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Abstract

This thesis deals with the hp-version for the coupling of finite elements and boundary
elements in R?. We present preconditioners as well as reliable and efficient a posteriori
error estimates for the hp-version.

In the first part we consider the hypersingular integral equation of the normal deriva-
tive of the double layer potential on surfaces and perform the Galerkin hAp-version of
the boundary element method (BEM) on triangles. This method is known to converge
rapidly for smooth as well as for singular solutions. On the other hand the arising linear
system is highly ill-conditioned. Hence, for an efficient solution procedure appropriate
preconditioners are necessary to reduce the number of CG-iterations. We present an it-
erative substructuring method which uses the functions concentrated on the wire basket
and the bubble functions in the interior of the elements separately. We prove that the
condition number of the preconditioned stiffness matrix has a bound which is indepen-
dent of the mesh size h and which grows only polylogarithmically in p, the maximum
polynomial degree.

An essential tool for the construction of such preconditioners is the use of suitable
polynomial extension operators from the boundary of a triangle into the interior. We
discuss different extensions in fractional Sobolev spaces and prove their continuity.

In the second part we present an hp-version of the symmetric finite element /boundary el-
ement coupling method solving the eddy current problem for the time-harmonic Maxwell’s
equations. We use H(curl, Q)-conforming vector-valued polynomials to approximate the
electric field in the conductor 2 and surface curls of continuous piecewise polynomials
on the boundary I' of €2 to approximate the twisted tangential trace of the magnetic
field on I'. We present both a priori and a posteriori error estimates. For the a poste-
rior estimate we prove efficiency and reliability on quasi-uniform meshes. As a second
example of Maxwell’s equations we discuss the time-harmonic scattering problem.

A further topic is the construction of an H(curl, 2)-stable decomposition of the space
of Nédélec elements N'D,(7;,). Considering the trace of this space and certain extension
operators we get an H[l/ 2(divF, I')-stable decomposition of the space of Raviart-Thomas
elements R7 ,(7;). These results can be used to construct certain preconditioners and
reliable and efficient error estimates.

Furthermore, we present numerical results that underline our theoretical results. There-
fore, we have to discuss the construction of suitable polynomial spaces and their trans-
formations.

Key words. extension operators, iterative substructuring, preconditioners, FEM /BEM-
coupling, Maxwell’s equations, a posteriori error estimates



Zusammenfassung

Diese Arbeit behandelt die hp-Version der Kopplung von finiten Elementen und Rand-
elementen in R3. Wir prasentieren sowohl Vorkonditionierer als auch zuverlissige und
effiziente a posteriori Fehlerschétzer fiir die hp-Version.

Im ersten Teil betrachten wir die hypersingulare Integralgleichung als Normalenableitung
des Doppelschichtpotentials auf Oberflichen und analysieren die Galerkin hp-Version
der Randelementmethode (BEM) auf Dreiecken. Diese Methode ist bekannt dafiir, fir
glatte als auch fiir singuldre Losungen sehr schnell zu konvergieren. Andererseits ist das
zugehorige lineare Gleichungssystem sehr schlecht konditioniert. Folglich benotigt man
fiir ein effizientes Losungsverfahren geeignete Vorkonditionierer, um die Anzahl der Iter-
ationen beim CG-Verfahren zu reduzieren. Wir présentieren eine iterative Substruktur-
Methode, bei der die Wirebasket-Funktionen, d.h. die auf dem Rand der Elemente
konzentrierten Funktionen, und die inneren Funktionen auf den Dreiecken getrennt be-
trachtet werden. Wir zeigen, dass die Konditionszahl der so vorkonditionierten Steifig-
keitsmatrix beziiglich der Gitterweite h beschriankt bleibt, wahrend sie lediglich poly-
logarithmisch in p, dem maximalen Polynomgrad, anwachst.

Als wichtiges Hilfsmittel bei der Konstruktion eines solchen Vorkonditionierers erweisen
sich polynomiale Fortsetzungsoperatoren vom Rand eines Dreiecks in sein Inneres. Wir
diskutieren verschiedene Fortsetzungen in gebrochenen Sobolev-Réumen und beweisen
ihre Stetigkeit.

Im zweiten Teil prasentieren wir eine hp-Version der symmetrischen Kopplung von finiten
Elementen und Randelementen zur Losung des Wirbelstromproblems der zeitharmonis-
chen Maxwell-Gleichungen. Wir verwenden H(curl, 2)-konforme vektorwertige Poly-
nome zur Approximation des elektrischen Feldes im Leiter €2 und Flachenrotationen
von stetigen, stiickweisen Polynomen auf dem Rand I'" von €2 zur Approximation der
gedrehten Tangentialspur des magnetischen Feldes auf I'. Wir beweisen sowohl a priori
als auch a posteriori Fehlerabschatzungen. Fiir den a posteriori Fehlerschétzer zeigen
wir Effizienz und Zuverlassigkeit auf quasi-uniformen Gittern. Als weiteres Beispiel der
Maxwell-Gleichungen diskutieren wir auch das zeitharmonische Streuproblem.

Ein weiterer Punkt dieser Arbeit ist die Konstruktion einer H(curl, 2)-stabilen Zer-
legung des Raumes der Nédélec -Elemente N'D,(7;,). Unter Benutzung von Spurbildung
und eines Fortsetzungsoperators erhalten wir eine HF/ 2(din, I')-stabile Zerlegung des
Raumes der Raviart-Thomas Elemente R7 (7). Diese Ergebnisse konnen zur Konstruk-
tion von Vorkonditionierern sowie effizienten und zuverlassigen Fehlerabschatzungen
genutzt werden.

Weiterhin prasentieren wir numerische Ergebnisse, die unsere theoretischen Resultate
unterstreichen. Dazu haben wir die Konstruktion der passenden Polynomraume und
ihrer Transformationen eingehend untersucht.

Schlagworter. Fortsetzungsoperatoren, Iterative Substruktur-Methoden, Vorkondi-
tionierer, FEM /BEM-Kopplung, Maxwell-Gleichungen, a posteriori Fehlerabschétzungen.
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Introduction

This thesis deals with the hp-version for the coupling of finite elements and boundary
elements in R?. We present preconditioners as well as reliable and efficient a posteriori
error estimates for the hp-version.

The thesis is divided into two parts. In the first part (Chapters 1 and 2) an addi-
tive Schwarz based preconditioner is presented for the hp-version of the boundary el-
ement method (BEM), applied to a first kind integral equation on surfaces I'. High
order Galerkin methods as the p- and the hp-versions are known to converge rapidly
for smooth as well as for singular solutions. On the other hand, the arising linear
systems are highly ill-conditioned and their iterative solutions require efficient precon-
ditioners. For piecewise polynomial spaces on meshes, consisting of quadrilateral or
hexahedral elements, overlapping and iterative substructuring methods define such opti-
mal or quasi-optimal preconditioners, see Pavarino, Widlund, Heuer, Stephan, Guo, Cao
[87, 88, 89, 55, 57, 61, 53, 33]. On triangular or tetrahedral meshes for problems in three
dimensions, however, the complete analysis of such domain decomposition based pre-
conditioners is still an open problem. This concerns the finite element method (FEM)
with tetrahedral meshes as well as the boundary element method (BEM) with trian-
gular meshes. We present here the analysis of an iterative substructuring method for
the p-version of the BEM with the hypersingular operator in R?, thus acting on sur-
faces, considering triangular meshes. The integral equation under consideration is the
hypersingular integral equation

1 0 0 1
D =—— ————ds, = , xel. 0.1
o) 1= g [ ) s, = f(a). = (0.1)
On I' we consider a quasi-uniform mesh of triangles I';, « = 1,...,n, and take the space

SP(T") of continuous functions whose restrictions on I'; are polynomials of degree < p.
We perform the p-version boundary element method for equation (0.1):
Find uy € Sp(I") such that

<Du;>Up>L2(F) = <g>'Up>L2(1") fOT CL” ’Up € S}IZ(P) (02)

For the stability and the convergence of the scheme, see Stephan & Suri [100]. In the
p-version Galerkin scheme (0.2), the arising linear systems are highly ill-conditioned.
Using standard tensor product shape functions on rectangles based on antiderivatives
of Legendre polynomials, the condition number of the Galerkin matrix Ay behaves like
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cond(Ay) = O(p°®), see Heuer [56]. Therefore, the iterative solutions require efficient
preconditioners.

In this work, for (0.1) the p-version of the Galerkin method is studied on a quasi-
uniform triangular mesh using special low energy basis functions, introduced by Pavarino
& Widlund [89], together with suitable polynomial extensions of vertex functions and
edge functions into triangles. We present an iterative substructuring method which is
based on a splitting of the trial space into wire basket functions and interior functions
(bubbles). The resulting additive Schwarz preconditioner has a block-diagonal structure
and the condition number of this Schwarz operator behaves like O((1 + log p)?).

In the second part (Chapters 3—6) we consider an hp-version of the FEM /BEM-coupling
for the eddy current problem. The latter models a time-harmonic interface problem in
electromagnetics where a conductor and a monochromatic exciting current are given and
displacement currents are neglected. The task is to compute the resulting magnetic and
electric fields in the conductor €2 as well as in the exterior domain. The use of boundary
elements for exterior problems in electromagnetics goes back to the early works of Bendali
[17], Nédélec [81, 83] and MacCamy & Stephan [71, 70, 72]. We also refer to the work
of Buffa, Costabel, Hiptmair & Schwab et al. [29, 31, 32, 68]. For the coupling of FEM
and BEM in electromagnetics, see Bossavit [22], Costabel & Stephan [40], Nédélec et
al. [7,9, 8] and Hiptmair [66, 67]. Here, we consider the field-based symmetric coupling
formulation which was introduced by Hiptmair [66]. The unknowns are u corresponding
to the electrical field in the bounded conductor 2 and A corresponding to the twisted
tangential trace of the magnetic field on the boundary I' of the conductor. The natural
Sobolev space for u is H(curl, 2), which is the space of L2-fields in  with rotation in
L2(2). The space for X is Hrﬂ(divlﬂ 0,T") which is a trace space of H(curl, Q) with
vanishing surface divergence. The Galerkin discretization uses the space &}, , of H(curl)-
conforming vector-valued polynomials (for u) on a regular mesh 7, of tetrahedrons and
the space Yy, of surface curls of continuous, piecewise polynomials (for A) on a regular
mesh /C, on I' (which is induced by 7). We derive a priori error estimates for the
hp-version of the FEM /BEM-coupling which use suitable projection-based interpolation
operators as introduced in Chapter 4. We also give corresponding reliable and efficient
residual a posteriori error estimates.

Preliminary work was done in two PhD-theses (Bica [21] and Teltscher [103]) and is
here reused, completed and generalized. For Chapters 1 and 2 the main reference is the
thesis of Bica [21] where an iterative substructuring method for the p-version of the finite
element method on tetrahedrons is presented. He uses assumptions on the continuity
of polynomial preserving extension operators from the boundary of a triangle into the
interior. But he could not prove his extension theorem and introduces in his estimates
a value N (p) which he assumes to be constant. In Chapter 1 we prove continuity of the

extension with a factor (1 + logp)'/2.
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For the electromagnetic problems basic work was done in the thesis of Teltscher [103]
who presented a residual and a p-hierarchical error estimator for the coupling of fi-
nite elements and boundary elements of electromagnetic problems, see also Teltscher et
al. [104, 105, 106] and Maischak & Stephan [99]. The work of Teltscher is based on
several articles of Hiptmair [66, 67] and Beck, Wohlmuth et al. [15, 16]. While Teltscher
considered only the h-version with lowest polynomial degree we extend his results to the
hp-version.

In the following some details are listed.

In Chapter 1 we present different polynomial preserving extension operators from the
boundary of a triangle 7" into the interior. Our main result is Theorem 1.2.1. Here, we
prove the existence of an extension U such that holds

U\l zir2rry < C(1+ lng)1/2||f||L2(8T)

where f is a polynomial of degree p that vanishes on I' C 9T which consists of one or
two edges of T.

For the proof of this result we have to consider different extension operators which
extend a polynomial from one side of the triangle into the interior where the polynomial
possesses a root at one or two vertices. The operator under consideration is the operator

BNy =2 [ 1 a

which extends a polynomial f of degree p defined on one side I of the unit triangle with
f(0) = 0 to a polynomial of degree p into the interior of the triangle 7". This operator
was introduced by Bica [21] using ideas from Mufioz-Sola [79]. Bica could only postulate
the continuity of this extension from L?(I) to H'/?(T'). We prove the continuity of this
extension, i.e. there holds

IE(F) |2y < C (logp) |1 fll ey,
see Theorem 1.2.2.

Using this result we can prove different extensions from the boundary into the triangle
using the H'/?-norm, see Theorem 1.2.3.

The proof of Theorem 1.2.2 is done in Section 1.3. Therefore, we show continuity of
the extension from H'/2(I,0) to H'(T) (Theorem 1.3.4) and continuity with a factor
(1 +logp) from H~Y2(I) to L*(T) (Theorem 1.3.7). The result then follows with inter-
polation between the spaces.

Having proven the continuity of the extension operator we can construct in Chapter 2
a preconditioner for the hp-version for the hypersingular operator on quasi-uniform tri-
angular meshes. It uses an iterative substructuring method using the so-called wire
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basket space (consisting of nodal and side functions) and the space of bubble functions
concentrated in the interior of the triangles. Therefore, we decompose the polynomial
space Sh(I') into functions which belong to the wire basket of the mesh, i.e. all basis
functions which are associated to the nodes and the edges of the mesh, and functions
which belong to the interior of the elements, i.e. functions that are zero on all edges:

SE) =V + V..

1=1

As vertex basis functions we use so-called low energy functions on the edges, see Pavarino
& Widlund [89], which are extended into the triangle via our polynomial lifting operators,
introduced in Chapter 1. As edge functions we take affine images of antiderivatives of
Legendre polynomials £, (x) together with their polynomial lifting, whereas as bubble
functions we take linear combinations of antiderivatives of Legendre polynomials.

For the bubble spaces Vr,, ..., Vp, we set
bj(v,w) = (Dv,w) Vv, weVp, j=1,...,n

On the other hand, for the wire basket functions, we can take both the energy bilinear
form (D-,-) or the L bilinear form

aw (v,w) == (1 +logp)’ ; Clllé%(v — G, W — Ci)%%an)‘
In Theorem 2.1.1 we show that the condition number of the preconditioned system
grows only polylogarithmically. The proof of this theorem is given in Section 2.3. The
numerical results in the example in §2.4 show for both wire basket preconditioners the
same behavior. Of course, the L2-bilinear form leads to a sparse matrix whereas the
energy bilinear form gives a dense block for the Galerkin matrix due to the non-locality
of the integral operator D. Chapter 2 ends with Section 2.5 where we prove a stability
estimate for discrete harmonic extensions from the faces of a tetrahedron into its interior.

Furthermore, we give detailed proofs of some results of Bica [21] which we need here.

The following chapters deal with the hp-version for the coupling of finite elements and
boundary elements for electromagnetic problems. In Chapter 3 we present the definition
of the used Sobolev spaces for Maxwell’s equations. These are H(curl, Q) and H(div, §2)
for the bounded domain €2. On the boundary I" we define the tangential trace operator
vpu :=n X (u x n) and the twisted tangential trace 7, := u x n. Then, we get the
trace spaces

H, %(divp,T) = 3 (H(curl, Q)),  H"*(curlp, T) = yp(H(curl, Q).

In Section 3.2 we define the used boundary integral operators for Maxwell’s equations and
we collect their mapping properties on the spaces Hll/ 2 (curlp, ') and Hr/ 2 (divp, T).

10
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These results are then extended to the spaces Hf (curly,I') and Hj(divy,T') in Sec-
tion 3.3. In Section 3.2.1 we introduce the Stratton-Chu representation formula which
is an essential tool for the construction of the coupling of finite elements and boundary
elements.

The approximation in the relevant spaces H(curl, ), H(div, ), Hr/ 2(din,F) and

Hll/ 2(curlp, ') is described in Chapter 4. For this, we define a regular mesh of tetra-
hedrons or hexahedrons of mesh size h on the domain €2, and this induces a mesh K},
of triangles or of quadrilaterals on the boundary I' = 0f). For the approximation in
the space H(curl, 2) one uses usually the so-called Nédélec space N'D,(7,), see Nédélec
[82]. These functions fulfill the conformity condition for H(curl, ©2), i.e. the tangential
trace between two elements has to be continuous. In order to achieve this condition
Nédélec [82] introduces degrees of freedom which are based on integral moments that
can be used for the definition of the basis functions. In Section 4.1 we describe the basis
functions on the reference cube and on the reference tetrahedron. For the basis func-
tions on the reference cube we introduce in §4.1.1 a general scheme for the calculation
of these basis functions for higher polynomial degrees p using different test and ansatz
functions. This leads to linear systems with condition numbers depending on the poly-
nomial degrees and also on the used basis functions. We present different approaches
and compare them in numerical experiments. In §4.1.3 we describe how to transform the
Nédélec functions on the reference element to a local element of size h, considering an
H(curl, Q)-conforming transformation. Using this transformation we derive an inverse
inequality for the space of Nédélec functions, see Lemma 4.1.3. Finally, using the above
moments again we define an interpolation operator. In Section 4.2 we present the finite
element method for the eddy current problem in a bounded domain and confirm the
results for the p-version numerically.

In Section 4.3 we briefly describe the main properties of the Raviart-Thomas space
RT ,(7,) for the approximation in H(div,€). More important for our coupling for-
mulation is the space HF/ *(divp, ). Therefore, we use the Raviart-Thomas space
RT ,(Kp) = v, (ND,(Tp)), see Section 4.4. We describe the calculation of the basis
functions on the reference square and derive transformation formulas in §4.4.3 and also
an inverse inequality. For the discretization in Hll/ 2 (curlp, I') we introduce in Section 4.5
the space TN'D,(7;,) := v7p(ND,(7,)) as the tangential trace space of the Nédélec space.
We derive the transformation formulas which are essential for our calculations. In Sec-
tion 4.6 we consider the de Rham diagram which gives us the connection between the
different finite element spaces. Furthermore, we consider in Section 4.7 a continuous ex-
tension operator as right inverse of the operator 7, : H(curl, Q) — Hrﬂ(divlﬂ, I'). The
existence of such an operator was proven in Alonso & Valli [5]. But here we present an-
other construction which was communicated by Ralf Hiptmair. We describe the details.
In Section 4.8 we consider the hp-interpolation in the H(curl, 2)-conforming space. Fur-
thermore, we discuss a special interpolation operator for the Ap-version, which is based

11
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on Demkowicz et al. [44, 45, 46]. Therefore, our polynomial extension from Chapters 1
and 2 are helpful.

Finally, in Section 4.9 we give a H(curl, Q2)-stable 2-Level decomposition of the Nédélec
space N'D,(7}) also for higher polynomial degrees. This can be used to construct an
additive Schwarz preconditioner for the H(curl, ©2)-bilinear form

a(u,v) := (curlu, curlv)g + (u,v)q.

Using these results we can construct an HF/ ?(divp, I')-stable decomposition of RT 5(K},),
see Section 4.10. In order to prove this we have to use the result on the extension of
RT (K1) to N'Do(7,) from Section 4.7. Unfortunately, this extension is not local for
single basis functions. Thus, we can only prove a decomposition into two spaces. Using
this decomposition we can construct a two-block additive Schwarz preconditioner for the
bilinear form

b(A, ¢) = (V(divp A), dive O + (VA, O)r.

We present a numerical experiment underlining the theoretical result. For an adaptive
hp-version using quadrilaterals and quadrangles one has to use hanging nodes. The
construction is described in Section 4.11, also for higher polynomial degrees.

In Chapter 5 we present the eddy current problem. For a further discussion of the math-
ematical background of this problem we refer to the work of Ammari, Buffa & Nédélec
[6]. We derive a coupling formulation of finite elements and boundary elements which
goes back to the work of Hiptmair [66]. Starting from the Stratton-Chu representation
theorem we derive a coupling formulation for the variable u € H(curl, ), representing
the electric field in the domain €2, and for the Neumann trace yyu € HF/ 2(din 0,1,
which corresponds to the magnetic field. For the discretization we use finite elements
in the interior of the domain to approximate the electric field and surface curls of hat
functions to approximate the twisted tangential trace of the magnetic field. We derive
a residual error estimator for the hp-version. Singular, weakly singular and hypersingu-
lar boundary integral operators appearing in the variational coupling formulation show
up in the terms of the error estimators as well. Our formulation holds for non-smooth
boundaries. If we fix the polynomial degree we regain the h-version as considered in
Teltscher et al. [106]. For the proof we use the hp-interpolation operators ﬁll, intro-
duced in §4.8. We prove the reliability in Theorem 5.3.1 following the ideas of Beck et
al. [14] and Teltscher [103, 106]. In §5.3.1 we present a three-fold algorithm which can
be used to achieve suitably refined Ap-meshes. In Section 5.4 we show the efficiency for
the h-version using some ideas of Beck et al. [15] for the finite element indicators and
of Carstensen [34] for the coupling of finite elements and boundary elements using the
Poincaré-Steklov operator.

We present numerical experiments using hanging nodes for the polynomial degree p = 1.
Furthermore, we perform experiments for the p-version. These experiments underline our

12
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theoretical results. As far as we know there has been no implementation of the p-version
of the coupling method up to now. Furthermore, we present a numerical example of a
2-level hierarchical error estimator introduced by Teltscher [103]. While Teltscher only
considered the so-called bubble indicators we use all indicators. The implementation of
hanging nodes and edges for higher polynomial degrees still has to be done, therefore we
can’t present experiments for the adaptive hp-version, but the numerical experiments
for both h- and p-version show the power of these algorithms.

In Chapter 6 we consider as a further application of Maxwell’s equations the time-
harmonic scattering problem. Here, an incident wave is scattered at a dielectric body.
We derive a coupling formulation for the electric field u € H(curl, 2) and the twisted
tangential trace of the magnetic field on the boundary A := yyu € Hr/ 2(din, I'). The
formulation is quite similar to Hiptmair [67] but we use different integral operators.
For the discretization of the variables we use Nédélec and Raviart-Thomas functions.
We also consider the electric field integral equation (EFIE) which is a part in the cou-
pling formulation. Furthermore, we investigate the calculation of the Galerkin elements.
Therefore, we have to use the transformations considered in Chapter 4. These results
can also be applied to the calculation of the Galerkin elements for the eddy current
problem. The chapter ends with some numerical experiments.

Throughout this work, vector-valued functions or spaces are written in bold letters,
scalar functions in normal typed letters. C' denotes a generic positive constant, usually
independent of the characteristic mesh size h, that can also change its value throughout
equations. The symbol < signifies “< up to a multiplicative constant”. Such constants
are always assumed to be independent of the mesh size h (if present in the context).
The symbol ~ means “< and 2.
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1 An extension theorem for
polynomials on triangles

An important tool for the analysis of p- and hp-approximation methods is the con-
struction of suitable polynomial preserving extension operators from the boundary of
the elements into the interior. In this chapter we consider polynomial liftings from the
boundary of a triangle T into its interior. We will present different operators and prove
the stability of their extension. For the construction of a preconditioner for the hyper-
singular operator in Chapter 2 it is essential to have an extension operator that extends
a polynomial which is vanishing on a part of the boundary.

Several work has been done before. At first we mention the extension constructed by
Babuska & Suri [13] where a stable polynomial extension operator from HY2(9T) to
HY(T) is developed, see also Babuska et al. [12]. Ainsworth & Demkowicz [3] construct
a polynomial preserving extension operator & such that [|EF| i) < ClIF| g5
where F'is a polynomial and C' > 0 a positive constant, independent of the polynomial

degree. Their operator is also shown to be uniformly stable from L*(0T) to H'/*(T).

Polynomial liftings on a tetrahedron were developed by Munoz-Sola [79] following ideas
mentioned by Maday [73]. The main result of Munoz-Sola is the existence of continuous
extension operator R : H'/?(0K) — H'(K) for a tetrahedron K. Using the extension of
Munoz-Sola Bica constructed in his thesis [21] a suitable extension operator, but could
not proof its stability. Here, we consider his operator and close the gaps in the proof.

The main theorem in this chapter is Theorem 1.2.1. It states that there exists such an
extension from L?(0T) to H'/?(T,T'), where I' denotes a part of the boundary where
the extended function is zero. The proof is done in several steps. Therefore we con-
sider different extension operators which preserve zeros on edges. For the operator
E(f)(z,y) = %f;w @dt we prove the continuity of the mapping from L2?(9T) to

H'Y2(T) in Theorem 1.2.2. The proof is done in section 1.3. Afterwards, using Theo-
rem 1.2.3 and Theorem 1.2.1 the main theorem follows.
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1 An extension theorem

1.1 Definitions

On an open surface segment I' we introduce the spaces HY2(I") and H'/2(I') where the
latter space is most often denoted by H&éz(F) in the finite element literature. Let I' be
a closed surface (in our case a polyhedral surface) with I' C I". We define

H'2(T) == {¢|p; o € HY(R?)}, HY*(D) :={¢|r; ¢ € H/*(D)},

and
H'2(T) == {¢ € HYX(T); ¢ € H'*(T)},

where ¢ denotes the extension of ¢ by 0 from I' onto T
For Q@ C R" and 0 < s < 1 a norm in H*(2) is given by (see Lions & Magenes [69])

2 lu(z) —v(y)|?
s(oy 1= — 2 77 dxdy.
[olf+(@) /Q a |z —ylFm v

%JS(Q) =" H%Z(Q) -+

2
H3(Q)

with semi-norm

In order to calculate the H'/?-norm over two adjacent elements I'; and I'; (e.g. triangles)
we consider the following equivalent norm, compare Grisvard [50],

2 _ 2 2 (u(z) —u(y))?
HUHHl/Q(FZ—UFj) - HUHHl/z(ri) + HUHHI/Q(FJ.) + /FZ /Fj PRE dy dzx.

For a Lipschitz domain © ¢ R? and 0 < s < 1 the space H5(Q,T), I' C 98, can be
defined using the norm

2 2 u(@)?
||U|| s Hs(Q)+/§z(dlSt($,F))2s dl’,

(see e.g. Lions & Magenes [69, Theorem 11.7]). The second parameter I' is omitted if
' = 00Q.

Q) = ||u|

We also note that the spaces H'/2(I') and H'/?(T') can be equivalently defined as inter-
mediate spaces between L*(T') and H'(T') or H}(T') (H}(T) is the completion of C§°(T")
within H!(T)).

For 5 > 0 the spaces H—%(Q) (resp. H~*(Q)) are the dual spaces of H*(Q) (resp. H*(Q))
with respect to the L?-inner product.

Furthermore, we consider special subspaces of H'/?(T) related to one or two edges of
the triangle 7. These are also needed in Chapter 2. Let \; be the barycentric function
related to the edge I; of T. Thus, HY?(T, ;) consists of these functions u € HY?(T)
which vanish on the edge I; and satisfy )\Z-_l/Q - € L*(T), with the norm

12 (1.1)

||u||§~{1/2(’f"1i) = |u|§{1/2(jﬂ) + ||)‘z_ u||i2(j~)a
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1.2 An extension theorem

and for i # j it is HY?(T, I, I;) = HY*(T, I,) 0 HY?*(T, I;) with the norm

—-1/2 -1/2
Nl o1,y = 1ulisazy + Il + 1A 20l oy (1.2)

On the interval I we furthermore define the space H'/2(I,0) using the norm

Falp 0y = Nl + ™2l

1.2 An extension theorem

First of all, we state here the main extension theorem. The proof is given below in the
proof for Theorem 1.2.4.

Theorem 1.2.1 Let f be a continuous function on the triangle T such that f is a
piecewise polynomial of degree p on each side of the triangle. Furthermore, we assume
that f vanishes on T which consists of one or two sides of T. Thus, there exits an
extension U, which is a polynomial of degree at most p, with U = f on 8T and

Ul 71720,y < € (14 10g p) 2| fl 2207 (1.3)

where the constant C' > 0 is independent of f and p.

As the H'/2(T)-norm transforms as the L?(9T)-norm we can use the unit triangle 7 :=
{(z,y) : 0 < x,y; x +y < 1} without loss of generality. The edges are denoted by I;,
i = 1,2,3, see Figure 1.1. Furthermore, we abbreviate I := I; := [0,1]. Finally, we
define the space of polynomials of degree p on the triangle T" and on the interval I as

PP(T) :=span{z'y’, 0 <i+j <p, (z,y) € T}, P’(I) :=span{z’, 0 < i < p}.
Furthermore, we define P?([;,0) :={f € P?(I), f(0) = 0}.

Next, we present different extension operators that extend a polynomial from one side
of the triangle into the triangle. There is a “classical” extension operator F : HY?(I) —
H(T) which is defined by

F(f)(z,y) = 5 / o ar

cf. Babuska et al. [13, 12]. The value of the extension in the point (x,y) is the average
of f on the interval [x,z + y], compare Figure 1.1. A disadvantage of this operator is
that it is not possible to control the behavior of the extension along the other edges, e.g.
a root of f in 0 does not extend to a zero trace of F/(f) on I3. But for the construction
of suitable basis functions we need to get functions which vanish on one or two edges.
We need this operator only for the analysis of the other operators.
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1 An extension theorem

y
(0,1)
Iy
I3
(z,v)
I
0,0) = T4y (1,007

Figure 1.1: The reference triangle 7.

The following operator is used by Bica [21] and its three-dimensional counterpart, for
tetrahedrons by Munoz-Sola [79]. The extension operators depend on the zeros of the
polynomials in the corners and the extension vanishes on these edges which belong to
the vertex where the polynomial is vanishing.

Therefore, we define the operator E by

<mﬂ@wy=§/%W%Qﬁ if £(0) = 0.

More generally, for f € PP(I) we define extension operators from I; by

r+y @ it
t

B (an) =B () a9) = - / it £(0) =0,

o — z+y
) == [ -0,

o) [,

B (f) (o) =T T

if £(0) = £(1) = 0.
We note that there holds

EN(f)(@y) = (1 -2 —y)EL(f)(2,y) + 2By () (2, y).

Moreover, F3(f) =0 on I, and E'(f) =0 on I, U I3.

Extension operators E3 (for f € PP(I3) with f(1) = 0), E} (if f(0) = 0) and E? (if
f(0) = f(1) = 0) from I3 onto T" are defined analogously.
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1.2 An extension theorem

For a polynomial f € PP(I,) we define

E3(f)(x,y) ::1_3;7_3// _y%dt if £(1,0) =0,
x 1=y —
E3(f)(z,y) :m/ Lt’i 2 dtif f(0,1) =0,

1-y —
B2 f(z,y) ::%/ %dt if £(1,0) = £(0,1) = 0.

There holds
E*f(w,y) = E5(f) + yE5(f)
and E3(f)=0on I, EX(f)=0o0n I3, E*(f) =0o0n I, U L.

It is easy to see that all the extensions are polynomials of degree p on T'. Furthermore,
all the operators which deal with polynomials that vanish in only one vertex are linear
transformations of the operator F = E}. Therefore we only have to study this operator.

In Theorem 1.3.4 we show that

E: HY*(1,0) — HY(T) (1.4)
is a continuous mapping and there holds

IED ey < ClIF 20 (1.5)

In Theorem 1.3.7 we show that
B (P(1,0), H-Y2(I)) — (PY(T), LX(T)) (1.6)

is continuous with the estimate
IE)z2ery < C(L+logp) [fllg-1r20)- (1.7)

Using interpolation between the spaces L?(T) and H'(T) and the spaces H'/2(I) and
H*'Y2(I,0) we get the following theorem.

Theorem 1.2.2 The extension operator E : (PP(I,0), L*(I)) — (PP(T), H'*(T)) is
a continuous mapping and there holds

IEN 2y < C(L+10gp) ' || fllza

for all polynomials f € PP(I,0).

We are now in the position to prove the following extension theorem. The proof is similar
to Lemma 4.10 in the dissertation of Bica [21].
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1 An extension theorem

Theorem 1.2.3 For f € PP(I,0) there holds

IE) 17207,y < C(L+1og p) 2| fllz2r)- (1.8)
For f € PP(I) and f(1) = 0 there holds

1B (P /2.y < O+ 10g p) 2| fllz20r)- (1.9)
For f € PP(I) and f(0) = f(1) = 0 there holds

1E ()| 2,y < C(1+10g )2 fll2201)- (1.10)

Proof. Due to Theorem 1.2.2 there holds

IEH) 1 r2gry < C(L+10gp) 2 || f ]l 2y

Thus, we only have to bound the weighted L?-norms. Therefore we use Lemma 1.3.2 to
get

which finishes the proof of (1.8). The proof of (1.9) can be done in the same way as for
(1.8).
Therefore, we only have to examine the operator E'. First of all, we know that there
holds

EN(f)(zy) = (1 -z —y)E(f)(2,y) + 2By (f)(z.y).

Here, we only consider the first term. The second one can be estimated the same way.
In order to estimate the H'/2-semi-norm we first see that there holds for (z,y) € T' and

(2, y) €T

(1—2—yE(f)(x,y) — (1 -2 =y ) E)(, )
=|(1-2—y)BE(f)(z,y) — (1 -z —y)E(f)(2",y)
+(l—z—yEf)y) - Q-2 =y VB, y)
<21 —z—y?|E(f)(z,y) — B,y )* + 2" —z+ ¢ —y)?|E)( )]
<|E(f)(x,y) = B o)+ 20" —x+y =) B, )
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1.2 An extension theorem

Thus, we get using the definition of the H'/2?(T)-norm and Theorem 1.2.2
(1 =2 =) E() e

<C (|E |H1/2 / / / / fiati, yx)2 i)(;’E—(Z))S):;’/Z/)Y dx’ dy' dx dy)

< C (BN + IE)Z:)
= CIE)zp 2y < C (1 +1ogp) [1fII72(r)-

Finally, we estimate the weighted L?-norm on the edge I3

U=y (] — g — )2 a+y 2
||:£_1/2(1—I—y)E(f)||%2(T):/0 /0 I(y+y)</ f()dt) dzx dy
1 pl-y Tty 2
<[ [E([ TR a) dvay < i,

The last step is the same as above. O

We are now in the position to prove the main extension theorem (Theorem 1.2.1) which
we only consider on the reference triangle T'. As a further result we get the existence of
an extension from L2(9T) to HY?(T) for an arbitrary polynomial f.

Theorem 1.2.4 Let f be a continuous function on the reference triangle T such that
fi = fl, € PP(1;), i =1,2,3. Thus, there exists U € PP(T) such that U = f on OT
and

Ul 2y < C (1 +Tog p) /2 || fllz2om - (1.11)
If fo = 0 there holds
Ul g2,y < C (1 +10g p) 2| fll 2. (1.12)
If fo = f3 =0 then there holds
Ul 122,101 < € (L +1og )21 f || 2 om)- (1.13)

Proof. The estimate (1.13) is shown in Theorem 1.2.3.

Next, we show (1.11). Therefore we extend f; by using the extension operator F'. Let

= F(f1) and let g3 be its trace on I3. Due to the continuity of f there holds
(fs — g3)(0,0) = 0. Using the extension operator E® we can extend f3 — g3 from I3 to
Us € PP(T) with U3 = 0 on I; and

||U3||1}1/2(T711) <C(1+ logp)1/2||f3 - 93||L2(13) <C(l+ logp)l/ZHfH%?(aT)-

The last estimate follows using Lemma 1.3.2

1 1 Y 2 1
lgallZecry = NF () ey = / y—( / fl(t)dt) dy < 4 / R dt = 4 B
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1 An extension theorem

Now let g9 be the trace of U;+Us on I5. Thus, there holds (fo—g2)(1,0) = (fa—g2)(0,1) =
0. Using the extension operator E? we can extend fy — go from I, to U, € PP(T) with
U; =0on [, and I3 and

U2l 12y 1) < C (1 410gp) 2 || f2 = gall 2y < C (1 +10gp) | FllZ20m)-
In the end, we have to estimate the L?(I5)-norm for
g2 = (U1 + Us)lr, = (F(f) + E°(fs = 93)|. = F(fi)le + E°(fo = F(f)1) |-
As the extension operators behave like F' we use (1.17) to estimate
1921120y < Wil 220y + I fall72 )
Finally, we set U := Uy + Uy + Us.

In order to prove (1.12) let U; := FE3(f1) and let g3 be its trace on I3. Due to the
continuity of f there holds (g3 — f3)(1,0) = (g5 — f3)(0,1) = 0. Using E® we extend
g3 — f3 to a polynomial Us € PP(T') with U3 = 0 on I; and I, and

1Usll geer gy < C(1+ logp)'?|lgs = fallr2() < C (1 +1ogp)'?|| £l 2(omy-

The last estimate can be shown as above. Finally, we set U := U; — Us. a

1.3 Proof of Theorem 1.2.2

As described on page 19, the proof of Theorem 1.2.2 is done in several steps using the
Theorems 1.3.4 and Theorem 1.3.7 which are proven below. First of all, we state some
technical results.

Lemma 1.3.1 (Hardy’s inequality) Forp > 1 and r # 0 there holds

/0°° yrE) dy < <|7‘ . 1‘)7”/:0 y " (yf(y)" dy,

where F(y f f(t)dt forr <1, and F(y) = [} f(t)dt forr > 1.

Proof. See Hardy et al. [54, Theorem 330]. O

Applying this we can easily estimate

Lemma 1.3.2 Let 0 <z <1 and f € L*(x,1). Thus, there holds

/OH% (/:+yf(t) dt)2 dy < 4/901 F2(8) dt. (1.14)
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1.3 Proof of Theorem 1.2.2

Proof. We use Hardy’s inequality with r =2, p =2 and

:/:erf(t)dt:/oyf(:wrt)dt

F'is extended to 0 if y > 1 — z. Thus, we can estimate

[ 08) = [ ([ e
/ (/ flz+1) dt) < 4 Ol_xf2(3€+y)dy

O
Next, we give estimates to the extension operator F'.
Lemma 1.3.3 There exists C > 0 such that for all f € HY?(I) there holds
IEH ey < Cllf Tz, (1.15)
IE (P z2ry < Clla' flleqry. (1.16)
Proof. (1.15) can be found in Babuska et al. [12, Lemma 7.1].
For the proof of (1.16) (compare Bica [21]) we use Lemma 1.3.2 to get
1—2 1
IF )20 / . (/ I dt) dy d
< 4/ / f(t)*dt do
/ / dz dt
[ a0 =2,
O

Theorem 1.3.4 There exists a constant C' > 0 such that for all f € PP(1,0) there holds

IE) ey < C Ul e

Proof. The proof uses ideas of Munioz-Sola [79, Lemma 6] where a similar result for
the three-dimensional case is proven.
Using (1.16) we can estimate

1Bz < IFAfDIZ2y < Clla' flZaiy < Uz (1.17)
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1 An extension theorem

In order to estimate the H'(T)-seminorm we calculate the first order derivatives of E
and F.

OB(f) 1 [ f@) , =z (fla+y fla)

= / dt+y< Ty . ) (1.18)
OE(f) _ /”y f®) gy oSty

S , (1.19)

dy y Tty
agf):§fm+y»—§ﬂw, (1.20)
OF(f) _ 1 [ 1

5 yz[: Lﬂﬂdt+yf( + ). (1.21)

From (1.15) we now get the estimate

IE) ey < CNF e

Thus, we bound the differences of the operators E and F in the H'(T')-semi-norm. There
holds

8EU)_8FU>_1/W”i@dF%ﬂ”+W< v _1). (122)

Ox or vy t Y

We then define

_ L[ _ ety (=
Rl._Q/x R i= ( —1).

Using (1.16) there holds

o= ()

Next, we estimate Ry. Due to 0 <1 — ﬁy <1 we get

525 )

) Tty

It is clear that

<C xl/zm

X

= C||l’_1/2f(x)||L2([). (123)

L) ‘ L2(1)

1
:Q)f($+y)x+y‘

v, @)
r+y T+vy
|f (@)
r+y

IN

Lt ty) - f@)]
Y

Séﬁ@+@—f@ﬂ+
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The first term can be estimated by

S (fla+y) - f2)
. // " dy dx

H;(f(l"l'y)

= |f|?{1/2(1)-

For the second term there holds

1 11—z f(l')z ILZL')z B e )
/o /o (x +y)? dyde/O - dr = 27 f(2)||72()-

Finally, there holds

1 Ballzacry < € (1f sy + ™20 @)z - (1.24)

Now we examine the derivative with respect to y.

3E(f)_8F(f):%/:+yf(t)<1—%) dt+f(x+y)( a —1)=R3+R2,

Oy Oy y r+y

where we define

Ry = %/;erf(t) (1 - %) dt.

The term R, has already been estimated. Thus, we only have to examine R3. Due to
0<1—-2<%forte [r,r+y] we can estimate

m|<yé“”ﬁ” F(g@g

which can be estimated like R; and it follows
R3]l 2cry < Clla™ f ()| 2(r)- (1.25)
Using (1.15) together with (1.17), (1.23), (1.24) and (1.25) the theorem follows. 0

For the proof of Theorem 1.3.7 we need the following two technical lemmas.

Lemma 1.3.5 Let f be uniformly continuous on [0,1]. Thus, for fived y € [0,1] the
function || f[| y-1/24 (4 4ty 18 continuous with respect to x € [0,1 — y].
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1 An extension theorem

Proof. f is uniformly continuous. Therefore, for every € > 0 there exists a § > 0 such
that for all z;, xo € [0,1 — y] with |z — 23] < ¢ there holds |f(z1 + ) — f(z2+ )| <€
for all z € [0,y]. Thus, we can estimate

1 Fller-1724 (@r 149 = 1 1722 oo | = |1 @14 1r2ve 0,4y = 1F (@2 ) 111724204 |
SN+ ) = Flee+ )l a-12+e0,)
< f(@+ 1) = flez + )z
<eVy.

This gives the desired result. O

Lemma 1.3.6 For f € PP(I) and € > 0 there holds

HyE—l ||f||H*1/2+5(:c,x+y)HL2(T) = \/_HfHH 1/2+e(T)

Proof.  For y € [0,1] the function ||f||y-1/2+¢(; 41y 15 continuous with respect to

€ [0,1 — y], see Lemma 1.3.5. Therefore it is Riemann-integrable in x. Thus, we
calculate the integral fo IR e (22 ty) dx as the limit of Riemann-sums. Therefore
we define on the interval [0,1 — y] for N, € N the points

Thus, there holds

Nj,—1

1-y
/0 L - DI AT

Every interval (x;,x; +y) = (ih,ith +y), i = O,Nh — 1, overlaps at most with O(%)
intervals. Therefore we can use a coloring argument to estimate

Np—1
: 2 . Y 2 2
flllfé ZO il r1r2ve @y ainyy < © }L%hﬁnf”H*”“E(o,l) = Cyllf 1200

Nj,—1

Here, we have used that Y ;""" || f]|%,_ V2t (s i) <C|\fI13,-1/24e 0.1y ¢ v.Petersdorff [90].

Finally, there holds

H - leHH L/2+e (g, ax4y) HL2

1-y
/ 2e— 2/ ||f||H 1/2+5mm+y dxdy

<c / 21 e Ay
1
— O oy / v dy

1 2
=C 2_8 ||f||H71/2+s(1)'
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Theorem 1.3.7 There exists a constant C > 0, independent of p, such that there holds

IE) L2y < C(A+logp) [ fll a-1r2(r)- (1.26)

Proof. Let e € (0,1/4) and (z,y) € T, x > 0. Thus, there holds due to the duality of
the spaces HV/2*¢(x, x +y) and HY/?~%(z,x + y)

) dt < ||t 127
= H1/2*5(x7x+y)||f||H*1/2+5($7$+y)' (1.27)

The HY?~¢(x, z + y)-norm can be bounded by

z+y t_2
—1)12 12
L I et
—1)2 vy t2 zHy =2 (1.28)
St |H1/2*5(:c7:0+y) +/x m dt + /x it —z — y|l-2 dt.
In order to estimate the H'/27¢(x, 2 + y)-semi-norm we calculate
147 2o ) = =
’ x(x+y)
and 2 2,13
|t_1|21 :a:y+:cy +3Y Y
H(z,2+y) Bx+y)d T aBx4y)
Thus, there holds due to an interpolation inequality, see Bergh & Lofstrom [18],
_ —11/2+ —1y1/2—
L PV [ 7ot L i
_ 1/2
. yl/2+e yl/2—e
— x1/2+6($ + y)1/2+€ $3/2—3€($ + y)1/2—5
_ yl1/2 _ Y2
Vi E(z+y) vz +y)l?
1/2 .
Yyt
— W. (1.29)
The first integral of (1.28) can be estimated by
z+y $2 1 z+y 1 1 t — )% z+y
/ 7dt§—/ gy L=
L =] 2 ), (t—az)%= 22 %% —
1 y2a
= —=—. 1.30
x? 2e (1.30)
For the second integral we calculate
z+y t_2 1 r+y 1 1 —t 2672ty
/ dt < — e L lety-t*
. |t—xz—y|%= 22 ), (v+y—t)—2 x? 2¢ i
1 y2a
= —=. 1.31
x? 2e (1.31)
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1 An extension theorem

Therefore, we get from (1.27) together with (1.28), (1.29), (1.30) and (1.31)

IO <y Al
t H1/2— 5({2 m—l—y H- 1/2+5(x x-l—y)

1/2,.
§<yx 1y

x3/2 +\/Ex

)HmHUM@Hm

Thus, there holds for f € PP(I,0)

|wuwmns'

~ B 1 _
(1’5 12, 1/24-%?;8 1) [ P —

L2(T)

1
< |2 2 Lz as) H \/_ [ [ e— HL2(T). (1.32)

The factor || f || j7-1/2+¢(y 44 in the first part can be estimated as follows using scalings of
the norms and transformation forward and backward to the interval (x,z + 1), compare
Heuer [58],

el RV

C

Cy~(y ||f~||§{*1/2+5(m,m+1)
< Cy2a(y2_4€)||f~||§{*1/2+25(m,m+1)

C

1
2—4 2
Dy M e

|| f||§—[*1/2+5(gp’x+y)
2—4&)

= Cy2€!|f||H 1/242¢ (g z+y)

< Cy25||f||H 1/2+2¢()

and there holds

225y 2 fllsvzve oty [ pary < Clla™ 245y 2 2y - 1l a-v/2eeqry

< Ol = N2y - Ny Moz - 1 f -z

1
< 02_€||f||H*1/2+25(I)

The second term of (1.32) can be estimated using Lemma 1.3.6. Finally, we get

1 1
Bl < € (2 lamsmny + 21l

1w o
< O (" +07) Ml
< C(1+logp) 1 fll-1r2()-

Where we have used the inverse inequality for f € PP(I), see e.g. Heuer [58, Lemma 4],
and have chosen in the last step € := (logp)~'. This gives the result of the Theorem. O
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2 An iterative substructuring method
for the hp-version of the BEM on
quasi-uniform triangular meshes

In this chapter we give the analysis for an iterative substructuring method for the hp-
version of the boundary element method (BEM) with the hypersingular operator in R3,
thus acting on surfaces, considering quasi-uniform triangular meshes.

Our substructuring method uses the so-called wire basket space (consisting of nodal and
side basis functions) with L?-bilinear form and, for each triangle, the space of bubble
functions on that element with energy bilinear form (defined by the integral operator).
Main technical details therefore deal with traces and extensions for polynomials acting
between L? on sides of triangles and H'/2 (the energy space of the hypersingular op-
erator) on triangles. Such traces and extensions, for tetrahedral meshes and the FEM,
have been analyzed by Munoz-Sola in [79]. Essential tool is an appropriate extension
operator. The counterpart of this operator in R? for triangles, in combination with
the discrete harmonic extension, has been used by Bica in his PhD-thesis [21] to study
iterative substructuring methods for the p-version of the FEM in R3 with tetrahedral
meshes. In Chapter 1 we have analyzed this operator and have proved the stability of
the extension, filling the gaps in the proofs of Bica. Based on this extension operator
in R? for triangles, we analyze the p-version of the BEM on surfaces with triangular
meshes. The technical tools are quite similar as in [21] for the FEM, where in [21],
however, several details and proofs were left open.

Our model problem is the hypersingular integral equation
a(u,v) := (Du,v)r = (f,v)r forall ve HY*I) (2.1)

on a plane polygonal surface segment I' C R? where f € H~'/?(T") is a given function.
Here, D is the hypersingular integral operator

1 0 0 1

which is a continuous and positive definite mapping from H?(T") onto H~/?(T"), cf.

[98]. Hence, there holds the equivalence of norms

(Dv,v)p ~ ||v||%,1/2(r) for all v e HY*(I). (2.2)
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2 Iterative Substructuring for the hp-version

The Galerkin scheme for (2.1) reads as follows. Given a finite dimensional subspace
¥ C HY2(I') with dim ¥ = N, find uy € ¥ such that

(Duy,v)r = (f,v)r forall veW. (2.3)

The space ¥ under consideration consists of continuous piecewise polynomials of degree
p on regular quasi-uniform meshes formed by triangles. Our iterative substructuring
method defines a preconditioner for the stiffness matrix A of system (2.3). Equivalently,
the method results in a preconditioned stiffness matrix which can be considered as the
additive Schwarz operator P corresponding to the underlying subspace decomposition
with given bilinear forms. The main result of this chapter states that the condition
number of the preconditioned matrix P is bounded by O((1 + logp)?*) with a constant
that is independent of the mesh parameter h.

The outline of this chapter is as follows. In §2.1 we define basis functions for the p-version
and a decomposition of the ansatz space, and state the main result (Theorem 2.1.1).
For the definition of the basis functions we need special extension operators which are
presented in Chapter 1. In §2.2 we prove several technical lemmas. The proof of the
main result is given in §2.3. Finally, in §2.4 we present some numerical experiments
which underline the asymptotic behavior of the preconditioner. For the convenience
of the reader we collect some technical results from other authors in Section 2.5. In
particular, we indicate proofs of some of Bica’s results which are used in here.

2.1 Basis functions and preconditioners

First of all, we consider the construction of basis functions for the p-version. To this end
we will use extension operators as described below.

Extensions can be defined locally on patches of elements. For the extension of basis
functions associated with edges (so-called edge basis functions) the situation is as indi-
cated in Figure 2.1(a). A polynomial f defined on the edge I vanishes at the endpoints
of I and needs to be extended to a piecewise polynomial U on K := T7 U T, such that
it can be extended continuously by zero onto an enlarged patch & which contains K.

For functions associated with nodes (nodal functions) the situation is analogous. Namely,
for a given patch as in Figure 2.1(b), values on the skeleton of the edges of the patch
are given including 1 in the center node and 0 on the boundary. As for edge functions
these values are extended locally onto the triangles, see the construction on the reference
triangle below.

For our analysis we explicitly consider the situation on the reference triangle T :=
{(z,y); x>0,y >0, x+y < 1}. The vertices and edges of T" are denoted by V; and I,
1 = 1,2,3, respectively, see Figure 2.2. The edges I; and I3 will be identified with the
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2.1 Basis functions and preconditioners

Te
Ty
|
T2
(@ (b)

Figure 2.1: Constructing edge and nodal basis functions by extension.

y
(0,1)
I
I3
(z,y)
I
0,0) = T4y (1,0)"

Figure 2.2: The reference triangle 7'

Interval I := (0,1), and I = I; will be used without further notice. We also need the
polynomial spaces

PP(I) := span{x’, 0 < i < p}, PP(T) := span{a'y’, 0 < i+ j < p}.

For the construction of our basis functions we need the extension operator which are
defined in Chapter 1. For the construction of vertex basis functions we then consider
special low energy functions, cf. Pavarino & Widlund [89]. Let ¢y be the polynomial of
degree p that minimizes the L?(0,1)-norm and satisfies ¢¢(0) = 1 and ¢o(1) = 0. The
corresponding polynomial satisfying ¢(0) = 0 and ¢o(1) = 1 is denoted by ¢, (z) =
¢o(1 — ).

These polynomials are L?-orthogonal to P}(0,1) (the polynomials with homogeneous
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2 Iterative Substructuring for the hp-version

boundary values), and there holds

- (—=1)rt!
[6oll22(0.0) = 1/(0* + p) and (¢o, b5 ) 1200,1) = m”%“%qog), (2.4)
see [89]. The expansion of such polynomials as a linear combination of Legendre poly-

nomials is also given in [89]. For illustration see Figure 2.3 where ¢q for p = 10 is
given.

| - - _
o 02~ 0’4 06 o8 A

Figure 2.3: Low energy function ¢, for p = 10.

A vertex basis function qgvl, e.g. for vertex V7, is defined as follows. Set &Vl = ¢p on [
and I3, and <;~SV1 = 0 on [5. Extend (ﬁvl from I; onto T' by using the extension operator
EL i := El¢y, = Ebdy. Let g5 be the trace of ¢ on I3 and define 1y := E3(g5 — oy, ),
the extension of g3 — gz;vl from I3 onto T with ¥3 = 0 on I} and I,. Eventually we set

oy, =11 — 13. The other vertex functions are defined analogously.

As basis for the edges we use affine images of antiderivatives of Legendre polynomials
that vanish in the corners. The antiderivatives of the Legendre polynomials are defined
on the interval [—1,1] by

1—=z 1+x L,(z) — Ly_o(x) v
L = L = L, = = L,_ dy,
(@)= g L) =gt L= 2 [ L) ay
where L, denotes the Legendre polynomial of degree n. These basis functions are ex-
tended onto the triangle using the extension operators E¢, i = 1, 2, 3. There are p — 1
basis functions on each edge.

As interior (or bubble) functions we use tensor products of antiderivatives of Legendre
polynomials. On the reference triangle 7" these are the functions

£k+1(2$ — 1) ,Cl(Q’y — 1)

Pra(w,y) = 11—+ 1—y

(l—z—vy), 1<k 2<lk+l<p.
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2.1 Basis functions and preconditioners

Figure 2.4: Basis functions, p = 4.

There are (p — 1)(p — 2)/2 interior functions per triangle.
For a sample set of nodal, edge and interior basis functions see Figure 2.4.

For a given triangle T, affine transformations of the basis functions defined above are
used to span the polynomial space PP(T). Given u € PP(T) this function has the unique
representation u = Zi’zl uy, + 2?21 Uy, + u where uy, 47, and 47 are the vertex, edge
and interior components, respectively. An interpolation operator I onto the space of

wire basket functions is defined by

Mu:=Y "dy, + > . (2.5)

Since the space of wire basket functions does not contain constants on 7 we redefine
the vertex and edge functions as follows. Let F denote the part of the expansion of the
constant function 1 which belongs to the interior functions, i.e. F =1 — I"1. Then,
we define a new interpolation operator by

Iy = I"u + Fuy, (2.6)
Jor v

~ 1 N
and edge components of u for the changed basis functions are denoted by wy, and ug,,

where wy = This operator maps a constant function onto itself. The new vertex
i = 1,...,3. They are images under IV of the preliminary components @y, and ug,.
The interior basis functions are unchanged.

Now, in order to define the boundary element space ¥ we introduce a quasi-uniform
mesh I' = U T; consisting of triangles I'; and define

U= S = {u e CO(T);ulp, € PP(Ty)} € HY(I).

Here, h denotes the maximum diameter of the elements of the mesh. In a standard way
we utilise the local basis functions defined above to generate a basis for S7. In particular
we use the notation for components in (2.5) and the wire basket interpolation operator
in (2.6) for the global setting. Additionally, W denotes the wire basket of the mesh, i.e.
the union of nodes and edges.

Next, we introduce a preconditioner in the additive Schwarz framework. For simplicity
we consider the situation that I' C R3? is a surface piece. In fact, the case of a closed
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2 Iterative Substructuring for the hp-version

surface I' is implicitly covered by our theory without any complication. The analysis
for open surfaces is more involved since in this case the energy space of hypersingular
operators must incorporate homogeneous boundary conditions.

The additive Schwarz preconditioner is based upon a subspace decomposition
SP(T)=Hy+ Hy +---+ H,.

For our method we choose Hy := Wy (I') being the space of wire basket functions and
H; consisting of the interior functions on I';, j = 1,...,n. Accordingly any v € S? has
a unique representation

U= uw + Z ur;, (27)
i=1

where uy € Wy (I') and ur, are the interior functions with support in T';.

Thus, the additive Schwarz method reads: Solve
Puy:=(Ph+Pi+--+ P)uy = fn
where P; : S7(I') — H;, j =0,...,n, are projection operators defined by
bj(Pjv, o) = (Dv,@)r V€ Hj;
For the interior spaces Hy, ..., H,, by is the energy bilinear form
bj(v,w) := a(v,w) = (Dv,w)r, v,we Hj, j=1,...,n, (2.8)

and for the wire basket space Wy, we consider two bilinear forms by. For our first method

we choose
n

i=1

where W; denotes the boundary of I';. The corresponding additive Schwarz operator P
will be denoted by Py .

For the second method we use the energy bilinear form,
bo(v,w) := a(v,w) = (Dv,w)r, v,w e Yy (D). (2.10)

In this case we denote the additive Schwarz operator by P = Pp.

The main result of this Chapter is the following theorem.
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2.2 Technical tools

Theorem 2.1.1 Let by denote one of the bilinear forms aw or a. Then, for any u =
uw + > ur, € SH(I'), there holds

Co(1+1logp)™* <bg(uw, uw) + zn:a(um, uri))

i=1
< a(u,u) (2.11)
< (bO(uWa UW) + Z a(uf‘w qu)) :
i=1
Here, the constants Cy, C7 > 0 are independent of h, p and u. Therefore, the minimum

and mazimum eigenvalues of the additive Schwarz operator P (P = Py if by = aw or
P = Pp if by = a) are bounded like

)\mm(P) Z C() (1 + logp)_4, )\max(P> S Cl,

and the condition number satisfies with a constant C > 0, independent of h and p,

)\max (P)

< C(1+]logp)*.

The bounds on the eigenvalues of P are immediate implications of the inequalities (2.11),
see, e.g., Zhang [108]. The inequalities are proved by Theorems 2.3.1, 2.3.2, 2.3.3 in
Section 2.3.

2.2 Technical tools

In this section we collect some technical lemmas which are needed to prove our main
result (Theorem 2.1.1).

Lemma 2.2.1 Let I be one side of the reference triangle T'. Then, for any polynomial
v of degree p on T there holds

Joll20 < 1+ log )02z
Let Oy, := 577 Jyp vds. Then, there holds

lv— @WTH%?(aT) <C(1+ logp)|v|§{1/2(T). (2.12)

Proof. Let @ denote the reference square (0,1)x(0,1) and I = (0,1). For a polynomial
u of degree p there holds

1 1
ol 2oy = / w(a,y = 0 de < / la(e, Yoo
0 0 (2.13)

1
<C(1 —|—logp)/0 HU(I,')Hip/z(o,l) dz.
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2 Iterative Substructuring for the hp-version

The last estimate is due to Theorem 6.2 in Babuska et al. [12].
For the special case of a square we use an equivalent definition for the H'/2-semi-norm
(see Lemma 5.3, Chap. 2, in Necas [80])

Ullu(st, ) — ulta -)||%2
’ ’ (0,1)
|u|H1/2(Q / / OB dsy dtq

+/ /1 lu(:, 59) = u(-s ta) 1720, ds di
2 Ala.

o Jo (52 —12)?

Therefore, we can estimate

1 Zlf u(z, 2
/|u(x,.)|§{1/2(01)dx = /// y1 —u(z,ys)) dys dyn di
0 ’ — 2)?
Ll ) —u )
B // - ( yz)HL(Ol dy1 dys
— y2)?

< Clulfpg) (2.14)

Furthermore, it is

1
| M M do = ey
Combining this relation with (2.13) and (2.14) we obtain
[ullZ2(ry < C(1 +log p)[[ull /2

Now for the reference triangle 7" we extend the function v from 7' onto the reference
square @ by reflecting it at I,. The reflected function on the reflected triangle T is
denoted by ¥. By symmetry the coupling term between v and ¥ in the H'Y?-norm
vanishes. Therefore we deduce that there holds

[o[72y < C(1L+logp)||vllegg,

< O +10gp) ([0Bussgry + [5000) + 0122y + 1912207,
= 20(1+10gp)||v||H1/2(T)

In order to prove (2.12) we use the minimizing property of Ty, and a quotient space
argument as follows:

v — EWT“%P(@T) < o— C||2L2(8T) = Z v — CH%Z(Ii)
< C(1+logp)||v—c||§{1/2(T) VeeR.
Therefore,

o = T For) < C(1+log ) inf lo = cliiu/agry < O+ 108 p)Vfia(r)
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2.2 Technical tools

Lemma 2.2. 2 Let T be a triangle of diameter h and w € HY*(T). Then, the mean

value Uy, wds of u on the boundary of T can be bounded by

\8T\ IBT
@y, < Ol
On the reference triangle T there holds for u € PP(T))

Uiy, < C(1+log p)l[ullFaso -

Proof. Using the Cauchy—Schwarz inequality we get

1d8/ u?ds = C h™Y|u|?,
W - |3T|2 /8T or el 1)

which is the first assertion of the lemma. Analogously on the reference triangle T" we
have

Ty, < Cllullizor)

and using Lemma 2.2.1 we obtain the second assertion. O

Lemma 2.2.3 For a polynomial f of degree p which vanishes on the boundary of T
there holds

1f | 2y < C(1+log p)| fll gy (2.15)
Proof. See Lemma 6 in [58]. O

Lemma 2.2.4 Let u € PP(T) with representation uw = uy + ur. Thus, there holds

|UW|§{1/2(T) < C(1+ logp)2||u||§{1/2(T).

Proof. Using the definition of the interpolation operator IV in (2.6) we get
3 3

Zﬁvi + Zﬁji —l-fﬂWT

i=1 i=1 H/2(T)

3 3
gc(z B + 3 it B+ T [ )

i=1 i=1

2

|uW|§{1/2(T) -

In the beginning, let us consider the vertex function for the vertex V;.

It is constructed using the extensions 1, = El¢g and ¢3 = E3 (1|, —¢o) with ¢ defined
in §2.1. The vertex function associated with V; is @y, = c1(¥1 —13) (here, ¢; = Uy, (V1)).
Thus, we can estimate using Theorem 1.2.3 as follows.

|éﬁV1|H1/2(T) < [ilgrraery + sl greg) < (1+ 1ogp)'? (ol 2y + 190111 — boll2(zy))
(2.16)
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2 Iterative Substructuring for the hp-version

By definition of ¢, we have

B 1 1_ (bO() 1 1 y 2
bl = [ (52) ([ 200) ws [ ([ o) a

Using Lemma 1.3.2 this yields
11111221y < CllollZz sy, (2.17)
and with (2.16)
|Gy ey < C(14log p) 2 |leidoll 2y = C(1 + log p)"?(|dvs || r2ry)- (2.18)
In order to bound the edge component of u we use (1.10) and obtain
‘u11|H1/2 < Hu11||H1/2(T]2U[3 < C(l + logp)Hu11HL2 (I)" (219>

Therefore we have the intermediate result

(m). (2.20)

Recalling that ¢q is orthogonal on (0,1) to any edge function and using the relation
(=1) p+1

(00, b9 ) r2(0,1) = p+1 ||¢0HL2(0 1) (see [89]) one easily deduces that

i lry < O+ og)

i=1 i=1

. N . . . . . /
Jiwllzzary = s + i, + i oz and (i Bagry + i oy + e
(2.21)
are equivalent norms. Analogous equivalences hold on the edges I, and I3.
It follows from (2.20) that
|aw |} 20y < C(1+logp)|law 1727y = C(1 + logp)l|ullZ2ar), (2.22)
and using Lemma 2.2.1 we find
|1~LW|§{1/2(T) <C(1+ 10gp)2||U||§{1/2(T). (2.23)
In order to bound |]-"|H1/2(T) we use (2.22):

S C(l + 1ng)HlHLZ(aT)-

The assertion of the lemma follows by combining (2.23) and (2.24) with Lemma 2.2.2.
O

Lemma 2.2.5 For a wire basket function uy there holds

luw |2y < Clluw |21
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2.3 Proof of the main result

Proof. By the definition of uy we get

3 3
luwlZ2) < € (Z lavlFoery + Y N Zeer) + 1F e uWT) :
i=1

i=1
By Lemma 1.3.2 there holds

||ﬂ11||2L2(T) = / / ( ik y))2 (/:er ?{i(é 2)) dt)2 dy dx
4/0 /x (ﬂll(t,O))zdtdx

< Cllag 172,y
Similarly, with ﬂvl = Cl(lpl — Qﬂg) = Cl(E%¢0 — E3<1p1|[3 — ¢0)) we get

vy < €6 (I 2ar) + I3y ) < Cllans Zaqun)-

IA

Analogous estimates hold for the other vertex and edge functions.
Proceeding as in the proof of Lemma 2.2.4 (see after (2.20)) we therefore get
||?~LW||%2(T) < C||?~LW||%2(8T) = CHUH%?({)T)'

Analogously, we find
1Y 172y < C U220

and therefore
IFl 7oy = 111 = IV 11220y < ClIUZ2(ry + CIY 1 20y < C.
From Lemma 2.2.2 we know that
Uy, < C||u||2L2(8T) = CHUW||2L2(8T)'

Combining this with (2.25) and (2.26) finishes the proof.

2.3 Proof of the main result

(2.25)

(2.26)

In this section we prove our main result, Theorem 2.1.1. In Theorem 2.3.1 and Theorem

2.3.2 we consider the bilinear forms corresponding to the additive Schwarz operator Py

and Theorem 2.3.3 deals with Pp.

Theorem 2.3.1 There exists a positive constant C', independent of h and p, such that

for any u=uw + >, ur, € S, there holds

(1+10gp)* Sl — T oy + S N sy < C (1 -+ og p) b e
i=1 1=1

(2.27)
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2 Iterative Substructuring for the hp-version

Proof. Let I'; be an arbitrary triangle with boundary W, and diameter h. Thus, using

a transformation to the reference triangle 7" and Lemma 2.2.1 we obtain
lu = aw: | Z2wyy < Chllv = Tw: [ Z20r) < Ch(L+logp)|v[3 2 (2.28)
<C(1+ logp)|u|?{1/2(n)>

see, e.g., [58]. Here, v denotes the linearly transformed function u. Therefore,

(1+10gp)* > llu—Tw, | 72wy < C(L+1ogp)* > Julfpor,y < C(1+logp)*|ulzp -

i=1 i=1
It remains to bound the norms of the interior components of u. On the reference triangle
T we have upr = (u — uy)|r. By Lemma 2.2.4 there holds

|UW|§{1/2(T) <C(1+ Ing)znqulﬂ(T)’
and Lemmas 2.2.5 and 2.2.1 yield
luw 172y < Clluw 7207y < C(1 +logp)|ullz e
Therefore,
s gy = N 2oy -+l oy < C(1+ log p)2lulZssqr,-
Using Lemma 2.2.3 and the triangle inequality we obtain
g g y
Ju— UWH%{U?(T) < C(1 +logp)? (HUHzm(T) + ||UW||§11/2(T))
4,112
< C(1 + logp) HUHHU?(T)'

Since the wire basket functions contain the constants we thus have for any ¢ € R

||u - ]Wu||?{1/2(T) = ||u +c— IW(U + C)H?ql/z(T)

4 2 (2.29)
< C(1+logp)llu+ el

By a quotient space argument we conclude that
HU - IWUH?{IM(T) < C<1 + lng)4|u|§{1/2(T)_

Since the norm in H'/?(T) scales like the semi-norm in H'/?(T)) this proves

|ur, ?}1/2@2.) <C(1+ 10gp)4IUI§{1/2(Fi), (2.30)

and summing over all elements this finishes the proof of this theorem. O

Theorem 2.3.2 There exists a positive constant C', independent of h and p, such that
for any u =uw + Y ., ur, € St there holds

=1 i=1
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2.3 Proof of the main result

Proof. We extend our basis functions in a discrete harmonic way into the interior of
a tetrahedron, see Bica [21] for details. We consider a reference tetrahedron .y with
T as one of its sides and maintain the notation for the basis functions on €2,.

Let u = uw + Y ., ur, € S; be given. We remark that there holds (see von Peters-
dorff [90])
e <||UW||H1/2 £ u- uwnzl/m) (231)
i=1

with (u — uw)|r, = ur,. Therefore we only have to prove

HUWH%HM(F) < C( i)

i=1

Consider a three dimensional domain €2 such that I' C 9. We decompose {2 into
tetrahedra €2; such that the trace of this mesh is compatible with the mesh on I'. For
an arbitrary extension Uy, of uy with Uy = 0 on 92 \ I" there holds

(2.32)

HUWHH1/2 < C‘UW‘%P(Q) =

Now we consider the reference tetrahedron (2,.; and the reference triangle ' C 9€),.y. We
extend the wire basket component uy defined on 07" onto 2. by using Theorem 1.2.1
and the discrete harmonic extension. Similarly as in the proof Theorem 1.2.1 there holds

luw | 12y < C (14 log ) 2| Juw || 2oy,

In the same way we extend uy onto the other sides of ,.¢. Thus, we get a continuous
function on 0€,.s. For the discrete harmonic extension from the faces of the tetrahedron
into the interior there holds

1UW |1 @uepy < Clluw [l m1200,. - (2.33)

This follows from the minimizing property of the discrete harmonic extension and the
extension theorem of Munoz-Sola [79, Theorem 1|. Using Lemma 2.5.4 (see the Sec-
tion 2.5) it follows that

|UW|§{1(QM) < O(1 +log p)*|luwl|72r)-

All the extension operators used reproduce constant functions and therefore we get for
any c € R

|UW|%{1(me) = |Uw + C|§11(wa) < C(1+1logp)*|luw + C||%2(3T)-
Transforming this result to an arbitrary element we get

‘Uwiﬁ-ll(ﬂi) <C(1+ logp)?’HUWi + C||2L2(an-)-
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2 Iterative Substructuring for the hp-version

Together with (2.32) this yields
s ey < € (14 1ogp)? inf 3 u = el

(2.34)
= C (1 +logp)’ Z Ju— UWZ-H%?(Wm

which was left to be proved. O

Theorem 2.3.3 There exist positive constants Cy, C1, independent of h and p, such
that for any w = uw + Y ., ur, € S, there holds

Collulp ey < low g < i1+ 1o ) lul %

Proof. The first inequality has already been proved by (2.31).
It remains to prove the second inequality. The bound

Znunnw < C(1+logp) Z|u|Hm < O(1+1ogp)*ulFoqry

=1

is an immediate consequence of Theorem 2.3.1.

From inequality (2.34) we know that there holds

n

luw ey < C(1+1ogp)® > inf [Juw — ¢ll72r,
™) ¢ ER

=

and by (2.28) we get
inf [|u— ¢l72or,) < C(1L+logp)lulfpar,):

Since u = uy on OI'; the latter two estimates imply

HUWH?Ep/z(F) <C(1+ logp)4 Z |u|§{1/2(m) <CO(1+ 10gp)4“UH%{1/2(r)

i=1
This finishes the proof of the theorem. O

Proof of Theorem 2.1.1. The assertions are direct consequences of the previous
theorems by noting that there holds

alu,u) = {Du,u)r 2 ulZagy =l

for any v € H'/?(T") with support on I'; C T, see (2.2). 0
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2.4 Numerical results

2.4 Numerical results

In this section we present some numerical experiments to confirm our theoretical results
about the behavior of the condition number of the preconditioned boundary element
matrix.

First of all, we comment on the implementation of the preconditioner. When ordering
the basis functions of the boundary element space appropriately the preconditioning
matrix has a block diagonal form

Sw 0 0 0

| o S0
0O 0 . 0
0O 0 0 S

Here, Sy is the discretisation of the bilinear form by involving the wire basket functions
and Sr, discretises the energy bilinear form involving interior functions defined on I';,
cf. (2.8), (2.9), (2.10). For the calculation of the bilinear form ay we remark that the

d
mean value Uy, = fwii?dz of u on W; minimizes ||u — ¢|r2w,) with respect to ¢; and
Wi
therefore,
min [ — o =t — @ P = | () — o [ wds) ar
ci€R AW e fy, (Wil Jw,
2

1
= u2dt——(/ 1~uds),
/w- (Wil \Jw,

see also [89]. The first term of the right-hand side above is calculated by using the
mass matrix M@ for the wire basket functions on W;. Furthermore, there holds |[W;| =
S 1-1ds = ZOT MO 20 Here, 29 contains the coefficients for the constant function

1 on I';. With this notation we can also write
/ 1-uds =Z9T M0 g = (M(i)Z(i))Tﬁ,
W.
where « contains the coefficients of u for the basis in use, and
2 N T 2 N N NT
(/ 1- uds) - ((M(Z)Z—(z)) ﬁ) Sy (M(Z)Z(’)) (M(Z)Z—*(z)) iL.
W;

Thus, locally on one element we obtain

, (@) ) . (@) T

EOVOED

In order to calculate the preconditioning block Sy, we sum over all the elements.
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2 Iterative Substructuring for the hp-version

For our model problem we choose the domain I' = (—1/2,1/2)? x {0} and use uniform
triangular meshes. We do not specify any right-hand side function f in (2.1) since we
only report on the spectral behavior of the stiffness matrix. For smooth right-hand side
functions f the hp-version with quasi-uniform meshes converges like O(hY/?p~!) in the
energy norm, see [19, 20].

In Figure 2.5 we plot the condition numbers and the maximum and minimum eigenvalue
of the Galerkin matrix with preconditioner based upon the energy bilinear form. In the
plot we also give the curve of (1 + logp)? and (1 + logp)?, and the numerical results
seem to be slightly better than (1 +logp)? in the given range of p. This result is better
as in the main theorem. This may occur due to the fact that the extension result in
Chapter 1 is not optimal.

In Figure 2.6 we consider the wire basket preconditioner using the L2-bilinear form, i.e.
the additive Schwarz operator Py based upon the bilinear form ay, defined by (2.9). In
the plot we also give the curve of (1+1logp)* and (1 +logp)’, and the numerical results
seem to be slightly better than (1 + logp)® in the given range of p. Exact numbers
are given in Table 2.1 alongside with the condition numbers of the un-preconditioned
stiffness matrix. We also give the iteration numbers of the conjugate gradient method
needed for fixed precision. As expected, the iteration numbers increase only moderately
when one of the preconditioners is used and grow substantially without preconditioner.

p | DOF || cond(w/o) | niter | cond(pre, H/?) | niter | cond(pre, L?) | niter
1 1] 0.1000E4-01 0 0.1000E+01 0 || 0.10000E+01 1
2 9 || 0.7818E+01 7 0.1000E+01 2 || 0.56189E+01 7
3 25 | 0.7345E+402 20 0.5452E+01 18 || 0.44387E+02 18
4 49 || 0.7388E+03 50 0.7966E+01 27 || 0.74572E4-02 34
) 81 || 0.1027E4-05 | 105 0.1033E+02 32 || 0.11207E+03 44
6 121 || 0.1815E4-06 | 219 0.1202E+02 34 || 0.15042E4-03 56
71 169 | 0.4289E407 | 338 0.1311E+02 38

81 225 | 0.1156E+09 | 450 0.1462E+02 40

91 289 | 0.2010E+10 | 578 0.1632E+02 43

Table 2.1: Condition numbers and iteration numbers for the p-version without and with
preconditioning (using the L?- and the energy bilinear form).

In Figure 2.7 we present condition numbers of the preconditioned matrix Py for the
h-version and different polynomial degrees. The results confirm the asymptotic inde-
pendence of the condition numbers on h.
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Figure 2.5: Condition number and maximum and minimum eigenvalue of the precondi-

tioned Galerkin matrix, p-version, using the energy bilinear form.
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Figure 2.6: Condition number of the preconditioned Galerkin matrix, p-version, using

the L?-bilinear form.
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2 Iterative Substructuring for the hp-version
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Figure 2.7: Condition number of the preconditioned Galerkin matrix, L2-bilinear form,
h-version.

Remarks on the algorithm

The algorithm here consists of three parts: first assembling the Galerkin matrix, second
the setup of the preconditioner and finally applying iteratively the preconditioner and
performing matrix-vector multiplications. In the standard Galerkin method used here
we have N & np?/2 unknowns, i.e., we need O(N?) = O(n?p*) operations for assembling
the Galerkin matrix. The setup of the preconditioner consists in computing the inverses
of the local diagonal blocks for wire basket and bubble spaces, i.e., O((np)?)+nO((p?)?)
operations. One matrix-vector multiplication needs O((np2)2) operations and one ap-
plication of the preconditioner O((np)? 4+ n(p?)?). Altogether with the number of pre-
conditioned CG-iterations k; = O(y/k(logn + logp)) with k = (1 + logp)* we obtain
O (n*p* + n®p® + np® + ki (n®p* + n*p* + np*)) operations for solving the problem.

A possible improvement would be the additional use of fast boundary element methods
like panel clustering (see for example Sauter & Schwab [94]), i.e., the solution procedure
would hopefully only consist (in each iteration step) of one matrix-vector multiplication
with linear complexity and of application of our preconditioner which consists in solving
the linear system for the wire basket space with dimension np and solving the n linear
systems of dimension p? for the bubble spaces. Denoting the numbers of CG-iterations
for solving the wire basket and bubble blocks by kj: ., and k;, respectively, we have
altogether O(k‘it(nﬁ + kit wnp + nk:itvbp2)) operations. The condition numbers for the
wire basket and bubble spaces are unknown and the existence of appropriate optimal
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2.5 Additional technical results

preconditioners is topic of further research. The investigation of the action of such inex-
act solvers will also lead to an improvement of the standard implementation of our wire
basket preconditioner considered here.

2.5 Additional technical results

2.5.1 Results of Bica

For the convenience of the reader we repeat some of the results and proofs of Bica [21] who
deals with wire basket preconditioners for the p-version of the finite element method on
tetrahedral meshes. In fact, at several places he uses an unknown factor N(p) stemming
from an unproved extension theorem. Here, we use the extension theorem from Chapter 1
to fill this gap.

We denote by €2,.s the reference tetrahedron
Qer ={(z,9,2); 0<z,y,2<1, x+y+2<1}
and define for integer p
PP(Qrep) := span{a'y?z¥; 0 <i+j +k < p}.

Before dealing with results from [21] we collect three technical lemmas needed below.

Lemma 2.5.1 [93] Let u € PP(0,1). Then,

< 2p® max |u(z)]|.

d
— u(x) na

max
dx

[0.1]

Lemma 2.5.2 [12, Theorem 6.2] Let u € PP(0,1). Then,

[l 7o o,y < C(1+ 10%p)’|“”12r{1/2(0,1)-

Lemma 2.5.3 /89, Lemma 5.3] Let I be any line segment in the closure of the reference
tetrahedron Qyep and let u € PP(Ques). Then,

[ullZory < C(1+logp)|[ullt,. -

If uy is the average of u over the wire basket W, then,

=T [y < CL+logp)luldng,,
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2 Iterative Substructuring for the hp-version

Now, let us turn to the theory of finite elements. The wire basket decomposition used
in [21] is the three-dimensional analogue of our decomposition obtained by discrete har-
monic extensions of basis functions onto the reference tetrahedron. The corresponding
wire basket interpolation operators in three dimensions will be again denoted by "V and
I Here, in this section, W denotes the wire basket of the reference tetrahedron. As
in the two-dimensional setting we define F := 1 — I"1 on the boundary of the refer-
ence element. But now F has four components, each associated with one of the faces
and vanishing on the other faces, F = Zi:l Fr. Note that by definition of the basis
functions F;, is discrete harmonic.

The next lemma is needed for the proof of Theorem 2.3.2 and its proof is based on the
two lemmas that follow.

Lemma 2.5.4 (Compare [21, Lemma 4.16]) Setting Uy := I'Vu there holds
Uwlino,.,) < C(1+1ogp)’lullZoqry Y€ PP(Quey)

Proof. Let Fi, k=1,...,4, denote the faces of {2,.;. Since Wy = I~Wu+2i:1 Uor, Fr
we get

4
1M ulin,.,) <5 (IIWUGJI(Qref) + Zﬂng|fk|?{1(ﬂref>> :
k=1
By Lemma 2.5.5 there holds

Using the discrete harmonicity of F and combining Lemma 2.2.3 with (2.24) and (2.26)
we obtain
\Fil .., < C(1+logp)*.

2

_ Jor, v

U%Fk = <f - 1) < CHUH%Z(W)
OF,

Together with

we get

4
1Multng,,, < C ((1 +logp)l|ull7aw) + Y W, (1 + logp)g)
r=1

< C(1+1ogp)*[lullZ2qw)-

Lemma 2.5.5 (Compare [21, Lemma 4.13])

11" ulfq,,,) < C (L+logp)|ulfagyy Vu € PP(Quey)
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2.5 Additional technical results

Proof. Using the estimates for the vertex and edge functions in Lemma 2.5.6, and not-
ing that L?(W)-inner products between different wire basket components are negligible
(see (2.21)), we get

4 6
|IWU|§{1(Qref) S C (Z |ﬁvi|%{1(ﬂref) _I_ Z |ﬁEj|%{1(Qref)>
i=1 j=1
4

6
< C(1+logp) (Z vl 7200y + > ||an||%2(W))
=1

=1
< C (1 +1logp) [ ul| 72wy = C (1 +logp) [ 72w
O

Lemma 2.5.6 (Compare [21, Lemmas 4.11, 4.12]) Let ®y and ®g be a vertex function
and an edge function, respectively. There holds

1Py |20,y < C (1 +logp) [ @y | 2wy
and

1P el 0., < C(1+10gp) 2|1 s]| L2

Proof. This follows by using the property of discrete harmonic extensions, cf. (2.33),
and Theorem 1.2.1. O

2.5.2 Discrete harmonic functions

In this paragraph we explain the idea of a discrete harmonic extension. Therefore, we
consider a domain €2 and the bilinear form

a(u,v) == /QVu(x) -Vou(z)dz.

Here, u, v € V. C H'(Q) where V is determined by the certain boundary conditions.
Next, we consider a finite dimensional subspace VP C V which consists of piecewise
polynomials of degree up to p. Then, the space of discrete harmonic functions
VP C VP is defined by

VP i={ueV?: alu,v) =0Vv € VP, v =0 on dQ}.
A discrete harmonic functions u € V? fulfills the following minimizing property
[u| ) < |v|a o) Vv e VP withu=wvonl.
The proof of this result is included in the proof of the following lemma.

Using the extension of Munoz-Sola [79] we can prove the following minimizing property
for discrete harmonic functions.

49



2 Iterative Substructuring for the hp-version

Lemma 2.5.7 Let Q¢ denote the reference tetrahedron. For a discrete harmonic func-
tion u on Q.5 there holds

HuHHl(Qref) < CHUHHU%aQ,ef)-

Proof. Here, we abbreviate €2 := (2. Let u be discrete harmonic on €2, i.e. there holds
a(u,v) =0Vv € VP with v = 0 on I' := 9Q. Using the extension of Munoz-Sola [79] we
know that there exists an extension w € VP of u|r with

[wll @) < Clul ey (2.35)
Thus, there exists av € V¥ :={v € VP : v =0 on 90} with w = u + v and it holds

a(w,w) = a(u+v,u+v) = a(u,u) +2 a(u,v) + a(v,v).
>0 —0 >0

Thus, the minimizing of the H'-semi norm by discrete harmonic functions follows.
ulie) < |wlmg)- (2.36)
As u—w =0 on I' we can use the inequality of Poincaré-Friedrich to get

ullr2i) < llu — wl|r2@) +Hlwllr2@) < C (|ulm@) + wllme) - (2.37)
——————

§C|u—w\H1(Q)
Combining this estimate with (2.36) and (2.35) we get
lullin o) < Cllwllin gy < Cllullzaen)- (2.38)
(

This finishes the proof. O
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3 Spaces, operators, theorems for the
Maxwell’s equations

3.1 Spaces and trace operators

In the following, let Q C R3 be a bounded domain with a Lipschitz continuous boundary
[' := 09). We then refer to ) as a Lipschitz domain. Every polyhedral domain is a
Lipschitz domain. Furthermore, the unbounded complement is denoted by Qp := R3\ Q.
The outer unit normal vector n on I' is pointing from €2 into Q2. For Lipschitz domains
this exists only almost everywhere.

In this section we introduce the spaces which are necessary for the investigation of the
Maxwell’s equations. In three dimensions these are the spaces H(curl, 2) and H(div, 2).
Furthermore, we have to consider the trace spaces on I" of H(curl, €2) using the tangential
trace vp and the twisted tangential trace +;°. These are the spaces Hll/ *(curlp, ) and
Hﬁl/ ?(divp,T). On smooth boundaries the theory is well established, see Paquet [86],
Alonso & Valli [4], Cessenat [35, Section 2.1] and Nédélec [84, Section 5.4.1]. Their
results have been extended to polyhedra by Buffa [24] and Buffa & Ciarlet [27, 28]. For
the case of Lipschitz domains, see Buffa et al. [30].

On 2 we consider the spaces L?(Q) := (L*(€2))? and the space of tangential vector fields
L}T):={ucl?*I): u-n=0ae onI}

with the complex dualities

(u,v) := /Qu(x) -v(x) dx, u, v € L*(Q),

A Q) = / Ax) C)dx, A CeLAT).

Besides the usual Sobolev spaces H*(f2) for scalar functions and H*(Q2) := (H*(Q2))? for
vector fields of order s € R (cf. Grisvard [51]), we use the spaces

H(curl, ) := {u € L*(Q) : curlu € L*(Q)},
Hy(curl,Q) :={u e H(curl,Q) :uxn=0onTI},
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3 Spaces and operators for Maxwell

H(curlcurl, Q) := {u € H(curl, Q) : curlcurlu € L*(Q)},
H(div, Q) := {u € L*(Q) : divu € L*(Q)},
Hy(div, Q) :={u e H(div,Q) : u-n=0onI'},
H(div 0, Q) := {u € Hy(div, Q) divu = 0}.

Furthermore, we define for s € R
H’(curl, Q) := {u € H*(Q?) : curlu € H*(Q)}.

The norms in H(curl, 2), H(div, 2) and H*(curl, 2) are given by

[ullfrcurt.o) = lIullfz@) + [ curlullsq),
[ul fraiv,0) = ||u||L2(Q) + || divu|[faq
||u||%{5(curl,ﬂ) = ||u||%{5(9) + || curlu] %—IS(Q)

Next, we define the trace operators. The trace of a scalar function ¢ € H'(Q) on I
is denoted by v¢. For a vectorial function u € C(Q)* we define the Dirichlet trace
(tangential trace) on I by

vpu(x) == n(x) x (u(x) x n(x)) = u(x) — (n-u(x))n(x).

The twisted tangential trace is then defined by

vy u(x) ;= u(x) X n(n).
Thus, there holds
7 (vypu) = yp(yu) =y u (3.1)
because of

(¥ u) =nx ((uxn)xn)=nx ((u-n)n— (n-nu)

=0—-nxu=7"‘u
We also define the rotating operator R by
RX:=n x A (3.2)

There holds
R = —R, (3.3)

see Buffa, Costabel, Sheen [30]. Finally, we define the normal trace operator -, for
u € CYQ)? by

Tou(x) 1= u(x) - n(x).
Furthermore, we define the jumps across the boundary I' by [y:]r := T - —y~- where "
denotes the trace from the outer domain Q0 and v~ denotes the traces from ).
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3.1 Spaces and trace operators

Let ¢ € H*(Q) be a scalar function. We then define the surface gradient of ¢ on I' by

gradp ¢ := yp(grad ¢)

and the vectorial surface rotation on I' by

curlr ¢ := v, (grad ¢) = grad; ¢ x n.

The scalar surface rotation on I of a vectorial function u € H*(Q2) with u-n =0 on
[ is given by
curlru:=curlu-n

and the surface divergence by
divpu :=div(ypu) = — curlp(u x n) = —curl(u x n) - n.

The above definitions are valid on all regular points of I' but can be extended to Lipschitz
domains, see e.g. Buffa & Ciarlet [27, 28].

On smooth domains there hold the following dualities

(gradp ¢, u)r = — (¢, divru)r,

(curlp ¢, u)r = (¢, curlp u)r.

Next, we define spaces of tangential traces on non-smooth domains. We refer to Buffa
& Ciarlet [27, 28], see also Hiptmair & Schwab [68].

We consider a polyhedral domain 2. The boundary I' is assumed to be separated into
n faces I'; with ' = U?:l I';. For two faces I'; and I'; with a common edge e;; we define
t;; as the unit tangential vector and t;.;) := t;; X n; where n; denotes the unit normal
vector on e;; w.r.t. I';. Furthermore, let Z; denote the set of those indices ¢ such that I';
shares an edge with I';. Then, we define

Hi/2(r) = {u S L?(F) : U|1"j t](l), U|1"j tzg S H1/2(Fj>v7, € Ij, VJ = 1, .o .,n} .

and
H/2(T) = {u e H2D): N (u) <00 VieTvj=1 n} (3.4)
l : * © Vi 3 V] 7o ) .
H/2() = {ueHI): Ni(u)<oo VieZ;Vj=1,...,n}, (3.5)

with the functionals

N ) = /F /p (o t)0) = )0 g as ),

[x—yP
e [ M) — (e )0 g
M= [ [ — G )
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3 Spaces and operators for Maxwell

Loosely spoken, Hﬁ/ ?(T') contains the tangential surface vector fields that are in HY/2(T;)
for each smooth surface piece I'; of I' and fulfill a suitable “weak tangential continuity”

across the edges of the I';. For HlL/ () a corresponding “weak normal continuity” is
fulfilled.

The spaces Hll/z(F) and H[l/Z(F) are then defined as the dual spaces of Hi/z(F) and
Hﬁ/z, resp., with L(T") as pivot space, see [27].

The above defined surface differential operators can now be extended to other Sobolev
spaces. The following Lemma can be found in the articles of Buffa & Ciarlet [27, Sect.
3.1] and [28, Sect. 4.2]

Lemma 3.1.1 Assuming that I is Lipschitz reqular we can extend the surface differen-
tial operators grady and curly to linear and continuous mappings

gradp. : H'/(I') — H (I,
curly : H'/4(I') — H, /(T
and their adjoints

divp : H/*(T) — H~Y*(I),

curly : Hﬁ/Q(F) — H V(D)

are linear, continuous and surjective. There holds

Ker (curlp(H[*(I))) = Im(grad, (H"?)),
Ker (divp (F, /*(I"))) = Im(curly (H'/?)).

Furthermore, there hold the duality pairings

(grady ¢, u)r = —(¢, divr u)r Vo e H' (), ue H/*(I),
(curly ¢, u)r = (¢, curly u)r Yo € H'(I), u e H/*(I).

We are now in the position to define the following trace spaces.

H " (eurlr, 1) = {u e HIVA(D) : cwlpu e HV2(D)
H, ?(divp, T) = {u e H V() : divru e H_1/2(F)} ’

H, ' (dive 0,T) = {u € H"*(divy,T") : divru=0}.

Lemma 3.1.2 The spaces H[lp(diVF,F) and H11/2(curlp,F) are dual to each other
with respect to L?(T") as pivot space.
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3.1 Spaces and trace operators

Proof. See Buffa & Ciarlet [28, Section 4]. O

We now get the following mapping properties of the trace operators.

Lemma 3.1.3 The trace operators yp and ; can be extended to linear, continuous and
surjective mappings

vp (HY(Q) — H/*(D),

~vp : H(curl, Q) — Hll/z(curlp, I,
7 HY(Q) — HYA(D),
v+ H(eurl, Q) — H, " (divy, T).

Furthermore, the trace mappings yp : H(curl, Q) — Hll/z(curlp, [') and ) : H(curl, Q) —
H[l/z(din, ') possess both a continuous right inverse.

Proof. The proof for smooth domains can be found in Nédélec [84] and for Lipschitz
domains in the articles of Buffa & Ciarlet [27, Proposition 2.7, 2.8, Theorem 3.9, 3.10]
and [28, Theorem 5.4]. O

The following result can be found in Buffa & Ciarlet [27, Section 3.2] and is helpful in
the computations.

Lemma 3.1.4 For u € H(curl, Q2) there holds

divr(u x n) = n - curlu. (3.6)
There holds the following Green formula, see Buffa & Ciarlet [27, Section 3.2].
Lemma 3.1.5 For u € H(curl,Q) and v € H'(Q) there holds
/Q (curlv-u —v-curlu) dx = (3w, ypVv) |12 (3.7)

Here, (-,-)|1/2,r denotes the Hﬁl/z(F)-Hﬁﬂ(F)-duality with L2(T') as pivot space.

For u € H(curlcurl, Q2) the Neumann trace yyu € H[lﬂ(di\zp, ') is defined by (see
Hiptmair [66])

(yvu,vpv)r = £(curlu, curl v)g F (curlcurlu,v), Vv € H(curl, Q). (3.8)

Here, the upper signs are applied to the interior domain €2 = €2. The lower signs are used
for the exterior domain 2 = Qp. As for smooth fields there also holds yyu = ~;*(curlu).
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3 Spaces and operators for Maxwell

Lemma 3.1.6 The trace operator
v : H(curlcurl, Q) — Hr/z(divlﬂ, I)
is linear and continuous and there holds for u € H(curl, Q) with curl curlu = 0

||7Nu||Hﬁl/2(din,F) < CH Curlu||L2(Q)'

Proof. The proof can be found in Hiptmair [66, Section 3]. O

Furthermore, we define for u € H(div, 2) the weak normal trace ~,u by

() 1/or = (divu, ¢)o + (u, grad ¢)q Vo e H(Q). (3.9)

Here, (-,-)1/2r denotes the duality pairing between H~'/2(T") and H'/?(T").
Lemma 3.1.7 v, : H(div, Q) — H~Y2(I') is continuous and surjective.

Proof. The continuity can be found in Girault & Raviart [49, Theorem 2.5] and the
surjectivity is proven in Nédélec [84, Theorem 5.4.1]. O

For u € C'(Q2) there holds v,u = u-n.

3.2 Boundary integral operators

Here, we define the boundary integral operators which are used for the coupling formu-
lations. For k > 0 we define by

1 girbyl

) = —
(x # y), the fundamental solution of the Helmholtz equation, for K = 0 we get the
fundamental solution of the Laplace equation. There holds A®(x,y) = —k?®(x,y) and
grad, ®(x,y) = —grad, ®(x,y). We then define the scalar single layer potential
for u € L*(T) by
S = [ o(xy)ulx)as(y). x¢T.
T

It can be extended to a continuous mapping S : H~Y/2?(I') — H _(R?) and satisfies the
jump relations

[yS(u)lr =0, [ygrad S(u)lr = —un
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3.2 Boundary integral operators

with the normal n on I' pointing into the exterior domain, where [yulr := y"u — vy u
denotes the jump of the trace v of a function u over the boundary I and v* and ~~
denote the exterior and interior traces. The second relation can be written as

[y grad S(u)lr = —u, [gradp S(u)|r = 0. (3.10)
This leads to the definition of the boundary integral operator
V(u)(x) :=~S(u)(x), xeT, (3.11)

which is continuous from H~Y3(I') to HY?(I') and defines a positive definite bilinear
form on H~1/2(T") (cf. Costabel [39]). Analogously, we define the vectorial single layer
potential for A € L?(T") by

V(N (x) = / (x,y)A(y) dS(y), x¢T.

which can be extended to a continuous mapping from Hﬁ/ () to HL (R3) (see Hipt-
mair [66, Section 5] or Buffa et al. [32, Theorem 3.8]). We will make use of the following
result by MacCamy & Stephan [72] (see also [66]):

Lemma 3.2.1 For A € Hilﬂ(divn ') there holds

div V(A) = V(divr ) in LA(R).

We define the vectorial double layer potential for A € Hll/ () by
K(\) :=curl V(n x A)
and further
W(A) ;= curl K(A) = k*V(n x ) + grad V(divp(n x X)). (3.12)

The last equation follows from the identity curlcurl = graddiv — A, the fact that
A® = —k2® and Lemma 3.2.1. Using the continuity of V and the fact that the mapping
A — n X A is an isometry between Hll/z(curlp, I') and H[lp (divp, I') (this is a conse-

quence of Lemma 3.1.3), one sees that K is a continuous mapping from Hll/ 2(curlp, )
to Hyoc(curlcurl, R? \ T') N H(div 0, R3 \ T'), see Buffa et al. [32, section 3.3] and Hipt-
mair [66, section 5]).

The vectorial single and double layer potentials satisfy the following jump relations,
compare [32, 66]: For A € Hil/Q(divF, ') there hold

[(pVN]r =0,  [wVQA)r=-A, (3.13)
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3 Spaces and operators for Maxwell

and for A € H,"*(curlp, T) there hold
[ypKA)]r = A, WK (X)]r = 0. (3.14)

We now define the following vectorial boundary integral operators as exterior traces of
the layer potentials on I"

VA) = V(A — / B, y)A(y) ds(y).

K(A) == 7 K(N) —  curl, / B, y)(n x A)(y) ds(y),

RN = 75V = () KA x n) =75 / B(z,y)A(y) ds(y).
WA = WK = ()W) =~ curl, / B(z,y)(n x \)(y) ds(y)

forxel.

From the regularity properties of the potentials and the trace operators we get the
following lemma, see also Hiptmair [66] for the case x = 0 and Hiptmair [67] for x > 0.

Lemma 3.2.2 The operators
VH VAT - HYA(D),
: H11/2(curlp, ) — Hll/z(curlp, I,
(
(

divr, ') — H, /*(divp, T),

*(cwlp, ) — H Y2(divy, T)

S ==

are continuous.
For the case of the Laplace kernel with x = 0 there holds
Lemma 3.2.3 The boundary integral operators satisfy the following properties:

1. The bilinear form induced on H[l/z(divF 0,1) by Vy is symmetric and elliptic, i.e.
there exists a constant ¢ > 0, such that

Vou, u)r > cul . Yu e H;*(divr 0,T).
I

(divp,IM)

2. The boundary integral operator Ko is adjoint to Ko —Z, i.e.

(Kow, v)r = (u, (Ko — I)v)r Yu e H (divp0,T), v € H,"*(curlp, T).
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3.2 Boundary integral operators

3. There holds with the pairing (-,-)_1/o.r between H; "/ (divr,T) and H,"*(curly, T)
Wou, v)r = —(Vo(curlpu), curlp v) 1o Vu,v € H /2 curlp, I').
/2, il

4. The bilinear form induced on Hll/z(curlp,F) by Wy 1s symmetric and negative

semidefinite, in particular there exists a constant C' > 0 such that

—Wou,u)r > C||curlp u||§{,1/2(r) Yu € Hll/z(curlp, r).

Proof. See [66] for all proofs. The fourth statement is a direct consequence of 3. O
We now define integral operators for A € L?(T") and x € T’ by

LA(X) = / B(x,y)Aly) d5(y),

r

MA(x) = /curlx(é(x, y)A(y))dS(y) = /gradxé(x, y) X A(y) dS(y).

r T

The above integral can be defined as Cauchy-principal value. Using the jump conditions
one can prove the following representation of the boundary integral operators, see e.g.
Mitrea et al. [76, Section 3] and Colton & Kress [38, Section 6.3].

VA=-nx(nxLA),
KA:AMan+%&
KA:—HXNM—%& (3.15)

WA = —k’n x L(n x A) —n x grad V(divp(n x X))
= —x’n x L(n x A) — curlp V(curlp ).

The last equation holds due to n x grad ¢ = — curlp ¢ and divp(n x A) = — curlp A.

Using these relations we can prove the useful equation:

Lemma 3.2.4 Foru, v € Hll/z(curlp, ') there holds

Wu,v) = k*(V(u x n),v x n) — (V curlp(u), curlp(v)). (3.16)

Proof. Ifu, v e Hll/Q(curlp, '), we get
Wu,v) = —k*(n x L(n x u),v) — (curly V(curlp u), v). (3.17)
For the second term there holds due to Lemma 3.1.1

(curlp V(curlp u), v) = (V(curlp u), curlp v).
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3 Spaces and operators for Maxwell

The first term in 3.17 can be modified the following way. First of all, we remark that
there holds for v with v - n = 0 the equation (u,v) = (u x n, v x n) because of

(uxn)-(vxn)=(u-v)(n-n)—(u-n)(v-n)=u-v.

Thus, we get
(nx L(n xu),v)=—((L(n xu)xn)xn),vxn)
= —(ypL(uxn),vxn)
= —(V(u xmn),v x n)
which finishes the proof. O

The following Lemma (cf. Teltscher [103]) is necessary when deriving the residual error
estimator in Chapter 5. It holds for the case of the Laplace kernel with x = 0.

Lemma 3.2.5 Foru € H(curl,Qy), A € Hﬁlp(divlﬂ 0,T") there holds

1. divpKoA = 0 in H™V2(D),
2. diviWyypu = 0 in H-V/2(T).
Proof. For simplicity, we omit the index 0 at the integral operators.

For n € H'Y?(I") the definitions of divy, K and ~y together with the Green formula in
Lemma 3.1.5 yield

(divp KX, )r = —(KX, gradrn)r = — (75 VA, gradpn)r

= / (curl VA - curlgradn — curlcurl VA - grad ¢) dx.
Qg

The first term vanishes because of curlgradn = 0 and for the second one we get
curlcurl VA = (graddiv— A)VA = graddiv VA, since AV = 0 in R*\ T'. From
Lemma 3.2.1 we get grad div VA = grad V(divrA) = 0, because A € Hi1/2(diVF 0,1).
Thus, we have curlcurl VA = 0, and altogether (divpKCA, n)r = 0, which proves the
first assertion. The proof of the second proposition uses the same ideas: For € HY?(I")

there holds

(diveWhpu, p)r = —(Wrpu, gradpp)r = — (74, curl V(n x u), gradu)r

= / (curlcurl V(n x u) - curlgrad y — curlcurlcurl V(n x u) - grad p) dx.
Qg

Again, we have curl grad ;1 = 0, and there also holds curlcurlcurl V.= —curl AV =
0 such that we get (divpW~ypu, u)r = 0. O
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3.2 Boundary integral operators
3.2.1 The Stratton-Chu representation formula

In this Section we introduce an integral representation formula for the solutions of the
Maxwell’s equations. This is the main ingredient to derive the coupling formulations in
the next Chapters. The formula is based on the results of Stratton & Chu [101]. We cite
here Colton & Kress [38] for smooth boundaries but the results also hold for Lipschitz
boundaries, see e.g. Buffa, Costabel & Schwab [29, Theorem 3].

Here, we consider the Maxwell’s equations

curlE —ikH =0, (3.18)
curlH+ikE =0 (3.19)

where E and H denote the electric and the magnetic field, resp. Thus, there holds for E

curlcurl E = k’E.

Let ®(x,y) := L e pxoy] X,y € R3, x # y be the fundamental solution of the Helmholtz

S dAm x-y|
equation. We get the following representation theorem, see Colton & Kress [38].

Theorem 3.2.6 (Stratton-Chu formula) Let Q be a bounded domain with smooth
boundary and let n denote the unit normal vector to the boundary I' = 0) directed into
the exterior of ). Let E, H € C*NC(Q) be a solution to the Mazwell’s equations (3.18)
and (3.19) in Q. Thus, there hold the Stratton-Chu formulas

E(x) = — curl / (n(y) x E(y))®(x.y) dS(y)

T

+ i curl curl/r(n(y) x H(y))®(x,y) dS(y), x € (),

IR

and

H(x) = - curl [ (n(y) x H(y))2(x.y) d5(v)

r

_ %curl curl/F(n(y) X E(y))cb(x7 y) dS(y), xc Q.

For the unbounded domain there holds

Theorem 3.2.7 (Stratton-Chu formula) Let Qp = R3\ Q, where Q is a smooth
domain and let n denote the unit normal vector to the boundary OS) directed into the
exterior of Qp. Let E, H € C1(Qg) NC(QE) be a solution to the Mazwell’s equations
(3.18) and (3.19) in Q. Furthermore, we assume that E and H satisfy the Silver-Miiller
radiation conditions

lim (Hxx—|x|E)=0 (3.20)

|| =00
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3 Spaces and operators for Maxwell

or
lim (Exx— |x|H) =0 (3.21)

x| =00

uniformly in all directions |—§‘ Then, there holds

E(x) = curl / (n(y) x B(y))®(x,y) dS(y)
r (3.22)

— i curl curl/r(n(y) x H(y))®(x,y) dS(y), x € Qp,

and
H(x) —curl [ (n(y) x H(y))®(x.y) dS(y)

) r (3.23)
+ —curl curl/r(n(y) x E(y))®(x,y) dS(y), x € Op.

IR

Furthermore, there holds, see [38, (6.10)],

%curl curl/r(n(y) X H(y))fb(x, y)dS(y)

(3.24)
——in [ (n(y) x H(y)D(x.5) dS(y) + grad [ (n(y) - By))Plx.y) dS(y),
Thus, using H = L curl E, the relation (3.22) can be rewritten as
B(x) —curl | (n(y) x B(y))2(x.y) dS(y)
+ /F (n(y) x curl E(y)) ®(x,y) dS(y) (3.25)

- grad/F(n(y) -E(y))2(x,y) dS(y), x€Qp.

In Chapters 5 and 6 we use this formula for the derivation of the the coupling formula-
tions.
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3.3 Trace spaces of order s

3.3 Trace spaces of order s

In this section we extend the definitions and results of the previous sections to the spaces
of order s on polyhedral and Lipschitz domains. This section provides a generalization
of the definition of Hr/z(divlﬂ, I') and H11/2(CU.I'11", I') to trace spaces of H*(curl, Q) :=
{ue H*(Q) : curlu € H*(Q)}.

Here, we refer to Buffa et al [30, 31, 26, 25| as main references.

We consider a polyhedral domain 2 with boundary faces I';, j = 1,..., Np. First of all,
we define the spaces

HY (1) = o (HH/2(9)),
(D) = (HEH12(9)),

for 0 < s < 1.
Remark 3.3.1 Fors = 5 we get the same definitions as in (3.4) and (3.5), ¢f. Buffa [25].

The spaces H*(I') and H;*(I'), 0 < s < 1 are then defined as the dual spaces of Hf (T')

and H}(T'), resp., with L{(I') as pivot space.
For any s > % we define
H* (D) :={ueL{T) : ur, € H;(T;),j=1,...,Nr}.

We further define

( Hﬁl/z(divF,F), s=—1
Hj(divr,T) == ¢ {A € HY(I'), dive A € H*(D)}, -5 <s<g,
| (A€ H}(T), dive A € H2(D)}, s> 3,
[ HY*(curly, ), s=—1,
H (curly, ') := ¢ {A e H{(T), cwlp A € H*(T")}, —3 <s <3,
| (AeHY(D), curlp A € HE (D)}, s> £

The following results can be found in Buffa & Christiansen [26], see also Buffa & Hipt-
mair [31].

Lemma 3.3.2 The trace mappings yp and ~v;* can be extended to continuous mappings
vp : H(curl, Q) — Hj__l/2(CU_I'1F, I),

v, H*(curl, Q) — Hﬁ_l/2(din, )

forall0 <s < 1.
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3 Spaces and operators for Maxwell
3.3.1 Mapping properties of the integral operators

Next, we examine the mapping behavior of the integral operators due to Maxwell’s
equations. At first we only consider smooth surfaces and use the Fourier transformation
and some results of Costabel & Stephan [40]. These results can also be extended to the
case of polyhedral domains (2.

11
dm |x—y|”

Here, we only consider the integral operators with Laplace kernel, i.e. ®(x,y) =

Theorem 3.3.3 Let I' be a smooth surface. Then,

< < —
S
— 27

N —

Wo : HY (cwrlp, T') — Hj(divr, T),  —
s a continuous mapping, i.e. there exists a constant C' > 0, such that
[IWVoA|exs (aive ry < ClIA[m3 ety

for all X € HY (curlr, I).

Proof. In the beginning, we remark that there holds
WoAd = —n x grad V(n - curl A\) = —n x grad V(divp(n x A)). (3.26)

Since I is smooth we consider a conformal mapping of the neighborhood of a point x € T’
onto R?. Thus, we examine the behavior of W, on R? as subset of R3.
We consider the Fourier transformation of a function

() = / Cudx, = (6,G) € B

First of all, we construct the Fourier transformation of (3.26). Therefore, we remark
that there holds

ou B ix.c Ou . .
8—%(0 = /}R2 e a—xj(x) dx =i¢;u(¢), j=1,2. (3.27)

For the Fourier transformation of a convolution
(9 ) = [ o= )y
R
there holds

o — N

(g% F)(€) = 9(¢) £(C)-

Hence, the Fourier transformation of the single layer potential is

_ 1 .
Vip(C) = —W(o,

64



3.3 Trace spaces of order s

with |¢] = \/(? + (3, see Costabel & Stephan [40]. Using [40, Lemma 4.5] we derive the
Fourier transformations of the differential operators in (3.26).

etk 2(©) =it () @8) — —iGa(C) + iGN (0)

- _ o _ o
n x grad T = O =) (o) = (9 1 Z.Cﬂ:
1 0 ot 1 0 1(oT
Oxo
[ —iGeT
\iGar )
Finally, we get for the hypersingular operator

]/T)O\)\(C) =n X grad/V(\n- curl A)(¢)

C1C25\2(C)+<22A§\1(C)
|C| (FA2(€) — GeM(C) )

Furthermore, there holds

AVTIVAC) = (G, o) (‘%A? N @1) !

o — QoA | [ (3.28)
= i(—(F0he + QGA + GG — Cl(;j\l)% =0.
For u € H*(R?) the norm can be defined by
ey = [ 18P +1¢F)d (3.29)
In order to calculate the Hj (divp,I')-norm of z(¢) := WoA, we thus have to consider

solely (because of (3.28) )
WAy = [ 27RO+ ¢ ¢
R2
There holds
WO = 2 { (-GG + AN (=Gitaba + )
(e = GGM(ERe — GG |
e 2 {GGIP - A~ GEMR GNP H L (330)
—Gohd - GoM + GG
= C12|5\2‘2 — C1C25\15\_2 — C1C25\_15\2 + C22|5\1|2
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3 Spaces and operators for Maxwell

The calculation of the Hf (curlp, I')-norm of A is done via

~

A

curlp A = i(—Go, 1) (

A:) = Zb(—C25\1 =+ 415\2)

Here, we used again [40, Theorem 4.5], and we get

|cu/r1p\}\\2 = (—@5\1 + C15\2)(—C25\1 + C15\2)

= M| = GGMde — GGMA + A2

A comparison of (3.30) and (3.32) shows that there holds
IWoA| = |curly Al.

Therefore, we get

oA

a1 iver) < ([ Al cunpn)-

This finishes the proof.
Theorem 3.3.4 Let I' be a smooth surface. Then,
Vo : Hjj(divp, ') — HY (curlp, '),  —

18 a continuous mapping.

(3.31)

(3.32)

Proof. The proof is follows the same lines as the proof of Theorem 3.3.3. We consider
the Fourier transformation of VoA = —n x (n x V). Using the results of Costabel &

Stephan [40] we get for the Fourier transformation

~

V() = —=9(C),

[q

It follows that

and
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3.3 Trace spaces of order s

Due to

we finally get
curly OA(C) = —%z’ (~GM(0) + GRa(0)). (3.33)
Using these results we will show the estimate
VoAlles curtr.ry < ClIA s aive.n)-

First of all, we compare the H*-norms, using the definition of the norms in (3.29). The
estimate

VA < Q)

= 1o (B + af) < (R + [P

holds for [{| > 1. Therefore, we only have to estimate the Fourier transformation of the
surface curl of VoA by the Fourier transformation of A. Hence, we have to show that

lcurlr Vo2 < A2
This holds due to

Cody + 41)\2 < \X1‘2 + |X2|2

IS5 7l
= GNP = QGO + Mdo) + Gl < (¢ + ) (Ml + al?)

- 2
GAL+ QA2 =

This gives the desired result. O

— 0< |dive A2

Remark 3.3.5 It is also well known that
Vo ﬁ(F) - HﬁH(F)

is continuous, see e.g. Hiptmair & Schwab [68].

As above one can prove the following result.

Theorem 3.3.6 Let I' be a smooth surface. Then,
Ko : HY (curly, I') — H? (curlp, I'),
Ko : Hﬁ(divr, I') — H;(divy,T)

are continuous mappings for —= < S < =
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4 Basis functions and interpolation
operators

On the domain §2 we define a triangulation 7, with hexahedral or tetrahedral elements
T;. We assume that 7}, is quasi-uniform with mesh size ~ > 0 and shape-regular in the
sense of Ciarlet [36]. This mesh induces a mesh /C;, of triangles or quadrilaterals on the
boundary. On these meshes we define our polynomial spaces. For the approximation in
H(curl, ©2) we use the so-called Nédélec space N'D,(7},). Furthermore, we have to con-
sider the trace spaces on the boundary. These are Hﬁl/ *(divp, ') and Hll/ ?(curlp, T).
For the first one we use the space of Raviart-Thomas functions RT ,(K}) and for the sec-
ond one we introduce TND-functions TN'D,(K}), i.e. the Dirichlet trace of the Nédélec
space. We have to consider higher polynomial degrees For the p-version. Here, the poly-
nomial degree is assigned with p. We first consider the calculation of the basis functions
on the reference elements. Using suitable transformations we then get the polynomial
spaces. The investigation of the transformations is very important for the calculation of
the Galerkin elements for the FEM/BEM coupling, as described in §6.2. Furthermore,
we prove inverse inequalities for the spaces N'D,(7,) and RT ,(Kj). In §4.7 we prove
a continuous extension of the space RT,(K;) to the space ND,(7,) as an inverse of
the trace operator 7. In Section 4.8 we investigate a quasi-optimal hp-interpolation
operator for the space H(curl, Q).

Finally, we present a H(curl, Q)-stable decomposition of N'D,(7},) and a H[l/z (divp, I')-
stable decomposition of RT 5(K},). Using these results we can construct certain additive
Schwarz preconditioners and hierarchical error estimates.

4.1 Nédélec basis functions for higher polynomial
degrees

In the beginning, we consider the approximation in the space H(curl, Q2). The constraint
for the H(curl, Q)-conformity is that the tangential component on adjacent elements has
to be continuous, see Nédélec [82].

In order to fulfill this constraint Nédélec [82] defines on the element 7" local spaces
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4 Basis functions and interpolation operators

ND,(T) of degree p € N via integral moments for the degrees of freedom. The func-
tions in N'D,(T') are also referred to as edge functions because the lowest order basis
functions are closely related to the edges of the elements.

4.1.1 Definition on the reference cube

We consider the reference cube 7' = [—1,1]3. Furthermore, (Qk’l’m(f) denotes the space
of polynomials with maximum degrees k in -, [ in y- and m in z-direction and the local
space is defined by

NDp(f) = Qp—l,p,p(f> X Qp,p—l,p(f) X Qp,p,p—l(f)-

The dimension is dim N Dp(f ) = 3p(p+1)2. In order to calculate the basis functions we
use the following degrees of freedom defined by integral moments. Here, e denotes an
edge of T' with unit tangential vector t and F' denotes a face with unit normal vector n
of T

Ju-tqgds for all ¢ € Q,_1,

my(u) = Ff(u xmn)-qdS foralqé€Qpap1 X Qp1p-2, ’
Iu -qdx for all q € Qp—1p-2p-2 X Qp-2p-1p-2 X Qp-2p-2p-1
T

(4.1)
j=1,....3p(p+ 1)

Remark 4.1.1 These moments are not well-defined for all functions u € H(curl, Q).
The main difficulty is the reqularity of the operator fet -uds. Monk [78, Lemma 5.38]
shows that one has to demand that u € HY?*9(T) and curlu € LP(T) for some constants
d > 0 and p > 2. Amrouche et al. [10] give a weaker result. They demand that u €
LP(T), curlu € LP(T) and u x n € (LP(9T))? for some p > 2.

~

We now demand that the basis functions b; of N'D,(T') have to satisfy the conditions
my(b;) =y, i.j=1,....3p(p+1)"

This leads to a linear system depending on the choice of test and trial functions. One
possibility is to use monomials as basis for N'D,(T'). For computations they are ordered
by

wystey, r<p-1s<p t<p ifi=1.. . pp+1)’
Yi(2,y,2) =9 2y2ley, r<p s<p-1,t<p ifi=pp+1)>+1,... 2p(p+1)*
a'y2ley, r<p s<pt<p—1 ifi=2p(p+1)°+1,.... 3p(p+1)°

Here, e;, ey, es denote the unit Cartesian vectors. Then, there holds N Dp(f) =
span{tp,, i = 1,...,3p(p + 1)?}. In order to fulfill the continuity of the tangential
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4.1 Nédélec basis functions for higher polynomial degrees

trace of the basis functions one has to consider the moments (4.1). Hence, we get p basis
functions associated to an edge e, 2p(p + 1) basis functions associated to a face F' and
3p(p — 1)? basis functions associated to the interior.

The basis functions b; then have a representation

3p(p+1)?

b, = Z ag,

=1

with the coefficients a;; as the solution of the linear system

+
Z azlm] wl 2]7 7’7.] = 17 s 73p(p+ 1)2

In order to calculate the moments m; in (4.1) one could use monomials as test functions.
It is also possible to use different polynomial basis functions of the polynomial spaces.

For the lowest order p = 1 we get the following basis functions associated to the edges
of the reference element, see Figure 4.1.

1 1
bleo) = g(l—y)(l—z)el, bler) = §(1+y)(1—z)e1,
1 1
b(e2) = 1=y +2)er, ble) = S+ 91+ 2)er,
bles) = %(1 —z)(1 - 2)e;, b = %(1 +z)(1 — 2)ey,

1 1
b0 = (1 —z)(1+ 2)ey, bl = g(l +2)(1+ 2)ey,

8
1 1
b(es) = g(l — I)(l — y)83, b(eg) = g(l + x)(l — y>83,
1 1
b = S(1 =) (1t yes, b = (14 2)(1+ ey

We remark that the edge functions are constant on the edge which they are associated

to.

Here are some examples of the 54 basis functions for the polynomial degree p = 2.

e There are two edge functions associated to the edge ey (y = —1, z = —1).

bi®) = L (By+ 1)y —1)(3z+ 1)(z — ey,

32
. 3
b{) = 5By + Dy = DBz + 1)z~ Dey

The functions are constant on the edge eq with the value % Furthermore, the tan-
gential component vanishes everywhere except on the two faces which are adjacent
to the edge.
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4 Basis functions and interpolation operators

€3
€6 €9 er
€10 €11
€g €9
€1
€4 €5
€0

Figure 4.1: Numbering of the edges on the unit cube.

Fy

£ Fy

Figure 4.2: Numbering of the faces on the unit cube.

e There are four face functions associated to the face fy (z = —1), two in each
direction.
bgFO) = 3—32 (1—9*)(32+1)(z — 1)ey,
b{) = 3%:5 (1—y»)Bz+1)(z — 1ey,
b{) = —3—32 (1—2*)(3z+1)(z — 1)ey,
b{*) = —3—92y (1—2%)(32+1)(z — 1)es.

The tangential component of the face function is only non-zero on its associated
face.
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4.1 Nédélec basis functions for higher polynomial degrees

e There are six interior functions

b = - (1-y?)(1 — e,

BEY
27

b{" = b (1= y?)(1 = 2*)ey,
9

b{" = 5y (121 = e
27

b{" =iy (1 — 2?)(1 — 22)es,
32
9

bl = 5 (=)= yP)es,
27

béT) = g5 % (1—2%)(1 —1y?)es.

The interior functions are zero on four faces and have a vanishing normal compo-
nent on the other two faces.

The problem in calculating these bases for higher polynomial degrees using monomials
as test and trial functions is that the associated matrix A = (a;) becomes very ill-
conditioned, see Figure 4.3 and Table 4.1, and the solution of the linear system gets
very unstable. This makes it solely possible to calculate the basis functions up to the
polynomial degree p = 4.

le+18

le+16

le+14

le+12

1e+10

1e+08

Condition number

1le+06

10000

degrees of freedom

Figure 4.3: Condition numbers of the linear system related to the calculation of the
Nédélec basis functions using as test and trial functions monomials and or
Legendre polynomials.
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4 Basis functions and interpolation operators

p | DOF | max. EV min. EV Condition
1 12 4.0000 4.0000 1.0000
2 54 8.9370 0.8530 10.4767
3| 144 7.1712 | 8.0553E-03 | 8.9025E4-02
4| 300 | 10.9814 | 8.6148E-05 | 1.2747E+05
51 540 | 10.6589 | 8.1041E-07 | 1.3153E+07
6| 882 | 13.6520 | 7.2142E-09 | 1.8924E+09
7| 1344 | 12.5764 | 4.7357E-11 | 2.6557E+11
8| 1944 | 14.2408 | 4.1618E-13 | 3.4218E+13
9| 2700 14.2741 | 2.2056E-15 | 6.4718E+15
10 | 3630 | 15.9238 | 2.1061E-17 | 7.5607E+17

Table 4.1: Condition numbers of the linear system with monomials as test and trial

functions.
p | DOF | max. EV min. EV Condition
1 12 4.0000 4.0000 1.0000
2 54 8.9370 0.8530 10.4767
3 144 6.2788 | 1.3266E-02 | 4.7328E+02
41 300 7.7106 | 9.2799E-04 | 8.3089E+03
51 540 7.3115 | 1.0001E-04 | 7.3111E+04
6| 882 7.6405 | 1.1401E-05 | 6.7018E+05
7| 1344 7.3207 | 9.3746E-07 | 7.8091E+06
8 | 1944 6.5290 | 7.4206E-08 | 8.7984E+07
9 | 2700 7.2397 | 5.1370E-09 | 1.4093E+09
10 | 3630 6.5449 | 4.2245E-10 | 1.5493E+10

Table 4.2: Condition numbers of the linear system with Legendre polynomials as test
and monomials as trial functions.

Another possibility is to use Legendre polynomials as test functions in (4.1). Thereafter,
one gets a quite lower condition number, see Table 4.2 and we can calculate the basis
functions up to the degree p = 7. The numerical experiments in Chapter 5 use this
possibility. A third possibility would be to use Legendre polynomials as both test and
trial functions and the condition number of the system is again much lower, see Table 4.3.

These properties can also be seen if we consider the maximal value of the residual
AA-L — ] Here, A~ A-1 denotes an approximate to the inverse of the matrix A which is
used for solving the linear system. In Table 4.4 we compare those values which should be
nearly zero. One sees that the system for monomials as test and trial functions becomes
unstable at a polynomial degree of p = 6 while using Legendre polynomials gives good
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4.1 Nédélec basis functions for higher polynomial degrees

p | DOF | max. EV min. EV Condition
1 12 4.0000 4.0000 1.0000
2 54 8.3392 1.3147 6.3432
3| 144 5.9976 0.1225 48.94023
41 300 7.1480 | 4.8693E-02 | 1.46797E+02
51 540 6.6341 | 2.1061E-02 | 3.14998E+02
6| 882 7.0189 | 1.0968E-02 | 6.39968E4-02
7| 1344 6.0532 | 5.7435E-03 | 1.05392E4-03
8| 1944 6.6939 | 4.0187E-03 | 1.66570E4-03
9| 2700 6.5044 | 2.4335E-03 | 2.67288E4-03
10 | 3630 6.8200 | 1.8133E-03 | 3.75547E403

Table 4.3: Condition numbers of the linear system with Legendre polynomials as test
and trial functions.

p | DOF Mon-Mon | Mon-Leg Leg—Leg
1 12 | 2.2204E-16 | 2.2204E-16 | 2.2204E-16
2 54 | 6.2911E-16 | 6.2911E-16 | 3.0554E-16
3| 144 | 4.2834E-14 | 1.5744E-14 | 1.0236E-15
41 300 | 4.9430E-11 | 2.4735E-12 | 6.2025E-15
5| 540 | 1.0467E-08 | 7.6089E-11 | 1.0029E-14
6| 882 | 1.1608E-04 | 3.9369E-09 | 3.0330E-14
7| 1344 | 2.3527E-02 | 6.8362E-08 | 4.4390E-14
8 | 1944 | 2.9619E+03 | 6.3707E-06 | 7.3622E-14
9| 2700 | 1.2866E4-06 | 2.4736E-04 | 7.3936E-14
10 | 3630 | 5.4289E+10 | 1.1923E-02 | 1.0635E-13

Table 4.4: Maximal value of the residual Azzl\—/l — 1.

results up to high polynomial degrees.

Another problem using this construction with the integral moments is that one doesn’t
get a hierarchical basis for the space N'Dj,. Hence, for every polynomial degree one has
to calculate a new set of basis functions.

Other possibilities for basis functions are introduced, e.g., by Ainsworth & Coyle [1, 2].
In order to construct such a basis one uses Legendre polynomials L; of degreei = 0,...,p
and their anti-derivatives £; defined on [—1, 1] by
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4 Basis functions and interpolation operators

and

,CZ(S) :/ Ll_l(t) dt, 222,,p+1

1

113

On the reference cube T = [—1,1]° the basis functions are given by

1]
Lz(l’l)ﬁ (l’g)ﬁk(l'g)el
Ej(flfl)L (xg)ﬁk(ﬂfg)eg 1= 0, e P, j, k= 0, ..., P —+ 1,
L;(x1) Lp(2) Li(s)

where e;, ey, e3 denote the unit Cartesian vectors. For the lowest polynomial degree

€3

p = 1 these basis functions are the same as given above using the degrees of freedom
given by Nédélec .

These basis functions can also be separated into into edge, face and interior functions.
The advantage of these basis functions is, beside the easy calculation, that one can con-
struct easily a non-uniform mesh. In order to assure continuity of the basis functions the
minimum-rule is applied, compare Demkowicz & Vardapetyan [48]. The transformation
is the same as for the usual basis functions, see below.

A very flexible generalization of the spaces N'D,(7},) offer the hp-elements of Demkowicz
et al. [43, 46, 91]. They are using local variable polynomial degrees, even variable in all
directions.

For our calculations we only use the Nédélec functions introduced above. The imple-
mentation of the basis of Ainsworth or the Ap-basis due to Demkowicz still has to be
done.

4.1.2 Basis functions on a tetrahedron

For the sake of completeness we give here the basis functions and degrees of freedom for
the reference tetrahedron T := {x € R® : xy, 29,23 > 0, 21 + 79 + 23 < 1}. The local
Nédélec space of order p is given by, see Nédélec [82],

ND,(T) = (B (1)) + {p € (B,(T))’|p(x) -x = 0¥x € T}.

For the case p = 1 we have the representation
NDy(T) :={x—a+bxxa becR}.
For arbitrary p € N the moments are defined by
L. [u-tqds VqeP, 1, eedge of T,
2. [p(uxn) -qdS Vqe (P,_s)? F face of T,

3. Jzu-qdx  Vqe (P,_3)°

Therefore, the dimension of N'D,(T) is sp(p+2)(p+3).
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4.1 Nédélec basis functions for higher polynomial degrees

4.1.3 Transformations and an inverse inequality for Nédélec
functions

In order to construct a global H(curl, Q2)-conforming space one has to consider mappings
from the reference element to a local element. Let T' denote the image of the reference
element 7" under the affine transformation

Fr: x=Bpx+d, Brel(T,R%,deR? (4.2)
and {15]-, j=1,...,n,} be a basis of /\/'Dp(f), then a local basis on T' is given by
by(x) = (B by(x), j=1....m (13)

This transformation is H(curl)-conforming, see Nédélec [82] or Monk [78, (5.33)].
Thus, we can define the global finite element space N'D,(7},), if we connect those local
basis functions that belong to an edge or a face to a global basis function. The space
ND,(7,) is invariant under the affine transformation (4.2) if we transform the basis
functions by (4.3).

Next, we examine the behavior of the norms under the transformation. Therefore we
consider the reference tetrahedron or the reference hexahedron 7" and an arbitrary ele-
ment T of size h. For t € ND,(T) and u € ND(T') we get the transformation

uo Fr = (B) ta (4.4)
and the curl is transformed by, see e.g. Monk [78, (5.33)],

curlu = Breurl 1. (4.5)

det BT

Next, we consider the transformation of the Sobolev norms, see Alonso & Valli [5, Lemma
5.5] or Monk [78, Lemma 5.43].

Lemma 4.1.2 For s > 0 and a regular mesh T, there holds for all functions u that are
transformed using (4.4)

. ~1/2
1|2y = byl (4.6)
and for the semi-norms

~

|a

s—1/2
He(F) = Iy / [uls (1), (4.7)

Hs(T) (48)

curl @t JUPS curlu
]. H (T) h;+1/2 ]_

where the constant is independent of u and the mesh size hr.
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4 Basis functions and interpolation operators

Proof. First of all, we consider the L?-norm. Using the transformation (4.4) we get
lal3s s = [ [a(x) dx
@~ s
_ \detBT|‘1/ | BTu(x)|? dx
< |det Br| ™" | B} ||2/ () dx
< Chz'ulgaery
Here, || - || denotes the spectral norm of a matrix and we have used the estimates
||BT|| ~ hT, |det BT| ~ h%—‘,

see, e.g., Ciarlet [36].
The other integer norms can be estimated in a similar way, see e.g. Monk [78].

In order to estimate the non-integer semi-norms | -

Chapter 1,
[a(x P
HS(T / / ‘34—23 dx dy

IBT u(y))?
det By 2// dx dy.
~ et Bl (x - mm o

In order to estimate the denominator we write

(7 (0 < s < 1) we consider, cf.

x —y| =1Br By (x = y)| < |Br| |Br' (x = y)

and we get
|Br'(x = y)| = || Brll ™" [x — yl.

It follows that

Bi(u u(y))?
2 3425 ‘ uly
27y < | det Br 2 By // ‘Xﬂms dx dy

< | det Br|*|| Br|****|| Bz [*|u
S C'h;1+2s|u

|t

Hs(T)"

This is (4.7). The result for the curl can be obtained the same way using the transfor-
mation (4.5).
The results for s > 1 can be achieved similarly. O

Now, we can prove an inverse inequality for H(curl, 2)-conforming elements.
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4.1 Nédélec basis functions for higher polynomial degrees

Lemma 4.1.3 Let 7;, be a reqular and quasi-uniform triangulation of 2 with mesh size
h. Then, there holds for u € ND,(7;) and s >r >0

Hu’ H#(curl,Q) < ChT_SHuHHT'(CurLQ) (49)

with a constant C' > 0 depending only on the polynomial degree p and the reference
element T'.
Proof. Using (4.4) and (4.5) we can estimate on an arbitrary element 7" € 7},
1/2—s 1/2—s
[ulser) < Chy® [l g7y < Cp, T)hA gy z
< C(p, T)hy - Sh’“ 1/2\u\Hr )= Cp. D)kl

and
| curluls(ry < Chy'*[eurliy. 7 < C(p, T)hz"**Jcurl iy, 4,
< C(p, T)hy'/*™* hr+1/2| curlulg-(r) = C(p, T)hi*| curlulgr(7)
Summing over all elements yields the result. O

An interpolation operator associated to the moments

Associated to the moments (4.1) we can define an interpolation operator HZ onto the
space N'D, (7). First of all, we consider the reference cube T.

/(u—Hpu)-tqu:O Vqe Qp1,

e

/((u —ILu) xn)-qdS=0 VqeQpop-1XxQp 1,2, (4.10)
F

/(u —1Iu) qdx=0 Vg€ Qpip2p2xXQpapi1p2xQpapapi,

T

compare, e.g., Monk [78]. Note that these integral moments are not well defined for all
functions in H(curl, §2), see Remark 4.1.1 and Amrouche et al. [10, Lemma 4.7]. Using
the transformation (4.4) we then can define the operator HZ which maps into the space

ND,(T).

For the interpolant one can prove the following error estimate for the h-version, see
Monk [78, Theorem 5.41 and Theorem 6.6].

Theorem 4.1.4 Let 7}, be a reqular mesh on Q. Foru € H*(curl, Q), 1/2+§ < s < p,
0 > 0, there holds dependent only on s, p, and the shape regularity of T;, such that

||11 o HIZU‘HH(CUI'LQ) < Cthu’ Hs (curl,Q)-
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4 Basis functions and interpolation operators

A more detailed description about interpolation operators and the regularities is given
in Section 4.8.

4.2 A numerical experiment with Nédélec functions:
FEM for the eddy current problem

In order to show the efficiency of the p-version with Nédélec basis functions we consider
the following eddy current problem. Let {2 be a bounded domain with a simply con-
nected, polyhedral boundary and I" := 0€2. 2 models the conductor. In {2 the magnetic
permeability x € L>®(Q) is given. It which is uniformly bounded, i.e. there are constants
X1, X2 > 0 such that x; > x > xo, Furthermore, we have the conductivity  which is
also uniformly bounded by constants oy, o9 > 0, i.e. 01 > 0 > 05. In ) we assume a
solenoidal current Jo € H(div, Q) with divJy = 0 which induces an electric field E. The
eddy current problem in a bounded domain then reads, cf., e.g., Beck et al. [15]:
Find the electric field E with

curl y curlE +igE = J, in €, (4.11)
Exn=0 on I' := 0. (4.12)

We set u := E and consider the space Hy(curl, ) := {u € L*(Q) : curlu € L*(Q2), ux
n = 0}. Multiplying (4.11) with v € Hy(curl, Q) and partial integration leads to the
variational formulation:

Find u € Hy(curl, Q) such that

(x curlu, curl v)r20) + (B, V)2 = (Jo. V)L2(0)

for all v € Hy(curl, Q).
The L?(2)-scalar product is defined as (u, v)r2q) == [,u- Vdx.

For the Galerkin finite element method we construct a quasi-uniform mesh 7; on € with
mesh size h. As finite dimensional subspace we take N Dg(’]}l) := ND,(7,)NHy(curl, 2)
and the Galerkin method reads:

Find u, € ND)(T,) such that

a(up, v) := (x curluy, curl v)r2q) + i(Bug, v)r2) = (Jo, V)r2 )

for all v € ND)(Ty,).

Due to the coercivity of the bilinear form we get the quasi-optimality of the Galerkin
error

|lu— uhHH(curl,Q) < Cgej\}%m) [u— 5HH(curLQ)'
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4.2 A numerical experiment with Nédélec functions: FEM for the eddy current problem

Using Lemma 4.1.4 this yields the a posteriori error estimate for sufficiently smooth u
||u - uh”H(curl,Q) < Ch'p|u|HP+1(Q).

Thus, the expected convergence rate is p for the space N Dg(%).

Numerical example

We consider the unit cube  := [—1,1]> and set 3 = 1 and xy = 1. Moreover a given
exact solution is

0
u = sing(y+1)~sing(z+1) 0

This function is smooth and should be approximated very well by the p-version. The
right hand side can be calculated using (4.11)

Jo ;= curlcurlu + u.

We mesh the unit cube with smaller cubes of mesh size h and we perform a uniform
refinement. The resulting linear system is solved using a Gaussian solver. The error
is measured in the H(curl, Q)-norm which is defined by ||u||%-l(curl,ﬂ) = HuH%Q(Q) +
I Curlu”%ﬂ(ﬂ)‘

In Figure 4.4 we consider the h-version of the FEM for different polynomial degrees. In
Figure 4.5 we compare the uniform p-version with the uniform h-version with polynomi-
als of order 1. While the h-version converges only algebraically, the p-version converges
exponentially. The convergence rates for the polynomial degrees are given in Table 4.5.
Here, we consider the convergence rate with respect to the mesh size h and also with
respect to the degrees of freedom. For the lower polynomial degrees and this corresponds
very well to the approximation result in Lemma 4.1.4. For higher polynomial degrees
we are still in the pre-asymptotic region.

P 1 2 3 4 5 6
a(h) ]0.941 | 1.711 | 2.449 | 2.830 | 3.541 | 3.498
a(DOF) [ 0.320 | 0.634 | 0.958 | 1.264 | 1.598 | 1.900

Table 4.5: Convergence rates with respect to the mesh size h and the degrees of freedom.
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Figure 4.4: Uniform h-version for different polynomial degrees, error in energy norm.
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4.3 Raviart-Thomas basis functions for the approximation in H(div, (2)

4.3 Raviart-Thomas basis functions for the
approximation in H(div, (2)

In this section we analyze the space H(div,(2). The constraint for H(div, 2)-conformity
is that the normal component, i.e. u-n is continuous between adjacent elements, cf.
Nédélec [82].

Let T := {x € R3: xy,m9,23 > 0, 21 + 19 + 23 < 1} denote the reference tetrahedron
and the space of Raviart-Thomas functions of degree p is defined by

where Pg(f) denotes the space of all homogeneous polynomials of degree p on T. It
follows that the dimension of RT ,(T) is sp(p+ 1)(p + 3). The degrees of freedom are
defined by, see Nédélec [82],

L. [Lu-ngdS VqeP,, F face of T,

2. [zu-qdx  Vqe (P,_o)°

On the reference cube T = [—1,1]® the Raviart-Thomas space is given by

RTP(T) = Qpp-1p-1 X Qp1pp-1 X Qp-1p-1p-

The dimension of this space is 3p?(p + 1) and the degrees of freedom are defined by

L. [pu-ngdS Vqe&Qyi,,F face of T

2. [zu-qdx Vqe ND,_(T).

Using these degrees of freedom we can define an interpolation operator II’”? as in the
case of the Nédélec basis functions.

Transformations

Let T' € 7, be an element with diameter h and T the reference element. The affine
transformation between these elements is given in (4.2). For functions q : T — R3 and
q: T — R3 the H(div)-conforming Piola transformation is then given by, see e.g. [82]

A(x) = g BralFy (). (113)
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4 Basis functions and interpolation operators

It is easy to prove that there holds

lallaery ~ 2|l ez (4.14)
compare Section 4.4.3 for the 2d case.
As in the case of the Nédélec space the local basis function on 7" are given by
1
b;(x) =
1) = Gt Br

Glueing together the local basis belonging to a common face we obtain global basis

Brb(x), j=1,...,m,.

functions. Therefore we can define the space RT ,(7;,) which is invariant under the
transformation (4.2) if we transform the basis functions by (4.13). As for the H(curl, 2)-
conforming space we can define the global interpolation operator HZLU”, compare (4.10).
There holds the following approximation result, see e.g. Hiptmair [62].

Theorem 4.3.1 Foru e H*(Q2), 1/2 < s < p, there holds

RT s
||11 — Hh ”u||Lz(Q) S Ch ||u||Hs(Q).

4.4 Raviart-Thomas basis functions for the
approximation in H[l/z(di\/r, ')

In this section we consider the approximation in Hil/ 2(din, I'). From Chapter 3 we

know that there holds 7, (H(curl,Q)) = Hr/ ?(divp,T) and the resulting finite element
space should be the twisted tangential trace of the space N'D,(7},). It follows that this is
exactly the space RT ,(ICj,) of so-called Raviart-Thomas functions. This space was first

considered by Raviart & Thomas [92], see also Brezzi & Fortin [23] and Nédélec [82].

As in the three-dimensional case the constraint for H(div, ')-conformity is that the
normal component u - n is continuous between adjacent elements.

The definition of the basis functions is again done locally and we use the transformation
between different elements to construct the global space in the same way as for the
Nédélec functions.

4.4.1 Definition on squares

We first consider the reference square K = [—1,1]2. Furthermore, Q;,, denotes all
polynomials with maximum degrees [ in x- and m in y-direction. The local Raviart-
Thomas space of order p is then defined by

R]—p(i\() = Qpp-1 X Qp-1p-
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4.4 Raviart-Thomas basis functions for the approximation in HF/ 2(divF, )

The dimension is then 2p(p + ) In literature (e.g. Brezzi & Fortin [23]) this space is
sometimes denoted by R7T ,_1(K ) but we use the same counting scheme as in Nédélec
82].

In order to ensure continuity of the normal component we can construct basis functions
¢, using the following moments. Here, e denotes an edge of K with unit normal vector
n and P,(e) the space of polynomials of degree up to p on edge e.

ma(a) = feu -nqds forall ¢ € Py(e)
i T ff( u-qdx forallqe Qpo2,-1 X Qp_1,p—2

For the construction of a basis of RTP(IA( ) we first use monomials and we consider

xrysela répasép_]w 1f’l=1,,p(p+].)
z'y’ey, T<p—1,s<p, ifi=pp+1)+1,...,2p(p+1)

e~ |

with the unit Cartesian vectors e; and e, and we get the local space by pr(f( ) =
span {9, i =1,...,2p(p+1)}.

The basis functions are calculated the same way as the Nédélec basis functions, see Sec-
tion 4.1.1. Another possibility is to use Legendre polynomials as test and trial functions.

Let W(K) = {u € (LYK))?| divu € L%(K)}, ¢ > 2. An interpolation operator
e W(K) — RT. (K) can be defined by, see Brezzi & Fortin [23],

/A(u —7mpu)-ngdS Vqe Pp_l(f?),
oK

/A(u —mzu)-qdx Vqe (P2
K

Next, we give some examples of basis functions on K for the polynomial degrees p =1
and p = 2. For the numbering of the edges, see Figure 4.6.

-1,1) e2 (1,1
e3 K el
(-1-1) el (1-1)

Figure 4.6: Numbering of the edges on the unit square K.
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4 Basis functions and interpolation operators

For the polynomial degree p = 1 we get.

1 1

A0 = i(y — ey, A .= 1(:6 + 1)eq,
1 1

A = Z(y +1)ey, A .= Z(x —1)ey.

These basis functions are constant on the edge which they are associated to. On the
other edges their normal components vanish.

Furthermore, the basis functions of RT 5(K) are given by

) _1 «0) _1

MY =2 (L2 =3yY)en, AU =2 (Ba 4 Say — 9ay)es,
oy _1 v _1

ALY zg(—l + 22+ 32%)e;, AYY Zg(—i%y +5ry + 9a%y)e,
) _1 ) _1

NP =2 (14 2+ 3y%)en, A =2 (=3u + by + 9uy)es,
es) _1 s _1

A =5 (1+20- 3%, A5 =3 By+5ey —9yey,
~ 3 7 9

AP =2 (1=, MY =2 (v = 2*y)er,
~ 3 K 9

)\éK) :g (1- yz)e% >‘4(1K) :g (x — xy2)e2'

Now, the second edge basis functions are not constant any more on the edges but their
normal component vanishes on all other edges which they are not associated to. The
normal components of the interior functions vanish on all edges.

Let K be associated to the face (z = —1) of the reference cube T. Comparing the
degrees of freedom with the ones of N'D,(T') one finds out that there holds

~

v (Npp(f)) = RT ,(K).

4.4.2 Definition on triangles

On the reference triangle K = {(z,y);z,y > 0, x +y < 1} the Raviart-Thomas space
is defined by

RT,(K) = (B,-1(K))* @ xP)(K)
= (B)-1(K))* @ {p € (P)(K))’, p(x) = 0Vx € K}

where IP’g(lA() ={p € IP’p([A() |p(x) = 0¥x € K} denotes the space of all homogeneous
polynomials of degree p on K.
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4.4 Raviart-Thomas basis functions for the approximation in Hil/ 2(din, )

4.4.3 Transformations and an inverse inequality for Raviart-Thomas
functions

As in the three dimensional case we consider here the H(div)-conforming Piola trans-
formation (4.13). For the ease of implementation we analyze the transformation for
quadrilaterals in detail. The transformation for triangles is similar.

~

X
X
A1 F
ﬂ
~1 1 ay
\—/
Ffl
1
7 K

Figure 4.7: Transformation from the reference element K to an arbitrary element K.

Let K := [—1,1]? be the reference element in the zy-plane and K be an arbitrary
parallelogram with directions a; and a,, see Figure 4.7. The transformation F : K—K
takes the form

x := F(X) := BkXx + b, % € R?,

with the Jacobian matrix

a; X as
By = 31732,:Fm )

where the sign depends on the direction of the normal vector on K. Let n := (0, 0, —1)T

be the unit normal vector of K and there holds
a; X as

Bxn=+4+——"
|ar x ay|

such that the normal vector on K is mapped onto the normal vector of K.

For the transformation of i € RT (K) to u € RT (K) we use the Piola transformation
which preserves the normal component

1
Fy = ——— Bk 4.15
nerx | det B| Kt (4.15)

see Raviart & Thomas [92] or Brezzi & Fortin [23].
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4 Basis functions and interpolation operators

There holds
| det Bi (x)| = [|a; x as]|.

If we only consider the case of two dimensions we get the transformation

1

u(x)

Now, we consider the transformation of the divergence. There holds, see Brezzi &

Fortin [23, p.97]
1

= ——— —divv(x). 4.16
FEY LA (4.16)

div v(x)
This is valid because of (here only for 2 d)
(S—;’i %):71 B <§—mi %)B‘l
g—;’? g—gz |det Bg| S—;j 2—;3 r
As the trace of a matrix is invariant under similarity transformations and we get (4.16).

Next, we consider the surface divergence divy v = div(vypv). For v € RT (K) there holds
vpv = v and we get the transformation

1 . 1

divp v(x) = divg(v(x)) = Tdet Brd| divg v(x) = divg v(x). (4.17)

lay x as|

Using the Piola transformation and glueing together neighboring degrees of freedom we
get the global space RT ,(K}) and also a global interpolation operator 7"».

Lemma 4.4.1 (Hiptmair [64, Lemma 2.4]) The mapping
Y : ND,(T,) — RT,(Ky), u—uxn
s continuous and surjective. Furthermore, the degrees of freedom are transformed, i.e.

ATV Pru = 7®vyXu Yu € H(curl, Q).

The space of the RT ,(K}p,)-functions fulfills the following approximation property using
a non-local projection, see Buffa & Hiptmair [31, Theorem 14].

Theorem 4.4.2 Let Py, : Hrﬂ(divlﬂ, I') — RT ,(Ky) be the orthogonal projection with
respect to the Hilﬂ(di\fp, [')-inner product. Then, for any —% < s < p we have

< Ch Y2 u

||u - Phu”Hr/Q(divr,r) H (divp,I)-
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4.4 Raviart-Thomas basis functions for the approximation in HF/ 2(divF, )

Next, we prove an inverse inequality for Raviart Thomas functions in two dimensions.
Therefore, we have to examine the transformations between two elements of different
size.

Lemma 4.4.3 For s > 0 and a reqular mesh ICy, there holds for all functions u that are
transformed using (4.15)

lallee) = [allpzz),

[ divallee() = A% div |z

and for the semi-norms

|u|Hs(K) ~ h[_{8|fl HS(IA{)’

where the constant is independent of u and the mesh size h.

Proof. The proof is quite similar to the proof of Lemma 4.1.2, the results for the
integer norm can also be found in Brezzi & Fortin [23, Lemma II1.1.7]. In the two
dimensional case there holds for the spectral norm || - || of the transformation matrix,
compare Ciarlet [36],

| Br|| = h, |Bx'|| ~ht, | det By | ~ h*.
Using the transformation rule, the integer norms become
1 N N
Jul[f2 k) < Tdet By 2 | B ||” | det B| ||u||i2(f<) ~ ||u||i2(f()>
2 1 112 —2m
Wt (k) < WHBKH | det Bi| | By [IPm [0l fgm () =~ h™*" | Hm(K) m e N,
and
: 1 o
| div s < W|det3;{| ||dlvu||i2 ~ h~ 2||d1vu||L2(K
1
: 2 2m ~ —2—-2m 2 R
| div ulgm gy < Tt B2 | det B | || BH|*™ [a? i) = lalz,,. miy MEN.

In order to estimate the non-integer semi-norms we get for 0 < s < 1

lu(x) —u(y)|?
|u%{5(K) / . |2+2s dx dy

x—y

2 |(det Bx) ™' Bx (0(%) — a(y))
= | det Bg]| // |BKX I dx dy

s |BK (y) |2 A g
< 1Bil ™™ // o I gscay

< |IBr| 7™

S Ch[—(?s N

)

()
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4 Basis functions and interpolation operators

The proof for the norms of the divergence is analog. O

Following the idea of the proof of Lemma 4.1.3 we can show an inverse inverse inequality.

Lemma 4.4.4 Let IC be a regular triangulation of I' with mesh size h. Then, there
holds foru € RT ,(Ky) and s > r >0

[l @ive.ry < O™l @ivee ) (4.18)

with a constant C' > 0 depending only on the polynomial degree p and the reference
element K.

Remark 4.4.5 This result also holds for negative norms. A general proof of this can
be found in Babuska € Aziz [11].

4.5 TND-basis functions for the approximation in
Hll/Q(curlp, Iy

Finally, we analyze the approximation in the space Hll/ 2(curlp, I'). This is the tangential

trace space of H(curl, Q) and also the image of Hﬁlﬂ(divlﬂ, I') under the map Ru :=
n x u. We define the space TND,(K}) as the tangential trace space of N'D,(7},), see
also Teltscher [103],

TIND,(Kn) := 10N Dy(Thlr))-

Hence, we easily see that for the reference square K = [—1,1)? there holds
TNDp(I?> = Qp1p X Qpp

and that dim T/\/’Dp(f( ) = 2p(p +1). The basis functions can easily be calculated from
the N'D,-basis functions. For the lowest polynomial degree there holds

1 1
Do = 1(1 —yle, ¢ = 1(1 + z)es,

¢2 = i(]_ + y)el, ¢3 = %(1 — 1’)62.

4.5.1 Transformations for 7N'D-basis functions

In this section we examine the transformation of ZND-basis functions. As there also
holds TND,(K}) = R(RT ,(Kp)) with Ru = n x u we use the Piola transformation.

Figure 4.8 shows the transformation of the basis functions. There holds A = R¢(x) and
¢ = R7'\. From (3.3) we have R~'u = —Ru. On the reference element we use the
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4.5 TND-basis functions for the approximation in Hll/ 2(curlp, )
X X X x

R F R
i R I M A 4
A b é A

Figure 4.8: Transformation of ZAND-basis functions.

unit normal vector fn = (0, 0, +1)T and on the local element, which is spanned by the
Tar xas]

on the orientation of the element. We demand that the algebraic signs of n and n are
equal. Thus, there holds

vectors a; and as, we have the normal vector n = + the algebraic sign depends

A(x) = Ro(x)
1 N
= mR(BK(XM)(X))
1 ~
— 7”211 ol ((al, a2,n)¢)) X n
1 Al
— m((al x n, a; x n,0)(—RA(X)))
1 o
= m((n X a;, n X 32,0)(—R)\(X)))
1 0
:m(nxahnxag,O) |:A()A() X 0 :|
1 2 11
1 X?
= m((al X a) X ar, (a1 X az) X a,0) | =\
1 2 0
1 51
= m(a2 X (a1 X ag), (a1 X ag> X al,O) )\2
1 2
0

Finally, we have

Lemma 4.5.1 (Transformation for TND elements) Let X and A(X) be defined on
the reference element [—1,1]> and x and X(x) be defined on the local element which is
spanned by the vectors a; and ay. There holds

1
" Ja® x a®@|2

A(x) (a® x (a® x a@), (a® x a®) x aV)X(%).
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4 Basis functions and interpolation operators

Next, we calculate the transformation of the scalar surface curl operator curlp. This can
be done using (4.17). In the beginning, we remark that there holds

divr(¢» x n) = — curlp((¢p x n) x n) = curlp(yp¥p) = curly 3.

As above let X be a TND-basis function on the local element and ¢ be the related
RT -basis function. On the reference element there holds

0
=R 'AN=—Rx=-2x|0
+1

Thus, we get with (4.16) and (4.17)

curlp A = divp(A x n) = divp(R¢ x n) = divp((¢ X n) x n)
= —divr(yp9) = —div(ypyp@) = — div(e)

1 .
= leg(
Tan < ag] 7% ¢
Y
I ST Y (4.19)
la; x as|
0
¥l

= T aal (—a@lﬂg + a@xl)

T (curh)
= —— | Ccur
|ay x ag]

: o alxa e e aixag
with negative sign if n = Tarxad] and positive sign if n = Tarxa]"

4.6 The de Rham diagram

In this subsection we consider the so-called de Rham diagram. It describes the mapping
behavior of the differential operators grad, curl and div in the corresponding Sobolev
spaces. Furthermore, we consider further properties of the canonical interpolation oper-
ators. Most of the results can be found in the articles of Hiptmair [64, 63, 66, 65].

For 2 C R? we consider the following de Rham diagram, see e.g. Monk [78]

HY(Q) &2 H(curl, Q) 2 H(div, Q) 2% 12(Q).

A similar result holds for homogeneous boundary conditions

grad

HY(Q) &2 Hy(curl, Q) <2 Hy(div, Q) 2% L2(Q)/R.

92



4.6 The de Rham diagram

In these diagrams, the range of one operator is contained in the kernel of the following
one. The range space of each operator is a closed subspace of the related operator with
finite codimension, see Monk [78, Theorem 3.40].

The discrete de Rham diagram takes the following form
div

S)(Th) B2 N'Dy(T,) 8 RT(Th) 25 S, 1(Th),

see e.g. Hiptmair [64, 65].

There also hold the following commuting diagram property, see e.g. Hiptmair [64, 63],
where I/ denotes the canonical interpolation operator for S,(7,) and D(-) denotes the
domain of the interpolation operators.

Theorem 4.6.1 For all p > 1 the following diagram commutes

grad
—_

D(IM) c H'(Q) D(I1") C H(curl, Q) <=L D(xh) C H(div, Q)

| 7 o |

rad cur
S)(T) S ND,(T;) L RTL(T)
This also holds true if we impose homogeneous boundary conditions.
Such that we have
curllI'u = 7! curlu ~ Vu € H(curl, Q).
Furthermore, the kernels of the differential operators are preserved:

u e D(HZ), curlu=0 = curl HZu =0
ueD(r)),divu=0 = divriu=0.

Theorem 4.6.2 Let 2 C R", n = 2,3, be a simply connected domain. Then, there
holds

e Letu € ND,(7,) with curlu = 0. There exists a ¢ € S,(7,) with u = grad ¢.
o Letv e 727;3) (75) with divv = 0. There ezists a u € N'D,(7,) with v = curl ¢.

o Letve 7279(/@) with divv = 0. There ezists a ¢ € S,(Kp,) with v = curlp ¢.

Proof. See Hiptmair [63, 66]. O
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4 Basis functions and interpolation operators

4.7 An extension operator for R7 ,(K},)

In this section we construct continuous extension operators from R7 ,(Ks) to N'D,(7,)
due to Alonso & Valli [5] and due to Hiptmair. These spaces are used for the discretiza-
tion of the spaces H(curl, §2) and Hrﬂ(divlﬂ, I'). We know that the mapping

7" H(curl, Q) — Hrﬂ(diVF, L)

mapping is linear, continuous and surjective and that there exists a continuous inverse
mapping, see Lemma 3.1.3. Furthermore, we know that there holds

’Vtx (N,D:n(,];t)) = 7zfp(lch)-

The aim is to construct a continuous inverse for this mapping. A construction of such
an inverse is given in Alonso & Valli [5, p. 617 ff.]. Therefore, the elliptic bilinear form
a(u,v) = /(curlu ccurlv+u-v)

Q
~1/2

is considered. In the beginning, we consider for A € H|| (divp,T") the problem of
finding an extension FA € H(curl, Q) such that there holds

a(FA\,v)=0 Vv e Hy(curl, Q),
FAxn=A\

From the Theorem of Lax-Milgram and the continuity of 7, follows the existence of such
an FA and the continuity of F', such that there holds

IFA |5 (curto) < C ||A||Hﬁl/2(div1~,1“)

with a constant C' > 0.

The finite dimensional counterpart of F is the operator Fy, : RT ,(Kp,) — N'D,(7},) which
is defined by solving the problem:
For Xy, € RT ,(Ky,) find FpA, € ND,(Ty) such that there holds

a(Fphp,v) =0 Vv e ND,(7,) NHy(curl, Q2),
Fh>\h XxXn= >\h-

Thus, there exists a constant C' > 0, independent of h, such that

|FaAn || icurto) < C H}‘hHHf/z(diVF,F) VA€ RT,(Ky),

cf. Alonso and Valli [5, p. 619]. There is an even weaker result proven in which I' is
only a part of the boundary 9€2. On 9Q\I" the functions in H(curl, 2) are assumed to
vanish. The functions in Hr/ ?(divp, ') are extended by 0 on OQ\T.
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4.7 An extension operator for RT ,(kC)

A further extension operator was communicated by Ralf Hiptmair. The main tool is the
de Rham diagram from Section 4.6.

Initially, we construct an extension of a piecewise polynomial function on the boundary
to a Raviart-Thomas function in the domain €, cf. Hiptmair [62].

Lemma 4.7.1 Let &, € S,—1(Kp) be a piecewise polynomial function on I'. Then, there
exists an extension vy, € RT ,(7;,) with divvy, =0 and vy, -n =&, on I' such that

[villLz@) < ClEnllm-12ary (4.20)

with a constant C' > 0 independent of h.

Proof. Let u be the solution of the Neumann problem

—Au=0 in €,
g—z =&, on I'.

As &, € L*(T) and the domain  has a piecewise continuous boundary there holds
u € H¥*(Q), 0 < & < g, cf. Grisvard [52, Corollary 2.6.7] or Dauge [41]. Tt follows
that Vu € HY?7(Q) and div Vu = 0. Let II? : HY2*5(Q) N H(div, Q) — RT ,(7) be
the continuous interpolation operator defined in Section 4.3. We define
vy, =1 Vu
and there holds
div vy, = divII™ Vu =0

and
v — Ve < ChY* |V gese ),

see Theorem 4.3.1 or Hiptmair & Schwab [68, Lemma 5.1], and
Vi -1l = §h~

This holds because R7,, and II™ are constructed in such a way that the normal com-
ponent on the element faces has to be continuous. Thus, there has to hold n - II™? Vu =

n- VU - €h
Using the inverse inequality
I€nllzzery < C BTNl -1y
we get
||Vh||L2(Q) S Ch1/2+€HVU||H1/2+s(Q) + ||VUHL2(Q)
< OV 16l ey + C Nlénll -1y
<C thHH*lﬂ(F)'
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4 Basis functions and interpolation operators

Using this result, we can proof the following extension theorem.

Theorem 4.7.2 For A\, € RT ,(K)) C H[lﬂ(diVF,F) there exists wy, € N'Dy(Ty,) with

wy, X n =\, and a constant C > 0, independent of h, such that

||Wh||H(curl,Q) <C ||Ah||Hﬂ1/2(divr,F)' (421)

Proof. First of all, we define &, := div A;, € S,—1(K4). Using the constructed extension
function of Lemma 4.7.1 we find v, € RT ,(7;,) with divv, = 0 and v, - n = div Ay,
From the de Rham diagram we then know that there exists a v, € N'D,(7,) with

curlu, = vy,

and
lunllz@) < Cllvalle@

such that there holds, using (4.20),

[unllaeurro) < C lIVallrz@) < Cllénllg-12@y = C Il div Ap|| g-1/2ry- (4.22)

Next, we define

Ch =, — (Vh X Il) S pr(lCh)
and there holds
divr ¢, = div A, — div(uy, X n)
=div, —n-curlu,
=& — & =0.
Using the de Rham diagram on the boundary there exists a ¢, € S,(K;) with ¢, =
curlr ¢, and there holds

||¢h||H1/2(F) <C ||Ch||H*1/2(F) = CHChHHil/?(diVF’F)'

Next, we use a discrete harmonic extension, see Chapter 2, to extend ¢, € S,(Ky) to
), € S,(7) with

[Pn | 1) < Cll@nll grr2(ry- (4.23)
Due to the de Rham diagram there holds grad ®, € N'D,(7;,) and we define

Wy = uy + grad q>h

such that there holds

w, Xn=u, Xn+curlp ®,|r =u, xn+ ¢,

. (4.24)
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4.7 An extension operator for RT ,(kC)

Finally, we have to prove the stability of the extension (4.21). Using (4.22), (4.23) and
(4.24) we get

W[ E(eurLe) < [[unllaeurie) + 1Pl @
<C {” div )‘hHH*l/?(F) + ||¢h||H1/2(F)}
< O {1 div Anllgr-12 ) + [1Callr-12) }

< C {HAhHH“l/Z(diVFI) + ||11h X nHH1/2(F)}

<C H}‘hHHF/Q(diVF,F)‘

Remark 4.7.3 The above extension operators are only valid for the whole spaces N'Dy(7Ty,)
and RT ,(Ky,). Although, we know that for every basis functions ¢ € RT ,(ICp,) there ex-
ists a basis function b € N'D,(T,) with v (b) = ¢ it is not clear if the estimate

||b||H(cur1,Q) <C ||¢||H[1/2(din,F)

1s independent of the mesh size h. This is the main problem in constructing a stable
decomposition of the space RT o(Ky,) in Section 4.10.
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4 Basis functions and interpolation operators

4.8 hp-Interpolation

The construction of residual error estimates involves the construction of suitable inter-
polation operators. In the previous sections we have considered several moment-based
interpolation operators and have given estimates for the h-version. In this section we will
introduce a quasi-optimal projection-based interpolation operator for the p-version and
hp-version for H(curl, ). In Chapter 5 we use this result to derive an error estimator
for the hp-version of the coupling of FEM and BEM for the eddy current problem.

For the moment-based interpolation operator, introduced in section 4.1, Monk [77] proves
the following suboptimal p-interpolation error estimate.

Theorem 4.8.1 (Monk [77]) Let u € H'(Q) for some r > 1 and let II" : H"(Q) —
ND,(T,,) be the interpolation operator due to Nédélec , then there holds

I = Iul|g20) < CR™ @) p= D lu]jgr (q).

In his proof he follows the ideas of Suri [102] and uses expansions into series of Legendre
polynomials. Furthermore, we remark that he requires a strong regularity of H"(2),
r > 1, for the interpolated function.

Another idea is to introduce projection-based interpolation operators, see e.g. Demkow-
icz et al. [46, 45] or Hiptmair [65]. Hiptmair [65, Theorem 3.18] proves the following
estimate using the results from differential geometry for his interpolation operator Hll,.

Theorem 4.8.2 (Hiptmair) Under certain assumptions on polynomial extensions the
projection-based interpolation operators H},, p € Ny, satisfy

1_e
||ll — H;;uHLQ(Q) < sz (||u||H1(Q) + || curlu||H1(Q)) ,

for any € > 0, and for all sufficiently smooth vector-fields u with a constant C' =
C(0(2),€) > 0, independent of p. For all r > 1 and ¢ > 0 we have, with C =
C(r,e,0(Q)) >0,

lu =Tl < Cp~ "9 ullar(q).

The exponent —(r — 1 —¢) is still not optimal. The aim is to construct an interpolation

operator with the factor p=("=9).

In two dimensions Babuska & Demkowicz [44] prove the following result for their inter-
polation operator operator II°! on a triangle 7. They use extension operators and a
discrete Friedrich’s inequality.
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4.8 hp-Interpolation

Theorem 4.8.3 (Babuska/Demkowicz) There exists a constant C > 0, independent
of the polynomial degrees p and p., the polynomial degree on the edges e, such that

= T e 7y < s (1l + | curl )

forevery 0 <r <1, and 0 < e <r. Here, pypin = min, p,.

First of all, they prove the continuity of their extension operator on the space H (7)) N
H(curl, T), e > 0, and then use a best approximation result to get a stronger norm.

Using the ideas of Babuska and Demkowicz we construct an interpolation operator in
three dimensions. In the following we consider a tetrahedron 7. On this we define the
polynomial space Pge,pf (T"), denoting the space of vector-valued polynomials of order p
defined on T with traces of their tangential components on edges e of (possible lower)
order p., and with traces of their tangential component on faces f of (possible lower)

order py.

Extending the construction of Demkowicz & Babuska [44] we get the interpolation op-
erator, compare also Demkowicz et al. [46, 45] and Hiptmair [65],
I, : H'(curl, T) — P?_, (T), r>1/2+¢,
which is defined as the sum
f[llju =uw +uh +ul’ +ull (4.25)
Therefore, we perform the following steps.

In Step 1 we use Whitney’s lowest order interpolant. Assuming that u fulfills the
regularity demands in Remark4.1.1 we can perform the following construction.

For each edge e we define ¢ € P1(T) (the space of vector-valued linear polynomials on
T') by the property

1
b g = el on edge e
0 on the other edges.

where |e| denotes the length of e. Here, t is the unit tangent vector on e. Setting

([ )

e

then the tangential trace of u — u; has integral mean zero on each edge because of

/ete~(u—u1) - /t (u_z,(/e/u'te') ¢e,>

e

_ /B<te.u_z(/elu.te,)te,¢e/>

el

_ /E(te-u—%/ete-u):().
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4 Basis functions and interpolation operators

In Step 2 we define the edge-interpolants. Firstly, we define a scalar-valued function v
on the edges of T" by setting
o

s t-(u—uy), v =0 at all vertices. (4.26)

This definition of v is equivalent to
Y| = / t-(u—u)ds, (4.27)
é1

where é; is a vertex of the edge e and x is a point on the edge. This construction is also
referred to as lifting operator, see e.g. Hiptmair [65].

Next, we take the projection 1, . of 9|, in the L?>-norm onto the the polynomial space
PP (e) of polynomials of degree p, 4 1 which vanish in the endpoints of e. Hence 1, €
PP (e) minimizes |[vhs,. — ¥||12(0). We extend 1y, into the interior of the tetrahedron
T such that the extended function vanishes on all other edges. This can be done using
the extension presented in Chapter 1 and Chapter 2. Therefore we extend the functions
on the edges into the interior of the triangle and use a discrete harmonic extension into
the tetrahedron. Finally, we define ub, := V5, € P? (T') and sum over all edges of the

tetrahedron )
Pe .__ E Pe
u2 . u27e .
e=1

In Step 3 we define the face interpolants. Here, we consider the surface gradient
Vr¢ = 7p(V¢) and the scalar surface rotation curlpu := (curlu) - n. We mini-
mize the tangential trace of u in the L?(F)-norm on the face F. Therefore, we compute
uy’, € PY(F) which minimizes

|| curlp (ugFF —(u—u; — uge)) | 22(r) (4.28)

and satisfies
(W — (u—u —uh),Vpp) =0 Vo € PPT(F). (4.29)

Here, P?%(F') denotes the polynomials on the face F' with tangential components vanish-
ing on OF. Finally, we extend ugj} into the tetrahedron 7" with tangential components
vanishing on all other faces. Altogether we have

4
PFo._ PF
u; .—E u; '

F=1

In Step 4 we introduce the interior interpolant. Let P”%(T") denote the space of vector-
valued polynomials of degree p; on T whose tangential components have vanishing trace
on the boundary 9T of T. Here, we compute u}’ € P”,(T) via the constraints

| curl (v}’ — (u—u; —ub* — uf"))||r2) = || curl(uf’ — (u —u; — uf")) |lL2(r) — min
(uff — (0 —w —u} —uf"),Vg) =0 Vo e P (T)
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4.8 hp-Interpolation

Finally, we get the interpolation operator

f[llju =u; + u) + uf’ +ul’.
Using a different technique as in the proof of Theorem 4.8.3 and making certain assump-

tions on the existence of polynomial extension operators Demkowicz & Buffa [45] prove
a similar result for three dimensions using the same construction above.

Theorem 4.8.4 (Demkowicz/Buffa) Under the conjecture on the ezistence of poly-
nomial preserving extension operators; for every € > 0, there exists a constant C' =

O(e™') such that

—(r—e

||11 - ]'::[11)U||H(CUYI7T) S Cp )HuHHT(curl,T)

for every u € H (curl, T), r > %+ €. Here, p = min{p;,ps,p.}, where pr, py and
pe are the polynomial degrees in the interior, on the faces f and on the edge e with
pe = min{ps} for faces f neighboring edge e.

Remark 4.8.5 Due to the demand that u € H (curl, T), r > % + € this result is still
not optimal. This reqularity assumption is due to Step 1 where we need strong reqularity,
compare Remark 4.1.1. One idea to get rid of this is the use of a non-local Clément type
interpolation as introduced in §4.8.1.

Using the twisted tangential trace +; we can also define an interpolation operator H},,F
on the boundary by
I ydu =~ 10 (4.30)

Next, we consider the hp-version for the meshes 7, on €2 and the induced mesh K; on
[’ with suitable H(curl, 2)- and Hr/ ?(divr, I')-conforming polynomial spaces X ,(75)
and yh,p(lCh).

Using the approximation properties of the projection-based interpolation operators ﬂ;
defined in (4.25) we get the following approximation properties for II} on A}, ,(7,) and
I} on Y, (Kp). As a corollary of Theorem 4.8.4 we obtain

Theorem 4.8.6 For u € H'(curl,Q) and X\ € Hﬁ_l/z(din,F), r > 1/2. there exist
constants ¢, ¢, ¢ > 0, independent of h, p, w and X\, such that for k = min{r, ppmi, + 1},
€ >0, (with pyin denoting minimal polynomial degree):

la = Thullgego) < ehptn | ullae @), (4.31)
o = T reure) < APl (ullar @) + leurlufar(o) (4.32)

and

||A - H}),FAHHﬂl/?( S Ch'kpr:lgl_g) ||A||H|TI'*1/2

(4.33)

diV[‘,F) (diV[‘,F) :

101



4 Basis functions and interpolation operators

Using (4.30) the estimate (4.33) follows from (4.32) together with the continuity of the
surjective mapping v, from H(curl, ©2) onto Hr/ ?(divp, T') and an extension argument.
Furthermore, we need the inverse inequalities in Lemma 4.1.3 and Lemma 4.4.4.

Remark 4.8.7 The above construction can similarly be applied to the case of hexahe-
drons.

4.8.1 Non-local Clément type interpolation

One of the main difficulties in the construction of the interpolation operator is the
regularity of the operator fe t - uds where t denotes the tangential unit vector along the
edge e, compare Remark 4.1.1.

In order to get rid of these constraints Schéberl [95] introduces the following non-local
Clément-type interpolation operator for edge elements.

Let Q be a polyhedral domain with Lipschitz boundary. On this we define a shape-
regular mesh of tetrahedrons. We define V = {V;} and £ = {E;;} as the sets of all
vertices and edges, respectively.

In Section 4.1.3 we calculate the following interpolation operator for lowest order poly-

Z ¢ij(x /E t-qds.

By e

nomials

Here, ¢;; denotes the Nédélec basis function related to edge E;; with unit tangential
vector t.

In order to compute the integrals we consider the following Clément-type interpolation,
compare Clément [37]. For every vertex V; let w; C QN Bep(V;) be a set of non-zero
measure, where B¢y, (V;) denotes the ball around V; of radius C' - h, C' > 0. It is not
necessary that V; € w;. Let p € N and define the weight function f; € L*°(w;) such that

there holds
/ fz qdv = Q(Vi)

for all polynomials g of degree up to p. We assume || f;|| 1o (w,) h;®. If we set ¢ = 1 on
w; we immediately get || fil|1(w,) =~ 1 and there also holds || f;|| 2w,y =~ h; 3/2 Hence, we

¥ij(a / /w [fz (y1)f5(y2) (/[yhyﬂt-qu)] dyz dys.

We are now in the position to define the interpolation operator II? by

= > Yyla)di(x

Eye€

can define
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4.8 hp-Interpolation

From the construction it follows directly that the interpolation operator is linear and we
get the following result.

Lemma 4.8.8 ( Schoberl [95]) The operator 119 is well defined on L*. Its norm is
independent of the local mesh size h and there holds

M4l 2y S llall g2,
| curl 1%q|| 27y < || curlal a7,

where T is the smallest patch of elements containing the w;.

In the following we consider the tetrahedron 7" and use the Clément type interpolation
operator II% instead of the integration in Step 1 for the construction of Hll,, compare
page 99.

There holds [, 1 = |e| for the interpolation scheme because of

Yij = /w /wj {fi(yl)fj(w) (/ﬁ/17y211d8)] dys dy

_ / | A0 55 vl dy dye
= Vi = Vs

where |V — V3| denotes the distance between V; and V;. The last step is due to
[, figdz = q(V;). This only holds if w; Nw; = 0.

Therefore, we can use the operator II? instead of the integration. Using Lemma 4.8.8
we get the estimate

Hul HH(curl,T) SJ || curl u||H(cur1,T)

which is the first step in proving the continuity of the interpolation operator.

Remark 4.8.9 Using this construction we lose the locality of the interpolation operator
such that this interpolation operator does not preserve piecewise polynomials. This makes
the extension of p-estimates to hp-estimates difficult.
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4 Basis functions and interpolation operators

4.9 Stable decompositions of N'D,(7;)

In this section we construct an H(curl, 2)-stable decomposition of the spaces N'D,(7,),
p > 1. This can be used for the construction of 2-level error estimates, compare Teltscher
et al. [105, 104] and Beck et al. [16]. Furthermore, we can use these results for the
construction of an additive Schwarz preconditioner for the H(curl, ©)-bilinear form.

4.9.1 Decomposition of N'Dy(7},)

Let 75, be a regular grid on §2 with mesh width h, and denote by M the number of edges,
N the number of faces and L the number of elements. Further, let S, denote the finite
element space of scalar, continuous and piecewise polynomial functions of order p and
let gp =S, \ Sp—1 (the hierarchical surplus). For a tetrahedron 7' the dimension of
Sy(T) is dim S, (T) = £(p+1)(p+ 2)(p + 3) and dim S,(T) = (p + 1)® for a hexahedron
T.

The aim is to find an H(curl, Q)-stable decomposition of N'Dy(7}) into the space
ND;(T,), the space of gradients of hat functions and a gradient free space. After having
derived the decomposition we will prove the stability in Lemma 4.9.1. This decompo-
sition can also be used to construct a preconditioner for the H(curl, Q)-bilinear form
a(u,v) := (curlu, curlv)g + (u, v)q.

Tetrahedral meshes

First of all, we consider the case of tetrahedral meshes. For those the decomposition
given in [14, 16] reads

NDy(T;) = NDy(T;) @ grad 8(T;,) & N'D, (T;) (4.34)

where

J\//\'Z/);(’]?L) = {uh e NDy(Ty) : /uh-tqu =0, Vq € Py, e edge of’Th},

e

ie., ./\//\'1/)2L (73,) is spanned by face functions only.

Counting the degrees of freedom on an element 7', one sees that (4.34) is a direct sum:
the dimension of N'D{(T) equals the number of edges, i.e. six, and the dimension of
Sy(T) is 10 — 4 = 6 (again equal to the number of edges). We write grad S,(7,) =
span{grad ¢(°V), ... grad ¢{*»)}. The space N'Dy(T) has dimension 20, corresponding
to two basis functions per edge and two per face of T'. The basis functions on the faces

span the space ./\//\'1/)2L (T'), which thus has dimension 8. Accordingly, on a tetrahedral
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4.9 Stable decompositions of N'D,(T;,)

mesh we write

ND, (Th) = span{b{™), b{f) . plF™) by

for the space spanned by the face-oriented basis functions of N'Dy(7;). The decomposi-
tion (4.34) can then be written as:

M N
NDo(Tp) = NDi(T;) @ Y span{grad ¢} @ 3 span{b{™ by} (4.35)

i=1 Jj=1

Hexahedral meshes

This construction cannot be extended to the hexahedral case, for the decomposition
defined in (4.34) is then no longer a direct sum. Counting degrees of freedom, we see

~ — 1
that grad S;(T') and N'D, (T) overlap: the dimension of N'D;(T) equals the number
of edges, i.e. 12, the dimension of Sy(7T') is equal to 27 — 8 = 19 (corresponding to one

function per edge, one per face and one inner function), and the dimension of ./\//71/)2L (T)
is 30 (four functions per face and six inner functions). But the dimension of N'Dy(T) is
54, such that there must hold dim(grad S,(T) NND4(T)) = 7. Hence, if we are looking
for a direct decomposition of N'Dy(T') for hexahedra, we must determine 7 functions to
climinate from grad S,(T) N N'Dy(T). Let us write

Sy(T) = span{o(©), ... ple12) D) ) 1)}

with edge based functions ¢(¢), face based functions ¢(¥) and bubble function ¢().
Furthermore, with face based functions bEFj ) and suitable "bubble’ functions bET) we can
write

—— 1
ND, (T) = span{b{™, ..., b{™ .. bl bl b" . b1

— 1

By explicitly computing the basis functions of N'D, (T') for the reference element T =

[—1,1]* (according to the degrees of freedom given earlier), one ascertains that the face
~ — 1

functions of grad Sy(7T") can be described by functions of N'D, (T), for example there

holds on the reference cube, cf. Section 4.1.1,

32
grad gb(FO) =grad(1l — :172)(1 — y2)(1 —z) = g(bgﬂ)) — bleO) — bgT) — bflT) — béT)),

and similarly for the other grad ¢¥3). There further holds

4
grad ¢7) = grad(1 — 2)(1 — y?)(1 — 2?) = —2—7(b;T) + bflT) + béT)).

With this information, there are now many ways to exchange the spaces grad §2(T) and
o s L= . .

ND, (T) by reduced spaces grad Sy (T') and N'D, (T) to obtain a direct sum. We
propose:
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4 Basis functions and interpolation operators

1. leave Sy(T) as it is,

2. substitute bgFj) - biFj) for the face functions béFj), biFj) (j=1,...,6) and b" —
— 1
biT) and biT) —béT) for the interior functions bgT), biT), béT); this changes N'D, (T')
— 1
to ND, (7).

We then obtain the global space

—_— - , v v ,
ND, (T;) == span{b{"™, b{™ bl + b7,
bng)’ béTk), béTk), bng) _ bflTk)’ bz(lTk) _ béTk)’

j=1,...,N, k=1,... L}
and the direct decomposition
~ — 1,
NDy(T,) = NDi(T,) @ grad So(7;,) ©ND, () (4.36)

for hexahedral grids, which can be broken down to:

M
NDy(T,) = ND(T;,) ® Z span{grad gb(ei)}
i=1
N

Y (span{grad 6"} @ span{b{"”, b b + b} (4.37)

j=1
L
@Z (span{grad 6T @ span{b{™), T pTH) pTH _pT) bz(lTk)_béTk)})'
k=1
In what follows the stability of the decompositions (4.35) and (4.37) is crucial for the
derivation of hierarchical error indicators. Therefore, we define for tetrahedra the sub-
space projections
Py : NDy(T;,) — N'D1(Ty,),
P : NDy(T;,) — span{bgF), béF)},
R : N'Dy(7;,) — span{grad ¢(e)},

and for hexahedra the projections

Py : NDy(T,) — N'Di(Ty),
PY)  N'Dy(T) — span{bgF), béF), bé” + ble)},
P N'Dy(T;) — span{b{”, b{" b" b — b{" b{" — b1,
R© . N'Dy(T;,) — span{grad ¢},
R N'Dy(Th) — span{grad 67},
R™ . N'Dy(T,,) — span{grad ¢},
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4.9 Stable decompositions of N'D,(T;,)
so that for uy € N'Dy(7},) the decompositions (4.35) and (4.37) can be written as

M N
Uy = P1u2 + Z R(ei)u2 + Z P(Fj)llg (438)

=1 Jj=1

and

M N L
u, = Puy + Z Ry + Z (R(Ff)ug + P(Fj)u2) + Z (R(Tk)u2 + P(Tk)m) . (4.39)
i=1 Jj=1

The next lemma states the stability result. For the sake of clarity, we will denote the
H(curl, Q2)-norm simply by ||-||.

Lemma 4.9.1 The decompositions (4.35) and (4.37) are both stable with respect to the
H(curl, Q)-norm, i.e., for all uy € N'Dy(7;,) there holds

M N
sl = (| Prus|* + Y | Rug | + Y[ PY g (4.40)
i=1 j=1
and
el = | Py 2 + ZHRQ | + Z (IR ) + |7
. ) ) (4.41)
£ 30 (1R 4 [P Twy?).
k=1
respectively.

Proof. First of all, let us consider the case of hexahedra, i.e. (4.41). The proof for the
tetrahedral case is similar (see Beck et al. [16, Lemma 3 and Lemma 4]).

We observe that due to the uniqueness of the decomposition (4.37) the mapping ||| is
a norm where ||-|| is defined by

M N
|||u2|||%2(9) ::||P1u2||i2(9) + ZHR(Q)WH%}(Q) + Z (||R(Fj)u2||%2(9) + ||P(Fj)u2||i2(g))
— ‘=

L
+ 3 (IR ™ a0 + 1P uslEaey ) = Dl Pl
P

k=1
Since the L2-Norm is local, we conclude with (4.6) that there holds

luelfz) = > lueliem =D > IPuellfan

TeT), P TeT,

~ SO b Pual?, g~ Y hTZ||PTu2||L2(T (4.42)

P TeTy, TeT,

~ Y he Y PR3, -

TeT, Pf
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4 Basis functions and interpolation operators

Here, Pr denotes a projection operator that is related to the element 7'. Furthermore,
v(%) = BTv(x) is the transformation of v to the reference element 7. The constant
in the equivalence relation depends only on the shape regularity of the mesh and there
holds for 0ty € N'Dy(T)

lsllyz iy = DI Prtolgagry ~ Iy,
P,\

since all norms are equivalent on a finite dimensional space and the number of projection
operators on an element is bounded. Here, the constant in the equivalence relation
depends only on the decomposition on 7. With (4.42) and (4.6) we obtain

luzlfe ~ hel[ g, 7 ~ > lsllfzry = luslifzg)-
TeT, TeTy

We still have to show that there holds

lcurlus ||z = Zchrl Pu2||i2(9) ~ [[curluy||r2(q).
P

This follows from the same arguments as above, when we use relation (4.14) for the
transformation to the reference element since curluy, € RT5(7;,) for us € N'Dy(7y).
Note that also the following decomposition is unique:

M N
curlu, = curl pll,Ig + Z curl é(ei)UQ + Z (curl R(Fj)ug + curl p(Fj)u2>
i=1 j=1
L ~ ~
+ Z (curl R(Tk)ug + curl P(Tk)u2> .
k=1

This can be seen as follows.

Let curluy; = 0. Thus, we have curl p1u2 = curl IV u, = ™ curlu, = 0, further-
more there holds curl R(ei)ug = curl E(Fj)UQ = curl R(Tk)UQ = 0 due to curlgrad = 0.
The decomposition (4.39) yields curl (Z;VZI PEuy + S8 P(Tk)ug) = 0. Therefore,
there exists 1y € Sy(7}) with Zjvzl PFuy+3F  PTu, = grad . There holds S, =
S1 @S, and grad S»(7;,) = grad 1 (7;,) @ grad S»(7;,). As grad §1(7;,) € ND1(7;) and
(/\/’Dl(’ﬁl) U grad gg(ﬂ)) N /\71/);_(72) = {0} due to the construction of /\71/?;_(72)
and the direct sum in (4.36) there must hold grad, = 0. Hence, PF)u, = 0 for
all j and PT)uy = 0 for all k. Especially there holds curl P#)u, = 0 for all j and

curl P79y, = 0 for all k. Thus, curluy = 0 implies curl Pu, = 0 for all projections
P. Altogether there holds, independently of the mesh size h,

|||u2|||L2(Q) ~ ||u2||L2(Q)>

|||CLII'1 U9 |||L2 Q) ~ ||CLII'1 U9 || L2 (Q)-

This gives the assertion of the lemma in case of a hexahedral mesh for the H(curl, Q2)-
norm and the equivalent energy norm. O
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4.9 Stable decompositions of N'D,(T;,)

4.9.2 A stable decomposition of N'D,(7;)

Similarly to the previous section, we examine stable decompositions of N'D,, for arbitrary
p € N on a hexahedral mesh.
First of all, we remark that there holds the decomposition

NDy(Th) = ND, +(Th) & (grad S,(T;) + ND, (7)) (4.43)

with

8,(Th) = Sy(T\S,1(Th)

and

/\773;(%) = {uh € NDy(Tp) : /uh'tqu =0, Vg € P,_1, eedge of Ty,

e

/(uh X Il) . qu = 0,\V/q € ]P)p_37p_2 X ]P)p—2,p—3> Fface of ,];u
F

/fu Xqdx=0VqeP, 0y, 3, 3xXPy s, 0, 3xXPy 5, 3,9 T¢€ 'E},
compare the definition of the integral moments in (4.1). It follows that /\/f\Y/Dp(ZL) consists
of all those functions of N'D,(7;) that don’t belong to the degrees of freedom that are
associated to the edges and to the lower polynomial degrees. Due to the de Rham
diagram (Section 4.6) there holds grad S,(7,) € N'D,(7,) and the equality in (4.43) is
ensured. Next, we count the dimensions of the used spaces on the reference hexahedron
T. There holds with separation to edge, face and interior functions

~

dimND,(T) = 12p +12p* — 12p +3p* — 6p* + 3p
dimND,_(T) = 12p — 12 +12p% — 36p+24 +3p3 — 15p® + 24p — 12
dmND, (T) = +24p — 24 P2 — 21p+ 12

dim S,(7) = 8+ 12p—12 +6(p—1)* +(p—1)°

dim S, (T) = 12 +12p — 18 1302 —9p+7

Counting the degrees of freedom in (4.43), we thus get

~ ~ o~ — 1 ~
dim N'D,_((T') + dim S,(T') + dim N'D,, (T')
—12p +12p*—18 +3p°—3p* —6p+7  (4.44)
=3p® +9p* +6p — 11.

As the sum in (4.43) is direct, there holds
dim (S,(T) dim D, (T)) =12p =18 +3p* ~ 9p+7.

This is the difference between (4.44) and dim N Dp(f). Thus, we have to change the
~ o~ — 1 ~
spaces Sp(T) and N'D,, (T) in such a way that we get a direct sum.
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4 Basis functions and interpolation operators

First of all, we change the interior functions. Considering the dimensions and the direct
sum in (4.43) it follows that the interior functions of S,(7") are contained in those of

/\773( T). Therefore, we reduce NT D (T) by those interior functions.

—_— ] o~
We are repeating this for the face functions and reduce the face functions of N'D,, (T')
by 2p — 3 basis functions.

Hence, we define the space N'D D (T as the subspace of ND D (T) reduced by 3p>—9p+T7

interior and 12p — 18 face functions. Thus, NT D (T ) consists of 12p + 6 face functions
and 6p? — 12p + 5 interior functions. The advantage of this decomposition is that the
subspaces are quite small and the preconditioning matrix is easier to invert.

Hence, we get the following decomposition

M
NDy(T,) = NDp_1(Th) © Z span {grad qS(ei)}

i=1

® (span {grad ¢§Fj), ...,grad q§2p 3} @ span {b(F béiil}) (4.45)

S
Mh EMZ

T = (Th) Ty)
(span {grad ¢§ k), ...,grad qz53 5 9p+7} o) {bg ) bép’;_12p+5}>
k=1
Here, M denotes the number of edges, N denotes the number of faces and L denotes
the number of elements of the triangulation 7j,.
Furthermore, we introduce the following projection operators

p—1 - ( —
PE) . ND(T; b, b Ve NDT(T

: p(Zn) — span by 7, ... byt ¢ C . (1),

. 1

P™: ND,(T,) — span {bgT bé; 12p+5} CND, (T),
R® : N'D,(T;) — span {grad ¢§F)} ,
RE) . N'D,(T;,) — span {grad <z>§ ), ,grad ¢,, 3}
RT : N'D,(T;,) — span {grad ¢§T) ., grad ¢, 9p+7}

—_— 1 o~
Another possibility would be to leave N'D, (T') as it is and to take only the 12 edge
functions from Sp(f) Thus, we get the following decomposition

N
NDy(Th) =NDy-1(T) Z span {grad ¢/} &) span{b{"?,
= (4.46)

N @Zf"pan{b( N i
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4.9 Stable decompositions of N'D,(T;,)

Furthermore, we introduce the following projection operators
Py : NDy(Tp)

P N'D,(T;) — span {bgF), e bé}é;)—n(p—m} :

PT)  N'D,(T;,) — span {bgT), N } ,

R : N'Dy(T,)

It follows that the decomposition (4.46) for u € N'D,(7}) can also be written as

M N L
u= Pp_lu—i—ZR(ei)u—l—ZP(FJ)u+ZP(T’“)u (4.47)
i=1 j=1 k=1

and there holds the following lemma.

Lemma 4.9.2 The decomposition (4.46) is stable with respect to the H(curl, Q2)-norm,
i.e. for allu € N'D,(Ty) there holds

M
HuH%-I(curl,Q) = HPp—luH%-I(curl,Q) + Z HR(ei)uHH(CUI‘l,Q)
=1

N L
) 1P e + Y 1P 0 seuro)-
j=1 k=1

Proof. The proof is similar to the proof of Lemma 4.9.1. O
Remark 4.9.3 A similar result holds for the decomposition (4.45).

Remark 4.9.4 The space ND,_1(T,) can also be split recursively to get smaller sub-
spaces.

4.9.3 A preconditioner for the H(curl, (2)-bilinear form, h-version

Here, we consider the H(curl, 2)-bilinear form
a(u,v) = (curlu, curl v)g + (u,v)q.

Let A denote the system matrix of a(-,-) with respect to the space N'Dy(7;). Using
the stable decomposition (4.37) of N'Dy(7;) and Lemma 4.9.1 we can construct an
additive Schwarz preconditioner as in Chapter 2 such that the condition number of
the preconditioned system is bounded, independent of the mesh size h. Here, we only
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4 Basis functions and interpolation operators

consider hexahedra but the case of a tetrahedral mesh can be analyzed similarly.
The resulting matrix is block diagonal where the blocks have the following form. For
the meaning of the projections, see page 106.

V(]-:’l) = (a(b(ei)jb(ej)))"‘ ble) NDL(Ty),
V(P = (a(b{"™ b)),
b € span{b{”, b{™ BYT + b}, j=1,...N,

V(P™) = (a(B™,B™)),

BETk) € span{bng),b:(aTk)abng)ab;Tk) - biTk)abz(ka) - b((o’Tk)}v k=1,...,1L,
V(R®)) := a(grad ¢, grad ¢\V), i=1,..., M,
V(R™) := a(grad o™, grad V), i=1,...,N,

V(R™) := a(grad ¢, grad ™)), i=1,...,L.

Most of the matrices are quite small, the matrices related to the gradients are only
one-dimensional, and easy to invert. The largest matrix is the one related to N'D;(7})
whose size depends on the number of edges.

Using these matrices we can construct the block-diagonal preconditioning matrix as

V= (diag(V(Pl), V(PUD) L v(PEN)), v(PTY)Y L v (PTE)), V(RED),
V(RE)), ..., V(R V(RED), . V(REV)) V(RT), ..., V(E(TL)))) _1,

where the blocks can be inverted separately. From Lemma 4.9.1 we get for the h-version

Theorem 4.9.5 The condition number of the preconditionened system is bounded, i.e.
there exists a constant C' > 0, independent of the mesh size h, such that

cond(VA) < C.

Remark 4.9.6 This result holds also for the decomposition of N'D,(7) for higher poly-
nomial degrees p > 2 as described in §4.9.2. Where the block related to ND,_1(7;) can
also be split inductively.
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4.10 Stable decompositions of RT 5(K},)

4.10 Stable decompositions of R7 ,(K;,)

Using the results of Section 4.9 we construct a stable decomposition of the Raviart-
Thomas space RT 2(Kp,). Using this we construct a preconditioner to the Hﬁl/ *(divy, T)-
bilinear formb(, ) := (V(divpr A),divr ¢)r + (VA, €), see Subsection 4.10.2.

4.10.1 A stable decomposition

From Chapter 3 we know that the space HF/ ?(divp, T') is just the twisted tangential

trace of H(curl, 2). It is thus obvious to discretize Hr/ *(divp,T) using the twisted
tangential trace of the space of Nédélec elements. It is well known (see e.g. Hiptmair
[64] and Lemma 4.4.1) that this yields the two dimensional H(div, ©2)-conforming space
of Raviart-Thomas, i.e.

v s ND(T) — RT ,(Ky). (4.48)

Also, the degrees of freedom carry over [64], i.e. for an element T' € 7, a face K of T
and u € (C*(T))? we have the identity

thHNDP(T)u = HmP(K)%Xu. (4.49)

We now aim to find a H[l/ ?(divp, I')-stable decomposition of RT 5(Kj) using the results
of section 4.9. Let m denote the number of edges and n the number of elements in K,
the triangular or quadrilateral trace mesh of 7,. We apply the trace mapping (4.48) to
decomposition (4.34) for tetrahedra and obtain the decomposition

RT2(KCh) = RT1(KCh) & curly S5(KCh) & RT 5 (Kn) (4.50)

for triangles, where

— 1
RT2 () = {An € RT2(Kp) /Ah ‘nqds = 0,Yq € Py, e side of k)
and gk(lCh) = Sk(Kp) \ Sk—1(Kr). Here, Si(Ky,) is the space of piecewise polynomials
in two dimensions of degree k.

For K € K, there holds |S,(K)| = 5(p+ 1)(p + 2), and the dimension of RT5(K) is
|RT 2(K)| = 8, corresponding to two basis functions per side and two inner functions.
If K € K, is the face of the element T' € 7j,, then its three sides are three edges of
T, so that the three basis functions spanning R7 ;(K) are the images of the the three
basis functions of N'D;(T') corresponding to those edges under the mapping ~,*. The
three basis functions of Sy(K) are the images of the three basis functions of Sy(T') cor-
responding to those edges and the two basis functions spanning ﬁj(K ) are the images

— 1
of the two basis functions of N'D, (T') corresponding to the face K. Counting the basis
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4 Basis functions and interpolation operators

functions yields that (4.50) is a direct sum. We write Sy(K;,) = span{p@©), ... olem)}
—
and RT , (Kp,) = span{)\gKl), )\gKl), Ce )\gK”), )\gK")}. Localization as before yields

RT(Kp) = RT1(Ky) @ Z span{curlp ¢} @ Z span{)\ng), /\ng)}. (4.51)

i=1 Jj=1
For the trace mesh of a hexahedral grid we obtain the decomposition
~ — -

RTg(lCh) = 7271 (ICh) D curlp SQ(ICh) D 7272 (/Ch), (452)

with curlp So(K) = {curlp @), ... curlp () curly o)} (with a suitable bubble
—

function ) and RT, (K) = {ASK),AéK),AgK) - /\ELK)} where )\Z(-K) (1 =1,...,4)
are the images of the basis functions bEF) in J\//\'Z/)2L (T') corresponding to the face K.

Again, (4.52) constitutes a direct sum (there holds dim R7 5(K) = 12 for quadrilateral
elements), and its localization reads

7272(/Ch) :Wl (Ich> ) Z Span{curlp So(el)}

i=1

® Z <span{curlp &} @ span{/\ng), }\gKJ’)’ )\ng) — AflKj)}).

j=1
The task at issue is to show the stability of (4.51) and (4.53), respectively. Therefore,
we define for the tetrahedral case the projection operators
P1: WQ(ICh) — 72T1(1Ch),
) RT(K) — span{ (™), ),
(@) RT 5(Ky) — span{curlp '@}

(4.53)

and for quadrilaterals the projections

]51 . MQ(ICh) — 7271(/Ch),

P8 RTH(K) — span{ AL, Al AL - A},
HOM RT »(Ky) — span{curlp 80(6)}7
F(EK) RT 5(Kp) — span{curlp SO(K)}>

such that the decompositions (4.51) and (4.53) can be written as

o= o+ 3N + 3 A, (4.54)
i=1 Jj=1
and m n
Ao =pide+ ) TN+ D (FEIA +5N) (4.55)
i=1 Jj=1

respectively. Now, the stability of these RT s-decompositions can be proven via the
stability of the N'Dsy-decompositions, as we will show in the following lemma. Here, we
will denote the Hr/ ?(divp, T')-norm simply by ||-]| in the statement of the lemma.
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4.10 Stable decompositions of RT 5(K},)

Lemma 4.10.1 The decompositions (4.51) and (4.53) are stable with respect to the
Hﬂl/ *(divy, T)-norm, i.e. for all Ay € RT(Ky) there holds

m n 2
Il = i Xall? + D - p X+ pEI A, (4.56)
i=1 j=1
and
m n 2
IXall? = (I X2 + D AN + > (FEI A + 55N (4.57)
i=1 j=1
respectively.

Proof. Take an arbitrary Ay € RT 5(K}). We decompose Ay as
Ao = A1 + Ay (4.58)

with Ay € RT1(K;) and Xy € RT 5(Ky) \ RT 1(K}p). From the extension theorems in §4.7
we know that there exist u; € N'D1(7;,) and uy € N'Dy(7;,) with v/ uy = Ap, 7 ug = Ay
and s e < N g1 gy py> [Weliseunto) < C 1Rl 12, with C > 0,

independent of h. Due to the continuity of + : H(curl,Q) — H[lﬂ(diVF,F) there
holds

a1 || E(eur,0) ||A1||Hﬂ1/2(div1ﬂ,f‘)’
[z || H(curt,0) = ||}‘2||Hf/2(diw,r)'

This, together with the stability result from Lemma 4.9.1 proves the statement of the
lemma. O

Actually, we would like to prove the following result. The problem is the existence
of stable extension operators from the basis functions on the boundary to the basis
functions in the interior. From §4.7 we only know the existence of a global extension
operator from R7 ,(K;) to ND,(7;,). Under the assumption that there exists such an
extension operator we could prove the following result.

Lemma 4.10.2 Under the assumption that there exists a continuous extension from
RT ,(Ky) to ND,(Kp) which also preserves the basis functions, the decompositions (4.51)
and (4.53) are stable with respect to the Hﬁlp(divlﬂ, [)-norm, i.e. for all Ay € RT 5(Ky)
there holds

Il = ol + S Mgl + 3 A (450)
=1 =1
and J
Il = [l + SIFON 4 3 (PN + [FINJ?) . (460)
i=1 Jj=1
respectively.
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4 Basis functions and interpolation operators

Proof. We take an arbitrary Ay € R75(K;). We decompose Ay according to (4.54)
or (4.55) into Ao = >\, Ag; (where r = m + n for a triangular mesh and r = m + 2n
for a quadrilateral mesh). We now consider the the extension F, from §4.7. We know

that there exists a uy € N'Dy(Kp,) with 7 uy = Ay and |[us||s(cur,0) S ||A2||H71/2(diVF Iy
I ’

Thus, uy; owns a stable decomposition according to Lemma 4.9.1 uy = Z]K:o uy ; with

K = M + 2N + 2L. We now assume that for every A,; there exists a up; of the

decomposition with v us; = Ag; and ||ug;||H(curLo) S ||A27j||H[1/2(diVF7F). Using the

continuity of 7/ we then obtain the equivalences

2| B (eurte) ~ ||}‘2||Hf/2(diw,r)’

Hu2,iHH(CUI'1,Q) =~ ||A2J||Hﬂ1/2(divr,l—‘)’ 1= 17 s, T

This, together with the N"Dy-stability >\ ||t |l a(curLo) = [|u2||H(curs,o) in Lemma 4.9.1
proves the statement of the lemma. O

Remark 4.10.3 Such a continuous extension exists locally on one element. There-
fore, the construction of a p-hierarchical error estimator (compare Teltscher [103] and
Teltscher et al. [104, 105]) still works, although an extension as assumed in the lemma
should not exist.

Now, let V (V') denote the vectorial (scalar) single layer potential operator for the Laplace
equation defined for vector (scalar) functions A (), cf. Chapter 3 with the Laplace-kernel
®(x,y) := ———. We can define on H[l/ *(divp,T) a continuous sesquilinear form b by

dmlx—y|"
b\, w) = (Vdivr A, divp w)r + (VA w)r (4.61)
and will consider the energy norm induced by b,

IA][e = [b(X, X)[2,

which is equivalent to the Hr/ *(divp, T')-norm.

4.10.2 A preconditioner for the single layer potential

Using the result of §4.10.1 we can construct a preconditioner for the matrix related the

H"/*(divr, T)-bilinear form (4.61).

We consider the decomposition into two spaces according to Lemma 4.10.1. For this case
we have proven the stability of the decomposition of RT 5(K;,) into the space RT 1(Ky,)
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4.10 Stable decompositions of RT 5(K},)

and the space RT 5(kKCp) \ RT 1(Kp) with respect to the Hrﬂ(divlﬂ, I')-norm. Thus, we
define the two block matrices by

Vi = (b(}\(ei)’A(ej)))'7'
‘/2 = (b()\Z,A]))

A€ e RT(Ky),
A € RT 5(Ky) \ RT 1(Ky),

1,7=1,...m+2n’

and the preconditioning matrix takes the following form

(W0
V“(O V)

From Lemma 4.10.1 we then get

Theorem 4.10.4 Let B denote the system matriz related to the bilinear form b(-,-)
on RT 2(Kp) x RT2(Ky). It follows that the preconditioned system VB has a bounded
condition number, i.e. there exists a constant C' > 0, independent on the mesh size h,
such that

cond (VB) < C.

Numerical experiment

Here, we test our 2-block preconditioner for the bilinear form (4.61) X, { € RT (k).
We consider the unit square Q := [—1,1]*> with a uniform mesh of squares of size h.
We calculate the condition number of the matrix and the condition number of the
preconditioned matrix. The results are given in Table 4.6, see also Figure 4.9. While
the condition number of the matrix increases rapidly with A the condition number of
the preconditioned system stays low.

On the implementation

Using the program package maiprogs , see Maischak [75], we first calculate the Galerkin
matrix to the bilinear form (4.61) with respect to a basis of R7 5(K;). The next task is
to find a representation of the basis functions of the spaces R71(K;) in basis functions
of RT5(K}p). Therefore, we consider the reference square K and the associated basis
functions, cf. §4.4.1. There holds

A0 Z7(0) _ \(B),
ACD 7D 2B,

A(e3) :)\ge3) o >\§K)
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4 Basis functions and interpolation operators

|j | A|DOF| cond(B) ] cond(VB) |
2 1.0 40| 257.3933| 22.0932
3 [0667] 84| 545.9814| 22.8748
4 05| 144 | 947.6450 | 24.1816
5 0.4] 220 1458.1811] 25.6662
6 |0.333] 312| 2095.8985 | 26.9247
7 10286 | 420 | 2841.5957 | 27.9643
8 | 0.25] 544 | 3708.7599 | 28.8534
9 [0.222] 684 4689.9097 | 29.6349
10| 02| 840 5786.7439 | 30.3333
11]0.182 | 1012 | 7000.7135|  30.9646
121 0.167 | 1200 | 8329.0456 |  31.5406
13]0.154 | 1404 | 9774.3916 |  32.0700
141 0.143 | 1624 | .1133E4+05 |  32.5599

Table 4.6: Condition numbers for the linear system related to the bilinear form b, with
and without preconditioning.

Using this we re-order the elements of the Galerkin matrix such that one diagonal block
of the matrix only belongs to the space R7 1(K}) and the other diagonal block belongs

to WQ(]C}L) \ Wl (]Ch)

For completeness, we give here the representation of the surface curls of hat functions in
the basis of R7 (K. This helps us to calculate an 2-level error indicator as introduced

by Teltscher [103] and Teltscher et al. [104, 105].

curlp (9 = curlp(1 — z2)(1 — y)
curlpr ) = curlp(1 + z)(1 — ¢?)
curlr (°? = curlp(1 — 22)(1 +y)
curlr (¥ = curlp(1 — z)(1 — y?)

curlp &) = curlp(1 — 22)(1 — ¢
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4.11 Hanging nodes / hanging edges
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Figure 4.9: Condition numbers of the linear system related to bilinear form b, with and
without preconditioning.

4.11 Hanging nodes / hanging edges

The above described basis functions and their transformations have been implemented
in the program package maiprogs [75] and most of the experiments have been done on
uniform refined meshes. In order to introduce an adaptive algorithm using certain error
indicators one has to consider so-called hanging nodes. In the following we describe the
implementation of hanging nodes for Nédélec and Raviart-Thomas functions. For the
implementation of hanging nodes for standard hat functions of degree 1, see the PhD-
thesis of Oestmann [85]. As the degrees of freedom of Nédélec and Raviart-Thomas
spaces are edge based we are talking about “hanging edges® instead of hanging nodes.
First of all, we describe the construction of hanging edges for functions of degree p =
1. This has been implemented in maiprogs so far. The implementation for higher
polynomial degrees still has to be done.

In the beginning, we consider the construction for an H(curl, Q)-conforming piecewise
polynomial. As described in §4.1 the constraint is that the tangential component of the
function has to be continuous. For the case p = 1 the basis functions are calculated on
page 71. We find out that the basis functions are constant on the corresponding edges.
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4 Basis functions and interpolation operators

Definition 4.11.1 An edge e of the triangulation 7}, is called regular if all elements,
which are connected to e, have this as an edge of the same size.

An edge e is called hanging or dependent if this edge is adjacent to a longer neighbor
edge or if e is adjacent to a neighboring face, see Figure /.10 for the three possible
situations.

Figure 4.10: The edges a, d and h are hanging.

For the refinement we have to ensure the one-constraint rule, see e.g. Demkowicz et
al. [47] or Oestmann [85]. This means that only one hanging node on an edge is allowed.
For the case of edges this means that one edge has at most two smaller neighboring
edges on the other element. The refinement algorithm is the following

1. Initialize a regular mesh without hanging nodes.

2. Calculate the local error indicators on every element.

3. Mark the elements to be refined.

4. Check if the one-constraint rule is fulfilled. If there is more than one hanging node
on one edge mark the neighboring elements for refinement.

5. Go to 4. until no more extra refinements are necessary.

6. Initialize the new mesh.

7. Calculate the new approximation and go to 2.
For the construction of an H(curl, Q)-conforming function we have to ensure continuity
of the tangential component over the element faces. Therefore we have to represent the

basis function on the dependent edge by basis functions on the independent edges. In
order to do so, we consider the following three cases, see Figure 4.10.

1. One edge (a) has a bigger neighbor (b).
Due to the transformation u = (BJ.)"'a and ||Br| =~ hr, the (constant) value
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4.11 Hanging nodes / hanging edges

of the basis function on the shorter edge is twice the value on the longer edge.
In order to ensure continuity we have to halve the value on the shorter edge. It
follows that the degree of freedom is copied and half-valued: a:%b.
2. Mid-edge situation on a face (the edge d in Figure 4.10, left).
As the edge functions are linear in orthogonal direction to the edge we have to take
the mean value between the two neighboring edges. Thus, the degree of freedom
is a linear combination of the two neighboring edges: d:%e+% f.

3. Half-mid-edge situation.
The edge d in Figure 4.10, right, is a small edge between two longer regular edges b
and g. Again, the degree of freedom is a linear combination of the two neighboring
longer edges: h:%b—l—ig.

These are the only possible cases. It may happen that one degree of freedom is dependent
from a dependent degree of freedom and the degrees of freedom are then transfered
multiplicatively. For further details see Oestmann [85].

Numerical experiments for meshes with hanging edges of polynomial degree p = 1 are
given in Chapter 4.

In the case of Raviart-Thomas functions on the boundary we use the same strategy. But
in two dimensions we only have to consider the case that an edge has a bigger neighbor,
see Figure 4.11. Therefore, the degree of freedom on the dependent edge is half the

Value of the bigger edge. This is due to the Piola transformation A = -5 B Bk)\ and
|dotBK\ 1Bl = e
€p B
A Ca
e. C

Figure 4.11: Hanging edge in two dimensions.

4.11.1 Hanging edges for higher polynomial degrees

Here we consider the construction of hanging nodes for the case of higher polynomial de-
grees. This hasn’t been implemented yet in maiprogs . Therefore, there are no numerical
experiments on this topic.
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4 Basis functions and interpolation operators
Raviart-Thomas elements

Here, we examine the two-dimensional case for Raviart-Thomas functions. There is only
one case possible, i.e. one small edge has a bigger neighbor, see Figure 4.11. Thus the
smaller edges e, and e. are dependent on the bigger edge e,. In order to guarantee
an H(div, Q)-conforming piecewise polynomial we have to ensure the continuity of the
normal component. Therefore, we only have to examine those basis functions with a
non-vanishing normal component on the considered edges.

As in the case of a polynomial degree p = 1 we have to describe the basis polynomials on
the smaller edge e, as a linear combination of the relevant polynomials on the adjacent
edge e, Those are the basis functions which are associated to edge e,.

Every of the p basis functions on the edge e, has to be the linear combination of the p
edge functions on the edge e,. In order to get the coefficients for the basis functions on
e, we have to solve a linear system. For the assembling of the linear system it is enough
to choose p points on the edge e, on which the function on e, should be the same as
the polynomial on e,. Thus, the basis functions on e, inherit the value of the linear
combinations of the basis functions on e,.

Nédélec elements

We now consider the space N'D,(7;,) in three dimensions. Here we have to ensure
continuity of the tangential trace. We know that the relevant Nédélec basis functions on
a face F' are those face functions which are associated to F' and those edge functions which
belong to the edges adjacent to F. All other basis function have vanishing tangential
components, see §4.1. Due to the existence of face functions we have to consider hanging
faces.

Definition 4.11.2 A face f is called hanging or dependent if this face is adjacent
to a bigger neighboring face.

The principle is quite similar to the two dimensional case with Raviart-Thomas elements.
Again the dependent basis functions on the hanging edge and the hanging face have to
be a linear combination of all the basis functions on the neighboring regular face. Hence,
one hanging basis function is now dependent on 2p+4 -2 basis functions. Again we have
to assemble a linear system by checking the continuity of the tangential component in
2p + 8 points of the smaller face.
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5 The eddy current problem

In this chapter we analyze the eddy current problem for low frequencies. We first derive
a weak formulation using the coupling of finite and boundary elements and present a
priori estimates. In Section 5.3 we develop a reliable a posteriori estimator for the hp-
version and prove the efficiency for the h-version in Section 5.4. Finally, we present
different numerical experiments which underline the theoretical results.

5.1 The eddy current problem

Let Q C R3? be a bounded, simply connected open polyhedral domain and let the
boundary I' = 99 be Lipschitz continuous and both €2 and I' be simply connected.
Furthermore, we denote the exterior domain by Qz := R3\Q and the unit normal vector
n on [' pointing into . The domain () represents the conductor with a conduc-
tivity ¢ € L®(R3), 0y > o(x) > 0o > 0 and magnetic permeability p € L®(R?),
1 > p(x) > pe > 0 with positive constants o, o1, po, 1. The exterior domain Qg
represents the air. Therefore, we set ¢ = 0 and by scaling p = 1 in 2g. We consider
a current Jy with frequency w in the conductor €2 which induces electric and magnetic
fields. As Qp is air there holds Jyo = 0 in Qg and Jo-n = 0 on I', i.e. no current flows
through I'.

Then, the eddy current problem for low frequencies is given by, compare Ammari et
al. [6]:
Find a magnetic field H(x) and an electric field E(x) with

curlE = —jwpH  in R, (5.1)
curlH=0E +J, inR? (5.2)
divE=0 inQp, (5.3)
/E-n:O VT, i=1,...,Ng, (5.4)
T
[E X H]F = [H X H]F = onl' = Q N QE, (55)
Ex)=0(x|™"), Hx)=0(|x|"")  for|x| — oc. (5.6)

Here, N denotes the number of the finitely many connected components of I'. We
remark that (5.4) is only necessary if €2 is not simply connected.
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5 The eddy current problem

In Qf (5.2) becomes curl H = 0. Therefore, E cannot be uniquely determined there
and requires the further gauging condition divE = 0, known as Coulomb gauge. The
transmission conditions (5.5) result from requiring E, H € L2 (R?®) and the radiation

conditions (5.6) follow from the Silver Miiller conditions ((3.20) and (3.21)), see Colton
& Kress [38, (6.19)].

Setting u := E, we observe from (5.1), (5.2) and (5.3) that divu = 0 and curlcurlu = 0
in the exterior domain 2 yielding Au = grad divu — curlcurlu = 0.

Therefore, u is given in Qg by the Stratton-Chu formula, see (3.25),

u(x) = + curly /F(n x u)(y)®(x,y) ds(y)

+ /F(n x curlu)(y)®(x,y) ds(y)

— grad, /F(n -u)(y)P(x,y)ds(y), x€ Qp,

with Laplace kernel ®(x,y) = #
Ar|x — ]|
When the point x moves to I' from g we obtain jump relations
s =K (hu) = Viriw) — v grad, [ (n-wdxy) ds(y) (5.7
r
wa=W(vpu) — K(vyu). (5.8)

here + denotes the limit from 2g. The appearing boundary integral operators V, IC, K
and W are defined for x € I' in Chapter 3.

In the interior domain 2 we obtain by setting u := E in (5.1) and (5.2) and integrating
by parts for suitable v

/ p~tcurlu - curlvdx + / iwou - vdx — (yyu,7pv) = — / iwJo-vdx  (5.9)
0 0 Q

where v, 7y are the traces on I' from Q. Next we use the interface conditions (5.5), i.e.
[ynvu] = [ypu] =0 on I'. Inserting (5.8) into (5.9) and adding the weak form of (5.7) we
obtain with u := Ejq, A := n X curl E;r the coupling formulation:

Find u € H(curl, ), A € Hilﬂ(din 0,T") such that

(1 curlu, curl v)q + iw(ou, v)g — (Wypu, vpv)r 4+ (KX, ypv)r = —iw(Jo, V),

(I =K)ypu,C)r + VA, ¢r=0
(5.10)

for all v € H(curl, ), ¢ € H;*(divr 0,T).

We abbreviate (5.10) by
A, A;v, ) = L(v,C) (5.11)
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5.2 A FEM/BEM coupling formulation
and note that A is continuous and elliptic, in the sense that there holds

|A(ua A; u, A)| > C1(||1'1||%-I(cu1rl,ﬂ) + ||A||i—l[1/2(div1~,1"))

for all u € H(curl,Q2) and X € Hﬁlﬂ(divlﬂ 0,1"), see Hiptmair [66]. Hence, (5.11) has a

unique solution.

5.2 A FEM/BEM coupling formulation

Next, we introduce the hp-version of the finite element / boundary element coupling
procedure for the formulation (5.10). We define a regular mesh 7, (with tetrahedral
elements) on €, inducing a mesh C, on I'. Let A}, ,(75) and Yy ,(Kp,) denote suitable
finite element and boundary element spaces of piecewise polynomials of degree p on the
meshes 7;, and [Cj,. The hp-version of the Galerkin method reads:

Find uy, € X,,(7,) C H(curl,Q), Ay, € Vi ,o(Kn) C H[lﬂ(divlﬂ 0,I') such that

~Leurluy,, curl v)g+iw(ouy, ,, v)o— (Wypy, p, vrdr+ <I€)\h7p, vr)r =—iw(Jo, v)q,

(I — K)ypupp, 1 + VA, C)r =0

(1

(5.12)

for all v € X ,(71,), ¢ € Vnp(Kh).

Let (u,A) and (upyp, Ap,) denote the solutions of (5.10) and (5.12), respectively. Then,
there holds for the Galerkin error

la — uppllEEurio) + | A — >‘h7P||HH1/2(diVF,F)
(5.13)
< C'inf { u = v||H(Eeuro) + [|A — CHHl/Q(divF,F)}

where the infimum is taken over all finite elements v € &}, ,(7},) and boundary elements
¢ € Wh,p(Kp) and C' is a positive constant, independent of u, A, h and p. The estimate
(5.13) follows from the ellipticity and continuity of the form A in combination with
the analysis of conforming Galerkin schemes for general strongly elliptic systems (see
Stephan & Wendland [97] and MacCamy & Stephan [71]).
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5 The eddy current problem

5.3 A residual error estimator for the hp-version

In the following we give a priori estimates and a posteriori estimates for the Galerkin
error. These estimates can be derived by using approximation properties of projection-
based interpolation operators I} and II} . on X ,(7;) and Y ,(Ky), defined in (4.25)
and (4.30). Inserting (4.32) and (4.33) into (5.13) yields the a priori estimate

lu = upp||EEuro) + ||A — Ahp“H*l/Q(din,F)

< Chkpmln )(HU‘HHT(Q) + H}‘HHrUz(divr,F))

with a positive constant C', independent of u, A, h and p, and arbitrary ¢ > 0, where
k = min{r, pmin + 1}.

In order to derive the a posteriori error estimate we define the set of faces Fj, of 7}, the
set of exterior faces Fi := {F € Fj, : F C I'} and the set of interior faces FY := Fj, \ Fi
and F(T) as the set of faces of the element T' € 7;,. We further use hr to denote the
maximal diameter of an element T € 7; and hp for the maximal diameter of a face
F € F,. We assume that the mesh is regular, i.e. there holds

h S ht VT,T/ € ,];w TﬂT’;fé @,
he <hgy YF e Fu(T).

Next, we define the jumps. For F' € F¢ a common face of two elements 77,75 and the
normal n pointing into 7, we define the jump by

m-qlp:=n- qQrch — D QFcD-

For F' € F} we define
n-qlp:=n-qp.

Analogously, we define the jumps

X qlp =0 Xqrcr, — N X qren, Fe ]_—hc’

n x qlp :=n x q, FeF.
Finally, the energy norms are given by
[vI[E := (u" curlv, curl v)o + w(ov, v)o = [Vl curo) (5.14)
I€N17 = (V¢ Cr = K120 (5.15)
on H(curl, Q) and Hﬁl/ 2 (divp 0,T), resp., corresponding to the variational formulation.

As for the pure h-version (see Teltscher et al. [106] and Stephan & Maischak [99]), wi
now obtain for the hp-version of the coupling (5.10) the following reliable a posteriori
error estimate with local error indicators of residual type:
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5.3 A residual error estimator for the hp-version

Theorem 5.3.1 Let (u,A) denote the solution of the coupling formulation (5.10) and
(Upp, Anyp) the solution of the Galerkin system (5.12). Then, there holds

= ety + A Ah,plliir/z(

SO+ D2+ 3+l + )2+ 2+ (g ")?
with (j = 0,1), (k=0, 1, 2)

1) =" (> (nf’c) =Y (), (mf ’F>2 = ()

TeT, FeFC FeFr

divp,T")

2

and local error indicators (arbitrary € > 0)

m =

P by Vo Vo (div I + divou,) o,

ni = p T he |Vi(iwdo + iwoa, + curl p Tt curlug,p) o7,
o = p P P |Vaa o g nle o,
nf,C = p /22 h}ﬂ ||\/N_A[N_1 curluy,, x n|g|or,

ot = p P 0w Vo, - all s,
AT = T | eurl g, 0= Wypwg, + Kg)llor,
e = p A L ewrle(Z — K)ypung + Vuplor.

Here o4 and pa denote the average of o and p on a face F.

Proof. First of all, let us abbreviate the Galerkin system (5.12) by:
Find (upp, Anp) € Xnp(Th) X Vip(Kr) such that
A(uhmu Ah,P; v, C) = ‘C(Vu C) (516>

fO’f’ all (V, C) € Xh,p(,];z) X th,(’Ch).
Setting e := u — upp, € := A — Ap,, we derive for arbitrary (esp, €n,) € Xnp(Zh) X

yhm(lCh) that
lellExeurt.o) + €llg1/20g, 1 S [Ale, €50, )]
H|| (divp,I)

=|L(e,e) — A(upp, Anps e, €)l
=|L(e —epp, € —€nyp) — AUpp, Appie —€pp, € — €py) (5.17)
=| —iw(Jo + oupp, e —en,)o — (1! curluy,,, curl(e — ep,,))q
+ Wrypun, — KApp,e — enpir + (K = Dypun, — VAup, € — €n)r]
=:|R(e—epny, € —€ny)l
Next, we assume €2 to be convex and use the Helmholtz decomposition

H(curl, Q) = M(Q) ® grad H'(Q)/C
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5 The eddy current problem

with M(Q) = Ho(div 0, Q) NH(curl, Q). This follows from the L%-orthogonal decompo-
sition

L*(Q) := Hy(div0,9Q) ® grad H'(Q)/C
for connected Lipschitz domains, see Dautray and Lions [42, Chap. IX, §1, Prop. 1].
We split e € H(curl, Q) as

e=-e" +grady (5.18)

with et € M(Q) and v € H(Q) and there holds
le lmi @) < |l curlel|rzq), (5.19)
| grad ¥[[r2(q) < llefmeure)- (5.20)

The first estimate is due to the fact that M(€) is continuously embedded in H*(Q2), see
Amrouche et al. [10, Theorem 2.17]. The second one follows with the definition of the
H(curl, Q)-norm.
We then set

en, = ﬁ}l}eL +gradIl,y € &}, (7).
Here I1} : H'(Q) — Yj,,(75) is the projection-based interpolation operator in (4.31) and
I, : H(Q) — S,(73,) is the standard interpolation operator onto piecewise polynomials
on 7, (cf. Schwab [96]).

There hold the following approximation properties, where Dy (Dp) denotes the set of
elements containing at least one vertex of an element 7" (a face F') and D1 (D1) denotes
the set of elements containing at least one edge of T' (F).

let — e |,y < hrp™ e by, (5.21)
let — et |y S il *p~ /72 et |in 1), (5.22)
1 = T | Loy S Brp™ [ 1y, (5.23)
1 = Tl ary S hi*p ™22 [ 11y (5.24)

(5.25)

16 = Ml oy S i 2p™ >/ curly a2y

The first two estimates are due to the properties of ﬁ;, compare Theorem 4.8.6. (5.23)
and (5.24) can be found in [96]. And the last is proven in the following Lemma, see
Teltscher et al. [106].

Lemma 5.3.2 There exists a linear operator m, : H/*(T') — S,(K},), such that for all
¢ € H'*(T') there holds
16 = mpdllzary S il o3P ol oy
for v e HY(Q) with gradp v = grady ¢ and
Jgrad vla) < llowurlr ol

The constant in the estimate depends only the regularity of the mesh.
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5.3 A residual error estimator for the hp-version

Proof.  First of all, we show that 7 : grad H'(Q) — curlp H'/?(T) is surjective
and continuous. For ¢ € HY?(T') there exists a continuous extension w € H'(f) of
¢. As 7 gradw = curlpwypr = curlp ¢, the mapping is surjective. According to

Lemma 3.1.3, 7, : H(curl, Q,) — H[l/Z(din,F) is also continuous and there holds

grad H'(Q) C H(curl,Q,) and curlp HY2(T') C H[l/z(din,F). Due to the open
mapping theorem there exists for every ¢ € HY?(T) a v, € H*(Q) with

lgrad vy ey < lleurlr ol v,

and
v, grad v, = curlp vy = curly ¢. (5.26)

From (5.26) there follows grady(¢ — vs) = 0, such that ¢ — vy = cpp on I' with a
constant ¢y p € C on the face F'.

Now we define the operator m,¢ := (IL,vy)|r + c,r with II, as defined above. There
holds with (5.24):

—1/2+4¢/2 h]lpp

¢ — mpbllL2ry = v + cor — T (vg + co )l 2my S lgrad vg||L2(py)-

O

Since H[lﬂ(divlﬂ 0,T) = curlp HY/?(I')/C, we set € = curlp ¢ with ¢ € HY?(I'). We
take
Enyp = curlp mpd € curly Sy, (ICh),

where S}, ,(K) denotes the space of continuous, piecewise polynomials of degree p on
Kp, and m, : HY/*(I') — S,(K}) is the standard nodal interpolation on &, [96].

With (5.18) and the above definitions of ey, and €y, ,, we obtain in place of (5.17) the
residual estimate

I(u—tpp, X = Xnp)[I* = llelffaeur ) + €l5-1/2

I (divp,I")

SIR(e —enp, € — €np)l
< [R(e" —TII}e", 0)]

+ |R(grad ¢ — grad 11,3, 0)|
+ |R(0, curlr ¢ — curly m,0)|
= ’—iw(Jo +ouy,,, et — ﬂ;el)g — (p ! curluy,,, curl(e™ — Ilet))q
+ Wrypan, — KAy, vpe™ — yplllet)r
+ ‘—iw(Jo + ouy,, grad(v — ILY))g + Wrpun, — KAy, gradp (¢ — ILa))r

+ [{(K = Dypuny = VAny, curle(¢ — mp0))r] -
(5.27)
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5 The eddy current problem

Next, we have to perform partial integrations in (5.27).

We start with the term (Jo + ouy, p, grad ¢ — grad I1,¢))q and use the Green’s formula
(3.9) and observe that uy,, is elementwise in H(div, 2). We then get
(Jo + oupy, grad ¢ — grad I1,1)q

—(divJg + divouy,, ¥ — I,0)q + Z (loupy - nlp, v — ) p. (5.28)
FeF,

Here we have interpreted the H=Y2(0T) — HY/2(0T)-duality as a L2(9T)-duality due to
the regularity of uy,. There appear no jumps of Jy - n over I' due to the assumption
that there is no flow of Jy through T'.

Next, we consider the term (u~'curluy,, curl(et — IIlet))q, for which we use the
Green’s formula (3.8). Since uy,, is only elementwise in H(curlcurl, 2), we obtain

(n~ ! curluy,,, curl(et — ﬂ;eL))Q = Z (n~* curluy,,, curl(et — Ilet))r

TeT,
= Z ( curl(z ! curluy, )€ — ﬂ;eL)T + <M_17Nuh7p> ypet — vDﬂ;el)aT)
TeT,
= Z (curl(p curluhp) e —H1 Ba+ Z curluhpxn]p,vpe —vDﬂl Y.
TeT, FeFy

(5.29)

We have used the fact that the terms p~*curluy, x n and ypet — ypIllet are in
L2(0T) (since W, pp IS & polynomial and e*, I}t € H'(T)), such that we can consider

the H (lep, arT) — _1/2(curlp, OT)-duality (-, )or as a L*(0T)-duality.

Next, we consider the terms with the boundary integral operators. In the beginning,
we examine the term (Wrypuy,, — Ié)\h,p, gradp ¢ — grad I1,9))r, which constitutes a
H[l/z(divF, r)— Hll/z(curlp, I')-duality pairing (the left hand side is in H[l/Z(diVF, )
due to Lemma 3.2.2, the right hand side is in H11/2(curlp,F) due to Lemma 3.1.1).
We can use the integration by parts formula given in Buffa & Ciarlet [27] and obtain

together with Lemma 3.2.5.

<W’7Duh,p - ]6>‘h,pv gradp(y — Hzﬂ/}))l“

‘ L (5.30)
—(dive Wypup, — dive KAy p, ¢ — o) =

The last term from (5.27) to consider is (K — I)ypun,p — VA, curly ¢ — curly m,é)r,
which is again a duality pairing between H_l/ *(curlp,T) and H_l/ *(divp,T) (the left

hand side is in H11/2(curlp, I') due to Lemma 3.2.2, the right hand 81de isinH 1z (divr, I
due to Lemma 3.1.1). Using again the integration by parts formula [27] we obtain

(K = Drpuny = VA, curle(é — mp¢))r

(5.31)
= (curlp (I — I)ypup, — curlp VA p, ¢ — mpd) 1.
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5.3 A residual error estimator for the hp-version

We now use equations (5.28)—(5.31) to transform the estimate (5.27) and obtain

lelfreurto) el 2 ) NZ| (—iwdo— iwouy,— curl(y~" curluy,), et— ITlet)q|

TeT,
+ > [[e curluy, x n]r, ypet — ypllet)r|
Ferf
+ Z |{u curluhpxn—WvDuhij/C)\hp,vDe —vpﬂl B el
FeFf
+ ) lwdiv Iy + wdivow,,, v — )7
TeT,
+ Y w(loun, - nlr ¢ = TLu)e| + Y [wlown, n,¢ - Te)r|
Fery FerFl
+ Z |(curlp (I — KC)ypuy,p + curlp VA, ¢ — m,0) 1|
FeF!

The Cauchy-Schwarz inequality (all scalar products are interpreted as L*-products) and
the approximation properties (5.21) — (5.25) then yield

2 2
||eHH(curl,Q) + ||E||Hﬂ1/2(div1~,1—‘)

1/2
{<Z P R (i + i woun,, + curl p! curlw,) 3 )
TeT,

1/2
(Z pehp |/alp™ curluhpx H]F||0F>

FeFf¢

) . 1/2
+ ( Z p e hp|li ' curl uy,, X n—\/ﬁWVDuh,pﬂL\/ﬁ’C)\h,pHg,F) |ﬁel|H1(Q)

FeF]

_ 1/2
+ { (Z p e h2Tu)H Vo 1(div Jo +divouy,y) ||(2)T>

TET,

3 1/2
+ (X e bl Ve oun, ol )

Ferf

1/2
+ (Z P~ hpw|Voup, - an,F) Vw [V grad ¥l

FeFf
e o\ /2
+ ( Z p~“hp||curlp (I — K)uy,, + curlp V)\h,pHO,F) |curlr @/ g-1/2(ry.-
Fery

With o, 1 on I' we always mean the interior o, p, i.e. the trace from Q. Due to (5.20)
there holds /w [|\/o grad ¢||L2) < llell(curt,0) and [[curly ¢|g-1/2(m) =~ HEHHTU (diveT)

(see Page 129). Furthermore, |\/_e la1 () can be estimated from above by ||e||g(curt,0)
due to (5.19), and this concludes the proof of Theorem 5.3.1. 0
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5 The eddy current problem

Furthermore, we remark that the integral operators fulfill the following mapping prop-
erties, the proof can be found in Teltscher [103, Lemma 4.3.3.], see also Mitrea et al. [76,
p. 16 and Theorem 5.1].

Lemma 5.3.3 The mappings (with the Laplace kernel)

W 1 TND,(Ky) — L(D),
curlp K : TND,(Ky) — L*(T),
KL () — LA(I),

curlp V : LZ(I') — L*(T)

are continuous.

This guarantees that all the indicators are well defined.

5.3.1 A three-fold adaptive algorithm

The local error indicators can be used to steer a three-fold adaptive algorithm:
Let tol denote the error tolerance and 0 < 6 < 6 < 1.

1. Compute the Galerkin solution.

2. For each element T' € 7}, calculate the local error indicators nl , nf, ng C nf . n(lf T
FT _FT
m’,np and

; : , , Ty 1/2
"= () + )2+ (o 9+ () + ()2 + () + ()?)
and Thnax = MaX7eT7, 77T. StOp if Tmax < tol.

3. If 0 - Nimax < 1T < 6 - Ny, increase the polynomial degree on element T by 1.
If § - Nmax < 07, perform an h-refinement of element 7.

Do nothing on element 7" if 7 < 6 - Ny

4. If necessary refine adjacent elements.

Numerical results for this algorithm are presented in Heuer [59] and Heuer et al. [60] for
a hypersingular integral equation on a surface piece modeling a scalar screen problem in
R3; the resulting hp-refinements give suitably refined meshes together with appropriate
distributions of polynomial degrees. The corresponding implementation for the above
eddy current problem can be performed with the program package maiprogs [75]; for
the pure h-version corresponding numerical experiments are given in Section 5.6. The
above hp-adaptive algorithm requires the implementation of hanging nodes for high
order polynomials, see Chapter 4. The numerical experiments in Section 5.6 show the
performance of the error indicators for the uniform hA- and p-version.
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5.4 Efficiency of the residual error estimator

5.4 Efficiency of the residual error estimator

In this section we prove the efficiency of the residual error estimator for the eddy current
problem on quasi-uniform meshes on the boundary. We assume that there holds

hfl" max
1< ’ <C
o hF,min o

for a certain constant C' > 0, independent of the mesh. Here, we solely examine the
h-version for the lowest polynomial degree. The ideas of this proof can be found in
the article of Beck et al. [15] for the FEM part. For the indicators with the bound-
ary integral operators we use some ideas of Carstensen [34]. Furthermore, we use the
spaces N'D;(7;,) for the Galerkin approximation in H(curl, Q) and RT3(Kp,) = {\ €
RT (Kp) : dive A, = 0} for the space H[lﬂ(divlﬂ 0,1).

We will bound the following error indicators. Here, T denotes a tetrahedron.

-1, .. .

n(f)F = hpvw||Vo  (divJo + divow,)|or,

= helliv/iwIo + iwy/mou, + /i curl(p~! carluy)|or,
5 = \/Rr/alez foun - wllor,
nf?C P /hF|| /,uA[,u_l curl u;, x n]F||O,F>
né:"r = 1/ h,F\/aH\/EU.h . n||0,F7

FT . -1 (
N = hF||\/ﬁ curlu, X n — \/uWypuy, + \/EIC)‘hHO’F’
ng’r = 4/ h,FH curlr uy, — curlp IC”)/Duh + curlp VAhHO,F’

The indicators i and 5! are bounded in Lemma 5.4.1, while in Lemma 5.4.2 we estimate

F,

the indicators for the jumps n(lf ' and m C Finally, the indicators on the boundary nof =

n7 " and nJ " are considered in Theorem 5.4.3.

The FEM-indicators in the interior

Here we consider the indicators nl, nf and estimate them locally from above by the
energy norm of the error.
As in (5.18) we split the error e = e+ + €° with € := grad .

Lemma 5.4.1 Assuming that divJo = 0 and o as piecewise constant, there is a constant
C > 0, independent of the mesh size h, such that there holds

m +m < C(lelleaer) + llellex +n75)

with nfy = hyr|l\/iw(Jo — i Jo)|lL2er), where IV is an interpolation operator into

ND\(T).
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5 The eddy current problem

Proof. First of all, we consider the estimator nl and we assume that the current Jj is
solenoidal, i.e. divJy = 0. There holds

e :=hrvw||[Vo=(divJo + div ouy,)|| 21
=hpy/w||[Vot divou| L2 (r).
On the tetrahedron 7" we define the bubble function

4
A =256 [ [ Aur

=1
with the barycentric coordinates \; 1 related to the vertex p; of the tetrahedron 7'. Due
to the scaling factor we get 0 < Ar < 1 and max,er Ay = 1. There holds the following
norm equivalence, see e.g. Verfiirth [107],

1M Slzary < N6llzzry < CIMP Sy for all ¢ € Py(T). (5.32)
Furthermore, we define the residual in the interior of the domain by
r(v) = (' curluy, curl v)q + iw(ouy, v)q + iw(Jo, V)

for all v € Hy(curl, ).

Using the norm equivalence (5.32) and partial integration, we get

(mo)* = ||\/Fdivau 2
wh? PlIL2(T)

< C || div O'lth%Q(T)

< C’/(divauh)Q)\T dx
T

< C’/ ouy, - (grad(Ar div(Jo + ouy))) dx
T
= C|r(grad(Ar divouy,))|
< C (€, grad(Ar div auh))Q
< C||€°|lrz(r) || grad(Ar div ouy,) [|r2(r).-
The second factor is estimated using an inverse inequality for polynomials

ud

|| grad()\T div Uuh)HLz(T) S Oh;ln)\T div O'uhHLz(T) S C h2 .
T

Hence, we finally get
5 < Clle°||Laer). (5.33)

Next, we estimate the solenoidal part of the indicator. Therefore, we examine

ni =hrlliy/awdo + iwy/Hou, + /pearl(p”t curluy) ||
< C hyliy/pwIl}Jo + iw/mouy, + /peurl(p™ curluy) ||pz e
+ C’hTH\/ﬁw(JO — H?JO>HL2(T)
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5.4 Efficiency of the residual error estimator

with the projection operator II" into A'D;(7},). Moreover, we define
1

ny = hrlliy/awll}do + iwy/fowy, + y/fcurl (" curluy) ||pzr)
Mo = hrllv/iw(Jo — o) [z cr)

and we examine 7/ ;. We abbreviate j, := i\/uwIl}Jo+iw,/fiou,+/mcurl(p = curluy).
As above we can estimate

(77?,1)2
h7

< C'/ (i\/ﬁwH?Jo + iwy/pouy, + \/,Ecurl(/f1 curl uh)) . (jhAT) dx
T

e (r(@) [ Ve~ 30 i) dx)
T
< Clleller IMrinller + Cllv/iw(Jo — o) lrzer IAinllwzer)-

where the energy norm || - ||¢r is defined in (5.14). There holds due to an inverse
inequality
IArinller < ChytlinllLar)

and we get
(77{1)2 < Ch_l . Ch_l T .
pa < Chr leller linllLzcr) + Chy ny s inlluz e
= Ch52 ||eH¢‘,T77f,1 + Chf 77?,2
Finally,
n < C(niy +mip) < C(lleller +niz). (5.34)
The estimates in (5.33) and (5.34) complete the proof. O

The FEM-indicators for the jumps

Next, we estimate the indicators ng “ and nf ' related to the jumps on a face F =
0Ty N 9T which belongs to two adjacent tetrahedrons 77 and T5.

Lemma 5.4.2 There is a constant C' > 0, independent of the mesh size h, such that
there holds

"+ < C (e + leller + llelen + b +1is)

with 77{2 defined in Lemma 5.4.1.

Proof. We define a bubble function Ar on the face F by

3
)\F =27 H )‘l,RT
=1
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5 The eddy current problem
with the barycentric coordinates A\; pr with respect to the vertices of F. Due to the

scaling factor we get 0 < A\p < 1 and max,cr Ap = 1. There holds the following norm
equivalence, cf. (5.32),

NSl ey < 0l < CUNCGlley  forall g € By(F).  (5.35)
First of all, we consider the indicator

i = Vel Vil eurlay < nlelo.r

We extend the jump [~! curluy, X n]r to a piecewise polynomial defined on T} and T
such that there holds

Il curluy, x nlpg |2 < Chyl® [t curlw, x gy, =1, 2.

We define ju|,, := [~ curluy, x n]p7, and use (5.35) and Green’s formula to get

= [|[~" curlu, x nlr|{ap
<C ([,u_l curluy, x n]F) . ()\th) ds
F

< C'/ {(— curl u_l curl uh) . ()\th) + (,u_l curl uh) . (curl )\th)} dx
T1UT,

=C {T(Apjh) B / (curlp™" curluy, +iwow, + iwdo) - (Arjn) dx}
TWUTs

< Cllellerun | AFinllenur + C I rinllLamon) (bl nit + by ni?)

< C (b (lleller +ni*) + ha,) (lelle +ni*)) m*.
Using (5.34), we finally get
< C (lleller + llellez, + s +ni3). (5.36)
Next, we estimate the indicator
< =V hevollVoa ouy, - n|r|| 22 ).

We extend [ouy, - n|p by a continuous piecewise polynomial function [ouy, - n]p 7, onto
T1 UT5 such that

ey < Chl? |n-owlell ey,  i=1,2. (5.37)

|- ouprr,
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5.4 Efficiency of the residual error estimator

Using the norm equivalence (5.35) and partial integration we get
FC

(1 )2 _
wh F

SC/i[auh-n]%)\Fds
FOA

I\/ o' louy - n]F||%2(F)

o= .
< oA Z/ {Uuh : (grad([n : Uuh]F,TiAF)) + (divouy)[n - Uuh]F,Ti)\F} dx
i=1 “Ti

VAN

O 0
— : d(n - A\ _
oA E (||\/Ee ||L2(Tz) | grad([n - oup]rr, F)HLQ(T@)

=1

- ouplpg |2 ry)
F,C
Mo

2
C - .
Z (hTil/ZH\/EeOHLz(Ti) + h%QH div \/Euh”LQ(Ti)) W
=1 i

gA ~

+ || le \/EuhHLz(Ti)

IN

The last steps are due to an inverse inequality and (5.37).
Finally, we get with (5.33)

2
e C < CDVoelliay +m < C el lLecrum). (5.38)

i=1
Combining (5.36) and (5.38) completes the proof. 0

The indicators on the boundary

The main idea in this section is the use of the Poincaré-Steklov operator as used in

Carstensen [34]. Due to the variational formulation of the eddy current problem (5.10)
there holds

(T =K)ypu, {)r + (VA {)r =0 (5.39)

for all ¢ € Hr/ 2(din 0,T"). As the single layer potential is invertible on the space
H'/*(divp 0,T) (cf. Lemma 3.2.3) it follows that

A= V_l(lC - I)yDu.
Furthermore, we define the Poincaré-Steklov operator by
S:=-W+KVv(K-1).

Thus, there holds
S: H11/2(curlp, ) — Hr/z(diVn I')
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5 The eddy current problem

and

(Sypu,vpv)r < ||57Du||H[1/2(divr,r) 1oV ller 2 curtrry

S C ||u||H(cur1,Q) HVHH(curl,Q)-

Theorem 5.4.3 For u € H'?*(curl,Q), § > 0, and A € H(divy,T) there exits a
constant C' > 0, independent of the mesh size h, such that there holds

O+ 7+ (1) < €l il + 1A Ml o

I
+ > (lu=wpller +nfy)
TeTr

(diVF 7F)

+hpllu = s ewo) P I = el )

2
+helA = Al @ive,r)
+ hF||W37Du||i2(F)

with the interpolate ug = I1"u € N'D(7;) and Mg € RT 1(K) the orthogonal projection
of X with respect to the H[lﬂ(divF,F) inner product. Furthermore, T denotes the set
of elements which have at least one face on the boundary I.

Proof. In the beginning, we examine 5" on a face F C I'. Here, we use A =
V(K — Z)ypu and the Poincaré-Steklov operator to estimate

helly/E ' curlu, x n — /EWypuy, + \/ﬁlﬁ)\hH%z(F)
— hp|ly/E " curluy, x n + \/ﬁSvDuhH%g(F)
< 2hF||\/ﬁ_1 curlu, x n — \/ﬁSvDuH%Q(F)
+ 2hp||VE(Sypun — SYpu)||72 (). (5.40)

We have to estimate

hely/p~" curlu, x n — VESYDU| T2 ey
<C (hFH\/u—l curlw, x n[Zap + hF||\/ﬁ87Du||iz(F)) .

The first part can be estimated like nf ’C, the second one is just summed over all elements
on I'.

Next, we have to examine the term (5.40). For simplicity, we first assume p to be
constant. Thus, there holds

hee V(S pun = SpW) 12y = hrllVEW (v = vpn) = VKA = M) |22y
< Chr|[W(ypu = ypun)l[Fae) + Chel[KX = A)l|Z2p)-
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5.4 Efficiency of the residual error estimator

Summing over all elements, we have to estimate

hr max|[v/ W (ypu — 'VDuh)H%?(F) + hﬂmaxnt()‘ - Ah)HzL?(F)'
The first term is estimated in Lemma 5.4.4, the second one in Lemma 5.4.6.

Next, we have to estimate the second indicator
775,1“ =: v/ hpl|| curlp (T — K)ypuy, + curlp VA || 22(p)-
Here, we use the equation VA = (K — Z)ypu and the triangle inequality to get

| curlp(Z — KC)ypuy + curly Vg r2(p)
< || curlp (I = I)yp(u — up) || z2(p) + || curlp V(X = Xp) || L2y

Summing over all elements, we have to estimate the following terms

h|| curlp (K — Z)yp(u — ws) [ 72(r),
Al curle VX = An)[|Z2ry-

The first term is estimated in Lemma 5.4.5, the second one in Lemma 5.4.7.

Finally, we have to estimate the indicator ng T on the boundary of

m =V hevwl[Vou, o

This can be done by using the estimate for 775 ‘“ and the above estimates. O

In the following, we consider the details of the proof of Theorem 5.4.3.

Lemma 5.4.4 Foru € H'/*"(curl,Q), § > 0, there is a constant C > 0, independent
of h, such that there holds

hWap (=) Iz

S C(Hu - uh“%—l(curl,Q) + h”u - uEH?—Il/z(curLQ) + h1+26Hu - uEHill/2+5(curl7Q))

with the interpolate ug = Ilfu € N'Dy(Ty,).

Proof. From Theorem 3.3.3 we know that
W : HY (curlp, T') — Hﬂ(din, I)
is a continuous mapping and we thus get

Wp (= a)l[Lay < Cllvp(a = un) e curr.r)

< CHu - uhHH1/2(curl,Q)'
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5 The eddy current problem

The last step is due to the continuity of the mapping
vp : H(curl, Q) — H‘i_l/2(curlp,l"), 0<s<1,

see Lemma 3.3.2.
Next, we to consider up := IM"u € N'D;(K},), the moment based interpolant of u.
Therefore, we have to assume that u € H/?*°(curl, Q). We get

IWVyp(u—an)l[f2ry < Cllu—uslip/2eug) + Cllus — Wil euno)- (5.41)
As uy, ug € ND1(7;,), we can use the inverse inequality in Lemma 4.1.3 and we have

o = sl seurs) < OB s = s i eurn )

< Ch™Yu, — u”%—l(curl,ﬂ) +Ch™'lu — uE”%—I(curl,Q)‘ >42)
For the interpolant ug we know that there holds
u— uEH%—I(curl,Q) = lu—TII{u+IIfu - H?“H%—I(curl,ﬂ)
= [lu— IMu — I} (u — T} ) [ euro) (5.43)
< Ch'*|u - uE”%{l/zw(curm),
see e.g. Monk [78, Theorem 5.4.1], with § > 0.
Combining (5.41), (5.42) and (5.43) finishes the proof. 0

Using the same ideas we get

Lemma 5.4.5 Foru € HY/?%(curl,Q), § > 0, there exists a constant C' > 0, indepen-
dent of h, such that there holds

h|| curlp (KK — Z)yp(u — uh)||2L2(I‘)
< C (Jla — upfreurroy + hlu— uEH%-Ilﬂ(curl,Q) + h1+25||u||%—11/2+5(cur179))

with the interpolate up := Iu € N'Di(7,).

Proof. The proof is quite similar to the proof of Lemma 5.4.4. From Theorem 3.3.6
we know that

K : HY (curlp, I') — HY (curlp, I
is a continuous mapping.
h|| curlp (K — Z)yp(u — Uh>H%2(F) < Ch|(K=Z)yp(u— uh)”%—l(j_(curlp,r)
< Chllvp(a = un) I curtpr)
< Chl(u-— uh)“%—ll/?(curl,ﬂ)
< Chllu =gt eung) + C bluE = Wl eum )

Finally, we can estimate as in (5.42) and (5.43). O

The next task is to estimate the adjoint double layer potential.
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5.4 Efficiency of the residual error estimator

Lemma 5.4.6 For \ € H (lep, ') there exists a constant C' > 0, independent of h,
such that there holds

RIKA=X) T2y < C 1A~ >\h||2 et ooy FRIA = Xl ey )

where Ap € RT 1(K) is the orthogonal projection of X with respect to the Hilﬂ(divn )
mner product.

Proof. Due to Theorem 3.3.6,
K : Hﬂ(din, ) — Hﬁ(din, I)

is Continuous We take Ap € RT1(K},) as the orthogonal projection of A with respect
to the H (lep, ') inner product.

RIIK(A = X) Ry < CRIA = Al ivrr)
< ChH}‘ - AEHHﬁ(divF,F) + ChH)‘E - )‘hH%—Iﬁ(divF,F)’
As Ap — A, € RT1(K}), we can use the inverse inequality of Lemma 4.4.4.

2 -1
| An — }\EHHﬁ(diVF,F) < Ch™ || An — }‘E” 1/2(d1V By

—1 2 1
S Ch’ ||Ah - A||Hﬁ1/2(di + Ch ||A AEH 71/2(d1V[‘ 1—\)
There also holds the estimate, see Theorem 4.4.2,

A — )\EH;F/z(di < Chl|A - AEH%Iﬁ(diVF,F)'

vp,I)

Combining all these estimates gives the desired result. O

Lemma 5.4.7 For A € Hj(divy,T) there holds

h| carlp V(A — Ah)”?’ﬁ(r) < CA— Ah”i{f”(divnr) +Chlx - AEH%{ﬁ(diVF,F)»

where Ag € RT 1(K) is the orthogonal projection of X with respect to the Hr/z(divlﬂ, I)
mner product.

Proof. From Remark 3.3.5 we get that
Vi Hj(T) — HﬁH(F)
is a continuous mapping. Furthermore, we know that

curlp : Hﬁﬂ(F) — H7Y2(ID)
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5 The eddy current problem

is a continuous mapping. There also holds the continuity of
curlp : Hﬁ(F) — L*(T)
and we can estimate
hl curle VX = A1 Zay < CRIVYnA = M)l oy
< ChlA - Ah”%lﬁ(divr,l“)
< ChlA— AEH%{ﬁ(diw,r) + Chl|Ag — Ah||%qﬁ(diw,r)~

The rest of the proof is the same as in Lemma 5.4.6. O

5.5 On the implementation of the indicators

For the implementation of the error indicators nf T and 775 T we have to examine the
behavior of the boundary integral operators on the finite element solution. Here, we
only consider the Laplace kernel ®(x,y) = m.
Let u, € TND,(K}). There holds with (3.15)
Wrypu,(x) = n(x) x gradp V(curlp up,)(x)
= /(n(x) x grad, ®(x,y)) curly u,(y) dS,.
r

From (3.12) we get

curlp Kypuy(x) = 7, - curl ypKypuy(x)
= —v, grad V(curlr up)(x)

o 1
- _ M curlp uh(y) dSy + 5 curlp llh(X).

r On(x)
The last step is due to the jump relations of the single layer potential.

Let A, € RT ,(K}). We can calculate, using the jump relation (3.13),

KAn(x) = —n(x) x curly /1“ P(x,y) An(y)dSy — %)\h(x)

= /r W,\h(y) dSy — /Fgradx ®(x,y)(An(y) - n(x)) dSy — %)‘h(x)'

Due to the jump relation [ycurl VA]r = —n x A, cf. Mitrea et al. [76, Sect. 3|, there
also holds [y, curl VA]r = 0. Hence, we get

curlp VA, = n(x) - curly / Q(x,y)An(y) dSy
r

= /F(n(x) x grad, ®(x,y)) - up(y) dSy.
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5.6 Numerical experiments

Finally, all potentials have been transformed into integrals with kernel ® or grad ® and
can be calculated using analytical formulas, see Maischak [74].

5.6 Numerical experiments

On Q) we construct a regular mesh 7, of tetrahedrons or hexahedrons of mesh size h.
This mesh induces a mesh K, of triangles and quadrilaterals on the boundary I'. As
described in Chapter 4, we use Nédélec elements of order p for the approximation in the
space H(curl, 2). For the discretization of the boundary function A € Hr/z(divlﬂ 0,T")
one could use divergence free Raviart-Thomas functions RT(K;) = {X € RT,(K}) :
divr A, = 0}. For the implementation it is more convenient to use the space curlr S, (Ky,)
where S,(K},) denotes the space of piecewise polynomials on the triangulation /C;, see
Lemma 4.6.2. Instead of A, € RT(K),) we seek a function ¢, € S,(K4)/C and then set
Ay = curly ¢y,. In order to get a unique ¢;, we demand that there holds fr on(x) ds(x) =
0. In the calculations we achieve this constraint by introducing the bilinear form

P(n, ) : (/m ) ds(x )(/ (X)ds(x)).

Then, the Galerkin systems reads:
Find uy, € ND,(T,,) and ¢, € S(K}1,) such that

~Leurluy,, curl v)q + iw(ouy, v)o — Wypus, 7pV)r

+(K curlp ¢, ypv)r = —iw(Jo, v)a, (5.44)
(I — K)ypuy, curly 7,)r + (V curly 7, curly 7)1 + P(dn, ) = 0

(n

for all v.e NDy(Tp), T € Sp(Kp).

An a priori estimate for this problem is given in Section 5.3.

5.6.1 Remarks on the experiments

The following experiments are performed using the program package maiprogs, cf. Mais-
chak [75], which has been extended by the calculation of the Galerkin matrices for the
eddy current problem and the residual error estimators and hanging edges. The im-
plementation of hanging nodes for higher polynomial degrees still has to be done, so
we present here only suitably refined meshes for the h-version with lowest polynomial
degree.

For the assembling of the matrix and the right hand side see the remarks in Section 6.2
where the case of the scattering problem is explained.
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5 The eddy current problem

For large linear systems iterative solvers as the GMRES are the best choice. But, this
does not work here properly for our problem because of the high condition number of
the whole system. Therefore, efficient preconditioners are needed. For the H(curl, Q2)-
bilinear form we have discussed a new preconditioner in §4.9.3 which has not been
implemented yet. Other preconditioners using multigrid techniques are discussed by
Hiptmair [64]. This algorithm also has to be implemented. In our implementation,
just the Gauss-algorithm is used. For small matrices up to 5000 degrees of freedom
the assembling of the Galerkin matrix takes longer than the solution using the Gauss
algorithm. But for more degrees of freedom another solver is necessary. Thus, our
computations are only up to 10000 degrees of freedom.

We consider a simply connected polyhedral domain and we compute the solution to the
Galerkin system on a series of uniform meshes, obtained by dividing each edge of the
domain {2 into n equal parts with a mesh-width of h = % In most of the examples we
compare the error in energy norm

e = \/||u — uh“%—l(curl,ﬂ) +lA- Ah”?{f/z(diwff

with the value of the residual error estimator

1/2
ni= ()% + 7+ (O + O + T + o+ ()2

In Examples 5.6.3 and 5.6.4 we use the error estimator to perform adaptive mesh refine-
ments using the three-fold algorithm from §5.3.1 but only performing an h-refinement.
The convergence rate « is calculated by evaluating the errors and the degrees of freedom

of two successive meshes by
o= log(ez/e1)
- log(N1/N2)

The effectivity index q is the quotient of the error estimator 1 and the real error e,

q:=-.
e
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5.6 Numerical experiments
5.6.2 The p-version

In the following two examples we calculate the h-version of the Galerkin coupling scheme
(5.10) for different fixed polynomial degrees and the p-version. We define the moments
for the Nédélec basis functions via Legendre polynomials. Therefore, we can perform
our computations for the hp-version with moderate p, up to degree 7, compare §4.1.1.

Example 5.6.1 We take Q = [—1,1]> and p = 0 = w = 1 and the exact solution

u(x) = grad/ﬂéb(& y)p(y)dy, x€Q,

with density function
p(x) = (1= 22)(1 — 23)(1 — 22)) mywams  in Q.
From (5.1) and (5.2) the current Jo is given by

Jo=—ou+ivtcurl(y ' curlu) = —ou in Q,
JO =0 QE,

and on the boundary I" there holds
A=y teurluxn=0.

In Figure 5.1 the h-version with different polynomial degrees is presented. We plot the
error in energy norm and the indicators versus the degrees of freedom. The p-version
(with constant mesh size h = 1) and the h-version with p = 1 are compared in Figure
5.2. One can see that the residual error estimator behaves like the error. The effectivity
indices for the polynomial degrees of p = 1, 3, 5 are given in Tables 5.1, 5.2 and 5.5.
The effectivity indices are stable, also for the p-version, see Table 5.5. This underlines
the result about the reliability and efficiency of the residual error estimator. In Table 5./
we consider the convergence rates. Due to the a priori estimate in Section 5.3 we expect
a convergence rate of p with respect to h for a smooth solution. If we consider the degrees
of freedom we expect a convergence rate of §. This is quite good fulfilled for most of the
polynomial degrees. For p =7 we could only calculate one refinement step and thus we
are still in the pre-asymptotic region.
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5 The eddy current problem

1 v T T T T T T T T
l\»\ p:l —_—t
S p=3 ——-x—--
. p=5 ---*---
[.\‘\‘\\ p=7 -
e indicator,p=1 -
01k SE T - indicator,p=3 - i
’ Tl T g indicator,p=5 ----e - 1
V- *-m_g  indicator,p=7 — -
mmy
£
5] 0.01 i
c 4
>
= AN . o
o} X, - oo
5 -
£ A o
S o001} o e .
o Tl
xo_
X
le-04 | B .
5
1e-05 ot — ) —
10 100 1000 10000 10000C
degrees of freedom
Figure 5.1: Example 5.6.1: Uniform h-version for different polynomial degrees, error in
energy norm and error indicators.
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5.6 Numerical experiments

n | DOF e n q="1
1 20 | 0.0464225 | 0.7378909 | 15.8951
2 80 | 0.0464241 | 0.2570505 | 5.5370
3 200 | 0.0223903 | 0.1828806 | 8.1679
4 398 | 0.0216248 | 0.1393502 | 6.4440
) 692 | 0.0181489 | 0.1134473 | 6.2509
6| 1100 | 0.0153305 | 0.0957510 | 6.2459
71 1640 | 0.0132047 | 0.0828089 | 6.2715
8| 2330 | 0.0115795 | 0.0729206 | 6.2974
9| 3188 | 0.0103052 | 0.0651211 | 6.3224
10 | 4232 | 0.0092817 | 0.0588145 | 6.3366
11| 5480 | 0.0084424 | 0.0536119 | 6.3503
12 | 6950 | 0.0077420 | 0.0492484 | 6.3628
13 | 8660 | 0.0071487 | 0.0455371 | 6.3690
14 | 10628 | 0.0066397 | 0.0455371 | 6.9583
15 | 12872 | 0.0061984 | 0.0423427 | 6.8312
16 | 15410 | 0.0058120 | 0.0395648 | 6.8074
17 | 18260 | 0.0054709 | 0.0371272 | 6.7850

Table 5.1: Example 5.6.1: Uniform h-version, p = 1.

DOF

(&

Ui

q="1

200

0.0243608

0.1246737

5.1178

1100

0.0097928

0.0412815

4.2155

3188

0.0015046

0.0083536

9.5520

6950

0.0008064

0.0043726

5.4345

12872

0.0005414

0.0028039

5.1790

S| |w N =S

21440

0.0003668

0.0018682

5.0932

Table 5.2: Example 5.6.1: Uniform h-version, p = 3.

DOF

e

Ui

qg="1

692

0.0035520

0.0272416

7.6694

4232

0.0008211

0.0046594

5.6746

n
1
2
3

12872

0.0001595

0.0009217

S.7787

Table 5.3: Example 5.6.1: Uniform h-version, p = 5.
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5 The eddy current problem

1 2

3

3

4

5 6

7

a | 0.3564 | 0.7326

0.7631

1.0859

1.4731

1.7670

0.9243

Table 5.4: Example 5.6.1: Convergence rate o with respect to the degrees of freedom of

the h-version for different polynomial degrees.

p | DOF e n q="1
1 80 | 0.046424 | 0.257051 | 5.53702
2 398 | 0.014293 | 0.071491 | 5.00182
3 110 | 0.009793 | 0.041282 | 4.21546
41 2330 | 0.001265 | 0.008281 | 6.54625
5| 4232 | 0.000821 | 0.004659 | 5.67479
6| 6950 | 0.000143 | 0.000858 | 6.00000
71 10628 | .2142E-04 | 0.000142 | 6.62932

Table 5.5: Example 5.6.1: p-version, h = 1, energy norm error e, error estimator 7,
effectivity index ¢ = 2

Example 5.6.2 In this example we take an exact solution with non-vanishing curl. We

set

u(x) = curl/Q O(x,y)p(y)dy, xe€Q,

with

p(x) = p(x)(1,1,1)"

and p as i Erample 5.6.1. The current Jy is computed by

J(]:

Furthermore, we set

A:=curlu xn

The exact energy norm of A is extrapolated using the sequence of uniformly refined

meshes.

In Figure 5.3 and Figure 5.4 we list the plots of the h-version and the p-version for this

—ou+iw ! curl curl u.

onT.

example. The results are quite similar to the results of Fxample 5.6.1.
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Figure 5.3: Example 5.6.2: Uniform h-version for different polynomial degrees.
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Figure 5.4: Example 5.6.2: Uniform p-version (h = 1) compared with uniform h-version
(p=1).
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5 The eddy current problem
5.6.3 The h-version

In this section we use the residual error estimator to steer an adaptive refinement using
hanging nodes as described in Section 4.11.

Example 5.6.3 In this example we use the residual error estimator to construct an
adaptive mesh. We use hexahedral elements with hanging nodes on the unit cube ) =
[—1,1]%. We set =1 in Q and choose a discontinuous conductivity o, namely

o= {01, %<I‘1,ZL’2,SL’3<1

1, else
For the right hand side we choose the function
Jo=(1,1,1) inQ

and J = 0 in Qg. Note, that we violate the (physical but no technical) assumption
J-n =0 onT. But this creates no difficulty, we must only substitute the error estimator
term ng " = vhrw ||\/oun, - nllop by Vhrw||(Vous, + o ' Jo) - nllor. We start by
computing the Galerkin solution for the uniform mesh with n = 3. The refinement
algorithm then proceeds by first refining the 20% of the elements on which the local
contributions of the residual error estimator are the greatest and by then further refining
in order to eliminate hanging nodes that violate the one-constraint rule. We expect the
algorithm to refine the mesh near the o-discontinuity interface between Q) = (%, 1)3 and
QO =0\ QW and especially close to the vertex (%, %, %) Figure 5.5 shows the series
of adaptively generated meshes. One observes that the mesh is refined on the poorly
conducting cube QM and in its direct surroundings.

We compute the same problem with uniform refinement, and then extrapolated the en-
ergy error for both series of meshes. The comparison between uniform and adaptive
refinement as displayed in Figure 5.6 shows that the adaptive mesh yields the better
approrimation.
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Figure 5.5: The adaptive meshes for Example 5.6.3, using the residual error estimator.
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5 The eddy current problem

Uniform refinement

DOF

(& (0%

n «

© o WwW|3

12

200
1100
3188
6950

3.8706

2.8400 0.1816
2.1252 0.2752
1.7016 0.2852

2.7572

1.8880 0.2221
1.5032 0.2142
1.2471 0.2397

0.7123
0.6648
0.7073
0.7329

adaptive refinement

o U
2.7572
1.8922
1.3030
0.8783
0.6661
0.4940

DOF e
200 | 3.8706
377 | 2.8417
797 | 1.7236

1709 | 1.0483

3835 | 0.7519

9930 | 0.5392

a  |q
0.7123
0.6659
0.7560
0.8379
0.8858
0.9162

0.4874
0.6679
0.6519
0.4111
0.2927

0.5939
0.4984
0.5171
0.3422
0.3142

Table 5.6: Values and convergence rates with respect to the total degrees of freedom
DOF of the Galerkin error e and of the residual error estimator n and the
effectivity indices ¢ := 7 for Example 5.6.3.

10 T

.
g

0.1 - —_—
100 1000

degrees of freedom

10000

Figure 5.6: Energy norm e of the Galerkin error and the residual error estimator n of
Example 5.6.3. The superscript 0 indicates uniform refinement, + indicates
adaptive refinement.
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5.6 Numerical experiments

Example 5.6.4 The geometry in this ezample is the L-block Q := [—1,1]*\ ([0, 1]* U
[0,1]2 x [-1, O]) Here, we consider a singularity function as given current.

Jo := grad (7’2/3 sin(2¢)) in the L-Block,

where r and ¢ are polar coordinates. Hence, one expects an adaptive refinement towards
the re-entrant edge.

The energy norm of the unknown exact solution is extrapolated by the energy norms on
the sequence of uniform meshes. We perform an adaptive refinement (10% of elements)
using hanging nodes. The resulting meshes can be found in Figure 5.7 and the error in

Figure 5.8. Due of the 2/3-singularity in the interior domain we expect a convergence
rate of a = %

respect to the degrees of freedom. This correspondents to the results in Table 5.7. For

with respect to the mesh size h and a convergence rate of a = % with

the adaptive refinement using the residual error indicators we get a better convergence
rate of about 0.4. The effectivity indices are quite constant which underlines the reliability
and efficiency of the error estimator.

Uniform refinement

DOF

(&

(0%

Ui

4q

o o~ NS

10
12

70
334
902

1882
3382
5510

0.4186472
0.2869302
0.2246235
0.1881433
0.1638018
0.1462253

0.241762
0.246421
0.240962
0.236375
0.232553

1.0506895
0.7324853
0.5789936
0.4870686
0.4248354
0.3794070

0.2308640
0.2366966
0.2350675
0.2332292
0.2317002

2.509725
2.552834
2.577618
2.588817
2.593594
2.594674

adaptive refinement

DOF

(&

(0%

Ui

4q

70
152
231
362
526
778

1306
2229
3648
5615

0.4186472
0.3661693
0.3528255
0.2749754
0.2319625
0.1853135
0.1501191
0.1306073
0.1056281
0.0943108

0.172731
0.088695
0.554936
0.455246
0.573613
0.406604
0.260452
0.430896
0.262784

1.0506895
0.9203291
0.8116177
0.6961152
0.5897867
0.4921377
0.4074256
0.3577131
0.2965062
0.2627426

0.1708448
0.3003362
0.3417302
0.4435999
0.4624187
0.3646738
0.2434174
0.3809444
0.2803241

2.50972537
2.51339776
2.30033742
2.53155446
2.54259503
2.65570344
2.71401574
2.73884461
2.80707690
2.78592272

Table 5.7: Values and convergence rates with respect to the total degrees of freedom

DOF of the Galerkin error e and of the residual error estimator n and the
effectivity indices ¢ := 2 for Example 5.6.4 (the L-block).
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Figure 5.7: The adaptive meshes (levels of refinement: 1, 3,5, 7,9, 11) for Example 5.6.4
using the residual error estimator.
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L-Block, f=grad (r*(2/3)sin(2/3 phi))
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Figure 5.8: Energy norm e of the Galerkin error and the residual error estimator 7 of
Example 5.6.4 (L-Block).

5.6.4 A 2-level hierarchical error estimator

The following hierarchical error estimator was developed by Teltscher [103], see also
Teltscher et al. [105], using ideas of Beck et al. [14]. The error estimator is based on the
p-hierarchical decomposition of the Nédélec space and the Raviart-Thomas space, see
§4.9 and §4.10. We repeat here the central result for the eddy current problem, but use
another decomposition than Teltscher.

Let X := H(curl, Q) x H 2(divp0,T) and X), := N'D;(T;) x curlp S; (K,,) the finite ele-
ment space as described above Furthermore, we denote by X, := N'Dy(7,) curly S;(K})
the higher order finite element space. Here, we just consider a mesh of hexahedrons.
But there is a similar estimator for tetrahedrons.

As above, we define the energy norms on H(curl, 2) and Hﬁlﬂ(divlﬂ 0,T") by

IAIE = [(VA, A

[v|E == |(1 " curlu, curlu)g + iw(ou, u)g|,

Let (up, Ap) € &), and (ug, A2) € A be the solutions of the Galerkin system (5.44). We
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5 The eddy current problem

assume that there holds the following saturation assumption
[0 = az, A = Ag) |l < Onl[ (0 —wp, A= Ap) | (5.45)

for a 95, > 0 with J, < 6 < 0. Then, we can proof the following result.

Theorem 5.6.5 In the case that the saturation assumption (5.45) is satisfied, there
holds

1S =, A=)l S =57

with the local a posteriori estimator

2. S aen? L o (Fy) (F)\? SYACO% T\

n (0¢))” + <(®1 ) +(®2 ))+Z(@1 ) +<@2 )
+ gmj (0C0)* + Z (02

i=1 J=1

We use the abbreviations A and £ as in (5.11) and define the local error indicators by
_ |L(grad ¢'©),0) — A(uy, Ay; grad ¢, 0)]

0= lgrad 6] ¢ ’

@gp) . |L(grad ¢'7), 0) — A(up, Ay; grad ¢, 0)]
lgrad 6 ’

@gT) - |L(grad ¢7),0) — A(uy, Ap; grad ¢(7), 0)|
lerad 6Dle |

0" = [[wbl™ + kbl + kab§ e,
where E;F) = bgF) + biF) and (K1, kg, k3)' is the solution of the linear system

a(by”)bi") a(by”BY) a(by” By -y
bR ) ) ) (s
a(by ', by ") a(by ',by ") a(by’, by ’)

=

3
£®,0) = A(ay, ;b 0)
= | £m®,0) = A(up, An; B, 0)
L(b5”,0) — Ay, Ay b, 0)

Furthermore,

5
T 1T(T
05" = 11>" kb{"le,
=1

where BT = b, BT i b — b7, BT = b, B i b — b7, BT = b,

and (ky,...,ks)" is the solution of the algebraic system
(a(bi”, b)) = (£(By".0) — A(ws, X:bi”, 0))

k=1,...,5

=1,..,
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5.6 Numerical experiments

and

A(uy, Ap; 0, curlpgp(e))|

9@ = |
leurlpp© |,

Y

9 . — |A(an, Ap; 0, Curlr¢(F))|
. |curlpp) ||,

Example 5.6.6 The numerical experiments in [103] have only been performed using the
indicators which belong to the interior functions. Here we present numerical experiments
using all indicators.

The experiment has only been performed on uniform meshes because an adaptive re-
finement requires the implementation of hanging edges for higher polynomial degrees,
compare §4.11, which hasn’t been done yet.

We again consider the Example 5.6.2, where we have given the exact solution

u(x) = curl/Q O(x,y)p(y)dy, x€Q,

with p(x) = (1 — 22)(1 — 22)(1 — 22))* z12925(1, 1, 1)7 on the unit cube Q = [—1,1]3.

In Figure 5.9 one sees that the error indicator n behaves nearly the same as the error in

energy norm, the effectivity indices ¢ = 1, calculated in Table 5.8, are nearly constant.

n|h DOF e n| q="=1
201 80 | 0.30987 | 0.15081 | 0.4867
310.667 | 200 | 0.30369 | 0.06440 | 0.2121
410.5 398 | 0.23548 | 0.05420 | 0.2302
5104 692 | 0.18994 | 0.03879 | 0.2042
6] 0.333 | 1100 | 0.15938 | 0.02969 | 0.1863
710.143 | 1640 | 0.13748 | 0.02410 | 0.1753
810.25 | 2330 | 0.12095 | 0.02037 | 0.1684
910.222 | 3188 | 0.10800 | 0.01770 | 0.1639
10 | 0.2 4232 | 0.09755 | 0.01568 | 0.1607
11 ] 0.091 | 5480 | 0.08894 | 0.01409 | 0.1584
12 1 0.083 | 6950 | 0.08172 | 0.01281 | 0.1568
131 0.077 | 8660 | 0.07558 | 0.01175 | 0.1555

Table 5.8: Energy norm e of the Galerkin error, the 2-level hierarchical error estimator
n and the effectivity indices ¢ = 7 of Example 5.6.6.
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5 The eddy current problem

1 i T T T ]
error —+—— ]
hier. est, ——->x--- |
01
0.01 L e | L e | L e
10 100 1000 10000

degrees of freedom

Figure 5.9: Energy norm e of the Galerkin error and the 2-level hierarchical error esti-
mator 1 of Example 5.6.6.
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6 The time-harmonic scattering
problem

In this chapter we examine the time-harmonic scattering problem. Here, an incident
wave is scattered at a dielectric body. After having formulated the problem we derive a
coupling formulation using finite elements and boundary elements. Our coupling formu-
lation is quite similar to the one derived by Hiptmair [67], but he uses different boundary
integral operators. One can show that the formulations are equivalent.

We consider a bounded domain Q C R?® with simply connected Lipschitz boundary
I' = 09). This domain represents a dielectric scatterer, while the exterior domain is
representing air and is supposed to be dielectric and homogeneous. This means that
the conductivity o satisfies o = 0 in R®. Furthermore, we assume that the material
parameters € (electric permittivity) and p (magnetic permeability) satisfy e, u € L=(R?)
with €; > €(x) > € > 0 and pug > pu(x) > pg > 01in Q, where €1, €, 1, 1o are constants.
The outer domain Qp := R3\ Q consists of air with i = o and € = €. Due to scaling
we can assume that p =1 and e =1 in Q.

Here, we consider an incident wave with electric field E™ and magnetic field H™ which
is scattered at €). Some part of the wave is absorbed by {2 and the other part is reflected,

/b o
E
<——< air

Figure 6.1: The time-harmonic scattering problem.

see Figure 6.1.

The problem is governed by the following two Maxwell’s equations which are valid in
the whole R3.

curlE = —iwpH, (6.1)

curl H = iweE.
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6 The time-harmonic scattering problem

On the boundary I' = 92 we assume the following jump conditions
(Exn)t+ (E" xn)" = (Exn)", (6.3)
(Hxn)t + (H™ xn)" = (H xn)". (6.4)

Furthermore, we assume the Silver-Miiller radiation condition at infinity, cf. Colton &
Kress [38],
lim (curlE X x) —ik|x|E =0

|x|—00
uniformly in all directions |—§‘ Here, we have defined the wave number by k := w,/ep.

If we insert (6.2) into (6.1) we get the following equation for E in R3
curly'curlE — xE=0 in R? (6.5)
and the jump relations
[ Elr = -E" xn,  [pTywE]r = —wE™.

The main difference between this formulation and the eddy current formulation in Chap-
ter 5 is the second Maxwell equation. In the scattering problem there is no current J
and the conductivity satisfies ¢ = 0 in R®. Nevertheless, we have the extra term iweE.
Using solely the two Maxwell equations the eddy current problem is not unique in Qg
and we had to demand the gauge condition divE = 0 and have got AE = 0 in Qg.
Thus, we could use the boundary integral operators with Laplace kernel for the eddy
current problem. Here, we will see that we have to use boundary integral operators with
Helmholtz kernel.

6.1 A symmetric FEM/BEM-coupling method

A symmetric FEM/BEM-coupling formulation of the scattering problem, using finite
elements in €2 and boundary elements on I' for the exterior domain Qg, was derived
for a smooth boundary by Ammari & Nédélec [7, 8] and generalized for non-smooth
boundaries by Hiptmair [67]. We present here a slightly different derivation using differ-
ent boundary integral operators than Hiptmair, but one can show that the formulations
are equivalent.

First of all, we set u:= E and consider the exterior domain (2. There holds
curlcurlu — x*u =0

in Qg and we apply the Stratton-Chu formula with Helmholtz kernel ®(x,y) = ﬁ 6;:,)"‘ ,

compare (3.25),

u(x) =+ curlx/

(0 w) )00, v) dS(y) + / (n x curlu)(y)®(x, y) dS(y)

T

— grad, /F(n -u)(y)P(x,y)dS(y), x € Qp.
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6.1 A symmetric FEM/BEM-coupling method

We remark that there holds

divp(curlu x n) = — curlp((curlu x n) x n) = curlp(vp curlu)

= (curlcurlu) - n = x*u - n.

Taking traces on I' from Qg we get the following boundary integral equations

vhu = K(yHu) — V(yiu) — 4 gradx/ %di\zr(curlu xn)®(x,y)dS(y), (6.6)
r

Tvu = W(pu) — K(yzu). (6.7)

Next, we multiply (6.5) with test functions v € H(curl, §2) in Q, integrate over Q and
perform a partial integration. Thus, we get

/ p~tcurlu - curl v dx — / wlepu - vdx — {(utyyu, ypv)r = 0.
Q Q

In this equation we insert the jump condition yyu = yu + vyE™, the relation (6.7)
and y5u = ypu + vpE™ and have

(4" curlu, curlv)g — w(epu, v)o— (Wrpu, 15)r + (KAju, 15v)r
= (WE™, 7pv)r + W1pE™, 1pv)r.
We introduce a second variable A := curl Er x n = ~3u representing the magnetic

field on the boundary. Afterwards, we add the weak form of (6.6) and perform a partial
integration. Finally, we get the following coupling formulation:
Find u € H(curl, ), A € H,*(divr, T') such that

(' curlu, curl v)g — w?(epu, v)g
_<nyl_)u7 75V>F + <I€)\7 fyBV)F = <rYNE2n7 rYl_)V>F + <WVDE”L7 75V>1“7 (68)

LV dive A, dive O = (I — K)ypE™, ¢

K2

(I = K)ypu, Qr + (VA —

for all v € H(curl, Q), ¢ € H;V*(divr, I).
We abbreviate this system by
A(u, A v, ¢) = L(v, ()

and define the space X' := H(curl, Q) x Hﬁl/z(divF, r).

Assumption 6.1.1 We assume that k is not an eigenvalue of the interior Dirichlet
problem in ).
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6 The time-harmonic scattering problem

Theorem 6.1.2 (Hiptmair [67]) A can be written as
A=D+C,

where D is a positive definite and C a compact operator on X . Furthermore, there exists
one (u, A) € X such that
A, A v, €) = L(v,¢)

for all (v,¢) € X.

On 2 we define a mesh of hexahedrals 7;, that induces a mesh IC;, on I'. We use Nédélec
elements N'D,(7;,) for the Galerkin approximation in H(curl, Q) and Raviart-Thomas
elements RT ,(Kp,) for the approximation in Hr/ 2(din,F). Thus, the hp-version of
the FEM /BEM-coupling reads as:

Find Uy p c NDP(’];L), >\h,p c pr(lCh) such that

(n ! curluy,,, curl v)g — w?(epuy,,, v)o
— Wt p, V)t + (KX ps V1 = (WWE™, V)1 + (WE™, v)p (6.9)

(I = K)upp, Or + (VAnp, Cr — §<V divy App, dive C)r = (I = K)E™, {)r
for allv € NDy(T),¢ € RT ,(Ky).
Here, we abbreviate Xy, = ND,(7,) x RT,(K;). Thus, there holds the following

theorem.

Theorem 6.1.3 There exists hg € Ry such that for all h < hg there exists exactly one
solution (U, App) € X, such that

A(uh,pa Ah,zu; ‘77 &) = ‘C({/a &)

for all (x, 5\) € Xy, . Furthermore, there exists a constant C' > 0, independent of h and
p such that

10w, A) = (Whpe M)l < Cinf [[(w, A) = (¥,0) 2

where the infimum is taken over all (1, X) € Xj, .

Using the interpolation operators as in Section 5.3 we get the a priori estimate

[u — uh,p”H(curl,Q) + A = Ah,PHHFm(diVFI)
. (6.10)
< CRtpn (Il @) + N lg=272g50,. 1)

with a positive constant C', independent of u, A, h and p, and arbitrary ¢ > 0 where
k = min{r, pmin + 1}. Similar to Section 5.3 we could also derive a residual a posteriori
estimate, but the technique is similar, compare Teltscher [103], and we do not consider
this here.
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6.2 Implementation

6.2 Implementation

In this section we consider the implementation of the Galerkin elements for the cou-
pling formulation of the scattering problem (6.9). Here, we only examine quadrilateral
elements.

Using Lemma 3.2.4 and the representation of the integral operators K and K from (3.15)
we get the following formulation of the scattering problem:
Find u € H(curl, Q) and X € H;'(divr, T') such that

(! curlu, curl v)g — w?(epu, v)g

+(V curlp u, curly v)r — £2(V(u x n), v x n)r
+ (=31 = n x M)A, 7pv)r = (WE™, 75v)r — WipE™, 75v)r,
(31 = M(n x ))vpu, Or + (VA Cr — %(V divy A, divy ¢)r
= ((31 = M(n x ))7pE™, {)r

for all v € H(curl, Q) and all ¢ € H[l/z(divF, r).
For the approximation in H(curl, 2) we use the space N'D,(7},), for Hrﬂ(divlﬂ, I') we

use R7 ,(Kp,) and for yp(H(curl, Q) = H11/2(curlp, I') we use the space TND,(K;) as
introduced in Chapter 4.

The calculation of the boundary element matrices is performed via determining calculate
double integrals on one or two elements over the product of two basis functions multiplied
with the kernel ®(x,y). For the analytical computation of the integration of local
monomials, see Maischak [74].

In the program package maiprogs , cf. Maischak [75], the boundary integrals are calcu-
lated in terms of local monomials x1, 2, y1, y2 and we thus have matrices of the form
(Vymys, 282l v gi.mn=o....p for the single layer potential or ((Ky7'y%, 2825\ r)k 1m.m=o....p
for the double layer potential. These integrals have to be reordered to Nédélec functions,
TND-functions and Raviart-Thomas functions and also transformed to the local elements
I, and I',. Therefore, we use the transformation formulas for ZND,(K}) and RT ,(K})

from Chapter 4.

On the reference element [—1,1]* an R7-basis function of degree p can be written as
linear combination of monomials

p p-1 p—1 p
A=e Y Y riaray + e » Y raray (6.11)
m=0 n=0 m=0 n=0

with suitable coefficients r,%% and r,(ﬁ,l

If the local element T'; is spanned by the vectors a¥ and a® then there holds for a
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6 The time-harmonic scattering problem

transformed RT -basis function A,

p p-1 p—1 p
A m a(l ZZT’ 113'1 Zlf + a(2 Z Tn% ZIZ' . (612)
m=0 n=0 m=0 n=0

On the reference element [—1, 1]> a ZA/D-basis function has the following form as linear
combination of monomials

p—1 p p p—1
N 1) aman § E (2) aman

with suitable coefficients 4 and {2
On a local element I'; which is spanned by the vectors a®¥ and a® there holds for a
transformed 7ND-basis function

p—1 p p p—1

S $0) gmgn (@) 4@ gmgn | 6.13
jall) x 3(2 n;) n=0 m=0 ; o1
where ¢ := (a® x (aV x a®)) and ¢®@ := ((a®) x a®) x a).

We are now in the position to examine the transformation of the Galerkin elements.

Calculation of (V(u x n),v x n) with u, v € TND,(K},).

First of all, we know from (3.15) that there holds
V(uxn)(y)=[ny, x L(uxng)] xn, with LA(x):= / O(x,y)A(y)dS(y).
r

The unit normal vectors n(y) = ny and n(y) = n,, are constant on the elements I'y and
I'y and we get for the scalar product between functions on I'y and I'y

e v = [ (vly) <) ([ [ 2ty xngdsto] xn, ) asty)
and we get for the scalar product

V(u(x) x n)(y) - (v(y) % ny) = [y x [£(u(x) x )] x 0y] - (v(y) x my)
- [(ny ‘) L(u(x) % n) — (ny - L{u(x) x nx>>ny] (v(y) x ny)
—

=1 L(v(y)xny)

= (L(u(x) x ny) - (v(y) x ny).
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6.2 Implementation

We now consider the basis functions u on I'y and v on I'y that are transformed as in
(6.13). It follows that

1 1
V(u(x) X ng)(y) - (v(y) x ny) = {
(ux) % me)(v) - (v(y) x my) T T
>4 >4 Ay a
p—1 p p-1 p
35 S et [ < m) ) <]
k=0 =0 m=0 n=0
p p—1 p p—1 )
" |Vt [ ) - (e x|
k=0 =0 m=0 n=0

The integrals for the single layer potential (V (x7*z%)y¥yl) can be calculated analytically
using the formulas by Maischak [74].

Calculation of (V curlr u, curlp v) with u, v € TND,(K},).

There holds the following transformation, cf. (4.19),

+1 —
curlp ¢ (x) = mcuﬂ@/)(x)

al xa®

(1) xa(2) .
a8 - and negative sign if n = 27225, The vectors n
laxa®]|

- ‘a(l) Xa(2)|

and a® x a® are collinear and we can write

—1
Clll"lF 7,[;(X) = n - (C(l) % C(g))

Thus, we only have to calculate the curl using the local monomials and multiply the

with positive sign if n =

curleh (%).

terms with the above factor.

Calculation of (VA ¢) with A\, ¢ € RT,(ICy).

There holds
wae - | y (o [ 00920 4500)) x| - i) 5

In general, for an arbitrary vector ¢ with ¢ - n = 0 there holds

yw¢=Mmx{)xn=m-n){—¢- nn=_
iy
and for an arbitrary vector a we get
pa-¢=[mxa)xn]-¢=Mmxal-mx¢=Mmx¢ Mnxal
=[nx¢)xnj-a=a-(.
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6 The time-harmonic scattering problem

Thus, we get

a0~ [ [ / @(x,y»(x)dS(x)]-c<y>ds<y>

y x

and for Raviart-Thomas functions A on I'y and ¢ on I'y we end up

VAX)(y),¢y)) = (1)>1< D) ‘ (1>>1< @) {

S % S S (et et ool

DRI W WHE S ETIIE

where we have to compute the single layer potential in local coordinates.

Calculation of (V divy A, divy {) with A, ¢ € RT,(K},).
There holds the following transformation, compare (4.17),
: 1 o~
lel" SO(X) = m legO(X)

Therefore, only a multiplication with the factor m is necessary.

Calculation of (M(n x u),A) with u € TND,(K;) and X € RT ,(K},).

First of all, we remark that there holds
A M@ x ¢))r = —(nx M r (6.14)
for all A, ¢ € LA(T). This holds due to grad, ®(x,y) = — grad, ®(x, y) and
Aly) - (grad, ®(x,y) x (n(x) x {(c))) = (n(x) x (grad, 2(x,y) x A(y))) - ¢(x).

Thus, this case also covers the matrix (n x MM u). There holds

Mn(y) x u(y))(x) = [ grad, ®x.y) x (n(y) x u(y)) dS(y).
r
For the calculation of the vector product it is often useful to consider the €;;,-tensor.

1, if (4,7, k) is an even permutation of (1,2, 3)
€k =« —1, if (4,4, k) is an even permutation of (1,2,3) , 4,j,k=1,2,3.
0, at least two indices are equal
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6.2 Implementation

Furthermore, we adopt Einstein’s sum convention which means the summation from 1
to 3 over two equal indices. For example, there holds for the i-th component of the
vector product of two vectors (a x b); = €;;,a;by.

Using the transformation for ZND-functions (6.13) we get on the local element I'y for
the i-th component

(/ erad, Bxy) ¢ (< u(y) is(y)) - ;()‘{

i |ay X ay
p

p—1
Z Z mnezjk (/I‘ gradx (I)(X7 y)yiﬂy;l) (Ily X C§’1))k
y J

m=0n

p
+ thfb%eijk < / grad, (x, y)yTyS) (ny x ¢), }
m=0 n=0 Ty J

For the second integration we use the usual transformation for R7 -functions. The double
integrals in local coordinates

/ / grad, ®(x,y)z¥zbylyy
x 1—‘y

can also be calculated analytically, see Maischak [74].

Calculation of the right hand side (I — M(n x (vpE™)), ) with ¢ € RT ,(K}).

Using (6.14) it follows that
(=M(n x (7pE™)),¢) = (ypE™, n x M¢) = (ypE™ x n, M{).

The last equation follows from a - (n x b) = (a x n) - b and there holds for the right
hand side

<(I - M(n X ))VDEmv C)F = <7DE2‘”7 C> + <7DEm X 1, MC)

The functions ypE™ x n =: E and ypE™ have to be given in the program and the term
(E, M() is computed using the transformation (6.12) for ¢, and we get with Einstein’s
summing convention

E-MC:E~/ grad ®(x,y) x ((y) dS(y)

Fy
p p-1
|c(1 ><c(2 {ZZ mneljkE (grad, ®yi" y2)
m=0 n=0
+ZZ ) e Ei(grad, dyp y2) }
m=0 n=0

The integrals (grad, ®y"yy) are evaluated using analytical formulas, cf. Maischak [74].
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6 The time-harmonic scattering problem
Calculation of the right hand side (\W~pE™, ypv) with v € N'D,(T7;,).
We remark that there holds
WrpE™,v) = —(V curlp ypE™, curlp v) + w?*(V(7pE™ x n), v x n).

The transformation for the first term is similar to the transformation of (V' curly u, curly v).
For the second term there holds

V(E™(x) x n(x))(y)
(n(y) x L(E™ x n(x))(y)) x n(y).

V(ypE™ X n(x))(y)

E := E™ x n(x) has to be given in the program and doesn’t have to be transformed.
Similarly to the transformation of (V(u x n),v x n) we get

V(E)(y) - (v(y) x ny) = %{Z ST > VE, vih) @l x ny),

1) o @ .
Cy X cCy k=0 1=0 Li=1

p p—1 - 3 _
2
EY O ST VE. ) @ x ny), }

k=0 1=0 -i=1 d

The integrals V (E;, y¥yl) are calculated using numerical quadrature.

6.2.1 Regularization of single layer and double layer potential

In the following, we explain the evaluation of the single layer potential and the double
layer potential applied to a given function.

The single layer potential

The Maxwell single layer potential ) is the the Dirichlet trace of the vectorial single
layer potential £
Vu(x) = (ng X Lu(x)) X ny.

First of all, we consider the expansion of the fundamental solution of the Helmholtz
equation into a Taylor series. There holds

eirlx—yl 1

= +ik— KX —y| —....
x—-yl [x-v¥

Thus, the fundamental solution consists of the fundamental solution of the Laplace
equation and regular terms.
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6.2 Implementation

The implementation in maiprogs can be done by evaluating the usual single layer poten-
tial and we write

1 eiﬁlx_yl

Lu(x) = — \x—y|u

1 eirbyl 1
y)dSy + — /( )u y) dS;.
e x—y] oyl ")

The first term is the single layer potential for the Laplace equation which can be eval-
uated analytically, see Maischak [74]. For the regularized kernel in the second integral
we use a numerical quadrature.

(y) dSy

Internally, in maiprogs we have to evaluate

eird 1 _ cos(kd) — 1 N SiIl(fid)Z,7

d d d d

where d denotes the distance between two points. For small kd (< 107%) we use the
approximation

cos(kd) — 1 N sin(/ﬁd)i K N ki3 il K3 d?
d d 2 24 6

which is numerically more stable because of the avoidance of erasements.

The double layer potential

In order to evaluate the double layer potential with the Helmholtz fundamental solution

1 [ 9 e
Ki(x) = e

— ds.
- any |X - y| ¢(Y) Yy

we first consider the derivative with respect to one component y;

§ eyl (i,{(yj —z)  (y —ffj)) inlx-y|
9 = 5 5 )¢ '
e (AN T

It follows that we have to evaluate the kernel for a given distance d by

eitd eitid B ik K2 L 1 n ik K21 L
dzm 5o\ g pERE? 57T
1 K2

— 5 " oy + smoother terms.

The first two terms can be evaluated analytically using the formulas of Maischak [74]. For
the analytical terms we use a numerical quadrature. The advantage of this regularization
is, that we got rid of the d% term.
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6 The time-harmonic scattering problem

6.3 Numerical experiments

6.3.1 The scattering problem

Here, we consider one example to test the implementation of the scattering problem. As
domain we take the unit cube Q = [—1,1]* and we choose a plane wave as the incident
wave

1
E™ := | 0| (cos ky + isin ky).
0

Furthermore, we set © = 1, € = 1 in R? such that the plane wave goes through the
obstacle without being scattered. Thus, the exact solution is given by

E" xeQ
E = ’ .
(X) { 0 ,XEQE

For our investigation we use different . In Table 6.1 we present the results for k = 0.5
for the uniform h-version with polynomial degree p = 1. Due to the a priori esti-
mate (6.10), we expect a convergence rate of % with respect to the degrees of freedom.
This correspondents to the results in Table 6.1. In Figure 6.2 we compare the h-version
with different s for p = 1. The errors behave the same way. Finally, in Figures 6.3 and
6.4 we consider the h-version for different polynomial degrees p. The behavior is the

same we already got from the eddy current problem in Chapter 5.

h | DOF | [Ellaeury@ | A le2@y | [Alz-12) | engearn -2 o

2 24 0.4224329 | 0.2108881 | 0.0153619 0.4227122

1 102 0.2065661 | 0.0632124 | 0.0013874 0.2065708 | 0.4948780
2/3 252 0.1368602 | 0.0354160 | 0.0003384 0.1368607 | 0.4551680
1/2 492 0.1024041 | 0.0224634 | 0.0001177 0.1024042 | 0.4335043
2/5 840 0.0818297 | 0.0160496 .D182E-04 0.0818297 | 0.4192891
1/3 | 1314 0.0681478 | 0.0121257 | .2630E-04 0.0681478 | 0.4089168
2/7 | 1932 0.0583893 | 0.0095922 | .1480E-04 0.0583893 | 0.4009191
1/4 | 2712 0.0510773 | 0.0078259 | .8972E-05 0.0510773 | 0.3945161
2/9 | 3672 0.0453938 | 0.0065431 | .5765E-05 0.0453938 | 0.3892579
1/5 | 4830 0.0408490 | 0.0055753 387TE-05 0.0408490 | 0.3848571

Table 6.1: Scattering problem: Errors in L?>-norm and energy norm and convergence rate
a with respect to the degrees of freedom for k = 0.5, h-version, polynomial

degree p = 1.
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Figure 6.2: Scattering problem: Energy norm e of the Galerkin error (E — uy, A — Ay)
for different x, h-version, p = 1.

0.1

0.001

0.0001

le-05

TTTT

PONE 4

E A RARAY

OO OO

[GRGEGES

!

10

100

1000
degrees of freedom

10000

Figure 6.3: Scattering problem: Energy norm e of the Galerkin error (E — u,, A — Ap)

for k = 0.5, h-version, different p.
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Figure 6.4: Scattering problem: Energy norm e of the Galerkin error (E — uy, A — A)
for k = 1, h-version, different p.

6.3.2 The electric field integral equation

As part of the coupling formulation in (6.8) we get the electric field boundary integral
equation (EFIE):
Find X € H;'(divy, T') such that

<V)\, C>F - %(V diVF A, din C)F = f(V)

forall ¢ € Hr/ 2 (divr, T'), compare Hiptmair & Schwab [68]. In the following we present

first results of the discretization of this equation. We use Raviart-Thomas functions on
I.

For our numerical experiment we choose the reference cube 2 = [—1, 1]* and consider the
right hand side f = 1. There is no exact solution known and so we have to extrapolate
the exact solution using a sequence of uniform meshes. In Figures 6.5 and 6.6 the results
for the h and the p-version are presented. One sees that the procedure convergences and
that the p-version converges faster than the h-version.
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