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Zusammenfassung

Der starke Zuwachs von elektronisch verfügbaren Daten haben stark zur Popularität von Suchmaschinen beigetra-
gen. Allerdings sind die Nutzer von Suchmaschinen typischerweise nur an den wenigen Dokumenten interessiert,
die im Bezug auf ihre Arbeit die höchste Relevanz besitzen. Es ist also sehr wichtig hochwertige Rankingmethoden
zu entwickeln, die effizient diese relevanten Dokumente für die verschiedenen Aktivitäten zur Informationssuche
identifizieren, die solche Nutzer entwickeln.

Diese Arbeit enthält zwei Beiträge zu dem Bereich “Information Retrieval”. Erstens identifizieren wir die Anwen-
dungsbereiche, in den ein nutzerorientiertes Ranking derzeit nicht vorhanden ist, obwohl es extrem notwendig ist,
um einen hochqualitativen Zugang zu den für einen Nutzer relevanten Ressourcen zu ermöglichen. Zweitens en-
twickeln wir für jeden von diesen Anwendungsbereichen die entsprechenden Rankingalgorithmen, die auf sozialen
Charakteristika aufbauen und diese ausnutzen, entweder auf einem makroskopischen oder einem mikroskopis-
chen Niveau. Dies wird durch “Link Analysis” Techniken erreicht, die auf der graphbasierten Darstellung der
Verknüpfungen zwischen Objekten bauen, um sie zu ordnen oder einfach um Muster im Bezug auf deren soziale
Eigenschaften zu erkennen.

Wir fangen an und argumentieren, dass das Ranken von Objekten auf dem Desktop sehr effektiv den Zugang zu
allen Ressourcen auf dem Desktop verbessern kann. Dafür schlagen wir vor, die “Link Analysis” Methoden auch
auf dem Desktop zu nutzen unter Verwendung von Statistiken ber das Nutzerverhalten. Wir zeigen, dass ein auf
diese Weise entwickeltes Ranking sehr vorteilhaft für das Anwendungsszenario einer Desktop-Suchmaschine ist.

Anschlieend setzen wir dieselben grundlegenden Ideen für die Erkennung von “Spam Emails” ein. Dazu verbinden
wir Menschen in sozialen Netzwerken, basierend auf dem Austausch von Emails zwischen diesen, und leiten
daraus eine Reputationsmetrik ab, die böswillige Mitglieder jeder Community isoliert. Auf eine ähnliche Weise
modellieren wir mehrere künstliche Linkstrukturen auf einer höheren Abstraktionsebene, die Link Analysis
Algorithmen im allgemeinen negativ beeinflussen können. Wir geben auch an, wie man solche Linkstrukturen
im Anwendungsszenario “Ranken von Webseiten” entfernen kann.

Der letzte Teil dieser Arbeit nutzt manuell erstellte Informationsrepositorien, um die Web Suche zu personal-
isieren. Wir untersuchen zwei verschiedene Arten von solchen Repositorien, solche die global bearbeitet werden
können und solche die individuell bearbeitet werden können. Im ersten Fall wenden wir Link Analysis Tech-
niken auf öffentliche Webverzeichnissen an, wie zum Beispiel das Open Directory, und definieren geeignete Ähn-
lichkeitsmetriken, die die Suchergebnisse nach den Präferenzen des Nutzers anordnen. Für individuell bearbeit-
bare Repositorien, schlagen wir eine Methode zur Erweiterung von Suchanfragen vor, die sowohl auf der Analyse
von Text, als auch auf Link Analysis Methoden in Zusammenhang mit “Personal Information Repositories”
beruhen. Ausführliche Experimente, die beide Vorgehensweisen auswerten, zeigen in beiden Fallen wesentliche
Verbesserungen im Vergleich zu einer herkömmlichen Suche mit Google.
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Abstract

The booming growth of digitally available information has thoroughly increased the popularity
of search engine technology over the past years. At the same time, upon interacting with this
overwhelming quantity of data, people usually inspect only the very few most relevant items for
their task. It is thus very important to utilize high quality ranking measures which efficiently
identify these items under the various information retrieval activities we pursue.

In this thesis we provide a twofold contribution to the Information Retrieval field. First, we
identify those application areas in which a user oriented ranking is missing, though extremely
necessary in order to facilitate a qualitative access to relevant resources. Second, for each
of these areas we propose appropriate ranking algorithms which exploit their underlying social
characteristics, either at the macroscopic, or at the microscopic level. We achieve this by utilizing
link analysis techniques, which build on top of the graph based representation of relations
between resources in order to rank them or simply to identify social patterns relative to the
investigated data set.

We start by arguing that Ranking Desktop Items is very effective in improving resource access
within Personal Information Repositories. Thus, we propose to move link analysis methods down
to the PC Desktop by exploiting usage analysis statistics, and show the resulted importance
ordering to be highly beneficial for the particular scenario of Desktop Search.

We then apply the same technique for Spam Detection. We connect people across email social
networks based on their email exchanges and induce a reputation metric which nicely isolates
malicious members of a community. Similarly, we model several higher level artificial constructs
which could negatively manipulate generic link analysis ranking algorithms, and indicate how
to remove them in the case of Web page ranking.

Finally, we exploit manually created large scale information repositories in order to Personalize
Web Search. We investigate two different types of such repositories, namely globally edited
ones and individually edited ones. For the former category we project link analysis onto public
taxonomies such as the Open Directory and define appropriate similarity measures which order
the search output in accordance to each user’s preferences. For the latter one, we propose to
expand Web queries by utilizing both text and link analysis on top of Personal Information
Repositories. Extensive experiments analyzing both approaches show them to yield significant
improvements over regular Google search.
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Foreword

The algorithms presented in this thesis have been published within several Infor-
mation Systems conferences, as follows.

The usage analysis based Desktop ranking ideas were split across two interest
areas: (1) Semantic Web, when we aimed for specific user actions, modeled usually
using ontologies, [61, 62, 63], and (2) Information Retrieval, when all activities
were logged and analyzed from a statistical point of view [66]:

• Beagle++: Semantically Enhanced Searching and Ranking on the Desktop.
By Paul - Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl, Raluca Paiu.
In Proceedings of the 3rd European Semantic Web Conference (ESWC),
Budva, Montenegro, 2006 [63].

• Activity-Based Metadata for Semantic Desktop Search. By Paul - Alexan-
dru Chirita, Stefania Ghita, Rita Gavriloaie, Wolfgang Nejdl, Raluca Paiu.
In Proceedings of the 2nd European Semantic Web Conference (ESWC),
Heraklion, Greece, 2005 [61].

• Semantically Enhanced Searching and Ranking on the Desktop. By Paul -
Alexandru Chirita, Stefania Ghita, Wolfgang Nejdl, Raluca Paiu. In Pro-
ceedings of the Semantic Desktop Workshop held at the 3rd International
Semantic Web Conference, Galway, Ireland, 2005 [62].

• Analyzing User Behavior to Rank Desktop Items. By Paul - Alexandru
Chirita, Wolfgang Nejdl. In Proceedings of the 13th International Sym-
posium on String Processing and Information Retrieval (SPIRE), Glasgow,
United Kingdom, 2006 [66].

The other two chapters have been focused exclusively on Information Retrieval
techniques. The work on spam detection was presented in less, but more important
conferences, after major parts of the research had been already completed [58, 44,
28]:
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• MailRank: Using Ranking for Spam Detection. By Paul - Alexandru Chirita,
Jrg Diederich, Wolfgang Nejdl. In Proceedings of the 14th ACM Interna-
tional CIKM Conference on Information and Knowledge Management, Bre-
men, Germany, 2005 [58].

• Site Level Noise Removal for Search Engines. By Andre Carvalho, Paul
- Alexandru Chirita, Edleno Silva de Moura, Pavel Calado, Wolfgang Ne-
jdl. In Proceedings of the 15th International World Wide Web Conference
(WWW), Edinburgh, United Kingdom, 2006 [44].

• An Analysis of Factors used in Search Engine Ranking. By Albert Bifet,
Carlos Castillo, Paul - Alexandru Chirita, Ingmar Weber. In Proceedings
of the Adversarial Information Retrieval Workshop held at the 14th Inter-
national World Wide Web Conference, Chiba, Japan, 2006 [28].

The most important chapter addresses the topic Web search personalization, and
is built on top of the following publications [67, 60, 59, 56]:

• Using ODP Metadata to Personalize Search. By Paul - Alexandru Chirita,
Wolfgang Nejdl, Raluca Paiu, Christian Kohlschtter. In Proceedings of the
28th ACM International SIGIR Conference on Research and Development
in Information Retrieval, Salvador, Brazil, 2005 [67].

• Summarizing Local Context to Personalize Global Web Search. By Paul -
Alexandru Chirita, Claudiu Firan, Wolfgang Nejdl. In Proceedings of the
15th ACM International CIKM Conference on Information and Knowledge
Management, Arlington, United States, 2006 [60].

• P-TAG: Large Scale Automatic Generation of Personalized Annotation
TAGs for the Web. By Paul - Alexandru Chirita, Stefania Costache,
Siegfried Handschuh, Wolfgang Nejdl. In Proceedings of the 16th Inter-
national World Wide Web Conference (WWW), Banff, Canada, 2007 [56].

• Pushing Task Relevant Web Links down to the Desktop. By Paul - Alexandru
Chirita, Claudiu Firan, Wolfgang Nejdl. In Proceedings of the 8th ACM
Workshop on Web Information and Data Management (WIDM) held at the
15th ACM International CIKM Conference on Information and Knowledge
Management, Arlington, United States, 2006 [59].

During the Ph.D. work, I have also published a number of “exercise papers”, in
which I mostly intended to capture the opinion of the research community upon
either one of the three above mentioned topics, or a fourth application of link
analysis for ranking, namely Peer-To-Peer ranking. However, in order to keep the
quality of the thesis at a high level, I decided to regard these articles as “related
work”, and discuss them only briefly within the appropriate background sections.
Here is a complete list with all of them:

8



Paul - Alexandru Chirita

• The Beagle++ Toolbox: Towards an Extendable Desktop Search Architec-
ture. By Ingo Brunkhorst, Paul-Alexandru Chirita, Stefania Costache,
Julien Gaugaz, Ekaterini Ioannou, Tereza Iofciu, Enrico Minack, Wolfgang
Nejdl, Raluca Paiu. In Proceedings of the 2nd Semantic Desktop Workshop
held at the 5th International Semantic Web Conference, Athens, United
States, 2006 [37].

• Desktop Context Detection Using Implicit Feedback. By Paul - Alexandru
Chirita, Julien Gaugaz, Stefania Costache, Wolfgang Nejdl. In Proceedings
of the Workshop on Personal Information Management held at the 29th
ACM International SIGIR Conf. on Research and Development in Informa-
tion Retrieval, Seattle, United States, 2006. [55].

• Building a Desktop Search Test-bed (poster). Sergey Chernov, Pavel
Serdyukov, Paul - Alexandru Chirita, Gianluca Demartini, and Wolfgang
Nejdl. In Proceedings of the 29th European Conference on Information
Retrieval (ECIR), Rome, Italy, 2007 [52].

• Preventing Shilling Attacks in Online Recommender Systems. By Paul -
Alexandru Chirita, Wolfgang Nejdl, Cristian Zamfir. In Proceedings of the
7th ACM Workshop on Web Information and Data Management (WIDM)
held at the 14th ACM International CIKM Conference on Information and
Knowledge Management, Bremen, Germany, 2005 [70].

• Efficient Parallel Computation of PageRank. By Christian Kohlschtter, Paul
- Alexandru Chirita, Wolfgang Nejdl. In Proceedings of the 28th European
Conference on Information Retrieval (ECIR), London, United Kingdom,
2006 [145].

• PROS: A Personalized Ranking Platform for Web Search. By Paul - Alexan-
dru Chirita, Daniel Olmedilla, Wolfgang Nejdl. In Proceedings of the 3rd
International Conference on Adaptive Hypermedia and Adaptive Web-based
Systems (AHA), Eindhoven, Netherlands, 2004 [73].

• Finding Related Hubs on the Link Structure of the WWW. By Paul - Alexan-
dru Chirita, Daniel Olmedilla, Wolfgang Nejdl. In Proceedings of the 3rd
IEEE / WIC / ACM International Conference on Web Intelligence (WI),
Beijing, China, 2004 [72].

• Finding Related Hubs and Authorities (poster). By Paul - Alexandru
Chirita, Daniel Olmedilla, Wolfgang Nejdl. In Proceedings of the 1st IEEE
Latin-American Web (LA-Web) Congress, Santiago, Chile [71].

• Using Link Analysis to Identify Aspects in Faceted Web Search. By Christian
Kohlschtter, Paul - Alexandru Chirita, Wolfgang Nejdl. In Proc. of the
Faceted Search Workshop held at the 29th Intl. ACM SIGIR Conf. on Res.
and Development in Information Retrieval, Seattle, U.S.A., 2006 [144].
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• Search Strategies for Scientific Collaboration Networks. By Paul - Alexan-
dru Chirita, Andrei Damian, Wolfgang Nejdl, Wolf Siberski. In Proceedings
of the 2nd P2P Information Retrieval Workshop held at the 14th ACM In-
ternational CIKM Conference on Information and Knowledge Management,
Bremen, Germany, 2005 [57].

• Designing Publish/Subscribe Networks using Super-Peers. By Paul - Alexan-
dru Chirita, Stratos Idreos, Manolis Koubarakis, Wolfgang Nejdl. In S.
Staab and H. Stuckenschmidt (eds.): Semantic Web and Peer-to-Peer,
Springer Verlag, 2004 [64].

• Publish/Subscribe for RDF-Based P2P Networks. By Paul - Alexandru
Chirita, Stratos Idreos, Manolis Koubarakis, Wolfgang Nejdl. In Proceed-
ings of the 1st European Semantic Web Symposium (ESWS), Heraklion,
Greece, 2004 [65].

• Personalized Reputation Management in P2P Networks. By Paul - Alexan-
dru Chirita, Wolfgang Nejdl, Mario Schlosser, Oana Scurtu. In Proceedings
of the Trust, Security and Reputation Workshop held at the 3rd Interna-
tional Semantic Web Conference, Hiroshima, Japan, 2004 [68].

• Knowing Where to Search: Personalized Search Strategies for Peers in P2P
Networks. By Paul - Alexandru Chirita, Wolfgang Nejdl, Oana Scurtu. In
Proceedings of the 1st P2P Information Retrieval Workshop held at the
27th ACM International SIGIR Conference on Research and Development
in Information Retrieval, Sheffield, United Kingdom, 2004 [69].
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Chapter 1

Introduction

The amount of information available in everyday life has grown exponentially
during the previous century. From a very difficult access to knowledge in the
early 1900, mankind reached a high state of development within just one hundred
years, being now able to locate tons of data from all over the planet.

It all started around 1830, when Carl Friedrich Gauss electrified for the first
time binary information in his telegraphy experiments. Though this moment
is considered the birth of digital media (note that manual binary counting has
been in practice at least since 2000 BC from the Babylonian Empire), it took
until the Second World War to exploit this extremely valuable discovery at its
entire capabilities, when computers began to be utilized on a somewhat larger
scale of applications. In the same time, the amount of available storage solutions
has grown as well. In 1928 Fritz Pfleumer invented the magnetic tape, a visible
progress towards storing digital media, which was however fastly replaced around
1973 by floppy disks (invented in 1969 by David Noble from IBM), which at their
turn were replaced by the much larger CDs (invented in 1985 by Kees Immink
and Toshitada Doi from Philips and Sony) and DVDs (introduced in 1996-1998
by a large consortium of top media companies). Thus, more and more data has
become digitalized. Almost all reports, presentations, media such as images or
movies, books, etc. are now also produced in a digital format, making information
distribution a much easier task. The already existing non-digital media such as
printed books or articles is now slowly being digitalized as well, in order to provide
a much faster access to it. Finally, along with the invention of the World Wide
Web (1990-1991), it became trivial to even send such data almost anywhere on
Earth within seconds. In fact, nowadays, for some people, if a document does not
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exist in the Web, then it does not exist at all.

Clearly this strong scientific progress has brought huge benefits, which were prob-
ably fiction just one hundred years ago. Yet which challenges does it bring to
us? There are plenty, but two of them have proved themselves to be really im-
portant: First, as so much information is now being available in digital format,
when creating a data collection on some specific topic one needs to collect a large
enough set of documents so as to cover most if not all the interests (or sub-topics)
available for that subject. In some local environments such as enterprises, this
task may not seem difficult. However, as soon as we think of larger corpora, such
as topic-oriented news, or especially the entire World Wide Web, then gathering
all documents therein becomes suddenly impossible. Second, once this usually
overwhelming amount of data has been accumulated, one would need to locate
those documents which are helpful in solving some given task. This is how the
need for search appeared. Searching by itself deals with identifying the relevant
documents within the corpora, given a specific user query. Yet this is still not
sufficient. In large collections such as the Web, there will be millions of such
documents. Therefore, an additional technique is necessary: Ranking. Ranking is
the process of positioning items (e.g., documents, individuals, groups, businesses,
etc.) on an ordinal scale in relation to others. This way one does not need to
browse through the entire relevant output, but rather only look at the already
identified best items.

The software that gathers and searches digital data is known under the broad name
of Search Engine and the science seeking to design better algorithms for search en-
gines is called Information Retrieval. IR is a broad interdisciplinary field, drawing
on many other disciplines. It stands at the junction of many established research
areas and draws upon cognitive psychology, information architecture, information
design, human information behavior, linguistics, semiotics, information science,
computer science, librarianship and statistics. The invention of the World Wide
Web and the subsequent development of Web Search Engines has made IR an
extremely popular research field, especially since a lot of new and highly interest-
ing problems appeared together with this vast amount of data: How to crawl a
large amount of Web pages in an efficient way? How to rank search results? How
to personalize the search experience? How to suggest better queries to assist the
user in search? How to cluster search results? And so on.

This thesis is about Ranking in Large Scale Information Systems. Research
for efficient ranking algorithms is necessary for quite a lot of such application en-
vironments. Many examples can be given: The World Wide Web, Enterprise
Networks, Digital Libraries, Social Networks, Peer-To-Peer Networks, Personal
Information Repositories, Email Inboxes, etc. For all these, current ranking algo-
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rithms are still rather poor or even inexistent, although in the same time they are
more and more necessary, due to the extreme increase in the amount data stored
and searched for each particular scenario.

All the algorithms we propose focus on context oriented ranking. For the case
of excessively large media, such as the World Wide Web, Enterprise or Peer-To-
Peer networks, this comes in the form of personalization. In these environments
there is so much data that no matter which query is issued to the search engine, no
matter which generic information organization algorithm is developed, thousands
if not millions of matching items will be found1. As ranking alone is not sufficient
to solve this problem, and as nobody has time to look into this many relevant
results, an additional dimension is introduced, namely the specific preferences of
each subject utilizing the system. For the case of emerging large media, such as
PC Desktops or even Email Inboxes, though different, the situation is becoming
more and more similar. First, Desktop search would commonly return several
hundreds of results nowadays, which is again too much to browse through. In the
same time many people receive dozens of emails per day, many of which are spam.
Thus, even in this relatively small environment, some sort of item ranking measure
would be useful in order to prioritize which incoming emails to read sooner, later,
or not to read at all. Second, as the content addressed by these media is highly
personal and heterogeneous across users, personalization is implicitly included in
each application, i.e., each subject receives a different ranking, relative to her own
data.

Besides being no longer manageable with current search mechanisms, the above
mentioned information systems also exhibit another interesting commonality:
They are all Social Systems. This might be obvious for macro-systems involv-
ing multiple users, as for example the Web, or social networks developed on top
of email exchanges within a community. Yet the very same characteristics can be
identified when performing this analysis at the micro-system level of single users!
The glue around all these two perspectives is the Power Law [196], also known as
“the rich get richer” law, which says that very few resources (i.e., persons, Web
pages, etc.) are highly important across a collection, while all others are almost
not important at all. For example, at the macroscopic level, the distribution of
in-degree of Web pages follows a power law [34], just as the distribution of human
social acquaintances [225]. As argued above, the same occurs at the microscopic
level of single users. The distribution of time spent reading personal files on the
Desktop follows again a power law [66], and so does the frequency of English words
one would use in her personal documents [222].

In this thesis we provide a twofold contribution to the Information Retrieval field.

1Exceptions can be found, of course.
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First, we identify those application areas in which a context oriented ranking
is missing, though extremely necessary in order to facilitate a qualitative access
to relevant resources. Second, for each of these areas we propose appropriate
ranking algorithms which exploit their underlying social characteristics, either
at the macroscopic, or the microscopic level. We achieve this by utilizing link
analysis techniques, which build on top of the graph based representation of links
between resources in order to rank them, or simply to identify social patterns
relative to the investigated data set.

The thesis is organized around the applications of link analysis for ranking which
we tackled, as follows: Chapter 2 introduces us into the realm of ranking.
We concentrate mostly on link analysis ranking algorithms, and especially on
a description of PageRank [172] and HITS [143]. Once these have been presented,
we also briefly describe the various link analysis ranking algorithms that followed
them, as well as some of the other evidences used by search engines when ranking
Web pages. In the end we give an overview of other information systems in need
of ranking facilities, and motivate why they were left out from our investigation.

The three subsequent chapters describe each our specific contributions within
the three emerging application areas we investigated. They all start with an
introduction to the area, followed by a comparison with the related work specific to
that particular domain. Subsequently, each proposed algorithm is first presented
and explained, and then empirically evaluated. We conclude each chapter with a
discussion on the pluses and minuses of each proposed algorithm, as well as on
the possible further steps in the area.

In Chapter 3, we start from the motivation that current Desktop ranking al-
gorithms are using only pure textual information retrieval techniques, which are
more than 25 years old and which can no longer cope with the current informa-
tion flow. We thus argue that Desktop search output should be ranked using a
proper, specialized algorithm, based on specific indicators for this environment.
As a solution, we propose two new approaches, both built on top of Desktop usage
analysis: First, Section 3.3 investigates a technique in which only some specific
Desktop activity contexts are studied and considered to confer ranking value to
the resources associated to them. Then, we generalize this approach in Section
3.4 by considering all user accesses to Destktop items as relevant for ranking.

Chapter 4 dives into another central application of digital information man-
agement, Spam Detection. We tackle two environments which both suffer from
the spam problem extensively: Email and Web. The initial half of the chapter
(Section 4.3) presents our social network based reputation scheme for email ad-
dresses, together with a set of experiments proving its efficiency in combating
the spam issue. These algorithms make a smooth transition from the local in-
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formation environment (i.e., personal files, including emails, as stored on the PC
Desktop) towards global milieus such as the Internet (represented here by the
social networks constructed via the exchanges of emails). The second half of the
chapter (Section 4.4) moves us even further towards global data management and
introduces our site level approach to Web hyperlink spam detection.

Chapter 5 proposes several new approaches to better create and exploit user
profiles for personalized Web search. We start with a discussion on how large scale
taxonomies could be employed for both these goals, i.e., tailoring the Web search
output according to user’s interests and analyzing previous user actions in order
to define a good profile. Though this technique yields very good results, it still
requires sharing a small amount of personal information with the search engine.
Therefore, in the second part of the chapter we concentrate on generating fully
secure user profiles for the same task of Web search personalization. We extract
preferences from user’s Personal Information Repository and design an algorithm
which achieves very good performance without sharing any private information
with the search provider.

Chapter 6 concludes the thesis with an enumeration of the contributions we
brought to the Information Retrieval research community, while also discussing
possible future research directions and open challenges associated to these topics.
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Chapter 2

General Background

Ranking has been widely investigated in search engine literature, both for the task
of Information Retrieval per se, as well as for other closely related tasks. This
chapter will therefore be split in two parts: First, we will present the inner details
of search engine ranking, putting the focus on link analysis methods, as they are
the foremost important approach for Web IR, and we argue, for quite several other
environments as well. This part is especially important, as it will introduce the
methods which we will build upon throughout the thesis. Once these have been
introduced, in the second part of the chapter we will move towards discussing
some of the already existing applications of ranking for other purposes than Web
search, and we will motivate their exclusion from our study.

2.1 Ranking in the Web

2.1.1 Brief Introduction to Search Engines

Typical search engines consist of two major modules: A crawler and a searcher.
Crawlers are assigned with the pre-processing task of gathering the search data
into a local index (see Figure 2.1). They perform the following operations:

• URL Listing : Maintain a list of already visited URLs, as well as of the URLs
which are to be visited in the future.

• URL Retrieving : Fetch from the Web new URLs received as input from the
Listing Module.
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• URL Processing : Process each visited URL in order to extract (1) its out-
going hyperlinks, which are then transferred to the URL Listing Module for
further processing (i.e., filtering the already visited ones and planning the
new ones for future retrieval), and (2) its indexable content, usually textual
data, which is sent towards the Format & Store Module.

• Data Format and Store: Arrange the indexable data into a special format,
compress it, and store it into the local index.

Figure 2.1: Crawler Architecture. Figure 2.2: Searcher Architecture.

Once a reasonably large amount of Web pages has been collected, the user can
start searching it. This is performed through a simple interface in which query
keywords are entered (see Figure 2.2). Afterwards, the Searching and Ranking
Module first inspects the index to gather the hits, i.e., the pages containing the
user selected keywords, and then orders these hits according to different ranking
criteria and displays them to the user as such.

The remainder of this section will mostly present a detailed look into link analysis
ranking, and especially into PageRank and HITS, as they represent the foundation
algorithms of this technique on the World Wide Web. In the end, we will briefly
introduce some other measures used by search engines to order their output.

2.1.2 Link Analysis Ranking

Link analysis has been first utilized in the 1950’s in a slightly different scenario:
Citation Analysis (see for example the work of Katz [137] or Garfield [103, 104]).
Just like in the Web, the need for citation analysis came because of the fastly
growing amount of information, in this case coming from scientific conferences
and journals. Thus, a publication venue evaluation technique was necessary in
order to ease the identification of qualitative articles [105]. A set of interesting
features were discovered, as for example the fact that few journals receive most
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citations, while many journals receive few or even no citations at all [106]. When
plotted, this turned into something which was yet to become a quite famous
distribution: A power-law.

Power law models have been analyzed and rigorously defined within the same
period, the first representative effort in this direction being that of Herbert Simon
[196]. When defined over positive integers (the most common case), power-law
distributions are characterized by having the probability of value i proportional
to 1/ik, with k being a small positive real number. Nowadays, not only in the
Web, but also in much wider contexts like social interactions or usage of natural
language, the power law seems to dominate most of the discovered phenomena.
Examples are plenty, from the distribution of in- and out-degree of Web pages
[34, 149, 6, 19], to that of the frequency of words in English [160, 222], of social
acquaintances [225], or even of oligonucleotide sequences within DNA [166]. Most
important for us is the fact that the identification of power laws was very beneficial
for Web searching and ranking [33, 43, 47, 150, 200]. We will thus now proceed to
reviewing the most popular link analysis ranking algorithms, many of which yield
highly qualitative results especially due to the power-law nature of their input.

PageRank

Preliminaries. Link analysis algorithms are founded on the representation of the
Web as a graph. Hereafter we will refer to this graph as G = (V, E), where V is
the set of all Web pages and E is the set of directed edges < p, q >. E contains an
edge < p, q > iff a page p links to page q. I(p) represents the set of pages pointing
to p (in-neighbors) and O(p) the set of pages pointed to by p (out-neighbors). We
denote the p-th component of v as v(p). Also, we will typeset vectors in bold
and scalars (e.g., v(p)) in normal font. Finally, let A be the normalized adjacency
matrix corresponding to G with, Aij = 1

|O(j)| if page j links to page i and Aij = 0
otherwise.

Description. PageRank [172, 33] computes Web page scores by exploiting the
graph inferred from the link structure of the Web. Its underlying motivation is
that pages with many backlinks are more important than pages with only a few
backlinks. As this simple definition would allow a malicious user to easily increase
the “importance” of her page simply by creating lots of pages pointing to it, the
algorithm uses the following recursive description: “A page has high rank if the
sum of the ranks of its backlinks is high”. Stated another way, the vector PR of
page ranks is the eigenvector corresponding to the dominant eigenvalue of A.

Given a Web page p, the PageRank formula is:
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PR(p) = c ·
∑

q∈I(p)

PR(q)

‖O(q)‖
+ (1− c) · E(p) = c ·

∑
q∈I(p)

PR(q)

‖O(q)‖
+

(1− c)

‖V ‖
(2.1)

Theoretically, A describes the transition probabilities associated to a Markov
chain. It is known that a finite homogeneous Markov chain which is irreducible1

and aperiodic2 has a unique stationary probability distribution π, depicting the
end probabilities for the Markov chain to reach each specific state. The chain
converges to this distribution no matter which is the initial probability distribution
π0. However, some Web content such as PDF articles have no out-links, and
thus their corresponding column in A would consist only of 0 entries, making
the Markov chain associated to the Web graph a reducible one. These pages
are actually absorbing states of the Markov chain, eventually sucking all the
PageRank into them. It is also trivial to show that the above mentioned Markov
chain is a periodic one. These are both reasons for introducing a dumping factor
c < 1 (usually set to 0.85) [32], which in fact also nicely models an intuitive
description of PageRank: A random Web surfer will follow an outgoing link from
the current page with probability c and will get bored and select a different page
with probability (1−c). Note that this model does not include the “BACK” button
[155], but even so, it was proved in practice to yield very good results. Finally,
one could use other non-uniform distributions for E if biasing or personalization
is desired onto a given set of target pages (see also Equation 2.1, whose right hand
side expression is derived assuming an uniform bias on all input pages).

Convergence and Stability Properties. The properties of PR are easily
explained by the eigenvalues of A. Let us start from the well-known Perron-
Frobenius theorem, as well as a proposition:

Theorem 1 For any strictly positive matrix A > 0 there exist λ0 > 0 and x0 > 0
such that:

1. A · x0 = λ0 · x0;

2. if λ 6= λ0 is any other eigenvalue of A, then |λ < λ0|;
3. λ0 has geometric and algebraic multiplicity 1.

Proposition 1 Let A > 0 be a strictly positive matrix with row and column sums
ri =

∑
j aij, and cj =

∑
i aij. Then, the “Perron-Frobenius” eigenvalue λ0 is

1A Markov chain is irreducible if any state can be reached from any other state with positive
probability.

2A Markov chain is aperiodic if for any state i the greatest common divisor of its possible
recurrence times is 1.
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limited by:

min
i

ri ≤ λ0 ≤ max
i

ri, and min
j

cj ≤ λ0 ≤ max
j

cj. (2.2)

It is straightforward to see that for any stochastic matrix, all ri are 1, and thus
λ0 = 1. However, an even more interesting eigenvalue is the second highest one.
It is known that the asymptotic rate of convergence of the power method (i.e.,
Equation 2.1) is governed by the degree of separation between the dominant and
the closest subdominant eigenvalues [155]. For our case, it has been shown that
the closest subdominant eigenvalue is exactly c [119, 153]. Consequently, if we
used c = 0.85 and aimed for an accuracy of 10−4, we would need to run the
computation process for 43 iterations, since λ43

2 = 0.8543 < 10−4.

Another interesting property of PageRank is its score stability [157] on the class of
all directed graphs. Intuitively, if a small modification (e.g., one link is deleted or
added to some page p) occurs in the hyperlink structure of its underlying graph,

then the difference between the new score ˜PR(p) and the old one PR(p) has an
upper bound close to 0. PageRank is also monotonic, i.e., adding a link towards a
page can only increase its score, and therefore its rank [54]. However, Lempel and
Moran [159] showed that all these properties do not imply rank stability : Even
though a small change in the input Web graph results in a small score difference,
it might be the case that the corresponding page is strongly promoted or demoted
across the overall rankings.

Finally, we note that the distribution of the resulting PageRank values follows a
power-law only for some particular values of the damping factor [21], and thus a
careful selection of c is usually very important for the success of the application
exploiting the ranking algorithm.

Dangling Nodes. As we have seen, pages with no out-links (also known as
“dangling nodes”) are quite problematic for PageRank. Even with the dumping
factor in place, they may still have a negative influence upon the rankings. Thus,
several solutions have been proposed. In the original paper [172], the authors
suggested to remove them and calculate the PageRank only on the Web graph
without dangling pages. Similarly, Kamvar et al. [133] proposed that after having
calculated PageRank without the dangling nodes, to add them back in for several
additional iterations. This approach was also suggested in [32, 120], where the
authors remarked that this seems preferable to keeping them in the calculation.
Note that the process of removing dangling nodes may itself produce new dangling
nodes, and should therefore be repeated iteratively until no dangling nodes remain.
It is interesting to note that this removal procedure seems to terminate rather
quickly when applied to the Web. Finally, Eiron et al. [92] investigated the
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possibility to jump to a randomly selected page with probability 1 from every
dangling node, approach which seems to be the best choice so far.

Implementation Optimizations. There is a large amount of work on optimiz-
ing the computation of PageRank, mainly due to the extremely large size of its
input data, the Web graph. Arasu et al. [12] suggested for example using the
Gauss-Seidel method instead of the power iteration. Kamvar et al. [134] applied
Aitken’s ∆2 quadratic extrapolation method obtaining an increase in speed of up
to 300%. The same group also found small speed improvements by evaluating
convergence over individual elements of PageRank [193] in order to proceed with
the computation only for the non-converged nodes. Chien et al. [54] investigated
the possibilities to update PageRank given some small changes in the Web graph.
Chen et al. [51] proposed several I/O effective implementation approaches for the
power iteration over large graphs. Finally, Langville and Meyer [154] proposed to
move the dangling nodes towards the bottom of the PageRank matrix and showed
this technique to further improve its computation time. Obviously most of these
works focus on time optimizations. However, we note that other aspects have been
tackled as well, such as improving the space complexity of the algorithm [117], or
calculating its output under missing data [3], or enhancing the ranking procedure
to allow for both horizontal (i.e., topology based) and vertical (i.e., topical based)
processing [82].

Another strongly investigated research area is the parallelization of PageRank.
Existing approaches to PageRank parallelization can be divided into two classes:
Exact Computations and Approximations. For the former ones, the Web graph is
initially partitioned into blocks: grouped randomly (e.g., P2P PageRank [189]),
lexicographically sorted by page (e.g., Open System PageRank [195]), or balanced
according to the number of links (e.g., PETSc PageRank [111]). Then, standard
iterative methods such as Jacobi or Krylov subspace [111] are performed over these
pieces in parallel, until convergence. The partitions must periodically exchange
information: Depending on the strategy this can expose suboptimal convergence
speed because of the Jacobi method and result in heavy inter-partition I/O. In
fact, as the Jacobi method performs rather slow in parallel, we modified the Gauss-
Seidel algorithm to work in a distributed environment and found the best speed
improvements so far (see Kohlschütter, Chirita and Nejdl [145]).

When approximating PageRank, the idea is that it might be sufficient to get a
rank vector which is comparable, but not equal to PageRank. Instead of ranking
pages, higher-level formations are used, such as the inter-linkage between hosts,
domains, server network addresses or directories, which is orders of magnitudes
faster. The inner structure of these formations (i.e., the page level ranking) can
then be computed in an independently parallel manner (“off-line”), by combining

28



Paul - Alexandru Chirita

the local rank of each page with the global rank of the higher level entity it belongs
to, as in BlockRank [133], SiteRank [218, 1], the U-Model [36], ServerRank [213]
or HostRank / DirRank [92].

Derived Algorithms. There are a lot of publications proposing either alter-
natives to PageRank, or small modifications to it. Some of the latter ones have
already been mentioned above (e.g., [92]), as they are intended to achieve better
computation performance. We will thus focus here only on those papers exhibiting
bigger differences when compared to PageRank, either in terms of methodology
or of the end purpose of the computation. Baeza-Yates and Davis [16] improve
PageRank quality by giving different weights to links as a function of the tag in
which they were inserted, of the length of the anchor text, and of the relative
position of the link in the page. Feng et al. [96] calculate a ranking exclusively
over the Web sites, rather than the more granular pages. They start in a similar
manner to BlockRank [133], computing PageRank within each site separately, but
then this information is utilized to derive a stochastic coupling between Web sites,
which is later applied in a regular power iteration at the Web site level. Moreover,
other optimized Web ranking algorithms include the work of Upstill et al. [207],
who argue that ranking by the in-degree of pages is usually enough to approxi-
mate their quality, as well as the work of Abiteboul et al. [2], who attempt to
compute page reputations (PageRank approximations) directly at crawling time.
In this latter paper, the iterations of the power method are achieved through the
re-discovery of new links towards already visited pages, as well as through crawl
updates. Several crawling strategies are identified, but the greedy approach seems
to be closest to the power-law model of the Web. The interesting aspect of this
work is that page scores are updated as the Web is crawled over and over again,
thus implicitly coping with its volatility.

Another PageRank related research direction it to bias its scores towards the topic
associated to each user query. The most popular work is that of Haveliwala [118],
who builds a topic-oriented PageRank, starting by computing off-line a set of 16
PageRank vectors biased3 on each of the 16 main topics of the Open Directory
Project4 (ODP). Then, the similarity between a user query and each of these topics
is computed, and the 16 vectors are combined using appropriate weights. Rafiei
and Mendelzon [179] include the topics covered by Web pages into the reputation
algorithm, each topic being represented by a set of terms. Given a topic, the
pages covering it (i.e., containing its descriptive words) are identified and used in
the ranks calculation. The approach is not feasible, due to the practically infinite
amount of existing topics. Nie et al. [170] had the better idea of distributing

3Biasing is obtained by setting higher values for the targeted pages within the E vector.
4http://dmoz.org
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the PageRank of a page across the 16 ODP topics it contains. This way, the
importance flows according to the text content of the source and target pages,
and all 16 topic oriented rankings are generated at once5.

Finally, there exist also some works moving a bit beyond PageRank. Baeza et
al. [14] for example investigated various new damping functions for link analysis
ranking, showing them to result in rather similar quality to PageRank, while being
computationally much faster. Tomlin [205] proposed to use the richer network
flow model instead of the now common Markov chain approach to computing
PageRank. Last, but not least, we proposed HubRank (see Chirita, Olmedilla
and Nejdl [72, 73]), which biases PageRank onto hubs, thus nicely combining
the authoritative computation of PageRank with a hub measure for Web pages.
Moreover, we showed this approach to yield better qualitative results than regular
PageRank over a set of toy experiments.

HITS

Description. Kleinberg’s HITS [143] was the first efficient link analysis ranking
algorithm for the Web. It builds upon the idea of computing two scores for each
page in a Web community, namely a hub score and an authority score. Generally, a
hub is a page pointing to many other authoritative pages, whereas at the opposite
end, authorities are pages containing valuable information pointed to by many
hubs. The algorithm starts from a set R of pages with high PageRank, as returned
by a search engine. This set is first extended into Rext with all the pages pointing
to, as well as pointed by pages from R. Then, given that each of these pages has
been assigned an initial authority score a0

i and a hub score h0
i , HITS refines their

scores using the following iteration procedure:

ak
i =

∑
<p,q>∈E

hk−1
p ; hk

i =
∑

<p,q>∈E

ak−1
q (2.3)

For convergence purposes, after each iteration the values within a and h need
to be normalized to sum to 1 (as otherwise they would continuously increase).
Written in matrix form, if L is the adjacency matrix of the graph underlying the
pages from Rext, the same equations become:

ak = L · LT · ak−1; hk = LT · L · hk−1 (2.4)

5Of course, this approach limits the application to computing topical oriented rankings for
only a small number of topics.
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Just as with PageRank, it is straightforward to notice that a converges to the
dominant eigenvector of L · LT , and h converges to the dominant eigenvector of
LT · L. In fact, Ding et al. [83] have discovered another interesting property of
these vectors: There is a direct relationship between HITS’ authority matrix L·LT

and the co-citation matrices used in bibliometrics; similarly, the hub matrix LT ·L
is related to co-reference matrices.

Since HITS is usually constructed around the Top-K (usually 200) pages returned
as output to some user query, it is usually computed over less than 20,000 pages,
and is thus very fast. Moreover, one needs to compute only one of the above men-
tioned eigenvectors: For example, given the authority vector (i.e., the eigenvector
of L · LT ), then the corresponding hub vector is given by h = L · a.

A series of limitations made HITS less successful than PageRank. First of all,
its results are topic drifted, i.e., they are focused around the main topic of the
input graph. This problem was solved by Bharat and Henzinger [27] through
a weighting of the authority and hub scores according to the relevance of each
page to the initial user query. Gibson et al. [110] exploited this problem in order
to infer the topics residing within different subsets of the Web graph. A second
problem is HITS’ susceptibility to spamming. It is fairly easy to construct a very
good hub, and subsequently to push the score of a target authority page. Also,
HITS is neither rank stable, nor score stable [157, 159].

Derived Algorithms. HITS was also studied extensively and many improved
variants of it have been proposed. However, since our work is only partially
related to HITS, we will review here just some of its relevant follow-up algorithms.
Randomized HITS [169] is a two-level reputation ranking approach, combining the
random surfer model from PageRank with the concepts of hubs and authorities
from HITS in order to achieve a rank stable algorithm for calculating hub and
authority scores over a given graph. Similarly, SALSA [158] adopts two Markov
chains for traversing the Web graph, one converging to the weighted in-degree
of each page, for authority scores, and the other converging to its weighted out-
degree, for hub scores. The algorithm is thus no longer dependent on Tightly
Knit Communities of pages (as HITS is), but is still vulnerable to many forms of
spam. Other variants have been proposed by Tsaparas [206] and Borodin et al.
[29], though their work is more important due to the theoretical analysis therein,
rather than the qualitative improvements of the algorithms proposed. Finally, we
also note that a lot of research on the HITS algorithm has been performed within
the IBM CLEVER project [171].
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Other Link Analysis Ranking Algorithms and Beyond

Though there are many other approaches to ranking pages in the World Wide
Web, we would like to briefly discuss here only the most important one of them:
Machine Learning. As Web ranking becomes more and more complicated, with
increasingly more input features being necessary, Machine Learning seems to gain
momentum.

The most important approach in this category is RANKNET [39, 182], apparently
the ranking mechanism used by the Microsoft Live search engine. Its underlying
idea is to use machine learning to combine a large amount of features of Web pages,
starting from the already common link based ones, and up to visiting statistics
for different pages, as well as textual evidences. The authors show this technique
to yield better ranking results than PageRank.

Another technique which has been investigated for the Web ranking purpose
is Latent Semantic Analysis [80]. Cohn and Chang [75] use it to propose a
probabilistic model to estimate the authority of documents in the Web. Unlike the
eigenvector based solutions, they apply Hoffman’s Probabilistic LSI model [123]
over a Document x Citation matrix and obtain better document quality estimates.
However, their performance is dependent on the chosen starting set and may get
stuck in local optima with poor overall results. Also, it is not clear how fast this
algorithm would compute on Web size input data.

2.1.3 Other Features used for Web Ranking

This thesis builds upon the link analysis methods presented in the previous sec-
tion. Nevertheless, we have seen that such information is not sufficient. First and
foremost, without text analysis, it would be nearly impossible to accurately iden-
tify the documents best matching a user query. The most employed technique for
this matter is the Vector Space Model [188], according to which both queries and
Web pages are represented as bags of words, weighted by their Term Frequency
multiplied by Inverse Document Frequency. Many extensions are possible in the
Web environment, very important being the differentiation of terms based on the
mark-up used around them (i.e., title, bold, etc.), and the inclusion of anchor text
in the actual Web page.

A second source of ranking data is represented by the query logs. In fact, in the
pre- link analysis era, Yahoo! used to rank its output utilizing the number of clicks
obtained by each URL when displayed as response to some input query. While its
importance has now decreased, the click rate is still a highly relevant factor in Web
search engines. Moreover, it can give a lot more information besides the actual
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importance of documents. One could for example locate terms that frequently
co-occur with some query, and thus automatically bias and improve the quality
of the results list. Or, for ambiguous search requests, one could determine the
“popularity” of each query interpretation and tailor the search output accordingly
(e.g., the “Java” programming language is by far more popular than the coffee,
or the island in the Pacific).

Third, we have the session specific features. These are usually based on mining
the IP addresses of users. The most important one is the geographic location, as it
is clear that different cultures imply different perspectives on a qualitative search
result for most queries. Then, there is the time of day. Major global subject
interests change over the day, ranging for example from news in the morning,
to shopping in the evening. The same applies to the analysis of daily interests
over the year. Finally, as people feel uncomfortable with sharing their search
history, several simple personalization techniques have been developed, such as
anonymously identifying each person using a cookie stored on her machine.

A lot of other sources of quality rating exist. It is believed that the major
companies utilize over 500 such features. Some examples not covered by the
above mentioned categories include the fact of being listed in hand crafted Web
taxonomies such as the Open Directory, the age of each page, the amount and
frequency of changes operated on it, etc.

2.2 Using Ranking in IR Applications

In this thesis we tackle the major emerging applications of link analysis for rank-
ing. Nevertheless, there exist a few other utilizations of PageRank and alike. This
section briefly surveys these additional interest areas, together with a discussion
of their future success potential.

Social Network Ranking. As PageRank is strongly exploiting the social nature
of humans, some authors proposed to develop social reputation metrics based on
votes for (and sometimes also against) other individuals [124]. We have also pur-
sued this goal for ranking people within Peer-To-Peer environments (see Chirita
et al. [69], or Kamvar et al. [135]). However, the conclusions drawn from these
analyses indicate that PageRank provides only a minor improvement for regular
Peer-To-Peer tasks, such as known item search or generic keyword based search
[57, 65, 68, 69].

Web Characterization. There has been quite a lot of research on Web charac-
terization in the past, yet only few studies included a PageRank analysis as well.
Panduragan et al. [174] were among the first to show that the importance of Web
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pages (i.e., their PageRank) follows a power-law distribution. At the other end,
Arasu [12] investigated several PageRank computational optimizations which ex-
ploit the Web structure discovered in previous characterizational studies. All in
all, this field’s importance has now decreased, as the wide span of Web analyt-
ical methods discovered so far seems to be sufficient for the current algorithmic
necessities.

Ranking Concepts over the Semantic Web. Swoogle crawls the so-called
Semantic Web seeking for any existing ontological instances. The located items are
then ranked using a variant of PageRank [84] built on top of the links between the
identified objects. The small size of the search engine and the current insuccess of
the Semantic Web on a global scale make questionable the success of this otherwise
interesting application.

Text Summarization and Classification. Based on the assumption that the
macro social dynamics caught by PageRank could be in fact also present at the
micro level of singular subjects, it was believed that the similarity between the sen-
tences and / or documents authored by the same person also follows a power-law.
More specifically, if we build links between our previously authored sentences /
documents and weight them according to the level of textual similarity (in terms of
overlapping words) between the connected nodes, then we obtain a graph shaped
by a power-law degree distribution. Consequently, the most “representative” sen-
tences can be used to summarize their underlying documents [93, 94, 81], or to
group these documents into categories [100, 13]. This technique performs fairly
well, yet still below the more powerful Natural Language Processing algorithms.
We also applied such a micro social analysis onto another, more promising ap-
plication area: Personal Information Management. More details are given in the
next section.
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Chapter 3

Ranking for Enhancing Desktop
Search

3.1 Introduction

The capacity of our hard-disk drives has increased tremendously over the past
decade, and so has the number of files we usually store on our computer. Using
this space, it is quite common to have over 100,000 indexable items within our
Personal Information Repository (PIR). It is no wonder that sometimes we cannot
find a document anymore, even when we know we saved it somewhere. Ironically,
in some of these cases nowadays, the document we are looking for can be found
faster on the World Wide Web than on our personal computer. In view of these
trends, resource searching and organization in personal repositories has received
more and more attention during the past years. Thus, several projects have started
to explore search and Personal Information Management (PIM) on the Desktop,
including Stuff I’ve Seen [86], Haystack [178], or our Beagle++ [63].

Web search has become more efficient than PC search due to the boom of Web
search engines and to powerful ranking algorithms like the PageRank algorithm
introduced by Google1. The recent arrival of Desktop search applications, which
index all data on a PC, promises to increase search efficiency on the Desktop
(note that we use the terms Desktop and PIR interchangeably, referring to the
personal collection of indexable files, emails, Web cache documents, messenger
history, etc.). However, even with these tools, searching through our (relatively

1http://www.google.com
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small set of) personal documents is currently inferior to searching the (rather
vast set of) documents on the Web. This happens because these Desktop search
applications cannot rely on PageRank like ranking mechanisms, and they also fall
short of utilizing Desktop specific characteristics, especially context information.
Indeed, Desktop search engines are now comparable to first generation Web search
engines, which provided full-text indexing, but only relied on textual information
retrieval algorithms to rank their results.

Most of the prior work in Personal Information Management has focused on devel-
oping complex, yet user friendly, systems for organizing and re-finding information
using visualization paradigms, rather than ranking ones. This was in pursue of
the hypothesis that all Desktop documents are equally important, and thus no
ranking is necessary. In a more recent formulation, this was denoted “search =
re-finding”. In this thesis we advocate the contrary: We argue that some personal
documents are actually much more important than others, and that users would
search for these documents much more often than for any other ones.

We therefore have to enhance simple indexing and searching of data on our Desk-
top with more sophisticated ranking techniques. Otherwise, the user has no other
choice, but to look at the entire result sets for her queries – usually a tedious task.
The main problem with ranking on the Desktop comes from the lack of links be-
tween documents, the foundation of current ranking algorithms (in addition to
TFxIDF metrics). A semantically enhanced Desktop offers the missing ingredi-
ents: By gathering semantic information from user activities, from the contexts
the user works in2, we build the necessary links between documents.

Within this chapter we propose to enhance and contextualize Desktop search by
analyzing user’s local resource organization structures, as well as her Desktop
activity patterns. We investigate and evaluate in detail the possibilities to trans-
late this information into a Desktop linkage structure, and we propose several
algorithms that exploit these newly created links in order to efficiently rank Desk-
top items. Where applicable, we also utilize the same information in order to
generate resource specific metadata, which is then employed to enhance Desktop
search recall. We empirically show that all our algorithms lead to ranking results
significantly better than TFxIDF when used in combination with it, thus mak-
ing metadata and especially access based links a very valuable source of input to
Desktop search ranking algorithms.

The chapter is organized as follows: We start in the next section with a review
of the previous specific attempts to enhance Desktop search. In Section 3.3 we

2Studies have shown that people tend to associate things to certain contexts [129], and this
information should be utilized during search. So far, however, neither has this information been
collected, nor have there been attempts to use it.
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describe and empirically evaluate our first ranking algorithm, which ranks personal
items by analyzing exclusively several pre-defined user actions. We generalize this
approach by considering all resource accesses within the algorithm from Section
3.4. In the end, we conclude the chapter with a discussion on the pluses and
minuses of each technique, as well as on the possible next steps.

3.2 Specific Background

Though ranking plays an important role on the Web, there is almost no ap-
proach specifically aiming at ranking Desktop search results. Even though there
exist quite a few systems organizing personal information sources and improv-
ing information access in these environments, few of the papers describing them
concentrate on search algorithms. In this section we will first describe several
such systems and discuss their approaches to Desktop search. Then, we will con-
centrate our attention towards some of the other existing personal information
management systems, whose purpose was to provide means for organizing the
local information, rather than searching it. Finally, we will briefly review the
current industrial approaches for Information Retrieval at the PC Desktop level.

3.2.1 Ranking Algorithms for the PC Desktop

Very few works fall into this category. A very recent one, Connections [198], is
probably the only system specifically targeted at enhancing Desktop search qual-
ity. Similar to us and to Haystack [4], they also attempt to connect related Desktop
items, yet they exploit these links using rather complex measures combining BFS
and link analysis techniques, which results in rather large search response delays,
without a clear increase in output quality.

The ranking paradigm addressed to generic personal data collections has also
been researched in the context of the Semantic Web. Aleman-Meza et al. [7]
for example analyzed the importance of semantically capturing users’ interests in
order to develop a ranking technique for the large number of possible semantic
associations between the entities of interest for a specific query. They defined an
ontology for describing the user interest and used this information to compute
weights for the links among the semantic entities. The approach is orthogonal
to ours, as we build links only by exploiting fast usage analysis information,
instead of using various complex algorithms to connect at run-time the Desktop
entities relevant for every specific user query. Another interesting technique for
ranking the results for a query on a semantic data set takes into consideration the
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inferencing processes that led to each result [201]. In this approach, the relevance
of the returned results for a query is computed based upon the specificity of the
relations (links) used when extracting information from the knowledge base. The
calculation of the relevance is however a problem-sensitive decision, and therefore
task oriented strategies must be developed for this computation.

Finally, as current Information Retrieval literature falls short of providing valuable
ranking mechanisms for the PC Desktop, most tools for this environment recur
to traditional textual retrieval models, such as the Vector Space Model [17]. The
only ordering criterion specific for personal information is to sort items by their
recency, i.e., by the time difference between the current moment and their last
access stamp. Clearly, this is a näıve technique, which gives valuable results only
in particular cases.

3.2.2 General Systems for PIM

Several systems have been constructed in order to facilitate re-finding of various
stored resources on the Desktop. Stuff I’ve Seen [86] for example provides a
unified index of the data that a person has seen on her computer, regardless of its
type. Contextual cues such as time, author, thumbnails and previews can be used
to search for and present information, but no Desktop specific ranking scheme is
investigated. Similarly, MyLifeBits [109] targets storing locally all digital media of
each person, including documents, images, sounds and videos. They organize these
data into collections and, like us, connect related resources with links. However,
they do not investigate building Desktop ranking algorithms that exploit these
links, but rather use them to provide contextual information.

The Fenfire project [95] proposes a solution to interlink any kind of information on
one’s Desktop. That might be the birthday with the person’s name and the articles
she wrote, or any other kind of information. The idea is to make the translation
from the current file structure to a structure that allows people to organize their
data closer to the reality and to their needs, in which making comments and
annotations would be possible for any file. Nevertheless, the purpose of this
process has again no relation to personal information retrieval, i.e., searching and
ranking on the Desktop.

Haystack [178] pursues similar goals as Fenfire. One important focus is on working
with the information itself, not with the programs it is usually associated with.
For example only one application should be enough to see both a document, and
the email address of the person who wrote it. Therefore, a user could build her
own links to Semantic Web objects (practically any data), which could then be
viewed as thumbnails, Web pages, taxonomies, etc. The underlying idea of the
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project was to emphasize the relationship between a particular individual and
her corpus [4]. On the one hand, this is quite similar to our approach in the
sense that it automatically creates connections between documents with similar
content and it exploits activity analysis to extend the Desktop search results set.
On the other hand, just like the previous articles, it does not investigate the
possibilities to rank these results, once they have been obtained. Its follow-ups
[127, 136] further explore the efficient organization of Desktop resources. They
use an RDF database to store metadata about the various personal items, as well
as about any connections between different Desktop data. Finally, Magnet [197]
was designed as an additional component of Haystack with the goal to support
näıve user navigation through structured information via a domain-independent
search framework and user interface.

A smaller yet similar system, Semex [85], automatically generates associations
between items on the Desktop in order to provide a meaningful context based local
browsing. Interestingly, they also support on-the-fly integration of associations
stemming from both personal and public data. Again, no ranking is discussed in
their prototype whitepapers.

Lifestreams [102, 98] is an older Desktop organization system based on a time-
ordered stream of documents meant to replace conventional files and directories.
All its aspects, including query results, consist of substreams of the main Desktop
usage stream, thus being rather different from the systems nowadays.

Hull and Hart [126] modified conventional PC peripherics (e.g., printers) to au-
tomatically store every processed document, thus providing search through any
previously accessed document. They also use only traditional ranking techniques,
such as ordering by date or TFxIDF. Though it does not describe the architecture
of a system, the work of Ringel et al. [183] is also quite relevant for Desktop search
applications: They suggested using timeline visualizations augmented with public
and personal landmark events in order to display query results over an index of
personal content.

Gnowsis [191, 192] and IRIS [53] create a “personal map” across various types
of personal information objects. They allow users to annotate the files they ac-
cessed, as well as to manually establish links between them. This way, a semantic
metadata repository is populated and provided as a basis to other, semantically
enhanced Desktop applications, including search.

Finally, this work was developed in the context of the Beagle++ system [61, 63, 62].
There, we first produce a collection of metadata associated to each personal
resource, as well as a linkage structure over the PIR, using similar methods as
Gnowsis and IRIS. However, we also apply the results of this research for a specific
task, namely developing Desktop searching and ranking algorithms. More details
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about how links are collected and exploited in Beagle++ can be found in Sections
3.3 and 3.4.

3.2.3 Specific Applications aimed at Desktop Search Only

Desktop search applications are not new to the industry. Only the high interest
in this area is new. For example, applications such as Enfish Personal3 have
been available since 1998, usually under a commercial license. As the amount
of searchable Desktop data has reached very high values and will most probably
also amplify in the future, the major search engines have recently given more
focus to this area than the academia. Thus, several Desktop search distributions
have been released for free (e.g., Google Desktop Search4, MSN Desktop Search5,
etc.). Moreover, some providers have even integrated their Desktop search tool
into the operating system, such as Apple6. The open source community has also
manifested its interest in the area, the most prominent approaches being Gnome
Beagle7 (now also integrated into SuSE) and KDE KAT8, developed within the
Mandriva community. Many other commercial Desktop search applications exist
(e.g., Copernic, Yahoo! Desktop Search, X1, Scopeware Vision, PC Data Finder,
etc.), but as our main focus is to devise a Desktop ranking algorithm, rather than
an entire search application, we will not dive into the particularities of each of
these tools.

Most of the above mentioned applications target a very exhaustive list of indexed
file types, including any metadata associated to them. They also update their
index on the fly, thus inherently tracking any kind of user activity. However,
all of them seem to only employ dates, or TFxIDF as measures to rank search
results, without exploiting the usage information they have available. Therefore,
they inherently miss the contextual information often resulting or inferable from
explicit user actions or additional background knowledge.

3.3 Ranking by Tracking Specific User Actions

The vast majority of search activities at the PC Desktop level are navigational,
in the sense that the user is trying to locate one or more items that were almost

3http://www.enfish.com/
4http://Desktop.google.com/
5http://toolbar.msn.com/
6http://www.apple.com/macosx/features/spotlight/
7http://www.gnome.org/projects/beagle/
8http://kat.mandriva.com/
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surely stored somewhere in the personal information repository in the past. We
argue however that the current abundance of Desktop data makes such a location
impossible without any efficient ranking mechanism. On my Desktop for example,
the query “Google ranking algorithm” (i.e., a three word query, strongly above
the average query length of 1.7 terms for Desktop search [86]) would return about
500 results! More, this is definitely a clear query, with a very specific search goal
in mind. This yields two motivations for bringing ranking into Desktop search:
(1) One would surely not be willing to browse through all the 500 results until
she finds the right document; (2) The fact of having so many outputs for such a
clear query indicates that good query formulation is no longer sufficient in finding
items within the personal information repository.

This chapter will propose a preliminary solution for Desktop ranking. We will
first isolate several common user activity contexts and show how to exploit them
for locating previously stored information. Then, we will put these usage areas
together into a semantic ranking architecture meant to enhance the precision
of Desktop search algorithms by personalizing on each user’s regular file access
patterns. The empirical results depicted in the last part of the chapter will prove
our approach to yield visible improvements when seeking for items in the PIR.

3.3.1 Activity Contexts at the Desktop Level

In this section we overview the Desktop activity contexts we considered. We
describe the metadata information that can be extracted from personal resources,
as well as the implicit connections residing between them. The former enhance
recall by including the relevant document in the results set even when the user
query is poorly formulated, and the latter induce a PIR ranking which implicitly
strongly enhances Desktop search precision.

Exploiting the Email Context

Scenario. Alice is interested in distributed page ranking, as her advisor asked
her to write a report to summarize the state of the art in this research area.
She remembers that during the last month she has discussed with a colleague
about a distributed PageRank algorithm, and also that the colleague sent her the
article via email. Though the article does not mention distributed PageRank,
but instead talks about distributed trust networks, it is basically equivalent to
distributed PageRank as her colleague remarked in this email. Obviously she
should be able to find the article, if she could exploit this additional information.
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Context and Metadata. There are several aspects relevant to our email context.
Sender and receiver fields of the email are clearly relevant pieces of information.
Basic properties for this context are also the date when an email was sent, or
the date it was accessed, the subject of the email and its body. The status of the
email can be described as seen / unseen or read / unread. We also have a property
of the type reply to, which gives thread information and is useful to determine
social network information in general, for example which people discussed which
topic, etc. The has attachment property describes a 1:n relation between the mail
and its one or more attachments. The to and from properties connect to Class
MailAddress which connects to Class Person. A Person is usually associated
to more than one MailAddress instances. For attachments we also keep their
connection to the email they were saved from, because when we search for an
attachment we want to use all attributes originally connected to the email it was
attached to (see the motivating scenario above). The stored as attribute is the
inverse relation of the File:stored from property, which we describe later. Note
that all these metadata should be generated automatically, while the user works,
according to the schema depicted in Figure 3.1.

Figure 3.1: Email context.

Exploiting the File Hierarchy Context

Scenario. Alex spent his holiday in Hannover, Germany, taking a lot of digital
pictures. He usually saves his pictures from a trip into a folder named after the
city or the region he visits. However, he has no time to rename all images, and thus
their file names are the ones used by his camera (for example “DSC00728.JPG”).
When he forgets the directory name, no ordinary search can retrieve his pictures,
as the only word he remembers, “Germany”, does neither appear in the file
names, nor in the directory structure. It would certainly be useful if an enhanced
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Desktop search with a query like “pictures Germany” would assist in retrieving
his Hannover pictures.

Context and Metadata. Obviously, our context metadata for files include the
basic file properties like last date of access and creation, as well as the file owner.
File types can be inferred automatically, and provide useful information as well
(in our case, the file is of type “JPEG image data”). Additionally, a file might be
a visited Web page which we stored on our computer or an attachment saved from
an email. This stored from property is of great importance because it represents
information that current file systems miss, the provenance of information. We
also keep track of the whole file path, including directory structure. Finally, we
extend the strings used in the path name using WordNet [167], a lexical reference
system which contains English nouns, verbs, adjectives and adverbs organized into
synonym sets, each representing one underlying lexical concept. Different relations
link the synonym sets. In our case, we use the following additional relationships
to enrich the context of the stored file:

• Hypernym: Designates a class of more general instances. X is a hypernym
of Y if Y is a (kind of) X.

• Holonym: Designates the superset of an object. A is a holonym of B if B is
a part of A.

• Synonyms : A set of words that are interchangeable in some context. X is
a synonym of Y if Y can substitute X in a certain context without altering
its meaning.

The complete file context ontology is also depicted in Figure 3.2.

Figure 3.2: File context.
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Exploiting the Web Cache Context

Scenario. Even though Web search engines are providing surprisingly good
results, they still need to be improved to take user context and user actions into
account. Consider for example Michael, who is looking for the Yahoo! internships
Web page, which he has previously visited, coming from the Yahoo! home page.
If he does not remember the right set of keywords to directly jump to this page, it
would certainly be nice if enhanced Desktop search, based on his previous surfing
behavior, would support him by returning the Yahoo! home page, as well as
providing the list of links from this page he clicked on during his last visit.

Context and Metadata. The central class in this scenario is VisitedWebPage.
Upon visiting a Web page, the user is more interested in the links she has used
on that page, rather than every possible link which can be followed from there.
Thus, the metadata contains only the hyperlinks accessed for each stored Web
page: (1) departed to shows the hyperlinks the user clicked on the current Web
page, and (2) arrived from represents the page(s) the user came from. Also here,
we have added properties related to the time of access and place of storage in the
hard disk cache. For more specific scenarios, we can further define subclasses of
this base class, which include scenario specific attributes, for example recording
the browsing behavior in CiteSeer, which we will discuss in the next section.

Figure 3.3: Web page context.

Exploiting the Browsed Publications Context

Scenario. This is an example of a more specific scenario. Suppose that Alice
browses through CiteSeer for papers on a specific topic, following reference links
to and from appropriate papers, and downloads the most important documents
onto her computer. Now as soon as they are stored in one of her directories, her
carefully selected documents are just another bunch of files without any relation-
ships. They have completely lost all information present in CiteSeer, in this case
which paper references or is referenced by other papers, and which papers Alice
deemed important enough not only to look at but also to download. In our system
we preserve this information and make it available as explicit metadata.
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Context and Metadata. As discussed, stored files on today’s computers do
not tell us whether they were saved from a Web page or from an email, not
to mention the URL of the Web page, out-going or in-going visited links and
more specific information inferable using this basic knowledge and a model of
the Web page context browsed, as discussed in our scenario. We therefore create
a subclass of VisitedWebPage called Publication, and add suitable properties as
described in Figure 3.4. The Publication class represents a cached CiteSeer Web
page. It records the CiteSeer links traversed from that page using the references
property, as well as the CiteSeer documents which the user visited before, using
the referenced by property. It is easy to notice that these pages represent a
subset of the metadata captured by the departed to and arrived from relations.
PDF file and PS file are subclasses of File and describe the format used to save the
publication into the PIR. They are connected to Publication with subproperties
of stored as, namely stored as pdf and stored as ps.

Figure 3.4: Browsed publications context.

Other Contexts Enhancing Desktop Search

Resources on the PC Desktop offer us a lot of additional sources of information.
For example many multimedia files contain embedded metadata, such as the artist
and title of a song saved as an mp3 file, or the date and time when a picture
was taken. Some resources could be embedded into others, thus linking various
Desktop contexts (e.g., a picture might be inserted in a text document describing
a city). Similarly, our chat discussions with work partners from other locations
might contain some valuable information as well, including related pictures or
documents transmitted via the messaging application. All in all, the more contexts
included in the Desktop search architecture, the broader will be its resource
coverage and output quality.
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3.3.2 A Context Oriented Architecture for Desktop Search

We will now present our 3-layer architecture for generating and exploiting the
contextual metadata enhancing Desktop resources. At the bottom level, we have
the physical resources currently available on the PC Desktop. Even though they
can all eventually be reduced to files, it is important to differentiate between them
based on content and usage context. Thus, we distinguish structured documents,
emails, offline Web pages, general files9 and file hierarchies. As discussed in the
previous section, while all of them do provide a basis for Desktop search, they
also miss a lot of contextual information, such as the author of an email, or the
browsing path followed on a specific Web site. We generate and store this addi-
tional search input using metadata annotations, which are placed on the second
conceptual layer of our architecture. Finally, the uppermost layer implements a
ranking mechanism over all resources on the lower levels. An importance score
is computed for each Desktop item, supporting an enhanced ordering of results
within Desktop search applications. The complete architecture is depicted in Fig-
ure 3.5. In the next subsections we describe both its higher level layers following
a bottom-up approach.

Figure 3.5: Contextual Desktop Ranking Architecture.

The Semantic Information Layer: Bringing the Contexts Together. Peo-
ple organize their lives according to preferences often based on their activities.
Consequently, Desktop resources are also organized according to performed activ-
ities and personal profiles. Since most of the information related to these activities
is lost within our current Desktop applications, the goal of the semantic informa-
tion layer is to record and represent this data, as well as to store it as annotations
associated to each resource. Figure 3.6 depicts an overview of the ontology that
defines appropriate annotation metadata for the contexts we are focusing on.

9Text files or files whose textual content can be retrieved.
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Figure 3.6: Contextual Ontology for the Desktop.

The main characteristic of our extended Desktop search architecture is metadata
generation and indexing on-the-fly, triggered by modification events generated
upon occurrence of file system changes. This relies on notification functionalities
provided by the OS kernel. Events are generated whenever a new file is copied to
hard disk or stored by the Web browser, when a file is deleted or modified, when
a new email is read, etc. Depending on the type and context of the file / event,
various appropriate software modules generate each specific type of metadata and
export it into the Desktop search engine index.

The Contextual Ranking Layer. As the amount of Desktop items has been
increasing significantly over the past years, Desktop search applications will return
more and more hits to our queries. Contextual metadata, which provide additional
information about each resource, result in even more search results. A measure of
local resource importance is therefore necessary. In the following paragraphs we
propose such a ranking mechanism which exploits the “popularity” of each item
and the connections between user’s activity contexts.

Basic Ranking. Given the fact that rank computation on the Desktop would not be
possible without the contextual information, which provides semantic links among
resources, annotation ontologies should describe all the aspects and relationships
influencing the ranking. The identity of the authors for example influences our
opinion on documents, and thus “author” should be represented explicitly as a
class in our publication ontology.

Then, we have to specify how these aspects influence importance. ObjectRank
[18] has introduced the notion of authority transfer schema graphs, which ex-
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tend schemas similar to the ontologies previously described, by adding weights
and edges in order to express how importance propagates among the entities and
resources inside the ontology. They extend our context ontologies with the infor-
mation we need to compute ranks for all instances of the classes defined in the
context ontologies.

Figure 3.7: Contextual Authority Transfer Schema.

Figure 3.7 depicts our context ontology enriched with the appropriate authority
transfer annotations. For example the authority of an email is influenced by the
sender of the email, its attachment, the number of times that email was accessed,
the date when it was sent and the email to which it was replied. Consequently, if
an email is important, its sender might be an important person, its attachment an
important one, just as the date when the email was sent and the previous email
in the thread hierarchy. Given the fact that semantically based schema graphs
are bi-directional, we split every edge in two parts, one for each direction. This is
because contextual authority in particular flows in both directions: if we know that
a person is important, we also want to have all emails we receive from this person
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ranked higher. The final ObjectRank value for each resource is then calculated
utilizing the regular PageRank formula, as applied onto the graph resulted from
instantiating our ontology.

Personalization and Beyond. For the computation of authority transfer, we can
also use PageRank’s biasing vector in order to include additional external ranking
sources into the algorithm, such as for example Google page scores, CiteSeer
citation counts, or social network reputation values.

These Desktop specific rankings can already be seen as personalized, since they
are specific to the data within each user’s Personal Information Repository. How-
ever, the same PageRank personalization vector can be used to further bias the
rankings onto some given contexts deemed more interesting by the user. At a
lower granularity level, different authority transfer weights will express different
preferences of the user, translating again into personalized rankings. The im-
portant requirement for doing this successfully is that we include in each user’s
ontology all concepts influencing her ranking function. For example if we con-
sider a publication important because it was written by an important author, we
have to represent that in the ontology. Similarly, if the importance of our digital
photographies is heavily influenced by the event or the location where they were
taken, then both of them must be included as classes in the context ontology.

3.3.3 Experiments

Experimental Setup

We evaluated our algorithms by conducting a small scale user study. Colleagues
of ours provided a set of their locally indexed publications, some of which they
received as attachments to emails (thus containing rich contextual metadata as-
sociated to them from the specific email fields). Then, each subject defined her
own queries, related to their activities, and performed search over the above men-
tioned reduced images of their Desktops. In total, 30 queries were issued. The
average query length was 2.17 keywords, which is slightly more than the average
of 1.7 keywords reported in other larger scale studies (see for example [86]). Gen-
erally, the more specific the test queries are, the more difficult it is to improve
over basic textual information retrieval measures such as TFxIDF. Thus, having
an average query length a bit higher than usual can only increase the quality of
our conclusions.

Our entire system is built as an extension to the open source Beagle Desktop search
engine. For comparison purposes, we sent each of the above mentioned queries to
three systems: (1) the original Beagle, whose output is selected and sorted using
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solely TFxIDF, (2) an intermediate version of our system, Beagle++, enhanced
only with activity based metadata (using the same TFxIDF measure for ordering
its output, but giving more importance to those results having also metadata
associated to them), and (3) the current Beagle++, containing enhancements for
both metadata support and Desktop ranking. We combined the regular textual
ranking with the link analysis based one using the following formula:

R′(a) = R(a) · TFxIDF (a), (3.1)

where R(a) is the Desktop rank of resource a, and TFxIDF (a) is automatically
computed by Beagle. Thus, a search hit will have high score if it has both a high
rank and a high TFxIDF score. Finally, for every query and every system, each
user rated the top 5 output results using grades from 0 to 1, as follows: 0 for an
irrelevant result, 0.5 for a relevant one, and 1 for highly relevant one.

Methodology

We used the ratings of our subjects to compute average precision and recall
values at each output rank [17]. In general, precision measures the ability of
an (information retrieval) system to return only relevant results. It is defined as:

Precision =
Number of Relevant Returned Results

Number of Returned Results
(3.2)

Recall is its complement: It measures the ability of a system to return all relevant
documents, and is computed using the formula below:

Recall =
Number of Relevant Returned Results

Total Number of Relevant Results Available in the Entire System
(3.3)

Both measures can be calculated at any rank r, i.e., considering only the top r
results output by the application. For example, even if the system has returned
2000 hits for some user query, when calculating precision at the top-3 results, we
consider only these three as returned results. This is necessary for large scale
environments, such the World Wide Web, and more recently, the PC Desktop,
because it impossible to check the relevance of all output results – even in the
Desktop environment, it is not uncommon to obtain several hundreds of search
results to a given query. Restricting the calculation of precision and recall to
various ranks is also useful in order to investigate the quality of the system at
different levels. Usually, in a healthy information retrieval system, as the rank level
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Figure 3.8: Average Precision Results.

is increased, recall is also increasing (the denominator remains the same, while
the numerator has the possibility to increase), whereas precision is decreasing
(because most of the relevant results should be at the very top of the list).

Another important aspect is calculating the total number of available relevant
results. For search engines, including Desktop ones, an approximation must be
used, as the datasets they cope with are too large. Here we consider this amount
to be equal to the total number of (unique) relevant results returned by the three
systems we investigated. For every query, each system returned 5 results, 15 in
total. Thus, the minimum possible total number of relevant results is 0 and the
maximum is 15. Similarly, the maximum number of relevant results a system can
return is 5 (since it only outputs 5 results), indicating that the recall will not
necessarily be 1 when restricting the computation to rank 5. This version of recall
is called relative recall [17].

Results and Discussion

As the main purpose of our experimental analysis was to produce an estimate
of each system’s performance, we averaged the precision values at each rank
from one to five for all 30 queries submitted by our experts. Note that this
gave us a weighted precision, as we considered both relevant (i.e., scored 0.5)
and highly relevant results (i.e., scored 1). The results obtained are depicted in
Figure 3.8. We first notice that the current Beagle Desktop Search is rather poor,
containing more qualitative results towards rank 4 to 5, rather than at the top of
the result list. This is in fact explainable, since Beagle only uses TFxIDF to rank
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Figure 3.9: Average Relative Recall Results.

its results, thus missing any kind of global importance measure for the Desktop
resources. On the contrary, our first prototype, consisting of Beagle enhanced
with metadata annotations, already performs very well. An important reason for
its high improvement is that metadata are mostly generated for those resources
with high importance to the user, whereas the other automatically installed files
(e.g., help files) are not associated with metadata, and thus ranked lower. Finally,
the precision values are even higher for our second prototype, which adds our
Desktop ranking algorithm to the metadata extended version of Beagle. Clearly
ranking pushes our resources of interest more towards the top of the list, yielding
even higher Desktop search output quality.

In the second part of the evaluation, we drew similar conclusions with respect
to the average recall values (depicted in Figure 3.9): The recall of Beagle is
very low, whereas that of our prototypes is almost three times better (owing
to the additional information available as metadata). The difference between
our two prototypes is relatively small, which is correct, since recall analyzes the
amount of good results returned, and both our systems yield relevant results.
We thus conclude that enhancing Beagle with metadata annotations significantly
increases its recall (as metadata usually represents additional, highly relevant
text associated to each Desktop file), whereas adding Desktop ranking further
contributes with a visible improvement in terms of precision.
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3.4 Ranking by Tracking All User Actions

In the previous section we proposed the first link analysis based algorithm which
ranks resources within Personal Information Repositories. It was based on a set
of heuristics defining several strict user activity patterns to generate relationships
between Desktop items. Unfortunately, though they indeed connect highly related
documents, these heuristics yield a rather sparse Desktop linkage matrix, leaving
out many important resources from the computation. This section will propose
and empirically investigate the opposite approach: All user activities will be
taken into consideration when building the personal link structure. We will first
introduce this new general heuristic in more detail, and then we will analyze
both some Desktop specific behavioral patterns and their effect upon the defined
ranking algorithm.

3.4.1 Generic Usage Analysis Based Ranking

Exploiting Resource Accesses to Generate Ranks. Our previous algorithm
created links between Desktop resources only when a very specific Desktop usage
activity was encountered (e.g., the attachment of an email was saved as a file, or
a Web page was stored locally, etc.). We now address the problem from the other
perspective and suppose that in almost all cases when two items are touched in a
sequence several times, there will also be a relation between them, irrespective of
the underlying user activity. This basically generalizes the algorithm introduced
in Section 3.3.

We thus propose to add a link between two items a and b whenever item b is
touched after a for the T th time, with T being a threshold set by the user. Higher
values for T mean an increased accuracy of the ranking algorithm, at the cost
of having a score associated to less resources. Theoretically, there is only a very
low probability to have any two items a and b touched in a sequence even once.
However, since context switching occurs quite often nowadays, we also investigated
higher values for T , but experimental results showed them to perform worse than
T = 1. This is in fact correct, since two files are accessed consequently more often
because they are indeed related, than due to a switch of context.

After a short period of time a reputation metric can be computed over the graph
resulted from this usage analysis process. There exist several applicable metrics,
the most common one being again PageRank. On the one hand, it has the
advantage of propagating the inferred semantic similarities (connections), i.e.,
if there is a link between resources a and b, as well as an additional link between
resources b and c, then with a relatively high probability we should also have a
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connection between a and c. On the other hand, PageRank also implies a small
additional computational overhead, which is not necessary for a simpler, yet more
näıve metric, in-link count. According to this latter approach, the files accessed
more often get a higher ranking. However, our experiments from Section 3.4.2 will
show that although it does indeed yield a clear improvement over simple TFxIDF,
file access counting is also significantly less effective than PageRank.

Another aspect that needs to be analyzed is the type of links residing on the PC
Desktop. Since we are now dealing with a generic analysis, we use directed links
for each sequence a→ b, as when file b is relevant for file a, it does not necessarily
mean that the reversed is true as well. Imagine for example that b is a general
report we are regularly appending, whereas a is the article we are writing. Clearly
b is more relevant for a, than a is for b. This yields the following algorithm:

Algorithm 3.4.1.1. Ranking Desktop Items.

Pre-processing:
1: Let A be an empty link structure.
2: Repeat for ever
3: If (File a is accessed at time ta, File b at time tb) AND (ta − tb < ε),
4: Then Add the link a→ b to A.

Ranking:
1: Let A′ be an additional, empty link structure.
2: For each resource i
3: For each resource j linked to i
4: If (#Links(i→ j) > T ) in A
5: Then Add one link i→ j to A′.
6: Run PageRank using A′ as underlying link structure.

As it was not clear how many times two resources should be accessed in a sequence
in order to infer a “semantic” connection between them, we studied several values
for the T threshold, namely one, two and three. Additionally, we also explored the
possibilities to directly use the original matrix A with PageRank, thus implicitly
giving more weight to links that occurred more frequently (recall that in A each
link is repeated as many times as it occurred during regular Desktop activity).
Finally, in order to address a broad scope of possible ranking algorithms, we
also experimented with more trivial reputation measures, namely (1) frequency of
accesses and (2) total access time.
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Exploiting Resource Naming and Content to Generate Ranks. There ex-
ists a plethora of other generic cues for inferring links between personal resources10.
For example the files stored within the same directory have to some extent some-
thing in common, especially for filers, i.e., users that organize their personal data
into carefully selected hierarchies [165, 20, 156]. Similarly, files having the same
file name (ignoring the path) are in many times semantically related. In this case
however, each name should not consist exclusively of stopwords. More, for this
second additional heuristic we had to utilize an extended stopword list, which also
includes several very common file name words, such as “index”, or “readme”. In
total, we appended 48 such words to the original list. We also note that both
these above mentioned approaches favor lower sets: If all files within such a set
(e.g., all files residing in the same directory) are linked to each other, then the sta-
tionary probability of the Markov chain associated to this Desktop linkage graph
is higher for the files residing in a smaller set. This is in fact correct, since for
example a directory storing 10 items has most probably been created manually,
thus containing files that are to some extent related, whereas a directory storing
1,000 items has in most of the situations been generated automatically.

A third broad source of linkage information is file type. There is clearly a connec-
tion between the resources sharing the same type, even though it is a very small
one. Unfortunately, each such category will nowadays be filled with up to several
thousands of items (e.g., JPG images), thus making this heuristic difficult to inte-
grate into the ranking scheme. A more reliable approach is to use text similarity
to generate links between very similar Desktop resources. Likewise, if the same
entity appears in several Desktop resources (e.g., Hannover appears both as the
name of a folder with pictures and as the subject of an email), then we argue that
some kind of a semantic connection exists between the two resources. Finally, we
note that users should be allowed to manually create links as well, possibly having
a much higher weight associated to these special links.

Practical Issues. Several special cases might arise when applying usage analysis
for Desktop search. First, the log file capturing usage history should persist
over system updates in order to preserve the rich linkage information. In our
experiments, we collected only about 80 KB of log data over 2 months. Second,
more important, what if the user looks for a file she stored 5 years ago, when she
had no Desktop search application installed? We propose several solutions to this:

1. The näıve approach is to simply enable ranking based exclusively on TFx-
IDF. However, much better results can be obtained by incorporating con-
textual information within the ranking scheme.

10Note that these additional heuristics follow the general approach taken in this section, i.e.,
they are applicable to all personal files, rather than a set of narrowly specified ones.
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2. We therefore propose a more complex query term weighting scheme, such
as BM25 [132]. Teevan et al. [204] have recently proposed an application
of this metric to personalize Web search based on Desktop content. In
our approach, their method must be adapted to personalize Desktop search
based on a specific subset of PIR, represented for example by the files with
a specific path or date range.

3. If the user remembers the approximate moment in time when she accessed
the sought item, then this date represents a useful additional context based
vertical ranking measure. For example, if the user remembers having used
the target file around year 1998, the additional importance measure is rep-
resented by the normalized positive time difference between mid-1998 and
the date of each output result.

4. If no contextual information is available, we propose to infer it through a
relevance feedback process, in which the user first searches the Desktop using
TFxIDF exclusively, and then selects one or several (relatively) relevant
results, which are then used to extract a context (e.g., date) or to propose
expansions to the user query.

Comparison to the Web model. Clearly, unlike in the Web, most of the
Desktop search queries are navigational: users just want to locate something
they know their stored before. So, are some Desktop files more important than
others, or are they all approximately equally important? We argue that, as in
the Web, some Desktop resources are much more important than others, and thus
users will most of the time be seeking only for these highly important items.
For example, one year after some project was closed, a log file inspected by
the researcher 400 times during an experiment will definitely be less important
than the project report which was probably accessed only 100 times. Therefore,
contextual information, though very important, is not sufficient in effectively
locating Desktop items. More complex importance measures are thus needed
in order to exploit user’s activity patterns, her local Desktop organization, etc.
either within a set of targeted scenarios, as in Section 3.3, or in a generalized
approach, as described in this section.

3.4.2 Experiments

Experimental Setup

We evaluated the utility of our algorithms within three different environments: our
laboratory (with researchers in different computer science areas and education),
a partner laboratory with slightly different computer science interests, and the

56



Paul - Alexandru Chirita

architecture department of our university. The last location was especially chosen
to give us an insight from persons with very different activities and requirements.
In total, 11 persons installed our logging tool and worked normally on their
Desktops for 2 months11. Then, during the subsequent 3 weeks, they performed
several Desktop searches related to their regular activities12, and graded each top
10 result of each algorithm with a score ranging from 1 to 5, 1 defining a very poor
result with respect to their Desktop data and expectations, and 5 a very good one.
This is in fact a Weighted P@10 [17], i.e., precision at the first 10 results. For
every query, we shuffled the top ten URIs output by each of our algorithms, such
that the users were neither aware of their actual place in the rank list, nor of the
algorithm(s) that produced them. On average, for every issued query the subjects
had to evaluate about 30 Desktop documents (i.e., the reunion of the outputs of
all approaches we investigated). In total, 84 queries had been issued and about
2,500 documents were evaluated.

For the link based ranking algorithms (recall that for the sake of completeness we
have also evaluated some time based ranking heuristics) we set the parameter ε
to four times the average break time of the user. We have also attempted to set
it to one hour, and eight times the average break time of the user, but manual
inspection showed these values to yield less accurate usage sessions. Although
much more complex techniques for computing usage session times do exist (e.g.,
exploiting mouse clicks or movements, scrollbar activities, keyboard activities,
document printing, etc. [74, 211]), we think this heuristic suffices for proving
our hypothesis, i.e., usage analysis based ranking improves over simple textual
retrieval approaches.

In the following we will first present an analysis of this experiment focused on
identifying some general usage patterns and on investigating the behavior of our
ranking algorithms. Afterwards we will proceed to the qualitative analysis of the
search output produced by each approach.

Analyzing Usage Patterns

Our ultimate goal is to infer links from Desktop resources that have been accessed
in a sequence. Yet this is not a straightforward task. Several persons might
have quite different usage behavior strategies, thus making it very difficult to

11The logger was implemented using a hook that caught all manual file open / create / save
system calls.

12The only requirement we made here was to perform at least 5 queries, but almost every
subject provided more. In all cases, we collected the average rating per algorithm for each
person.
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Figure 3.10: Two months distribution of manual accesses to desktop items.

distinguish usage sessions from each other. Moreover, this problem could even
occur with the same person, at two different moments in time. We thus first
analyzed the file access patterns of (seven of) our subjects. All of them manifested
rather similar characteristics on the long term. We depict in Figure 3.10 one user
activity captured over a period of two months. Notice that on such a long term the
daily accesses are rather easy to distinguish: Each bar represents one file access.
When several accesses occur at small intervals, their associated bars are merged
into a thicker one. Also, longer breaks have been generated during week-ends, and
the three very large pauses represent vacation periods. But what happens with
the activity performed during a single day? A general example is presented in
Figure 3.11. There are two access intensive working sessions in the morning, and
only one session in the afternoon. In general, we distinguished two broad types
of desktop activity: Working (e.g., reading an article, writing a program, etc.),
which usually results in a relatively small file access frequency, and Browsing (e.g.,
reading emails, surfing the Web, etc.), when much more resources are opened in
a short amount of time, in many cases only for reading. We believe these results
could be used in a separate stream of research in order to find more accurate
definitions for the parameter ε which delimits user sessions from each other.

Having identified the file access patterns, we then investigated the distributions of
file access frequency and total file access time, as they represent a good indicator
of how the final ranking distributions will look like. The former distribution has
also been investigated by Dumais et al. [86], obtaining similar results. However,
they only looked at the resources that have been accessed at least once, whereas we
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Figure 3.11: One day distribution of manual accesses to desktop items.

considered all Desktop items in our analysis. This helped us obtain an additional
interesting result, namely that only about 2% of the Desktop indexable items are
actually manually accessed by the user. This is most probably because of various
program documentations (especially when in HTML format), locally stored mail-
ing list archives, etc. We think this finding further supports the idea of exploiting
usage information in ranking desktop search results, as current textual measures
(i.e., TFxIDF) many times output high scores for such automatically deployed
documents that have never been touched by the user. We depict a sample visit
frequency distribution in Figure 3.12. For all our testers, this distribution followed
a power law (i.e., f(x) = c · 1/xγ) with very low values for the γ exponent, rang-
ing from −0.26 to −0.38. Similarly, we depict the distribution of total time spent
accessing each file (i.e., reading, writing, etc.) in Figure 3.13. This distribution
can be tailored by a power law with an exponential cut-off, as in the following
formula:

f(x) = c · 1

xγ
· e

−x
zc (3.4)

The additional inverse exponential term is only used to ensure a faster decreasing
value of f , zc being a parameter. Again, we obtained very low values for γ, residing
around 0.18.

Ranking analysis

We then analyzed how our algorithms perform, in order to further tune their
parameters and to investigate whether the non-usage analysis heuristics do indeed
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Figure 3.12: Frequency distribution of number of manual accesses to desktop
items.

make a difference in the overall rankings. We thus defined and analyzed the
following 17 algorithms:

• T1: Algorithm 3.4.1.1 with T = 1.

• T1Dir: “T1” enriched with additional links created as complete subgraphs
with the files residing in every Desktop directory (i.e., all the files in a
directory point to each other).

• T1DirFnames: “T1Dir” with further additional links created as complete
subgraphs with the resources having the same file name (i.e., all items with
the same file name point to each other, provided that the file name does not
consist exclusively of stopwords).

• T1Fnames: “T1” enriched with the links between resources with identical
file names as in the previous algorithm13. This was necessary to inspect the
specific contribution of directories and file names respectively to the overall
ranking scheme.

• T1x3Dir: Same as “T1Dir”, but with the links inferred from usage analysis
being three times more important than those inferred from the directory
structure.

• T1x3DirFnames: Same as above, but also including the links provided by
identical file names.

13For emails, this corresponded to having the same subject, eventually with “Re:” or “Fwd:”
inserted in the beginning.
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Figure 3.13: Distribution of time spent while manually accessing desktop items.

• T1x3Fnames: Same as “T1x3Dir”, but using the file name heuristic in-
stead of the directory one.

• T2: Algorithm 3.4.1.1 with T = 2.

• T3: Algorithm 3.4.1.1 with T = 3.

• VisitFreq: Ranking by access frequency.

• 1HourGap: Ranking by total amount of time spent on accessing each
resource, with sessions delimited by one hour of inactivity.

• 4xAvgGap: Ranking by total access time, with sessions delimited by a
period of inactivity longer than four times the average break time of the
user.

• 8xAvgGap: Same as above, but with sessions bounded by a period of
inactivity longer than eight times the average break time of the user.

• Weighted: Algorithm 3.4.1.1 directly using the matrix A, instead of A′,
i.e., with links weighted by the number of times they occurred.

• WeightedDir: Algorithm “Weighted” enriched with links between the files
stored within the same directory.

• WeightedDirFnames: The previous algorithm with a link structure ex-
tended with connections between files with identical names.

• WeightedFnames: Same as above, but without the links generated by
exploiting the Desktop directory structure.
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Figure 3.14: Distribution of scores for the “T1” algorithm.

Since in-link count is almost identical to file access count (frequency), we only
experimented with the latter measure. The only difference between these two
measures is that in-link count will result in lower page scores when a threshold
higher than one is used to filter-out the links (see also Algorithm 3.4.1.1).

We analyzed two aspects at this stage: First, it was important to inspect the final
distribution of rankings, as this indicates how Desktop search output looks like
when using these algorithms. In all cases the resource rankings exhibits a distri-
bution very well shaped by a power law: Figure 3.14 plots the output rankings
for algorithm “T1”, and Figure 3.15 depicts the output when both directory and
file name heuristics were added (in this latter case we notice a strong exponential
cut-off towards the end, for the files that benefited less from the link enhancement
techniques).

The second aspect to analyze was whether there is a difference between these
heuristics. For this purpose we used a variant of Kendall’s τ measure of similarity
between two ranking vectors [139], which resulted in a similarity score falling
within [-1,1].

Three of our testers (one from each location) were specifically asked to extensively
use our tool. When they reached 40 queries each, we applied the Kendall mea-
sure on their complete output, as returned by each algorithm. The results are
illustrated in Table 3.1. After analyzing them, we drew the following conclusions:

• The heuristics to link the resources residing within the same directory, or
the resources with identical file names did result in a rather different query
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Figure 3.15: Distribution of scores for the “T1DirFnames” algorithm.

output.

• The approaches “T1x3Dir”, “T1x3DirFnames” and “T1x3Fnames” did not
yield a significant difference in the results.

• The output of “T2” and “T3” was very similar, indicating that a threshold
higher than 2 is not necessary for Algorithm 3.4.1.1.

• “4xAvgGap” and “8xAvgGap” performed very similar to each other.

• “Weighted” output was very close to “T1”.

• Finally, when “Weighted” was combined with directory or file name infor-
mation, we obtained almost identical outcomes as when we used “T1” with
these heuristics.

As a rule of thumb, we considered similar all algorithm pairs with a Kendall τ score
above 0.5, and therefore removed one of them from the search quality evaluation.
Exceptions were “Weighted” and “VisitFreq” (both very similar to “T1”) in order
to have at least one representative of their underlying heuristics as well.

Search quality analysis

After the previous analysis, we kept 8 algorithms for precision evaluation: “T1”,
“T1Dir”, “T1DirFnames”, “T1Fnames”, “T2”, “VisitFreq”, “4xAvgGap” and
“Weighted”. Even though they do not incorporate any textual information, we
still started with ranking Desktop search results only according to these measures,
in order to see the impact of usage analysis on Desktop ranking. The average
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Threshold 1 1

T1Dir 0.2 1

T1Dir-
Fnames

0.2 0.5 1

T1Fnames 0.2 0.2 0.4 1

T1x3Dir 0.3 0.9 0.5 0.2 1

T1x3Dir-
Fnames

0.2 0.5 0.8 0.4 0.5 1

T1x3Fnames 0.2 0.2 0.4 0.9 0.2 0.4 1

Threshold 2 0.2 0 -0.2 0 0 -0.2 0 1

Threshold 3 0 -0.1 -0.3 -0.1 -0.1 -0.3 -0.1 0.6 1

VisitFreq 0.7 0.2 0.2 0.3 0.3 0.2 0.3 0.3 0.1 1

1HourGap 0.5 0.2 0.1 0.2 0.1 0.1 0.2 0.2 0 0.4 1

4xAvgGap 0.4 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0 0.4 0.3 1

8xAvgGap 0.5 0.3 0.2 0.2 0.3 0.2 0.2 0.2 0 0.5 0.5 0.7 1

Weighted 0.8 0.2 0.2 0.2 0.3 0.2 0.2 0.2 0 0.6 0.5 0.5 0.5 1

WeightedDir 0.2 0.9 0.5 0.2 0.9 0.5 0.2 0 -0.1 0.2 0.1 0.3 0.3 0.2 1

Weighted-
DirFnames

0.2 0.5 0.9 0.3 0.5 0.8 0.4 -0.2 -0.3 0.2 0.1 0.2 0.2 0.2 0.5 1

Weighted-
Fnames

0.3 0.2 0.4 0.8 0.3 0.4 0.8 0 -0.1 0.3 0.3 0.3 0.3 0.3 0.2 0.4 1

Table 3.1: Kendall similarity for the Desktop ranking algorithms (average over
120 queries from 3 users).

results are summarized in the second column of Table 3.2. As we can see, all
measures performed worse than TFxIDF (we used Lucene14 together with an
implementation of Porter’s stemmer to select the query hits, as well as to compute
the TFxIDF values15), but only at a small difference. This indicates that users do
issue a good amount of their Desktop queries on aspects related to their relatively
recent, or even current work. Also, as the “T2” algorithm does not improve over
“T1”, it is therefore sufficient to use Algorithm 3.4.1.1 with a threshold T = 1 in
order to effectively catch the important Desktop documents. This is explainable,

14http://lucene.apache.org
15Note that even though our Desktop search system, Beagle++, is also based on a Linux specific

.Net implementation of Lucene, we decided to move this evaluation outside of its context, in
order to allow for a broader range of subjects, i.e., running Java on both Linux and Windows.
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since a threshold T = 2 would only downgrade files that were accessed only once,
which have a relatively low score anyway compared to the other more frequently
touched resources.

Finally we investigated how our algorithms perform within a realistic Desktop
search scenario, i.e., combined with term frequency information. We used the
following formula:

Score(file) = NormalizedScore(file) · NormalizedV SMScore(file, query)

The VSM score is computed using the Vector Space Model and both scores are
normalized to fall within [0,1] for a given query16. The resulted average gradings
are presented in the third column of Table 3.2. We notice that in this approach, all
measures outperform TFxIDF in terms of weighted precision at the top 10 results,
and most of them do that at a statistically significant difference (see column 4 of
Table 3.2 for the p values with respect to each metric).

The usage analysis based PageRank (“T1”) is clearly improving over regular TFx-
IDF ranking. As for the additional heuristics evaluated, connecting items with
similar file name or residing in the same directory, they yielded a significant im-
provement only when both of them have been used. This is because when used
by themselves, these heuristics tend to bias the results away from the usage anal-
ysis information, which is the most important by far. When used together, they
add links in a more uniform manner, thus including the information delivered
by each additional heuristic, while also keeping the main bias on usage analy-
sis. Finally, the simpler usage analysis metrics we investigated (e.g., ranking by
frequency or by total access time) did indeed improve over TFxIDF as well, but
with a lower impact than the Algorithm 3.4.1.1 enriched with directory and file
name information. We conclude that with TFxIDF in place, usage analysis signif-
icantly improves Desktop search output rankings and it can be further enhanced
by linking resources from the same directory and with identical file names.

The final results are also illustrated in Figure 3.16, in order to make the improve-
ment provided by our algorithms also visible at a graphical level. The horizontal
line residing at level 3.09 represents the performance of TFxIDF; the red bars
depict the average grading of the algorithms combining TFxIDF with our ap-
proaches, and the blue ones depict the average grading obtained when using only
our usage analysis algorithms to order Desktop search output.

Observation. We have showed our algorithms to provide significant improve-
ments over regular TFxIDF search. Yet since they tend bias the results very

16In order to avoid obtaining many null scores when using access frequency or total access
time (recall that many items have never been touched by the user), in these scenarios we also
added a 1/N score to all items before normalizing, with N being the total amount of Desktop
items.
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Algorithm Weighted P@10 Weighted P@10 Signif. for Combined
(Usg. An.) (Combined) versus TFxIDF

T1 · TFxIDF 3.04 3.34 p = 0.003
T1Dir · TFxIDF 3.02 3.36 p < 0.001
T1DirFnames · TFxIDF 2.99 3.42 p � 0.001
T1Fnames · TFxIDF 2.97 3.26 p = 0.064
T2 · TFxIDF 2.85 3.13 p = 0.311
VisitFreq · TFxIDF 2.98 3.23 p = 0.141
4xAvgGap · TFxIDF 2.94 3.09 p = 0.494
Weighted · TFxIDF 3.07 3.30 p = 0.012
TFxIDF 3.09 3.09

Table 3.2: Average grading for the usage analysis algorithms with and without
a combination with TFxIDF, together with tests on the statistical significance of
the improvement the latter ones bring over regular TFxIDF.

Figure 3.16: Average grading for the usage analysis algorithms.

much towards the previously accessed files, wouldn’t we get similar performance
simply by boosting these visited files within the Desktop search output (i.e., with-
out using any link analysis approach)? The answer is no and can be probed by
carefully analyzing the results from Table 3.2. The “VisitFreq” algorithm is in fact
an implementation of this näıve heuristic: it orders the search results based on the
frequency with which they were visited; if this is 0, then TFxIDF is used to sort
the output. And as we can see from Table 3.2, VisitFreq performs significantly
worse compared to our complete link analysis approach, T1DirFnames (3.23 ver-
sus 3.42, a difference which is also statistically significant with p = 0.043), as well
as to T1, which only considers the creation of access based links (3.23 versus 3.34,
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with p = 0.098). Therefore, a more complex measure of importance for Desk-
top items such as T1DirFnames is indeed necessary in order to also incorporate
the order in which resources have been touched, as well as any other potential
Desktop linkage heuristics.

3.5 Discussion

Currently there are quite several personal information systems managing PC Desk-
top resources. However, all of them have focused on seeking solutions to find
previously stored items in a faster way. In this chapter we argued that Per-
sonal Information Repositories have grown considerably in size, and thus they
are emerging as a potentially problematic environment in terms of Data Man-
agement. More specifically, we argued that all previous search based solutions to
locate information at the PC Desktop level are insufficient for the current scal-
ability requirements. These approaches already yield several hundreds of query
results, which cannot be successfully ordered by using textual retrieval measures
exclusively. To solve this problem we proposed to introduce link analysis ranking
for Desktop items and investigated in detail two major approaches to achieve this
goal:

• First, we exploited contextual analysis of specific user actions to build the
PIR link structure and compute “local reputation” values for personal items.
This approach does indeed an excellent job at ranking Desktop search out-
put. However, each manually defined activity context brings only a relatively
small amount of links into the local graph connecting user’s resources. Thus,
a lot of design and programming work is needed in order to achieve both
quality and coverage.

• In the second part we generalized this idea by including all user actions into
the ranking algorithm. This approach was clearly much simpler, while also
providing a visibly larger coverage of the personal items. Unfortunately, the
qualitative improvements it brought were smaller than those of the previous
technique, even though they were still improving over regular Desktop search
at a statistically significant difference. This small quality decrease is because
of the noisy connections it induces into the local link structure. As it is a
general heuristic, it also captures false links, such as those generated due to
frequent switches between Desktop activity contexts.

All in all, as we found out that people usually access only about 2% of their index-
able items, we conclude that both our usage analysis based ranking algorithms
are very suitable for a better Personal Information Management. In fact, our
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user based experiments showed both techniques to significantly increase Desktop
search quality.

Two issues still remain open: First, it would be interesting to define some better
fully automatic graph trimming heuristics for our second approach, in order to
keep the ranking coverage at a sufficiently high level, while also achieving an
excellent output quality. Second, though less important, one might investigate
other ranking extensions which include also non access based heuristics, thus
addressing more local resources, even when these have never been opened by the
user.
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Chapter 4

Ranking for Spam Detection

4.1 Introduction

Spamming is the abuse of using electronic messaging systems to send unsolicited
messages. Though its most widely recognized form is Email spam, the term is
also applied to similar abuses in other media: Instant Messaging spam, Usenet
newsgroup spam, Web search engine spam, Weblogs spam, and Mobile phone
messaging spam.

In this chapter we tackle the two most important forms of spamming, namely
Email and Web spam. Email Spam is a very profitable business, as it has no as-
sociated operating cost beyond the actual management of the recipient addresses.
Thus, malicious merchants would send millions of Emails either promoting some
underground products (for example Viagra medicines), or attempting to lure the
addressee into fake businesses (quite spread is the model of the Nigerian busi-
nessmen who inherited a large amount of money, yet is in need of an account to
ship them to), etc. Moreover, senders of these Emails are difficult to identify and
to hold responsible for their mailings. Consequently, spammers (i.e., creators of
spam) are numerous, and the volume of unsolicited mail has become extremely
high. Unlike legitimate commercial Email, spam is generally sent without the ex-
plicit permission of the recipients, and frequently contains various tricks to bypass
Email filtering. Even though current retail Email services offer the possibility to
report any incurred spam in order to constantly update their anti-spam filters, this
is and will remain a continuous fight (at least up to a certain moment), in which
each party is devising new techniques, either to deceive or to fight its opponent.
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A similar phenomenon can be observed for search engines as well, as they are
indexing more and more content every day. If we also remember that upon
searching this huge quantity of data, people usually view only the very few top
answers returned for each query, it becomes highly important to provide these
search results with the best quality possible. Alas, currently this is not an easy
task. Spamdexing (a portmanteau of spamming and Web indexing) refers to the
practice on the World Wide Web of maliciously modifying HTML pages in order
to increase their chances of being placed high on search engine ranking lists, either
because their text has been altered to contain some targeted words very frequently,
or because many artificial Web hyperlinks have been added towards them, etc.
Though more costly and more difficult to accomplish than its Email surrogate,
Web spamming is also bringing enhanced profits, especially for sites dedicated to
activities such as online gambling or porn, as long as they manage to rank high
for a certain number of common Web search queries. This is because high ranking
many times also implies high traffic, which consequently usually converts into a
high revenue for the specific Web site.

This chapter proposes to exploit link analysis ranking solutions for both Email and
Web spam detection. While this approach has been previously explored for the
latter domain, it is rather new for the former one. We thus propose to link people
across the social network created upon their exchanges of Emails: Once a person
sends an Email to a recipient, a vote is automatically cast towards that destination
individual. The amount of Emails one receives, as well as the “importance” of their
senders, contribute to achieving a high rank within the Email social network. Since
spammers generally only send Emails (i.e., cast votes in our system), their overall
reputation scores will turn out to be rather low, being (at least partially) separated
from the rest of the network. Moreover, using this Email ranking approach, one
would be able to order its incoming Emails according to the global reputation
of their sources. Abstracting from the application environment, it is easy to
observe that this is in fact the same model as the one currently employed by the
Web search engines. There, social interactions are described by the process of
creating hyperlinks between pages, which are then regarded as votes within the
reputation algorithms. Unfortunately, as this model has already been exploited
for several years already within the Web environment, spammers have already
invented new and increasingly more complex link reinforcement structures to
boost their reputation scores. Thus, simple PageRank-like schemes are no longer
sufficient for detecting malicious users in the World Wide Web. In the second part
of this chapter we propose an improved technique to isolate spammers: We analyze
the relationships between social groups in order to discover entities involved in
irregular linkage structures. Once these have been identified, we simply remove
them from the reputation algorithm. We test this technique onto a large collection
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of Web pages, and show that link databases cleaned of such noisy information
yield significantly better Web search results. Finally, while the social network
based model we propose for ordering Email addresses is rather primitive, similar
to the ones used in the Web about 8 years ago, we believe that if adopted, its
development would be somewhat similar to that of the Web, and consequently
all recent findings from the Web link analysis research would be fairly simple to
adapt and apply for Emails as well.

The chapter is organized as follows: First, we give an overview of the existing
spam detection and social network reputation metrics in Section 4.2. Then, we
first discuss why and how these metrics could be applied to counter Email spam
in Section 4.3. These being introduced, we transit in Section 4.4 towards some
higher level link spam detection approaches. We deploy these solutions onto the
currently more complex Web environment and analyze them using the very same
social reputation model (i.e., PageRank). In the end of each of these two sections
we conclude with a discussion of possible future research directions, as focused on
the investigated medium, Email or Web.

4.2 Specific Background

Ranking has generally not been explicitly used to enforce spam detection in the
literature. Especially for the Email application, most techniques focused on con-
tent and communication protocol extensions, rather than social network based
reputation mechanisms. In this chapter we propose ranking as a viable solution
for detecting malicious users in social environments. It has been already proved
that social reputation mechanisms are good at distilling out qualitative subjects
within global communities [172, 135]. In the same time they are also particu-
larly stable and resistant in front of various attacks. Considering the fact that all
media attacked by spammers are actually social media (i.e., Email, Web, Instant
Messaging, etc.), we argue that utilizing social ranking algorithms could be very
benefic in filtering the members of their underlying communities.

This section starts with a generic discussion about Email anti-spam approaches.
Afterwards, we give an overview of general reputation algorithms for social net-
works, as they are built on top of basic solutions to isolate malicious users. Finally,
in the last part we present how these ranking algorithms have been employed, as
well as enhanced for spam detection in the World Wide Web.
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4.2.1 Email Anti-Spam Approaches

Because of the high importance of the Email spam problem, many attempts
to counter spam have been started in the past, including some law initiatives.
Technical anti-spam approaches comprise one or several of the following basic
solutions [175]:

• Content-based approaches

• Header-based approaches

• Protocol-based approaches

• Approaches based on sender authentication

• Approaches based on social networks

Content-based approaches [113] analyze the subject of an Email or the Email
body for certain keywords (statically provided or dynamically learned using a
Bayesian filter) or patterns that are typical for spam Emails (e.g., URLs with nu-
meric IP addresses in the Email body). The advantage of content-based schemes
is their ability to filter quite a high number of spam messages. For example, Spa-
mAssassin can recognize 97% of the spam if an appropriately trained Bayesian
filter is used together with the available static rules [128]. However, in contrast
to the social network reputation models, content based approaches need to con-
tinuously adapt their set of static rules, as otherwise their high spam recognition
rate will decrease.

Header-based approaches examine the headers of Email messages to detect
spam. Whitelist schemes collect all Email addresses of known non-spammers in a
whitelist to decrease the number of false positives from content-based schemes. In
contrast, blacklist schemes store the IP addresses (Email addresses can be forged
easily) of all known spammers and refuse to accept Emails from them. A manual
creation of such lists is typically highly accurate but puts quite a high burden on
the user to maintain it. PGP key servers could be considered a manually created
global whitelist. An automatic creation can be realized, for instance based on
previous results of a content-based filter as is done with the so-called autowhitelists
in SpamAssassin. Both blacklists and whitelists are rather difficult to maintain,
especially when faced with attacks from spammers who want to get their Email
addresses on the list (whitelist) or off the list (blacklist). They are related to
our Email spam detection approach in the sense of creating lists with trusted /
malicious users. However, our algorithm is fully automatic, thus being also fairly
easy to maintain.

Protocol-based approaches propose changes to the utilized Email protocol.
Challenge-response schemes [175] require a manual effort to send the first Email
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to a particular recipient. For example, the sender has to go to a certain Web page
and activate the Email manually, which might involve answering a simple question
(such as solving a simple mathematical equation). Afterwards, the sender will be
added to the recipient’s whitelist such that further Emails can be sent without the
activation procedure. The activation task is considered too complex for spammers,
who usually try to send millions of spam Emails at once. An automatic scheme is
used in the grey-listing approach1, where the receiving Email server requires each
unknown sending Email server to resend the Email again later. Nevertheless, these
techniques seem to impose a too high burden on honest users as well, since they
have not been adopted on a wide scale. Also, as they build upon user interaction
procedures, they are orthogonal to our spam detection solutions.

To prevent spammers from forging their identity (and allow for tracking them),
several approaches for sender authentication [108] have been proposed. They
basically add another entry to the DNS server, which announces the designated
Email servers for a particular domain. A server can use a reverse lookup to
verify if a received Email actually came from one of these Email servers. Sender
authentication is a requirement for whitelist approaches (including ours), since
otherwise spammers could just use well-known Email addresses in the “From:”
line. Though it is already implemented by large Email providers (e.g., AOL,
Yahoo!), it also requires further mechanisms, such as a blacklist or a whitelist.
Without them, spammers could simply set up their own domains and DNS servers,
thus easily circumventing the system.

Recent approaches have started to exploit social interactions for spam detection.
Such social network based approaches construct a graph, whose vertices
represent Email addresses. A directed edge is added between two nodes A and B,
if A has sent an Email to B. Boykin and Roychowdhury [31] classify Email
addresses based on the clustering coefficient of the graph subcomponent: For
spammers, this coefficient is very low because they typically do not exchange
Emails with each other. In contrast, the clustering coefficient of the subgraph
representing the actual social network of a non-spammer (colleagues, friends, etc.)
is rather high. The scheme can classify 53% of the Emails correctly as ham or
spam, leaving the remainder for further examination by other approaches. This
is similar to the algorithm we present in Section 4.3 in the sense that it uses link
analysis for spam detection. However, we also exploit the power-law distribution
of social contacts, thus being able to obtain a much more accurate classification
ratio, as well as to order Email addresses by the social reputation of their senders.
Finally, closest to our work is the paper of Golbeck and Hendler, who propose a
typical spreading activation scheme to rank Email addresses, based on exchanges

1http://projects.puremagic.com/greylisting/
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of reputation values [112]. They still achieve a spam detection ratio below ours.
More important, the real-life applicability of their scheme is uncertain, as its
attack resilience has not been verified at all.

4.2.2 Trust and Reputation in Social Networks

Trust and reputation algorithms have become increasingly popular to rank a set
of items, such as people (social reputation) or Web pages (Web reputation), for
example, when selling products in online auctions. Their main advantage is that
most of them are designed for high attack resilience.

Social reputation schemes have been designed mostly for use over Peer-To-Peer
networks [69, 68, 57]. However, they provide an useful insight into using link
analysis ranking to construct reputation systems, as well as into identifying dif-
ferent attack scenarios. From this perspective, they are also very similar to our
algorithms. The only significant difference is that they have been adapted for
and deployed onto different application environments. Ziegler and Lausen [224]
present a general categorization of trust metrics, as well as a fixed-point person-
alized trust algorithm inspired by spreading activation models. It can be viewed
as an application of PageRank onto a sub-graph of the social network in order to
compute user reputation scores. Richardson [181] builds a Web of trust asking
each person to maintain trust values on a small number of other users. The algo-
rithm presented is also based on a power iteration, but designed for an application
within the context of the Semantic Web, composed of logical assertions. Finally,
EigenTrust [135] is a pure fixed-point PageRank-like distributed computation of
reputation values for Peer-To-Peer environments. This algorithm is also used in
the MailTrust approach [146], an Email reputation metric highly similar to Basic
MailRank, investigated into the physics research community slightly after our first
report became public. MailTrust is still different from our approach in the sense
that it does not investigate any user oriented Email filtering or importance order-
ing. Moreover, it builds upon a straightforward application of PageRank, which
is much more sensible to malicious attacks than MailRank (note that in contrast,
we bias PageRank onto the highly reputable members of each social community,
thus making the gap between trustful and malicious users significantly larger).

4.2.3 Spam Detection in the World Wide Web

Detecting Spam on the Web. The more money are circulated within an
environment, the more interest will spammers have to get a share of it. Naturally,
this is also valid for the World Wide Web. This makes finding good solutions
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for the Web spam detection problem not only important, but also difficult, as
they need to deal with adversaries that continuously try to deceive search engine
algorithms. As the Web search output is usually ordered using a combination of
various techniques available to assess the quality of each result (e.g., PageRank,
HITS, TFxIDF, etc.), spammers have devised specific schemes to circumvent each
of these measures. Consequently, the search engines responded with detection or
neutralization techniques, usually built on top of basic Web reputation algorithms
similar to those outlined in the previous section. This caused the spammers to seek
new rank boosting methods, and so on. Since our work is focused on identifying
spam using the link structure describing various social media, we will present
in this section only the most recent anti-spam techniques for link-based Web
ranking algorithms. Whenever possible, we will compare these approaches with
the algorithms we propose and describe in Section 4.4.

Ranking Based Approaches. The currently known types of artificial link
structures which could boost the rank of one or more Web pages have been
investigated by Gyögyi et al. [114]. They manually built toy-scale link farms
(networks of pages densely connected to each other) or alliances of farms and
calculated their impact upon the final rankings. We used their results to design
some of our spam fighting algorithms.

The seminal article of Bharat and Henzinger [27] has indirectly addressed the
problem of spam neutralization on the Web. Though inherently different from our
approaches, the work provides a valuable insight into Web link spam: The authors
discovered the existence of “mutually reinforcing relationships” and proposed to
assign each edge (i.e., hyperlink) an authority weight of 1/k if there are k pages
from one Web site pointing a single document from another site, as well as a hub
weight of 1/l if a page from the first site is pointing to l documents residing all on
the second site. Authors use this information to change HITS [143], the hub and
authority ranking algorithm which we also described in Section 2.1.2. We believe
their solution could be used to complement our spam detection approaches, both
for Web pages / sites and for Emails, in which corporation wide domains can be
seen as “sites”. Later, Li et al. [161] also proposed an improved HITS algorithm
to avoid its vulnerability to small-in-large-out situations, where one page has only
a few in-links but many out-links. Nevertheless, their work focused only on this
specific problem, thus not tackling spam detection per se.

Another important work is SALSA [158], where the “Tightly-Knit (TKC) Com-
munity Effect” was first discussed. The organization of pages into such a densely
linked graph usually results in increasing their scores. The authors proposed a new
link analysis algorithm which adopts two Markov chains for traversing the Web
graph, one converging to the weighted in-degree of each page, for authority scores,

75



Chapter 4. Ranking for Spam Detection.

and the other converging to its weighted out-degree, for hub scores. The approach
resembles popularity ranking, which was also investigated by Chakrabarti [46] and
Borodin et al. [29]. However, it does not incorporate any iterative reinforcement
and is still vulnerable to some forms of the TKC effect [184].

Zhang et al. [223] discovered that colluding users amplify their PageRank score
with a value proportional to Out(1/c), where c is the PageRank dampening fac-
tor2. Thus, they propose to calculate PageRank with a different c for each page
p, automatically generated as a function of the correlation coefficient between 1/c
and PageRank(p) under different values for c. Their work is extended by Baeza-
Yates et al. [15], who study how the PageRank increases under various collusion
(i.e., nepotistic) topologies and prove this increase to be bounded by a value de-
pending on the original PageRank of the colluding set and on the dampening
factor.

BadRank3 [216] is one of the techniques supposed to be used by search engines
against link farms. It is an inverse PageRank, in which a page gets a high score
if it points to many pages with high BadRank, as in the formula below:

BR(p) = c ·
∑

q∈In(p)

BR(q)

‖Out(q)‖
+ (1− c) · IB(p) (4.1)

The exact expression of IB(p) is not known, but it represents the initial BadRank
value of page p as assigned by spam filters, etc. The algorithm is complementary
to our approaches and the idea of propagating the badness score of a page could
be implemented as an extension on top of the algorithms presented in Section 4.4.

TrustRank [116] proposes a rather similar approach, but focused on the good
pages: In the first step, a set of high quality pages is selected and assigned a
high trust; then, a biased version of PageRank is used to propagate these trust
values along out-links throughout the entire Web. The algorithm is orthogonal to
our approaches: Instead of seeking for good pages, we attempt to automatically
identify and penalize malicious nodes (for Email spam) and links (for Web spam).

SpamRank [25] resembles an “opposite TrustRank”: First, each page receives
a penalty score proportional to the irregularity of the distribution of PageRank
scores for its in-linking pages; then, Personalized PageRank is used to propagate
the penalties in the graph. The advantage over TrustRank is that good pages
cannot be marked as spam, and comes at a cost of higher time complexity. Our
Web spam detection approach is similar with respect to penalizing bad pages,
but we build our set of malicious candidates much faster, by identifying abnormal

2Recall the definition of PageRank from Equation 2.1: PR(p) = c ·
∑

q∈I(p)
PR(q)
‖O(q)‖ + (1−c)

‖V ‖ .
3http://en.efactory.de/e-pr0.shtml
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link structures, instead of analyzing the distribution of PageRank scores for the
in-linking pages of each page.

Wu and Davison [216] first mark a set of pages as bad, if the domains of n of their
out-links match the domains of n of their in-links (i.e., they count the number of
domains that link to and are linked by that page). Then, they extend this set
with all pages pointing to at least m pages in the former set, and remove all links
between pages marked as bad. In the end, new rankings are computed using the
“cleaned” transition probability matrix. Their algorithm is not applicable for our
Email approach, as it is quite common for a group of persons to exchange Emails
without forming a malicious collective. However, it is complementary to our Web
spam detection scheme, as it operates at the lower level of Web pages, instead of
sites. In [217], the same authors build bipartite graphs of documents and their
“complete hyperlinks”4 in order to find link farms of pages sharing both anchor
text and link targets (i.e., possibly automatically created duplicate links). Again,
the algorithm makes a good complement for our Web scenario.

Finally, Becchetti et al. [23] compute Web page attributes by applying rank prop-
agation and probabilistic link counting over the Web graph. They are thus able to
estimate the number of supporters of each node in a graph. More interesting, they
show how to truncate this value to only consider neighbors at a distance higher
than d, which consequently enables the computation of PageRank without any
link cycles of length smaller than d, most of which are usually artificially created,
especially with very small values for d. The performance of this approach was
then compared with many other Web spam classifiers in [22], reaching at most
80.4% accuracy when the available indicators were combined.

Other Approaches. While most Web spam detection research has concentrated
directly on the link analysis algorithms used within current search engines, another
significant stream of activity was dedicated to designing innovative third party
solutions to detect such unwanted hyperlinks. These are specifically tailored to the
characteristics of the Web content, and thus applicable only in this environment.
Kumar et al. [149] used bipartite graphs to identify Web communities and marked
as nepotistic those communities having several fans (i.e., pages contributing to the
core of the bipartite graph with their out-links) residing on the same site. Roberts
and Rosenthal [184] analyzed the number of Web clusters pointing to each target
page in order to decrease the influence of TKCs. They proposed several methods
to approximate these clusters, but they evaluated their approach only minimally.
A rather different technique was employed in [10], where the authors presented
a decision-rule classifier employing 16 connectivity features (e.g., average level of
page in the site tree, etc.) to detect Web site functionality. They claimed to have

4Hyperlinks having the anchor text attached to them.
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successfully used it to identify link spam rings as well, but no details are given
about the importance of each feature for accomplishing this task.

Chakrabarti [45] proposed a finer grained model of the Web, in which pages are
represented by their Document Object Models, with the resulted DOM trees being
interconnected by regular hyperlinks. The method is able to counter “nepotistic
clique attacks”, but needs more input data than our Web algorithms, which are
based exclusively on link analysis. Also, we are able to identify a lager group of
link anomaly types.

Fetterly et al. [99] used statistical measures to identify potential spam pages. Most
of the features they analyzed can be modeled by well known distributions, thus
placing outliers in the position of potential spammers. After a manual inspection,
the vast majority of them seemed to be spammers indeed. A related technique
to detect spam pages is based on machine learning algorithms: Davison [79] used
them on several features of URLs (e.g., similar titles, domains, etc.) in order to
identify nepotistic links on the Web.

Finally, note that there exist also several types of noisy hyperlinks, which are
not necessarily spam. The most common one is due to mirror hosts and can be
eliminated using algorithms such as those proposed by Broder et al. [35] or Bharat
et al. [26]. Also, navigational links are intended to facilitate browsing, rather than
expressing votes of trust. One work indirectly related to this type of links is [91],
where the authors defined Web documents as a “cohesive presentation of thought
on a unifying subject” and proposed using these entities for information retrieval,
instead of the regular Web pages. Their work is however orthogonal to ours, as
they seek to identify the correct Web entities, whereas we propose solutions to
remove spam items (i.e., links and nodes) from search engine databases.

4.3 Ranking for Email Spam Detection

We now turn our attention to the first and most common form of spam: Email
spam. While scientific collaboration without Email is almost unthinkable, the
tremendous increase of spam over the past years [108] has rendered Email com-
munication without spam filtering almost impossible. Currently, spam Emails
already outnumber non-spam ones, so-called ‘ham Emails’. Existing spam filters
such as SpamAssassin5, SpamBouncer6, or Mozilla Junk Mail Control7 still exhibit
a number of problems, which can be classified in two main categories:

5http://spamassassin.apache.org
6http://www.spambouncer.org
7http://www.mozilla.org/start/1.5/extra/using-junk-control.html
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1. Maintenance, for both the initialization and the adaptation of the filter
during operation, since all spam filters rely on a certain amount of input
data to be maintained: Content-based filters require keywords and rules for
spam recognition, blacklists have to be populated with IP addresses from
known spammers, and Bayesian filters need a training set of spam / ham
messages. This input data has to be created when the filter is used first (the
“cold-start” problem), and it also has to be adapted continuously to counter
the attacks of spammers [113, 215].

2. Residual error rates, since current spam filters cannot eliminate the spam
problem completely. First, a non-negligible number of spam Emails still
reaches the end user, so-called false negatives. Second, some ham messages
are discarded because the anti-spam system considers them as spam. Such
false positives are especially annoying if the sender of the Email is from
the recipient’s social community and thus already known to the user, or at
least known by somebody else the user knows directly. Therefore, there is
a high probability that an Email received from somebody within the social
network of the receiver is a ham message. This implies that a social network
formed by Email communication can be used as a strong foundation for
spam detection.

Even if there existed a perfect anti-spam system, an additional problem would
arise for high-volume Email users, some of which simply get too many ham Emails.
In these cases, an automated support for Email ranking would be highly desirable.
Reputation algorithms are useful in this scenario, because they provide a rating
for each Email address, which can subsequently be used to sort incoming Emails.
Such ratings can be gained in two ways, globally or personally. The main idea
of a global scheme is that people share their personal ratings such that a single
global reputation can be inferred for each Email address. The implementation of
such a scheme can, for example, be based on network reputation algorithms [112]
(see also Section 4.2.2), or on collaborative filtering techniques [180]. In case of
a personalized scheme, the output ratings are typically different for each Email
user and depend on her personal social network. Such a scheme is reasonable since
some people with a presumably high global reputation (e.g., Linus Torvalds) might
not be very important in the personal context of a user, compared to other persons
(e.g., the project manager).

This section proposes MailRank, a new approach to ranking and classifying Emails
exploiting the social network derived from each user’s communication circle [31].
We introduce two MailRank variants, both applying a power-iteration algorithm
on the Email network graph: Basic MailRank results in a global reputation for
each known Email address, and Personalized MailRank computes personalized
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values reflecting the point of view of each user. After having discussed the partic-
ularities of each approach, the second part of the section analyzes the performance
of MailRank under several scenarios, including sparse networks, and shows its re-
silience against spammer attacks.

4.3.1 The MailRank Algorithm

Bootstrapping the Email Network

As for all reputation algorithms, MailRank needs to start from collecting as many
personal votes as possible in order to compute relevant ratings. Generally, this
input gathering process should require few or no manual user interactions in order
to achieve a high acceptance of the system. Also, the maintenance should require
little or no effort at all, thus having the rating of each Email address computed
automatically. To achieve these goals, we use already existing data inferred from
the communication dynamics, i.e., who has exchanged Emails with whom. We
distinguish three information sources as best serving our purposes:

1. Email Address Books. If A has the addresses B1, B2, ..., Bn in its Address
Book, then A can be considered to trust them all, or to vote for them.

2. The ‘To:’ Fields of outgoing Emails (i.e., ‘To:’, ‘Cc:’ and ‘Bcc:’). If A
sends Emails to B, then it can be regarded as trusting B, or voting for B.
This input data is typically very clean since it is manually selected, while
being more accurate than data from address books, which might comprise
old or outdated information.

3. Autowhitelists created by anti-spam tools (e.g., SpamAssassin) contain a
list of all Email addresses from which Emails have been received recently,
plus one score for each Email address which determines if mainly spam or
ham Emails have been received from the associated Email address. All
Email addresses with a high score can be regarded as being trusted.

Figure 4.1 depicts an example Email network graph. Node U1 represents the Email
address of U1, node U2 the Email address of U2, and so on. U1 has sent Emails to
U2, U4, and U3; U2 has sent Emails to U1 and U4, etc. These communication acts
are interpreted as trust votes, e.g., from U1 towards U2, U4 and U3, and depicted in
the figure using arrows. Building upon such an Email network graph, we can use
a power iteration algorithm to compute a reputation for each Email address. This
can subsequently be used for at least two purposes, namely: (1) Classification
into spam and ham Emails, and (2) building a ranking among the remaining ham
Emails. Note that it is not necessary for all Email users to participate in MailRank
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in order to benefit from it: For example, U3 does not specify any vote, but still
receives a vote from U1, thus consequently achieving a reputation score.

Figure 4.1: Sample Email network

The following subsections provide more information about how the Email reputa-
tion scores are generated, first in a global, and then in a personalized perspective.
In the end, we briefly sketch the architecture of the system we built to implement
MailRank.

Basic MailRank

The main goal of MailRank is to assign a score to each Email address known to
the system and to use this score (1) to decide whether each Email is coming from
a spammer or not, and (2) to build up a ranking among the filtered non-spam
Emails. Its basic version comprises two main steps:

1. Determine a set of Email addresses with a very high reputation in the social
network.

2. Run PageRank [172] on the Email network graph, biased on the above set.

It is highly important for the biasing set not to include any spammer. Biasing is
a very efficient way to counter malicious collectives trying to attack the system
[116, 135]. It can be accomplished in three ways: manually, automatically, or
semi-automatically. The manual approach guarantees that no spammers are in
the biasing set and provides 100% effectiveness. An automatic selection avoids the
costs for the manual selection, but is also error-prone. Finally, a semi-automatic
selection starts with the automatic method to generate a biasing set, which is
then verified manually to be free of spammers. In our system we take the fully
automatic approach, as follows: We first determine the size p of the biasing set
by adding the scores of the R nodes with the highest rank such that the resulting
sum is equal to 20% of all scores in the system. We additionally limit p to the
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minimum between R and 0.25% of the total number of Email addresses8. In this
way we limit the biasing set to the few most reputable members of the social
network, which make the top extremity of the power-law distribution of Email
communication links [88, 125].

Algorithm 4.3.1.1. The Basic MailRank Algorithm.

Client Side:
Each vote sent to the MailRank server comprises:
Addr(u) : The hashed version of the Email address of the voter u. Hashing

is necessary in order to ensure privacy for the users participating
in the social ranking system.

TrustVotes(u) : Hashed version of all Email addresses
u votes for (i.e., she has sent an Email to).

Server Side:
1: Combine all received data into a global Email network graph. Let

T be the Markov chain transition probability matrix, computed as:
For each known Email address i

If i is a registered address, i.e., user i has submitted her votes
For each trust vote from i to j

Tji = 1/NumOfVotes(i)
Else For each known address j

Tji = 1/N , where N is the number of known addresses.
2: Determine the biasing set B (i.e., the most popular Email addr.)

2a: Manual selection or
2b: Automatic selection or
2c: Semi-automatic selection

3: Let T ′ = c · T + (1− c) · E, with c = 0.85 and
E[i] = [ 1

||B|| ]N×1, if i ∈ B, or E[i] = [0]N×1, otherwise

4: Initialize the vector of scores ~x = [1/N ]N×1, and the error δ =∞
5: While δ < ε, ε being the precision threshold

~x′ = T ′ · ~x
δ = ||~x′ − ~x||

6: Output ~x′, the global MailRank vector.
7: Classify each Email address in the MailRank network into:

‘spammer’ / ‘non-spammer’ based on the threshold T .

8Both values, the ‘20%’ and the ‘0.25%’ have been determined in extensive tuning simulations.

82



Paul - Alexandru Chirita

The final vector of MailRank scores can be used to tag an incoming Email as (1)
non-spammer, if the score of the sender address is larger than a threshold T , (2)
spammer, if that score is smaller than T , or (3) unknown, if the Email address is
not yet known to the system9. Each user can adjust T according to her preferred
filtering level. If T = 0, the algorithm is effectively used to compute the transitive
closure of the Email network graph starting from the biasing set. This is sufficient
to detect all those spammers for which no user reachable from the biasing set has
issued a vote. With T > 0, it becomes possible to detect spammers even if some
non-spammers vote for spammers (e.g., because the computer of a non-spammer
is infected by a virus). However, in this case some non-spammers with a very low
rank are at risk of being counted as spammers as well.

The Basic MailRank algorithm is summarized in Algorithm 4.3.1.1.

MailRank with Personalization

As shown in Section 4.3.2, Basic MailRank performs very well in spam detection,
while being highly resistant against spammer attacks. However, it still has the
limitation of being too general with respect to user ranking. More specifically, it
does not address that:

• Users generally communicate with persons ranked average with respect to
the overall rankings.

• Users prefer to have their acquaintances ranked higher than other unknown
users, even if these latter ones achieve a higher overall reputation from the
network.

• There should be a clear difference between a user’s communication partners.

Personalizing on each user’s acquaintances tackles these aspects. Its main effect
is boosting the weight of user’s votes, while decreasing this influence for all the
other votes. Thus, the direct communication partners will achieve much higher
ranks, even though initially they were not among the highest ones. Moreover, due
to the rank propagation, their votes will have a high influence as well.

Now that we have captured the user requirements mentioned, we should also focus
our attention on a final design issue of our system: scalability. Simply biasing
MailRank on user’s acquaintances will not scale well, because it must be computed
for each preference set, that is for every registered user. Jeh and Widom [131] have

9To allow new, unknown users to participate in MailRank, an automatically generated
Email could be sent to the unknown user encouraging her to join MailRank (challenge-response
scheme), thus bringing her into the non-spammer area of reputation scores.
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proposed an approach to calculate Personalized PageRank vectors, which can also
be adapted to our scenario, and which can be used with millions of subscribers. To
achieve scalability, the resulting personalized vectors are divided in two parts: one
common to all users, precomputed and stored off-line (called “partial vectors”),
and one which captures the specifics of each preference set, generated at run-time
(called “hubs skeleton”). We will have to define a restricted set of users on which
rankings can be biased though (we shall call this set “hub set”, and note it with
H)10. There is one partial vector and one hub skeleton for each user from H.
Once an additional regular user registers, her personalized ranking vector will be
generated by reading the already precomputed partial vectors corresponding to
her preference set (step 1), by calculating their hubs skeleton (step 2), and finally
by tying these two parts together (step 3). Both the algorithm from step 1 (called
“Selective Expansion”) and the one from step 2 (named “Repeated Squaring”)
can be mathematically reduced to biased PageRank. The latter decreases the
computation error much faster along the iterations and is thus more efficient, but
works only with the output of the former one as input. In the final phase, the
two sub-vectors resulted from the previous steps are combined into a global one.
The algorithm is depicted in the following lines. To make it clearer, we have also
collected the most important definitions it relies on in Table 4.1.

Term Description
Set V The set of all users.
Hub Set H A subset of users.
Preference Set P Set of users on which to personalize.
Preference Vector p Preference set with weights.
Personalized PageRank Vector (PPV) Importance distribution induced by a preference vector.
Basis Vector ru PPV for a preference vector with a single nonzero entry at u.
Hub Vector ru Basis vector for a hub user u ∈ H.

Partial Vector ru − rH
u Used with the hubs skeleton to construct a hub vector.

Hubs Skeleton ru(H) Used with partial vectors to construct a hub vector.

Table 4.1: Terms specific to Personalized MailRank.

10Note that an improved version of this algorithm has been proposed recently by Sarlos et al.
[190], thus eliminating the limitation on the size of the biasing set.

84



Paul - Alexandru Chirita

Algorithm 4.3.2.2. Personalized MailRank.

0: (Initializations) Let u be a user from H, for which we compute the partial
vector and the hubs skeleton. Also, let D[u] be the approximation of the basis
vector corresponding to user u, and E[u] the error of its computation.
Initialize D0[u] with:

D0[u](q) =

{
c = 0.15 , q ∈ H
0 , otherwise

Initialize E0[u] with:

E0[u](q) =

{
1 , q ∈ H
0 , otherwise

1: (Selective Expansion) Compute the partial vectors using
Q0(u) = V and Qk(u) = V \H, for k > 0, in the formulas below:
Dk+1[u] = Dk[u] +

∑
q∈Qk(u) c · Ek[u](q) · xq

Ek+1[u] = Ek[u] −∑
q∈Qk(u) Ek[u](q)xq+

∑
q∈Qk(u)

1−c
|O(q)|

∑|O(q)|
i=1 Ek[u](q) · xOi(q)

Under this choice, Dk[u] + c · Ek[u] will converge to ru − rH
u ,

the partial vector corresponding to u.

2: (Repeated squaring) Having the results from the first step as input,
one can now compute the hubs skeleton (ru(H)). This is represented by
the final D[u] vectors, calculated using Qk(u) = H into:
D2k[u] = Dk[u] +

∑
q∈Qk(u) Ek[u](q) ·Dk[q]

E2k[u] = Ek[u]−∑
q∈Qk(u) Ek[u](q) · xq +

∑
q∈Qk(u) Ek[u](q) · Ek[q]

As this step refers to hub-users only, the computation of D2k[u] and E2k[u]
should consider only the components regarding users from H,
as it significantly decreases the computation time.

3: Let p = α1u1 + . . . + αzuz be a preferenced vector,
where ui are from H and i is between 1 and z, and let:

rp(h) =
∑z

i=1 αi(rui
(h)− c · xpi

(h)), h ∈ H
which can be computed from the hubs skeleton.
The PPV v for p can then be constructed as:

v =
∑z

i=1αi(rui
− rH

ui
)+ 1

c

∑
h∈H rp(h)>0 rp(h) ·

[
(ru − rH

u )− c · xh

]
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MailRank System Architecture

MailRank is composed of a server, which collects all user votes and delivers a
score for any known Email address, and an Email proxy on the client side, which
interacts with the MailRank server.

The MailRank Server collects the input data (i.e., the votes) from all users to
run the MailRank algorithm. Votes are assigned with a lifetime for (1) Identifying
and deleting Email addresses which have not been used for a long time, and (2)
Detecting spammers which behave good for some time to get a high rank and
start to send spam Emails afterwards.

The MailRank Proxy resides between user’s Email client and her regular local
Email server. It performs two tasks: When receiving an outgoing Email, it first
extracts the user’s votes from the available input data (e.g., by listening to ongoing
Email activities or by analyzing existing sent-mail folders). Then, it sends the
votes to the MailRank server and forwards the Email to the local Email server.
To increase efficiency, only those votes that have not been submitted yet (or that
would expire otherwise) are sent. Also, for privacy reasons, votes are encoded
using hashed versions of Email addresses. Upon receiving an Email, the proxy
queries the MailRank server about the ranking of the sender address (if not cached
locally) and classifies / ranks the Email accordingly.

Note that one could also make use of secure signing schemes to enable analyzing
both outgoing and incoming Emails for extracting “votes”11. This helps not only
to bootstrap the system initially, but also introduces the votes of spammers into
MailRank. Such votes have a very positive aspect, since they increase the score for
the spam recipients (i.e., non-spammers). Thus, spammers face more difficulties
to attack the system in order to increase their own rank.

4.3.2 Experiments

Experimental Setup

Real-world data about Email networks is almost unavailable because of privacy
reasons. Yet some small studies do exist, using data gathered from the log files
of a student Email server [88], or of a comany wide server [125], etc. In all cases,
the analyzed Email network graph exhibits a power-law distribution of in-going
(exponent 1.49) and out-going (exponent 1.81) links.

11Analyzing incoming votes raises more security issues since we need to ensure that the sender
did indeed vote for the recipient, i.e., the Email is not faked. This can be achieved by extending
current sender authentication solutions.
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To be able to vary certain parameters such as the number of spammers, we
evaluated MailRank12 using an extensive set of simulations, based on a power-law
model of an Email network, following the characteristics presented in the above
mentioned literature studies. Additionally, we used an exponential cut-off at both
tails to ensure that a node has at least five and at most 1500 links to other nodes,
which reflects the nature of true social contacts [125]. If not noted otherwise, the
graph consisted of 100,000 non-spammers13 and the threshold T was set to 0. In
a scenario without virus infections, this is sufficient to detect spammers and to
ensure that non-spammers are not falsely classified. Furthermore, we repeated
all simulations for at least three times with different randomly generated Email
networks to determine average values. Our experiments focused on three aspects:
Effectiveness in case of very sparse MailRank networks (i.e., only few nodes submit
votes, the others only receive votes), exploitation of spam characteristics, and
attacks on MailRank.

Very Sparse MailRank Networks

In sparse MailRank networks, a certain amount of Email addresses only receive
votes, but do not provide any because their owners do not participate in MailRank.
In this case, some non-spammers in the graph could be regarded as spammers,
since they achieve a very low score.

To simulate sparse MailRank networks, we created a full graph as described above
and subsequently deleted the votes of a certain set of Email addresses. We used
several removal models:

• All: Votes can be deleted from all nodes.

• Bottom99.9%: Nodes from the top 0.1% are protected from vote deletion.

• Avg: Nodes having more than the average number of outgoing links are
protected from vote deletion.

The first model is rather theoretical, as we expect the highly-connected non-
spammers to register with the system first14. Therefore, we protected the votes of
the top nodes in the other two methods from being deleted15. Figure 4.2 depicts

12As personalization brings a significant improvement only in creating user-specific rankings
of Email addresses (i.e., it produces only minimal improvements for spam detection), we used
only Basic MailRank within the analysis.

13We also simulated using 10,000 and 1,000,000 non-spammers and obtained very similar
results.

14Such behavior was also observed in real-life systems, e.g., in the Gnutella P2P network
(http://www.gnutella.com/).

15The 100% from ‘Bottom99.9%’ and ‘avg’ actually refer to 100% of the non-protected nodes.
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Figure 4.2: Very sparse MailRank networks.

the average percentage of non-spammers regarded as spammers, depending on the
percentage of nodes with deleted votes. Non-spammers registered to the system
will be classified as spammers only when very few, non-reputable MailRank users
send them Emails. As studies have shown that people usually exchange Emails
with at least five partners, such a scenario is rather theoretical. However, as the
power-law distribution of Email communication is expected only after the system
has run for a while, we intentionally allowed such temporary anomalies in the
graph. Even though for high deletion rates (70−90%) they resulted in some non-
spammers being classified as spammers, MailRank still performed well, especially
in the more realistic ‘avg’ scenario (the bigger error observed in the theoretical
‘Random’ scenario was expected, since random removal may result in the deletion
of high-rank nodes contributing many links to the social network).

Exploitation of Spam Characteristics

If we monitor current spammer activities (i.e., sending Emails to non-spammers),
the Emails from spammers towards non-spammers can be introduced into the
system as well. This way, spammers actually contribute to improve the spam
detection capabilities of MailRank: The more new spammer Email addresses and
Emails are introduced into the MailRank network, the higher they increase the
score of the receiving non-spammers. This can be seen in a set of simulations
with 20,000 non-spammer addresses and a varying number of spammers (up to
100,000, as depicted in Figure 4.3), where the rank of the top 0.25% non-spammers
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Figure 4.3: Rank increase of non-spammer addresses.

increases linearly with the number of spammer addresses included in the MailRank
graph.

Attacking MailRank

In order to be able to attack MailRank, spammers must receive votes from other
MailRank users to increase their rank. As long as nobody votes for spammers,
they will achieve a minimal score and will thus be easily detected. This leaves
only two ways of attacks: formation of malicious collectives and virus infections.

Malicious collectives. The goal of a malicious collective is to aggregate enough
score into one node to push it into the biasing set. If no manually selected biasing
set can be used to prevent this, one of the already many techniques to identify
Web link farms could be employed (see for example [216, 44]). Furthermore, we
require MailRank users willing to submit their votes to manually register their
Email address(es). This impedes spammers to automatically register millions of
Email addresses in MailRank and also increases the cost of forming a malicious
collective. To actually determine the cost of such a manual registration, we have
simulated a set of malicious users as shown in Figure 4.4. The resulting position of
node 1, the node that should be pushed into the biasing set, is depicted in Figure
4.5 for an Email network of 20,000 non-spammers, malicious collectives of 1000
nodes each, and an increasing number of collectives on the x-axis. When there are
few large-scale spammer collectives, the system could be relatively easy attacked.
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1 0

N2 3

Figure 4.4: Malicious collective: nodes 2–N vote for node 1 to increase the rank
of node 1 and node 1 itself votes for node 0, the Email address that is finally used
for sending spam Emails.
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However, as users must manually register to the system, forming a collective of
sufficient size is practically infeasible. Moreover, in a real scenario there will be
more than one malicious collective, in which case pushing a node into the biasing
set is almost impossible: As shown in Figure 4.5, it becomes more difficult for a
malicious collective to push one node into the biasing set, the more collectives exist
in the network. This is because the spammers registered to the system implicitly
vote for the non-spammers upon sending them (spam) Emails. This way, the rank
of the best spammer increases, i.e., it achieves a lower reputation throughout the
network, and thus it has lower chances of being accepted into the biasing set.

Virus infections. Another possible attack is to make non-spammers vote for
spammers. To counter incidental votes for spammers (e.g., because of a miscon-
figured vacation daemon), an additional confirmation process could be required if
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Figure 4.6: Simulation results: Virus attack.

a vote for one particular Email address would move that address from ‘spammer’
to ‘non-spammer’. However, spammers could still pay non-spammers to send spam
on their behalf. Such an attack can be successful initially, but the rank of the
non-spammer addresses will decrease after some time to those of spammers, due
to the limited life time of votes. Finally, one could use virus / worm technology
to infect non-spammers and make them vote for spammers. We simulated such
an attack according to Newman’s studies [168], which showed that when the 10%
most connected members of a social network are not immunized (e.g., using anti-
virus applications) worms would spread too fast. The results are shown in Figure
4.6 with a varying amount of non-spammers voting for 50% of all spammers. If
up to about 25% of the non-spammers are infected and vote for spammers, there
is still a significant difference between the ranks of non-spammers and spammers,
and no spammer manages to get a higher rank than the non-spammers. If more
than 25% non-spammers are infected, the spammer with the highest rank starts
to move up in the rank list (the upper line from Figure 4.6 descends towards rank
1). Along with this, there will be no clear separation between spammers and
non-spammers, and two threshold values must be employed: one MailRank score
T1 above which all users are considered non-spammers and another one T2 < T1

beneath which all are considered spammers, the members having a score within
(T1, T2) being classified as unknown.
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4.3.3 Discussion

Email spam detection remains a serious problem for PC users. Many approaches
have been developed, yet each time spammers came up with new methods to
bypass Email filtering. In this section we proposed MailRank, a new Email ranking
and classification scheme, which intelligently exploits the social communication
network created via Email interactions. On the resulting Email network graph,
input values are collected from the sent-mail folder of all participants, as well as
from other sources, and a power-iteration algorithm is used to rank trustworthy
senders and to detect spammers. MailRank brings the following advantages upon
previous spam filtering techniques:

• Shorter individual cold-start phase. If a MailRank user does not know
an Email address X, MailRank can provide a rank for X as long as at
least another MailRank user has provided information about it. Thus, the
so-called “cold-start” phase, i.e., the time a system has to learn until it
becomes functional, is reduced: While most successful anti-spam approaches
(e.g., Bayesian filters) have to be trained for each single user (in case of an
individual filter) or a group of users (for example, in case of a company-
wide filter), MailRank requires only a single global cold start phase when
the system is bootstrapped. In this sense it is similar to globally managed
whitelists, but it requires less administrative efforts to manage the list and
it can additionally provide information about how good an Email address is,
and not only a classification into “good” or “bad”.

• High attack resilience. MailRank is based on a power iteration algorithm,
which is typically resistant against attacks.

• Partial participation. Building on the power-law nature of Email net-
works, MailRank can compute a rank for a high number of Email addresses
even if only a subset of Email users actively participates in the system.

• Stable results. Social networks are typically rather stable, so the computed
ratings of the Email addresses will usually also change slowly over time.
Hence, spammers need to behave well for quite some time to achieve a high
rank. Though this cannot resolve the spam problem entirely (in the worst
case, a spammer could, for example, buy Email addresses from people who
have behaved well for some time), it will increase the cost for using new
Email addresses.

• Can reduce load on Email servers. Email servers do not have to process
the Email body to detect spam. This significantly reduces the computa-
tional power for spam detection compared to, for example, content-based
approaches or collaborative filters [146].
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• Personalization. In contrast to spam classification approaches that dis-
tinguish only between ‘spam’ and ‘non-spam’, ranking also enables person-
alization features. This is important since there are certain Email addresses
(e.g., newsletters), which some people consider to be spammers while oth-
ers do not. To deal with such cases, a MailRank user can herself decide
about the score threshold below which all Email addresses are considered
spammers. Moreover, she could use two thresholds to determine spammers,
non-spammers, and unclear classifications. Furthermore, she might want
to give more importance to her relatives or to her manager, than to other
unrelated persons with a globally high reputation.

• Scalable computation. Power iteration algorithms have been shown to
be computationally feasible even when personalized over very large graphs
[190].

• Can also counter other forms of spam. When receiving spam phone
calls (SPIT16), for example, it is impossible to analyze the content of the call
before accepting / rejecting it. At best only the caller identifier is available,
which is similar to the sender Email address. MailRank can be used to
analyze the caller ID and decide whether a caller is a spammer or not.

Our experiments showed MailRank to perform well in the presence of very sparse
networks: Even in case of a low participation rate, it can effectively distinguish
between spammer Email addresses and non-spammer ones, even for those users
not participating actively in the system. MailRank proved itself to be also very
resistant against spammer attacks and, in fact, has the property that when more
spammer Email addresses are introduced into the system, the spam detection
performance increases.

In the future, one could move the implementation from a centralized system to
a distributed one in order to allow for more scalability and to avoid bottlenecks.
From the algorithmic perspective, some of the already existing Web anti-spam
approaches could be built on top of MailRank, so as to ensure an increased attack
resistance of the system.

4.4 Ranking for Web Spam Detection

Although Email spam is already widely present in our lives, another “industry” is
emerging at an even faster pace: (Web) Search Engine Optimization, shortly SEO
[115]. Given the increasing importance of search engines in modern society, many
online organizations currently attempt to artificially increase their rank, since

16Spam over Internet Telephony, http://www.infoworld.com/article/04/09/07/HNspamspit 1.html
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a higher rank implies more users visiting their Web pages, which subsequently
implies an increased profit. This results in a strong negative impact upon the
output of our everyday Web searches, making the high quality pages harder to
find and the low quality ones more accessible.

Search engines adopt several different sources of evidence to rank the Web pages
matching a user query, such as textual content, title of Web pages, anchor text
information, or the link structure of the Web [28]. Each of them is generally
attacked differently by spammers. As in the entire thesis, in this section we focus
again on link analysis, and thus tackle the latter measure, which is in fact one of
the most useful sources of evidence adopted. To extract information from the link
structure, search engines use algorithms that assess the quality (or popularity) of
Web pages by analyzing the linkage relationships among them. The success of
this strategy relies on the assumption that a link to a Web page represents a vote
from a user that sustains the quality of that targeted page.

In spite of the success of link analysis algorithms, many artificial hyperlink struc-
tures lead these algorithms to provide wrong conclusions about the quality of
Web pages. This phenomenon happens because links that cannot be interpreted
as votes for quality sometimes negatively affect the search engine ranking results.
Such links are called nepotistic links (or spam links), i.e., links intentionally cre-
ated to artificially boost the rank of some given set of pages, usually referred to
as spam pages [216].

In this section we propose a site-level approach for detecting generic spam links on
the Web. Previous algorithms have focused on identifying spam only by analyzing
page level relationships, which clearly misses some of the higher level information,
generated between a group of sites. We investigate three main types of site level
relationships: mutual reinforcement (in which many links are exchanged between
two sites), abnormal support (where most of one site’s links are pointing to the
same target site), and link alliances (in which several sites create complex link
structures that boost the PageRank score of their pages). When the relation be-
tween such sets of sites is considered suspicious, we assume that the links between
them are nepotistic and penalize them accordingly. Finally, it is important to note
that this new approach is complementary to the existing page level approaches,
and both strategies should be adopted simultaneously for identifying spam links
in a search engine database.

We will now proceed with presenting our three approaches to site level spam
detection. Then, we will continue with an extensive evaluation of these algorithms,
followed by a discussion about their strengths and weaknesses, as well as about
possible extesions which could be built on top of them.
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4.4.1 Site Level Spam Detection

We argue here that many spam links can be easily detected when the relationships
between sites, instead of pages, are analyzed. Even though the current page
centered approaches for detecting spam still hold (and will also be needed in the
future), they may not be the best solution to deal with many practical situations.
For example, a company having two branches with different sites could easily
establish many links between its two sites in order to boost their PageRank. These
would be regarded as true votes by the current ranking approaches, even though
they connect two entities having the same owner. Even when this would occur
accidentally (in which case we are dealing with “noisy” links instead; see also
Section 4.2.3 for more details on noisy links), such relationships are still artificial
and should not be included in the search engine ranking computation. Worse,
automatically generated complex site level link spam structures may be missed
by the current page level approaches. Therefore, we propose detecting spam at
a site level rather than at a page level, investigating the above mentioned three
types of artificial site level relationships. The following sections detail a separate
analysis on each of these constructs.

Site Level Mutual Reinforcement

Our first site level approach to detect spam links on Web collections is based on
the study of how connected are pairs of sites. Our assumption in this approach
is that when two sites are strongly connected, they artificially boost their results
in link analysis algorithms. We name this phenomenon as a site level mutual
reinforcement. Mutual reinforcement relations have been tackled as early as 1998
by Bharat and Henzinger [27]. However, all approaches proposed so far are
centered around the Web page as a unit item. We therefore study the mutual
reinforcement problem at the site level, because a considerable amount of spam
links between these type of Web sites cannot be detected using approaches working
at the page level. We thus consider all links between strongly connected sites as
spam, including links between individual pages that are not suspicious per se. This
is because these links artificially boost the popularity rank of the pages belonging
to the pair of suspicious Web sites. Let us now discuss the two different algorithms
we propose for detecting mutual site reinforcement relationships.

Bi-Directional Mutual Site Reinforcement (BMSR). This algorithm takes
into account the number of link exchanges between pages from the two studied
sites. We say that two pages p1 and p2 have a link exchange if there is a link
from p1 to p2 and a link from p2 to p1. Our first method tries to identify site
pairs that have an abnormal amount of link exchanges between their pages. In
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Figure 4.7: Example of site level link exchanges.

these cases, we consider the pair as suspicious and all the links between its sites
are considered spam. The threshold to consider a pair of sites suspicious is set
through experiments.

Uni-Directional Mutual Site Reinforcement (UMSR). As sites are large
structures, we also investigate the possibility of relaxing the notion of “link ex-
change” into “link density”, i.e., counting all links between two sites, disregarding
their orientation. This ensures capturing sites attempting to boost the ranks of
their pages without necessarily constructing link exchanges. One of the many
possibilities to achieve this goal is depicted on the upper side of Figure 4.7, using
cycles. The connection between two sites may create a set of cycles on the Web
graph containing pages from both of them. It is known that such cycle structures
boost the popularity of Web pages [114], and since many cycles can arise from
strongly connected sites, such alliances between sites create anomalies in the final
PageRank.

And yet this measure might be too drastic! For instance, many pages of a site
might have a link to Yahoo! Search just because they think this is a good service.
Since all links between the two sites are counted, it does not matter if Yahoo!
does not link back to the above mentioned site. We therefore propose a more
comprehensive measure, which returns the minimum between the amount of links
from a site s to some site s′, and the amount of links coming back from s′ to s.
We call this “mutual link density”.

On the example from Figure 4.7, there are 3 link exchanges between sites s and s′

and the link density is 9 (link exchanges are also counted). In order to calculate
these values, one needs to iterate over all pages, and for each page to increment
the site level statistics every time a link exchange is found (see Algorithm 4.4.2.1
below, lines 5-8), for BMSR, or simply every time a link is encountered (Algorithm
4.4.2.1, lines 5-6, and 9), for UMSR. Note that Algorithm 4.4.2.1 computes the
link density as a measure of UMSR. In order to obtain the mutual link density,
one would have to calculate UMSR(s, s′) and UMSR(s′, s) separately, and then
return their minimum as a result.
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Algorithm 4.4.2.1. Detecting Link Exchanges at Site Level.

1: Let BMSR(s, s′) and UMSR(s, s′) denote the amount of link exchanges
and the link density between sites s and s′ respectively.

2: For each site s
3: For each site s′ 6= s
4: BMSR(s, s′) = UMSR(s, s′) = 0
5: For each page p ∈ V , p residing on site s
6: For each page q ∈ Out(p), q from site s′ 6= s
7: If p ∈ Out(q)
8: Then BMSR(s, s′) = BMSR(s, s′) + 1
9: UMSR(s, s′) = UMSR(s′, s) = UMSR(s, s′) + 1

Computing Page Ranks. Let us now see how we could use these measures to
improve PageRank quality. An approach is depicted in Algorithm 4.4.2.2, which
removes all links between all pairs of sites (s, s′), if the BMSR or UMSR values
between them are above a certain threshold. In our experiments, we used 10,
20, 50, 100, 250 and 300 for link density (250 being best, yet still with poor
performance), and 2, 3 and 4 for link exchanges (with 2 having better results,
indicating that most sites exchange incorrect votes, or links, with only a few
partners, like a company with its branches).

Algorithm 4.4.2.2. Removing Site-Level Link Exchanges.

1: For each site s
2: For each site s′

3: If ∗MSR(s, s′) ≥ ε∗MSR∗
4: Then Remove all links between s and s′

5: Compute regular PageRank.

Site Level Abnormal Support

Another type of situation we consider is the site level abnormal support(SLAbS).
It occurs when a single site is responsible for a high percentage of the total
amount of links pointing to another site. This situation can easily arise within
a Web collection. For instance, and unfortunately, once the spammers have read
the previous section, they could start to seek for new schemes that circumvent
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Figure 4.8: Example of site chains.

the algorithms we presented. A relatively simple approach they could take is to
create chains of sites supporting each other through a limited number of links
(see Figure 4.8 for an example). This is because their space of available choices
is diminishing: Using too many links would make them detectable by our site
level mutual reinforcement algorithms above, while using other structures than
chains (e.g., hierarchy of sites) would visibly make their success more costly. We
therefore propose the following axiom:
Axiom 1 The total amount of links to a site (i.e., the sum of links to its pages)
should not be strongly influenced by the links it receives from some other site.
In other words, for any site s there should not be a site s′ 6= s, whose number
of links towards s is above a certain percentage of the total number of links s
receives overall. In our experiments we tested with thresholds ranging from 0.5%
up to 20% of the total number of links to s and the best results were achieved
at 2%. Whenever such a pair of sites (s, s′) is found, all links between them are
marked as spam. Note that links from s to s′ are also taken as spam because
we consider the relation between them suspicious. After this trimming process is
over, we remove the detected spam links and the regular PageRank is run over
the cleaned link database. The approach is summarized in Algorithm 4.4.2.3.

Algorithm 4.4.2.3. Removing Site-Level Abnormal Support(SLAbS).

1: For each site s
2: Let t be the total number of links to pages of s
3: For each site s′ that links to s
4: Let t(s′,s) be the number of links from s′ to s, and Let supp = t(s′,s)/t
5: If supp ≥ εAS

6: Then Remove all links between s′ and s
7: Compute regular PageRank.
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Site Level Link Alliances

Another hypothesis we considered is that the popularity of a site cannot be
supported only by a group of strongly connected sites. The intuition behind this
idea is that a Web site is as popular as diverse and independent are the sites that
link to it. In fact, as we will see from the experiments section, our algorithm which
detects and considers this concept of independence when computing PageRank
gives a strong improvement in the overall quality of the final rankings.

Further, continuing the scenario discussed in the previous Section, suppose spam-
mers do have enough resources available to build complex hierarchies of sites that
support an end target site, as illustrated in Figure 4.9. These hierarchies have
previously been named Link Spam Alliances by Gyögyi and Garcia-Molina [114],
but they did not present any solution to counteract them. Such structures would
generate sites linked by a strongly connected community, thus contradicting our
general hypothesis about the relation between diversity of sites that link to a site
and its actual popularity.

Before discussing our approach, we should note that we do not address page level
link alliances, i.e., hierarchies of pages meant to support an end target page, all
pages residing on the same site, or on very few sites. These types of structures
could be easily annihilated for example by using different weights for intra-site
and inter-site links, or by implementing the approach presented by Bharat and
Henzinger in [27], where every in-link of some page p is assigned the weight 1/k if
there are k pages pointing to p (for link alliances distributed over several sites).

The more complicated situation is to find link alliances (intentional or not) over
several sites, as the one depicted in Figure 4.9 (boxes represent sites). Our
intuition is that these alliances would still have to consist of highly interconnected
pages. More specifically, if a page p has in-links from pages i1, i2, . . ., iI , and
these latter pages are highly connected, then they are suspect of being part of

Figure 4.9: Example of link alliance spanning over several sites.
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a structure which could deceive popularity ranking algorithms. We evaluate the
degree of susceptivity using the following algorithm:

Algorithm 4.4.2.4. Computing Site-Level Link Alliance Susceptivity.

1: For each page p
2: Let Tot count the number of out-links of all pages q ∈ In(p)
3: Let TotIn count the number of out-links of all pages q ∈ In(p),

such that they point to some other page from In(p)
4: For each page q ∈ In(p)
5: For each page t ∈ Out(q)
6: Tot = Tot + 1
7: If t ∈ In(p)
8: Then TotIn = TotIn + 1
9: Susceptivity(p) = TotIn

Tot
.

Once the susceptivity levels are computed, we downgrade the in-links of every
page p with (1− Susceptivity(p)), uniformly distributing the remaining votes to
all pages. This latter step is necessary in order to ensure the convergence of the
Markov chain associated to the Web graph, i.e., to ensure the sum of transition
probabilities from each state st remains 1. The entire approach is also presented
in Algorithm 4.4.2.5.

Algorithm 4.4.2.5. Penalizing Site-Level Link Alliances.

1: Let PR(i) = 1/‖V ‖,∀i ∈ {1, 2, ..., ‖V ‖}
2: Repeat until convergence
3: For each page p

4: PR(p) = (1− Susceptivity(p)) · c· ∑
q∈In(p)

PR(q)
‖Out(q)‖ + 1−c

‖V ‖
5: Residual = Susceptivity(p) · c· ∑

q∈In(p)
PR(q)

‖Out(q)‖
6: For each page p′

7: PR(p′) = PR(p′) + Residual
‖V ‖
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4.4.2 Experiments

Experimental Setup

We evaluated our Web spam detection techniques on the link database of the
TodoBR search engine17 (now Google Brazil). This database consisted of a
collection of 12,020,513 pages extracted from the Brazilian Web, connected by
139,402,245 links. As it represents a considerably connected snapshot of the
Brazilian Web community, which is probably as diverse in content and link struc-
ture as the entire Web, we think it makes a realistic testbed for our experiments.

In order to evaluate the impact of our algorithms within practical situations, we
extracted test queries from the TodoBR log, which is composed of 11,246,351
queries previously submitted to the search engine. We divided these selected
queries in two groups:

1. Bookmark queries, in which a specific Web page is sought;

2. Topic queries, in which people are looking for information on a given topic,
instead of some page.

Each query set was further divided in two subsets, as follows:

• Popular queries : Here, we selected the top most popular bookmark / topic
queries found in the TodoBR log. These queries usually search for well
known Web sites and are useful to check what happens to these most com-
monly searched pages after the spam detection methods have been applied.

• Randomly selected queries : In this scenario we selected the queries randomly.
These queries tend to search for less popular sites and show the impact of
our techniques on pages that are probably not highly ranked by PageRank.

Then, 14 undergraduate and graduate computer science students (within different
areas) evaluated the selected queries under various experimental settings. All of
them were familiar with the Brazilian Web pages and sites, in order to ensure
more reliability to our experiments.

The bookmark query sets contained each 50 queries, extracted using the above
mentioned techniques. All bookmark query results were evaluated using MRR
(Mean Reciprocal Ranking), which is the metric adopted for bookmark queries on
the TREC Conference18 and is computed by the following equation:

MRR(QS) =

∑
∀qi∈QS

1
PosRelAns(qi)

|QS|
(4.2)

17http://www.todobr.com.br/
18http://trec.nist.gov/
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where QS is the set of queries we experiment on, and PosRelAns(qi) is the
position of the first relevant answer in the rankings output for query qi. MRR is the
most common metric for evaluating the quality of results in bookmark queries. As
it can be seen, its formula prioritizes methods that obtain results closer to the top
of the ranking, adopting an exponential reduction in the scores (i.e., higher scores
are better), as the position of the first relevant answer in the ranking increases.
Also, MRR is very good at assessing the “real life” performance of the search
engine, since the most important URLs are those placed at the top of the search
output. However, MRR is not sensible to pages having huge drops in position
(e.g., from place 15 to place 40). Therefore, we also adopted another measure,
mean position, (denoted MEANPOS in the tables to follow), which computes
the average position of the first relevant answer in the output provided for each
query. This metric results in a linear increase in the scores (higher is worse) as
the position of the relevant answer increases.

For topic queries, we used two sets of 30 queries also selected from the TodoBR
log as described previously. These different queries evaluate the impact of our
spam detection algorithms when searching for some given topics. In this case, we
evaluated the results using the same pooling method as within the Web Collection
of TREC [121]. We thus constructed query pools containing the first top 20
answers for each query and algorithm. Then, we assessed our output in terms
of various precision based metrics: For each algorithm, we evaluated the Mean
Average Precision (MAP), the precision at the first 5 positions of the resulted
ranking (P@5), as well as the precision at the top 10 output rankings (P@10). In
all cases the relevant results were divided in two categories, (1) relevant and (2)
highly relevant. Also, we processed all queries according to the user specifications,
as extracted from the TodoBR log: phrases, Boolean conjunctive or Boolean
disjunctive. The set of documents achieved for each query was then ranked
according to the PageRank algorithm, with and without each of our link removal
techniques applied. Finally, all our results were tested for statistical significance
using T-tests (i.e., we tested whether the improvement over PageRank without
any links removed is statistically significant).

In all forthcoming tables, we will label the algorithms we evaluated as follows:

• ALL LINKS: No spam detection.

• UMSR: Uni-directional Mutual Site Reinforcement.

• BMSR: Bi-directional Mutual Site Reinforcement.

• SLAbS: Site Level Abnormal Support.

• SLLA: Site Level Link Alliances.

• Combinations of the above, in which every method is applied independently
to remove (UMSR, BMSR, SLAbS) or downgrade (SLLA) links.

102



Paul - Alexandru Chirita

Method Threshold
UMSR 250
BMSR 2
SLAbS 2%

Table 4.2: Best thresholds found for each algorithm using MRR as the tuning
criterion.

Algorithm specific aspects. Another important setup detail is to divide the
collection in Web sites, as the concept of Web site is rather imprecise. In our
implementation, we adopted the host name part of the URLs as the keys for
identifying individual Web sites. This is a simple, yet very effective heuristic to
identify sites, as pages with different host names usually belong to different sites,
while those with identical host names usually belong to the same site.

As UMSR, BMSR and SLAbS all use thresholds to determine whether links
between pairs of sites are spam or not, it is important to tune such thresholds in
order to adjust the algorithms to the collection in which they are applied. For the
experiments we performed, we adopted the MRR results achieved for bookmark
queries as the main parameter to select the best threshold. This metric was
adopted because the link information tends to have a greater impact on bookmark
queries than on topic queries. Further, MRR can be calculated automatically,
reducing the cost for tuning. The best parameters for each method depend on the
database, the amount of spam and the requirements of the search engine where
they will be applied.

Table 4.2 presents the best thresholds we found for each algorithm using the MRR
as the tuning criteria. These parameters were adopted in all the experiments
presented.

Results

Bookmark Queries. We evaluated the bookmark queries in terms of Mean
Reciprocal Rank (MRR) and Mean Position (MEANPOS) of the first relevant
URL output by the search engine. Table 4.3 shows the MRR scores for each
algorithm with popular bookmark queries. The best result was achieved when
combining all the spam detection methods proposed, with an improvement of
26.98% in MRR when compared to PageRank. The last column shows the T-test
results, which indicate the statistical significance of the difference in results19 for

19Recall that statistical significance is not computed on the average result itself, but on each
evaluation evidence (i.e., it also considers the agreement between subjects when assessing the
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Method MRR Gain [%] Signific., p-value
ALL LINKS 0.3781 - -

UMSR 0.3768 -0.53% No, 0.34
BMSR 0.4139 9.48% Highly, 0.008
SLAbS 0.4141 9.5% Yes, 0.04
SLLA 0.4241 12.14% Yes, 0.03

BMSR+SLAbS 0.4213 11.40% Yes, 0.02
SLLA+BMSR 0.4394 16.20% Highly, 0.01
SLLA+SLAbS 0.4544 20.17% Highly, 0.003

SLLA+BMSR+SLAbS 0.4802 26.98% Highly, 0.001

Table 4.3: Mean Reciprocal Rank (higher is better) for popular bookmark queries.

Method MEANPOS Gain [%] Significance
ALL LINKS 6.35 - -

UMSR 6.25 1.57% No, 0.34
BMSR 5.37 18.25% Yes, 0.04
SLAbS 5.84 8.72% No, 0.26
SLLA 5 27.06% Highly, 0.003

BMSR+SLAbS 5.63 12.89% Minimal, 0.12
SLLA+BMSR 4.84 31.17% Highly, 0.01
SLLA+SLAbS 4.68 35.86% Highly, 0.002

SLLA+BMSR+SLAbS 4.62 37.29% Yes, 0.04

Table 4.4: Mean position of the first relevant result obtained for popular bookmark
queries.

each database when compared to the ALL LINKS version (i.e., PageRank on the
original link database). The only method that had a negative impact on MRR was
the UMSR, which indicates that many unidirectional relations between sites are
rather useful for the ranking (i.e., not artificial). This was also the only algorithm
for which the T-test indicated a non-significant difference in the results (p-values
lower than 0.25 are taken as marginally significant, lower than 0.05 are taken as
significant, and lower than 0.01 as highly significant).

Table 4.4 presents the Mean Position of the first relevant result (MEANPOS)
achieved for popular bookmark queries under each of the algorithms we proposed.
The best combination remains SLLA+BMSR+SLAbS, with a gain of 37.00%.
Thus, we conclude that for popular bookmark queries the combination of all

results). Thus, smaller average differences could result in a very significant result, if the difference
between the two algorithms remains relatively constant for each subject.
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Method MRR Gain [%] Signific., p-value
ALL LINKS 0.3200 - -

UMSR 0.3018 -5.68% Highly, 0.01
BMSR 0.3195 -0.17% No, 0.45
SLAbS 0.3288 2.73% No, 0.31
SLLA 0.3610 12.81% Yes, 0.04

BMSR+SLAbS 0.3263 -2.19% No, 0.36
SLLA+BMSR 0.3632 13.47% Yes, 0.03
SLLA+SLAbS 0.3865 20.78% Yes, 0.017

SLLA+BMSR+SLAbS 0.3870 20.92% Yes, 0.016

Table 4.5: Mean Reciprocal Rank (higher is better) for randomly selected book-
mark queries.

methods is the best spam detection solution. Also, individually, Site Level Link
Alliance (SLLA) produced the highest increase in PageRank quality.

After having evaluated our techniques on popular bookmark queries, we tested
their performance over the randomly selected ones. The MRR results for this sce-
nario are displayed in Table 4.5. Again, the best outcome was achieved when com-
bining all the spam detection methods proposed, with an improvement of 20.92%
in MRR when compared to PageRank. Note that an improvement is harder to
achieve under this setting, since the Web pages searched in these queries are not
necessarily popular, and thus many of them may have just a few in-going links
and consequently a low PageRank score. Therefore, as removing links at the site
level might also have the side effect of a further decrease of their PageRank score,
they could become even more difficult to find. This is why both site level mutual
reinforcement algorithms (BMSR and UMSR) resulted in a negative impact in
the results, indicating that some site level mutual reinforcement might not nec-
essarily be a result of spam (at least the uni-directional type of reinforcement).
Similar results have been observed when computing the Mean Position of the
first relevant result, instead of the MRR (see Table 4.6). Individually, SLLA is
still the best algorithm, whereas the best technique overall is again the combined
SLLA+BMSR+SLAbS.

Topic Queries. As mentioned earlier in this section, we evaluated the topic
queries using precision at the top 5 results (P@5) and at the top 10 results
(P@10), as well as the mean average precision (MAP). We first turn our attention
to the experiment in which the output URLs assessed both as relevant and highly
relevant are considered as good results. Table 4.7 presents the evaluation for
the most popular 30 topic queries under this scenario. All results were tested
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Method MEANPOS Gain [%] Significance
ALL LINKS 8.38 - -

UMSR 8.61 -2.71% Highly, 0.01
BMSR 8.28 1.28% No, 0.27
SLAbS 8.23 1.80% Minimal, 0.24
SLLA 7.42 12.89% Minimal, 0.11

BMSR+SLAbS 8.02 4.09% No, 0.36
SLLA+BMSR 7.27 15.21% Minimal, 0.07
SLLA+SLAbS 7.12 17.61% Highly, 0.01

SLLA+BMSR+SLAbS 7 19.76% Highly, 0.005

Table 4.6: Average mean position of the first relevant result for randomly selected
bookmark queries.

for significance, and in both P@5 and P@10 no method manifested a significant
gain or loss. Even so, in both P@5 and P@10 we see that BMSR has a slight
gain over UMSR. SLLA exhibited the greatest gain in P@5, but the results were
relatively similar for all algorithms in P@10. As for MAP, most of the results
(except for SLAbS, BMSR, and their combination) had significant gain on MAP,
when compared with the original link database. Finally, SLAbS performance was
rather poor. However, this behavior of SLAbS was recorded only with this kind of
queries, where it is also explainable: Some very popular sites might indeed get an
abnormal support from several of their fans; some would consider this as spam, but
our testers apparently preferred to have the ranks of these sites boosted towards
the top. The best individual method was SLLA and the best combination was
SLLA with BMSR, which was better than the combination of all three methods
due to the negative influence of SLAbS.

The same experiment was then performed for the 30 randomly selected topic
queries. Its results are depicted in Table 4.8. Here, SLLA remains a very effective
individual algorithm, but SLAbS shows even better results. This indicates that
an abnormal support for less popular sites usually appears as a result of spam.
More, due to this special behavior of our algorithms, under this setting the main
contributor to the combined measures was SLAbS, thus yielding the best MAP
score for BMSR+SLAbS.

Before concluding this analysis, we also measured the quality of our methods
under the same setting, but considering only the highly relevant output URLs as
good results (recall that our subjects evaluated each URL as irrelevant, relevant
and highly relevant for each query). For the popular topic queries (Table 4.9), the
performance of the individual methods was similar to the scenario that considered
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Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.255 0.270 0.198 -

UMSR 0.255 0.282 0.207 Highly, 0.0031
BMSR 0.260 0.285 0.198 No, 0.3258
SLAbS 0.226 0.262 0.185 Minimal, 0.0926
SLLA 0.275 0.270 0.227 Highly, 0.0030

BMSR+SLAbS 0.226 0.276 0.200 No, 0.3556
SLLA+SLAbS 0.245 0.255 0.216 Yes, 0.0429

SLLA+BMSR 0.270 0.273 0.231 Highly, 0.0031
SLLA+BMSR+SLAbS 0.245 0.259 0.223 Yes, 0.0129

Table 4.7: Precision at the first 5 results, at the first 10 results, and Mean Average
Precision considering all the relevance judgments for popular topic queries.

Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.412 0.433 0.311 -

UMSR 0.442 0.442 0.333 Highly, 0.0030
BMSR 0.400 0.445 0.314 No, 0.3357
SLAbS 0.436 0.458 0.340 Yes, 0.0112
SLLA 0.461 0.455 0.327 Yes, 0.0125

BMSR+SLAbS 0.448 0.470 0.358 Highly, 0.0012
SLLA+BMSR 0.485 0.448 0.326 Highly, 0.0006
SLLA+SLAbS 0.461 0.461 0.354 Minimal, 0.0618

SLLA+BMSR+SLAbS 0.461 0.467 0.346 Highly, 0.0002

Table 4.8: Precision at the first 5 results, at the first 10 results, and Mean Average
Precision considering all the relevance judgments for random topic queries.

both relevant and highly relevant results, with the main difference being that here
SLAbS gains about 12% over the original database, instead of losing. This is
because the sites previously discovered due to spam or noisy links (i.e., those
being very popular, but also abnormally supported by some fans) were considered
only relevant by our testers, and thus not included in this more strict experiment.
Finally, for the randomly selected queries (Table 4.10), SLAbS again showed
the best individual performance (just as in the sibling experiment considering
both kinds of relevance judgments), with the overall top scores being achieved for
SLLA+BMSR+SLAbS and BMSR+SLAbS.

Conclusion. In order to make our results more clear, we also plotted their
relative gain over regular PageRank (i.e., without spam detection). Figure 4.10
depicts this gain in percentage for bookmark queries and Figure 4.11 depicts it
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Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.152 0.141 0.112 -

UMSR 0.152 0.147 0.131 Highly, 0.0002
BMSR 0.152 0.150 0.127 Highly, 0.0022
SLAbS 0.152 0.147 0.126 Yes, 0.0172
SLLA 0.162 0.153 0.163 Highly, 0.00003

BMSR+SLAbS 0.152 0.156 0.128 Highly, 0.0016
SLLA+SLAbS 0.157 0.147 0.175 Highly, 0.00002
SLLA+BMSR 0.157 0.153 0.168 Highly, 0.00005

SLLA+BMSR+SLAbS 0.157 0.150 0.179 Highly, 0.00001

Table 4.9: Precision at the first 5 results, at the first 10 results, and Mean Average
Precision considering only the highly relevant results selected by our subjects for
popular topic queries.

for topic queries. We first note that UMSR yielded negative results in three
of the four experiments with bookmark queries, which makes it less preferable
to its sibling BMSR, even though it performed better than the latter one with
topical queries. Also, we observe that SLAbS performed quite well under both
broad experimental settings, but SLLA is clearly the best single approach for
bookmark queries. Finally, all combined measures performed very well, with
SLLA+BMSR+SLAbS being the best one.

Practical Issues

Amount of removed links. Even though the amount of removed links does
not necessarily represent the performance increase of each algorithm, it is still
interesting to see how much did they trim the original link structure. We thus
present these values in Table 4.11 (recall that SLLA does not remove any links,
but only downgrades them). We observe that BMSR has removed a relatively low
amount of links (at least when compared to the other methods), which indicates
that SLLA+SLAbS could be preferred in practical implementations when faster
computations of the algorithm are desired, at the cost of a minimally lower output
quality.

Scalability. Algorithms dealing with large datasets as the Web need to have a
very low complexity in order to be applied in a real environment. We argue that
all the algorithms we proposed in this section have a computational cost growth
linear in the number of pages.

Both Mutual Reinforcement detection algorithms behave in a similar way,
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Method P@5 P@10 MAP Signif. for MAP
ALL LINKS 0.170 0.179 0.187 -

UMSR 0.176 0.191 0.196 Yes, 0.0457
BMSR 0.170 0.185 0.195 Minimal, 0.0520
SLAbS 0.182 0.191 0.201 Yes, 0.0200
SLLA 0.164 0.185 0.194 No, 0.2581

BMSR+SLAbS 0.188 0.197 0.207 Highly, 0.0068
SLLA+BMSR 0.182 0.194 0.205 Highly, 0.0090
SLLA+SLAbS 0.182 0.206 0.203 Yes, 0.0180

SLLA+BMSR+SLAbS 0.200 0.212 0.208 Highly, 0.0012

Table 4.10: Precision at the first 5 results, at the first 10 results, and Mean Average
Precision considering only the highly relevant results selected by our subjects for
random topic queries.

Method Links Detected % of Total Links
UMSR 9371422 7.16%
BMSR 1262707 0.96%
SLAbS 21205419 16.20%

UMSR+BMSR 9507985 7.26%
BMSR+SLAbS 21802313 16.66%

Table 4.11: Amount of links removed by each of our algorithms.

with UMSR being slightly less expensive than BMSR. The former one needs
a simple pass over all links and thus has the complexity O(|E|). If M =
Averagep∈V (Out(p)), and if the in-links information is present in the search engine
database, but with the in-links in a random order, then the complexity of BMSR
is O(|V | ·M2), with M2 being the cost of sequential searching. Furthermore, if
the in-links are sorted, then the complexity falls to O(|V | ·M · log M).

SLAbS is very similar to UMSR. For each page p we update the statistics about
its in-going links. Thus, if P = Averagep∈V (In(p)), then the computational
complexity of SLAbS is O(|V | · P ).

SLLA is based on the in-linkers of a page p that are not from the same site as
p. Thus, the algorithm needs to calculate the amount of links from pages from
In(p) that point to other pages within In(p). If the out-links or the in-links are
already sorted, the complexity of this approach is O(|V | ·M2 · log M). Otherwise,
the complexity is O(|V | ·M3), since a sequential search is needed.

Finally, we note that all algorithms we proposed in this section do a page-by-page
processing, thus being trivially parallelizable.
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Figure 4.10: Relative gain (in %) of each algorithm in MRR and Mean Position
for bookmark queries.

4.4.3 Discussion

There is no doubt that Search Engine Optimization is a really popular job right
now. Just to give an example, as of writing this thesis, only in New York city there
were several thousands SEO job openings20. This effect occurred because of two
reasons: First, an efficient manipulation of the search engine rankings can bring
millions of dollars into the target company; Second, even though such incorrect
techniques are visibly decreasing the quality of our everyday search experience,
they have not been explicitly moved outside the law. Thus, everybody can do it,
as long as he is not detected / rank penalized by the search engine itself.

In this section we made another step in this continuous battle of keeping seach
quality at very high standards. We introduced a novel approach to remove artifi-
cial linkage patterns from search engine databases. More specifically, we proposed
to utilize site level link analysis to detect such malicious constructs. We designed
and evaluated algorithms tackling three types of inappropriate site level relation-
ships: (1) mutual reinforcement, (2) abnormal support and (3) link alliances.
Our experiments have showed a quality improvement of 26.98% in Mean Recipro-
cal Rank for popular bookmark queries, 20.92% for randomly selected bookmark
queries, and up to 59.16% in Mean Average Precision for topic queries.

Another important contribution we brought relates to the generality of our meth-
ods: Even though our main interest was “spam” detection, the algorithms we

20Information aggregated from several job sites.

110



Paul - Alexandru Chirita

Figure 4.11: Relative gain (in %) in MAP for all algorithms for topic queries,
considering only highly relevant results as relevant (High), and considering both
relevant and highly relevant answers as relevant (All).

presented in this section can in fact detect much more types of artificial links.
Thus, they are able to identify also intensively interlinked company branches, or
site replicas, etc., all of which have not necessarily been intentionally deployed
with the intent of manipulating search engine rankings. All in all, about 16.7%
of the links from our collection were marked as noisy (i.e., non-votes), and quite
a few of them could not necessarily be considered as nepotistic.

While most of the Web spam detection algorithms we presented in this section
remove the identified malicious links completely, in the future one could investigate
using different weights for various types of links, according to the relation they
represent (i.e., inter-site or intra-site relation), as well as to their probability
of representing a vote of importance. Finally, it would also be beneficial to
design more complex (eventually automatic) approaches to tune up the parameter
thresholds.
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Chapter 5

Ranking for Web Search
Personalization

5.1 Introduction

We have seen in the previous two chapters that link analysis ranking can do a
good work in many application areas for which it was previously either completely
unexplored, such as Desktop search and Email spam detection, or partially ex-
plored, such as Web spam detection. This chapter comes to propose link analysis
solutions for a more intensively investigated area, Personalized Web Search.

The booming popularity of Web search engines has determined simple keyword
search to become the only widely accepted user interface for seeking informa-
tion over the Web. Yet keyword queries are inherently ambiguous. The query
“canon book” for example covers several different areas of interest: religion, digi-
tal photography, literature, and music1. Interestingly, this is one of the examples
in which the first ten Google results do not contain any URL on the last topic.
Clearly, search engine output should be filtered to better align the results with the
user’s interests. Personalization algorithms accomplish this goal by (1) learning /
defining user’s interests and (2) delivering search results customized accordingly:
pages about digital cameras for the photographer, religious books for the clergy-
man, and documents on music theory for the performing artist. A recent study

1In music, a canon is a composition in which two (or more) voices sing the same melodic line
but start at different moments in time.
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presented by SearchEngineWatch [203] indicated that more than 80% of the users
would prefer to receive such personalized search results.

In this chapter we propose to exploit manually created large scale information
repositories to personalize Web search, i.e., to return search results which are
relevant to the user profile and are of good quality. There are two different types
of such repositories: (1) Globally edited ones and (2) individually edited ones. For
the former category we build on top of the metadata accumulated within public
taxonomies such as the Open Directory. We thus project link analysis ranking
into a taxonomical space and define appropriate similarity measures to order the
Web search output in accordance to each user’s preferences. Furthermore, we
also describe a new algorithm that learns user profiles based on projecting search
statistics on top of the same taxonomical space, thus being either faster, or less
obtrusive than its predecessor approaches.

For the category of individually created repositories we propose to expand user’s
Web queries by utilizing both text and link analysis on top of Personal Information
Repositories2. Query expansion assists the user in formulating a better query by
appending additional keywords to the initial search request in order to encapsulate
her interests therein, as well as to focus the search output accordingly. The
technique has already been shown to perform very well when used over large
data sets and especially with short input queries [147, 40]), i.e., exactly under the
characteristics of the Web search scenario. Therefore, we automatically extract
additional keywords related both to the user’s search request and to her interests
as captured by her PIR, thus implicitly personalizing the search output.

The chapter is organized as follows: We proceed with a discussion of the back-
ground literature specific for this area. Further, we discuss how to exploit global
repositories in order to personalize search in Section 5.3, as well as to automati-
cally infer user profiles in Section 5.4. The use of individually created collections
is then presented in Section 5.5. The chapter ends with a flexibility analysis rel-
evant for our both personalization approaches, followed by some conclusions and
an outline of possible future directions.

5.2 Specific Background

Personalization can bring extensive improvements over regular search quality. And
yet, even though many authors attempted to design a widely accepted personal-
ized search algorithm, no one has succeeded so far. This section reviews most

2Recall that the PIR is defined as the personal collection of textual documents, emails, cached
Web pages, etc. stored on a local machine.
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techniques that have been proposed along the time and compares them to the two
approaches we introduce in this chapter. Moreover, since our second algorithm
builds on top of another existing domain, namely automatic query expansion, we
also survey this research area in more detail within the second half of the section.

5.2.1 Personalized Search

Introduction. Search personalization consists of two highly interacting com-
ponents: (1) user profiling, and (2) output ranking. Generally, the latter one
depends on the characteristics of the former: A good profile definition method
is needed before designing the ranking algorithm. Thus, user profiles represent
a central point of all approaches to personalize search. In one way or another,
one must know the profile of the person searching the Web in order to deliver
the best results. We distinguish two possibilities for classifying the algorithms for
personalized search, both centered around the user profile: The first relates to
the way it is constructed, whereas the second relates to the way it is used. Most
works available so far are focused on the former approach: Chan [48] for example
investigated the types of information available to pursue it, such as the time spent
visiting a Web page, or the frequency of visits, whether it was bookmarked, etc.
Since many authors attempted to exploit this kind of information over the past
few years, Kelly and Teevan [138] have recently put together a comprehensive
bibliography capturing and categorizing these techniques. In this section we will
present a different literature survey, focused on the latter perspective, i.e., the
way profiles are used to achieve personalization, rather than on the way they are
built. We distinguish three broad approaches: (1) integrating the personalization
aspect directly into PageRank, (2) filtering each query output to contain only
URLs relevant to the user profile, and (3) using the personalized search algorithm
as an additional search engine measure of importance (together with PageRank,
TFxIDF, etc.). Let us now inspect each of them in detail.

PageRank-based Methods. The most efficient personalized search algorithm
will probably be the one which has the personalization aspect already included in
the initial rankings. Unfortunately, this seems very difficult to accomplish. Initial
steps in this direction have been already described by Page et al. [172], who
proposed a slight modification of the PageRank algorithm to redirect the random
surfer towards some preferred pages. However, it is clearly impossible to compute
one PageRank vector for each user profile, i.e., for each set of pages “privileged”
by the random surfer. The same is valid when the random surfer is uniformly
choosing pages to jump to and some preferred domains (or links) get a higher
weight during the computation [5, 72].
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Qiu and Cho [176] used Machine Learning to classify user’s preferences into one or
more top level ODP topics, and then applied Topic-Sensitive PageRank [118] (see
also Section 2.1.2 for its complete description) weighted according to the inferred
user interests.

Jeh and Widom [131] proposed an algorithm that avoids the huge resources needed
for storing one Personalized PageRank Vector (PPV) per user. They started from
a set of hubs (H)3, each user having to select her preferred pages from it. PPVs
can then be expressed as a linear combination of PPVs for preference vectors with
a single non-zero entry corresponding to each of the pages from the preference set
(called basis vectors). Furthermore, basis vectors are decomposed into partial
vectors (encoding the part unique to each page, computed at run-time) and the
hubs skeleton (capturing the interrelationships among basis vectors, stored off-
line). The advantage of this approach is that for a hub set of N pages, one can
compute 2N Personalized PageRank vectors without running the algorithm again.
These rankings are generated off-line, independently of the user query, which does
not impose any additional response time on the search engine. The disadvantages
are the necessity for the users to select their preference set only from within a given
group of pages4 (common to all users), as well as the relatively high computation
time for large scale graphs. The latter problem has been solved through several
subsequent studies [101, 190], their most recent solution using rounding and count-
min sketching in order to fastly obtain accurate enough approximations of the
Personalized PageRank scores.

Output Filtering Methods. As partially or completely query independent
techniques still exhibit a number of limitations, query oriented approaches have
been investigated as an alternative. One of them is to sort out the irrelevant or
likely irrelevant results, usually in a process separated from the actual ranking
mechanism. Liu et al. [163] restrict searches to a set of categories defined in the
ODP (via Google Directory). Their main contribution consists of investigating
various techniques to exploit users’ browsing behavior for learning profiles as bags
of words associated to each topical category. In comparison to our approaches,
they use relatively time consuming algorithms (e.g., Linear Least Squares Fit)
and obtain a slightly worse precision. A different scheme is presented by Pahlevi
and Kitagawa [173], where for each query the user first selects her topics of
interest, and then a classifier is used to either mark the results as non-relevant,
or associate them to one of the specified categories. Similarly, in [140] users start

3Recall that hubs were defined here as pages with high PageRank, differently from the more
popular definition of Kleinberg [143].

4We have done some work in the direction of improving the quality of this set of pages (see
Chirita et al. [73]), but users are still restricted to select their preferred pages from a subset of
H (if H = {CNN,FOXNews} we cannot bias on MSNBC for example).
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by building a concept tree and then select one of these concepts to search for.
The output is constructed by generating a set of queries describing user’s selected
concept(s) and combining their results. Both these latter approaches are very
difficult to accomplish on a Web scale, either because classification delays search
engine response time too much, or because users are not willing to define concept
hierarchies every time they search. Finally, when utilized in conjunction with
specific user profiles, automatic query expansion represents a different kind of
output filtering, its main underlying idea being to focus the search output onto
the additional keywords appended to the query. We refer the reader to the next
subsection for a detailed discussion on the currently existing query expansion
techniques.

Re-ranking Methods. A third approach to achieve personalization relies on
building an independent simpler personalized ranking algorithm, whose output
is then combined with that of PageRank. Sugiyama et al. [202] analyze user’s
surfing behavior and generate user profiles as features (terms) of the pages they
visited. Then, upon issuing a new query, the results are ranked based on the
similarity between each URL and the user profile. Similarly, Gauch et al. [107]
build profiles by exploiting the same surfing information (i.e., page content and
length, time spent on each URL, etc.), as well as by spidering the URLs saved
in the personal Web cache and classifying them into topics of interest (in a more
recent work [199], they log this latter information using a Google wrapper instead).
Both approaches are similar to our taxonomy based personalized search algorithm,
but we construct user profiles only by analyzing the user queries submitted to the
search engine, rather than the entire browsing behavior, thus being less intrusive
and allowing these data to be collected directly on the server side – e.g., via search
accounts such as Yahoo! My Web, while having a faster ranking scheme.

Besides the algorithm depicted in Section 5.5, there exists only one other approach
attempted to enhance Web search using Desktop data. Teevan et al. [204] modi-
fied the query term weights from the BM25 weighting scheme [132] to incorporate
user interests as captured by their Desktop indexes. The method is orthogonal
to our work, since we apply query expansion, a personalization tool much more
powerful than term weighting.

Commercial Approaches. On the one hand, industry has long claimed that
personalization distinguishes itself as one of the future technologies for Web search.
On the other hand, none of the techniques initiated by the search engines in
this direction has managed to succeed in being widely accepted by the public.
This indicates that more work needs to be performed before identifying the best
personalization approach.

Most major search engines offer personalization services as beta services. Google

117



Chapter 5. Ranking for Web Search Personalization.

used to ask users about Open Directory topics of interest in order to achieve
personalization5, possibly by implementing an extension of Haveliwala’s Topic-
Sensitive PageRank [118]. This prototype is currently no longer available. Its
replacement is Google Search History6, which has the additional advantage of
learning the user profile based on her previous queries and clicks. Yahoo! and
Ask offer quite similar services respectively via their MyWeb 27 and MyJeeves8

applications.

A different approach is taken by Eurekster9, which offers personalization based on
user communities, i.e., by exploiting the interests of users with interests closely
related to those of the target user. Other major search engines might apply
this kind of community based query log mining as well, including for example
Windows Live Search10. Some of the meta-search engines also claim to have
access to personalization data (see for example IBoogie11) when aggregating the
results over different search providers.

JetEye12 was one of the first search engines to provide user specific customization
of the core search engine, by deciding what should be tapped for the future,
what should be excluded, etc. Other implementations of this approach exist, for
example within Google Coop13, Rollyo14, or LookSmart’s Furl15, etc. The new
aspect therein is that personalization is also included in the index collection by
adding specific Websites to it, comments, keywords, or quality ratings.

A lot of other personalization search engines exist, such as Memoory16, or A917.
Also, other companies attempting Web search personalization include Kaltix or
Outride, both bought by Google in 2003 and 2001 respectively.

SnakeT18 [97] includes some näıve form of personalization, according to which
users are able to select some clusters of interest, once the output of their queries
has been grouped into categories.

5http://labs.google.com/personalized
6http://www.google.com/psearch?hl=en
7http://myWeb2.search.yahoo.com
8http://myjeeves.ask.com/
9http://search.eurekster.com

10http://search.live.com
11http://www.iboogie.com
12http://www.jeteye.com/
13http://www.google.com/coop
14http://www.rollyo.com/
15http://www.furl.net/
16http://www.searchenginejournal.com/?p=1179
17http://www.a9.com/
18http://www.snaket.com/

118



Paul - Alexandru Chirita

5.2.2 Automatic Query Expansion

Automatic query expansion aims at deriving a better formulation of the user query
in order to enhance retrieval. It is based on exploiting various social or collection
specific characteristics in order to generate additional terms, which are appended
to the original input keywords before identifying the matching documents returned
as output. In this section we survey some of the representative query expansion
works grouped according to the source employed to generate additional terms:
(1) Relevance feedback, (2) Collection based co-occurrence statistics, and (3)
Thesaurus information. Some other approaches are also addressed in the end
of the section.

Relevance Feedback Techniques. The main underlying idea of Relevance
Feedback (RF) is that useful information can be extracted from the relevant
documents returned for the initial query. First approaches were manual (and
therefore personalized) [185] in the sense that the user was the one choosing the
relevant results, and then various methods were applied to extract new terms,
related to the query and the selected documents. Efthimiadis [90] presented a
comprehensive literature review and proposed several simple methods to extract
such new keywords based on term frequency, document frequency, etc. We used
some of these as inspiration for our Desktop specific expansion techniques. Chang
and Hsu [49] asked users to choose relevant clusters, instead of documents, thus
reducing the amount of user interaction necessary. Yet RF has been shown to
be effectively automatized by simply considering the top ranked documents as
relevant [219] (this technique is known as Pseudo RF). Lam and Jones [152] used
summarization to extract informative sentences from the top-ranked documents,
and appended them to the user query. We have adapted this approach for our
Desktop scenario. Also, Carpineto et al. [42] maximized the divergence between
the language model defined by the top retrieved documents and that defined by
the entire collection. Finally, Yu et al. [221] selected the expansion terms only
from vision-based segments of Web pages in order to cope with the multiple topics
residing therein.

Co-occurrence Based Techniques. Another source of additional query terms
is the searched collection itself. Terms highly co-occurring with the originally
issued keywords have been shown to increase precision when appended to the
query [141]. Many statistical measures have been developed to best assess “term
relationship” levels, either based on analyzing the entire documents [177], lexical
affinity relationships [40] (i.e., pairs of closely related words which contain exactly
one of the initial query terms), etc. We have investigated three such approaches in
order to identify query relevant keywords from the rich, yet rather complex Per-
sonal Information Repository. In a more recent investigation, Wang and Tanaka
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[212] first employed a topical based clustering of all terms, and then selected the
candidate expansion words using conditional entropy.

Thesaurus Based Techniques. A broadly explored technique is to expand the
user query with new terms, whose meaning is closely related to the original input
keywords. Such relationships are usually extracted from large scale thesauri, as
WordNet [167], in which various sets of synonyms, hypernyms, hyponyms, etc.
are predefined. Just as for the term co-occurrence methods, initial experiments
with this approach were controversial, either reporting improvements, or even
reductions in the output quality (see for example the work of Voorhees [209] and
the references therein). Recently, as the experimental collections grew larger,
and as the employed algorithms became more complex, better results have been
obtained. Shah and Croft [194], as well as Kim et al. [142], applied various
filtering techniques over the proposed additional keywords, either by estimating
query clarity [77], or by using a root sense tagging approach. We also use WordNet
based expansion terms. However, we extend this process with an analysis of the
Desktop level relationship between the original query and the proposed additional
keywords.

Other Techniques. There exist several other attempts to extract better terms
for query expansion, two of them being specifically tailored for the World Wide
Web environment: Cui et al. [78] generated word correlations utilizing a new
probability for query terms to appear in each document, computed over the search
engine logs. Kraft and Zien [147] pointed out that anchor text is very similar to
the user queries, and thus exploited it to acquire additional keywords. Both
approaches are orthogonal to our Desktop focused work, as we use a different and
richer source of expansion terms.

5.3 Taxonomy Based Personalized Web Search

We presented in Section 5.2.1 the most popular approaches to personalizing Web
search. Even though they are the best so far, they all have some important
drawbacks. PageRank based methods either need too many resources to compute
and store all Personalized PageRank Vectors, or are limited to a very restricted
set of pages to personalize on. Existing re-ranking methods usually employ text
classifiers both for learning user profiles and for evaluating query results (i.e.,
URLs), thus being inherently slow. Finally, output filtering schemes must perform
an additional results trimming step, which is also delaying response time to some
extent. It is therefore still worth searching for a simpler and faster algorithm with
at least similar personalization granularity as the current ones.
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In this section we propose to use community wide manually entered catalogue
metadata, such as the ones collected within the Open Directory, which express
topical categorizations of Web pages. This kind of metadata was one of the
first available on the Web in significant quantities (for example within Yahoo!
Directory), providing hierarchically structured access to high-quality content on
the Web. We thus build upon the categorization done in the context of the ODP,
as it is one of the largest efforts to manually annotate Web pages. Over 74,000
editors are busy keeping the ODP directory reasonably up-to-date, delivering
access to over 5 million Web pages in its catalogue. However, its advanced search
offers a rudimentary “personalization” feature by restricting search to the entries
of just one of the 16 main categories. Google Directory (which is also built on
top of ODP) provides a related feature, by offering to restrict search to a specific
category or subcategory. Clearly these services yield worse results than searching
Google itself [67]. Can we improve them, taking user profiles into account in a
more sophisticated way, and how will these enhanced personalized results compare
to the ordinary Google results? To what extent will they be helpful? More
specifically, will they improve Google for all kinds of queries (including very exact
queries having, e.g., five words or more), only for some queries, or not at all?
In the following section, we analyze and propose answers to these questions, and
then we evaluate them experimentally in Section 5.3.3.

5.3.1 Algorithm

Our search personalization algorithm exploits the annotations accumulated in
generic large-scale taxonomies such as the Open Directory. Even though we
concentrate our forthcoming discussion on ODP, any similar taxonomy can be
used. We define user profiles taking a simple approach: each user has to select
several topics from ODP, which best fit her interests. For example, a user profile
could look like this:

/Arts/Architecture/Experimental
/Arts/Architecture/Famous Names
/Arts/Photography/Techniques and Styles

At run-time, the output given by a search service (from MSN, Yahoo!, Google,
etc.) is re-sorted using a calculated (link) distance from the user profile to each
output URL. This translates into a minimal additional overhead to the search
engine, bounded by the time needed to include the above mentioned distances
into the overall ranking scheme. The execution is depicted in Algorithm 5.3.1.1.
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Algorithm 5.3.1.1. Personalized Search.

Input: Profu : Profile for user u, given as a vector of topics
Q : Query to be answered by the algorithm.

Output: Resu: Vector of URLs, sorted after user u’s preferences

1: Send Q to a search engine S (e.g., Google)
2: Resu = Vector of URLs, as returned by S
3: For i = 1 to Size(Resu)

Dist[i] = Distance(Resu[i], P rofu)
4: Sort Resu using Dist as comparator

We additionally need a function to estimate the distance between a URL and a
user profile. Let us inspect this issue in the following discussion.

5.3.2 Estimating Topic Similarity

When performing search on Open Directory, each URL comes with an associated
ODP topic. Similarly, many of the URLs output by Google are connected to
one or more topics within the Google Directory (almost 50% of Top-100, as we
observed in our experiments described in Chirita et al. [67]). In both cases, for
each output URL we are dealing with two sets of nodes from the topic tree: (1)
Those representing the user profile (set A), and (2) those associated with the
URL (set B). The (link) distance between these sets can then be defined as
the minimum (link) distance between all pairs of nodes given by the Cartesian
product A×B. There are quite a few possibilities to define the distance between
two nodes, depending on the perspective we take on ODP: as a tree, as an ontology,
as a graph, etc. In the following, we will present the most representative metrics
we found suitable for our algorithm, following an increasing level of complexity.

Näıve Distance. The simplest solution is minimum tree-distance, which, given
two nodes a and b, returns the sum of the minimum number of tree links between
a and the subsumer (the deepest node common to both a and b) plus the minimum
number of tree links between b and the subsumer (i.e., the shortest path between a
and b). On the example from Figure 5.1, the distance between /Arts/Architecture
and /Arts/Design/Interior Design/Events/Competitions is 5, and the subsumer
is /Arts.

If we also consider the inter-topic links from the Open Directory, the simplest
distance becomes the shortest path between a and b. For example, if there is a link
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Figure 5.1: Example tree structure of topics from ODP

between Interior Design and Architecture in Figure 5.1, then the distance between
Competitions and Architecture is 3. This solution implies loading either the entire
topic graph or all the inter-topic links into memory. Its utility is somewhat
questionable: the existence of a link between Architecture and Interior Design
does not always imply that a famous architect (one level below in the tree) is
very close to the area of interior design. We therefore chose to consider only the
intra-topic links directly connected to a or b when computing the shortest path
between them (similar to [164]).

Tree Similarity. The main drawback of the previous metric comes from the
fact that it ignores the depth of the subsumer (lowest common ancestor). The
bigger this depth is, the more related are the nodes (i.e., the concepts represented
by them). This problem is solved using metrics from Information Theory [76],
such as the semantic similarity between two topics t1 and t2 in a taxonomy [164].
This is defined as the ratio between their common meaning and their individual
meanings, as follows:

σT
s (t1, t2) =

2 · log Pr[t0(t1, t2)]

log Pr[t1] + log Pr[t2]
(5.1)

where t0(t1, t2) is the subsumer of t1 and t2, and Pr[t] represents the prior proba-
bility that any page is classified under topic t (computed for example as the ratio
between the number of pages stored in the subtree rooted at node t and the overall
amount of pages).

Concept Similarity. The ODP is manually annotated by human editors and it
sometimes contains more URLs within a narrow, but popular concept, compared
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to a wider, but less popular one. This can yield inconsistent results with our
second metric, which motivated us to search for a more elaborate approach. Li
et at. [162] investigated ten intuitive strategies for measuring semantic similarity
between words using hierarchical semantic knowledge bases such as WordNet [167].
Each of them was evaluated empirically on a group of testers, the best one having
a 0.9015 correlation between human judgment and the following formula:

S(a, b) = e−α·l · e
β·h − e−β·h

eβ·h + e−β·h (5.2)

The parameters are as follows: α and β were defined as 0.2 and 0.6 respectively, h is
the tree-depth of the subsumer, and l is the semantic path length between the two
words. If we have several words attached to each concept and sub-concept, then
l is 0 if the two words are in the same concept, 1 if they are in different concepts,
but the two concepts have at least one common word, or the tree shortest path if
the words are in different concepts which do not contain common words.

Although this measure is very good for words, it is still not perfect when we apply
it to the Open Directory topical tree, because it does not make a difference between
the distance from a (the profile node) to the subsumer, and the distance from b (the
output URL) to the subsumer. Consider for example node a to be /Top/Games
and b to be /Top/Computers/Hardware/Components/Processors/x86. A teenager
interested in computer games (level 2 in the ODP tree) could be very satisfied
receiving a page about new processors (level 6 in the tree), which might increase
her gaming quality. On the other hand, the opposite scenario (profile on level 6 and
output URL on level 2) does not hold any more, at least not to the same extent:
a processor manufacturer will generally be less interested in the games existing
on the market. This leads to our following extension of the above formula:

S ′(a, b) = ((1− γ) · e−α·l1 + γ · e−α·l2) · e
β·h − e−β·h

eβ·h + e−β·h (5.3)

with l1 being the shortest path from the profile to the subsumer, l2 the shortest
path from the URL to the subsumer, and γ a parameter in [0, 1].

Graph Similarity. An even more complete similarity function can be found in
[164]. It estimates the similarity between two topics based on several sources of
information, using the following formula:

σG
s (t1, t2) = max

k

2 ·min(Wkt1 , Wkt2) · log Pr[tk]

log (Pr[t1|tk] · Pr[tk]) + log (Pr[t2|tk] · Pr[tk])
(5.4)

As in Information Theory, the probability Pr[tk] represents the prior probability
that any document is classified under topic tk, while Pr[ti|tk] represents the pos-
terior probability that any document will be classified under topic ti, given that
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it is classified under tk. Finally, Wij can be interpreted as a fuzzy membership19

value of topic tj in the subtree routed at ti.

Even though this formula seems to promise good results, computing it is very
resource demanding: The authors reported the use of over 5,000 CPU hours on
a supercomputer facility to calculate the similarity values for a (large) subset of
ODP. Since we do not have such a facility available, and since computing this
measure on-line (i.e., at search time) is quite time consuming as well, we decided
not to experiment with this measure.

Combining the Similarity Function with the Google Page Scores. If we
use Google to do the search and then sort the URLs according to the Google
Directory taxonomy, some high quality pages might be missed (i.e., those which
are top ranked, but which are not in the directory). In order to integrate those,
the above formulas can be combined with the existing Google score associated to
each page. We propose the following approach:

S ′′(a, b) = δ · S ′(a, b) + (1− δ) ·GooglePageScore(b) (5.5)

with δ being another parameter in [0, 1] allowing us to keep the final score S ′′(a, b)
inside [0, 1] (for normalized page rank scores). If a page is not in the directory,
we take S ′(a, b) to be 0.

Observation. Human judgment is a non-linear process over information sources
[162], and therefore it is very difficult (if not impossible) to propose a metric which
is in perfect correlation to it. However, we think that the thorough experimental
analysis presented in the next section will provide a good approximation of the
utility of these metrics.

5.3.3 Experiments

Experimental Setup

To evaluate the benefits of our personalization algorithm, we interviewed 24 of our
colleagues (researchers in different computer science areas, psychology, education
and design), asking each of them to define a user profile according to the Open
Directory topics (see Section 5.3.1 for an example profile), as well as to choose six
queries of the following types:

• One single-word specific query, which they thought to have one or maximum
two meanings20 (for example “PageRank”).

19It is fuzzy because it also incorporates the “related” and “symbolic” links from ODP.
20Of course, that did not necessarily mean that the query had no other meaning.
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• One single-word relatively ambiguous query, which they thought to have two
or three meanings (for example “latex”).

• One single-word ambiguous query, which they thought to have at least three
meanings, preferably more (for example “network”).

• Three queries of the same types as above, but with multiple keywords
(i.e., at least two, preferably more). Some examples could include “www
Edinburgh 2006” for the ambiguous query, “pocket pc software” for the semi-
ambiguous one, and “topcoder programming competitions” for the specific
query. The average query length for these three multi-word query types
turned out to be 2.34 in the case of the ambiguous queries, 2.50 for the
semi-ambiguous ones, and 2.92 for the specific queries.

We compared the test results using the following nine approaches21:

1. Google Search, as returned by the Google API22.

2. Google with Näıve Distance, using our algorithm from Section 5.3.1 to
reorder the Top-100 URLs returned by the Google API, and having as input
the Google Directory topics returned by the API for each resulting URL.

3. Google with Tree Distance, under the same setting as above, but using
the tree distance instead.

4. - 6. Google with Concept Similarity, using three different values for
the γ parameter: 0.6, 0.7, and 0.823.

7. - 9. Combined PageRank with Concept Similarity, using three values
for the δ parameter: 0.3, 0.5, and 0.724.

21Note that we actually performed two experiments. The first one, presented in Chirita et al.
[67], brought only the conclusion that Google with Näıve Distance is better than Google, which
in turn is better than ODP search. The second one is much more comprehensive, and therefore
described in this section in detail.

22http://api.google.com
23The parameters for both this algorithm and the subsequent one were first selected by asking 4

persons to perform Web searches utilizing all 9 parameter values from 0.1 to 0.9 at equal intervals.
Their results were not analyzed in detail, but used only to choose suitable parameters for the
actual evaluation process. This helped us to observe that one should weigh the distance between
the profile and the subsumer more than the distance between each URL and the subsumer. We
selected the best three values for γ, namely γ ∈ {0.6, 0.7, 0.8}, in order to find the exact ratio
between these weights.

24Here we investigated whether PageRank is more important, or the concept similarity mea-
sure. As within the training phase the results were overall inconclusive, with some queries
performing much better than others over various settings of the parameters, we chose to analyze
δ ∈ {0.3, 0.5, 0.7}, as a representative set of values for all possibilities (i.e., visibly more bias
on the taxonomy, visibly more bias on the search engine, or equal). The only characteristic
we observed from the initial tuning phase was that δ should be inversely proportional to the
difficulty of the query, having values ranging from 0.1 to 0.9 (indeed, for some queries, the best
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Query Cat. γ = 0.6 γ = 0.7 γ = 0.8 F-value [214]

One-word 3.05 3.05 3.01 F(2,69,-) = 0.04

Multi-word 3.01 3.04 3.01 F(2,69,-) = 0.02

Table 5.1: Weights analysis for the concept similarity measure.

Query Cat. δ = 0.3 δ = 0.5 δ = 0.7 F-value

One-word 2.95 3.26 3.50 F(2,69,99%) = 5.44

Multi-word 3.53 3.23 3.07 F(2,69,95%) = 3.53

Table 5.2: Weights analysis for the combined ranking measure.

For each algorithm, each tester received the Top-5 URLs with respect to each
type of query, 30 URLs in total. All test data was shuffled, such that testers were
neither aware of the algorithm, nor of the ranking of each assessed URL. We then
asked the subjects to rate each URL from 1 to 5, 1 defining a very poor result
with respect to their profile and expectations (e.g., topic of the result, content,
etc.) and 5 a very good one25. For each subset of 5 URLs we took the average
grade as a measure of importance attributed to that < algorithm, query type >
pair.

Results

Having this dataset available, we performed an extensive analysis over it. First
of all, we investigated the optimal values for the constants we defined. The
results are summarized in Table 5.1 for the γ parameter and in Table 5.2 for
δ. We decided to evaluate separately the single-word and the multi-word queries,
since we expected them to perform differently. For γ, we found that all three
values yielded similar results, the difference between their averages being far from
statistically significant26. The outcome was much more interesting for δ: Not
only were the results statistically significant, but they were also dependent on the
query complexity. For simple queries it is better to use a large δ in order to give
more weight to the Concept Similarity measure, whereas for more complex queries,
PageRank should be made predominant through a small δ. The confidence level
was 99% for the simple queries experiment and 95% for the one involving complex
queries.

rating was obtained with δ = 0.1 or 0.9 respectively).
25This is practically a weighted P@5, precision at the top 5 results.
26To evaluate the statistical significance of our experiments we used One-way and Two-way

Analysis of Variance (ANOVA) [30].
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Algorithm Ambig. Q. Semi-ambig. Q. Specific Q. Avg. / Algo.

Google 1.93 2.26 3.57 2.59
Näıve Distance 2.64, p = 0.01 2.75, p = 0.04 3.34 2.91, p = 0.01
Concept Sim. 2.67, p < 0.01 2.95, p = 0.01 3.52 3.05, p < 0.01
Combined 3.14, p� 0.01 3.27, p� 0.01 4.09, p� 0.01 3.50, p� 0.01
Avg. / Q. Type 2.60 2.80 3.63

Table 5.3: Survey results for the one-word queries.

We then picked the best choices for the above mentioned parameters (γ = 0.7,
which yielded the best results, though at a marginal difference; δ = 0.7 for simple
queries, which was significantly better than the other two investigated values with
p� 0.01; and δ = 0.3 for complex queries, also performing significantly best with
p � 0.01) and measured the performance of each distance / similarity metric27.
The overall results are depicted in Table 5.3 for single-word (simple) queries and
in Table 5.5 for the multi-word (complex) ones, together with their p-values as
compared to regular Google search.

In the simple queries scenario, all our proposed algorithms outperformed Google:
The Näıve Distance received an average rating of 2.91 (out of 5, with p = 0.02),
Concept Similarity received 3.05 (p < 0.01), and the Combined Measure reached
3.50 (p � 0.01), whereas Google averaged only 2.59. For the specific queries,
Google managed to slightly surpass the ODP-based metrics (i.e, Näıve Distance
and Concept Similarity), probably because for some of these queries ODP contains
less than 5 URLs matching both the query and the topics expressed in the user
profile. Even in this particular case, however, the Combined Metric yielded the
best results (4.09 versus 3.57 for Google, a statistically significant difference with
p < 0.01). As we expected, the more specific the query type was, the bigger its
average rating (ranging from 2.60 for ambiguous queries up to 3.63 for the specific
ones). The difference between ambiguous queries and semi-ambiguous ones was
not statistically significant (p = 0.13), indicating that our subjects had difficulties
separating these query types. However, there was a clear difference between the
ratings for the semi-ambiguous queries and for the clear ones (p < 0.01). Thus,
the distinction between ambiguity and clarity was easier to make. Overall, all
these results were statistically significant at a 99% confidence level (details of the
associated ANOVA analysis are depicted in Table 5.4). We noticed no interaction
between the query type and the algorithm (last row of Table 5.4), which indicates
that the average per algorithm is independent of the query type and vice-versa.

27Since the Tree Distance performed very close to the Näıve Distance, we decided not to
include it in this analysis.
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Src. of Var. SS Deg. of Free. F-value

Algorithm 57.668 3 F(3,276,99%) = 9.893
Query Type 30.990 2 F(2,276,99%) = 27.614
Interaction 7.363 6 F(6,276,-) = 1.175

Table 5.4: Statistical significance analysis for the one-word queries experiments.

Algorithm Ambig. Q. Semi-ambig. Q. Specific Q. Avg. / Alg.

Google 2.32 3.19 4.15 3.22
Näıve Distance 2.17 2.95 3.60 2.90
Concept Sim. 2.40, p = 0.31 3.09 3.62 3.04
Combined 3.08, p� 0.01 3.75, p < 0.01 3.76 3.53, p� 0.01
Avg. / Q. Type 2.49 3.24 3.78

Table 5.5: Survey results for the multi-word queries.

The results were tighter under the multi-word queries scenario (Table 5.5): Google
average scores were somewhat above those of the Näıve Distance and Concept
Similarity, the best metric being, as in the previous experiment, the Combined
Measure (and that at a statistically significant difference with p� 0.01). For spe-
cific queries, Google performed best, but was strongly surpassed by the Combined
Measure when using ambiguous and semi-ambiguous query keywords (p < 0.01 in
both latter cases). The overall averages per algorithm were differentiated enough
to achieve a 99% overall confidence level (see Table 5.6 for the ANOVA details),
with a minimal interaction between the results associated to the query type and
those associated to the algorithm type.

5.4 Taxonomy Based Automatic User Profiling

The algorithm we presented in the previous section builds on top of manually
entered user profiles. This interaction step clearly adds some burden upon the
users of our system and demands for automatized profiling techniques. In fact,
this is a common problem for many on-line personalized applications, which is
why researchers have attempted to automatically learn such user profiles usually
by exploiting various aspects of browsing behavior (see for example [187]). In
most cases this implied the analysis of either very personal or very many usage
data. In this section we advance one step further: We learn user profiles only
from past search engine queries, which is still a bit intrusive (about 15% of our
prospective testers refused to participate in the experiments, arguing that their
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Src. of Var. SS Deg. of Free. F-value

Algorithm 16.011 3 F(3,276,99%) = 4.827
Query Type 80.547 2 F(2,276,99%) = 36.430
Interaction 9.450 6 F(6,276,75%) = 1.424

Table 5.6: Statistical significance analysis for the multi-word queries experiments.

queries are private), but clearly less intrusive than all previous approaches. We
also need very little data to converge to a profile expressing user’s interests well
enough.

We start with the following observation: Since current personalized search algo-
rithms either need extensive information to learn the user profile [202, 107], or
simply have it entered manually, could we use ODP to provide a more accurate,
less intrusive and less resource consuming method to learn user profiles? This
section will provide an algorithm to answer this question positively.

5.4.1 Algorithm

Overview. Learning user profiles (also known as Preference Elicitation [50])
inherently needs some kind of personal user input data, such as (search engine)
queries, bookmarks, time or frequency of visits to a set of Web pages, etc. We
minimize the amount of these data by exploiting only queries sent to a search
engine. For each query, we add to the user profile the weighted set of distinct
ODP topics associated to its output URLs, as follows: Every time a topic appears
in the result set, a weight of 1 is added; if a URL has no topic associated to it,
we try to infer its topic by analyzing the topic(s) associated to its related pages
(using the Related Pages feature of the Google API), to its home page, or to its
parent directory. Since these latter topics have been automatically deducted, their
weight is represented by a parameter smaller than 1. After a few days of surfing,
the profile can be generated as the set of topics with the highest N weights28.

Before testing the algorithm, we evaluated the feasibility of our solution to derive
the topics associated to a URL missing from ODP. We selected 134 queries either
used by previous researchers (e.g., [118]), or listed as most the frequent queries
by Google29 or Lycos30. Two experts rated the similarity between the topics

28Even the user profiles generated after one day of surfing do provide useful information about
each user’s interests. However, they also contain several false topical interest predictions, either
because many of the queries issued that day cover several topics, or because the user issued some
erroneous queries (e.g., with typos). Therefore, in general, several days of surfing are necessary.

29http://www.google.com/press/zeitgeist.html
30http://50.lycos.com/
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associated to each URL and those associated to its related pages, to its home
page, and to its parent directory. The grades were between 0 and 1, “zero”
meaning a totally unrelated topic and “one” representing exactly the same topic.
The average values we obtained were λ = 0.64 for the related URLs and µ = 0.46
for the home pages (we dropped the analysis of the parent directory, because in
almost all cases it did not output any topic). We then used these two values as a
weight for the topics heuristically associated to URLs (recall that we use a weight
of 1 if a URL returned for some user query is contained in the ODP).

Another unknown parameter was the amount of output URLs whose associated
topics we should investigate / add to the user profile for each query. We ex-
perimented with the top 10, 20, 30, 50, 80, and 100 URLs. Optimal results were
obtained when exploring the top 30 URLs per query (more URLs usually returned
only additional weights, but no more topics, whereas less than 30 URLs sometimes
resulted in missing relevant topics).

The complete algorithm for learning user profiles is depicted in Algorithm 5.4.1.1.

Algorithm 5.4.1.1. Learning User Profiles.

1: Let P [topics, weights] be the user profile.
2: For each new query q sent to the search engine
3: For each output URL u
4: Let T [topics, 1] be the set of topics associated to u.
5: If T 6= ∅
6: P ← P ∪ T ; Continue
7: Let TR[topics, λ] be the set of topics associated to Related(u).
8: If TR 6= ∅
9: P ← P ∪ TR; Continue
10: Let TH[topics, µ] be the set of topics associated to HomePage(u).
11: If TH 6= ∅
12: P ← P ∪ TH; Continue
13: Sort P decreasingly, after weights.
14: Return the top N topics as the user profile.

New topics. User interests have been shown to change over time [151], and our
algorithm can clearly keep track of this aspect in the long term. But how to cope
with the very first day one searches on a totally different topic? A näıve solution
would be to simply temporarily disable the service exploiting the user profile (i.e.,
personalized search, news, etc.). A more elegant one is to divide the profile into a
permanent profile PP and a temporary profile PT , which itself can also be divided
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into the profile built from all today’s searches PS and the profile built only from
the current search session PC (if any). Then, the profile weights can be computed
using the following formula [202]:

P [t, w] = 0.6 · PP [t, w] + 0.4 · PT [t, w] =

= 0.6 · PP [t, w] + 0.4 · (0.15 · PS[t, w] + 0.85 · PC[t, w])

Noise. Even such carefully selected profiles are not perfect, though. Not all
previously sent queries are actually relevant to the user’s interest: Some of them
represent a “one-time” interest, some others relate to a topic no longer addressed
by the subject, and so on. However, we argue that these kinds of queries usually
represent only a small percentage of the overall search history, and thus their effect
over the generated profile is negligible, at least in the long term. Nevertheless, if
desired, several methods might be applied in order to filter out noisy queries. For
example, one could cluster user’s searched expressions by exploiting their Top-K
output URLs, and then identify and eliminate the outliers.

5.4.2 Experiments

Experimental Setup

The evaluation of our algorithm was performed using Google Search History31. A
group of 16 persons created a Google account and used it for a period ranging
from 7 to 21 days. After this, they were asked to send us a file containing their
queries (pasted from their Google account), which we then used together with the
Google API to generate their profiles. Since it was not clear how specific these
profiles should be, we investigated the following approaches:

• Level 2: Profiles were generated to contain only topics from the second
level of the ODP taxonomy or above. More specific topics (i.e., from lower
levels) were trimmed / considered as level 2 topics, while the more general
topics were left as such.

• Level 3, Level 4, and Level 5: Same as above, but with the profiles
restricted not to contain topics on levels lower than 3, 4, and 5 respectively.

• Combined Level 2-4: Same as “Level 4”, but with the weight of each topic
multiplied by its depth in the ODP tree. The intuition here is that lower
level topics are more specific, and should thus be given more importance.

31http://www.google.com/searchhistory/
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Figure 5.2: Precision at the top 30 topics computed with complete query output.

• Combined Level 2-5: Same as “Combined Level 2-4” but down to level
5.

Even though most persons are not interested in more than 10 topics at a time,
we generated profiles consisting of the most important 30 topics, in order to fully
evaluate the capabilities of our algorithms. Every user had to rate each topic as
either irrelevant, or relevant for her interests, the overall results being put together
in graphs of average precision and average relative recall32 [17], whose input values
were averaged over all our testers.

Results

Our results for average precision are depicted in Figure 5.2, and those for average
relative recall in Figure 5.3. “Level 5” is outperforming all other algorithms in
terms of precision, especially within the Top-20 output topics. Its precision at
the Top-10 topics (P@10) is as high as 0.94. At the other end, although it has
a slightly better recall than the other algorithms, “Level 2” is clearly not useful
for this task because of its quite poor precision. The combined measures yielded
only an average performance, indicating that people are not only interested in
very specific topics (which received an increased weight with these two metrics),
but also in broader, more general topics.

32For relative recall, we assumed that the correct results reside within the output n = 30
items.
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Figure 5.3: Relative Recall at the top 30 topics computed with complete query
output.

Further, we wanted to find out how many surfing days were necessary to have
the system automatically generate a good enough profile. We experimented with
“Level 5” and “Level 2”, the latter one because it seemed to perform very well on
the best five topics in the previous experiment. As they are quite similar, we only
discuss here our results for “Level 5”, the better algorithm: Only four days seem
to be enough to obtain a precision at 10 above 80% (the average number of URLs
clicked per day was 8.75), the more stable output being achieved after six days of
using the search engine. The complete average precision results are depicted in
Figure 5.4.

5.5 Desktop Based Personalized Web Search

Though very effective, the personalized search algorithm described in Section 5.3.1
still exhibits two drawbacks: First, there is the reduced privacy level. Even though
we proposed a less-intrusive profiling technique in Section 5.4, some personal
information is nonetheless necessary, i.e., past user queries. Second, there is the
limited coverage, as only thouse URLs classified in the ODP are an intrinsic part
of the personalization process.

In this section we overcome these last limitations by exploiting user’s Personal
Information Repository, a self-edited data collection. Several advantages arise
when moving Web personalization down to the Desktop level. First, as all “profile”
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Figure 5.4: Precision per day, using the “Level 5” algorithm.

information is now stored and exploited locally, on the personal machine, complete
privacy can be achieved. Search engines should not be able to know about a
person’s interests, i.e., they should not be able to connect a specific person with
the queries she issued, or worse, with the output URLs she clicked within the
search interface33 (see also Volokh [208] for a discussion on the privacy issues
related to personalized Web search). Second, this enhanced profile can be used
with any search algorithm, thus being no longer restricted to ODP. Last, but not
least, such a comprehensive description of user interests brings inherently also an
increased search quality. After all, the local Desktop is a very rich repository of
information, accurately describing most, if not all interests of the user.

The algorithms presented in this section build on top of Web search query ex-
pansion. They exploit user’s Personal Information Repository to automatically
extract additional keywords related both to the query itself and to user’s inter-
ests, thus implicitly personalizing the search output. The challenge they bring
is to provide an efficient utilization of the user profile. Desktop data comes in a
very unstructured way, covering documents which are highly diverse in format,
content, and even language characteristics. Though projecting this information
onto a large taxonomy such as ODP is fairly easy, it is not the optimal solution,
as the resulting personalized search algorithm would still suffer from the limited
coverage problem. We thus focus on exploiting the PIR as it is, in combination

33Generally, search engines can map queries at least to IP addresses, for example by using
cookies and mining the query logs. However, by moving the user profile entirely down to the
Desktop level we can at least ensure such information is not explicitly associated to a particular
user and stored on the search engine side.
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with the above mentioned technique of query expansion. We first investigate the
analysis of local query context on the Desktop in the first half of Section 5.5.1. We
propose several keyword, expression, and summary based techniques for determin-
ing relevant expansion terms from those personal documents matching the Web
query best. Then, in the second half of Section 5.5.1 we move our analysis to the
global Desktop collection and investigate query expansion based on co-occurrence
metrics, as well as on filtering a generic thesaurus based algorithm. The experi-
ments presented in Section 5.5.2 show some of these approaches to perform very
well, especially on ambiguous queries, producing NDCG [130] improvements of up
to 51.28%.

5.5.1 Algorithms

This section presents the five generic approaches for analyzing user’s Desktop data
in order to provide expansion terms for Web search. In the proposed algorithms we
gradually increase the amount of personal information utilized. Thus, in the first
part we investigate three local analysis techniques focused only on those Desktop
documents matching user’s query best. We append to the Web query the most
relevant terms, compounds, and sentence summaries from these documents. In the
second part of the section we move towards a global Desktop analysis, proposing
to investigate term co-occurrences, as well as thesauri, in the expansion process.

Expanding with Local Desktop Analysis

Local Desktop Analysis is related to enhancing Pseudo Relevance Feedback to
generate query expansion keywords from the PIR best hits for user’s Web query,
rather than from the top ranked Web search results. We distinguish three granu-
larity levels for this process and we investigate each of them separately.

Term and Document Frequency. As the simplest possible measures, TF and
DF have the advantage of being very fast to compute. Previous experiments
with small data sets have showed them to yield very good results [38, 90]. We
thus independently associate a score with each term, based on each of the two
statistics. The TF based one is obtained by multiplying the actual frequency of a
term with a position score descending as the term first appears closer to the end
of the document. This is necessary especially for longer documents, because more
informative terms tend to appear towards their beginning [38]. The complete TF
based keyword extraction formula is as follows:

TermScore =

[
1

2
+

1

2
· nrWords− pos

nrWords

]
· log (1 + TF ) (5.6)
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where nrWords is the total number of terms in the document and pos is the
position of the first appearance of the term; TF represents the frequency of each
term in the Desktop document matching user’s Web query.

The identification of suitable expansion terms is even simpler when using DF:
Given the set of Top-K relevant Desktop documents, generate their snippets as
focused on the original search request. This query orientation is necessary, since
the DF scores are computed at the level of the entire PIR and would produce too
noisy suggestions otherwise. Once the set of candidate terms has been identified,
the selection proceeds by ordering them according to the DF scores they are
associated with. Ties are resolved using the corresponding TF scores [90].

Note that a hybrid TFxIDF approach is not necessarily efficient, since one Desktop
term might have a high DF on the Desktop, while being quite rare in the Web.
For example, the term “PageRank” would be quite frequent on the Desktop of an
Information Retrieval scientist, thus achieving a low score with TFxIDF. However,
as it is rather rare in the Web, it would make a good resolution of the query towards
the correct topic.

Lexical Compounds. Anick and Tipirneni [11] defined the lexical dispersion
hypothesis, according to which an expression’s lexical dispersion (i.e., the number
of different compounds it appears in within a document or group of documents)
can be used to automatically identify key concepts over the input document set.
Although several possible compound expressions are available, it has been shown
that simple approaches based on noun analysis are almost as good as highly
complex part-of-speech pattern identification algorithms [8]. We thus inspect
the matching Desktop documents for all their lexical compounds of the following
form:

{ adjective? noun+ }

All such compounds could be easily generated off-line, at indexing time, for all the
documents in the local repository. Moreover, once identified, they can be further
sorted depending on their dispersion within each document in order to facilitate
fast retrieval of the most frequent compounds at run-time.

Sentence Selection. This technique builds upon sentence oriented document
summarization: First, the set of relevant Desktop documents is identified; then, a
summary containing their most important sentences is generated as output. Sen-
tence selection is the most comprehensive local analysis approach, as it produces
the most detailed expansions (i.e., sentences). Its downside is that, unlike with
the first two algorithms, its output cannot be stored efficiently, and consequently
it cannot be computed off-line. We generate sentence based summaries by ranking
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the document sentences according to their salience score, as follows [152]:

SentenceScore =
SW 2

TW
+ PS +

TQ2

NQ

The first term is the ratio between the square amount of significant words within
the sentence and the total number of words therein. A word is significant in a
document if its frequency is above a threshold as follows:

TF > ms =


7− 0.1 · (25−NS) , if NS < 25
7 , if NS ∈ [25, 40]
7 + 0.1 · (NS − 40) , if NS > 40

with NS being the total number of sentences in the document (see [152]
for details). The second term is a position score set to (Avg(NS) −
SentenceIndex)/Avg2(NS) for the first ten sentences, and to 0 otherwise,
Avg(NS) being the average number of sentences over all Desktop items. This
way, short documents such as emails are not affected, which is correct, since they
usually do not contain a summary in the very beginning. However, as longer
documents usually do include overall descriptive sentences in the beginning [89],
these sentences are more likely to be relevant. The final term biases the summary
towards the query. It is the ratio between the square number of query terms
present in the sentence and the total number of terms from the query. It is based
on the belief that the more query terms contained in a sentence, the more likely
will that sentence convey information highly related to the query.

Expanding with Global Desktop Analysis

In contrast to the previously presented approach, global analysis relies on infor-
mation from across the entire personal Desktop to infer the new relevant query
terms. In this section we propose two such techniques, namely term co-occurrence
statistics, and filtering the output of an external thesaurus.

Term Co-occurrence Statistics. For each term, we can easily compute off-
line those terms co-occurring with it most frequently in a given collection (i.e.,
PIR in our case), and then exploit this information at run-time in order to infer
keywords highly correlated with the user query. Our generic co-occurrence based
query expansion algorithm is as follows:
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Algorithm 5.5.1.1. Co-occurrence based keyword similarity search.

Off-line computation:
1: Filter potential keywords k with DF ∈ [10, . . . , 20% ·N ].
2: For each keyword ki

3: For each keyword kj

4: Compute SCki,kj
, the similarity coefficient of (ki, kj).

On-line computation:
1: Let S be the set of keywords, potentially similar to an input expression E.
2: For each keyword k of E:
3: S ← S ∪ TSC(k), where TSC(k) contains the

Top-K terms most similar to k.
4: For each term t of S:
5a: Let Score(t)← ∏

k∈E(0.01 + SCt,k)
5b: Let Score(t)← #DesktopHits(E|t)
6: Select Top-K terms of S with the highest scores.

The off-line computation needs an initial trimming phase (step 1) for optimization
purposes. In addition, we also restricted the algorithm to computing co-occurrence
levels across nouns only, as they contain by far the largest amount of conceptual
information, and as this approach reduces the size of the co-occurrence matrix
considerably. During the run-time phase, having the terms most correlated with
each particular query keyword already identified, one more operation is necessary,
namely calculating the correlation of every output term with the entire query.
Two approaches are possible: (1) using a product of the correlation between the
term and all keywords in the original expression (step 5a), or (2) simply counting
the number of documents in which the proposed term co-occurs with the entire
user query (step 5b). Small scale tuning experiments performed before the actual
empirical analysis indicated the former approach yields a slightly better outcome.
Finally, we considered the following Similarity Coefficients [141]:

• Cosine Similarity, defined as:

CS =
DFx,y√

DFx ·DFy

(5.7)

• Mutual Information, defined as:

MI = log
N ·DFx,y

DFx ·DFy

(5.8)
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• Likelihood Ratio, defined in the paragraphs below.

DFx is the Document Frequency of term x, and DFx,y is the number of documents
containing both x and y. To further increase the quality of the generated scores
we limited the latter indicator to co-occurrences within a window of W terms. We
set W to be the same as the maximum amount of expansion keywords desired.

Dunning’s Likelihood Ratio λ [87] is a co-occurrence based metric similar to χ2.
It starts by attempting to reject the null hypothesis, according to which two terms
A and B would appear in text independently from each other. This means that
P (AB) = P (A¬B) = P (A), where P (A¬B) is the probability that term A is not
followed by term B. Consequently, the test for independence of A and B can be
performed by looking if the distribution of A given that B is present is the same
as the distribution of A given that B is not present. Of course, in reality we know
these terms are not independent in text, and we only use the statistical metrics
to highlight terms which are frequently appearing together. We compare the two
binomial processes by using likelihood ratios of their associated hypotheses. First,
let us define the likelihood ratio for one hypothesis:

λ =
maxω∈Ω0 H(ω; k)

maxω∈Ω H(ω; k)
(5.9)

where ω is a point in the parameter space Ω, Ω0 is the particular hypothesis being
tested, and k is a point in the space of observations K. If we assume that two
binomial distributions have the same underlying parameter, i.e., {(p1, p2) | p1 =
p2}, we can write:

λ =
maxp H(p, p; k1, k2, n1, n2)

maxp1,p2 H(p1, p2; k1, k2, n1, n2)
(5.10)

where H(p1, p2; k1, k2, n1, n2) = pk1
1 · (1− p1)

(n1−k1) ·
(

n1

k1

)
· pk2

2 · (1− p2)
(n2−k2) ·

(
n2

k2

)
.

Since the maxima are obtained with p1 = k1

n1
, and p2 = k2

n2
for the denominator,

and p = k1+k2

n1+n2
for the numerator, we have:

λ =
maxp L(p, k1, n1)L(p, k2, n2)

maxp1,p2 L(p1, k1, n1)L(p2, k2, n2)
(5.11)

where L(p, k, n) = pk · (1 − p)n−k. Taking the logarithm of the likelihood, we
obtain:

−2 · log λ = 2 · [log L(p1, k1, n1) + log L(p2, k2, n2)−
log L(p, k1, n1)− log L(p, k2, n2)]

where log L(p, k, n) = k · log p + (n − k) · log (1− p). Finally, if we write O11 =
P (A B), O12 = P (¬A B), O21 = P (A ¬B), and O22 = P (¬A ¬B), then the
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co-occurrence likelihood of terms A and B becomes:

−2 · log λ = 2 · [O11 · log p1 + O12 · log (1− p1) +

O21 · log p2 + O22 · log (1− p2)−
(O11 + O21) · log p− (O12 + O22) · log (1− p)]

where p1 = k1

n1
= O11

O11+O12
, p2 = k2

n2
= O21

O21+O22
, and p = k1+k2

n1+n2
.

Thesaurus Based Expansion. Large scale thesauri encapsulate global knowl-
edge about term relationships. Thus, for this technique we first identify the set
of terms closely related to each query keyword, and then we calculate the Desk-
top co-occurrence level of each of these possible expansion terms with the entire
initial search request. In the end, those suggestions with the highest frequencies
are kept. The algorithm is as follows:

Algorithm 3.1.2.2. Filtered thesaurus based query expansion.

1: For each keyword k of an input query Q:
2: Select the following sets of related terms using WordNet:
2a: Syn: All Synonyms;
2b: Sub: All sub-concepts residing one level below k;
2c: Super: All super-concepts residing one level above k.
3: For each set Si of the above mentioned sets:
4: For each term t of Si:
5: Search the PIR with (Q|t), i.e.,

the original query, as expanded with t.
6: Let H be the number of hits of the above search

(i.e., the co-occurence level of t with Q).
7: Return Top-K terms as ordered by their H values.

We observe three types of term relationships (steps 2a-2c): (1) synonyms, (2) sub-
concepts, namely hyponyms (i.e., sub-classes) and meronyms (i.e., sub-parts),
and (3) super-concepts, namely hypernyms (i.e., super-classes) and holonyms
(i.e., super-parts). As they represent quite different types of association, we
investigated them separately. We limited the output expansion set (step 7)
to contain only terms appearing at least T times on the Desktop, in order
to avoid noisy suggestions, with T = min( N

DocsPerTopic , MinDocs). We set

DocsPerTopic = 2, 500, and MinDocs = 5, the latter one coping with the case
of small PIRs.
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5.5.2 Experiments

Experimental Setup

We evaluated the quality of our personalization algorithms with 18 subjects (Ph.D.
and Post-Doc. students in different areas of computer science and education).
First, they installed our Lucene based search engine to index all their locally stored
content: Files within user selected paths, Emails, and Web Cache. Without loss of
generality, we focused the experiments on single-user machines. Implementing the
same algorithms for multi-user computers is a trivial task. Then, our evaluators
were asked to choose four queries related to their everyday activities as follows:

• One very frequent AltaVista query, as extracted from the top 2% queries
most issued to the search engine within a 7.2 million entries log from October
2001. In order to connect such a query to each user’s interests, we added an
off-line pre-processing phase. We first generated the most frequent 144,000
AltaVista requests (i.e., 2%), and then randomly selected 50 queries with at
least 10 and at most 50 hits on each subject’s Desktop. This was necessary
in order to ensure that we do not personalize a query which is either not
interesting for the user, or of too general interest. In the end, each evaluator
had to choose the first of these queries that matched her interests at least
partially.

• One randomly selected AltaVista query, filtered using the same procedure
as above.

• One self-selected specific query, which they thought to have only one mean-
ing.

• One self-selected ambiguous query, which they thought to have at least three
meanings.

The average query lengths were 2.0 and 2.3 terms for the log based queries, as well
as 2.9 and 1.8 for the self-selected ones. Even though our algorithms are mainly
intended to enhance search when using ambiguous query keywords, we chose to
investigate their performance on a wide span of query types, in order to see how
they perform in all situations. The log based queries evaluate real life requests34, in
contrast to the self-selected ones, which target rather the identification of top and
bottom performances. We should note that the former ones were somewhat farther
away from each subject’s interest, thus being also more difficult to personalize

34Note that at the time when we developed the taxonomy based personalized search algorithm
from Section 5.3, we had no real life query log available to test with. Moreover, automatically
matching between the query log and user’s interests would have been anyway nearly impossible,
since no other user specific information is available for that scenario.
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on. To gain an insight into the relationship between each query type and user
interests, we asked each person to rate the query itself with a score of 1 to 5,
having the following interpretations: (1) never heard of it, (2) do not know it,
but heard of it, (3) know it partially, (4) know it well, (5) major interest. The
obtained grades were 3.11 for the top AltaVista queries, 3.72 for the randomly
selected ones, 4.45 for the self-selected specific ones, and 4.39 for the self-selected
ambiguous ones. Finally, in order to simplify the experimentation, all Desktop
level parts of our algorithms were performed with Lucene using its predefined
searching and ranking functions. However, implementing this task using the link
analysis ranking algorithms from Chapter 3 would be trivial.

For each of the four test queries, we then collected the Top-5 URLs generated
by 20 versions of the algorithms presented in Section 5.5.1. These results were
then shuffled into one set containing usually between 70 and 90 URLs. Thus, each
subject had to assess about 325 documents for all four queries, being neither aware
of the algorithm, nor of the ranking of each assessed URL. Overall, 72 queries were
issued and over 6,000 URLs were evaluated during the experiment. For each of
these URLs, the testers had to give a rating ranging from 0 to 2, dividing the
relevant results in two categories, (1) relevant and (2) highly relevant. Finally, we
decided to assess the quality of each ranking using an innovative method, namely
the normalized version of Discounted Cumulative Gain (DCG) [130]. DCG is
a rich measure, as it gives more weight to highly ranked documents, while also
incorporating different relevance levels by giving them different gain values:

DCG(i) =

{
G(1) , if i = 1
DCG(i− 1) + G(i)/ log (i) , otherwise.

We used G(i) = 1 for the relevant results, and G(i) = 2 for the highly relevant
ones. As queries having more relevant output documents will have a higher DCG,
we also normalized its value to a score between 0 (the worst possible DCG given
the ratings) and 1 (the best possible DCG given the ratings) to facilitate averaging
over queries. All results were tested for statistical significance using T-tests, i.e.,
we tested whether the improvement over the Google API output35 is statistically
significant.

Algorithmic specific aspects. As our goal is to generate expansion terms for
Web queries, it is important to tune the number of such proposed keywords. An
initial investigation with a separate group of 4 people showed different values
to produce the best results across different queries and algorithms. The main
influencing factor was by far the query ambiguity level, and we therefore set the

35Whenever necessary, we also tested for significance the difference between pairs of the
algorithms we proposed.
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expansion length to four terms for all proposed techniques, leaving a differentiation
at the algorithm level for a future experiment (which we will present later, in
Section 5.6).

In order to optimize the run-time computation speed, we chose to limit the number
of output keywords per Desktop document to the number of expansion keywords
desired (i.e., four). For all algorithms we also investigated bigger limitations. This
allowed us to observe that the Lexical Compounds method would perform better
if only at most one compound per document were selected. We therefore chose
to experiment with this “optimized” approach as well. For all other techniques,
considering less than four terms per document did not seem to yield any additional
qualitative gain.

In the forthcoming tables, we label the algorithms we evaluated as follows:

0. Google: The actual Google query output, as returned by the Google API;

1. TF, DF: Term and Document Frequency;

2. LC, LC[O]: Regular and Optimized (by considering only one top compound
per document) Lexical Compounds;

3. SS: Sentence Selection;

4. TC[CS], TC[MI], TC[LR]: Term Co-occurrence Statistics using respec-
tively Cosine Similarity, Mutual Information, and Likelihood Ratio as simi-
larity coefficients;

5. WN[SYN], WN[SUB], WN[SUP]: WordNet based expansion with syn-
onyms, sub-concepts, and super-concepts, respectively.

Except for the thesaurus based expansion, in all cases we also investigated the
performance of our algorithms when exploiting only the Web browser cache to
represent user’s personal information. This is motivated by the fact that other
personal documents such as for example emails are known to have a somewhat
different language than that residing on the World Wide Web [204]. We differen-
tiate between these two techniques by adding the −A label suffix to specify that
the entire Desktop was used as PIR, and −W where only the Web browser cache
was employed.

Results

Log Queries. We evaluated all variants of our algorithms using NDCG. For the
case of queries extracted from the search engine log, the best performance was
achieved with TF-A, LC[O]-A, and TC[LR]-A. The improvements they brought
were up to 5.2% for top queries (with p = 0.14) and up to 13.8% for randomly
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selected queries (with p = 0.01, and thus statistically significant), both being
obtained with LC[O]-A. A summary of all results is presented in Table 5.7.

Both TF-A and LC[O]-A yielded very good results, indicating that simple keyword
and especially expression oriented approaches might be sufficient for the Desktop
based query expansion task. LC[O]-A was much better than LC-A, ameliorating
its quality with up to 25.8% in the case of randomly selected log queries, improve-
ment which was also significant with p = 0.04. Thus, a selection of compounds
spanning over several Desktop documents is more informative about user’s inter-
ests behind a query than the general approach, in which there is no restriction on
the number of compounds produced from every personal item.

The more complex Desktop oriented approaches, namely sentence selection and all
term co-occurrence based algorithms, showed a rather average performance, with
no visible improvements being noticed (except for TC[LR]-A). Also, the thesaurus
based expansion usually produced very few suggestions, possibly because of the
many technical queries employed by our subjects. We observed however that
expanding with sub-concepts is very good for everyday life terms (e.g., “car”),
whereas the use of super-concepts is valuable for compounds having at least
one term with low technicality (e.g., “document clustering”). As expected, the
synonym based expansion performed generally well, though in some very technical
cases it yielded rather general suggestions, which were not filtered out by the
Desktop data and thus worsened the query quality.

Two general approaches performed rather poorly. First, DF, even with a snippet
based query orientation, still produced quite some frequent and non-resolutive
Desktop terms, thus deteriorating retrieval. Second and more important, the use
of Web browser cache data to describe user interests, had visibly worse results
than Google in all 8 cases. As this was quite unexpected, we interviewed our
subjects for clarification. Several reasons have been identified: some of them were
using their credit cards quite often for on-line transactions and used to clean their
cache frequently in order to protect themselves from malicious intruders; several
were running multiple operating systems and used the other one for browsing;
others were surfing the Web very rarely, and two of them were recent hires. Also,
the Web cache data seemed more noisy, as it also included text from “one time
interest” pages, pop-ups, etc. Though we believe these characteristics would less
likely show up in other environments, using only the Web browser cache does not
seem to be sufficient for extracting good personalized expansion terms for Web
search.

Finally, we noticed Google to be very optimized for a set of top frequent queries,
making improvements harder for this category of search tasks. Also, even though
we investigated quite several approaches to filter out personalized queries from
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Algorithm NDCG Signific. NDCG Signific.
Top vs. Google Random vs. Google

Google 0.42 - 0.40 -

TF-A 0.43 p = 0.32 0.43 p = 0.04
TF-W 0.13 - 0.15 -
DF-A 0.17 - 0.23 -
DF-W 0.12 - 0.10 -

LC-A 0.39 - 0.36 -
LC[O]-A 0.44 p = 0.14 0.45 p = 0.01
LC-W 0.13 - 0.13 -
LC[O]-W 0.16 - 0.12 -

SS-A 0.33 - 0.36 -
SS-W 0.11 - 0.19 -

TC[CS]-A 0.37 - 0.35 -
TC[MI]-A 0.40 - 0.36 -
TC[LR]-A 0.41 - 0.42 p = 0.06
TC[CS]-W 0.19 - 0.14 -
TC[MI]-W 0.18 - 0.16 -
TC[LR]-W 0.17 - 0.17 -

WN[SYN] 0.42 - 0.38 -
WN[SUB] 0.28 - 0.33 -
WN[SUP] 0.26 - 0.26 -

Table 5.7: Normalized Discounted Cumulative Gain at the first 5 results when
searching for an AltaVista top (left) and random (right) query.

the search engine log, we should recall that our users were in almost all cases only
partially familiar with the topic of the query to evaluate. Thus, our improvements
in the range of 10-15% obtained with TF-A and LC[O]-A (both statistically
significant) show that such Desktop enhanced query expansion is useful even when
searching for queries covering user’s interests only marginally.

Self-selected Queries. We also evaluated our algorithms with queries closer to
the interests of our subjects. We split them in two categories, clear and ambiguous
requests. While our algorithms did not manage to enhance Google for the clear
search tasks, they did produce strong improvements of up to 52.9% (which were
of course also highly statistically significant with p � 0.01) when utilized with
ambiguous queries. In fact, almost all our algorithms resulted in statistically
significant improvements over Google for this query type. A summary of all
results is presented in Table 5.8.
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Algorithm NDCG Signific. NDCG Signific.
Clear vs. Google Ambiguous vs. Google

Google 0.71 - 0.39 -

TF-A 0.66 - 0.52 p� 0.01
TF-W 0.21 - 0.14 -
DF-A 0.37 - 0.31 -
DF-W 0.17 - 0.11 -

LC-A 0.65 - 0.54 p� 0.01
LC[O]-A 0.69 - 0.59 p� 0.01
LC-W 0.16 - 0.15 -
LC[O]-W 0.18 - 0.14 -

SS-A 0.56 - 0.52 p� 0.01
SS-W 0.20 - 0.11 -

TC[CS]-A 0.60 - 0.50 p = 0.01
TC[MI]-A 0.60 - 0.47 p = 0.02
TC[LR]-A 0.56 - 0.47 p = 0.03
TC[CS]-W 0.17 - 0.14 -
TC[MI]-W 0.13 - 0.13 -
TC[LR]-W 0.22 - 0.18 -

WN[SYN] 0.70 - 0.36 -
WN[SUB] 0.46 - 0.32 -
WN[SUP] 0.51 - 0.29 -

Table 5.8: Normalized Discounted Cumulative Gain at the first 5 results when
searching for a user selected clear (left) and ambiguous (right) query.

In general, the relative differences between our algorithms were similar to those
observed for the log based queries. As in the previous analysis, the simple Desktop
based Term Frequency and Lexical Compounds metrics performed best. Neverthe-
less, a very good outcome was also obtained for Desktop based sentence selection
and all term co-occurrence metrics, indicating that there is still room for Web
search improvement in the case of ambiguous queries. There were no visible dif-
ferences between the behavior of the three different approaches to co-occurrence
calculation. Finally, for the case of clear queries, we noticed that fewer expansion
terms than four might be less noisy and thus helpful in further improving over the
already high quality of the Google output. We thus pursued this idea with the
adaptive algorithms presented in the following section.
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5.6 Introducing Adaptivity

Both Web search personalization algorithms proposed in the previous sections
of this chapter yielded very good results overall. However, neither of them was
constant in surpassing the output quality of Google. In particular, the industrial
search engine seems to be optimized to handle very common queries, as well as
very specific ones. This is why we argue that personalized search algorithms
should be flexible, allowing for a combination of regular and user oriented results,
both weighted automatically according to the strengths of either approach, to
the various aspects of each query, and to the particularities of the person using
it. In this section we first discuss the factors influencing the behavior of search
algorithms which might be used as input for the adaptivity process. We then
show how one of them, namely query clarity, can be applied on top of our Desktop
specific query expansion technique. We conclude with an empirical analysis which
confirms the additional quality increase brought by the adaptivity feature.

5.6.1 Adaptivity Factors

Several indicators could assist the algorithm to automatically tune the amount
of personalization injected into the search output. We will start discussing adap-
tation by analyzing the query clarity level. Then, we will briefly introduce an
approach to model the generic query formulation process in order to additionally
tailor the search algorithm automatically, and in the end we will discuss some
other possible factors that might be of use for this task.

Query Clarity. The interest for analyzing query difficulty has increased only
recently, and there are not many papers addressing this topic. However, it has
been long known that query disambiguation algorithms have a high potential of
improving retrieval effectiveness for low recall searches with very short queries36

(see for the example the work of Krovetz and Croft [148]), which is exactly our
targeted scenario. Also, the success of Information Retrieval systems clearly varies
across different topics (initial work analyzing this phenomenon has been done in
the context of the TREC Robust Track [210]). We thus propose to use an estimate
number expressing the calculated level of query clarity in order to automatically
tweak the amount of personalization fed into the algorithm. The only related
work is the paper of Amati et al. [9], who decide on a yes or no basis whether to
apply query expansion or not within a search application.

36Note that many query disambiguation approaches proposed for other kinds of search sce-
narios (e.g., collection specific searches with long queries) have not been too successful.
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Several approaches have been proposed to quantify query ambiguity. They are as
follows:

• The Query Length is expressed simply by the number of words in the user
query. The solution is not only näıve, but rather inefficient, as reported by
He and Ounis [122].

• The Query Scope relates to the IDF of the entire query, as in:

C1 = log (
#DocumentsInCollection

#Hits(Query)
) (5.12)

This metric performs well when used with document collections covering a
single topic, but poor otherwise [77, 122].

• The Query Clarity [77] seems to be the best, as well as the most applied
technique so far. It measures the divergence between the language model
associated to the user query and the language model associated to the
collection. In a simplified version (i.e., without smoothing over the terms
which are not present in the query), it can be expressed as follows:

C2 =
∑

w∈Query

Pml(w|Query) · log
Pml(w|Query)

Pcoll(w)
(5.13)

where Pml(w|Query) is the probability of the word w within the submitted
query, and Pcoll(w) is the probability of w within the entire collection of
documents.

A number of other solutions exist (see for example [220, 41]), but we think they
are too computationally expensive for the huge amount of data that needs to be
processed when used on the World Wide Web. We thus decided to investigate the
measures C1 and C2.

Query Formulation Process. Interactive query expansion has a high potential
for enhancing the search experience [186]. We believe that modeling its underlying
process would be very helpful in producing qualitative adaptive Web search algo-
rithms. For example, when the user is adding a new term to her previously issued
query, she is basically reformulating her original search request. Thus, the newly
added terms are more likely to convey information about her underlying search
intention. For a general, non personalized retrieval engine, this could correspond
to giving more weight to these new query keywords. Within our Desktop based
personalized scenario, the generated expansions could similarly be biased towards
these terms. Nevertheless, modeling the query reformulation process remains an
open challenge. Besides, it is not clear whether regular users are indeed capable
of adding topic resolutive terms when they are reformulating their search requests
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and it is not straightforward to accurately separate real query reformulations from
simple changes in user’s search goal.

Other Features. The general idea of adapting the retrieval process to various
aspects of the query, of the user himself, and even of the employed algorithm has
received only little attention in the scientific literature. Only some approaches
have been investigated, usually in an indirect way. There exist studies of several
indicators, such as query behaviors at different times of day, or of the topics
spanned by the queries of various classes of users, or of the preponderant locations
and languages employed for searching the Web, etc. (e.g., [24]). However, they
generally do not discuss how these features can be actually incorporated in the
search process itself. Moreover, they have almost never been related to the task
of Web personalization, even though they are more important for this latter case,
as the personalized search algorithms should be flexible and able to optimally
configure themselves for each search request in an automatic way.

5.6.2 Desktop Based Adaptive Personalized Search

As the query clarity indicators were the only ones sufficiently developed in order to
be used within search algorithms, we decided to integrate them into our Desktop
specific query expansion technique, so as to evaluate the feasibility of using an
adaptive personalized search system. We settled onto building upon C1 and C2,
as discussed in the previous section, and started by analyzing their performance
over a large set of queries. The resulting clarity predictions were split into three
categories:

• Small Scope / Clear Query: C1 ∈ [0, 12], C2 ∈ [4,∞).

• Medium Scope / Semi-Ambiguous Query: C1 ∈ [12, 17), C2 ∈ [2.5, 4).

• Large Scope / Ambiguous Query: C1 ∈ [17,∞), C2 ∈ [0, 2.5].

Surprisingly, the same intervals were quite well delimited on both the Web and
personal repositories and the two measures C1 and C2 produced rather similar
predictions. In order to limit the size of the experimental process, we chose to
analyze only the results produced when employing C1 for the PIR and C2 for the
Web, as this was the best combination (by a small margin), as observed from an
initial manual analysis of the output produced by each metric.

As an algorithmic basis we employed LC[O]-A, i.e., personalized query expansion
using optimized lexical compounds within the entire user PIR, as it was clearly
the winning method in the previous analysis. However, an investigation of the
expansion terms it generated showed it to slightly overfit the results for clear
queries. We therefore utilized a substitute for this particular case. Two candidates
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Desktop Scope Web Clarity No. of Terms Algorithm
Large Ambiguous 4 LC[O]-A
Large Semi-Ambig. 3 LC[O]-A
Large Clear 2 LC[O]-A

Medium Ambiguous 3 LC[O]-A
Medium Semi-Ambig. 2 LC[O]-A
Medium Clear 1 TF-A / WN[SYN]
Small Ambiguous 2 TF-A / WN[SYN]
Small Semi-Ambig. 1 TF-A / WN[SYN]
Small Clear 0 -

Table 5.9: Adaptive Personalized Query Expansion.

were considered: (1) TF-A, i.e., term frequency with all Desktop data, as it was
the second best approach overall, and (2) WN[SYN], i.e., WordNet synonyms, as
we observed that its first and second expansion terms were often very good.

Given the algorithms and the clarity measures, we implemented the adaptivity
procedure by tailoring the amount of expansion terms added to the original query,
as a function of its ambiguity in the Web, as well as within the Personal Infor-
mation Repository of the user. Note that the ambiguity level is related to the
number of documents covering a certain query. Thus, to some extent, it has dif-
ferent meanings on the Web and within PIRs. While a query deemed ambiguous
on a large collection such as the Web will very likely indeed have a large number of
meanings, this may not be the case for the Desktop. Take for example the query
“PageRank”. If the user is a link analysis expert, many of her documents might
match this term, and thus the query would be classified as ambiguous. However,
when analyzed against the Web, this is definitely a clear query. Consequently,
we employed more additional query terms when the query was more ambiguous
in the Web, but also on the Desktop. Put another way, queries deemed clear on
the Desktop were inherently not well covered within user’s Personal Information
Repository, and thus had fewer keywords appended to them. The actual number
of expansion terms we utilized for each combination of scope and clarity levels is
depicted in Table 5.9.

Note that we also requested to have at least 20 hits of the original query on the
local Desktop, in order to cope with too shallow PIRs, either because the machine
was new, or because the topic did not represent a common interest of the user.
Whenever this constraint was not satisfied, the query was simply left unexpanded.
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5.6.3 Experiments

Experimental Setup

For the empirical analysis of our adaptive search algorithms we used exactly the
same experimental setup as for our previous Desktop personalized query expansion
techniques, with two log-based queries and two self-selected ones (all different from
before), evaluated with NDCG over the Top-5 results output by each algorithm.

The approaches included into this final study were as follows:

0. Google: The actual Google query output, as returned by the Google API;

1. TF-A: Term Frequency, over the entire PIR;

2. LC[O]-A: Optimized (by considering only one top compound per docu-
ment) Lexical Compounds, also using all available user data;

3. WN[SYN]: WordNet based expansion with synonyms;

4. A[LCO/TF]: Adaptive personalized search with TF-A for clear Desktop
queries, and LC[O]-A otherwise;

5. A[LCO/WN]: Same as above, but with WN[SYN] used instead of TF-A.

Results

The overall results were at least similar, or better than Google for all kinds of
log queries (see Table 5.10). In the case of top frequent queries, both adaptive
algorithms, A[LCO/TF] and A[LCO/WN], improve Google with 10.8% and 7.9%
respectively, both differences being also statistically significant with p ≤ 0.01.
They also achieve an improvement of up to 6.62% over the best performing static
algorithm, LC[O]-A (the p-value in this case being 0.07). For randomly selected
queries, even though A[LCO/TF] manages to yield significantly better results than
Google (p = 0.04), both adaptive approaches fall behind the static algorithms.
The major reason for this seems to be the unstable dependency of the number of
expansion terms, as a function of query clarity.

The analysis of the self-selected queries shows that adaptivity can bring even
further improvements into the Web search personalization process (see Table
5.11). For ambiguous queries, the scores given to Google search are enhanced by
40.6% through A[LCO/TF] and by 35.2% through A[LCO/WN], both strongly
significant with p � 0.01. Allowing for flexibility in the number of expansion
keywords brings another 8.9% improvement over the static personalization of
LC[O]-A (p = 0.05). Even in the case of clear queries, the adaptive algorithms
perform better (though only with a very small margin), improving over Google
with 0.4% and 1.0% respectively (see Figure 5.5).
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Algorithm NDCG Signific. NDCG Signific.
Top vs. Google Random vs. Google

Google 0.51 - 0.45 -

TF-A 0.51 - 0.48 p = 0.04
LC[O]-A 0.53 p = 0.09 0.52 p < 0.01
WN[SYN] 0.51 - 0.45 -

A[LCO/TF] 0.56 p < 0.01 0.49 p = 0.04
A[LCO/WN] 0.55 p = 0.01 0.44 -

Table 5.10: Normalized Discounted Cumulative Gain at the first 5 results when
using our adaptive personalized search algorithms on an AltaVista top (left) and
random (right) query.

Algorithm NDCG Signific. NDCG Signific.
Clear vs. Google Ambiguous vs. Google

Google 0.81 - 0.46 -

TF-A 0.76 - 0.54 p = 0.03
LC[O]-A 0.77 - 0.59 p� 0.01
WN[SYN] 0.79 - 0.44 -

A[LCO/TF] 0.81 - 0.64 p� 0.01
A[LCO/WN] 0.81 - 0.63 p� 0.01

Table 5.11: Normalized Discounted Cumulative Gain at the first 5 results when
using our adaptive personalized search algorithms on a user selected clear (left)
and ambiguous (right) query.

All results are depicted graphically in Figure 5.5. We notice that A[LCO/TF]
is the overall best algorithm, performing better than Google for all types of
queries, either extracted from the search engine log, or self-selected. Therefore, the
experiments presented in this section confirm clearly that adaptivity is a necessary
further step to take.

5.7 Discussion

The billions of pages available on the World Wide Web, together with the con-
tinuous attempts of spammers to artificially promote low quality content, have
determined information finding to become a more and more difficult task in this
environment. It is only the extensive work performed within the search engine
industry that kept search quality at reasonably good levels. Personalization comes
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Figure 5.5: Relative NDCG gain (in %) for each algorithm overall, as well as
separated per query category.

to back this effort by tailoring the search results according to each user’s interests,
thus implicitly bringing more order into the output and demoting spam pages.

In this chapter we proposed a series of algorithms meant to overcome the limita-
tions of current Web search personalization approaches. We first showed how to
generalize personalized search in catalogues such as ODP and Google Directory
beyond the currently available search restricted to specific categories, yielding
simple yet very effective personalization algorithms. The precision achieved by
our approach significantly surpassed the precision offered by Google in several
sets of extensive experiments. The big plus of this initial algorithm is its very
fast, straightforward computation, backed by the very good output quality. The
minuses are its lack of automatic user profiling and its reduced coverage, which is
limited to the contents of the input taxonomy.

We then tackled the first challenge brought by our ODP enabled approach and
described a new algorithm that automatically learns user profiles in online systems,
based on an analysis of search statistics. This was either faster, or less obtrusive
than any previous approach. Nevertheless, it still required some small amount of
user specific information.

In the third part of the chapter we introduced an algorithm meant to overcome all
problems posed by the previously existing approaches, including the above men-
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tioned ones. More specifically, we proposed five techniques for determining query
expansion terms by analyzing the Personal Information Repository of each user.
Each of them produced additional keywords by mining Desktop data at increasing
granularity levels, ranging from term and expression level analysis up to global
co-occurrence statistics and external thesauri. Just as before, we provided a thor-
ough empirical analysis of several variants of our approaches, under four different
scenarios. Some of these were showed to perform very well, especially on ambigu-
ous queries. All in all, this last algorithm had no privacy implications, complete
Web coverage, and automatic profiling with no user interaction necessary, all at
the cost of a minimal additional overhead put onto the search process.

To make our results even better we proposed to make the entire personalization
process adaptive to the features of each query, a strong focus being put on clarity
level. Within another separate set of experiments, we showed these adaptive
algorithms to provide further improvements over our previously identified best
approach. In fact, with adaptivity in place, our technique was better than Google
under all tested search scenarios.

A series of fine tuning studies might still be interesting to add. For example,
there is no investigation upon the dependency between various query features and
the optimal number of expansion terms. Similarly, there is still no technique
to define the best weighting of terms within the query, either within regular
search, or especially within personalized algorithms. Last, but not least, new
adaptivity metrics based for example on the query reformulation patterns would
most probably allow for additional quality increases.
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Chapter 6

Conclusions and Open Directions

As data storage capacities become larger every day, the need for effective infor-
mation organization algorithms grows as well. In this thesis we identified and
analyzed in detail those applications with the most imperative demand for such
a structuring, namely Desktop Search, Spam Detection, and Web Search. We
proposed link analysis ranking as a solution for enhancing data access, building
upon the underlying social characteristics of each application context, either at
the macroscopic, or the microscopic level. This section first summarizes our major
research contributions with respect to the three above mentioned domains, and
then discusses some issues which remained open for future investigations.

Summary of Contributions

The main focus of our work was to deploy link analysis ranking solutions for
information management within all areas in which practical data organization
approaches were either completely inexistent, or only partially developed.

We started in Chapter 2 with a comprehensive overview of link analysis ranking
algorithms, as it represents the foundation of our approaches. First, we placed the
ranking module into a generic search engine architecture, thus showing how our
techniques could be deployed into practical applications. Then, we presented a
detailed discussion of all major aspects of PageRank, the supporting link analysis
algorithm used within our approaches. The main aspects we covered included con-
vergence, stability, treatment dangling nodes, implementation and optimization
mechanisms, as well as possible future extensions. Consequently, we presented
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a similar overview for HITS, another important milestone algorithm within the
history of link analysis. In the final part of the chapter we introduced the reader
to some other non-link features used for ranking Web pages. Also, before moving
to the core of the thesis, we pin pointed the other applications in need of data or-
ganization mechanisms and motivated the selection of the above mentioned three
ones.

In Chapter 3 we argued that all previous search based solutions to locate infor-
mation at the PC Desktop level are insufficient for the scalability requirements
imposed by current storage devices. We therefore introduced a totally new Desk-
top Ranking technique which builds upon link analysis in order to rank items
within Personal Information Repositories. Two approaches were taken when im-
plementing the idea. First, we exploited contextual analysis of specific user actions
in order to build a link structure over the PIR and to compute “local reputation”
values for personal items. Second, we generalized the algorithm by including all
user actions into the ranking algorithm, solution which was clearly much simpler,
while also providing a visibly larger coverage of the personal items. Both tech-
niques were thoroughly investigated empirically, and in both cases the Desktop
search output quality was strongly increased, improving over the regular TFxIDF
ranking used by current applications at a statistically significant difference.

Chapter 4 discussed Spam Detection as a bridging application between personal
Desktops, social networks and the Internet. We tackled the two forms of spam
which are by far most spread: Email spam and Web spam. First, we proposed
MailRank, a link analysis based approach to Email ranking and classification
which intelligently exploits the social communication network created via Email
exchanges. The algorithm collects its input values from the sent-mail folder of
all participants, and then applies a power-iteration technique in order to rank
trustworthy senders and to detect spammers. An experimental analysis showed
MailRank to yield very accurate anti-spam decisions, stable in the presence of
sparse networks or of various malicious attacks, while also bringing an additional,
new research benefit: Ordering personal Emails according to the social reputa-
tion of their sender. In the second part of the chapter we applied the very same
background to design a novel approach to remove artificial patterns from Web hy-
perlink structures. We proposed to utilize link analysis at the level of Web sites,
in contrast to the current approaches, built at the page level. We designed and
evaluated algorithms tackling three types of inappropriate site level relationships:
(1) Mutual reinforcements between Web sites, (2) Abnormal support from one
site towards another, and (3) Link alliances across multiple sites. Our experi-
ments on top of the link database of the TodoBR search engine showed a quality
improvement of up to about 60% in Mean Average Precision.
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Our most important contributions are those tackling the Web search application,
described in Chapter 5. Even though an extensive Web ranking research does
exist already, the search output quality is still average. The chapter proposed a
series of algorithms meant to overcome existing Web search limitations through
enhanced user personalization. First, we showed how to provide fast personaliza-
tion based on large scale Web taxonomies by introducing an additional criterion
for Web page ranking, namely the (link) distance between a user profile defined
with taxonomical themes and the sets of topics covered by each URL returned in
Web search. The precision achieved by this technique significantly surpassed the
precision offered by Google search, reaching up to 63% in quality improvement.
We then described a new algorithm that automatically learns user profiles not
only for our taxonomy based approach, but for any online system, exploiting sim-
ple statistics built on top of the taxonomy topics associated to the output of each
user’s Web queries. The precision of this mechanism was 94% when computed
at the Top-10 user interests, a value above 80% being reached after only 4 days
of regular Web searching. The second half of the chapter introduced a further
enhanced personalized search framework which brought three major additional
improvements over our taxonomy based approach: (1) No privacy implications,
(2) Complete Web coverage unrestricted to the size of the taxonomy, and (3)
Automatic profiling with no user interaction necessary. More specifically, we pro-
posed five techniques for determining Web query expansion terms by analyzing the
Personal Information Repository of each user. Each of them produced additional
keywords by mining Desktop data at increasing granularity levels, ranging from
term and expression level analysis up to global co-occurrence statistics and exter-
nal thesauri. Some of these techniques performed very well, especially on queries
deemed ambiguous by our testers. Finally, to bring our results even closer to the
user needs, we investigated the design of a search process adaptive to the features
of each query, especially to its clarity level. This last approach provided additional
improvements over all our previous algorithms and yielded better quality output
than Google under any tested scenario.

The headline results of this thesis are: (1) The initiation of a new Desktop research
stream oriented on Usage Analysis (also considered by TREC1 for addition as main
track in 2008), (2) An increased awareness of the importance of both Desktop data
and large scale taxonomies for Web Search Personalization, (3) The general idea
of exploiting social network information for Email spam detection, as well as (4)
Quite several algorithm and system design considerations for link analysis enabled
applications.

1Text REtrieval Conference, http://trec.nist.gov.
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Open Directions

Research on a topic is almost never complete. New ideas generate new problems,
which in turn generate new ideas, and so on. Especially as some of our contri-
butions opened new research paths, there exist a few areas we find interesting
for future investigation. Let us discuss them separated onto the applications we
tackled in the thesis.

Desktop Search. This is the most rife domain with respect to possible additional
steps. First, it remains unclear how to accurately detect personal items which are
accessed together and also belong to the same activity context. Many approaches
could be envisioned, for example by automatically trimming the Desktop links
generated by our current generalized technique, or by developing enhanced linking
heuristics, or simply by developing an improved ranking algorithm. Second, one
might also investigate other ranking extensions which include non access based
heuristics as well, thus addressing more local resources, even when these have
never been opened by the user. Third, since Desktop Usage Analysis has not
been investigated in the past, it could thus be exploited for quite a lot of other
ideas. For instance one could attempt to combine textual evidences with usage
analysis in order to achieve a more exact clustering or context detection over
Personal Information Repositories, or just over Email inboxes, and so on.

Spam Detection. Though being very accurate, our Email reputation approach
to spam detection has not entirely solved the problem. If broadly accepted by the
community, link analysis could be further investigated to provide more complex,
secure algorithms, optimized for neutralizing malicious users, in a similar fashion
to the Web approaches. Also, as wide usage would imply less scalability, MailRank
or its enhanced follow-up Email anti-spam algorithm should be moved towards a
distributed infrastructure, thus implicitly allowing for more possible points of
failure as well. In general, we believe that the power of social networks has not
yet been fully exploited within the current spam detection systems, and thus much
more is yet to come. With respect to Web spam detection, there are two broad
problems which we left unsolved. First, it might be beneficial to assess the “spam
level” of each link, and weight the links accordingly, rather than removing the
malicious candidates entirely. Second, in a more general sense, it is still unclear
how to optimally combine the already several complementary Web spam detection
approaches, such as the page level and the site level algorithms. Quite several
solutions are possible, for example to apply them in a sequence, or altogether,
weighted according to the predictions of some machine learning algorithm, etc.

Web Search Personalization. While we strived to bring Web Search Person-
alization as close to perfection as possible, there are of course some issues in need
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of further investigation. Our Desktop based query expansion framework would
clearly benefit from an investigation upon the dependency between various query
features and the optimal number of expansion terms. Similarly, there is still no
technique to define the best weighting of terms within the query, either within
regular search, or especially within personalized algorithms. Last, and most chal-
lenging, we believe it would be highly beneficial to model the query reformulation
process of each user. Providing such an approach to learn search behaviors would
in the future allow to “personalize the personalization algorithm”, thus bringing
an ultimate adaptivity into search. Yet many unknowns exist there: Which are
the metrics that best indicate user’s behavior? Which is the importance of each
of them? How should they be combined?

We still find ourselves in an early phase of the digital information era. This is
why we believe a lot of ranking research is still to come, either built on top of link
or text analysis, or on top of more complex statistical metrics, etc. Besides the
already existing wide interest for ranking in the Web, a lot more collateral Infor-
mation Management problems will appear, such as information organization and
alignment within a company Intranet, information structuring within specialized
repositories (e.g., a server dedicated to company reports), and so on. For all of
them, ranking will help, either by playing a minor or even a major role in the
ultimate solution to each problem.
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