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Abstract

This thesis is concerned with long range behavior of the interaction potential of two
neutral atoms. Two aspects are of special interest: First, how the long range behavior
changes if one of the atoms is replaced by another isotope. Second, how to model the
influence of a laser field on long range interaction.

Several high precision spectroscopy experiments on particle beams are carried out.
The transition frequencies of the D lines of 39,40,41K are measured with frequency comb
generated by a self-referenced femtosecond laser, which is locked to a Cs-clock. Discrep-
ancies in the literature are removed and new values for the hyperfine structures of the
4p1/2 and 4p3/2 state and the isotope shift of both D lines are derive.

On a beam of potassium dimers the A 1Σ+
u state of K2 is studied up to the dissociation

limit complementing and extending photoassociation spectroscopy of ultracold ensembles.
Local perturbation due to the spin-orbit coupling with the b 3Πu state are identified.
Molecular hyperfine structure of levels close to the asymptote is observed and modeled
by atomic parameter only. Improved values of the atomic radiative lifetime of the states
4p1/2 and 4p3/2 are derived from the long range parameter C3 of the molecule. Also, an
improved value for the dissociation energy of the X 1Σ+

g ground state is obtained and
recipes for the investigation of cold collision via spectroscopy of the molecular structure
at the ground state asymptotes are derived. For the first time asymptotic levels of two
isotopomers of K2 are studied and a comparison of asymptotic spectra of two isotopomers
39K2 and 39K 41K shows that corrections to the Born-Oppenheimer potential are needed.

Optical coupling between asymptotic ground state levels and long range levels of an
excited state has been suggested as tool for influencing cold collisions. Here, we model
lineshapes for an experiment which investigates such a coupling systematically in Na2

by laser spectroscopy in a beam. A fit program for the lineshape is used to compare
experimental and theoretical values and to check the validity of the applied model from
multichannel quantum defect theory. The dependency on the detuning of the coupling
laser is reproduced but other details failed.

To allow similar studies are reported for alkali metals on the simpler quantum system
from alkali earth elements the development of an oven for a continuous beam of Ca2

for Doppler-free spectroscopy is discussed including a major change of design and first
experiences are reported. The heating of the oven is, unlike those for the beams applied
above, outside the vacuum tank because of the high temperatures needed for the oven.
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Zusammenfassung

Diese Arbeit befaßt sich mit dem langreichweitigen Verhalten des Wechsewirkungspoten-
tials zweier Neutralatome. Zwei Aspekte sind von besonderem Interesse. Erstens: Wie
ändert sich das langreichweitige Verhalten wenn eines der Atome durch ein anderes Iso-
top ersetzt wird? Zweitens: Wie modelliert man den Einfluß eines Laserfeldes of die
langreichweitge Wechselwirkung?

Mehrere hochauflösende Spektroskopieexperimente an Teilchenstrahlen werden durch-
geführt. Die Übergangsfrequenzen der D-Linien von 39,40,41K werden mittels Frequenz-
kamm gemessen, der von einem selbstreferenzierten Femtosekundenlaser erzeugt wird und
an eine Cs-Uhr angschlossen ist. Unstimmigkeiten von Literaturwerten werden geklärt
und neue Werte für die Hyperfeinstrukturparameter des 4p1/2 und des 4p3/2 Zustandes
sowie die Isotopieverschiebung beider D-Linien bestimmt.

An einem Strahl von Kaliumdimeren wird der A 1Σ+
u Zustand von K2 bis zur Dis-

soziationsschwelle untersucht und damit komplementäre Messungen aus Photoassozia-
tionspektroskopie ergänzt. Lokale Störungen durch die Spin-Bahn-Kopplung mit dem
b 3Πu Zustand werden identifiziert. Molekulare Hyperfeinstruktur von Niveaus dicht un-
terhalb der Asymptote wird aufgelöst und allein durch atomare Parameter modelliert.
Verbesserte Werte der atomaren Strahlungslebendsdauer der Zustände 4p1/2 und 4p3/2

werden aus dem Parameter C3 des langreichweitigen Molekülpotentials bestimmt. Zudem
wird ein verbesserter Wert für die Dissoziationsenergie des Grundzustandes X 1Σ+

g bes-
timmt und Rezepte für die Untersuchung kalter Stöße mittels Molekülspektroskopie an der
Grundzustandsasymptote abgeleitet. Erstmals werden asymptotische Niveaus zweier K2

Isotopomere untersucht und ein Vergleich der asymptotischen Spektren der Isotopomere
39K2 und 39K 41K zeigt, dass Korrekturen des Born-Oppenheimer-Potentials nötig sind.

Optische Kopplung der Grundzustandsasymptote mit langreichweitigen Niveaus eines
angeregten Zustands wurde als Möglichkeit zur Beeinflussung kalter Stöße vorgeschlagen.
Hier modellieren wir Linienformprofile für ein Experiment, das eine solche Kopplung sys-
tematisch an Na2 mittels Laserspektroskopie an einem Strahl untersucht. Eine Fitroutine
für das Linienformprofil wird benutzt, um Therorie mit Experiment zu vergleichen und
die Gültigkeit des angewandten Models der Multikanal-Quantendefekttheorie zu prüfen.
Die Abhängigkeit der Laserverstimmung wird reproduziert, aber andere Details stimmen
nicht überein.

Um ähnliche Untersuchungen wie die vorgestellten, die mit Alkalien durchgeführt wer-
den, auch an den einfacheren Quantensystemen der Erdalkalien durchzuführen, wird ein
Ofen für einen kontinuierlichen Strahl von Ca2 zur dopplerfreien Spektroskopie inklu-
sive einer bedeutenden Änderung der Bauart diskutiert, und zudem erste Erfahrungen
vorgestellt. Die Heizung des Ofens erfolgt im Gegensatz zu den anderen oben vorgestellten
Strahlen aufgrund der hohen benötigten Temperaturen von außerhalb des Vakuumtanks.

Schlagworte

Dopplerfreie Laserspektroskopie, Hyperfeinstruktur, Strahlungslebensdauer
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Chapter 1

Introduction

Spectroscopic experiments were essential in the development of models of the matter that
we have reached until today. The interpretation of atomic spectra with the models by
quantum mechanics has lead to a deep understanding of atoms. It is also confirmed by
the periodic table of elements: the findings of quantum mechanical models for atoms are
reflected by chemical properties of the elements. With higher resolution and precision,
hyperfine structure was revealed and the inner structure of nuclei became subject of
research.

Today, the highest precision of measured quanta is reached for frequency measure-
ments. A significant contribution for the development of frequency measurements is the
utilization of frequency comb generated by femtosecond lasers, for which the Nobel prize
2005 was awarded to Hänsch and Hall (along with Glauber).1 Several high precision ex-
periments aim on tests of the standard model.2,3, 4 Such experiments seek to measure or
find upper limits of the variation of the fine structure constant α, which is constant within
the standard model but not in extended theories.

This thesis, however, is not concerned with the limits of the standard model. Here,
the well established quantum mechanics is used for the description of experiments done
with the well established technique of laser spectroscopy on particle beams. We are
interested in the description of binary cold and ultracold collisions of neutral atoms.
These collisions are appearing in ensembles of dilute cold gases. Such gases are produced
by laser cooling and trapping of atoms, a technique that opened doors to numerous
experiments. The density of the cold atoms is so low that the atoms in the trapped
ensemble could be considered free if the de Broglie wavelength of the particle would be
small compared to average internuclear separation within the ensemble. But the dynamics
of the ensemble is governed by the two particle interaction. For most experiments it is
sufficient to approximate this interaction by a single value: the scattering length. The sign
of this value explains whether the particle interaction is effectively attractive or repulsive
and the absolute value of the scattering length indicates the interaction strength (or
cross section). Rates for sympathetic cooling and rethermalization are described by the
scattering length. Moreover, if the temperature of the trapped bosonic atoms is decreased
until quantum degeneracy is reached, i.e., until a Bose-Einstein condensate is formed and
the particles of the ensemble become coherent, the scattering length describes the mean
field energy, i.e., the interaction of the ensemble with a single atom. But, after all, the
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12 Introduction

scattering length is a parameter that summarizes the interaction potential of two colliding
atoms in a single value. It is a measure for the phase shift that a wavepacket describing
one atom experiences while passing another atom. This measure can be calculated if the
full interaction potential is known and characterizes the continuum levels populated in an
ensemble of ultracold atoms.

The interaction potential can be studied by molecular spectroscopy. The potential
energy curve that describes cold and ultracold collisions is the same that describes the
structure of the dimer. For example the scattering length of sodium was measured by
molecular spectroscopy.5 Of high interest for a reliable prediction of cold collisions are the
least bound levels of the interaction potential because the cold collisions are governed by
the long range behavior. In fact, cold collisions can sometimes be described by knowing
the asymptotic behavior of the interaction potential only.6

In recent years, experiments with ultracold atoms utilized more and more magnetic
fields to tune the scattering length, i.e., the character of binary collisions changes under
the influence of a magnetic field especially in the vicinity of a Feshbach resonance. A
Feshbach resonance appears if a bound state of one potential energy surface that couple to
continuum states of another interaction potential for example by hyperfine structure. The
continuum states describe scattering states of two atoms and are populated in ensembles
of ultracold atoms. An alternation of the coupling between bound levels and continuum
states influences both, the bound state and the continuum states. Changing the magnetic
field moves levels with different magnetic moments relative to another and alters, if these
levels are coupled, both wavefunctions (see lower box in Figure 1.1). In case of continuum
state, this change translates into a modification of the scattering length.

In many cases the scattering length can be tuned at will by magnetic fields. With this
technique, the effective interaction could be switched from attractive to repulsive and vice
versa for studies of the BEC-BCS7,8 crossover in case of two Fermi particles. Ultracold
ensembles of molecules were produced from ultracold atoms.9 Feshbach resonances are
described by the interplay of two molecular states. For this, knowledge about the long
range interaction of two atoms is needed. For the description of the coupling strength
atomic parameters such as the hyperfine structure parameters are needed.

In this thesis, two directions are followed to achieve a better understanding of long
range interaction. First, the long range behavior of potassium is of interest because
potassium has a very small hyperfine structure and offers several isotopes in natural
abundance. Here we are mainly interested in comparing the two isotopomers 39K2 and
39K41K. These are the two most abundant combinations. We would like to understand
better to which precision the knowledge of the interaction of one combination of isotopes
may be transferred to another combination of isotopes. The main interaction of two atoms
is clearly the interaction of the two electron clouds of the atoms. If one exchanges one
of the two atoms with another isotope this interaction should remain the same. This is
justified by the Born-Oppenheimer approximation. However, the level structure of the
molecule changes according to the alternation of the reduced mass of the system. This
scaling by mechanical principles from one isotopomer to another is called mass-scaling. For
asymptotic levels of the potential the change of the hyperfine structure has to be taken
into account, too. This is of great importance if one tries to mass-scale eigenenergies
that are in the vicinity of the asymptote, e.g., Feshbach resonances. With incorporation
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of changes for the hyperfine structure one can hope to mass-scale the scattering length
of one isotope combination to another. But, since the scattering length is sensitive to
tiny alternations of the potential, one relies on the Born-Oppenheimer approximation
for the mass-scaling of ultracold collisions. Investigations of long range behavior of two
isotopomers allows to study to which precision the Born-Oppenheimer approximation is
valid.

Another interesting aspect about the comparison of 39K2 and 39K41K is the difference
of the 4s + 4p asymptote. The exchange symmetry is broken due to the isotope shift
of the D lines (4s → 4p) and the different hyperfine structure. The degeneracy of this
asymptote leads to a C3/R

3 behavior for homonuclear molecules (resonant dipole-dipole
interaction) whereas a C6/R

6 behavior is obtained for molecules which have different
transition frequencies of the D lines (detuned dipole-dipole interaction).

The second direction we are following in this thesis is the road towards alternatives
for the manipulation of cold collisions. Laser fields have been suggested to be used for
the manipulation of scattering states of the ground state asymptote, i.e., state populated
in ultracold ensembles, by optical coupling to electronically excited molecular states.10

The coupling is similar to photoassociation experiments but the laser should not be in
resonance with a continuum-bound transition (see upper box in Figure 1.1). Instead it
should induce a coupling between levels of an excited molecular state and scattering states
of the ground state. The laser replaces the magnetic field that is used for the manipulation
of cold collisions by Feshbach resonances. Such alternative method is interesting mainly
because it can be applied to atoms without nuclear spin, for which Feshbach resonance
cannot be utilized due to the lack of hyperfine structure. Laser fields can be switched
faster than magnetic fields and might allow for the alternation of the scattering properties
in a fraction of the cold ensemble. In the long run, the addressing of single sites of an
optical lattice with a laser that is able to control the interaction of two atoms trapped
in the addressed site, will be of great interest for quantum computing. However, here we
are concerned with the fundamental understanding of this coupling between long range
levels.

Laser cooling and trapping is mainly done for alkali metals and alkali earth metals. For
this reason we are interested in understanding of the corresponding dimers. Conventional
spectroscopy typically uses heat-pipes or heated cells to prepare the dimers. The popula-
tion of levels results from the temperature of the reservoir and many levels are populated,
mainly at the bottom of the potential, i.e., with short internuclear separation. By laser
excitation, levels that are highly vibrationally excited can be investigated and by this
the interval of investigations can be extended to higher energies and larger internuclear
separations.

Dimers can also be produced from ultracold atoms, either by the utilization of Feshbach
resonances with ramped magnetic fields or by photoassociation, in which a laser photon
red detuned to an atomic resonance is absorbed by a pair of atoms. In this way, levels
very close to the asymptote of molecular states can be investigated with high precision.
But, the connection to energy intervals known from conventional spectroscopy is difficult
(see the gap of observations on the energy axis in Figure 1.1).

The experiments described in this thesis are all experiments carried out with an ex-
perimental method that allows to bridge the gap. We are preparing the dimers in particle
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Figure 1.1: Sketch of the lowest potential curves and illustration of experimental techniques.
Dimer states populated in ultracold ensembles are levels just below the ground state asymptote
(s+s). These dimers can be formed either with magnetic ramps with a Feshbach resonance (lower
box) or with a photoassociation laser (upper box). Note the typical gap between the intervals of
observations indicated at the energy axis for conventional spectroscopy and spectroscopy from
ultracold atoms.

beams. The dimers fall freely (at high horizontal speed) in vacuum and are well de-coupled
from the environment. The shift of transition frequencies due to interactions with other
particles from residual gases or other particles in the beam can be neglected for the preci-
sion of our experiments. Experiments for investigating these interactions show that such
influences are less than 15 kHz on optical transition frequencies and particle densities
in beams as applied in this thesis.11 The dimers (and atoms) in the beam are therefore
considered free. This is a big advantage over experiments in which the objects are pre-
pared in a thermal reservoir, e.g., in a glass cell or in a heat pipe. Another advantage
for molecules prepared in beams is that during the adiabatic expansion into the vacuum,
the inner degrees of freedom, i.e., vibration and rotation, are cooled down. The popula-
tion distribution over levels corresponds to temperatures of some tens Kelvin or only few
Kelvin. The spectra of molecules in beams are therefore greatly simplified in comparison
to cell experiments, in which these temperatures of the inner degrees of freedom are in
equilibrium with the temperature of the reservoir, which is typically at several hundreds
to thousand Kelvin.

The main advantage of beam experiments over cell experiments is the reduction of the
Doppler width. By selecting those objects moving orthogonal to the probe laser beams,
the Doppler width can be reduced to below the natural line width, which is typical of
some MHz for optical, dipole allowed transitions. In cell experiments, the Doppler width
is typically several hundreds of MHz. In beam experiments we do not need to perform
saturation spectroscopy, which is often used in cell experiments to obtain linewidth below
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preparation method: cells beams trapped atoms
examples Na2, K2, Rb2, Na2, K2, Li2, Na2, K2,

Ca2, LiCs, NaK Rb2, Ca2, Sr2,
NaK, NaRb, Yb2, He2,
NaCs, KRb NaCs, KRb,

RbCs
Doppler widtha 400 MHz 5 MHz 10 kHz
time per scan 20 min 5 min 4 h
number of lines per scan 200 10 30
rotational level 15 to 60 0 to 25 0 to 4
complexity of spectra high low medium
vacuum pressure required 10−3 mbar 10−6 mbar 10−9 mbar
complexity of setup low medium high
energy interval bottom to bottom to −15 cm−1 to

(asymptote as reference) −1 cm asymptote close to asymp. b

Table 1.1: Comparison of spectroscopic methods for diatomic molecules. Given are typical
numbers. For actual experiments the numbers may vary significantly. The lists of investigated
molecules are by no means complete.

aThe observed linewidth depends on the applied spectroscopic method. Techniques for Doppler-free
spectroscopy are advantageous especially in cell experiments.

bSchemes with several laser fields allow for pumping of molecules down to the bottom of the ground
state.20

the Doppler width.
Two more advantages of particle beams will be mentioned: First, good access to the

particles is possible allowing to apply external magnetic, electric, or laser fields studying
their influence on the atoms or molecules. Second, sequential multi-photon pumping
schemes can be easily applied: The geometrical positioning of laser beams translated
directly to a time sequence of laser pulses acting on the object, which flies through the
laser beams.

Despite these advantages, particle beams do not resolve the problem of the limited time
of the interaction between object and laser field: The objects have velocities of around
1 000 m/s in the laboratory frame. Thus, laser cooling and trapping allow for large
observation time and thus for high precision experiments with atoms. Direct laser cooling
of molecules is practically impossible. On the one hand, experiments try to decelerate
molecules prepared in particle beams to a standstill.12,13 On the other hand, molecules are
prepared from trapped atoms either in photoassociation14,15 or variation of the magnetic
fields utilizing Feshbach resonances.16,17 The translational temperature of the molecules
is inherited from the ultracold atoms. In order to reduce line widths for high precision
experiments, either the atoms can be cooled down, even to quantum degeneracy, or sub
Doppler spectroscopy may be applied. Experiments with photoassociation below a narrow
atomic transition were performed in strontium18 and ytterbium.19

Experiments with molecules starting from cold atoms are not unique for performing
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spectroscopy of lines, but they allow for studies of ensemble, e.g., phase transitions. This is
possible because of the long time that the prepared molecules can interact with another.21

Heteronuclear dimers can strongly interact via electric dipole moments. However, dimers
close to the asymptote, i.e., dimers that are produced by photoassociation or Feshbach
ramps from ultracold atoms, do not have a significant dipole moment. The dipole mo-
ments increase for bigger binding energies. Schemes for optical pumping of heteronuclear
molecules to lower vibrational levels22 offer a pathway to enter the strongly interacting
regime and provide an alternative to the chromium BEC with the large magnetic dipole
moment.23

In molecular beams we can investigate such population transfer processes in the inverse
way: Dimers in the vibrational ground levels are successively excited and dissociated to
pairs of atoms. Moreover, by applying optical pumping steps, gaps between knowledge
of deeply bound levels obtained in conventional spectroscopy with cells and results from
photoassociation are bridged. The three discussed classes of spectroscopic experiments —
cell experiments, beam experiments, and experiments starting from ultracold atoms —
supplement each other and benefit from the other classes. Properties of the three discussed
experimental methods are summarized in Table 1.1. Spectroscopy with photoassociation
from trapped atoms is mainly useful to gather data of low rotational levels of electronically
and vibrationally excited states whereas cell experiments are typically used for the creation
of datasets with a wide range in rotation for electronic states to which the molecules decay
to, i.e., mostly to electronic ground states.

This thesis discusses a number of experiments on particles prepared in beams. The
experimental equipment is introduced in Chapter 2. The subsequent chapters discuss the
undertaken experiments individually. In Chapter 3 we investigate the potassium D lines
and derive improved atomic parameters such as hyperfine structure constants and isotope
shifts. These are important for the modelling of long range interaction. In Chapter 4
the long range behavior of two isotopomers of potassium is investigated. By comparing
the results the Born-Oppenheimer approximation for long range levels is studied. In
Chapter 5 we are interested in varying the long range behavior by laser fields. Models
for experimental observations are tested and compared. The long range interaction of
alkali earth metals allows for a simplification of the models due to the lack of hyperfine
structure, which would greatly simplify the models for laser induced manipulation of
long range behavior, too. In Chapter 6 progress towards a beam of alkali earth metal
dimers and first achievements are reported. A summary of the obtained results is given
in Chapter 7.



Chapter 2

Experimental Setups

As introduced above, several experiments are carried out within this thesis. All experi-
ments are spectroscopic experiments using cw single-mode lasers. This chapter introduces
important experimental tools, which are used in our investigations. Here, we focus on the
general and common properties, whereas details and specialties are discussed in the cor-
responding subsequent chapters.

The objects we are interested in, namely atoms and dimers, are prepared in particle
beams. With this method, these objects are well isolated from the environment and can
be considered free. But, interaction of atoms may be investigated, too. The interaction
potentials for two atoms is derived by spectroscopy of dimers that are made up from the
two atoms whose interaction is of interest. For example, by studying K2 one is able to
investigate the interaction of two potassium atoms. Some general considerations were
already discussed in the introduction. The beam apparatuses used in our experiments are
described and compared in Section 2.1.

Spectroscopic experiments do not only require the preparation of the objects of inter-
ests, but also a probe-detection setup. Here, we use lasers to drive optical transitions.
The laser induced fluorescence is our experimental signal. The used lasers are introduced
in Section 2.2. Also, methods for the measurement of their frequency are discussed.

2.1 Beam Apparatuses

For the realization of a particle beam a vacuum setup is used. Atoms or molecules from
alkali metal or alkali earth metal are produced in an oven located therein, in which the
corresponding material is vaporized. Out of this reservoir the atoms and dimers travel
through a nozzle into the vacuum chamber. The principal setup is shown in Figure 2.1.
The particle with the desired direction, i.e., those moving horizontally and orthogonal to
the applied laser beams, are selected by a spatial filter, a skimmer, that separates the
vacuum tank into two chambers: an oven chamber and a beam chamber. Only a small
percentage of the atoms and molecules enters the beam chamber. The selected particles
make up the beam and are tested in the spectroscopic experiments by laser fields.

In the presented experiments, laser induced fluorescence is recorded. This is discussed
in Section 2.1.1. Thereafter, three different beam apparatuses are introduced, in which the
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Figure 2.1: Principal setup of a beam apparatus.

experiments are performed. The properties of these machines are compared in Table 2.1.

2.1.1 Fluorescence Detection

The laser beams induce fluorescence if the field is in resonance with a transition starting
from a populated level. For dimers, the decay channel of a molecular level is predominantly
not the one that the laser drives. Thus, the molecule cannot be re-excited by the laser and
each molecule contributes at most a single photon to the signal. The significant frequency
shift of the fluorescence light allows to separate scattered stray light from the laser and
the light from the laser induced fluorescence by optical filters. Most fluorescence photons
have lower energy than the laser photons. Color glass filters are therefore appropriate for
our applications. Interference filters, which act as band-passes, are often a good choice as
an alternative or in addition to a color glass filter if the fluorescence is narrow banded.

The fluorescence from an interaction zone (the crossings between laser beams and
particle beams) is detected by a photomutiplier located outside on top of the vacuum
chamber. They are cooled down to around 270 K by Peltier elements to reduce the dark
current. A lens system and a spheric mirror beneath the interaction zones are designed to
image as much fluorescence as possible from the interaction zone onto the sensitive area
of the photomultiplier.
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potassium sodium calcium
pump of oven chamber diffusion diffusion diffusion
pump of beam chamber turbomolecular diffusion diffusion
pressure, beam chamber 10−8 mbar 10−6 mbar 10−6 mbar
detection zones 1 near IR 2 visible 2 visible
oven temperature 650 K 750 K 1 300 K
heating of oven inside vacuum inside vacuum outside vacuum
additional comments µ-metal box,

differential pump
stage

suppression of
stray laser light

cooling of oven
chamber, sup-
pression of stray
laser light

Table 2.1: Comparison of the beam apparatuses used.

2.1.2 Potassium Beam

The main usage of the apparatus for a beam of potassium atoms and dimers is to run
an interferometer on molecular lines. Here, tiny effects of dimer-atom collisions are of
interest.24,11 The pressure of the beam chamber is very low (below 10−8 mbar) to avoid
decoherence effects due to collisions with residual gas. This is achieved by an additional
separation of the beam chamber for which a differential pump stage is added. Details of
beam apparatus24 and recent modification11 are discussed in the two corresponding PhD
thesis.

The oven can be loaded with up to about 30 g of potassium. This material is used
up within about twelve hours of operation. The oven is heated by a resistance heater
inside the oven chamber. The nozzle is laser drilled with a diameter of 200 µm and its
temperature kept about 100 K above the oven temperature by an additional heater.

The interaction zone is shielded by a µ-metal box. It suppresses the magnetic field in
the laboratory, i.e., mainly the magnetic field of the earth, by a factor of twenty. Holes
for the optical access limit the efficiency of the box.

The particles in the beam are mainly atoms. Some percent of the atoms emitted from
the oven are bound in dimers, which are internally cooled in the adiabatic expansion into
the vacuum in collisions with potassium atoms. Those can be considered as carrier gas
for the dimers.

2.1.3 Sodium Beam

The oven chamber for the sodium beam is similar to the one in the potassium beam
setup.25 But, no additional intermediate chamber is used. Therefore, the residual gas
pressure is higher but still in the order of 10−6 mbar.

No µ-metal box is installed around the interaction zone. This beam chamber has two
subsequent interaction zones. The first zone is used to prepare molecules with a laser.
The second zone is laid out to reduce scattered light from spectroscopic lasers scattered of
the viewports as much as possible. This is done by mounting the viewports far away from
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the interaction zone in Brewster angle and, additionally, a series of apertures between
viewport and interaction zone.

2.1.4 Calcium Beam

Our experiments with calcium were done with the same apparatus the sodium beam was
operated in. However, the oven concept was changed and thus only the beam chamber
was used. The new oven chamber for an oven with higher temperatures will be introduced
in detail in Chapter 6.

2.2 Lasers

The most important tool for any laser-spectroscopic experiment is of course the laser.
Several continuous wave (cw) lasers are used for the experiments of this thesis. They are
briefly introduced in the following. The laser light is distributed in our laboratories by
optical fibers. This allows, e.g., to have the lasers in a room fairly quiet compared to that
of the vacuum chambers with its rotary-vane pumps.

2.2.1 Dye Lasers

Several dye lasers are used. Linear laser (Coherent CR 599-21) and ring lasers (Coherent
CR 699-21) are used in single mode operation pumped either by a high power frequency
doubled Nd:YAG laser at 532 nm (Coherent Verdi 5 or Verdi 10) or an argon ion laser
(Coherent Innova 400) with several Watt output power. The argon ion laser may pump
several dye lasers, even on different lines if run in all-line operation. Blue and green pump
light is then split by a dichroic beam splitter.26

The dye lasers are locked on a temperature stabilized external cavity for a reduction
of the linewidth to about 1 MHz. The locked lasers have scanning ranges up to 20 GHz,
achieved mainly by a galvo driven Brewster plate. Error signals may be added to the
same electronics and by this the laser may be either frequency modulated or stabilized on
another reference.

2.2.2 Ti:sapphire Lasers

In addition to the dye lasers, two Ti:sapphire lasers (Tekhnoscan TIS-SF-07) where used.
With some modifications for frequency stabilization made within our group (by Horst
Knöckel, Kirsten Jaspers, and Ivan Sherstov), the setup of these lasers corresponds basi-
cally to those of the ring dye laser. The scanning range is smaller (about 3 GHz) but the
stabilization to an external cavity and possibility to use error signals are similar. Like dye
lasers in the visible wavelength region, these lasers cover the near infrared region from
950 nm down to 700 nm with high power single-mode radiation.
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2.2.3 Diode Laser

Additional to these high power lasers, a diode laser is used. A commercial laser diode
is operated in a home-built extended cavity setup in Littrow configuration, which allows
for a small linewidth. A piezoelectric actuator allows for scanning and the processing of
error signals.

2.2.4 Offset Stabilization

At several points of the experiments, we made use of an offset stabilization setup. It
allows to stabilize a cw laser to any frequency for several hours with very small drifts.
A iodine stabilized HeNe laser (company: Präzisions-Mess-Technik) is used in this setup,
which is stable to better than 5 kHz/h. Its frequency is shifted by an AOM in double pass
and a temperature stabilized cavity with one mirror on a piezoelectric actuator is locked
to the frequency shifted HeNe. The laser, which is supposed to be stabilized, is shined
through this cavity with an orthogonal polarization axis. The cavity is transmitting for
frequencies that are a multiple of the free spectral range of 150 MHz. This comb may be
tuned via the AOM frequency of the HeNe. A modulation of the cavity allows to lock the
laser to a specific transmission peak. In this way, the stability of the iodine is transferred
via HeNe laser and cavity to the laser of interest. The residual frequency drift of the
locked laser can be reduced to few 100 kHz/h.

The Allan standard deviation of a Ti:sapphire locked with offset stabilization was
measured with a frequency comb (see below) to be 2.5 × 10−11 within one second. It
decreased with a 1/

√
t dependence over to time t down to 5× 10−12 after twenty seconds

of averaging time.

2.2.5 Frequency Measurement

Several techniques for the measurement of the oscillation frequency of the laser are used
in this thesis. A traveling Michelson interferometer with a HeNe laser as reference allows
for quick measurements with a precision of better than 1 GHz.27 In connection with pre-
values from this wavelength meter, an iodine absorption setup allows for a precision of
150 MHz. The transition frequencies of the iodine lines are taken either from an atlas28

or from profiles simulations with the program IodineSpec.29 During the experiments of
this thesis, a commercial wavelength meter was obtained (HighFiness WS-7). It has a
precision of 100 MHz with readout rates of twenty values per second with few µW laser
light power. A link between a computer for the evaluation of the wavelength and the PC
recording the experimental data allowed to include the measured wavelength into the files
with tabulated experimental traces. At one occasion, a similar wavelength meter with
even better precision of 60 MHz (HighFiness WS-ultimate) was borrowed from another
group of our institute, which is working with ultracold magnesium (Ertmer, Rasel).

Even higher precision of the measurement of transition frequencies was obtained by
a frequency comb setup. For this technique, the Nobel prize was awarded to Hall and
Hänsch (along with Glauber) in 2005. Gesine Grosche and Harald Schnatz from the
PTB (Physikalisch-Technische Bundesanstalt, Braunschweig) measured the frequency of
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a Ti:sapphire laser stabilized via the transfer cavity described in Section 2.2.4. A self-
referenced frequency comb of a pulsed Ti:sapphire laser with repetition rate of 750 MHz
was used. The uncertainty of the commercial wavelength meter is therefore seven times
smaller than the repetition rate, which allows to derive the order of the comb peak
uniquely.

For the relative frequency measurements, we record the transmission of a tempera-
ture stabilized Fabry-Perot interferometer with a free spectral range of 150 MHz. For
the Ti:sapphire laser, the interpolation between the transmission peaks allows for a the
measurement of relative frequencies with an uncertainty of 2 MHz.



Chapter 3

Transition Frequencies of the D lines
of Potassium

The first spectroscopic experiment discussed in this thesis is not about dimers but its
constituents: We re-measured the potassium D lines. Atomic resonance frequencies are
usually well known since they are comparatively easy to measure and many experiments
need this information, e.g., cooling lasers of trap experiments use these lines.

We discovered an astonishing difference between the resonance frequency measured by
a newly obtained wavelength meter and recent publications30,31 during the experiments,
which will be described in Chapter 4. The transition frequency will be needed for the
determination of the final results in our study. Both D lines for 39K and 41K showed
discrepancies.

After verifying our result, we searched in the literature for other measurements. An
additional publication32 agreed with our results but not with the most recent publications.
Thus, neither the new wavelength meter nor our frequency calibration were to be blamed.
In contrast, it is our scientific duty to re-measure the transition frequencies as well as
possible.

Our experimental apparatus, namely a highly collimated beam of potassium dimers
and atoms, allows to detect the rare isotope 40K, which has gained much interest in recent
years among researchers of cold gases due to its fermionic character.8

The transitions of the atoms are a lot stronger than those of dimers. Experiments
of the metrology of these transition frequencies aim for a precision that is better than
the precision needed for the experiments that try to observe a big number of transitions
frequencies to obtain potential energy curves describing a dimer state. Gesine Grosche
and Harald Schnatz from the PTB joined our efforts. They provided and operated a
frequency comb, with which the frequency of a laser was directly linked to the clock
signal of a commercial Cs-clock, which was provided by the PTB as well.

Our findings and results were reported in an article. It is enclosed to this thesis in the
following (Section 3.1). It is published originally in Physical Review A, Volume 74 under
article number 032503 on 6th of September 2006. In Section 3.2 our considerations on
the possible errors due to the ac-Stark effect are discussed in more detail.

23
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tainty. This article also resolves the discrepancy of transition frequencies mea-
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3.1.1 Introduction

The advent of femtosecond laser frequency combs has greatly simplified precision exper-
iments in optical spectroscopy.33 Of high importance are experiments which test funda-
mental concepts in physics e.g. the time independence of constants like the fine structure
constant α. Here, the precise knowledge of optical transition frequencies of different atoms
or molecules can be exploited to deduce variations of α.3 Precise spectroscopic information
also allows to test atomic structure calculations and can be used to determine properties of
the nucleus like the nuclear moments or effective charge radius. Furthermore, well known
transition frequencies can serve efficiently as frequency references for other experiments.

Very successful experiments have been performed with various atoms34,35 and in par-
ticular with alkali metal atoms.36,37,38,39 For potassium, Banerjee et al. recently in-
vestigated the most abundant isotope 39K by saturation spectroscopy.40,30,31 For these
measurements, either a Michelson interferometer or a transfer-cavity with known free
spectral range was used.41 One determines the difference frequency between a known
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laser (typically locked to the D2 line of 85Rb) and the laser used for spectroscopy on the
system of interest. Banerjee et al. showed that their results agree with published ones
from 1956,42 but did not discuss more recently measured transition frequencies with im-
proved uncertainty with respect to Ref.,42 that deviate more than 400 MHz from their
results.32 A similar discrepancy exists for the magnetic dipole coupling constant A(39K)
of the 4p 2P1/2 state reported in Ref.,31 which agrees with the value from Ref.,43 but is
inconsistent with values in Refs.44,45 A more detailed discussion of these points will be
given in Section 3.1.4.1 in combination with our own pre-investigations.

To resolve these discrepancies, we have now carried out precision measurements of the
D lines of potassium with an improved experimental setup. For the frequency measure-
ment, we use a fs-laser frequency comb referenced to a portable Cs atomic clock with an
uncertainty below 10−11. We have probed the potassium atoms in a highly collimated
atomic beam. This method has the advantage over cell experiments that the Doppler
width can be reduced well below the natural line width. The absence of a broad Doppler
background allows the observation of the less abundant isotopes 40K and 41K.44 Special
care must be taken, as this experimental technique suffers from possible systematic shifts
caused by a Doppler shift due to misalignment of laser probe beam and atomic beam.
However, it has been shown that this draw-back can be overcome by thorough adjustment
with the help of a retro-reflector37 or by reciprocal fiber coupling.46

3.1.2 Experimental Setup

The atomic beam apparatus has been described previously in Ref.47 The beam has su-
personic character though no carrier gas is used. The mean particle velocity is about
1000 m/s with a velocity spread of ±100 m/s. The beam has a collimation ratio of about
1000, which leads to a residual Doppler width of approximately 2 MHz in the spectral re-
gion considered here. The residual gas pressure in the interaction zone is below 10−8 mbar
and the density of atoms in the beam is of the order of 109 cm−3. The solid angle of de-
tection is about 1.4 srad, the fluorescence is detected by a photomultiplier and current
amplifier. The interaction volume of atomic and laser beam is shielded from magnetic
fields by a µ-metal box, which reduces the residual magnetic field to below 20 mG.

Figure 3.1 shows schematically the optical setup. Light from an extended-cavity diode
laser in Littrow configuration (called spectroscopy laser) is transferred with an optical
fiber from a quiet lab to the atomic beam apparatus. The atoms are probed with a
linearly polarized laser beam of 2 mm diameter. The polarization axis with respect to
the residual magnetic field is unknown and possible errors are included in our analysis.
The spectroscopy laser is locked to a cw titanium-sapphire transfer-laser by stabilizing the
beat note of both with a phase-frequency comperator. Its reference frequency is provided
by a frequency synthesizer, which is controlled by the data acquisition system.

The frequency of the transfer-laser is determined with a self-referenced Ti:Sa fs-laser
frequency comb by counting the beat note between the transfer-laser and a comb tooth of
the fs-comb. The repetition of the fs-comb (about 700 MHz) is stabilized using the clock
signal of a commercial Cs-clock. The counted frequency value is used for the determination
of the transfer-laser frequency. The carrier-envelope-offset frequency νceo of the frequency
comb is not stabilized but counted. All counters have a gate time of 1 s.
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Figure 3.1: Laser system used for the frequency measurement. OD: optical diode; BS: beam
splitter; 50%: 50% beam splitter; PBS: polarizing beam splitter; PZT: piezo-electric actuator;
FPI: Faby-Perot interferometer; λ/4: λ/4 retarder.

To improve the frequency stability of the transfer-laser, it is stabilized via a tunable
transfer cavity to an I2 stabilized He:Ne laser. Arbitrary difference frequencies are ac-
cessible by an acousto-optical modulator (AOM). In this way we observe a fractional
frequency stability of the transfer laser of 3×10−11 τ−1/2, where τ is the averaging time in
seconds. The frequency comb generator in connection with the Cs-clock allows to measure
its frequency with a fractional accuracy of about 10−11 in 1 s.

To record the potassium spectra, the diode laser is tuned by the data acquisition
system via the synthesizer as shown in Figure 3.1, while the frequency of the transfer
laser is counted by the fs-comb. The synchronization between both recordings is done by
additionally counting the synthesizer frequency. The typical step size of the spectroscopy
laser was 200 kHz, the recording time per point 200 ms with 20 ms dead time to allow for
delays in the frequency settling of the synthesizer. We recorded both directions of scan
to detect and reduce shifts from electronic time constants.

3.1.3 Doppler Compensation

In precision experiments with particle beams, it is important to minimize the residual first
order Doppler shift. It appears if the angle between probe laser beam and atomic beam
deviates from 90◦. For this purpose, we have recorded our spectra utilizing a cat’s eye. It
ideally retro-reflects the probe laser beam in itself without losses through the interaction
region with the atomic beam. The retro-reflector consists out of an achromatic lens with
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30 cm focal length and mirror in a gimbal mount. The distance between mirror and lens
has to be exactly the focal length of the lens to achieve anti-parallelism of incoming and
outgoing beam. It can be set by a micrometer screw adjustable translation stage, the
alignment was done by means of an optical interferometer in which the cat’s eye served
as one end mirror.

According to Ref.,48 the residual angle between both beams can be inferred from the
uncertainty of the mirror’s position, the residual angle between the axis of the cat’s eye
and the laser beam and the spatial displacement of the laser beam from the axis. Under
our conditions we estimate a residual angle of less than 10 µrad between incoming and
outgoing beam.

Assuming similar excitation and detection efficiency for both laser beam directions,
the observed fluorescence signal will be symmetric around the unshifted frequency. Any
deviation of the one-beam frequency from this Doppler-shift-free frequency can be due to
either a residual Doppler shift or asymmetry. The residuals scatter after fitting a single
beam profile with a symmetric model function justifies that for Doppler shift smaller
than the residual Doppler width, the measured profile is sufficiently symmetric. Thus, the
deviation has to be accounted to the residual Doppler shift in the single beam measurement
and the resulting frequency of the two beam experiment can be considered Doppler-shift
free.

If the signals from both beam directions have not the same strength, the observed
line will not be centered at the Doppler free frequency. The imperfection of the Doppler
compensation can be estimated from the intensity of one- and two-beam spectra. The
deviation from the optimum factor of two between both spectra was less than 25%, from
which a remaining error from the Doppler effect of less than 50 kHz can be inferred with
the help of line profile simulations. Here, the imperfection of the cat’s eye is already
included.

We confirmed these considerations by a measurement with a completely independent
technique. Two anti-parallel laser beams of the same intensity were generated by utilizing
laser beams from two optical fibers and coupling the beam of one fiber into the other. With
this technique a remaining angle between both beams of below 35 µrad can be achieved,46

this limit corresponds to a shift of about 50 kHz. Spectra with both fibers were recorded
independently, the averaged frequency is considered Doppler free. We have reproduced
the measured frequency from one side within 10 kHz after recoupling that fiber, but
will not claim to be in general better than the estimated 50 kHz. The average from
both directions deviated for several lines by less than 30 kHz from transition frequencies
measured with the cat’s eye technique. Our final measurements were performed with the
cat’s eye technique because of a better long-term stability.

Moreover, from measurements with and without cat’s eye one could derive the sign
of the remaining Doppler shift with retro-reflector. In combination with the estimated
Doppler suppression, a frequency correction can be calculated, which corresponded in
sign and magnitude to the observed difference between measurements with two fibers and
cat’s eye. However, the correction of the remaining uncompensated Doppler shift is much
smaller than its uncertainty. Therefore, no correction was applied.
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3.1.4 Measurements and Analysis

3.1.4.1 Frequency pre-investigations

We have outlined in the introduction that inconsistent frequency values for the potassium
D lines of 39K appear in the literature. Banerjee et al.30,31 reached an uncertainty of
about 100 kHz for the D2 line and better for the D1 transitions. They compared their
results with the value from Risberg.42 Risberg’s measurements had for the potassium D
lines a rather large uncertainty of about 800 MHz plus uncertainties stemming from the
dispersion correction formula49 used to calculate vacuum wave numbers. The authors of
Refs.30,31 did not discuss the measurements of Scherf et al.32 Here, an uncertainty of
20 MHz is stated.

The discrepancy between Scherf and Banerjee is more than 400 MHz, which is not
only many times the respective uncertainty but also comparatively easy to detect with
classical spectroscopic means. Thus, we have performed several checks before the fs-comb
supported frequency measurement.

Potassium spectra were recorded together with I2 Doppler broadened absorption spec-
tra, that can be used as a frequency calibration with an uncertainty of about 100 MHz.
The frequency of the nearest I2 line was taken either from the iodine atlas28 or from a
simulation of the I2 spectrum.29 Both values are in perfect agreement. Furthermore,
the frequency was measured with two commercial wavelength meters (HighFinesse WS-7,
WS-8) with a reduced uncertainty of 100 MHz and 30 MHz, respectively. These methods
have sufficient accuracy to distinguish between transition frequencies from both groups.
All results were consistent with the transition frequencies given by Scherf.32

Thus, we have to conclude that possibly the starting value of Banerjee et al. was not
sufficiently precise to unambiguously determine the D lines’ frequencies. This is also a
possible explanation for the deviation between their hyperfine parameters and the values
given in Refs.44,45

3.1.4.2 D1 line

All lines belonging to the D1 line at 12985 cm−1 of potassium are spectrally comparatively
well isolated. They are grouped in pairs of two lines with common lower hyperfine level
F and differing total angular momentum F ′ in the exited state. Thus two groups of two
lines each were measured for the isotopes 39, 40, and 41. The spectra were recorded
with retro-reflector to compensate for Doppler shifts. The typical peak intensity per laser
beam was 13 µW/cm2 of 39,41K, while 280 µW/cm2 had to be used to achieve a reasonable
signal-to-noise ratio for 40K. The residual Doppler shift was regularly checked by recording
spectra without cat’s eye to exclude unnoticed drifts in the setup.

One record of the transition F = 2→ F ′ = 1, 2 is shown in Figure 3.2. Each line was
fitted with a modified Lorentzian function, where the parameters for amplitude, line width,
and center frequency ν0 were independent for both hyperfine transitions. Additionally,
a constant background to account for stray laser light or photomultiplier dark current
was adjusted. The Lorentzian profile was modified, since a small residual Doppler effect
is expected. Due to the narrow velocity distribution of the atoms in the direction of
flight and the high collimation ratio of the beam, we assumed constant amplitudes for
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Figure 3.2: Record of the D1 transitions F = 2 → F ′ = 1, 2 in 39K. The lower trace shows
the residuals of the fit, which was used to determine the line center. Note the zoom factor of
about 50.

the Doppler components in the frequency interval ν0 ± νD, and zero outside. The fitted
values for νD were for all fits in good agreement with the expected value of about 1 MHz.
The fitted homogeneous line width is about 6.5 MHz, which is very close to the value of
6.0 MHz expected from the life time of the excited state.50 The residuals of the fit are
depicted in the lower trace of Figure 3.2. A very good description of the observed line
profiles is achieved.

When spectra of the less abundant isotopes 40K and 41K were fitted, additionally
a frequency dependent background had to be taken into account. It originates from the
Lorentzian wings of the transitions in the main isotope 39K. For the background, the same
function as described above was used; but only its amplitude was a fitting parameter. The
width was fixed to a typical value, while the center frequency was taken from the nearest
hyperfine transition of 39K. An example for the transition F = 9/2 → F ′ = 9/2, 7/2 in
40K is shown in Figure 3.3. The residuals in the lower part of the figure are again very
small and do not show any systematic deviations.

The statistical uncertainty of the fitted transition frequencies depend on the signal-
to-noise ratio of the spectra. For the stronger spectra of 39,41K, typically a value below
4 kHz was determined by the fit. For 40K the statistical uncertainty is around 15 kHz.

A very significant consistency check of the data is to derive the ground state hyperfine
splitting. We calculated it from the mean transition frequencies. Our values for the
D1 lines agree with the well known microwave spectroscopy data (Arimondo et al.:51
39K: 461.720 MHz, 40K: −1285.79 MHz, and 41K: 254.014 MHz; values rounded to digits
needed in the present case) to within 20 kHz. The hyperfine splittings of the excited
state measured from ground states with different F are consistent within 10 kHz, which
is another verification.
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Figure 3.3: The D1 transitions F = 9/2 → F ′ = 9/2, 7/2 in 40K. The frequency dependent
background stems from the wings of the transitions in 39K. The lower trace shows the residuals
of the fit magnified by a factor of about 40.

Deviations of this magnitude are consistent with imperfections and changes in the
Doppler compensation (Section 3.1.3) or other systematic line shifts (see Section 3.1.4.4),
but can also be attributed to a larger error in the determination of the line center and
underestimation of the corresponding uncertainty by the fit. An interpretation along
this line is indicated by the increased deviation of the likewise determined ground state
splitting in 40K of 38 kHz for the common upper level F ′ = 9/2 and even 140 kHz for
F ′ = 7/2, respectively. It has to be noticed that the transition F = 7/2 → F ′ = 7/2
is very weak and sitting on a comparatively steep background. An exceptionally large
variation in the residual Doppler effect due to rapid changes in the optical alignment can
be excluded since the transition F = 7/2 → F ′ = 9/2 was recorded in the same scan.
The statistical uncertainty of the F = 7/2 → F ′ = 7/2 line’s frequency is with 35 kHz
more than twice as big as for the other transitions of 40K. We conclude therefore that the
uncertainty in the determination of the line center is underestimated by the fit. Realistic
uncertainty contributions for the determination of the line center are 20 kHz and 40 kHz
for 39,41K and 40K, respectivly.

3.1.4.3 D2 line

The D2 lines of potassium at 13042 cm−1 were measured in a similar way to the D1 lines.
Differences in the analysis arise from the very small hyperfine splitting in the 2P3/2 state
of 39K that leads to a triplet of transitions overlapping within the natural line width (see
Figure 3.4). The situation is even worse for 41K (see Figure 3.5), were the hyperfine
splitting is about a factor of two smaller than in 39K.52

Besides the nuclear magnetic dipole interaction parametrized by the A factor, for
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Figure 3.4: Spectrum of the transitions belonging to the D2 line of 39K. On the left, the
lower hyperfine state is F = 2, the right side depicts the spectrum from F = 1. The residuals
are enlarged by a factor 30.

the 2P3/2 level the electric quadrupole interaction has to be taken into account, which
is represented by the coupling constant B. For the individual analysis of each hyperfine
group, this leads to the difficult situation that three free parameters determining the line
positions have to be adjusted to an overlapping structure.

It was therefore preferred to perform joint fits of both groups’ spectra F = 1 and
F = 2 of each isotope with common hyperfine parameters. In this way, six transitions
observed and recorded several times were described by only three parameters for the
frequency, where we made use of the very precisely known ground state splitting F = 1↔
F = 2.51 The other parameters discussed in Section 3.1.4.2 were individually adjusted
for each recorded spectrum, but only two Lorentzian line widths were fitted to further
reduce the number of free parameters: we found that the transitions with ∆F = ±1 are
satisfactorily described with a common Lorentzian line width. All lines are modeled with
the same Doppler width. With these restrictions, the fitting is much more deterministic
and produces reliable results. Such a lengthy fitting procedure was not necessary in the
case of the D1 lines, where the transitions are well separated and frequencies can be
evaluated easily for each line.

The consistency of the measurements was checked by the isotope 40K, which has a
larger hyperfine splitting and shows less overlapping line profiles. The expected ground
state splitting is reproduced with a deviation of less than 40 kHz by fitting the center
frequency of each hyperfine multiplet individually with common parameters A and B.

The residuals depicted in Figure 3.4 for the 39K D2 line indicate some remaining
mismatch of experimental observations and fit. This is also true but less severe in the
case of 41K (Figure 3.5), while for 40K the quality of the fit is comparable to the one
shown in Figure 3.3. In Figure 3.5, two traces of residuals are depicted for each group.
They stem from fits with freely adjusted hyperfine parameters of the 2P3/2 state and from
a fit, where they were fixed to the values from Ref.52 We will come to this again in
Section 3.1.5.

We attribute the deviations to weak effects of optical pumping. Attempts to fit our
spectra with a density matrix approach using our experimental parameters lead to no
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Figure 3.5: The F = 2→ F ′ = 1, 2, 3 component of the 41K D2 line (left), and the spectrum
of F = 1 → F ′ = 0, 1, 2 (right) is shown. In both parts, two curves with residuals are shown.
The upper one is obtained when the hyperfine constants of the 2P3/2 state are fitted. For the
lower case, they were fixed to literature values52 (see text).

significant improvement. This may be due to the fact that the polarization of the spec-
troscopy laser beam with respect to the residual magnetic field is not known. We are
therefore forced to increase for 39K and 41K the uncertainty, with which we can determine
the line center. An uncertainty of 100 kHz is in our opinion well justified.

3.1.4.4 Uncertainty budget

The precision of the performed measurements is limited by several effects. The most
crucial one is the residual first order Doppler effect, which was already discussed in Sec-
tion 3.1.3. There, we showed that we can limit its influence to below 50 kHz for the
absolute frequency. For relative frequency measurements, the contribution to the un-
certainty budget from the Doppler shift will be smaller when the optical alignment is
unchanged and not drifting. By repeated measurements with and without retro-reflected
beam we monitored the change of the Doppler shift in time and estimated that the uncer-
tainty contribution for difference frequency measurements is 20 kHz for data taken within
a few hours.

The second order Doppler effect cannot be avoided by the use of a retro-reflector. For
the most probable particle velocity of 1000 ± 100 m/s we have measured in our beam it
amounts to -2.2(5) kHz. The velocity of the atoms was determined by means of a Doppler
detector.53 We have corrected the transition frequencies for the second order Doppler
effect.

Magnetic fields are shielded from the interaction region by a µ-metal box. The re-
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maining field of less than 20 mG can lead to a line shift of less than 30 kHz.

Two systematic shifts occur due to the photon recoil. To begin with, the peak of the
absorption profile of an atom at rest is shifted from transition frequency ν0 corresponding
to the energy difference of the two involved levels by the recoil energy hνr = h2v2

0/2MKc2 ≈
8.7 kHz×h for the potassium D lines. Here, h is Planck’s constant, c the speed of light,
and MK is the mass of the potassium atom.

The second contribution stems from the average velocity of vr = h(ν0 + νr)/MKc ≈
1.3×10−2 m/s gained by the atom after an absorption-emission cycle. Multiple cycles lead
to a velocity redistribution and thus Doppler shift and line asymmetry. The maximum
Doppler shift 2× νr per cycle is about 17 kHz.

This influence can be kept small by low laser intensity and is further reduced by the
two counter-propagating laser fields produced by the retro-reflector. We have calculated
that under our experimental conditions for a laser beam in only one direction, on average
less than 0.2 photons are scattered per atom for 39,41K and 3 for 40K. We think that
shifts due to velocity redistribution are smaller than 1 kHz for 39K and for 41K. These
considerations are very well confirmed by the observed intensity ratio of the lines that
matches the relative line strengths for unsaturated excitation better than 3% for clearly
separated lines, for which the intensities can be well determined.

For 40K systematic frequency shifts could be present due to the higher number of
scattered photons. Since the difference of intensity in the counter-propagating beams
of the cat’s eye is less than 25% the Doppler shift will mostly cancel. We attribute
an uncertainty of 15 kHz to the possibly remaining asymmetry, which corresponds to
difference of 1.5 in the number of scattered photons for both laser beam directions. A
significant influence of optical pumping is observed for 40K only on the cycling transition
F = 9/2 ↔ F ′ = 11/2 of the D2 line. For the other transitions, the expected and
observed intensity ratios match within 7%. An energetic shift of the levels due to e.g. the
Zeeman or ac-Stark effect and optical pumping could lead to additional line shifts. Since
the uncertainties for Zeeman and Stark shifts discussed below account for the maximum
expected effect, no additional uncertainty contribution appears here.

Coupling of the spectroscopy laser beam to near resonant transitions, in particular
within the hyperfine multiplet, leads to an ac-Stark shift of the resonant transition. The
shift can become important when the energetic spacing between transitions with common
levels is small. This is the case for the small hyperfine splitting of potassium, especially
in the 2P3/2 state.

The maximum possible ac-Stark shift can be calculated with sufficient accuracy making
use of the life time of the 4p 2P levels to determine the transition dipole moment. One of
the most precise methods to determine the life time of the first exited P levels in alkali
metals is to calculate it from the resonant dipole-dipole coupling coefficient C3, which is
determined from spectroscopy of long range molecular states.50 Note, that this calculation
involves the knowledge of the transition frequency of the D lines, but the change of this
value for 39K does not influence the results of Ref.50 significantly.

The ac-Stark shift due to non-resonant coupling of the spectroscopy laser field is given
for sufficiently large detunings ∆ (here: ∆ larger than the natural line width) by the eigen
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energies of a two level system in the dressed state picture

1

2

(
∆±

√
∆2 + Ω2

)
(3.1)

where 2πΩ is the Rabi frequency. For determining an upper limit of the ac-Stark effect we
calculate with twice the peak intensity of a single beam to account for the retro-reflected
beam. The detuning ∆ has to be set to the hyperfine splitting of the excited state. The
hyperfine splitting of the ground state is large enough, such that coupling to the other
ground state hyperfine state can be neglected. For the D1 line, ac-Stark shifts are below
6 kHz for all isotopes. The larger hyperfine splitting of 40K compensates for the higher
intensity that was necessary to observe this isotope.

The hyperfine splittings of the 2P3/2 state are smaller than for 2P1/2. Due to the
overlap of lines, a simple calculation according to equation (3.1) strongly over-estimates
the possible Stark shifts of the D2 lines. In order to derive a more realistic limit, we
undertook density matrix simulations modeling the experimental conditions. From these
calculations, we derive an upper limit of 6 kHz for 39K and 41K and 50 kHz for 40K.

The last contribution to the uncertainty budget stems from the frequency measurement
itself. It amounts to less than 1 kHz for the synchronisation of the frequency trace and
spectrum and the uncertainty of the Cs clock.

In Table 3.1, we have summarized the contributions to the uncertainty budget of the
transition frequency.

3.1.5 Results

From the description of the measurements and analysis in Section 3.1.4 follows that we
have determined the transition frequency of each hyperfine transition of the D1 lines indi-
vidually. The average values are given in Table 3.2 with the uncertainties and corrections
according to Table 3.1.

Using the transition frequencies in Table 3.2, we have determined the hyperfine param-
eter A for all observed isotopes. Since the A factor depends on difference frequencies only,
the reduced uncertainty stated in Table 3.1 can be applied. As uncertainty of the energy
splitting of the excited levels we took twice this uncertainty. The A factor is connected
to the level splitting by ∆ν = A · (F ′ + 1) where F ′ is the smaller one of both quantum
numbers involved in the excited state. Thus the uncertainty of the A factor is given by
the uncertainty of the level splitting divided by F ′ + 1.

The values of the hyperfine parameters A are given in Table 3.3 and compared with
literature values. All parameters are visualized in Figure 3.6. It can be seen that the agree-
ment of our A factor for the 2P1/2 level and the results from Refs.44,45 is very good while
the values from Refs.43,31 deviate from our results. In the case of Ref.,31 the deviation has
possibly the same reasons as for the disagreement of the transition frequencies discussed
in Section 3.1.4.1. The transition frequencies and hyperfine parameters of both states can
be combined to calculate hyperfine-free transition frequencies of each isotope’s D1 line.
The values are given in Table 3.4. The results of the frequency comb measurements agree
with our pre-investigations (see Section 3.1.3) and Scherf’s finding.32
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Table 3.1: Summary of the different contributions to the error budget. The values in parenthe-
sis for the sum in quadrature refer to relative measurements with a reduced Doppler uncertainty.

source correction uncertainty
1st order Doppler effect 0 kHz 50 kHz
(for relative meas.) (0 kHz) (20 kHz)
2nd order Doppler effect 2.2 kHz 0.5 kHz
Zeeman effect 0 kHz 30 kHz
Recoil shift −8.7 kHz 0.1 kHz
Velocity redistribution

39,41K 0 kHz 1 kHz
40K 0 kHz 15 kHz

ac-Stark effect
D2 line 40K 0 kHz 50 kHz
all other lines 0 kHz 6 kHz

Line center/profile
39,41K D1 20 kHz
39,41K D2 100 kHz

40K 40 kHz
Frequency measurement 0 kHz 1 kHz

sum sum in quadrature
D1

39,41K −6.5 kHz 62(42) kHz
40K −6.5 kHz 73(56) kHz

D2
39,41K −6.5 kHz 116(117) kHz

40K −6.5 kHz 88(75) kHz

Table 3.2: Transition frequencies ν of the D1 lines. For convenience, an offset of 389285 GHz
is subtracted.

isotope F F ′ ν in MHz
39K 1 1 1312.574(62)

1 2 1368.124(62)
2 1 850.838(62)
2 2 906.386(62)

40K 9/2 9/2 1686.785(73)
9/2 7/2 1842.157(73)
7/2 9/2 400.957(73)
7/2 7/2 556.224(200)a

41K 1 1 1433.888(62)
1 2 1464.386(62)
2 1 1179.890(62)
2 2 1210.380(62)

aThe larger uncertainty is due to the difficulties determining the line center discussed in Section 3.1.4.2.
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Table 3.3: Derived hyperfine parameters A and B and constants from literature. All values
are in MHz.

isotope source A 2P1/2 A 2P3/2 B 2P3/2
39K this work 27.775(42) 6.093(25) 2.786(71)

Ref.44 27.80(15)
Ref.45 27.5(4)
Ref.31 28.859(15)
Ref.43 28.85(30)
Ref.54 6.00(10) 2.9(2)
Ref.55 6.13(5) 2.72(12)
Ref.51 6.06(8) 2.83(13)

40K this work -34.523(25) -7.585(10) -3.445(90)
Ref.44 -34.49(11) -7.48(6) -3.23(50)
Ref.56 -7.59(6) -3.5(5)

41K this work 15.245(42) 3.363(25) 3.351(71)
Ref.44 15.19(21)
Ref.45 15.1(8)
Ref.55 3.40(8) 3.34(24)
Ref.52 3.325(15) 3.320(23)

The analysis of the D2 line data was done in a different way than in the case of
the D1 transition (see Section 3.1.4). The results of the fitting procedure are directly
hyperfine-free transition frequencies and the hyperfine parameters of the 2P3/2 level. Their
uncertainties were determined from a fitting procedure, in which an artificial dataset with
the reduced uncertainties given in Table 3.1 was used. The hyperfine-free transition
frequencies are listed in Table 3.4, the hyperfine parameters are given in Table 3.3 and
are depicted in Figure 3.6. In Table 3.5, we have given frequencies of comparatively weakly
overlapping transitions of the D2 line. They were calculated from the fitting procedure
introduced in Section 3.1.4.3.

The values of the hyperfine parameters are generally in agreement with previous mea-
surements with the exception of A(39K,2 P1/2), where we find the already discussed dis-
crepancies. In the case of 41K, where high precision measurements on the D2 line were
presented in Ref.,52 our results have a larger uncertainty than earlier measurements. We
have shown in Figure 3.5 that an acceptable fit of our spectra can be achieved with the
parameters of Ref.,52 but the fit improves significantly by small variations of the hyperfine
parameters. Thus, we give our fit results including the A and B parameters, also because
of the completely different nature of both experiments.

From the hyperfine-free transition frequencies, the fine structure splitting and isotope
shifts can be calculated. As reference isotope, we chose 39K. We regard the measurements
on different isotopes and D lines as sufficiently independent to add their uncertainties in
quadrature. The results are given together with data from literature in Table 3.6. Our
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Figure 3.6: Hyperfine constants determined from our work and by other authors. left: A
2P1/2; center: A 2P3/2; right: B 2P3/2.

Table 3.4: Hyperfine-free transition frequencies ν of the D1 and D2 lines.
isotope source ν(D1) in MHz ν(D2) in MHz

39K fs comb 389 286 058.716(62) 391 016 170.03(12)
wavelength meter 389 286 068(30) 391 016 190(30)

I2 389 285 980(100)
Ref.32 389 286 078(20) 391 016 188(20)

Ref.30,31 389 285 580.908(50) 391 015 578.04(11)

40K this work 389 286 184.353(73) 391 016 296.050(88)

41K this work 389 286 294.205(62) 391 016 406.21(12)

Table 3.5: Frequencies ν of weakly overlapping transitions of the D2 lines. For convenience,
an offset of 391 015 GHz is subtracted.

isotope F F ′ ν in MHz
39K 2 3 1011.286(116)

40K 9/2 11/2 1821.134(88)
9/2 9/2 1865.221(88)
9/2 7/2 1898.523(88)
7/2 9/2 579.431(88)
7/2 7/2 612.733(88)
7/2 5/2 636.912(88)

41K 2 3 1319.356(116)
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Table 3.6: Isotope shifts (IS) and fine structure (FS) splittings for the observed isotopes. All
units are MHz.

isotope source FS splitting IS(D1) IS(D2)
39K this work 1 730 111.31(13) − −

Ref.32 1 730 110(30) − −
Ref.30 1 729 997.132(120) − −

40K this work 1 730 111.70(12) 125.64(10) 126.03(15)
Ref.44 125.58(26) 126.43(30)

41K this work 1 730 112.01(13) 235.49(9) 236.18(17)
Ref.44 235.27(33) 236.15(37)
Ref.45 235.25(75)

results are again consistent with the values from other sources with the exception of the
value for the fine structure splitting given by Banerjee et al.30

3.1.6 Conclusion

We have measured all optical transitions of both D lines in the isotopes 39, 40, and 41 of
potassium by laser induced fluorescence spectroscopy on a highly collimated atomic beam
with a fractional uncertainty of about 2× 10−10. The absolute frequencies were measured
with a self-referenced femtosecond laser frequency comb generator that supplied the link
from the spectroscopy laser to a Cs atomic clock.
With our measurements, we confirm the transition frequencies for 39K measured by Scherf
et al.32 or determined by conventional spectroscopic means like the I2 atlas or commercial
wavelength meters. We were not able to reproduce the results of Refs.40,30,31

From our measurements, the fine structure interval and hyperfine parameters A and B
for the excited states 4p2P1/2 and 4p2P3/2 were derived. They have a significantly reduced
uncertainty compared to data from literature and are consistent with those. The isotope
shifts of D1 and D2 line of 40K and 41K were determined from the hyperfine-free transition
frequencies with reduced uncertainty.
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3.2 ac-Stark Effect

In our determination of uncertainty contributions density matrix simulations were per-
formed to obtain a reasonable upper limit for ac-Stark effects. Such effects on transition
lines are due to off-resonant coupling to states, which are not involved in the transition
itself. Dipole traps utilize this effect: a laser red detuned from all relevant transitions
shift the ground state downwards according to the local power density. Thus, the atoms
minimize their energy if they are in the maximum field intensity of the trap lasers. More
sophisticated examples are crossed dipole traps with two laser fields or optical lattices
with standing waves in one, two, or three directions.

The lasers inducing the ac-Stark effect are usually far detuned to reduce the probability
of photon absorption. However, high power is needed for the formation of a potential
minimum in the center if the beam. Such traps utilize the dependence of the ac-Stark
shift described by equation (3.1) on the field strength, i.e., the variation of Ω. In our
spectroscopic experiment, we have to consider ac-Stark effects not because of high laser
powers (high Ω) but because of small detunings ∆. Several hyperfine levels of the 4p state
are energetically close and if driving a transition to one hyperfine state, the coupling of
another hyperfine state lets the spectroscopy laser induce an ac-Stark effect on the ground
state, i.e., the starting state of the considered transition.

3.2.1 Three-State Model

In a first step of understanding we take a look at a model with three states: A single ground
state is coupled via a laser to two excited states, which are energetically separated by ∆.
If the laser is in resonance with one of the excited state the ground state is shifted due to
the ac-Stark effect induced by coupling to the second excited state following equation (3.1)

δ± =
1

2

(
∆±

√
∆2 + Ω2

) ∆→0
−−−−→ ±1

2
Ω . (3.2)

The picture described above breaks down if the energy difference of the two excited states
becomes small, i.e., smaller than the inverse lifetime γ (linewidth). Graph (c) in Figure 3.7
illustrates this situation, in which the additional state is partly above and partly below
the state of interest. One part shifts the state of interest up, the other part shifts down

We performed density matrix simulations including spontaneous decay from the two
excited states. The time sequence of the interaction reproduces our experimental condi-
tions: The three-state atoms travels through a laser fields with the peak Rabi frequency
of Ω. We integrate the spontaneous decay from each excited state separately. By doing
this time integration for several detunings of the coupling laser ∆, we obtain two data
traces, which simulate spectra. By fitting a Lorentzian line shape to each spectrum, we
derive an ac-Stark effect. These ac-Stark shifts of the two state are shown in Figure 3.8,
where in Graph (a) Rabi frequencies are used that correspond to the experimentally ap-
plied ones for 39K and 41K and in Graph (b) the simulated Rabi frequency corresponds
to the 40K measurements. The shifts are derived in the simulation for several energy sep-
arations between the two excited states. As expected, the two observed shifts are similar
but opposite in sign. The solid lines indicate the estimation of the ac-Stark shifts by the
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Figure 3.7: Illustration of the ac-Stark effect. Graph (a) depicts the model. For large de-
tunings, the effect can be estimated by equation (3.1) as illustrated in Graph (b). For small
detunings shown in Graph (c), the shift of the ground state and thus of the transition frequency
becomes smaller. The ac-Stark shift in the excited states of the tested transition is not shown.
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Figure 3.8: ac Stark-effect calculated in a three state model. Density matrix simulations
are compared to calculations following equation (3.1). Graph (a) shows the results for para-
meters corresponding to the spectroscopy of 39K and 41K. The experimental parameters for the
experiments on 40K were used in Graph (b).
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Figure 3.9: Level scheme of the 4s and the 4p states of potassium. Here, the situation for
the nuclear spin i = 3/2 is illustrated, which corresponds to 39K and 41K. From left to right
are the splitting due to fine structure (coupling of ~l and ~s to ~j), the splitting due to hyperfine
structure (coupling of ~j and ~i to ~f), and the degeneracy due to the different projections f labeled
by mf illustrated. For 40K, i and in consequence the values of f are bigger and more projections
mf are possible. The laser field of polarization q couples two levels if f ′ = f−1, f, f +1 and
m′

f = mf +q, with the exception that for q =0 and mf =m′
f =0 no coupling between two states

of the same total angular momentum f is possible.

simple formula equation (3.1). For large detuning they agree perfectly, but for smaller
detunings this formula strongly overestimates the effect.

In our effort to reproduce the experimental conditions, we simulated a Gaussian beam
profile in the density matrix simulations. The solid lines in Figure 3.8 are calculated with
Rabi frequencies corresponding to

√
2 times the peak Rabi frequency of the Gaussian

profile. The correction factor was obtained by a comparison of density matrix simulations
for constant coupling strength with simulations with a Gaussian profile.

We can conclude: the simple formula over-estimates the error on the transition fre-
quency due to the ac-Stark effect of the spectroscopy laser significantly if the spacing of
two levels is smaller than the natural linewidth.

3.2.2 Detailed Density Matrix Simulations

By extending the density matrix simulations with more states, a better reproduction of the
experimental condition is possible. However, only one of the hyperfine states of the ground
state could be considered because of numerical problems occurring at high separation of
the involved states. But, the expected shift due to ac-Stark effects originating from the
second ground state are significantly lower than the effects of the various excited states
and negligible in the error budget.

The coupling strength of the levels depends on the magnetic quantum number mf , the
projection of f on the magnetic field axis, and on the polarization q of the laser beam.
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The transition dipole moment, with usual notation for quantum numbers, is

〈α′ [(l′, s) j′, i] f ′, m′
f |µq |α [(l, s) j, i] f, mf〉 . (3.3)

= (−1)1+l′−s+j+j′+i+m′
f ×

√
2j + 1

√
2j′ + 1

√
2f + 1

√
2f ′ + 1 〈α′, l′| |µ| |α, l〉

×
{

l′ j′ s
j l 1

}{
j′ f ′ i
f j 1

}(
f 1 f ′

mf q −m′
f

)
.

If one wants to relate the reduced dipole moment to a decay rate A one has to consider
the degeneracies:

〈α′, l′| |µ| |α, l〉 ∼
√

2l′ + 1

2l + 1
A (α′ → α) , (3.4)

where α and α′ represent all quantum numbers for the identification of the state. In our
example we have to multiply the angular part from equation (3.3) by

√
3 and the inverse

atomic lifetime to obtain coupling strengths. The polarization was not defined in our
experiment. Therefore, simulations with all three possible polarizations were performed.

With our simulations we want to derive upper limits for effects that may shift the
transition frequency in our experiments. First, the spectroscopy laser may shift level
positions due to the ac-Stark effect. Second, the overlap of lines may lead to asymmetric
lineshapes because the atoms are optically pump on via one transition, which leads to a
variation of population in the ground state over the interval of another transition. In other
words, the two lines compete for ground state atoms and by removing more atoms on the
neighboring side than on the opposite side, the lineprofiles have an additional underlying
slope. This slope differs from the slope, which is simulated by adding several Lorentzian
line profiles.

We undertook two simulations. First, spontaneous decays were simulated such that
the atoms always decay back to the ground state from which they were excited, i.e., all
atoms decay with a photons of a specific polarization. Here, effects of optical pumping
as discussed in the preceding paragraph are not occurring. Second, we simulated the
spontaneous decays with branching ratios for the decay channels. Also, the decay from
all involved levels were integrated separately. In this way, the line positions could easily
be derived individually by profile fits to the simulated spectra. Moreover, the effect of
optical pumping and ac-Stark effects could be distinguished. The ac-Stark effects are
in general bigger. The errors given in Section 3.1.4.4 are from the simulations with the
realistic branching ratios.



Chapter 4

The A 1Σ+
u State of K2

The particle beam of potassium used for the study of the D lines discussed in the preceding
chapter does have a significant contribution of K2. Originally, the beam apparatus was
designed for — and is mainly used for — studies of K2. Matterwave interferometer are
run with these dimers.57

In this chapter, we study the first electronically excited singlet state A 1Σ+
u of K2 in

high resolution. A preparation step with a laser for optical pumping allowed for the study
of long-range levels of the A 1Σ+

u state up to the dissociation limit. We reached levels
with classical turning points of up to about 300 Å. These are two-atom molecules with
the size comparative to quantum dots made up from several 10 000 atoms. We report
this study in an article, which is enclose to this thesis in Section 4.1. It was published
originally in The Journal of Chemical Physics, Volume 125 under article number 224303
on 12th of December 2006. The hyperfine structure calculations mentioned therein are
discussed in greater detail in Section 4.2.

The two non-decaying isotopes of potassium 39K and 41K have significant natural
abundance. We investigate not only the most abundant isotopomer 39K2 but also the het-
eronuclear dimer 39K 41K. Both isotopomers have in the Born-Oppenheimer approximation
the same potential energy curves. Deviations from this approximation will accumulate
for asymptotic levels. By comparing the levels of the two dimers, the Born-Oppenheimer
approximation is studied (Section 4.3).

Properties of cold collisions of two atoms are of high importance for experiments with
ultracold atoms. A very important research subject is to predict these properties for
specific combinations of isotopes from the measured properties of other isotopes, espe-
cially in the rich field of two-species traps. However, this so-called mass-scaling relies
on the Born-Oppenheimer approximation for the interaction between the two atoms in
the ground state, i.e., of the singlet and triplet ground state of the corresponding dimer.
The investigation of the A state of potassium opens a road for the experimental study of
the precision of the Born-Oppenheimer approximation for cold collisions. Therefore, we
conclude this chapter by an outlook on experiments at the ground state asymptotes in
Section 4.4.

All gathered spectroscopic data of the A–X system is given in Appendix B.
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u state of K2 up to the dissociation limit
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Abstract: We report an experimental study of the K2 A 1Σ+
u state. Long-range

levels up to the dissociation limit were observed in a two laser spectroscopic
experiment using a highly collimated molecular beam. We derive an analytical
potential energy curve for the complete A state including long-range dispersion
terms. From these, we obtain radiative atomic lifetimes of 26.74(3) ns for
the 4p1/2 state and 26.39(3) ns for the 4p3/2 state of 39K. The dissociation
energy of the X 1Σ+

g ground state with respect to v = 0, J = 0 is found to be
D0 = 4404.808(4) cm−1.
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4.1.1 Introduction

Laser cooling has opened a pathway to experiments testing fundamental physical concepts
using the cold and ultracold temperature regimes. In these experiments it is essential to
have a good understanding of the collisions of cold atoms, i.e., collisions with almost
zero kinetic energy. Studies of the crossover between the BCS regime (Bardeen, Cooper,
Schrieffer) and the regime, in which Bose-Einstein condenstates (BEC)are formed, need
a tunable interaction.7,8 The dynamics of BEC strongly depends on the two particle
interaction and is fundamentally different for positive or negative values of scattering
length, which describes the effective interaction in the ultracold regime.58 The generation
of quantum degenerate Fermi gases59 is greatly simplified by sympathetic cooling via a
Bose-Einstein condensed second species, a method relying on appropriate two particle in-
teraction between the species.60 Phase diagrams of ultracold atoms in periodic potentials,
usually mediated by optical lattices, are very rich. For their modeling, the two particle
interaction is taken into account.61 Also, the formation of ultracold molecules via three
particle collisions62 or adiabatic ramps of the interaction strength, which is tuned by an
external magnetic field,63 are experiments that utilize cold collisions.

These cold collisions of atoms are best described by precise molecular interaction po-
tential curves. Properties such as the scattering length can be derived from such poten-
tials. It is essential to gather information about weakly bound molecular levels in order to
derive potentials at large internuclear distance. Experiments with ultracold atoms achieve
this by monitoring the behavior of cold collisions in magnetic fields and the interpretation
of Feshbach resonances.64,65,66



4.1 J. Chem. Phys. 125, 224302 (2006) 45

Among the alkali metal elements, only two naturally occurring fermionic isotopes are
available: 6Li and 40K. This fact, and convenient transition frequencies, have caused big
interest in ultracold potassium. Currently all three stable isotopes (39 – 41) have been
trapped, some in two-isotope traps. The ground state potential of K2 is known from
Fourier-transform spectroscopy of an internuclear distance of up to 15 Å.67 The observed
least bound level in that study lies 1.8 cm−1 below the atomic asymptote, i.e., below the
region of observations with ultracold atoms. This gap of observations may be closed by
spectroscopy via electronically excited states. The A 1Σ+

u state is a very good candidate
for providing access: in sodium similar studies were successful with the corresponding
A state serving as a transfer state.5

Another interest in the A state is to derive the radiative lifetime of p states of potas-
sium. Precise measurements of the atomic lifetime were performed: direct measurements
by laser spectroscopy in an atomic beam68 agree with lifetimes derived from long-range
parameters investigated in photoassociation experiments.50 With our spectroscopic tech-
nique of Franck-Condon pumping, levels all the way up to the atomic asymptote will be
investigated, i.e., levels that are even less bound than those observed in photoassociation.
In the case of sodium, an experiment similar to ours allowed for the determination of a
precise value of the radiative lifetimes69 from the dipole-dipole interaction constant C3.

Since the A state is correlated to the 4s+4p1/2 asymptote, an improved value for
the ground state dissociation energy (4s+4s asymptote) will be derived using the atomic
transition frequency of the D1 line.

Finally, an interesting feature of the A 1Σ+
u state is its coupling to the triplet manifold:

It leads to perturbed levels which show strong singlet-triplet mixing. Such levels may be
used for transforming molecules from triplet to singlet or vice versa. In our study, the
perturbed vibrational levels and their energy position with respect to the dissociation
threshold of the A state, i.e., the detuning of the photoassociation lasers from the atomic
line, were identified.

This article is organized as follows. Our experimental setup is described in Sec-
tion 4.1.2. The underlying theoretical model for our analysis is discussed in Section 4.1.3.
In Section 4.1.4, we present and discuss our obtained results. We conclude and give an
outlook on future work in Section 4.1.5.

4.1.2 Experiment

We study K2 molecules in a molecular beam. The beam apparatus was described pre-
viously.47 In short, a cold molecular beam is produced by adiabatic expansion from a
heated potassium reservoir through a nozzle of 200 µm diameter into vacuum. After the
expansion, the dimers are mainly in the lowest vibrational level of the electronic ground
state X 1Σ+

g . The rotational level with maximal population probability is around JX = 10.
The geometrical arrangement of the two skimmers between the pumping stages leads to a
collimation ratio of 1000. The residual gas pressure is below 10−8 mbar in the last stage
while the beam is running. The molecules fly at 950±70 m/s and are interrogated by laser
fields. The laser beams cross the molecular beam perpendicularly. The residual Doppler
width of about 2 MHz is below the natural linewidths for transitions to the A state.

We apply two laser fields, which are spatially separated by several centimeters and
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Figure 4.1: Simplified potential scheme of K2. Initially, the molecules are in the vibrational
ground state of the X 1Σ+

g state. The first laser (L1) drives Franck-Condon pumping. The
spectroscopy is done with a second laser (L2).

interact with the molecules successively. With the first laser (L1) we drive a transition
to a low vibrational level of the A 1Σ+

u state (14 ≤ vA ≤ 25; see Figure 4.1). The
dimers decay and populate various vibrational levels of the X state according to the
corresponding Franck-Condon factors. By selecting an appropriate vibrational state of
state A, we are able to choose which levels of state X are predominantly populated in
this preparation step. The laser intensity of about 2 W/cm−2 is high enough to saturate
the transition of this Franck-Condon pumping step. We use a cw Ti:sapphire laser with
about 50 mW power after an optical fiber link to the vaccum apparatus. This laser is
tuned to resonance and then stabilized via an offset cavity to an iodine stabilized HeNe
laser to ensure a continuous flux of vibrationally excited K2 molecules downstream.

The actual spectroscopy is done with a second laser (L2). It is applied downstream
from the first laser. Scattered light from L1 is strongly suppressed by the spatial separa-
tion. The vibrational relaxation of the molecule between the two laser fields is negligible.
We record the laser induced fluorescence from L2 by an infrared sensitive photomultiplier
(Hamamatsu R943-02) and current amplifier. Optical filters are used to suppress scattered
light, originating from L2. Power and diameter (2 mm) of this laser beam are similar to
L1. The frequency calibration of L2 was done either by a wavelength meter (HighFinesse
WS-7 or WS-8) or by recording I2 absorption spectra simultaneously. These reference
spectra are simulated based on earlier studies.29 The reached absolute uncertainty was
100 or 40 MHz for the two wavelength meters and 150 MHz for iodine. For the iodine
recordings, the transmission of a 150 MHz marker cavity was used to interpolate between
iodine lines. Due to the large potential energy interval covered in this experiment, two
different lasers were applied for the spectroscopy. A cw linear dye laser running with
DCM was used for the lower vibrational levels and a second cw Ti:sapphire laser was
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introduced to extend the data field up to the dissociation limit.
We started our study at the upper energy limit of the previously investigated levels70

of the A state by detecting vA = 84. The intermediate levels prepared by L1 were mainly
vX = 27 and 28. The window for the detection of fluorescence induced by L2 is narrow
because the scattered light from L2 at 740 nm had to be suppressed by an optical filter
and the detection is sensitive only up to a wavelength of 930 nm. For the lowest observed
vibrational levels, we periodically chopped L1 while L2 was scanning slowly. Using a lock-
in amplifier triggered by the switch, the fluorescence signals induced by L2 were revealed
despite a high background signal due to residual scattered light from L2. Going to higher
vibrational levels led to bigger and bigger signals due the higher quantum efficiency of
photomultiplier for higher energy photons. This made the lock-in detection redundant.
After the observation of several vibrational levels, the Franck-Condon factors for the
detected transitions died out. By selecting a higher vA for L1, we were able to start from
higher vX in the spectroscopy and thus with sufficient Franck-Condon factors again.

Due to the Franck-Condon pumping step, the number of observed rotational levels is
reduced. If L1 excites a rotational level JFCP

A then the two rotational levels JX = JFCP
A ±1

are populated in each vibrational level of the ground state. Therefore, three rotational
levels of the A state are accessible by L2 without change of the preparation step: JA =
JFCP

A −2, JFCP
A , JFCP

A +2. For each vA, we investigated these three rotational levels starting
from two different vibrational levels of the ground state. From the observed lines, ground
state splittings were calculated. These ground state splittings can also be interfered
from studies of the ground state,67 where a rms of the deviations between observed and
calculated levels of 0.0017 cm−1 was achieved. The results from measurements match
the calculated ground state splittings better than 0.003 cm−1 confirming the rotational
assignment.

The vibrational spacing gets narrower as we approach the dissociation limit. Close to
the asymptote, we scanned the laser and recorded several vibrational levels of the A state
in a single scan of the laser. Figure 4.2 shows a typical recording. For each vibrational
level of the A state, P and R lines are resolved. All lines in the spectrum start from a
common level of the X state. Transitions starting from another ground state level are
not in this scan because we selected the lowest rovibrational level of the ground state
that was populated in the Franck-Condon pumping step: L2 cannot drive transitions
from another ground state levels to bound region below the asymptote. The scan in
Figure 4.2 shows that the vibrational spacing and Franck-Condon factors tail off as the
asymptote gets closer. For the very weakly bound levels, hyperfine structure appears.
Above the threshold the dissociation continuum is visible by increased fluorescence. For
such asymptotic scans, we use a bandpass filter around the D1 line of potassium to filter
the fluorescence since weakly bound molecules of the A state decay mainly to continuum
levels just above the 4s+4s asymptote. In our experiment the laser is far detuned from this
atomic resonance due to the binding energy of the level we start from. In photoassociation
experiments levels very close to the asymptote are difficult to resolve due to the overlap
of rovibrational series of several electronic states.

A summary of the observed levels is shown in Figure 4.3. Our data with 160 new
vibrational levels extend all the way to the asymptote. Moreover, an absolute vibrational
assignment of the levels recorded in photoassociation71 is now possible. In the follow-
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Figure 4.2: Scan below the 4s1/2 (f = 1)+4p1/2 (f = 1) asymptote: Laser-induced fluorescence
over the frequency of L2. Vibrational quantum numbers vA = 232 to 245 of the transitions are
assigned to each pair of rotational lines. The lower graph shows the spectrum of the least bound
levels in more detail. Here, the positions of the two hyperfine structure components for each
rotational line are also indicated.
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ing section we will describe how a potential energy curve is derived from this combined
spectroscopic data set.

4.1.3 Theoretical Model

The A 1Σ+
u state is coupled to the b 3Πu state by spin-orbit coupling. This coupling

was analyzed by Manaa et al.74 over a wide energy interval. To our knowledge the best
previously derived A state potential was obtained by this deperturbation analysis. With
the widely extended data field (see Figure 4.3) the A state potential can now be continued
to its asymptote. In this study, we focus on the singlet state and derive a single potential
curve describing an effective A state. Note that the coupled channel analysis used the
Fourier-grid method and would need to cover not only a large energy but also a wide
internuclear separation interval giving huge matrices, which need long computing time.
Using a single potential analysis keeps the complexity of the problem manageable and
allows for direct comparison of the assigned and calculated vibrational quantum number.
The road of the deperturbation analysis started by Ross et al.,72 persued by Jong et al.,73

Lisdat et al.,47 and by Manaa et al.74 may be picked up with the here derived curve
for the A state in the future, but would benefit greatly from an enlarged data set for
the 3Πu potentials. Knowledge about these potentials may also be obtained by further
investigations of the perturbed regions of the A state, i.e., by enlarging the interval of
observed rotational levels JA.

4.1.3.1 Representation of Potential Energy Curve

It is crucial to use an appropriate representation of the potential energy curve. As in
other studies,75,76 we split the internuclear distance axis (R axis) into several intervals.
A representation of the potential well is connected to a repulsive wall part at small R
and to a long-range part for large R, in which well known dispersion formulas are used.
Additionally, we introduce a fourth interval for even bigger R in order to model the
observed hyperfine structure of asymptotic levels.

For the potential well, a power series in a scaled internuclear separation is used to
describe the potential by

V =
∑

i

bi

(
R−Rm

R + aRm

)i

, (4.1)

where Rm is close to the equilibrium separation. The parameter a allows one to adjust the
scaling according to the asymmetry of the potential well. The coefficients bi of this power
series are used to adjust the potential, i.e., in a fit procedure they are free parameters.

At short internuclear distances (R ≤ R1), a repulsive wall is modeled by the form

V = A1 + A2R
−C , (4.2)

and we use A1 and A2to ensure a continuously differentiable connection to the potential
well. The repulsive wall can be adjusted using the parameter C. The connection point
R1 to the potential well is chosen such that only the energy positions of weakly bound
levels are influenced if C is altered.
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from earlier experiments by Stwalley et al.,71 Amiot et al.,70 Ross et al.,72 Jong et al.,73 and
Lisdat et al.47 The term energies of the levels observed in this study are listed in Appendix B.1
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For larger internuclear distances the potentials are usually described in Hund’s case (c).
The A state becomes the 0+

u state that is correlated to the 4s1/2+4p1/2 asymptote. One
spin-orbit component of the b state changes over to a second 0+

u state, which ends at the
4s1/2+4p3/2 asymptote. These two adiabatic potential curves are obtained by solving an
eigenvalue problem of a 2×2 matrix50 because there are no other 0+

u components at the
4s + 4p asymptote. The two involved diabatic potential curves VΠ and VΣ are described
by truncated expansions in inverse power of R:

VΠ/Σ = D − fΠ/ΣC
Π/Σ
3

R3
− C

Π/Σ
6

R6
− C

Π/Σ
8

R8
, (4.3)

where the two resonant dipole-dipole interaction constants C3 obey the relation CΣ
3 =

2CΠ
3 . They are modified by retardation effects via fΠ/Σ (see below). C

Π/Σ
6 and C

Π/Σ
8 are

higher order dispersion constants. The asymptotic energy D is the center of gravity of
fine and hyperfine structures at the 4s+4p asymptote. From these Born-Oppenheimer
potentials and the atomic spin-orbit splitting ∆ the two adiabatic curves are obtained by
solving the eigenvalue problem. They are described by

V ±
adiab = − 1

2

(
∆

3
− VΠ − VΣ

)

± 1

2

√
8
(

∆

3

)2

+
(
VΠ − VΣ −

∆

3

)2

. (4.4)

Since we are interested in the curve connected to the A state, the solution with the minus
sign is the relevant one. We recently remeasured the D1 and D2 lines of potassium and
take the spin-orbit splitting as well as the transition wavelength λ4s−4p = c/ν4s−4p from
that measurement77 (c being the speed of light). The transition frequency enters our

potential calculation via retardation effects, which become important for 2πR
>∼ λ4s−4p.

Retardation effects are introduced by the correction factors fΠ/Σ in equation (4.3). They
are given by78

fΣ = cos
(

R

λ−

)
+
(

R

λ−

)
sin

(
R

λ−

)
and (4.5)

fΠ = cos
(

R

λ−

)
+
(

R

λ−

)
sin

(
R

λ−

)
−
(

R

λ−

)2

cos
(

R

λ−

)
with 2πλ− = λ4s−4p. Additionally, we introduce the exchange energy by adding

Vex = B1R
B2e−B3R (4.6)

to the selected adiabatic long range curves. The parameters Bi are calculated from ab-
initio methods by Marinescu and Dalgarno.79 A continuously differentiable connection
of the long-range curves to the potential well at R2 is ensured by adding additionally
higher order dispersion terms to the adiabatic curves. By choosing the powers 10 and 12
we reflect possible multipole terms. In summary, the potential curve of the A state at
long-range is represented by

V = V −
adiab − Vex −

C10

R10
− C12

R12
. (4.7)
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The connection point to the potential well R2 is chosen a little outside the modified LeRoy-
radius of 16.24 Å,50 which ensures that the dispersion coefficients Ci in equation (4.3)
represent the multipole interaction of two atoms and are only weakly influenced by the
overlap of the wavefunctions of electrons.

For even bigger internuclear separations, the hyperfine structure becomes important.
In principle, each rovibrational level has a number of hyperfine subeigenstates. These are
effectively degenerate if the hyperfine structure is small compared to other interactions
and a single potential curve may be used. For levels close to the dissociation threshold, the
degeneracy is removed by the hyperfine interaction. Consequently, for each hyperfine state
an individual potential energy curve should be derived that represents the corresponding
levels. Figuratively speaking, the A state curves fan out into several hyperfine curves.
We neglect any dynamical coupling due to rotation or hyperfine structure. The curves
are calculated using atomic parameters only: fine and hyperfine structure constants, the
4s-4p transition wavelength, and — via the C3 coefficient — the lifetime of the p-state. A
diagonalization procedure is executed at several R. Due to symmetry arguments, levels
with odd rotation quantum number J are allowed with even total nuclear spin I only
and vice versa. Going to very large R, the two groups of hyperfine curves are formed
for both the even-I and the odd-I subsets. For even I, a single curve is below a group
of five curves; for odd I a group of three curves lies below a group of seven curves (see
Figure 4.4). By going to small internuclear separations, where I and its projection on the
nuclear axis ΩI are good quantum numbers for a non-rotating molecule, we can assign
the lower groups to I = 0 and I = 1, whereas the higher groups are I = 2 and I = 3.
The different curves of each group have different ΩI = −I,−I + 1, . . . , I. This explains
the observed splitting of the lines for levels very close to the dissociation limit as shown
in Figure 4.2. Since only two hyperfine components can be identified for each rotational
level, it is sufficient to select a single potential curve per group (here ΩI = 0). We ensure
continuous connections of the four selected curves at R3 to the branch from equation (4.7)
by adding A3/R

8 terms to them. The four A3 coefficients must be adjusted if any other
potential parameter is changed. The power −8 ensures that this artificial correction falls
off quickly for larger R and the dipole interaction term −C3/R

3 is not influenced.

4.1.3.2 Fitting Procedure

The set of observed data covers the full energy interval of the A state. Almost all vi-
brational levels have now been observed. As indicated in Figure 4.3, several rotational
levels have been investigated for each vibrational level. The assignment is unambiguous
because of the experimental resolution, the well known ground state, and the gap-free
observations. Our spectra are rather simple due to the Franck-Condon pumping step. In
our aim to derive an effective potential energy curve for A state, we created a set of artifi-
cial energy levels from the deperturbation analysis of the A state and the b state.74 This
analysis took all measurements into account, which were available before we started this
study. We calculated the eigenenergies of the deperturbed A state up to the vibrational
level vA = 80 for even JA between 0 and 20. The single channel eigenenergies where cal-
culated using the Numerov method. With these artificial term energies, the bottom of the
potential curve is fixed to the result from the deperturbation analysis. The measurements
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Figure 4.4: Hyperfine potential curves. As discussed in the text, they can be grouped into
those which combine with odd JA (left-hand side) and those combining with even JA (right-hand
side). In the top graphs the calculated potential energy curves are shown. The energy reference
is the center of gravity of the 4s+4p asymptote. Below, the differences with respect to the curve
I = 0,ΩI = 0 are depicted. The differences between 100 and 300 Å explain the hyperfine splitting
of rotational lines into two components, as shown in Figure 4.2.

of this study constitute a second set of term energies. The two sets used for the fit are
summarized in Table 4.1.

We used a least squares fit routine to derive a potential energy curve for the A state.
Free parameters in the fit are the various potential parameters introduced in Section 4.1.3.1:
bi, C, CΣ

3 , CΣ
6 , CΠ

6 , and D. The minimized function is the sum of all squared differences
between the eigenvalue calculated from the parametrized potential and the corresponding
observed or constructed eigenenergy normalized to the squared experimental uncertainty.
If several transitions to the same excited level were observed, an averaged term energy
was used for this level.

The eigenvalues of the potential were calculated by the Numerov method. The vibra-
tional assignment is checked against the number of nodes of the found eigenvalues.

We fitted the potential along with our observations. Every few (say about ten) newly
observed vibrational levels we extended the data field for the fit by these new values.
The influence of local perturbations due to the coupling of the A state to the b state is
assumed to average out. However, because we might have hit the perturbation resonances
in the observed small J interval, strongly perturbed levels were removed from the data
field. The interval of internuclear separation on which the potential was simulated was
chosen such that the classically allowed region of R was clearly inside. This interval
(R0 ≤ R ≤ R4) was increased along with the data set and R4 was held significantly larger
than any classical turning point because the wave functions of weakly bound levels extend
far into the classically forbidden region at large internuclear separations.

We started the fit with ab inito values for C6 and C8 dispersion coefficients.80 The
coefficient CΣ

6 was turned into free parameters of the fit after a good result was already
achieved.

We include the dissociation asymptote of the A state D as a free fit parameter. All
term energies and D are given with respect to the zero point energy of the Dunham series
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Table 4.1: Summary of term energies used in the fit for the determination of the A 1Σ+
u state

potential curve. Constructed levels were created from the deperturbation analysis published by
Manaa et al.74 (see details in text). Their uncertainties are set to a low value in order to keep
the bottom of the potential fixed.

constructed levels this work
method deperturbation double resonance

analysis beam spectroscopy
term energies 11 142 to 15 704 to

15 674 cm−1 17 436 cm−1

vibrational levels 0 to 80 84 to 245
rotational levels 0 to 20 2 to 13
uncertainty (0.001 cm−1) 0.001 to 0.005 cm−1

number of levels 891 534

for the X 1Σ+
g state published by Amiot et al.67 excluding Y X

00 = −0.022 cm−1.

4.1.4 Results

The potential energy curve of the A 1Σ+
u state is derived in a least squares fit with 30

free parameters. More than 1400 energy levels are used, 534 are from the experiments
described in this paper (see Table 4.1). The resulting parameters are given in Table 4.2
for the potential well, Table 4.3 for the repulsive branch, Table 4.4 for the long-range
dispersion part, and Table 4.5 for the hyperfine asymptotes. A diamond (�) indicates
that this parameter ensures proper connections between the intervals and an asterisk (∗)
indicates that this parameter is not fitted, e.g., connection points. We give the potential
parameters with many digits to ensure numerical reproducibility, i.e., not all digits are
physically significant.

The resolved hyperfine structure is understood and modeled quantitatively. Perturba-
tions due to the coupling to the b state increase the error sum. However, the unperturbed
levels are reproduced by our potential within the corresponding experimental uncertain-
ties as shown in Figure 4.5. It is easy to identify the vibrational levels with a strong
perturbation in this plot. Table 4.6 lists the identified perturbations in the asymptotic
region. These are levels with strong ad-mixture of the second 0+

u state, which correlates
to the higher fine-structure asymptote 4s + 4p3/2. The vibrational wave function has
contributions from the two coupled states, mainly at the classical turning points of the
corresponding potential curve. Spectroscopy of these perturbed levels allows for studies
of the two states and their coupling.47

The radiative atomic lifetime τ can be calculated from the CΣ
3 coefficient, which was

derived from the fit. The equation connecting the two properties is81

τ =
3h̄

2

(
λ4s−4p

2π

)3
1

CΣ
3

. (4.8)
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Figure 4.5: Residuals for the eigenvalues of the potential and experimentally determined term
energies. Graph (a) depicts an overview of the residuals of the levels investigated in this study.
Perturbations due to coupling to the b state are clearly visible. They are getting smaller but extend
to the asymptote. Graph (b) is a zoom onto the asymptotic region. Here, the perturbations are
smaller but can be easily identified. The energy positions of the perturbing levels can be derived
from these plots. They are indicated by the vertical lines. Graph (c) shows the residuals of
the weakest bound levels, including the discussed hyperfine levels. The experimental error of
each point is indicated by symbols. Horizontal lines indicate experimental error limits in the
observation window.
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Table 4.2: Potential parameters for the potential well.

R∗
1 = 3.025 Å≤ R ≤ R∗

2 = 18.5 Å

b0 = 1.110701931 ×104 cm−1

b1 = −4.36925369044300638×101 cm−1

b2 = 4.76297891975524326×104 cm−1

b3 = −2.09601115045173974×104 cm−1

b4 = −7.01984407530179014×104 cm−1

b5 = −3.01001775238950504×104 cm−1

b6 = 1.55968559608675539×106 cm−1

b7 = −5.00914579944727710×105 cm−1

b8 = −5.73511453432456404×107 cm−1

b9 = 1.15249130719885722×108 cm−1

b10 = 1.04092244644117713×109 cm−1

b11 = −3.80659260027934456×109 cm−1

b12 = −7.09216903641955090×109 cm−1

b13 = 5.45659790420072861×1010 cm−1

b14 = −5.92912726136713181×1010 cm−1

b15 = −2.36187587414028015×1011 cm−1

b16 = 1.17116364854221021×1012 cm−1

b17 = −2.50404040001589111×1012 cm−1

b18 = −1.89576460672672681×1012 cm−1

b19 = 2.86804447527311953×1013 cm−1

b20 = −6.17994630589855469×1013 cm−1

b21 = −3.03985720429939258×1013 cm−1

b22 = 3.59974601606658937×1014 cm−1

b23 = −5.75771007718742750×1014 cm−1

b24 = −5.16723472499104531×1013 cm−1

b25 = 1.47635288904728050×1015 cm−1

b26 = −2.40901143313356450×1015 cm−1

b27 = 1.95020021872318475×1015 cm−1

b28 = −8.34049836318447375×1014 cm−1

b29 = 1.50984509388737000×1014 cm−1

R∗
m = 4.551 Å

a∗ = 0.26

Table 4.3: Potential parameters for the repulsive branch.

R∗
0 = 2.55 Å≤ R ≤ R∗

1

C = 1.4954055
A�

1 = 6.15621691×103 cm−1

A�
2 = 5.7847022 ×104 cm−1ÅC



4.1 J. Chem. Phys. 125, 224302 (2006) 57

Table 4.4: Potential parameters for the long-range part and atomic parameters for constructing
the adiabatic branches of A 0+

u and b 0+
u .

R∗
2 ≤ R ≤ R∗

3 = 100 Å

CΣ
3 = 5.483104 ×105 cm−1Å3

CΣ
6 = 5.122770 ×107 cm−1Å6

CΣ∗
8 = 2.6654 ×109 cm−1Å8 80

CΠ
6 = 3.0319 ×107 cm−1Å6 80

CΠ∗
8 = 1.02877 ×109 cm−1Å8 80

D = 17474.5848 cm−1

ν∗4s−4p/c= 13023.6587 cm−1 77

∆∗ = 57.7103 cm−1 77

B∗
1 = 6.282509 ×103 cm−1 Å−B2 79

B∗
2 = 6.0213760140 79

B∗
3 = 1.9132288453×100 Å−1 79

C�
10 = 4.379437 ×1012 cm−1Å10

C�
12 = -1.314013 ×1015 cm−1Å12

Table 4.5: Parameters for the hyperfine asymptotes. The A parameters describe the mag-
netic hyperfine structure. In case of the 4p3/2 state, an effective A value is used, because the
quadrupole hyperfine structure is not explicitly taken into account. It is fitted to the level struc-
ture resulting from the hyperfine structure described by the A and B values published by Falke et
al.77 Additionally, ∆, CΣ

3 and ν4s−4p (see Table 4.4) are used in the calculation. In the bottom
of this table, a value A3 is listed for each of the four hyperfine curves according to the nuclear
spin I. These values ensure continuous connection at R3.

R∗
3 ≤ R ≤ R∗

4 = 450 Å

A∗
s1/2 230.8598534 MHz 51

A∗
p1/2 27.775 MHz 77

A∗
p3/2 5.714 MHz 77

A�
3 (I = 0) 6.89436 ×1012 Å8 cm−1

A�
3 (I = 1) 6.63504 ×1012 Å8 cm−1

A�
3 (I = 2) 6.39555 ×1012 Å8 cm−1

A�
3 (I = 3) 6.06493 ×1012 Å8 cm−1
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Table 4.6: Perturbations in the asymptotic region of the A state. Listed are perturbed vibra-
tional levels. We give the term energy of JA = 0 calculated from the effective potential. The
real levels are expected to be shifted in the order of 0.01 cm−1. Also listed are the corresponding
binding energies with respect to the 4s (f = 1) + 4p1/2 (f = 1) asymptote. In a photoassociation
experiment, this is the detuning of the association laser from the atomic resonance. In addition,
for each level the classical outer turning point of the effective potential is given.

vA term energy detuning turning point
in cm−1 in cm−1 in Å

179 17 414.572 −21.527 26.2
182 17 418.648 −17.451 27.9
184 17 420.981 −15.118 29.3
187 17 423.979 −12.120 31.4
188 17 424.858 −11.241 32.2
191 17 427.176 −8.923 34.7
192 17 427.852 −8.247 35.6
198 17 431.064 −5.035 41.9
199 17 431.479 −4.620 43.1
206 17 433.656 −2.443 53.1
207 17 433.881 −2.218 54.2
222 17 435.684 −0.414 94.8
223 17 435.736 −0.363 98.7
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Table 4.7: Measured and calculated lifetimes of the 4p1/2 and 4p3/2 states of potassium in ns.

method 4p1/2 4p3/2 year

molecular spectrosc.;
C3 analysis of 0+

u 26.74(3) 26.39(3)
present
work

photoassociation;
improved C3 analysis 26.72(5) 26.37(5) 199750

photoassociation;
C3 analysis of 0−g 26.69(5) 26.34(5) 199782

laser spectroscopy in atomic
beam 26.79(7) 26.45(7) 199668

Here, CΣ
3 is defined in a Born-Oppenheimer potential correlated to the center of gravity

of the 4p state, which we applied in equations (4.3) and (4.4). However, two different
lifetimes are derived for the 4p1/2 and 4p3/2 due to the different transition wavelengths
of the D1 and D2 lines, respectively (λ4s−4p). Determinations of the atomic lifetimes
of potassium via analysis of the C3 coefficient are done with photoassociation data to
the 0−g state by Wang et al.82 and in greater detail in a subsequent publication.50 The
best direct measurement of these lifetimes was derived in a beam-gas-laser spectroscopy
setup by Volz and Schmoranzer.68,83 A compilation of the measured values of the atomic
lifetimes of potassium is given in Table 4.7. Our values agree well with the two most recent
measurements discussed above. We estimated an uncertainty of 0.03 ns (corresponding
to 0.1%) for the lifetimes by altering the C3 value and fitting other parameters to reach
the best possible representation of the data with the altered C3. Changing the C3 by
0.1% already resulted in shifts at the tolarable limit in the residual plot after refitting all
other parameters. In another verification, we altered the internuclear separation at which
the long-range potential starts, namely R3, by ±1 Å. After fitting all parameters, the C3

coefficient was modified by less than 0.05%.

We were provided with detailed photoassociation data from Stwalley, et al.71 With
our new observations it was possible to bridge the gap to conventional spectroscopy data
and assign the vibrational quantum numbers to their observations. Rotational lines were
not resolved in their experiment. The best agreement is obtained by assigning the lines
to JA = 1 and using the new value of the D1 line77 for the absolute frequency calibration
of the scan. However, we did not include these data into our fit since their absolute
frequency calibration could not be completely traced back and due to the larger experi-
mental uncertainty from the residual temperature of the trapped atoms and the not very
good signal-to-noise ratio.

A value for the of the X 1Σ+
g ground state can be derived using the asymptotic value

D of the center of gravity of the 4s + 4p asymptote, the transition frequency of the 4s
to 4p transition of potassium ν4s−4p,

77 and the Dunham correction Y X
00 .

67 Our value of
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the dissociation energy (center of gravity of hyperfine structure) De = D − ν4s−4p/c +
Y X

00 =4450.904(4) cm−1 is within the limits of the previous value of 4450.78(15) cm−1

derived from spectroscopy of the ground state by Amiot et al.67 but with significantly
reduced uncertainty (discussed below). A more detailed analysis of the same spectroscopic
results of the ground state led to a dissociation energy with reduced uncertainty.84 The
final value of 4450.674(72) cm−1 is inconsistent with our derived value. However, our
method does not need extrapolation to higher energies as by Amiot et al.67 and Zhao
et al.84 Our method is thus more direct. The biggest contribution in the error of our
value stems from possible errors in the term energies of the ground state levels that are
populated by the Franck-Condon pumping (0.003 cm−1) and our frequency calibration
(0.0012 cm−1). Both the uncertainty of the atomic transition frequency and that of
the derived dissociation energy of the A state are unimportant in this error budget.
The dissociation energy given above depends on the reprensentation of the ground state
potential. In our opinion it is better to give the dissociation energy with respect to a
directly observable level, namely, the absolute ground state of K2, i.e., vX = 0, JX = 0.
The dissociation energy with this energy reference (center of gravity of the ground state
asymptote) D0 =4404.808(4) cm−1 is independent from a ground state model and any
Dunham correction Y X

00 . For the uncertainty considerations the same arguments as above
hold.

4.1.5 Conclusion and Outlook

The A 1Σ+
u state of K2 was studied in a molecular beam experiment by Doppler free laser

spectroscopy. The high lying vibrational levels were reached by successive excitation with
two laser fields. More than 500 new levels were added to the data field with their vibra-
tional and rotational assignment. A piecewise analytic potential energy curve was derived
in a least squares fit leading to improved long-range parameter C3, with which values for
the atomic lifetimes were derived being consistent with earlier determinations, but with
reduced uncertainty. Additionally, an improved value for the ground state dissociation
energy of K2 is given.

In the future, we will study the heteronuclear dimer 39K 41K in our molecular beam.
The observed signal-to-noise ratio for 39K2 allows for the detection of the heteronuclear
molecule, which is about eight times less abundant in our beam than the homonuclear
dimer. The R−3 behavior of the A state is expected to be modified due to the isotope
effect of the 4s-4p transition of potassium. The resonant dipole-dipole interaction of the
homonuclear dimer will go over to a detuned dipole-dipole interaction for binding energies
in the order of the isotope effect of the heteronuclear dimer.

The new results will be applied to study ultracold collisions of two ground state potas-
sium atoms in the beam. A detailed spectroscopic study of the molecular ground states
X 1Σ+

g and a 3Σ+
u at their asymptotic asymptotes can lead to precise descriptions of such

collision as demonstrated in the case of sodium.5 Scattering lengths and their behavior
in magnetic fields or Feshbach resonances can be calculated from precise molecular po-
tentials. Of high importance is the spectroscopic knowledge about levels at the 4s+4s
asymptote. Such levels can be addressed in our molecular beam: Franck-Condon pump-
ing step followed by spectroscopy in a lambda scheme that couples the pumped level of
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the X state to asymptotic levels of the X state via a level of the A state. The spectroscopy
of this work is essential for such high-resolution spectroscopic studies of asymptotic lev-
els allowing reliable predictions of the best transitions of the lambda scheme. Moreover,
we think that it is possible to undertake such studies not only for 39K2 but also for
39K 41K. Ultimately, we hope to verify to which precision mass-scaling of cold collision
parameters from one isotopomer to the other is sufficiently correct, i.e., to check the
Born-Oppenheimer approximation with respect to cold collissions.
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4.2 Hyperfine Structure

The observed hyperfine structure of asymptotic levels of the A 1Σ+
u state of K2 deserves

a closer look. Long-range dispersion expression for the interaction potential may be used
for internuclear distances, where the multi-pole interaction energies of the electrons are
larger than contributions due to the overlap of their wavefunctions. The LeRoy radius85,86

indicates this interval, in which long-range interaction dominates chemical bindings. For
even larger internuclear separations, these interaction energies are getting smaller than
the atomic hyperfine structure. Here the coupling of the electrons to the nuclei influences
long-range interaction.

The hyperfine structure of the singlet state is only observed for levels bound less
than the atomic hyperfine structure, i.e., only for levels very close to the asymptote,
where the levels are no longer pure singlet levels. Hyperfine interaction is one of the rare
possibilities for a coupling between gerade and ungerade states. Such couplings became
very prominent in the community of ultracold alkali metal atoms: Feshbach resonances
are – from a molecular point of view — molecular levels in the vicinity the ground states
asymptotes. Two molecular states are correlated to these asymptotes: the X 1Σ+ state
and the a 3Σ+ state. In case of homonuclear dimers, i.e., for a single species trap, these
two states have contrary gerade-ungerade symmetry. The hyperfine interaction allows for
coupling between levels of these two states. This leads to a mixing of significant singlet and
triplet character for asymptotic levels. The rich field of levels gets even more interesting if
external magnetic fields are considered. With their different magnetic moments, the levels
can be brought to degeneracy and avoided crossings appear. These avoided crossings are
utilized if magnetic fields are used to manipulate the scattering length around a Feshbach-
resonance9 or to transfer effectively ultracold atoms into a weakly bound dimer level by
a Feshbach-ramp87 or an association by a radio frequency pulse.88

The hyperfine structure of levels below an electronically excited asymptote are of less
interest for trap experiments because the atoms are usually not in the corresponding
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Figure 4.6: Adiabatic curves for K2 calculated from atomic parameters only. All potential
energy curves that relate to the 4s + 4p asymptote are depicted. The dashed line indicates the
center of gravity of the 4s + 4p asymptote.

electronic states. The same models and tools that describe the hyperfine structure may
be applied in both cases. The modelling of the observed hyperfine structure as described
above is therefore an additional confirmation of the models applied for the description
of cold collisions. Moreover, photoassociation accesses similar levels as our experiment.
In our study of the A state the modeling of hyperfine structures was motivated by the
quest of obtaining a correct long-range parameter C3. In equation (4.8) this parameter
is considered for an artificial fine and hyperfine free asymptote, which is used for the
determination of the atomic lifetime.

In the following, we will discuss, firstly, how the potential curves are derived (Sec-
tion 4.2.1) and, secondly, the calculation of term energies (Section 4.2.2).

4.2.1 Adiabatic Hyperfine Potential Curves

The magnitude of the dipole-dipole interaction of a s-electron and a p-electron is different
for the four orientations of the orbitals. Using molecular quantum numbers, these four
orientations of the dipoles are labeled by Σ and Π and are either attractive or repulsive.
In our example, namely the 4s+4p asymptote, the spin has to be considered and in total
eight electronic states develop for not too large internuclear distances: 1Σ+

u (A state), 3Σ+
g

, 1Πg, and 3Πu (b state for Ω = 0) are attractive whereas 1Σ+
g , 3Σ+

u , 1Πu (B state), and
3Πg are repulsive (see Figure 4.6).

The 4s+4p asymptote splits at long range into several hyperfine branches. The largest
interaction is the spin-orbit interaction of the 4p state (about 170 GHz). The hyperfine



4.2 Hyperfine Structure 63

structure of the 4s atom is larger than the one of the 4p atom. Both lead to splittings in
the order of 100 MHz. In total,

2︸︷︷︸
degeneracy

of 4s1/2

×
(

2︸︷︷︸
degeneracy

of 4p1/2

+ 4︸︷︷︸
degeneracy

of 4p3/2

)
= 12 (4.9)

asymptotic energies are possible.
Adiabatic hyperfine and spin-orbit potential curves connect the eight potentials at

short internuclear separations, which are split by hyperfine interaction to the twelve
asymptotes. The interactions remove the degeneracy and lead to avoided crossings. A rich
field of adiabatic potential curves, often referred to as hyperfine spaghetti, is obtained.
We choose a hybrid basis for the calculation of the potential curves: the two nuclear spins
are combined but the total momenta of the two valence electrons are treated separately.
The basis wavefunctions are therefore a product of a wavefunction for the nuclear spin
labeled by the total nuclear spin I and its projection on the molecular axis ΩI and a
wavefunction for the electrons. This is a product of a s-electron and a p-electron. The
electronic wavefunction has therefore four labels, two for each atom: j is the total elec-
tronic angular momentum and its projection on the molecular axis Ωj. The number of
basis functions (with a maximal possible I of three for the atomic nuclear spin 3/2 of 39K)
is

3∑
i=0

(2i + 1)︸ ︷︷ ︸
nuclear wavefunction

× 2︸︷︷︸
permutation

× 2︸︷︷︸
4s

× 6︸︷︷︸
4p︸ ︷︷ ︸

electronic wavefunction

= 16× 24 = 384. (4.10)

The resulting potential matrix of the 384 × 384 representing the adiabatization process
is block diagonal because states with different total projection on the molecular axis
ΩF = ΩI + Ωj1 + Ωj2 are not coupled. Also, the blocks with positive and negative
ΩF are the same. Thus, in total 76 + 68 + 48 + 26 + 10 + 2 = 230 different adiabatic
eigenenergies are obtained. The potential energy curves are created by calculating the
potential energies at several internuclear separations R and connecting these points by
comparing the eigenvectors of the coupling matrix. The step of R has to be small enough
such that change of the eigenvectors can be followed and the connection of the potential
energy points is correct. In this way, 230 different adiabatic hyperfine potential energy
curves are created (see Figure 4.6 and Figure 4.7).

How the diabatic states are coupled was described in detail in preceding studies at the
corresponding state of Na2

69,89 and is not repeated here, instead the most important issues
are discussed. The calculation does consider a single long-range interaction coefficient C3

as defined in Section 4.1.3.1. Retardation effects for this coefficient are included in the
calculation. Higher order dispersion terms are not included because their influence is small
at the considered internuclear separations. For the 4p3/2 state, the quadrupole hyperfine
structure is not taken explicitly into account. Instead, the magnetic hyperfine structure
is adjusted such that the energy positions of the four hyperfine states are best reproduced
with a single parameter for the hyperfine structure, namely an effective A-parameter. All
hyperfine curves are calculated purely from atomic parameters, i.e., without knowledge
of the inner potential well.
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Figure 4.7: Adiabatic hyperfine potential curves in the 4s1/2 + 4p1/2 region. The dashed line
indicates the center of gravity of the lower fine structure asymptote of the 4s + 4p asymptote.
The ten curves correlated to the A state are shown in more detail in Figure 4.4.
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4.2.2 Term Energies of Hyperfine Levels

In order to connect the obtained adiabatic potential curves to the experiment, the eigen-
values of the relevant potential have to be calculated. Without knowledge of the inner
potential well, this is possible by applying the accumulated phase method. Instead of
looking for bound states of a closed potential, we are looking for wavefunction that have
a certain phase at a selected internuclear separation RAP and decay exponentially for
large R. The inner nodes of asymptotic wavefunctions of a closed potential well are al-
most at the same R. By approximating the inner structure up to RAP with an appropriate
accumulated phase, a good description for the ladder of eigenstates can be obtained.90

This method can be used to derive to the scattering length of the potential. Here, we
calculate this ladder using atomic parameters only and neglect fine adjustments of the
accumulated phase for the moment.

We have to select the hyperfine curves, which have the right symmetry to be seen
in our experiment, i.e., those correlated to the A 1Σ+

u state. This filter is applied at
short internuclear distances and delivers ten curves, one for each nuclear wavefunction
|I, ΩI ≥ 0〉. For symmetry reasons, eigenstates only exist for an even I combined with
an odd J and vice versa. In Figure 4.8 the resulting asymptotic energies are shown for
these two cases. This plot confirms the observed hyperfine structure below the asymptote.
Only two components for each rotational line are visible. Their relative weights are 1:5
and 3:7 according to the total nuclear spins I of (0,2) for odd J and (1,3) for even J
respectively. The hyperfine spacing increases with higher vA. This increase is stopped
before the asymptote is reached.

4.2.3 Description of Molecular Hyperfine Structure by Poten-
tials

One of the objectives of the study of the A state of K2 was the measurement of an improved
value of the atomic radiative lifetimes, i.e., the determination of a C3 coefficient. Three
approaches ensure that the derived C3 coefficient is not just a potential parameter ensuring
proper representation of energy levels but reproduces the expectation value of the dipole
moment

CΣ
3 ∼ |〈4s| ez |4p〉|2 (4.11)

and thus radiative lifetimes can correctly be derived (see equation (4.8)). First, one
can use molecular states (or regions of molecular states), which are little perturbed and
coupled. This was done in the analysis of photoassociation spectra. This clever approach
leads to the simplest determination of the long-range parameter, e.g., by the LeRoy-
Bernstein formalism.91 Well isolated states are difficult to reach but it is possible, e.g., in
photoassociation experiments. The levels, which carry most of the information about the
long-range interaction, i.e., the weakest bound ones, are excluded because they are not
only difficult to observe but also not usable due to the perturbing hyperfine structure.

The second method is to calculating from the observed hyperfine levels an effective
potential and model the hyperfine structure by a parameterized, phenomenological correc-
tion as in the analysis for sodium.69 The third method, followed by us, is the calculation
of hyperfine curves, which are included to the potential for modelling of the state. This
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Figure 4.8: The left hand side shows term energies of hyperfine levels in the asymptotic
region of the A state with respect to the center of gravity of the 4s + 4p asymptote for even
and odd J separately. The energies are calculated with an approximated phase method using the
adiabatic potential energy curves shown in Figure 4.6. The energies are plotted as a function of
the number of nodes in the vibrational wavefunction counting outward from the starting point
of the integration, and it corresponds to a local counting of the vibrational levels. On the right
hand side, the energy difference to the levels of I = 0, ΩI = 0 and I = 1, ΩI = 0 respectively
are depicted in top and bottom graph respectively. Here, the hyperfine structure observed in the
rotational lines is better visible.
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Figure 4.9: Comparison of recently determined lifetimes of 4p1/2 in Graph (a) and 4p3/2 in
Graph (b). All studies are consistent.50,68

method needs a significant computational effort because the hyperfine curves have to be
re-calculated in a fitting routine every time the C3 coefficient is altered. Ten years ago,
at the time of the sodium measurements, this methods could not reasonably be used due
to the high complexity. We believe that this method leads to a good physical model and
thus precise atomic lifetimes. The model does not account for dynamical coupling but
for the observed low rotational level and the small hyperfine structure of potassium, the
perturbations are small.

The resulting lifetimes of our study are in between values from photoassociation spec-
tra (first method) and direct measurements with overlapping error bars as depicted in
Figure 4.9. Thus, both studies are confirmed and the uncertainty is decreased to half of
the previous uncertainties.

4.3 Study of the Born-Oppenheimer Approximation

In general, the Born-Oppenheimer approximation allows to separate the electronic, vi-
brational, and rotational degrees of freedom. But, couplings between different electronic
states lead to perturbations. They cannot be modeled by a single potential energy curve
but by two or more curves and — in general R-dependent — couplings between the elec-
tronic states. A coupled channels analysis uses therefore Born-Oppenheimer potential
curves and coupling curves. Also, if the perturbations shift some levels upwards and oth-
ers downwards without systematic trend a potential curve may be derived by averaging
across these perturbations. This was done in the Section 4.1.

Born-Oppenheimer potential energy curves may be used for mass-scaling between
isotopomers. It is assumed that the potential energy curves are not depending on the iso-
topes: vibration and rotation is not influencing the eigenspectrum of the electrons. Only
the change in the reduced mass has to be considered for comparing two isotopomers. This
technique allows for the verification of an absolute assignment of vibrational quantum
numbers. For levels accessible by conventional spectroscopy the findings are in agree-
ment within typical experimental uncertainty of about 10−5 and often a single potential
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curve is obtained from transition frequencies from several isotopomers.92 However, high
precision experiments on iodine were able to derive corrections to the Born-Oppenheimer
potentials.93

The same method may be applied to properties of cold collisions. From spectroscopy
of a specific isotope combination with reduced mass µ a potential is derived. From this,
an effective number of vibrational levels vD may be interfered. This number may be
mass-scaled to another isotope combination with the reduced mass µ′ by

v′D =

√
µ′

µ
vD (4.12)

and a corresponding scattering length may be derived94 from the non-integer modulo of
the scaled effective number of vibrational levels bv′Dc. It is also possible to derive a value
for bvDc by asymptotic methods as a starting point for the mass scaling in experiments
with ultracold atoms. But, a good estimate for the integer part of vD needs to be found
before performing the mass scaling according to equation (4.12).

However, due to the strongly non-linear dependency of the scattering length on the
effective number of vibrational levels, small uncertainties may translate to very big errors
in the derived scattering length. Also, positions of Feshbach resonances relate to term
energies and thus may be mass-scaled from one isotope combination to another. Here, ex-
periments with trapped atoms allow for a very high resolution. The Born-Oppenheimer
approximation serves as a basis for the connection between different isotope combina-
tions. However, it has not been studied to which precision it is valid for the prediction of
scattering lengths and Feshbach resonances by mass-scaling.

Here, the precision of the Born-Oppenheimer approximation is demonstrated for the
A 1Σ+

u state of K2. We compare asymptotic levels of the two most abundant isotopes,
namely the homonuclear 39K2 and the heteronuclear 39K 41K. Thus, the isotope shift
(measured in Section 3.1) of the D lines adds another aspect. Two asymptotes separated
by the isotope shift are existing.

4.3.1 Theory

The first electronically excited asymptote of alkali metal dimers has substantial differences
if homonuclear dimers are compared to heteronuclear dimers. The long-range behavior
of the electronic states of alkali metal dimers at the n1 s + n2 p asymptote is such that
they are shorter range in the heteronuclear case than in the homonuclear case (see Fig-
ure 4.10). Therefore, photoassociation experiments at this asymptote in two species traps
have another characteristics than photoassociation of homonuclear dimers from single
species traps.95

Photoassociation of heteronuclear dimers from alkali metals is a promising way to
produce ultracold gases of particles that carry a permanent dipole moment. Ground state
heteronuclear dimers will allow for tests of theoretical models for the strong interaction
regime. The interaction is the stronger, the more polar the combination is and the deeper
the molecules in the ground state are bound. Efficient ways to produce the ultracold
polar molecules are therefore subject of research. Significant progress was achieved in
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Figure 4.10: Fundamental difference of long-range behavior of heteronuclear dimers in com-
parison with homonuclear dimers. In the homonuclear case both nuclei are indistinguishable.
The symmetrization of the electronic wavefunction leads to a shift of the center of the electron
wavefunction due to the opposite phase in the two cones of the p orbital. This results in perma-
nent dipole moments, the nuclei are kept at the same place. The two atoms are thus interacting
via a dipole-dipole interaction, i.e., the interaction is proportional to R−3. The symmetrization
is done in fact automatically if the s− p transitions of the atoms are of the same frequency and
the two asymptotes are degenerate. The case of the heteronuclear dimer is the more general
one. The leading multipole interaction is the induced dipole-dipole interaction, resulting from
the deformation of the two electronic wavefunctions due to the other electron. This interaction
is proportional to R−6, which leads to shorter range potentials than in the homonuclear case.
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recent years. As examples, three combinations are mentioned here: First, the production
and detection — an often neglected part of such experiments — of ground state RbCs
dimers were achieved.20 In this experiment in DeMille’s group at Yale, work towards a
better efficiency is done now. Second, KRb is a combination that benefits from easily
available trapping laser frequencies. Many experiments concentrate on the atoms, e.g.,
investigations on the quantum degenerate Fermi gas of 40K. However, photoassociation
was done with these elements96 in Stwalley’s group at the University of Connecticut
for 39K 85Rb. Third, LiCs provides the most polar combination. The experiment of
Weidemüller’s group in Freiburg is equipped with mass selective detection and optical
traps.97

On the other end of the polarity scale are heteronuclear dimers from a single species,
e.g., 39K 41K. The only difference between the two bound atoms is the number of neutrons
in the two nuclei. In our experiment, we studied to which extend the heteronuclear potas-
sium dimer is actually heteronuclear, i.e., what is the difference to 39K2. As illustrated
in Figure 4.10, the leading long-range interaction is different between a homonuclear
and a heteronuclear dimer. However, our test candidate 39K 41K may be considered het-
eronuclear only for binding energies in the order of the isotope shift of the D lines. In
Figure 4.11, adiabatic potential curves are shown for the asymptotic region. In Graph (a),
the fine and hyperfine structure at the 4s+4p asymptote of K2 is artificially removed. The
difference between the homonuclear and the heteronuclear dimer is well pronounced. In
Graph (b), the spin-orbit interaction is included. Only the curves correlated to the lower
fine structure asymptote 4s1/2+4p1/2 are shown. A substantial difference between the two
considered cases is still well visible. How the situation looks like if hyperfine structure is
taken into account will be discussed later on.

4.3.2 Experiment

A comparison of the potentials of the A 1Σ+
u states of two isotopomers needs spectroscopy

of both isotopomers. We are interested mainly in the weakest bound levels of the less abun-
dant isotopomer. In comparison with the already investigated molecule, the heteronuclear
combination is by a factor of seven less abundant. For the spectroscopy, this results di-
rectly in a loss of signal strength, assuming that in the preparation step the Franck-Condon
pumping transition is saturated. The transitions driven in the spectroscopy are due to
the small Franck-Condon factors not saturated and similarly weak.

The increased reduced mass results in smaller vibrational spacing. The vibrational
level of the A state used for the preparation step for 39K2 (vA = 25) is strongly perturbed
for 39K 41K and the assignment was not easily possible. In order to avoid further problems,
the experiments are performed with Franck-Condon pumping using vA = 26 for 39K 41K.
Due to the higher mass, this level is energetically already close to vA = 25 of 39K2.
However, saturation was not achieved with the available laser power. Therefore, the
laser beam for the Franck-Condon pumping was back-reflected across the molecular beam
several times leading to an optical pumping of more than half of the molecules originally
in the starting level.

We are mainly interested in energy spacing for two reasons. First, an absolute fre-
quency measurement with high precision needs big experimental efforts. Second, the rela-
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Figure 4.11: Adiabatic potentials of 39K2 and 39K 41K without hyperfine structure for a reso-
nant dipole-dipole interaction (homonuclear case) and a detuned dipole-dipole interaction (het-
eronuclear case). Graph (a) shows the long-range behavior without spin-orbit interaction. This
interaction is taken into account in Graph (b). Only the asymptote 4s1/2 + 4p1/2 is shown.
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tive energy position of levels of the ground state are not known better than 50 MHz.67 We
use a temperature stabilized Fabry-Perot interferometer (FPI) for the relative frequency
calibration and record the transmission from the spectroscopy laser simultaneously with
the laser-induced fluorescence at the molecular beam. Typically, this laser scans an in-
terval of 3 GHz. The positions of the FPI peaks are determined by a local fit. Then,
a polynomial of fourth order is fitted to the list of positions of FPI peaks. From this a
polynomial frequency axis for the scan is obtained. Up to twelve scans were recorded and
linearized per scan interval of the laser. These are then averaged and the resulting curve
smoothed by adjacent filtering with fifteen data points, corresponding to about 5 MHz.

We concentrated on spectra starting from JX = 9. This allows for good signal since
the population in the ground state level is high. Also, the spacing between the P and R
lines is big enough to avoid overlapping lines in the region where the molecular hyperfine
structure becomes significant. In Figure 4.12 scans for both isotopomers are shown.

4.3.3 Analysis

Starting from the adiabatic potential curves of the A state as derived in Section 4.1 for
39K2, some changes need to be considered for calculations of the term energies of 39K 41K.
First, the heavier reduced mass of the heteronuclear molecule has to be used. This leads to
smaller energy spacing. The potential supports about three additional vibrational levels.
The atomic masses are well known and this change can be applied easily. Second, one of
the two atoms contributes a smaller hyperfine structure. This removes the degeneracy of
asymptotic energies. This change is applied by keeping the center of gravity for both atoms
at the same point in the energy scale. The fine structure of both isotopes remains almost
unchanged and the isotope shift of it does therefore play no important role in our modeling.
Third, the D lines have an isotope shift of about 235 MHz (see Table 3.6). However, it is
not known how the 4s and the 4p level are shifted individually on the absolute scale. The
asymptotic energies for different steps of the considerations are depicted in Figure 4.13.
A forth change needs to be pointed out. No g/u symmetry can be defined. Consequently,
every rotational state J may be combined with any total nuclear spin I.

In the following we will discuss how we used the obtained experimental findings. As
an overview, the steps taken are summarized here:

1. fine adjustment of the potential of the A state for the asymptotic region of the
homonuclear molecule,

2. comparison of the heteronuclear with the homonuclear dimer, and

3. correction to the Born-Oppenheimer potential of the heteronuclear dimer.

4.3.3.1 Homonuclear Dimer

For a direct comparison between the two isotopomers, we recorded spectra of the homonu-
clear molecule starting from the same rotational state, i.e., JX = 9 (see Figure 4.12,
Graph (a)). The hyperfine structure of the least bound levels is nicely resolved and can
easily be seen, e.g., for v = 239. We assigned the observed lines and determined energy
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(a)

(b)

Figure 4.12: Scan across the asymptotic region of the A state of the homonuclear dimer 39K2

in Graph (a) and of the heteronuclear dimer 39K 41K in Graph (b). For both isotopomers P(9)
and R(9) lines are observed. The labels indicate the vibrational quantum number of the A state
level.
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Figure 4.13: Deriving asymptotic energies of 39K41K at the 4s1/2 +4p1/2 asymptote, which is
also the reference energy. The total angular momentum of the atomic states is given in brackets.
On the left hand side, the asymptotic energies of 39K2 are shown. In the middle ladder, the
hyperfine structure of 41K is considered, which removes the exchange degeneracy. First, the
state of the 39K atom is given and, second, the state of the 41K atom. Finally, the isotope shift
is taken into account, as illustrated on the right hand side. Here the effect is distributed to equal
parts on the 4s and the 4p electron for reasons discussed in Section 4.3.3.2. The circled numbers
indicate energies to which potential curves are correlated that are related to the A state (see
Figure 4.17). For these lowest asymptotes, the hyperfine structure and isotope shift compensate
each other to some degree.
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Figure 4.14: Analysis of the spectra of homonuclear dimer. Graph (a) shows the residuals of
the energy spacing resulting from the potential derived in Section 4.1. After adjusting the inner
branch of the potential by a fit, the residuals are reduced as shown in Graph (b), note the scale
change of factor of about three compared to Graph (a)
.

spacings with the FPI marker trace. The absolute frequency was set by transition energy
of the lowest line ν0 (P(9) line to vA = 226). The free spectral range of the FPI was
measured to be 149.85 MHz.24

We compared the experimental observations to calculations from the potential de-
rived in Section 4.1. To do so, a list of measured transition energies νi and a list of
calculated term energies T i

e (i = 0, . . . N) are derived. The residuals in plot in Graph (a)
of Figure 4.14 are the differences

(ν0 + TX)− T 0
e for the absolute position and

(νi − ν0)− (T i
e − T 0

e ) for i = 1, . . . , N.
(4.13)

The term energy of the ground state level from which we are starting is indicated by TX,
where we keep the energy reference at the zero point of the Dunham series describing
the ground state without any Y00 correction. Although the residuals are small, a trend
is clearly visible. Due to the wide range of term energies for the fit resulting in the
derived potential, this is not surprising. A similar trend in the residuals remained for the
published potential, see Graph (c) in Figure 4.5. However, for the comparison with the
heteronuclear dimer, a better reproduction of the energy spacing is desirable.

In order to achieve this, a fit was started. We consider the full potential but we allow
adjustments of the inner-branch. This leads to a little altered phase of the wavefunction in
the long range region and hence to a modified ladder of levels. The single parameter of the
potential curve was freed for a least squares fit of the differences given in equation (4.13).
By varying C (see equation (4.2)) (and the connection ensuring parameter A1 and A2)
the residuals are reduced as shown in Graph (b) of Figure 4.14. We have to mention
that in addition to C a second free parameter was included to the fit. This parameter
shifts all measured absolute frequencies νi simultaneously. This pushes the residuum for
i = 0 automatically to zero. Consequently, the absolute frequency measurement does not
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Figure 4.15: The four symbols show the differences between the observed and modeled energy
spacing in the asymptotic region for different models. The initial potential curve is taken from
the analysis of 39K2. To this, four different asymptotic behaviors are connected.

influence the result of the fit any more (except for the newly introduced parameter, which
remains well inside the interval of precision of the absolute frequency measurement).

Although C changes its sign during the fit (it is -13.939 instead of 1.495), the potential
does not bend over within the needed interval of internuclear separations. No trend in
the residuals is visible any more and the spread is within about ±2 MHz, a reasonable
number, considering the linearity of the laser scan and the reached signal-to-noise ratio
in relation with the linewidth.

4.3.3.2 Scaling to the Heteronuclear Dimer

The adjusted potential energy curve is now used to calculate term energies νi of the
heteronuclear dimer. As listed in Figure 4.15, four models are used to derive hyperfine
potential energy curves:

• mass scaling: In this model the potential curves are the same as in the homonuclear
case. The only difference is the reduced mass with which the term energies are
calculated.

• no HFS: In the second model it is taken care of the isotope shift. The degeneracy
of the asymptotic energies is removed, since asymptotes with the 41K in the 4p
state are shifted upwards and asymptotes with the 39K in the 4p state are shifted
downwards. The center of gravity of the isotopomer with the 41K in the excited
state is above the center of gravity with the 39K in the excited state. This difference
is the isotope shift of the D lines.

• no iso. shift: Here, it is taken care of the fact that the hyperfine structure of 41K
is smaller than for 39K. However, the center of gravity of the combinations remains
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the same as for 39K2.

• real: This model considers, both, isotope shift and different hyperfine structure at
the same time. This represents the model we expect to give a correct description.

By keeping the center of gravity of the hyperfine structure it is ensured that the curves
are the same at the inner region of the potential. The effect on the term energy of an
altered potential energy curves integrates towards higher energies. The differences of the
various models are bigger the higher the term energy is. The isotope shift of the D lines
is distributed to equal parts to the 4s and 4p atom. Again, the center of gravity is kept
for an alternation of the asymptotic energies. For smaller internuclear spacing, the curves
overlap with those calculated in models neglecting the isotope shift. Therefore, the energy
scales of the two isotopomers are adjusted relative to another such that the bottom of the
A state is at the same energy. Furthermore, that means that the ground state asymptote
(center of gravity of the hyperfine structure) of 39K 41K is shifted to lower energy by half
of the isotope shift of the D lines.

The different potential branches for 39K 41K were constructed as for 39K2 as described
in Section 4.1. Again, the residuals from equation (4.13) are plotted as a function of
term energy. No parameter of the potential was adjusted except for the parameters that
ensure proper connections. The energy spacing for the lower term energies, i.e., the low
energy spacings are fairly well described with all four models. However, the models with
the hyperfine structure of 39K for both atoms (mass scaling and no HFS) are obviously
not describing the observation to the asymptotes well. Moreover, the highest vibrational
level in the fit was not supported by the potential curve. The two models with the correct
hyperfine splitting (no iso. shift and real) are describing the data better, but a residual
trend away from zero is remaining. The spread of the residuals is comparable to the
one for the homonuclear dimer. The signal-to-noise ratio of the two compared spectra is
similar. Both models describe the observed energy spacing already within few MHz.

Another observation may be done in Figure 4.15. The residuum for the reference
energy (ν0 + TX) − T 0

e is similar for all four models. They are within one MHz. In fact,
we started the experimental observation in the region bound so deeply that the four
models are not differing yet. Second, the observed term energy is above the calculated
one. The observed term energy is the sum of the transition energy and the calculated
term energy of the starting level TX. In the calculation of TX it is assumed that the two
ground state curves of the two isotopomers are coinciding. As discussed above, we should
correct the term energies by half of the isotope effect of the D lines to lower energies. This
would reduce the four residuals. But, this may be taken only as an indication and not
a confirmation of our reasoning due to the uncertainty of the laser frequency (100 MHz)
and the quality of the ground state levels calculated from the Dunham series (50 MHz
standard deviation).

4.3.3.3 Corrections to the Born-Oppenheimer Potential

The observed trend in the residuals of the energy spacing for the least bound levels is
a signature for the fact that the potential of the heteronuclear dimer cannot be derived
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Figure 4.16: Residuals of a fit with Born-Oppenheimer corrections to the potential for 39K 41K.
Two models were applied: with and without isotope shift (real and no iso. shift, see Figure 4.15).
The listed values are the shift of the dissociation energy D, the difference of the shift of D and
the absolute frequency calibration, and the σ values from the fit for an assumed uncertainty of
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completely from the potential of the homonuclear dimer. We need to correct the Born-
Oppenheimer potentials. But we have observed that for scaling from one isotopomer to
another the Born-Oppenheimer potentials reproduce energy spacing of asymptotic levels,
which are in the order of 2 GHz, to within 4 MHz.

In a further step, we analyze how the correction may be applied. We have concen-
trated on asymptotic levels. In asymptotic methods, a simple approximation of the inner
potential is usually done by starting the integration of the Schrödinger equation for the
vibration outwards from a certain internuclear distance with a defined phase as a starting
condition. Simple functional relations are used in fits to adjust the starting condition
such that the inner part of the potential is well described. But in our analysis a full
potential was used. We now perform another least-squares fit for the energy spacing of
the heteronuclear molecule. In order to have a similar effect as in asymptotic methods,
we allow to adjust the depth of the molecular potential. In principle, one would like to
keep the asymptote and stretch the bottom of the potential. However, it is more simple
to use the parameter for the dissociation energy D (see equation (4.3)) while keeping the
bottom of the potential fixed. As in the fit for the homonuclear molecule, a further free
parameter for the absolute frequency scale is used. Both parameters should be adjusted
more or less similarly if we want to simulate an up- or downshift of the potential minimum
while keeping the asymptotic energy fixed and hence the difference of the shift should be
small.

Such a fit was undertaken with the two models for the hyperfine structure asymptotes
that include the hyperfine structure of 41K (no iso. shift and real). The residuals are
shown in Figure 4.16. Both fits result in residuals spread around zero by about ±2 MHz.
No trends are visible in both cases. The applied change of the depth of the potential
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are comparative. In conclusion, we cannot derive which of the two models describes the
observations better. Therefore, we could not find a clear signature of the change-over
from a resonant to detuned dipole-dipole character. In terms of asymptotic behavior at
the first excited electronic asymptote, the heteronuclear character of 39K 41K is hidden by
the hyperfine structure.

4.3.3.4 Further Observations

Judging by the hyperfine free potential curves shown in Figure 4.11, it is disappointing
that the change-over of the long range behavior from a homonuclear character ∼ R−3

to a heteronuclear dependence ∼ R−6 could not be observed. However, if we compare
the adiabatic potential curves including hyperfine structure shown in Figure 4.17, the
differences between the two compared models are only tiny. The two lowest asymptotes
differ for these two models, i.e., the adiabatic potential curves are correlated to different
combinations (see Figure 4.13) but the behavior in the relevant energy interval is almost
unchanged. Simulations show that the difference of the two models no iso. shift and
real results in level differences of at most 2 MHz (between v = 226 and 238), which is
in the order of the scatter of our residuals. An experiment that distinguishes between
dissociation channels in which 39K is in the ground state from dissociation channels in
which 41K is in the ground state would allow to study the asymptotic structure under this
aspect even more.

Some crossings of the relevant curves occur above the energy interval of investigated
levels. However, this region just below and in between the asymptotes cannot be investi-
gated thoroughly because the vibrational spacing allows only for one vibrational spacing
in this region, as shown in Figure 4.18. The hyperfine structure leads to four groups of
levels for vA = 246 and vA = 247, each corresponding to a specific I. The change-over
of the potential energy curves is visible in vA = 248 and those components of vA = 249
that support an additional level. Overall, these are too few levels for a systematic study
of this region.

Another observation is that the linewidth for all the asymptotic levels are about 8 MHz,
i.e., for both heteronuclear (JA = 2, 3, 4, 5, 8, 10) and homonuclear (JA = 8, 10) down to
binding energies of more than 1 GHz. This is evidence for a strong spin-orbit mixing
between singlet and triplet since levels of a pure singlet asymptote have an expected
lifetime of half the atomic lifetime, which would lead to linewidth of about 12 MHz.
Other couplings might also increase the lifetime (hyperfine structure and retardation)
but would show systematic trends over the covered energy interval because we see the
variation of the hyperfine structure.

For the scans starting from JX = 9, the rotational doublets of both dimers (homonu-
clear and heteronuclear) does not show the relative intensity ratio one expects from the
Hönl-London factors, namely 9:10. Instead, they are in the order of 2:3. This may be
accounted to the fact that the Hönl-London factors are defined for Hund’s case (a) and
we are clearly not in this case any more, for the same reasons as the reduced linewidth
discussed above.
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4.3.4 Conclusion

We compared the A states of two potassium isotopomers close to the dissociation energy.
We have studied the Born-Oppenheimer approximation. The need of considering the cor-
rect hyperfine structure became evident. However, the adiabatic potential curves cannot
fully describe the observations. Corrections to the Born-Oppenheimer potentials were
applied and the observations are modeled. The direction and amount of the correction is
similar as for the atomic D lines: The depth of the potential is increased by about the
isotope shift between 39K and 41K of the D lines.

It was not possible to observe the change-over from a resonant to a detuned dipole-
dipole interaction due to the hyperfine structure hiding this effect. An experimental
attempt to reveal this needs to measure energy spacing better than the expected differ-
ences between the models, i.e., better than 2 MHz. This is possible with better scanning
properties of the laser, absolute frequency measurements with a frequency comb, or an
additional stabilized laser with which beat signals may be recorded.

4.4 Towards Investigations of the 4s+4s Asymptote

The spectroscopy of the A 1Σ+
u reported above opens the door for spectroscopic studies

of the ground state asymptote. In case of sodium corresponding studies allow for precise
description of cold collisions by scattering lengths and Feshbach resonances.5 Beam ex-
periments are well adjusted for easy application of multi-laser pump schemes and good
resolution. In comparison with trap experiments, the energy interval that can be covered
is bigger. Lasers allow for easy tuning. In traps, one is limited by the low rotational quan-
tum number and the need for strong magnetic fields, which are used for tuning scattering
states with respect to Feshbach resonance states. Those lead to trap loss which is the
experimental signal. The calibration of the magnetic field strength can be done with the
ultracold atoms and thus the position of Feshbach resonances can be measured very pre-
cisely. An alternative method for trap experiments is the application of photoassociation.
Here, not only the excited state may be tested, but also the wavefunction of scattering
states in the trap can be tested and properties of cold collisions interfered.98,6 Measure-
ments in traps of the scattering length by thermalization rates or Bragg spectroscopy99

typically have big error bars.
The unique opportunity of spectroscopy on molecular beams is the possibility to con-

nect conventional spectroscopy to measurements from cold atoms. The knowledge of full
potential is essential if cold atoms should be transferred to deeply bound dimers, a goal
followed with big interest, especially in case of heteronuclear dimers. The ground state of
potassium is already well described up to close to the dissociation limit. The remaining
gap may be closed in a three-laser experiment, to which the study of the A state has been
essential.

The experiment is corresponding to that, which was performed with sodium and led
to precise models of cold collision.5 In principle, an additional laser has to be included
that drives transitions that the molecules from laser prepared levels of the A state are
decaying over (see Figure 4.1.) In more detail: the Franck-Condon pumping step must
be kept. The laser for the spectroscopy of the A state should now be stabilized such
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that it drives a transition to the A state. An offset stabilization like that used for the
first laser is appropriate (see also Section 2.2.4). Now, a third laser must be overlapped
with the second laser and scan and drive transitions from the prepared A state level
down to asymptotic levels at the ground state asymptotes. The experimental signature
is a decrease of the fluorescence, which is induced by the second laser, if the third laser
is in resonance with a transition from the excited level and an asymptotic level of the
ground state. It thus reduces the spontaneous decay from this level, i.e., the laser induced
fluorescence is smaller if the third laser hits a resonance. An experimental issue of this
experiment is the suppression of the scattered light of the two laser of this lambda-
like pumping scheme. The additional laser is red detuned to the D1 line of potassium,
therefore another Ti:sapphire laser is a good choice. The Franck-Condon pump laser,
which was a Ti:sapphire laser in the experiments described above, may be replaced by a
diode laser. The Franck-Condon factors allow to saturate this transition even with lower
powers, which are typically available from diode lasers. The A state is wider than the
ground states and the intermediate level of the lambda scheme is far below the asymptotic
levels the preceding section was discussing, which allows for a lower vA in the preparation
step and thus a bigger Franck-Condon factor.

The strength of the observed fluorescence should allow to study the two most abun-
dant isotopomers. This should allow for an even more interesting study of the Born-
Oppenheimer approximation and mass-scaling of properties of cold collisions. By mea-
suring the asymptotic structure for the two isotope combinations of 39K with 39K and
41K independently, a direct comparison of them is possible and the precision of the mass-
scaling for cold collisions can be determined. Both scattering lengths can be measured
and their values could be compared to those obtained from mass-scaling.

The potentials are of shorter range than the one of the A state due to the van der Waals
interaction dominating at long range. In order to select a good level of the A state, which
serves as a transfer state to the ground state asymptote, one has to select a level that has
a good Franck-Condon overlap with the ground state levels, i.e., a level with a similar
classical outer turning point should be selected. In Table 4.8, we suggest vibrational
bands for the Franck-Condon pumping and the second laser for 39K2. The Franck-Condon
pumped level vA =22 decays to 20% to vX =39 and 40 respectively.
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turning VX TA second laser first laser
point (Å) (cm−1) (cm−1) P(9) (cm−1) R(9) (cm−1)

14 -2.85 12 810.91 143←39 14176.802 22←0 12 440.521
15 -1.84 12 842.23 147←40 14147.452 22←0 12 440.521
16 -1.22 12 874.85 152←40 14180.069 22←0 12 440.521
18 -0.58 12 910.13 159←40 14215.353 22←0 12 440.521
20 -0.30 12 938.51 167←40 14243.729 22←0 12 440.521
22 -0.17 12 948.89 171←40 14254.112 22←0 12 440.521
24 -0.10 12 957.24 175←40 14262.463 22←0 12 440.521

Table 4.8: Optical pumping schemes to reach the ground state asymptote of 39K2. For each
classical outer turning point, the potential energy of the ground state is given, calculated from the
long-range parameters published by Amiot et al.67 The term energy of an unperturbed vibrational
level of the A state with similar turning point is given (for JA = 8). The reference energy
for these two energies is the center of gravity of the ground state asymptote. Moreover, the
vibrational bands for the two preparation lasers are given. The listed transition frequencies were
measured in our study of the A state. They are pumping the R(9) line for the first laser, which
drives the Franck-Condon pumping, and P(9) for the second laser. The third laser should scan
around TA + VX.



Chapter 5

Manipulation of Cold Collisions with
Laser Light

In the preceding chapter experiments were suggested for the investigation of cold collisions
of potassium atoms. Similar experiments on binary sodium collisions already investigated
the energy regime of cold collisions. The scattering length and the positions and widths
of Feshbach resonances can be calculated from the two diabatic ground state potential
curves for the X 1Σ+

g and the a 3Σ+
u state and the atomic hyperfine structure and magnetic

moments.5 Hence, it is known how the scattering properties behave in magnetic fields.100

An alternative methods is to manipulate cold collisions with laser light. Models have been
developed for this technique, in which long range levels of electronically excited states are
coupled to scattering states at the ground state asymptote. The level of the excited state
acts like a Feshbach resonance state and is therefore often referred to as optical Feshbach
resonance.

An optical coupling between asymptotic levels of the A 1Σ+
u state below the 3s + 3p

asymptote and scattering states at the 3s+ 3d asymptote was investigated in a preceding
study.101 The results were quantitatively modeled in a coupled-channel analysis using a
method for the determination of eigenenergies of the optically coupled system. Light shift
of asymptotic levels of the A 1Σ+

u state was induced by coupling to the continuum above
the 3s + 3d asymptote via a laser. The effective asymptote of the A state was altered
so much that vibrational levels were removed. In the picture of scattering atoms, this
corresponds to an alteration of the scattering length across a pole. The simulation of the
observed light shift agreed qualitatively and quantitatively with the experiments.

It is, however, more interesting to investigate possibilities of light induced manipulation
at the ground state asymptote, i.e., the manipulation of cold collisions of two ground
state atoms because this is the scattering appearing in trap experiments. Prior to the
work of this thesis, experiments were performed for a systematic study of the relevant
coupling.102,101 The influence of laser induced coupling to levels at the ground state
asymptote 3s + 3s on long range molecular level of the A state was investigated in a
Doppler-free spectroscopic experiment of the coupled A state levels. Like in the preceding
study, a molecular beam apparatus was used to record line profiles under several settings
of the laser light inducing the coupling.

We introduce the experiment, the adapted model, and the comparison of simulation

85
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and experimental recordings in a form of an article in the following (Section 5.1). There-
after, additional comments and considerations are given.

5.1 Laser-induced Manipulation of Atom Pair Inter-

action of Two Ground State Sodium Atoms

St. Falkea, Chr. Samuelis, H. Knöckel, and E. Tiemannb

Institut für Quantenoptik, Universität Hannover, Welfengarten 1, 30167 Hannover, Germany

Abstract: We investigate the influence of a laser field, which is red-detuned
to the atomic sodium 32S1/2 →32P1/2 transition, on levels of the A1Σ+

u state of
Na2. These levels are coupled by the laser field to the last bound levels and
resonance states of the electronic ground states of Na2. Laser-induced line shifts
and line broadening are observed on Doppler-free transitions in a molecular
beam experiment. Our experiment is an inverted two-laser photoassociation
experiment. We model lines shapes using a theory based on multichannel
quantum defect theory and describe to which extend this model can be applied
quantitatively.
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42.62.Fi Laser spectroscopy

afalke@iqo.uni-hannover.de
btiemann@iqo.uni-hannover.de

5.1.1 Introduction

The application of manipulating cold collisions by magnetic fields has enhanced the fast
progress in cooling and trapping of atoms and transfer into molecules.103,104,105,106,107,108,109

Often, the description of ultracold collisions is given by a single parameter, the s-wave
scattering length as, which is derived from the scattering wave function at vanishing col-
lisional energy. It has been shown110,111,5 that this important physical quantity can be
derived from spectroscopy of the vibrational levels and resonance structures around the
atomic asymptotes. The scattering length can even be determined by asymptotic methods
if the complete interaction potential is not known.90 Such methods are also sufficient for
the description of the variation of scattering length with an external magnetic field.112,113

The quest for quantitative recipes for the manipulation of cold collisions by external
light fields arises for several reasons. First, magnetic fields cannot be used for some atoms
due to unlucky positions of Feshbach resonances or due to the absence of hyperfine struc-
ture and thus the lack of Feshbach resonances. Examples are optical clock candidates like
calcium114 or strontium115 and metastable helium.116 Second, laser fields could be applied
locally, e.g., on a few grid points of an optical lattice117 without effecting other atoms of
the cold ensemble. In contrast, magnetic fields and optical lattices, which can be applied
to alter the effective mass of the atoms,118 effect the entire ensemble simultaneously and
equally. Third, the interaction can be tuned in very short times. Moreover, with the
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laser frequency and intensity two parameters are available for the external control of the
interaction of the binary collision. Also, the induced effect of the laser field depends on
its polarization.

The proposal of applying near-resonant laser fields to control the interaction strength
of two atoms has been discussed already in several studies.10,119,120 First experiments
with ultra-cold ensembles have been performed.121 In this photoassociation experiment a
vibrational level of an electronically exited molecular state is coupled to the ground state
asymptote. This level can then be considered as an optically induced Feshbach resonance.
Another experiment focuses on the direct measurement of such a laser-induced change of
the scattering length by Bragg spectroscopy.99,122 It was, to our knowledge, the first
time the laser-induced change of the scattering length was observed in a cold ensemble
directly. A theoretical approach was used to obtain a parameterized analytical formula for
the observation. The coupling strengths are represented by parameters but the observed
magnitude of the effect is not compared to values one could derive from known coupling
strength and applied field intensities.

In this work, we start from bound molecules instead of starting from an ultra-cold
ensemble or a Bose-Einstein condensate. Thus, we approach the coupling of interest, i.e.,
the ground state continuum to a bound level of an electronically excited molecular state,
from the opposite side. Two atoms of the collision of interest are deeply bound. We are
investigating exemplarily the atom-pair influence of sodium.

This article is organized as follows. First, an outline of our experimental setup and
the excitation scheme is given (Section 5.1.2). In the following Section 5.1.3 we introduce
our line-profile simulation and its utilization in fits to recordings from our experiment.
We conclude by relating our results to the range of light manipulated ultracold collisions
in Section 5.1.6. Additional, we present in the appendix how molecular dipole coupling
strength can be computed.

5.1.2 Experiment

The bound atom pairs, i.e., Na2 dimers, are produced and investigated using a molecular
beam apparatus. It has been described in preceding articles.69,101 Only the two lowest
vibrational levels of the X 1Σ+

g state are thermally populated. The rotational levels with
the highest population are JX ≈ 10. For our experiment the second molecular state of
interest is the electronically exited A 1Σ+

u state. The rotation, denoted by J respectively l,
changes by one for each dipole transition between these states, regardless whether laser-
driven or spontaneous because of selection rules for Σ–Σ transitions.

We start with molecules in the lowest vibrational level of the X 1Σ+
g state with an even

JX = 0,2,4 because from these levels one can access l = 0 levels, i.e., scattering states of
s-wave collisions. The transfer between the start and the asymptotic ground state levels
was a double lambda scheme (see Figure 5.1). The first lambda scheme increases the
vibrational quantum number of the ground state. This preparation step is referred to as
Franck-Condon pumping. The molecules are excited by a laser excited molecules popu-
lated few vibrational ground state levels according to Franck-Condon factors. Starting
from one of the prepared level, a lambda scheme towards the ground state asymptotes
is possible with two additional lasers.5 A direct transfer without a preparation step is
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Figure 5.1: Simplified potential scheme of Na2. The three lasers are indicated by 1© for the
preparation laser, 2© for the scanning laser, and 3© for the coupling laser.

impossible due to the lack of levels of excited states that have a good Franck-Condon
factor with, both, the start levels and ground state asymptote levels.

The preparation of the molecules is done with a first laser (laser 1© in Figure 5.1), a
dye laser (sulforhodamine b) operating at about 615 nm, which pumps molecules to the
A state level vA = 15, JA =1 or 3. An overview of the optical setup of all applied lasers is
given in Figure 5.2. Guided by Franck-Condon factors, some vibrational levels of X state
with JX = 0,2 or 2,4 are populated predominantly. In the ground state, only molecules
with an even total nuclear spin I are allowed for even quantum of rotation J . Therefore
we have to consider molecules with I = 0,2 only. The laser for the preparation step is
stabilized on the maximal laser induced fluorescence. Its light is not polarized. Due to
this and the traveling time of about 350 µ s to the second interaction zone, we can assume
that we have an un-polarized ensemble of molecules in the vX =29, JX =0,2 level with an
equal ratio in each nuclear state |I,MI〉, with MI being the projection of I into the lab
frame. Six nuclear wavefunctions are involved: |0, 0〉, |2,−2〉, |2,−1〉,. . . |2, 2〉.

This ensemble is entering a second interaction zone, which is spatially separated by
0.35 m from the first zone. Here, two laser fields are applied. Again, the two involved
molecular states are the X state and the A state (see Figure 5.1). The test laser (see
2© in Figures 5.1 and 5.2), a dye laser at 535 nm operating with coumarin 6, induces
transitions from one of the ground state levels, vX =29, JX =0, 2 to vA =120,139, JA =1.
The molecular fluorescence originating from the crossing point of the laser beam with the
molecular beam is imaged via a lens system onto a photomultiplier. Color glass filters
are used to suppress stray laser light to avoid a background signal. While scanning the
laser in frequency, we record the transmission of a temperature stabilized Fabry-Perot
interferometer to obtain a marker trace for the determination of a frequency axis.

Typically, the lines observed by scanning the laser across the resonance show an almost
perfect Lorentzian profile. The Doppler broadening due to the residual divergence of the
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Figure 5.2: Optical experimental setup. G: glass plate, D: dichroic beam splitter, MM: multi
mode fiber, SM: single mode fiber.

molecular beam is with 8 MHz below the natural linewidth of about 20 MHz. The lines
are slightly power broadened. No hyperfine structure could be resolved for these levels.
However, these levels have a significant triplet contribution and the symmetry of the
molecular state usually is described in Hund’s case (c) by 0+

u instead of using the case (a)
notation 1Σ+

u .

The third involved laser is responsible for the optical coupling we are interested in
(coupling laser, see 3© in Figures 5.1 and 5.2). It is a dye laser operated with rodamin 6G
around 592 nm. We use an offset stabilization with a transfer cavity (free spectral range
150 MHz) to achieve long term frequency stability. In this setup an iodine stabilized HeNe
laser beam is modulated with an AOM in double pass enabling us to stabilize a laser on
an arbitrary frequency.

The third laser beam is applied in the second interaction zone, too. It is overlapped
with the beam of the test laser by a dichroic beam splitter. Both beams are focused onto
the molecular beam to obtain high field intensities. The waists are about 100 µm and
measured by a CCD camera, to which a small fraction of the power is sent with a glass
plate. The camera with a pixel size of 23 µm × 27 µm is located at the same distance
from this glass plate as the molecular beam. The measurement of the beam sizes and the
laser power (measured by Coherent Fieldmaster) is needed for the determination of the
field strengths. Typically, the relative intensities of related measurements is known better
because the waist of the laser beams remain unchanged.

The coupling laser is chopped mechanically. The chopper triggers a lock-in switch that
divides the photomultiplier signal into two traces: By adjusting the phase correctly these
two traces correspond to (a) the situation without the coupling laser field and (b) to the
coupling laser field switched on. These two spectra are recorded simultaneously.
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position line width
level in cm−1 in MHz

vX =64, ` = 0, I≈0 −0.3744(9) —
vX =64, ` = 0, I≈2 −0.3696(9) —
vX =64, ` = 2, I≈0 −0.3227(9) —
vX =64, ` = 2, I≈2 −0.3177(9) —

vX =65, ` = 0, I≈0 −0.0131(7) —
vX =65, ` = 0, I≈2 −0.0106(7) —

fA =1, fB =1 asymptote 0.0 (reference)

shape res. ` = 2, I≈0, 2 +0.0024(9) 80

Feshbach res. ` = 0, I≈0, 2 +0.0416(9) 185

fA =1, fB =2 asymptote +0.0591

Feshbach res. ` = 0, I≈0, 2 +0.0584(9) 96

fA =2, fB =2 asymptote +0.1182

Table 5.1: Levels and resonance at the ground state asymptote.25

For the experiments, first the laser for the Franck-Condon pumping is locked to a
selected transition. Second, the test laser is tuned to the maximal fluorescence. Third,
the coupling laser is tuned such that the fluorescence induced by the test laser is reduced
as much as possible. This is assumed to be the resonance condition for the coupling
transition. At this frequency it is locked to the HeNe stabilized transfer cavity. Fourth,
the test laser is scanned across the line to obtain the line profiles we are interested in.
The parameter of the coupling laser is altered between scans. Either by attenuating the
power or detune it from resonance by altering the frequency of the AOM that shifts the
frequency of the HeNe laser for the offset stabilization. Typically, we record for each
setting of conditions of the coupling laser several scans that are overlapped by the marker
cavity peaks and then averaged.

We investigate the coupling of four asymptotic ground state levels to A state levels.
The vX =64, `=0 level is optically coupled to the vA =120, JA =1 level. The last bound
level, i.e., vX =65, `=0 is coupled to vA =139, JA =1. Also, we couple the lowest shape
resonance with `=0 and a Feshbach resonance with `=0 to that particular A state level.
For details of levels at the ground state asymptotes see Table 5.1.

The simplest model for an optical coupling like we are investigating involves three
states. First, a start state, in which the objects are initially in. A second state that is
tested and coupled by a laser field to a third state. If the coupling laser is in resonance with
the transition between the second and the third state, one expects the line in the spectra
to split into two lines symmetrically around the position of the line in the un-coupled
situation. The distance of the splitting corresponds to the coupling strength induced
by the coupling laser. If the coupling laser is detuned, the splitting gets asymmetric
for, both, position and intensity of the two lines. However, detuning the coupling laser
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Figure 5.3: Field of observations. For each of the four asymptotic levels or resonances of
the ground state we show the applied parameters of the coupling laser. Each point indicates an
experimentally recorded and analyzed spectrum. The axes give the parameters of the coupling
laser.
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Figure 5.4: Coupling Schemes. For the simulation we consider five separate coupling systems.
Systems with positive and negative M are distinguished only by a sign change of coupling strength
for couplings between levels with the same F . The un-labeled numbers indicate F for each level.
Energies are not to scale.

in opposite direction will lead to the same line profile but mirrored at the position of
the unperturbed line. This is called Autler-Townes splitting. In this experiment, the
line profiles show much more structure, but qualitatively the same behavior as the two
Autler-Townes components in the simple three-state model.

An overview of the couplings we were applying and recording in the spectroscopic
experiment is given in Figure 5.3. For each of the four couplings a plot is given where
each recording is represented by a point with detuning and intensity of the coupling laser
as coordinates.

5.1.3 Lineshape Simulation

In order to investigate the coupling, we need to model the observed lineshapes. Before
doing so, we start with some general considerations. The power broadening of the observed
lines is only a factor of about five smaller than the observed line splitting induced by the
coupling laser. Therefore, one has to include the test laser in the modeling of line profiles.

A second important point is the polarization of the laser fields. We assume that an un-
polarized ensemble of molecules enters the second interaction zone and can hence neglect
from now on the laser for the preparation via Franck-Condon pumping. This laser field
is un-polarized at the molecular beam after a fiber connection. The two laser fields we
need to consider are linearly polarized with a parallel polarization axis. This axis defines
our lab frame. Any molecule with a projection of the total angular momentum F on the
lab frame axis M will therefore keep this projection during the complete interaction with
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the two laser fields, at least until it decays spontaneously. Consequently, the involved
molecular levels may be grouped by M . Since spontaneous decay removes the molecule
from the levels coupled by the lasers it is a good approximation to model the different M -
systems individually. The different coupling schemes are depicted in Figure 5.4. The only
good quantum numbers for all molecular levels involved are F , its projection M , and the
inversion symmetry denoted by ±. However, we take rotational wavefunction from Hund’s
coupling case (a) as a basis to describe the molecular level as a linear combination. With
such wavefunctions, the coupling strength may be computed as elaborated in Appendix A.
We start from levels with J = 0, thus F is equal to I. For asymptotic levels, the hyperfine
structure admixes to a level with I contributions with I+1 and I−1 but the two manifolds
I ∼ 0 and I ∼ 2 remain separate. For `=0, the equality F = I is again valid but for `=2
and I = 2 these two momenta can be coupled to any F between 0 and 4. The coupling
schemes depicted in Figure 5.4 reflect that |M | has got to be smaller than F and the
selection rules ∆F = −1, 1 for M = 0 and ∆F = −1, 0, 1 for other values of M .

The lambda scheme that we apply with the two lasers corresponds to an inverted two-
color photoassociation121 operating in the singlet manifold. A method describing spectra
in photoassociation processes is the multichannel quantum defect theory (MCQD).123,119

Moreover, it is developed how to take parameters for lasers (power and detuning) and the
trap (temperature) as main input to simulate experimental recordings such as trap loss
or ionization spectra.124

Three major differences to the intended utilization of this approach need to be pointed
out: First, we start from a deeply bound molecular level and not from continuum states.
We do not need to consider a thermal distribution over continuum states. But we ar-
tificially adapt the model suited for collisions to simulate the breaking of a compound,
namely the dimer breaking into two atoms sometimes called half collision. Second, in
MCQD theory molecular levels are considered. The reflection approximation introduces
the interaction potentials for the determination of the coupling strengths between the
involved levels, i.e., for the determination of Condon points. In our case, we know the
wavefunctions of the involved levels from coupled channel calculations based on exper-
imentally obtained interaction potentials.125 Along with R-dependent dipole transition
moments,126,127 this knowledge allows us to compute coupling strengths (see Appendix A).
We do not use the reflection approximation. Third, the original intention was to deter-
mine analytical lineshape formulas. Due to high dimension of our coupling schemes (see
Figure 5.4), we determine the fluorescence based on the parameters, detuning and power
of both lasers (test and coupling), numerically.

As discussed earlier, we consider five coupling schemes, one for each possible M . For
M = 0 we have to consider two start levels for vX = 29, JX = 0, i.e., F = 0 and 2.
These are almost degenerate are due to the tiny hyperfine interaction for singlet states.
We denote the number of start levels by qM with q0 = 2 and q±1 = q±2 = 1. Due to
the degeneracy and the un-polarized beam source, we consider the six start levels equally
populated: ρ (M, i) = 1/6.

For each coupling scheme, the scattering matrix S is set up. Its elements Si,j represents
the inelastic scattering of a molecule in the selected start level i (called incoming channel
in scattering theory) to a channel that represents an atom pair (bound or free) that
was created via spontaneous decay of the A state level labeled by j. Every molecule in
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these open outgoing channels corresponds to one spontaneously emitted photon, which is
detected as signal. The scattering matrix S is computed from the reaction matrix K. In
the case of a single start level (qM = 1) it looks like as follows (the lines are only to guide
the eye, empty elements are zero):

K =

(
Koo Koc

Kco Kcc

)
=



vX =29 LIF free
atom pairs vA =120,139 vX =64,65

Γ11· · · Γ1n

γ
. . .

γ

α
. . .

α
Γ11 γ Ω11 · · · Ωm1...

. . .
...

...
Γ1n γ Ω1n · · · Ωmn

α Ω11· · · Ω1n. . .
...

...
α Ωm1· · · Ωmn



(5.1)

The number of levels in the coupling scheme for the A state and the asymptotic region
are n and m. This matrix corresponds to the matrix in equation (2.19) of the underlying
theoretical paper.124 The natural linewidth for the vibrational A state level vA is 2v̄A

vA
γ2.

This definition of γ ensures the correct linewidth in simulation of spectra. If the coupling
laser couples to a resonance state, the dissociation lifetime of that resonance can be taken
into account by α, which is set to zero for bound states (see Table 5.1).

The reduced K-matrix is defined as

Kred = Koo −Koc × inv (tan ν + Kcc)×Kco (5.2)

with the diagonal quantum defect matrix

tan ν =



vA =120,139 vX =64,65
δ1

v̄A
vA

. . .
δn

v̄A
vA

∆1

v̄X
vX

. . .
∆m

v̄X
vX



(5.3)

Equation (5.2) corresponds to equation (2.20) in the paper by Bohn and Julienne124 but
in a different notation. The matrix Koo is set to zero because we do not consider elastic
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processes. We construct the scattering matrix S by

S =
(
1I + iKred

)
× inv

(
1I− iKred

)
(5.4)

where we neglected the elastic phase shift. 1I denotes the identity matrix.
The local vibrational spacing ∂E

∂v
at the vibrational level vP is denoted by v̄P

vP
(P=X, A

indicating the state). Before defining quantum defects with δ and ∆, we need to introduce
some notations.

The energy Eg
M,q is the eigenenergy of level l of system M . We distinguish start (g=s,

vX = 29), intermediate (g = m, vA = 120, 139), and asymptotic (g = a, vX = 64, 65) levels.
Our model assumes that the start levels of each system M are energetically degenerate:
Es

M,1 = . . . = Es
M,qM

=: Es
M,•.

We denote the frequency of the test laser by νT and of the frequency of the coupling
laser by νC. The detuning of the two lasers is defined with respect to the levels l =1 of
the system M =0 of the two manifolds that the laser couples:

test laser : dT = hνT −
(
Em

0,1 − Es
0,•

)
and

coupling laser : dC = hνC −
(
Em

0,1 − Ea
0,1

) (5.5)

The quantum defects of equation (5.3). Here, δi and ∆i reflect the dressed state picture.
With the introduced notation, they are defined as follows:

δM,j =
(
Em

M,j − Em
0,1

)
−
(
Es

M,• − Es
0,•

)
− dT and

∆M,k =
(
Ea

M,k − Ea
0,1

)
−
(
Es

M,• − Es
0,•

)
− dT + dC

(5.6)

The label M is suppressed in the matrix equation above. The matrices for different M
are set up separately but related via equation (5.6).

The coupling strength between molecular levels is represented by Γ and Ω. They
are computed from the laser intensity, the dipole operator ~d, and the local vibrational
spacings of the two coupled states by

Γij =
−h̄ ~Ep

T · ~dij

2
√

v̄A
120 v̄X

29

and (5.7)

Ωjk =
−h̄ ~Ep

C · ~djk

2
√

v̄X
64 v̄A

120

with indices for the levels we start from i=1, . . . , q, for the levels of the A state j =1, . . . , n,
and for asymptotic levels k = 1, . . . ,m. The electric field strength depends on the distance
of the molecule to the axis of propagation of the two laser beams. Both laser beams are
focused. Various coupling laser intensities, i.e., coupling strengths, are detected by the
test laser. Moreover, the excitation probability, and thus detection likelihood, depends
on the test laser local intensities. We approximate the laser beam profiles by a number of
hollow-cylinders of finite wall width, in which we assume that the intensity is constant.
These cylinders are aligned in direction of the laser propagation axis. This method was
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applied in a similar, preceding experiment.101 The average electric field strength in hollow
cylinder number p results for a Gaussian beam profile to

Ep = E0
2p0

2p−1

[
(p0+p− 1)e−(p−1)/p0 − (p0+p)e−p/p0

]
(5.8)

where the inner cylinder is p =1. The number of hollow cylinders within the beam waist
is p0. The electric field strength at the center of a Gaussian beam is

E0 =
2

w0

√
I

πcε0

(5.9)

with I being the laser powers and w0 the beam waist of test or coupling laser, what ever
coupling Γ or Ω has to be calculated. For the detailed evaluation of the vector product
~Ep · ~d we refer to Appendix A. We will use pmax cylinders to approximate the Gaussian
beam profile, where pmax/p0 is the width that is considered measured in beam waists.

With this, we simulate line profiles by adding the contribution of all hollow-cylinders
taking the size of the hollow-cylinder into account:

Signal (vX =29, JX =0→ LIF) ∼
pmax∑
p=1

2p− 1

pmax
2︸ ︷︷ ︸

beam
profile

2∑
M=−2︸ ︷︷ ︸

coupling
systems

qM∑
i=1︸︷︷︸

start
levels

qM+nM∑
j=qM+1︸ ︷︷ ︸
A state
levels

ρ (M, i)︸ ︷︷ ︸
here: ≡1/6

|Si,j|2

(5.10)
This summation can be done for both situations: with and without the coupling laser. In
this way, the experimental curves can be modeled.

5.1.4 Profile Fit

We integrated the lineshape simulations into a fit program applying the MINUIT pack-
age.128 The free parameters of the fit include the four parameters for the laser fields used
in the calculation of the scattering matrix, i.e., detuning and intensity of, both, test and
coupling laser. The parameter for the detuning of the test laser corresponds to a param-
eter for the position of the line. For each of the two corresponding experimental traces
with and without coupling, two additional parameters are introduced: a background level
and a parameter to scale the amplitude. In Table 5.2, all free parameters are listed.

The two traces are fitted subsequently. In a first step, the experimental trace 1 of the
uncoupled situation is fitted. Only four parameters are free during the fit: two related
to curve and two to the parameters of the test laser. In a second step, the trace 2 of the
situation with the coupling laser is fitted with four parameters: two parameters for the
trace and two for the parameters of the coupling laser. The two parameter for the test
laser do have an influence on the simulated curve but kept at their values obtained in
the previous fit. In Figure 5.5 typical fit results is shown. The overall appearance of the
observed line profiles are described. However, some features are not reproduced well. The
wings are steeper in the experiment than in the simulation, especially for the components
that are shifted away most from the original position of the line. The fit is able to produce
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uncoupled coupled

scaling parameters:
offset trace 1 ×
offset trace 2 ×
amplitude trace 1 ×
amplitude trace 2 ×

laser parameters:
power test laser × ·
power of coupling laser ×
line position × ·
detuning of coupling laser ×

Table 5.2: Parameters of the simulation of trace 1 and trace 2. A × indicates a free parameter,
a · indicates a fixed parameter with influence on the simulated trace.

line profiles for the laser manipulated system that are very close to the experimentally
observed traces by basically using only two free parameters, namely the detuning and
the intensity of the coupling laser. The background and the amplitude parameter do not
change the structure of the simulation.

The parameters obtained from the fit can be compared to properties measured in the
experiment. Three comparisons between experimental values and values obtained with the
fit procedure are reasonable. The detuning of the coupling laser and the two intensities.
A comparison for the detuning of the coupling laser is presented in Figure 5.6. The values
from the fit follow the experimental detunings quite nicely. The offset from the expected
linear dependence around the line position comes probably from the fact that the fit tries
to adjust via the detuning parameter differences in the lineshapes between experiment
and simulation.

Disappointing is that the resulting laser intensities from the fit with the lineshape
simulations do not agree with the experimentally applied ones. For the test laser, we
obtain about 100 times bigger field intensities from the fit than we measured. The fit
derives this value from the line broadening. For the coupling laser, the fit obtains field
intensities that are a factor of about ten smaller than experimentally applied ones.

5.1.5 Discussion

The experiment was laid out to produce simple lineshapes with the smallest number of
components. By starting from JX = 0, the total angular momentum of the dimer is
simply the total nuclear spin. Moreover, only I = 0, 2 is allowed to combine with even J
for gerade states. A purification of the prepared levels to a single nuclear spin state would
only be possible by choosing levels in a preparation step, for which hyperfine splitting is
large enough, e.g., levels of the b 3Πu state. Spin-orbit coupling to levels of the A state
allows for their excitation24 but the efficiency of the Franck-Condon pumping is greatly
reduced.
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Figure 5.5: Resulting line profile curves obtained with the fit. For three different detunings of
the coupling laser the two traces are shown for both recordings and simulations. The test laser
is tuned across the R(0) line of the 120 ← 29 band. The coupling lasers is near the transition
vA =120, JA =1←vX =64, `=0 transition. The offset of the trace 2 and its additional noise are
due to additional scattered light originating from the coupling laser. In trace 1 the simulation is
almost perfect, thus lines are hardly separated from each other.
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Figure 5.6: Comparison of the detunings of the coupling laser. The detuning set in the
experiment and the detunings obtained in a simulation fit are compared. The diagonal line
indicates the expected behavior.

The linear polarization of the two laser fields and the parallelism of the two polarization
axes allows to separate different coupling schemes. However, many couplings contribute
in the experiment, as shown in Figure 5.4. But, these are known and therefore it was
possible to fit the lineshapes with few free parameter only. The detuning of the coupling
laser is well reproduced (see Figure 5.6).

For the comparison of experimental and simulated laser intensities, many steps need
to be taken. The measured values are the power and the waist of the laser beam. For the
calculation of the coupling strength, the wavefunctions are calculated in multi channel
calculations. For the transition dipole moments as function of internuclear separation R,
we take splines through ab-initio values.126,127 The calculation of coupling strength of the
angular momentum wavefunction is discussed in Appendix A. All this effort is however
not rewarded. We have stretched the MCQD model too much, e.g., the start levels are
artificially open channels. The corresponding analytical formula for a simple two-level
system does not describe the power broadening as expected. The broadening would
depend not only on the Rabi frequency but also on vibrational spacings. Thus, we cannot
expect to reproduce the experimental laser intensities with the lineshape fit.

In photoassociation experiments, the hyperfine state of the two atoms is well defined.
Therefore, the number of couplings that need to be considered is smaller, at least for single
laser photoassociation. If one applies a second laser, e.g., in order to drive the molecules to
bound levels of the ground state, similar complications will appear, i.e., several hyperfine
levels need to be considered.
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5.1.6 Conclusion

This work is aimed on a better understanding of laser induced manipulation of cold colli-
sions. In a systematic study, we measured the influence of a laser coupling of asymptotic
ground state levels to levels close to the first electronic excited state. In a quantitative
model, we are able to reproduce the dependence of the peculiar lineshapes on the detuning
of the coupling laser. But this model, based on MCQD theory developed for photoassoci-
ation experiments, does not lead to the correct amplitude of the influence of the coupling
laser. Due to hyperfine structure the coupling schemes are, in this experiment as well
as in experiments with ultracold atoms, much more complicated than a two state model.
For systematic studies of laser control of cold collisions, experiments with atoms without
nuclear spin are much more appropriate due to the simplicity of the system. Here, the
interest for such a tool, often referred to as optical Feshbach resonances, is higher because
no Feshbach resonances are available that can be utilized by magnetic fields.
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5.2 Transition Dipole Moments

The calculation of the transition dipole moments and the coupling schemes deserve an
extended discussion. The computation of the transition dipole moments takes several
steps of consideration for the angular momenta. We use Hund’s case (a) wavefunctions
as a basis for description of the wavefuntions. A complete set of quantum numbers
for the description of the angular wavefunction is: the projection of the orbital angular
momentum on the molecular axis Λ, the total spin S, its projection Σ, the total nuclear
spin I, and its projection ΩI .

For the start levels, which are prepared by Franck-Condon pumping, no angular mo-
menta of the electrons have to be considered. Moreover, the two electron spins are paired
and the molecule is not rotating. The total angular momentum of the dimer is simply
the total nuclear spin, which has to be even for a JX = 0 molecule, thus F = I = 0, 2. In
total, six degenerate hyperfine levels exist if the projection of I onto the molecular axis
ΩI = −I, . . . , I is taken into account.

For the excited state levels, an angular momentum of one is absorbed an the rotation
of the dimer changes to JA = 1. For levels of the A 1Σ+

u state the projection onto the
molecular axis is zero. Every level has a specific total angular momentum F and is a linear
combination of several wavefunctions with even I (and Λ = Σ = 0). Spin-orbit interaction
with the b 3Πu state leads to an admixture of levels with Λ = 1 = −Σ, again only even I
wavefunctions are contributing. These admixtures are not contributing to the coupling
strength from the ground state because the ground state wavefunctions are with S = 0
different than for the triplet admixtures with S = 1.
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M = 0 M = 1 M = 2

F=I=0 F=I=2 F=I=2 F=I=2
F=1, I={0,2} -0.131 -0.635 -0.550 —
F=1, I={0,2} -0.131 0.635 0.550 —
F=2, I=2 — — -0.667 -0.133
F=3, I=2 — 0.147 0.138 0.109

Table 5.3: Transition dipole momement of spectroscopy transition in Debye for linear polarized
light. The values are for the transition vX = 29, JX = 0 to vA = 120, JA = 1 of the A–X system.
By multiplying with h̄ ~Ep

T one obtains the coupling strengths for this transition, see also the
definition of Γij in equation (5.7). For each hyperfine level of the X state a column is given and
each row corresponds to an hyperfine level of the excited state.

Figure 5.7: Sketch of a three level system considered for checking the obtained analytical
formula obtained with the simplified MCQD theory.

For the asymptotic ground state a hyperfine state I gets admixtures from levels
with I − 1 and I + 1 via hyperfine interaction. This is a seldom mixing between ger-
ade and ungerade states. Again, these admixtures cannot contribute to the coupling
strength because electronic dipole transitions do not change the nuclear wavefunction.
Therefore, the admixtures reduce the coupling strength.

The multichannel wavefunctions were calculated in coupled channel systems with a
mapped grid of internuclear distances. For the excited state levels, the two electronic
states A 1Σ+

u and b 3Πu are taken into account.125 For the ground state, the X 1Σ+
g

and the a 3Σ+
u states are considered.125 Additionally, R dependent transition dipole

moments from ab-initio calculations were used.126,127 All this information contributed
to the calculated electronic transition dipole moments listed in Table 5.3 and Table 5.4.
In recent experiments on a sodium heat-pipe, calculated and directly measured coupling
strengths for deeply bound states were compared and found to be in good agreement.129

5.3 Multichannel Quantum Defect Theory

The method for the simulation of line profiles is taken from multichannel quantum defect
(MCQD) theory. As mentioned above, an unexpected dependence of the power broadening
on vibrational spacing is found in the derived analytical formulas for systems with a small



102 Manipulation of Cold Collisions with Laser Light

M = 0 M = 1 M = 2

F=1 F=1 F=3 F=1 F=1 F=2 F=3 F=2 F=3
I ≈ 0
F=0, `=0 -0.944 -0.944 — — — — — — —
F=2, `=2 0.827 0.827 — 0.716 0.716 — — — —

I ≈ 2
F=2, `=0 0.463 -0.463 -1.069 0.401 -0.401 0.487 -1.008 0.973 -0.797
F=0, `=2 -0.211 0.211 — — — — — — —
F=1, `=2 — — — 0.407 -0.210 0.144 — — —
F=2, `=2 0.407 -0.407 -0.336 0.353 -0.353 -0.427 -0.317 -0.855 -0.251
F=3, `=2 — — — — — -0.532 0.150 -0.421 0.300
F=4, `=2 — — -0.865 — — — -0.838 — -0.749

Table 5.4: Transition dipole momement for linear polarization of coupling transition in Debye.
The values are for coupling between vA = 120, JA = 1 of the A state (columns) and asymptotic
vX = 64, `A = 0, 2 singlet ground state (rows). By multiplying with h̄ ~Ep

C one obtains the coupling
strengths, similar to Ωij as introduced in equation (5.7).

number of coupled levels. For a simple two state model (see Figure 5.7) of an excited
state with lifetime 1/γ and a Rabi frequency for the coupling of Γ the analytical formula
derived via the K-matrix the fluorescence is proportional to

|S1,3| ∼
1

dT
2 + γ2

(
1 + Γ2

γvX

)2 . (5.11)

The expected dependence on the detuning of the coupling laser dT for this simple two
level system is130

|S1,3| ∼
1

dT
2 + γ2 + Γ2

, (5.12)

i.e., no dependence on the vibrational spacing vX should appear. In an effort to understand
this better, we changed the entries in the K-matrix in order to remove the dependence
on the vibrational spacing. However, this does not allow to reproduce the spectra with
the experimental laser powers either and the functional dependence of the elements in the
K-matrix on the laser power is not as expected.

5.4 Density Matrix Simulations

An alternative to the discussed method is to simulate the spectra by looking at the
evolution over the time of the dimers described by a wavefunction. This is done by the
von Neumann equation using a density matrix. Such a simulation takes into account
the time dependent field strength that the molecules are experiencing during the flight
through the laser fields. We used experimental parameters for power and waist of the



5.4 Density Matrix Simulations 103

(a) (b)

-200 -100 0 100 200

0.0

0.1

0.2

0.3

4

4

1

2

3

2 3

1

 

 

fra
ct

io
n 

of
 fl

uo
re

sc
in

g 
di

m
er

s

detuning of test laser (MHz)

system M = 2 
coupling laser 

 switched off
 constant
 Gauss profile

Figure 5.8: Graph (a) shows lineshapes simulated by integration of the von Neumann equa-
tions. Three situations of the coupling lasers are simulated for the reduced M=2 system depicted
in Graph (b). For the Gaussian beam the Autler-Townes components are split into several peaks.
Each peak corresponds to a field strength of a position where many excitations are taking place.
The peaks indicated by 1 correspond to the excitation position with the highest field.

laser beams (25 mW and 100 µm) as well as the velocity of the molecules (1000 m/s) to
simulation a molecule passing the laser beam perpendicular though the beam axis. The
derived Rabi frequencies of spectroscopy laser explains the line broadening observed in
the experiment but allows for ten Rabi oscillations during the interaction at most. This is
too little for a treatment with rate equations and too much to consider the spectroscopy
laser as a small perturbation.

The difficulty in integrating the von Neumann equation is the needed calculation
power. Not only many levels are coupled, which leads to matrices of the order thirteen.
But also, large detunings and strong couplings need to be simulated, which limits time per
step in the integration of the von Neumann equation. The later problem can be reduced,
if levels, which are almost not contributing to the coupling due to large detunings, are
excluded from the simulation.

Spectra are simulated by computing the time evolution of the density matrix, which
describes the dimer, for different detuning of the spectroscopy laser. We are using an
artificial level representing molecules that decay from the A state level. The population
in this level after the complete interaction, i.e., after the time integration, corresponds to
the observed fluorescence. Here, we do the calculation with a single molecule that passes
the center of the laser beam and as a certain velocity. In a first check, the line broadening
in the situation, in which the coupling laser is switched off, is reproduced. This is the
dotted trace in Figure 5.8.

The second step of our simulations includes a laser field representing the coupling laser.
For simplification, we assume a constant field strength during the complete interaction for
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the moment. In comparison to the experiments, we do simulations for fields corresponding
to 1/

√
10 of experimentally applied field strength in the center of the coupling laser.

This is done only to sace computing time because we can reduce the interval of the
simulated spectrum due to the smaller shifts. We obtain the dashed trace in Figure 5.8.
Three components are visible: one is at the position of the unperturbed line and two
additional components are shifted symmetrically around this position. These are three
Autler-Townes components that are expected from the coupling scheme for M = 2, where
all levels of the asymptote of the ` = 2 manifold are neglected since the coupling laser
is almost resonant with the transition to ` = 0 (see Figure 5.8, Graph (b)). In a third
simulation, we now assume a Gaussian beam profile for the coupling laser instead of the
constant field strength. As in the experiment, both waist of the two lasers are the same
with a common beam axis. Here, the shifted components are split into several components
(labeled by 1, 2, 3, and 4; solid line in Figure 5.8) that are getting smaller towards
the position of the unperturbed line (with higher label). In additional simulations, the
periodicity of these structures gets smaller with higher test laser intensities. We explain
this behavior by the fact that the molecules is driven by the test laser to undergo Rabi
oscillations between the start state and levels of the A state. Due to this, several times
(or locations) are marked out, in which the excitation takes place. Each of the peaks of
one Autler-Townes components corresponds to one of these positions. The peak shifted
the most (labeled by 1) corresponds to the position with the strongest laser fields. By
going closer to the unperturbed line position one passes the peaks of lower field strength.
This structure was not observed in the experiment. Two things have to be taken into
account that have not been considered yet. First, the molecules travel through the laser
fields with various separations of the trajectory to the axis of the laser. The further they
are away, the lower is the peak electric field intensity. Second, the molecules are traveling
with different speeds, which would translate to different interaction times with the two
laser fields. However, the change of the laser fields in laser beam direction is small due to
the long Rayleigh range if compared to the size of the particle beam. Final results would
need averaging over beam divergence and speed.

We undertook simulations with the density matrix approach for all M and simulated
thereby the experimental trace. As in the MQDC approach, no differences between M
and −M are found. In Figure 5.9 a series for several detunings of the coupling laser
is shown. Here, the discussed oscillations are again occurring. However, one can find
the changeover of the Autler-Townes components from one side of the position of the
unperturbed line to the other for an inversion of the detuning of the coupling laser. In
the experiment, the components are shifted more. This can be accounted to the fact
that the intensity of the coupling laser was reduced by

√
10 to simplify the simulations

and, moreover, because the simulations due not average for different minimal distances of
the molecules to the laser beam axis. But, we can conclude that the order of magnitude
of the laser induced shift is observed in the experiment. Therefore, extensive density
matrix simulations will be able to predict the magnitude of effects of coupling lasers on
asymptotic levels.
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Figure 5.9: This series shows the spectra obtained from density matrix simulations. Several
detunings of the coupling laser are simulated. The individual M -systems are shown as well as
the overall spectrum.
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coupled system MCQD density matrix
using relative coupling strength yes yes yes
consideration of coherences no yes yes
consideration of time dependence of
laser fields

no no yes

included to a fit procedure yes yes no
computational effort low medium very high

Table 5.5: Comparison of three approaches for line profiles simulations as discussed in the
text.

5.5 Concluding Remarks

Preceeding to this work, another approach was followed.102,25 It is simpler and was the
first try of understanding of the spectra. Assuming that the spectroscopy leads to small
perturbations only allows to model a system of A state levels and asymptotic ground
state levels which are coupled by the laser field of the coupling laser. Eigenvalues and
eigenvectors of this coupled systems are calculated. It is simulated that the spectroscopy
laser probes these eigenstates of the coupled system. However, this model does not take
into account coherences between the involved levels. Consequently, dark states cannot be
modeled. Such states lead to electrically induced transparency (EIT) and in the discussed
experiment to steep wings of the line profiles.

In total, three approaches were tried for the simulation of the observed line profiles. Of
these, two were introduce in this work (MCQD theory and density matrix simulations).
The three approaches are compared in Table 5.5. Although none of these implementations
allows for a direct comparison between experimentally applied and simulated optical ma-
nipulation of long range levels of the ground state, significant steps in the understanding
of optically induced manipulation of long range interaction were taken. The models do
need to include hyperfine structure in order to precisely describe the coupling. The ampli-
tude of the coupling strength is not modeled correctly by the simplified models of MCQD
theory. However, density matrix simulations show that the compute coupling strengths
are in the right order of magnitude. This allows to predict what field strength is needed
in order to obtain a certain influence of an optical induced Feshbach resonance.

An even better quantitative understanding of optical Feshbach resonances is needed
in order whether or not an optical Feshbach resonance is applicable under certain circum-
stances. Not only that one needs to predict the needed laser power, but also what are
side effects of the manipulation laser, e.g., photoassociation at large detuning or multi-
photon processes. Systems without hyperfine structure are much better for systematic
studies since the coupling schemes are simpler. Spectroscopy of alkali earth metal dimers
can supplement experiments on ensemble of cold atoms. Investigations of the behavior of
asymptotic molecular levels can be much more detailed if a beam of these dimers is used,
mainly because this allows for observation of spectra without Doppler broadening.



Chapter 6

Doppler Free Spectroscopy of Alkali
Earth Metal Dimers

Alkali metal atoms are widely used in experiments with ultracold gases. This is due
to their simple electronic structure and the good possibilities for laser cooling. In re-
cent years, the interaction of the particle of these dilute gases became more and more
important. These interactions allow for experiments on quantum degeneracy, phase tran-
sitions, and many more topics of fundamental physics. Precise, quantitative models of
the interaction are essential for the understanding of the observations.

A second branch of the dilute gases community is however interested in ultracold gases
without interactions of the atoms: frequency standards in the optical frequency region are
proposed. The quality factor of intercombination lines in the visible frequency regions as
for alkali earth metals are orders of magnitude better than for the microwave transition of
cesium that defines the second. A time definition via a clock transition is defined via the
transition frequency of a single, unperturbed atom. Thus, the experiments seek to produce
ensembles of non-interacting atoms at rest with long interrogation times. For two main
reasons it is of interest to understand the interaction of these atoms: First, interactions of
clock atoms can lead to pressure shifts of the transition frequency of the standard. Second,
in the preparation of ultracold ensembles scattering processes are essential. Investigation
of cold collisions of alkali earth metal atoms is therefore interesting in the development of
optical frequency standards.

A second motivation to investigate long range interaction of alkali earth metal atoms
is the simplicity of the atoms. The isotopes with high natural abundance do not have
a nuclear spin. Thus, only a single electronic ground state of the dimers exists and
the structure of the asymptote of electronically excited pair becomes simpler, too. The
changeover from alkali metals to alkali earth metals is therefore a step that simplifies the
investigated system. Hence, a better test of models for the description of the long range
interaction can be reached. Potential descriptions as well as atomic structure calculations
leading to long range parameters will benefit.

This chapter discusses our efforts towards high precision spectroscopy of long range
levels of alkali earth metal dimers. Spectroscopic experiments on a heat-pipe for calcium
that spectrally resolve laser-induced fluorescence are a solid base for Doppler-free spec-
troscopy on a Ca2 beam.75,131,132 These experiments were undertaken with calcium as an
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exampel. Calcium is cheap, easy to handle as bulk material and has easily reachable tran-
sition frequencies. Also, 40Ca is much more abundant than other isotopes, which simplifies
the assignment of spectra. An additional argument for choosing calcium is that comple-
mentary experiments on ultracold calcium exist, e.g., at the Physikalisch-Technischen
Bundesanstalt (PTB), where photoassociation experiments were undertaken.98 All these
arguments lead to the decision to choose calcium as an example for the beam experiment,
too.

The preceding experiments in our group75 show by Monte-Carlo simulations that only
higher precision on the transition frequencies (and not more term values) will improve
the precision of scattering parameters, namely the scattering length and the long range
parameter. Therefore, an experimental method is needed to replace the setup of heat-pipe
in combination with the Fourier-transform spectrometer or monochromator. Like in the
case of alkali metal atoms, we change towards a beam apparatus. However, only pulsed
beams were experimentally realized for dimers of alkali earth metals until now.133 In
the experiments we aim for, we need to use continuous lasers for the desired resolution.
In principle, it is possible to combine a pulsed particle beam with continuous lasers by
gating the detection, but the experimental time will be much longer than in case of a
continuous beam for the same effective observation time. The same argument why a
pulsed beam is less complicated to be built explains why high resolution experiments are
more complicated: less material is used for a certain time of operation.

The current experimental knowledge is described in the PhD Thesis of Olivier Al-
lard.131 Our development of a beam apparatus for Ca2 is motivated by four possible
experiments: First, a detailed spectroscopy of the ground state X 1Σ+

g , which will allow
for an improved determination of the scattering length obtained from the potential derived
from the molecular spectroscopy.75 An analysis of the line shapes obtained in a photoas-
sociation experiment lead to an alternative interval of the scattering length.98 Second,
systematic studies of states correlated to the 41S0 + 43P asymptote can be detailed.132

The coupled channel analysis is of importance for scattering processes of atoms in the
two clock states. Moreover, the levels of the coupled manifold may serve as a transfer
state for the formation of ground state molecule via photoassociation. The efficiency of
this process depends strongly on details of the potential curves. Third, predissociation
of the B 1Σ+

u state can be systematically studied in a beam because the lines are not
broadened by the Doppler effect and the predissociation rates can therefore be derived
similar to a study in sodium.134 Fourth, the study of manipulation of cold collisions by
laser fields should be continued on calcium. The lack of hyperfine structure simplifies the
modeling. Also, magnetically tuned Feshbach resonances are not available for such atoms,
which increases the interests in alternative methods for influencing cold collisions, e.g.,
by optically induced Feshbach resonances.

6.1 Experimental Requirements

Beams of alkaline metal dimers are successfully applied for Doppler-free spectroscopy.
Examples discussed in this thesis are K2 and Na2. However, some fundamental differences
of alkaline earth metals to alkaline metals have to be considered for the concept of the
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experiment. The consequences on the experiment are discussed in this section, which
should answer the readers questions ‘Why is it not sufficient to fill the sodium oven with
calcium?’

An obvious difference between dimers of alkaline metal and alkaline earth metal is the
different electronic structure. In case of alkalines, a single valence electron in a 2S1/2 state
has to be considered for each atom. This leads to two electronic ground states: The singlet
ground state, labeled by X 1Σ+

g is about 4 500 cm−1 deep. The triplet state, a 3Σ+
u is with

about 200 cm−1 shallower. At the asymptote, they are coupled via the hyperfine structure
of the atoms, leading to a rich field of Feshbach resonances, that are often utilized via
magnetic fields for spectroscopy, for the manipulation of the two particle interaction, or
for the production of ultracold molecules from laser cooled atoms. All these phenomena
and techniques are not available if atoms have no hyperfine structure, e.g., due to the lack
of a nuclear moment.

This is the case for most isotopes of alkaline earth metals. The even (gerade) number
of protons is grouped by an even (gerade) number of neutrons for the most abundant
isotopes, which allows to pair the nuclear spins, leading to i = 0. In case of alkalines,
the odd (ungerade) number of protons prefer to combine with a even (gerade) number of
neutrons, the nuclear spins cannot be paired.

For each atom of an alkaline earth metal, two valence electrons need to be considered.
They combine to a 1S0 state. This is basically a spherically symmetric state, in which
the spins are compensates: No inner structure is visible. If two such particles interact,
only a single interaction channel is possible. It is described by the molecular interaction
potential X 1Σ+

g . This potential is shallower than in case of dimers of alkali metals. Also
the minimum is shifted to larger internuclear distances. The potential curves are such
that one lambda scheme with two laser fields allows already to perform spectroscopic
experiments of the least bound levels of the ground state starting with levels, which are
expected to be populated in a molecular beam: The low rotational levels of the vibrational
ground state of the electronic ground state. Such experiments can only be done in alkali
metal dimers after the molecules are optically pumped to vibrationally excited states,
i.e., by applying a Franck-Condon pump step. However, a drawback is that depth of the
shallow potential corresponds to the window of detection: The fluorescence, which is the
experimental signal, is between the two laser frequencies. Typically, scattered laser light
is filtered by color-glass or interference filters in the detection of alkali metal dimers. An
experimental challenge is therefore to reduce the scattered light and to find an appropriate
combination of excitation scheme and available filters.

However, the main difference between sodium and potassium on one hand side, which
are successfully investigated in beams, and alkali earth metals on the other hand side is
shown in Figure 6.1: the vapor pressure is lower for alkali earth metals. This is of high
importance because the vapor pressure determines the density of particles in the oven and
thus the flux of the beam. Moreover, the dimers of interest are created in collisions in
the oven and inside the nozzle. Their production rate depends strongly on the density of
atoms. Therefore, an oven for Ca2 needs to be run with a temperature higher than the
operation temperature of an oven for K2 or Na2.

The requirements for a source of a continuous beam of Ca2 are summarized in the
following:



110 Doppler Free Spectroscopy of Alkali Earth Metal Dimers

0 200 400 600 800 1000 1200
1E-4

1E-3

0.01

0.1

1

10

100

1000

beam of atoms

beam with dimers

 

 

V
ap

or
 p

re
ss

ur
e 

(m
ba
r)

Temperature (°C)

 Na         Ca
 K           Sr

                       Mg

K Na Mg Sr Ca
atomic beam 335 425 590 715 820
melting point 63 98 650 777 842
molecular beam 430 530 710 860 950
boiling point 759 883 1090 1382 1484

Figure 6.1: Vapor pressure curves of alkali metals and alkali earth metals.135 The coldest
part of the oven needs to be heated to a temperature that implies a pressure of about 1 mbar
to obtain an atomic particle beam and 10 mbar for a beam with dimers. Beneath the graph is
a list of relevant temperatures in degrees Celsius; melting and boiling points are given for one
atmosphere. The beam temperatures are the temperatures that lead to a vapor pressure of 1 mbar
and 10 mbar respectively.
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• The reservoir must be able to hold about one mol of calcium as bulk material and
if liquid without clocking the nozzle.

• The reservoir must be constructed such that cleaning and re-use is possible without
help of any craftsmen not involved in the research project itself directly.

• The reservoir must be tight up to the operating temperature.

• No materials may be used that have a significant vapor pressure at the operating
temperatures.

• The nozzle should be about 100 K hotter than the coldest point of the reservoir,
which determines the vapor pressure. At higher nozzle temperature, molecules might
be destroyed, whereas lower temperatures might cause the nozzle to clock. The
nozzle is cooled down by the particle flow and the gas might condense here.

• From the vapor pressure curves shown in Figure 6.1, the operating temperature of
the reservoir is expected to be 1000◦C. Here we added 50 K because the signals
of the preceding calcium heat-pipe experiments131 were weaker than in alkali metal
experiments.

• The heating must be reliable: High voltages cannot be applied for resistance heaters
in the vacuum because of danger of discharges, which typically break a supply wire
and end the experimental run.

• The alignment of the source must be reproducible and small changes of the source
position must be allowed. At the high temperatures, displacements of the source
due thermal expansions are expected. The alkali metal sources need to be aligned
very precisely because the nozzle of the source has to be on the line defined by the
positions of skimmer and optical interaction zone.

• The pressure in the beam path has to be low enough to allow for a free expanding
beam. The pump speed has to be sufficient, especially in the region around the
nozzle in order to allow for cooling of the inner degrees of freedom of the dimer by
collisions with Ca atoms in the particle beam.

Calcium is available in granules. For an estimate of the needed size of the reservoir, the
lowest density of the calcium during a run has to be considered. This is the effective
density of the granules of 0.6 g/cm3. The minimal surface of a reservoir for one mol — a
sphere of 5 cm diameter — emits 1 200 W at 1 000◦C. This is about ten times more than
in case of potassium or sodium.

The straightforward solution is to increase the size of the vacuum tank, install ad-
ditional heat shields, improve the cooling of the tank, and increase the voltage for the
resistance heaters are supplied with. But, this will decrease the pump speed at the nozzle
and increase the risk of discharges. Also, tantalum wires, typically installed for high tem-
perature applications, break easily after a first operation. This is problematic for re-filling
the reservoir. In summary, scaling up the alkali metal beams is not as simple as it seems
on the first glance. In the following sections, an alternative system is introduced.
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material heat conduction at temperature melting
(K/ (m ·W)) (◦C) point (◦C)

glass wool 0.08 300
teflon 2.5 230
magnesia (MgO) 5.8 1200
alumina (Al2O3) 6 1300
stainless steel A2 15 25 1425
stainless steel A2 27 1000 1425
copper 350 700 1085
nickel 1455
tantalum 3017
tungsten 3422

Table 6.1: Melting temperatures and thermal conductivities of selected materials including
the temperature it was measured at.136,137 Although steel is a metal, it may be considered a heat
insulator since the heat conductivity is similar to ceramics like magnesia and alumina.

6.2 Oven Construction

The principle idea of an alternative system is to move the heaters outside the chamber.
Fewer parts have to be inside the vacuum and consequently the oven construction is less
complicated. In this section, we describe the first realization of an oven heated from
outside the vacuum chamber. After gaining experience with this setup, an improved
version of this indirect heating system was developed, which is discussed in Section 6.4.

We started from the beam apparatus used for the experiments on sodium, which were
discussed in Chapter 5. The oven chamber is replaced by a CF-100 stainless steel double
cross. To this, a diffusion pump is mounted. On the end opposite to the beam chamber
an tube connected, the oven tube. We started with the oven tube depicted in Figure 6.2,
Graph (a).

The principle of the indirect heating system is as follows. Into the oven tube, a
cylindrical symmetric oven is put, which has a nozzle on the symmetry axis. As long as
the tube is aligned, the oven is aligned, too. The tube is heated from outside the vacuum.
Here, commercial tube heaters may be used. Both, oven and oven tube are fabricated
from stainless steel, which has a melting temperature that is with 1425◦C significantly
above the needed temperature of the oven of 1000◦C. Although considering steel a heat
insulator, the heat conduction towards the vacuum system will be significant due to the
high temperature gradient. Therefore, both ends of the tube are cooled by water, which
flows though an hollow ring that was welded to the oven tube. The back end of the oven
tube is closed with a CF-100 blind flange. Through this, the oven may be taken out for
refilling.

The oven is closed from both sides with CF-40 flanges. The nozzle is in the middle of
the front flange. Gaskets made of nickel are used to allow for higher temperatures than
copper gaskets do (see Table 6.1). This gasket material is often used for lithium beams.138

The nozzle was placed in beam direction to the middle of the oven tube. This place to
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be the hottest, which will avoid clogging. The nozzle itself has a diameter of 200 µm and
a length of about 1 mm and was drilled by a laser. With alkali metal beams the nozzles
usually widen during operation and have to be exchanged after about fifty runs. In this
setup, the nozzle piece is a tube that is mounted into the front flange of the oven by a
press connection in order to allow for exchange.

For the installation of the heater, experiences from the preceding heat-pipe experiment
can be used: The heated tube has to be supported because otherwise it bends under its
own weight. However, this support is mobile since the heat extension of the oven tube
is a few millimeter. The heaters are two half-cylinder that provide 875 W each and are
designed for temperatures up to 1150◦C.

Several problems occurred while the oven was put into operation. They are discussed
in the following. We sorted out them out bit by bit which led to the modified illustrated
in Figure 6.2, Graph (b).

6.2.1 Temperature Measurements

For temperature measurements thermocouples were installed. We used K-type thermo-
couples, which cover a dynamic range from −200 to 1250◦C and are widely used in many
applications. Another method to measure the temperature is to use the black body ra-
diation emitted from the oven. The beam chamber is equipped with a viewport at the
position were particle beam ends. The temperature derived from the color of the glow-
ing oven139 agree with the readings from the thermocouples. More precise measurements
would be possible with the help of well calibrated pyrometer.

6.2.2 Gasket Dissolved

In the first run with an oven filled with calcium the oven leaked substantially. The nickel
gasket reacted with liquid calcium. The gasket at the back end was completely washed
away. This end is the coldest part of the reservoir and therefore most of the vaporized
calcium will condense at this side. We dissolved nickel-calcium alloy with nitric acid and
several hours of reaction time.

No better gasket material was found mainly due to the high temperature requirements.
Also, it should be softer than steel, should have a low vapor pressure, and needs to
be affordable. We tried to use steel gaskets that we soft annealed before installation.
However, the knife edge of the flange and the oven were significantly damaged and the steel
gasket needed to be removed with big efforts. However, only small leaks were observed
during operation.

A second, more successful approach to seal the oven was to minimize the contact of
liquid calcium with the gasket. A second improved oven was designed that is loaded from
the front and does not have direct contact between the liquid reservoir of calcium and
the gasket. Also, the path for calcium vapor to the gasket increased. The oven will be
described in detail in Section 6.4. Although the gasket is still attacked, no leaks were
found during operation. It is not clear wether the remaining reactions take place during
the run of the beam or in the cool-down process at the end of the experiment.
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Figure 6.2: The development of the oven. The cross sections are almost to scale but simplified
to show the discussed details.
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Figure 6.3: Phase diagram of magnesium and nickel.140 The steepness on the right hand side
indicates that a small amount of magnesium on a nickel part reduces the melting temperature of
that part, in our case the gasket.

To our best knowledge was the alloy of nickel and calcium not investigated. Interest-
ingly, phase diagrams of magnesium and nickel are available. The melting temperature of
nickel with a small fraction of magnesium is significantly below the melting temperature
of pure nickel (see Figure 6.3 at the right end side). This situation occurs if a nickel gasket
is covered by a thin layer of liquid magnesium.

6.2.3 Re-opening the Oven

The oven is sealed by CF flanges and thighten with machine screws. Under the high
temperatures the screws tend to seizure. Using screws from steel for high temperature
applications and a high temperature anti-seize lubrication compound (Never-Seez) enabled
the opening of the screws. Moreover, tapped holes in the flange were added to the flange
outside the edge knife such that the oven can be opened by pushing the flange away from
the oven with screws.

6.2.4 Undesired Heating

The vacuum chamber was getting very warm despite the water cooling acting at both
ends of the oven tube. The temperatures reached 200◦C already when the oven was at
800◦C. The chamber is heated by radiation. Heat shields and additional cooling plates
were installed. Moreover, the connectors for the water cooling at the end of the oven tube
were extended by steel tubes to reduce the risk of melting water hoses. Also, this allows
to cool with a flux of air, which allows for higher temperature of the ends of the tube.

6.2.5 Lack of Power

After sorting out the teething troubles discussed, a major problem remained: The oven
did not reach the desired temperature while running the oven at full voltage. Five actions
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Figure 6.4: Spectroscopy of the intercombination lines of several calcium isotopes. The laser
excites atoms at the first interaction zone. The photomultiplier signal of this zone shows the
stray laser light as a background. The Doppler width of the fluorescence recorded from the
second interaction zone (which is used here as a detection zone only) is smaller because a spatial
filter is between the zones. The free traveling of the atoms between the two interaction zones in
the metastable state 4s 4p 3P is an indicator for good beam conditions.

were successively taken to trim the oven to higher temperature:

1. Heat shields were installed because an analysis revealed that the main loss channel of
power is black body radiation inside the vacuum chamber. The analysis is discussed
in Section 6.3.

2. The oven was shortened by reducing the length of the reservoir. The temperature of
the oven tube is strongly depending on the position in beam direction. It is hottest
in the middle but decreases almost linearly in both directions.

3. The water cooling was replaced by air cooling. Compressed air flows through the
coolers. This increased the temperature at the coolers and thus also at the back
end of the oven, which is the reference point for the oven temperature.

4. The heat losses from the heater to the laboratory directly were reduced by adding
glass-wool and a metal box around the heater.

5. Finally, the voltage applied to the two resistance heaters was increased above the
specifications.

A couple of runs were possible with about 140 V. This corresponds to sixty percent more
power than specified with 110 V. The analysis of the heat losses allowed us to predict
very precisely which temperature we could expect with which voltage. Unfortunately, the
wire of one of the heaters burned out after some test runs.
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Figure 6.5: Rotational temperature of K2 measured on the 18–0 band of the A–X system.
The line intensities are normalized by division by the degeneracy and the Hönl-London factor.
The measured oven temperature during the measurement was 730 K. The derived rotational
temperature of 20 K indicates that the cooling of the internal degrees of freedom of the dimer
during the adiabatic expansion into the vacuum is as efficient as in a beam setup with a smaller
distance between the first spatial selector and the nozzle.

6.2.6 Summary

With the gathered experience we started the design of a second, improved system. The
reasons to keep the concept of an external heating are manifold:

• We detected a beam of calcium atoms by laser spectroscopy on the intercombination
line (see Figure 6.4).

• Running the oven filled with potassium allowed us to detect a beam of K2 in Doppler-
free laser spectroscopy of transitions of the A 1Σ+

u ← X 1Σ+
g band. The rotational

temperature is low (see Figure 6.5). This indicates that the cooling of the inner
degrees of freedom during the expansion into vacuum does work even without a
skimmer close to the nozzle.

• The nozzle of the oven was never clocked.

• Alignment of the oven is not a problem.

Before describing the improved system, our analysis of the loss processes is discussed in
the following Section 6.3. It did help the understanding of the system and led to the
design of the new system.
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Figure 6.6: Model for the thermodynamics of the oven system.

6.3 Heat losses

In experimental setups, heat losses are not necessarily unwanted. They can also be used
to set a temperature difference between two points of a heated material. Two types
of losses are distinguished: losses due to heat conduction Pcond and losses due to black
body radiation Pbb. They have a substantial different behavior as a function of the
temperature T of the material. In this section, we want to utilize this phenomenon in
order to understand our oven setup better. Heat convection is neglected since the air flow
with contact to the hot surfaces is quite small.

A strongly simplified model of the oven is shown in Figure 6.6. The oven at tem-
perature T is in contact with the lab at temperature T0 ≈ 300 K, which is treated as
infinitely big reservoir. The air conditioning of the laboratory justifies this approxima-
tion by ensuring temperatures within ±2 K. Two mechanisms couple oven and reservoir:
First, heat conduction is proportional to the difference of temperature and a conductivity
parameter C:

Pcond = C (T − T0) . (6.1)

Second, for the black body radiation we assume that oven and reservoir act as a black
body. It is proportional to the fourth power of the temperature of the emitter and to the
surface area A. The total loss of energy per time unit due to black body radiation is thus

Pbb = B
(
T 4 − T 4

0

)
with (6.2)

B = Aσ.

This is simply the Stefan-Bolzmann law with the corresponding constant σ, the Stefan-
Bolzmann constant.

If oven is heated with a constant power Pheat, an temperature of the oven T will
eventually reach an equilibrium Top such that the losses compensate the heating power:

Pheat = Pcond (Top) + Pbb (Top) . (6.3)

If the heating is abruptly stopped, i.e., Pheat is set to zero, the oven will cool down until
it reaches the temperature T0. By analyzing the cool down curve T (t), we can determine
what the dominant loss process is. If the whole oven arrangement has a heat capacity
of O, then the arrangement will change its temperature by dT for an energy flow of P (t)
in time dt:

dT =
P (T ) · dt

O
. (6.4)
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C B
(W/K) (10−9W/K4)

(a) short oven (first approach) 0.23 1.31
(b) short oven (second approach) 0.87 0.47
(c) long oven tube (final) 1.07 0.54

Table 6.2: Coefficients for loss channels of different oven setups. They are determined from the
cool down curve and the applied heating power as described in the text and shown in Figure 6.7.

Thus:
dT

dt
=

1

O
P (t) =

1

O
[−Pbb (T )− Pcond (T )] ∼ dT

dt
(T ) (6.5)

Including equation (6.1) and equation (6.2) provides us with a model for the oven. The
parameters B and C are derived in a fit to the measured curve. Since we do know Pheat

from the operating voltage of the oven and the corresponding temperature Top, it is easy
to derive the parameter C and B, which characterize the oven arrangement.

Three different oven arrangements have been analyzed and characterized by this meth-
ods. The obtained parameters are summarized in Table 6.3. By analyzing the cool down
curves like shown in Figure 6.7, the parameters describing loss channels ‘conduction’ and
‘radiation’ are derived. They are shown in Table 6.2. In our starting setup (a) the losses
due to radiation are dominant. In setup (b), the changes described in Section 6.2 were
applied. Most importantly, heat shields are now installed. The losses due to black body
radiation are reduced by 60 percent but are still bigger than conduction losses above
500◦C. The setup (c) will be introduced in the following. A bigger thickness of the oven
tube increases the conduction losses and the heat capacity O.

6.4 Improved Oven Construction

The breakdown of the heater used in the first setup and with the new oven concept,
gave us the opportunity to optimize our oven system. It is not enough to simply replace
the two half-cylinder heater with more powerful heaters that resist higher temperatures:
The temperature needed in the nozzle region is in this geometry about 200 K higher
than the needed temperature. This might not only cause molecules to break up due to a
too high nozzle temperature but also drives the steel of the oven tube very close to the
melting point. The corrosion on the oven tube caused significant material loss already.
In consequence, a longer oven tube was manufactured in the workshop of the institute.

The thickness of the walls for the oven tube is increased to tolerate the corrosion at
high temperatures for longer times. No water coolers were installed: The cooling is done
on the vacuum chamber in the beam forward direction and on the support of the oven
tube at the back end.

The oven is again sealed by a nickel gasket but can only be opened at the front end.
The pipe with nozzle is pressed into CF 40 flange, which was extended such that the path
for vapor from the reservoir to the gasket is increased and the gasket less attacked. The
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Figure 6.7: Analysis of the loss channels of three different oven setups. The difference of (b)
to (a) are additional heat shields that reduce the losses due to radiation. The setup (c) is with
a longer oven tube (see Section 6.4), which also includes heat shields. The curves are obtained
with a thermometer, that gives values in steps of 1 K above 200◦C, which led to the grouping of
the dT/dt values.
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(a) short tube (b) short tube (c) long tube
(first approach) (second approach) (final)

tube
length 434 mm 434 mm 718 mm
outer diamter 100 mm 100 mm 108 mm
inner diamter 88 & 94 mm 88 & 94 mm 92 mm
heat shields – 4 plates 5 plates
coolers water air –
addit. cooling – chamber chamber &

oven support
heater

types 2 half-cylinders 2 half-cylinders 1 tube
length of heater 300 mm 300 mm 500 mm
inner diameter 100 mm 100 mm 150 mm
max. temperature of heat-
ing element

1 150◦C 1 150◦C 1 300◦C

max. power specified 1 750 W 1 750 W 7 500 W
max. power used 1 750 W 2 650 W 2 600 W
additional insulation wool wool & end plates

metal box
oven

length of oven 159 mm 112 mm 98 mm
reservoir length 90 mm 43 mm 58 mm
reservoir diameter 64 mm 64 mm 74 mm
reservoir volume 116 cm3 55 cm3 103 cm3

refilling back end back end front end
sealing nickel steel nickel
steel of screws A4 high temp. high temp.
leakage big small none
specialities – holes for holes for

thermocouples thermocouples
& thread

for removal
temperatures at maximal operation

oven (550◦C)a 1 050◦C 1 020◦C
nozzle (650◦C)a 1 230◦C 1 100◦C
tube outside 850◦C 1 270◦C 1 140◦C

Table 6.3: Comparison of oven setups as illustrated in Figure 6.2.

aThe heater was switched off before an equilibrium was reached
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back end of the oven was extended by a M16 thread for the removal of the oven with a
stick with a corresponding thread. The oven tends to stick on the oven tube and some
force needs to be applied.

The heating is now done with a single element. We use a tube with an inner diameter
not only bigger than the oven tube but also bigger than the end flanges of the oven tube.
Both ends are equipped with two half plates that close the gap between oven tube and
heater. The wire of the heater is thicker and is specified for higher temperatures.

From first tests with the new oven setup it became evident that the heater is powerful
enough to melt the oven tube, i.e., the vacuum chamber, before the wires of the heater
burn out. Also the chamber might get warm very soon if the water cooling of the chamber
breaks. In order to minimize the probability and the damage originating from not proper
working parts or wrong usage of the equipment, an automatic interlock for the power
supply of the heater was built. It monitors several temperatures and the water flow in
the cooling circuit in order to give an alarm and interlock the heater in case of critical
situations.

6.5 Outlook

With the reached oven setup, the list of requirements discussed in Section 6.1 is fulfilled
with the apparatus. Comparing between the oven setup used for the experiments on
potassium described in Chapter 3 and Chapter 4 and the oven discussed in this chapter
leads to the following conclusions. The cooling of the inner degrees of freedom of the
dimers is similar although no skimmer for a spatial selection of the particles is close to the
nozzle. Collisions with residual gas in the oven chamber have no significant effect. With
the new configuration, the alignment of the oven is less critical. A second observation
is, that the temperature readings of the ovens are different. We expect that this is due
to the way the thermocouple tips are placed in the chamber. We expect that the oven
has to be run at higher temperature readings than originally intended. The current oven
constructions is capable of oven temperatures, i.e., the coldest part of the reservoir, of up
to 1150◦C. The residual gas pressure is low enough since beam conditions are reached.
All in all, the newly constructed and developed oven is able to compensate for the change
of vapor pressure between alkali metals and alkali earth metals,

A second change appearing if one takes the step from the first to the second column
in the periodic table of elements is the depth of the ground state of the dimers. Due to
this, laser induced fluorescence is not so widely distributed among the spectra and the
suppression of stray laser light is more difficult. If suppression by viewports in Brewster
angle or with anti-reflection coating, irises for spatial filtering, or color glass and inter-
ference filter fail to help enough, an additional option is to collect the fluorescence with
a bundle of optical fibers and shine the light though a monochromator. It would act as
a tunable narrow band pass. A similar idea enabled the observation of asymptotic levels
of Ca2 in the heat-pipe experiment.75 However, the spectral distribution of fluorescence
is comparable to the spectroscopy starting from vibrational levels in alkali metal dimers
that are populated by Franck-Condon pumping.



Chapter 7

Conclusion

Several experiments were carried out throughout the work presented in this thesis. All
experiments are laser-spectroscopic experiments on particles prepared in beams. The
precision was improved for several measured properties. The most important results are
summarized in the following.

Potassium D lines

The D1 and D2 lines of the three stable isotopes of potassium 39K, 40K, and 41K where
re-measured with a precision of 40 kHz, i.e., with a fractional uncertainty of 2 × 10−10.
This was possible by using a self-referenced frequency comb generated from a pulsed
femtosecond laser in combination with a Cs-clock. Improved parameter for the hyperfine
structure of the 4p1/2 and 4p1/2 where derived as well as the isotope shift of the two lines.
Inconsistencies of earlier literature values are resolved.

Lifetime of the 4p Levels of Potassium

In a spectroscopic experiment with K2, the lifetimes of the 4p1/2 and 4p3/2 of 39K were
measured to 26.74 (3) ns and 26.39 (3) ns respectively. For this, the A 1Σ+

u state of 39K2

was investigated gap-free from the region known from conventional spectroscopy up to the
dissociation limit. This allow for the interpretation of photoassociation data. Our model
includes adiabatic curves in the long range region that are derived purely from atomic
parameter. We include fine and hyperfine structure, retardational effects, and the dipole
coupling between the 4s and the 4p state. The obtained data field is a good starting
point for an extension of the analysis of the system A 1Σ+

u –b 3Πu, which is coupled by
the spin-orbit interaction, up to the dissociation asymptote.

Dissociation Energy of the X 1Σ+
g state of K2

As a further result of the A 1Σ+
u state, the dissociation energy of the X 1Σ+

g state
could be derive because the atomic transition frequencies are known. It is found to
be D0 =4404.808(4) cm−1 with respect to v = 0, J = 0. This agrees with extrapolations
from spectroscopic experiments of the ground state. However, we were able to reduce the
uncertainty substantially.

123
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Observation of Breakdown of the Born-Oppenheimer Approximation

By comparing asymptotic levels of the A 1Σ+
u state of two isotopomers of the potassium

dimer, namely 39K2 and 39K 41K, we were able to obtain information about the precision of
the Born-Oppenheimer approximation for long range levels, i.e., for the energy regime rel-
evant for photoassociation of ultracold atoms at the asymptote 4s+4p. The mass scaling
of the potential curves accompanied by an adjustment of the atomic hyperfine structure
parameter according to the isotope exchange describes the energy spacing to a precision
of 2 MHz. However, deviation between observation and simulations with this description
remain. Corrections to the interaction potential, i.e., to the Born-Oppenheimer approxi-
mation, allow for a satisfying description. It was not possible to observe a clear signature
for the changeover of the resonant dipole-dipole interaction to a detuned dipole-dipole
interaction, which is expected due to the isotope shift of the potassium D lines. This
effect related to the heteronuclear character of 39K 41K is washed out by the hyperfine
structure, which so different between 39K and 41K.

Models for Laser-induced Change of Cold Collisions

We adapted a model, which is qualitatively often applied to simulate photoassociation
spectra and the influence of near resonant light on atomic collisions, to describe laser
induced changes of lineshapes of transitions between corresponding molecular levels for
the example Na2. Although the overall appearance of the experimental traces were re-
produced, a big drawback was identified: the effect of the coupling laser field could not
be quantitatively simulated with the adapted model. With additional density matrix
simulation we verified that the observed lightshift corresponds to the calculated coupling
strength.

Development of a Beam Source for Alkali Earth Metals

The progress development of a beam source for alkali earth dimers operating at 1000◦ C
is reported. Many technical difficulties were overcome. Hope for a reliable, continuous,
bright, yet cold beam of alkali earth metal dimers is well justified.

Outlook

Some of the studies should be continued. The study of the A 1Σ+
u state of K2 can

be continued in two ways: First, a coupled channel analysis for the entire internuclear
distance can be undertaken. The data field on the A state obtained in this work is very rich
and precise. Moreover, since experimental data for the b 3Πu state up to large internuclear
separations is available, too, a good basis for a challenging analysis is set. Second, the
study of the ground state asymptotes for two isotopomers can be now undertaken. This
should then allow for the study of mass scaling for cold collisions, i.e., of the Born-
Oppenheimer approximation.

The realization of a beam of calcium dimers will allow for experiments with un-
preceding precision for long range states of calcium. Models and methods for dimers,
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which were mainly developed and used for alkali metal dimers, can be tested and ad-
justed. Only with thorough experimental verification, these models will allow for precise
descriptions of binary collisions of alkali earth metal atoms. These collisions are impor-
tant for metrology of the intercombination line of alkali earth metal atoms. These lines
are discussed candidates for a new frequency standard, and the systematic analysis of the
scattering properties of the atoms will be important at the level of precision the propos-
als are aiming for. Collisional effects are less important if the atoms are kept isolated
by optical lattices. However, an analysis of the coupling between light and atoms might
need to take levels of dimers into account. Here, and for experiments aiming on the laser
induced manipulation of cold collisions, a molecular beam can be useful for systematic
studies of the coupling between a laser field and colliding atoms.





Appendix A

Molecular Dipole Coupling Strengths

This appendix is dedicated to the computation of laser-induced dipole coupling strengths
between two molecular levels. We need to consider various angular momenta, both, de-
scribing the inner degrees of freedom of the molecules and the photons of a laser field.
For diatomic molecules, the Hund’s coupling cases (a) and (e) provide basis sets of an-
gular wavefunctions. Typically, Hund’s coupling case (e) is well suited for descriptions of
cold collisions and Hund’s case a) for deeply bound molecular levels. Regardless of the
approximation, any molecular state can be associated with a total angular momentum F
and its inversion symmetry ±. The eigenstate can be described as a linear combination
of angular momentum basis states with the same F and parity. We chose as a basis set
of Hund’s case (a) like wavefunctions, which are labeled by

|F,S,I,Λ,Σ,ΩI〉 , (A.1)

with the total spin S and the total nuclear angular momentum I. Their projections onto
the molecular axis are Σ and ΩI . The total angular momentum F includes the rotation
of the molecule ell and has the projection onto the molecular frame Λ+Σ+ΩI . The
linear combination of the angular wavefunctions varies with the internuclear distance R,
thus:

|F,±〉 =
∑
m

am(R)
1√
2

[
|F,Sm,Im, Λm,Σm,ΩIm〉 ± (−1)F−Sm−Im |F,Sm,Im,−Λm−Σm,−ΩIm〉

]
(A.2)

Normalization is ensured by ∫ ∑
m

|am|2 dR = 1 . (A.3)

In the squared bracket the wavefunction is symmetrized with respect to an inversion of
the orientation of the projection axis. For the special case Λm = Σm = ΩIm = 0 the two
wavefunctions in the squared brackets are the same. For each combination of F , Sm, and
Im, only one parity exist. By replacing 1/

√
2 by 1/2 in equation (A.2) for this special

case the correct normalization is ensured.
In order to describe the coupling of two molecular states induced by an external laser

field with defined polarization in the lab frame we label the projection of F on the lab
frame axis with M . The coupling strength of two states |F, M,±〉 and |F ′, M ′,±′〉 due to
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an electric field ~E is in dipole approximation described by the Rabi frequency

±±′
ΩMM ′

FF ′ =
−1

h̄

∫ ∞

0
〈F,M,±|R ~d(R) · ~E |F ′,M ′,±′〉R dR , (A.4)

with the dipole transition operator ~d given in the lab frame. The three components of
this vector are denoted by di (i = −1, 0, 1; spherical coordinates). They vary with the
internuclear separation R. The R dependence of the wavefunctions is indicated by the
index. In the case of linear polarized light ( ~E = −→ε0 E0, with −→ε0 being the unit vector for
linear polarization) equation (A.4) is simplified by the following identity, which uses the
definition of reduced matrix elements by Edmonds’ equation (5.4.1):141

〈F, M,±| ~d· ~E |F ′, M ′,±′〉 = E0 〈F, M,±| ~d·−→ε0 |F ′, M ′,±′〉 (A.5)

= E0 〈F, M,±| d0
−→ε0 |F ′, M ′,±′〉

= E0 (−1)F−M

(
F 1 F ′

−M 0 M ′

)
〈F,±| d•0 |F ′,±′〉

The equality M = M ′ follows from choosing the lab frame axis to be parallel to the
polarization vector ε0 and can be seen in the 3J symbol. The dot of the d•0 indicates that
the information about the orientation in the lab frame of d0 is already separated.

Because d•0 is independent on I we introduce the total angular momentum without
nuclear spin J (see for example Hund’s case (a) without hyperfine effects) with Edmonds’
definition of the 3J-symbol in equation (3.7.3):141

|F,S,I,Λ,Σ,ΩI〉 (A.6)

=
F+I∑

J=|F−I|
|F,J,S,I,Λ,Σ〉 〈F, J, S, I, Λ, Σ|

︸ ︷︷ ︸
=1

|F, S, I, Λ, Σ,ΩI〉

=
F+I∑

J=|F−I|
(−1)J−I−Λ−Σ−ΩI

√
2F +1

(
J I F

Λ+Σ ΩI −Λ−Σ−ΩI

)
|F,J,S,I,Λ,Σ〉

And we can de-couple the angular momentum I by introducing a 6J-symbol as defined
by Edmonds141 in equation (7.1.8). This gives coupling of reduced matrix elements of the
form

〈F, J, S, I, Λ, Σ| d•0 |F ′, J ′, S ′, I ′, Λ′, Σ′〉 (A.7)

= (−1)I+J+F
√

2F + 1
√

2F ′ + 1

{
J F I
F ′ J ′ 1

}
δI,I′ 〈J, S, Λ, Σ| d•0 |J ′, S ′, Λ′, Σ′〉 .

This reduction has to be undertaken a second time, this time for the spin S. Firstly,
its projection is separated by introducing the total angular momentum without spin N :

|J,S,Λ,Σ〉 =
J+S∑

N=|J−S|
|J,N,S,Λ〉 〈J, N, S, Λ|

︸ ︷︷ ︸
=1

|J, S, Λ, Σ〉 (A.8)

=
J+S∑

N=|J−S|
(−1)N−S−Λ−Σ

√
2J+1

(
N S J
Λ Σ −Λ−Σ

)
|J,N,S, Λ〉



129

Secondly, the spin is decoupled by

〈J, N, S, Λ| d•0 |J ′, N ′, S ′, Λ′〉 (A.9)

= (−1)S+N+J
√

2J + 1
√

2J ′ + 1

{
N J S
J ′ N ′ 1

}
δS,S′ 〈N, Λ| d•0 |N ′, Λ′〉 .

Last, we need to consider that the wavefunctions are given in molecular frame whereas
the dipole transition moment d0 is given in the lab frame. In order to transform it to
the molecular frame and to obtain bq as dipole component in the molecular frame, one
introduces a first rank spherical operator, namely the rotation operator D1

qq′ :

dq(R) =
1∑

q′=−1

D1
qq′bq′(R) (q = −1, 0, 1) (A.10)

We end with the coupling strength for a dipole transition (see equations (4.6.1), (4.6.2),
and (4.2.7) by Edmonds141):

〈N, Λ| d•0 |N ′Λ′〉 = 〈N, Λ|
1∑

q′=−1

D1
•q′bq′ |N ′, Λ′〉 (A.11)

=
1∑

q′=−1

(−1)N−Λ
√

2N ′ + 1
√

2N + 1

(
N 1 N ′

Λ q′ −Λ′

)
〈Λ| bq′ |Λ′〉

= (−1)N−Λ
√

2N ′ + 1
√

2N + 1

(
N 1 N ′

Λ Λ′−Λ −Λ′

)
〈Λ| bΛ′−Λ |Λ′〉︸ ︷︷ ︸

R dependend

.

Back insertion of the equations leads to the calculation of transition dipole moments
for molecular levels and along with equation (5.9) to Rabi frequencies for laser driven
molecular transitions.





Appendix B

Spectroscopic Data of the A 1Σ+
u

State of K2

In this appendix, the spectrocopic data of the A 1Σ+
u state of K2 is given. In Section B.1,

the derived term energies of the levels are given. They are derived from the transition
frequencies measured in our study. Those are given in Section B.2.

B.1 Term Energies

In Table B.1 we give a list of term energies as in a EPAPS file attached to our maniscript,
which was given in Section 4.1. The listed properties are:

vA vibrational quantum number
JA roational quantum number
TE term energie in cm−1

uncert. uncertainty in 0.001 cm−1, 9 cm−1 added if this term energy is removed
from fit

obs-calc difference of obsered and calculated term energy in 0.001 cm−1

I total nuclear moment of hyperfine structure component (only if hyper-
fine structure splitting is resolved)

vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

84 8 15870.19565 9010 -70.48
84 10 15871.278 9010 -57.68 84 12 15872.603 9010 -27.08
84 14 15874.18255 9010 33.38 84 16 15876.1221 9010 229.35
85 8 15909.94065 10 -180.21 85 10 15911.006 10 -175.55
85 12 15912.295 10 -170.23 86 8 15949.32565 10 -160.53
86 10 15950.381 10 -156.87 86 12 15951.655 10 -155.67
87 8 15988.216 10 -139.91 87 10 15989.25928 10 -139.21
87 12 15990.525 10 -135.24 88 8 16026.626 10 -97.83
88 10 16027.663 10 -94.15 88 12 16028.9154 10 -92.3

Table B.1: Term energies of the A state of 39K2.(continued)
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132 Spectroscopic Data of the A 1Σ+
u State of K2

vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

89 8 16064.361 9010 -222.61 89 10 16065.396 9010 -211.55
89 12 16066.6454 9010 -201.33 90 8 16101.7823 10 -146.58
90 10 16102.799 10 -144.29 90 12 16104.0255 10 -145.44
91 8 16138.6323 10 -120.92 91 10 16139.6439 10 -114.06
91 12 16140.863 10 -110.89 92 8 16174.97 10 -80.14
92 10 16175.9683 10 -76.77 92 12 16177.17635 10 -72.78
93 8 16211.1017 9003.5 288.52 93 10 16212.184 9003.5 385.85
93 12 16213.543 9003.5 552.85 94 8 16245.8982 3.5 -137.63
94 10 16246.878 3.5 -132.7 94 12 16248.063 3.5 -127.47
95 8 16280.622 3.5 -89.62 95 10 16281.58948 3.5 -86.76
95 12 16282.76 3.5 -83.6 96 8 16314.785 3.5 -49.11
96 10 16315.741 3.5 -47.34 96 12 16316.8983 3.5 -44.79
97 8 16348.438 9003.5 41.07 97 10 16349.388 9003.5 47.4
97 12 16350.539 9003.5 56.43 98 8 16381.235 9003.5 -158.75
98 10 16382.17933 9003.5 -147.39 98 12 16383.3199 9003.5 -135.83
99 8 16413.7581 3.5 -60.31 99 10 16414.6825 3.5 -58.02
99 12 16415.801 3.5 -55.37 100 8 16445.64645 3.5 -18.39

100 10 16446.559 3.5 -16.93 100 12 16447.664 3.5 -14.45
101 8 16476.964 3.5 36.83 101 10 16477.86615 3.5 39.05
101 12 16478.958 3.5 41.91 102 8 16507.06875 9003.5 -530.99
102 10 16508.05675 9003.5 -431.59 102 12 16509.22215 9003.5 -341.47
103 8 16537.6287 3.5 -48.41 103 10 16538.50915 3.5 -45.08
103 12 16539.574 3.5 -41.62 104 8 16567.156 3.5 1.86
104 10 16568.022 3.5 2.36 104 12 16569.0706 3.5 3.66
105 8 16596.07 3.5 43.96 105 10 16596.9234 3.5 43.64
105 12 16597.9572 3.5 44.4 106 8 16624.476 9003.5 187.63
106 10 16625.332 9003.5 201.83 106 12 16626.37405 9003.5 225.29
107 8 16651.8687 3.5 -68.42 107 10 16652.704 3.5 -62.85
107 12 16653.7135 3.5 -57.33 108 8 16678.972 3.5 3.24
108 10 16679.79 3.5 3.71 108 12 16680.78 3.5 4.52
109 8 16705.4185 3.5 38.22 109 10 16706.2234 3.5 37.94
109 12 16707.1964 3.5 36.69 110 8 16731.2694 3.5 100.15
110 10 16732.064 3.5 102.03 110 12 16733.026 3.5 104.89
111 8 16756.15455 9003.5 -179.32 111 10 16756.9562 9003.5 -157.8
111 12 16757.921 9003.5 -136.9 112 8 16780.85955 3.5 -13.48
112 10 16781.626 3.5 -14.46 112 12 16782.5543 3.5 -14.67
113 8 16804.808 3.5 21.67 113 10 16805.56025 3.5 19.29
113 12 16806.471 3.5 17.04 114 8 16828.133 3.5 58.82
114 10 16828.87338 3.5 57.47 114 12 16829.769 3.5 55.7
115 8 16851.177 9003.5 439.21 115 10 16851.997 9003.5 530.46
115 12 16853.02575 9003.5 677.54 116 8 16872.737 3.5 -42.24
116 10 16873.452 3.5 -42.94 116 12 16874.317 3.5 -43.82
117 8 16894.201 3.5 -0.49 117 10 16894.90075 3.5 -3.35
117 12 16895.7463 3.5 -7.8 118 8 16915.0378 3.5 29.37
118 10 16915.72375 3.5 25.85 118 12 16916.554 3.5 22.01

Table B.1: Term energies of the A state of 39K2.(continued)
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vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

119 8 16935.3333 9003.5 128.43 119 10 16936.0169 9003.5 135.73
119 12 16936.847 9003.5 147.68 120 8 16954.7173 3.5 -79.25
120 10 16955.382 3.5 -77.67 120 12 16956.1848 3.5 -77.07
121 8 16973.77548 5 -14.64 121 10 16974.421 5 -19.07
121 12 16975.20268 5 -23.64 122 8 16992.208 5 14.86
122 10 16992.84 5 10.05 122 12 16993.604 5 3.72
123 8 17010.08019 5 66.14 123 10 17010.7 5 62.24
123 12 17011.45307 5 60.86 124 8 17027.11981 9005 -142.27
124 10 17027.7416 9005 -131.14 124 12 17028.492 9005 -119.4
129 8 17105.2627 5 -19.32 129 10 17105.80404 5 -24.75
129 12 17106.459 5 -31.09 130 8 17119.3366 5 12.3
130 10 17119.8661 5 7.45 130 12 17120.504 5 -0.91
131 8 17132.9115 5 36.23 131 10 17133.4272 5 29.86
131 12 17134.05144 5 22.69 132 8 17146.0703 9005 122.41
132 10 17146.5862 9005 128.35 132 12 17147.223 9005 148.42
133 8 17158.52525 5 -29.95 133 10 17159.01836 5 -34.82
133 12 17159.615 5 -40.43 134 8 17170.718 5 7.84
134 10 17171.196 5 -0.34 134 12 17171.779 5 -5.3
135 8 17182.452 5 26.33 135 10 17182.918 5 17.79
135 12 17183.485 5 10.92 136 8 17193.774 5 59.56
136 10 17194.23015 5 52.64 136 12 17194.786 5 48.52
137 8 17204.511 9005 -78. 137 10 17204.96664 9005 -74.11
137 12 17205.51521 9005 -71.83 138 8 17215.0547 5 -6.93
138 10 17215.4909 5 -11.34 138 12 17216.0128 5 -22.24
139 8 17225.15483 5 10.46 139 10 17225.57721 5 3.2
139 12 17226.08772 5 -5.79 140 8 17234.878 5 28.98
140 10 17235.28966 5 21.82 140 12 17235.788 5 13.74
141 8 17243.89144 9005 -295.66 141 10 17244.37246 9005 -222.81
141 12 17244.91886 9005 -169.96 142 8 17253.15 5 -19.89
142 10 17253.542 5 -25.59 142 12 17254.0158 5 -32.65
143 8 17261.80955 3.5 1.12 143 10 17262.189 3.5 -6.82
143 12 17262.6477 3.5 -16.51 144 8 17270.1292 3.5 15.72
144 10 17270.4992 3.5 8.47 144 12 17270.947 3.5 0.16
145 8 17278.17105 9003.5 75.52 145 10 17278.5449 9003.5 82.1
145 12 17279.006 9003.5 99.16 146 8 17285.741 3.5 -23.78
146 10 17286.0927 3.5 -29.53 146 12 17286.5191 3.5 -35.3
147 8 17293.1304 3.5 -0.67 147 10 17293.4712 3.5 -7.67
147 12 17293.8824 3.5 -16.94 148 8 17300.217 3.5 13.12
148 10 17300.54745 3.5 5.27 148 12 17300.9476 3.5 -3.56
149 8 17307.03935 3.5 47.03 149 10 17307.368 3.5 46.74
149 12 17307.768 3.5 49.07 150 8 17313.482 3.5 -23.07
150 10 17313.797 3.5 -27.81 150 12 17314.178 3.5 -33.34
151 8 17319.75 3.5 -0.48 151 10 17320.053 3.5 -8.16
151 12 17320.42105 3.5 -15.66 152 8 17325.747 3.5 10.43
152 10 17326.0428 3.5 4.48 152 12 17326.3992 3.5 -3.87

Table B.1: Term energies of the A state of 39K2.(continued)
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u State of K2

vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

153 8 17331.523 9003.5 51.86 153 10 17331.8204 9003.5 56.3
153 12 17332.1893 9003.5 71.09 154 8 17336.94985 3.5 -12.02
154 10 17337.2276 3.5 -18.57 154 12 17337.565 3.5 -24.81
155 8 17342.2206 3.5 4.26 155 10 17342.49055 3.5 -1.58
155 12 17342.81555 3.5 -9.92 156 8 17347.2589 3.5 16.83
156 10 17347.52 3.5 10.51 156 12 17347.8377 3.5 4.99
157 8 17351.998 9003.5 -48.36 157 10 17352.2593 9003.5 -46.25
157 12 17352.57685 9003.5 -41.96 158 8 17356.6376 3.5 1.49
158 10 17356.884 3.5 -3.2 158 12 17357.18045 3.5 -10.21
159 8 17361.032 3.5 14.27 159 10 17361.2693 3.5 8.47
159 12 17361.557 3.5 2.37 160 8 17364.98905 9003.5 -208.46
160 10 17365.2993 9003.5 -133.47 160 12 17365.6373 9003.5 -79.78
161 8 17369.189 3.5 6.14 161 10 17369.411 3.5 0.54
161 12 17369.6798 3.5 -5.71 162 8 17372.9994 3.5 16.7
162 10 17373.2142 3.5 11.32 162 12 17373.4757 3.5 6.74
163 8 17376.513 9003.5 -91.57 163 10 17376.75975 9003.5 -57.7
163 12 17377.0341 9003.5 -40.56 164 8 17380.056 3.5 4.07
164 10 17380.257 3.5 -0.51 164 12 17380.499 3.5 -6.91
165 8 17383.343 3.5 13.25 165 10 17383.537 3.5 8.77
165 12 17383.773 3.5 4.95 166 8 17386.43515 3.5 -10.41
166 10 17386.625 3.5 -12.09 166 12 17386.8523 3.5 -16.18
167 8 17389.4078 3.5 3.43 167 10 17389.5872 3.5 -1.88
167 12 17389.807 3.5 -5.23 168 8 17392.264 9003.5 51.09
168 10 17392.307 9003.5 -83.97 168 12 17392.49755 9003.5 -108.52
169 8 17394.87485 3.5 -1.78 169 10 17395.04275 3.5 -5.44
169 12 17395.2458 3.5 -9.62 170 8 17397.415 3.5 13.18
170 10 17397.57945 3.5 12.43 170 12 17397.783 3.5 16.42
171 8 17399.791 3.5 -2.91 171 10 17399.94595 3.5 -6.98
171 12 17400.134 3.5 -11.01 172 8 17402.065 3.5 6.28
172 10 17402.218 3.5 6.29 172 12 17402.4028 3.5 6.31
173 8 17404.19845 3.5 -3.29 173 10 17404.3424 3.5 -6.46
173 12 17404.5163 3.5 -10.24 174 8 17406.2364 3.5 8.16
174 10 17406.3778 3.5 8.15 174 12 17406.5511 3.5 10.67
175 8 17408.1411 3.5 -2.43 175 10 17408.2746 3.5 -4.78
175 12 17408.4355 3.5 -7.93 176 8 17409.976 3.5 23.34
176 10 17410.1026 3.5 19.49 176 12 17410.20125 3.5 -39.38
177 8 17411.66 3.5 -0.49 177 10 17411.783 3.5 -2.7
177 12 17411.93115 3.5 -5.73 178 8 17413.26235 3.5 -9.44
178 10 17413.382 3.5 -9.9 178 12 17413.526 3.5 -10.93
179 8 17414.79385 3.5 2.69 179 10 17414.906 3.5 -0.34
179 12 17415.044 3.5 -1.39 180 8 17416.2218 3.5 -1.23
180 10 17416.3295 3.5 -3.92 180 12 17416.4603 3.5 -6.38
181 8 17417.60045 9003.5 28.82 181 10 17417.6386 9003.5 -38.78
181 12 17417.787 9003.5 -18.03 182 8 17418.842 3.5 0.93
182 10 17418.94115 3.5 -1.17 182 12 17419.06145 3.5 -3.08

Table B.1: Term energies of the A state of 39K2.(continued)
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vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

183 8 17420.033 3.5 -2.3 183 10 17420.12805 3.5 -4.14
183 12 17420.244 3.5 -5.13 184 8 17421.187 9003.5 28.9
184 10 17421.225 9003.5 -25.77 184 12 17421.349 9003.5 -13.62
185 2 17422.0668 3.5 8.16 185 4 17422.0978 3.5 6.33
185 6 17422.1482 3.5 5.21 185 8 17422.215 3.5 1.89
185 10 17422.301 3.5 -0.7 185 12 17422.407 3.5 -1.62
186 2 17423.0601 3.5 3.91 186 4 17423.0915 3.5 3.94
186 6 17423.1405 3.5 3.71 186 8 17423.286 9003.5 82.2
186 10 17423.2856 3.5 -2.85 186 12 17423.3862 3.5 -4.39
187 2 17423.985 3.5 -7.52 187 4 17424.0171 3.5 -5.39
187 6 17424.0671 3.5 -2.41 188 2 17424.8788 3.5 7.96
188 4 17424.9068 3.5 7.36 188 6 17424.9516 3.5 7.27
189 2 17425.6988 3.5 4.6 189 4 17425.726 3.5 4.51
189 6 17425.7676 3.5 3.29 191 2 17427.1858 3.5 -1.8
191 4 17427.2115 3.5 -0.9 191 6 17427.2506 3.5 -0.7
192 2 17427.8704 3.5 7.29 192 4 17427.8945 3.5 7.78
192 6 17427.9327 3.5 8.93 193 2 17428.499 3.5 4.41
193 4 17428.521 3.5 3.94 193 6 17428.5554 3.5 3.08
194 2 17429.0876 3.5 3.13 194 4 17429.1087 3.5 2.85
194 6 17429.1417 3.5 2.32 195 2 17429.6365 3.5 1.43
195 4 17429.6573 3.5 1.91 195 6 17429.6888 3.5 1.53
196 2 17430.1485 3.5 -0.1 196 4 17430.1679 3.5 0.
196 6 17430.1987 3.5 0.52 198 2 17431.0776 3.5 4.84
198 4 17431.0945 3.5 4.36 198 6 17431.1226 3.5 5.2
199 2 17431.4852 3.5 -2.11 199 4 17431.5058 3.5 2.02
199 6 17431.532 3.5 2.38 200 2 17431.8746 3.5 1.98
200 4 17431.8898 3.5 1.57 200 6 17431.9144 3.5 1.7
201 2 17432.2313 3.5 0.86 201 4 17432.2462 3.5 0.99
201 6 17432.269 3.5 0.64 202 2 17432.5632 3.5 0.81
202 4 17432.5769 3.5 0.54 202 6 17432.5982 3.5 -0.05
203 2 17432.8703 3.5 0.25 203 4 17432.8834 3.5 0.16
203 6 17432.9048 3.5 0.87 204 2 17433.1548 3.5 -0.1
204 4 17433.1675 3.5 0.15 204 6 17433.1861 3.5 -0.78
205 2 17433.4177 3.5 -0.64 205 4 17433.4295 3.5 -0.59
205 6 17433.4467 3.5 -1.81 206 2 17433.6553 3.5 -6.43
206 4 17433.6691 3.5 -3.7 206 6 17433.6885 3.5 -1.66
207 2 17433.8904 3.5 4.07 207 4 17433.9023 3.5 5.54
207 6 17433.9382 9003.5 25.11 208 2 17434.095 3.5 1.65
208 4 17434.1051 3.5 1.95 208 6 17434.1207 3.5 2.19
209 2 17434.2852 3.5 1.27 209 4 17434.2942 3.5 1.06
209 6 17434.308 3.5 0.43 210 2 17434.4602 3.5 1.05
210 4 17434.4686 3.5 0.81 210 6 17434.482 3.5 0.67
211 2 17434.6202 3.5 0.16 211 4 17434.6286 3.5 0.46
211 6 17434.6408 3.5 -0.04 212 2 17434.7673 3.5 -0.27
212 4 17434.77496 3.5 -0.2 212 6 17434.7869 3.5 -0.14

Table B.1: Term energies of the A state of 39K2.(continued)



136 Spectroscopic Data of the A 1Σ+
u State of K2

vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

213 2 17434.903 3.5 0.35 213 4 17434.9098 3.5 0.05
213 6 17434.9201 3.5 -0.76 214 2 17435.0264 3.5 0.24
214 4 17435.0327 3.5 -0.09 214 6 17435.0425 3.5 -0.67
215 2 17435.1391 3.5 0.19 215 4 17435.1452 3.5 0.1
215 6 17435.1549 3.5 0.12 216 2 17435.2424 3.5 0.72
216 4 17435.2481 3.5 0.66 216 6 17435.2566 3.5 0.14
218 2 17435.4192 3.5 -0.94 218 4 17435.4249 3.5 -0.22
218 6 17435.4328 3.5 -0.11 219 2 17435.4974 3.5 0.24
219 4 17435.502 3.5 0.22 219 6 17435.5092 3.5 0.19
220 2 17435.5653 3.5 -1.56 220 4 17435.5697 3.5 -1.45
220 6 17435.5758 3.5 -2.04 221 2 17435.6294 3.5 -0.43
221 4 17435.6332 3.5 -0.59 221 6 17435.6392 3.5 -0.78
222 2 17435.6888 3.5 2.21 222 4 17435.6874 3.5 -2.84
222 6 17435.6948 3.5 -1.16 223 2 17435.7411 3.5 3.46
223 4 17435.7389 3.5 -2.11 223 6 17435.7454 3.5 -0.87
224 2 17435.7825 3.5 -0.94 224 4 17435.7858 3.5 -0.74
224 6 17435.7921 3.5 0.72 225 2 17435.8238 3.5 -0.63
225 4 17435.8266 3.5 -0.67 225 6 17435.8307 3.5 -1.01
226 2 17435.8608 3.5 -0.23 226 4 17435.8631 3.5 -0.54
226 6 17435.867 3.5 -0.7 227 2 17435.8933 3.5 -0.34
227 4 17435.8959 3.5 -0.12 227 6 17435.8997 3.5 -0.04
228 2 17435.9222 3.5 -0.41 228 4 17435.9244 3.5 -0.39
228 6 17435.9274 3.5 -0.78 229 2 17435.9479 3.5 -0.38
229 4 17435.9502 3.5 -0.06 229 6 17435.9532 3.5 -0.14
230 2 17435.9711 3.5 0.14 230 4 17435.9727 3.5 -0.05
230 6 17435.975 3.5 -0.55 231 2 17435.9906 3.5 -0.32
231 4 17435.992 3.5 -0.54 231 6 17435.994 3.5 -1.07
232 2 17436.0083 3.5 -0.13 232 3 17436.0084 1 -0.59
232 4 17436.0097 3.5 -0.2 232 5 17436.0102 0.2 -0.08
232 6 17436.0117 3.5 -0.48 232 8 17436.0148 1.2 0.02
232 11 17436.0223 3.5 1.1 232 13 17436.0272 3.5 1.12
233 2 17436.0231 1 -0.64 233 3 17436.0236 0.2 -0.03
233 4 17436.0244 0.2 -0.02 233 5 17436.0253 0.2 -0.02
233 6 17436.0273 1.2 0.67 233 8 17436.0294 1.2 0.01
234 2 17436.0365 0.2 0.08 234 3 17436.0369 0.2 0.03
234 4 17436.0377 0.2 0.09 234 5 17436.0385 0.2 0.11
234 6 17436.04 1.2 0.4 234 8 17436.0421 1.2 0.02
235 2 17436.0481 0.2 0.13 235 3 17436.0484 0.2 0.06
235 4 17436.0492 0.2 0.17 235 5 17436.0498 0.2 0.11
235 6 17436.0513 1.2 0.48 235 8 17436.0532 1.2 0.17
236 2 17436.0581 0.2 0.18 3 236 3 17436.058 0.2 -0.21 2
236 4 17436.059 0.2 0.14 3 236 5 17436.0592 0.2 -0.21 2
236 6 17436.061 1.2 0.52 236 8 17436.0627 1.2 0.26
236 2 17436.0577 0.2 0.05 1 236 4 17436.0587 0.2 0.11 1
237 2 17436.0666 0.2 0.15 3 237 3 17436.0665 0.2 -0.16 2

Table B.1: Term energies of the A state of 39K2.(continued)
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vA JA Te uncert. obs-calc I vA JA Te uncert. obs-calc I

237 4 17436.0674 0.2 0.12 3 237 5 17436.0676 0.2 -0.12 2
237 6 17436.0692 1.2 0.47 237 8 17436.0707 1.2 0.24
237 2 17436.0662 0.2 0.08 1 237 3 17436.0663 0.2 -0.08 2
237 4 17436.067 0.2 0.05 1 237 5 17436.0673 0.2 -0.14 2
238 2 17436.0738 0.2 0.1 3 238 3 17436.0737 0.2 -0.12 2
238 4 17436.0746 0.2 0.16 3 238 5 17436.0746 0.2 -0.16 2
238 6 17436.0762 1.2 0.47 238 8 17436.0777 1.2 0.45
238 2 17436.0734 0.2 0.1 1 238 3 17436.0734 0.2 -0.09 0
238 4 17436.074 0.2 -0.03 1 238 5 17436.0744 0.2 -0.02 0
239 2 17436.08 0.2 0.18 3 239 3 17436.0797 0.2 -0.15 2
239 4 17436.0806 0.2 0.14 3 239 5 17436.0805 0.2 -0.16 2
239 6 17436.0821 1.2 0.49 239 8 17436.0834 1.2 0.47
239 2 17436.0794 0.2 0.07 1 239 3 17436.0794 0.2 -0.06 0
239 4 17436.08 0.2 0.04 1 239 5 17436.0802 0.2 -0.07 0
240 2 17436.0851 0.2 0.18 3 240 3 17436.0847 0.2 -0.14 2
240 4 17436.0857 0.2 0.22 3 240 5 17436.0854 0.2 -0.14 2
240 2 17436.0845 0.2 0.17 1 240 3 17436.0843 0.2 -0.1 0
240 4 17436.0851 0.2 0.23 1 240 5 17436.085 0.2 -0.1 0
241 2 17436.0894 0.2 0.29 3 241 3 17436.0889 0.2 -0.02 2
241 4 17436.0898 0.2 0.22 3 241 5 17436.0894 0.2 -0.11 2
241 2 17436.0886 0.2 0.19 1 241 3 17436.0885 0.2 0.06 0
241 4 17436.0891 0.2 0.23 1 241 5 17436.0891 0.2 0.07 0
242 2 17436.0928 0.2 0.33 3 242 3 17436.0921 0.2 -0.07 2
242 4 17436.0931 0.2 0.24 3 242 5 17436.0926 0.2 -0.06 2
242 2 17436.092 0.2 0.33 1 242 3 17436.0917 0.2 0.02 0
242 4 17436.0924 0.2 0.34 1 242 5 17436.0923 0.2 0.13 0
243 2 17436.0955 0.2 0.42 3 243 3 17436.0946 0.2 -0.1 2
243 4 17436.0957 0.2 0.3 3 243 5 17436.095 0.2 -0.1 2
243 2 17436.0945 0.2 0.29 1 243 3 17436.0942 0.2 -0.03 0
243 4 17436.0948 0.2 0.27 1 243 5 17436.0945 0.2 -0.14 0
244 2 17436.0975 0.2 0.49 3 244 3 17436.0966 0.2 -0.02 2
244 4 17436.0978 0.2 0.53 3 244 5 17436.0969 0.2 0.2
244 2 17436.0965 0.2 0.35 1 244 3 17436.0962 0.2 0.02 0
244 4 17436.0969 0.2 0.5 1 244 5 17436.0962 0.2 -0.27 0
245 3 17436.098 0.2 -0.06 2 245 5 17436.0982 0.2 -0.12 2
245 3 17436.0978 0.2 0.18 0 245 5 17436.0978 0.2 -0.08 0

Table B.1: Term energies of the A state of 39K2.



138 Spectroscopic Data of the A 1Σ+
u State of K2

B.2 Transition Frequencies

The term energies given in Table B.1 are derived from measured transitions of the
A–X band and level positions of the ground state taken from the analysis by Amiot et
al.67 In order to give the original spectroscopic information, all assigned, newly observed
transition frequencies of the A–X band of 39K are listed in Table B.2

line line line
23-0 25-0

R(0) 12632.0164 P(5) 12755.7875
P(1) 12631.8268 P(6) 12755.4998
R(1) 12632.0595 P(7) 12755.1764
P(2) 12631.6806 P(8) 12754.8199
R(2) 12632.0662 R(8) 12756.1268
P(3) 12631.4986 R(9) 12755.8874
R(3) 12632.0385 R(10) 12755.6116
P(4) 12631.2812 R(11) 12755.3010
R(4) 12631.9757 R(12) 12754.9569
P(5) 12631.0284
R(5) 12631.8783
R(6) 12631.7455
R(7) 12631.5783
R(8) 12631.3760
R(9) 12631.1382

84-27 84-28 85-27
P(9) 13588.48© P(9) 13516.57© P(9) 13628.22©

R(9) 13589.56© R(9) 13517.65© R(9) 13629.29©

P(11) 13587.51© P(11) 13515.61© P(11) 13627.23©

R(11) 13588.83© R(11) 13516.935© R(11) 13628.52©

P(13) 13586.38©

R(13) 13587.96©

P(15) 13585.12©

R(15) 13587.06©

85-28 86-27 86-28
P(9) 13556.32© P(9) 13667.61© P(9) 13595.70©

R(9) 13557.38© R(9) 13668.66© R(9) 13596.76©

P(11) 13555.34© P(11) 13666.61© P(11) 13594.71©

R(11) 13556.63© R(11) 13667.88© R(11) 13595.99©

87-27 87-28 88-27
P(9) 13706.50© P(9) 13634.59© P(9) 13744.91©

R(9) 13707.54© R(9) 13635.635© R(9) 13745.95©

P(11) 13705.49© P(11) 13633.59© P(11) 13743.89©

R(11) 13706.75© R(11) 13634.86© R(11) 13745.14©

Table B.2: Transition frequencies of A–X band of 39K2. (continued)
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line line line

88-28 89-27 89-28
P(9) 13673.00© P(9) 13782.64© P(9) 13710.74©

R(9) 13674.04© R(9) 13783.68© R(9) 13711.77©

P(11) 13671.99© P(11) 13781.62© P(11) 13709.73©

R(11) 13673.25© R(11) 13782.87© R(11) 13710.98©

90-30 90-28 91-30
P(9) 13606.93© P(9) 13748.16© P(9) 13643.78©

R(9) 13607.945© R(9) 13749.18© R(9) 13644.79©

P(11) 13605.93© P(11) 13747.135© P(11) 13642.78©

R(11) 13607.16© R(11) 13748.36© R(11) 13644.00©

91-28 92-30 92-31
P(9) 13785.01© P(9) 13680.12© P(9) 13610.82©

R(9) 13786.02© R(9) 13681.12© R(9) 13611.82©

P(11) 13783.98© P(11) 13679.10© P(11) 13609.82©

R(11) 13785.195© R(11) 13680.31© R(11) 13611.03©

93-32 93-31 94-32
P(9) 13578.5511 P(9) 13646.9528 P(9) 13613.3474
R(9) 13579.6333 R(9) 13648.0347 R(9) 13614.3277
P(11) 13577.6500 P(11) 13646.0363 P(11) 13612.3441
R(11) 13579.0088 R(11) 13647.3948 R(11) 13613.529

94-31 95-32 95-31
P(9) 13681.7495 P(9) 13648.0713 P(9) 13716.4736
R(9) 13682.7291 R(9) 13649.0392 R(9) 13717.4399
P(11) 13680.7305 P(11) 13647.0558 P(11) 13715.442
R(11) 13681.9157 R(11) 13648.2267 R(11) 13716.6119

96-33 96-32 97-33
P(9) 13614.7431 P(9) 13682.2336 P(9) 13648.3961
R(9) 13615.6984 R(9) 13683.1898 R(9) 13649.3454
P(11) 13613.7309 P(11) 13681.2067 P(11) 13647.3792
R(11) 13614.8886 R(11) 13682.3644 R(11) 13648.5296

97-32 98-34 98-33
P(9) 13715.8877 P(9) 13614.6260 P(9) 13681.1922
R(9) 13716.8381 R(9) 13615.5711 R(9) 13682.1370
P(11) 13714.8542 P(11) 13613.619 P(11) 13680.1691
R(11) 13716.0057 R(11) 13614.7595 R(11) 13681.3103

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



140 Spectroscopic Data of the A 1Σ+
u State of K2

line line line

99-34 99-33 100-35
P(9) 13647.1495 P(9) 13713.7155 P(9) 13613.4115
R(9) 13648.0739 R(9) 13714.6401 R(9) 13614.3237
P(11) 13646.1224 P(11) 13712.6725 P(11) 13612.3893
R(11) 13647.2412 R(11) 13713.7915 R(11) 13613.4939

100-34 101-35 101-34
P(9) 13679.0373 P(9) 13644.7292 P(9) 13710.3548
R(9) 13679.9496 R(9) 13645.6313 R(9) 13711.2564
P(11) 13677.9979 P(11) 13643.6964 P(11) 13709.306
R(11) 13679.1031 R(11) 13644.7882 R(11) 13710.3983

102-36 102-35 103-36
P(9) 13610.1637 P(9) 13674.8335 P(9) 13640.7241
R(9) 13611.1520 R(9) 13675.8216 R(9) 13641.6042
P(11) 13609.2342 P(11) 13673.8856 P(11) 13639.6856
R(11) 13610.3989 R(11) 13675.0521 R(11) 13640.751

103-35 104-35 104-36
P(9) 13705.393 P(9) 13734.9208 P(9) 13670.2505
R(9) 13706.2736 R(9) 13735.7873 R(9) 13671.1176
P(11) 13704.3396 P(11) 13733.8517 P(11) 13669.199
R(11) 13705.4027 R(11) 13734.9004 R(11) 13670.2475

105-35 105-36 106-35
P(9) 13763.8345 P(9) 13699.1649 P(9) 13792.2402
R(9) 13764.6881 R(9) 13700.0186 R(9) 13793.0967
P(11) 13762.7522 P(11) 13698.1011 P(11) 13791.1624
R(11) 13763.7866 R(11) 13699.1345 R(11) 13792.2033

106-36 107-37 107-36
P(9) 13727.5705 P(9) 13691.2664 P(9) 13754.9639
R(9) 13728.4264 R(9) 13692.1028 P(11) 13753.8802
P(11) 13726.5086 P(11) 13690.2007 R(11) 13754.8899
R(11) 13727.5515 R(11) 13691.2111

108-37 108-36 109-37
P(9) 13718.3691 P(9) 13782.0677 P(9) 13744.8170
R(9) 13719.1879 R(9) 13782.8847 P(11) 13743.7203
P(11) 13717.2872 P(11) 13780.9662 R(11) 13744.6938
R(11) 13718.2767 R(11) 13781.9564

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



B.2 Transition Frequencies 141

line line line

109-38 110-37 110-38
P(9) 13682.1094 P(9) 13770.6674 P(9) 13707.9608
R(9) 13682.9151 R(9) 13771.4613 R(9) 13708.7550
P(11) 13681.0317 P(11) 13769.5616 P(11) 13706.8729
R(11) 13682.0046 R(11) 13770.5228 R(11) 13707.8339

111-37 111-38 112-38
P(9) 13795.5524 P(9) 13732.8461 P(9) 13757.5506
R(9) 13796.3542 R(9) 13733.6474 R(9) 13758.3179
P(11) 13794.4532 P(11) 13731.7650 R(11) 13757.3632
R(11) 13795.4178 R(11) 13732.7298

112-39 113-38 113-39
P(9) 13695.8529 P(9) 13781.4991 P(9) 13719.8004
R(9) 13696.6192 R(9) 13782.2517 R(9) 13720.5525
P(11) 13694.7545 P(11) 13780.3692 P(11) 13718.6886
R(11) 13695.6820 R(11) 13781.2789 R(11) 13719.5988

114-38 114-39 115-39
P(9) 13804.8248 P(9) 13743.1262 P(9) 13766.1700
R(9) 13805.5649 R(9) 13743.8666 R(9) 13766.9907
P(11) 13803.6825 P(11) 13742.0005 P(11) 13765.1249
R(11) 13804.5781 R(11) 13742.8966 R(11) 13766.1541

115-40 116-39 116-40
P(9) 13705.4981 P(9) 13787.7303 P(9) 13727.0584
R(9) 13706.3192 R(9) 13788.4449 R(9) 13727.7732
P(11) 13704.4719 P(11) 13786.5808 P(11) 13725.9270
R(11) 13705.5008 R(11) 13787.4449 R(11) 13726.7922

117-40 117-39 118-40
P(9) 13748.523 P(9) 13809.1938 P(9) 13769.3592
R(9) 13749.2222 R(9) 13809.8934 R(9) 13770.0458
P(11) 13747.3758 P(11) 13808.0294 P(11) 13768.1983
R(11) 13748.2212 R(11) 13808.8748 R(11) 13769.0291

119-40 120-40 121-38
P(9) 13789.6547 P(9) 13809.0387 P(9) 13950.46688
R(9) 13790.3381 R(9) 13809.7032 R(9) 13951.11223
P(11) 13788.4923 P(11) 13807.8577 P(11) 13949.22911
R(11) 13789.3226 R(11) 13808.6600 R(11) 13950.01108

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



142 Spectroscopic Data of the A 1Σ+
u State of K2

line line line

122-38 123-38 124-38
P(9) 13968.89937 P(9) 13986.77159 P(9) 14003.81121
R(9) 13969.53175 R(9) 13987.39211 R(9) 14004.43268
P(11) 13967.64818 P(11) 13985.50829 P(11) 14002.55028
R(11) 13968.41283 R(11) 13986.26147 R(11) 14003.30030

129-38 129-39 130-38
P(9) 14081.95383 P(9) 14020.25603 P(9) 14096.02853
R(9) 14082.49643 R(9) 14020.79543 R(9) 14096.55961
P(11) 14080.61254 P(11) 14018.93275 R(11) 14095.31219
R(11) 14081.26746 R(11) 14019.58689

130-39 131-38 131-39
P(9) 14034.32903 R(9) 14110.11907 P(9) 14047.90454
R(9) 14034.85771 P(11) 14108.23690 R(9) 14048.41965
P(11) 14032.99358 P(11) 14046.55432
R(11) 14033.63161 R(11) 14047.17964

132-38 132-39 133-38
P(9) 14122.76158 P(9) 14061.06345 P(9) 14135.21665
P(11) 14121.39461 R(9) 14061.57927 R(11) 14134.42278
R(11) 14122.03045 R(11) 14060.35177

133-39 134-38 134-39
R(9) 14074.01093 P(9) 14147.41021 P(9) 14085.71107
P(11) 14072.14698 R(11) 14146.58817 R(9) 14086.18922
R(11) 14072.74426 P(11) 14084.32434

R(11) 14084.90564

135-38 135-39 137-38
P(9) 14159.14393 P(9) 14097.44360 P(9) 14181.20136
R(9) 14159.60978 R(9) 14097.91145 R(11) 14180.32288
P(11) 14157.72749 P(11) 14096.04612
R(11) 14158.29268 R(11) 14096.61439

137-39 138-38 138-39
P(9) 14119.50567 P(9) 14191.74513 P(9) 14130.04858
R(9) 14119.95789 R(11) 14190.82156 R(9) 14130.48419
P(11) 14118.09658 P(11) 14128.6188
R(11) 14118.64413 R(11) 14129.14057

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



B.2 Transition Frequencies 143

line line line

139-38 139-39 140-38
P(9) 14201.84593 P(9) 14140.14812 P(9) 14211.57006
R(9) 14202.26796 R(9) 14140.57048 R(9) 14211.97938
P(11) 14200.38599 R(11) 14139.21633 P(11) 14210.09857
R(11) 14200.89570 R(11) 14210.59666

140-39 141-38 141-39
P(9) 14149.87038 P(9) 14220.58018 P(9) 14158.88709
R(9) 14150.28382 R(11) 14219.72621 R(9) 14159.36675
R(11) 14148.91594 P(11) 14157.49936

R(11) 14158.04810

142-38 142-39 143-38
P(9) 14229.84195 P(9) 14168.14206 P(9) 14238.5011
P(11) 14228.3508 R(9) 14168.53428 R(11) 14237.4566
R(11) 14228.8244 P(11) 14166.67145

R(11) 14167.1438

143-39 144-38 144-39
P(9) 14176.8024 P(9) 14246.8204 P(9) 14185.1223
R(9) 14177.1819 R(11) 14245.7556 R(9) 14185.4916
P(11) 14175.3172 P(11) 14183.6279
R(11) 14175.7754 R(11) 14184.0743

145-38 145-39 146-38
P(9) 14254.8627 P(9) 14193.1638 P(9) 14262.4320
R(11) 14253.8142 R(9) 14193.5384 R(11) 14261.3277

P(11) 14191.6725
R(11) 14192.1343

146-39 147-39 147-40
P(9) 14200.7349 P(9) 14208.1232 P(9) 14147.4520
R(9) 14201.0852 R(9) 14208.4645 R(9) 14147.7922
P(11) 14199.2214 R(11) 14207.0102 R(11) 14146.3580
R(11) 14199.6471

148-39 148-40 149-39
P(9) 14215.2099 P(9) 14154.5375 P(9) 14222.0316
R(11) 14214.0755 R(9) 14154.8691 R(9) 14222.3613

P(11) 14153.0224 R(11) 14220.8964
R(11) 14153.4231

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



144 Spectroscopic Data of the A 1Σ+
u State of K2

line line line

149-40 150-39 150-40
P(9) 14161.3615 P(9) 14228.4752 P(9) 14167.8032
R(9) 14161.6893 R(11) 14227.3068 R(9) 14168.1191
R(11) 14160.2432 P(11) 14166.2720

R(11) 14166.6534

151-39 151-40 152-39
P(9) 14234.7436 P(9) 14174.0707 P(9) 14240.7400
R(11) 14233.5492 R(9) 14174.3748 R(11) 14239.5279

P(11) 14172.5284
R(11) 14172.8963

152-40 153-39 153-40
P(9) 14180.0687 P(9) 14246.5160 P(9) 14185.8443
R(9) 14180.3638 R(11) 14245.3179 R(9) 14186.1417
P(11) 14178.5184 P(11) 14184.2956
R(11) 14178.8739 R(11) 14184.6641

154-39 154-40 155-39
P(9) 14251.9428 P(9) 14191.2713 P(9) 14257.2137
R(11) 14250.6936 R(9) 14191.549 R(11) 14255.9438

P(11) 14189.7028
R(11) 14190.0405

155-40 156-39 156-40
P(9) 14196.5419 P(9) 14262.2522 P(9) 14201.5800
R(9) 14196.8114 R(11) 14260.9669 R(9) 14201.8421
P(11) 14194.9663 P(11) 14199.9949
R(11) 14195.2907 R(11) 14200.3119

157-39 157-40 158-39
P(9) 14266.9908 P(9) 14206.3187 P(9) 14271.6312
R(11) 14265.7052 R(9) 14206.581 R(11) 14270.3088

P(11) 14204.7342
R(11) 14205.0519

158-40 159-39 159-40
P(9) 14210.9584 P(9) 14276.0249 P(9) 14215.3534
R(9) 14211.2053 R(11) 14274.6851 R(9) 14215.5908
P(11) 14209.3597 P(11) 14213.7443
R(11) 14209.6555 R(11) 14214.0315

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



B.2 Transition Frequencies 145

line line line

160-40 160-41 161-40
P(9) 14219.3105 P(9) 14159.6848 P(9) 14223.5112
R(9) 14219.6201 R(9) 14159.9946 R(11) 14222.1566
P(11) 14217.7757 P(11) 14158.1680
R(11) 14218.1124 R(11) 14158.5062

161-41 162-40 162-41
P(9) 14163.8847 P(9) 14227.3207 P(9) 14167.6953
R(9) 14164.1063 R(11) 14225.9515 R(9) 14167.9106
P(11) 14162.2803 P(11) 14166.0824
R(11) 14162.547 R(11) 14166.3438

163-40 163-41 164-40
P(9) 14230.8357 P(9) 14171.2076 P(9) 14234.3772
R(11) 14229.5093 R(9) 14171.4554 R(11) 14232.9748

P(11) 14169.6287
R(11) 14169.9029

164-41 165-40 165-41
P(9) 14174.7518 P(9) 14237.6647 P(9) 14178.0376
R(9) 14174.9520 R(11) 14236.2478 R(9) 14178.2326
P(11) 14173.1258 P(11) 14176.4054
R(11) 14173.3681 R(11) 14176.6412

166-40 166-41 167-40
P(9) 14240.7566 P(9) 14181.1309 P(9) 14243.7287
R(11) 14239.3279 R(9) 14181.3202 R(11) 14242.2826

P(11) 14179.4934
R(11) 14179.7207

167-41 168-40 168-41
P(9) 14184.1041 P(9) 14246.5861 P(9) 14186.9597
R(9) 14184.2823 R(9) 14246.6283 R(9) 14187.0027
P(11) 14182.4567 R(11) 14244.9728 P(11) 14185.1768
R(11) 14182.6749 R(11) 14185.3663

169-40 169-41 170-40
P(9) 14249.1968 P(9) 14189.5701 P(9) 14251.7373
R(11) 14247.7215 R(9) 14189.7385 R(11) 14250.2587

P(11) 14187.9116
R(11) 14188.1141

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



146 Spectroscopic Data of the A 1Σ+
u State of K2

line line line

170-41 171-40 171-41
P(9) 14192.1099 P(9) 14254.1121 P(9) 14194.4862
R(9) 14192.2752 R(11) 14252.6096 R(9) 14194.6418
P(11) 14190.4483 P(11) 14192.8147
R(11) 14190.6518 R(11) 14193.0033

172-40 172-41 173-40
P(9) 14256.3872 P(9) 14196.7609 P(9) 14258.5197
R(11) 14254.8785 R(9) 14196.9134 R(11) 14256.9915

P(11) 14195.0872
R(11) 14195.2711

173-41 174-40 174-41
P(9) 14198.8944 P(9) 14260.5575 P(9) 14200.9325
R(9) 14199.0382 R(11) 14259.0264 R(9) 14201.0734
P(11) 14197.2112 P(11) 14199.2467
R(11) 14197.3851 R(11) 14199.4197

175-40 175-41 176-40
P(9) 14262.4626 P(9) 14202.8368 P(9) 14264.2973
R(11) 14260.9109 R(9) 14202.9703 R(11) 14262.6771

P(11) 14201.1435
R(11) 14201.3041

176-41 177-40 177-41
P(9) 14204.6714 P(9) 14265.9822 P(9) 14206.3552
R(9) 14204.7995 R(11) 14264.4068 R(9) 14206.4789
P(11) 14202.9703 P(11) 14204.6512
R(11) 14203.0694 R(11) 14204.7995

178-40 178-41 179-40
P(9) 14267.5837 P(9) 14207.9582 P(9) 14269.1157
R(11) 14266.0019 R(9) 14208.0783 R(11) 14267.5189

P(11) 14206.2509
R(11) 14206.3941

179-41 180-40 180-41
P(9) 14209.4892 P(9) 14270.5433 P(9) 14210.9174
R(9) 14209.6022 R(11) 14268.9351 R(9) 14211.0252
P(11) 14207.7753 P(11) 14209.1983
R(11) 14207.9128 R(11) 14209.3294

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



B.2 Transition Frequencies 147

line line line

181-40 181-41 182-40
P(9) 14271.9214 P(9) 14212.2967 P(9) 14273.1642
R(11) 14270.2623 R(9) 14212.3347 R(11) 14271.5363

P(11) 14210.5071
R(11) 14210.6558

182-41 183-40 183-41
P(9) 14213.5377 P(9) 14274.3542 P(9) 14214.7286
R(9) 14213.6366 R(11) 14272.7194 R(9) 14214.824
P(11) 14211.8103 P(11) 14212.9967
R(11) 14211.9306 R(11) 14213.1124

184-40 184-41 185-40
P(9) 14275.5085 P(9) 14215.8834 P(9) 14276.5362
R(9) 14275.5467 R(9) 14215.9205 R(11) 14274.8816
P(11) 14273.7000 P(11) 14214.0934
R(11) 14273.8244 R(11) 14214.2176

185-41 186-40 186-41
P(3) 14220.1568 R(11) 14275.8613 P(3) 14221.1501
R(3) 14220.1882 R(3) 14221.1814
P(5) 14219.4040 P(5) 14220.3982
R(5) 14219.4548 R(5) 14220.4471
P(9) 14216.9103 P(9) 14217.9019
R(9) 14216.9968 R(9) 14217.9812
P(11) 14215.1698 P(11) 14216.1546
R(11) 14215.2759 R(11) 14216.2551

187-41 188-41 189-41
P(3) 14222.0750 P(3) 14222.9688 P(3) 14223.7888
R(3) 14222.1073 R(3) 14222.997 R(3) 14223.8161
P(5) 14221.3234 P(5) 14222.2131 P(5) 14223.0324
R(5) 14221.3737 R(5) 14222.2582 R(5) 14223.0742
P(9) 14218.82022
R(9) 14218.90264
P(11) 14217.07564
R(11) 14217.17541

191-41 192-41 193-41
P(3) 14225.2758 P(3) 14225.9604 P(3) 14226.5890
R(3) 14225.3015 R(3) 14225.9839 R(3) 14226.6110
P(5) 14224.5180 P(5) 14225.2017 P(5) 14225.8276
R(5) 14224.5572 R(5) 14225.2393 R(5) 14225.8620

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



148 Spectroscopic Data of the A 1Σ+
u State of K2

line line line

194-41 195-41 196-41
P(3) 14227.1776 P(3) 14227.7265 P(3) 14228.2385
R(3) 14227.1984 R(3) 14227.7472 R(3) 14228.2579
P(5) 14226.4155 P(5) 14226.9640 P(5) 14227.4745
R(5) 14226.4483 R(5) 14226.9954 R(5) 14227.5053

198-41 199-41 200-41
P(3) 14229.1676 P(3) 14229.5752 P(3) 14229.9646
R(3) 14229.1846 R(3) 14229.5960 R(3) 14229.9805
P(5) 14228.4009 P(5) 14228.8122 P(5) 14229.1957
R(5) 14228.4292 R(5) 14228.8386 R(5) 14229.2210

201-41 202-41 203-41
P(3) 14230.3213 P(3) 14230.6532 P(3) 14230.9603
R(3) 14230.3365 R(3) 14230.6672 R(3) 14230.9731
P(5) 14229.5525 P(5) 14229.8831 P(5) 14230.1903
R(5) 14229.5756 R(5) 14229.9048 R(5) 14230.2114

204-41 205-41 206-41
P(3) 14231.2448 P(3) 14231.5077 P(3) 14231.7453
R(3) 14231.2578 R(3) 14231.5196 R(3) 14231.7590
P(5) 14230.4738 P(5) 14230.7359 P(5) 14230.9757
R(5) 14230.4927 R(5) 14230.7533 R(5) 14230.9951

207-41 208-41 209-41
P(3) 14231.9804 P(3) 14232.185 P(3) 14232.3752
R(3) 14231.992 R(3) 14232.1953 R(3) 14232.3841
P(5) 14231.2092 P(5) 14231.4115 P(5) 14231.6009
R(5) 14231.2448 R(5) 14231.4273 R(5) 14231.6146

210-41 211-41 212-41
P(3) 14232.5502 P(3) 14232.7102 P(3) 14232.8573
R(3) 14232.5587 R(3) 14232.7186 R(3) 14232.8646
P(5) 14231.7750 P(5) 14231.9351 P(5) 14232.0819
R(5) 14231.7886 R(5) 14231.9474 R(5) 14232.0935

213-41 214-41 215-41
P(3) 14232.9930 P(3) 14233.1164 P(3) 14233.2291
R(3) 14233.0000 R(3) 14233.1233 R(3) 14233.2349
P(5) 14232.2162 P(5) 14232.3387 P(5) 14232.4520
R(5) 14232.2267 R(5) 14232.3491 R(5) 14232.4615

Table B.2: Transition frequencies of A–X band of 39K2. (continued)



B.2 Transition Frequencies 149

line line line

216-41 218-41 219-41
P(3) 14233.3324 P(3) 14233.5092 P(3) 14233.5874
R(3) 14233.3380 R(3) 14233.5147 R(3) 14233.5921
P(5) 14232.5547 P(5) 14232.7317 P(5) 14232.8085
R(5) 14232.5632 R(5) 14232.7394 R(5) 14232.8158

220-43 221-43 222-43
P(3) 14117.5487 P(3) 14117.6128 P(3) 14117.6722
R(3) 14117.5531 R(3) 14117.6164 R(3) 14117.6688
P(5) 14116.7867 P(5) 14116.8505 P(5) 14116.9065
R(5) 14116.7929 R(5) 14116.8563 R(5) 14116.9119

223-43 224-43 225-43
P(3) 14117.7245 P(3) 14117.7659 P(3) 14117.8072
R(3) 14117.7209 R(3) 14117.7692 R(3) 14117.8100
P(5) 14116.9574 P(5) 14117.0028 P(5) 14117.0436
R(5) 14116.9625 R(5) 14117.0092 R(5) 14117.0478

226-42 226-43 227-42
P(9) 14172.0082 P(3) 14117.8442 P(9) 14172.0399
R(9) 14172.0150 R(3) 14117.8468 R(9) 14172.0461

P(5) 14117.0799
R(5) 14117.0841

227-43 228-42 228-43
P(3) 14117.8767 P(9) 14172.0679 P(3) 14117.9056
R(5) 14117.8791 R(9) 14172.0736 R(3) 14117.9082
P(3) 14117.1132 P(3) 14117.1411
R(5) 14117.1168 R(3) 14117.1445

229-42 229-43 230-42
P(9) 14172.0928 P(3) 14117.9313 P(9) 14172.1146
R(9) 14172.0979 R(3) 14117.9335 R(9) 14172.1194

P(5) 14117.1673
R(5) 14117.1703

230-43 231-42 231-43
P(3) 14117.9545 P(9) 14172.1339 P(3) 14117.9740
R(3) 14117.9565 R(9) 14172.1381 R(3) 14117.9756
P(5) 14117.1893 P(5) 14117.2089
R(5) 14117.1921 R(5) 14117.2111

Table B.2: Transition frequencies of A–X band of 39K2. (continued)
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line line line

232-42 232-43 233-42
P(4) 14175.1578 P(3) 14117.9917 P(3) 14175.5170
R(4) 14175.1596 R(3) 14117.9929 R(3) 14175.5183
P(9) 14172.1507 P(5) 14117.2269 P(4) 14175.1578.

R(9) 14172.1545 R(5) 14117.2302 R(4) 14175.1596.

P(12) 14169.3186 P(7) 14116.1220 P(4) 14175.1730
R(12) 14168.3235 R(7) 14116.1251 R(4) 14175.1747

P(9) s 14172.1652
P(9) b 14172.1654
R(9) s 14172.1686
R(9) b 14172.1688
P(12) 14169.3326
R(12) 14169.3370

233-43 234-42 234-43
R(3) 14175.5183. P(3) b 14175.5304. P(5) 14117.2556
R(4) 14175.1747. R(3) 14175.5316. R(5) 14117.2573
P(5) 14117.2424 P(4) 14175.1863 P(7) 14116.1500
R(5) 14117.2444 P(4) 14175.1863. R(7) 14116.1524
R(7) 14116.1397 R(4) 14175.1879

R(4) 14175.1879.

P(9) s 14172.1778
P(9) b 14172.1781
R(9) s 14172.1809
R(9) b 14172.1811
P(12) 14169.3447
R(12) 14169.3487

235-42 235-43 236-42
P(3) 14175.5420. P(5) 14117.267 P(3) s 14175.5516.

R(3) 14175.5431. R(5) 14117.2687 P(3) b 14175.5520.

P(4) s 14175.1978 P(7) 14116.1612 R(3) s 14175.5526.

P(4) b 14175.1978. R(7) 14116.1635 R(3) b 14175.5529.

R(4) s 14175.1992 P(4) 14175.2074
R(4) b 14175.1992. P(4) 14175.2074.

P(9) s 14172.1888 R(4) 14175.2086
P(9) b 14172.1891 R(4) 14175.2086.

R(9) s 14172.1915 P(9) s 14172.1982
R(9) b 14172.1918 P(9) b 14172.1986
P(12) 14169.3552 R(9) s 14172.2007
R(12) 14169.3586 R(9) b 14172.2010

P(12) 14169.3641
R(12) 14169.3671

Table B.2: Transition frequencies of A–X band of 39K2. (continued)
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line line line
236-43 237-42 237-43

P(5) 14117.2768 P(3) s 14175.5601. P(5) 14117.2852
R(5) 14117.2784 P(3) b 14175.5605. R(5) 14117.2865
P(7) 14116.1710 R(3) s 14175.5609. P(7) 14116.1792
R(7) 14116.1730 R(3) b 14175.5613. R(7) 14116.1810

P(4) 14175.2159
P(4) s 14175.2157.

P(4) b 14175.2159.

R(4) 14175.2169
R(4) s 14175.2167.

R(4) b 14175.2170.

P(9) s 14172.2062
P(9) b 14172.2066
R(9) s 14172.2082
R(9) b 14172.2088
P(12) 14169.3743
R(12) 14169.3717

238-42 238-43 239-42
P(3) s 14175.5673. P(5) 14117.2925 P(3) s 14175.5733.

P(3) b 14175.5677. R(5) 14117.2937 P(3) b 14175.5739.

R(3) s 14175.5679. P(7) 14116.1861 R(3) s 14175.5739.

R(3) b 14175.5685. R(7) 14116.1880 R(3) b 14175.5745.

P(4) s 14175.2228. P(4) s 14175.2288.

P(4) b 14175.2231. P(4) b 14175.2291.

R(4) s 14175.2238. R(4) s 14175.2296.

R(4) b 14175.2240. R(4) b 14175.2299.

P(9) s 14172.2129 P(9) s 14172.2185
P(9) b 14172.2135 P(9) b 14172.2192
R(9) s 14172.2148 R(9) s 14172.2201
R(9) b 14172.2153 R(9) b 14172.2208
P(12) 14169.3780 P(12) 14169.3832
R(12) 14169.3803 R(12) 14169.3852

239-43 240-42 240-43
P(5) 14117.2986 P(3) s 14175.5784. P(5) 14117.3037
R(5) 14117.2996 P(3) b 14175.5790. R(5) 14117.3046
P(7) 14116.1919 R(3) s 14175.5790. P(7) 14116.1972
R(7) 14116.1937 R(3) b 14175.5796. R(7) 14116.1983

P(4) s 14175.2337.

P(4) b 14175.2341.

R(4) s 14175.2344.

R(4) b 14175.2348.

P(9) s 14172.2231
P(9) b 14172.2239

Table B.2: Transition frequencies of A–X band of 39K2. (continued)
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line line line
240-42 (continued)

R(9) s 14172.2244
R(9) b 14172.2253
P(12) 14169.3874
R(12) 14169.3891

241-42 241-43 242-42
P(3) s 14175.5825. P(5) 14117.3104 P(4) s 14175.2411.

P(3) b 14175.5833. R(5) 14117.3112 P(4) b 14175.2415.

R(3) s 14175.5830. R(4) s 14175.2417.

R(3) b 14175.5837. R(4) b 14175.2420.

P(4) s 14175.2379. P(3) s 14175.5859.

P(4) b 14175.2383. P(3) b 14175.5867.

R(4) s 14175.2385. R(3) s 14175.5863.

R(4) b 14175.2388. R(3) b 14175.5870.

243-42 244-42 245-42
P(3) s 14175.5884. P(3) s 14175.5904. P(4) s 14175.2472.

P(3) b 14175.5894. P(3) b 14175.5914. P(4) b 14175.2474.

R(3) s 14175.5887. R(3) s 14175.5908. R(4) s 14175.2472.

R(3) b 14175.5896. R(3) b 14175.5917. R(4) b 14175.2476.

P(4) s 14175.2436. P(4) s 14175.2456.

P(4) b 14175.2440. P(4) b 14175.2460.

R(4) s 14175.2439. R(4) s 14175.2456.

R(4) b 14175.2444. R(4) b 14175.2463.

Table B.2: Transition frequencies of A–X band of 39K2 in cm−1. All frequencies are measured
with an uncertainty of 0.00035 cm−1 except for those indicated by . (0.002 cm−1) or by ©

(0.01 cm−1).
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line line line
19-0 20-0 21-0

R(0) 12362.5776. R(1) 12424.8955. R(0) 12488.6296.

P(1) 12362.3916. R(2) 12424.8912. P(1) 12488.4437.

R(1) 12362.6215. R(3) 12424.8576. R(1) 12488.6731.

P(2) 12362.2498. R(4) 12424.7932. P(2) 12488.3010.

R(2) 12362.6315. R(5) 12424.7003. R(2) 12488.6828.

R(3) 12362.6089. R(6) 12424.5758. P(3) 12488.1255.

R(4) 12362.5530. R(3) 12488.6594.

R(5) 12362.4656. P(4) 12487.9161.

R(6) 12362.3430. R(4) 12488.6030.

R(5) 12488.5134.

R(6) 12488.3900.

R(7) 12488.2351.

R(8) 12488.0449.

R(9) 12487.8231.

22-0 23-0 24-0
R(1) 12551.6950. R(0) 12614.3817. R(0) 12677.0173.

R(2) 12551.7030. R(1) 12614.4237. P(1) 12676.8304.

P(3) 12551.1483. R(2) 12614.4301. R(1) 12677.0590.

R(3) 12551.6950. P(3) 12613.8751. P(2) 12676.6875.

R(4) 12551.6530. R(3) 12614.4030. R(2) 12677.0681.

R(5) 12551.5238. R(4) 12614.3421. P(3) 12676.5120.

R(6) 12551.3960. R(3) 12677.0433.

P(4) 12676.3020.

R(4) 12676.9861.

R(5) 12676.8950.

R(6) 12676.7709.

R(7) 12676.6129.

R(8) 12676.4230.

R(9) 12676.2050.

26-0
R(0) 12799.5748.

P(1) 12799.3897.

R(1) 12799.6147.

R(2) 12799.6199.

P(2) 12799.2462.

P(3) 12799.0672.

R(3) 12799.5894.

P(4) 12798.8534.

R(4) 12799.5241.

R(5) 12799.4249.

R(6) 12799.2900.

Table B.3: Transition frequencies of A–X band of 39K 41K. (continued)
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u State of K2

line line line
26-0 (continued)

R(7) 12799.1212.

R(8) 12798.9174.

R(9) 12798.6775.

R(10) 12798.3214.

R(11) 12797.9120.

220-43 227-43 228-43
P(9) 14144.6831. P(9) 14145.1045. P(9) 14145.1429.

R(9) 14144.6967. R(9) 14145.1123. R(9) 14145.1501.

229-43 230-43 231-43
P(9) 14145.1773. P(9) 14145.2077. P(9) 14145.2349.

R(9) 14145.1837. R(9) 14145.2137. R(9) 14145.2405.

232-43 233-43 234-43
P(9) 14145.2589. P(9) 14145.2810 P(9) 14145.2997
R(9) 14145.2639. R(9) 14145.2855 R(9) 14145.3037

235-43 236-43 237-43
P(9) 14145.3161 P(9) 14145.3304 P(9) 14145.3428
R(9) 14145.3198 R(9) 14145.3337 R(9) 14145.3457

238-43 239-43 240-43
P(9) 14145.3536 P(9) 14145.3628 P(9) 14145.3707
R(9) 14145.3562 R(9) 14145.3652 R(9) 14145.3728

Table B.3: Transition frequencies of A–X band of 39K 41K. All frequencies are measured with
an uncertainty of 0.00035 cm−1 except for those indicated by . (0.002 cm−1).
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69 E. Tiemann, H. Knöckel, and H. Richling.
Long Range Interaction at the Asymptote 3s + 3p of Na2.
Zeitschrift für Physik D 37, 323–332 (1996).
DOI: 10.1007/s004600050047.

70 C. Amiot.
private communication.

71 W. Stwalley.
private communication (2005).

72 A. J. Ross, P. Crozet, C. Effantin, J. d’Incan, and R. F. Barrow.
Interactions Between the A(1) 1Σ+

u and b(1) 3Πu States of K2.
Journal of Physics B Atomic Molecular Physics 20, 6225–6231 (1987).
DOI: 10.1088/0022-3700/20/23/014.

73 G. Jong, L. Li, T.-J. Whang, W. C. Stwalley, J. A. Coxon, M. Li, and A. M. Lyyra.
CW All-optical Triple-resonance Spectroscopy of K2: Deperturbation analysis of the

A1Σ+
u (v≤12) and b3Πu (13≤v≤24) states .

Journal of Molecular Spectroscopy 155, 115–135 (1992).
DOI: 10.1016/0022-2852(92)90552-Y.

74 M. R. Manaa, A. J. Ross, F. Martin, P. Crozet, A. M. Lyyra, L. Li, C. Amiot, and
T. Bergeman.

Spin-orbit Interactions, New Spectral Data, and Deperturbation of the Coupled b3Πu

and A1Σ+
u states of K2.

Journal of Chemical Physics 117, 11 208–11 215 (2002).
DOI: 10.1063/1.1522716.

75 O. Allard, C. Samuelis, A. Pashov, H. Knöckel, and E. Tiemann.
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Bose-Einstein Condensation of Cesium.
Science 299, 232–235 (2003).
DOI: 10.1126/science.1079699.

110 A. Crubellier, O. Dulieu, F. Masnou-Seeuws, M. Elbs, H. Knöckel, and E. Tiemann.
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Resolving and Addressing Atoms in Individual Sites of a CO2-laser Optical Lattice.
Physical Review A 62, 051 801 (2000).
DOI: 10.1103/PhysRevA.62.051801.

118 H. Pu, L. O. Baksmaty, W. Zhang, N. P. Bigelow, and P. Meystre.
Effective-mass Analysis of Bose-Einstein Condensates in Optical Lattices: Stabiliza-

tion and Levitation.
Physical Review A 67, 043 605 (2003).
DOI: 10.1103/PhysRevA.67.043605.

119 J. L. Bohn and P. S. Julienne.
Prospects for Influencing Scattering Lengths with Far-off-resonant Light .
Physical Review A 56, 1486–1491 (1997).
DOI: 10.1103/PhysRevA.56.1486.

120 V. Kokoouline, J. Vala, and R. Kosloff.
Tuning the Scattering Length on the Ground Triplet State of Cs2.
Journal of Chemical Physics 114, 3046–3050 (2001).

121 F. K. Fatemi, K. M. Jones, and P. D. Lett.
Observation of Optically Induced Feshbach Resonances in Collisions of Cold Atoms .
Physical Review Letters 85, 4462–4465 (2000).
DOI: 10.1103/PhysRevLett.85.4462.

122 G. Thalhammer, M. Theis, K. Winkler, R. Grimm, and J. H. Denschlag.
Inducing an Optical Feshbach Resonance via Stimulated Raman Coupling .
Physical Review A 71, 033 403 (2005).
DOI: 10.1103/PhysRevA.71.033403.

123 F. H. Mies.
A Multichannel Quantum Defect Analysis of Diatomic Predissociation and Inelastic

Atomic scattering .
Journal of Chemical Physics 80, 2514–2525 (1984).
DOI: 10.1063/1.447000.

124 J. L. Bohn and P. S. Julienne.
Semianalytic Theory of Laser-assisted Resonant Cold Collisions .

http://dx.doi.org/10.1103/PhysRevA.72.062111
http://dx.doi.org/10.1103/PhysRevA.68.030501
http://dx.doi.org/10.1140/epjd/e2004-00154-7
http://dx.doi.org/10.1103/PhysRevA.62.051801
http://dx.doi.org/10.1103/PhysRevA.67.043605
http://dx.doi.org/10.1103/PhysRevA.56.1486
http://dx.doi.org/10.1103/PhysRevLett.85.4462
http://dx.doi.org/10.1103/PhysRevA.71.033403
http://dx.doi.org/10.1063/1.447000


168 BIBLIOGRAPHY

Physical Review A 60, 414–425 (1999).
DOI: 10.1103/PhysRevA.60.414.

125 E. Tiemann.
private communication (2005).

126 S. Magnier.
Determination des etats electroniques excites des molecules Na2 et K2. Application

aux collisions entre atomes excites par laser .
Ph.D. thesis, Universite de Paris-Sud, France (1993).

127 O. Dulieu.
private communication.

128 F. James.
MINUIT, Function Minimization and Error Analysis .
CERN Program Library Long Write-up D506.

129 E. Ahmed, P. Qi, A. Hansson, T. Kirova, A. Lazoudis, A. M. Lyyra, L. Li, J. Qi, and
S. Magnier.

Measurement of the Electronic Transition Dipole Moment by Autler-Townes Splitting:
Comparing of Three- and Four-level Excitation Schemes for the Na2 A 1Σ+

u –X 1Σ+
g

System.
Journal of Chemical Physics 084308 (2006).
DOI: 10.1063/1.2164454.

130 M. L. Citron, H. R. Gray, C. W. Gabel, and C. R. Stroud Jr.
Experimental Study of Power Broadening in a Two-level Atom.
Physical Review A 16, 1507–1512 (1977).
DOI: 10.1103/PhysRevA.16.1507.

131 O. Allard.
Long-range Interactions in the Calcium Dimer Studied by Molecular Spectroscopy .
Ph.D. thesis, Universität Hannover, Germany and Université Paris-Sud, France
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E. Tiemann.

Observation of the Long-range Potential Well of the (6) 1Σ+
g (3s + 5s) State of Na2.

European Physical Journal D 26, 173–185 (2003).
DOI: 10.1140/epjd/e2003-00221-7.

http://dx.doi.org/10.1103/PhysRevA.60.414
http://dx.doi.org/10.1063/1.2164454
http://dx.doi.org/10.1103/PhysRevA.16.1507
http://dx.doi.org/10.1140/epjd/e2005-00173-x
http://dx.doi.org/10.1140/epjd/e2003-00221-7


BIBLIOGRAPHY 169

135 A. Nesmeyanov.
Vapor Pressure of Chemical Elements (Elsevier Publishing Company, Amsterdam)

(1963).

136 E. Lax (ed.).
Taschenbuch für Chemiker und Physiker, Band I (Springer-Verlag, Berlin), 3rd edn.

(1967).

137 R. Lide, David (ed.).
CRC Handbook of Chemistry and Physics (CRC Press, Boca Raton), 78th edn. (1997).

138 C. A. Stan and W. Ketterle.
Multiple Species Atom Source for Laser-cooling Experiments .
Review of Scientific Instruments 76, 3113 (2005).
DOI: 10.1063/1.1935433.

139 U. Fischer (ed.).
Tabellenhandbuch Metall (Verlag Europa-Lehrmittel), 40th edn. (1997).

140 B. J. Meyer and E. E. Pietsch.
Mg: Magnesium ; A.
In Gmelin Handbook of Inorganic and Organometallic Chemistry (Gmelin-Institut

für Anorganische Chemie und Grenzgebiete in der Max-Planck-Gesellschaft zur
Förderung der Wissenschaften), 8th edn. (1952).

141 A. Edmonds.
Angular Momentum in Quantum Mechanics (Princeton University Press, New Jersey),

2nd edn. (1960).

http://dx.doi.org/10.1063/1.1935433




List of Figures

1.1 Overview of Spectroscopic Techniques . . . . . . . . . . . . . . . . . . . . . 14

2.1 Beam Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.1 Laser System for the Frequency Measurement . . . . . . . . . . . . . . . . 26
3.2 Record of the D1 Transitions in 39K . . . . . . . . . . . . . . . . . . . . . . 29
3.3 D1 Transitions F = 9/2→ F ′ = 9/2, 7/2 in 40K . . . . . . . . . . . . . . . 30
3.4 Spectrum of D2 Line of 39K . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.5 D2 Line of 41K . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.6 Comparison of Hyperfine Constants . . . . . . . . . . . . . . . . . . . . . . 37
3.7 Illustration of ac-Stark Effect . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.8 ac-Stark Effect in Three-State Model . . . . . . . . . . . . . . . . . . . . . 40
3.9 Level Scheme of Potassium . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.1 Simplified Potential Scheme of K2 . . . . . . . . . . . . . . . . . . . . . . . 46
4.2 Scans of Asymptotic Levels . . . . . . . . . . . . . . . . . . . . . . . . . . 48
4.3 Datafield of the A 1Σ+

u state . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.4 Hyperfine Potential Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
4.5 Residuals of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.6 Potential Curves at the 4s + 4p Asymptote . . . . . . . . . . . . . . . . . . 62
4.7 Adiabatic Hyperfine Potential Curves at the 4s1/2 + 4p1/2 Asymptote . . . 64
4.8 Term Energies of Asymptotic Hyperfine States . . . . . . . . . . . . . . . . 66
4.9 Measured Lifetimes of 4p1/2 and 4p3/2 . . . . . . . . . . . . . . . . . . . . . 67
4.10 Long-range Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11 Adiabatic Potentials without Hyperfine Structure . . . . . . . . . . . . . . 71
4.12 Scans Across Asymptotic Levels of the A state of 39K2 and 39K 41K . . . . 73
4.13 Asymptotic energies of 39K41K . . . . . . . . . . . . . . . . . . . . . . . . . 74
4.14 Fit of Asymptotic Level Spacing of 39K . . . . . . . . . . . . . . . . . . . . 75
4.15 Modeling of Asymptotic Levels . . . . . . . . . . . . . . . . . . . . . . . . 76
4.16 Fit of corrections to Born-Oppenheimer potentials . . . . . . . . . . . . . . 78
4.17 Adiabatic Hyperfine Potential Energy Curves . . . . . . . . . . . . . . . . 80
4.18 Least Bound Levels of 39K 41K . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.1 Potential Scheme of Na2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
5.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
5.3 Field of Observations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

171



172 LIST OF FIGURES

5.4 Coupling Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.5 Result of Line profile Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
5.6 Comparison of Experiment and Simulation . . . . . . . . . . . . . . . . . . 99
5.7 Three Level System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.8 Lineshapes Simulated with the Density Matrix Approach . . . . . . . . . . 103
5.9 Series of Spectra Simulated by the Density Matrix Approach . . . . . . . . 105

6.1 Vapor Pressure Curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
6.2 Ovens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
6.3 Phase Diagram of Magnesium and Nickel . . . . . . . . . . . . . . . . . . . 115
6.4 Spectroscopy of the Intercombination Lines of Several Calcium Isotopes . . 116
6.5 Rotational Temperature of K2 . . . . . . . . . . . . . . . . . . . . . . . . . 117
6.6 Model for Thermodynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 118
6.7 Loss Channels of Heat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120



List of Tables

1.1 Comparison of Spectroscopic Methods . . . . . . . . . . . . . . . . . . . . 15

2.1 Comparison of Beam Apparatuses . . . . . . . . . . . . . . . . . . . . . . . 19

3.1 Contributions to the Error Budget . . . . . . . . . . . . . . . . . . . . . . 35
3.2 Transition Frequencies of the D1 Lines . . . . . . . . . . . . . . . . . . . . 35
3.3 Hyperfine Parameters A and B . . . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Hyperfine-free Transition Frequencies of the D1 and D2 Lines . . . . . . . . 37
3.5 Frequencies of Transitions of the D2 Lines . . . . . . . . . . . . . . . . . . 37
3.6 Isotope Shifts and Fine Structure Splitting . . . . . . . . . . . . . . . . . . 38

4.1 Summary of Term Energies Used in Fit . . . . . . . . . . . . . . . . . . . . 54
4.2 Potential Parameters for the Potential Well . . . . . . . . . . . . . . . . . . 56
4.3 Potential Parameters for the Repulsive Branch . . . . . . . . . . . . . . . . 56
4.4 Potential Parameters for the Long-range Part . . . . . . . . . . . . . . . . 57
4.5 Parameters for the Hyperfine Asymptotes . . . . . . . . . . . . . . . . . . 57
4.6 Perturbations in the Asymptotic Region of the A State . . . . . . . . . . . 58
4.7 Lifetimes of 4p1/2 and 4p3/2 States of Potassium . . . . . . . . . . . . . . . 59
4.8 Transitions to the Ground State asymptote . . . . . . . . . . . . . . . . . . 84

5.1 Levels and Resonances at the Ground State Asymptote . . . . . . . . . . . 90
5.2 Parameter Used in Simulation of Lineprofiles . . . . . . . . . . . . . . . . . 97
5.3 Transition Dipole Momement of Spectroscopy Transition . . . . . . . . . . 101
5.4 Transition Dipole Momement of Coupling Transition . . . . . . . . . . . . 102
5.5 Comparison of Line Profiles Simulations . . . . . . . . . . . . . . . . . . . 106

6.1 Thermal Conductivity and Melting Temperatures . . . . . . . . . . . . . . 112
6.2 Heat Losses of Different Setups . . . . . . . . . . . . . . . . . . . . . . . . 119
6.3 Comparison of Oven Setups . . . . . . . . . . . . . . . . . . . . . . . . . . 121

B.1 Term Energies of the A State of 39K2 . . . . . . . . . . . . . . . . . . . . . 137
B.2 Transition Frequencies of A–X Band of 39K2 . . . . . . . . . . . . . . . . . 152
B.3 Transition Frequencies of A–X Band of 39K 41K . . . . . . . . . . . . . . . 154

173





List of Symbols

Chapter 3
F Total angular momentum of 4s state 28

F ′ Total angular momentum of 4p state 28

∆ Detuning of spectroscopy laser 33

Ω Rabi frequency of spectroscopy laser divided by 2π 34

δ ac-Stark effect 39

γ Linewidth 39

A Decay rate 42

α Set of other quantum numbers 42

Chapter 4
JX Rotational quantum number for a level of the X state 45

vA Vibrational quantum number for a level of the A state 46

vX Vibrational quantum number for a level of the X state 47

JFCP
A Rotational quantum number of the A state level used in

Franck-Condon pumping
47

JA Rotational quantum number for a level of the A state 47

R Internuclear separation 49

V Potential energy 49

Rm Internuclear separation for power series development 49

a Scaling parameter for power series 49

bi Coefficients of power series describing the potential well 49

R1 Connection point of potential well to repulsive wall 49

A1 and A2 Parameter of repulsive branch ensuring continuously differen-
tiable connection

49

C Steepness of repulsive wall 49

VΠ and VΣ Diabatic potential curves at long range 51

CΣ
3 , CΠ

3 , CΠ
6 ,

CΣ
6 , CΠ

8 , CΣ
8

Long-range parameter
51

∆ Spin-orbit splitting 51

175



176 LIST OF SYMBOLS

V ±
adiab Adiabatic potential curves 51

D Asymptotic energy 4s+4p with respect to Dunham zero of
X state

51

λ4s−4p Transition wavelength 51

ν4s−4p Transition frequency 51

c Speed of light 51

fΠ, fΣ Correction factors for retardation effects 51

Vex Exchange energy 51

B1, B2, B3 Parameters of exchange energy 51

R2 Connection point of potential well and long-range part 51

C10, C12 Dispersion coefficients for adiabatic curves ensuring a continu-
ously differentiable connection

52

I total nuclear spin 52

ΩI Projection of total nuclear spin on nuclear axis 52

R3 Connection point of long-range and hyperfine curves 52

A3 Coefficents ensuring continuity 52

R0, R4 Limits of interval of simulation 53

Y X
00 Dunham correction 54

� Indicates parameters for good connections 54
∗ Indicates non-fitted parameters 54

τ Radiative atomic lifetime 54

As1/2, Ap1/2,
Ap3/2

Effective hyperfine parameters
57

De Dissociation energy of the X state with respect to Dunham
zero

60

D0 Dissoctiation energy with respect to vX = 0, JX = 0 60

j Total angular momentum 63

Ωj Projection of j on the molecular axis 63

ΩF Total projection on the molecular axis 63

Chapter 5
J Rotational quantum number 87

l Rotational momentum of partial wave 87

JX Rotational quantum number of a level in the X 1Σ+
g state 87

vA Vibrational quantum number of a level in the A 1Σ+
u state 88

JA Rotational quantum number of a level in the A 1Σ+
u state 88

I Total nuclear spin 88

vX Vibrational quantum number of a level in the X 1Σ+
g state 88



LIST OF SYMBOLS 177

MI Projection of I onto lab frame axis 88

F Total angular momentum 92

M Projection of F onto a lab frame axis 92

qM Number of start levels for coupling system M 93

S Scattering matrix 93

K reaction matrix 94

γ Scaled lifetime of the excited state level 94

α Scaled lifetime of an asymptotic level 94

Kred Reduced K-matrix 94

v̄P
vP

Local vibrational spacing at vibrational level vP 95

dT Detuning of test laser 95

dC Detuning of coupling laser 95

δ Quantum defect of an excited state level 95

∆ Quantum defect of an asymptotic ground state level 95

Γ Coupling strength for test laser 95

Ω Coupling strength of coupling laser 95

~d Dipole operator 95

p0 number of hollow cylinder within the beam waist 96

I Laser powers of test and coupling laser 96

w0 Beam waist of test and coupling laser 96

pmax Number of hollow cylinders used in simulation 96

Chapter 6
Pcond Heat loss due to conduction 118

Pbb Heat loss due to black body radiation 118

T temperature 118

T0 Temperature of the laboratory 118

C Coefficient for heat losses due to conduction 118

A Area of heat emitting surface 118

B Coefficient for heat losses due to black body radiation 118

Pheat Power of heating 118

Top Operational temperature of the oven 118

O Heat capacity of oven arrangement 118

Appendix A
S Total electron spin 127

Σ Projection of S onto the molecular axis 127

ΩI Projection of I onto the molecular axis 127

` Rotation of the molecule 127



178 LIST OF SYMBOLS

L Total angular momentum of electrons 127

Λ Projection of L onto the molecular axis 127

R Internuclear separation 127

a Amplitudes of wavefunctions 127

~E Electric field strength 128
±±′

ΩMM ′
FF ′ Rabi frequency 128

~d Dipole transition operator in the lab frame 128

di Components of ~d 128

N total angular momentum without spin 128

bi Components of transition dipole operator in the molecular
frame

129



Index

µ-metal box, 19

ac-Stark, 39
adiabatic expansion, 19, 45
adiabatic potential curve, 65
adjacent filtering, 72
air conditioning, 118
air cooling, 116
alkaline earth metal, 109
Allan standard deviation, 21
alumina, 112
approximated phase method, 66
argon ion laser, 20
assignment, 53
asymptotic method, 78
atomic beam apparatus, 25
atomic lifetime, 62
Autler-Townes component, 104
Autler-Townes components, 92
avoided crossing, 61

back-reflection, 70
beam, 108
beam apparatus, 45
beam chamber, 17
beat note, 25
BEC, 44
BEC-BCS crossover, 44
black body radiation, 118
Born-Oppenheimer approximation, 12, 43,

61, 67
Bragg spectroscopy, 82, 87
Brewster angle, 20

calcium, 108, 111
carrier gas, 19
cat’s eye, 27
CCD camera, 89

chopper, 89
classical turning point, 83
clock signal, 25
coherence, 106
cold collisions, 11, 85, 86
color glass filter, 18
consistency check, 29
cool down curve, 119
cooling plate, 115
copper, 112
coumarin 6, 88
counter, 25
coupled channel analysis, 49
coupling strength, 41
Cs atomic clock, 25
Cs-clock, 23

dark state, 106
datafield, 50
DCM, 46
density matrix, 31, 41
deperturbation analysis, 49
dichroic beam splitter, 89
differential pump stage, 19
dilute gas, 107
diode laser, 21, 25
dipole coupling strength, 127
dipole moment, 16
dipole trap, 39
dissociation energy, 59
dissociation limit, 47
Doppler shift, 26
Doppler width, 14
Doppler-free spectroscopy, 85
Dunham series, 53, 77
dye laser, 20, 46, 88
dynamical coupling, 67

179



180 INDEX

effective number of vibrational levels, 68
electric quadrupole interaction, 31
electrically induced transparency, 106
energy spacing, 77
exchange energy, 51

Fabry-Perot interferometer, 88
Feshbach resonance, 12, 61, 68
fine structure constant, 24
fine structure splitting, 36
fit, 53
fluorescence, 18
Fourier-grid method, 49
Fourier-transform spectrometer, 108
Franck-Condon pumping, 46, 70, 82, 87, 100,

109
frequency, 23
frequency comb, 21, 25
frequency correction, 27

galvo, 20
gasket, 112
gate time, 25
glass cell, 14
glass-wool, 116
granules, 111

heat conduction, 112, 118
heat pipe, 14
heat shield, 116, 119
heat-pipe, 107, 113
heater, 113, 116
Hund’s coupling case, 127
hyperfine structure, 47, 61
Hönl-London factor, 79

indirect heating, 112
induced dipole-dipole interaction, 69
interaction zone, 18
intercombination line, 107, 117
interference filter, 18
interrogation time, 107
inversion symmetry, 127
iodine, 68
iodine absorption, 28
isotope effect, 60

isotope shift, 36, 72
isotopomer, 67

K-type, 113
KRb, 70

lambda scheme, 87, 109
laser cooling, 15
laser spectroscopy, 11
LeRoy-Bernstein formalism, 65
LeRoy-radius, 52
LiCs, 70
lifetime, 39
linearization, 72
lines shape, 86
linewidth, 20, 79
lithium, 112
Littrow configuration, 25
lock-in detection, 47
long-range potential, 57

magnesia, 112
magnesium, 115
magnetic dipole coupling constant, 25
magnetic field, 19, 25
magnetic hyperfine structure, 63
mapped Fourier-grid, 85
marker cavity, 90
mass-scaling, 67, 68
melting temperature, 112
MINUIT, 96
molecular beam, 45, 82
multichannel quantum defect theory, 86

natural linewidth, 89
Never-Seez, 115
nickel, 112, 115
nickel-calcium, 113
nitric acid, 113
Nobel prize 2005, 11
nozzle, 19, 111, 112, 117
nuclear spin, 109
Numerov method, 52

offset cavity, 46
offset stabilization, 21, 89



INDEX 181

optical Feshbach resonance, 85
optical fiber, 20
optical frequency standard, 107
optical lattice, 39, 86
optical pumping, 31
oven chamber, 17
oven tube, 112

particle beam, 13
phase-frequency comperator, 25
photoassociation, 13, 16, 45, 59, 86, 106
photomultiplier, 46
photomultiplier dark current, 28
photomutiplier, 18
photon recoil, 33
polarization, 127
polynomial, 72
potassium, 117
potential energy curve, 49
potential well, 56
power broadening, 101
predissociation, 108
press connection, 113

quadrupole hyperfine structure, 63
quantum computing, 13
quantum defect, 95

Rabi frequency, 39, 128
Rabi oscillation, 103
radiative lifetime, 45
radio frequency, 61
rate equation, 103
Rayleigh range, 104
RbCs, 70
reaction matrix, 94
reduced mass, 67
reflection approximation, 93
relative frequency measurement, 22
repetition rate, 22
repulsive branch, 56
reservoir, 111, 116
residual gas, 25
residual gas pressure, 19
residuals, 75
retardation, 51

retro-reflector, 25, 27
rodamin 6G, 89
rotary-vane pump, 20
rotation operator, 129

scanning range, 20
scattering length, 11, 68, 82, 83, 86
scattering matrix, 95
Schrödinger equation, 78
seizure, 115
skimmer, 17, 45, 111
soft annealing, 113
spaghetti, 63
spectroscopy, 46
spectroscopy laser, 103
spin-orbit splitting, 51
stainless steel, 112
standard model, 11
Stark effect, 33
Stefan-Bolzmann constant, 118
Stefan-Bolzmann law, 118
stray laser light, 28
strongly interacting regime, 16
sulforhodamine b, 88
symmetrization, 69
sympathetic cooling, 44

tapped holes, 115
teflon, 112
temperature, 14
thermal conductivity, 112
thermocouple, 113
Ti:sapphire laser, 20
time evolution, 103
transfer cavity, 89, 90
transition dipole moment, 42
transition dipole moments, 100
triplet, 45

uncertainty budget, 32

vacuum, 17
van der Waals interaction, 83
vapor pressure, 109
vapor pressure curves, 110
von Neumann equation, 102



182 INDEX

wavelength meter, 21, 46

Zeemann effect, 33



Curriculum Vitae

Name: Stephan Falke
Date of Birth: 21.09.1977
Place of Birth: Bielefeld
Parents: Christine and Josef Falke
Nationality: German
Marital Status: Single

Education: ◦ 1983-1993
St.-Johannis Schule in Bremen, Elementary and Secondary
School
◦ 1993-1996

Schulzentrum Huckelriede in Bremen, High School
Qualification: Abitur

Studies: ◦ Oct. 1997 - Oct. 2002
Physics, University of Hannover
Qualification: Diplom Physiker
◦ Apr. 1998 - Nov. 2005

Mathmatics with a major in Computer Science, University
of Hannover
Qualification: Diplom Mathematiker
◦ Sep. 2000 - June 2001

Exchange student (SOCRATES) at the University of Copen-
hagen, Denmark
◦ Nov. 2002 - May 2003

Visit as a scholar of the DAAD at the University of California
at Davis, USA
◦ June 2003 to date

PhD student and scientific coworker in the group of Prof.
Tiemann, Inst. of Quantum Optics, University of Hannover
◦ June 2004 to date

Collegiate member of the European Graduate College Inter-
ference and Quantum Applications

183





Acknowledgements

The research reported in this thesis was funded by the Deutschen Forschungsgemeinschaft
within the Sonderforschungsbereich 407 Quantenlimitierte Messprozesse mit Atomen, Mo-
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