
2 Branes - Gluing Map ρ2

Ansatz for the One Point and Two Point Functions

This time choosing the regular u-dependence, the gluing map ρ2 fixes the one
point function as (note that we are not including a signum as discussed in section
5.2.1)

〈

Θj(u|z)
〉

α
= (z − z̄)−2h(j) (u+ ū)2j A(j|α). (5.61)

The boundary two point function with degenerate field 1/2 is

G(2)j,α(u1, u2|z1, z2) = (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(1/2) ·
· (u1 + ū1)

2j (u2 + ū2)H
(2)
j,α(u|z),

(5.62)

with crossing ratios

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = − |u1 −u2|2
(u1 + ū1) (u2 + ū2)

. (5.63)

They take values in z ∈ (−∞,0) (because z1, z2 are in the upper half plane) and
u ∈ (−∞,0) (if we take σ1 = σ2).

Knizhnik-Zamolodchikov Equation

Mapping z1 → 0, z̄1 → 1 and z̄2 → ∞ (i.e. z2 → z), and doing analogously in the
u’s, the standard form of the Knizhnik-Zamolodchikov equation (4.9) for z2 is

−b−2z(z − 1)∂zH
(2)
j,α(u|z) = u(u− 1)(u− z)∂2

uH
(2)
j,α(u|z)+

+
[

−2ju2 − 2uz + (2j + 1)u+ z
]

∂uH
(2)
j,α(u|z)+

+ [2ju− j]H(2)j,α(u|z) .
(5.64)

The procedure of solving this together with the singular vector equation

∂2
uH

(2)
j,α(u|z) = 0 (5.65)

is precisely as described in the previous subsection. We end up with the following
s-channel conformal blocks:

F sj,+(u|z) = z−b
2j(1− z)−b2j

{

F(α,β;γ|z)−

−u
(

α

γ

)

F(α+ 1, β;γ + 1|z)
}

,

F sj,−(u|z) = zb
2(j+1)(1− z)−b2j

{

uF(β− γ,α− γ + 1; 1− γ|z)−

− z
(

β− γ
1− γ

)

F(β− γ + 1, α− γ + 1; 2− γ|z)
}

,

(5.66)
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with parameters

α = −b2(2j) , β = −b2(2j + 2) , γ = −b2(2j + 1) . (5.67)

Expansion Coefficients

The expansion coefficients have to be modified slightly in this case. We have

a
j
ǫ(α) = ǫC1/2

ǫ (j)A(jǫ|α) . (5.68)

The sign in a
j
− is due to the minus sign in the definition of u in (5.63).

Factorization Limit and 1/2-Shift Equation

Taking the limit Im(z2) → 0, we have this time that z → −∞. This limit of the
hypergeometric function is also well known, so there is again no problem here.
The z → 1 asymptotics of the F sj,+ conformal block projected onto the identity
contribution reads

P1F sj,+ ≃ z0eiπb2j Γ(γ)Γ(β−α)
Γ(β)Γ(γ −α) , (5.69)

while for F sj,− it is

P1F sj,− ≃ −z0e−iπb2(j+1) Γ(1− γ)Γ(β−α)
Γ(β− γ)Γ(1−α) . (5.70)

Therefore, we obtain

P1G(2)j,α(ui|zi) ≃ (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(1/2) (u1 + ū1)
2j (u2 + ū2) ·

·
{

eiπb2j Γ(γ)Γ(β−α)
Γ(β)Γ(γ −α)a

j
+ − e−iπb2(j+1) Γ(1− γ)Γ(β−α)

Γ(β− γ)Γ(1−α)a
j
−

}

.
(5.71)

On the other hand, when making use of the bulk-boundary OPE of Θ1/2 inside the
correlator (5.62), we get

P1G(2)j,α(ui|zi) ≃ (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(1/2) (u1 + ū1)
2j (u2 + ū2) ·

· C(1/2,0|α)A(j|α) .
(5.72)

Identifying C(1/2,0|α) = A(1/2|α) and using the explicit expressions for the
OPE coefficients (section 3.5.2), we arrive at the following 1/2-shift equation for
the redefined one point amplitude (5.29):

eiπb2j sin[πb2(2j + 2)]f
(

j + 1

2

)

− e−iπb2(j+1) sin[πb22j]f
(

j − 1

2

)

=

= − 1
π
Γ(−b2) sin[2πb2] sin[πb2(2j + 1)]f

(

1
2

)

f(j) .

(5.73)
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5.5.4 Regular AdS
(d)
2 Branes - Gluing Map ρ1

Ansatz for the One Point and Two Point Functions

Again we choose the regular u-dependence, so that the gluing map ρ1 fixes the
one point function to be

〈

Θj(u|z)
〉

α
= (z − z̄)−2h(j) (u− ū)2j A(j|α). (5.74)

The boundary two point function with degenerate field 1/2 is

G(2)j,α(u1, u2|z1, z2) = (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(1/2) ·
· (u1 − ū1)

2j (u2 − ū2)H
(2)
j,t,α(u|z),

(5.75)

with crossing ratios

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = |u1 −u2|2
(u1 − ū1) (u2 − ū2)

. (5.76)

Note that again z ∈ (−∞,0), z ∈ (−∞,0), as in the preceding subsection.

Knizhnik-Zamolodchikov Equation

Mapping z1 → 0, z̄1 → 1 and z̄2 → ∞ (i.e. z2 → z), the Knizhnik-Zamolodchikov
equation (4.9) for z2 is brought to standard form

−b−2z(z − 1)∂zH
(2)
j,α(u|z) = u(u− 1)(u− z)∂2

uH
(2)
j,α(u|z)+

+
[

−2ju2 − 2uz + (2j + 1)u+ z
]

∂uH
(2)
j,α(u|z)+

+ [2ju− j]H(2)j,α(u|z) .
(5.77)

This equals exactly the Knizhnik-Zamolodchikov equation in the previous sec-
tion. Thus, we obtain the same conformal blocks as above (5.66).

Expansion Coefficients

The definition of u does not contain a minus sign. Therefore, the expansion
coefficients are this time given by

a
j
ǫ(α) = Cǫ(j)A(jǫ|α). (5.78)
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Factorization Limit and 1/2-Shift Equation

In the limit Im(z2) → 0, the same comments as in section 5.5.3 apply. The 1/2-
shift equation that we produce reads

eiπb2j sin[πb2(2j + 2)]fσ

(

j + 1
2

)

+ e−iπb2(j+1) sin[πb22j]fσ

(

j − 1
2

)

=

= − 1

π
Γ(−b2) sin[2πb2] sin[πb2(2j + 1)]fσ

(

1

2

)

fσ (j) .

(5.79)

Note that this 1/2-shift equation differs from the one for ρ2 (5.73) only in the
sign between the two terms on the right hand side. It is this little detail that will
later (in section 6.1.4) allow for a more general solution than in the case of ρ2.

5.6 1/2-Shift Equations for the Continuous Branes

In this section we assemble the 1/2-shift equations for the continuous AdS2

branes. The ansätze for the one point functions are always as in the preced-
ing section and the two point functions are computed in exactly the same way.
Therefore we just state our results here. Actually, the 1/2-shift equations can
readily be obtained from their counterparts for the discrete branes. One only
needs to replace Cσ (1/2,0|α) by c̃σ (1/2,0|α) (recall section 5.2.4) and notice
that an additional factor of

√
νb Γ(1+ 2b2) appears along with c̃σ (1/2,0|α) from

redefining the one point amplitudes according to (5.29). Using the relation

sin[2πb2] = − π

Γ(1+ 2b2)Γ(−2b2)
, (5.80)

one easily sees that the standard factor appearing along with c̃σ (1/2,0|α) is√
νb

Γ(−b2)
Γ(−2b2)

. The 1/2-shift equations for the irregular continuous branes with
gluing maps ρ2/ρ1 had already been stated in [72]/[79]. The regular cases are
new [69].

5.6.1 Irregular AdS
(c)
2 Branes - Gluing Maps ρ1, ρ2

As before in the discrete case, we find identical 1/2-shift equations for gluing
maps ρ1, ρ2. The equation reads

√
νb

Γ(−b2)

Γ(−2b2)
c̃σ (1/2,0|α) sin[πb2(2j + 1)]fσ

(

j
) =

= sin[πb2(2j + 2)]fσ

(

j + 1
2

)

− sin[πb22j]fσ

(

j − 1
2

)

.

(5.81)
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5.6.2 Regular AdS
(c)
2 Branes - Gluing Map ρ2

Using the above recipe, we read off the following 1/2-shift equation from (5.73):

eiπb2j sin[πb2(2j + 2)]f
(

j + 1

2

)

− e−iπb2(j+1) sin[πb22j]f
(

j − 1

2

)

=

= √νb Γ(−b
2)

Γ(−2b2)
c̃(1/2,0|α) sin[πb2(2j + 1)]f (j) .

(5.82)

5.6.3 Regular AdS
(c)
2 Branes - Gluing Map ρ1

This 1/2-shift equation differs from the previous one only in a sign on the left
hand side:

eiπb2j sin[πb2(2j + 2)]f
(

j + 1

2

)

+ e−iπb2(j+1) sin[πb22j]f
(

j − 1

2

)

=

= √νb Γ(−b
2)

Γ(−2b2)
c̃(1/2,0|α) sin[πb2(2j + 1)]f (j) .

(5.83)
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6 More Shift Equations via Analytic Continuation

Having discussed 1/2-shift equations, there is an immediate call for solutions. In-
deed, solutions to the 1/2-shift equations given in the previous chapter together
with the reflection symmetry constraint (5.30), (5.33) can be given and have been
given (partly by us and partly by others; see the next two sections for precise
citations) [72, 79, 78, 76, 67, 68, 69]. We shall discuss these solutions in the
present chapter. One problem is, however, that the 1/2-shift equations do not
fix the solutions uniquely. Thus, the goal is to derive a second independent shift
equation, in order to make the solutions for the one point amplitude unique and
hence back up their consistency. The natural candidate from which to derive a
second factorization constraint is the two point function involving the next sim-
ple degenerate field which has sl(2,C) label j = b−2/2. The aim of the present
chapter is to study this two point function, analyse how it provides us with the
desired b−2/2-shift equation and study the implications of the new constraints.
In this, we follow closely our article [69].

Our derivation of b−2/2-shift equations starts with solving the associated
Knizhnik-Zamolodchikov equation for the two point function involving the de-
generate field Θb−2/2. Contrary to the situation that we encountered for the 1/2-
shift equations in the last chapter, the solution for the correlator is not every-
where defined, but only in a certain (u, z)-patch. Unfortunatley, in order to take
the factorization limit, one has to move out of this initial region. Consequently,
a continuation prescription for the two point correlator is needed. Since, in its
initial domain, it is in fact an analytic function of both variables (u, z), we shall
assume here that it can be extended to other regions by analytic continuation in
(u, z). Then, a definition of the two point correlator can be given in the patch
that is relevant to the factorization limit and we can derive the desired b−2/2-
shift equations.

With these new equations at our disposal, we then go on and study solutions
for the one point amplitudes. The strategy is to write down the most general so-
lution to the 1/2-shift equation together with the reflection symmetry constraint
in a first step and then insert this solution into the new b−2/2-shift equation.
This will usually restrict the solution further or exclude it as beeing inconsistent
[69].

Having described the programme to be carried out in this chapter, let us men-
tion briefly what is to follow afterwards. In fact, the continuation prescription
alluded to above is not the only possibility. From a correspondence between the
H+3 model and Liouville theory [74, 73], a certain continuity prescription has been
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proposed [73]. We are going to review the correspondence in chapter 7 and also
explain this continuity proposal. Then, in chapter 8, we describe our work [68],
where we have shown how the continuity proposal can be realized explicitly in
the H+3 model and have analysed the consequences for b−2/2-shift equations and
their solutions. But before we come to that, let us now turn to the approach that
uses analytic continuation.

6.1 Discrete Branes

In subsection 6.1.1, we give the details of our derivation [69] of the b−2/2-shift
equation for the irregular discrete AdS2 branes with gluing map ρ2. With the
help of our new shift equation, we then discuss consistency of the solution pro-
posed in [76]. Afterwards, we proceed with the b−2/2-shift equations and their
solutions for the cases of irregular discrete AdS2 branes with gluing map ρ1, reg-
ular discrete ρ2 and regular discrete ρ1. All the b−2/2-shift equations and results
about the one point amplitude solutions that we discuss for these cases have
been given by us in [69].

6.1.1 Irregular AdS
(d)
2 Branes - Gluing Map ρ2

Ansatz for the One Point and Two Point Functions

Recall the form of the one point function from section 5.5.1
〈

Θj(u|z)
〉

α
= |z − z̄|−2h(j) |u+ ū|2j Aσ (j|α). (6.1)

Using the Ward identities, the form of the two point function

G(2)j,α(ui|zi) =
〈

Θb−2/2(u2|z2)Θj(u1|z1)
〉

α
(6.2)

can be partially fixed as

G(2)j,α(u1, u2|z1, z2) =|z1 − z̄1|2[h(b
−2/2)−h(j)] |z1 − z̄2|−4h(b−2/2) ·

· |u1 + ū1|2j−b
−2 |u1 + ū2|2b

−2
H(2)j,α(u|z),

(6.3)

where H(2)j,α(u|z) is an unknown function of the crossing ratios

z = |z2 − z1|2
|z2 − z̄1|2

and u = |u2 −u1|2
|u2 + ū1|2

. (6.4)

Taking the physical cut, the crossing ratios are real and take values 0 ≤ z ≤ 1
and 0 ≤ u ≤ 1.
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Knizhnik-Zamolodchikov Equation

We use the Knizhnik-Zamolodchikov equations (4.9) for z2. Mapping z1 → 0,
z̄2 → 1 and z̄1 → ∞ (i.e. z2 → z) and analogously in the u’s, brings this equation
to the following standard form

−b−2z(z − 1)∂zH
(2)
j,α(u|z) = u(u− 1)(u− z)∂2

uH
(2)
j,α+

+
{[

1− 2b−2
]

u2 +
[

b−2 − 2j − 2
]

uz +
[

2j + b−2
]

u+ z
}

∂uH
(2)
j,α+

+
{

b−4u+
[

b−2j − b−4/2
]

z − b−2j
}

H(2)j,α .

(6.5)

Since one field operator is the degenerate field Θb−2/2, the space of solutions is
finite dimensional. In fact it consists of three conformal blocks only, namely
those for j± := j±b−2/2 and j× := −j−1−b−2/2. The general solution therefore
reads

H(2)j,α =
∑

ǫ=+,−,×
a
j
ǫ(α)F sj,ǫ (6.6)

with (see [83] and [96])

F sj,+(u|z) = z−j(1− z)−b
−2/2F1(α,β,β

′;γ|u;z) ,

F̃ sj,−(u|z) = zβ−γ+1−j(1− z)γ−α−1−b−2/2(u− z)−β·

· F1

(

1− β′, β,α+ 1− γ; 2+ β− γ








z

z −u ;
z

z − 1

)

,

F̃ sj,×(u|z) = z−j(1− z)−b
−2/2eiπ(α+1−γ) Γ(α)Γ(γ − β)

Γ(α+ 1− β)Γ(γ − 1)
·

·
{

u−αF1

(

α,α+ 1− γ,β′;α+ 1− β








1

u
;
z

u

)

−

−e−iπα Γ(α+ 1− β)Γ(1− γ)
Γ(α+ 1− γ)Γ(1− β)F1(α,β,β

′;γ|u;z)

}

.

(6.7)

The function F1(α,β,β′, γ|u;z) is a generalized hypergeometric functions, the
first one of Appell’s double hypergeometric functions. We give an overview and
summarize its most important properties in appendix C. See the books [96, 97]
for more information. Splitting the common factor z−j(1− z)−b−2/2, these func-
tions are found in [96] as (respectively) Z1, Z5 and the last one is a combination
of Z8 and Z1. For the occuring parameters we find

α = β = −b−2, β′ = −2j − 1− b−2, γ = −2j − b−2 . (6.8)

For our purposes, we like to replace the F̃ sj,− block by

F sj,−(u|z) = z−j(1− z)−b
−2/2u−βz1+β−γ·

· F1

(

1+ β+ β′ − γ,β,1+α− γ; 2+ β− γ








z

u
;z
)

.
(6.9)
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This is found in [96] as Z15 and coincides with the conformal block given in (6.7)
in the overlap of their domains of convergence [96] and thus, (6.9) is a continu-
ation of the former F̃ sj,− block. Also, we continue the first summand of F̃ sj,× to

( 1
u ,

z
u) ≡ (η, ξ) ≈ (∞,0). Then, one of the resulting two terms precisely cancels

the second summand of F̃ sj,× and we are only left with

F sj,×(u|z) = z−j(1− z)−b
−2/2u1−γ·

·G2

(

β′,1+α− γ; 1+ β− γ,γ − 1








− z
u

;u
)

.
(6.10)

G2(β,β′;α,α′|u;z) is again of the generalized hypergeometric type. It is the
second function appearing on Horn’s list. We also give an introduction to this
function in appendix C and refer to [98, 97] for more information. With our
modest improvements, the boundary two point function is now defined in the
region z < u < 1. For convenience, let us once and for all assemble the conformal
blocks we are using:

F sj,+(u|z) = z−j(1− z)−b
−2/2F1(α,β,β

′;γ|u;z) ,

F sj,−(u|z) = z−j(1− z)−b
−2/2u−βz1+β−γ·

· F1

(

1+ β+ β′ − γ,β,1+α− γ; 2+ β− γ








z

u
;z
)

,

F sj,×(u|z) = z−j(1− z)−b
−2/2u1−γ·

·G2

(

β′,1+α− γ; 1+ β− γ,γ − 1








− z
u

;u
)

(6.11)

with parameters

α = β = −b−2, β′ = −2j − 1− b−2, γ = −2j − b−2 . (6.12)

(6.11) constitutes a linearly independent set of three solutions. By general theory,
any other solution can be expressed as a linear combination of them [97]. This
reflects nicely the fact that the degenerate field Θb−2/2 restricts the propagating
fields to only three possibilities, namely those belonging to representations j±
and j×, as we have mentioned above.

Expansion Coefficients

The constants a
j
ǫ(α) in (6.6) are some still undetermined coefficients. They are

fixed by using the bulk OPE of the two field operators on the left hand side and
taking the appropriate limit |z2 − z1| → 0 on the right hand side of (6.3). The

a
j
ǫ(α) will then generically turn out to be some product of bulk OPE coefficient
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times one point amplitude, which is why the α-dependence occurs in the a
j
ǫ-

coefficients. Using a bulk OPE on the left hand side of (6.3), we obtain

G(2)j,α(u1, u2|z1, z2) ≃
≃ |z2 − z1|−2j |z1 − z̄1|−2h(j+) |u1 + ū1|2j+b

−2
C+(j)Aσ (j+|α)+

+ |z2 − z1|2j+2 |u2 −u1|2b
−2 |z1 − z̄1|−2h(j−) ·
· |u1 + ū1|2j−b

−2
C−(j)Aσ (j−|α)+

+ |z2 − z1|−2j |u2 −u1|2(2j+1+b−2) |z1 − z̄1|−2h(j×) ·
· |u1 + ū1|−2j−2−b−2

C×(j)Aσ (j×|α) .

(6.13)

We have used here that

h(j+) = h(j×) = h(j)+ h(b−2/2)− j
h(j−) = h(j)+ h(b−2/2)+ j + 1.

(6.14)

For the explicit expressions of the bulk OPE coefficients Cǫ(j) see section 3.5.3.
On the right hand side of (6.3) we can also take the limit |z2 − z1| → 0 (⇒ z → 0+)
followed by |u2 −u1| → 0 (⇒ u → 0+). The conformal blocks (6.11) behave as
follows:

F sj,+(u|z) ≃ z−j ,
F sj,−(u|z) ≃ zj+1ub

−2
,

F sj,×(u|z) ≃ z−ju2j+1+b−2
.

(6.15)

Together with the prefactor of (6.3)

|z1 − z̄1|2[h(b−2/2)−h(j)] |z1 − z̄2|−4h(b−2/2) |u1 + ū1|2j−b
−2 |u1 + ū2|2b

−2 ≃
≃ |z1 − z̄1|−2[h(b−2/2)+h(j)] |u1 + ū1|2j+b

−2
(6.16)

and recalling that

z = |z2 − z1|2
|z2 − z̄1|2

and u = |u2 −u1|2
|u2 + ū1|2

, (6.17)

we find precisely

a
j
ǫ(α) = Cǫ(j)Aσ (jǫ|α) . (6.18)
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Factorization Limit and b−2/2-Shift Equation

The idea is just as before in the case of 1/2-shift equations (chapter 5): In order to
obtain a shift equation, take the limit Im(z2)→ 0 (implying z → 1−). The problem
that occurs here is that the original conformal blocks (6.11) are only defined for
z < u < 1 and therefore, the factorization limit cannot be taken straight away.
Hence, we have to make an analytic continuation to a suitable region. This is a
little involved. Let us take the F sj,− block as prototype example to illustrate the
problems that one encounters. It shows all features that can become important.
Recall that

F sj,−(u|z) = z−j(1− z)−b
−2/2u−βz1+β−γ·

· F1

(

1+ β+ β′ − γ,β,1+α− γ; 2+ β− γ








z

u
;z
)

.
(6.19)

The conformal blocks we are using (6.11) are well defined in the region z < u < 1.
Remember that the crossing ratios u and z, as given in equation (6.4), are both
real with 0 ≤ u,z ≤ 1 in the physical cut. For now, we can work in that region.
Later (see below), we shall need to relax the reality condition on u,z slightly, i.e.
we will move away from the physical cut in a controlled way. But for the moment,
we like to maintain u < 1, which corresponds to equal signs σ1 = σ2. Since the
factorization limit requires z → 1−, we necessarily need to continue to a patch
where z > u, u < 1, z ≈ 1. We cannot use the standard analytic continuation
of Appell’s function F1 as given in [97], because some coefficients turn out to
become infinite in these formulae. This is due to the following relation between
the parameters (6.12):

1+ β′ − γ = 0. (6.20)

The invalidation of the continuation formulae in [97] can be traced back to a
special (logarithmic) case in the continuation of Gauss’ hypergeometric function,
when expanding F1 appropriately (see appendix C). We will see this in detail
shortly. In order to continueF sj,− sensibly, the first step is to expand the occuring

F1(. . . | zu ;z) in powers of the first variable z
u (see appendix C)

F1

(

β,β,1+ β− γ; 2+ β− γ
∣

∣

∣

∣

z

u
;z
)

=

=
∞
∑

n=0

(β)n(βn)

(2+ β− γ)n
F(β+n,1+ β− γ; 2+ β− γ +n|z)(z/u)

n

n!

(6.21)

and then use a standard analytic continuation (as found e.g. in [98]; we also cite
it in appendix C) of Gauss’ hypergeometric function F(. . . |z) in order to expand
it in terms of (1− z). As can be seen from the parameters, this is a generic case.
Furthermore, since 0 ≤ z < 1, also 0 < (1− z) ≤ 1, meaning that no branch cuts
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are met and convergence in the domain needed is ensured. Two different terms
arise from this continuation:

F1

(

β,β,1+ β− γ; 2+ β− γ
∣

∣

∣

∣

z

u
;z
)

=:
Γ(2+ β− γ)Γ(1− β)

Γ(2− γ) I

(

z

u
; 1− z

)

+

+ Γ(2+ β− γ)Γ(β− 1)
Γ(β)Γ(1+ β− γ) (1− z)1−βII

(

z

u
; 1− z

)

.

(6.22)

Let us focus on the first one. After some minor manipulations it reads:

I

(

z

u
; 1− z

)

=
∞
∑

n=0

(βn)(β)n
(1)n

F(β+n,1+ β− γ;β|1− z)(z/u)
n

n!
. (6.23)

Now, we expand the hypergeometric function in powers of (1−z) to yield a dou-
ble expansion. Afterwards, the whole expression can be resummed and written
as a single expansion again, but this time in powers of (1− z) only:

I

(

z

u
; 1− z

)

=
∞
∑

m=0

(1+ β− γ)mF
(

β,β+m; 1
∣

∣

∣

∣

z

u

)

(1− z)m
m!

. (6.24)

In order to reach the desired patch, the “inner” hypergeometric function must
now be continued to yield an expansion in the variable u

z . This, however, is no
longer a generic case, but a logarithmic one. It is precisely where the formula for
the full Appell function F1 in [97] breaks down. Nevertheless, we can do it right
here. The appropriate continuation formula for the Gauss function is found in
[98], for example. For convenience, we have also included it in appendix C. After
its use, the resulting series it not easily resummend again to yield some familiar
functions. But since we are taking the limit z → 1 anyway, we can isolate the
leading term in (1−z), which is just the term withm = 0 in the above expansion.
Thus, for z → 1, the result is

I ≃ eiπβuβ

Γ(1− β)Γ(β)
∞
∑

n=0

(β)n(β)n
(1)n

un

n!

[− log(u)+ hn(β)− iπ
] {1+O(1− z)} .

(6.25)
Note that the u dependence ∝ log(u) looks rather unfamiliar, but is actually
nothing to worry about: The correct expansion variable for the OPE needed here
is actually (1 − u) and − log(u) = − log(1 − (1 − u)) = (1 − u) {1+O(1−u)}.
Together with the prefactor z−j(1−z)−b−2/2u−βz1+β−γ , which belongs to the def-
inition of F sj,−, this term has the correct asymptotics corresponding to propaga-

tion of the modes b−2 and −b−2−1 (see 5.3.2). It does however not contribute to
the propagation of the identity and consequently does not enter the factorization
constraint.
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6 More Shift Equations via Analytic Continuation

There is still one more comment to make about the above continuation of
Gauss’ hypergeometric function from η ≡ z

u to u
z = 1

η . The Gauss function
F(a,b; c|η) has a branch cut along the line η ∈ R>1. Continuation formulae
are invalidated if η or its transformed counterpart take values in this line. This
is, however, precisely the situation we need to handle, if we stay inside the physi-
cal cut region. We overcome the problem by relaxing the reality condition on u,z
slightly: Given the Gauss function F(a,b; c|η), with η ∈ R, η > 1, let η ֏ ηe−iǫ

(ǫ > 0). Gauss’ hypergeometric function is continuous from below in η (but not
from above for η > 1, so there is no choice involved here), i.e.

F(a,b; c|η) = lim
ǫ→0+

F(a,b; c|ηe−iǫ). (6.26)

We therefore take occuring phases to be in (−2π,0]. In particular, this means
(−) = e−iπ . On the right hand side of (6.26), an analytic continuation formula
(see [98] or appendix C) can now be used. In the end, the epsilon is removed
by taking it to be zero and we are back inside the physical cut. This procedure
automatically selects the correct phases. In practice, all we need to do is keep
the phase prescription in mind and write down everything without the epsilon.
In the logarithmic case b = a+m, m ∈ Z≥0, the continuation is

F (a,a+m; c |η) = Γ(c) (−η)−a−m
Γ(a+m)Γ(c − a) ·

·
∞
∑

n=0

(a)n+m(1− c + a)n+m
n!(n+m)!

(

1

η

)n
[

log(−η)+ hn(a, c,m)
]+

+ Γ(c) (−η)
−a

Γ(a+m) ·
m−1
∑

n=0

Γ(m−n)(a)n
Γ(c − a−n)n!

(

1

η

)n

.

(6.27)

With our phase prescription, the logarithm becomes log(−η) = − log( 1
η )− iπ and

(−η)−a = eiπa( 1
η )
a. This is how the phase eiπβ and the −iπ in (6.25) arise.

Let us now turn to the second term in the continuation of F1(. . . | zu ;z):

II

(

z

u
; 1− z

)

=
∞
∑

n=0

(β)nF(2− γ,1+n; 2− β|1− z)(z/u)
n

n!
. (6.28)

Expanding and resumming as above, this can equally be written as

II

(

z

u
; 1− z

)

=
∞
∑

m=0

(2− γ)m(1)m
(2− β)m

F

(

β,1+m; 1
∣

∣

∣

∣

z

u

)

(1− z)m
m!

. (6.29)

This time, the continuation from z
u to u

z follows a generic case. The phase pre-
scription is exactly as above. In the end, as z → 1, we obtain

II ≃ eiπβuβF(β,β;β|u) {1+O(1− z)} . (6.30)
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6.1 Discrete Branes

Together with the overall prefactor z−j(1−z)1+b−2/2u−βz1+β−γ (coming from the
definition of F sj,− together with the (1 − z)1−β from the first continuation) and
using that

F(β,β;β|u) = (1−u)−β , (6.31)

this shows precisely the asymptotic behaviour of the propagating identity. This
term therefore enters the factorization constraint.

The F sj,× block

F sj,×(u|z) = z−j(1− z)−b
−2/2u1−γ·

·G2

(

β′,1+α− γ; 1+ β− γ,γ − 1








− z
u

;u
)

.
(6.32)

can be treated along similar lines. Here, we first continue the second variable
u to (1 − u). As this turns out to be a generic case, the resumming works out
again and we can then continue in the firrst variable from z

u to u
z . This is again

generic. The overall result does not contain a term corresponding to the identity
propagating and hence no contribution to the shift equation is generated here.

Finally, the F sj,+ block

F sj,+(u|z) = z−j(1− z)−b
−2/2F1(α,β,β

′;γ|u;z) (6.33)

is easily continued using standard formulae of e.g. [97]. We obtain

F sj,+ ≃ (1− z)1+b
−2/2(1−u)b−2 Γ(γ)Γ(α+ β′ − γ)

Γ(α)Γ(β′)
· [1+O(1− z)]+

+ (1− z)b−2/2 Γ(γ)Γ(γ −α− β′)
Γ(γ −α)Γ(γ − β′)F(α,β;γ − β′|u) · [1+O(1− z)] .

(6.34)

The first summand gives the identity contribution and enters the shift equation.
While the original two point function, using the conformal blocks (6.11), was

defined in the patch 0 ≤ z < u < 1, the analytically continued expressions are
valid for 0 ≤ u < z ≤ 1 (we always have z ≤ 1 by definition) and therefore allow
for the derivation of the factorization constraint. Using expansions in 1 − z

u in
(6.11), this two point function can be shown to possess a finite limit at u = z. This
has been anticipated in [73]. Moreover, since we are using analytic continuations,
it must also be continuous at u = z. This feature has been postulated as an
axiom in [73]. Our two point function shows all their requirements except the
anticipated weakening of the Cardy-Lewellen factorization constraint, that is, the
two point function in the patch 0 ≤ u < z ≤ 1 is completely determined from its
expression in 0 ≤ z < u < 1, by analytic continuation.

Finally, let us state here the asymptotic behaviour of the analytically continued
conformal blocks in full. As we have already noted earlier, the parameters α, β,
β′, γ are not all independent of each other, but obey the relations α = β and
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6 More Shift Equations via Analytic Continuation

1+ β′ − γ = 0. We therefore eliminate α and β′ and only work with β and γ. Up
to terms which are of order {1+O(1− z,1−u)} we find that

F sj,+(u|z) ≃
Γ(γ)Γ(β− 1)

Γ(β)Γ(γ − 1)
(1− z)1+b−2/2(1−u)b−2+

+ Γ(γ)Γ(1− 2β)

Γ(γ − β)Γ(1− β)(1− z)
−b−2/2+

+ Γ(γ)Γ(1− β)Γ(2β− 1)

Γ(γ − β)Γ(β)Γ(β) (1− z)−b−2/2(1−u)2b−2+1 ,

F sj,−(u|z) ≃
Γ(2+ β− γ)Γ(β− 1)
Γ(β)Γ(1+ β− γ) eiπβ(1− z)1+b−2/2(1−u)b−2+

+ Γ(2+ β− γ)Γ(1− 2β)

Γ(2− γ)Γ(1− β)Γ(1− β)Γ(β)e
iπβ(1− z)−b−2/2+

+ Γ(2+ β− γ)Γ(2β− 1)

Γ(2− γ)Γ(β)Γ(β)Γ(β) eiπβ(1− z)−b−2/2(1−u)2b−2+1+

+ Γ(2+ β− γ)
Γ(2− γ)Γ(β)e

iπβ(1− z)−b−2/2
∞
∑

n=0

hn(β)
(β)n(β)n
(1)n

un

n!
,

F sj,×(u|z) ≃
Γ(2− γ)Γ(1− 2β)Γ(γ − β)
Γ(1− β)Γ(1− β)Γ(1− β) (1− z)

−b−2/2+

+
[

Γ(2− γ)Γ(2β− γ)
Γ(1+ β− γ)Γ(1+ β− γ)e

iπ(γ−1)−

− Γ(2− γ)Γ(γ − 2β)Γ(2β− 1)Γ(γ − β)
Γ(β)Γ(1− β)Γ(1− β)Γ(γ − 1)

eiπ2β

]

·

· (1− z)−b−2/2(1−u)2b−2+1 .

(6.35)

This must be compard to the asymptotics of (6.3) when using the bulk-boundary
OPE of Θb−2/2 (see the discussion in section 5.2.4 together with section 5.3.2)1:

G(2)j,α(u1, u2|z1, z2) ≃|z1 − z̄1|−2h(j) |z2 − z̄2|−2h(b−2/2) ·
· |u1 + ū1|2j |u2 + ū2|b

−2
Aσ (j|α)Aσ (b−2/2|α).

(6.36)

We see that the terms ∝ (1 − z)1+b−2/2(1 − u)b−2
correspond to propagation of

the identity. These are the terms that enter the shift equation. Note that the
F sj,× block does not contribute to these. The other terms which have a leading

1We take the signs σ1 = sgn(u1 + ū1) and σ2 = sgn(u2 + ū2) to be equal here: σ1 = σ2 = σ . One
could, of course, also take σ1 = −σ2 = σ . This would lead to further constraints. Note, however,
that for σ1 = σ2, the crossing ratio u lies in the interval 0 < u < 1, whereas for σ1 = −σ2 we have
u > 1. In the latter case one has to use different analytic continuations when taking z → 1−. We
have not worked that out.
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6.1 Discrete Branes

z-dependence∝ (1−z)−b−2/2 can be identified with propagation of the two other
possible boundary fields Ψb−2 (which has leading u-dependence ∝ (1− u)0) and
Ψ−b−2−1 (u-dependence∝ (1−u)2b−2+1). (Recall that, because Θb−2/2 is a degener-
ate field, its bulk boundary OPE is highly restricted). Conveniently, all terms that
appear fit in nicely with this interpretation. Only in the fourth summand in the
block F sj,− we cannot extract the explicit (1−u)-dependence, because of the ad-
ditional coefficients hn(β). They stem from the analytic continuation of a Gauss
hypergeometric function in an exceptional (logarithmic) case (see appendix C).
Yet, from its (1 − z)-dependence it is clear that this term does not come from a
propagation of the identity and therefore does not affect the shift equation. Col-
lecting the terms that stem from the identity propagation on both sides yields
the desired b−2/2-shift equation for the redefined one point amplitude (5.29)
[

Γ(1+ b2)
]−1
fσ

(

b−2

2

)

fσ (j) = fσ
(

j + b
−2

2

)

+ e−iπb−2
fσ

(

j − b
−2

2

)

. (6.37)

Solving the Shift Equations

The 1/2-shift equation (5.35) is solved by [76]

fσ (j|m,n) =
iπσeiπm

Γ(−b2) sin[πnb2]
e−iπσ(m− 1

2 )(2j+1) sin[πnb2(2j + 1)]

sin[πb2(2j + 1)]
, (6.38)

with n,m ∈ Z.2 Note that this also satisfies the reflection symmetry constraint
(5.30). One checks however quite easily that it does not satisfy our new shift
equation (6.37). Interestingly, the obstruction is precisely the term that stems
from the F sj,− conformal block. Without it, the equation would be obeyed. Never-

theless, we need to conclude that the irregular AdS(d)2 brane with gluing map ρ2

is not consistent.

6.1.2 Irregular AdS
(d)
2 Branes - Gluing Map ρ1

Ansatz for the One Point and Two Point Functions

The form of the one point function was (recall section 5.5.2)
〈

Θj(u|z)
〉

α
= |z − z̄|−2h(j) |u− ū|2j Aσ (j|α). (6.39)

The ansatz for the boundary two point function with degenerate field b−2/2 (fix-
ing the ui and zi dependence up to a dependence on the crossing ratios) is

G(2)j,α(u1, u2|z1, z2) = |z1 − z̄1|2[h(b−2/2)−h(j)] |z1 − z̄2|−4h(b−2/2) ·
· |u1 − ū1|2j−b

−2 |u1 − ū2|2b
−2
H(2)j,α(u|z),

(6.40)

2This is how the solution has been given in [76]. In fact we only need m ∈ Z to satisfy equation
(5.35).
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6 More Shift Equations via Analytic Continuation

with crossing ratios

z = |z2 − z1|2
|z2 − z̄1|2

and u = |u2 −u1|2
|u2 − ū1|2

. (6.41)

Knizhnik-Zamolodchikov Equation

The conformal blocks that solve the Knizhnik-Zamolodchikov equation for z2

turn out to be just the same ones as for gluing map ρ2, so they are given by (6.11)
with parameters

α = β = −b−2, β′ = −2j − 1− b−2, γ = −2j − b−2 . (6.42)

Expansion Coefficients

The expansion coefficients also stay as before:

a
j
ǫ(α) = Cǫ(j)Aσ (jǫ|α) . (6.43)

Factorization Limit and b−2/2-Shift Equation

Taking the limit Im(z2) → 0, we obtain the same b−2/2-shift equation as for glu-
ing map ρ2 (6.37). As the 1/2-shift equations (sections 5.5.1, 5.5.2) also coincide,
this means that the irregular discrete branes that arise from gluing maps ρ1 and
ρ2 respectively, are indeed isomorphic. Compare to our remarks in section 5.2.2,
where we speculated that this may happen. However, we do not find a solution
(other than the trivial one) that satsifies both factorization constraints, as we
have already explained in section 6.1.1.

6.1.3 Regular AdS
(d)
2 Branes - Gluing Map ρ2

Ansatz for the One Point and Two Point Functions

The form of the one point function was (section 5.5.3)

〈

Θj(u|z)
〉

α
= (z − z̄)−2h(j) (u+ ū)2j A(j|α). (6.44)

The boundary two point function with degenerate field Θb−2/2 is

G(2)j,α(u1, u2|z1, z2) = (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(b−2/2) ·
· (u1 + ū1)

2j (u2 + ū2)
b−2
H(2)j,α(u|z),

(6.45)
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with crossing ratios

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = − |u1 −u2|2
(u1 + ū1) (u2 + ū2)

. (6.46)

Again, they take values in z ∈ (−∞,0) (because z1, z2 are in the upper half plane),
u ∈ (−∞,0) (if we take σ1 = σ2).

Knizhnik-Zamolodchikov Equations

Solving the Knizhnik-Zamolodchikov equations for z2 results in the following
conformal blocks:

F sj,+(u|z) = z−j(1− z)−jF1(α,β,β
′;γ|u;z),

F sj,−(u|z) = z−j(1− z)−ju−βz1+β−γ·

· F1

(

1+ β+ β′ − γ,β,1+α− γ; 2+ β− γ








z

u
;z
)

,

F sj,×(u|z) = z−j(1− z)−ju1−γ·

·G2

(

β′,1+α− γ; 1+ β− γ,γ − 1








− z
u

;u
)

,

(6.47)

this time with parameters

α = −2j, β = −b−2, β′ = −2j − 1− b−2, γ = −2j − b−2. (6.48)

Note that the common (1− z)-dependence is changed here to (1− z)−j .

Expansion Coefficients

Using the OPE on the left hand side of (6.45), we find

G(2)j,α(u1, u2|z1, z2) ≃
≃ |z2 − z1|−2j (z1 − z̄1)

−2h(j+) (u1 + ū1)
2j+b−2

C+(j)A(j+|α)+
+ |z2 − z1|2j+2 |u2 −u1|2b

−2
(z1 − z̄1)

−2h(j−) (u1 + ū1)
2j−b−2

· C−(j)A(j−|α)+
+ |z2 − z1|−2j |u2 −u1|2(2j+1+b−2) (z1 − z̄1)

−2h(j×) (u1 + ū1)
−2j−2−b−2

· C×(j)A(j×|α).

(6.49)

On the right hand side, taking |z2 − z1| → 0 (⇒ z → 0−) followed by |u2 −u1| → 0
(⇒ u→ 0−), the conformal blocks (6.47) show the behaviour

F sj,+(u|z) ≃ z−j ,
F sj,−(u|z) ≃ zj+1ub

−2
,

F sj,×(u|z) ≃ z−ju2j+1+b−2
.

(6.50)
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6 More Shift Equations via Analytic Continuation

Remember that they are accompanied by the prefactor

(z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(b−2/2) (u1 + ū1)
2j (u2 + ū2)

b−2 ≃
≃ (z1 − z̄1)

−2[h(j)+h(b−2/2)] (u1 + ū1)
2j+b−2

(6.51)

from (6.45) and that

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = − |u1 −u2|2
(u1 + ū1) (u2 + ū2)

. (6.52)

Now, we need to be careful about phase factors that arise from z−j , ub
−2

, and so
on. In order to be consistent with the choice of phase we have to make because
of the branch cut of the hypergeometric functions (that is, we take phases to be
in (−2π,0] — see section 6.1.1), we have to use the relations (ν ∈ C)

zν = e−4π iν |z1 − z2|2ν (z1 − z̄1)
−ν (z2 − z̄2)

−ν ,

uν = eiπ(σ−2)ν |u1 −u2|2ν (u1 + ū1)
−ν (u2 + ū2)

−ν ,
(6.53)

where σ = sgn(u1+ū1) = sgn(u2+ū2). One can quickly check that this is correct
by comparing the complex phases on both sides of the equations. With the help

of this, one sees that the coefficients a
j,b−2/2
ǫ need to be defined with phases as

follows

a
j,b−2/2
+ (α) = e−4π ijCb

−2/2
+ (j)A(j+|α),

a
j,b−2/2
− (α) = e4π ij−iπ(σ−2)b−2

Cb
−2/2
− (j)A(j−|α),

a
j,b−2/2
× (α) = e−4π ij−iπ(σ−2)(2j+1+b−2)Cb

−2/2
× (j)A(j×|α) .

(6.54)

Factorization Limit and b−2/2-Shift Equation

Taking the limit Im(z2) → 0, we have this time that z → −∞ and u → −∞
(σ1 = σ2). Therefore, as the conformal blocks must be expanded in the variables
(

1
z ,

1
u

)

, we need to take different analytic continuations of the occuring Appell
and Horn functions than before. Yet, the procedure and the issues one needs to
take care of, and that we have illustrated in great detail in section 6.1.1, stay the
same: We obtain the expansions of Appell’s function F1 and Horn’s function G2

by making repeated use of their one variable expansions with ordinary hypergeo-
metric functions as coefficients (see appendix C). To the coefficient functions we
can apply standard analytic continuation formulae (collected, again, in appendix
C), resum and repeat everything if necessary — just as in section 6.1.1. For the
regular branes, note that the parameters α, β, β′, γ are once again not all inde-
pendent of each other, but obey the relations α + β − γ = 0 and 1 + β′ − γ = 0
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(6.48), which we use to eliminate α and β′ and only work with β and γ. Up to

terms which are of order
{

1+O( 1
z ,

1
u )
}

we find that

F sj,+(u|z) ≃
[

Γ(γ)Γ(2β− γ)Γ(1− 2β+ γ)Γ(β− 1)

Γ(β)Γ(β)Γ(γ − 1)Γ(1− β) +

+ Γ(γ)Γ(γ − 2β)Γ(1+ 2β− γ)Γ(β− 1)

Γ(γ − β)Γ(γ − 1)Γ(β)Γ(1+ β− γ) eiπ(2β−γ)
]

e−iπjz0u0+

+
[

Γ(γ)Γ(1− 2β)

Γ(γ − β)Γ(1− β)e
iπ(2j+1+2b−2)

]

e−iπjz1+b−2
ub

−2+

+
[

Γ(γ)Γ(2β− γ)Γ(1− 2β+ γ)Γ(1− β)
Γ(β)Γ(β)Γ(γ − β)Γ(2− 2β)

eiπ(β−1) +

+ Γ(γ)Γ(γ − 2β)Γ(2β− 1)Γ(1+ 2β− γ)Γ(1− β)
Γ(γ − β)Γ(γ − 1)Γ(β)Γ(β)Γ(2− γ) e−iπ(1+γ−3β)

]

·

· e−iπjz1+b−2
u−1−b−2

,

F sj,−(u|z) ≃
[

Γ(2+ β− γ)Γ(β− 1)

Γ(β)Γ(1+ β− γ) e−iπ(1−2β)

]

e−iπjz0u0+

+
[

Γ(2+ β− γ)Γ(1− 2β)

Γ(1− β)Γ(2− γ) e−iπβ

]

e−iπjz1+b−2
ub

−2+

+
[

Γ(2+ β− γ)Γ(2β− 1)Γ(1− β)
Γ(β)Γ(β)Γ(2− γ) e−iπ(2−3β)

]

e−iπjz1+b−2
u−1−b−2

,

F sj,×(u|z) ≃
[

Γ(2− γ)Γ(γ − 2β)Γ(γ − β)Γ(1+ 2β− γ)Γ(β− 1)

Γ(1− β)Γ(1− β)Γ(γ − 1)Γ(β)Γ(1+ β− γ) e−iπ(1−2β) +

+ Γ(2− γ)Γ(2β− γ)Γ(1− 2β+ γ)Γ(β− 1)

Γ(1+ β− γ)Γ(1+ β− γ)Γ(γ − 1)Γ(1− β)e
−iπ(1−γ)

]

e−iπjz0u0+

+
[

Γ(2− γ)Γ(γ − β)Γ(1− 2β)

Γ(1− β)Γ(1− β)Γ(1− β) e−iπβ

]

e−iπjz1+b−2
ub

−2+

+
[

Γ(γ − 2β)Γ(γ − β)Γ(2β− 1)Γ(1+ 2β− γ)Γ(1− β)
Γ(1− β)Γ(1− β)Γ(γ − 1)Γ(β)Γ(β)

e−iπ(2−3β) +

+ Γ(2− γ)Γ(2β− γ)Γ(1− 2β+ γ)Γ(1− β)
Γ(1+ β− γ)Γ(1+ β− γ)Γ(γ − β)Γ(2− 2β)

e−iπ(2−β−γ)
]

·

· e−iπjz1+b−2
u−1−b−2

.

(6.55)

We have written out these long and tedious terms for the reader to appreciate
that all terms that arise at leading order are again grouped into three differ-
ent asymptotics: z0u0 (corresponding to the propagating identity), z1+b−2

ub
−2
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(corresponding to the field Ψb−2 ) and z1+b−2
u−1−b−2

(corresponding to Ψ−b−2−1).
Presumably, all sums can be simplified. We have only done so for the identity con-
tributions, because this is all we need. Writing down the identity contributions
only and simplifying the occuring terms, the result looks much more convenient:

F sj,+(u|z) ≃
2j + 1+ b−2

1+ b−2
eiπj + . . . ,

F sj,−(u|z) ≃ −
2j + 1
1+ b−2

e−iπ(j+1−2b−2) + . . . ,

F sj,×(u|z) ≃
Γ(2j + 2+ b−2)Γ(−1− b−2)Γ(−2j)

Γ(−2j − 1− b−2)Γ(1+ b−2)Γ(2j + 1)
e−iπ(3j+2b−2) + . . . .

(6.56)

The dots now represent the contributions of the two other fields that are different
from the identity. Using the bulk boundary OPE for Θb−2/2 (5.19) in the point
function (6.45), the leading contribution of the identity is

G(2)j,α(u1, u2|z1, z2) ≃ (z2 − z̄2)
1+b−2/2 (u2 ± ū2)

b−2
(z1 − z̄1)

−2h(j) ·
· (u1 ± ū1)

2j C(b−2/2,0|α)A(j|α)
(6.57)

Comparing this to the expressions resulting from the conformal blocks, we obtain
the following b−2/2-shift equation

[

Γ(1+ b2)
]−1
f

(

b−2

2

)

f(j) = e−iπ3jf

(

j + b
−2

2

)

−

−eiπ3je−iπσb−2
f

(

j − b
−2

2

)

+ e−iπ3je−iπσ(2j+b−2)f

(

−j − 1− b
−2

2

)

.

(6.58)

Solving the Shift Equations

An immediate drawback of (6.58) is the occurence of σ ’s on its right hand side.
Lacking a σ -dependence of the (redefined) one point amplitude f , it is not clear
how these σ ’s could reasonably be incorporated. One might be tempted to re-
quire, for example, b−2 ∈ Z, 2j ∈ Z in order to make the σ -dependence vanish.
However, we should not hasten and require such conditions already at this point,
since it might still be possible that a solution f exists such that the σ -dependent
terms cancel out without any additional assumptions. (We will actually encounter
such a case in the next section, when solving the shift equations for regular AdS2

branes with gluing map ρ1). Yet, in the present situation we can rule out such
a possibility. Without making any further assumptions, we can proof that there
is no solution that satisfies both shift equations (5.73), (6.58) together with the
reflection symmetry constraint (5.33).
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A No Solution Theorem

In order to give the proof that there is no solution to both factorization con-
straints together with the reflection symmetry constraint in the case of regular
discrete branes with gluing map ρ2, let us make the redefinition

f(j) ≡ −πei π4 b
2

Γ(−b2)

e−iπ b
2
4 (2j+1)2

sin[πb2(2j + 1)]
g(j)

and work with g(j) here. Note that it has opposite parity of f(j). The shift equa-
tions (5.73) and (6.58) in terms of g(j) are given as (2) and (3) in the following

Theorem: The system of equations

(1) g(j) = −g(−j − 1)

(2) g(1/2)g(j) = g(j + 1/2)− g(j − 1/2)

(3) g(b−2/2)g(j) = e−iπ4jg(j + b−2/2)+ eiπ4je−iπσb−2
g(j − b−2/2)−

− e−iπ4je−iπσ(2j+b−2)g(−j − 1− b−2/2)

does not admit a non-trivial solution g(j).

◮ Proof: In order to proof this result, we proceed in two steps. The first one is
to show that any functions satisfying (1) and (2)must be 1-periodic. The second
step establishes that any 1-periodic function cannot satisfy (3).

1st Step. Any solution to (1) and (2) must be periodic with period 1: (1) tells
us that g(−1/2) = −g(−1/2), i.e. g(−1/2) = 0. Thus, using (2) at j = −1/2
together with (1) g(−1) = −g(0), we obtain g(0) = 0. (2) taken at j = 0 then
reveals immediately that

g(1/2) = g(−1/2) = 0 .

Hence, (2) implies 1-periodicity of g(j).
2nd Step. The 1-periodic function g(j) cannot satisfy (3): Using (3) at j = 0

and the 1-periodicity of g(j) yields (recall g(0) = 0)

g(b−2/2) = 0 .

Thus, equation (3) becomes

0 = e−iπ4jg(j + b−2/2)+ eiπ4je−iπσb−2
g(j − b−2/2)−

− e−iπ4je−iπσ(2j+b−2)g(−j − 1− b−2/2).
(6.59)
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6 More Shift Equations via Analytic Continuation

Taking this for j ֏ −j, using 1-periodicity together with (1) and multiplying by
exp[−iπσ2j] produces

0 = −eiπ4je−iπσ2jg(j − b−2/2)− eiπ4je−iπσb−2
g(j − b−2/2)+

+ e−iπ4je−iπσ(2j+b−2)g(−j − 1− b−2/2).
(6.60)

Adding (6.59) and (6.60), we obtain

e−iπ4jg(j + b−2/2) = eiπ4je−iπσ2jg(j − b−2/2). (6.61)

Plugging this back into (6.59), we can derive the relation

g(j − b−2/2) = −2e−iπσb−2
cos[πσ2j]g(j − b−2/2) (6.62)

Consequently, if g(j − b−2/2) ≠ 0, we must have

1 = −2e−iπσb
−2

cos[πσ2j] . (6.63)

For the right hand side to be independent of σ , we would need b−2 to be an inte-
ger. But this does actually not prevent g(j) from vanishing everywhere: Assume
that b−2 ∈ Z. Then, because of 1-periodicity, we have that

g(j − b−2/2) = g(j + b−2/2) . (6.64)

Therefore, (6.61) implies 2j ∈ Z as long as g(j + b−2/2) does not vanish. But for
such values of j, cos[πσ2j] = ±1 and hence, (6.62) requires (remember that we
are still assuming b−2 ∈ Z)

g(j − b−2/2) = ±2g(j − b−2/2) , (6.65)

which is only consistent with an everywhere vanishing function g: g(j) ≡ 0. This
concludes the proof of our no solution theorem. ◭

6.1.4 Regular AdS
(d)
2 Branes - Gluing Map ρ1

Ansatz for the One Point and Two Point Functions

The one point function was (section 5.5.4)
〈

Θj(u|z)
〉

α
= (z − z̄)−2h(j) (u− ū)2j A(j|α). (6.66)

The boundary two point function with degenerate field b−2/2 is

G(2)j,α(u1, u2|z1, z2) = (z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(b−2/2) ·
· (u1 − ū1)

2j (u2 − ū2)
b−2
H(2)j,α(u|z),

(6.67)

with crossing ratios

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = |u1 −u2|2
(u1 − ū1) (u2 − ū2)

. (6.68)

Note that again z ∈ (−∞,0), z ∈ (−∞,0).
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Knizhnik-Zamolodchikov Equations

The Knizhnik-Zamolodchikov equations for z2 are identical to those in the former
case. Hence, they yield the conformal blocks (6.47) with parameters (6.48) again.

Expansion Coefficients

The expansion coefficients again acquire complex phases. Using the OPE on the
left hand side of (6.67), we find

G(2)j,α(u1, u2|z1, z2) ≃
≃ |z2 − z1|−2j (z1 − z̄1)

−2h(j+) (u1 − ū1)
2j+b−2

C+(j)A(j+|α)+
+ |z2 − z1|2j+2 |u2 −u1|2b

−2
(z1 − z̄1)

−2h(j−) (u1 − ū1)
2j−b−2

· C−(j)A(j−|α)+
+ |z2 − z1|−2j |u2 −u1|2(2j+1+b−2) (z1 − z̄1)

−2h(j×) (u1 − ū1)
−2j−2−b−2

· C×(j)A(j×|α).

(6.69)

Taking |z2 − z1| → 0 (⇒ z → 0−) followed by |u2 −u1| → 0 (⇒ u → 0−) on the
right hand side, the conformal blocks (6.47) again show the behaviour

F sj,+(u|z) ≃ z−j ,
F sj,−(u|z) ≃ zj+1ub

−2
,

F sj,×(u|z) ≃ z−ju2j+1+b−2
.

(6.70)

This time they are accompanied by the prefactor

(z1 − z̄1)
−2h(j) (z2 − z̄2)

−2h(b−2/2) (u1 − ū1)
2j (u2 − ū2)

b−2 ≃
≃ (z1 − z̄1)

−2[h(j)+h(b−2/2)] (u1 − ū1)
2j+b−2

(6.71)

from (6.67) with

z = |z1 − z2|2
(z1 − z̄1) (z2 − z̄2)

and u = |u1 −u2|2
(u1 − ū1) (u2 − ū2)

. (6.72)

To be careful about phase factors, we have to use (ν ∈ C)

zν = e−4π iν |z1 − z2|2ν (z1 − z̄1)
−ν (z2 − z̄2)

−ν ,

uν = e−iπ(σ+3)ν |u1 −u2|2ν (u1 − ū1)
−ν (u2 − ū2)

−ν ,
(6.73)
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where σ = sgn(u1 − ū1) = sgn(u2 − ū2). With the help of this, it is easy to see

that the coefficients a
j,b−2/2
ǫ need to be defined with the following phases

a
j,b−2/2
+ (α) = e−4π ijCb

−2/2
+ (j)A(j+|α),

a
j,b−2/2
− (α) = e4π ij+iπ(σ+3)b−2

Cb
−2/2
− (j)A(j−|α),

a
j,b−2/2
× (α) = e−4π ij+iπ(σ+3)(2j+b−2)Cb

−2/2
× (j)A(j×|α).

(6.74)

Factorization Limit and b−2/2-Shift Equation

About the limit Im(z2)→ 0 the same comments as in the last section 6.1.3 for ρ2

apply. Our b−2/2-shift equation reads

[

Γ(1+ b2)
]−1
f

(

b−2

2

)

f(j) = e−iπ3jf

(

j + b
−2

2

)

−

−eiπ(3j+b−2)eiπσb−2
f

(

j − b
−2

2

)

− e−iπ(j−b−2)eiπσ(2j+b−2)f

(

−j − 1− b
−2

2

)

.

(6.75)

Solving the Shift Equations

We take a first step by solving the 1/2-shift equation (5.79) together with the
reflection symmetry constraint (5.33). We find the following one parameter solu-
tion

f(j|n) = − πeiπ b
2
4

Γ(−b2) sin[πnb2]
e−iπ b

2
4 (2j+1)2 sin[πnb2(2j + 1)]

sin[πb2(2j + 1)]
. (6.76)

Up to now there are no restrictions on the parameter n. Note, that due to the
missing σ -dependence of f(j), we cannot include a factor ∝ e−σ(2j+1)r . Such
a term would actually be typical of an AdS2 brane [72] (also compare to all the
previous AdS2 brane solutions), so what we have here is rather a degenerate
AdS2 brane (degenerate is a good adjective here; see below for an explanation).
Comparing to the solution for the irregular branes (6.38), the ∝ e−iπσ(2j+1)m

behaviour is replaced by the term ∝ exp
[

−iπ b2

4 (2j + 1)2
]

. Note that this is

an additional quantum deformation, since for b2 → 0 (corresponding to k → ∞)
this term goes to one.

Inserting (6.76) into our second shift equation (6.75), we find, very remarkably,
that it is obeyed provided that n ∈ Z and j ∈ 1

2Z. Thus, in (6.76) with n ∈
Z and j ∈ 1

2Z, we have given a fully consistent solution to both factorization
constraints. Seeing the restriction on j, one might ask for the meaning of a
b−2/2-shift equation with arbitrary b−2. We like to view (6.76) as an interpolating
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solution, that is a solution which is mathematically well-defined for arbitrary
complex values of j and as such an object can be inserted into a b−2/2-shift
equation. However, physically sensible information is only provided for values
j ∈ 1

2Z. Moreover, one should note that the (missing) factor ∝ e−iπσ(2j+1)m with

m ∈ Z does not depend on σ when j ∈ 1
2Z. Hence, one can really view the

absence of this typical (for AdS2 branes) term as a degeneracy which is related to
the restriction j ∈ 1

2Z.

6.2 Continuous Branes

In this section we assemble our results (shift equations and solutions) concerning
the continuous branes. The two point functions are always determined as shown
in the corresponding sections of chapter 6.1 and thus, we do not write them down
here again, but merely state our results. Recall from section 5.2.4 that, instead of
Cσ = Aσ , we now encounter the residua c̃σ .

6.2.1 Irregular AdS
(c)
2 Branes - Gluing Maps ρ1, ρ2

For both gluing maps the b−2/2 shift equation is

(1+ b2)ν
b−2

2
b c̃σ (b

−2/2,0|α)fσ (j) = fσ
(

j + b
−2

2

)

+ e−iπb−2
fσ

(

j − b
−2

2

)

.

(6.77)

Therefore, we discover that the irregular continuous branes are isomorphic for
gluing maps ρ1, ρ2, just as before in the discrete case. In [72] and [79], the
following solution to the 1/2-shift equation (5.81) and the reflection symmetry
constraint (5.30) has been proposed

fσ (j|α) = −πAb√
νb

e−α(2j+1)σ

sin[πb2(2j + 1)]
. (6.78)

To obtain this solution, it was used that

c̃σ (1/2,0|α) = − σ√
νb

Γ(−2b2)

Γ(−b2)
2 sinh(α). (6.79)

Plugging the solution (6.78) into the b−2/2-shift equation (6.77), we can infer an
expression for the unknown c̃σ (b−2/2,0|α):

c̃σ (b
−2/2,0|α) = − e−iπb−2/2

νb
−2/2
b (1+ b2)

2 cosh
[(

ασ − i
π

2

)

b−2
]

. (6.80)
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Hence, the known irregular continuous AdS2 branes are fully consistent with
both factorization constraints. Note that for b−2 = b2 = 1, the bulk-boundary
OPE coefficients (6.79), (6.80) coincide, as do the two shift equations (5.81) and
(6.77).

6.2.2 How to Approach the Regular AdS
(c)
2 Branes

We have just seen that knowledge of the occuring coefficients c̃σ (1/2,0|α) and
c̃σ (b−2/2,0|α) is needed to decide whether the continuous branes are consistent
or not. In [72], c̃σ (1/2,0|α) has been given for irregular branes. We can how-
ever not expect the corresponding coefficients in the regular case c̃(1/2,0|α),
c̃(b−2/2,0|α) to coincide with the irregular ones. Indeed, the latter are indepen-
dent of σ , while the former ones show an explicit σ -dependence (see equations
(6.79) and (6.80)).

Therefore, as no explicit expressions for c̃(1/2,0|α), c̃(b−2/2,0|α) are known,
our approach to the regular continuous AdS2 branes with gluing map ρ1 will be
to make a certain ansatz for the form of the (redefined) one point amplitude.
By inserting this ansatz into the shift equations, we will infer expressions for
c̃(1/2,0|α) and c̃(b−2/2,0|α) that we then discuss. For gluing map ρ2, we even
fail to write down an ansatz and we shall argue that the shift equations do not
admit a solution in that case.

6.2.3 Regular AdS
(c)
2 Branes - Gluing Map ρ1

The b−2/2-shift equation that we derive is

(1+ b2)ν
b−2

2
b c̃(b−2/2,0|α)f(j) = e−iπ3jf

(

j + b
−2

2

)

−

−eiπ(3j+b−2)eiπσb−2
f

(

j − b
−2

2

)

− e−iπ(j−b−2)eiπσ(2j+b−2)f

(

−j − 1− b
−2

2

)

.

(6.81)

In order to study a solution to both shift equations (5.83) and (6.81) we shall make
the following ansatz: From our experience in the discrete case (section 6.1.4), we

expect the additional quantum deformation exp[−iπ b2

4 (2j + 1)] to occur. (You
might remember from the discrete branes that, technically, this is the term that
cancels the exp [iπb2j] and exp[−iπb2(j + 1)] factors on the right hand side
of the 1/2-shift equation; these factors are of course also present here, in the
continuous case). Secondly, just like in the irregular continuous solution, we
also expect the deformation sin−1[πb2(2j + 1)] to be present. Along with it, an
additional factor with odd parity under j ֏ (−j − 1) must be included in order
to get the overall parity of the solution right (recall equation (5.33)). A choice for
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this factor is suggested from the following observation: We can again not include
the term∝ exp[−σ(2j+1)r] (which would be typical for an AdS2 brane, see [72]
and compare our remarks in section 6.1.4), due to the missing σ -dependence of
f(j). But in order to get the parity right, we can just use its odd part, so we
include sin[πb2(2j + 1)α] into our ansatz. Putting all this together, we believe
that the most natural ansatz for a regular continuous brane is

f(j|α) = A(reg)b e−iπ b
2
4 (2j+1)2 sin[πb2(2j + 1)α]

sin[πb2(2j + 1)]
, (6.82)

with an arbitrary, but only b-dependent constant A
(reg)
b . Just as above, in the

irregular continuous case, it cannot be fixed, because the continuous shift equa-
tions are always linear in the one point amplitude.

Using our ansatz (6.82) in the 1/2-shift equation (5.83) results in

c̃(1/2,0|α) = e−iπ 3
4b

2

√
νb

Γ(−2b2)

Γ(−b2)
2 cos(πb2α) . (6.83)

The b−2/2-shift equation (6.81) gives more restrictions: It is only sensible for
j ∈ 1

2Z. Furthermore, α =m ∈ Z is needed in order to handle it. With these two
restrictions, we obtain

c̃(b−2/2,0|α =m) = i
νb

−2/2
b

(1+ b2)
(−)me−iπ b

−2
4 . (6.84)

Interestingly, this coincides almost (up to a factor of two) with c̃(1/2,0|α) (6.83)
when taking b2 = b−2 = 1 (provided that α = m ∈ Z). We take this as a strong
hint that this brane is consistent. The restrictions on α and j that we find, to-
gether with its form (6.82) actually make it look like a discrete brane rather than
a continuous one. We do not have an explanation for this strange behaviour. But
we like to notice that together with the continuous brane of the previous section
and the other one-parameter discrete brane from section 6.1.4, we now have a
brane spectrum that is labelled by one continuous and two discrete parameters.
This can indeed be expected from a generalization of Cardy’s condition [75, 76].
We take up and elaborate more on this point in the conclusion, chapter 9.

6.2.4 Regular AdS
(c)
2 Branes - Gluing Map ρ2

Our b−2/2-shift equation reads

(1+ b2)ν
b−2

2
b c̃(b−2/2,0|α)f(j) = e−iπ3jf

(

j + b
−2

2

)

−

−eiπ3je−iπσb−2
f

(

j − b
−2

2

)

+ e−iπ3je−iπσ(2j+b−2)f

(

−j − 1− b
−2

2

)

.

(6.85)
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Trying to solve both shift equations (5.82) and (6.85), we start to think about
a solution for (5.82). Yet, the ansatz that proved succesful in the preceding
section, when solving (5.83), does not work out this time. The reason is a rel-
ative minus sign in (5.82) which is not present in (5.83). It prevents the shifted
∝ sin[πb2(2j + 1)α] terms from adding up correctly. Without using this sine
term, however, we cannot write an ansatz that has the correct parity. Thus, we
try to proceed as in section 6.1.3 and see how far we can get proving that no
solution exists in this case. Redefining

f(j) = e−iπ b
2
4 (2j+1)2

sin
[

πb2(2j + 1)
]g(j) , (6.86)

we write the reflection symmetry constraint (5.33) and the two shift equations
(5.82), (6.85) in terms of g(j) as

(1) g(j) = −g(−j − 1)

(2) c′g(j) = g(j + 1/2)− g(j − 1/2)

(3) c′′g(j) = e−iπ4jg(j + b−2/2)+ eiπ4je−iπσb−2
g(j − b−2/2)−

− e−iπ4je−iπσ(2j+b−2)g(−j − 1− b−2/2) .

The coefficients c′ and c′′ are not of interest here. They just contain all the
b-dependent factors:

c′ = √νb Γ(−b
2)

Γ(−2b2)
eiπ 3

4b
2
c̃(1/2,0|α)

c′′ = −ieiπ b
−2
4 (1+ b2)νb

−2/2
b c̃(b−2/2,0|α) .

(6.87)

Playing around with the above set of equations, we first note that from (1)
g(−1/2) = 0 and g(0) = −g(−1). Then, from (2) at j = −1/2, we infer g(0) =
0 = g(−1). Afterwards, (2) for j = 0 yields g(1/2) = 0. Actually, we can now
prove that

g

(

k

2

)

= 0 ∀k ∈ Z . (6.88)

This is a simple induction argument: Noting that (2) just states

c′g
(

k+ 1

2

)

= g
(

k+ 2

2

)

− g
(

k

2

)

(6.89)

as well as

c′g
(

k

2

)

= g
(

k+ 1

2

)

− g
(

k− 1

2

)

, (6.90)
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it is clear that starting with g
(

k
2

)

= 0, g
(

k+1
2

)

= 0, we can deduce that also

g
(

k+2
2

)

= 0, g
(

k−1
2

)

= 0. Now we use this knowledge and take (3) for j = k
2 ,

k ∈ Z. Employing also (1), we end up with

g

(

k− b−2

2

)

= −
[

eiπσb−2 + (−)k
]

g

(

k+ b−2

2

)

. (6.91)

This equation must also hold for σ ֏ (−σ). Hence, subtracting it from its coun-
terpart which contains (−σ) rather than σ , we get

−2i sin[πσb−2]g

(

k+ b−2

2

)

= 0 . (6.92)

Thus, we either need b−2 ∈ Z or g
(

k+b−2

2

)

= 0. The former is quite a restriction,
saying that these branes do not exist for generic, but only for integer (affine Lie
algebra) level. We would rather not assume this. Then, all we are able to show is
that g(j) vanishes on a very specific set of points. We do not see a possibility to
develop our argumentation any further at this point, but we would rather expect
these branes to be inconsistent.
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+
3 /Liouville Correspondence

In this chapter, we just assemble some basic formulae about Liouville theory
(both, in the bulk and with a boundary) that are needed in order to state its
correspondence to the H+3 model given in [74, 73].

7.1 Liouville Theory in the Bulk

Classical Liouville theory is defined by the action

S = 1
π

∫

d2z
[

(∂φ)(∂̄φ)+ µe2bφ
]

. (7.1)

The energy momentum tensor derived from this action is

T(z) = −(∂φ)2 +Q∂2φ, (7.2)

where Q must be Q = b + b−1 in order to make the interaction term exactly
marginal. Then, Liouville theory can be quantized as a two dimensional CFT
(without extended symmetry but Virasoro symmetry only). Note that there is
a (quantum) symmetry b ֏ b−1. The central charge of the quantum theory is
c = 1 + 6Q2 and primary fields are denoted Vα(z). Their conformal weights
are h(α) = α(Q − α) and the physical spectrum consists of fields with labels
α ∈ Q

2 + iR≥0 (compare to the H+3 model). Also note the reflection symmetry
h(α) = h(Q−α). The Liouville two point function reads

〈

Vα2(z2)Vα1(z1)
〉 = 2π|z2 − z1|−4h(α1)

[

δ(Q−α2 −α1)+ R(L)(α1)δ(α2 −α1)
]

(7.3)
with the Liouville reflection amplitude R(L)(α). It intertwines the representations
with labels α and Q−α

Vα(z) = R(L)(α)VQ−α(z) (7.4)

and is given by

R(L)(α) =
[

πµγ(b2)
]b−1(Q−2α) · Γ(1+ b(2α−Q))Γ(1+ b

−1(2α−Q))
Γ(1− b(2α−Q))Γ(1− b−1(2α−Q)) . (7.5)

The three point function of Liouville field theory is given by
〈

Vα3(z3)Vα2(z2)Vα1(z1)
〉

= |z1−z2|−2h12|z1−z3|−2h13 |z2−z3|−2h23C(L)(α3, α2, α1) .

(7.6)
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7 H+3 /Liouville Correspondence

The structure constants have been derived in [91] and independently in [92] and
rederived using a different technique in [99]. They are given by

C(L)(α3, α2, α1) =
[

πµγ(b2)b2−2b2
]b−1(Q−α1−α2−α3)

Υb(α1 +α2 +α3 −Q)
·

· Υ
′
b(0)Υb(2α1)Υb(2α2)Υb(2α3)

Υb(α1 +α2 −α3)Υb(α2 +α3 −α1)Υb(α3 +α1 −α2)
.

(7.7)

The Υ function has already occured in the H+3 structure constants, see section
3.3.3. The Liouville structure constants and therefore the OPEs have an analytic
continuation to field labels α outside the physical range. This is completely anal-
ogous to the situation in the H+3 model. In particular, one can make a continuation
to degenerate representations. The degenerate representation with label α = − 1

2b
is of particular interest in the H+3 /Liouville correspondence.

7.2 H
+
3

/Liouville Correspondence for the Bulk Theories

The correspondence has been proven in [74]. It uses H+3 bulk fields in the µ-basis,
see appendix B. The statement is that an H+3 n-point correlator (n ≥ 2) can be
computed from a (2n− 2)-point Liouville correlator with the insertion of (n− 2)
degenerate fields V− 1

2b
. The precise relation is [74]

〈

Φjn(µn|zn) . . .Φj1(µ1|z1)
〉

= πb
2
(−π)−nδ(2)(µ1 + · · · + µn)·

· |θn|2
〈

Vαn(zn) . . . Vα1(z1)V− 1
2b
(yn−2) . . . V− 1

2b
(y1)

�

.

(7.8)

The function θn is

θn(z1, . . . , zn|y1, . . . , yn−2, u) = u
∏

r<s≤n
z
b−2

2
rs

∏

k<l≤n−2

y
b−2

2
kl

n
∏

r=1

n−2
∏

k=1

(zr −yk)−
b−2

2

(7.9)
and thus relates the coordinate dependencies of both sides. Note the left hand
side depends on isospin variables µ1, . . . , µn, while the right hand side involves
new coordinates u,y1, . . . yn−2. Since

∑n
i=1 µi = 0, the numbers of variables

match. They are related in the following way:

n
∑

i=1

µi
t − zi

= u
∏n−2
j=1 (t −yj)

∏n
i=1(t − zi)

, (7.10)

where the equality is to be read as an equality of rational functions of t. Note
that because of the relation µ1 + · · · + µn = 0, this equality determines precisely

116



7.3 Liouville Theory with Boundary

(n − 1) (rather than n) coefficients, which is just the right number to gain suffi-
ciently many relations for the computation of the variables u,y1, . . . , yn−2. So in
principle, the positions yj of the degenerate fields V− 1

2b
can be determined from

the isospin labels µi. The purpose of the additional degenerate fields that appear
on the Liouville side is to mimick the effect of the additional isospin symmetry
present on the H+3 side1. The Liouville parameter b is related to the H+3 affine level

k as b−2 = (k−2), the Liouville coupling is fixed to be µ = b2

π2 and the labels αi of
the Liouville fields are determined from the H+3 affine symmetry representations
labels ji:

αi = b(ji + 1)+ 1

2b
. (7.11)

7.3 Liouville Theory with Boundary

As there is only Virasoro symmetry, one can only study maximal symmetry pre-
serving branes with the conformal gluing condition T = T̄ at Im(z) = 0. As
Liouville theory, like the H+3 model, has a continuous spectrum (see also section
7.1), one also has to distinguish continuous and discrete branes here (see section
5.2.4). Their one point functions have been derived following the same strategy
that we have carried out for the H+3 model in sections 5 and 6: Via shift equations.
However, the analysis is easier in Liouville theory, since the two degenerate fields
that one uses, V− b2

and V− 1
2b

, are related by the symmetry b ֏ b−1. In particu-

lar, one does not need any additional continuation prescription for the two point
function, as it is the case in the H+3 model.

The continuous Liouville branes (commonly called FZZT branes) have been de-
rived in [100]. The one point functions 〈Vα(z)〉 = |z−z∗|−2h(α)U(α|s) come with
a one point amplitude

U(α|s) =2
b

[

πµγ(b2)
]

1
2b (Q−2α)

Γ(2bα− b2)Γ(2b−1α− b−2 − 1)·
· cosh [(2α−Q)πs] ,

(7.12)

where s ∈ C is a parameter that labels the boundary condition.
The solution for the discrete Liouville branes (ZZ branes) was given in [101]. It

is labelled by two positive integers m,n ∈ Z>0 and has one point amplitude

U(α|m,n) =sin
[

πb−1Q
]

sin
[

πmb−1(2α−Q)] sin [πbQ] sin [πnb(2α−Q)]
sin [πmb−1Q] sin [πb−1(2α−Q)] sin [πnbQ] sin [πb(2α−Q)] ·

· Q
[

πµγ(b2)
]−b−1α

Γ(bQ)Γ(b−1Q)

(Q− 2α)Γ(b(Q− 2α))Γ(b−1(Q− 2α))
.

(7.13)

1Indeed, the proof given in [74] is based on the observation that Knizhnik-Zamolodchikov equations
on the H+3 side can be read as BPZ singular vector equations on the Liouville side.
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7 H+3 /Liouville Correspondence

7.4 H
+
3 /Liouville Correspondence with AdS2 Boundary

In [73], the correspondence between H+3 model and Liouville theory that we re-
viewed briefly in section 7.2 was generalized to correlators in the presence of
continuous AdS2 boundary conditions on the H+3 side and FZZT boundary con-
ditions on the Liouville side. For the purpose of stating the correspondence, we
label the AdS2 boundary conditions by a parameter r ∈ R for the moment (and
not by α as in chapters 5, 6 and 8, since α is reserved for the Liouville momenta
now). For a correlator involving n bulk and m boundary H+3 fields (in the µ- and
τ-basis, respectively; see appendix B), the relation is [73]

〈 n
∏

a=1

Φja(µa|za)
m
∏

b=1

Ψ
rb ,rb−1
ℓb

(τb|xb)
〉

r ′,r

=

π2

√

b

2
(−π)−nδ(2Re(µ1 + · · · + µn)+ τ1 + · · · + τm) |u|



θm,n




b−2
2 ·

·
〈 n
∏

a=1

Vαa(za)
m
∏

b=1

B
sb ,sb−1
βb

(xb)
n′
∏

a′=1

V− 1
2b
(wa′)

m′
∏

b′=1

B− 1
2b
(yb′)

〉

s′,s

,

(7.14)

where the fields Bβ(x) are boundary Liouville fields. On the H+3 side, the boundary
condition changing operators Ψ

rb ,rb−1
ℓb

(τb|xb) take AdS2 boundary conditon rb−1

and map it to rb . We have r0 = r and rn = r ′. The corresponding FZZT boundary
conditions sb on the Liouville side are related to the AdS2 labels rb via

sb =
rb

2πb
− i

4b
sgnϕ(t) , (7.15)

where the rational function ϕ(t) controls the change of variables from {µa, τb}
to
{

u,wa′ , yb′
}

. It is

ϕ(t) =
n
∑

a=1

µa
t − za

+
n
∑

a=1

µ̄a
t − z∗a +

m
∑

b=1

τb
t − xb

, (7.16)

and the variables wa′ , yb′ are the zeros of ϕ(t). Note that due to the condition
2Re(µ1 + · · · + µn) + τ1 + · · · + τm = 0, ϕ(t) has 2n + m − 2 many zeros.
The individual numbers n′, m′ of additional Liouville fields to be inserted in
the Liouville correlator on the right hand side of (7.14) are not fixed, but only
their sum is. It has to be 2n′ +m′ = 2n +m − 2, in order to accomodate all
the zeros of ϕ(t). Note that we only have n′ (rather than 2n′) additional bulk
field insertions. The reason is the following: Whenever ϕ(t) has a complex zero,
an additional bulk field V− 1

2b
is inserted. Since complex zeros come in complex

conjugate pairs, only the zero that lies in the upper half plane can be taken and
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7.5 The Hosomichi-Ribault Proposal

its complex conjugate must be discarded. Thus, the number of additional bulk
field insertions is controlled by the number of pairs of complex conjugate zeros.
Then, for every real zero of ϕ(t) we insert an additional boundary Liouville field
B− 1

2b
. This is important for the Hosomichi-Ribault proposal that we explain in the

next section and that motivates our construction described in chapter 8. Let us
quickly fill in the remaining ingredients of the correspondence. The field labels
are related as before

αa = b(ja + 1)+ 1
2b
, βb = b(ℓb + 1)+ 1

2b
, (7.17)

the variable u is given by

u = 2Re(µ1z1 + · · · + µnzn)+ τ1x1 + · · · + τmxm (7.18)

and we omit the exact expression for θm,n here, since it is not relevant for our
purposes. It is given in [73].

7.5 The Hosomichi-Ribault Proposal

Consider an H+3 correlator
〈

Φj2(µ2|z2)Φj1(µ1|z1

〉

)r of two bulk field insertions
under a continuous AdS2 boundary condition r , just what we need in order to
derive shift equations (see chapters 5 and 6 where we work, however, in the u-
basis). Following the previous section, it is mapped to a Liouville correlator with
additional degenerate field insertions with positions given by the zeros of

ϕ(t) =
2
∑

a=1

(

µa
t − za

+ µ̄a
t − z∗a

)

. (7.19)

Because of the condition Re(µ1 + µ2) = 0, this has two zeros y1, y2. They
can either be both real, in which case the corresponding Liouville correlator is
〈

Vα2(z2)Vα1(z1)B− 1
2b
(y2)B− 1

2b
(y1)

�

s
, i.e. it has two additional boundary field

insertions. The situation is called boundary regime in [73]. The other possible
case is that of complex conjugate y1, y2. This is called the bulk regime in [73] and

the occuring Liouville correlator is
〈

Vα2(z2)Vα1(z1)V− 1
2b
(y1)

�

s
(where we have

taken y1 to be the zero with positive imaginary part Im(y1) > 0). But note that
there is also the possibility of vanishing discriminant, i.e. one real zero of order
two. In this case, that we like to call the transition point, the H+3 /Liouville corre-

spondence breaks down! It has been shown in [73] that in the variable z = |z1−z2|
|z1−z∗2 |

(i.e. the boundary CFT crossing ratio, see chapter 5), the transition point occurs
at z = µ ≡ |µ1+µ2|

|µ1|+|µ2| and that the bulk regime corresponds to 0 < z < µ and the
boundary regime to µ < z < 1. It is also argued there, that the value of µ becomes
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7 H+3 /Liouville Correspondence

simply the coordinate u in the u-basis and the correspondence therefore breaks
down along the line u = z. Such a behaviour is also known from the relation be-
tween Knizhnik-Zamolodchikov and BPZ singular vector equations in the ŝu(2)k
WZNW model [102]. In [73], the transition point is seen as a novel kind of “singu-
larity” of H+3 model correlators. The Hosomichi-Ribault proposal (in the following
also called continuity proposal) put forward in [73] now states, that H+3 correla-
tors should be continuous at all transition point singularities. It is furthermore
argued, that all correlators have finite limits (from both sides) at the transition
point and that, assuming only continuity at the transition point, the correlator
in the boundary regime would not be entirely determined from its expression in
the bulk regime. This is however a big problem for the implementation of the
Cardy-Lewellen constraints (see section 4.2): If an arbitrariness remains in the
correlator, it is highly questionable that a unique shift equation can be derived
in this way. The conclusion of [73] is that the Cardy-Lewellen constraints will be
weakened.

Yet, the continuity proposal could not be made explicit in [73]. In the next
chapter, we demonstrate along the lines of our article [68], how the proposal can
be implemented in the H+3 model and construct a two point function that has
exactly the properties required by the continuity proposal: It has finite limits for
z → u from both sides (z < u and z > u), it is continuous along u = z and it has
a one-parameter arbitrariness in the boundary regime z > u. However, contrary
to the expectations of [73], we can show [68] that the factorization limit remains
unambiguous and can hence derive a sensible b−2/2-shift equation. We discuss
its consequences for the H+3 model brane spectrum.
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Hosomichi-Ribault Proposal

We have already motivated the need for additional shift equations in chapter 6:
The 1/2-shift equations do not fix the one point amplitudes for AdS2 branes
uniquely and therefore, the derivation of b−2/2-shift equations is an important
problem. We have also already seen that their derivation is not as straightforward
as that of 1/2-shift equations, because the two point function that one considers
does initially not cover the domain in which the factorization limit is to be taken.
Therefore, a continuation prescription is needed. We have shown in chapter 6
that an analytic continuation of the two point function involving Θb−2/2 is feasi-
ble and leads to the desired b−2/2-shift equations. We have also mentioned that
a different proposal for the continuation procedure has been made in the liter-
ature, the Hosomichi-Ribault proposal reviewed and explained in chapter 7. In
this chapter, we set out to implement the Hosomichi-Ribault proposal within the
H+3 model, following closely our original article [68]. The treatment is given for
irregular AdS2 branes only.

The programme is as follows: First we give a solution to the Knizhnik-
Zamolodchikov equation in the region z < u. It is essentially the same as in
section 6.1.1. We show that this solution has a finite u = z limit. Then, a so-
lution to the Knizhnik-Zamolodchikov equation in the region u < z is found. It
is partially fixed from the requirement that its u = z limit matches that of the
previous solution. However, an ambiguity in the conformal blocks F sj,− and F sj,×
persists. Yet, the two point function is then defined everywhere in the (u, z)
unit square and continuous along u = z. This construction is the content of
section 8.1 and realizes explicitly the Hosomichi-Ribault proposal. Afterwards,
in section 8.2, we take the factorization limit and derive the desired b−2/2-shift
equations for discrete as well as continuous AdS2 branes. The key point is that
the aforementioned ambiguity does not enter here, because the conformal blocks
F sj,− and F sj,× are shown not to contribute in the factorization limit. In section
8.3, we finally check that discrete as well as continuous irregular AdS2 branes
are consistent with our new b−2/2-shift equations. In chapter 9 we discuss our
results in the light of the Hosomichi-Ribault proposal [73], Cardy’s work [75] and
the analytic approach of chapter 6 [67, 69].
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8.1 Construction of the Two Point Function

From the Ward identities of the model, the two point function

G(2)j,α(ui|zi) =
〈

Θb−2/2(u2|z2)Θj(u1|z1)
〉

α
(8.1)

is restricted to be of the form

G(2)j,α(u1, u2|z1, z2) = |z1 − z̄1|2[h(b
−2/2)−h(j)] |z1 − z̄2|−4h(b−2/2) ·

· |u1 + ū1|2j−b
−2 |u1 + ū2|2b

−2
H(2)j,α(u|z) .

(8.2)

The parameter α again labels the AdS2 boundary conditions. The reduced two
point function H(2)j,α(u|z) is a still unknown function of the crossing ratios

z = |z2 − z1|2
|z2 − z̄1|2

and u = |u2 −u1|2
|u2 + ū1|2

. (8.3)

The two point function (8.2) has to satisfy a Knizhnik-Zamolodchikov equation
(4.9) for z2. Mapping z1 → 0, z̄2 → 1 and z̄1 → ∞ (i.e. z2 → z), it is brought to
standard form

−b−2z(z − 1)∂zH
(2)
j,α(u|z) = u(u− 1)(u− z)∂2

uH
(2)
j,α+

+
{[

1− 2b−2
]

u2 +
[

b−2 − 2j − 2
]

uz +
[

2j + b−2
]

u+ z
}

∂uH
(2)
j,α+

+
{

b−4u+
[

b−2j − b−4/2
]

z − b−2j
}

H(2)j,α . (8.4)

This is solved by (see [96, 83] and compare to section 6.1.1)

H(2)j,α =
∑

ǫ=+,−,×
a
j
ǫ(α)F sj,ǫ (8.5)

with

F sj,+(u|z) = z−j(1− z)−b−2/2F1(α,β,β
′;γ|u;z) , (8.6)

F sj,−(u|z) = z−j(1− z)−b−2/2u−βz1+β−γ ×

×F1

(

1+ β+ β′ − γ,β,1+α− γ; 2+ β− γ








z

u
;z
)

, (8.7)

F sj,×(u|z) = z−j(1− z)−b−2/2u1−γ ×

×G2

(

β′,1+α− γ; 1+ β− γ,γ − 1








− z
u

;−u
)

. (8.8)

The appearance of only three conformal blocks is due to the presence of de-
generate field Θb−2/2. The propagating modes are denoted j± := j ± b−2/2 and
j× := −j − 1− b−2/2. We identify the parameters to be

α = β = −b−2, β′ = −2j − 1− b−2, γ = −2j − b−2 . (8.9)
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8.1 Construction of the Two Point Function

So far, everything is as in chapter 6 (section 6.1.1). The conformal blocks (8.6),
(8.7), (8.8) are obviously well defined in the patch z < u (when talking about the
patches, it is always tacitly understood that 0 ≤ u < 1 and 0 ≤ z < 1). Their

linear combinations, i.e. the coefficients a
j
ǫ(α), are determined from comparison

with the OPE in the limit z → 0 followed by u → 0. The result is simply

a
j
ǫ(α) = Cǫ(j)Aσ (jǫ|α) , (8.10)

Cǫ(j) being the coefficients occuring in the OPE of Θb−2/2(u2|z2) with Θj(u1|z1),
see 3.5.3.

Let us now see how this solution can be extended to the region u < z. Clearly,
F sj,+ is already everywhere defined, so we do not have to worry about it in the
following. But let us analyse how F sj,− and F sj,× behave when we move to u = z
from the region z < u. Using the generalized series representations of F1 and G2

(see appendix C), we find

F sj,−(u = z) = z1−γ−j(1− z)−b−2/2 Γ(1− β− β′)Γ(2+ β− γ)
Γ(1− β′)Γ(2− γ) ·

· F(1+ β+ β′ − γ,1+α− γ; 2− γ|z) ,

F sj,×(u = z) = z1−γ−j(1− z)−b−2/2 Γ(1− β− β′)Γ(γ − β)
Γ(1− β)Γ(γ − β− β′) ·

· F(1+ β+ β′ − γ,1+α− γ; 2− γ|z) .

(8.11)

Here, F denotes the standard hypergeometric function. Interestingly, the linearly
independent solutions (8.7), (8.8) degenerate at u = z and become essentially the
same function (up to factors). We will see shortly that it is this fact that prevents
us from fixing a solution for u < z uniquely.

The task is now to find a solution to the Knizhnik-Zamolodchikov equation in
the region u < z that matches the above for u = z. One building block is, of
course, F sj,+. The other two are

F̃ sj,−(u|z) = z−j(1− z)−b−2/2u1+β′−γz−β
′ ·

·F1

(

1+ β+ β′ − γ,1+α− γ,β′; 2+ β′ − γ








u;
u

z

)

, (8.12)

F̃ sj,×(u|z) = z−j(1− z)−b−2/2z1−γ ·

·G2

(

β,1+α− γ; 1+ β′ − γ,γ − 1








−u
z

;−z
)

. (8.13)

The tilde indicates that this is the solution in region u < z. Again, splitting the
common factor z−j(1− z)b−2/2, the first function is found in [96] as Z14 and the
second one is related to Z9. Note that the third argument of G2 is 1 + β′ − γ =
0 for our specific parameter values (8.9) which are dictated by the Knizhnik-
Zamolodchikov equation. Nevertheless, the function G2 stays well-defined and
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8 More Shift Equations from the Hosomichi-Ribault Proposal

a generalized series representation can be derived (see appendix C). By making
use of the general series representations of F1 and G2, one can show that the
conformal blocks (8.12), (8.13) agree along u = z with those from patch z < u up
to factors:

F̃ sj,−(u = z) = z1−γ−j(1− z)−b−2/2 Γ(1− β− β′)Γ(2+ β′ − γ)
Γ(1− β)Γ(2− γ) ·

· F(1+ β+ β′ − γ,1+α− γ; 2− γ|z) ,

F̃ sj,×(u = z) = z1−γ−j(1− z)−b−2/2 Γ(2− β− γ)
Γ(1− β)Γ(2− γ) ·

· F(1+ β+ β′ − γ,1+α− γ; 2− γ|z) .

(8.14)

These factors are absorbed through a suitable definition of the expansion coef-

ficients ã
j
ǫ(α) in the patch u < z. They must therefore be related to the former

ones a
j
ǫ(α) as

ã
j
+(α) = aj+(α) , (8.15)

ã
j
−(α)

Γ(1− β− β′)Γ(2+ β′ − γ)
Γ(1− β)Γ(2− γ) + ãj×(α) Γ(2− β− γ)

Γ(1− β)Γ(2− γ) =

= aj−(α) Γ(1− β− β
′)Γ(2+ β− γ)

Γ(1− β′)Γ(2− γ) + aj×(α) Γ(1− β− β
′)Γ(γ − β)

Γ(1− β)Γ(γ − β− β′) .
(8.16)

Thus, we cannot uniquely fix the coefficients ã
j
−(α) and ã

j
×(α). An ambiguity

remains in the two dimensional subspace spanned by F̃ sj,− and F̃ sj,×. It is good to
realize, that for the values of the parameters α, β, β′, γ which are given in (8.9)
and SL(2)-label j in the physical range j ∈ − 1

2 + iR≥0, we never catch any poles of

the gamma functions. The reduced two point function H(2)j,α =
∑

ǫ=+,−,× a
j
ǫ(α)F sj,ǫ

is now defined in the (semi-open) unit square 0 ≤ u < 1, 0 ≤ z < 1. The lines
u = 1, z = 1 have to be understood as limiting cases.

8.2 Factorization Limit and Shift Equations

Using our solution (8.6), (8.12), (8.13) in the patch u < z, we can now take the
limit z → 1 from below while u < 1. Performing it on the conformal blocks, we
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8.2 Factorization Limit and Shift Equations

find

F̃ sj,+ ≃ (1− z)1+b
−2/2(1−u)b−2 Γ(γ)Γ(α+ β′ − γ)

Γ(α)Γ(β′)
· [1+O(1− z)]+

+ (1− z)−b−2/2 Γ(γ)Γ(γ −α− β′)
Γ(γ −α)Γ(γ − β′)F(α,β;γ − β′|u) · [1+O(1− z)] ,

F̃ sj,− ≃ (1− z)−b
−2/2u1+β′−γ·

· F(1+ β+ β′ − γ,1+α+ β′ − γ; 2+ β′ − γ|u) · [1+O(1− z)] ,
F̃ sj,× ≃ (1− z)−b

−2/2F(α,β; 1|u) [1+O(1− z)] .

(8.17)

The limit z → 1 from below corresponds to using a bulk-boundary OPE in the
correlator. Now, we have to distinguish between discrete and continuous case
again (recall section 5.2.4). Assuming a discrete open string spectrum on the
brane, the bulk-boundary OPE for Θb−2/2 is

Θb−2/2(u2|z2) = |z2 − z̄2|1+b
−2/2 |u2 + ū2|b

−2
Cσ (b

−2/2,0|α)1 {1+O|z2 − z̄2|}+
+ |z2 − z̄2|−b

−2/2 |u2 + ū2|2b
−2+1 Cσ (b

−2/2, b−2|α)·
· (JΨ)ααb−2 (u2 |Re(z)) {1+O|z2 − z̄2|}+

+ |z2 − z̄2|−b
−2/2 Cσ (b

−2/2,−b−2 − 1|α)·
· (JΨ)αα−b−2−1 (u2 |Re(z)) {1+O |z2 − z̄2|} ,

(8.18)

For the purpose of deriving the factorization constraint, we concentrate on the
contribution of the identity field 1 only. Identifying Cσ (b−2/2,0|α) = Aσ (b−2/2|α),
we deduce the following b−2/2-shift equation

fσ (b
−2/2)fσ (j) = Γ(1+ b2)fσ (j + b−2/2) , (8.19)

where we have suppressed the α-dependence and used the redefined one point
amplitude (5.29). Note that on the left hand side, the one point amplitudes again
carry identical σ ’s. As usual, this is because we are in a region where u < 1. In a
domain with 1 < u they would indeed carry opposite signs.

On the other hand, assuming a continuous open string spectrum on the brane,
the bulk-bundary OPE of Θb−2/2 contains

c̃σ (b
−2/2, jǫ|α) = Resj2=b−2/2Cσ (j2, jǫ|α) (8.20)

instead of C(b−2/2, jǫ|α) (as usual, ǫ = +,−,×). The b−2/2-shift equation we
obtain for the redefined one point amplitude (5.29) then reads

νb
−2/2
b (1+ b2)c̃(b−2/2,0|α)fσ (j) = fσ (j + b−2/2) . (8.21)
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8 More Shift Equations from the Hosomichi-Ribault Proposal

8.3 Consistency of Discrete and Continuous AdS2 Branes

The discrete AdS(d)2 branes of [76] have one point amplitudes

fσ (j|m,n) =
iπσeiπm

Γ(−b2) sin[πnb2]
e−iπσ(m−

1
2 )(2j+1) sin[πnb2(2j + 1)]

sin[πb2(2j + 1)]
, (8.22)

with n,m ∈ Z. It is absolutely straightforward to check that they satisfy the
b−2/2-shift equation (8.19). Note that checking the 1/2-shift equation, we actually
only needm ∈ Z. The additional restriction n ∈ Z is required when checking our
novel b−2/2-shift equation (8.19). The above amplitudes also satisfy the reflection
symmetry constraint (5.30), a fact that has of course already been checked in [76].

Let us now turn our attention to the continuous AdS(c)2 branes of [72]. Their
one point amplitudes read

fσ (j|α) = −πAb√
νb

e−α(2j+1)σ

sin[πb2(2j + 1)]
, (8.23)

with α ∈ R. Plugging that into the appropriate b−2/2-shift equation (8.21), we
can infer an expression for the residuum of the bulk-boundary OPE coefficient

c̃(b−2/2,0|α) = − e−ασb
−2

νb
−2/2
b (1+ b2)

. (8.24)
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9 Summary and Discussion

The central topic of this thesis is the consistency of branes (boundary states)
in the noncompact nonrational H+3 CFT. It is addressed by studying the famous
Cardy-Lewellen sewing relations for the two point function. They become feasible
in this context through the use of Teschner’s trick, which makes RCFT techniques
available for this noncompact CFT. Essentially, we derive so-called shift equations
from the appropriate sewing relation and analyse their solutions. This results in
explicit expressions for the one point functions of the corresponding branes.

Our main contributions can be divided into two great themes. The first one
is a solution to the problem of deriving b−2/2-shift equations. The issue here is
that a continuation prescription for the two point function is needed (see chapter
6, in particular 6.1.1, section 7.5 and chapter 8). We show that an analytic con-
tinuation, although technically quite involved, can be carried out explicitly. The
resulting shift equations lead to a brane spectrum which consists of one contin-
uous set (6.78) and two discrete sets, (6.76) and (6.82), of AdS2 solutions. In the
following we refer to this as the analytic approach. Motivated by the Hosomichi-
Ribault proposal [73] that we review in 7.5, we also explore a different contin-
uation prescription that we refer to as the continuous approach for the rest of
this chapter. It is the content of chapter 8 and results in one continuous (8.23)
and one two-parameter discrete set (8.22) of AdS2 solutions. The crucial point
about the continuous approach is that it leaves an ambiguity in the continued
two point function that could potentially be passed on to the shift equation and
hence invalidate the whole procedure. Our merit here is, that we can demon-
strate this not to happen in the H+3 model and succeed in deriving a meaningful
and unambiguous b−2/2-shift equation for this case as well.

The second theme is the initiation of a systematic exploration of branes in the
H+3 model. Before our work, these branes were grouped into two great classes,
AdS2 and S2 branes, and these two classes were each again divided into discrete
and continuous branes. To this pattern, we propose to add an additional subdi-
vision into regular and irregular solutions (section 5.2). Moreover, we point out
that an analysis of potential equivalences between the H+3 model branes on the
level of their isospin dependence is not sufficient and must be supplemented by
further input from the study of consistency conditions like the Cardy-Lewellen
constraints. Therefore, isospin dependencies that seem equivalent at first sight
must nevertheless be studied separately. The importance of these observations
is demonstrated by our subsequent analysis in chapters 5 and 6: Without the reg-
ular branes, we would miss some important parts of the brane spectrum in the
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9 Summary and Discussion

u-dependence shift equation (continuous) shift equation (discrete)
for Θ1/2? for Θb−2/2? for Θ1/2? for Θb−2/2?

ρ1 |u− ū|2j [79]/✓ ⋆/⊛ ⊛ ⋆/⊛
(u− ū)2j [78]/⊛ ⊛ [78]/⊛ [78]/⊛

ρ2 |u+ ū|2j [72]/✓ ⋆/⊛ [76]/✓ ⋆/⊛
(u+ ū)2j ⊛ ⊛ ⊛ ⊛

ρ3 | − 1+uū|2j — — — —
(−1+uū)2j — — [78] [78]

ρ4 (1+uū)2j — — [72] —

Table 9.1: Classes of brane solutions: Our contributions are marked with a ⊛ for
the analytic approach and a ⋆ for the continuous approach (see text).
Confirmed results are ticked ✓. Recall that there is no distinction be-
tween analytic and continuous approach for the 1/2-shift equations.
Also remember that we have reconsidered the results of [78] for rea-
sons explained in section 5.2.

analytic approach (sections 6.1.4 and 6.2.3). Furthermore, concerning the isospin
dependence we learn that gluing maps ρ1 and ρ2 are not equivalent for regular
branes (compare 6.1.3 and 6.1.4 as well as 6.2.4 and 6.2.3). In view of these re-
sults, we are the first ones to give an exhaustive discussion of AdS2 branes within
the analytic approach, offering a complete treatment of the different isospin de-
pendencies, following systematically the patterns discrete/continuous as well as
regular/irregular and deriving two independent shift equations for each case. See
table 9.1 for an overview. From the point of view of the systematics, our merit
is the computation of many new 1/2-shift equations (namely (5.60), (5.73), (5.79),
(5.82) and (5.83)) and much more importantly the derivation of the full set of
b−2/2-shift equations in case of the analytic approach (see (6.37), (6.58), (6.75),
(6.77), (6.81) and (6.85)) as well as some equations of this type, (8.19) and (8.21),
within the continuous approach. In addition, we also succeed in giving either a
solution to the constraints or a proof of their non-existence (except for one case,
section 6.2.4, where we could only make a conjecture).

Our results on the spectrum of AdS2 branes may be interpreted as follows:
In RCFT, according to an analysis carried out by Cardy [75] and, independently,
Ishibashi [94], it is known that branes are in one to one correspondence with
the physical spectrum of the bulk theory. In this light, we should only have
one continuous set of branes. So how do the additional branes, labelled by two
discrete parameters, fit in here? To give an interpretation, it has been proposed
in [76] that the discrete AdS2 branes should be thought of as beeing associated

to the degenerate ŝl(2,C)k representations with jm,n = − 1
2 +

m
2 +

n
2b

−2, m,n ∈
Z. The brane spectrum that we find from the Hosmichi-Ribault proposal fits
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in nicely with this interpretation. This might indicate that the Cardy-Ishibashi
analysis needs to be modified at some point to make it applicable to noncompact
nonrational CFT. On the other hand, the brane spectrum that we obtain from
the analytic approach gives (besides one continuous series) two one-parameter
sets of discrete branes (see 6.1.4 and 6.2.3). In view of the above proposal, one
would naturally associate them to the spins jm,0 and j0,n and think that some
branes are missing. However, the discrete branes in the analytic approach couple
only to bulk fields that transform in finite dimensional sl(2,C) representations
j ∈ 1

2Z. Thus, they do not couple to the physical states of the model, which fall

into the representations j ∈ − 1
2+iR≥0, and one could argue that these branes can

actually be discarded. Then, we are only left with one continuous set of branes
and the Cardy-Ishibashi analysis (which was originally devised for RCFT) remains
correct. Consequently, if one adapts the Cardy-Ishibashi analysis to noncompact
nonrational CFT, one should get a device that may be able to select one of the
two brane spectra and hence one of the two approaches.

An adaption of the Cardy-Ishibashi analysis to noncompact nonrational CFT
would probably als suggest a classification strategy for the H+3 branes. Recall
that for our systematic treatment we have used the patterns AdS2/S2, discrete/
continuous, regular/irregular and analytic/continuous (note that continuous ap-
pears with two different meanings). We have however not achieved a classifi-
cation, as there are no results that guarantee this list of patterns to be com-
plete. Hence, the question still remains what classification really means here,
or phrased differently, how a complete list of patterns will look like. A noncom-
pact nonrational version of the Cardy-Ishibashi analysis would certainly help here
again. Interestingly, there were speculations about additional branes in the H+3
model only quite recently [103], but no additional patterns could be given.

Let us also look at the question of what approach, analytic or continuous, might
be preferable from a different perspective. While we have shown that the conti-
nuity proposal works and even yields quite reasonable results, there are some
issues about it that we want to criticize here: First of all, the H+3 /Liouville map is
singular at the transition point, that is, the correspondence really breaks down
here. The “singularity” that is discussed in [73] is not seen on the H+3 side of the
correspondence, but on the Liouville side. It occurs when two Liouville boundary
fields collide. But this is in the first place a singularity of the map and not of the
H+3 model. By the same reasoning, the continuity proposal is merely to be viewn
as an assumption about the map, and not about the H+3 model. For these reasons,
we want to advocate a model-intrinsic approach to the H+3 model here. From this
perspective, the analytic approach is very natural and preferred for three simple
reasons: Firstly, the two point function is an analytic object in its initial domain
of definition. Secondly, no intractable problems are encountered when carrying
out the analytic continuations. Thirdly, there is no danger here that the shift
equation might become invalidated, since the two point function is clearly com-
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pletely determined from analytic continuation. Moreover, the transition point is
seen in the analytic approach as well (as the demarcation of the initial patch), but
it is very well behaved and by no means singular. In fact, the requirement (of
the Hosomichi-Ribault proposal) of finiteness and continuity at the u = z “sin-
gularity” is also met here; the regularity behaviour is even better. Therefore, one
might actually be tempted to reverse the argumentation of [73] and rather ask if
anything new may be learned about Liouville theory, or at least about the corre-
spondence, from the behaviour of the H+3 model (within the analytic approach) at
the transition point. Another advantage of a model-intrinsic treatment is also its
generalizability. Ultimately, one will be interested in general noncompact non-
rational CFTs that may not have a correspondence to some Liouville-like theory.
For such models, one needs results that are independent of possible mappings
or correspondences. The lesson for the H+3 model is that one would make an
analytic continuation to cross the u = z singularity in a model-intrinsic study.

Concerning the H+3 /Liouville correspondence, we have just indicated that one
may ask if anything new can be learned in the opposite direction, transferring
knowledge about the well-behaved transition point on the H+3 side to the Liouville
side. This is a new perspective, since originally the correspondence was designed
to work into the other direction only (transferring knowledge from Liouville the-
ory to H+3 ). Another interesting direction in view of the correspondence is the
incorporation of other branes: In its present form, the H+3 /Liouville map works
only for AdS2/FZZT branes. Can it be generalized to include also S2 branes (and
on the Liouville side ZZ branes)?

Dwelling a litter longer in the vicinity of the H+3 model, we also want to point
out that the impact of our work on string theory on AdS3 [104] as well as the
cigar CFT [105, 106] (which describes a bosonic string in an euclidean black hole
background), which are both related to the H+3 model, is also to be worked out.
For example, we have remarked above that the regular branes require 2j ∈ Z and
henceforth decouple from the physical spectrum of the H+3 model. Yet, these
branes could still turn out to be important in view of string theory on AdS3 or
the cigar CFT, because the physical spectrum of these theories is richer (see [90]
and [107], respectively).

Admittedly, the study we have carried out appears to be quite specifically tai-
lored for a treatment of the H+3 model. But is this really true? Let us speculate
which of the features that we have encountered may carry over to more gen-
eral models. We would expect that the occurence of u = z “singularities” is a
general feature of nonrational models with an underlying noncompact symme-
try. The reason is that a nonpolynomial dependence on the isospin variable is
typical of the representations of noncompact groups. One might suspect that
the Appell and Horn functions (which are generalized hypergeometric functions
in two complex variables) become Lauricella functions in more general models
with, say, sl(n,C) symmetry. This statement may be understood as a call for
a revival of interest in these special functions and, in particular, their analytic
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continuations. These functions have very generic singularities whenever two (or
more) of their variables coincide (but analytic continuation over the singularities
should in general be possible). These will be the generalizations of the u = z sin-
gularity encountered here. It is then expected, that the analytic approach which
has been pursued here is also applicable in such situations, only that one has
more singularities to take care of. Moreover, possible mappings to Liouville-like
theories (for sl(n,C) WZNW models these could be the sl(n) Toda theories; see
below) will probably break down again, just like the H+3 /Liouville correspondence.

Seeing the progress made towards an understanding of the H+3 model and Liou-
ville theory, one can hope that more general nonrational CFTs will be studied in
the near future. Noncompact WZNW models with an sl(n,C) symmetry together
with the sl(n) conformal Toda field theories [108] are natural next candidates.
They are expected to generalize the H+3 /Liouville correspondence, a speculation
that becomes understandable if one realizes that Liouville theory can be viewn as
the sl(2) Toda theory. Other interesting and promising developments are emerg-
ing just these days. In [109], a whole family of solvable nonrational CFT models
was introduced and one can hope for new lessons to be learned from them. More-
over, the first paper [110] that is devoted to a study of the general structures and
foundations of nonrational CFT has appeared by now. Thus, the prospects for
the study of nonrational CFT are very good. It is a rather young field that just
starts to develop from the study of explicit examples towards a more general
understanding. It is expected that one will get a handle on a large variety of non-
rational CFT models soon. This is highly desirable, as such models provide the
framework for a treatment of noncompact string backgrounds.
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Appendices
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A Representation Theory of SL(2,C) and SL(2,R)

In this appendix, we shall describe elements of the representation theory for
locally compact topological groups. The literature we follow is [111, 112, 113].
Although we give explicit formulae only for SL(2,C) and SL(2,R), we shall in
fact arrive at a complete description of the unitary irreducible representations
of SL(n,C) and SL(n,R) in this appendix. Our aim is to give a flavour of the
general theory, but without introducing most of its vast and rich terminology
and technology.

A.1 Locally Compact Groups

Let us start with some definitions and assumptions that allow us to fix our nota-
tion. In this we follow [114, 115].

A topological group is a group G that is at the same time also a topological
space, such that group multiplication G×G → G and inversion G → G are contin-
uous (the former with respect to the product topology on G × G). A topological
group G is locally compact, if every point in G has a compact neighbourhood (in
Hausdorff spaces this is equivalent to having a local base of compact neighbour-
hoods). We also want to assume that G has the Hausdorff property, that is to any
two distinct points a,b ∈ G, a ≠ b, there are neighbourhoods U of a and V of
b such that U ∩ V = ∅. The assumptions of local compactness and of the Haus-
dorff property are of great importance here, as they guarantee the existence of a
left-invariant Radon measure on G: The famous Haar measure which is unique
up to a positive factor. We typically denote it by µ. When talking about repre-
sentations, this measure will be indispensable because it gives a notion of scalar
product, norm and therefore also unitarity. In the following we denote by G a lo-
cally compact topological group with the Hausdorff property and for brevity just
call it a locally compact Hausdorff group. The rôle of the Hausdorff property is
that it ensures the compact sets to be Borel sets. This is important, since the the-
ory makes great use of inner regular Borel measures and the notion of an inner
regular measure is based on the approximation of measurable sets by compact
subsets, which therefore need to be measurable as well. For more details and the
importance of local compactness in the proof of Haar’s theorem and the Riesz
representation theorem (which enters the proof of Haar’s result), see [114].

The next ingredient we are going to use is a subgroup H ⊂ G. It comes with the
canonical subspace topology, of course, and is itself a topological group. With
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G being locally compact, the left coset G/H is also locally compact. In order to
establish the Hausdorff property for G/H, we need to assume that H is closed in
G. Note that we have not assumed H to be a normal subgroup of G. Therefore,
the homogeneous space G/H is not necessarily a group and we cannot make use
of Haar’s theorem again to ensure the existence of an invariant measure on it
(if H was a normal subgroup, this conclusion would however be correct). Yet,
what is guaranteed in this situation is the existence of a quasi-invariant measure
ν on the homogeneous space G/H [112]. Quasi invariance of the measure ν
means that every ν-null set is also a null set with respect to any G-translate of
ν, i.e. with respect to the measures ν ◦ g for all g ∈ G. This property is usually
also referred to by saying that all G-translates of ν are absolutely continuous with
respect to ν. The quasi-invariant measure ν is needed in the definition of induced
representations that we give below. From now on, we will always denote by H a
closed subgroup of G. G acts naturally on G/H by left translation: x ֏ gx
and this action is continuous. Moreover, π denotes the canonical epimorphism
π : G → G/H. Finally, a section for G/H is a Borel map s : G/H → G such that
π ◦ s = 1|G/H , i.e. s maps each equivalence class to an element in the same class:
s(x)H = x for x ∈ G/H. Such sections always exist under the given assumptions
[112].

These are the basics of topological groups that we need in what is to follow.
Note that for Lie groups the above assumptions are incorporated automatically,
since a Lie group carries the structure of a smooth manifold, which is typically
assumed to be Hausdorff, and it inherits local compactness from being homeo-
morphic to Rn.

A.2 Elements of the General Representation Theory for Locally

Compact Groups

A representation of a topological group G is a homomorphism ∆ from G into the
group B(V) of bounded linear operators on a Hilbert space V , such that the map

{

G × V → V
(g,v)֏ ∆(g)v

(A.1)

is continuous. Provided that ||∆(g)|| (operator norm on B(V)) is uniformly
bounded in a neighbourhood of the identity, one can easily see that the conti-
nuity property follows from strong continuity of ∆, i.e. continuity of the maps

{

G → V
g ֏ ∆(g)v

(A.2)

for all v ∈ V at g = 1. A representation ∆ is said to be unitary, if
[

∆(g)
]† = [∆(g)]−1 ∀ g ∈ G . (A.3)
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It is called irreducible, if there are no closed invariant subspaces other than 0 and
V , i.e. no closed vector subspaces U ⊂ V such that

∆(g)U ⊂ U ∀ g ∈ G , (A.4)

with U ≠ 0, V .
On any locally compact Hausdorff group G, there is one representation we can

write down immediately: The so-called (left) regular representation λ
{

G → B(L2(G|µ))
g ֏ λ(g)

(A.5)

which acts on L2(G|µ) as

[λ(g)f ](g′) := f(g−1g′) . (A.6)

Thanks to the translation invariance of the Haar measure µ, this representation
is clearly unitary. It is however usually reducible. What the irreducible unitary
representations are and how the regular representation decomposes into them,
belong to the central questions of representation theory. In the theory of compact
groups, it is a well-established fact that all unitary irreducible representations do
occur in the decomposition of the regular representation. We shall see, however,
that this statement does not remain true for noncompact groups.

A.2.1 Induced Representations

One important method to construct irreducible unitary representations is the
method of induced representations. This is of course known to a physicist from
Wigner’s construction of induced representations for the Poincaré group which
lies at the heart of relativistic quantum theory. The basic idea is that from a
given representation χ (with representation space V ) of some subgroup H and a
section s : G/H → G, a representation of the whole group G is induced on the
Hilbert space L2(G/H,V |ν) via

[∆(g)f ](x) :=
(

dν(g−1x)

dν(x)

)
1
2

χ
(

[s(x)]−1 gs
(

g−1x
))

f
(

g−1x
)

. (A.7)

We need to explain the normalization
(

dν(g−1x)
dν(x)

)1/2
. Since we are working with

a quasi-invariant measure ν (i.e. any set that is a ν-null set is also a (ν ◦ g−1)-

null set) we have, by the Radon-Nikodym theorem [114], that dν(g−1x)
dν(x) exists as a

quasi-integrable function (with respect to ν) which is non-negative, since (ν◦g−1)
is a measure. (A function f is quasi-integrable, if it is measurable and if at least
one of f+ = 1

2 (f + |f |), f− = −
1
2 (f − |f |) has a finite integral. If both parts are
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finite, f is integrable.) Thus, the expression written down in (A.7) is sensible. We
will understand the rôle of the normalization factor in a little while.

It is easy to check that (A.7) does indeed define a homomorphism and that the
operator ∆(g) is linear. Note that the group element [s(x)]−1 gs

(

g−1x
)

is really
in H, as it has to be since χ is a representation of H only. Also, if χ is a character
(or quasi-character) of H, i.e. a homomorphism from H to S1 (or to C× := C \ 0),
the definition is independent of the choice of section s : G/H → G. This is,
because for any section s(x) ∈ xH ⊂ G (since π ◦ s = 1|G/H , π : G → G/H is the
canonical epimorphism), which implies that if t : G/H → G is another section, we
have

s(x) = t(x) · h(x) (A.8)

for some h(x) ∈ H. Therefore,

[s(x)]−1 gs
(

g−1x
)

= [h(x)]−1 · [t(x)]−1 gt
(

g−1x
)

· h(x) (A.9)

and thus, if χ is a (quasi-) character, independence of the choice of section fol-
lows. The representation space L2(G/H,V |ν) is the space of square integrable
functions (with respect to the measure ν on G/H) from G/H to V . The norm is

||f ||2
L2 :=

∫

G/H
||f(x)||2Vdν(x) , (A.10)

where || · ||V is the norm on the Hilbert space V . It is quite obvious that ∆(g)f

is again in L2(G/H,V |ν): As mentioned above, dν(g
−1x)

dν(x) is a non-negative, quasi-

integrable function. Moreover, the left translation x ֏ g−1x is continuous, hence
measurable, and the composed map

x ֏
[

|| · ||2V ◦ f ◦ g−1
]

(x) ≡ ||f
(

g−1x
)

||2V (A.11)

is therefore measurable and, since it is non-negative, also quasi-integrable. The
product of non-negative quasi-integrable functions is again quasi-integrable, so
we can have a look at

∫

G/H











dν
(

g−1x
)

dν(x)











· ||f
(

g−1x
)

||2Vdν(x) =

=
∫

G/H
||f

(

g−1x
)

||2Vdν
(

g−1x
)

since
dν(g−1x)

dν(x)
≥ 0

=
∫

G/H
||f(x)||2Vdν(x) since g−1 : G/H ≅ G/H

= ||f ||2L2 <∞ .

Thus,






dν(g−1x)
dν(x)





 · ||f (g−1x
) ||2V is not only quasi-integrable, but even integrable.

And as χ, being a representation, is a bounded operator, we can conclude that
[

∆(g)f
] ∈ L2(G/H,V |ν) . (A.12)
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From this argument, we see that the Radon-Nikodym derivative dν(g−1x)
dν(x) repairs

the missing translation invariance of the measure and is an important ingredient
in making the representation unitary. Using this once again, we have immediately
that

||∆(g)f ||2 =
∫

G/H

∥

∥

∥σ
(

[s(x)]−1 gs
(

g−1x
))

f
(

g−1x
)∥

∥

∥

2

V
dν

(

g−1x
)

(A.13)

and therefore, if χ is unitary, i.e.

||χ(h)f
(

g−1x
)

||V = ||f
(

g−1x
)

||V , (A.14)

we gain that also ∆ is unitary. Even more, equation (A.13) tells us that (even for
nonunitary χ) ∆(g) is a bounded operator with norm

||∆(g)||B(L2) ≤ ||σ ||B(V) . (A.15)

From the description of induced representations that we have given, it is clear
that these are always infinite dimensional, since their representation spaces are
certain L2(. . . ) spaces. Therefore, although induced representations as described
above are also well-defined for compact groups, they are only of marginal impor-
tance there, since all unitary irreducible representations of compact groups are
finite dimensional. However, in the representation theory of noncompact groups,
it is the infinite dimensional representations that are the unitary and irreducible
ones (except for the trivial representation, of course) and thus, the induced rep-
resentations are indispensable here. Now, as we have seen, an induced represen-
tation depends on two data: A subgroup H and a character χ of that subgroup.
One should therefore ask, which subgroups and characters one can use in order
to generate the maximum of inequivalent irreducible unitary representations. It
turns out that we do not need to consider all subgroups, but rather the so-called
parabolic subgroups and certain characters for them. A parabolic sugroup H ⊂ G
is such that G/H is a projective variety. For our purposes, the cases of SL(n,C)
and SL(n,R) are sufficient, and for these groups the parabolic subgroups are just
the block-upper-triangular subgroups. They consist of n×nmatrices of the form

P =









g11 ∗
. . .

0 grr









, (A.16)

where the gii are complex (in the case of SL(n,C)) or real (for SL(n,R)) matrices
of size mi ×mi with non-zero determinant. Of course, m1 + · · · +mr = n. The
matrices P have a standard decomposition, the Levi-Langlands decomposition:

P ≡ M ·N :=









g11 0
. . .

0 grr









·









111 ∗
. . .

0 1rr








, (A.17)
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where the 1ii are identity matrices of dimension mi ×mi. Now, there are two
cases to distinguish. In the general framework, there is a minimal parabolic sub-
group, the so-called Borel subgroup. It is singled out, since it already suffices
for the decomposition of the left regular representation. In case of SL(n,C) or
SL(n,R), minimality means r = n, m1 = · · · =mn = 1 and it is therefore simply
the group of triangular matrices (with appropriate entries). We shall call such a
matrix B. Induction from the Borel subgroup gives the famous principal series

representations of Gel’fand and Naimark. The characters χ to be used are defined
to be trivial on the second factor N in the Levi-Langlands decomposition, while
on the first factor, M (which is now just a diagonal matrix) they run through the
characters of the group of diagonal matrices. We will denote the principal series
representations by ∆χ . Gel’fand and Naimark showed that they are all irreducible
(for SL(n,C)), but not all inequivalent. We will discuss the concrete examples
of SL(2,C) and SL(2,R) soon. They also showed that the regular representation
decomposes into a direct integral of principal series representations. This is sur-
prising, because the trivial representation (which is unitary and irreducible) is
not contained in the principal series representations. Therefore, in contrast to
the representation theory for compact groups, it is in the case of noncompact
groups no longer true that all unitary irreducible representations occur in the
decomposition of the regular representation.

And indeed, there are in general many more unitary irreducible representa-
tions than just the identity and the principal series ones. Induction from general
parabolic subgroups P gives rise to the so-called degenerate series representa-

tions. The characters χ one uses here are defined as follows: Take the map

P =









g11 ∗
. . .

0 grr









֏
(

det(g11), . . . ,det(grr )
) ∈ (C×)r (A.18)

and decompose it with a character of the group (C×)r in order to yield an ap-
propriate character of P . The resulting representations, which we will denote
∆P,χ , are again all irreducible (for SL(n,C)) and unitary. The maximal case r = 1,
m1 = n, which is obviously the case where P=G, produces the trivial representa-
tion.

This is not yet the end of the story. There are still more unitary irreducible
representations to reveal. Taking a quasi-character instead of a character in the
definition of ∆χ or ∆P,χ , the representations are no longer unitary, but for some
suitable quasi-characters the scalar product (and hence the canonical representa-
tion space) can be changed to yield more unitary irreducible representations. See
(A.34) for an example. These additional representations (they are inequivalent to
the former ones) are called supplementary series representations.

And even now, we are not quite at the end. In fact, for the complex semisimple
Lie groups we have reached the complete list of irreducible unitary representa-
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tions. But for their real forms, not all of the described induced representations
are irreducible and, more importantly, there can be further unitary irreducible
representations that are not induced representations. In order to construct them
in generality, the theory has to go much deeper. We will not attempt to go into
the many new features of these new representations here, but since they do show
up in SL(2,R), we devote a separate subsection to describe and comment on them
briefly.

A.2.2 A Few Remarks on Discrete Series Representations

As we have just said, the general construction of the discrete series representa-

tions is very different from and requires a lot more technology than the induced
representations. Harish-Chandra has constructed them under the assumption
that the group G has a compact Cartan subgroup. The focus on Lie groups is nec-
essary here (while subsection A.2.1 on induced representations has more general
validity) and hence, the definition of a Cartan subgroup is clear: It is simply a
maximal connected abelian subgroup of G generated by the elements of a Cartan
subalgebra, which is standard in Lie theory. In the study of noncompact groups,
it is instructive and common to decompose the Lie algebra into compact and
noncompact generators (in [111], this is called the Cartan decomposition). One
arrives at it as follows: There always exist anti-linear involutions θ (i.e. θ2 = 1)
of a Lie algebra. For the classical Lie groups, which are matrix groups, a common
choice is the Cartan involution. On the group elements, it is conjugate transpose
followed by inversion, i.e. on the Lie algebra it becomes conjugate transpose to-
gether with multiplication by minus one. Now, it becomes crucial that we regard
the Lie algebra as an algebra over the real (!) numbers. (This does have conse-
quences when talking about the dimension and the rank of the Lie group, which
we here always mean to be the real dimension and the real rank. With this con-
vention, dim SL(2,C) = 6 and rank SL(2,C) = 2, whereas dim SL(2,R) = 3 and
rank SL(2,R) = 1.) The eigenvalues of θ are then real and the Cartan decomposi-
tion is the decomposition of the Lie algebra into θ-even (i.e. eigenvalue +1) and
θ-odd (eigenvalue −1) elements and these are called compact and noncompact
generators, respectively. For the classical Lie groups, the compact (θ-even) ones
are anti-hermitian, while the noncompact (θ-odd) generators are hermitian (we
follow the mathematician’s convention and use the exponential map without in-
cluding the imaginary unit). If the Cartan subalgebra can be chosen among the
compact generators only, the resulting Cartan subgroup will be compact. As the
maximal compact subgroup K ⊂ G of G surely also has a compact Cartan sub-
group, compactness of the Cartan subgroup of G is obviously equivalent to the
condition rank K = rank G. This is the situation of Harish-Chandra’s theorem. If
it is met, so-called discrete series representations can be constructed on general
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grounds. One easily sees that SL(2,R) is such a case: Its Lie algebra is

sl(2,R) = spanR

〈

t1 :=
(

0 1
−1 0

)

, t2 :=
(

0 1
1 0

)

, t3 :=
(

1 0
0 −1

)〉

.

(A.19)
t1 is clearly a compact generator, while the other two, t2 and t3, are noncom-
pact. As the Cartan subalgebra is one-dimensional, it can simply be chosen to be
spanned by t1 and is hence compact. This is of course also in accord with the rank
of the maximal compact subgroup, which is SO(2) in this example, being equal to
the rank of the whole group. However, for the groups SL(n,R), which have maxi-

mal compact subgroup SO(n), we have rank SL(n,R) = n− 1, rank SO(n) =
⌊

n
2

⌋

(with ⌊·⌋ the Gauss bracket) and therefore

rank SL(n,R) ≠ rank SO(n) for n > 2 . (A.20)

Hence, the Harish-Chandra construction does not work in these cases. Moreover,
as the existence of a compact Cartan subgroup, i.e. rank K = rank G, is also
a necessary condition for the existence of discrete series representations, the
groups SL(n,R) do not admit discrete series representations whenever n > 2.
This is the reason why we contend ourselves with just citing the discrete series
representations for SL(2,R) and will not delve into general constructions that in
view of SL(n,C) and SL(n,R) would not bring any additional benefit.

A.3 Irreducible Unitary Representations of SL(2,C)

In this section we want to construct the irreducible unitary representations of
SL(2,C) using the technique of induced representations introduced in section
A.2.1.

First, we need to determine the parabolic subgroups. This is fairly easy here,
since the only ones are either the full group itself or the upper triangular sub-
group (which is precisely the Borel subgroup). Since the group itself always in-
duces the trivial representation, we are left with one case only, namely induction
from the Borel subgroup, which results in the principal series representations. As
there are no generic parabolic subgroups, we see immediately that G := SL(2,C)
does not possess any degenerate series representations.

So let us take H to be the upper triangular subgroup. It is easy to see that two
matrices g,g′ ∈ G,

g =
(

g11 g12

g21 g22

)

, g′ =
(

g′11 g′12

g′21 g′22

)

, (A.21)

are equivalent modulo H, g ∼H g′, if and only if

g′11

g′21
= g11

g21
= z ∈ Ĉ ≡ C∪ {∞} . (A.22)
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Hence, we define the projection map π : G → G/H to be

π :

(

g11 g12

g21 g22

)

֏
g11

g21
. (A.23)

This shows that G/H = Ĉ is really a projective variety, and H a parabolic sub-
group.

Now, we want to determine the action of G on the homogeneous space G/H =
Ĉ. Left-translation by an element g ∈ G

(

s t
u v

)

֏

(

a b
c d

)

·
(

s t
u v

)

=
(

as + bu . . .
cs + du . . .

)

(A.24)

induces precisley

z = π
(

s t
u v

)

֏ π

(

as + bu . . .
cs + du . . .

)

= az + b
cz + d (A.25)

on G/H = Ĉ. The space of sections s : G/H → G can therefore be parametrized
by the elements (recall π ◦ s = 1|G/H )

s(z) =
(

αz β− 1
α

α βz−1

)

. (A.26)

Note that these sections are not defined for z = 0 and z = ∞. This is not a
problem, since the theory only requires Borel sections, which may be undefined
on a set of measure zero. With this explicit parametrisation, the particular com-
bination [s(z)]−1 gs

(

g−1z
)

can be checked to really lie in H. In fact, it is given
by

[s(z)]−1 gs
(

g−1z
)

=
(

(−cz + a)−1 . . .
0 (−cz + a)

)

. (A.27)

What we have denoted with dots here does not play a rôle, since the quasi-
characters that are used for the principal continuous representations are triv-
ial on the off-diagonal part in the Levi-Langlands decomposition. The quasi-
characters χk,ρ to be used are parametrized by k ∈ Z and ρ ∈ C and they map

χk,ρ :

(

(−cz + a)−1 . . .
0 (−cz + a)

)

֏

( −cz + a
|−cz + a|

)−k
|−cz + a|−ρ . (A.28)

The last thing we need to determine is the Radon-Nikodym derivative of the mea-
sure d2z = dxdy = i

2 dzdz̄. Since we have

d
(

g−1z
)

= dz · (−cz + a)−2 , (A.29)
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the Radon-Nikodym factor (already taking the square-root) is just an additional
contribution of |−cz + a|−2.

With all these ingredients in our hands, we can now finally write down the full

nonunitary principal series representations of SL(2,C):

[

∆k,ρf
]

(z) = |−cz + a|−2−ρ
( −cz + a
|−cz + a|

)−k
f

(

dz − b
−cz + a

)

,

f ∈ L2(Ĉ,C×|d2z), k ∈ Z, ρ ∈ C .
(A.30)

This is nonunitary, because the χk,ρ are generically quasi-characters. They obvi-
ously become characters for ρ ∈ iR. The corresponding representations are then
unitary. It can also be shown that they are irreducible. These are the irreducible

unitary principle series representations of SL(2,C):

[

∆k,vf
]

(z) = |−cz + a|−2−iv
( −cz + a
|−cz + a|

)−k
f

(

dz − b
−cz + a

)

,

f ∈ L2(Ĉ|d2z), k ∈ Z, v ∈ R .
(A.31)

However, there are equivalences among the ∆k,v , namely

∆k,v ≃ ∆−k,−v . (A.32)

Therefore, we usually restrict to a set of inequivalent representations out of this
class that we parametrize as

[

∆k,vf
]

(z) = |−cz + a|4v
( −cz + a
|−cz + a|

)−k
f

(

dz − b
−cz + a

)

,

f ∈ L2(Ĉ|d2z), k ∈ Z, v ∈ −1

2
+ iR≥0 .

(A.33)

With the principal series representations at our disposal, we are already very
close to the complete list. There are no degenerate series representations, as we
have remarked at the beginning of this section and the complex groups do not
admit any discrete series representations. The only missing ones are the supple-
mentary series representations that are obtained from the nonunitary principal
series with k = 0 and 0 < ρ < 2. They become unitary if the scalar product is
changed from the standard L2 product to

(f |g) :=
∫

d2z

∫

d2w
[f(z)]

∗ g(w)

|z −w|2−ρ (A.34)

(this is obviously positive-definite). Gel’fand and Naimark proofed that these
are unitary and irreducible. Thus we have in addition the following (irreducible

unitary) supplementary series representations of SL(2,C):

[∆wf] (z) = |−cz + a|−2−w f
(

dz − b
−cz + a

)

,

f ∈ L2(Ĉ|(·|·)), 0 < w < 2 .
(A.35)
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A.4 Irreducible Unitary Representations of SL(2,R)

Let us start with the induced representations. This is completely analogous to
the complex case treated in the previous section. Again, there are no degenerate
series representations, since the only two parabolic subgroups are the group G :=
SL(2,R) itself (that induces the identity representation) and the upper triangular
subgroup H. Note that this time all entries of the matrices are real, of course.
Therefore, the homogeneous space is

G/H ≃ R̄ ≡ R∪ {∞} , (A.36)

again a projective variety. The action of G on this space is just as in the previous
section (with all entries real — we will not bother to say this any more from now
on), the canonical epimorphism π is just the same, the space of sections can
be parametrized likewise, the particular combination [s(x)]−1 gs

(

g−1x
)

(x ∈ R)
looks completely as before. What changes here are the characters χǫ,ρ . They are
parametrized by ǫ ∈ {0,1} and ρ ∈ C and act as

χǫ,ρ :

(

(−cx + a)−1 . . .
0 (−cx + a)

)

֏ sgnǫ(−cx + a) |−cx + a|−ρ . (A.37)

Finally, the Radon-Nikodym factor (again already taking the square-root), only
produces |−cx + a|−1 this time. Assembling all that, we write down the full

nonunitary principal series representations of SL(2,R):

[

∆ǫ,ρf
]

(x) = |−cx + a|−1−ρ sgnǫ(−cx + a)f
(

dx − b
−cx + a

)

,

f ∈ L2(R̄,R×|dx), ǫ ∈ {0,1} , ρ ∈ C .
(A.38)

Being based on quasi-characters, these are again generically nonunitary, but do
become unitary for ρ ∈ iR, i.e. precisely when the χǫ,ρ become characters. The
resulting unitary representations are all irreducible, except for the case (ǫ, ρ) =
(1,0). There are also the following equivalences between these representations:

∆0,iv ≃ ∆0,−iv , ∆1,iv ≃ ∆1,−iv , (A.39)

that we readily use to reparametrize the representations and only list inequiva-
lent ones. Consequently, we have the following irreducible unitary principle series

representations of SL(2,R):

[

∆0,vf
]

(x) = |−cx + a|2v f
(

dx − b
−cx + a

)

,

f ∈ L2(R̄|dx), v ∈ −1

2
+ iR≥0 ,

(A.40)
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as well as

[

∆1,vf
]

(x) = |−cx + a|2v sgn(−cx + a)f
(

dx − b
−cx + a

)

,

f ∈ L2(R̄|dx), v ∈ −1
2
+ iR>0 .

(A.41)

Note that we have to take the imaginary part of v strictly greater than zero in the
last case (ǫ = 1), while it is greater or equal to zero for ǫ = 0. This is due to the
representation ∆1,0 being reducible, as stated above.

Moreover, there are again supplementary series representations. Just like in
the previous section, they stem from the nonunitary principal series with ǫ = 0,
0 < ρ < 1 if one uses the following scalar product for functions f ,g : R→ C

(f |g) :=
∫

dx
∫

dy
[f(x)]

∗
g(y)



x −y




1−ρ . (A.42)

The (irreducible unitary) supplementary series representations of SL(2,R) are there-
fore

[∆wf] (x) = |−cx + a|−1−w f
(

dx − b
−cx + a

)

,

f ∈ L2(R̄,C|(·|·)), 0 < w < 1 .
(A.43)

So far, everything was just like in the complex case. Now, however, our list of
irreducible unitary representations is not yet complete: We need to add the (irre-

ducible unitary) discrete series representations of SL(2,R). Let us cite them here,
following [111]. We have

[

∆
+
nf
]

(z) = (−cz + a)−nf
(

dz − b
−cz + a

)

, n ∈ Z≥2 ,

f : H+ → C holomorphic, ||f ||2n :=
∫

y>0
dxdy|f(x + iy)|2yn−2 <∞ ,

(A.44)

and an antiholomorphic version

[

∆
−
nf
]

(z̄) = (−cz̄ + a)−nf
(

dz̄ − b
−cz̄ + a

)

, n ∈ Z≥2 ,

f : H− → C antiholomorphic, ||f ||2n :=
∫

y>0
dxdy|f(x − iy)|2yn−2 <∞ ,

(A.45)

where H± are the upper and lower half-plane respectively: H± := {Im(z) ≷ 0}.
For the value n = 1, the (irreducible unitary) representations ∆±1 can be defined
in the same way, but the scalar product has to be changed to

||f ||21 := sup
y>0

∫

dx|f(x ± iy)|2 . (A.46)
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∆
±
1 are sometimes called limits of discrete series representations. We had men-

tioned above, that the representation ∆1,0, which lies in the principal series, is
reducible. In fact, it can be shown that

∆1,0 ≃ ∆+1 ⊕∆−1 . (A.47)

147





B H
+
3 Primary Fields in Different Bases

According to the representation theory of SL(2,C) and SL(2,R) that we summa-
rize in appendix A, we are commonly working with bulk fields Θj(u|z) that carry
a complex isospin variable u ∈ Ĉ and boundary fields Ψℓ(t|x) that depend on a
real isospin coordinate t ∈ R̄. This is the convention which is most convenient
for our purposes. But of course, one is free to choose different bases for the
representation space. For example, the H+3 /Liouville correspondence reviewed in
chapter 7 is more conveniently formulated in terms of µ- and τ-basis fields. For
other purposes, the (m, m̄)- and (m,η)-basis is more practical. In the following,
we are going to summarize the relations between these different bases. We are
going to drop the worldsheet coordinates z and x.

B.1 Bulk Fields in Different Bases

B.1.1 The Transformation Θj(u) ↔ Θj(µ)

For µ ∈ C, the transformation is

Θj(µ) =
1

π
|µ|2j+2

∫

C

d2u e(µu−µ̄ū)Θj(u) . (B.1)

This is inverted by

Θj(u) = 1

π

∫

C

d2µ|µ|−2j−2e−(µu−µ̄ū)Θj(µ) , (B.2)

which one can check by making use of

δ(2)(u) = 1

(2π)2

∫

d2k ei[k1Re(u)+k2Im(u)] = 1

π2

∫

d2µ e−(µu−µ̄ū) , (B.3)

where the integration variables were changed from (k1, k2) to µ = −2(k2 + ik1).

B.1.2 The Transformation Θj(u) ↔ Θ
m,m̄
j

For (m − m̄) ∈ Z and (m + m̄) ∈ iR, i.e. m = n+ip
2 , m̄ = −n+ip

2 with n ∈ Z and
p ∈ R, set

Θ
m,m̄
j =

∫

C

d2u

|u|2u
−j+mū−j+m̄Θj(u) . (B.4)
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The backtransformation reads

Θj(u) =
1

(2π)2

∫

R

dp
∑

n∈Z
uj−mūj−m̄Θm,m̄j , (B.5)

with the relation between (n,p) and (m, m̄) as stated above. To check this, one
has to use that

(2π)2|u′|2δ(2)(u−u′) = 2πr ′δ(r − r ′) · 2πδ(ϕ −ϕ′)

=
(

∫

R

dp
(

r

r ′

)−ip
)

·




∑

n∈Z
e−in(ϕ−ϕ′)





=
∫

R

dp
∑

n∈Z

(

u

u′

)−m ( ū
ū′

)−m̄
,

(B.6)

if one introduces u = reiϕ , u′ = r ′eiϕ′ in the intermediate step.

B.2 Boundary Fields in Different Bases

B.2.1 The Transformation Ψℓ(t) ↔ Ψℓ(τ)

This transformation is simply (τ ∈ R)

Ψℓ(τ) = |τ|ℓ+1
∫

R

dt eiτt
Ψℓ(t) , (B.7)

which isobviousyl inverted by

Ψℓ(t) =
∫

R

dτ

2π
|τ|−ℓ−1e−iτt

Ψℓ(τ) . (B.8)

B.2.2 The Transformation Ψℓ(t) ↔ Ψ
m,η
ℓ

This basis transformation is defined for m ∈ iR, η ∈ {0,1} to be

Ψ
m,η
ℓ =

∫

R

dt|t|−ℓ−1+m [sgn(t)
]η
Ψℓ(t) . (B.9)

The inverse transformation is

Ψℓ(t) = −
i

4π

∑

η=0,1

[

sgn(t)
]η
∫

iR
dm |t|ℓ−mΨm,ηℓ . (B.10)

In order to check this, one makes use of

2π i|t′|
(

δ(t − t′)+ δ(t + t′)
)

=
∫

iR
dm









t

t′









−m
. (B.11)
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C Hypergeometric and Generalized

Hypergeometric Functions

In this appendix, we assemble some frequently needed formulae for Gauss’ hy-
pergeometric function and Appell’s first as well as Horn’s second generalized hy-
pergeometric function. Most of the formula stated here are given for convenience
and can also be found in standard references about the topic like [98, 97, 96].

C.1 Some Preliminary Identities

Before we come to the functions of interest, let us summarize some identities that
are frequently used when manipulating (generalized) hypergeometric functions.
They concern the Euler Γ function and the Pochhammer symbols.

C.1.1 Γ Function Identities

∫ 1

0
dt ta−1(1− t)b−1 = Γ(a)Γ(b)

Γ(a+ b) (C.1)

∫∞

0
dt (1+ t2)α =

√
π

2

Γ(−α− 1
2 )

Γ(−α) (C.2)

Γ(2j) = 1√
π
(2)2j−1

Γ(j)Γ(j + 1

2
) (C.3)

Γ(z)Γ(1− z) = π

sin(πz)
(C.4)

C.1.2 Pochhammer Symbol Identities

The Pochhammer symbol is defined to be

(α)m =
Γ(α+m)
Γ(α)

. (C.5)
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From this definition and the functional equation of Euler’s gamma function,
αΓ(α) = Γ(α+ 1), one easily derives the following identites:

(α)−m =
(−)m

(1−α)m
,

(α)m+n =
{

(α+m)n(α)m
(α+n)m(α)n ,

(α)m−n =
{

(α+m)−n(α)m
(α−n)m(α)−n .

(C.6)

C.2 Gauss’ Hypergeometric Function

C.2.1 Definition

Convergent Series

The ordinary Gauss’ hypergeometric function F (also denoted 2F1, but since we
do not consider the generalizations pFq, we do not need to make this distinction
here) is defined as a convergent series by

F(a,b; c|z) =
∞
∑

n=1

(a)n(b)n
(c)n

zn

n!
(C.7)

for |z| < 1 and c ∉ Z≤0. (a)n and so on are Pochhammer symbols as in C.1.2.
It is obviously symmetric in a and b. By making use of the definition of the
Pochhammer symbol, one shows

dk

dzk
F(a,b; c|z) = (a)k(b)k

(c)k
F(a+ k,b + k; c + k|z) . (C.8)

The hypergeometric function can be continued to regions other than |z| < 1 from
certain integral representations given by Euler and Barnes [98]. We shall not need
these formulae, but just state the continuation formulae that one obtains below.

Differential Equation

Any homogeneous linear differential equation of second order which has at most
three regular singularities can be reduced to the hypergeometric differential equa-

tion
{

z(1− z) d2

dz2
+ [c − (a+ b + 1)z]

d

dz
− ab

}

y = 0 (C.9)
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C.2 Gauss’ Hypergeometric Function

A set of two linearly independent solutions is

y1 = F(a,b; c|z)
y2 = z1−cF(1+ a− c,1+ b − c; 2− c|z) (C.10)

if c ∉ Z. Note that the two solutions coincide if c = 1. The cases c ∈ Z are certain
logarithmic cases that we do not need at this stage, but only later when coming
to analytic continuations.

C.2.2 Analytic Continuations of Gauss’ Hypergeometric Function

The formulae stated here are taken from [98]. Note that for the hypergeometric
function to exist, we always need c ∉ Z≤0.

Generic Case (b − a ∉ Z)

F

(

a,b; c








1

z

)

= Γ(c)Γ(b − a)
Γ(b)Γ(c − a)

(

−1

z

)−a
F(a,1− c + a; 1− b + a|z)+

+ Γ(c)Γ(a− b)
Γ(a)Γ(c − b)

(

−1
z

)−b
F(b,1− c + b; 1− a+ b|z).

(C.11)

Generic Case (c − a − b ∉ Z)

F (a,b; c |z) = Γ(c)Γ(c − a− b)
Γ(c − a)Γ(c − b)F(a,b;a+ b − c + 1|1− z)+

+ Γ(c)Γ(a+ b − c)
Γ(a)Γ(b)

(1− z)c−a−bF(c − a, c − b; c − a− b + 1|1− z).
(C.12)

Logarithmic Case (b − a ≡ m ∈ Z≥0)

F

(

a,b; c








1

z

)

= Γ(c)

Γ(b)Γ(c − a)
(

−1

z

)−b ∞
∑

n=0

(a)n+m(1− c + a)n+m
n!(n+m)! ·

·
(

1

z

)−n [
log

(

−1

z

)

+ hn
]

+

+ Γ(c)

Γ(b)

(

−1

z

)−a m−1
∑

n

Γ(m−n)(a)n
Γ(c − a−n)n!

(

1

z

)−n
.

(C.13)

Note that if b − a ∈ Z, it is no restriction to take b − a = m ∈ Z≥0, as this can
always be achieved by exchanging the rôles of a and b if necessary. The occuring
hn ≡ hn(a, c,m) is defined as

hn(a, c,m) = ψ(1+m+n)+ψ(1+n)−ψ(a+m+n)−ψ(c−a−m−n), (C.14)
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with ψ(z) being the logarithmic derivative of the gamma function:

ψ(z) = Γ ′(z)
Γ(z)

. (C.15)

C.3 The Appell Function F1

C.3.1 Definition

Convergent Series

The definition of Appell’s function F1 is as a convergent series is

F1(α,β,β
′;γ|u;z) =

∞
∑

m,n=0

(α)m+n(β)m(β′)n
(γ)m+n

um

m!

zn

n!
. (C.16)

It is convergent for complex u and z in the domain |u| < 1, |z| < 1. Clearly, it is
symmetric under simultaneous exchange β ↔ β′ and u↔ z. For the third param-
eter γ we need γ ≠ 0,−1,−2, . . . . There are again several integral representations
of Barnes and Euler type [97] that we do not need here.

Differential Equation

Appell’s function F1 can also be defined as being the solution of the following
system of two partial differential equations

u(1−u)∂2
uy+z(1−u)∂u∂zy+[γ−(α+β+1)u]∂uy−βz∂zy−αβy = 0 (C.17)

together with the same equation, but with the exchange of u↔ z and β→ β′. This
is of course nothing but the observed symmetry of F1. This system of equations
can be brought to a different form [96], which is

βz(1− z)∂zy = u(1−u)(u− z)∂2
uy+

+
[

γ(u− z)− (α+ β+ 1)u2 + (α+ β− β′ + 1)uz + β′z
]

∂uy−
−αβ(u− z)y

(C.18)

and again its counterpart with u↔ z and β↔ β′, together with the third equation

(u− z)∂u∂zy − β′∂uy + β∂zy = 0 . (C.19)

Note that (C.18) is precisely of the form of the Knizhnik-Zamolodchikov equa-
tions like (6.5) that we need to solve in chapter 6.
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C.3 The Appell Function F1

C.3.2 Analytic Continuations

The following formulae are taken from [97].

F1(α,β,β
′;γ|u;z) = Γ(γ)Γ(γ −α− β′)

Γ(γ −α)Γ(γ − β′)(1−u)
−βz−β

′·

·G2

(

β,β′; 1+ β′ − γ,γ −α− β′








u

1−u ;
1− z
z

)

+

+ Γ(γ)Γ(α+ β
′ − γ)

Γ(α)Γ(β′)
(1−u)−β(1− z)γ−α−β′·

·F1

(

γ −α,β,γ − β− β′;γ −α− β′ + 1








1− z
1−u ; 1− z

)

,

(C.20)

in a neighbourhood of (u, z) = (0,1). The function G2 is the second Horn func-
tion, see next section. The parameters α, β, β′, γ must be such that the Euler Γ
functions do not blow up. In the cases where we need to derive different formula
from the generalized series representations (next subsection), this is precisely
what happens and invalidates the formulae given in this subsection.

F1(α,β,β
′;γ|u;z) = Γ(γ)Γ(α+ β− γ)

Γ(α)Γ(β)
(1−u)γ−α−β(1− z)−β′·

·F1

(

γ −α,γ − β− β′, β′;γ −α− β+ 1








1−u;
1−u
1− z

)

+

+ Γ(γ)Γ(γ −α− β)Γ(α− β
′)

Γ(γ −α)Γ(γ − β− β′)Γ(α)u
−β(1− z)−β′·

·D1,2
(2)

(

γ −α− β,β,β′;γ − β− β′, β′ −α+ 1








u− 1

u
;

1

1− z
)

+

+ Γ(γ)Γ(β
′ −α)

Γ(γ −α)Γ(β′) (1− z)
−α·

·F1

(

α,β,γ − β− β′;α− β′ + 1








1−u
1− z ;

1

1− z
)

,

(C.21)

in a neighbourhood of (u, z) = (1,∞). The function D1,2
(2) is defined by

D
1,2
(2)(α,β,β

′;γ,γ′|u;z) :=
∑

m,n

(α)n−m(β)m(β′)n
(γ)−m(γ′)n

um

m!

zn

n!
, (C.22)
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convergent in the domain u < 2, z < 1
2 . The same comments on the parameters

as above apply. Finally, there is also

F1(α,β,β
′;γ|u;z) = Γ(γ)Γ(α− β− β′)

Γ(γ − β− β′)Γ(α)(1−u)
−β(1− z)γ−α−β′·

·(−z)α−γF1

(

γ −α,β,1−α; 1−α+ β+ β′








u− z
z(u− 1)

;
1

z

)

+

+ Γ(γ)Γ(β+ β
′ −α)

Γ(γ −α)Γ(β+ β′) (1−u)
−β(1− z)γ−α−β′·

·(−z)β+β′−γG2

(

β,γ − β− β′; 1− β− β′, β+ β′ −α








z −u
u− 1

;−1
z

)

,

(C.23)

in a neighbourhood of (u, z) = (∞,∞).

C.3.3 Generalized Series Representations

Employing the Pochhammer symbol identites stated in C.1.2, one deduces easily
that

F1(α,β,β
′;γ|u;z) =

∞
∑

n=0

(α)n(β′)n
(γ)n

F(α+n,β;γ +n|u)z
n

n!
, (C.24)

F being the standard hypergeometric function. Of course, there is an analogous
statment about the expansion in the variable u. It is simply obtained by exchang-
ing β and β′ on the right hand side. In expansions of this type, one can use an
analytic continuation of the “inner” hypergeometric function C.2 and afterwards
(usually, not always) resum the resulting series. In this way, one can actually
derive the continuation formulae stated in the preceding subsection, if one uses
the generic continuations of the Gauss function. In the logarithmic cases, other
formulae arise, see for example section 6.1.1. Manipulations of this kind are very
crucial and occur frequently in our work.

C.4 The Horn Function G2

C.4.1 Definition as a Convergent Series and Differential Equation

Horn’s function G2 is defined by

G2(β,β
′;α,α′|u;z) =

∞
∑

m,n=0

(β)m(β
′)n(α)n−m(α′)m−n

um

m!

zn

n!
. (C.25)

This series converges for complex u and z with |u| < 1, |z| < 1. Its parameters α
and α′ must be such that α ≠ 1,2,3, . . . and α′ ≠ 1,2,3, . . . . Note the symmetry
under α↔ α′ together with β ↔ β′ and γ ↔ γ′.
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C.4 The Horn Function G2

C.4.2 Generalized Series Representations

Employing the Pochhammer symbol identites stated in C.1.2, one deduces that

G2(β,β
′;α,α′|u;z) =

∞
∑

n=0

(α)n(β′)n
(1−α′)n

F(α′ −n,β; 1−α−n| −u)(−z)
n

n!
. (C.26)

The analogous expansion in the variable u is of course obtained by exchanging α
and α′ as well as β and β′ on the right hand side. Analytic continuation formulae
for G2 can now be derived by the same procedure that we have outlined above
for Appell’s function.

One should notice that for α ∈ Z≤0, the above expansion breaks down, because
some of the occuring hypergeometric functions cease to be well defined (for α ∈
Z>0 the function G2 is not defined anyway). For our purposes, the case α = 0
becomes important when taking u = z in (8.13). In this case, it is however not
difficult to derive a similar expansion [68]:

G2(β,β
′; 0, α′|u;z) =

∞
∑

n=0

(β)n(β′)n
(1)n

F(β+n,α′; 1+n| −u)(u · z)
n

n!
. (C.27)
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Schluss

[. . . ] woher um alles in der Welt stünde es fest, dass gerade wahre Urteile mehr
Vergnügen machten als falsche und, gemäß einer prästabilierten Harmonie, an-
genehme Gefühle mit Notwendigkeit hinter sich drein zögen? – Die Erfahrung
aller strengen, tief gearteten Geister lehrt das Umgekehrte. Man hat fast jeden
Schritt breit Wahrheit sich abringen müssen, man hat fast alles dagegen preis-
geben müssen, woran sonst das Herz, woran unsere Liebe, unser Vertrauen zum
Leben hängt. Es bedarf Größe der Seele dazu: Der Dienst der Wahrheit ist der
härteste Dienst. – Was heißt denn rechtschaffen sein in geistigen Dingen? Dass
man streng gegen sein Herz ist, dass man die “schönen Gefühle” verachtet, dass
man sich aus jedem Ja und Nein ein Gewissen macht! [. . . ]

Friedrich Nietzsche, Der Antichrist
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torization constraint in the form of a b−2/2-shift equation can be derived. Here,
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function, we can derive b−2/2-shift equations that constitute important, but so
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