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Abstract

The main goal of this thesis is the extension and improvement of existing methods
for describing and solving thermo-mechanical problems involving the contact of bodies,
plastic behavior as well as hypoelasto-viscoplasticity, which have an application in ma-
chining and metal forming processes. Besides the finite element method (FEM) also
the boundary element method (BEM) and the FEM/BEM coupling are investigated as
discretization procedures.

In Chapter 1 the quasistatic two-body elastoplastic contact problem with Coulomb fric-
tion is discretized using the FE/FE, BE/BE, and FE/BE coupling methods. The incre-
mental loading procedure with Newton iterations on each time step is analyzed. Lin-
earizations of the frictional contact and the plasticity terms as well as a description of
the solution algorithms are given. As a further approach we also investigate a domain
decomposition method, whereas the transmission conditions between elastic and plastic
part in the work piece are incorporated via Lagrange multipliers. Furthermore addi-
tionally the distribution of temperature is modelled by a two-field approach. The above
procedures are used to simulate benchmark problems in metal forming.

In Chapter 2 the quasistatic one-body hypoelasto-viscoplasticity problem subjected to
the Hart’s model, describing large viscoplastic and small elastic deformations, is dis-
cretized with FE and BE methods in space, using an updated Lagrange approach for
the discretization in time. Here a fix point procedure on each time step is used. An ex-
plicit integration procedure of the constitutive material equations as well as a description
of the solution procedure are given.

Furthermore, the thermo-mechanical two-body hypoelasto-viscoplasticity contact prob-
lem with Coulomb friction is discretized with FE/BE in space and with finite differences
in time employing the updated Lagrange approach. This approach can be applied to
simulate metal chipping.

Our numerical algorithms are implemented as a library within the scientific package
maiprogs and are written in Fortran 95.

The numerical computations are realized using different discretization procedures for
benchmark problems providing comparable results for FE, BE and FE/BE coupling
methods.

Key words. FE/BE coupling, finite elements, boundary elements, frictional contact,
penalty, Hart’s model, updated Lagrange, large deformations



Zusammenfassung

Das Hauptziel dieser Dissertation ist die Erweiterung und Verbesserung der vorhan-
denen Methoden fiir die Beschreibung und das Losen thermomechanischer Probleme,
welche den Kontakt der Korper, das Plastizitédtsverhalten sowie das hyperelastischvisko-
plastische Verhalten einschlieffen. Anwendungsgebiete dieser Probleme findet man bei
der Metallbearbeitung, zum Beispiel bei der Umformung und bei Zerspanprozessen. Die
unterschiedlichen Diskretisierungsverfahren, d.h. Finite-Elemente-Methode (FEM) und
Rand-Elemente-Methode (BEM) bzw. deren Kopplung, angewendet auf die oben ge-
nannten Modellprobleme, werden untersucht.

Im Kapitel 1 wird das quasistatische Kontaktproblem von zwei elastoplastischen Kérpern
mit Coulombscher Reibung mit FE/FE-, BE/BE- und FE/BE- Kopplungs-Methoden
diskretisiert. Es wird das inkrementelle Lastverfahren mit Newtonschen Iterationen in
jedem Zeitschritt verwendet. Zudem wird die Linearisierung des Kontakt- und Plasti-
zitdtsanteils angegeben und das Losungsverfahren beschrieben. Eine Gebietszerlegungs-
methode wird untersucht, wobei die Transmissionsbedingungen zwischen dem elastischen
und dem plastischen Gebiet des Werkzeuges iiber Lagrange-Multiplikatoren eingearbei-
tet sind. Zudem ist die Verteilung der Temperatur mit dem two-field Verfahren model-
liert. Die oben genannten Verfahren werden verwendet, um die Benchmark-Probleme bei
Zerspanprozessen zu simulieren.

Im Kapitel 2 wird das quasistatische Einkoérper-Problem mit dem hyperelastischviskopla-
stischen Stoffgesetz, welches mit dem Hartschen Modell beschrieben ist, mit FE- sowie
mit BE- Methoden im Raum diskretisiert. In der Zeit wird die auf dem aktualisierten
Lagrange-Verfahren basierende explizite finite Differenzen Methode angewendet. In je-
dem Zeitschritt wird eine Fixpunktiteration durchgefiihrt. Ein Verfahren zur expliziten
Integration der konstitutiven Materialgleichungen sowie die Beschreibung der Losungs-
verfahren werden gegeben.

Das thermomechanische hyperelastischviskoplastische Zweikorper Kontaktproblem mit
Coulombscher Reibung wird mit FE/BE im Raum und mit finiten Differenzen beziiglich
der Zeit diskretisiert. Die Referenzkonfiguration wird nach jedem Zeitschritt geméafl des
aktualisierten Lagrange’sche Verfahrens erneuert.

Die numerischen Algorithmen sind als interne Bibliothek innerhalb des Softwarepacketes
maiprogs in Fortran 95 realisiert.

Die numerischen Berechnungen fiir die verschiedenen Diskretisierungsverfahren liefern
vergleichbare Ergebnisse.

Schlagworte: FE/BE-Kopplung, Finite Elemente, Randelemente, Reibungskontakt,
Penalty, Hartmodell, updated Lagrange, grofle Verformungen
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Introduction

Based on the work by Wriggers and Miehe [51], Peric and Owen [40], and Costabel and
Stephan [23, 24] we introduce finite element (FE), boundary element (BE) and FE/BE
coupling procedures for friction contact problems in elastoplasticity. In our approach
we use the radial return algorithm (see Simo and Hughes [43], Simo and Miehe [44])
for both plastification of the material and contact. Here, we study small deformations
and therefore can model the linear elastic parts by standard BEM with the linear elastic
fundamental solution. Our numerical results demonstrate clearly that pure FEM, pure
BEM and FE/BE coupling approaches give relevant numerical simulations.

The framework of Glowinski [28] supplies an abstract and a numerical (FE) analysis for
nonlinear variational problems. The work of Eck and Jarusek [26] provides existence
and regularity results for the static one body contact problem with Coulomb friction.
The existence, uniqueness and regularity results for boundary value problems of the
plastic flow theory are given in the book by Korneev and Langer [34]. This work also
provides foundations for FE analysis of quasistatic plastic flows. Existence, uniqueness
and stability results are obtained in the work of Han and Reddy [29] for the one body
associated elastoplastic problem. Moreover, they prove the convergence results for dis-
crete versions. The work of Blaheta et. al. [5, 6, 2] is devoted to the investigation of
convergence of discretized problems, namely convergence of the Newton and Newton-like
methods for FE discretization of the one body associated elastoplasticity problem.

For the theoretical background of the boundary integral equations and the Galerkin
boundary element methods (BEM) for linear problems we refer to the book of Sauter
and Schwab [42]. The coupling technique of boundary element method and finite element
methods are described in work by Stephan [48], Carstensen and Stephan [15]. In the
works of Brebbia et. al. [9, 13, 10, 11] one can find extension of the boundary element
techniques for solving nonlinear elastoplastic problems. These approaches are based on
the heuristical collocation method. An application of the boundary element method
to elastoplastic unilateral contact problems with friction was suggested by Polizzotto
and Zitto [41]. Theoretical and numerical investigations for the one-body quasistatic
elastoplastic problem are done by Alberty [1]. Theoretical and numerical investigations
of the time-discretized one-body quasistatic elastoplastic problem with a non-penetration
contact constraint are done by Zarrabi [53].

Based on the series of papers by Mukherjee [39], Chandra and Mukherjee [16, 17, 18] we
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Introduction

introduce finite element, boundary element and FE/BE coupling procedures for metal-
forming and metal chipping. As in [30, 32, 31] we consider Hart’s constitutive model,
which describes hypoelasto-viscoplasticity [4]. We use the updated Lagrange approach
in order to pose the equilibrium equation of the media, i.e. the equilibrium equation of
the body and constitutive conditions on the time interval (¢, ¢+ dt) are given employing
the pure Lagrange approach with the reference configuration coinciding with the actual
one taken at time t. Discretizing the problem in time one obtains the set of problems
at discrete time points t¢,,, whereas the mesh has to be updated corresponding to the
updated Lagrange description as soon as the new actual configuration is known.

This thesis is organized as follows. In Chapter 1 we consider two-body contact prob-
lems in elastoplasticity with and without friction and present solution procedures based
on finite element and boundary element methods. We formulate the weak elastoplastic
contact problem in Section 1.1 and derive its penalty approximation. We discretize the
penalty weak formulation in time as well as in space in Section 1.2.

The predictor-corrector solution procedure for the elastoplastic contact problem is con-
sidered in Section 1.1. The radial return mapping algorithm is used to handle both
contact conditions and plastification. We describe in detail a segment-to-segment con-
tact discretization, which allows also to model friction.

The linearization of contact and plastic terms in the equilibrium equation is derived
in Section 1.3. In Section 1.2 we provide the FEM/FEM, BEM/BEM and FEM/BEM,
respectively, discretization procedures of two-body elastoplastic frictional contact (Prob-
lem 1.1.4). In Section 1.4 we extend the return mapping algorithm for elastoplasticity,
which is carried out in [5] in order to investigate the contact return mapping algorithm.
In Section 1.5 we prove the convergence of the Newton method introduced in Section
1.2 for elastoplasticity with frictional contact using the results obtained in Section 1.4
and in [5]. In Section 1.6 we extend the Newton-like iterations introduced in [6] onto
elastoplasticity with frictional contact. Using the results obtained in Section 1.4 and in
[6] we prove the convergence of extended Newton-like iterations. The approaches given
cover small deformations. Numerical simulations in Section 1.7 demonstrate the wide
applicability of our approaches described in Sections 1.2.1, 1.2.2, 1.2.3. In Section 1.8
we extend the coupling procedures introduced in Section 1.2. We decompose one body
(that is subjected to the elastoplastic material law) into a purely elastic domain and an
elastoplastic domain. Using Lagrange multipliers (cf. [49]) on the interface boundary we
obtain a coupling formulation. Section 1.8.4 is devoted to the FE-BE-FE (elastic body
is discretized with BE; elastoplastic body is decomposed into 2 subdomains, the linear
elastic is with FE, whereas the elastoplastic with BE) simulations of our approaches
given in Section 1.8.1. In Section 1.9 we consider a two-body thermo-elastic frictional
contact problem, as in Sections 1.2, 1.8 the contact conditions are regularized using the
penalty method. We end up Section 1.9 with Subsection 1.9.3, where we present the
numerical simulation of the solution procedure introduced in Section 1.9.2.

14



Introduction

In Chapter 2 we consider the application of Hart’s model for hypoelasto-viscoplasticity
to contact problems. We start by providing a theoretical background of a continuum
mechanic description of large deformations (Section 2.1) as well as Hart’s constitutive
equations (Section 2.2). The integration of the material law is done via an explicit finite
difference scheme in time in Section 2.3. We apply the updated Lagrange approach in
Section 2.4. Employing the update Lagrange approach we derive in Section 2.5 the space
discretization using BE discretization of the problem posed in Section 2.1 under Hart’s
material law, which is integrated in time in Section 2.3. In Section 2.5.3 we present a
numerical simulation: stretching a square plate. The problem is discretized using FE
and BE methods. In Section 2.6 we consider a two-body contact problem under Hart’s
constitutive conditions coupled with heat conduction. In Section 2.6 we pose the thermo-
mechanical weak formulation in rate form. In Section 2.6.2 we present two benchmark
problems: in Example 1 we consider FEM-BEM coupling for one a body problem; in
Example 2 we consider the metal chipping process using FEM-BEM coupling, whereas
the work tool is discretized with BE and work piece with FE in space. The work tool in
our simulation is supposed to be purely elastic.

The appendix is devoted to the implementation of the boundary integral operators, the
volume potentials as well as the finite element method for large deformations.

15
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1 Elastoplastic contact problems.
Small deformations

We consider two-body contact problems in elastoplasticity with and without friction and
present solution procedures based on finite elements and boundary elements. The radial
return mapping algorithm is used to handle both contact conditions and plastification.
We describe in detail a segment-to-segment contact discretization which allows also to
treat friction. The approaches given cover small deformations. Numerical benchmarks
demonstrate the wide applicability of our approaches.

Following Costabel and Stephan [23, 24] we introduce boundary element and FE/BE
coupling procedures for friction contact problems in elastoplasticity. We consider asso-
ciated von Mises plasticity as described e.g. in [43]. We perform incremental loading in
connection with Newton method and radial return for the contact problem formulated
as the penalty method we consider all three cases: pure FEM simulation, pure BEM sim-
ulations and simulations with FEM/BEM coupling. In all cases we show convergence
for the Newton scheme by extending the analysis of Blaheta [5] (which was done for
FEM simulations of plasticity) to contact problems. As a further solution procedure we
use a domain decomposition method splitting the regions under the investigation into
elastic and plastic parts and use Lagrangian multipliers on the interface and then again
apply incremental loading. Our numerical experiments for benchmarks problems show
comparable results for FEM and BEM simulations. Furthermore, we consider a stag-
gered scheme where we consider an elastic material under heating leading to a difference
scheme for the heat equation and the FE-BE discretizations of the elastic contact, which
is included in the above formulations.

1.1 Weak and penalty formulations

We consider two deformable elasto-plastic bodies A and B occupying Lipschitz domains
04, QP C R? in the small deformation formulation. They can be disjoint or touch each
other along their boundaries. We denote one body as ’slave’ (B), the other as 'master’
(A). The choice is symmetric, i.e. we can change notations vice versa. This concept is
essential for the treatment of contact conditions. We assume, that the boundary of the

17



1 Elastoplastic contact problems. Small deformations

domain Q, (i = B, A) consists of 3 disjoint parts: a part with prescribed displacements
Iy, one with prescribed tractions I, and a part I, - zone of probable contact, i.e.
I = 00 = T, UTy UT,. Define ¥ := Ty, UT%. We admit the bodies to have
some micro-interpenetration in the contact zone, which allows us to construct contact
conditions. Let xZ,£* € R? be the coordinates of the corresponding bodies. We
parameterize the master surface by the natural parameter (4 and slave surface with (.

Next, we introduce some function spaces needed for the formulation of the elastoplastic
contact problem. We define the space of stresses

S={r|TeR¥?*}  where R? :={w e R*®| Vi,j =1,2,3 a5 =25}, (1.1)
SQ):={r|7:Q— S Vi,j €137 €LV}, (1.2)

the space of plastic strains
Qo:={elee S tre=0}, where tre :=¢y, (1.3)
Qo() :={e|e:Q—5.Vi,j e3¢5 € L*(Q). tre =0 ae. in Q}, (1.4)

the spaces of internal variables

M' = {p|peR™} (1.5)
M'(Q) = {p|p:Q—>R™YVjel mp € L*(Q)},

the space of admissible generalized stresses (7, u)

2 {(a,x) €S x Mi‘%l(o'aX) < O}’ (1.7)
P(Q) = {(o,x) € S() x M' ()|}, (0, x) <0 ae in '},

the space of generalized strains (e?, £)

K' = {(e"€) € Qo x M'}, (1.9)
Q) = {(e,€) € Qy(Q) x MI(Q)} . (1.10)

Here we have used a notation 1,m := {n}" to define a set of integers from 1 to m. Now
we give the elastoplastic in its strong form

Problem 1.1.1. For given time interval of interest (0,T'), given friction coefficient
€ [0,1/2), displacements 4’ : [0,T] — (H1/2(FiD))2, boundary traction t : [0,T] —
(H_l/Z(F’]'V))a volume forces }'Z : 0,7 — (H‘l(F’]'V))2, free energy scalar functions
Yi(e™, &), Yt S x M' — Ry and their decompositions ¢ (', &") = (€% 4+ (€7,
scalar yield function for elastoplasticity ¢ (o, x"), ¢% : S x M* — R and initial values
(u(0),€(0),£'(0)) = (0,0,0) we consider the following elastoplastic contact problem

18



1.1 Weak and penalty formulations

with contact boundary U'¢:

Find (ui, e £') : [0,T] — (H'(Q))>xS(Q)x M* () satisfying the classical formulation
for the elastoplastic frictional contact problem:

—dive! = fZ in [0,T] x QF,
u'=u  on[0,T]xTp Ly 7 x Qi) i = A, B, (1.11)
=1 on [0,T] x T,
/
nd. (n4. o) =nf. (nf. of) = oy, )
if uyP =g, then on <0,
ot -nt —oynt= (o8 -nf —oyn®) =or
on [0,T] x I'e, (1.12)
oy ‘=071 " eA,
if lor| < prloy|, then ur =0,
if lor| = pglon], then e > 0: ufP = —Acor |
e(u') = e(u')=1/2(Vu' + (Vu')l), )
a_i _ 8¢ie
- Hete’
i oy
X 8£Z ’
. e in [0, 7] x €, i= A, B,
Wz0 & = N
é_ip _ Za ;Jl
PO’
)\; Z 0a¢§)l SO, )\; ;;l:07
when gb;l = 0, then )\; > 0, Qgi,z <0, )\;Q%l =0
(1.13)

where o' denotes the stress tensor, € denotes the plastic part of the strain in the domain
O, ulP denotes the jump of the normal displacement ul, == u’-n? and u4? stands for
the jump of the tangential displacement vl = u’ - e through T'c, namely

uyP = uy —uf = ut - nt +uf ont
AB ._ A B — A oA B . oA
uF” =ur —ur =u” -e” +u” e,

19



1 Elastoplastic contact problems. Small deformations

denoting with n*, e* the outer normal and tangential unit vectors to I'A. with the gap
function g : Te C R?* — Rsq describing the initial distance between the two bodies in
normal direction, py - coefficient of friction.

Introducing the dissipation functions D' : K* — R U {400}

Di(éip,éi) = sup {éi” o+ € x| (o8, X)) € Pi} . (1.14)

Then the equivalent form of plastic constraints (1.13) is

el(u’) = e(u’) =1/2(Vu' + (Vu)T), )
- Qete’
X = _ oy in O, i=A,B. (1.15)
og"’
(&?, &) e domD’,
(o', x") € OD'(&.§), )

Remark 1.1.1. Later we will use specific representations of the free energy function.

1. Elastic behavior:

1
Ve(e®) == 556 :C e, (1.16)
where C : R3x% — R3x3 is the elastic Hooke’s tensor. In case of isotropic, ho-
mogeneous media it is completely defined by two Lamé constants A\, > 0, such
that
awe & & &
0= =C:e°= Altre®+ 2ue. (1.17)

2. Plastic behavior:

e for a purely elastic body we do not have any yield function and set

WP(€) == 0. (1.18)

e von Mises plasticity with linear isotropic hardening (& = {¢}, x = {x})

U(E) = ghat® (1.19)

20



1.1 Weak and penalty formulations

The yield function is

2
¢pl(a> X) = || deVJH - \/;(O-Y - X)> (120)
where the given constants oy > 0 and ks > 0 are the yield stress and the isotropic
hardening parameter, respectively.
e von Mises plasticity with linear kinematic hardening

Internal variable in this situation is nothing more then plastic strain

£E=¢e. (1.21)
1 2
YP(eP) = §k1||€p|| . (1.22)
The yield function is
2
dpi(o,x) == | deve + x|| — \/;O'y, (1.23)

where the given constants oy > 0 and k1 > 0 are the yield stress and the kinematic
hardening parameter, respectively.

e von Mises plasticity with combined linear kinematic / isotropic hardening

We denote for clearness the internal variables
§=(e"a) (1.24)

and the conjugate forces
x = (a,v). (1.25)

Then the plastic free energy function is

1 1
YP(eP, ) = 5]{:1”57’”2 + §k2|a\2 (1.26)
and the yield function is
2
bl X) = dever +all /2oy — ). (1.27)

where the given constants oy > 0, by > 0, ky > 0 are the yield stress and the
kinematic and isotropic hardening parameters.

Taking into account Remark 1.1.1 we write formally the plastic part of the free energy
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1 Elastoplastic contact problems. Small deformations

function as

PP = %6 (H: &, (1.28)

kI 0

Where]I-]I:< 0k

) for von Mises plasticity with linear isotropic/kinematic hard-

ening.

We write in the sequel to := oan? + ore? for the boundary traction and use the space
of displacement test functions

Vo(Q) = {u € [Hl(Qi)]z‘u

_ 0} (1.29)

and the space of displacement ansatz functions

Vo(Q) = {u e [HYQ)?]| w

r = u} (1.30)

Next, we introduce some bilinear forms which are used in the weak formulations of
Problem 1.1.1:

G S x S(U) > R, (o, ) i /0' (),
b: V() x S(O) = R, bo', 1) := /is('vi) 7S,
s M(@) % M) =R e )= [ X (B) w0,
(oo (@R % [P =R (F)a = [ £ o' as
(ot (VRO o (PO =R, (#0'), o= [ €,

e 7M@) = R (10).0) = (0.0 + (0. 7)

Iy

In order to obtain the weak form of Problem 1.1.1 we proceed as follows. Testing the
first equation in (1.11) with some test function, integrating by parts, employing the
boundary conditions and adding the result for i = A, B we obtain the weak form of the
equilibrium equation:

Z b(nzvaz(t» - <tC<t)7nA - "7B>Fc = Z <l<t)7nl>7 (131>

i=B,A i=B,A

From the system (1.13) it follows that

G(C) i (mh—o") —x: (H) (W' —x') 20, V(r', ') € P, (1.32)
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1.1 Weak and penalty formulations

and the corresponding weak form is

/a(ci)—l (F o) dO — /X (H) (i — x)dQ > 0, V(i) € P (1.33)

Q? Qi
Then the weak formulation of Problem 1.1.1 reads:

Problem 1.1.2. Given time interval (O T), given friction coefficient yuy € [0, 1/2)
displacements a' - [0,T] — (H1/2(F§))) boundary traction t : [0,T] — (H (T ))
volume forces ' [0,T] — (H=Y(Q))?, free energy scalar functions (%, &) and their

decompositions V' (%, &") = (') + ¢™(&"), scalar yield function for elastoplasticity
(o', x*), initial values (u'(0),0°(0),x*(0)) = (0,0,0), contact boundary I'c: find

(u', 0%, X' te) : [0,T] — V() x S(Q°) x M(Q) x HV%(Ty), such that:

> bt o'(t) = (te(t),n* —n") = > (@) (1.34)

i=B,A i=B,A
a(a'(t), ™" — a'(t)) +c(x'(t), u' = X'(t)) = b(@'(t), 7" — a'(t) >0, (1.35)
/UN)\NdF > /aNuj\“/B dr, (1.36)
T'c I'c
/(UT)\T + pyon|A7|) dU > / (orup® + pron|uz?|) dr, (1.37)
Lo 1N¥e

for all (n,n?) € V(1) x Vo(QB) N {nAP < 0}, for all (79, u’) € P (), for all
Av € H2(Te), Ar € HY2(I'¢) i = B, A.

Note, the constraint (1.12) on tractions on the contact boundary is posed in a weak
form (1.36), (1.37). The equation (1.34) and the inequality (1.35) are the weak forms
of the equilibrium equation and the plastic constitutive conditions in (1.11) and (1.13)
respectively, see [29]. H'/2(I'¢) is the subspace of the space HY2(I'¢) consisting of all
negative valued functions.

Next, we consider the contact conditions in more detail following [51]. For every point
xB(¢P,t) € T8 which is in contact with the master we can find the orthogonal projection
to the master-side (¢4, t) € T'4. The bar over ¢ denotes that the value of the parameter
¢# is subjected to (Z. We define a penetration function gy on the slave surface I'Z by

o ] = (o# - 22) %, it [ - 2] -4 50,
an(¢P 1) =

0, if [z*—axf] -nt<o0.
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1 Elastoplastic contact problems. Small deformations

where (4((?,t) is the minimiser of the distance function
(¢ CP ) = HCBA(CA,t) - af:B(CB,t)H — MIN over ¢4

for a given slave point &”(¢?,t). The value (4(¢?,t) can be obtained by the necessary
condition

9
acA

A AN _ B
AP0 = ey whe(c) =0

With the tangent vector a? := aaag_j we have

() — "

oA —am] * (=0

T (¢P)—xB ()
|22 (cB)—5 (B ||
tangential vector of the surface is the normal to the surface.

such that

= n(¢P), since the unit vector which is orthogonal to the

Let us define the relative tangential displacement g, of some slave point £ at some
time step with respect to the previous one by

g1 = (CTA - 564) é'Av

where (¢! is the previous natural parameter of the projected material point & and (4
is the natural parameter of the current projection.

The contact stress is determined by the penetration function and the relative displace-
ments. If gy(x?) = 0, the slave point and the corresponding projection on the master
side (if it exists) are not in contact. Then normal and tangential stresses are defined by
outer pressure, i.e. Neumann data. For example

on =0, or=0. (1.38)

In case of penetration ga(z?) > 0 the normal stress is postulated to be

1
ON = —— 8N
N

Here i is the normal stiffness or penalty factor (see Peric and Owen [40]).

We assume a linear elastic constitutive equation for the tangential contact stress com-

ponent
1 e : & 4
tr = —;g% with g7 = g7 — 87,

where é is the tangential contact stiffness, g; - tangential slip component, g5 - elastic
part (microdisplacement describing the stick behavior), g5 - plastic part (frictional slip).
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1.1 Weak and penalty formulations

The plastic tangential slip g% is governed by a constitutive evolution. Consider an elastic
domain P¢ := {tc € R? ¢c(tc) < 0} in the space of the contact tangential stress. Here

bc = |lor| + pron

is the plastic slip criterion function for a given contact pressure |os| with friction coef-
ficient py. Define

0, if || g7l < —prow,

gr = foN :
4 (1 + - ) 87 if || g7l > —pron

It yields that
gr=0, = tcePc macro-stick ,
gh #0, = tc € OPc macro-slip .

The evaluation of that projection is especially simple for polygonal boundaries.

Next we describe the plasticity model, which we have implemented in our numerical
experiments, namely the classical Jy flow theory with isotropic/kinematic hardening
[43, 2.3.2] which has two internal plastic variables. « is the equivalent plastic strain
which represents isotropic hardening of the von Mises yield surface. The deviatoric
tensor B stands for the center of the von Mises yield surface. We use the J,-plasticity
model with the following yield condition, flow rule and hardening law.

n = dev[o tr[3] := 0,
Ol B) = ||"7|| - \f K(a
n =
HnH

P = n, (1.39)
. 2 ,
B = 7§H ()
&= /2

=7 37

where ¢, is the yield function, K («), H(«) are isotropic and kinematic hardening mod-
ulus respectively given by

H'(e) = (1-60)H,
K(a) = oy +0Ha, 0 € [0,1] } (1.40)

where oy, H > 0 are material constants. oy is the yield stress. The von Mises yield
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1 Elastoplastic contact problems. Small deformations

surface is given by the yield condition

Qﬁm(d’, «, B) S 0

and the loading/unloading complimentary Kuhn-Tucker conditions are

Y > 07 ¢pl(07aaﬁ) < 07 ’7@5”(0’,@,,6) =0.

It is easy to check [43, 2.2.18], that the consistency parameter « is given by

N = {n:e}s
- K'4+H'"
1+—;;

Here {u}, := max{0, u} is the positive part function. Finally, we define the elastoplastic
tangent moduli C? by the following relations

cd=C:(6—€P)=C:¢,

1
C:m1®1+2,u(l—§1®1).

We obtain
. 1 nen
CPZH1®1+2M<I—§1®1—W>7
3p
where

1 =96 Rej, I=1/2(86j + dudjr)e; ® e; @ e D €

are second order fourth order identity tensors respectively and x := A+ 2u/3 is the bulk
modulus. Note that

C: e = A\ltr[e| + 2ue = k1l tr[e] + 2udevie]. (1.41)

Now we introduce a regularized version Problem 1.1.3 of Problem 1.1.2 (obtained by
the penalty method) as well as some discretizations in time. For the regularized version
(1.42)-(1.44) we will provide three discretization procedures in space , i.e. FEM-FEM,
BEM-BEM, and FEM-BEM in sections 1.2.1, 1.2.2, 1.2.3 respectively, as well as solution
algorithms. These solution algorithms are of predictor-corrector type, which is discussed
below in abstract form. The idea of regularization is to replace the inequalities (1.36),
(1.37) by equations. For this we apply the penalty method (see [50, 35]) and regularize
the contact condition (1.12) with the smoothed one (1.44). By this we gain a simplified
problem without a Lagrange multiplier neither a convex set of shape functions which
lead to saddle point problems or variational inequalities. One has to mention that the
differential variational inequalities (1.13) we leave unchanged. Zarrabi provided in [53,
Section 5] a regularization method for the associated pastic flow in case of combined
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1.1 Weak and penalty formulations

linear isotropic-kinematic hardening.

With penalty parameters ez > 0, €5 > 0 we formulate a penalty regularization of
Problem 1.1.2 as follows:

Problem 1.1.3. Under the same assumptions as in Problem 1.1.2 find (ul, o', x!) :
0, 7] — Vp(Q) x S(Q) x M(2), such that

> b olt) = (b =) = Y (0).m'), (1.42)

i=B,A i=B,A

a((t), " — ac(t) + c(xe(t), u' — Xe(t) — b(u(t), 7" — oc(t)) = 0 (1.43)

for allm' € Vo(Q), and for all (', u') € P(V), i = B, A. (1.42), (1.43) are obtained
from (1.34), (1.35) by substituting the implicit formula for the traction t.. on the contact
boundary I'c

1 1.
teo(t) ==~ (ulf )" n — g (ur), (1.44)

The quantity g5 is obtained via g, = uZ4e? as follows. With F := ,uf$|uf/‘ — g| we

Po_iflll _ : p_ F
set g7 = 0if || -g7[| < F and take g7 = g7. Otherwise we set g7 = (1 — W) gr
yielding g7 = g — g7
Using the definition of the contact traction 1.208 the definition of its normal o, and
tangential o7 components 1.12 we obtain from 1.44 the explicit formulas for oy, o7

1

o = ——(uff — g (1.45)
N
1

orT = ——g%(uT), (146)
€T

or = aT-eA. (147)

Next, we give a time discretization of Problem 1.1.3. Let Za; be a partition of the time
interval (0, 7)) with maximum time step At, Ta; := {(tn_1,n)}r_,, Where 0 =ty < t; <

<ty <ty =T, At, = t, — t,_1. For simplicity we will consider a uniform
partition of (0,7") with a time step At, i.e. t, —t,_1 = At. The time discretization of

Problem 1.1.3 reads
Problem 1.1.4. Given friction coeﬁicient pr € 10,1/2), displacements {’&;}g . C

(Hl/z(Fé))) boundary traction {t,}\_, C (H‘1/2(F§V))2, volume forces {f. N, C
(H‘l(l“’]'v)) , free energy scalar functwns and scalar yield function as in Problem 1.1.3’,
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1 Elastoplastic contact problems. Small deformations

initial values (uh, o, x4) =
Vp(Q) x S(QY) x M(Q), such that

Yool = (tonm® =) = Y (L), (1.48)

i=B,A i=B,A

forallm® € Vo(Q), and for all (77, u*) € P(), i = B, A, where A(e),, := (¢),—(),_1.
From now and later on we will use the convention u := (u”, u”), the notation applies
to other variables as well. For convenience we will omit the subscript €. The subscript n
denotes the value at time step t,, and the superscript & in brackets *) denotes the value

at the k-th iteration step. Having in mind that the stress is an implicit function of the
displacement, o' = o'(e(u?)), we write formally

oi(t) = o'(e(ui(t)), e?(t)) ~ o (e(u!(t — AL))) + D : e(ui(t) — wi(t — At)).  (1.50)

Remark 1.1.2. o'(e(u'(t))) This function is globally multi-valued, but locally we can
assume it to be a one-to-one mapping.

Oot
B (e(

For our simulation we will take D* :=
predictor [5, 29].
A Predictor-Corrector Solution Procedure for Problem 1.1.4 is:

u'(t—At))), this choice is known as tangent

First we perform the predictor step: Find u e v

ot _
[ B e — w1 s e(md - <a—fj<u;’ﬂ>—ug‘f 1>>,nA—nB>
el

0
b o)+ (2t ) () (1.51)

Next we perform the corrector step: Find (O’n ), xn ) e P:
a(Ae®" 7 — o, )+ c(AXPT - x, ) = b(AuY T — o, 1) >0. (1.52)

with

o™ = g, +DWe(u® —u,_,), (1.53)
AoPtr = ghtr _ gk) (1.54)
X0 = X (1.55)

28
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1.1 Weak and penalty formulations

Ax Wt = Wyt 5 (), (1.56)

The abstract predictor-corrector scheme given here is described in detail whithin a Solu-
tion procedure (incremental loading) for FEM/FEM discretizations in Section 1.2.1. The
predictor step refers to steps (1.a.i)-(1.a.iv) there in the solution procedure mentioned
above, whereas the corrector step is performed at step (1.a.v). The corrector step does
not depend on the discretization method and is the same for FEM/FEM, BEM/BEM
and FEM/BEM approaches.
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1 Elastoplastic contact problems. Small deformations

1.2 Discretization and solution procedure (incremental
loading)

1.2.1 FEM/FEM

We discretize the weak formulation (1.48),(1.49) in space by defining a partition T¢ of
the domain Qi = B, A into finite elements and choosing discrete spaces

"W = {nh € [H' Q)| Ve e T, : myle€ Ri(e), Mplenrs, = 0} ;

where R'(e) denotes linear functions P!(e) in case of a triangular mesh element e or
bilinear functions Q'(e) in case of a quadrilateral mesh e. For brevity we define

W=V x "V,
Vo ="V x "V

The discretized version of (1.42) is given by the following procedure (note that (1.43) is

incorporated by return mapping): Find uj, = (u?,uj!) € "WV p:

F"™(uy,,my,) = F'(n),) vn, € "V, (1.57)
where
Fim(“’h”h) = F’z?;f(o-ivticvnh> = Z (U € nh <t ’n2>1“c’
i=B,A
P = 3 (F i+ (Enk)
=B,A N
o, = U( W, to=to(uy).

Furthermore, the functional F(u,n) depends on u whose nonlinear behavior is de-
scribed by the contact constitutive equations and the constitutive equations for plasticity
formulated in Section 1.2 and liearized in Section 1.3. We treat the loading process and
a consequent application of loading increments (Af )., (A ), (Ad'),:

||
&h>

()
Y
oN

'(t),
(tn)a
Z<tn)7

7

—~
H->
||
H->

[~
||
§>

(
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1.2 Discretization and solution procedure (incremental loading)

which define the discrete external load

Fm) = Y (P o+ (') |

i=B,A N

in the pseudo-time stepping process. Define the increment-dependent functional spaces

V= {m € [H ()

hle € RYe), Mlerry, = (@)}

k ._ /B A
Vpn:="Vp, X hVD,n.

Let (up)o be the initial displacement state of the body, (sp)(()o), a(()o), ((]0)' the initial inter-

nal variables, (g’%)(()o) initial tangential macro-displacement and let (f)o, (), (&')o be

the initial load. Usually, the displacement-free state (u)o = 0 as well as homogeneous

internal variables (Ep)(()o) =0, a(()o) =0, B(()O) =0, (gz})g)) = 0 are chosen as initial data.

We use the backward Euler scheme for both contact and plasticity. Thus the problem
can be reformulated as follows:

Find (Auy), € " p,, and therefore the new displacement state (wp), = (up)n_1 +
(Aup)y, stress (o), = o((u},),), contact traction (t_)n = tc((u},)n) such that

Fygy ((0)n, (B )nimy) = Fi(my) - my, €'V, (1.58)

where the contact traction is given by (1.44) and the plastic conditions are enforced by
the return maping algorithm described in boxes 1.3.1, 1.3.2.

To solve (1.58) we use the Newton’s method. Let U be the coefficients of the expansion

ne
of uy, in basis in the discrete space "V p, i.e. u, = > U4p?. Define
i=1

F™(U,my) o= F™ (un,my,).
Therefore (1.58) becomes
F"(Uy,my) = () ¥my, € "V
We perform the linearization of F"(U,,n,). Choose the starting value
UuY .=U,_,

and introduce the Newton’s increment AU&HI) to proceed to the next iterate

Ut = Ul + AUFY, k=0,1,2...

n
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1 Elastoplastic contact problems. Small deformations

The Taylor’s expansion provides

OFI™(UY m,)
aU (k+1)

AU+,

n

FMU$t m,) = FMUP ) +

Now we are on the position to state the algebraic problem. For brevity we define the
matrix 2 and the right hand side vector b by

_ 8F>Zm(U£zk)a "7h)

ouh)
b:=F"(n,) — F"(U Y my),  j=1,...,N

Y

Then the algebraic problem is: Find ¢ = AU (kD).

Ar = b.

The whole algorithm can now be formulated as follows.

Solution procedure
Set initial displacement U(()O), initial internal variables (sp)(()o), a((]o)’ B(()O), initial tangential

macro-displacement (gz})éo) and initial loads (f)o, (2)o, (@')o

1. forn=0,1,2,...

a) for k=0,1,2,...
i. compute the load vector
b= Fi(m,) — FM(U Y )
ii. if ||b||;, := Vb -b < TOL goto 2
8ij(ngk)a M)
Uy

iv. find the next displacement increment p = AUST by solving

iii. compute the matrix A :=

Y

Ar = b.
v. update the displacement field
U1(1k+1) — Ug@) + AUng—i_l)

and the internal variables (sp)(kH) oy, BU+, (gT) 1) They should
satisfy constitutive contact and plastic conditions. We use the return
mapping procedure for both contact and plastification. The details will
be described below.
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1.2 Discretization and solution procedure (incremental loading)

b) set k =k + 1, goto (a)
2. initialize the next pseudo-time step

US]—I)—I = ngk)-

3. apply the next load increment

—~
>
<
S~—
3
_l’_
—
I
>
<.
~—~
~
3
+
_
S~—

if the total load is achieved exit, if not, goto 1.

We discretize both bodies using triangles or quadrilaterals. In general, both meshes do
not match on the contact boundary. We also assume, that there is no change of the
boundary condition type along one edge. We take continuous piecewise linear approxi-
mation of the displacement. Let us consider the structure of the linear system 2 = b.
After linearization of contact and plasticity terms described below we obtain

! I \T
Ang (lezg) 0 0 B
By, Cps+CPP P4 0 508
c c
0 _(CAB CAA 4 Clljlé (BII—)‘ZA)T F?A

be:ct _ bint + Fg

where the finite element matrix

AP (B")fs 0 0
0 l
o FEM Bly Clp 0 0
' 0 0 C’{i’% (B")fs
0
0 0 By A

has a band structure and has no coupling terms between QF and Q4. The index ?
means that the matrix changes due to the plastic terms. For each body (i = B, A) the
blocks Agli are generated by testing the test-functions which correspond to the degrees
of freedom in the interior of Q' and its Neumann boundary I'}; against themselves. The
blocks ijic correspond to the testing of test functions, defined on the contact boundary
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1 Elastoplastic contact problems. Small deformations

I'Z.. The blocks Bllilic are generated by testing of test-functions defined in the interior of (¢
and its Neumann boundary I}, against test-functions, defined on the contact boundary
I'L.

The term b*' is constructed by the usual contributions of external volume forces and
prescribed tractions on the Neumann boundary part. The terms CBB, CB4, CAB, CA4,
b{?g, b?é describe coupling of the bodies along contact boundary. They are constructed
by the linearization of contact integrals. AFFM p™ describe internal behavior of the
bodies and reflect, for example, the plastic effects. The computation of these terms is
discussed below.

1.2.2 BEM/BEM

In order to obtain an integral operator formulation for the equilibrium equation (1.48)
of the elastoplastic contact problem Probem 1.1.4 we apply integration by parts and
use the Steklov-Poincaré operator (1.60), together with the Newton potential (1.61).
For deriving boundary integral formulation we need the following boundary and volume

operators:
Vep(r) = /Fgo(y)g(x, y)drl, — single layer potential,
Ku(x) := A u(y)(T,G(z,y))" dly, — double layer potential,
Key(x) = 1T, /F p(x)G(z,y)dl, — adjoint double layer potential,
Wu(x) = -7, A u(y)7,G(x,y)dl'y, — hypersingular integral operator,
Nof(z) = g f(y)G(x,y)dl, — first Newton potential,
Nif(z) = T, | fly)G(z,y)dl, — second Newton potential,

where the traction operator 7 is given by

%g(as,y) = Uy(g(zv y))|f‘ snr.

Here 0, (-) means that y is treated as an independed variable. The fundamental solution
G(z,y) of the Lamé operator is

A+ 3u { L, Aﬂt(»”c—y)(u”c—y)T}

9@v) = oo V=o' T3k oo

(1.59)
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1.2 Discretization and solution procedure (incremental loading)

It is well-known [22] that V, K, K', W satisfy the following mapping properties

vV . HV*(I) — HY*D)
K : HY2I) — HY*D)
K' « H'T) — H'?
W . HY() — H?

Y

),

(
()

all of them are continuous, V is positive definite on H='/2(T") and W is positive semidef-
inite on H'/2(I"). Where H*(T") := [H*(I')]?>. Note that of course our approach can be
extended to 3D problems we only have to take the 3D free space Green’s function for the

Lame operator instead of its 2D version 1.59. The positive semidefinite Poincaré-Steklov
[14] operator is defined by

S:=W+ (K'+1/2V"Y(K +1/2) : H/*(T) - H V¥ (1.60)

and is a so-called Dirichlet-to-Neumann mapping. The volume potential N can be
defined in two ways [27]:

N:=V'Ny= (K +1/2)V"'Ny — N. (1.61)

We proceed as follows

= (C": e(u'),e(n'))qi + (div[C" : €], n")q
—([C: 7] -, — (F 1)

= (C': e(u'), e(n))os + (div[C': 7] — f', ')q
—([C": g7] - m,m')y,

= (Su', ")y + <N(div[(Ci e?] — fz),ni> .

Z’L
- <[CZ : eip] ‘N, 77i>2i
Vu' € Vi, ¥Yn'e Vi, i=DB,A.

Therefore the domain penalty formulation Problem 1.1.4 can now be rewritten in terms
of the boundary and volume integral operators S and N respectively: For given }'Z and
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1 Elastoplastic contact problems. Small deformations

ii find u' € HY? with u’

ri, = u satisfying

i:%:A ((Su',n')s + (N(div[C": €?]), ")) — ([C : €] - M, n")
| r b (1.62)
(et =) = 5 ((VF ) () ).

) N

V' € H'Y? with ' = 0 on I'}), where £ is determined by the corrector step (radial
return) as described below.

We discretize the weak formulation (1.62) by defining partitions 7, of the boundary
I'",i = B, A and choosing boundary element spaces

Vi = {m, € HY/(T)

Ve e T myle € Pe), mlery, = '}

= {m e HVA(TY)

Ve e Tl myle € PHe) mlery, = 0},
With the product spaces

Vi = VB VBV = V<V,

the discretized version of (1.62) is given by the Galerkin scheme:
Find wy, = (u?,u;') € "Wp, such that

S (Sl )i = (Feer 1 = 1o = —(N(diV[C : €7]), )5
i=B,A
(1.63)

+([C: €] ) + Z (NF' n)s + <'%Za77i>r3'v-
i=B,A

for all n' € Vi = {n,, € H'/*(TY) : my|c pw. lin,, 9y = 0}. Note that in 1.63 we
need the plastic strains e which are computed by the evaluating the displacement @’
in Q' via the Somigliana representation formula for € Q%

W) = [ Gy T, - [ TGy, + [ oew). (16

I‘i

with the traction operator 7,,, := o (y)-n(y). Here 07, is given in [12, §6.6], see Section
3.1.1 for more details. Note that the relation (1.64) must be applied iteratively at each
Newton step in the pseudo-time stepping procedure in (1.67).

Let us rewrite the formulation (1.63) as follows:
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1.2 Discretization and solution procedure (incremental loading)

Find w;, = (uf, ui) € "WE x W4 such that

F™ (wp,my) = F™ () — Pgler,my) Yy, € VE x WV (1.65)
with
Fint i i ioi
F (uhanh) = Z <Suh>nh>2i - <tC’nh>Fc>
i=B,A
Pal(ehmy) = > (N(div[C: &), mj)s: — ([C = ] - n' mj)ss,
i=B,A

—ext ~0 7 A7 7
F (nh) = Z <Nf >nh>2i + <t >nh>f‘§\,‘
i=B,A

The contact term in the functional Fmt(uh,nh) is nonlinear due to the constitutive
contact conditions. The functional Pg(e?,mn,) is nonlinear when plastic deformations
occur. The non-linear system (1.65) is solved by the following incremental loading
technique (pseudo-time stepping) using the incremental data, j =1, 2,..., N:

fo=f©) =0, f =f(t), i,
t, =1 (0) =0, i; —t'(t;), on I'y, (1.66)
ay=a'(0) =0, @) =a'(t), on I'%,

Pseudo-time stepping: For j = 1,2,..., N find (us); = ((uf);, (ujl);) € V5, x hvgj,
such that

—int - —=ext
F((un)jymy) = Py ((eh)om) + F (my) Yy, € V5 x Vg (1.67)
Now we solve (1.67) by Newton’s method using the linearization

—in —in . OF™ (wn)!* ™V, )
F™ ()} mp) = F ™ ((wn) ™ my) + ] = (Aw)?(168)
J

and setting the iterates

(un)® = ()" (Au)W k=12,

J J Jo
With the initial values (uh)EO) = (up)j_1, (sp)§0) = (eP);—1. Note that (up)o = 0,
(e?)p := 0. Here and in the following we use same letters for basis functions and
coefficient vectors and write

Newton’s method as: For k = 1,2, ..., and given (uh)§k_l), (sp)yg_l) find ¢ := (Auy)¥ €
VB x W4 with
Ar = b, (1.69)
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1 Elastoplastic contact problems. Small deformations

where . o)
OF ((un); 7, m4)

— k— —ext —int k—
b= Py () m) + F5 () = F " ((un) " ).

we apply a backward Euler method for contact and a forward Euler method for plasticity.

Note that at each Newton step we must compute u with an extended Somigliana’s
(k
J
additional suitable volume terms acting on (&P)

) and the corresponding boundary tractions) with

g-k_l). Next we compute €p(ay)" =
L(V(ap) 4 (@)™ in Q and apply radial return mapping [43] to obtain (Efl)gk) and go

to the next Newton step.

representation formula (using (wuy,)

Since we are interested in plasticity with isotropic and kinematic hardening [43] there
are also internal variables o and * which have to be initialized and updated at each
Newton step; same for the tangential macro-displacement gf. Thus (sp)g-kﬂ), oz§k+1),
ﬁ?(kﬂ) and (g’})g-kﬂ) should satisfy the constitutive contact and plasticity conditions
which are both enforced by the return-mapping procedure, for details see Section 1.3.

We use both boundaries I'* and I'? piecewise linear continuous functions for the dis-
placement and piecewise constant discontinuous functions for the traction. We needed
the discretization of the traction space for computing the discrete inverse of the single
layer potential V~!. We assume again, that both meshes do not fit each other on the
contact boundary. We also assume, that there are no changes of boundary conditions
type within one edge. The linear system 2Ar = b has the following form

Srarn Srs+CPP o —CBA 0 e |
AB AA T A -
0 _C C + Sl'\é Sl—\éi\]x% xl—\é
0 0 Srary Sty )\ iy
0
| b,
be:ct _ bmt + bET’ + AC
_bFA
c
0

Note that only the contact blocks CBB, CBA, CAB CA4 of the matrix are updated,
which corresponds to backward Euler scheme for contact and forward Euler scheme for
plasticity. The details connected with linearization of the contact terms can be found
below in section 1.3. With Sp the boundary element block for the Steklov operator is
denoted. For implementation issues see the Appendix.
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1.2 Discretization and solution procedure (incremental loading)

1.2.3 FEM/BEM

Based on the two previous sections, we can easily derive a FE-BE coupling method. In
the following we discuss briefly the main points. Without loss of generality we use BEM
discretization for the slave body and FEM discretization for the master body. With the
discrete spaces

h\}D = ”vf; X th, h\}o = ”v{? X hVSX,

the coupling formulation now will be: Find u, = (u?, ui) € "Wp:
F" (up,my) = Pu,(eh,m,) = F<(m,) ¥y, € Vo, (1.70)
where

Fint(uh’ nh) = (0-;“ 5("72»9"‘ + <S'u,l’ ni>2B _ Z <ticv "72>rc )
i=B,A

puh (5}27 77h> = <N(d1V[(CZ : Eﬁzp])v "7i>25 - <[(CZ : Eﬁzp] "N, 77i>23

Fe(my,) == <N§”Z,n">23 +(F 0+ Y <il,n2>ri ,
N

i=B,A

o= olu)), el i=elul),  to = to(u)).

We can use an incremental loading process analogously to above one together with
Newton method. Then we end up with a linear system 2y = b given by

Sg - Starg 0 0 g
Sl'\gi\g Srg ‘l‘ CBB —CBA O xgg
l l =
0 —C Mol BR)T || e
l
0
| b5,
bewt _ bmt + bET’ + Ac
_bI‘A
C
0

The meaning of the particular terms is the same as in the above linear systems describing
FEM/FEM and BEM/BEM approaches.
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1 Elastoplastic contact problems. Small deformations

1.3 Linearizations of contact and elastoplasticity

In the linearization (1.68) we proceed with the non-linear contact terms as follows. With
(1.44) we have for the contact term

/F te.(u) -n=Cx(u,n)+Cr(u,n)

with
1 BA +, BA 1 e BA
Cn(u,m)i=— [ (ux” —g) " dl',  Cr(u,m):=— [ g7(ur)ny” dl.
EN Jre €T Jre
The segment-to-segment contact description is used.
The linearization gives
- / (teC>£zk+1) ’ (nA - 77B> ar = - / <teC>£zk) ’ (77A - 77B> dr’
s ré
- / At~ (n* —n”)dl = _/ (teo)y - (m* = n”)dr
ré ré
—/ [Aoyn® - (n* —n®) + Aot - (0 —n?)] dr. (1.71)
ré

The values of oy and o7 are defined by (1.45) and (1.46). The first integrand is known
from the previous k' Newton iteration. It gives a contribution to the right hand side,
second and third integrand contribute to the matrix. The increments of normal o, and
tangential o7 parts of the traction t.o on the contact boundary I'¢ are

OCx ()Y m),) (k)

Aoy = L (Auy);”,
a(uh)‘gk 1) J

oCT ((u) ™Y m),) (k)
Aor = " (Auy);
a(uh)§k ) j

For the normal component of the traction we obtain

8CN(<uh)§‘k_1)7 ) w d (k—1) (k)
Auy))” = —C,((up); + a(Auy);,
8(’u,h)§-k_1) (Auy); T ((un); (Auy); ™, my) .
1 d (h-1) (*)
_ [ 4 | Auy YO1— o)t yBA dr
o . da([(uhn)] + a(Auy,); "] — 9) a:onN d

40



1.3 Linearizations of contact and elastoplasticity

with (note (uy, ) denotes the normal component of uy,)

)+ (b, )]~ )

] Au)P i () - g > 0,
wo |0 if [(up,)" V] —g <0

For the tangential contact term we use the linearization

d _
@C:r((uh)f Yy Q(Auh)§k)a n7)

a=0

( 1 . _ € _ .
/ —[(Aun) ) [, ] dT, i er ((un) )] < s ——gnr((uny ) Y) (stick),
re €7 EN

B /F /:—; sign (g (uny ) Ner ((wn) N[ Ay )] [my,] dl,

(k—1)>

if g7 ((uny); | > Mf:_;g/\f((uh,\f)g»k_l)) (slip).

\

This completes the linearization of the matrix terms in the Newton algorithm which
converges if the load increments are chosen sufficiently small. This follows by application
of the arguments of Blaheta in [5], where a pure finite element method is used.

Next, we consider the normal contact term in 1.71. Omitting indexes which represent
iteration numbers we rewrite the normal contact term in (1.71) as

1
- /B Aoyn®-(n' —n°)dl = — | Agyn’-(n" -n°)dl
FC C
1
=L [ ((awt - AuB)n )0 - (gt — nP)) dr
€N JrB
1
=L (aut - AuP) - (nh @ nd) - (- Py dr
€N JrB
1
=— [ Aut-(n*@n?) ptdl
€N JTB
1
+ — Au®f - (n? @n?) - nfdr
N JrE
1
- Au? - (nt @n?) P dl
€N JTB
1
- Au® - (n? @n?) ntdl.
€N JTB

All the integrals can be rewritten as a sum over all slave segments. For example, for the
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1 Elastoplastic contact problems. Small deformations

fourth integral there holds

1
— Au®P - (n? @ nt) - ntdl
6/\/' B
1
:Z— Au®P - (n? @ n?t) - ntdl
rcre N
=YY o st ety s
Icrg JCFA

where I(J) = {a® € I : *(¢) = proj(x?) € J} and i, j = B, A.

The functions Au’ on I and 1’ on J are approximated by linear splines, and therefore
they can be represented as

B
Auf = uﬁl¢§1 + uﬁz‘bﬁz = ui ¢y,

nt = 'Uf;‘ﬂ’ +'UJ2(Z)J2_ uJ¢J

The components of the matrix C%4, corresponding to some segment I on the slave side
and J on the master side, given by the integral

1

— | ¢7-(n"@n') $jdl.
EN JI())

This integral is computed via numerical quadrature as

LY 66" () @ () - @e)Trw,e,

xBEI(J)

= proj(xB),

where J; is the Jacobian of transformation from the slave segment I to the reference
segment [—1,1], and w,s is a weight of the Gaul point 2”. The components of other
contact matrixes CBB,CA8 C44 are computed similarly. For C¥ we have

i 2 Y ) () ©n(et)) S Trwe, = B.A
:(:BEI(J
A= proj(«?).

For computing of tangential contact integral in 1.71

—/ Aar - (i —n®)ds
re
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1.3 Linearizations of contact and elastoplasticity

we have to distinguish between stick state and slide state,

—=Ags = —((Au” — Aut) - et)e! macro-stick,
Ao, = .
—,ufiAgNHg—Z” = —py-sign(gs - e?)((Au” — Aut) - n?)e?  macro-slip.
g7
Defining
1 1 . (e A)
— = py—sign(gs - e”),
E%é Ky x gn{gr

analogously to the normal contact term, we obtain the following contributions to the
contact matrices:
macro-stick:

CZJ : é ZxBe[(J) ¢($2) ' (e(xA) ® e(zA)) ' ¢)(xj)\7[ Wy B, Za] = Ba A>
24 = proj(a®),

macro-slip:

C: LT ey $la) - (n(eh) @ () - ¢ Trws, = BLA
x4 = proj(aP).

Now, in (1.71) only one term is left - the contribution to the right hand side. We have

/ (o)™ - (nP —nt)dl = / (te)™ - P ds — / (te)® - pAdr
I r

B B B
C FC C

— )W B ds — o) phar,
Z/I(t)nn ZZ/I(J>(t> n

IcTg ICTE JcTé

That leads to the following elementary contributions to the vector of right hand side

/(tc)glk) o7 ds, 2 /1(1) (tc)\) - 7 dr.

! Icrg

Calculation of both terms can be done using numerical quadrature.

o S ) @F) - )T ws,

ICTE zBel

o Y )W P ) Trw,,

IcrB «Bel(J)

= proj(2?).

After every Newton iteration within the computation of the contact boundary tractions
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1 Elastoplastic contact problems. Small deformations

the return mapping procedure is executed. It goes back to the fact that due to the
Coulomb friction law in every point of the contact surfaces for the norm of tangential
traction there holds

lorll < —ppon.

Sliding occurs when |lo7|| = —pron holds, i.e. the material point has non-zero macro-
displacement gP # 0.

The return mapping procedure is performed in each Gau8 point &Z(¢?) of the slave
side. For the current iteration the parameter of the projection (5'(¢?) of £(¢?) to the
master side is known from the previous iteration. If such a projection does not exist or
the point ” was not in contact with the master side, the tangential traction is set to
zero. We detect the current projection £4(¢P) = £4(¢4(¢P)) of Z(¢P), by enforcing

[2%(¢%) = 2" (¢")] -a®(¢h) =0,

where a denotes the tangential vector of the corresponding master segment. We denote
by n4 its outward normal vector. The penetration function is computed by

en(¢”) = [(¢") — = (¢")] - n'(¢)

If the point &” has no projection on the master side or the penetration function gy is
negative (i.e. the bodies are disjoint in %), then the return mapping procedure is not
executed. The boundary tractions are set to zero, i.e.

oy =0, or =0.

Otherwise, set the normal pressure

1
ON = —— 8N
N

The value of the tangential traction is defined by the frictional yield function
pclon,o1) = llor|| + pron.
The total tangential displacement and the trial tangential tractions are computed as
gr=(¢" - 564) a’, U%{ial = __TgT'

Now, the return mapping consists in constructing the physical solution by checking the

44



1.3 Linearizations of contact and elastoplasticity

sign of the yield function:

¢C(O'/\/,o'%£ial) <0 = o7 = o.jzzgial’

o.trlal

ooy, o) >0 = or= —,ufa/\/’w;Tln.

If the yield condition is not satisfied, non-zero tangential macro-displacement g% occurs,
and the tangential traction is given by

1

or=——(gr—g7), gr#0.
er

Next we linearize the elastoplasticity term. Since we use the backward Euler method
for the plasticity in case of FE discretization, the energy bilinear form is nonlinear. We
restrict our attention to the case where one of the bodies has FE discretization and omit
upper indexes "B" and "A" marking the master or the slave body.

Let us consider the linearization of the energy bilinear form closer. Using the Taylor
expansion we get

(a(UL™),e(ny)) = (0(UF), e(n,)) + aULSf)(O'(US“)), e(n,,))AUEHD,

The first summand contribute to the right hand side and the second one contributes to
the matrix of the linear system as explained in Section 1.2.1. Furthermore there holds

oo (UP 0
aij(k) )AU&Z@—H) — WC . (E(ng)) _ Ep(ng)))Angﬂ) (1‘72)

= (CP)F+D) . g(AUKHD), (1.73)

We derive the explicit expression for (Cep)g’““) below see Box 1.3.1 and 1.3.2.

Discretization of the yield condition, flow rule and hardening law (1.39) with Ay :=
Vi1 At provides

B = devo U - I, Bl =,
((bpl) (k+1) _ Hﬁ(kH \/7K (k—l—l
pk+1) 771(1
)
(€M) = (")) + Ayn{HY, (1.74)

AU+ — gk 4 \/gAHék+l)n£Lk+l)7
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1 Elastoplastic contact problems. Small deformations

Oé1(1k+1) _ agk) +Av\/§,

AHFY = H(ak+D) — H(a).

n

where

Isotropic and kinematic hardening modules K(«), H(«) are defined by (1.40). The
discrete version loading/unloading complementary Kuhn-Tucker conditions is

Ay>0, (g <0, Ay(gn)iTY =0. (1.75)

In our numerical experiments we have implemented algorithms corresponding to the
boxes below (see also [43]).

Box 1.3.1. Consistency Condition. Determination of A~y (see [43])

1. Initialize.

Ay = 0,
0
O[T(%i)-l
2. Iterate.
DO UNTIL : |g(Ay")| < TOL,
k—k+1

2.1. Compute iterate Ay*+1)

2 ria

g™ = —\/;K<a,&’izl>+||sz+f||
2

- (%Av(’“’ + \ﬁ (Hal) - H(ag’”)))
3
H (k) K' (k)

34
Aryk)
Dg(A~F)

2.2. Update equivalent plastic strain

2
agirll) = o, + \/;A,y(k—i-l)
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Box 1.3.2. Radial Return Algorithm

1.3 Linearizations of contact and elastoplasticity

1. Compute trial elastic stress.

1
€ni1 Ent1 — g(tr[5n+1])1
st = 2p(en —eb)
il ial
& = S = Bun

Check yield condition

ria rai 2
ot = Nt = 21 (o)
IF ¢rial < 0 THEN:

Set (0)ns+1:= (0)ri@ & EXIT

ENDIF.
3. Compute n, 1 and find Ay from BOX 1.53.1. Set
3
Npt1 rail ||’
1€
2
Ant1 oy, + \/jA’y
3
4.

Update back stress, plastic strain and stress

2
ﬁn—i—l /Bn + \/;[H<Oén+l) - H(an)]nn-i-la
efz-i—l = efz + A’}/nn-i-l,
Ontl

ktrlen )1+ s — 2uAyn, .

Compute consistent elastoplastic tangent moduli

1 _
Cn-i-l k1®1+ 2/“9714-1[1 - 51 ® 1] - 2,U19n+1nn+1 @ Ny,
2uAy

&
Iost ! (1= 1)
ntl T T TR Hngy |\ Undl)-
L+ == L

7911—1—1

... Nonlinear Isotropic/Kinematic Hardening
(see [43])
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1 Elastoplastic contact problems. Small deformations

This representation used in (1.72) generates the linear system matrix contribution cor-
responding to the plastic behavior.

1.4 Contact functional investigation

Recall the definition of the yield contact function (¢t := (opr, 07))

Figure 1.1: Admissible region of trac- Figure 1.2: Elastic and plastic regions
tion of penetration

¢c(t) = |lor| + pron, ¢c:t—R. (1.76)

We will use an equivalent and more convenient representation of a traction ¢t and a gap g
in case of two dimensions. The normal part of both vectors in 2D and 3D is represented
by a scalar, whereas in 2D a tangential part one can also define by a scalar. Let 7 be a
unit tangent vector to the boundary I'4, then we define o7 := o7 - T and g7 := g, - T.

The admissible set of tractions ¢ is defined as (see Fig. 1.1)

Sc = {t € R?|¢c(t) <0} . (1.77)

Se(T) == {t e HY(0,T; (Hl/z(l“))z)’¢c(t(t,m)) <0, foraa. (t,x)c[0,T] r} .
(1.78)
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1.4 Contact functional investigation

In addition we define following sets:

Se. = {teR*|pc(t) <0}, (1.79)
SEo= {t e R*gc(t) > 0}, (1.80)
SF = SLUSE, (1.81)
St = {teR’|pc(t) =0o0r (|or] =0, ¢c(t) >0)}, (1.82)
Se() = {t e H'(0,T; (HY2(1))*)|¢c(t(t, z)) < 0, for aa. (t,a) € [0,T] x r}
SP(T) = {t € H'(0,T; (Hl/z(l“))2)‘¢c(t(t,a:)) >0, fora.a. (t,z) € [0,7T] x r}
i o 1 C(171/2 2 oF 2.4, x Po(t(t,x)) =
SL(T) = {teH (0,75 (H'*(I))")| for a.a.: (t,x) € [0,T] x T { (llorl = 0. do(t) >0)

This means that a norm of a tangential part of a traction is bounded from above by a
nonnegative normal part multiplied with a friction coefficient yi;.

Gap/ Penetration

g(t, () == XN (CP) — XB(¢P) +ut(X(CE) 1) —uB(t,¢P). (1.83)

Normal gap/penetration
en(t,¢") = g(t,¢") - n’. (1.84)

Tangential gap/penetration

gr(t.¢%) == g(t,¢") — gn(t, (")’ (1.85)

If gor > 0 then we use term gap in equations (1.83)-(1.85), in other case we are talking
about penetration.

Signorini contact with Coulomb friction (see Laursen [35])

gnv <0,

if gar =0, then opn < 0 else on =0, on T (1.86)
if pc(t) <0, then g+ =0,
if 9c(t) =0, then IX > 0: g = —Ao7 |

Regularization of contact conditions
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1 Elastoplastic contact problems. Small deformations

Normal traction. Using penalty parameter ey > 0

ox(t,CP) = —ig,w, ¢B),

where

gn(t,¢P), if gu(t,¢P) >0,

gl (t,¢P) =
0, if gar(t,¢P) <0,

gh(t, ¢P) = =g (t, ) + an(t, ¢P),

g (t, ") = gar(t. ¢P).

Flow rule for normal term

B) a¢c (t) '

g =(t,¢

Tangential traction. Using penalty parameter ez > 0

. By._ L[, B . s, or(t, (")
or(t,(7) = o (gT(t>C ) — (. ¢ )m
such that
pc(t) < 0,
Y, ¢%) =0,
§(ECP)oc(t) = 0.
Definition of plastic tangential gap
0 (1 CBY (g By O CD)
gT(t7g ) . 7(t7g >||0'T(t, CB)H,

g%’(tv gB) = gT(tv CB) - gl’;'(tv CB>

(1.87)

(1.88)

(1.89)

(1.90)

(1.91)

(1.92)

(1.93)

(1.94)

(1.95)

If we now consider g := (gy,g7) and t := (opr, o7), then we can think about g as strain

and about t as stress in the associative von Mises elastoplasticy theory with the yield

function ¢¢(t). The constitutive law for this model is gathered by following conditions
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1.4 Contact functional investigation

(1.96)-(1.99)

decomposition of stain

g=g" +g (1.96)
stress-strain relationship
e e 1 e 1 e \T
t = —Dg°, where Dg® := (—gji,, —8%)", (1.97)
EN €T
yield condition
pc(t) <0, (1.98)
flow rule for plastic strain rate
. . 0pc(t
g’ =(t, CB)%~ (1.99)

where D is the analog of the Hooke’s tensor in the theory of linear elasticity and has the
same major properties: positive definiteness and symmetry, while

1
— 0
D= 63/ 1 |- (1.100)
€T

The contact return mapping projection, for given traction t(¢,(”) maps the increment
of the interpenetration Ag(t, At, (?) := g(t + At, (?) — g(t,¢?) to the increment of the
contact traction A#(t, At,(B) := t(t + At,(B) — t(t,¢P). For a fixed traction vector
t(t,(P) we consider the return mapping operator T'¢ : Ag +— At defined by

—DAg(t, At, (),
if ¢C(t(t7 CB) - ]D)Ag(ta Ata CB)) < Oa
To(Ag(t, At,(P)) = (1.101)
_DAg(ta Ata CB) + ’}/R(ta Ata CB)'ﬁ’(ta CB) )
if ¢C(t(ta CB) - DAg(ta Ata CB)) > O>

where
D2%c (“fi’ L sign(or(t, (%) — 2 Agr(t, At, CB)))
n(t, At,(P) = — Daffc — z — 1T (1.102)
I WH My + z
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1 Elastoplastic contact problems. Small deformations

The vector m is a normal vector to the yield surface ¢¢c(g) := ¢c(t — Dg) = 0 at a
boundary point ¢t — Dg (see Fig. 1.2).

Remark 1.4.1. For convenience we do not explicitly stress the dependence of the return
mapping operator T'¢ on the value of the boundary traction ¢, since the investigation
below is carried out for a fixed t. But for the investigation of the solution procedure or
for the numerical implementation one has to take this relation into account.

Theorem 1.4.1. For given fized t € Sc and Vg € R? there holds

1)ift —Dg eS¢, then

T has the Frechet derivative T (g)n := lim Tc(g+97z)—Tc(g)

6—0
—Dn, t —Dg € S&,
T.(g)n = ! NN (+-u3) ° 5 (1.103)
—]D'I’] + ﬁn, t— ]Dg S ng
e entf

2) if t —Dg € SL(t, (P) U{t] |lor|| # 0} there exists only one side derivative

. To(g+0n)—Tc(g
T (g.)n = i 0801 = Tole) (1.104)
( nN(a+ng)
—]D'f] + ﬁnu ¢C(t<t7 CB) - ]D)g) = 07 ||0-7- - ig'f“ % 07
€T €T
nn > 0,
T/C(g+)77 =
~Dn, ¢o(t(t,¢P) —Dg) =0, |lor — —gr| #0,
\ nn < 0.

Proof. We start with proving the first statement of the theorem. That will be done in
two steps (1.e) and (1.p), that refers to the pure elastic and the pure plastic increment
g respectively. In (1.e) we prove the first statement in (1.103) and in (1.p) the second.

l.e) Let t — Dg € S&, i.e. we have a pure elastic reversible increment g. Then for
sufficiently small § € R and for each arbitrary but fix n € R? we have t—D(g+0n) € S¢.
Using the definition (1.101) of T'¢ we calculate the Frechet derivative of T at g in the
direction 1 as follows

To(g+ 60n) —Te(g) —D(g + 6n) + D(g)

/ L . .
Telen = iy g o= 7
—0D
_ ?ﬂ%Tn = —Dn. (1.105)
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1.4 Contact functional investigation

That proves the first assertion in (1.103).

In order to prove the second statemet in (1.103) we consider now the case of a pure
plastic increment Dg;:
1.p) t — Dg € SZ, then from (1.101) we conclude

Tc(g) = —Dg + g0,

where

o ope (. Esien(or(t.") - Ler)
O i — . (1.106)
|| WH ,uf% + Z

Recall that juf, €y, €7 - are positive constants, o7 (t,(?) — igy - does not change the
sign for the fixed value o7 (t,(?) and sufficiently small g7, moreover, it has the same
sign as o7 (t,(?). The vxz(g) has to be found from

¢c(t —Dg + vgn) =0, (1.107)

which corresponds to ¢c(t—Dg). We are looking for the derivative of yg with respect to
g. Since we do not have an explicit formula for v we use the implicit definition (1.107)
of this function. For sufficiently small § € R the equation 1.107 implies for all € R*:

¢c(t —D(g +6n) +vr(g + 0n)n) =0, (1.108)

doc ¢c (t —D(g +0n) + vr(g + In)n) — ¢c (t — D(g) + r(g)n)

=li (1.1
o |,_, oo 0 (1.109)
From (1.107), (1.108) and (1.108) we get
doc
— = 1.11
do {,_, 0 (1.110)

or by the direct evaluation of the Frechet derivative in (1.109)

1

) 1 .
lim ~ {IUT — —(gr +0n7) +r(g + On)nr|
6—0 0 €T

doc
dé

6=0

1 .
+ (fw - a(é’w + 0nn) + vr(g + 977)71/\/)
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1 Elastoplastic contact problems. Small deformations

1 ) 1 R
— \UT — —8gr + ’VR(g)nﬂ — Uy (UN — — 8N T 'YR(g)nN) }
€T N
1 . 1 1 . R
= lim — ¢sign(or — —g7)(—0—n7 +vr(g + 0N)nr — Yr(8)NT)
0—0 0 €T €T

1 R .
+ o (—eaw (e + Bn)iy — vR(g)nN) }

‘ | | ) | )
= sign (UT - ;gT) (—;777 + 73{”7) — [if (aﬁ/\/ - %zn/\/) = 0(1.111)

since

) 1 R . 1 .
sign | oy — ;(gT +0nr) +yr(g+0n)ng | = sign|or — ;gf[ +vr(g)NT

1
= sign <O’T — e_gT) .
T

In (1.111) the derivative 7} depends on g and acts on n, i.e. v, = Yx(g)(n). Inserting
the definition of n (1.106) into (1.111) and solving for v,(g)(n) we obtain

o () e (sienor - end )ur [
Yr = 5 - + =
P ata
€T EN
A S v + A S n 2
S IV & T &nTIT pyoo 1
. ez
L4 f N T

€T EN
- 2
n-n o 1

T <€T+€T) (1.112)
ata V7

Hence,
B 1
oy

2
!

15+ =)
wy +

z
Ly (1.113)

Te(g)(m) = —Dn +vx(g)(n)n = —Dn + ———5——
EN €T

that proves the second assertion in (1.103). Thus, the first statement of the theorem is
totally proved. Let us proceed to the second one.

2) Let t — Dg € S,

2.1) If pc(t —Dg) =0, |lor — igTH # 0 then we distinguish two cases:

e If nm < 0, then

there exists ¢y such that V0 : 0 < 6 < 6, there holds g + 0n € S¢& =

o4



1.4 Contact functional investigation

T (g.)(n) = lim To(g+0n) —To(g)

lim ; = —Dn. (1.114)

o If nn > 0, then
there exists 6y such that V0: 0 < 6 < 6, there holds g + 6n € S, =
'fm(L + E%ufc)

To(gy)(m) = —Dn +ygn = —Dn+ — — 2 (1.115)
ex!f

]
Theorem 1.4.2. For fizred t € S&, the derivative T (g), t — Dg € S, is symmetric

and negative semi-definite (non-positive).

Proof. The symmetricity of the derivative follows from the fact that it can be repre-
sented as a symmetric matrix. By (1.103) at g € S& we have T'(g) = —D, where D is
a symmetric matrix by the definition (1.100). At g € S% by (1.103) we have

, (z+zrp)
€T

12
e s
1 2
ex ! f
In order to prove that the derivative is negative semi-definite we distinguish two cases:

o t —Dg e S¢:

(T (g)(n), ) = (—Dn, ) = —%nﬁx - én%r <o. (1117)

ot —Dge Sl

(& +4)
(Tc(g)m).m) = <—Dn+ T, e
e ek
G + =) (& + o) . (Enr sign(ch — 8N) — i oiv)?
er + ENMf er _I_ EN'uf
1 1
v eT 1
= -5 (77/\/ + Wiy + 2upmrnysign(or — —gT))
'ufw + er
FIgY . 2
= -1 T nNsign(UT——g:r)+ufn:r) <0 (1.118)
Hiew ToF T
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1 Elastoplastic contact problems. Small deformations

Theorem 1.4.3. For given fized t € S and for all g with t — Dg € S’ the derivative
T (g), is Lipschitz continuous.

Proof. In order to prove that the derivative is Lipschitz continuous we distinguish two
cases:

e t —Dg € S§, then by (1.103) we have Vg, : t —Dg, € S&:

(Tc(g) —Te(g1)n,m)

ITe(g) - Te(g)l = sup

R237)0 [m[?
T.(g)n T
_ o Tclem 2C(g1)77>77>
E257)40 [l
_Dyp+D
— e "7+2"7’"> = 0. (1.119)
R251)£0 il

Hence, T (g) is constant and consequently Lipschitz continuous Vg : t—Dg € S&.
e t —Dg € S2, then by (1.103) we have Vg, : t — Dg, € S&:

(Tc(g) —Te(g1)n,m)

ITe(g) — Telgy)ll = sup ;
R257)#£0 [l
_ s \Telg)n —Tolg)n.n)
R2357)#£0 Im[2
) 1 1 2 2 1 1 2
m?(%t?;uf) ~ nn(e—%j“r%z;#f) R
B A =7 ¥ I < Bl
R237)#0 [7]|?
= 0. (1.120)

Hence, T'-(g) is constant and consequently Lipschitz continuous Vg : t—Dg € S%.

O

The return mapping algorithm presented above corresponds to the implicit time dis-
cretization of the constitutive law (1.96)-(1.99). The explicit integration of the model
(1.96)-(1.99) can be done in the same way as for the elastoplasticity [2, 6, 34]. For that
reason we use the incremental constitutive relation

t :]Dep(tag)g> (1121)

where

Dep(t,&) = D — po(t, gD, (0) (1.122)
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1.5 A Newton-type method for two-body elastoplastic contact with friction

with pe(t, &):

T
. ¢ .
| 0, if (a—tc) Dg < 0,
pelt. ) = \ (1.123)
1, if (%) Dg > 0,
e (%E)TD
D,(t) = —22 7 (1.124)
P T
<6¢l) D2oc
P P
The explicit time discretization of (1.121) leads to
At = D,,(t, Ag)Ag, (1.125)
where
]D)ep(tv Ag) = ]D - pC(t7 Ag)]Dp(t)? (1126)
with po(t, Ag):
polt, Ag) = { 1, if po(t — DAg) > 0. (1.127)

The operator D, (1.126) is not continuous due to the jump function pc(t, Ag) (1.127).
Employing the regularization procedure used in [34, 6], we smooth the function po(t, Ag)
introducing its approximation pc s(t, Ag) for § > 0:

pos(t. Ag) =1 142028 ¢ 5 6.t — DAg) <0, (1.128)
1, if o (t — DAg) > 0.

Thus, the d-regularization of (1.125) is carried out for § > 0:
At =D,, 5(t, Ag)Ag, (1.129)

where

Dep,s(t, Ag) :=D — pcs(t, Ag)Dy(2). (1.130)

1.5 A Newton-type method for two-body elastoplastic
contact with friction

We extend a Newton-type algorithm for elastoplasticity with hardening investigated
in [5, 2] onto two-body elastoplastic problem with regularized contact with friction.
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1 Elastoplastic contact problems. Small deformations

The contact regularization is done as in Section 1.4. Our approach is based on the
implicit computation of the increment of the stress (contact traction) using the increment
of the strain (relative contact gap). In the literature this method is referred to as
Return Mapping Algorithm. Consider a discrete problem (1.58) defined in Section 1.2.1.
Subtracting the equation at time step n — 1 from the the equation at time step n we
obtain

Fig (A0 At ) my) = AFS™(m,) ¥y €'V, (1.131)

where the contact and the elastoplastic constitutive conditions from Section 1.4 and
Section 1.2 are given via

Ale)n = Ty((0)n1, (€)n1, AleN)n), (1.132)
A (0 )1, (€)no1, A€")), (1.133)
Ale), = e(A(u')n),

Altee)n = Tol(teo)n1, Alu —u®),), (1.134)

where A(e), := (o), — (®),_1, & in our case is & := (a, 3). A return mapping algorithm
for plasticity (Section 1.2) maps ('), (u)n_1, (€)1, (€P)n_1 := e((u?),_1) — (C) !
(0%),_1 onto (&"), and (), = e((u?),) — (C)~' : (), (or (&), and (&?),); exactly
this is written in functional form in (1.132), (1.133). A return mapping algorithm for
contact (1.101) in Section 1.4 maps Ag = ((u?), — (u”),) and (tcc)n—1 onto A(tec)y;
exactly this is written in functional form in (1.134).

Defining
(T))n-1(A(E)n) = Th((0")n-1, (€01, Ale")n), (1.135)
(Gi)n—1(A(E)n) = G0 )1, (£ )n-1, A(E")n), (1.136)
(T (A(u? —u®),) = Tol(te)n1, Alu? —u®),), (1.137)

we have for Fy} mt defined in Section 1.2.1

Fil(Aa', Atg,my) = D (Tp)a1(AE)n), emi))oi—((Te)na (Alw? = u®),),mi)
i=B,A
(1.138)
The convergence of a Newton-type Method introduced below depends on the properties
of the functionals

fplm—l(A(ui)mnh) = Z ((Tpl)n—l(A(EZ>n),5(772))91 (1139)
i=B,A
and
Fen-1(A)n,my) == ((Te)n-1(A(u” — uB)n)n@FC. (1.140)
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1.5 A Newton-type method for two-body elastoplastic contact with friction

The functional F,;,—1 was investigated in [5] and has the following properties that we
formulate as a sequence of lemmas. For convenience using the isomorphism RY « "V
we consider operators acting on RY instead of "V. We write U for the coefficients of

Nel

the expansion of uy, in the basis in the discrete space "V p, i.e. u, = >, Uiypd. The

next three lemmas state the necessary properties of the functional F,;,_1, i.e. Lemma
1.5.1 gives the differentiability conditions, Lemma 1.5.2 gives the symmetry and positive
definiteness, and Lemma 1.5.3 gives the Lipschitz continuity of the Fréchet derivative.

Lemma 1.5.1 ([5] Lemma 5.1). The operator Fp -1 : RN — RY s differentiable in

]R;f,\l’ ep C RY. For U € ]Rpl eps there exists the Fréchet derwative of Fpn—1 given by
Fan st OV W) = 30 [Er(elleoh) elwiy (14
= AB
for all V, W € RN, where wp, = > Ui, vy i= 3 Vi, wp = S Wiy,
j=1 j=1 j=1

Here we have used a notation R

= {U e RY| e(uy(x)) ¢S}, _1(x) for all z € Q},
where

L1 (@) = {e € S| dp(opu-1(z) + Ce, &,,_1(x)) =0}
Lemma 1.5.2 ([5] Lemma 5.2, Conclusion 5.1). Let us consider U € R . then the
derivative F, .1 (U) is symmetric and positive definite. Moreover, the positive definite-
ness is locally uniform, i.e. for any ¢ > 0 there is my(c) > 0, such that

mu(Q)[VI* < (Fna(U)V, V), (1.142)

for all V.€ RY and V € RY

Jep Such that |[U|| < ¢, moreover, for any c there exists

-1

a constant My(c) such that for all U € RY . ||[U|| < ¢ there exists (F,,_,(U))
satisfying
-1
1 (Fpnea(U)) | < Myi(e). (1.143)
Proof. see [5] Lemma 5.2 and Conclusion 5.1. O

Here and below we use a standard Euclidian norm in discrete space R¥:

IVIF:= VAV, V). (1.144)

Note, that in [5] all estimates are obtained in energy norm
IV]lc := /(CV,V). (1.145)

since in finite dementional spaces all norms are equivalent we may replace the energy
norm with the Euclidian one.
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1 Elastoplastic contact problems. Small deformations

Lemma 1.5.3 ([5] Lemma 5.3). The derivative F),, (U) is Lipschitz continuous in
RN

Jlep OT more exactly there exists a constant Cy 1, such that

[ Fon1 (U +©) — U)|| < Cull®l], (1.146)

]/Jl,n—l(

for all U, © ¢ RY

pl,ep’

such that U+ 600 € RY _ for all 0 € [0, 1].

pl,ep

The next three lemmas correspond to the properties of the functional F¢,,—1(U) and its
Fréchet derivative. Instead of positive definiteness as it was obtained for 7, ,(U), the
Fréchet derivative F¢,,_,(U) is only positive semi-definite, whereas the sum F¢,—1(U)+
Foin—1(U) is positive definite on appropriate space.

Lemma 1.5.4 (Analog of Lemma 1.5.1). The operator Fc,,—1 : RY — RY is differen-
tiable in RY ~C RN. For U € RY

Dlep there exists the Fréchet derivative of Fepn—1 given
by

pl,ep’

(Foor (U)V, W) = / (T%)0 1 (w0 - . T, (1.147)
T'e

for all V,W € RY.

Proof. The assertion of Lemma follows straightforward from Theorem 1.4.1. O

Lemma 1.5.5 (Analog of Lemma 1.5.2). Let us consider U € RY} _ then the derivative

pl,ep’

nin_1(U) is symmetric and positive semi-definite:
0<(Fn1(U)V, V), (1.148)
for all V € RV,
Proof. The assertions of Lemma follow straightforward from Theorem 1.4.2. O

Lemma 1.5.6 (Analog of Lemma 1.5.3). The derivative F¢,,, 1(U) is Lipschitz contin-
uous in Ry, or more exactly there exists a constant Ce,r, such that

H]:/C (U+0) - Fo,( )H < Ce,||®]], (1.149)

for allU,© € Ry, such that U+ 600 € Ry, for all § € [0,1]. Here we have used a
notation RY , := {U € RY| up(z) ¢St,,,_,(x) for all x € Q}, where

St () = {g € R*| ¢o(thn1(z) — Dg) =0}
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1.5 A Newton-type method for two-body elastoplastic contact with friction

Proof.
70O ()| (Fena(0) = Fou s (UIV. W)
_ — e = sup su
cnt cn-t Vi wio VW]

V, W)
< sup ||IT, x)) — Te, o (un(x susu<’7
< ar;ech” Cn—1(Un()) Cn—1(un( ))Hv;g)w;fo VW]

(V, W)
< Chl|wn — wpl| gr2r,.) SUp SUp
HEED) o wito [V ][ [TW]
i thH 1/2 ||whH 1/2
< Cl”’uh i uhHH1/2(Fc) Sup HY/2(T¢) HY2(T¢)

V20w, 20 || Vnllai@) |wallme)
< ClCECH’&h - uhHHl(Q)
< GG U - (1.150)

where we have used the Lipschitz continuity of T" Theorem 1.4.3 and the fact that
lvnllgizrey < Crellvnlla ). Setting U := U + © we obtain the assertion of the
Theorem with Cg,p, := C1C}._. O

The use of the lemma 1.5.1 and the lemma 1.5.4 gives the following result

Lemma 1.5.7. The operator F,_1 = Fpin-1 + Fon-1 : RY — RN is differentiable in

RY =R NRY,, CRY. For U e R[], there exists the Fréchet derivative of Fr,_
given by
(Fi_(U)V, W) :=(F(,, ,(U)V,W) + (F, . _(U)V,W), (1.151)

for all V,W € R¥.

The use of the lemma 1.5.2 and the lemma 1.5.5 gives the following result

Lemma 1.5.8. Let us consider U € ]RQI’), then the derivative F)_,(U) is symmetric and
positive definite. Moreover, the positive definiteness is locally uniform, i.e. for anyc >0

there is m(c) > 0 (the same constants as in Lemma 1.5.2 m(c) = my/(c)) such that
m()|[V[* < (F,_,(U)V, V), (1.152)

for all Ve RN and V € R such that ||U|| < ¢, moreover, for any c there ezists a
constant M (c) (the same constants as in Lemma 1.5.2 M (c) = My/(c) )such that for all
U e RY ||U|| < c there exists (]:,;_I(U))_l satisfying

ep’

| (F, 1 (U)) )| < M(c). (1.153)
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1 Elastoplastic contact problems. Small deformations

The use of the lemma 1.5.3 and the lemma 1.5.6 gives the following result

Lemma 1.5.9. The derivative F,,_,(U) is Lipschitz continuous in RY or more ezactly
there ezists a constant Cy, (Cp, = max{Cy 1,Cc r}), such that

|71 (U+©)—F, (U)] <CL|e], (1.154)

for all U,© € R, such that U + 600 € R for all 6 € [0,1].

ep?

In order to solve (1.131) we apply a Newton-type Method like in [5] Section 7. Define
FM(U, ) = F™ (up,my,)-

Therefore (1.131) becomes

F*im(AUm n,) = AFi“(m) vn, € "V (1.155)

The system of equations (1.155) can be written in a vector form

F(AU,) = Afp. (1.156)

Then the Newton-type Method for (1.156) reads as follows.
Start with an initial guess AU&O),

fort=1,2... iterate

1. find Newton increment 8% satisfying

F(AUGDY. 60 = =D .= Af, — F(AUUD), (1.157)

2. Update
AUY .= AUGD 4 5@, (1.158)

continue

For fixed time step n we have the following theorem that provides convergence of Newton
Method suggested above in this section. For convenience we will omit subscript n.

Theorem 1.5.1. Assume that

1. the system (1.156) has a solution AU € RY,

2. AUWO be a sufficiently good initial guess of AU,
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1.5 A Newton-type method for two-body elastoplastic contact with friction

3. the Newton Iterations (1.157), (1.158) are well defined, i.e. AU® ¢ RY, for
i=1,2,...

Then, the Newton Iterations AU converge quadratically to the solution AU of (1.156),
that exists by the first assumption.

Remark 1.5.1. RY in Theorem 1.5.1 is an intersection of elastoplastic region (see [5])
and elastoplastic contact region ( cf. S (I") in Section 1.4 )

Proof. We are on the position to give a proof of Theorem 1.5.1.

Assume that AU© is close to AU, such that

1
§C’LM||AU(°) ~AU||=0<1 (1.159)

Cr : max{Ccr,Cp.r}, where Ccp is taken from the Lemma 1.5.6 and Cp;  from the
Lemma 1.5.3. M := M(c) where M(c) is taken from the Lemma 1.5.8 with ¢ =
|AU|| + U — AUJ| > |AU®||. Assume that ||[AU©® — AU|| is small enough, such
that

AU + (AU - AU e RY v 9 €[0,1) (1.160)

ep?

Hence, for the solution AU of (1.156) and the first Newton iteration AU® s AUW
we have from (1.156) and (1.157) (1 = 1)

0 = Af, —F(AU) =70 + F(AUY) - F(AU)
AU

= F(AUO)AUW — AUO)) — / F'(V)dV (setting V := AUY 1+ §(AU — AU))

AU©)
1
= F (AU AUW — AUO) - / F'(AUO 4 (AU — AU)D) (AU — AUD) a9
0

= F(AUD)YAUD — AUD) — F(AUY)(AU — AUD)

1
— / [F (AU + 9(AU — AUD)) — F/(AUD)]|(AU — AUD) a9
0
= F(AUY)yAUY — AU)

1
— / (AU + (AU — AUD)) — F(AUD)|(AU — AUO) d6.
0
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1 Elastoplastic contact problems. Small deformations

Thus,

F(AUD)y(AUD -A / [F (AU +9(AU-AUOY) — F(AUO)(AU-AUO) gb.
0

(1.161)
Employing results of Lemmas 1.5.8 and 1.5.9 under the assumption (1.159) we will
investigate the equation (1.161) as follows:

using the Lemma 1.5.9 we estimate the integral in the right hand side of (1.161):

1
/ [F/(AUY + (AU — AUD)) — F(AU)(AU — AU df

0

< / |F (AU + (AU — AUD)) — F(AUO)||||AU — AU || ap

< CL||AU — AUO)|||JAU — AU /9d9

1
= 5CL[AU ~ AU 2, (1.162)

using the above estimate and the Lemma 1.5.8 we estimate the norm of the difference
AUW — AU:

AU — AU|| =
1
F~HAU®) / [F (AU + (AU — AUD)) — F(AUD))(AU - AUO) af|| <
0

1
|F~H AU / [F(AUO + (AU — AUD)) — F(AUD))(AU — AUD) ag|| <
0

1 1
< |FTHAUD)SCLAU - AUY)|? = SCL M| AU — AUO)|P% (1.163)
Hence, (1.163) together with the assumption (1.159) gives the estimates

1 1 2
§C’LM||AU(1) — AU| < <§C’LM||AU — AU<O>)||) <o’ <1  (1.164)

IAUY — AU|| < |AUO — AU (1.165)
The triangle inequality and (1.165) give the estimate of |AUW)|

IAUY < AU + AU — AU|| < ¢, (1.166)
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1.6 Newton-like iterations for two-body elastoplastic contact with friction

where the constant c is defined above and is equal ||AU|| + ||[AU® — AU|.

Applying the arguments above with ¢ = 2,... we get

) 1 .
IAU® — AU|| < 5CLMHAU@-U—AUH2 (1.167)

1 , ;
§CLM||AU(’)—AU|| < 0% (1.168)

From (1.168) we conclude the convergence of AU® to AU, whereas (1.167) shows
that the Newton Iterations converge quadratically to U, which ends the proof of the
theorem. O

Remark 1.5.2. In order to perform the Newton algorithm we need the Fréchet derivative
of the non-linear fuctional F, that exists only on the subspace of RY. If during Newton
iterations the increment of U* changes the elastoplastic zone, i.e. we are on the boundary
between elastic and plastic zones, then the the Fréchet derivative at U* do not exists.
In that case we can choose an arbitrary directional derivative of F, or a pure elastic
stiffnes matrix.

1.6 Newton-like iterations for two-body elastoplastic
contact with friction

We extend a Newton-like iterations for elastoplasticity with hardening investigated in
[2, 6] onto two-boy elastoplastic problem with regularized contact with friction. The
o — € relation is regularized as in [34, 2, 6], whereas the regularization for contact done
as in Section 1.4. Our approach is based on the explicit computation of the increment
of the stress (contact traction) using the increment of the strain (relative contact gap).
In the literature this method is referred as Prandtl-Reuss stress computation. Consider
a discrete problem (1.131) defined in Section 1.5.

F’lZZf(A(UZ)m A(tfc)m nh) = AFS”(W) V’I]h € hVOa (1'169)

where the contact and the elastoplastic constitutive conditions from Section 1.4 and
Section 1.2 are given via

Ale)n = Tp((0")n-1, (€ )n-1, A(€")n) Ale")n, (1.170)
A€ = Gul(e)n-1, (€)1, A€)n) AN, (1.171)
Ale)n = e(A(u')n),

Altee)n = Tol(tee)ar, Al —u))(Aw —u®)y), (1.172)
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1 Elastoplastic contact problems. Small deformations

where A(e),, := (o), — (®),_1, & in our case is & := (a, #). A Prandtl-Reuss stress com-
putation algorithm for plasticity ([2] Section 3) maps (u?),, (u'),_1, (§)n_1, (EP)p_1 =
e((u')n-1) = (C)7": (0)n-1 onto (&), and (), = e((u')n) = (C) "+ (o) (or (§)n
and (o'),); exactly this is written in functional form in (1.170), (1.171). A regularized
Prandtl-Reuss traction computation algorithm for contact (1.129) in Section 1.4 maps
Ag = (('u,A)n — ('u,B)n) and (t.c)n—1 onto A(t.c)n; exactly this is written in functional
form in (1.172).

Defining
(T)ir (AE)) = Ty((0)ar, (€)amr A)),  (1173)
G AN = Gul(e)n (€ AN, (11T4)
(To)n-1(Au?* —uP),) = To((te)n1, Alu? —u?),), (1.175)

we have for Fyi"* defined in Section 1.2.1

Fit (A’ Mtoum) = 3 (T)na(AE)), e —((Te)as (A = u?),), ;)

.
i=B,A c

(1.176)
The convergence of Newton-like iterations introduced below depends on the properties
of the functionals

Forn-1 (D)) = Y (T)n-1(AE)n) A, €(m}) o (1.177)

i=B,A

and
Fonm(Aw)m) = — (o) (At —u?),) (AW —u”)nj) . (L178)
Definition 1.6.1. For u,v € "V :

(A, v) = /s(u) .C:e(v)dQ, (1.179)

(Af,,v) = /Afn-s('v)dQ, (1.180)

lulle = V(Au,u), (1.181)
lull g = V(A7lu, u). (1.182)

The functional F,,—1 was investigated in [6] and has the following properties that we

66



1.6 Newton-like iterations for two-body elastoplastic contact with friction

formulate as a sequence of lemmas. For convenience using the isomorphism RY « "V
we consider operators acting on RY instead of "V. We write U for the coefficients of

Mel
the expansion of uy, in the basis in the discrete space "V p, i.e. u, = > UipI. The
=1

next three lemmas a theorem state the necessary properties of the functional F; ,,—1, i.e.
Lemma 1.6.1 gives the continuity estimates for regularized p,; s, Lemma 1.6.2 gives the
upper bound estimate for the seminorm induced by C, , Theorem 1.6.1 gives the upper
bound estimate for the seminorm in H'(Q) induced by C,.

Lemma 1.6.1 ([6] Lemma 1). For x € Q we define a norm in S by

Islle = lislle@) == Vs : Clz) = 5. (1.183)

If %qg’.’ s uniformly bounded with respect to o, i.e.

0
H% <y, (1.184)
then .
|pp1s (@, w) = ppis(@, V)| < TleE(u(«’E)) —e(u(x))llc. (1.185)

Moreover, there exists a constant K such that

esssup | pprs(x, w) — pps(xz,v)| < K|lu — v||g. (1.186)
Teq
Lemma 1.6.2 ([6] Lemma 2). Let 0 < vy < 1 be a constant from [6] Eqn. (3), x € )

and let
8¢, == |8|c,@) = /8:Cp: s, (1.187)

be a seminorm in S. Then

|slc,@) < Viollsle@), seS. (1.188)

Lemma 1.6.3 ([6] Lemma 3). For all v, w € "V we have

/|s('v) : G, e(w)] dQ < wyl|v||ellw|| k- (1.189)
Q

Theorem 1.6.1 ([6] Theorem 1). Let o be such that ¥ := vy +vyKa < 1 for vy defined
in [6] Eqn. (3) and K defined in (1.186). Denote m =1—19, M = 1+14. Moreover, let

w € (0,2%) which gives that

c:=vV1—2mw+ M2w? < 1.
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1 Elastoplastic contact problems. Small deformations

Further, let the load increment Af, be sufficiently small, e.g.

1—c¢
[Afll-E < a.
Then the iterations k = 1,2, ...
Aul® = AuY + WAZHAS, — Fus(AulD)), Au® = 0. (1.190)

converge to the unique solution of the equation Fy s(Au,) = AF,.

Next, let us consider the nonlinear mapping Fs := F,1 5 + Fos. For u = (uA, uP), v =
(04, v8), w = (wh, wP) € WV, (Q:= 04 x QP [u] ;= u? — uP) we obtain

(Fs(u) — Fs(v),w) = /s(u—’u) :C: s(w)dQ+/[u—v] D [w]dl

Q To

— /(ppl,(;(a:, u)Cpe(u) — pps(x,v)Cre(v)) : e(w) d2
Q

— /(pa(g(w,u)DP[u] — pos(x, v)Dy[v]) : [w]dl

o]

= (Ac(u —v),w) + /[’u, —v]:D: [w]dl' — I} — I5,(1.191)

T'e

where
L = ILyi+1cy,

Iy = L2+ Icpe,

Ly, = /(ppl,g(:c,u)Cpa(u—v))'wdQ,
Q

Lis = / (s (1) — pyrs(@, ) Cpe (e (w) A2,

loy = / (P (@, w)Dyfu — v]) [w] dE2,

Fe

68



1.6 Newton-like iterations for two-body elastoplastic contact with friction

oz = [ (pes(ew) - pese,0)) Dyfo]fw] a0

Te

(1.192)

We have the following estimates for 1, Iy, Ic1, o2 in the right hand side of (1.191):

Lemmas 1.6.1, 1.6.3 yield

|[pl72|
u;nl,l‘

voK||v||pllu — vl pllwllg,
vollu — v|gllwl|e,
(1.193)

Employing the trace theorem we obtain

[lcal < CPllvllsllu — vl sllwl]|s,
leal < CPllu—vlg|wle,
\/[u—’v]iDi[’w]dF\ < Cfllu—v|p|wle.

Fe

Remark 1.6.1. The above estimates imply that Fs is Lipschitz continuous and strongly
monotone in any ball B, = {v € "V| |[v|g < a} if ¥ := 1 + a(1K + C}) < 1.

Theorem 1.6.2. Let a be such that ¥ := vy + a(nK + C}) < 1 for vy defined in [6]
Eqn. (3) and K defined in (1.186). Denote m = 1 —19, M = 1+ 9. Moreover, let
w € (0, 2%) which gives that

c:=vV1—2mw+ M2w? < 1.

Further, let the load increment Af, be sufficiently small, e.g.

1—c
[Afll-p < a.
Then the iterations k = 1,2, ...
Au = AuY L wATHAF, — Fs(Au)),  Aul® =0, (1.194)

converge to the unique solution of the equation Fs(Aw,) = Af,,.

Proof. Let Au*=2 € B,, then using (1.194) we get

Au® — Aul D = Aul) — AulD 4 AT (Fy(Aul D) - F5(AulD)), (1.195)
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1 Elastoplastic contact problems. Small deformations

consequently

HAug’“) — AulF=D 2

lo = Al — Aul=2

— 2w (Aul Y — Aul?) | Fy(Aul V) — Fy(Aul?))
+ AT (Fs(AulfY) = Fs(Aul ) |
(+) < [|Aau® - Aulk?|
- 2meAu£ﬁ‘” - sut?)|
+ w? HA Au(k 1) ) fé(Augc—z))) H

(%) < HAugk_l)—Auglk_mHij

— 2wm HAu,(f_l) — A2 H%E

©M Al — Al
< Al|ault) - Aul?|7 (1.196)

Using the local strong monotonicity of Fj, i.e
(Fs(AulY) — Fs(AulF2), Aul) — Aulf~2) > m HAu,(f_l) — AulF=? HE

we obtained the inequality (*) in (1.196). Employing the Lipschitz continuity of Fs we
obtain the estimate

A (Fs(AulY) — Fs(Aul?))

I

<AA ( Fs(Aul ) - fé(Auﬁf—”)),@

= sup
W+£0 |w| e
<(.7-"5(Au(k Dy _ ﬂ(MSﬁ‘”)) ,'w>
= sup
W+£0 |w| &

< M|AulY) = AulF)|

that is used in order to get the inequality (**) in (1.196). We prove that the iterations
AuP belong to B, for all £ > 0 by induction.

o i=0, Auﬁ?)_()ie Aul) € B,.
i=1, |Au) g = |wATIAS,| g < a,ie. Aul € B,.
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1.6 Newton-like iterations for two-body elastoplastic contact with friction

e Fori > 1, let Aul e B,, for all k < i. Aug)) € B, follows from the estimate:
[AuN) | = [Aul) — Aul™ + .+ Aul) — Aul|
< JAuD) = Aul Vg + ...+ [[Aul) — AuO|| g
< (ci_1 +7P 4+ 1) A — AulO| 5

1
< —ulAfule <a (1.197)

where we have used the consequence of (1.196), i.e. the fact that

[Au) — AulE=Y|| 5 < FHAuY — AulO||. (1.198)

The estimate
[Au) — Aul g < (|Auf™ — Aul D+ [ AudTY) — Aud g
< () |AutY - AuD| g

= (T +1) [Au®D — AulD||;

1 .
< d—wllAf,)lp < da (1.199)

—C

shows that the sequence {Auﬁf))} satisfies the Cauchy condition. (1.199) together with
(1.197) yields that the sequence {Augf)} has a unique limit Aw,) in B,. On the other
hand this limit is a solution of the nonlinear equation F5(Awu,) = Af,. The proof of
the uniqueness is standard. Let Au!, Au? € B, solve Fs (Au,) = Af,. Then

Due to the local monotonicity of Fs in B, we obtain
0= (Fs (Au,) — Fs (Aul) , Auy, — Au’) m|Au), — Aul||3. (1.200)

Thus Au)l = Au?. O

In order to solve (1.169) we apply Newton-like iterations like in [6] Section 7. Define
ant(Uv nh) = Fint(uhv nh)
Therefore (1.169) becomes

ant(AUm n,) = AFrfmt("?h) vm,, € V. (1.201)
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1 Elastoplastic contact problems. Small deformations

The system of equations (1.201) can be written in a vector form

Fs(AU,) = Af,. (1.202)
Then the Newton-like iterations for (1.202) read as follows.
Start with an initial guess AU&O),
fort=1,2... iterate
1. find Newton increment d® satisfying
Ad? =D = Af — F(ATULY) (1.203)
2. Update
AUY .= AUGD 4 ,d®. (1.204)
continue

Remark 1.6.2. The convergence of Newton-like iterations is provided by the Theorem
1.6.2.

Remark 1.6.3. The inexact version of this algorithm will be obtained by assuming that
the iteration solver solves the linear system (1.203) with the tolerance 7, i.e.

[ Ad® = 7Dy < eV (1.205

1.7 Numerical simulations

Example 1

The model problem can be interpreted as an idealized isothermic metal forming process.
The elastic stamp comes in contact with the plastic work piece and leaves some plastic de-
formations in it. Then the stamp changes its location, comes into contact with the work
piece in the neighbors place and initiates some plastic deformations again. Without loss
of generality we choose the stamp as a slave body, the work piece as a master body. The
coordinates of the stamp in the moment of the first touch are QF :=[0.2,1.2] x [-1,1],
in the moment of the second touch are Q% := [—1.8, —0.8] x [—1,1]. The work piece is
given by Q4 := [-2,2] x [-3, —1]. Both touches are performed by setting prescribed to-
tal displacements on the Dirichlet boundary of the work piece I'} = [-2,2] x {-3}
by w4 = 4,3 -1073. This total displacement is applied in the incremental form.
The homogeneous displacements u2 = 0 are prescribed on the Dirichlet boundary
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1.7 Numerical simulations

U5, =1[02,12] x {1}, 5, := [-1.8,—0.8] x {1} of the stamp in the first and sec-
ond touch respectively. The liear system within each Newton step is solved using the
Conjugate Gradient method with the diagonal preconditioner. In average the Newton
method converges after 10 iterations.

Variable mathematical notation Slave Master  dimension
Young E 266926.0 26692.60 -
Poisson v 0.29 0.29 -
Yield stress oy - 45.0 -
Isotropic hardening h - 450.0 -

Table 1.1: Material data

Parameter mathematical notation value dimension
Normal Penalty paramenter EN 107° -
Tangential Penalty paramenter €T 10~ -
Friction coefficient L 0.2 -

Table 1.2: Contact parameters

ssssssss

Figure 1.3: FE/FE: deformed Figure 1.4: FE/FE: ||€?||
mesh

Figure 1.5: FE/BE: deformed Figure 1.6: FE/BE: |||
mesh
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1 Elastoplastic contact problems. Small deformations

Mesh 64x128. Stress deviator at point (-0.9,-1.1)
40 T T T T T T

35

30 /

25 + /
20
15
—< /

10 - / /
T

Stressdev

e

0 - —t—— —t Il Il L L L
-0.0005 0 0.0005 0.001 0.0015 0.002 0.0025 0.003 0.0035 0.004 0.0045
force

Figure 1.7: FE/FE, FE/BE: ||?||

On Fig. 1.3 - 1.6 we present the deformed mesh and the norm of the plastic strain tensor
|€P|| := /&P : eP in both bodies for both approaches. One can clearly observe the similar
plastic deformations in the work piece for FEM and BEM modeling of the stamp. To
make more feeling of deformation inside the stamp modelled with BEM, we interpolate
the FE mesh, compute displacements inside the body using the representation formula
and compute corresponding deformed state. The displacements are multiplied with the
factor 100 to make them visible. The evolution of the stress deviator norm in dependence
of the applied force in the characteristic point X = (—0.9; —1,1) in the work piece is
shown on Fig. 1.7. The curves for FE/FE and FE/BE simulations are very close.

Example 2

We make now a single touch in the middle of the work piece The coordinates of the
stamp in the moment of the touch are QF := [-1,1] x [~1,0]. The work piece is
given again by Q4 := [-2,2] x [-3, —1]. The Dirichlet boundary of the stamp I'2 :=
[—1,1] x {0} is assumed to be fixed, i.e. @? = 0. The Dirichlet boundary of the work
piece T'4 := [—2, 2] x {—3} is subjected to the total displacement @ := 4.2-10~3 applied
incrementally as shown on Fig. 1.10 with a time incremet At = 0.625-107°. The liear
system within each Newton step is solved using the Conjugate Gradient method with the
diagonal preconditioner. In average the Newton method converges after 10 iterations.

On Fig. 1.11 - 1.16 we present deformed meshes and the plastic strain norms. They
reflect qualitatively the same behavior. On Fig. 1.17 we show the evolution of the norm
of stress deviator for all three methods in the characteristic point X = (1;—1,1). One
observes that both curves with the FEM modeling are pretty close. The curve for BEM
in the work piece shows qualitatively similar behavior.
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1.7 Numerical simulations

,,,,,,,,,,,,, = AL

(00
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X6 o ® X8
& x5 " m P "
X7 @ ‘ X1 ° X9 i ’ 'b'o} g
| <
(-2-3) 12 @-3) o
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Figure 1.8: Characteristic points Figure 1.9: Geometry

Loading cycle

0.004 -

0.0035

0.003 -

0.0025

0.002 -

0.0015

0.001 -

u_y on the Master Derichlet boundary

0.0005

Increment

Figure 1.10: incremental loading of u, at segment (-2, —3), (2, —3)

The performed loading process is depicted in Fig. 1.10, whereas material parameters
and contact parameters are given in Tables 1.1, 1.2 respectively. We performed further
numerical experiments and plotted at various points (see Fig. 1.8) in the elastoplastic
work piece the norm of the stress deviator and the displacements depending on the
loading (Fig. 1.20-1.31 and Fig. 1.32 - 1.43). The numerical experiments show expected
behavior: the displacement is symmetric and the hysteresis is smaller in the elastic
region. On Fig 1.18 you find the same diagram for the FEM /BEM coupling for different
mesh sizes. One observes that the diagrams for the three finest mesh sizes lie closer to
each other as for the coarser meshes, i.e. it starts to converge. On Fig. 1.19 we plot the
absolute error for the norm of the stress deviator evaluated at difference points using
Aitken extrapolant as an exact value. Aitking extrapolant is an approximation of the of
series limit by three terms, i.e. for series {z}} we have the approximation of the limit

75



1 Elastoplastic contact problems. Small deformations

Figure 1.11:  FE/FE: de- Figure 1.12: FE/FE: ||e?||
formed mesh

Figure 1.13:  FE/BE: de- Figure 1.14: FE/BE: ||e?|
formed mesh

HJ:rJr‘ i ;§:‘+“

Figure 1.15:  BE/BE: de- Figure 1.16: BE/BE: ||e?||
formed mesh

x:= lim xp by xp, rp_1 and xy_s
k—oo

(Tp — 21—1)
Tp — 2% Xp_1 + Tp_o

Taitken = Th — ( )(mk — Tp_1) (1.206)
On Fig. 1.19 (a) we observe that for a fixed number of degrees of freedom the error does
not depend on the ratio €/h, i.e. as the ratio €¢/h decreases the error of || dev o|| tends to
a constant value that depends on the number of degrees of freedom. Fig. 1.19 (b) shows
the convergence of || dev o of the order 0.7, i.e. ||| devoy|| — || devo||| = O(55507)- On
Fig. 1.19 (c) the error is plotted at different points for a fixed ratio ¢/h = 0.00000025.
On Fig. 1.19 (d) the error is plotted at different points for a fixed penalty parameter
¢ = 107%. Comparing Fig. 1.19 (c) and Fig. 1.19 (d) one observes that a convergence
rate is better in case when the penalty parameter is proportional to the mesh size, i.e.
the penalty parameter is smaller for finer meshes.
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Figure 1.17:
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Error

1.7 Numerical simulations

Stresses at point (1,-1.1)
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Figure 1.18: FE/BE: ||devo|| for differ-
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1 Elastoplastic contact problems. Small deformations

Stress deviator at point 1

Figure 1.20: ||dev]o]

Stress deviator at point 3

Figure 1.22: ||dev|o]

Stress deviator at point 5
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Figure 1.23: ||dev[o]|| at X4
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Figure 1.24: ||dev[o]|| at X5 = (0, —1.75) Figure 1.25: ||dev[o]|| at X = (-1, —1.5)
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Figure 1.26: ||dev[o]|| at X7 = (—1,—2.5) Figure 1.27: ||dev[o]| at Xg = (1, —1.5)
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Figure 1.28: ||dev(o]|| at Xo = (1,—2.5)  Figure 1.29: ||dev[o]|| at X;p = (0,—1)
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Figure 1.30: ||dev[o]|| at X1, = (0, —2)

Figure 1.31: ||dev[o]|| at X12 = (0, —3)
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1 Elastoplastic contact problems. Small deformations

1.8 FEM/BEM domain decomposition for frictional
contact

In this section we analyse a saddle point formulation with Lagrangian multipliers for the
two body contact problem with friction and elastoplastic material. We decompose the
work piece into plastic and elastic parts and apply boundary elements and finite elements
respectively. The contact is modeled by a penalty approach described in Sections 1.2,
1.3. We use finite elements in the linear elastic work tool. We perform an incremental
loading procedure and use backward Fuler time discretization for contact and forward
Euler time discretization for plasticity. At each loading step the Newton algorithm is
applied to solve the nonlinear discrete system. In subsection 1.8.4 we present a numerical
benchmark.

The geometry for our model problem is shown in the Fig. 1.44. Let Q' be the domain
occupied by the elastic stamp, Q2 be the part of the work piece directly below the contact
zone where plastic deformations occur and 32 be the elastic part of the work piece. Note
that the work piece occupies Q2 U Q3. Denote I := 90,7 = 1,2,3. Let I'; := Q>N Q3
be the interface boundary in the work piece.

FEM

Q3

Figure 1.44: The model geometry

Assume for simplicity that the boundary of the plastic domain consists of the interface
boundary and the contact boundary, i.e. T'? := I'ZUI'?. Furthermore, let the boundary of
the elastic part of the work piece consist of interface, Dirichlet (prescribed displacements)
and Neumann (prescribed surface tractions) parts, i.e. I := I'J UT% UT%. Finally,
let the stamp boundary be decomposed into Dirichlet, Neumann and contact parts,
I':=T}LUTL UTL. Let nn, e denote the normal and tangential vector respectively.
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1.8 FEM/BEM domain decomposition for frictional contact

The classical formulation of our model problem is

dive' = f
ol =Cl e in Q,

o’ =C?: (e — &%)

w =’ on T},
t =% on ',
1=1,2,3, u? = ud
j=1,3, 2 43 on Iy,
k=12,
n?-o?-n?=n'-o' n'= oy, )

if u3} = g, then oy <0,

on Ik,
o2-ni—oyn?=—(o'-n'—oyn) =07 o7 =o07-€
if |o7| < pslon|, then ur =0,
if |o7| = prloy|, then IXN > 0: [ur] = —Aor
(1.207)

where [u)] = u} —u?,1 = N, T, the symmetric gradient &'(u’) = 1/2(Vu'+ (Vu')T), C is
the fourth order elastic Hooke’s tensor, and the plastic deformation tensor e? is subjected
to constitutive equations for plasticity described above. n® and e are the outer normal
and adjoint unit tangent vectors on the contact boundary of Q* respectively (a = 1,2, 3).
t? = 0% -n% C? = C? since Q% and Q® are nothing more than two parts of the same
body. We write in the sequel

to = oyn® + ore’ (1.208)

for the boundary traction, t; := t?|r, = —t3|p, for interface traction and use the follow-
ing notation for scalar products in the domain and on the boundary

(O’,E)Q:/O'ZEdQ,

Q

(u,v)Q:/u-de,
Q

/u~’udF.
r

<u7 U)l"

1.8.1 Weak formulations

In the following we derive a weak formulation with FE in the plastic domain.Therefore,
we give first the weak formulation for the work piece and then as a generalization, we
obtain the weak formulation of the total problem. Let us assume for a moment that the
stamp does not come into contact with the work piece and the exact contact pressure
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1 Elastoplastic contact problems. Small deformations

tc is known is advance. Assume that the exact interface traction ¢; in the work piece
is known as well. This means that to and t; can be treated as given Neumann data.
Testing the equilibrium equations for both parts in the work piece with some suitable
test functions (2, 1°) € V° := H'(Q?) x H}(Q?) and integration by parts gives

(U2a€(n QZ - <t17772>r[ f 77 02 + <tC'>772>F ’
(agae(n Q3+<t1,77>r,:(}.3>77)93+< >77>

N
That is equivalent to the corresponding minimization problem of finding (u? u?) €
V3= HY(Q?) x H,(Q%), such that

H2(’U,2) = (0-27 E(u2))92 - <tIa U2>F1 - (}.27 uz)QQ - <tCa n2>FC - mina

~3 ~3 )
(u?) = (0, e(u))gs + (tr.u?), = (F u)os = (F,0') | — min,

N

where H'(Q?) = [H'(Q?)]?, HL(?®) := {v € [HL(?*)]*| v|r, =@}. Therefore the
problem for the work piece for some fixed interface traction is: Find (u? u®) € V%?’
such that

(w? w') = 3 {0 eu)or = (Fu)or |

~3 .
- (tes ), — (¥ ou?) | —min,

N

or : Find (u?,u?) € V%51 = {(u?,v®) € VE : u?|p, = u?|r,}

w? u?) = ¥ {0 e — (F u)ar}

=23 (1.209)
—(te, ) — <i3 u3> — min .
) FC ) F?V

Furthermore, using a Lagrangian approach, problem (1.209) can be reformulated over the
unconstrained displacement space as: Find (u?, u®) € V35’ X € M= {pu|p e HV4(T))}:

SL(u? u?, \) =0, (1.210)
where
2 .3 y) _ 2 .3 2 3
L(u®,u®, ) = (u?, u’) — (A, v’ —u >F1'
The variation of the Lagrangian has the form

oL

5 —(u?, u’, X\)du 2+8_L(u u®, A)ou? +8—L(u u®, Ao

SL(u?, u?, \) = D Y
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1.8 FEM/BEM domain decomposition for frictional contact

As du?, du? are independent of d\ problem (1.210) is equivalent to

oL oL oL
0u2(u u?, \)du? +—(u u?, A)du® =0, N

B ——(u?,u®, A\)oX =0,

or to the variational saddle point formulation: Find (u? u®) € V** X € M:

1_223(01,€(nl))9z — A =%, = Ln%n®) VY(n,my) € VE© o
(u? —u?), = 0 Vp e M, ‘

where the right hand side is

~ ~ 1 ~3
L n*) = Y (f . n)a+ (tc.n). +(t.,0°) |
C 1’*3

1=2,3 N
and 1%, n3, p stand for the variations
n® = du’, n® .= du’, =0

To secure existence and uniqueness of the solution of (1.211) the following Babuska-
Brezzi condition should be specified on the discrete spaces [8]: 3Cpp > 0:

inf sup <u’ 77 — > Z CBB-

2 1/2
BEM g ey s T A s T e 37

Following [3] one can show that constrained problem (1.209) and the saddle point for-
mulation (1.211) are equivalent .

On the other hand for the stamp the following weak formulation holds:
Find u € V, := H,(Q):

-1
(0-176(771))91 + <t07nl>I‘C = (f N )Ql + < /i > an € V(1)7
N
with V§ := Hy(Q'). Note that the contact term appears with the positive sign as
tc = t*|r, = —t'|r, Together with (1.211) this gives the variational formulation in all
three domains

3 . .
Yot em)a — N0* =1y, — (te,n* —n')p, = Lr(n',n% n°),
i=1 (1.212)

(pou? —ul), = 0 V(n,myms) € Vi*, VYpeM,
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1 Elastoplastic contact problems. Small deformations

where 5
Le(n' n*n®) = S (F ' n)a + > < >
=1 =13
In the following we use a penalty method for the contact term t.. := o, an + UETe2

with friction on I'c.

Weak formulation with BE in the plastic domain

Using boundary integral operators (Section 1.2.2) we can proceed to the BE formulation
in the plastic domain. As in Section 1.2.2 one gets

(02, em?))az — (F mD)a

, 2
= (Sul i) + (N(div[C? 2 2] = F). ) |
—([C*: ] - n, 1)
vu? € H,(Q?%), Vn'e Hy(9?).
This together with the FE formulation (1.212) gives

2133(03} e())ar + (Su*, 0%) e — (A 0> = 1°)p, — (b, m® — 0.,
j=1,
+ <N le[C2 : €2p]’ 772>1"2 - <[C2 : €2p] 'n, 772>1"2 = LB(nlu 7727 773)7 (1213)

(pou? —u?) = 0 Y(n,my,ms) € Vo, YueM,

I } - <N}2’n2>r2

N

where

Lo(n',n’,n°) = ) {(fj,nj)m + <ij,?7j>

j=1,3

1.8.2 Discretization

We use continuous linear (P') or bilinear (Q') basis functions on a triangular or quadri-
lateral FE mesh T}, T3 in Q') Q3 respectively. The boundary element discrete displace-
ment space on I'? is given by continuous piecewise linear functions on the one dimensional
mesh 7;2. Define the discrete spaces

W= o€ HYAI?)| myle € Pe) Vee T2}
W, = {m, € Hp(Y)| mylc € RY(e) VeeTi},

, J=13,
Wi o= {m, € Hy(Y)| n,lc € R'(e) Ve T},
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1.8 FEM/BEM domain decomposition for frictional contact

where RY(e) = Pl(e) for a triangular mesh element ¢ and R'(e) = Q'(e) for a quadri-
lateral mesh element e. Define the product spaces

D = VL x VR x VY
"Dy = VL x WV x VY,

The discretization of the Lagrange multiplier space is given by the dual basis on one of
the meshes induced on the interface I';. Without loss of generality we choose 7,2 be the
mesh for the Lagrange multiplier. Let {¢?} be the hat-functions in the space "V? which
have their support on the interface boundary I';. Define the dual basis {¢,,} by

(O, Ym)r, = O (61, L)y, - (1.214)

The existence of the dual basis was shown in [49]. Then the discrete Lagrange multiplier
space is given by

"M := span {1;}.

Note that it is possible to use the trace mesh of 7> on I'; as well. The discrete version
of (1.213) can be formulated as follows:
Find uy, := (u},u?, u3) € Wp, Ay € "M:

—=int —=ext

F (uhvnh)_?uh(spunh)_'_B(Ahvnh) = F ("7h) v"7h€h‘~)07

B(py,un) = 0 Vi, € "M.

(1.215)

where
—int

F" (wp,my) =Y (07, e(m))ar + (Su?, ") o = (tesm® = '),

j=1,3

Pu, (e”,m,) == (N(div[C : €7]),n*), — ([C: "] - n,0*) 5,

B(Ahu nh) = <)\7 772 - 773>1—\I ’

—=ext

F (nh) = LB(nkuniuni)u

(€)' =e"(w,),  toi=to(up).

1.8.3 Linearization

The saddle point system (1.215) is in general nonlinear. The contact term in the func-
tional Fmt('u,h, 7,,) is nonlinear due to the constitutive contact conditions. The functional
Fuh (e?,m,) is nonlinear when plastic deformations occur. The Lagrange multiplier term
B(Ap,m;,) is linear. As in sections 1.2.1, 1.2.2; and 1.2.3 we introduce an incremental
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1 Elastoplastic contact problems. Small deformations

~ 7

loading process as a successive application of loading increments (Afz)n, (Aii)n, (Aw'),:

which defines the discrete external load

F )= 3 { (o (8

j=1,3

}+ (NF.m) -

This gives a pseudo-time stepping process with the increment-dependent functional

Iy

spaces
W= {n, € H'(Q)| ) € R (e) Ve T, wullr, = (uh)n},
Jj=13,

™ pm = WV x VWV L

Let (uy)o be the initial displacement state of the body, (sp)(()o), a(()o')’ ((]0) initial internal
variables, (g?p)(()o) initial tangential macro-displacement and let (}’Z)O, (), (@')g be the
initial load. We use the backward Euler scheme for contact and the forward Euler scheme

for plasticity. Thus the formulation will be:

Find (Aup), € "Wp,,, and therefore the new displacement state (up), = (up)n_1 +
(Aup),, plastic strain (e?)! = eP((u}),), contact traction (), = tc((ul),) such that

—=int —=ext

Fo((un)nsmp) + B(An,my,) = F (my,) +?uh((5p)m77h) v, € h\}o,

B(I‘l'iw (uh)n) =0 \v/l‘l’h S hM'

(1.216)

where the contact traction is given by (1.44) and the plastic conditions are enforced by
the return maping algorithm described in boxes 1.3.1, 1.3.2.

To solve (1.216) we use Newton’s method. Let U be the coefficients of the expansion of
uy, in basis of the discrete space "Vp, let A be the coefficients of the expansion of A\, in
basis in the discrete space "M. Define

—=int —=int

F* (U7nh) = F

(Uh, nh)7

B, (A7 77h> = B(Afh "7h)
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1.8 FEM/BEM domain decomposition for frictional contact

Therefore the first equation in (1.216) becomes

——=int —ext

F,. (Up,my,) + B Ap,my) = F  (ny,) +Fuh((€p)n? ) vn,, € h\}o-

We perform the linearization of Fim(Un, n,,). Choose the starting value

U =U,,

n

and introduce the Newton increment AUY™ to proceed to the next iterate

Ut =gk L AURD - =0,1,2...

n

The Taylor’s expansion provides

—int

U

B*(Agﬂ_l)v nh) = B*(ASLk)u nh) + B*(AAgH_l)v nh)

FUd g =F U n,) + AUYHD,

Now we are in the position to state the algebraic problem. Define for brevity the matrices
2, B and the right hand side vector b by
o OF (U )
oul)

—=ext (k) —=int

b ::Fn (nh) _'_?uh((gp)n 7nh) - F* (ngk)v nh) - B*(Agk)u nh)a

. Bi=(B.(1,m,))",

Note, that the plastic strain from the (k)-th Newton’s iteration (e?)$” is used in the right
hand side and the plastic strain has no influence on the matrix. This corresponds the
forward Euler scheme for plasticity. Then the algebraic problem is: Find ¢ = AUS{““),

5= AAFTY:
(»5)(3)-(0) r20)

The whole algorithm can be formulated now as follows.

Solution procedure

Set initial displacement U((]O), initial internal variables (sp)(()o), a(()o), 5(()0), initial tangential

macro-displacement (gh () and initial loads }'l 0, (o, (@)o
7)o

1. forn=20,1,2,...

a) for k=0,1,2,...

i. compute the load vector
—=ext (k) int

b:= Fn (nh) _'_?uh((gp)n 777h) - F* (Uglk)v nh) - ‘B*(j\gk)7 nh)
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1 Elastoplastic contact problems. Small deformations

ii. if ||b||;, := Vb -b < TOL goto 2.
afint (ngk)a M)
Uy
iv. find the next displacement increment ¢ = AU
plier increment 3 = AAS“H) by solving

(2 5)(3)-(0)

v. update the displacement field and Lagrange multiplier

B = (B*(]-’ nh))T

iii. compute the matrix 2 :=

*) and Lagrange multi-

Ukl — g . Ayt

A(k-‘rl) — Ang) _i_AAgH-l)’

n

and the internal variables (ap)ﬁf““), alf ), B+ (gl})%kﬂ). They should
satisfy the constitutive contact and plasticity conditions. We use the
return mapping procedure for both contact and plastification as described
in Section 1.2.

b) set k =k + 1, goto (a)

2. initialize the next pseudo-time step

0
Usl-‘r)-l = Ugg)
3. apply the next load increment
(} )n+1 = } (tn+1)u

if the total load is achieved exit, if not, set n =n + 1 goto 1.

Next, let us consider the detailed structure of the matrix in (1.217). The total displace-
ment increment vector ¢ has the following form

Iy
1%
L= ;%’ )
157
r
5%
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1.8 FEM/BEM domain decomposition for frictional contact

where the upper indexes represent coefficients belonging to Q! I'2, Q3 respectively, and
lower indexes represent coefficients belonging to contact and interface boundary parts.
Absence of the lower index means that the coefficient corresponds to the basis function
lying inside the domain or on the Neumann part of the boundary. Then (1.217) can be
rewritten as

At (BYHYT 0 0 0 0 0 ! bl
BY C'+ctt Ct? 0 0 0 0 e be
0 c* Si.+C*? SZ, 0 0 0 12 b2,
0o 0 2. sz 0 o -p||le|=|w®
0 0 0 0 ¢ (B)T QF 5 b3
0 0 0 0o B A 0 P b3
0 0 0 -D Q 0 0 3 0
We see that the matrix 9B from (1.217) has the form
B =(0,0,0,—D,Q,0).
The matrix B is generated by the interface mixed terms
B*(l, 77h) = <1’ 772 - 773>1"I :
In the basis representation there holds
B~ — (Y, 67 — )1, = —Oun (L BF) 1 + (o S (1.218)
and therefore
D~ b (L, )r, s Q~ (Um, By, (1.219)

Note that in the case of matching meshes on the interface I'; the relation (1.214) holds
for the basis functions in Q3 as well, and therefore Q = D.

1.8.4 Numerical simulations

As in section 1.7 we consider elastoplastic two-body contact problem, whereas in this
case the domain occupied by master body is decomposed into two subdomains. The
geometry of the problem is shown in Fig. 1.44. Let Q' represent the elastic stamp, Q2
represent the plastic domain in the work piece, modelled with BEM, and ® represent
the elastic domain in the work piece, modelled with FEM. The liear system within each
Newton step is solved using the Generalized Minimal Residual method with the diagonal
preconditioner. In average the Newton method converges after 20 iterations.

Q' = [-0,5;0,5] x [1;1,5],
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1 Elastoplastic contact problems. Small deformations

O =[-1;1] x[-1;1], T?%:=00%
0 =[-3;3] x [-3;1] \ 2.

The boundary parts are given by

Qb I, =[-0,5;0,5] x {1,5},
Iy =0,
I = 009"\ T'p,
0% rg =[-1;1] x 1,

Iy =T%No0,

I} = [-3;3] x {3},

3 =00\ (L;ury).

The bodies are coming into contact due to the total Dirichlet displacement @' = —1.4 -

1073 on I'L applied incrementally as explained in Section 1.8.3. The homogeneous
displacement @* = 0 is given on I',.

In Fig. 1.45 - 1.52 we present the results of our numerical simulation. The deformed
mesh is plotted in Fig. 1.45. We interpolate a FEM mesh inside 22, modelled with BEM,
to show the interior deformation. The displacement in the interior points is obtained
with Somigliana’s representation formula. The displacements in Fig. 1.45 are multiplied

with the factor 100 to make them visible. The norm ||o|| :== | > 0y;0; is used in the
ij=1

computations. The norm of the stress deviator and the norm of the plastic strain are

given in Fig. 1.49 and Fig. 1.46 respectively. They show realistic plastic deformations

in Q2. The displacement values in z- and y-direction are presented in Fig. 1.47 and Fig.

1.48 respectively. The 0,,, 04, and oy, components of the stress tensor are given in Fig.

1.50 - 1.52.

1.9 FE/BE coupling for thermoelastic contact problems

Extending the ideas of [51], [44] we present a coupled thermoelastic formulation for
contact problems with friction. The elastic material response is modelled with the
boundary element (BE) method, whereas the finite element (FE) description is used
for modeling the temperature field. We use constitutive equations for the normal and
the tangential contact stress in terms of the penalty method, as well as constitutive
equations for the heat flux on the contact boundary. Asin [51] we use the operator split
techniques and present an iterative solution procedure for the coupled problem.
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In many industrial applications as metal forming, grinding and machining the contact
interaction between a tool and a work piece plays a key role. Very often such processes
can not be treated as an isothermic process. The temperature in the tool and the work
piece changes much, which changes the physical properties of the bodies in contact. In
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1 Elastoplastic contact problems. Small deformations

that case thermo-effects can not be neglected and should be included in the simulation,
[33], [44], [51].

In Section 1.9.1 we present the continuous coupled thermo-elastic contact problem with
friction and derive its penalty weak formulation. A penalty method for the mechanical
contact is described in Sections 1.2, 1.3. The heat flow on the contact boundary is
incorporated as in [33]. The elastic material response is modelled with the boundary
element (BE) method, whereas the finite element (FE) method is used for modeling the
temperature field. The first order time derivative of temperature is discretized with finite
differences. Finally, in Section 1.9.2 we decompose the problem into the mechanical and
the thermo-part and give an iterative fix point procedure to solve the coupled problem.
In every iteration an elastic contact problem is solved with BEM under fixed temperature
assumption. The thermo-contribution to the stress tensor is taken to the right hand side
and is incorporated in the BEM formulation with the use of Newton potentials, as it was
done in Section 1.2.2 for plastic terms. Then the temperature distribution is computed
in the changed geometry.

We mention that the plastic material behavior can be easily included in the algorithm
using approaches described in Sections 1.2.1, 1.2.3, 1.2.2.
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1.9 FE/BE coupling for thermoelastic contact problems

1.9.1 Weak formulation

The classical formulation [33], [51] is given by

~1

Dive(u',T") = f,
Tt = AT,

o | | | o in [0, T]x €,
o(u', T = o¢(u’) — aT (1Y), oc(u’) :=C: e(ul),
ol (T%) := (3\ 4+ 2u)a(T" — Tp)1,
u' =’ on [0,T] x I},
t=t, on [0,T] x I},
T =T, on [0,T) x I'%, ,
—kVT! - n' =: ¢ on [0,T] x I'%. |
1 0. TT> T (1 990y
on(uP) = —on(u?) =t on, ]
if [un] = g, then o, <0,
or(u®) = —or(u?) = o7,
if |o7| < pslon|, then ur =0,
if |or| = prlon|, then IN >0 [ur] = —Aor on [0,T] x T'e,
~BxA ~B
—kVTB .nB = 7770 T+770 Ur],
,7B_‘_,7A|N|[ ] ,7B_|_,7A T[ T]
—kNTH - n® = _mb-NHT] + WUT[UTL )
where [u;] = uf —ud,j = N, T,[T] = TP — T4, the symmetric gradient e(u’) :=

Vo = 1/2(Vul + (Vu')?), C is the fourth order elastic Hooke’s tensor, A,y are
Lamé coefficients, « is the coefficient of thermal expansion, Ty is the reference temper-
%, p - density, c - heat capacity, k - heat conductivity, % and 54 - heat
conductances, i - friction coefficient. We write in the sequel t¢ := oint + ore? for

the boundary traction with normal and tangential vectors n and e4.

ature, » =

The classical problem (1.220) yields a weak formulation in the form of a variational
inequality. To avoid this inequality we employ a penalty method for the contact as
described in Section 1.2. Let bodies penetrate each other slightly along the contact
boundary and let us penalize the penetration gy (see Section 1.2 for definition) by

setting the normal stress
1
ON = 8N,
EN

where eyr < 1 is a penalty parameter. The regularized Coulomb’s friction law is given
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1 Elastoplastic contact problems. Small deformations

by
1
oT = —,uf|0/\/|Pi1(—[uT])a
€T
where
sign x lz] > 1,
P =
() { T lz| < 1,

see Section 1.2 for more details.

Since the bodies touch each other in the contact zone, the nonzero heat flux is initiated,
if the bodies have different temperatures. The heat flux should be also proportional to
the normal pressure, which has a micromechanical background, [51]. Furthermore, the
heat flux should be changed by the energy dissipated due to the frictional sliding. We
adopt the constitutive equations for heat flux from [33] and set as already written in
(1.220)

—kVT” -n W‘UN|[T]+7§B+7AUT[HT]— dc
~BzA ~A
e Y .
—kVTA A = —W‘UNHT] + 773 n f_yAUT[UT] =qc;,

where the first term corresponds to the energy interchange due to normal contact and
the second term reflects the heat produced by friction. 72,74 are experimentally defined
material parameters.

The weak formulation of (1.220) is derived in two steps. First we obtain a weak form of
the equilibrium equation and then the a weak form of the heat conduction equation.

Testing the equilibrium equation in (1.220) with a suitable mechanical test function 5’
[51] and integration by parts yields

i:%IB {(C:e(u’),em))a — (6T(T7),e(n'))as — {to(u'), n')p, }
= > {(fi,n")gi+<t§v,n">%}-

i=A,B

(1.221)
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1.9 FE/BE coupling for thermoelastic contact problems

Adopting notations of Section 1.2.2 and proceeding similarly we obtain with X! = T'cUT';

~1

(o), e(m o — (' 0)a
= (C: e(u).e(n)ar — (@ (T).e(n)ar — (F . 1)
= (C: e(ul),e(n)a + (Divle” (T9)], 0')
—{([e™(T] -y, — (F )
= (C: e(w), e(n'))g: + Dive™(T)] — F', )
—(le"(T)] n.m')
= (Su', )y + <N<Div[aT<Ti>J ~ 5,

Therefore the domain weak formulation (1.221) can be rewritten now in terms of a weak
formulation on the boundary: Find u; on X! such that ¥n' on X

> (Su' ) g + (NDiv[e™(TH]),n')y — ([e"(T)] - 1,17,

i=A.B
— (to(w), n')p, = AB<Nf v"7>22-+<th’7>r3V-

1=A,

(1.222)

To obtain the weak formulation for the thermo-part we test the heat conduction equation
in (1.220) with the thermal test function ¢ [33] and obtain

> {(Ti,¢)9i+%(VTi,Vs0i)gi}= > {(qé,s@%—

s o it (g6, ¥ >I‘C} :

The constitutive conditions for the heat flux provide

¥ () + #VT\ Vo) = 3 (g @)

A B4 Al ” (1.223)
+§B A 7 (o], [eDr, + {orlir] {er,.
where o5 @A
{¢} = +7A<p e

Now, the system of weak equations (1.222), (1.223) gives the coupled weak formulation
for thermoelastic frictional contact problem.
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1 Elastoplastic contact problems. Small deformations
1.9.2 Operator splitting, discretization and solution procedure

The basic idea to solve the coupled problem (1.222), (1.223) is to decompose it into a
mechanical part and a thermal part [33], [51]:

1. Assume that the temperature field 7% is known. Find u’ satisfying the mechanical
variational equation (1.222).

2. Assume that the displacement field u’ is known (and therefore 4%, oy and o7).
Find T satisfying the thermal variational equation (1.223).

Applying a backward Euler scheme for the time discretization the equations (1.222),
(1.223) can be rewritten in a semidiscrete form (n =0,1,...)

(S(u)n, n')s + (ND["(T)a)]), ') — ([ (T)0)] -1, 1)y

i=AB o o 1.224
— <tC((Ui)n>7 ni>1“c = i:%B <N'f 7nl>2i + <t§V’ T’Z>FZN ’ ( )
= { (Tn = e, @) (V). w)m} = % (b9,
T s ! () = (wr)u —
o= (D] oD + <<07>n [ At ] | M>FC ’

where the subindex n denotes functions evaluated in the time step ¢,,. Introducing the
fixed point iterative process, marked with the upper index k we end up with the following
algorithm inside each time step.

Set (ul)(r]z = (ui)n—la (Tl)gz = (Ti)n—l
For k=1,2,3...

1. Solve the mechanical problem: Find (u?)k:

n

i§3<5(ui)ﬁ,ni>zi+<N(Div (THEDD),m')y — (o™ (THE] - n,m') g,

= (tel@)) )y, = 3 (NF o)+ (tm)
(1.226)

2. Solve the thermal problem: Find (7%)k:

i AB{( y TZ ’SO)Q + 3 (V(T), VW)W} = 2 {de:¢)n,

ot (ot [ )
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1.9 FE/BE coupling for thermoelastic contact problems

3. Stop, if [[(u')y — (w')y | + [|(T7); — (T")37!|] < TOL,
Otherwise set (u')f*! .= (u)k, (THEFL .= (THE k =k + 1, goto 1.

The problems (1.226), (1.227) can be discretized in space with BEM and FEM, respec-
tively. The problem (1.226) should be also linearized, as explained in Section 1.3. Then
the Newton’s method can be applied to its linearized version.

1.9.3 Numerical simulation

The algorithm discussed in this sections has been implemented to model a thermoelastic
contact problem with friction. We model an elastic punch of dimension 30 x 32 mm?
in potential contact with an elastic foundation of dimension 92 x 60 mm?, a uniform
quadrilateral mesh is chosen for both bodies. We use continuous, piecewise bilinear
approximation for the displacement and continuous piecewise bilinear approximation
for the temperature. For auxiliary variables (tractions on the contact boundary and

internal plastic variables we use interpolation in Gauss quadrature nodes)

We take material data for steel [33]: Youngs’s modulus £ = 206 000 M Pa, Poisson’s
ratio v = 0.3, density p = 7850 kg/m?, thermal expansion coefficient o = 12 x 1075,
heat capacity ¢ = 500 J k¢! K~! and thermal conductivity k¥ = 43 W m~! K1,
thermal contact conductances ¥* = 4% =1 W N~' K~ friction coefficient p; = 0.2.
Displacement is fixed on the lower boundary of the foundation. All boundaries are
thermally insulated, the initial temperature is the reference temperature Ty = 300 K at
all nodes. In figures the punch is pushed with constant displacement vector (0, —1 mm)?
applied at the upper edge of the punch and a tangential cycle loading is applied there
with maximum deviation (—0.199 mm,0)?. The load in normal direction is enforced in
4 steps, whereas each tangent cycle is performed in 64 steps. We perform 10 tangent
cycles. The linear system is solved using the Conjugate Gradient method with the
diagonal preconditioner.

As penalty parameters for contact we choose : e = 1/(2F), ey = 1/(4E).

In figures 1.53 and 1.54 we see the distribution of the strain norm (a), the norm of the
stress deviator (b), the norm of the stress tensor (c), the second diagonal component
of the stress tensor oy, (d), the first component of the displacement vector u, (g), and
the second component of the displacement vector u,, as well as deformed mesh (f). The
figure 1.53 shows the simulation results after applying the full normal load and 5/4th of
the cycle load, whereas the figure 1.54 shows the end results. Our numerical experiment
(pure FE simulations) shows clearly the development of heat near the contact boundary,
especially near the bottom corners of the work tool. In picture 1.54 one can clearly
see the sticking along the bottom edge of the work tool, i.e. the displacements of both
bodies in = direction are equal.
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2 Hypoelasto-viscoplasticity. Large
deformations

In this Chapter we extend the technique of FEM-BEM coupling that was introduced in
Chapter 1 onto large deformations under hypoelasto-viscoplastic material law described
by Hart’s constitutive equations. We start with an introduction to continuum mechan-
ics of large deformations subjected to Hart’s model, see Section 2.2. In Section 2.5
we present numerical procedures based on the boundary element Galerkin method for
hypoelasto-viscoplasticity. In Section 2.6 we present a FEM-BEM coupling procedure
for the thermo-mechanical two-body contact problem. In subsections 2.5.3, 2.6.2 we
present benchmarks for procedures investigated in Sections 2.5, 2.6 respectively.

2.1 The equilibrium equation

We consider a three-dimensional body 2 C R? in a fixed given rectangular cartesian
coordinate system. A material particle of the body in the reference configuration is
assumed to have the coordinates X := (X1, X5, X3)T and coordinates = := (1, 2o, x3)7
in actual (current) configuration. By €; C R? we will denote the volume, that body
occupies at time t. So, 2y = 2. Motion of the body is given by parameterized set of
mappings p(t) : Qy — ;. We assume that for all ¢ € [0, 7] exists ¢ '(t) : Q — Qp and
both ¢(t) and ¢~1(t) are continuous and bijective. ¢, is the identical mapping. We will
write Z(t, X)) for the value of mapping =(t) : Qo — Y; at X € Qq, where Y; := Z(¢)(£),
this set may depend on ¢.

The displacement vector u(t) : Qg — R? is defined as follows

u(t, X):=pt, X) - X. (2.1)
It is clear that V¢ € [0,T] u(t) o ¢~ '(¢) is a mapping ; — R*:
(u(t) o™ (t) () = ult, ¢~ (t.x)) =2 — ¢~ '(t,z) (2.2)

We will write Z(¢, z) for (E(t) o p~(2)) (z).
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2 Hypoelasto-viscoplasticity. Large deformations

Definition 2.1.1.

— Y, we use following notation :

0

=2t X) = Z)(X), VX €Qq,

Et,x) = (Et)oep '(t))(x), Ve
Deriatives:

VE:= 8; = aag;éx), ¥ X €0
= =(t) ot
== v 9 (2(¢) ;’m (t))()’ Vxen
F =V . (2.3)

T

The components of the velocity vector v := (v, v, v3)" are then defined as

! o Y dt ot O ot (24)
We define the symmetric part d(t) : €, — R23 (rate-of-deformation) of the velocity
gradient (rate of deformation) % b
1 (Ov(t,x)  Ov;(t,x)
di' = = ’ I 2.5
72 ( Ox; * ox; (2:5)
and the anti-symmetric part w(t) : @, — R332 of the velocity gradient
1 avl(t,a:) 8vj(t,w)
P - , 2.

where R332 .= {x € R**3| 2;; = —x;; Vi, j, i # j}. In addition to the standard time

asym

derivative f(t, ) := 2LLEL) 4 9 a(tg")'v(t, x) we define the Jaumann derivative (Jaumann

ot
rate) of a symmetric tensor T'(t) : @, — R23 as follows
TijZ: TZJ + (Tijwkj -+ T]kwkl) (27)

For example the Jaumann rate for the Cauchy stress tensor o (t) : €, — R3x> is given
by
0ij= 0y + (OirWrj + 0j5Wki) , (2.8)

where 0;; denotes the material derivative, given by

_ 80ij(t, m) 4 00,-]-(15, 33) "

Oij5 -
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2.1 The equilibrium equation

We assume that the deformation rate is decomposed into an elastic and a non-elastic

part
dij - dfj + dz (210)

The Jaumann rate of the Kirchhoff stress tensor 7(t) : Qo — R2? is related to the

material derivative of the 1% Piola-Kirchhoff stress tensor s(t) : €y — R3*3 (see [4]

Chapter 5), as follows

Ti= $ij + (Oudji + onjdir) — o>, (2.11)
8:@
or in the short form 9
! () YUk
Tij= Sij + Gjikla—xla (2.12)
where
. 1 0, i#7,
Gz('j])gl = 5 (Uil5jk + Uik5jz + Olj(;k,- + Ukjtsli) — U,-ldkj 5,-j = { L 3:? (2,13)

We can write the equilibrium equation of the body in actual configuration in terms of
the Cauchy stress tensor o:

0%5i o =0, (2.14)

—dive = pf <& oz,

where p and f are the density in actual configuration and the body forces respectively.
Using the 1% Piola-Kirchoff stress tensor s(t) : Qg — R3*3:

dp(t, X)\ "
(1, X) = J(1 X)a (1,001, X)) (2AX) (215
0X
in the reference configuration, (2.14) takes an equivalent form in terms of
8sji
i = U, 2.1
dX, + pofi =0 (2.16)

where pg is the density in the reference configuration. It should be noted that due to
the mass conservation law, the density in the reference configuration does not depend
on time (the total mass of the body remains constant with time).

Later we will need the rate variant of (2.16)

8Sﬁ
0X;

+ pofi = 0. (2.17)
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2 Hypoelasto-viscoplasticity. Large deformations

2.2 Hart’s constitutive equations for
hypoelasto-viscoplasticity

According to [4] the constitutive equation for arbitrary hyperelastic-plastic material
admits the following representation: the Jaumann rate of Cauchy stress Sij is a homo-
geneous linear function of the elastic part df; of the deformation rate d;; and under the
assumption of material isotrophy we have

dij = di;+dj, (2.18)
o = Ay + 2ud;; (2.19)
4, = gk<o-7 q)7 ( )
w = 0, ( )
where d;,
spectively, q - inner variables, f;; and g some functions, A and p are Lamé coefficients
from the linear elasticity theory for small deformations.

di; are the elastic and non-elastic parts of the rate-of-deformation (2.5) re-

The material response in dilatation is assumed to be elastic. According to Hart’s model
[30, 32, 16, 39], the nonelastic strain is decomposed into two (time-dependent) compo-
nents .

dy =&, +d7, (2.23)
where €f; is the anelastic rate-of-deformation and dj; is the completely irrecoverable and
path dependent permanent part. The two state variables in the Hart’s model are the
anelastic part 7; and a scalar o™, called hardness, which is similar to an isotropic strain
hardening parameter or current yield stress.
The deviatoric component o’ (¢';; := 0;; — %akk) of the Cauchy stress tensor is decom-
posed into two auxiliary tensors

oy =05+ a/{j. (2.24)

The flow rules in Hart’s model for the strains and strain rates are [16, 39]

et =5 g (2.25)
&P ==—0'" (2.26)

v o(a) 5
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2.2 Hart’s constitutive equations for hypoelasto-viscoplasticity

dm /f

iy = S

(2.27)

where d™, @ d®) 5@ 5() are scalar invariants of the corresponding tensors, defined
by

A = ST, = [, 0 = JEE,

(2.28)
o) .— U,%UI%7 o) .= O-/Zf /lf]
Relationships between scalar invariants are
2
U(a) — gME(CL)’ (2‘29)
3 M+1
e <\[§) (D)™, (2:30)
—1/x
3 a®)
d® = /Z4% | In ’ (2.31)
2 \/gg(«n
o (DN Q(A-3)
d =dp | =) er\er, (2.32)

5 \/gdm)U(*)p(U(*),a(a)), (2.33)

o) ’

B/c(*)
5\ \/g(,(a) /
(o™, o@) = ( ) (2.34)

where M, M, m, X\, dy, o9, dg}), ol , 3,0, R, Q, Tg are scalar parameters. Such that ol
is the reference value of stress hardness 0'( ), T is the reference value of the temperature
T, dgi}) is the reference value of the rate of strain hardness, R is the gas constant, () is

the activation energy for atomic self diffusion, 3 and ¢ are strain hardening parameters.
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2 Hypoelasto-viscoplasticity. Large deformations

2.3 Time integration

Using equations (2.24)-(2.34) one can directly obtain differential equations for f; and
(*)
o

(218): df = di— ¢, (2.35)
. 2
(225),(229): o = Mej, (2.36)
2 a
(2.24): o'l = 0'ij — M. (2.37)

"o d™) g dm ,
T R ()

0 _
d 5 M+1

_ 0 2 r(F\M-1_1f

- o <\/;> (o DyM=15] (2.38)

Starting with (2.23) and using sequently (2.26), (2.31), (2.25), (2.29) we obtain

v . . . d®) a
gij = dij—dij=dj;— @7 i
- 4 —1/A
* /a
Ol [ 7
] ; 5 (@) o
- 1 -1/x
2 (%) 5‘;.
— A —dYy /2 I | — B
3 \/ga(“) €

- —1/A
2 () [p8

= d—d9y /2 | | ——— i (2.39)
3 2 Me(® 3

Starting with (2.33) and using (2.31), (2.32), (2.34), (2.29) we obtain
—1/A

ot (o) o)

5@ — g®e® [ 1n

3 5(a
5(j()
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2.3 Time integration

—1/A Blo*)
() o) \/gMg(a) Q(i-1) (5 " e\
= e [ ) (M) A ( ) (—).(2.40)

NEYSED a o) \o?

s

Remark 2.3.1. As one can see the equations (2.39), (2.40) have singularity in right-hand

side as o) = \/ga(“) (analog to plastic flow at the yield stress. In region o) ~ \/ga(“)

the equation 2.31 predicts large values of dP and consequently very small time steps are
required in a numerical computational process to capture this phenomena. For the sake
of computational efficiency we impose in that region the condition ¢*) = \/gd(“). Using
this condition we obtain

(a) d(n) / (@

Oij Qij

T 1+ 0M(0™, 0@) /M

d® (2.41)

Remark 2.3.2. As one can see the equations (2.39), (2.40) have singularity in right-hand
side as ¢(® = 0. Hence, up to given tolerance we suppose material to be described by
linear elastic equations.

Taking into account remarks 2.3.1 and 2.3.2 we obtain following regularization procedure
for prescribed tolerance 1 > o > 0, that should be close to 1 and 1 > g9 > 0, that should
be close to 0:

given o) and o(@

No
—_— O'(a) < QO
>~ O'(a) > QO'(*)
£
linear elastic -
2.39), (2.40 1se lace (2.31) with (2.41
use ), ( ) strain-stress relation replace ( ) with ( )

Figure 2.1: Flow chart. Hart’s model regularization
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2 Hypoelasto-viscoplasticity. Large deformations

2.4 Updated Lagrange approach

We consider the body Q C R d=2.,3 that occupies a domain €, C R? at time t. Our
objective is the deformation of the body due to applied forces and displacements with
respect to the real time ¢. Using the Updated Langrange Approach let §2; be the reference
configuration for the time interval [t + At].

The first assumption made here is that the deformations are nearly incompressible, i.e.

8vi ~ avi
ox; 0 or ox;

deformations (d") preserve the volume by definition, see (2.22) and they are much lager

< 1. This assumption is quite reasonable in our situation since non-elastic

then the elastic ones (d°). Hence, the volume deformation is neglectable with respect
to total one. Thus the Jacobian J of the deformation gradient Fj; = g;@_
J = Jtrd (see [7] Section 3.14) and J(t, X)|;—o = 1. Thus the deformation gradient

defines an orthogonal matrix. Under this assumption one sees

is one, while

* * a
7,;20,; since J := deta—; =1 and 75 = Joy;. (2.42)

The Green - St. Venant strain tensor E(t) : Qg — R3*? with

B =35 <0Xj Tax, T ax, an) ’ (2.43)

the rate of (2.43) is related to the rate-of-deformation (2.5) and deformation gradient
F;; as follows (see [4], p. 96)

. 8$k 8xl
E,;=d —. 2.44
7T MaX, 90X, (2.44)

Thus, in the updated Lagrangian approach it holds
Ey; = dj; at the origin of the time interval [t,t + At]. (2.45)

Using (2.45), (2.42) and (2.20) we obtain for the origin of the time interval [t,¢ + At]

Ti= MBS0 + 21, (2.46)
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2.5 A boundary element method for hypoelasto-viscoplasticity

2.5 A boundary element method for
hypoelasto-viscoplasticity

In this chapter we use Hart’s modell of viscoplasticity and investigate a boundary element
solution procedure. Our Galerkin approach extends the collocation procedure in [17, 39].
We describe in detail the nested loops which are necessary for our BEM implementation
for details see [25]. In section 2.5.1 we present a Galerkin boundary element method for
viscoplasticity and in section 2.5.3 benchmark simulations.

2.5.1 Integral operators

Following [17] we present a boundary element formulation for viscoplastic problems with
large deformations and large strains. In order to derive a representation formula for the
velocities we use the fundamental solution of the Lamé operator G. Assuming that the
deformation is almost incompressible then the Zaremba-Jaumann time derivative of the
Cauchy stress tensor

=6 -—w-0+0- w (2.47)

and of the Kirchhoff stress tensor

* ov
=& d'+d-o)-0-— 2.48
T=5+ (o +d-o)—0o 5 (2.48)
satisfy the relation (see [18, 39, 52|)
0. (2.49)
Hence, there holds (see Section 2.4)
T C:d° (2.50)

with the elastic part d° of the symmetric strain rate tensor.

We multiply the local equilibrium (2.17) in the rate formulation with the Greens function
G and integrate by parts yielding

/ (V54 pof) - G d
Qo

with

o

G- (V8)=V(5:G)— (Vog):s.
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2 Hypoelasto-viscoplasticity. Large deformations
Integrating by parts we obtain

0 = / G- Ao+ [ G-(v -8 dn
Qo

Qo

_ / p0g~fdQ+/ no~:s-gdr—/ (V oG) : § Q2
Qo Qo Qo

0
= / p0g~fdQ-|—/ f-gdf—/ (%Og>:éd97
Qo 00 Qo

with f := ng - §&. The relation (2.48) can be rewritten with a suitable tensor of forth

(*)
order G as
* 51 8 ov T
T=35 \ox )

()
For G there holds
(x) ()
G:Gabcd €, ®eb®ec®ed (251)
with
(*) 1
Gabed:= §(Uadébc + Uac(sbd + Udbéca + O-cbéda) - Uadécb- (252>

Thus we obtain

0 = / pog-fdQ+/ f-gdr—/ (V 0G) 7 dQ +
Qo 00 Qo
o (%)
/ (¥ 6G) : (G: (Vo)T) da.
Qo

Using (2.50) the third integral in the above equation can be written as follows:

/(%og)n*- a0 = / Er dQ:/ E:C . d°dQ
Q0 Qo QO

5;C;(d—d")d9:/ S (d—d") dQ

0 Qo

Z:ddQ—/ > d" df

0 Qo

Z:(V'v)TdQ—/ 2uE : d" dQ
Qo

(Vo'v):ZdQ—/ 20(V oG) : d" dQ.

Qo

0

Il
S— — 5 o

0
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2.5 A boundary element method for hypoelasto-viscoplasticity

Here we have used that the double dot product of a symmetric tensor with the antisym-
metric part of a tensor as well as the double dot product of a deviator with the unit
tensor vanish. Using that the reference configuration and the actual one agree, hence

%: V holds, we obtain by partial integration

/ (V oG) 7 dQ = / (Vov):ZdQ—/ 2(V oG) : d”
Qo Qo Qo

:/ n0-2~vdF—/ v (V-5)dQ—
890 QO
/2#(%09):dnd§2
Qo

:/ Tnyg.fudFJr/ v- FdQ -
8Q0 QO

/ 20(V 0G) : d dQ.
Qo

If one inserts F by 0(X,Y)e, with a = 1,2,3 and adds the resulting three equations

one obtains for v(X), X € Qg the following representation formula

v(X) = G(X,Y) - H(Y)dly — T.,G(X,Y) - v(Y) dly +
aﬂo aQ0

/ W G(X.Y)- F(Y) dy + / WE(X.Y) : d(Y) dQy +
Qo Qo

+ ) E(X,Y): {EG) (Y): (V'U)T(Y)] dQy,

or

v(X) = G(X,Y) 1Y) dly — T,,G(X,Y) - v(Y)dl +

Qo Qo
| mox. ) fv) oy + [ o[V o0X. Y] () dey +
+ /Q [% og(X,Y)} : [?(*;3 (Y) (Vv)T(Y)} dQy.

The last two domain integrals we again integrate by parts and obtain

/QM[%OQ}:d"dgh—/ 2ug-(%-d")dﬂ+/ 2umng-d" -G drl,
QO Qo

2191}

or, respectively,
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2 Hypoelasto-viscoplasticity. Large deformations

Setting

S C
|
+
DO
=
3
ISH
_I_
3
ax
4
=
A

we finally obtain for v(X), X € Qq

v(X) = G(X,Y) t(Y)dly — T.,G(X,Y) - v(Y)dly +
690 690

/ P G(X.Y) - F(Y) dy. (2.53)

In the following we use various boundary integral operators acting on the vector valued
functions e.g. the single layer potential

VHX):= [ G(X,Y) -t(Y)dly, (2.54)

the double layer potential

TG (X,)Y) u(Y)dl'y (2.55)
9%
the adjoint double layer potential *
Kt(X):=1T,, G(X,)Y) -t(Y)dl'y, X € 0% (2.56)
9%
and the hyper singular operator

Qo

as well as the Newton potential
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2.5 A boundary element method for hypoelasto-viscoplasticity

Nof(X):= | G(X.,Y)-f(Y)dY. (2.58)

Qo
With the integral operators we can now write for v(X), X € Qq:

V]

v(X) = VE(X) — Kv(X) + Nof(X). (2.59)

For X — 0€)y there holds together with the jump relations
v 1 o
v(X) = Vi(X) - Kv(X) + 5 o(X) + Nof(X), X € 0. (2.60)

We derive a second boundary integral equation by applying the boundary traction op-
erator 1" on (2.59):

To(X) = K'HX) +Wo(X)+ - HX)+ N (X)), X €00, (2.61)

N —

In matrix-vector notation (2.60), (2.61) become

v [ K+ % V v n NO}'
Tv ) W K +3 i Mf |
From the first equation we obtain for &:

o 1 o
t=V(K + 5o~V NS

and from the second equation Tv

1. y
Tv:Wv+(K’+§)t+N1f.

If one inserts £ of the first equation into (2.61), there holds

1 1 1 y y
Tv=Wuv+ (K'+ §)V—1(K +5 o — (K’ + 5)V—lNof + N, f,

with the Poincaré-Steklov operator

S=W+(K'+ %)V‘I(K + %) L [HY2(090)]" — [H2(090)]

we can write

1 ~ “
Tv = Sv— (K + §)V_1Nof + N f
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2 Hypoelasto-viscoplasticity. Large deformations

or

1 . o
Sv=Tv+ (K/ + §)V_1N0f — le

Now we assume

1%
I4.

Tv =ng-$ (2.62)

. 2
and multiply the equation (2.62) with a test function n € [H 1/ 2(8Q0N)] , and integrate

over 0€), and assume equality in (2.62), we obtain

1 . .
<S'U, 77)8901\, = <§7 77)8901\, + <(K/ + §)V 1N0f7 "7>890N - <N1f7 "7>890N

. 2
for all 5 € [HW(@QON)] .
. 2
(*;+)aq,, denotes the duality pairing between the trace space [H 1/ 2(8Q0N)} and the
dual space [H~"/ 2(0QON)}2, which is defined by
. 2
(v, o, = / v(@)u(@)dr, Yo e [[2(00,)| we [H2(00%,)]".
0o+

Now we look for v € [HY2(9)]” with

v =

-

for Y € 0Q,,
for Y € 0Q,.

> S

Let v € [H 1/ 2(8(20)}2 be an arbitrary but fixed extension of the Dirichlet data v €
[H2(990,)]".

. 2
Set v:=v—v€ [Hl/z(ﬁQOt)} .
Then the weak formulation of our problem reads:

Let © € [H1/2(a(20)}2, te [H‘l/z(ﬁQOt)}z and f € [151_1(90)]2 be given.

~ 2 - 2
find v € [Hlﬂ(agm)] ,such that for all 7 € [Hlﬂ(agzm)}

N , 1 _ N N
<SQ> n)@ﬂoN = <t — 50+ (K + i)v 1N0f - N1f> 77>8QON' (263)

Note that if the Dirichlet data are given than the coresponding rate of traction ¢ on the
whole boundary can be determined by solving the Dirichlet boundary value problem:
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2.5 A boundary element method for hypoelasto-viscoplasticity

A ~ 2
Let v € [H1/2(8Q0)}2 and f € [H‘l(QO)] be given.
Find ¢ € [H-/2(90)]", such that for all ¢ € [H=1/2(90)]

1 .

50, %) — (Nof, ). (2.64)

(Vi) = (K + 5

2.5.2 Discretization

Now we take a uniform discretization T, of the 2-dimensional domain €2y, consisting of
squares with maximal side-length h. Let the partitions 7,” and 7,V of the boundaries
0, 0, be induced by Tj. If one chooses finite dimensional subspaces of test and
trial functions

« H,'” c [H2(00)]

_1/ 2= {¢h € [La(0)] ‘ Ve € Tt 4,|enan, vector valued, piecewise constantl} ,

« H” C [H'2(89)]"

H}1L/2 { n, € [Co(aﬁo ‘ Ve € Tyt mylenon, vector valued, piecewise linear” }

« H'C [ﬁ[‘l(Qo)r

= {th € [La(20)] ‘ Ve € Ty @ ¢,|. vector valued, piecewise linearg} ,

1/2 —1/ 12 [ e 2 —1/2
and if one denotes with H;, and H ;” the boundary H,; H'Y2(0Q,)| andH, ""N
[H=12(09 N)} respectlvely, then th Galerkin problem reads:

Let v, € Hh/z, ;5h ceHy 1/2 and f, € H; ! be given.

1On every subinterval 7 from the discretization 7, of boundary Qg * : 1,|, constant.

20n every subinterval 7 from the discretization 7, of boundary 9Qq : n,,|, linear.

3In every finite element v from the discretization Tj : ¢, bilinear (in quadrilateral) or linear (in
triangle)
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2 Hypoelasto-viscoplasticity. Large deformations

Find v, € H}Vﬂh, such that for all n,, € H}Vﬂh

. 1 .
(v, mh)a0,,, = (En = 5oy, + (K" + 5)V "Nof 1 — Nufns 1) oo,

Afterwards the following discrete problem must be solved:

Let v, € H}/Q and f, € H; ' be given.

Find #, € H, /%, such that for all v, € H, '/

Vh i) = (K + S)on ) — (NoFio ).

2.5.3 Benchmarks

(2.65)

(2.66)

We consider a quadratic plate which is in plane strain and has side length 2 units, which

is fixed on the top and a constant velocity v, = 107%in/s is applied at its lower side in the

whole time interval considered. During the deformation the lower edge can not become

smaller in horizontal direction. It can be shown that in this example all components

of the given boundary traction rate ¢ remain zero during the whole deformation. A

viscoplastic material law (Hart’s modell) is assumed. The following initial values and
material parameters are used for steel at a temperature at 400°C = 673K. The linear

system within each fix point step is solved using the Conjugate Gradient method with

the diagonal preconditioner. In average we need 2-3 fix point iterations pro time step.

material parameter value unit
A 0.15 -
M 7.8 -
m ) -
M 0.91- 104 Pa
E 0.168 - 1012 Pa
v 0.298 -
o 3.15 s7!
ol 0.689 - 108 Pa
A 1.841-10"% Pa~!
ox 0.689 - 10® Pa
Tg 673 K
I} 0.123 - 10%° Pa
) 1.33 -

Table 2.1: Material data

Numerical results of the simulations using BE and FE methods are depicted in the
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2.5 A boundary element method for hypoelasto-viscoplasticity

Figures 2.7 and 2.6. The BEM results correspond to the 30 sec of real time simulation,
whereas FEM for 50 sec.

The domain discretization is presented in the figures 2.7.e and 2.6.e The BE discretization
is done by the segmentation of the boundary 02 16-4 intervals. The FE discretization is
done by the decomposition of the domain €2 in 16-16 quadrilaterals. That corresponds to
30 BEM- und 255 FEM- degrees of freedom.. On the figures 2.7.a, 2.7.b and 2.6.a, 2.6.b
are depicted the coefficients d;!, (s~") of the rate-of-deformations tensor djl,(s~") and o,
of the Cauchy stress tensor o. One can clearly see that the o, reaches its maximum
value at the corners of the plate. Consequently the non-elastic zone appears at corners
and moved the center of the plate. This can be explained because of the jump of the
boundary conditions at the corners form Dirichlet to Neumann. The components of the
displacement in z- respectively y-direction at the end of the simulation are represented
on the figures 2.7.a, 2.7.b for BEM and 2.6.a, 2.6.b for FEM. They qualitatively comply
with expectations.The bottom edge of the plate is fixed in - directionand the is shifted
in y- direction by 0.03 units for BEM and by 0.05 units for FEM. These values agree
with the given boundary data. On the distribution of the displacements on can see that
the plate is tapered to the center in the horizontal direction.

Stress xx Stress yy

350000 T T : : : . . . . 400000 T T T T T T T T T
FEM —— FEM ——
BEM BEM

350000

300000 [
300000
250000 [

250000
200000 [
200000

Stress_yy

Stress_xx

150000 [
150000

100000 [ — -
100000 [ /

50000 [~ - 1 50000

ol=" I I I 1 1 1 1 1 o 2 I I I I I 1 1 1
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time Time

Figure 2.2: FEM-BEM comparison (0,,)  Figure 2.3: FEM-BEM comparison (o)

Stress deviator Stress deviator
50000 T T T T T T T T T 50000

2 =
g

45000 45000

32

40000 40000

35000 [ 35000 [

30000 30000

norm of Stress

25000 | 25000

viator

20000 20000

deviator norm of Stress

15000 15000

10000 | 7 10000 |/

5000 |-/ 5000 |-/

L L L L L L L L ol L L L L L L L L L
0 5 10 15 20 25 30 35 40 45 50 0 5 10 15 20 25 30 35 40 45 50
Time Time

0

Figure 2.4: Convergence of BEM approach Figure 2.5: Convergence of FEM approach
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Figure 2.6: FEM (after 50 second simulation )
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Figure 2.7: BEM (after 30 second simulation )

2.5.4 Implementation

The figure 2.8 shows our boundary element program, realized within the program pack-
age maiprogs

The BEM program consists of two nested loops. The outer loop corresponds to the
time discretization and stops when the final time of simulation is obtained. Within

the interior loop ‘v is computed iteratively. The linear system (2.65) is solved using
the Conjugate Gradient method yielding tvggl). Since for the discrete Poincré-Steklov
operator the matrix V! was already used and therefore stored, it is now in our disposal.

In order to compute iggl) we therefore do not need to solve system (2.66) but only to
perform a matrix vector multiplication. When tvggvl) and iggrl) are known t'ng) can be

computed using the representation formula (2.53). With known tvgﬂ) we can compute
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2 Hypoelasto-viscoplasticity. Large deformations

o (k+1)
s

documented. After the inner loop was completed and ‘v is known then the actual state

as shown in the flow chart. With this new right hand side one restarts the loop as

at time step t,4q i.e. {Op41,d; 1,60 1,005 1} in B, is computed by local integration of

(*)
the constitutive equations. Afterwards G; and ug which are used for the right hand
side and the Galerkin system and for the Lagrangian update procedure respectively.
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Compute

v (k 1) 5 o n [} (
Fi l=pf -2 (V-d")-V-[G: (Vo lol)
|
Compute
FED —f Sp 4 (K + LV INOfQIZ+1 — Nljféi“)
|
SOIVG <SQ(‘§?):_ )777>BQON <F (k+1)777>BQON
(k+1) v (k+1)
+1 N +1
00, = VT Vo,
|
(k+1) (k+1)
Solve (VE 9 whan, = (K + 5o 95 4hhan, — (NoFar t)an
I
3 (k+1)
00

Compute with the representation formula
t . (k+1)
V9,

!

(k+1)

Ht'UQO

Wi < TOL
Yes
Compute

t+At ~a
07 EQ@?

l

Perform Lagrangian Update
Quyar = Qo + g,

t+At t+At

07

t+At

t+At qn

Set
t=1t+ AL

l

t="T

No Yes

Set
k=k+1

Figure 2.8: Flow chart. BEM discretization
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2 Hypoelasto-viscoplasticity. Large deformations

2.5.5 Discretization with finite elements

Set t =ty and

initialize viscoplastic variables

et =0, to* = 17 ksi, 'd" = 0

Compute

F = fo, poFmdt fr Eemdl+ [, (Von): C: idp, dO+
o (o] (o] (*) o
fQO (Von):C: (Vo 'log)dd— fQO (V on) : 'Gq,: (V o tog,) d

|

Compute from ‘o o,
(%)
‘G,

l

Solve

(o] o o] (*) [}
fQo (Von):C: (Vo 'lyg,)d— fQo (Vom) : 'Goy: (Vo lvg,) d2 ="F
U
g
!
Compute
Vo, = ty + tQQO

l

t

Compute
t+AL . t+At t+AL t+At t+At Jn
tolu g, TP o g, TR e, TR0y, d'
No Set
t=t+ At

Figure 2.9: Flow chart. FEM discretization
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2.6 Boundary element and finite element procedures for
metal chipping

We present finite element /boundary element procedure for vicoplastic-thermomechanical
problems and coupled thermoelastic formulation for contact problems. We consider a
2-body problem with a linear elastic worktool and viscoplastic workpiece. We allow large
deformations and consider an initial boundary value problem for velocity and tempera-
ture. The viscoplastic material law under consideration is Hart’s modell. The mechanical
equation and the heat conduction equation are solved by staggered iteration. We dis-
cretize the mechanical contact equation by finite elements for the viscoplastic material
and by boundary elements for the elastic worktool. The heat conduction equation is
discretized using backward Fuler in time and finite elements in space. Time stepping
procedure together with Lagrangian update is performed which takes care of the change
of configuration.

2.6.1 Viscoplastic thermomechanical coupling

We consider the following initial boundary value problem for velocity and temperature.
Let u'(0, X) denote the initial displacement, v*(0, X) the initial velocity and ©¢(0, X)
the initial temperature (i=1,2). Then we look for v? ¢ HY(QP), v4 € HY3(I'{ =
4, Urd), © = (08,64 e HY(Q, .= (28, 04)),0<t<T

/(V'UB) :C: (Vn?) - /(V'UB) ZE*(})T(O'B) S (VnP) + <S'UA,77A>FtA

o7 QP
+ <ic(vavA)7nBA>F?C - /dn :C: VT]B = 0,
op

(2.67)

/ {%_?19 4 wevﬁ} ~ M3 / te - nAQABYAE _ / py to - vz | (1107 +720%) =0
Q Iz, I

(2.68)
with n? in QF, nt on T4, ¥ in Q, » = ﬁ, p - density, ¢ - heat capacity, k - heat

.ot
conductivity. In the contact term on I'Z, to = ~—%v denotes the rate of the boundary

U

traction. d" describes the viscoplasticity, s is the friction coefficient and the boundary
integral operator S is the Steklov-Poincare operator of linear elasticity. With ©47 and
NP we denote the jump of the temperature and displacement between the two bodies

respectively. m” is the exterior for Q.
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2 Hypoelasto-viscoplasticity. Large deformations

Next we discretize the system (2.67)-(2.68) by using finite elements and boundary ele-
ments in space and finite differences in time. We discretize the velocity in the work peace
with finite elements and in the work tool with boundary elements whereas the temper-
ature is in both bodies discretized by finite elements. At each time step k =1,..., N
we look for a continuous piecewise linear function vy}, in Qf and a continuous piece-
wise linear function vi, on I iifl and continuous piecewise linear function Oy in €2, |

satisfying

(*)
[ oty ni) = [ (90h) G Mlonn) s (V) + (Suhnit)y,

B OB
th—1 t_1
+ <tckh(’v£h7vﬁh)7an>FtB o= / d,(:_)lh . C:Vn?,
k—1 b
lp—1
(2.69)
Orn — Ok

T e B O Ry LY
Q. Pi-1c (2.70)

N / Hstou n ‘v?}i (%195 * 7219?) (backward Euler)

FB
tp_1C

with test functions nf in Qifl ng‘ on Fiq and ¥, in €, _,. We solve the above

discretization (2.69), (2.70) with a staggered iteration as follows (see also [16]):

Start with «*(0, X), v*(0, X), ©(0, X) and initial configuration Qf, for k = 1,..., N
do :

1. use (2.69) tocompute wvp, in Qiil,v,?h on Fail,
use (2.70) to compute Oy in Qtiq Ul

th—1"

2. apply the Lagrangian update, ut, := vi, At.

Q; | map Qf by setting @i = i _, + x},,
A - A with A — pA A
[, map into I} with @&y’ = @i | + uj,.

3. update oj_; using Hart’s model constitutive equations:

VE ., O B
Opan 7 Opp

4. return to 1.
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2.6 Boundary element and finite element procedures for metal chipping

viscoplastic

B
th work piece

Figure 2.10: Model problem

In order to solve the contact problem (normal/tangential parts) we apply a penalty
method introduced in Section 1.2 and linearized in Section 1.3 with penalty parameters
er, ea and a gap function Gap - gy.

¢ 1 .
—/[vkh]T[nh]T stick
€T

FB

- 1
(bunc (Vi3 035): ]y = — / il 5[] + (2.71)
E 2 [toulvindr st
EN
\ rg

o] = [Ornln, 0> g,
BN 07 if 0 < Jk—1-

Hence, the discrete solution of problem ( 2.69, 2.70) depends on the discretization pa-
rameters h, At, ey, er. The optimal choice for the parameters is an open question,
an indication for it can only be obtained by a series of numerical simulation. These
simulations are obtained by inserting the expression (2.71) into the discretization (2.69)

, (x)
yields a linear system for v%,. Note that the term G 7?(o%_15) is explicitly computed
with Hart’s modell at the former time step.

Next, we introduce Hart’s modell with viscoplastic interior variables [25].
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2 Hypoelasto-viscoplasticity. Large deformations

e [t uses the strain rate d,(:_)l and the velocity gradient d,(:) =
Vsym'vk — d](gn_)l

e Hart’s modell describes hypoelastic material law o:= C : d,(f) =
C: (V¥ —d\")) = o), = o,

™ *
ElS]
|

~1/A

(n) /3y Tk €,

d,’, \/;)\k_l |i1n<\/§M”€(I:1H):| T€e T

—1/)\ 6/0'*,

5 = ot AW [ (g )‘5 NEIE A
g ko171 VIMIEL | 7

Tk
A 3\ 2 2
n 0 a — a

where

= e}, 0p

" 1
NCREENC = @ R
k=1 sT 0’; P R @k—l @B

On the other hand the linear elastic work tool is modelled wit BEM using the boundary
integral operators as in 1.2.2.

Substituting linearized version of (2.71) in (2.69) we obtain linear system for v, .

The applicability of our approach is demonstrated in the following by several benchmark
simulations.

2.6.2 Benchmarks

Example 1. Tensile test: 1-Body

B _ B B
O, Ty = Xy + U Q,

7N

l Updated
Lagrange
Q

R ANy

k

old configuration
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2.6 Boundary element and finite element procedures for metal chipping

Stress deviator / FEM with update
T T T

uuuuuuu

0 L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000
Time

Comparison of interface and contact modeling for viscoplastic material. We use both
FEM and BEM (but without Lagrangian update) [21].

1 (FEM 1 (FEM
Q ( ) @_g Q (M )
- M =
3
ﬁ interface boundary contact boundgry
c °
o g -
2 [Se] 2
Q" (BEM) 58 | |Q (BEM)
o I C} ™ o lave BEM (S) - master - FEM (M)

Example 2. Metal chipping In this section we consider an application of the
FEM/BEM coupling on the metal chipping processes. Each body is discretized with
finite elements: rectangles in work piece and triangles in work tool. We use Finite
Element Method for approximating the displacement field with continuous piecewise bi-
linear shape functions in work piece and Boundary Element method for approximating
the displacement field with continuous piecewise linear shape functions on the boundary
of the work tool. This choice is quite reasonable, since the work tool in practice under-
goes quite small deformations with respect to work piece. Therefore, we choose BEM
for describing nearly linear deformations in work tool. For reasons of simplicity we use
FE approach for the temperature field and approximate it with piecewise bilinear/linear
functions in the work piece/tool respectively. We should mention that a replacement
of a discretization procedure for temperaure could be done in the same manner like for
mechanical part. The Figure 2.10 shows the model problem geometry. We introduce
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2 Hypoelasto-viscoplasticity. Large deformations

a prescribed line, that goes through the work piece, in order to simulate the material
separation in work piece along the crack line, that is not known a-priori and actually
has to be obtained. We will call the prescribed line crack line. Introducing the crack
line we overcome a difficulty with determining the actual propagation path of the crack.
But it is quite natural to expect that crack will propagate along the horizontal line in
case of horizontally moving work tool from the right to the left (see Figure 2.10). This
approach can be considered as the zero order approximation to the real case. The linear
system within each fix point step is solved using the Conjugate Gradient method with
the diagonal preconditioner. In average we need 2-3 fix point iterations pro time step.

On the Figure 2.11(j) depicted the initial mesh. The Cartesian norm of stress devia-
3

tor (||deve] = (devo)?;) in both bodies is presented on Figure 2.11(a)-(i) for
\/ Gi=1

different time-steps..
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2.6 Boundary element and finite element procedures for metal chipping

4

(2)20 time-steps

0.4190E+C
0.3928E+C
0.3666E+C
0.3404E+C
0.3142E+C
0.2880E+C
0.2619E+C
0.2357E+C
0.2095E+C
0.1833E+C
0.1571E+C
0.1309E+C
0.1047E+C
0.7856E+C
0.5237E+C
0.2619E+C
0.0000E+C

W .

0.9745E+C
0.9136E+C
0.8527E+C
0.7918E+C
0.7309E+C
0.6700E+C
0.6091E+C
0.5482E+C
0.4873E+C
0.4263E+C
0.3654E+C
0.3045E+C
0.2436E+C
0.1827E+C
0.1218E+C
0.6091E+C
0.0000E+C

(¢)60 time-steps

0.1236E+C
0.1159E+C
0.1082E+C
0.1005E+C
0.9273E+C
0.8500E+C
0.7727E+C
0.6954E+C
0.6182E+C
0.5409E+C
0.4636E+C
0.3864E+C
0.3091E+C
0.2318E+C
0.1545E+C
0.7727E+C
0.0000E+C

=

=
(e)100 time-steps

0.1509E+0
0.1414E+0
0.1320E+0
0.1226E+0
0.1131E+0
0.1037E+0
0.9429E+0
0.8486E+0
0.7543E+0
0.6600E+0
0.5657E+0
0.4714E+0
0.3771E+0
0.2829E+0
0.1886E+0
0.9429E+0
0.0000E+0

(g)140 time-steps

0.1592E+C
0.1492E+C
0.1393E+C
0.1293E+C
0.1194E+C
0.1094E+C
0.9950E+C
0.8955E+C
0.7960E+C
0.6965E+C
0.5970E+C
0.4975E+C
0.3980E+C
0.2985E+C
0.1990E+C
0.9950E+C
0.0000E+C

-

(1)180 time-steps

0.7683E+(C
0.7202E+C
0.6722E+C
0.6242E+C
0.5762E+C
0.5282E+C
0.4802E+C
0.4321E+C
0.3841E+C
0.3361E+C
. 0.2881E+C
0.2401E+C
0.1921E+C
0.1440E+C
0.9603E+C
0.4802E+C

(b)40 time-steps

0.1111E+C
0.1041E+C
0.9720E+C
0.9026E+C
0.8331E+C
0.7637E+C
0.6943E+C
0.6249E+C
0.5554E+C
l 0.4860E+C
0.4166E+C
0.3471E+C
0.2777E+C
0.2083E+C
0.1389E+C
0.6943E+C
0.0000E+C

(d)80 time-steps

0.1365E+0
0.1280E+0
0.1195E+0Q
0.1109E+0Q
0.1024E+0Q
0.9386E+0
0.8533E+0
0.7680E+0
0.6826E+0
0.5973E+0Q
0.5120E+0Q
0.4266E+0
0.3413E+0
0.2560E+0
0.1707E+Q
0.8533E+0
0.0000E+0

(£)120 time-steps

r A

(h)160 time-steps

0.1643E+C
0.1540E+C
0.1437E+C
0.1335E+C
0.1232E+C
0.1129E+C
0.1027E+C
0.9240E+C
0.8214E+C
0.7187E+(C
0.6160E+C
0.5134E+C
0.4107E+C
0.3080E+C
0.2053E+C
0.1027E+C
0.0000E+C

(j)Discretized initial configura-

tion

Figure 2.11: Metal chipping
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3 Appendix

3.1 Implementation

In this section we present some tools necessary for the implementation of numerical
methods presented in this thesis. Implementation techniques of Boundary and Volume
Integral Operators needed for BEM for elastoplastic 2-body contact Section 1.2.2 dis-
cussed in Section 3.1.1. In Section 3.1.2 we explain the computation of stiffness matrixes
for hypoelasto-viscoplasticity under Hart’s model using software package maiprogs. The
implementation is done by the author of this thesis as an internal library of software
package maiprogs [38, 36, 37]. If you have an original version of the package you can
find the latest documentation in the subdirectory doku.

3.1.1 Boundary operators and volume potentials

We consider an elastoplatic body occupying a Lipschitz domain Q C R?, d = 2,3 with
boundary I' := 0f). If the body is in equilibrium, then for all x € €2 the displacement
vector and the stress tensor at x are uniquely determined by displacements and tractions
on the boundary I', body forces and plastic strains in the domain €2. These relations are
given by mean of boundary integral operators and Newton volume potentials as follows
(for convenience we present componentwise representation).

wo) = [uiennt) = [enuo+ [ enn

" / 6%, 1) (9) (3.1)
oule) = / s )pely) — / Pla, y)us(y) + / S 9)bu(y)

n / 5l ) () + Firleh) (3.2)
f,-j(egj) = —ﬁ[%?jjt(l—élu)eéij] (3.3)

Here and later on the summation is applied with respect to repeated index. Indexes i ,
J» k, L runs from 1 to 3 in 3D and take values 1 and 2 in 2D. The kernels p};, uf;, 67,
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3 Appendix

ur., ., oF,, are defined in next section. e := &%, + €%, + €%, in 3D case and plain strain
ijk> Y ijkl 11 22 33
case in 2D.

Definition of kernels

Definition 3.1.1. Kernel uj; corresponds to the Single Layer Potential (V);(r) =
Jug(z,y)¢;(y) dUy, where v € H™Y(T'), z € T C R? and to the Newton potential
r

(Now)i(x) = [ ufj(z, y)v;(y) dy, where b € HY(Q), 2 € T C R?
Q

) __ 1 s @i =y (s — )
uij(xvy) T 167?(1—V)G|!L'—y| {(3 47/)62] + |:1:—y|2 3D>
: _ 1 3 s (@) — )
ug(r,y) = ST = )G {(3 4v)in|x — y|d; Pa— 2D.

Definition 3.1.2. Kernel pj; corresponds to the Double Layer Potential (K1);(z) =
I 05;(2, 9)5(y) ATy, where p € HY/*(T), z € T C R?,
r

) _ 1 o o g\ T v —y) | (@ — g,
Pi(T:y) = dar(l —v)|x —yl® {{(1 )0+ |z =yl } |z —y|

L1 gy gy — (5 — ys)n
(1—2) o .

Recall that pji(z,y) = (T,G(x,y))" with the fundamential solution G' of the Lame
operator. Where oo = 2,1, 3 = 3, 2 for three- two-dimensional plane strain, respectively.

Definition 3.1.3. Kernel Ujki

. 1 Tk — Yk T —Yj Ti — Yi
0T, y) = 1—2v)(——0;; + Opi — ———0i
@ Y) = T e =gl 0 2 Ty ey g

i 6(1}' —yi)(w; — ?/33(% — Ur) 1,
|z =y

where a = 2,1, f = 3,2 for three- two-dimensional plane strain, respectively.

Hence, Definition 3.1.3 in 2D gives

. 1 0 0 0
%’k(%y) 747T(1 — V){(l - 2’/)(—8—% log |z — y|dr; — 8—% log |z — y|d;, + —8% log |z — yldi;)
O [ (@i —yi)(x; —y) 9 9
+ — 0= lo —y| —djr=—10 —
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3.1 Implementation

1 ) 9

B m{—Q(l N V)(ﬁ—y] log [z — y|ok: + o log |z — y|dk)

1—2v)—1 — ;) + — 5D,
. V>8yk o8lr = yldy) + Y |z —y|? J

Remark 3.1.1. In 3D o*

k(T y) = 05, (7, y). But not in 2D plain strain configuration. If

the trace of nonelastic part of strain equals zero then:

Ar(1 — v)|z — y|?

Tiri(T,y) = oG, y) = Ojk- (3.4)

or
Ak * 2V(xk _yk)
Uz‘jk(xa y) = Uijk(xa y) — ar(1— )|z — y‘25ij' (3.5)
then
n 1 Tj —Yj Ty — Yi T — Yk
oz, y) = 1 —20) (< Opi + ——=0i) — Oii
w0 = e Ty T ™ T ey
n o (@ = Yr) (@i — ys) (25 — yj)}
|z —yf?
or
1 0 0
y = —— {21 —v)(=—1 —y|0g + =1 —yld;
Tiple9) = ey (=21 = V)G g e = vl gl = 1)
0 0 |[(zi —vi)(xj —yy)
+ —loglz — yld;; + — J__ 7 2D.
Y 8lr =yl Yk lz =yl J
For pure thermal strains one has
Ak % V(zi B yl) )
O-jki(xay) - O-jki(xvy) + 471'(1 —_ l/)|l’ _ y|2 Jk- (36)
Definition 3.1.4. Kernel uj;,(z,y) = —oj; corresponds to the Newton potential

(N1)ij () = [ gy (z,y)e(y) dSYy, wherep € HY(Q), v € T C R
QO

Definition 3.1.5. Kernel pjjk

@’k—yk
Tz -yl

G (1 — y)ny

2am(l —v)|z — y|ﬁ{6 |z — ] [(1—2v)4;

p;'kjk(xu y) =

i —Yj Ti — Yi (i — i) (@5 — y;)(@r — yk)
+ V((szk‘x_y| +5jk|x—y‘)_ |x_y‘3 ]
+ B (= — y3) (@x — yn) o, (@i — i) (e — yk))

|z — y|? |z — y|?
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b (1= ) I g g - (1= d)m ) ED

where « = 2,1, f=3,2, v =5,4 for three and two dimensions respectively.

Definition 3.1.6. Kernel a;}kl

. G
UZ]k‘l = m{/@(l - 2V) (52-]'7‘71{7‘71 + 5kl7‘7i7’7j>
+  Bu(urjr g+ Or v 4 Ourarj + Surar ) — Byrar Ty

+ (1 — QV)((Sik(Slj + 5jk5li) — (1 — 4V)5ij5kl}a

where a = 2,1, 8 = 3,2, v = 5,4 for three-dimensions and plane strain, respectively,

and
o Olz —y| Yy

e oy |z —y|

In case trace €* =0

0T, y) = o (T, y) + m[ﬁlwﬂﬁw — 20001, (3.8)
flj = —m[2€?ﬂ —+ (1 — 4V)5?252]] (39)
For pure thermal strains one has

Oin(®,y) = oz, y) — mpw,ﬁ,ﬂsm — 0;j 0] (3.10)

G(1
i = —MQT&' a — thermal coefficient, don’t miz with another o 3.11

! 1

—v

In the next two subsections we will provide regularization procedures for a boundary
integral operator with the kernel p;; and for a volume integral operator with the kernel
07k~ The aim of the regularization is to reduce the order of a singularity of the strongly
singular kernels, in order to simplify an implementation procedure.

Regularization of Pijk

We regularize a boundary integral operator in (3.2) with a hyper-singular kernel pj;,
(Definition 3.1.5) employing an integration by part as follows

1 G (i — yi)(z; — yy)
0% L L J J
. S “log |z — y5;

see [45] p. 157,
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3.1 Implementation

we have
. 0 0 .
[rinta ) = 5= [ St v,
[ et = — [ St
Fpilk‘ y Y)Uur\Yy - axo . 8Sypik: Y )ur\y),
or

[tz = = [ |5 i u
[t = | [%aip(y)] i)

Remark 3.1.2. In pure linear elasticity there is no big difference in 2D and 3D.

Regularization of volume integrals

The volume integral in (3.1) with a singular kernel o7, admits straightforward imple-
mentation. The advantage of a regularization procedure, is that one can rewrite The
volume integral an equivalent form as a sum of a boundary integral operator with a
weakly-singular kernel u;; and a volume integral operator with the same kernel.

2Gv

i@, y) = G (uf, +ujy ) + T oy, Y103k

where uj ;= uj) | +ujy, in 2D, ujy ;= uf) | + ujy o + ujz 5 in 3D.

Hence,

* a * * 2GV * a
Q Q v

and after integrating by parts
* a Q * a v a * a v a
QU]kZEJkd = F'UJ,U2G Ejknk + Egll - QUUQG gjk,k+ Egllyl 5

w(z) = / (2, )i () — / 2t (2, )y () + / Ennb),  (312)

where

7 a v a
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v

]51' = b +2G <5§”jnj + E

a
6712') = Di + O'Z-j’n,j

For plane problems (2D) these equations can also be used (i,j,k,]1=1,2) with e = &1 +
with e = €17 + €92 in plane stress.

v

1+v

2V5'k7“'
5% e dO) = * g@ _ Tkt a ife=0
/Q%mggk /QajmgjkjL/Qélﬁ(l—y)rgjk i e

and after integrating by parts

* a _ * a 4 a * a 4 a

€99 + €33 in plane strain and v replaced by v =

oy (2) = / W y)ely) — / P y)un(y) + / W y)bu(y) — Copacths.

Boundary Elements - Plasticity
" Poincaré-Steklov ’
int int —~ int
U _ —-K+ % V u . ],\\[9 f
Tu W K'+1 Tu Ny f
it follows that
;1 -1 1 ;] —177 7

or
1 3 5
Tu = Su— (K'+ 5) VINof + Nif,

where Ny, and N; - Newton potentials, that corresponds to the integration over a volume.

1 .
<SDn>|py, = <Tu,n>\F\FD+<(K’+§) V7 INof,n >

M\Ip
— < Nif,n >’F\FD — < 8Do,n >|p\r,, 5 (3.13)
where D - unknown displacement that lives on the non-Dirichlet part of the boundary.

7 - test function that lives in the same discrete subset as D. Dg - prescribed Dirichlet
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3.1 Implementation

data on the boundary part I'p. I' - whole boundary. It should be mentioned that action
of Poincaré-Steklov on the Dy has integration over I'p inside.

Symmetric Boundary Elements with ' Poincaré-Steklov operator

n in —~ int
w \" (-K+L v w N\ (Nger (0
Tu N %% K+ % Tu ]/\\7%5“ Tu

N[

where

Tu; = Cijraciyn,
it follows that
/ 1 —1 ]' / 1 —127a -a AT -a —
TUIWU+ K+§ V K+§ u — K+§ V Ngé —|—Nf€ —Tu (314)

or
1 — — —
Tu = Su— (K/ + 5) VTINge® 4+ Nie® — Tu.

Symmetric Boundary Elements with ' Poincaré-Steklov operator. Regularization

in n ~ ~\ nt
U ! _ —K + % \% U ' n ]AV?‘]:
Tu W K'+3 Tu N, f
+ o — —~ |,
(K" + §)Tu Tu

fi = =26 (f; + 25e)

where

(3.15)

Tu; = 2G (E?jnj + 55¢ nz) ,

it follows that

1 1 1 e
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e~

- <K’ + %) VWTu+ (K + 5)Tu.
or
Tu= Su— (K’ + %) VINof + Ny f — (K’ + %) V- WTu+ (K + %)T& — Tu.
Using the notation (3.15) we can perform integration by part for ]Vé’, ]W
Nga“ = ]%f+ ‘7@,
Nge® = Nif 4 (K'+ %)Cf&.
Defining

Tu = ﬁ—i—Tu,
f= r+/

we get formulation as in Section 3.1.1.

3.1.2 Hypoelasto-viscoplasticity
Integral computation/implementation

* .
Tii= $ij + (Oidjk + opjdix) — TirVj
Ti;= Sjit G jikl Uk,

where
Tij= Sjit Gjikl Uk,

1 /0v; Ov; 1
di' = = ! J = — i ¥
J 9 (axj +8$2) 2(1) 7J+U]7)7

Oikdjr + Opjdiy — OV = (OikVj ) + OikVk j + OkjVik + OkjUki) — OikVjk

N =N =

= — (0qUki0jk + TikUk1041 + 01Uk 10ki + OkjVk101i) — TiUk 10kj-
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3.1 Implementation

(%)
We can write Gji :

(*) 1
Gijrii= 3 (0ubjk + 0ikbj1 + 010k + Ok;01) — Ti0k;.

We multiply the rate of the equilibrium equation

Sjij + POFiO =0

0 0
with a test function ¥ € H', (ansatz function v € Hprr+ H'):

/ |:=éji,j77i + p(]F’ZO’[JZ} = 0.
BO

Integration by parts yields

s - . 0~ S0~
/ Sjivi,j — / sjmjvi — / pOFz Vi = 0.
BO oBY BO

.. . . ()
Using 7; := 5;n), and §;; =Ti; — G jirt Uk, We have

~ ~ « ~ 0~ _
/ Tij Vij — / G jikl Uk Vij — / TV — / pokiv; = 0.
BO BO aBo BO

Using 7= Ad\%)6;; + 2,ud§§) and d;; := dg;) + dgl) we have

- (4 ) . 0-
/ Ciyud'y dij — / G jikl VkVij — / T;0; — / poFP0; = 0.
BO BO 9Bo BO

Hence,
~ (*) R L 0~ (n) 5
Cijridid;; — G jiki Vi, Vi j — Ti0; — poky vy = — Cijmdy, dij, (3.16)
BO BO aB0 BO BO
where
/ Comdudy, (3.17)
BO

is a standard FEM matrix of the Lamé operator in the theory of linear elasticity. The
subroutine stiff2lame located in libfem2.f90 computes a contribution of one element to
the global stiffness matrix.

Since the second integral in (3.16) is more complex we examine it it more carefully.

We represent a test function and an ansatz function on the finite element [J as v =
U1

3, ~ ()
( 2 ) U(x), v= < Zl ) () respectively. Then the second integral fBO G jikl Uk,
2

2
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in (3.16) is a sum of local integrals having the form

(%) B
/ G jikl Vi, Vs j dx1dxe =
O

[Ll5

The subroutine stiff2lameplvijCjiklukl located in comp22pl.f90 computes a local ma-

2 2 2 2 2 7
SY ST gl g G it e e

i=1 j=1 k=1 I=1 p=1 ¢=1

trix for one mesh element

oc, () 0g,

tmat(paqaiak) = % Gjikl a—l’l
J

The subroutine rseiteid located in comp2c.f90.f90 computes a contribution of the given
Neumann data to the right hand side, i.e. the integral

/ Ti ;.
oBY

The subroutine lcomp2 located in comp22.f90 computes a contribution of the given
volume data to the right hand side, i.e. the integral

/ poF0;.
BO

The subroutine Iftgrdcomp2 located in compstiff2.f90.f90 computes a contribution of
one element to the right hand side for the volume integral

/ Cijradyy .
BO
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