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Abstract 

Heterologous Expression of a Recombinant Chitinase from Streptomyces 

olivaceoviridis ATCC 11238 in Transgenic Pea (Pisum sativum L.) 

Fathi Hassan 

Pea is an important grain legume that gained worldwide economic importance as a source 

of protein (15.5-39.7 %) for human and animal nutrition. The world pea production 

exceeded 20 million ton in 2005. In addition, it is well suited as a rotation crop to 

replenish soil nitrogen levels. Improvement of the resistance to fungal diseases is a major 

objective in breeding, since fungal diseases can cause in pea a considerable loss to more 

than 30 %. 

The aim of the present study was to enhance the fungal resistance in pea through the 

heterologous expression of a chitinase gene (Chit30) from Streptomyces olivaceoviridis 

ATCC11238. Chit30 belongs to family 19 chitinases and can hydrolyze chitin, the 

backbone of the fungal cell wall. Therefore, the bacterial signal peptide was replaced by 

the signal sequence of an Arabidopsis thaliana basic endochitinase gene, which was N-

terminally fused to the mature bacterial gene. This chimeric chitinase gene (N-Chit30) was 

cloned via PCR based method into the pGreenII binary basis vector 0229, which contains 

the selectable marker gene bar under the control of a nos-promoter and nos-terminator. 

The gene was regulated either by a constitutive double 35S promoter from cauliflower 

mosaic virus or by the plant inducible vst promoter from grape and a 35S terminator. The 

bar gene encodes the enzyme phosphinothricin acetyltransferase (PAT), which confers 

resistance to transgenic plants against phosphinotricin, the active compound of the total 

herbicide BASTA®. The chitinase and bar genes were arranged divergently in the binary 

vector. 

Leaf disk explants from in vitro growing tobacco plants cv. Samsun and embryo axis 

excised from mature seeds of pea (Pisum sativum L.) cv. Sponsor were used as explants 

for Agrobacterium-mediated transformation. Different shoots were regenerated after 

transformation of tobacco and pea, which were healthy growing on media supplemented 

with PPT concentrations up to 15 mg/l. Shoots from tobacco were rooted and potted into 

greenhouse, whereas regenerated shoots from pea were grafted to recover whole plants 

which in turn produced T1 progeny. The total procedure from seed to seed was between 6-

8 months until getting transgenic pea seeds with transformation efficiencies varying 

between 0.31 % to 1.4 % with an average of 0.9 %.  

Transgene detection was made by PCR using different primer combinations (chit 555, and 
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bar447). The results clearly indicated and confirmed the successful integration of T-DNA 

into genomic DNA of pea and tobacco progenies. Copy numbers and integration patterns 

were investigated in T0, T1 and T2 generation using Southern blot analysis with different 

probes (chit 555, bar, and nptI), proving the presence of single copies in most of the pea 

plants tested, while two copies were also shown in some plants. In transgenic pea no 

vector backbone sequence were detected, neither by PCR- nor by Southern blot analysis 

on the presence of the nptI gene, which is used for the maintenance of the pGreenII 

plasmids in the bacteria. 

The transcript and accumulation of chitinase in transgenic pea and tobacco plants were 

confirmed by RT-PCR and Western blot analysis. After immunostaining it was possible to 

detect two bands corresponding to the mature protein (29 kDa) and non-processed protein 

(31-32 kDa). Immunostaining of proteins from the apoplast and suspension cell cultures of 

tobacco showed also two bands for mature and full-length protein. 

Leaf paint analysis showed positive results in most tested tobacco and pea clones 

indicating bar gene expression by BASTA® herbicide detoxification.  

Chitinase activity was analyzed using in-gel assays, which showed the presence of 

additional 3 isoform bands compared to the non-transformed pea, whereas between 3 and 

5 bands were detected in tobacco. The chitinase activity of tobacco ranged from 0.07 to 

0.14 U/ 10 µg total protein, whereas it was between 0.09 and 0.25 U/ 10 µg total protein 

extract from pea. 

Trichoderma harzianum was used to study the in vitro antifungal activity of crude extracts 

from pea and tobacco leaves, clearly showing inhibition of hyphal growth after 8 and 16 

h., compared to non-transformed control or the same samples after boiling. 

In the present study, the heterologous expression of the bacterial chitinase gene from 

Streptomyces olivaceoviridis ATCC 11238 in stable transformed pea- and tobacco plants 

was investigated for the first time.  

 

Keywords: Agrobacterium, Pea, Chitinase, Heterologous expression, Streptomyces, 

Resistance.
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Zusamenfassung 

Heterologe Expression einer rekombinanten Chitinase aus Streptomyces 

olivaceoviridis ATCC 11238 in transgenen Erbsen (Pisum sativum L.) 

Fathi Hassan 

Die Erbse hat als proteinreiches (15.5-39.7 %) Nahrungs und Futtermittel für die 

menschliche und tierische Ernährung weltweit an Bedeutung gewonnen. Die 

Weltprodukion an Erbsen betrug im Jahre 2005 über 20 Mio. Tonnen. Weiterhin dient die 

Erbse in geeigneter Fruchtfolge der Stickstoffanreicherung des Bodens. Die Verbesserung 

der Resistenz gegen Pilzkrankheiten ist ein wichtiges Züchtungsziel, da Pilzkrankheiten in 

Erbsenkulturen zu einem Ernteverlust von mehr als 30 % führen können.  

Das Ziel der vorliegenden Arbeit war es, die Widerstandskraft von Erbsen gegen 

pathogene Pilze durch die heterologe Expression eines Chitinasegens (Chit30) aus 

Streptomyces olivaceoviridis ATCC 11238 zu erhöhen. Chit30 gehört zu den Chitinasen 

der Familie 19 und bewirkt den hydrolytischen Abbau von Chitin, dem Grundgerüst der 

Pilzzellwand. Das bakterielle Signalpeptid wurde durch das pflanzliche Sekretionssignal 

einer basischen Endochitinase aus Arabidopsis thaliana ersetzt, welche N-terminal mit 

dem bakteriellen Gen fusioniert wurde. Das so entstandene chimäre Chitinase-Gen (N-

Chit30) wurde mittels einer PCR-basierten Methode in den binären pGreenII Basis-Vektor 

0229 kloniert, welcher als Selektionsmarker ein bar Gen unter der Kontrolle eines nos-

Promotors und eines nos-Terminators beinhaltet und der transgenen Pflanze somit eine 

Resistenz gegenüber Phosphinotricin, dem Wirkstoff des Totalherbizid BASTA® 

vermittelt. Die Genregulation des Chitinasegens erfolgte entweder über den konstitutiven, 

doppelten 35S-Promotor des Blumenkohl-Mosaik-Virus (CaMV) oder des induzierbaren 

vst1-Promotors aus Wein (Vitis vinifera L.) und einem 35S-Terminator. Das Chitinasegen 

befindet sich in dem binären Vektor in divergenter Leserichtung zum bar Gen.  

Die Agrobakterium vermittelte Transformation erfolgte an Blattscheiben von in vitro 

gezogenen Tabakpflanzen der Varietät Samsun (Nicotiana tabacum L. cv. Samsun) und 

longitudinal geschnittenen Embryoachsen, aus reifen Erbsensamen der Sorte Sponsor 

(Pisum sativum L. cv Sponsor). Aus unabhängigen Transformationsereignissen konnten 

Sprosse sowohl von Tabak als auch Erbse auf Pflanzenmedium mit einer Phosphinotricin-

Konzentration von bis zu 15 mg/l regeneriert werden. Die Sprosse der Tabakpflanzen 

wurden bewurzelt und dann im Gewächshaus bis zur Samenreife kultiviert, während die 

transgenen Erbsensprosse auf eine nicht transgene Unterlage gepfropft wurden. Die 

Regenerationsperiode für Erbsen betrug von der Transformation bis zum transgenen 
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Samen (T1) 6 bis 8 Monate mit einer Transformationseffizienz von durchschnittlich 0,9 % 

(Variation zwischen 0.31 % und 1,4 %).  

Nachgewiesen wurde das Transgen in den Pflanzen durch die PCR-Methode unter der 

Verwendung verschiedener Primerkombinationen. Die Ergebnisse bestätigten klar den 

Einbau der T-DNA in die gDNA der Erbsen- und Tabaknachkommenschaft. Die 

Kopienanzahl und Integrationsmuster wurden in den T0, T1 und T2-Generationen mit 

Hilfe der Southern-Blot-Analyse bestimmt, dies erfolgte mit Sonden für das Chitinase-, 

bar- und nptI Gen, nach einem Verdau der gDNA mit EcoRI oder XbaI. Dabei wurden 

überwiegend Einzelkopien in den Erbsenpflanzen nachgewiesen, allerdings trugen einige 

Erbsen auch zwei Kopien. In den transgenen Erbsen konnten weder mittels PCR noch mit 

der Southern-Blot-Analyse eine Integration von Vektorsequenzen (Backbone integration) 

nachgewiesen werden. Dazu wurden Primer bzw. Sonden gegen das nptI Gen eingesetzt, 

welches zur Stabilisierung der pGreenII Plasmide in Bakterien eingesetzt wird.  

Das Transkript und die Akkumulation der rekombinanten Chitinase in den transgenen 

Erbsen- und Tabakpflanzen wurden durch eine RT-PCR und Western-Blot-Analysen 

bestätigt. Nach der Antikörperdetektion war es möglich zwei Fragmente nachzuweisen: 

das reife, 29 kDa große Protein und das nicht-prozessierte 31 bis 32 kDa große Protein.  

Die Expression des bar-Gens wurde durch den Leaf-Paint-Assay getestet, der in den 

meisten beprobten Tabak- und Erbsenklonen eine Resistenz gegenüber dem BASTA®-

Herbizids bewirkte. Die rekombinante Chitinase-Aktivität wurde durch in-gel-assays 

analysiert, diese Assays zeigen die Präsenz von 3 zusätzlichen isoformen Banden, 

verglichen mit nicht-transgenen Erbsen, beziehungsweise 3 bis 5 Banden bei Tabak. Die 

Chitinase-Aktivität in Tabak hat eine Bandbreite zwischen 0,07 bis 0,14 U/10 µg 

Gesamtprotein, während sie bei Erbsen zwischen 0,09 und 0,25 U/10 µg Gesamtprotein 

lag. Des weiteren wurde eine Kultur von Trichoderma harzianum benutzt, um in-vitro die 

antifungale Aktivität von Rohextrakten aus Tabak- und Erbsenblättern zu untersuchen. 

Dabei wurde die eindeutige Hemmung des Hyphenwachstums nach 8 bzw. 16 Stunden 

gezeigt, verglichen mit einer nichttransformierten Kontrolle oder denselben Proben, die 

zuvor durch Kochen abgetötet wurden.  

In der vorliegenden Doktorarbeit wurde die heterologe Expression des bakteriellen 

Chitinase-Gens aus Streptomyces olivaceoviridis ATCC 11238 in stabil transformierten 

Tabak- und Erbsenpflanzen zum ersten Mal untersucht.  

Stichworte: Agrobaktrium, Erbse, Chitinase, Heterologe Expression, Streptomyces, Resistenz
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1   INTRODUCTION  
Protein-rich grain legumes are important crops especially in arid and semi-arid areas. 

Environmental stress factors impose major limitations on food legume productivity. Biotic 

and abiotic stresses can reduce legume yields up to 50 %. There is urgency to improve 

commercial and desired legume crops including pea varieties, which are of economic 

importance worldwide. In particular, the need to improve these varieties and producing 

fungal resistant varieties is prominent. Established tissue culture methods are a 

prerequisite for in vitro genetic manipulations, since genetic transformation entirely 

depends on successful in vitro regeneration. 

Biotechnology is a tool with an enormous potential for overcoming some of the 

constraints to increase agricultural production. It adds new methods to accelerate plant 

improvement. It is a technology aimed at invigoration of national industrial and 

agricultural sectors, and maintaining or increasing national competitiveness. Genetic 

engineering will broaden the genetic variability in certain cases where the natural 

variability within a species is not sufficient. It, in the first instance, addresses improvement 

of breeding material by introducing special valuable genes from different germplasm or 

other sources. On the other hand, people have used various conventional breeding 

techniques to modify plants and animals to improve food production for thousands of 

years. A traditional form of genetic manipulation is selective breeding, which makes it 

possible to promote preferred traits, such as higher yields or resistance of crops and 

animals. Today, these low-tech methods of genetic modification are being supplemented 

by marker assisted breeding and haploid technologies in breeding programs with mainly 

cereals. 

Sophisticated tools of modern biotechnology depend on established transformation 

compatible tissue culture methods, which are up to now the bottleneck for the genetic 

manipulation of leguminous crops. Researchers can now take a single gene from a plant or 

animal cell and insert it into another species to give that species a desired trial, such as 

resistance to a destructive pest or disease. 

Grain legumes are commonly known as pulses and are cultivated throughout the world in 

tropics, subtropics and temperate regions. The pulses are amongst the earlier food crops to 

be cultivated by man and these crops have been treated as one of the most important 

source of dietary protein, especially in Asia, Latin America and Africa. Pea (Pisum 
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sativum L.), faba bean (Vicia faba L.), lentil (Lens culinaris Medic) and chickpea (Cicer 

arietinum L.) are the main grain legumes grown as dry seed for human consumption and 

animal feed or as vegetables.  

First of all, the narrow gene pool of these species requires precise marker assisted 

breeding programs. Genetic engineering is an additional tool for functional gene analysis, 

which helps to understand the physiological background as well as its contribution for the 

genetic improvement of desired characters. 

Pea is an important grain legume that gained worldwide economic importance as a source 

of protein for human and animal nutrition just behind soybean [Glycine max (L.) Merill], 

groundnut (Arachis hypogea L.) and bean (Phaseolus vulgaris L.). The productivity and 

the value of peas could be greatly increased by the introduction of stably inherited traits 

such as pest and disease resistance, herbicide resistance and improved protein quality. 

These traits are not available in natural populations or near relatives of cultivated peas, but 

current advances in plant genetic engineering provide a potentially powerful tool for 

achieving these goals by genetic transformation. Because of its relative importance on the 

global market routine genetic engineering protocols for pea became elaborated in the past 

decade and could serve as an applicable tool for broadening the gene pool in addition to 

conventional breeding. 

Improvement of the plant resistance to fungal diseases has always been a desired aim of 

the breeders for long time. However, these efforts were met with a limited success. In this 

context, plant genetic engineering and molecular breeding provide a chance to solve this 

problem and improve the resistance of pea to fungal diseases. 

Because pea often suffers severe yield loss due to diseases and environmental conditions, 

emphasis should be put on developing screening procedures for the major biotic and 

abiotic stresses. Resistance to diseases, drought, cold weather, high protein content, altered 

amino acid composition and plant architecture are some of the desirable traits that breeders 

wish to transfer. The techniques of plant tissue culture have been developed as a new and 

powerful tool for crop improvement. Besides, the genetic transformation technique is 

becoming a popular tool for improving varieties by transforming desirable gene, which is 

often not possible by conventional breeding methods. Considering the importance of pea 

in human nutrition and the potential of tissue culture methods for the genetic improvement 

of pea, a great effort should be made in this field. Therefore, great importance is given to 
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the introduction of genetically based tolerance/resistance in pea. 

Additionally, pea is a suitable and interesting object for studying different morphological 

processes. As a leguminous plant, it can be a model for studying nodule formation and 

symbiotic nitrogen fixation. Pea is an important crop (used as food and forage), rich in 

protein. Elaboration of pea transformation and regeneration systems could contribute 

finally to crop improvement (Malysheva et al. 2001). 

This research proposes to use biotechnological tools to improve one of the most important 

grain legume crops, i.e. Pea, against fungal diseases by using a bacterial chitinase gene 

optimized to plant expression system with the need to sharpen the awareness of what 

advantages biotechnology can offer to the environment, health care and food security 

particularly in developing countries. From a bio-safety and acceptance point of view, it is 

worthwhile to notice that pea is a self-pollinated crop. In addition, expansion of grain 

legume cultivation, which is now very low in Europe, is highly desirable as grain legumes 

are superior crops from an agro-ecological point of view: they have the unique capacity to 

fix nitrogen, contribute to soil fertility, and enhance efficiency in agricultural rotations. 

They form, therefore, integral components of a more sustainable agricultural system with 

better water conservation.
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2   LITERATURE REVIEW 

2.1   Importance of pulses and legumes 
The Leguminosae family comprises almost 700 genera and 1800 species, which make it 

the largest family of flowering plants (Polhill and Raven, 1981). Legumes and pulses 

(edible dry seeds of leguminous plants) are one of the most nutritionally and economically 

important food crop families for humans (e.g., soybean, common bean, pea, peanut, lentil, 

chickpea), edible oils (peanut, soybean), or animal fodder and forage (alfalfa, clover). 

Archaeological evidence suggests that the legumes have always been an important 

component of the human diet, and still are, especially in the developing countries where 

pulses account for 90 % of global consumption. 

Today's agriculture continues to depend on legume crops because they all have high 

energy and high protein production for human and animal nutrition as well as amino acid 

profiles complementary to those of other crops, like cereals. 

The unique symbiotic ability of legumes to use atmospheric nitrogen for plant growth 

makes them preferable crops for sustainable agriculture by reducing the dependence on 

expensive nitrogen fertilizer by 40 % when legumes are used in rotation with other crops 

and improving soil structure. In addition, legumes are also diverse in both their 

adaptations to most of the world's agricultural and natural habitats (Oram and Agocaoili, 

1994; ICARDA, 1998 and 2000; Wheeler, 2000). 

2.2   Pea (Pisum sativum L.) 

2.2.1   Importance, origin, and taxonomy  
Pea (P. sativum, 2n=14, genome size is 4400 Mbp) is an annual growing plant and 

considered as one of the most important legumes for human, animal and environment. It is 

widely spread due to its many uses as fresh green peas, dry peas (whole, split, or made 

into flour), tender green pods, green foliage and leaves (vegetables and herbs), in the 

canning and freezing industry, ripened seed (snack and oil) (Duke, 1981; Davies et al., 

1985; Kay, 1979). Pea is among the four important cultivated legumes next to soybean, 

groundnut, and beans. It is the most widely grown of the cool season pulses in subtropics 

before chickpea and lentil (Table 1), and has the highest average grain yields (1,757 kg/ha) 

after soybeans. Canada is the leading country in pea production with more than 3 million 

metric tons in 2005 followed by France, China, Russian Federation and USA (Table 2).  
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Table 1. World pea yield and production in comparison with other important crops in 2005.        
 

Crop Yield (kg/ha) Production (Mt) 

Cereals 3.255 2,219,357,500

Maize 4.707 692,034,184

Wheat 2.898 626,466,585

Rice 4.004 614,654,895

Soybeans 2.292 209,531,558

Groundnut 1.447 36,492,147 

Beans 0.709 25,419,286

Peas 1.757 20,721,735

Chickpea 0.818 9,172,530

Green corn 8.708 8,887,136

Broad beans 1.731 5,641,642

Pulses nes 0.854 4,169,741

Lentil 1.007 4,031,837

Cow peas 0.354 3,689,386

Pigeon Peas 0.714 3,277,995

Vetches 1.191 1,164,561

Lupines 1.019 1,107,018

Source: FAO statistical data, FAOSTAT database 
(http://faostat.fao.org/faostat/form?collection=Production.Crops.Primary&Domain=Produ
ction&servlet=1&hasbulk=&version=ext&language=EN) 
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Table 2. Main pea producing countries in 2005. 
 

Peas, Dry 
Production 

(Mt) 
Peas, Green 

Production 

(Mt) 

  Belgium 4,443   Australia 29,471 

  Bolivia 5,17   Austria 4,942 

  Canada 3,169,900   Bolivia 25,85 

  China 1,200,000   Canada 63,47 

  Ecuador 2,938   China 2,208,700 

  France 1,332,000   Cyprus 900 

  Germany 464   Ecuador 11,692 

  Greece 500   France 428 

  Guyana 500   India 3,200,000 

  Hungary 18,531   Jordan 4,022 

  India 800   Madagascar 580 

  Italy 33,378   Malawi 400 

  Russian Federation 1,290,000   Morocco 145 

  Rwanda 18,854   Pakistan 78,2 

  Slovakia 31,364   Romania 23,303 

  Slovenia 800   Reunion 500 

  South Africa 1,032   Serbia 29,7 

  Spain 119,7   Slovenia 200 

  Syrian 3,001   South Africa 23,129 

  Ukraine 600   Spain 96,7 

  United Kingdom 200   United Kingdom 322 

  USA 666,55   USA 884,7 

WORLD 11,565,006 WORLD 9,156,729 

 
Source: FAO statistical data, FAOSTAT database 
(http://faostat.fao.org/faostat/form?collection=Production.Crops.Primary&Domain=Produ
ction&servlet=1&hasbulk=&version=ext&language=EN) 
 
The protein concentration of peas range from 15.5-39.7 % (Davies et al., 1985; Bressani 

and Elias, 1988). The amino acid profile and different components of pea are summarized 

in Table 3.
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Table 3. Chemistry and amino acids composition of pea (Duke, 1981; Hulse, 1994; Huisman and van der 
Poel, 1994; Bressani and Elias, 1988) 
 

100 g seeds Green peas Dry peas Amino acids 100 g protein 
Energy 44 calories Lysine 6.9-8.2 g 
Water 75.6 % 10.9 % Methionine 1.4-2.7 g 
Protein 6.2 g 22.9 % Threonine 3.9 g 
Fat 0.4 g 1.4 g Tryptophan 0.9 g 
Carbohydrate 16.9 g 60.7 g Cystine 0.8-1.7 g 
Crude fiber 2.4 g 1.4 g
Ash 0.9 g 2.7 g
Ca 
P 
Fe 
Na 
K 
β-carotene 
Thiamine 
Riboflavin 
Niacin  
Ascorbic acid 

32 mg 
102 mg 
1.2 mg 
06 mg 
350 mg 
405 µg 
0.28 mg 
0.11 mg 
2.8 mg 
27 mg 

 

 

      

 
Kay (1979) proposed that the primary centers of origin of pea are in southwestern Asia 

(India, Pakistan, former USSR and Afghanistan) since 10000 years ago (Fig. 1), and 

thereafter spread to the temperate zones of Europe. Four centers of origins, i.e., Central 

Asia, the Near East, Abyssinia and the Mediterranean have been recognized based on 

genetic diversity (Gritton, 1980). However, wild pea species like Pisum formosum (Stev.), 

Pisum fulvum (Sibth. Et Sm.) and Pisum syriacum (Berger Lehm.) found in Middle East 

suggest that Northwest Asia is the origin of pea and from there it distributed to the west, 

north and east (Makasheva, 1983). Peas were reported to be originally cultivated as a 

winter annual crop in the Mediterranean region (Smart, 1990). 
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Fig. 1. World map showing the center of origin (in red with stars) and cultivated area (in green) of pea. 
(http://www.biologie.uni-hamburg.de/b-online/schaugarten/Pisumsativum L/Gertenerbse.html#20) 

 

According to Duke (1981), garden peas are treated as P. sativum ssp. hortense Asch. & 

Graebn., field peas as P. sativum ssp. arvense (L.) Poir., edible podded peas as P. sativum 

ssp. macrocarpon; and early dwarf pea as P. sativum var humile. While Smart (1990) 

classified pea into Pisum sativum and P. fulvum Sibeth. & Smith.  

Peas require a cool, relatively humid climate and are grown at higher altitudes in tropics 

with temperatures from 7 to 30 °C (Duke, 1981; Davies, 1985). The optimum temperature 

levels for the vegetative and reproductive periods of peas were reported to be 21 and 16 

°C, and 16 and 10 °C (day and night), respectively. Growing seasons vary from 80-100 

days in semi-arid regions and up to 150 days in humid and temperate areas.  

2.2.2   Biotic and abiotic stress 
When comparing the pea production between developed countries and developing 

countries we can see a clear difference in the yield (for example Syria 1328 kg/ha vs. 

Canada 2321 kg/ha). This is mainly due to different biotic and abiotic stresses constraining 

the production of pea since the yield is still lower than the potential yield. These 

unpredictable stresses affect the cultivation of legumes in developing countries resulting in 

reducing cultivation despite the increased demand for legumes. 

Constraints affecting pea production are divided into biotic stresses caused mainly by 

different microorganisms (Table 4) and abiotic stresses. 
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Table 4. Main biotic constrains of pea. (Johansen et al., 1994; Slinkhard et al., 1994; Monti et al., 1994; 
Muehlbauer et al., 1983; Davies et al., 1985; van Emden et al., 1988). 
 

Constraint Causal organism 
Seed, seedling and root rot 
Aphanomyces root rot 
Fusarium root rot 
Wilt 
Damping-off 
Seedling rot 

 
Aphanomyces euteiches 
Fusarium solani 
Fusarium oxysporum 
Phythium ultimum 
Rhizoctonia solani 

Bacteria  
bacterial blight 

 
Pseudomonas pisi 

Fungi 
Ascochyta blight 
Gray mold 
Powdery mildew 
Downy mildew 
Sclerotina white mold 

 
Ascochyta fabae, A. pisi, A. piodella 
Botrytis cinerea 
Erysiphe polygoni, E. pisi 
Peronospora pisi, P. viciae 
Sclerotina sclerotiorum 

Virus  
Pea Enation Mosaic virus (PEMV) 
Pea Early Browning Virus (PEBV) 
Pea Mosaic Virus (PMV) 
Pea top yellows (PTY) 
Pea seed-borne Mosaic Virus (PsbMV) 
Pea Streak Virus (PSV) 

Nematodes 
Pea cyst nematode 
Root-knot nematode 
Root-lesion nematode 
Stem nematode 

 
Heterodera goettengiana 
Meloidogyne hapla 
Pratylenchus penetrans 
Ditylenchus dipsaci 

Insects 
Pea aphid 
Pea thrips 
Pea seed beetle 
Pea weevil 
Pea midge 

 
Acyrthosiphon pisum  
Kakothrips robustus  
Sitona lineatus 
Bruchus pisorum 
Contarinia pisi 

Weed 
Broom rape 

 
Orobanche spp. 

 
 
In Asia and Africa, powdery mildew, Ascochyta, and Fusarium are the major yield 

reducers, while in the Western hemisphere soil borne diseases, Ascochyta and bacterial 

blight are the yield reducers. In Europe, however, powdery and downy mildew, insects 

(aphid), and weeds cause about 25 % of overall yield losses. The pea weevil is one of the 

worldwide major pests of the field pea and is responsible for losses of up to 40 % in seed 
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yield (Smith, 1990).  

Abiotic stresses affecting pea production are mainly cold, frost, water-logging, drought, 

heat, soil pH, salinity, sodicity and boron toxicity. Among cool season pulses, pea can 

tolerate cold (-2 °C) while chickpea responds in the opposite way. High temperatures (30-

35 °C), causes increased yield losses in pea through flower abortion, early pod abortion 

and abortion of the seeds within pod (Duke, 1981; Davies, 1985).  

Pea is considered sensitive to drought with yield losses varying from 21 to 54 % 

depending on the developmental stage and environment. Water-logging can cause yield 

losses of up to 50 % and in some cases up to 100 % by affecting root growth depending on 

the variety, stage of growth, duration, and the extent of root zone affected by water-

logging. pH plays an important role in pea growth and nutrient availability, the optimal pH 

is 5.5-6.5, in the suboptimal pH (pH > 8.0), pea could suffer from water stress and nutrient 

deficiency. pH can also cause toxicity of Al, Fe and Mn when it is lower than 4.5. Salinity 

affects pea, the symptoms are necrosis, and color change of old leaves to yellow causing it 

to die. However, pea can tolerate salinity better than other pulses.  

2.2.3   Germplasm 
Germplasm collections are important for all scientists interested in improving and 

studying any crop from genetic, physiological or pathological aspects. Genetic resources 

and diversity of cultivated and wild relatives of the crop have to be available on request 

for different research projects like screening and evaluation for biotic and abiotic stress 

resistant trails. There are different pea germplasm collections all over the world of which 

Muehlbauer and Kaiser (1994a) sited 14 major collections. Currently the USDA-ARS 

Pisum germplasm collection located at Pullman, Washington, USA contains 3918 

accessions (Coyne et al., 2005) and the John Innes Institute Pisum Collection, Norwich 

Research Park-Norwich, UK maintains 3030 accessions. (http://www.jic.ac.uk/GERM- 

PLAS /pisum/index.htm 27th April, 2005).  

2.2.4   Biotechnology 
Although there are comparably many accessions, it is still difficult to find all desired trails 

in the available primary, secondary and tertiary gene pools of a species or related genera 

or collections to control different stresses. Although it is possible to use agrochemicals, 

which address other economical and environmental concerns, or using integrated pest 
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management systems, host-plant resistance and improved agricultural practices are key. 

The actual need however, is to develop varieties, which tolerate or resist different stresses 

and at the same time give large and stable yields. Breeding against multiple stress 

resistance is not easy, although examples of cultivars resistant to three stresses have been 

reported (Nene, 1988; Muehlbauer and Kaise, 1994b). 

Mutagenesis and hybridization are one option to increase variation in the primary gene 

pool, which could be used to start a breeding program. However, plant breeding has 

limitations due to crossability barriers. Therefore, new techniques were used like embryo 

rescue through in vitro culture to overcome embryo abortion after wide crosses. 

Biotechnology opened new horizons and ways to control different stresses and to improve 

crop quality and quantity by enabling rapid transfer of specific genes from different 

organisms to overcome the crossing barriers and resulting in extension of the variability 

and gene pools, which can be integrated in breeding programs much faster than with 

normal breeding strategies. The advantage of genetic transformation is the introduction of 

genes from unrelated species, wild relatives, or completely different organisms like 

bacteria, fungi and even human or viruses. Its use has the potential to benefit human and 

protecting the environment, increasing the yield through controlling weeds and different 

diseases. It also improves the poor communities’ life by increasing the amino acids 

compounds or reducing malnutrition by genetically enriching vitamins as in the case of 

Golden Rice. 

As has been mentioned before, fungal diseases are considered a severe problem resulting 

in yield losses of up to 100 % and quality losses because of mycotoxin contamination of 

the grains in many parts of the world. It was reported that, in some cases, it is possible to 

control the disease by agricultural practices and using resistant varieties and 

agrochemicals. However, this is not always found to be effective since the breeding 

programs take long time to develop resistant varieties and new types of pathogen might 

develop faster. In addition, fungicides are expensive. For some regions, there are needs to 

avoid cultivation of infected fields for years and often agricultural rotation in fields 

infected with root rot is not possible. 

One of the promising methods is to use biotechnology and modern techniques of plant 

genetic engineering, which could provide a powerful tool for achieving these goals and 

overcoming most of these problems. This technology enhances the plant defense system 
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against fungal pathogens through producing high levels of antifungal compounds. It has 

been shown that plants already have defense systems which involve pathogen-related 

proteins, e.g. chitinase (Legrand et al., 1987; Shinshi et al., 1990; Yamamoto et al., 2000), 

stilbenes (Wiese et al., 1994; Hain et al., 1993), β-1,3-glucanase (Kombrink et al., 1988) 

or polygalacturonase-inhibiting proteins (Faize et al., 2003; Agüero et al., 2005). 

2.2.5   Strategies for the development of fungus-resistant transgenic plants 
Different steps were achieved to develop fungal resistance in plants like hypersensitive 

response (HR), production of pathogenesis-related (PR) proteins and systemic acquired 

resistance (SAR). 

According to review of Grover and Gowthaman (2003), these strategies could be 

classified into two categories, either production of transgenic plants with antifungal 

molecules like proteins and toxins or by using R genes to activate hypersensitive response 

and systemic acquired resistance pathway (Fig. 2). 

Antifungal proteins from different sources showed in vitro activity by inhibiting hyphal 

and fungal growth as reported by many scientists (Asao et al., 1997; Bolar et al., 2000; 

Rajasekaran et al., 2000; Boller, 1993). Antifungal proteins consist of pathogenesis-related 

(PR) proteins, ribosome-inactivating proteins (RIPs) where plant RIPs inactivate foreign 

ribosomes by removing an adenine residue from 28S rRNA so the 60S ribosomal subunit 

cannot bind to elongation factor 2 resulting in protein elongation inhibition, small cystein-

rich proteins such as chitin-binding proteins, plant defensins, hevein and thionins, lipid 

transfer proteins (LTPs). Storage albumins have a dual role in storage and defence, 

polygalacturonase inhibitor proteins (PGIPs), antiviral proteins, and non-plant antifungal 

proteins (Faize et al., 2003; Gao, 2000). 
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Fig. 2. Higher plants defense response (up), Genes and its products (down) used to produce transgenic plants 
with enhanced fungal disease resistance by using fungal virulence products (hypha cells), expression of 
plant-derived gene products (in plant cell) or gene products from non-plant sources (outside  plant cell). 
Adapted and modified from Punja (2001). 

 

2.2.5.1   Pathogen related (PR) proteins  
PR proteins are large group of proteins with different biochemical and enzymatic 

activities. They were first described as a consequence of pathogen attack and abiotic 

stresses, but later it was shown that they are induced by different ways like wounding, 

fungal cell wall elicitors, ethylene, salicylic acid, UV light, and heavy metals. PR proteins 

are also constitutively expressed at different developmental stages. Induction of PR 

proteins during hypersensitive response and SAR indicate its role in natural defense of 

plants to protect themselves against pathogen infection. PR proteins have been classified 

into 17-PR protein families based on primary structure, serological relatedness and 
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enzymatic and biological activities. The functions and source of these different families 

are summarized in Table 5. 

Table 5. Pathogen related proteins families and their function (Gachomo et al., 2003; Kasprzewska, 2003; 
Hoffmann-Sommergruber, 2002; Okushima et al., 2000; Çaliskan, 2000; Gao, 2000; Narváez-Vásquez, 
1992; Wei et al., 1998).  

Family MW 
(kDa) 

Designation Function and 
target 

PR-1 14-17 PR protein 1 precursor Membrane 

PR-2 25-35 1,3-ß-glucanase Cell wall glucan 

PR-3 25-35 Endochitinase (classes I, II, IV, VI and VII) Cell wall chitin 

PR-4 13-19 Endochitinase (prohevein) Cell wall chitin 

PR-5 22-26 Osmotin and thaumatin-like proteins Membrane 

PR-6 6-13 Proteinase inhibitor Proteinase 

PR-7 69 Proteinase Not defined 

PR-8 28 Endochitinase (class III) Cell wall chitin 

PR-9 39-40 Peroxidase Indirect activity 

PR-10 17-18 RNase Pathogen-RNA 

PR-11 41-43 Endochitinase (class V) Cell wall chitin 

PR-12 5.6 Defensin  Membrane  

PR-13 14 Thionin  Membrane 

PR-14 7-12 LTPs Lipid  

PR-15 22-26 Oxalate-oxidase Cell membrane  

PR-16 22-26 Oxalate-oxidase-like proteins Cell membrane  

PR-17 27 Unknown  - 

 

One widely used method to improve disease resistance of economically important crops is 

to express PR proteins or to enhance and over-express their endogenous forms. Of these 

proteins, chitinases are considered as one important class of enzymes and prime candidate 

for further improvement of plant defense against fungal diseases. 
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2.2.5.2   Chitinase 
Chitinases (EC 3.2.1.14, also called chitodextrinase; 1,4-β-poly-N-acetylglucosaminidase; 

poly-β-glucosaminidase; β-1,4-poly-N-acetyl glucosamidinase) are glycosyl hydrolases 

which catalyses the hydrolytic cleavage of the β-1,4-linked polymer of N-

acetylglucosamine (GlcNAc) of chitin. Chitin [(C8H13NO5)n] is one of the most abundant 

natural polymers next to cellulose [(C6H10NO5)n], chitin consist of linear chains of β-1,4-

linked sugar residues (Fig. 3). It is found in the cell walls of fungi (20 %), exoskeleton of 

arthropods (30 %), the shells of crustaceans such as crabs, lobsters, and shrimp (70 %), 

nematodes and insects (37 %). Chitin has many applications in medicine and the 

pharmaceutical industry, water and waste-water management, food-, feed-, textile-, 

cosmetic industries as well as in agriculture. 

                                               

 

 

 

 

Fig. 3. Chitin chemical structure of poly N-acetylglucosamine. (http://en.wikipedia.org/wiki/Chitin ). 

 

Chitinase is found in a broad range of organisms including organisms, which do not 

contain chitin such as insects, bacteria, higher plants, human and even viruses. It has 

different developmental, morphological and physiological roles like degrading the old 

cuticle of insects and crustaceans, pathogen related defense in higher plants, nutritional 

and parasitism roles in bacteria and fungi, pathogen defense in humans and daughter cell 

separation in yeast (Renkema, 1995; Carstens et al., 2003; Escott and Adams, 1995).  

Chitinases are classified according to mode of action into two classes:  

- Endochitinase (EC 3.2.1.14) which cleave and hydrolyse chitin randomly at internal sites 

of β-1,4-glycoside bonds producing chitotetraose, chitotriose, and diacetylchitobiose.  

- Exochitinase which has activity on the non-reducing end of the chitin chain and has two 

subclasses of chitobiosidases (EC 3.2.1.29) and β-(1,4) N-acetyl glucosaminidases (EC 

3.2.1.30, which now includes EC 3.2.1.52 as b-L-N-acetylhexosaminidase) cleaving the 

oligomeric products of endochitinases and chitobiosidases and thus generating monomers 
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of GlcNAc. There is another pathway where chitin deacetylase converts chitin to chitosan, 

which is degraded by chitosanase (EC 3.2.1.132) to glucosamine residues as demonstrated 

in Fig. 4 (Davis and Eveleigh, 1984; Dahiya, 2005; Li, 2000). 

Fig. 4. Chitin degradation pathways in nature (Li, 2001; Davis and Eveleigh, 1984) 

Chitinases are also classified according to amino acid sequences and similarity of catalytic 

domains into three families, 18, 19 and 20. These families are different in the 3D structure. 

Family 18 contains endochitinase and exochitinase from viruses, bacteria, fungi, insects, 

animals and some plant chitinases (classes III and V). Family 19 mainly contains plant 

chitinases (classes I, II and IV) and Streptomyces chitinase. Family 20 contains chitinase 

from human, Dictyostelium discoideum and Vibrio harveyi. Most chitinases consist of the 

following main domains: signal peptides, catalytic domain, chitin-binding domain and 

fibronectin type III domain. Class I is plant chitinase with a cysteine-rich domain (chitin 

binding domain) at N-terminus and found in rice, tobacco and potato. Class II is found in 

plants (Arabidopsis, barly and tobacco), fungi, and bacteria, and has a similar structure to 

class I but missing the cysteine-rich domain at N-terminus (Fukamizo, 2001; Patil, 2000; 

Neuhaus, 1999; Melchers et al., 1994). Class III has similar regions to prokaryotic 

chitinases and found in cucumber, Arabidposis, tobacco and chickpea. Class IV has same 

structure as class I but smaller due to deletions in cystein-rich domain and catalytic 

domain and found in bean, sugar beet and rape. Class V is similar to bacterial chitinase 

and found mainly in tobacco (Nagasaki et al., 1997). Some chitinases have two chitin-

binding domain like Brassica juncea chitinase (Chye, 2005; Van den Bergh et al., 2004) 

and Aeromonas sp. No. 10S-24 family 19 chitinase (Kojima et al., 2005).  
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As chitinases are one of the most important protein families showing antifungal activity in 

vitro, many reports, which are available on successful cloning of different plant chitinases 

as, summarized in Table 6.  

Table 6. Examples of plant chitinases successfully expressed in different crops. 

Target crop Chitinase gene 
source Reference 

Canola (Brassica napus L.) Bean Grison et al., 1996 

Cotton (Gossypium hirsutum) Bean Tohidfar et al., 2005 

Tobacco (N. tabacum L.) Bean Broglie et al., 1989 and 1991 

Peanut (Arachis hypogaea) Tobacco Rohini and Rao, 2001 

Cucumber (Cucumis sativus L.) Tobacco Punja and Raharjo, 1996 

Tobacco (N. tabacum L.) Tobacco Neuhaus et al., 1991 

Tobacco (N. tabacum L.) Brassica juncea Fung et al., 2002  

Potato (Solanum tuberosum)  Brassica juncea Chye et al., 2005 

Italian ryrgrass (Lolium multiflorum) Rice chitinase Takahashi et al., 2005 

Chrysanthemum (Dendranthema 
grandiflorum (Ramat.) Rice chitinase Takatsu et al., 1999 

Cucumber (Cucumis sativus L.) Rice chitinase Tabei et al., 1998;     
Kishimoto et al., 2002 

Grape (Vitis vinifera L.) Rice chitinase Yamamoto et al., 2000 

Rose (Rosa hybrida L.) Rice chitinase Marchant et al., 1998  

Strawberry (Fragaria sp. L.)  Rice chitinase Asao et al., 1997  

Japonica rice (Oryza sativa)  Rice chitinase Nishizawa et al., 1999 

Wheat (Triticum aestivum L.) Rice chitinase Chen et al., 1998 

Silver birches (Betula pendula R.) Sugar beet Pasonen et al., 2004;   
Pappinen et al., 2002 

Tobacco (N. tabacum L.) Peanut Kellmann et al., 1996 

Wheat (Triticum aestivum L.) barley Bliffeld et al., 1999;       
Oldach et al., 2001 

Grape (Vitis vinifera L.) barley Bornhoff et al., 2005 
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Chitinases from other sources than plants were also cloned and investigated from fungus 

such as Trichoderma harzianum endochitinase (Hayes et al., 1994) which introduced into 

apple (Wong et al., 1999 and Bolar et al., 2000), potato (Solanum tuberosum L.), broccoli 

(Mora and Earle, 2001), tobacco (Lorito et al., 1998) and grape (Kikkert et al., 2000). 

Rhizopus oligosporus chitinase was introduced into tobacco (Terakawa et al., 1997). 

Mycorrhiza (Glomus mosseae) chitinase expressed into pea (Slezack et al., 2001), yeast 

(Saccharomyces cerevisiae) chitinase was expressed into tobacco (Carstens et al., 2003). 

Insect chitinase from hornworm (Manduca sexta) was expressed into tobacco and showed 

reduction in growth of budworm (Heliothis virescens) larvae (Ding et al., 1998). Also, 

baculovirus chitinase was expressed in tobacco (Shi et al., 2000). 

Itoh et al. (2003) reported, for the first time, the introduction of family 19 chitinase gene 

into plant, where they transformed the ChiC gene of Streptomyces griseus HUT6037 into 

rice using the Agrobacterium strain EHA101. They found a clear antifungal activity by 

inhibiting the hyphal growth of Trichoderma reesei. They found that ChiC is accumulated 

intercellularly in rice plants and possess an activity against glycol chitin. 

A large group of bacterial chitinases were isolated, cloned and characterized, but a few of 

them were expressed in plants. Lund et al. (1989), Jach et al. (1992), and Howie et al. 

(1994) investigated the expression of ChitA gene from Serratia marcescens in tobacco. 

Table 7 summarizes some examples of the cloned bacterial chitinases so far. 
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Table 7. Examples of cloned and characterized bacterial chitinases 
Organism/plant Enzyme (MW) 

kDa 
Gene Family Target Reference  

Streptomyces olivaceo- 
viridis ATCC11238 

Chit30 (30) Chit30 19 Pea Present study 

Streptomyces olivaceo-
viridis ATCC11238 

Chit30 (30) Chit30 19 Tobacco Present study 

Streptomyces griseus 
HUT6037 

ChiC (33) ChiC  19 Rice Itoh et al., 2003 

Aeromonas hydrophila 85 kDa chitinase ND.  E. coli Chen et al., 1991 
Aeromonas sp. No10s-
24 

Chitinase II (53) 
Chitinase III(55) 

Chit II, III  
ORF-1-4 

  Ueda et al., 1994; Shiro et 
al., 1996 

Alteromonas sp. Strain 
O-7 

Chi-85 (85) 
Chi-78 (78) 

Chi-85   Tsujibo et al., 1993 

Bacillus cereus 28-9 ChiCW (70), 
ChiCH (37) 

ChiCW, 
ChiCH 

18 E. coli Huang et al., 2005 

Clostridium 
paraputrificum  

ChiB (87)  chiB    Morimoto et al., 1997 

Enterobacter 
agglomerans IC 1270 

Chia_Entag (59) 
ChiA (60) 

chiA   Chernin et al., 1995, Park et 
al., 1997 

Janthinobacterium 
lividum 

Chi69 (69), Chi56 
(56) 

Chi69, chi56   Gleave et al., 1995 

Serratia liquefaciens ChiA, ChiB chiA, chiB 18  Joshi et al., 1988 

Serratia marcescens 
QMB1466 

ChiA (58), ChiB 
(54) 

chiA, chiB 18  Jones et al., 1986; Harpster 
and Dunsmuir, 1989 

Serratia marcescens Chitinase A chiA 18 Tobacco Lund et al., 1989,  Howie et 
al., 1994, Jach et al., 1992 

Serratia marcescens 
BJL200 

Chit A (62) Chit B 
(55) 

chiA, chiB 18  Brurberg et al., 1994 and  
1995 

Serratia marcescens 
2170 

Chitinase A (57), B 
(52) 

chiA, chiB 18  Watanabe et al., 1997 

Serratia marcescens 
2170 

Chitinases C1 and 
C2 (36) 

chic 18  Suzuki et al., 1999 

Serratia marcescens 
KCTC2172 

54 and 22 
chitinases 

Not 
designated 

18  Gal et al., 1997 

Streptomyces griseus 
HUT6037 

ChiC (33), C-1, C-
2 (27) 

Chic 19  Ohno et al., 1996; 
Mitsutomi et al., 1995 

Streptomyces lividans 66 Chitinase A (36), C 
(65), D (41), B (46)

chiA, chiC, 
chiB 

  Miyashita et al., 1991& 
1997; Miyashita & Fujii, 
1993; Fujii & Miyashita, 
1993  

Streptomyces 
olivaceoviridis ATCC 
11238 

Exochitinase (59 
and 47) 

Exo-chiO1   Blaak et al., 1993; Blaak 
and Schrempf, 1995 

Streptomyces 
olivaceoviridis ATCC 
11238 

Chi30 (30), Chi92 
(92) 

Chi30, chi92 19  Li, 2001 

Streptomyces plicatus Cht 63 (63) chtA   Robbins et al., 1988 & 1992
Streptomyces thermo-
violaceus OPC-520 

Chi40 (40) Chi40   Tsujibo et al., 2001 

 Streptomyces specis 
Bacillus chitinolyticus 

Chitinase (32) chIS 
 

19  Hoster et al., 2005 

Steptomyces sp. J-13-3 Chitinase (32)  19 E.coli Yamashita and Okazaki, 
2004 

Stenotrophomonas 
maltophilia strain C3 

Chitinase (32)    Zhang et al., 2000 
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2.2.6   Pea improvement via Agrobacterium-mediated genetic transformation 

It was mentioned that the economical, nutritional and environmental importance of pea is 

affected by the different stresses constraining the production of this crop leading to heavy 

losses in quality and quantity of the product mainly due to fungal diseases. 

Genetic transformation has potential impacts for crop improvement through alleviation of 

specific production constraints. These techniques include vector based method using 

Agrobacterium tumefaciens or A. rhizogenes transformation and direct gene delivery 

methods such as electroporation (Chowrira et al., 1998), PEG-mediated gene transfer 

(Böhmer et al., 1995; Maccarrone et al., 1995) and particle gene bombardment (Öktem et 

al., 1999; Masood et al., 1996). For each method, there are advantages and disadvantages. 

For Agrobacterium tumefaciens, there are many advantages in comparison to other 

systems like the respective simplicity without need for highly sophisticated equipments, 

predictable integration pattern of the transgene, possibility to transfer large fragments of 

T-DNA and relatively stable transformation events. The disadvantage is that not all 

species were susceptible to Agrobacterium infection, but now there are different articles 

on monocot transformation using Agrobacterium such as rice, wheat, maize and barley. 

Protoplasts can also be used for species, which cannot be transformed with 

Agrobacterium, but clones, which are defined as single event transformants takes long 

time to become regenerated to plants. Particle bombardment could be targeted to any 

explant or tissue and used for transient gene expression but the disadvantage is 

unpredictable gene integration and high risks for gene rearrangement and silencing. The 

method of choice therefore is to use the natural system of Agrobacterium-mediated 

transformation since many legumes are susceptible for Agrobacterium infection. There are 

some successful achievements in pea, chickpea and soybean showing stable 

transformation, but still challenges for other legumes like bean and lentil, which are 

considered to be more recalcitrant for regeneration and transformation in comparison to 

other crops (De Kathen and Jacobsen, 1990). The prerequisites for any successful 

transformation protocol are: (I) the development of a reproducible regeneration system 

accompanied with (II) efficient transformation and selection protocol to increase the 

transformation efficiency. 

Since the regeneration is the critical step for any transformation success, there are different 

techniques used for regeneration of pea from callus through organogenesis from protoplast 
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(Böhmer et al., 1995) or somatic embryogenesis which was first reported by Jacobsen and 

Kysely (1984), from leaf-derived callus using Picloram, and from immature zygotic 

embryos or from shoot apices using 2,4-D or Picloram (Lehminger-Mertens and Jacobsen, 

1989; Kysely and Jacobsen, 1990; Kysely et al., 1987). Puonti-Kaerlas and Eriksson 

(1988) reported regeneration of pea shoots from protoplast culture from 10 different 

cultivars. Epicotyls were the source of protoplasts, shoots could be observed after nine 

months and regeneration frequency of shoots was 1 % in two cultivars. Nielsen et al. 

(1991) used hypocotyl segments for regeneration of the pea cultivar Fjord, then four 

cultivars were tested using the same protocol using 10 µM IAA and then 5 µM Zeatin. The 

regeneration frequency obtained was 10 % and plants could be obtained within three 

months. Özcan et al. (1993) described pea regeneration using adventitious shoot 

regeneration and somatic embryogenesis from immature cotyledon explants of two pea 

cultivars, i.e. Orb and Consort, where regeneration was affected with cotyledon size and 

orientation on the medium. Kosturkova et al. (1997) reported high efficiency (50-10 %) 

regeneration of 10 Bulgarian pea genotypes from embryonic axes of immature embryos 

through direct and indirect organogenesis induction on MS medium supplemented with 10 

mM BA+1 mM NAA or 0.2 mM 2,4-D, respectively. Griga (1998 and 2002) described 

direct somatic embryogenesis from shoot apical meristems of pea (without callus 

intervention) from meristematic tissues grown on a medium supplemented with 2.5 µM 

Picloram and then TDZ achieving 78 % germination of harvested somatic embryos. 

Loiseau et al. (1995) described somatic embryogenesis from shoot apices of pea with 95-

100 % explant forming embryos from genotype C1 830. Ochatt et al. (2000) used 

hypocotyl sections lacking pre-existing meristems to induce callus or somatic 

embryogenesis where they could regenerate a whole plant via organogenesis. Tzitzikas et 

al. (2004) described a procedure of pea regeneration from nodal tissue in 4 cultivars using 

TDZ or BAP for induction of bud-containing tissue and multiplication of these buds, then 

different combinations of GA3, NAA and BAP were used for shoot formation, while IAA 

or IBA or NAA were used for root induction. They used a cyclic multiplication of bud-

containing tissue.  

Legume transformation was reported by different groups. Köhler et al. (1987) described 

PEG method of direct transformation of moth bean (Vigna aconitifolia) which is highly 

dependent on the cultivar used. Russell et al. (1993) described Phaseolus vulgaris 

transformation via electric discharge mediated particle acceleration. Ikea et al. (2003) 
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transformed for the first time cowpea (Vigna unguiculata L. walp.) using particle 

bombardment method, where the transformation efficiency was 1.26 %. Examples of other 

legumes, which were transformed via Agrobacterium-mediated transformation, are listed 

in the Table 8. 

Table 8. Few selected publications on different legumes transformed via Agrobacterium  
Crop Agrobacterium 

strain 
Explant Transformation 

efficiency/genes 
used 

References 

Soybean (Glycine 
max) 

A281, C58, ACH5 
and EHA105 

cotyledonary node 
(for EHA105) 

0.4 % (for 
EHA105)/ GUS 

Donaldson and 
Simmonds (2000) 

Soybean (Glycine 
max) 

EHA105 immature zygotic 
cotyledons 

0.03%, GUS, Hpt Yan et al. (2000) 

Azuki bean (Vigna 
angularis) 

LBA4404, 
EHA105 and 
AGL1 

elongated epicotyls 
of etiolated seedlings

2 %, nptII, GUS or 
GFP 

Yamada et al. 
(2001) 

Chickpea (Cicer 
arietinum L.) 

EHA101 cotyledonary node /bar and vst genes Kiesecker (2000) 

Pigeon pea 
(Cajanus cajan 
L.). 

EHA105 embryonic axes and 
cotyledonary nodes 

51-67%, nptII and 
hemagglutinin gene  

Satyavathi et al. 
(2003 

Faba bean (Vicia 
faba L.) 

EHA105 embryo axes sulphur rich 
sunflower albumin  

Hanafy et al. 
(2005) 

Medicago 
truncatula 

LBA4404, C58 and 
AGL1 

young leaflets nptII, GFP and 
GUS 

Chabaud et al. 
(2003) 

Desi and Kabuli 
chickpeas 

AGL1 germinated seedlings 5.1 % Senthil et al. 
(2004) 

Chickpea LBA4404 embryo axes  4 % Fontana et al. 
(1993) 

Grasspea 
(Lathyrus sativus 
L.) 

EHA105 and 
LBA4404 

epicotyl segments nptII and GUS Barik et al. (2005) 

 

Puonti-Kaerlas et al. (1989) had tested different Agrobacterium strains, i.e. A281, B6S3, 

C58, GV3101(pGV2298), GV3101(pGV3851) and GV3101(pGV3304) for susceptibility 

of five cultivars of pea i.e. Bello, Filby, Petra, Stivo and Vreta. As explants for the 

transformation with Agrobacterium strain GV3101 they used epicotyl segments and cut 

stems and leaf pieces from shoot culture. They found that the response in pea is influenced 

more by the bacterial strain and the limited factor in pea transformation is regeneration in 

vitro. 

Puonti-Kaerlas et al. (1990) reported transformation of pea plants of three cultivars, i.e. 

Filby, Puget and Stivo using axenic shoot culture and epicotyl co-cultured with 

Agrobacterium strain GV3101, where the best results of callus formation in all three 

cultivars were in media supplemented with BA and 2,4-D. The efficiency of callus 

regenerating shoots was 15 % but it took 6 months for shoot induction on regeneration 
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medium. 28 transgenic plants were transferred into the greenhouse where they flowered 

but without raising any seeds, apparently the use of nptII gene lead to sterility. They also 

reported the effects of cultivars and selectable marker on the callus production. Puonti-

Kaerlas et al. (1992a) transformed two cultivars of pea protoplast by direct gene 

transformation of GUS as marker gene using electroporation with transformation 

efficiency of 1-2.2 %.  

De Kathen and Jacobsen (1990) co-cultivated epicotyl segments and node explants from 

etiolated seedlings of pea with wild-type Agrobacterium strains C58C1, A281 and 8683 

harboring binary vectors GV 2260 (p35S GUS INT) and GV 3850 HPT carrying either a 

neomycin- or hygromycin phosphotransferase-gene as selectable markers, where they 

could recover around 5 % of plantlets showing GUS and NPTII activity but without 

raising any seed. They found that transformation frequency was influenced by explant 

source, Agrobacterium strain, pea genotype and duration of co-cultivation.  

Davies et al. (1993) used Agrobacterium strain C58/3 for transformation of the pea 

cultivar Puget. The explants were prepared from germinating seeds after removing the 

shooting and rooting part of the cotyledonary lateral buds, which were used for 

transformation by injection of the bacteria, suspension harboring a binary vector 

containing nptII and GUS genes. Transformation efficiency was 1.44 %, with four months 

time mentioned to produce and transfer the transgenic plants into greenhouse.  

Schroeder et al. (1993) developed transgenic peas through organogenesis using 

longitudinal slices embryogenic axis of immature seeds of cultivars Greenfeast and Rondo 

and the explants were incubated with Agrobacterium strain AGL1 harboring binary vector 

containing nptII and bar genes. PPT at concentration of 15 mg/l was used as a selecting 

agent. They reported nine months from inoculation of explants with Agrobacterium 

suspension until producing a whole plant. Transformation efficiencies were between 1.5 

and 2.5 % of starting explants. They found that the explant has an important role on 

successful transformation, in addition to the bacterial strain, selectable marker and 

hormones used during co-cultivation.  

Grant et al. (1995) developed a transformation system for four pea cultivars i.e., Bolero, 

Trounce, Bohatyr and Huka using immature cotyledon explants, the Agrobacterium strain 

used was AGL1 harboring a binary vector containing nptII and bar genes. Transgenic 

plants were recovered from all four cultivars and a first generation was obtained after 
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seven months. Transformants were selected on 10 mg/l PPT and the transformation 

efficiency was 1.47 % for all cultivars. Grant et al. (1998) used four pea cultivars i.e. 

Bolero, Hadlee, Crown and Courier and two breeding lines 94-A26 and 89T46.UK for 

Agrobacterium transformation strain AGL1 harboring four different binary vectors. 

Selecting transformants happened on a kanamycin medium, transformation efficiencies 

ranged from 0.8 % (cv. Hadlee) to 3.4 % ( 89T46.UK) depending on the cultivar used.  

Bean et al. (1997) transformed the pea cultivar Puget with the hypervirulent 

Agrobacterium strain EHA105 harboring a binary vector containing the bar gene, the 

rooting and shooting parts of the germinating pea seeds were excised and lateral 

cotyledonary meristems were inoculated with bacterial suspension, 10 mg/l PPT was used 

for selection. They used the grafting techniques to achieve rooting since direct rooting was 

slow and takes between 6-12 weeks. They found that grafting efficiency was over 95 % 

and overall transformation efficiency was 1.1±0.43 %. 

Chowrira et al. (1998) demonstrated in planta pea transformation by decapitating the 

apical part followed by injection and electroporation of axillary meristems with a plant 

expression vector pPCP4-5 harboring PEMV coat protein. The buds were injected with the 

vector then electroporated at 100 V, and afterwards plants were placed in greenhouse to 

collect the seeds for further analysis where they found resistance to infection by PEMV in 

different generations. They proved PEMV coat protein integration in R0 by PCR and 

Southern blot, they also found high chimera in R0 and R1 plants.  

Schroeder et al. (1995) and Shade et al. (1994) introduced a bean α-amylase inhibitor gene 

into pea in order to increase the resistance to pea weevil. They also used the 

Agrobacterium-mediated transformation system. In addition, Morton et al. (2000) 

continued the previous work of Schroeder et al. (1995) and introduced two bean α-amylase 

inhibitor genes (αAI-1 and αAI-2) into the pea cultivar Laura. They tested the 

performance under field condition and found that αAI-1 could inhibit more than 80 % of 

the larval amylase providing a total protection against pea weevil damage. αAI-2 was less 

effective comparing to αAI-11.  

Nadolska-Orczyk and Orczyk (2000) studied the factors affecting pea transformation 

efficiency using the three Agrobacterium strains LBA4404, C58C1 and EHA105 

                                                 
1 Bean α-amylase has altered composition when expressed in pea due to glycosylation leading to 

immunogenicity in mice (Prescott et al., 2005). 
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harboring binary vectors containing the β-glucuronidase reporter gene (uidA) and one of 

the four (nptII, hpt, dhfr, bar) plant selectable genes. They used cotyledonary nodes of 

cultivars Laser and Heiga for transformation. The transformation efficiency was 4.2 % 

and 3.6 % when kanamycin and PPT respectively were used as selecting agent. No 

transformants could be recovered when hygromycin or methotrexate were used for 

selection. They also noticed the influence of different Agrobacterium strains on 

transformation efficiencies where the highest rate was 8.2 % for EHA105 followed by 2.2 

% for C58C1 and then by 1 % for LBA4404.  

Polowick et al. (2000) studied the effect of genotype on transformation efficiency by using 

slices of embryogenic axis from one cultivar and seven pea breeding lines adapted to 

western Canadian condition and inoculated with Agrobacterium strain EHA105 harboring 

a binary vector containing the reporter gene uidA coding for β-glucuronidase (GUS) with 

different selection genes nptII or pat. It took around six months until getting transgenic 

plants in greenhouse; the transformation efficiency was 0.6 %. 

Grant et al. (2003) compared two Agrobacterium strains, AGL 1 and KYRT1, for pea 

transformation using the same protocols of Grant et al. (1995) with two different cultivars, 

i.e. Bolero (Selgen) and Lincoln and one breeding line 97-B19. Two binary vectors were 

used harboring a GUS gene and a β-1,3-glucanase gene from pea. They found that 

Agrobacterium strain KYRT1 was at least fourfold superior to AGL1 in pea 

transformation.  

Wu and VanEtten (2004) used Agrobacterium rhizogenes-mediated transformation of pea 

to inactivate synthesis of pisatin (an isoflavonoid phytoalexin synthesized by pea) by using 

two senses or antisense constructs containing three different genes Ifa, Pda and Hmm 

involved in the biosynthesis of pisatin. Stem tissue was used as explant for transformation. 

They found that the reduced amount of pisatin is due to reduced transcript of Hmm. Their 

results support the hypothesis that phytoalexin production is a disease resistance 

mechanism. 

Pniewski and Kapusta (2005) reported high transformation efficiency of 4.1 % when pea 

was transformed with Agrobacterium strain AGL0 in comparison with AGL1 and 

EHA105; they used slices of immature embryos as explants for transformation. 

Švàbovà et al. (2005) compared six pea cultivars, i.e. Adept, Komet, Lantra, Olivin, Oskar 

and Tyrkys transformed with Agrobacterium strain EHA105 harboring pBIN19 containing 
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nptII and uidA genes using in vitro (axillary buds) and in vivo (imbibed germinating 

seeds) based regeneration methods by using sonication and vacuum infiltration treatments 

to facilitate the penetration of Agrobacterium. The time needed until getting mature seeds 

was 5-6 months using the in vitro system while it was only 3-4 months with in vivo 

system. 

From all previously cited references, it can be concluded that a number of different 

strategies were used by different groups in order to improve the transformation efficiency 

and reduce the period needed for the production of transgenic plant in the greenhouse. 

Different explants and Agrobacterium strains were tested together with different selection 

agents. All systems were based on Agrobacterium -mediated transformation, even though 

there was one report on electroporation (Chowrira et al., 1998) and one in vivo 

transformation (Švàbovà et al., 2005) was reported. Agrobacterium tumefaciens was used 

in most experiments whereas A. rhizogenes was used only in few experiments (Wu and 

VanEtten, 2004). 

The previous investigations were mainly focused on the improvement of the pea 

transformation, as pea was considered to be a recalcitrant crop for regeneration and 

transformation. Only a few reports have used economically important genes of interest 

(Schroeder et al., 1995; Morton et al., 2000; Grant et al., 2003 and Wu and VanEtten, 

2004) while others introduced reporter genes or selectable markers. 

Pea is also becoming more important for the production of high-value recombinant 

molecules in molecular farming due to its high protein content in the seeds. scFV 

antibodies and β-interferon genes (Perrin et al., 2000; Saalbach et al., 2001 and Kiesecker 

personal communication) have been introduced in pea.  

2.3   Tobacco (Nicotiana tabacum L.) the top model plant 
Tobacco plants were used in this study as a model for testing the functionality of the 

constructs developed in order to save time. Tobacco is also used as experimental system 

for studies of other basic phenomena in plants (Helgeson, 1979). Tobacco is used in 

different disciplines i.e. physiology, genetics, tissue culture and botany due to its easy 

handling, simplicity of controlled pollination, large seed production and huge amount of 

leaves and green tissue. Tobacco played an important role in the development of plant 

tissue culture methods and media (Murashige and Skoog, 1962). Genetic transformation 

systems as well as tissue and cell culture are much advanced in tobacco plants compared 
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to other economical important plants or even with other model plants. It is also used for 

secondary metabolite production in cell cultures which makes it a useful biotechnological 

tool for the production of natural products instead of using industrial microorganisms 

(Sommer et al., 1998).
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3   OBJECTIVES OF THIS STUDY  

This research proposes to improve one of the most important grain legume crops, i.e. pea, 

against fungal diseases using a chitinase gene with the need to sharpen the awareness of 

what advantages biotechnology can offer to the environment, health care and food security 

particularly in developing countries.  

The overall goal of this study is to enhance the resistance to fungal disease in pea through 

the heterologous expression of a wild type bacterial chitinases gene (Chit30) from 

Streptomyces olivaceoviridis ATCC 11238 and a modified gene (N-Chit30) where the 

coding region of the functional-undefined and catalytic domains of the bacterial gene was 

N-terminally fused to the secretory leader peptide from an Arabidopsis thaliana basic 

endochitinase gene. 

To achieve this goal, first the transformation of tobacco was performed in order to test the 

functional integrity of the new constructs before the more time-consuming transformation 

of pea. The study focuses on the following objectives: 

- Cloning of chitinase gene into a binary vector. 

- Transformation of tobacco and pea via Agrobacterium- mediated system. 

- Molecular characterization of the transformants.  

- Testing of the antifungal properties of the heterologously expressed chitinase. 

- Evaluation of the genetically modified plants for their fungal resistance 

To achieve this aim, the plant binary vector of pGreenII series was used and the chitinase 

gene was driven either by a 35S cauliflower mosaic virus (CaMV) constitutive promoter 

or by the plant inducible vst promoter from grape. Subsequently the constructs would be 

transformed to Agrobacterium tumefaciens strain EHA105. A modified method adapted 

from Schroeder et al. (1993) and Bean et al. (1997) was used for pea transformation 

(cultivar Sponsor).  

Transgenic plants were subjected to various molecular and cellular characterizations to 

study and prove stable introduction and inheritance of the gene of interest to the following 

generations. The ability of transformed pea and tobacco plants to express the heterologous 

chitinase to a level, which protect the plants from fungal invasion, was also analysed.
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4   MATERIALS AND METHODS 

4.1   Chemicals  

4.1.1   Growth media  

Substance Molecular weight Company 

MS basal salts mixture 

B5 vitamins  

Plant agar 

D(+) saccharose 

MES (2-[N-morpholino] ethane sulfonic acid) 

Potato dextrose agar (PDA) 

 

 

 

342.3 

213.85 

DUCHEFA 

DUCHEFA 

DUCHEFA 

ROTH 

BIOMOL 

Difco 

4.1.2   Plant hormones and additives  

Substance MW Company Solvent 

2,4-D 

IBA  

NAA 

Kin  

BAP 

TDZ  

GA3 

Acetosyringone 

Glufosinate-ammonium (PPT) 

BASTA®  (200g/l) 

Zeatin 

IPTG (isopropyl-β-D-

thiogalstopyranoside 

221.6 

203.2 

186.2 

215.2 

225.3 

220.2 

346.4 

196.2 

198.16 

 

219.25 

238.3 

DUCHEFA 

DUCHEFA 

DUCHEFA 

DUCHEFA 

DUCHEFA 

DUCHEFA 

DUCHEFA 

ROTH 

Riedel DeHaen 

Aventis GmbH 

DUCHEFA 

Applichem 

 

KOH 

KOH 

KOH 

KOH 

KOH 

KOH 

KOH 

DMSO 

dd H2O 

 

NaOH 
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4.1.3   Antibiotics 

Substance Molecular weight Company Solvent  

Combactam 

Kanamycin 

Ticarcillin 

Ampicilin 

 

582.6 

428.4 

371.39 

Pfitzer 

DUCHEFA 

DUCHEFA 

ROTH 

dd H2O 

dd H2O 

dd H2O 

dd H2O 

4.1.4   GUS-assay buffer 

               100 mM sodium phosphate buffer (pH 7.0),  

               0.5 mM potassium ferrocyanide,  

               10 mM EDTA 

               1 mM (0.5 mg/ml) X-GLUC (dissolved in DMSO before adding it to Gus buffer) 

4.1.5   Restriction enzymes and buffers 

Enzyme 10x Buffer Company 

EcoRI 

HindIII 

EcoRI/ HindIII 

XhoI 

BamHI  

RNaseA 

Shrimp alkaline phosphatase (SAP)

T4 ligase 

10x O+ (orange) 

10x R+ (red) 

10xY+/TANqo™  (yellow)

10x R+ (red) 

10x Bam HI+  

 

10x SAP buffer 

10x ligation buffer 

MBI Fermentas 

MBI Fermentas 

MBI Fermentas 

MBI Fermentas 

MBI Fermentas 

QIAGEN 

MBI Fermantas 

MBI Fermantas 

4.1.6   DNA markers 

DNA marker Concentration Company 

Gene Ruler λ Mix DNA marker 

Gene Ruler 100 bp DNA ladder 

Gene Ruler 1 kbp DNA ladder  

DIG labeled DNA II & III marker *  

DNA MB grade fish sperm 

0.5 mg/ml 

0.5 mg/ml 

0.5 mg/ml 

5 µg/µl 

10 mg/ml 

MBI Fermentas 

MBI Fermentas 

MBI Fermentas 

Roche 

Roche 

* Dig  II marker: 125, 564, 2027, 2322, 4361, 6557, 9416, 23130 bp. 

   Dig III: 125, 564, 831, 947, 1375, 1584, 1904, 2027, 3530, 4268, 4973, 5148, 21226 bp. 
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4.1.7   Primers  

Primer Sequence Product Company 
StrepChit For. 
 
StrepChit Rev. 

5'-TCCATGGATCCATGCCGAGGCGTC 
GCACATCCGCCCTGCT-3' 
5'-CGGACTCTAGATCAGCAGTAGAG   
TTGCCGCCCGGGAGA-3' 

900 bp 
 

MWG 
Biotech 
 

pGII 297-F 
pGII 303-R 

5'-GTTGGGTAACGCCAGGG-3' 
5'-GGAGCTCGCCTGCTGGTCACTGG-3'

~1300 bp2 
~2200 bp3 

MWG 
Biotech 

Chit 555-F 
Chit 555-R 

5'-GGTGACATCGTCCGCTACAC-3' 
5'-GGTGTTCCAGTACCACAGCG-3' 

555 bp MWG 
Biotech 

bar447-F 
bar447-R 

5'-GATTTCGGTGACGGGCAGGA-3' 
5'-TGCGGCTCGGTACGGAAGTT-3' 

447 bp 
 

MWG 
Biotech 

bar-F 
bar-R  

5'-GCAGGAACCGCAGGAGTGGA-3' 
5'-AGCCCGATGACAGCGACCAC-3' 

260 bp 
 

MWG 
Biotech 

NptI-F 
NptI-R 

5'-GAAAAACTCATCGAGCATCA-3' 
5'-TTGTCCTTTTAACAGCGATC-3' 

400 bp MWG 
Biotech 

Chit-NcoI-F 
Chit-XbaI-R 

5'-GATCCATGAAGACTAATCTT-3' 
5'-CTAGATCAGCAGTAGAGGTT-3' 

870 bp MWG 
Biotech 

Chit-2783-R 5'-CCTACCCCGGCTTCGCGAAC-3' Sequencing  MWG 
Chit-2787-F 5'-GGCAGCGACACCACCAAGAA-3' Sequencing MWG 
Chit-3233-R 5'-TCCAGAGCCGCGTGAACAAC-3' Sequencing MWG 
Chit-2394-F 5'-GGATCCATGCCGAGGCGTCG-3' Sequencing MWG 
Chit-A-leader- F 
 
 
 
Chit-XbaI-R 

5'-TTTGGATCCATGAAGACTAATCTT 
TTTCTCTTTCCATCTTTTCACTTCTCC
TATCATTATCCTCGGCCGCGGCCTGT
TCGAGCTACC-3' 
5'-GACTCTAGATCAGCAGTAGAGGTT 
GCCGC-3' 

900 bp MWG 
Biotech  

iPCR-pGII-F 
iPCR-pGII-R 

5'-GGGAGAGGCGGTTTGCGTAT-3' 
5'-ACATAGATGACACCGCGCGC-3' 

2770 bp MWG 
Biotech  

HMG-F 
HMG-R 

5'-ATGGCAACAAGAGAGGTTAA-3' 
5'-TGGTGCATTAGGATCCTTAG-3' 

570 bp 4 
350 bp 5 

MWG 
Biotech  

 

4.1.7   Solvents and sterilizes 

Substance Company 

Dimethyl sulfoxide (DMSO) 

KOH 

SERVA 

Roth 

NaOCl Riedel de Haen 

                                                 
2 Plasmid without insert,  
3 Plasmid with insert 
4 PCR product with intron 
5 PCR products without intron 
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4.1.8   Equipment  

Equipment Manufacturer 

Autoclave  

Balances 

Cold centrifuge 

Deep freezer –80 ºC  

Dry oven 

Electrophoresis chamber 

Electrophoresis power supply 

Film  

Ice machine 

Incubator  

Lab centrifuge 

Magnetic stirrer 

Microwave 

Nylon membrane 

PH meter 

Pipette  

Refrigerator 4 ºC 

Rinsed water station 

Sonicator  

Spectrophotometer 

Stereomicroscope   

Thermocycler PCR 

Thermostat shaker 

UV-Transilluminator 

Vacuum pump (~100 mbar) 

Vacuum resistance container  

Vortex 

Water bath  

Tuttnauer systec 

Sartorius 

Sigma 302K 

Lozone 

Memmert 

Bio-RAD 

Bio-RAD 

Kodak 

ZIEGRA 

JURGENS 

Eppendorf 5415C 

Heidolph 

Thomson 

Roche 

HANNA 

Gilson, Eppendorf  

LIEBHERR 

MILLIPORE 

SonoRex RK255S 

Pharmacia Biotech 

Leica Wild M3Z 

Biometra® 

Heidolph Unimax 1010 

Vilber Lourmat 

ABM 

Duran 

Heidolph 

GFL® 

Scalpel blade AESCULAB® No.11 

Stock solution vessel  NALGENE® CRYOWARE™ 
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Sterilization filter  MILLEX®-GS 0.22µM 

Parafilm 

Filter paper  

NESCOfilm 

Schleicher & Schuell 

Disposable plastic wares: 

 - 2ml microtube-centrifuge 

 - 1.5 ml and 2 ml Eppendorf-caps 

 - Petri dishes 

 - pipette tips 

 

4.2   Plasmid construction and cloning 

4.2.1   Reagents 

Sterile Luria Broth (LB) media 

100 mM CaCl2, at 4 °C 

86 % and 10 % sterile glycerol 

37 °C and 28 °C shaker 

Centrifuge and centrifuge bottles 

4.2.1.1   Media 

SOC 20 g/l tryptone 

 5 g/l yeast extract 

 10 mM NaCl 

 2.5 mM KCl  

 10 mM MgSO4 x 7 H2O  

 2.033 g/l MgCl2 x 6 H2O 

 20 mM glucose (filter sterilized added before using) 

LB (Lauria Bertoni) (Sambrook et al. 1989) 

 10 g/l tryptone 

 5 g/l yeast extract 

 8 g/l NaCl 

            pH 7 

YEP (Yeast Extract Peptone) 

 10 g/l tryptone 

 10 g/l yeast extract 

 5 g/l NaCl 

           pH 7 

LB and YEP media were solidified by addition of 15 g/l Agar Agar to prepare solid media. 

4.2.2   Preparation of competent E. coli cells for heat shock transformation 

(Nakata et al., 1997 and Tang et al., 1994) 

The required E. coli strains (NM522, DH5α, GM6233 and Top10) were grown overnight 

in 1-5 ml of LB medium at 37 °C (without antibiotics) to stationary phase. The overnight 
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culture was diluted in fresh LB 1:50 and grown at 37 °C until O.D600 reached ~0.4. The 

cells were harvested by centrifugation at 4 °C, 4400 rpm, and re-suspended in 1/2 volume 

ice-cold 100 mM CaCl2 and centrifuged again. The supernatant was discarded and the 

pellet was resuspended in 1/2 volume ice-cold 100 mM CaCl2. Pellet cells were re-

suspended in 1/10 volume cold 100 mM CaCl2 and incubated on ice for 1 hour and used 

immediately for heat shock transformation. Alternatively, 86 % sterile glycerol was added 

to a final concentration of 15 % and then aliquots of 100 µl in 1.5 ml tubes, which were 

put immediately in liquid nitrogen and stored at -80 °C for long-term storage. 

4.2.3   Heat shock/Calcium chloride method for E. coli transformation 

Competent E.coli cells were taken from the -80 °C freezer and kept on ice to avoid 

melting, 50 ng (1-5 µl) of  ligation mixture (or ready plasmids) were added to a 1.5 ml 

tube (Eppendorf or similar) and gently mixed with 50 µl competent cells. The tube  was 

incubated on ice for 20 min and then placed in a water bath without shaking at 42 °C for 

30 seconds, returned back immediately onto ice for 2 minutes. 950 µl of pre-cooled SOC 

medium without antibiotics were added to develop antibiotic resistance and to reduce 

damage of E.coli cells. Finally, the tubes were incubated on a shaker at 250 rpm for 90 

min at 37 °C. 

100 µl of the resulting culture was spread on LB plates with the appropriate antibiotic and 

grown overnight at 37 °C. The colonies were picked about 12-16 hours later. 

4.2.4   Preparation of Agrobacterium tumefaciens EHA105pSoup competent 

cells for electroporation 

The hypervirulent Agrobacterium tumefaciens strain EHA105 (Hood et al., 1993) was co-

transformed with the pSoup helper plasmid according to the pGreenII system (pGreen 

website, Hellens et al., 2000). An overnight seed culture of 25 ml YEP supplemented with 

5 mg/l tetracycline was incubated with 250 µl of glycerol stock of EHA105pSoup at 28 °C 

on a shaker. 2 ml of bacterial suspension (overnight seed culture) were added to 50 ml 

YEP supplemented with antibiotic and grown for 2-5 h until O.D.600 reached ~0.4-0.5 was 

reached. 

Bacteria were pelleted by centrifugation at 4400 rpm and 4 °C for 10 min, re-suspended 

twice in 25 ml ice-cold 10 % glycerol. The pellet was then re-suspended twice in 2.5 ml 

ice-cold 10 % glycerol after centrifugation at 4400 rpm at 4 °C for 10 min. Finally, the 

pellet was re-suspended in 1 ml ice-cold 10 % glycerol. Aliquots of 200 µl were split in 2 
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ml Eppendorf tubes and transferred immediately into liquid nitrogen and stored at -80 °C. 

4.2.5   Agrobacterium transformation through electroporation 

Competent Agrobacterium (EHA105-pSoup) were taken out from -80 °C freezer and kept 

on ice to avoid melting. 50 ng (1-5 µl) of a plasmid solution was gently mixed with 50 µl 

competent cells in a 1.5 ml tube (Eppendorf or similar).  

The mix was transferred to a pre-cooled cuvette (gap 0.2 cm) and electroporated in a 

BioRad electroporator at: 25 µF capacitor, 200 Ω  (ohm) resistance and 2.5 KV. 

The field strength was between 6,25 – 12 kV/cm for 4-8 msec. 500-1000 µl of pre-cooled 

SOC medium (with no antibiotic) were added  immediately afterwards, then the mixture 

was transferred  to a new 2 ml tube and incubated  for 3 hours at 28 °C with shaking (250 

rpm). 100 µl of the resulting culture was spread on YEP plates (with the appropriate 

antibiotic-Kanamycin) and grown overnight at 28 °C. The colonies were picked about 24-

48 hours later. 

4.2.6   Agrobacterium inoculation and harvest 

25 ml YEP medium in 100 ml Erlenmeyer flask including appropriate antibiotics for the 

respective plasmid (50 mg/l kanamycin for pGII35Schit and pGIIvstchit) were inoculated 

with 250 µl glycerol stock of Agrobacterium tumefaciens. The medium was inoculated 

and placed on a shaker at 250 rpm, at 28 °C in the dark for 15 h. 

Bacteria were harvested by centrifugation at 4400 rpm, the supernatant was discarded and 

then the pellet was re-dissolved in liquid B5-i medium (see 4.8.1.1) supplemented with 

3.24 µM BAP or 5 µM TDZ. O.D600 was measured using a spectrophotometer and 

adjusted to 1-1.3. Acetosyringone was added at a concentration of 100 µM (filter 

sterilized).  

4.2.7   Preparation of glycerol stocks of bacteria 

Glycerol stocks of bacteria were prepared in a ratio of 1:3, where one colony was picked 

from the master plate, dissolved in 2 ml YEP or LB medium and inoculated for 2-3 hours 

on a shaker at 250 rpm, then transferred to 25 ml YEP or LB medium containing the 

necessary amounts of antibiotics and incubated on a shaker at 250 rpm, 28 ºC or 37 °C in 

the dark for 15 h. The stock solution was prepared using 500 µl glycerol (86 %) and 1000 

µl of growing bacterial-suspension in 2 ml cryogenic vials (Cryoware-Nalgene, Rochester, 

USA) which were stored at -80 °C for further use. 
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4.2.8   Maintenance of the plasmid and Agrobacterium properties 

Since legume transformation is highly labor and time consuming, it is advisable to check 

the correct insertion of the plasmid by restriction digest or sequencing and from time to 

time preparing stocks from checked colonies. Plasmid isolation was performed according 

to Birnboim and Doly (1979) as will be explained below (4.3.6.1).    

4.2.9   Binary vectors 

The dual-binary vector system pGreenII/pSoup was used in the present study (Hellens et 

al., 2000). pGreenII vector has advantage over the other vectors due to its smaller size, 

easier handling, multiple cloning sites, high copy number and improved stability in E. coli 

while under non-selective condition the number of Agrobacterium colonies containing 

pGreen plasmid reduced by 50 % after one day which enhance the safety used of this 

vector (Hellens, 2000). Since pGreen system is dual and need presence of pSoup in 

Agrobacterium which act in trans providing replication of pGreen, the system give 

another advantage of using pSoup for co-transformation to produce marker-free transgenic 

plants by second T-DNA containing the marker gene in pSoup and the gene of interest in 

pGreen (Vain et al., 2003; Afolabi et al., 2005). The prerequisite for this technique is high 

efficient transformation protocol, which serves high numbers of different transgene 

localization of the two T-DNAs. 

The T-DNA contains the bar gene fused between the nos promoter and terminator 

sequences of Agrobacterium tumefaciens. The bar gene encodes a phosphinothricin 

acetyltransferase (PAT) enzyme which confers resistance to bialaphos and the related 

compounds phosphinothricin (PPT), the active ingredient of the herbicide BASTA® and 

glufosinate ammonium through acetylation (Fig. 5). 
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Fig. 5. Functional maps of the pGII35S and pGIIvst vectors used in the cloning work.  

The chitinase gene was cloned into the Ti-plasmid using PCR; the chitinase gene was 

amplified using two cloning primers StrepChit forward: 

5’-TCCATGGATCCATGCCGAGGCGTCGCACATCCGCCCTGCT-3’ and StrepChit 

reverse 5’-CGGACTCTAGATCAGCAGTAGAG GTTGCCGCCCGGGAGA-3’ flanking 

BamHI and XbaI restriction sites, respectively (underlined) to the PCR product using 

proof reading CombiZyme DNA polymerase (Invitek GmbH, Germany). The PCR mixture 

was prepared according to the manufacturer protocol as follows: 

PCR reaction mixture: 

Compound and concentration Amount per reaction 

Double distilled water   27 µl 

10x PCR buffer   5 µl 

50 mM MgCl2  2.5 µl 

5 mM nucleotides mixture (dNTPs)   2 µl 

5X OptiZyme Enhancer  10 µl 

10 pmole forward primer   1 µl 

10 pmole reverse primer   1 µl 

20-50 ng plasmid DNA   1 µl 

CombiZyme DNA polymerase (4 U/µl)   0.5 µl 

Total volume   50 µl 
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PCR program: 

PCR step Temperature (°C) Time (s) No. of cycles 

 Initial denaturation 94 300 1 

Denaturation  94 30  

Annealing  55 30          30 

Extension 72 30  

Final extension 72 300 1 

Cooling down 4 ∞  

 

The template for the PCR was pUChi30, which is a derivative of pUC18, and was 

provided by Dr. Jochen Meens group from Microbiology Institute-Hannover University 

(Haiming 2001, accession gi: 4456813, AJ133186 NCBI database, Fig. 6). It was fused to 

either a constitutive double 35S promoter of cauliflower mosaic virus or the plant 

inducible vst promoter from grape (Wiese et al. 1994). 

The PCR product was purified directly using PCR rapid purification kit from Invitek 

GmbH (Germany) or from gel using Easy Pure kit from BioZyme GmbH (Germany). 

For modification and replacing the bacterial signal peptide sequence with one of plant 

origin, an Arabidopsis thaliana encoded basic endochitinase (accession number 

gi:30682210, NM112085, NCBI database, Fig. 7, Haseloff et al. 1997) with a different set 

of primers was used: forward primer include BamHI site (underlined) and Arabidopsis 

signal peptide sequence (bold) designed as chit-A-leader-For. 5'-TTTGGATCCATG 

AAGACTAATCTTTTTCTCTTTCCATCTTTTCACTTCTCCTATCATTATCCTC

GGCCGCGGCCTGTTCGAGCTACC-3' and Chit-XbaI-Rev. 5'-GACTCT AGATCAGC 

AGTAGAGGTTGC CGC-3' which contains XbaI site (underlined). 
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Fig. 6. Mature protein of chitinase 30 from NCBI database (signal peptide sequence is in red). 

 

 

 

 

 

 

 

 
Fig. 7. Arabidopsis thaliana basic endochitinase signal peptide sequence (in red color).  

4.3   Molecular biological methods 

4.3.1   Agarose gel electrophoresis 

 4.3.1.1   6x loading buffer 

50 mM EDTA 

0.25 % bromophenol blue 

0.25 % xylene cyanol FF 

25 % Ficoll40 (type 400, Pharmacia) 

 4.3.1.2   TAE buffer 

40 mM Tris-acetate 

20 mM glacial acetic acid 

1 mM EDTA 

pH 7.5 

4.3.1.3   Ethidium bromide EtBr (stock 10 mg/ml, Roth)  

Electrophoresis is used to separate molecules (DNA and RNA) based on their size. DNA 

has a negative charge in solution, so it will migrate to the positive pole in an electric field. 

In agarose gel electrophoresis, the DNA is forced to move through a sieve of molecular 

LOCUS       NM_112085    1107 bp    mRNA    linear   PLN 04-NOV-2005 
DEFINITION  Arabidopsis thaliana ATHCHIB (BASIC CHITINASE); chitinase AT3G12500 
(ATHCHIB) mRNA, complete cds. 
ACCESSION   NM_112085  VERSION     NM_112085.2  GI:30682210 

 
     gene 
          /gene="ATHCHIB" /note="synonym: B-CHI, BASIC CHITINASE, CHI-B,PATHOGENESIS-  
          RELATED 3, PR-3, PR3" /function="encodes a basic chitinase involved in   
          ethylene/jasmonic acid mediated signalling pathway during systemic acquired  
          resistance based on expression analyses." 

     CDS 
         /product="ATHCHIB (BASIC CHITINASE); chitinase" 

         /translation="MKTNLFLFLIFSLLLSLSSAEQCGRQAGGALCPNGLCCSEFGWCGNTEPY         

          CKQPGCQSQCTPGGTPPGPTGDLSGIISSSQFDDMLKHRNDAACPARGFYTYNAFIT   

          AAKSFPGFGTTGDTATRKKEVAAFFGQTSHETTGGWATAPDGPYSWGYCFKQEQ......." 

LOCUS       SOL133186         1199 bp    DNA     linear   BCT 15-APR-2005 
DEFINITION  streptomyces olivaceoviridis ATCC11238 chi30 gene. 
ACCESSION   AJ133186  GI:4456813 
KEYWORDS    chi30 gene; chitinase. 
SOURCE      Streptomyces olivaceoviridis 

     gene    gene="chi30" 
     CDS      /gene="chi30" 
               /translation="MPRRRTSALLAALVISTAAPVLLPAAPAAAAACSSYPSWVAGRSYAA   

               GDIVRYTDGKAYIAEHANPGYDPTISTWYWEPYACDGGSGTPVGTFVVTEAQFNQMFPNRN    

               SFYSYSGLTAALSAYPGFANTGSDTTKKQEAAAFLANVSHETGGLVHVVEQNQANYPHYCD   

               WSRPYGCPAGQAAYYGRGPIQLSWNFNYKAAGDALGIDLLNSPWLVERDSAVAWKTALWYW   

               NTQTGPGTMTPHNAMVNGAGFGQTIRSINGSLECDGKNPAQVQSRVNNYQRFTQILGVSPGGNLYC" 



MATERIALS AND METHODS    

 

40

 

pores made by agarose. Large fragments of DNA move slower than small fragments of 

DNA. So the concentration of the gel depends on the fragment lengths to be separated.  

0.8-1 % (w/v) agarose gel was prepared in 1x TAE buffer, where it melts in a microwave 

oven until the agarose was totally dissolved. Then the agarose solution was cooled down 

until it reached 50 °C and ethidium bromide (0.5 µg/ml) was added and the solution was 

casted into a gel mold to solidify. A suitable comb was used to make slots. The gel was 

transferred to the electrophoresis chamber containing running buffer (1x TAE buffer). 

Samples were mixed with 6x loading buffer and loaded together with molecular weight 

marker onto the wells for electrophoresis at a voltage of 60-100 V for 30-40 min after 

which the DNA fragments were observed and photographed under UV-light. 

4.3.2   Digestion of DNA by restriction endonucleases 

DNA was digested using different restriction endonucleases with respective buffers as 

recommended by the supplier. When two enzymes had to be used for digest, the buffer 

was selected to be suitable for both enzymes; otherwise it was done one after the other. 

Digestion was done at 37 °C for 2 h or overnight, and then enzymes were heat-inactivated 

for 15-20 min at 65 or 85 °C, depending on the enzyme. 

4.3.3   Purification of PCR product and DNA fragments 

4.3.3.1   Purification of PCR product (Invitek) 

130 µl buffer P were added to the PCR product, mixed and transferred into a spin filter 

and incubated for 1 min at room temperature, then centrifuged for 30 sec. at 10000 rpm. 

The spin filter was washed with 700 µl washing buffer and centrifuged for 30 sec., 

followed by 3 min centrifugation to remove the ethanol residual. Finally, the DNA was 

eluted using elution buffer and centrifugation for 1 min.  

4.3.3.2   Easy Pure® DNA purification from agarose gel (Biozyme) 

Agarose gel band slice weight was determined in a 1.5 or 2.0 ml tube, 3 volumes of 

SALT-Solution were added and mixed well and incubated for 5 min at 55 °C to melt the 

agarose with occasionally mixing by shaking thoroughly, then 5 µl plus 1 µl of DNA 

BIND-Solution per µg DNA was added and incubated for 5 minutes at room temperature, 

then centrifuged for 30 seconds in a lab centrifuge. The pellet was re-suspended in 1 ml of 

WASH-Solution by vortexing for 5-10 seconds, then again centrifuged for 30 seconds. 

The pellet was re-suspended in water or TE buffer (10mM Tris, 0.1mM EDTA). Samples 
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were incubated for 5 min at room temperature and centrifuged for 1 min, and then the 

supernatant was removed immediately and transferred to a new tube.  

4.3.4   Dephosphorylation of 5'-ends of digested vector DNA 

Shrimp alkaline phosphatase (SAP) was used for dephosphorylation of the 5'-ends of the 

digested vector to prevent re-ligation of the vector with the excised fragment as adapter. 

Dephosphorylation was done according to the manufacturer's protocol at 37 °C for 1 h., 

and then the enzyme was heat-inactivated at 65 °C for 15 min. 

4.3.5   Ligation 

DNA ligases catalyze the phosphodiester binding between a free 5'-phosphate group and a 

free 3'-hydroxyl group of the same strands of a dsDNA. Intramolecular ligation results in a 

circularization of the DNA molecule. If an insertion is planned, self-circularization and 

oligomerization has to be prevented by dephosphorylation or eluting the fragment from the 

gel. Ligation of cohesive ends and the vector was done at a molar ratio of 3:1 in 5x 

ligation buffer, so 150 ng insert and 50 ng vector were mixed and 2 U of T4 DNA ligase 

were added. The reaction was incubated at 22 °C overnight, and then the ligase was heat-

inactivated at 65 °C for 15 min. Afterwards the ligation product was monitored by running 

on a gel to check the efficiency of ligation and then used for E.coli transformation (4.2.3). 

4.3.6   DNA preparation 

4.3.6.1   Isolation of g-DNA from plant tissue by CTAB-based extraction method (Doyle 

and Doyle 1990) 

Genomic DNA isolation is one of the basic requirements for the characterization of 

transgenic plants. The purity and the amount of isolated DNA are important for the 

detection of the transgene. In the present work, total genomic DNA was isolated according 

to the CTAB method of Doyle and Doyle (1990). First, for the PCR screening, a small 

(100-200 mg leaf material) scale DNA isolation was performed and in the connection with 

that large scale (1-2 g leaf materials) DNA isolation was carried out. Both protocols are 

shown below. 

Buffers and Solutions 

CTAB-buffer 
3 % CTAB (added after autoclaving and stirred overnight) 

1.4 M NaCl 
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0.2 % ß-Mercaptoethanol (added directly before using) 

20 mM EDTA  

100 mM Tris-HCl pH 8.0 (base) 

0.5 % PVP-40 polyvinyl pyrolidone (soluble) 

24:1 CI-Mix 
23 part Chloroform 

1 part Isoamylalcohol 

TE-buffer + RNAse A 
10 mM Tris-HCl, pH 8.0 

1 mM EDTA 

10 µg/ml RNAse A 

Wash buffer (WB) 
76 % EthanolAbs. 

10 mM Ammonium acetate 

7.5 M NH4-Acetate 

0.5 M EDTA (pH 8) 

RNAse A 

10 µg/µl Stock sol. in ddH2O 

 
4.3.6.1.1   Mini-Isolation of genomic DNA (gDNA) for PCR 

150-200 mg leaf material (either already frozen or fresh from greenhouse) was harvested 

in liquid nitrogen. The leaves crumbled to powder using pre-cold mortar and pistils and 

transferred to 2 ml reaction tubes where 800 µl of preheated (60 °C) CTAB-buffer was 

added followed by vigorous vortexing under a fume hood and incubation for 30 min at 60 

°C. After that, 800 µl CI-Mix was added and tubes were gently mixed to avoid shearing of 

genomic DNA by inverting the tube for 4-5 times. Centrifugation was done at room 

temperature for 10 min at 10000 xg and the aqueous phase (800 µl) was transferred into a 

fresh 1.5 ml tube (to obtain a clear sample, the step was repeated). 2/3 volume (550 µl) of 

pre-cooled (-20 °C) isopropanol was added and gently mixed to allow precipitation of 

gDNA. gDNA was pelleted by centrifugation for 10 min (full-speed), the supernatant was 

discarded and the pellet was washed in 200 µl WB until the pellet floats, then the washing-

buffer was carefully removed and the pellet was re-suspended in 200 µl TE buffer 

supplemented with RNAse A and incubated for 30 min at 37 °C. Afterwards, 100 µl 7.5 M 

NH4-acetate and 750 µl EtOHabs. was added and gently mixed, centrifuged (full-speed) for 

10 min at room-temperature. Supernatant was completely discarded and the pellet dried 

for 40-50 min at 37 °C, then re-suspended in 100-250 µl dd H2O or 100 µl TE buffer (for 

better solving and storing) and kept overnight at 4 °C to allow complete dissolving. 
4.3.6.1.2   Max-Isolation of genomic DNA for Southern blot 

1-2 g of leaf material (either already frozen or fresh from the greenhouse) were harvested 

in liquid nitrogen, then transferred into pre-cooled mortar and pulverized. The resulting 
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powder was transferred to a 50 ml tube, and 3-5 ml of preheated (60 °C) CTAB-buffer 

was added with vortex under the fume hood, and incubated for 30 min at 60 °C. and then 1 

vol. of CI-Mix (3-5 ml) was added and gently mixed by inverting the tubes to avoid 

shearing of genomic DNA. 

Centrifugation was done for 10 min (6400 rpm) at room-temperature and the aqueous 

clear phase was transferred into a fresh tube (3-5 ml); for precipitation of the gDNA, 2/3 

volume of pre cooled (-20 °C) isopropanol (2-3 ml) was added and gently mixed, until 

when the nucleic acids began to precipitate. Precipitated DNA was collected by 

centrifugation for 10 min at 4000 rpm at RT; the resulting pellet was washed with 1-2 ml 

WB until pellet floats. 

The washing-buffer was carefully removed and the pellet was re-suspended in 0.5-1 ml TE 

buffer supplemented with RNAse A and incubated for 30 min at 37 °C. 1/2 vol 7.5 M 

NH4-acetate and 2.5 vol. EtOHabs. were added and gently mixed then, centrifuged for 10 

min at 4600 rpm at room-temperature. The supernatant was completely discarded and the 

pellet dried at 37 °C for 60 min, re-suspended in 200-400 µl TE buffer at 4 °C overnight to 

allow dissolving the gDNA. Samples were heated for 5 min at 60-65 °C before checking 

on agarose gel. 

4.3.6.2   Leaf disk PCR 

A quick method for fast transgenes analysis by PCR was used. Although the DNA quality 

was much lower than the CTAB method but it was enough to perform PCR in comparably 

short time. The method was reproducible and the suitability of resulting DNA for PCR 

was checked using HMG gene (see 4.3.6.4) and chitinase gene primers together in PCR 

mixture, resulting in two different bands at 570 bp and 755 bp corresponding to HMG and 

chitinase genes respectively (Fig. 8).  

Extraction buffer: 
200 mM Tris-HCl pH 7.5 

250 mM NaCl 

25 mM EDTA 

0.5 % SDS 

Procedure: 

One leaf was harvested in liquid nitrogen and then it was macerated in Eppendorf tube at 

RT. 400 µl extraction buffer was added and vortexed for 5-20 sec. Tubes were incubated 

at RT until finishing all samples, then samples were centrifuged for 1 min at 13000 rpm. 
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300 µl of supernatants were transferred to new tube and 300 µl isopropanol was added. 

Samples were mixed well and incubated for 2 min at RT. And then DNA was pelleted by 

centrifugation for 5 min at 13000 rpm. Pellets were dried and then after dissolved in 100 

µl TE buffer and 3-4 µl was used for PCR. 

 

 

 

 

 

 

 
Fig. 8. Leaf disk PCR result for quick screening of transgenes using two different primers set in the same 
PCR reaction mix one for chitinase gene and the second for HMG gene. Lane 1, non-transformed plant, 
Lanes 2, 3, 4, and 5 different transformed pea plants showing 2 bands; -C, non-transformed negative control 
pea showing one band only corresponding to HMG gene; +C, plasmid DNA used as positive control 
showing one band corresponding to chitinase gene; M, 100 bp DNA ladder molecular weight marker. 

 

4.3.6.3   Mini-preparation of plasmid DNA (modified after Birnboim and Doly 1979) 

4.3.6.3.1   Buffers and Solutions for Plasmid Isolation 

Sol. A. 15 mM Tris-HCl pH 8.0, 10 mM EDTA, 50 mM Glucose, 2 mg/ml fresh lysozyme. 

Sol. B. 0.2 M NaOH, 1 % SDS. 

Sol. C. 3 M NaOAc, pH 4.8. 

Sol. D. 0.1 M NaOAc, pH 7.0, 0.05 M Tris-HCl pH 8.0.  

4.3.6.3.2   Procedure  

2ml of bacteria suspension were centrifuged at 12000 rpm for 5 min and the supernatant 

was quantitatively removed. The step was repeated using 1 ml of bacteria suspension. The 

pellet was carefully re-suspended in 200 µl of sol. A, and incubated for 15 min at RT. 

Then 400 µl of sol. B and 300 µl of sol. C were added and mixed gently, followed by 

incubation for 15 min on ice. The mixture was centrifuged twice for 10 min and the clear 

supernatant (800 µl) was transferred  into a new 1.5 ml Eppendorf-cap’s and spin down for 

another 10 min. Then 600 µl cold isopropanol (-20 °C) were added and gently mixed till 

the DNA started precipitating. Centrifugation was done for 10 min and the supernatant 

was quantitatively discarded. The DNA pellet was re-dissolved in 200 µl of sol. D, and 

incubated for 5 min at RT. Then 400 µl EtOHabs. was added and mixed, centrifuged for 10 

min. Then the pellet was washed in 200 µl 70 % EtOH, then centrifuged again for 10 min. 

The pellet was dried for 30-60 min at RT. The pellet (plasmid DNA) was dissolved in 20-

M      1       -C      +C    H2O     2       3        4        5      M 

700 bp 

500 bp 

600 bp 
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50 µl of sterile deionized H2O + 1 µl RNaseA (1 mg/ml) or 50 µl TE buffer + 1 µl 

RNaseA and, the DNA quantity (10-20 µg for E. coli) was estimated.  

4.3.6.4   DNA quality measurement 

The DNA measurement using a spectrophotometer is based on the fact that OD at 260 nm 

is twice that at 280 nm if the solution contains pure DNA. The absorbance (A) of the DNA 

preparations was determined at 260 nm and 280 nm where A260 = 1 is equivalent to about 

50 µg / ml double-stranded DNA. The quotient A260 / A280 gives the level of DNA 

purity. If there is contaminating protein the OD ratio between 260 and 280 nm decreases. 

Pure DNA has an OD-260/OD280 between 1.8 and 2.0. If this quotient is below 1.8, it 

indicates a contamination.  

To check the suitability of isolated genomic pea DNA for PCR, a single-copy gene 

encoding high-mobility group protein (HMG-I/Y, NCBI accession No. X99373) primers 

were used to amplify 570 bp fragment of HMG gene (Fig. 9A). These primers also used 

together with chitinase primers resulting of 2 different bands at 570 bp and 755 bp 

corresponding to HMG and chitinase genes subsequently.  

In addition to spectrophotometer, DNA concentration was also estimated in agarose gels. 

Sample DNA was applied and in parallel fish sperm DNA dilutions (stock 10 mg/ml) was 

also applied in order to enable an estimation of the DNA-quantity in the gel. This method 

proved to be a quite dependable method with regard to uniformly loaded DNA digested 

with any restriction enzyme for Southern blot (Fig. 9B). 

 

 

 
 

 

 

Fig. 9. A, PCR of pea gDNA using the house keeping gene (HMG) to control the quality of isolated DNA; 
lanes 1 to 5 different transgenics; P, plasmid DNA; C, gDNA of non-transformed pea; M, 100 bp DNA 
ladder molecular weight marker; B, Control Southern blot gel; lanes 1-6 different samples of g-DNA 
digested with EcoRI and separated on 0.8 % agarose gel; lanes I, II, and III are 20 µg, 10 µg and 5 µg fish 
sperm DNA, respectively. 

4.3.6.5   PCR, colony PCR 

The process of Polymerase Chain Reaction (PCR) was first described by Mullis et al. 

(1986). PCR is a relatively simple process by which virtually unlimited copies of selected 

 1     2    3   4     5    6      I    II   III 

B 

M      1        2      3        4       5        P       C     H2O 

600 bp 
 
500 bp 

A 
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DNA fragments using known sequence fragment (primers) can be generated and amplified 

in vitro in a short period.   

Primers are short oligonucleotides (typically 18-22 bases in length) that are necessary to 

start the extension reaction in a specific manner. The reaction is carried out by a heat-

stable Taq-DNA polymerase from thermophilic bacteria like Thermus aquaticus (Foolad 

et al., 1995). 
4.3.6.5.1   PCR reaction mixture: 

Compound and concentration Amount per reaction 

Double distilled water   18.3 µl 

10x PCR buffer with 50 mM MgCl2   2.5 µl 

5 mM nucleotides mixture (dNTPs)   1 µl 

10 pmole forward primer   1 µl 

10 pmole reverse primer   1 µl 

20-50 ng template DNA (plasmid- or gDNA)   1 µl 

1-2 U Taq DNA polymerase*   0.2 µl 

Total volume   25 µl 

* BioTherm Red Taq (10 U/µl) from Natutec. 
4.3.6.5.2   PCR program: 

PCR step Temperature (°C) Time (s) No. of cycles 

 Initial denaturation 94 300 1 

Denaturation  94 30  

Annealing  Specific for primer 30          30 

Extension 72 30  

Final extension 72 300 1 

Cooling down 4 ∞  
 

Colony PCR was used during cloning work as a rapid screening method for positive 

colonies, where the same PCR reaction mixture was used and a few cells from a single 

colony were picked using sterile pipette tips and mixed with PCR reaction mixture in PCR 

caps.  
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4.3.7   RT-PCR (Reverse Transcription-Polymerase Chain Reaction) 

RT-PCR was applied to study the transcription of the introduced genes. Total RNA was 

isolated from transformed and non-transformed plants and the cDNA was synthesized by 

reverse transcriptase (MMLV-RT). Then normal PCR was performed with the cDNA as 

template. In the case of the 35S promoter, total RNA was isolated directly from leaf 

explants, whereas plants with the vst promoter required induction with UV light (254 nm) 

for 5 min then explants were incubated overnight in growth room.  

4.3.7.1   Isolation of RNA 

RNA was isolated from young leaves using NucleoSpin RNA plant kit (Machery-Nagel, 

Germany) following the manufacturer's instructions or using Plant RNA Reagent 

(Invitrogen, Canada) using the following protocol: 

100 mg plant material was harvested in liquid nitrogen and pulverized using cold mortar 

and pestle. The plant powder was transferred to 1.5 ml caps and 500 µl cooled (4 °C) Plant 

RNA Reagent was added and mixed by vortexing. The mixture was incubated for 5 min at 

room-temperature then centrifuged for 2 min at 12000 rpm at RT. Supernatants were 

transferred to fresh tubes, 100 µl 5 M NaCl was added and mixed by inverting the tubes. 

Finally, 300 µl chloroform was added and mixed by inverting the tubes, followed by 

centrifugation for 10 min at 12000 rpm at 4 °C. The upper phase was transferred to a fresh 

tube (~ 500 µl) and the same volume of isopropanol was added and mixed by inverting the 

tubes. A pellet was formed by centrifugation for 10 min at 12000 rpm at 4 °C. The 

supernatant was discarded and the pellet was washed with 1000 µl Ethanol abs. Followed 

by centrifugation for 1 min at full speed, the supernatant was discarded quantitatively 

using a pipette. Pellet was redissolved in 30 µl RNAse free water (DEPC-water) and the 

RNA concentration was measured by spectrophotometer. 

4.3.7.2   Measuring RNA concentration 

RNA was diluted 1:200 (199 µl H2O + 1 µl RNA), then the RNA concentration was 

measured using a spectrophotometer. The respective RNA-concentration was calculated as 

follows: 

                           RNA concentration µg/ml = (OD260 x Dilution factor x 40) 

The purity of the RNA was determined using the ratio of OD260:OD280, which should be 

between 1.9 and 2.0 for pure RNA. 
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4.3.7.3   cDNA synthesis (reverse transcriptase) 

5 µg total RNA was used for synthesizing cDNA in a final volume of 12 µl RNAse free 

water. 1 µl oligo dT primer (18 mers) was added and the mixture was incubated for 10 min 

at 70 °C, followed by a reverse transcriptase reaction (MBI Fermentas, Germany) prepared 

on ice as follows:   
            4 µl RT 5x buffer 

              1 µl RNAse inhibitor (40 U/µl) 

              2 µl dNTPs (5mM) 

The mixture was incubated for 5 min at 37 °C in a thermo block, and then 1 µl M-MuLV 

Reverse Transcriptase polymerase (200 U/µl) was added and incubated for 1 hour at 42 °C 

followed by 10 min inactivation at 70 °C. cDNA was used directly or stored at -20 °C 

while RNA was stored at -80 °C.  

4.3.7.4   Quantification of RNA using agarose gel electrophoresis in MOPS buffer 

Agarose gel was used to quantify the isolated RNA. 5 µl RNA were mixed with 5 µl of 

sample buffer and incubated for 15 min at 65 °C, then 2 µl of loading buffer was added 

and RNA was separated by electrophoresis for 30 min at 100 v. 

Sample buffer: 
100 µl formamid 

38 µl formaldehyde 

20 µl 10x MOPS buffer 

42 µl DEPC H2O 

Loading buffer: 
100 µl 6x loading buffer 

1 µl EtBr (10 mg/ml) 

Running buffer: 
1x MOPS buffer in DEPC H2O 

DEPC H2O 
0.01 % DEPC in water, autoclaved 

and stirred overnight at RT. 

Agarose gel: 
0.36 g agarose 

21 ml DEPC H2O 

boil to solve agarose then cool down 

to 60 °C and add 

6 ml formaldehyde 

3 ml 10x MOPS buffer 

10x MOPS buffer 
200 mM MOPS 

80 mM Na-acetate 

10 mM EDTA 

pH 7.0 

 

 

4.3.8   Southern blot using non-radioactive probe 

The blot was performed according to Southern (1975) to confirm integration patterns of T-

DNA and to determine the copy number of the integrated transgenes using the genomic 

DNA of transformed plants. Genomic DNA was prepared from transgenic and non-
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transgenic plants by large scale DNA preparation. Non radioactive detection methods were 

used and DIG labelled PCR products for the different genes were prepared as probe (as 

described below). 

4.3.8.1   Buffers and solutions 

Pre-hybridization solution: Dig Easy Hyb. (Roche Diagnostics, Mannheim, Germany) 

Hybridization solution: 45 µl probe + 33 ml Dig Easy Hyb. 

Blocking Solution: 1 % blocking solution (Roche) in maleic acid buffer. 

Antibody solution (Anti-Digoxigenin-alkaline phosphatase conjugate Fab Fragments) 

(Roche Diagnostics) 1:20000 in blocking solution. 

Depurinizing solution  
0.25 M HCl 

Neutralization Solution pH 7.5 
0.5 M Tris-HCl  

3 M NaCl 

10 % SDS (Filter sterilized) 

Maleic acid buffer pH 7.5 (autoclaved) 
0.1 M maleic acid 

0.15 M NaCl 

Detection buffer pH 9.5 
100 mM Tris-HCl 

100 mM NaCl 

Denaturation Solution 
0.5 N NaOH 

1.5 M NaCl 

20x SSC buffer pH 7 
3 M NaCl 

0.3 M sodium citrate 

Washing buffer 
Maleic acid buffer 

0.3 % Tween 20 (do not autoclave) 

Stripping buffer 
0.2 M NaOH 

0.1 % SDS 

DEA buffer pH 9.8 
0.1 M DEA 

1m M MgCl2 

Developing solution 
1: 3.5 dil. of Roentogen developer (Tetental Photowerk GmbH, Norderstedt, Germany) 

Fixation solution 
1:4 dilution of Roentogen Superfix (Tetental Photowerk GmbH, Norderstedt, Germany).  
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4.3.8.2   DIG labeling probe preparation by PCR  

4.3.8.2.1   PCR mixture 

Compound and concentration Probe Control 

Double distilled water 35.75 µl 18.3 µl 

10X buffer with 50 mM MgCl2 5 µl 2.5 µl 

5 mM dNTPs  0.25 µl 1 µl 

10 pmol For. Primer 2 µl 1 µl 

10 pmol Rev. primer 2 µl 1 µl 

Plasmid DNA 1 µl 1 µl 

DIG labeling mix 2 µl - 

Taq polymerase (10 U/µl)* 0.5 µl 0.2 µl 

Total volume  50 µl 25 µl 

             * Either from BioTherm (Natutec) or CombiZyme (4 U/µl, Invitek GmbH) 

Different probes were prepared to detect the gene of interest (chitinase), selectable marker 

gene (bar) and backbone sequence (nptI gene). 
4.3.8.2.2   PCR program 

PCR step Temperature (°C) Time (s) No. of cycles 

Initial denaturation 94 300 1 

Denaturation  94 60  

Annealing  Specific for primer 90 AS 1 sec.           39 

Extension 72 90  

Final extension 72 300 1 

Cooling down 4 ∞  

   

The quality of the probes was controlled by running 5 µl on a 1 % agarose gel and 

compared with the control sample (25 µl). The probe should be a little heavier than control 

due to incorporation of the Dig label as shown in Fig. 10. 
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Fig. 10. 1 % agarose gel to control and check the quality of probes prepared with different primer 
combinations; P, for probe; C, for control without Dig labeling; M, 100 bp DNA ladder molecular weight 
marker.  

 

4.3.9   Restriction digest of gDNA for Southern blot 

About 20-30 µg of gDNA was digested by EcoRI or XbaI in the respective buffer at 37 °C 

overnight. Another amount of the enzyme was added and incubated for further 3-4 h. to 

ensure complete digest, followed by heat inactivation for 10-15 min at 65 °C. 

4.3.9.1   Precipitation of the digest 

In order to precipitate the digest, 1 volume of 7.5 M NH4-acetate (100 µl) and 7.5 vol. 

EtOHabs. (750 µl) were added and gently mixed, followed by centrifugation at full-speed 

(13000 rpm) in a lab centrifuge for 10 min at room-temperature. Supernatants were 

discarded completely and the pellet was re-dissolved in 100µl TE buffer, then the digest 

was precipitated by adding 100 µl EtOHabs to remove salts. Ethanol was removed by a 

centrifugation step, then the pellet was dried for 1 h. at 37 °C and finally re-dissolved in 

40 µl TE buffer at 4 °C overnight. 

4.3.9.2   Electrophoresis 

8 µl of 6x loading buffer were added to the restriction digest (40 µl), mixed and briefly 

centrifuged. Then samples and DIG-labelled-DNA Molecular Weight Marker II (Roche) 

were loaded on a 0.8 % agarose gel containing 0.5 µg/ml EtBr in 1x TAE buffer. The gel 

was run overnight at 0.6 V/cm (20-30 V) and 1-2 µl positive control (PCR product or 

plasmid DNA) were added the next day. The gel was monitored under a UV-

transilluminator and then rinsed in ddH2O, followed by submerging in 250 ml of 

depurinizing sol. (0.25 M HCl) for 10 min to nicks the DNA and thereby facilitating the 

transfer of large fragments. After that, the gel was rinsed in ddH2O to remove the acid 

followed by submerging in denaturation sol. for 2 x 15 min at RT on a shaker. The gel was 

rinsed in ddH2O and then it was neutralized in neutralization sol. for 2 x 15 min at RT. 

   M     P     C     P    C    P    C      P    C    M 

600 bp 
500 bp 
400 bp 



MATERIALS AND METHODS    

 

52

 

4.3.9.3   Capillary Southern-transfer (over night) 

20x SSC solutions were placed in a tray where filter paper bridges were built on a glass 

plate, and 3 filter papers were soaked in 20x SSC solution, then placed on the top of the 

bridge (avoiding any air bubbles under the paper). A plastic wrap was placed in between 

to prevent by-pass between filter papers that were placed on top of the gel and the filter 

papers under the gel. A piece of positively charged nylon membrane (Roche) was first 

wetted in ddH2O, then in 20X SSC and placed on top of the gel. Another 3 filter papers 

were soaked in 20 x SSC solution, then placed on the membrane to avoid air bubbles. 

Tissue papers stacks were loaded onto the filter papers and a glass plate centered on top of 

the paper towels. 500 ml bottle full of water was placed in the center of the glass plate to 

distribute the weight evenly across the gel, papers and membrane. Transfer by capillary 

form would take place over night. When the transfer was completed, the membrane was 

rinsed 3x in 2X SSC and then air dried. The membrane was either UV exposed (254 nm) 

for 10-15 min for covalently cross-linking the DNA to the membrane or placed between 

two filter papers for 30 min at 120 °C in the oven, then covered with foil and stored at RT. 

4.3.9.4   Pre-hybridization and hybridization 

The dry blot was placed in an autoclaved hybridization tube and 20 ml of pre-

hybridization solution was added and incubated for 3 h at 42 °C, and then a preheated (68 

°C) probe was added and incubated overnight at 42 °C. 

The membrane was washed as follow: 2X5 min in 2 X SSC + 0.1 % SDS at 42°C, then 

1X15 min in preheated (65 °C) 0.5 X SSC + 0.1 % SDS at 65 °C followed by 1X15 min in 

0.1 X SSC + 0.1 % SDS at 65 °C, 1 min in maleic acid buffer at RT, then the membrane 

incubated in blocking solution for 30 min followed by incubation with antibody solution 

for 30 min. 

Afterwards the blot was rinsed in washing buffer for 2X 15 min at RT. and equilibrated 

for 2 min in detection buffer. 

4.3.9.5   Non-radioactive detection 

The substrate was prepared by mixing 5 µl CDP star (Roche) and 500 µl DEA buffer and 

the mixture was dropped by pipetting on a warp foil. The membrane was removed from 

the detection buffer and transferred immediately onto the substrate and incubated for 5 

min at RT. The excess substrate was removed and Biomax-Luminescence-film (Kodak) 

was laid on the membrane and incubated for 30-60 min and then it was developed. 
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4.3.9.6   Stripping of the membrane 

After usage, the membrane can be stored in 2x SSC buffer for a second hybridization. The 

membrane was rinsed in sterile H2O and incubated twice for 15 min in stripping buffer at 

37 °C in the hybridization tube followed by rinsing in ddH2O. The membrane could be 

stored in 2x SSC buffer without SDS at 4 °C. 

4.3.10   Leaf paint analysis 

In the constructs used for transformation (Fig.1) the bar gene was used as selectable 

marker gene. It encodes the enzyme phosphinothricin acetyltransferase (PAT), isolated 

from Streptomyces hygroscopicus. It is analogous to pat gene isolated from S. 

viridochromogenes (Murakami et al., 1986; Thompson et al., 1987; Strauch et al., 1988), 

which confers resistance to bialaphos and the related compounds phosphinothricin (PPT), 

the active ingredient of herbicide BASTA® , Liberty® and glufosinate ammonium.  

Phosphinotricin inhibits Glutamine Synthetase (GS), the enzyme that incorporates NH3 

into amino acids. When glutamine synthetase is blocked, the plants run out of amino acids 

and pH of the cell rises causing the plant/tissue death due to accumulation of NH3. 

Transgenic plants expressing bar gene confers resistance to BASTA® through PAT 

enzyme by covalently linking an acetyl group to PPT to inactive and detoxified compound 

of acetyl-PPT (De Block et al., 1987; Murakami et al., 1986) (Fig. 11).  

BASTA® is non-selective herbicide with no residual activity and has been regarded as 

environmentally safe (Nap and Metz, 1996) and the bar gene offer an efficient cheap 

selection system since all plants not containing or expressing bar will die.  

 

 

 

 

 

 

 

 
Fig. 11. Detoxification and inactivation of PPT by acetylation. (Droege et al., 1992). 

PPT (MW: 181.13) acetyl-PPT (MW: 224.17)
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BASTA® (Aventis GmbH, Germany) at a dilution of 600 mg/l (stock 200 g/l) was sprayed 

on germinating tobacco seeds to select transformants. It was also applied to the upper 

surface of one marked tobacco leaf or to one leaflet of each pea leaf pair using a small 

paintbrush while the opposite leaflet was not treated and left as control. Transgenic plants 

and control plants were treated in the same way, and BASTA® effect was controlled after 

one week. 

4.3.11   DNA sequencing and sequencing results 

DNA (plasmid DNA and cDNA) was sequenced using different primers by MWG Biotech 

Company (Ebersberg, Germany). The sequencing results were compared with the original 

sequence of chitinase 30 using AlignX and ContigExpress options of Vector NTI software 

(Invitrogen Corporation) and Blast from NCBI website. 

4.4   Biochemical and biotechnological methods 

4.4.1   Protein extraction from E. coli 

4.4.1.1   Induction of E. coli containing expression vector PUC19-Chit30  

A single colony from a LB plate supplemented with 100 mg/l ampicillin and 1 M glucose 

was grown in LB liquid medium overnight at 37 °C. 2 ml from an overnight seed culture 

were centrifuged for 10 min at 8000 rpm. Then the pellet was washed with LB liquid 

medium and centrifuged once again and the pellet was resuspended in 5 ml liquid LB 

supplemented with antibiotic (ampicillin) for two different treatments: one part was 

supplemented with 0.5 % (w/v) glucose for suppression, while the other part was 

supplemented with 1 mM IPTG for induction.  

4.4.1.2   Extraction  

The bacteria were grown for 3 hours at 37 °C, centrifuged for 10 min at 8000 rpm and 4 

°C. The cells were washed twice with 2 ml TE-PMSF buffer (1 mM EDTA, 0.1 M Tris, 14 

µM PMSF, pH 7.5), then the pellet was re-suspended in 3 ml TE-PMSF buffer and 

disrupted using an ultrasonic cell disrupter equipped with a microprobe for 5 x15 sec. with 

cooling on ice. The cell lysate was centrifuged for 30 min, 15300 rpm, 4 °C. The 

supernatant was collected and the protein concentration was determined with Amersham 

Quant kit according to the manufacturer's manual. Aliquots of 100 µg were dried using a 

SpeedVac and stored at - 20 °C until use. Prior to separation in the first dimension (IEF) 
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the proteins were resuspended in 50 µl lysis buffer and vortexed for 5 min at RT. Samples 

were cleared by centrifugation twice for 30 min, 17000 g at 18 °C, then the clear 

supernatant was stored at -80 °C.  

4.4.2   Extraction of proteins from plant tissue 

The same treatment was used as in the case of isolation of RNA, where the plants with 

35S promoter were used directly for extraction of total proteins, while the plants with the 

vst promoter needed to be induced with UV light (254 nm) for 5 min and then explants 

were incubated in growth room for 24-48 h. 

4.4.2.1   Extraction buffer 

4.4.2.1.1   For crude extract 

100 mM Na-acetate pH 5, or 25 mM Na-acetate with 1 M NaCl pH 5. 

4.4.2.1.2   For 2-D gel (Usuda and Shimogawara, 1995) 

50 mM Tris-HCl pH 8.3 

5 mM EDTA 

100 mM KCl 

50 mM DTT  

700 mM sucrose 

5 % PVPP 

1 tablet protease inhibitor cocktail (Roche) 

Adjust the volume to 10 ml with Millipore water. 

Lysis buffer 

7 M Urea 

2 M Thiourea 

4 % CHAPS 

0.8 % IPG buffer pI 3-10 or 4-7 

according to the strips used. 

1 % DTT 

1 % Bromophenol Blue 

100 mg Bromophenol Blue 

50 mM Tris-base 

Adjust to 10 ml with Millipore water. 

 

4.4.2.2   Crude extract of protein 

Fresh leaves were harvested and grounded to a fine powder in liquid nitrogen with a 

mortar and pestle. The powder were suspended in the extraction buffer in a ratio of 1:3 and 

mixed by vortexing. The samples were incubated for 2 h at 4 °C on a shaker. After 

centrifugation at 12000 rpm for 10 min the supernatant was transferred to a new tube and 

designated as crude extract. 
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4.4.2.3   Protein extraction from plant tissue for 2-D gel electrophoresis 

About 100-150 mg of fresh tissue was ground in a pre-cooled mortar with a pestle in 

liquid nitrogen, then transferred to a 1.5 ml tube and 330 µl extraction buffer were added 

and the mixture vortexed briefly. 330 µl Tris buffered phenol was added and vortexed for 

10 min at 4 °C. The samples were centrifuged for 10 min, 13000 rpm at 4 °C, then the 

phenolic phase was collected. Proteins were re-extracted by adding 330 µl extraction 

buffer, centrifuged for 10 min, and 13000 rpm at 4 °C. Then the phenolic phase was 

transferred into a new tube. The proteins were precipitated overnight with 5 volumes of 

100 mM ammonium acetate in methanol at -20 °C. Samples were centrifuged for 60 min, 

17000 xg at 4 °C. Supernatant was discarded and the pellet was rinsed with 1.5 ml rinsing 

solution (cold acetone /0.2 % DTT), centrifuged again for 15 min. The supernatant was 

discarded and 1.5 ml rinsing solution was added. Samples were left in rinsing solution for 

20 min at -20 °C, then centrifuged again for 30 min at 17000 xg, and 4 °C. The 

supernatant was discarded and the pellet was dried under vacuum for 5 min. The pellet 

was suspended in 50 µl lysis buffer and vortexed for 5 min at RT. Samples were cleared 

by centrifugation twice for 30 min, 17000 xg at 18 °C, then the clear supernatant was 

stored in aliquots at -80 °C. Samples were quantified using Amersham 2D Quant kit. 

4.4.2.4   Extraction of proteins from apoplast of tobacco plants/centrifugation technique 

According to Hogue and Asselin (1987) with slight modifications, the leaves were 

harvested and submerged in PBS buffer in a plastic box, and covered with a metal sieve. 

Infiltration in PBS buffer was done for 4 min, and then leaves were dried between tissue 

papers and inserted into home-made holder as illustrated in Fig. 12. Centrifugation was 

done for 5 min at 100 xg in an HS-4 rotor (Sorvall) to remove the excess liquid. 

Subsequently, the samples were collected by centrifugation at 4 °C for 20 min at 700 xg. 

The obtained apoplastic washing fluid was stored at -20 °C. 
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Fig. 12. Home-made holder for apoplastic fluid isolation from leaves; A, holder without plant leaves; B, 
holder with plant leaves before fixing; C, fixed plant leaves within the holder; D, holder with plant leaves, 
ready for centrifugation. 

 

4.4.3   Determination of protein content 

4.4.3.1   Method according to Bradford (1976) 

4.4.3.1.1   Equipment 

Spectrophotometer (595 nm), plastic cuvettes, vortex, pipettes, falcon tubes. 

4.4.3.1.2   Reagents 

Coomassie Brilliant Blue G250 (Serva), Bovine serum albumin (BSA) stock 20 mg/ml (MBI 

Fermentas), 98 % ethanol, 85 % phosphoric acid. 

4.4.3.1.3   Bradford stock solution 

100 mg CBR G250 

50 ml 98 % ethanol 

100 ml 85 % phosphoric acid 

 

4.4.3.1.4   Bradford working solution 

15 % (v/v) of stock solution in distilled water. 
4.4.3.1.5   Assay 

A standard curve was prepared using BSA at different concentrations of 0, 10, 20, 50, 75, 

100, and 150 µg/ml in 100 mM Na-acetate buffer. 100 µl from different concentrations 
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was mixed by vortex with 4.9 ml of working solution in falcon tubes and incubated for 5 

min at RT. Absorbance was measured at 595 nm and the standard curve was drawn. 

Protein samples were diluted 1:100 in 100 mM Na-acetate buffer, then 100 µl from the 

diluted samples were mixed with 4.9 ml working solution, vortexed, and incubated for 5 

min at RT, and then the protein content was measured at A595 and calculated. 

4.4.3.2   Method according to Amersham 

Quantification was done using Amersham Quant kit according to the manufacturer's 

manual against BSA standard. 

The measurement was done in Tecan multiplate reader (Amersham) at 492 nm. The 

optimal protein concentration for IEF focusing using 7 cm IPG strips was adjusted to 2-4 

µg for silver staining and 10-60 µg for Coomassie staining in 125 µl rehydration buffer, 

whereas using 24 cm strips the protein concentration was adjusted to 20-40 µg for silver 

staining and 100-600 µg for Coomassie staining in 450 µl rehydration buffer. 

4.4.3.3   Absorbance at 280 nm (A280) 

A rapid method was used to determine whether samples contain protein was applied 

(Wetlaufer, 1962). The correction for protein concentration can be done according to 

Schleif and Wensik (1981) when nucleic acid is present where the absorbance was 

measured at 280 nm and 260 nm, and then the protein content was calculated using the 

following formula: 

 Protein (mg/ml) = 1.55 A280- 0.76 A260 

4.4.4   Preparation of substrate for in-gel assay (Molano et al. 1979) 

Glycol chitin was prepared by acetylation of glycol chitosan, where 1g of glycol chitosan 

(G-7753, Sigma, USA) was dissolved in 20 ml of 10 % acetic acid and the viscous 

solution was mixed overnight at room temperature, then 90 ml methanol were added and 

mixed continuously. The solution was filtered through Whatman filter paper (No.3) under 

vacuum. The resulting filtrate was mixed with 1.5 ml acetate anhydride. The formed gel 

was kept at RT for 30 min, the excessive liquid was poured off, and the gel was cut into 

small slices and homogenized by homogenizer. The homogenate was centrifuged at RT at 

27000 xg for 15 min; the pellet was re-suspended in 100 ml of double distilled water so 

that the final concentration of this stock is 1 %. 
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4.4.5   Gel diffusion assay for chitinase activity   

This method was used to measure and quantify chitinase activity in gel following the 

method of Zou et al. (2002) and Velasquez and Hammerschmidt (2004). The method is 

based on corporation of glycol chitin as a substrate for chitinase in agarose gel, after 

incubation where the reaction start in the gel by catalyzing the substrate by chitinase 

through diffusion, then the gel is stained with Fluorescent Brightener 28 (Calcofluor White 

M2R) which has affinity to chitin and bind to uncatalyzed chitin only resulting in dark 

area on a florescent background when monitored under UV light as a result of chitinase 

activity. 

4.4.5.1   Gel-plate preparation 

1 % or 1.6 % (w/v) agarose was prepared in 100 mM Na-acetate buffer pH=5, and heated 

in microwave to dissolve the agarose then cooled down (50-60 °C) and 0.5 % or 1 % 

glycol chitin was added gradually by stirring the mixture well. 40-50 ml of the mixture 

was poured into plastic petri dishes at RT, and afterwards 2-mm wells were made in the 

solid gel using cork borer (Fig. 13). 

Prepare agarose gel
Make holes using 
corkborer

Load samples

Cover in foil and incubate at 
37°C for 16 hr

Measure diameter of 
hydrolyzed zone Stain with Calcufluor, destain with 

water, visualize under UV

 

Fig. 13. Sketch for the method of agarose diffusion assay.  
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4.4.5.2   Assay 

Standard chitinase from Streptomyces griseus (C-6137, Sigma Chemical Company, St. 

Louis, USA) was diluted in Na-acetate buffer containing 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, 

and 0.001 unit. Different samples from transgenic and non-transgenic negative control 

plant were also prepared to contain equal amount of 10 µg total protein in a final volume 

of 20 µl. Then standard and samples were pipetted into wells in the gel plate followed by 

incubation at 28 °C or 37 °C for 16 h. or ON. 

4.4.5.3   Visualization and quantification of chitinase activity 

Fresh staining solution was prepared by dissolving 0.01 % (w/v) Fluorescent Brightener 

28 in 500 mM Tris-HCl, pH 9 buffer, then the gel was stained for 10 min. After discarding 

the satining solution, the gel was de-stained in distilled water for several times to 

overnight at room temperature in an orbital shaker. The chitinolytic effect was visualized 

under UV light (254 nm) as a dark areas around wells with a bright background as a result 

of chitinase activity. The dark circular zones were measured using electronic digital 

caliper (Omnilab GmbH, Germany) and by comparing with the standard, the activity was 

calculated from regression equation of the hydrolyzed area diameter versus the logarithm 

of the standard activity.  

4.4.6   SDS-polyacrylamide gel electrophoresis (SDS-PAGE)/electro blotting 

Electrophoresis of protein using SDS-PAGE was according to Reinard and Jacobsen 

(1995) and Laemmli (1970), using a mini-80 mm x 80 mm x 1 mm- vertical gel system 

(Biometra GmbH, Goettingen, Germany). 

4.4.6.1   Buffers and solutions 

SDS-Running buffer 
25 mM Tris-HCl, pH=8.3 

192 mM Glycine 

0.1 % SDS  

Blocking solution 
5 % instant milk powder in PBST 

buffer. 

Sample buffer 
0.5 M Tris-HCl pH 6.8 

10 % SDS 

15 % sucrose 

With or without reducing agent (DTT or 2-

mercaptoethanol) 

1 % Bromophenol Blue 
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DBD buffer 
0.05 % BSA 

0.025 % Tween 20 

0.5 % FCS 

0.01 % NaN3 (Serva 30175) 

Phosphate buffered saline-Tween (PBST)
1x PBS pH 7.4 

0.05 %-0.1 % Tween 20 (Fluka 93773) 

Substrate buffer pH 9.5 
100 mM Tris-Hcl 

0.5 mM MgCl2 

Washing solution Phosphate buffered saline (10X PBS, PH 7.4) 
2.56 g NaH2PO4xH2O (Applichem A1047) 

14.90 g Na2HPO4x2H2O (Roth 4984.1) OR 22.5g Na2HOP4x7H2O 

87.66 g NaCl (Roth 9265.1) 

Adjust pH and add ddH2O up to 1L. then autoclave.  

First antibody solution 
1:1000 dilution of α-chit 30 from rabbit in DBD buffer. 

Second antibody goat anti rabbit alkaline phosphatase (GARAP) IgG 
1:1000 dilution of GARAP in DBD buffer. 

NBT (Applichem A1243): 30 mg/ml 70 % Dimethylformamid (DMF) 

BCIP (Applichem A1117): 10 mg/ml 100 % Dimethylformamid (DMF) 

4.4.6.2   SDS-PAGE gel 

Compounds  12 % Resolving Gel 12 % Stacking Gel 

30 % acrylamide/0.8 % bis-acrylamide 2.5 ml  680 µl 

1.5 M Tris-HCl, pH= 8.8 1.6 ml              - 

1 M Tris-HCl, pH=6.8     - 540 µl 

10 % SDS 62.5 µl  40 µl 

ddH2O 2.13 ml  2.7 ml 

10 % APS (ammonium persulphate)  62.5 µl  30 µl 

TEMED 2.5 µl  8 µl 

 

Resolving gel mixture was poured in the gel mold and overlaid with ddH2O to ensure level 

interface. Polymerization happened within 30-40 min, then H2O was removed and the 

interior of the glass was dried with filter paper. 

The stacking gel mixture was poured over the resolving gel and the comb was inserted and 
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allowed for polymerization. The comb was removed and excess gel was washed with 

dH2O. The tank was filled with 1 x SDS-PAGE running buffer. 

Samples were prepared by mixing with sample buffer (1:1) and boiled for 5 min at 100 °C, 

then used directly or stored at -20 °C until use. Samples were loaded onto slots and run at 

10-12 mA/gel afterwards when the protein reached the resolving gel the power was 

increased to 14-16 mA/gel. The gel was stopped when the tracking dye reached the end 

(about 3 h). Then the gel was used directly for staining or blotting. 

4.4.7   Protein staining after SDS-PAGE 

4.4.7.1   Coomassie staining  

The SDS-PAGE gel was stained in Coomassie staining (25 % methanol, 10 % acetic acid 

and 0.1 % Coomassie Brilliant Blue R-250) for 20 min, and then de-stained in de-staining 

solution (10 % acetic acid) overnight. 

4.4.7.2   Silver staining according to Blum et al. 1987 

The silver staining method is about 10-100 times more sensitive than various Coomassie 

Blue staining techniques.  
4.4.7.2.1   Solution 

Stop solution 
500 ml methanol 

120 ml acetic acid  

Add 1l ddH2O 

Silver staining solution 
0.5 ml of 20 % AgNO3 

37.5 µl 37 % formaldehyde 

Add 50 ml ddH2O 

Fixation solution 
50 ml stop solution 

25 µl 37 % formaldehyde 

Sensitizer sodium thiosulfate solution 
10 mg Na2S2O3 x 5H2O 

Add 50 ml ddH2O 

Developing solution 
3 g Na2CO3 

25 µl 37 % formaldehyde 

1 ml of Na-thiosulfate solution 

Add 50 ml ddH2O 

4.4.7.2.2   Procedure  

The SDS-PAGE was incubated in fixation solution for 1 h or overnight at RT, then it was 

submerged 3x 20 min, followed by 1 min incubation in Na-thiosulfate solution and then 

washed 3x 20 sec. in ddH2O. The gel was stained in silver staining solution for 20 min, 

followed by 2x 20 sec. washing in ddH2O and then developed in developing solution for 
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1-10 min until the bands become clear, washed 2x 2 min by ddH2O. The reaction was 

stopped by incubating the gel in stopping solution for 10 min. 

4.4.7.3   Fluorescent activity staining of chitinase after SDS-PAGE (Trudel and Asselin 

1989 and 1990) 

4.4.7.3.1   Solutions 

Re-naturation buffer 

0.05 M acidic HEPES and 1 % v/v Triton X-100 were dissolved in ddH2O. The solution was stirred 

until Triton was completely dissolved. Then pH was adjusted to 7 with 3 M KOH. 

Fluorescent staining solution 

0.01 % (w/v) Fluorescent Brightener 28 (Calcofluor White M2R) (F-3397, Sigma, USA) was 

totally dissolved in 0.5 M Tris-HCl pH 9 buffer. 

4.4.7.3.2   SDS-PAGE gel with substrate 

12 % SDS-PAGE was prepared with 1 % of glycol chitin. After electrophoresis the gel was 

incubated in re-naturation buffer at 37 °C at 40 rpm overnight.  

4.4.7.3.3   Detection  

The gel was washed twice in 0.5 M Tris-HCl pH 9 buffer, followed by staining in fresh 

fluorescent staining solution for 2 min. Subsequently, the gel was rinsed in deionized 

water several times and the chitinolytic effect was visualized under UV light as dark bands 

with a bright background as a result of chitinase activity. 

4.4.7.4   Western blot (modified Towbin et al., 1979) 

Semi-dry Blotting and detection 

Semi-dry blotting was done using semi-dry trans-electroblotter (BioRad, Germany) to 

transfer the separated protein from the SDS-PAGE gel to a membrane using transfer 

buffer (1x running buffer without SDS). Three pieces of filter paper were soaked in 

transfer buffer and placed on the anode (+), while avoiding any air bubbles, then a PVDF 

membrane (0.45 µM pore size, Roche) was activated for 5 min in methanol, and then put 

on the filter papers. The gel was laid on the membrane, and then 4 soaked filter papers 

were placed on top avoiding any air bubbles, the cathode (-) electrode plate was added on 

top. 

The power was set at 0.77 limit, 20 volt and 0.8 time (around 45 min). Afterwards, the 

membrane was stained using Ponceau staining solution (stock 10 g Ponceau in 50 ml 30 % 

TCA, from this stock a 1:50 dilution was prepared) for 10 min on a shaker, then the 

marker was cut and the remaining part of the membrane was blocked in blocking solution 

for 30 min on a shaker (or stored overnight at 4 °C after adding 0.02 % NaN3 to prevent 
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bacterial growth). The membrane was washed briefly then incubated for 5 min in washing 

solution (1x PBS), then the washing solution was removed and the first antibody solution 

(α-chit 30) was added for 1 h on shaker. After washing with PBS buffer the second 

antibody (GARAP) was added for 1 h on a shaker. Afterwards, the membrane was washed 

in PBS buffer then it was incubated in NBT-BCIP substrate buffer for 5 min. The 

membrane was incubated in substrate solution (20 ml NBT-BCIP substrate buffer + 200 µl 

NBT + 200 µl BCIP) for 2-20 min without shaking until color development become 

visible. The reaction was stopped by ddH2O and the membrane was dried with filter paper. 

4.4.8   Proteomics and 2-D gel electrophoresis 

Proteomics and two-dimensional polyacrylamide gel electrophoresis (2-D PAGE) were 

used to study proteins, particularly their structures and functions. This method facilitates 

the separation of complex mixture of proteins so that individual proteins are more easily 

analysed with other techniques like mass spectrometry. It is used to identify the relative 

mass of a protein and its isoelectric point.  

In this method, proteins are separated according to charge (pI) by isoelectric focusing 

(IEF) in the first dimension and according to size (Mr) by SDS-PAGE in the second 

dimension, which can be horizontal or vertical (O’Farrell 1975). It is also used to identify 

the relative mass of a protein and its isoelectric point by comparing with known standards.  

The aim of using this technology was to differentiate between endogenous and 

recombinant chitinases in transgenic plants of tobacco and pea, where the candidate spots 

will be identified using silver stained gels and then excised from Coomassie Blue stained 

gels and then analyzed using Matrix Assisted Laser Desorption Ionization Time-Of-Flight 

(MALDI-TOF) Mass Spectroscopy Analysis.  
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4.4.8.1   Solutions 

Rehydration buffer 
7 M Urea 

2 M Thiourea 

30 mM Tris-HCl pH 8.5 

4 % CHAPS 

10 % glycerol 

0.002 % bromophenol blue 

2 % IPG buffer pI 3-10 

0.28 % DTT 

Fixing solution: 
40 % ethanol 

10 % acetic acid 

Sealing solution: 
0.5 % agarose 

0.002 % bromophenol blue 

Dissolve in 1x running buffer 

SDS equilibration buffer: 
50 mM Tris-HCl pH 8.8 

6 M Urea 

30 % glycerol 

2 % SDS 

1 % DTT 

1 % Iodoacetamide 

Running buffer 
250 mM Tris base 

1.9 M glycine 

1 % SDS 

Sensitizing solution: 
75 ml ethanol 95 % 

1.25 ml 25 % glutaraldehyde 

10 ml 5 % sodium thiosulfate 

28.17 g sodium acetate 

Fill up to 250 ml with ddH2O 

Silver staining solution: 
0.625 g silver nitrate 

0.1 ml formaldehyde 

Fill up to 250 ml with ddH2O 

Stopping solution: 
3.65 g Na-EDTAx2 H2O 

Fill up to 250 ml with ddH2O 

Developing solution: 
6.25 g sodium carbonate 

0.05 ml formaldehyde 

Fill up to 250 ml with ddH2O 

 

 

4.4.8.2   IEF focusing (first dimension) 

IPG strips (pH 4-7, 7 cm and 24 cm ImmobilineTM DryStrip from Amersham Biosciences 

AB, Sweden) were rehydrated in rehydration buffer containing the sample protein (4 µg 

protein for silver staining and 100 µg for Coomassie and Western blot analysis of 7 cm 

strips) in the reswelling tray (gel side facing the buffer), strips were covered with Drystrip 

cover fluid (Amersham), and incubated overnight at RT. 

Rehydrated strips were rinsed with deionized water for a few seconds and slightly blotted 

to remove excess water. The cooling device was set to 20 °C, 15 ml Drystrip cover fluid 

was poured onto the cooling plate of the multiphore unit and the IEF unit was placed onto 
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the cooling plate avoiding air bubbles under the IEF unit. Power was connected, and 15 ml 

Drystrip cover fluid was poured onto the IEF unit. Then the plastic support was placed 

onto cover fluid in the IEF unit (avoid air bubbles). Rehydrated IPG strips were placed 

onto the depressions of the plastic support where the gel side was upwards and the acidic 

ends towards the anode. Two electrode pads (filter paper) were moistened with 150 µl 

deionised water and applied on the surface of IPG gel at the anodic and cathodic ends of 

the IPG strip. The movable electrodes were positioned above the electrode filter paper 

pads and gently the electrodes were pressed on the filter paper. IPG strips were overlaid 

with Drystrip cover fluid and IEF focusing was run according to the program below (for 7 

cm IPG strips) in gradient mode: 
 1. 200 V  0:01 min 5 Watt  0.5 mA/strip 

 2. 3500 V 1:30 min 5 Watt  0.5 mA/strip 

 3. 3500 V 1:30 min 5 Watt  0.5 mA/strip 

The total volt hours should be less than 50 kVh. 

After IEF focusing the IPG strips were stored in test tubes at -80 °C until the second 

dimension was run. 

4.4.8.3   Equilibration of IPG strip 

The IPG gel strips were equilibrated twice for 15 min in 2x10 ml equilibration buffer on a 

shaker. The first equilibration step contained 1 % DTT, and the 2nd equilibration step 

contained 4.5 % iodoacetamide. The equilibrated IPG gel strips were slightly rinsed and 

blotted to remove excess equilibration buffer and then applied onto the second dimension 

SDS gel. 

4.4.8.4   SDS-PAGE (second dimension) 

4.4.8.4.1   Horizontal gel electrophoresis (ready-made) 

SDS EcxelGel was assembled for the second dimension: It was removed from its foil 

package. 15 ml of cover fluid were pipetted on the cooling plate of the multiphor unit 

(cooling device was set at 15 °C). Protective cover was removed from the top of the 

EcxelGel and placed on the cooling plate, avoiding air bubbles trapped between the gel 

and the cooling plate. The cathodic SDS buffer strip and anodic buffer strip were placed 

on the gel, then the equilibrated IPG strip was placed on the surface of the EcxelGel, 1 

mm apart from the cathodic buffer strip, the electrodes were positioned on the buffer 

strips. Following program was used: 

Homogenous gel 12.5 % acrylamide: 
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1. 120 V  20 mA  30 W  40 min 

2. 600 V  50 mA  30 W  70 min 

Gradient gel 12-14 %: 
1. 200 V  20 mA  20 W  40 min 

2. 800 V  40 mA  40 W  2:40 h. 

After the first step, the IPG strip was removed from the gel surface and the cathodic buffer 

strip was moved to the position where the IPG strip was placed before. Continuing to the 

second step at the end of the program, the gel was stained with silver nitrate. 
4.4.8.4.2   Vertical gel electrophoresis 

An IPG strip was placed on top of a 12 % SDS-PAGE gel and overlaid with 2 ml of 2 % 

hot agarose solution in running buffer. Electrophoresis was started at 100 V. and 400 mA 

for 15 min. Then power was increased to 180 V and 50 mA. 

The electrophoresis was terminated when the Bromophenol Blue tracking dye has 

migrated off the lower end of the gel and then it was used for staining or blotting. 
4.4.8.4.3   Silver staining after Amersham 

Incubate the gel for 30 min in fixing solution (or over night) 

Incubate the gel for 30 min in sensitizing solution 

Wash the gel 3 x 5 min in distilled water 

Incubate the gel for 20 min in silver staining solution 

Wash the gel 2 x 1 min in distilled water 

Incubate the gel for 2-5 min in developing solution or until seeing the spots 

Incubate the gel for 30 min stopping solution 

Wash the gel 3 x 5 min in distilled water 
4.4.8.4.4   Storage of the gels 

Horizontal gels with plastic supports were incubated at least for 20 min in 87 % glycerol 

diluted 1:10 by water, and then stored sealed in plastic foil at 4 °C. 

Vertical gels without support were incubated twice for 30 min in 250 ml distilled water 

containing 75 ml ethanol (95 %) and 11.5 ml glycerol (87 %) solution, then stored sealed 

in plastic foil at 4 °C. 
4.4.8.4.5   Coomassie Blue staining 

Since the development of highly sensitive micro-sequencing techniques, it is also possible 

to gain N-terminal or even internal amino acid sequence information of proteins blotted 

onto PVDF membranes. Coomassie Blue stained spots are excised from the immobilizing 

PVDF membrane and directly applied into an automated protein sequencer. Usually, a 
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single well-stained spot yields sufficient protein (1-10 µg) to obtain an N-terminal amino 

acid sequence. For mass spectrometry, lower amounts of protein are sufficient. 

Reagent solutions 

Staining solution:  

0.1 % Coomassie Blue R-250 in water/methanol/acetic acid (45/45/10). To prepare 500 

ml, 500 mg Coomassie Brilliant Blue R-250 (or Serva Blue R) were dissolved in 225 ml 

of methanol. The resultant solution was stirred for 30-60 min, and then 225 ml of 

deionized water and 50 ml acetic acid was added, stirred again and filtered. 

Destaining solution: 45 % methanol, 45 % deionized water and 10 % glacial acetic acid.  

4.4.9   Quantitative assay of Chitinase enzyme activity using CM-chitin-RBV 

according to Stephan and Wolf (1990) 

A solubilized, dye-labeled form of chitin, carboxymethyl-chitin-Remazol Brilliant Violet 

(CM-chitin-RBV, Loewe, Germany) was used as a substrate for colorimetric chitinase 

activity assay. Chitinase activity assay was performed according to Stephan and Wolf 

(1990) in triplicate, where aliquots of 200 µl CM-chitin-RBV (stock 2 mg/ml) were mixed 

with 100 µl 200 mM sodium acetate buffer, pH 5 and 100 µl enzyme solution and 

incubated for 2 hours at 37 °C. The reaction was terminated by the addition of 100 µl HCl 

(1.0 N) on ice and incubated for 10 min to facilitate precipitation of the non-degraded 

substrate, then centrifuged at 14500g for 5 min. Subsequently, 350 µl of the supernatants 

were transferred to the wells of a microtiter plate (350 µl cavities). The absorbance was 

measured spectrophotometrically at 550 nm against a blank, which was prepared similarly, 

but the enzyme was added onto pre-incubated substrate and stopped directly with HCl. 

The difference between the values (OD) of blank and samples indicated the enzyme 

activity. 

4.5   Bioinformatic and statistical programs  

Different programs and bioinformatic websites were used such as vector NTI (Invitrogen 

corporation, http://www.invitrogen.com), NCBI-Blast (http://www.ncbi.org), EXPASy 

serve (http://www.expasy.org), BIOINFX (http://studwww.ugent.be/~mdgroeve/bioinfx/) 

and Sig-Pred program from the bioinformatics group of  Leeds University 

(http://bioinformatics.leeds.ac.uk/prot_analysis/Signal.html).   

For statistical analysis SPSS software version 11 were used with Student-Newman-Keuts 

test. 
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Sig-Pred program from the Bioinformatic group of Leeds University was used to study the 

prediction of the cleavage site of the Streptomyces chitinase signal peptide sequence in 

prokaryotes and eukaryotes. The results are shown in the Fig. 14 and Fig. 15 respectively. 

 

 

 

 

 

 

 

 

 

Fig. 14. Prediction of the cleavage site of the Streptomyces chitinase signal peptide sequence using 
prokaryotic sequencing origin. 

      

 

Fig. 15. Prediction of the cleavage site of Streptomyces chitinase signal peptide sequence using eukaryotic 
sequencing origin, showing highest score for position different from the correct position at 30:31 (arrow). 
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The prediction of the cleavage site of the Arabidopsis signal peptide sequence fused to the 

coding region of Streptomyces chitinase 30 are shown in Fig. 16. 

 

 

 

 

 

 

 

 

 

Fig. 16. Prediction of the cleavage site of Arabidopsis signal peptide sequence, showing the correct cleavage 
site with the mature protein of chitinase 30 (in red). 

4.6   In vitro bio-assays 

In vitro bio-assay test was used following the methods of Schlumbaum et al. (1986) and 

Chye et al. (2005) in order to investigate the effect of recombinant chitinase on inhibiting 

fungus hyphal growth. 

The following fungi were used: 

– Subculture of Trichoderma harzianum isolate T12  (fungi collection of the Institute of 

Plant Diseases and Plant Protection (IPP), University of Hannover, Germany, 

originally obtained as isolate T000 from the Institute of Phytopathology and Applied 

Zoology (IPAZ), Justus-Liebig-University Gießen, German). 

– Ascochyta rabiei  (DSMZ collection, Braunschwieg, Germany) 

– Colletotrichum (DSMZ collection, Braunschwieg, Germany). 

A plug of growing fungi cultured on PDA medium was transferred to the centre of a fresh 

PDA plate. Following incubation at 25 °C for 24 h (T. harzianum) or 48 h (Ascochyta and 

Colletotrichum), during which the hyphae grew outwards from the centre, wells (0.3 mm) 

were bored on the outer surface of the PDA, in equal distance from the plug. Crude protein 

extract from transformed and untransformed plants of tobacco and pea as well as buffer 
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were added to each well (30-50 µg) and the plate was further incubated in the dark at 25 

°C. Growth inhibition was observed and photographed after 8 h, 16 h and 24 h. The assay 

was repeated two times. 

4.7   Plant Material 

4.7.1   Pea seeds 

 4.7.1.1   Surface sterilization of the seeds  

Pea seeds cultivar Sponsor were surface sterilized by soaking in 70 % ethanol (EtOH) 

(v/v) for 1 min followed by 6 % sodium hypochlorite (NaOCl) for 5-10 min, with 

agitation. Seeds were washed for 5-6 times with sterile deionised water and imbibed in 

water overnight. 

4.7.1.2   Preparation of explants  

Pea transformation was done according to the modified protocol of Schroeder et al. (1993) 

and Bean et al. (1997). Seeds were split open, root tips were removed and the remaining 

embryo axis was sliced longitudinally into three to five segments (Fig. 2A) with a scalpel 

blade that was dipped in the Agrobacterium suspension before each cut. 

These explants were inoculated with Agrobacterium suspension supplemented with 100 

µM acetosyringon and 5 µM TDZ for 60-90 min, then explants were blotted dry on sterile 

filter paper and plated for three days in the dark at 22±2 °C in growth-room on B5hT co-

cultivation medium. 

After co-cultivation, explants (white and white greenish color) were washed several times 

in sterile distilled water until the wash out water become clear, the final wash was 

supplemented with 100 mg/l Ticarcillin and incubated for 15 min on a shaker to remove 

the Agrobacteria then the explants were blotted dry on sterile filter paper and cultured on 

shoot regeneration MST medium for 10 days under dim light, then subcultured to MST 

medium for another 10 days in light. Thereafter, the explants were sub-cultured on 

selection medium P2 and the healthy green shoots were sub-cultured every three weeks to 

P2 fresh medium with increased concentrations of PPT to 2.5 mg/l, 5 mg/l, 7.5 mg/l, 10 

mg/l, 12.5 mg/l, and 15 mg/l. Briefly the pea transformation was done using the following 

scheme: 

- Explants preparation from mature embryo. 

- Inoculation with Agrobacterium suspension. 
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- Co-culture for three days in the dark (B5hT medium+TDZ+Kin.). 

- First subculture for one week in semi-dark condition (MST+TDZ+NAA). 

- Second subculture for one week in light (MST+TDZ+NAA). 

- First selection for three weeks (P2+BAP+NAA+2 mg/l PPT). 

- Second subculture after three-four weeks (P2+BAP+NAA+5 mg/l PPT). 

- Further subcultures to fresh media in three to four weeks interval for selection and 

multiplication. 

- In vitro grafting of shoots surviving the selection at 15 mg/l PPT. 

- Successful grafted shoots (after 8-15 days) transferred to greenhouse. 

- T0 seeds harvested after 30-45 days post grafting. 

4.7.2   Tobacco plant 

In vitro growing tobacco plants (Nicotiana tabacum L.) cv. Samsun were the source for 

the explants used in transformation procedure as described by Moebius (2000). The young 

leaves were cut into 0.5 ~ 1 cm square and inoculated with Agrobacterium suspension for 

15-30 min. The explants were blotted dry on sterile filter paper and co-cultivated adaxial 

face down on Petri dishes containing MSZ medium for three days in the dark at 22±2 °C. 

The explants were washed with sterile distilled water for at least 5 times, and then were 

dried on sterile filter papers. Explants were plated on MSZP selection medium 

supplemented with 100 mg/l Ticarcillin, 100 mg/l Combactam and 2.5 mg/l PPT. The 

explants were sub-cultured every three weeks to fresh medium with increasing 

concentration of PPT from 5 mg/l, 7.5 mg/l until 15 mg/l, respectively. Regenerated 

shoots from the edge of explants were removed and sub-cultured to fresh medium. When 

shoots were big enough they were sub-cultured on rooting medium. The rooted shoots 

were potted, acclimated and then transferred to the greenhouse for flowering and setting 

seeds through self-pollination. 

4.7.3   Selection agent 

Glufosinate-ammonium was used as selective agent in vitro to select the transgenic shoots 

(see 3.3.10), healthy green shoots were sub-cultured every three weeks to P2 fresh 

medium with increased concentrations of PPT to 2.5 mg/l, 5 mg/l, 7.5 mg/l, 10 mg/l, 12.5 

mg/l and 15 mg/l. 
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4.8   Media 

4.8.1   Media for pea transformation 

4.8.1.1   B5-i re-suspension medium  

B5 basal micro- and macro salts (Gamborg et al., 1968) 

10 g/l glucose 

10 g/l sucrose 

2 g/l MES  

pH was adjusted to 5.6 with 1N KOH/1N HCl 

4.8.1.2   B5hT Co-cultivation medium 

B5 basal micro- and macro salts  

B5 vitamin mixture  

30 g/l sucrose 

0.88 g/l CaCl2, 2H2O 

0.5 g/l KNO3 

0.5 g/l MgSO4, 7H2O 

0.8 g/l glutamine 

10 mg/l glutathione  

1 mg/l adenine  

2.0 g/l MES  

0.2 mg/l kinetin (1 µM) 

1.1 mg/l TDZ (5 µM) 

pH was adjusted to 5.5 and the medium was solidified by adding 4.5 g/l GelRite. 

4.8.1.3   MST regeneration medium  

MS macro- and micro salt’s (Murashige and Skoog, 1962) 

B5 vitamin mixture  

30 g/l sucrose 

1 g/l MES 

1.1 mg/l TDZ (5 µM) 

0.002 mg/l NAA (0.01 µM) 

pH was adjusted to 5.8 and the medium was solidified by adding 7.5 g/l Plant Agar. Post autoclaving and 

cooling to 60 °C the medium was supplemented with 100 mg/l Ticarcillin and 100 mg/l combactam. 

4.8.1.4   P2 selection medium 

MS basic micro- and macro salts 

B5 vitamin mixture 

30 g/l sucrose 

1 g/l MES 

4.5 mg/l BAP (14.58 µM) 

0.02 mg/l NAA (0.1 µM) 

pH was adjusted to 5.8 and the medium was solidified by adding 7.5 g/l Plant Agar, and post autoclaving the 

medium was supplemented with 100 mg/l Ticarcillin, 100 mg/l combactam and 2.5 mg/l PPT. 
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4.8.2   Media for tobacco transformation  

4.8.2.1   MSZ co-cultivation medium 

MS basal media with vitamins 

3 % sucrose  

1 mg/l Zeatin (4.5 µM) 

1 g/l MES 

pH was adjusted to 5.8 and the medium was solidified by adding 0.3 % GelRite.  

4.8.2.2   MSZP selection medium 

MSZ medium  

1 g/l MES 

100 mg/l Ticarcillin 

100 mg/l combactam 

2.5 mg/l PPT. 

pH was adjusted to 5.8 and the medium was solidified by adding 7.5 g/l Plant Agar.  

4.8.2.3   Rooting medium 

½ MS (half strength of MS macro and micro salts)  

100 mg/l Ticarcillin 

100 mg/l combactam 

15 mg/l PPT. 

pH was adjusted to 5.8 and the medium was solidified by adding 7.5 g/l Plant Agar. 

4.9   Designation of the transformation experiments 

In order to easily handle different transformation experiments and analyze different 

transgenic clones, we used a code or ID to differentiate between different clones and 

generations, the code used is: XX-YY-E-S, T1, T2, T3,... 

Where:  

XX stands for the transformation experiment 

YY stands for the year of transformation 

E stands for the explant 

S stands for the shoots regenerated from same explant E  

T1 stands for the first transgenic generation   

T2 stands for the second transgenic generation  

T3 for third generation and so on. 

For example, the following code 03-04-3-2, 1, 2, 3 is explained as follow: 03 is 
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transformation experiment number 3 in the year 2004, -2 for the shoot number two 

regenerated from explant -3. The number after comma indicates different generations 

where, 3 is seed number three from plant growing from seed number ,2 which was grown 

from plant from seed number 1. 

The primary transformant 03-04-3-2 is called T0 generation and the seeds growing from 

these plants is T1 generation (03-04-3-2, 1) and the following T2 generation is 03-04-3-2, 

1, 2 and so on where each generation is separated with comma. 

4.10   Segregation and homozygousity analysis 

Segregation analysis was tested using Chi-squared test at 1 % and 5 % significance for 

chitinase gene obtained from PCR data, also for establishing the homozygous lines. The 

homozygousity of the parental plant was calculated from its progeny (K), the homozygous 

plants will not be segregating any more. 

Homozygousity was calculated using the following formula adapted from Kiesecker 

(2000): 

  

 

Where P: probability at 5 %. 

           K: number of transgenic progeny. 

 

4.11   Tobacco cell culture  

Plant cell cultures are important tool for elucidation of biosynthetical pathways, 

production of secondary metabolites by large-scale growth of plant cells in liquid culture, 

screening systems for pharmacy and agrochemistry. 

 4.11.1   Callus induction media (4X medium) 

B5 basal micro- and macro salts + vitamins 

Saccharose 

Nz-Amin (Caseinhydrolysat) 

2,4 D 

NAA 

IAA 

Kinetin 

3,16 g/l 

20 g/l 

2 g/l 

2 mg/l 

0,5 mg/l 

0,5 mg/l 

0,2 mg/l 

pH was adjusted to 5.6 and solidified with 0.8 % Plant Agar (for solid medium). 

P =  
1 

1+2 (3/4)K  
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4.11.2   Procedure  

Callus culture was induced by culturing 0.5-1 cm2 tissue from shoots or roots on 4X 

medium for 4 weeks, explants were subcultured every 4 weeks into fresh 4X medium, 

supplemented with PPT for selection, until getting suitable callus phase.  

To start suspension culture, small pieces from the resulted callus (4-6 g fresh weight) were 

placed in 100 ml flask containing enough 4X liquid medium to allow easily movement for 

the cells and shacked at 100 rpm. 

Cultures were monitored every 2 or 3 days; a new liquid media could be added if 

necessary. After 2-3 weeks, there cultures were transferred to larger flasks (300 ml) 

containing 80-100 ml 4X liquid media. Cells were then subcultured to fresh medium every 

week.
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5   RESULTS 

5.1  Cloning of the chitinase gene with a bacterial signal peptide sequence 
The architecture of the constructed plasmids pGIIvst-Chit and pGII35S-Chit was 

confirmed by restriction digest and sequencing of the coding region including the interface 

to the vector in E.coli derived plasmids (Fig.17). Thereafter the constructs were transferred 

into the disarmed Agrobacterium tumefaciens strain EHA105 harboring the pSoup plasmid 

from the pGreen II collection. Different glycerol stocks were prepared and stored at -80 °C 

as deposit for the plant transformation. Again, the plasmid integrity was checked by 

sequencing of E. coli derived plasmids after re-transformation of E.coli. The results of 

BLAST search at NCBI database using the sequencing results of constructed plasmid 

found 100 % homology to Chit30 gene from Streptomyces (Fig. 18). 

 

 

 

 

 

 
Fig. 17. Results of cloning work, plasmid (lane 1 and 2) and colony PCR of different colonies (3-10) using 
900 bp primers (right); PCR using pGII primers 297 & 303, lane 1, pGIIvst-Chit; lane 2 and 3, pGII35S-
Chit; lane 4, pGII35S; lane 5, pGIIvst (middle); restriction digest of plasmid pGIIvstchit and pGIIvst (left) 
using SacI+KpnI (lane 1 and 6), BamHI+SacI (lane 2 and 7), BamHI+XbaI (lane 3 and 8), NcoI (lane 4 and 
9), and control (lane 5 and 10) respectively; +C, positive control; M, 100 bp DNA molecular ladder; M*, 1 
Kp DNA molecular ladder. 

 
>gi|4456813|emb|AJ133186.1|SOL133186 Streptomyces olivaceoviridis 

ATCC11238 chi30 gene Length=1199 

 
 Score = 1140 bits (575),  Expect = 0.0 
 Identities = 575/575 (100%), Gaps = 0/575 (0%)Strand=Plus/Plus 
 
Query  139  GGCCTGTTCGAGCTACCCGAGCTGGGTCGCCGGCAGGTCCTACGCGGCCGGTGACATCGT  198 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  291  GGCCTGTTCGAGCTACCCGAGCTGGGTCGCCGGCAGGTCCTACGCGGCCGGTGACATCGT  350 
 
Query  199  CCGCTACACGGACGGCAAGGCGTACATCGCCGAGCACGCCAACCCGGGTTACGACCCGAC  258 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  351  CCGCTACACGGACGGCAAGGCGTACATCGCCGAGCACGCCAACCCGGGTTACGACCCGAC  410 
 
Query  259  CATCAGCACCTGGTACTGGGAGCCGTACGCCTGCGACGGCGGGTCCGGGACGCCGGTCGG  318 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  411  CATCAGCACCTGGTACTGGGAGCCGTACGCCTGCGACGGCGGGTCCGGGACGCCGGTCGG  470 
 
Query  319  CACCTTCGTGGTGACCGAGGCCCAGTTCAACCAGATGTTCCCGAACCGGAACTCCTTCTA  378 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  471  CACCTTCGTGGTGACCGAGGCCCAGTTCAACCAGATGTTCCCGAACCGGAACTCCTTCTA  530 
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Query  379  CAGCTACAGCGGACTCACCGCCGCGCTCAGCGCCTACCCCGGCTTCGCGAACACCGGCAG  438 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  531  CAGCTACAGCGGACTCACCGCCGCGCTCAGCGCCTACCCCGGCTTCGCGAACACCGGCAG  590 
 
Query  439  CGACACCACCAAGAAGCAGGAGGCCGCGGCCTTCCTCGCCAACGTCAGCCACGAGACCGG  498 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  591  CGACACCACCAAGAAGCAGGAGGCCGCGGCCTTCCTCGCCAACGTCAGCCACGAGACCGG  650 
 
Query  499  CGGCCTGGTGCACGTGGTCGAGCAGAACCAGGCCAACTACCCGCACTACTGCGACTGGAG  558 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  651  CGGCCTGGTGCACGTGGTCGAGCAGAACCAGGCCAACTACCCGCACTACTGCGACTGGAG  710 
 
Query  559  CCGGCCGTACGGCTGCCCGGCGGGCCAGGCGGCCTACTACGGGCGCGGCCCGATCCAGCT  618 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  711  CCGGCCGTACGGCTGCCCGGCGGGCCAGGCGGCCTACTACGGGCGCGGCCCGATCCAGCT  770 
 
Query  619  CAGCTGGAACTTCAACTACAAGGCCGCGGGCGACGCGCTCGGCATCGACCTGCTGAACAG  678 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  771  CAGCTGGAACTTCAACTACAAGGCCGCGGGCGACGCGCTCGGCATCGACCTGCTGAACAG  830 
 
Query  679  CCCCTGGCTGGTCGAGCGCGACTCGGCCGTCGCCT  713 
            ||||||||||||||||||||||||||||||||||| 
Sbjct  831  CCCCTGGCTGGTCGAGCGCGACTCGGCCGTCGCCT  865 
 
 Score =  133 bits (67),  Expect = 9e-28 
 Identities = 67/67 (100%), Gaps = 0/67 (0%)Strand=Plus/Plus 
 
Query  48   TGCCGAGGCGTCGCACATCCGCCCTGCTGGCCGCGCTGGTCATCTCGACCGCAGCGCCGG  107 
            |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  200  TGCCGAGGCGTCGCACATCCGCCCTGCTGGCCGCGCTGGTCATCTCGACCGCAGCGCCGG  259 
 
Query  108  TGCTCCT  114 
            ||||||| 
Sbjct  260  TGCTCCT  266 

Fig. 18. BLAST alignment of constructed plasmid sequence of pGII35S-Chit.  

The resulted T-DNAs are shown in the Fig. 19. 

 

Fig. 19. Schematic diagrams of the T-DNA region of the binary vectors pGreenII constructed with respective 
restriction sites containing the bacterial chitinase gene with two different promoters (vst-P and double 35S-
P), selectable marker gene bar inserted between nos-terminator and -promoter, LB and RB are left and right 
T-DNA border. Chitinase and bar organized divergently. Arrows indicate direction of transcription. 
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5.2   Construction of a chimeric chitinase gene with an Arabidopsis signal 
peptide 
As the cleavage sites for signal peptides differ between bacteria and plants, it was 

necessary to replace the bacterial signal peptide sequence with a plant signal peptide 

sequence from an Arabidopsis basic endochitinase signal peptide (Fig. 7). Using PCR, the 

signal peptide was included in a forward dove tail primer (87-mer) flanked by a BamHI 

restriction site at the 5'-end. The reverse primer contained a XbaI restriction site at the 3'-

end. The prediction of the favorable cleavage site of the Arabidopsis signal peptide 

sequence with the coding region of the Streptomyces chit30 gene is shown in Fig. 16.   

The PCR products with the modified primers were subcloned as described in 4.1 to get the 

vector pGII35S-N-Chit and pGIIvst-N-Chit. After E.coli transformation, different colonies 

were checked by restriction digest, PCR and sequencing for successful cloning (Fig. 20). 

The resulted T-DNAs with modified signal peptide sequence are shown in Fig. 21.    

M    1    2   3    4    5    1   2    3    4    5   M    M*M   1    2   3    4    5    1   2    3    4    5   M    M*

3000 bp

1500 bp

  900 bp

  500 bp

I II III IV

 

Fig. 20.  Restriction digest of plasmids I, pGIIvst-N-chit; II, pGIIvst; III, pGII35S-N-chit; IV, pGII35S; 
using different enzymes 1, KpnI+SacI; 2, BamHI+SacI; 3, BamHI + XbaI; 4, NcoI; 5, control; M, 100 bp 
DNA molecular ladder; M*, 1 Kp DNA molecular ladder.  
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Fig. 21. Schematic diagrams of the T-DNA region of the binary vectors pGreenII constructed with respective 
restriction sites containing bacterial chitinase gene fused to Arabidopsis signal peptide (SP) with two 
different promoters (vst-P and double 35S-P), selectable marker gene bar inserted between nos-terminator 
and -promoter, LB and RB are left and right T-DNA border. Chitinase and bar organized divergently and 
arrows indicate direction of transcription. 

5.3   Tobacco transformation  
In order to check the functionality of the constructed binary vectors and to save the time 

and the efforts of using it for pea or any important crops, it is wise to use a model plant 

first to relatively quickly prove the vector and make any necessary modifications that 

might be needed to improve the function, transformation efficiencies and the putative 

expression in the target plant. The chitinase gene was therefore introduced into tobacco 

plants (Nicotiana tabacum L.) cv. Samsun (Fig. 22) for checking the construct 

functionality, where 25 clones were selected from each bacterial chitinase construct with 

either vst or 35S promoter (further clones selected are listed in Table 8). T0 seeds were 

germinated in the greenhouse and 2-3 weeks after germination, the growing seedlings 

were sprayed with 600 mg/l BASTA® to eliminate the sensitive seedlings, whereas the 

surviving healthy green seedlings conferring the herbicide resistance were grown to set T1 

seeds through self-pollination (Fig. 22).   
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Fig. 22. Tobacco transformation steps using leaf disc method. 1, 2, and 3 leaf explants and regenerated T0 
shoots growing on MSZ medium and selection medium supplemented with 2.5 mg/l PPT; 4 and 5 T0 green 
healthy single shoot separated and cultured on ½ MS medium for rooting with different concentrations of 
PPT ranging from 7.5 mg/l to 15mg/l; 6, transgenic T0 seeds germinated and sprayed with 600 mg/l 
BASTA®; 7, non-transformed negative control tobacco sprayed with 600 mg/l BASTA®; 8, well 
established tobacco plant with normal phenotype growing in the greenhouse to set seeds.      
 

Successful integration of the T-DNA into tobacco genomic DNA was analyzed using 

different primers for the chitinase and the bar gene in the progeny of T0 and following 

generations by PCR. Transfer of backbone sequences was also checked using primers 

including the nptI primer. Fig. 23 clearly shows the successful integration of T-DNA into 

the tobacco genome. This result also shows the presence of the bar gene and indirectly its 

products since these plants survived high BASTA® applications (600 mg/l). 

 

 

 

 

 

 

 

Fig. 23. PCR of different transgenic T0 tobacco clones cv. Samsun using different primers, A, chit555 
primer (spanning a 555 bp fragment of the chitinase gene); B, strep-chit primer (PCR product 900 bp); C, 
bar primers (spanning a 260 bp fragment of the bar gene); D, nptI primer (backbone, PCR product 400 bp); 
transgenic plants driven by vst promoter (lanes 1-4) and by double 35s promoter (lanes 5-8); -C, 
untransformed negative control tobacco plant; +C, positive control (plasmid pGIIvst-Chit); H2O, water 
control; M, 100 bp DNA molecular ladder. 
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Tobacco plants were grown in the greenhouse for two generations (T1 and T2) and 

maintained through self-pollination. Seeds of the T2 plants were collected for further 

analysis to select homozygous plants. Stable inheritance of the T-DNA was confirmed 

using different molecular characterization methods in different generations (Fig. 24).    

 

 

 

 

 

Fig. 24. PCR of different T1 tobacco transformed with pGII35S-Chit and pGIIvst-Chit using chit primer 
(left) and bar primer (right), M, 100 bp DNA molecular ladder.  

 

At the transcriptional level, the chitinase and bar transcripts were detected using RT-PCR 

and sequencing of the PCR products derived from cDNAs as templates. Both T0 and T1 

plants clearly exhibited the transcription of the transgenes. The vst promoter driven 

transcripts were UV induced (254 nm) before RT-PCR analysis (Fig. 25). 

 

 

 

 

 

 

Fig. 25. RT-PCR of T1 tobacco plants transformed with pGIIvst-Chit construct, promoter was UV induced, 
using Chit555 primer (product size 555 bp, left) and bar447 primer (product size 447 bp, right) where I, 
clone T-1-2; II, clone H-1-1; III, non-transformed negative control; D, cDNA used as template; R, RNA 
used as control; +C, positive control (plasmid); M, 100 bp DNA molecular ladder.    
 

Copy numbers and integration patterns were investigated in T0, T1 and T2 respectively, 

using Southern blot analysis with different probes (chit 555, bar, and nptI). We detected 

multiple copies in the majority of the tobacco plants tested. The resulting copy numbers 

were different according to the restriction enzyme used (EcoRI which cuts in the genomic 

DNA or XbaI which cuts directly behind the chitinase gene in T-DNA). In both cases, 
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there were between one and five copies in T0 plants when the chit 555 probe or the bar 

probe were used, while a single copy was the result of some clones using the backbone 

nptI probe. The copy number was less in the following progenies of T1 and T2 due to 

segregation, the copy number in T2 clones of L-15-2-1, L-15-2-2, C-2-2-2, F-1-2-1, H-4-

1-2 and H-5-2-1 was same when using the two different restriction enzymes, whereas it 

was different for the clones R-1-3-2-1, O-1-2-1 and O-1-2-2 which means that the inserts 

are linked and behave as single copy (EcoRI digest) (Fig. 26 and Table 9).  

 

 

 

 

 

 

 

Fig. 26. Southern blot analysis of genomic DNA from tobacco plants transformed with pGIIvst-Chit and 
pGII35S-Chit digested with EcoRI, using Chit555 probe; I, clone F-1, T0, T1 and T2; II, T2 generation of 
different clones (1, clone O-1-2-1; 2, clone O-1-2-2; 3, clone L-15-2-1; 4, clone L-15-2-2; 5, clone H-5-2-1; 
6 clone C-2-2-2; 7, clone H-4-1-2; 8, clone R-1-3-2-1); M, Dig II labeled marker; -C, untransformed 
negative control tobacco plant; +C, 1:1000 dil. of PCR products as positive control. 
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Table 9. Southern blot results and copy numbers in different transformants at T0, T1 and T2. Tobacco plants 
transformed with EHA105-pGII35S-Chit (highlighted) or EHA105-pGIIvst-Chit, DNA was digested with 
EcoRI or XbaI and probed with Chit555, bar and nptI probe.  

 

5.4   Analysis of chitinase expression in transgenic tobacco 
The production of chitinase in transgenic plants of tobacco was analyzed by Western blot 

and immunostain. Total protein was extracted from leaf explants of transformants with the 

35S and the vst promoter, respectively. In the case of the 35S promoter, total protein was 

extracted directly from leaf explants, whereas plants with the vst promoter required 

induction using UV light (254 nm) for 5 min. (see 4.3.7). No expression was detected in 
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T0 T1 T2
- control - - - - - - - - - - - -

R-1-3 R-1-3-1 R-1-3-1-1 2 2 - 4 3 1 1 -
R-1-3-2 R-1-3-2-1 1 - 1 1 1 2 2 1

L-15 L-15-1 L-15-1-1 1 1 1 4 1 1 1 -
L-15-2 L-15-2-1 1 - 1 1 - 1 1-

L-15-2-2 1 1 - 1 1-
L-14 L-14-1 L-14-1-1 5 5 2 6 6 7 1 -

L-14-2 L-14-2-1 1 1
O-1 O-1-1 O-1-1-1 - - - 2 1 2 1 -

O-1-2 O-1-2-1 1 - 1 1 1 2 2 2
O-1-2-2 1 1 1 3 3 2

C-2 C-2-1 C-2-1-1 3 3 1 2 1 1 3 1
C-2-2 C-2-2-1 2 1

C-2-2-2 1 1 - 1 1-
F-1 F-1-1 F-1-1-1 3 2 1 3 2 1 2 1

F-1-2 F-1-2-1 2 1 2 2 1 2 2 1
T-1 T-1-1 T-1-1-1 2 1 1 2 2 1 1 1

T-1-2 T-1-2-1 1 1
H-4 H-4-1 H-4-1-1 2 2 - 2 2 1 2 1

H-4-1-2 2 2 1 2 2 1
H-4-2 H-4-2-1 1 1

H-5 H-5-1 H-5-1-1 1 -
H-5-2 H-5-2-1 1 - 1 1 - 1 1-

H-1 H-1-1 - - - 1 1 - 1 -
H-1-2 2 1

EcoRI Xba I EcoRI XbaI EcoRI XbaI



RESULTS    

 

85

 

T0 plants of both transformants with pGII35S-Chit and pGIIvst-Chit constructs, but it was 

clearly detected in the following progenies of T1 and T2 plants (Fig. 27, A and B). In 

contrary, T0 transformants with the constructs pGII35S-N-Chit and pGIIvst-N-Chit 

showed positive signals in the Western blot (Fig. 27, C). 

 

 

 

Fig. 27. Western blot analysis of total protein extracted from tobacco cv. Samsun hybridized with α-Chit30 
antibody; A, T1 plants transformed with pGII35S-Chit (1-7 different transformants); B, T1 transformants 
with pGIIvst-Chit after UV induction and protein extraction (I, clone H-5-1; II, clone H-4-2; 0h, without 
induction; 2h, two hours after induction; 24h, one day after induction); C, comparison of T0 transformants of 
pGII35S-N-Chit (lanes 1 and 2) and pGII35S-Chit (lanes 3 and 4); +C, Chit30 standard from Streptomyces 
used as positive control; -C, non-transformed negative control plant; M, BioRad low protein standard.  

 

Chitinase activity was investigated using a modified method of Trudel and Asselin (1989, 

1990), where the protein crude extracts was separated in SDS-PAGE containing glycol 

chitin as substrate. After staining the gel with fluorescent staining solution, the chitinolytic 

effect was visualized under UV light as dark bands on a bright background as a result of 

chitinase activity. Activity was detected in T1 plants transformed with the constructs 

pGIIvst-Chit and pGII35S-Chit (containing bacterial signal peptide sequence) and T0 

plants transformed with the chimeric constructs pGIIvst-N-Chit and pGII35S-N-Chit 

(containing plant signal peptide sequence). Enzyme activity was also detected in T2 

tobacco plants transformed with pGIIvst-Chit and pGII35S-Chit under 35S or vst promoter 

after UV induction; prominent additional high molecular bands only occurred in 

transgenic plants compared to the non-transformed negative plant (Fig. 28). 

    

 

 

 

Fig. 28. In gel activity of tobacco chitinase; A, T1 tobacco plants: lane 1, 4 and 5 transformants with 
pGII35SChit; lane 2 and 3 are transformants with pGIIvstChit after UV induction; B, T2 tobacco plants (lane 
1 and 2 non-transformed control induced and not induced respectively; lane 3 and 4 clone H-5-1-2 induced 
and not induced respectively; lane 5 clone L-14-1-1; lane 6 clone L-15-2-1; lane 7 clone R-1-3-1-2; lane 8 
and 9 clone O-1-2-2 and O-1-2-1); C, T2 tobacco plants (lane1 clone F-1-2-1; lanes 2, 3, 4 and 5 clones H-1-
1-2, T-1-2-2, H-5-2-2, C-2-2-1 respectively; lanes 6 and 7, clones C-2-2-2 induced and not induced 
respectively); -C, untransformed negative control tobacco; +C, Chit30 from Streptomyces; Mu, Mucor.   
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5.4.1   Tobacco Cell culture  
Cell culture was established from different transgenic clones and untransformed tobacco 

plants in the plant cell culture lab, DSMZ GmbH (German Collection of Microorganisms 

and Cell Culture).  

Stable integration was proved by PCR using chitinase and bar primers (Figure 29, A). 

Total protein was extracted from the cells and the medium and subjected to PAGE and 

Western blot analysis and in-gel chitinase activity tests. Chitinase was detectable in 

suspension cells, which were derived from chimeric T0 plant transformed with 

pGII35SChit (Fig. 29, B and C, lanes 1 and 2). The secretion of the chitinase to the 

medium was hardly detectable from cells transformed with both the bacterial signal 

peptide sequence and the plant signal peptide sequence (Fig. 29, B and C, lanes 3 and 4). 

It was very difficult to detect chitinase activity in the case of pGII35S-N-Chit (Fig. 28, B 

and C, lanes 5, 6, 7, and 8). 

                        

 M      +C       -C     1     2     3   4      5    6    7  
 8

 35 kDa 
   
 25 kDa  
  B

 1     2      3     4     5    6     7      8    Mu  +C

C

 -C   +C  H2O MM
I II

800 bp

A
500 bp
600 bp
700 bp

 

Fig. 29. Tobacco cell culture. A, PCR result using chit primers (product size 750 bp), I, cell culture from 
tobacco clone L-15 (construct pGII35S-Chit), II, cell culture from tobacco clone 03-04 (construct pGII35S-
N-Chit), -C, untransformed negative control ; lane 9, plasmid pGII35S-N-Chit as positive control; M, 100 bp 
DNA ladder molecular weight marker; B and C, Western blot/immunostain and in-gel assay respectively of 
total protein extracted from cell culture and medium transformed with pGII35S-Chit, clone L-15 (lanes 1 
and 2 from cells; lanes 3 and 4 from medium) and pGII35S-N-Chit clone 03-04-54 (lanes 5 and 6 from cells; 
lanes 7 and 8 from medium); Mu, protein from Mucor sp.; +C, chit30 standard from Streptomyces used as 
positive control. 

5.4.2   Apoplast protein 
In order to study the secretion of chitinase and whether it is correctly targeted to the cell 
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wall, proteins were extracted from the apoplast and used for Western blot analysis and 

immunostaining and in-gel chitinase assays. The western blot reveals two bands in the 

range of 28-30 KDa, which may be related to the mature protein and the pre-mature 

protein. These results prove the presence of the recombinant chitinase in the intracellular 

space (Fig. 30).  

 

 

 

  

 

Fig. 30. Apoplast protein extracted from tobacco plants. A, Western blot of tobacco plants transformed with 
pGII35S-Chit (lanes 1 and 2, clones R-1-3-1 and L-15-2, respectively) and pGIIvstChit construct (lanes 3, 4, 
and 5, clones H-1-1 UV induced, H-1-1 not induced, C-2-2 UV induced respectively); B, in-gel chitinase 
activity assay of pGII35S-Chit(lane 1) and pGII35S-N-Chit (lane 2); -C, untransformed negative control 
tobacco plant; +C, chit30 as positive control; M, BioRad low protein marker; Mu, protein from Mucor sp.  

 

5.4.3   Chitinase enzyme activity 
CM-chitin-RBV (Loewe, Germany) was used as a substrate for colorimetric chitinase 

activity assays. These assays were performed according to Stephan and Wolf (1990). The 

difference between the values (OD550) of blank and samples indicated the enzyme activity. 

(Fig. 31 and Table 10).     

  
Table 10. Results obtained from chitinase enzyme activity measurement. 

 

   +C        -C           1            2           3           4          5           M 

25 KDa

A B 

1      2      -C    Mu    +C 

L-15-2-1 R1-3-1-2 H-4-2-1 H-4-2-1* H1-1-2-1 H-1-1-2-1* H-5-1-2 H-5-1-2* 03.04.54 03.04.30 03.04.24 -control Standard
Blank1 0,18 0,16 0,13 0,1 0,11 0,12 0,12 0,11 0,1 0,14 0,11 0,1 0,1
Blank2 0,2 0,17 0,12 0,11 0,1 0,13 0,1 0,11 0,11 0,13 0,16 0,1 0,12
Blank3 0,18 0,16 0,13 0,12 0,11 0,12 0,11 0,12 0,12 0,16 0,13 0,11 0,13

Sample1 0,33 0,28 0,28 0,29 0,25 0,29 0,23 0,28 0,29 0,34 0,29 0,22 0,41
Sample2 0,34 0,28 0,27 0,29 0,24 0,28 0,22 0,27 0,29 0,38 0,3 0,2 0,43
Sample3 0,32 0,29 0,27 0,29 0,39 0,27 0,21 0,27 0,28 0,4 0,31 0,21 0,43

Mean blank 0,19 0,16 0,12 0,11 0,11 0,12 0,11 0,11 0,11 0,14 0,13 0,1 0,12
Mean sample 0,33 0,28 0,27 0,29 0,29 0,28 0,22 0,27 0,29 0,37 0,3 0,21 0,42

OD 0,15 0,12 0,15 0,18 0,19 0,16 0,11 0,16 0,18 0,23 0,17 0,11 0,31



RESULTS    

 

88

 

Fig. 31. Colorimetric chitinase activity assay of different tobacco samples using CM-chitin-RBV as substrate 
at OD550; Standard (100µg), chitinase from Streptomyces (Sigma).   

5.4.4   Gel diffusion assay 
A standard curve for chitinase activity was prepared using dilutions of Streptomyces 

griseus chitinase at different concentrations of 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, and 0.001 

units. Samples of 10 µg total protein were applied, after visualizing the hydrolysis activity 

and measuring the diameters of the dark halos, which indicates the degradation of the 

substrate. The diameters of halos were plotted against logarithmic value of chitinase 

activity since the activity was not linear (Fig. 32). Then activities of different tobacco 

samples were calculated through regression analysis (Table 11). 

 
Fig. 32. Regression analysis of chitinase activity of standard in units against halos diameter in mm. The 
equation for calculating trend line is y= 5.2298x + 31.946. 
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Table 11. Chitinase activity in unit of different tobacco samples transformed with pGIIvst-Chit construct 
(highlighted) before UV light induction and after induction (marked with *), and the pGII35S-Chit construct. 
 

Sample Halos diameter 
(mm) 

Chitinase activity 
(U) 

T-1-1-2-2  18,92 0,0829  

H-4-2-2    19,84 0,0989 

H-5-2-2 18,70 0,0795 

- Control 18,06 0,0703 

* T-1-1-2-2  21,25 0,1294  

* H-4-2-2 21,44 0,1341 

* H-5-2-2 21,67 0,1402 

* H-1-1-2-1 20,77 0,1179 

* - Control 18,83 0,0814  

03-04-54  20,56 0,1134  

L-15-1-1  20,20 0,1059  

L-15-2-2 17,83 0,0672  

R-1-3-2-2  21,75 0,1423 
 
The results clearly show the effect of vst promoter induction on the chitinase activity 

where the induced samples showed higher activity compared to the same samples without 

induction. For the non-transformed negative control, after induction the activity was 

higher than before induction which may be due to an endogenous chitinase activity, which 

can be induced under different stresses. Plants under control of inducable vst promoter 

were higher in activity than plants under control of 35S promoter. In some cases, the 

chitinase activity showed unexpected lower activity than negative control (clone L-15-2-

2).  

 

Results of tobacco transformation are summarized in Table 12. 
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Table 12. Summary of tobacco transformation, highlighted clones are transformed with pGII35s-Chit 
construct, the remaining clones are transformed with pGIIvst-Chit construct (+, positive; -, negative; n.t., not 
tested) 
 

PCR RT-PCR Southern Clone 

Chit Bar447 Chit Bar447 Chit Bar447 NptI

Western 
blot 

In gel 
assay 

- Control - - - - - - - - - 
R-1-3  (T0) + + + + + + + - - 
           (T1) + + + + + n.t. n.t. + + 
           (T2) + + + + + + + n.t. + 
L-15   (T0) + + + + + + + - - 
           (T1) + + + + + n.t. - + + 
            (T2) + + + + + + - n.t. + 
L-14    (T0) + + n.t. n.t. + + + - - 
            (T1) + + + + + n.t. + + n.t. 
            (T2) + + n.t. n.t. n.t. n.t. n.t. n.t. + 
O-1     (T0) + + + + + + + - - 
            (T1) + + + + + n.t. - - - 
            (T2) + + + + + + + n.t. - 
C-2      (T0) + + + + + + + - - 
            (T1) + + + + + n.t. + + n.t. 
            (T2) + + n.t. n.t. + + - n.t. + 
F-1      (T0) + + + + + + + - - 
            (T1) + + + + + n.t. + + n.t. 
            (T2) + + n.t. n.t. + + + n.t. - 
T-1      (T0) + + n.t. + + + + - - 
            (T1) + + + + + n.t. + + n.t. 
            (T2) + + n.t. n.t. n.t. n.t. n.t. n.t. + 
H-4     (T0) + + n.t. n.t. + + - - - 
            (T1) + + + + + + + + n.t. 
            (T2) + + n.t. n.t. + + + + + 
H-5     (T0) + + n.t. n.t. n.t. n.t. n.t. - - 
            (T1) + + + + + n.t. - + n.t. 
            (T2) + + n.t. n.t. + + - n.t. + 
H-1     (T0) + + + + - - - - - 
            (T1) + + + + + n.t. + + + 
            (T2) + + n.t. n.t. n.t. n.t. n.t. n.t. + 
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5.5   Pea transformation 

5.5.1   Transient GUS expression 
Transient GUS assays were used to check the capability of pea cv. Sponsor for 

Agrobacterium transformation. 150 embryos were co-cultured with the Agrobacterium 

strain EHA101pIBGUS and compared with control embryos. Based on the GUS assays, 

explants were found to show 100 % GUS expression in explants transformed with GUS 

gene, while no activity was detected in control explants (Fig. 33)       

 

 

 

 

 

Fig. 33. Transient GUS expression in pea embryos transformed with EHA101pIBGUS (left) and 
untransformed negative control embryos (right).  

5.5.2   Pea transformation with the chitinase gene 
Pea transformation (c.v. Sponsor) was done according to the modified protocol of 

Schroeder et al. 1993 and Bean et al. (1997). During co-culture, the explant color was 

white and white greenish where the color became light to dark green on MST medium 

although there were explants with green yellowish color. These tissues failed, in most 

cases, to survive (between 10-20 % of total explants). These explants mostly resulted from 

longitudinally slicing of the outer part of the embryo, which normally has no meristematic 

tissue. 

In the first and second selection step using 2.5 mg/l and 5 mg/ l, all control explants died, 

while most transformed explants were green. Between 30-50 % of dead explants were 

observed and removed subsequently from every subculture. The percentage of dead 

explants increased with increasing selection pressure to 50 % at 7.5 mg/l PPT and more 

than 60 % at 10 mg/l PPT. At higher concentrations of PPT (12.5 mg/l and 15 mg/l), only 

a few clones survived (Table 13) which were still green and growing normally. A good 

sign for healthy shoots was the green color of the cutting side during subculture. Shoots 

from these clones were used for in vitro grafting on a rootstock in order to avoid a rooting 

step, minimize losses during rooting as well as to recover whole plants in a relatively short 
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time. Therefore, sterile pea seeds of cv. Sponsor were germinated on water agar medium 

(0.4 % plant agar) in dark, the etiolated two-weeks old plantlets were used as rootstock for 

in vitro grafting. The epicotyls were cut horizontally then a vertical cut was done through 

the stem of the rootstock, which allows insertion of a scion into the cut of rootstock. After 

making a “V” shape cut on the base of the transgenic scion, it was grafted on the rootstock 

and the plants were placed in growth room for 10 days until wound callus closed the 

cutting surface. They were then potted in soil and the pots were sealed with plastic bag to 

protect them from excessive water loss, the bag was removed gradually to allow for 

growing of the plant to flower and set seeds. Successfully grafted shoots were potted and 

covered with a plastic bag and acclimatized gradually. After removing the plastic bag, pots 

were transferred to the greenhouse to grow normally and set T1 seed (Fig. 34).  

Root induction was not successful where there was stagnant growth of the shoots, which 

became harder without any roots. Nevertheless, when the shoots were subcultured into ½ 

MS hormone free medium, 27 % of the cultured shoots produced roots within 4-6 weeks. 

These rooted plants died upon transfer to greenhouse.      

The period from inoculation of embryo slices with Agrobacterium suspension to get the 

shoots ready for in vitro grafting was between 90-120 days and from grafting to flowering 

between 45-60 days. 

 

 

 

 

 

 

 

 

 

Fig. 34. Procedure used for pea transformation cv. Sponsor using Agrobacterium tumefaciens EHA105. 1, 
embryos slices of pea inoculated with Agrobacterium suspension; 2 and 3, multiple shoots regenerated on 
medium supplemented with 5 and 12 mg/l PPT respectively; 4, in vitro grafting of putative transformants on 
non-transgenic rootstock; 5, grafted plant acclimatized and grown in soil (arrows show the grafting site); 6, 
grafted shoot showing flower and setting the first pod.  

1 2 3

4 5 6
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A total of 53 independent transgenic clones were obtained out of 5863 explants from 

different transformation experiments (Table 12). Out of these, 23 resulted from 

transformation with the pGII35S-N-Chit plasmid, 19 from transformation with the 

pGIIvst-N-Chit, 6 were transformed with the pGIIvst-Chit and the remaining 6 were 

transformed with the pGII35s-Chit plasmid.  

Table 13. Results of pea transformation experiments and transformation efficiency. 
 

 Transform-
ation code  

Construct  No. of 
explants 

No. of 
clones 

Transformation 
efficiency %  

 

1 02-04 pGII35S-N-Chit 744 7 0.94 * 
2 03-04 pGII35S-N-Chit 420 8 1.9 * 
3 04-04 pGII35S-N-Chit 400 - 0 * 
4 05-04 pGII35S-N-Chit 400 6 1.5 * 
5 06-04 pGII35S-N-Chit 631 - 0 + 
6 07-04 pGIIvst-N-Chit 400 4 1 * 
7 08-04 pGIIvstChit 250 2 0.8 * 
8 09-04 pGII35S-N-Chit 550 - 0 +# 
11 10-04 pGII35S-Chit 250 - 0 *# 
12 11-04 pGIIvst-N-Chit 500 5 1 * 
13 12-04 pGIIvstChit 250 - 0 * 
14 13-04 pGII35SChit 250 - 0 * 
15 14-04 pGIIvst-N-Chit 684 5 0.73 * 
16 15-04 pGIIvst-N-Chit 420 4 0.95 + 
17 16-04 pGIIvstChit 350 2 0.57 * 
18 17-04 pGII35SChit 350 2 0.57 * 
19 18-04 pGIIvst-N-Chit 600 - 0 * 
20 19-04 pGII35SChit 350 4 1.4 * 
21 20-04 pGIIvstChit 350 2 0.57 * 
22 11-04N pGII35S-N-Chit 645 2 0.31 + 
Total   8794 53 0.6  
 Sub-total  5863 53 0.9  

* Experiment done without help. 

+ Experiment done with help of students. 

# Contamination.  
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5.5.3   Molecular characterization of transformants 

5.5.3.1   Detection of T-DNA integration by PCR 
Stable integration of T-DNA into genomic DNA of T0 transformants of pea was 

confirmed by PCR using different primer combinations to detect the chitinase and the bar 

gene. The results clearly indicate and confirm the successful integration of chitinase and 

bar gene into genomic DNA of transformed peas (Fig. 35 A and B). Many clones from 

different transformation experiments were positive as shown in the Table 14.     

 

 

 

 

 

 

Fig. 35. PCR analysis of T0 transformants from pea. A, using chitinase primers (expected product size 750 
bp); B, bar447 primer (expected product size 450 bp); lanes 1, and 2 from transformation 02-04; lanes 3 and 
4 from transformation 03-04; lane 5, transformation 07-04; lane 6, transformation 14-04; lane 7, 
transformation 15-04; -C, untransformed negative control pea; +C, plasmid pGII35s-N-chit as positive 
control; H2O, water control; M, 100 bp DNA ladder molecular weight marker. 

 

Table 14. Few selected T0 clones from pea transformation with pGII35S-N-chit and pGIIvst-N-Chit 
(highlighted). 
 

PCR T0 clone Leaf 
paint 

Chitinase Bar 

T1 
seeds 

Segregation 

02-04-7-1 + + + 6 1:1 
02-04-7-4 + + + 5 4:1 
02-04-7-5 + + + 3 3:0 
02-04-7-7 + + + 5 4:1 
02-04-7-10 + + . 2 1:1 
03-04-1-3 + + + 45 3:1* ( X2= 0.6) 
03-04-1-4 + + + 23 3:1* (X2= 0.36) 
07-04-4-1 + + + 12 3:1* (X2= 1.17) 
07-04-4-4  + + + 8 3:1* (X2= 0) 
14-04-2-1 + + + 4 1:1 
14-04-2-4 + + + 4 1:0 
14-04-2-6 + + + 3 1:0 

 

*Significant at p = 0.05 and P = 0.01, tabulated value X2 =3.84 and X2= 6.64, respectively.   

 M     1      2       3      4      5      6      7     -C    +C  H2O   M   M      1      2       3     4      5       6     7    -C    +C  H2O   M 

900 bp 
800 bp 
 
700 bp 
600 bp 
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T1 seeds were collected and then germinated in the greenhouse for further characterization 

and production of the following transgenic progenies. Unfortunately, the number of seeds 

produced per plant was low (2-5 seeds) due to high temperature in the greenhouse 

(summer 2005), which limited the segregation analysis. PCR was used to investigate the 

presence and segregation of chitinase and bar genes in T1 progenies (Fig. 36). 

  
 

 

 

 

 

Fig. 36. PCR analysis of T1 transformants from pea. A, using chitinase primers (product size 750 bp); B, 
bar447 primer (product size 450 bp); lanes 1, and 2 clones 02-04-7-1,1 and 02-04-7-4,1 respectively; lanes 3 
and 4 clones 03-04-1-3,30 and 03-04-1-4-,16 respectively; lane 5, clone 07-04-4-1,13; lane 6, clone 14-04-2-
4,1; lane 7, clone 15-04-1-1,1; -C, untransformed negative control pea plant; +C, plasmid pGII35S-N-chit as 
positive control; H2O, water control; M, 100 bp DNA ladder molecular weight marker. 

 

Transformants from transformation experiments 02-04, 03-04, 07-04 and 14-04 proceeded 

further to produce the T2 generation. The analyses of T2 transformants using PCR shows 

presence and stable integration of transgenes in the progenies of positive transformants of 

T1 plants. Two primer pairs were used to amplify the chitinase gene and internal control 

(HMG) gene (Fig. 37). No backbone integration was detected using nptI primers. Results 

of two lines from transformation 02-04 are shown in Table 15. 

   

 

 

 

 

Fig. 37. Confirmation of stable inheritance and integration of chitinase gene (750 bp) in T2 progeny of 
transformation 14-04 (lanes 1 & 2); 15-04 (lane 3); 02-04 (lanes 4, 5, & 6); 03-04 (lane 7 & 8) and 07-04 
(lane 9); -C, untransformed negative control pea plant; +C, plasmid pGII35S-N-chit as positive control; M, 
100 bp DNA ladder molecular weight marker. 
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Table 15. Results of few clones from transformation 02-04 in T2 
 

PCR T1 Clone T2 Seeds LB test 

Chit Bar 

Segregation Homozygosity  
% 6 

02-04-7-1,1 10 10 10 10 0 89.87  

02-04-7-1,2 18 18 18 18 0 98.88  

02-04-7-1,4 10 8 6 9  73.74 

02-04-7-4,1 9 9 9 9 0 86.94 

02-04-7-4,2 10 9 9 9 0 86.94 

02-04-7-4,3 8 8 8 8 0 83.81 
 

5.5.3.2   Southern blot analysis 
Copy number and integration patterns of stable transformants were investigated in T0, T1 

and T2 generations using Southern blot analysis where gDNA was digested either with 

EcoRI which cuts in the genomic DNA (not presented in the plasmid vector) or with XbaI 

which cuts once in T-DNA. Results of Southern blot analysis are summarized in the Table 

16 and Fig. 38. Single copy insertions were observed in most of the tested pea clones, but 

two copies were also shown in some clones like 03-04-1-3 and 07-04.  

Clone 03-04-1-3 shows two copies of chitinase and bar genes in T0 progeny and in its 

offspring clone 03-04-1-3,46 whereas the other tested clones 6, 9, 24, and 30 contain one 

copy only due to segregation. Clones 02-04-7-1,1; 02-04-7-1,2 and 02-04-7-1,4 showed 

one copy of chitinase and bar while clones 02-04-7-1,3; 02-04-7-1,5 and 02-04-7-1,6 did 

not show any integration of the chitinase or bar gene. These findings were in agreement 

with PCR results suggesting a 1:1 segregation in the T1 progeny. No backbone sequence 

was detected using nptI probe in any clone subjected to Southern blot. It was difficult to 

test all T0 clones using Southern due to limited plant material suitable for large scale DNA 

isolation. 

 

 

 

 

6  Calculated from formola shown in 4.10 (Materials and Methods)  
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Table 16. Transgene copy numbers resulted from Southern blot analysis of transgenic peas.  
 

EcoRI XbaI Clone 

T0 T1 T2 T1 
02-04-1-1,1  1   
02-04-7-1,1  1   
02-04-7-1,1,2   1  
02-04-7-1,2  1   
02-04-7-1,2,1   1  
02-04-7-1,4  1   
02-04-7-1,4,9   1  
02-04-7-4,1  1   
03-04-1-3 2    
03-04-1-3,46  2  2 
03-04-1-3,30  1  2 
03-04-1-3,24  1   
03-04-1-3,6  1   
03-04-1-3,9  1   
03-04-1-4 1    
03-04-1-4,16  1   
03-04-1-1,1  1   
07-04-4-1,7  1  1 
07-04-4-2,5  2  2 
07-04-2-1,1  2   

   

 

 

 

 

 

 

 

 

Fig. 38. Southern blot analysis (digested with EcoRI) of pea gDNA isolated from T0 and T1 lines.  A, blot 
probed with chitinase probe; B, blot probed with bar 447 probe; +C, positive control; -C, untransformed 
negative pea plant; lanes 1, clone 03-04-3-1,1; Lane 2, clone 03-04-1-3; lane 3, clone 03-04-1-4; line 4 clone 
03-04-1-1,1; lane 5, T0 of transformation 08-04-2-1; lanes 6, 7, 8, and 9, T1 progeny of clones 02-04-7-1; 
M, Dig Marker.  

9419 bp 
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5.5.3.3   RT-PCR 
At the transcription level using, the chitinase and bar transcripts were detected using RT-

PCR and sequencing the PCR product. A BLAST search at NCBI database using the 

sequencing results found 100 % homology to two matches. The first one was 100 % 

identical to the signal peptide of basic chitinase from Arabidopsis (Fig. 39), while the 

second one was identical to the mature protein of Streptomyces chitinase Chit30 gene 

(Fig.40).    

>gi|30682210|ref|NM_112085.2|  Arabidopsis thaliana ATHCHIB (BASIC 
CHITINASE); chitinase AT3G12500  
(ATHCHIB) mRNA, complete cds Length=1107 
 
 Score =  121 bits (61),  Expect = 4e-24  Identities = 61/61 (100%), Gaps = 0/61 
(0%)  Strand=Plus/Plus 
 
Query  8 ATGAAGACTAATCTTTTTCTCTTTCTCATCTTTTCACTTCTCCTATCATTATCCTCGGCCG 68 
         |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||  
Sbjct 20 ATGAAGACTAATCTTTTTCTCTTTCTCATCTTTTCACTTCTCCTATCATTATCCTCGGCCG 80 
 
Fig. 39. Signal peptide alignment of PCR derived cDNA products sequence in BLAST program of NCBI 
database.  
 

>gi|4456813|emb|AJ133186.1|SOL133186  Streptomyces olivaceoviridis ATCC11238 
chi30 gene Length=1199 
 
 Score = 1594 bits (804), Expect = 0.0 
 Identities = 804/804 (100%), Gaps = 0/804 (0%) Strand=Plus/Plus 
 
Query   65   GCCGCGGCCTGTTCGAGCTACCCGAGCTGGGTCGCCGGCAGGTCCTACGCGGCCGGTGAC  124 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  286   GCCGCGGCCTGTTCGAGCTACCCGAGCTGGGTCGCCGGCAGGTCCTACGCGGCCGGTGAC  345 
 
Query  125   ATCGTCCGCTACACGGACGGCAAGGCGTACATCGCCGAGCACGCCAACCCGGGTTACGAC  184 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  346   ATCGTCCGCTACACGGACGGCAAGGCGTACATCGCCGAGCACGCCAACCCGGGTTACGAC  405 
 
Query  185   CCGACCATCAGCACCTGGTACTGGGAGCCGTACGCCTGCGACGGCGGGTCCGGGACGCCG  244 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  406   CCGACCATCAGCACCTGGTACTGGGAGCCGTACGCCTGCGACGGCGGGTCCGGGACGCCG  465 
 
Query  245   GTCGGCACCTTCGTGGTGACCGAGGCCCAGTTCAACCAGATGTTCCCGAACCGGAACTCC  304 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  466   GTCGGCACCTTCGTGGTGACCGAGGCCCAGTTCAACCAGATGTTCCCGAACCGGAACTCC  525 
 
Query  305   TTCTACAGCTACAGCGGACTCACCGCCGCGCTCAGCGCCTACCCCGGCTTCGCGAACACC  364 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  526   TTCTACAGCTACAGCGGACTCACCGCCGCGCTCAGCGCCTACCCCGGCTTCGCGAACACC  585 
 
Query  365   GGCAGCGACACCACCAAGAAGCAGGAGGCCGCGGCCTTCCTCGCCAACGTCAGCCACGAG  424 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  586   GGCAGCGACACCACCAAGAAGCAGGAGGCCGCGGCCTTCCTCGCCAACGTCAGCCACGAG  645 
 
Query  425   ACCGGCGGCCTGGTGCACGTGGTCGAGCAGAACCAGGCCAACTACCCGCACTACTGCGAC  484 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  646   ACCGGCGGCCTGGTGCACGTGGTCGAGCAGAACCAGGCCAACTACCCGCACTACTGCGAC  705 
 
Query  485   TGGAGCCGGCCGTACGGCTGCCCGGCGGGCCAGGCGGCCTACTACGGGCGCGGCCCGATC  544 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  706   TGGAGCCGGCCGTACGGCTGCCCGGCGGGCCAGGCGGCCTACTACGGGCGCGGCCCGATC  765 
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Query  545   CAGCTCAGCTGGAACTTCAACTACAAGGCCGCGGGCGACGCGCTCGGCATCGACCTGCTG  604 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  766   CAGCTCAGCTGGAACTTCAACTACAAGGCCGCGGGCGACGCGCTCGGCATCGACCTGCTG  825 
 
Query  605   AACAGCCCCTGGCTGGTCGAGCGCGACTCGGCCGTCGCCTGGAAGACCGCGCTGTGGTAC  664 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  826   AACAGCCCCTGGCTGGTCGAGCGCGACTCGGCCGTCGCCTGGAAGACCGCGCTGTGGTAC  885 
 
Query  665   TGGAACACCCAGACCGGCCCCGGCACCATGACCCCCCACAACGCCATGGTCAACGGCGCG  724 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  886   TGGAACACCCAGACCGGCCCCGGCACCATGACCCCCCACAACGCCATGGTCAACGGCGCG  945 
 
Query  725   GGCTTCGGCCAGACCATCCGCTCCATCAACGGCTCCCTGGAGTGCGACGGCAAGAACCCG  784 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  946   GGCTTCGGCCAGACCATCCGCTCCATCAACGGCTCCCTGGAGTGCGACGGCAAGAACCCG  1005 
 
Query  785   GCGCAGGTCCAGAGCCGCGTGAACAACTACCAGCGGTTCACCCAGATCCTCGGAGTCTCC  844 
             |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| 
Sbjct  1006  GCGCAGGTCCAGAGCCGCGTGAACAACTACCAGCGGTTCACCCAGATCCTCGGAGTCTCC  1065 
 
Query  845   CCGGGCGGCAACCTCTACTGCTGA  868 
             |||||||||||||||||||||||| 
Sbjct  1066  CCGGGCGGCAACCTCTACTGCTGA  1089 

Fig. 40. Chitinase30 mature protein alignment of PCR derived cDNA products sequence in BLAST program 
of NCBI database.  

5.5.4   Functional analysis (leaf paint assay) 
Leaf paint analysis provides evidence whether the level of bar expression and PAT 

enzyme activity is sufficient to confer resistance to BASTA® application. One leaflet of 

each pair from a transformed and a non-transformed control pea were treated with 600 

mg/l BASTA® using a small brush. The effect of treatment can be seen after 2-3 days on 

non-transformed plants where the treated leaflets start wilting. After one week, it became 

clear as the non-transformed plants showed necrotic symptoms and the whole treated 

leaflet turned yellow and died. In contrast, the transgenic plants stayed green, healthy and 

thus showed tolerance to BASTA® application. There was no difference in case of 

transgenic plants between treated and untreated leaflet as well as untreated leaflet of non-

transformed negative control plant, which were left as internal control for the treatment, 

since BASTA® is a contact herbicide and it will affect only the treated part, as BASTA® is 

not translocated throughout the plant (Fig. 41). 
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Fig. 41. Leaf paint assay on pea plants cv. Sponsor 1 week (A and B) and 4 weeks (C and D) after 600 mg/l 
BASTA® application. A, transgenic pea plant (+); B, not-transformed negative control pea plant (-) arrow 
indicates the treated leaflet presenting the treatment effect on the control plant comparing it with the 
tolerance of transgenic plant expressing PAT. 
 

Although chitinase and bar genes are closely linked on the same transgene, not all clones 

were PCR positive for both chitinase and bar showed PPT-resistance when leaf paint was 

applied. For example the progeny of clone 14-04-2-4, which was transformed with 

pGIIvst-N-Chit construct, proved positive results in PCR using chitinase and bar primers 

but had a negative leaf paint. Out of 34 plants 17 plants showed negative responses for 

leaf paint (of these 15 plants were PCR positive for chitinase and bar genes), 5 plants were 

in between showing a little necroses (they were PCR positive) and 12 plants were leaf 

paint positive and BASTA® resistant. 

5.5.5   Biochemical characterization of transformants 

5.5.5.1   Western blot 
The accumulation of chitinase in transgenic pea plants was examined by Western blot and 

immunostain analysis to prove the translation and accumulation of active protein in 

different clones. Chitinase was clearly detected in the transgenic T0 clones (as seen in the 

A B 

C D 
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table below) and no signals could be detected in the untransformed negative control pea 

plant (Fig. 42). 

Experiment T0 clones 
02-04 7-2, 7-4, 7-5, 6-1, 3-1 

03-04 1-2, 1-3, 3-1 

07-04 4-1 

14-04 2-6 

 

 

 

 

 

 

 
Fig. 42. Western blot analysis of chitinase accumulation in pea transformed with plasmid pGII35S-N-Chit. 
(A) T0 pea transformants: lanes 1, 2, 3, 4, 5 and 6 different clones of 02-04 (7-5/7-4/7-2/3-1/1-1/6-1 
respectively); lane 7, clone 03-04-1-5; lane 8, clone 14-04-2-6; -C, untransformed negative control pea plant; 
+C, chit30 standard from Streptomyces used as positive control; (B) pea T1 clones; lane 1, clone 07-04-4-
1,12; lanes 2, 3, and 4, clone 03-04-1-3 ,38/,34/, 46 respectively; lane 5, 02-04-7-10,1; lane 6, blank; lane 7, 
02-04-3-1,1; M, Fermentas protein standard. 

5.5.5.2   In-gel Chitinase enzyme activity 
Chitinase activity was detectable in the T0 transformants of the clones showing positive 

signals in western blot analysis (Fig. 43 A), whereas there was no chitinolytic activity for 

the samples which did not exhibit any positive signal in Western blot and immunostain. 

Different bands, which have chitinase activity, could easily be detected. Three of them 

were dominant and have strong activity in the range of 30 and 50 KDa compared to 

untransformed negative controls, which show only one band at ~ 30 KDa (Figure 43 A). 

The chitinase activity was difficult to detect when reducing agents like 2-mercaptoethanol 

or DTT were used in protein extraction or sample buffer (Fig. 43 B), and a single band 

could be detected instead of multiple bands in these cases.  

Chitinolytic activity was detected also in T1 and T2 progenies (Fig. 43 C). The 

35 KDa 

25 KDa 

M       1        2           3        4        5       6        7       8        -C      +C 

A 

35 KDa 

M          1       -C         2           3           4          5          6         7       +C 
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effectiveness of the plant originating inducible promoter (vst) from grape was also 

analysed in driving the chitinase expression following the induction of the promoter with 

UV light for 5 min and extraction of protein 24-48 h after induction (Fig. 43 D).         

    1       2      3        4      5        6       7         8     -C 
   +C     M  

116 KDa
66.2 KDa
45 KDa

35 KDa

25 KDa

18.4 KDaA

+C Mu
I II

B

    +C    1      2     3       4     5     -C        M

116 KDa

66.2 KDa

45 KDa

35 KDa
25 KDaC

  1        2      3     4

D
 

Fig. 43. Detection of chitinolytic activity of chitinase after SDS-PAGE electrophoresis of pea. A, T0 pea 
transformants: lanes 1, 2, 3, 4, 5 and 6 different clones of 02-04 (7-5/7-4/7-2/3-1/1-1/6-1 respectively); lane 
7, clone 03-04-1-5; lane 8, clone 14-04-2-6; -C, untransformed negative control pea plant; +C, chit30 
standard from Streptomyces used as positive control; M, Fermantas protein standard; B, comparison between 
non-reducing (II) and reducing (I) conditions of different samples; Mu, protein from Mucor sp.; C, T1 pea 
transformants of different clones; D, T1 pea transformants with vst promoter induced with UV light.     

5.5.5.3   Chitinase enzyme activity 
Enzyme activity was measured according to Stephan and Wolf (1990) as mentioned earlier 

(5.4.3). The experiments were carried out in triplicate for the samples and blanks, the 

difference between sample OD and blank OD gave the activity. Results are shown in 

Table 17 and Fig. 44. 

Table 17. Results obtained from chitinase enzyme activity measurement of crude extracts of pea at OD550. 
Protein extracts from plants under vst promoter are highlighted and UV induced plants are marked with *.  
 
Sample 14-04-2-4,2,6 14-04-2-6,3,2 14-04-2-4,4,8 15-04-1-2,2 07-04-4-4,8,3 - Control 
OD 0,10 0,11 0,13 0,13 0,12 0,12 
Sample 07-04-4-2,5,1 14-04-2-4,2,6* 14-04-2-6,3,2* 14-04-2-4,4,8* 15-04-1-2,2* - Control* 
OD 0,12 0,13 0,16 0,23 0,29 0,19 
Sample 07-04-4-2,5,1* 03-04-1-3,41,3 02-04-7-5,3,6 02-04-7-4,1,1 03-04-1-3,3,1 03-04-1-3,6,2 
OD 0,19 0,13 0,14 0,30 0,13 0,21 
Sample 02-04-7-5,1,7      
OD 0,16      
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Fig. 44. Colorimetric chitinase activity assay of different pea samples using CM-chitin-RBV as substrate. 
UV induced plants a re marked with *. 

5.5.5.4   Gel diffusion assay 
A standard curve for chitinase activity was prepared using dilutions of Streptomyces 

griseus chitinase at different concentrations of 0.5, 0.4, 0.3, 0.2, 0.1, 0.05, 0.01, and 0.001 

units. Aliquots of 10 µg total protein were applied (Fig. 45). Afterwards, visualization of 

the hydrolysis activity was done and the diameter of the dark halos was measured, the dark 

halos indicated the degradation of the substrate. The diameters of halos were plotted 

against the logarithmic value of chitinase activity (Fig. 46), and then activities of different 

samples were calculated through regression analysis (Table 18). 

                  

Fig. 45. Gel diffusion assay showing chitinase activity viewed and photographed under UV light. Standard 
was prepared using dilution of chitinase from Streptomyces griseus (left) at concentrations 0.5, 0.4, 0.3, 0.2, 
0.1, 0.05, 0.01, 0.001 unit and buffer. Different samples (right).  
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Fig. 46. Regression analysis of chitinase activity of standard in units against halos diameter in mm. The 
equation for calculating trend line is y= 7.809x + 36.137. 
 

Table 18. Chitinase activity of different pea samples transformed with pGIIvst-N-Chit construct 
(highlighted) before UV light induction and after induction (marked with *), and pGII35S-N-Chit construct. 
 

Sample Diameter of halos
 (mm) 

Chitinase activity 
(U) 

Significant 
(5 %) # 

14-04-2-4,2,8 22,30  0,1700  bcde 

15-04-1-2,1 17,56 0,0927  i 

07-04-4-4,7,1 17,97 0,0976  hi 

07-04-4-4,2,3 21,40 0,1514  bcdefg 

- Control 20,41 0,1335 bcdefgh 

* 14-04-2-4,2,8 23,64 0,2019 abc 

* 15-04-1-2,1 25,37 0,2519 a 

* 07-04-4-4,7,1 23,93 0,2095 ab 

* 07-04-4-4,2,3 23,03 0,1866 bcd 

* 14-04-2-1,2,2 23,64 0,2019 abc 

* - Control 21,66 0,1567  bcdef 

03-04-1-3,35,3 19,72 0,1221 efghi 

03-04-1-3,5,2 17,99 0,0978 hi 

03-04-1-3,6  21,76 0,1588 bcdef 

03-04-1-1,2,19 17,99 0,0978 hi 

03-04-3-1,1,11,8 19,45 0,11797 efghi 

03-04-1-3,46,8 20,58 0,1364 bcdefgh 

02-04-7-4,1,1 18,35 0,1025 ghi 

02-04-7-4,3,6 18,94 0,1106 fghi 

02-04-7-4,1,7 20,92  0,1425 bcdefgh 

02-04-7-5,2,1 20,30 0,1315 cdefgh 

02-04-7-4,3,2 21,62 0,1557 bcdef 

02-04-7-1,2,2  22,30 0,1701  bcde 

                 # Values followed by different letters are significantly different (∝=0.05). 

Standard Curve 

y = 7,809x + 36,137
R2 = 0,9312
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The results clearly show the effect of vst promoter induction on the chitinase activity 

where the induced samples showed higher activity compared to the same samples without 

induction. For the non-transformed negative control, after induction the activity was 

higher than before induction which may be due to the endogenous chitinase activity, 

which can be induced under different stresses. Plants with the chitinase gene under control 

of induced vst promoter were higher in activity than plants under control of 35S promoter. 

In some cases the chitinase activity showed unexpected lower activity than negative 

control (such as clones 03-04-1-1,2,19; 03-04-1-3,35,3 and 02-04-7-4,1,1).  

5.5.6   In vitro bioassay 
Trichoderma harzianum (T12 strain) was cultured on PDA medium at 25 °C, and different 

crude protein extracts were applied in the wells, which were prepared using a 3 mm borer 

in the region around hyphal growth. The plates were incubated at 25 °C for 24 h, during 

which the hyphae grew outwards from the centre. Hyphal growth inhibition of T. 

harzianum was observed at 8 h and 24 h after treatment.  

5.5.6.1   Tobacco experiments  
Chitinase (crude protein extract) from different samples of tobacco could inhibit T. 

harzianum hyphae growth as can be seen in Fig. 47, where the inhibition in wells 1, 2, 3, 

4, 6, and 7 could be detected after 8 hours (Fig. 47, A), especially in the area around the 

well facing hyphal growth. After 24 hours the inhibition became more clear for the same 

samples (Fig. 47, B), while no inhibition was detected in case of non-transformed negative 

control tobacco plant (well 8) or in case of samples containing only buffer (well 9). Well 

10 contained chitinase from Streptomyces griseus (Sigma, C6137), but no activity was 

detected. After 30 hours, there was no difference among samples, since the hyphae could 

grow around the wells, in spite of a very clear zone without growth around some wells (1-

2 mm). Vst promoter efficiency in driving chitinase expression as inducible promoter of 

plant origin was studied in order to test its induction. Therefore, samples were collected 

from the greenhouse and induced with UV light for 5 min and then incubated in a growth 

room for 30-40 h. Crude protein was extracted from induced and non-induced plants. All 

samples were applied for in vitro hyphae inhibition assay. Vst promoter proved remarkable 

efficient in chitinase expression in induced samples where it could inhibit the hyphal 

growth (Fig. 48 A 1, 2, 3, 4, 5 and 6) compared to non-induced samples (Fig. 48 B 1, 2, 3 

and 4) which showed no effect on the growth of Trichoderma as in the negative induced 
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and non-induced controls (Fig. 48 D and C respectively).  

The two different constructs pGII35S-Chit and pGII35S-N-Chit were also compared in the 

ability to inhibit the fungal growth. Protein extracts from plants growing in greenhouse 

from both constructs inhibited the hyphal growth and showed no difference (Fig. 47, A).  

 

 

 

 

 

 

 

 

 

 

 

Fig. 47. In vitro bioassay of T. harzianum hyphae growth inhibition using crude protein extracts of tobacco. 
A, assay after 8 h from treatment; B, after 24 h; well 1, extract from pGII35SChit; wells 2, 3, and 7, extracts 
from pGIIvstChit; wells 4, 5, and 6, extracts from pGII35S-N-Chit; well 8, extract from not-transformed 
control tobacco plant; well 9, Na-act buffer only; well10, chitinase from Streptomyces (sigma). Arrows show 
the region of inhibition which can be detected after over growth of hyphae after 30 h. Bar = 1cm.    
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Fig. 48. Comparison of promoter activity on T. harzianum hyphal growth in vitro bioassay using crude 
protein extracts of tobacco plants transformed with pGIIvst-Chit construct. A, crude extract from plants 
induced with UV light for 5 min. to induce vst promoter; B, crude extracts from plants without induction 
using the same plants as in treatment A. well 1, clone C-2-2-2; well 2, clone H-1-1-2-2; well 3, H-4-2-2; well 
4, H-1-1-2-1; C, extract from non-transformed control tobacco plant; D, extract from non-transformed 
control tobacco plant induced with UV. 
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5.5.6.2   Tobacco cell culture 
Crude extracts from tobacco cell cultures derived from plants transformed with constructs 

of pGII35S-Chit and pGII35S-N-Chit were prepared from cells and medium and used for 

the hyphal inhibition bioassay of T. harzianum. Strong effect could be detected using 

crude extracts of the cells, whereas no activity was detected using samples from the 

medium (Fig. 49). 
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Fig. 49. Tobacco cell culture inhibition effect of crude protein extract of two different constructs pGII35S-
Chit (wells 1, 2, and 3) and pGII35S-N-Chit (wells 4, 5, 6 and 7) extracted from cells (wells 1, 2, 6, 7 and 8) 
and from medium (wells 3, 4, 5 and 10) on T. harzianum hyphae growth inhibition. Wells 8 and 10 contains 
crude extracts from non-transformed control tobacco plant, well 9, contains buffer.  

5.5.6.3   Pea experiments 
Crude extracts from different pea transformants harboring constructs pGII35S-N-Chit and 

pGIIvst-N-Chit were tested for their inhibiting activity compared to non-transformed plant 

crude extracts. Extracts containing the recombinant chitinase could inhibit the extension of 

fungal mycelium (Fig. 50).   

The applied samples are: 1. (03-04-1-5,1); 2. (02-04-7-6,1); 3. (02-04-7-6,3); 4. (14-04-2-

3,1); 5. (03-04-3-3,1); 6. (02-04-7-1,5,4); 7. (15-04-1-1,1); 8. (03-04-1-2,1,5,1); 9. (03-04-

1-2,1,5,2); 10. (02-04-7-1,2,2); 11. (03-04-1-3,6); 12. (03-04-1-4,8); 13. (02-04-7-1,1,1); 

14. (11-04-1-1,2,17); 15. (non-transformed – control); 16. (Na-acet. buffer). 
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Fig. 50.  In vitro assay of T. harzianum hyphae growth inhibition using crude protein extracts from different 
transformants of pea (for sample number see the text above). 

 

In order to study the effect of crude extract on hyphae extension, the spores of 

Trichoderma harzianum were collected in water and the concentration of spores was 

adjusted to 105 spores/ml. 10 µl spore suspension was mixed with 10 µl protein crude 

extract and incubated overnight at RT. The effect of crude extracts on spore germination 

was examined under a light microscope. 

Crude extract of non-transformed negative control did not show any effect on the 

germination of spores, which could produce normal hyphae, whereas crude extracts from 

transformed plants showed inhibition and lowering the germination of the spores, where 

the spores became enlarged and the elongation of germination hyphae was shorter (Fig. 

51). 
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Fig. 51. Effect of different crude extracts on spore germination of T. harzianum under the light microscope 
(x40). 1, spores after isolation without treatment; 2, sporse mixed with Streptomyces griseus chitinase; 3, 
extract from non-transformed tobacco plant; 4, extract from transformed tobacco plant with pGIIvst-Chit; 5 
and 6, extract from transformed tobacco with pGII35S-Chit; 7, extract from non-transformed pea plant; 8 
and 9 extracts from transformed pea plants. 

5.5.7   2-D gel electrophoresis 
2-D gel electrophoresis is used to separate protein mixture according to their isoelectric 

point in a first dimension and the molecular weight in the second dimension. This 

technique was mainly used to distinguish between endogenous chitinases and recombinant 

enzyme using silver and Coomassie blue staining applied after the second dimension.  It 

was very difficult to identify the spots correlated with chitinase in transformed and 

untransformed plant as a huge amount of spots was present in both gels due to the 

presence of many up-regulated and down-regulated genes. 

Chitinase could be detected only after western blot analysis and immunostain, as antibody 

detection is much more sensitive. First, we used protein from induced and non-induced E. 

coli cells harboring the expression vector pUChit30 (a derivative of pUC18) in order to 

study the isoforms of chitinase. Four spots were detected at 30 KDa according to 

isoelectric focusing (IEF) and one smaller spot with a molecular weight around 28 KDa 
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which could be the mature protein without signal peptide (Fig. 52, A). No spots could be 

detected in non-induced E. coli. 

Protein preparations from tobacco and pea were also used for western blot analysis. 

Proteins were electroblotted from acrylamide gel to PVDF membrane after the second 

dimension separation. After detection, using antibody raised against chitinase 30, we could 

detect mainly six spots in two rows as can be seen in Fig. 52, B, C, and D.   

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 52. Western blot analysis after 2-D PAGE, total protein extract was subjected to First-dimension 
isoelectric focusing (IEF) on 7 cm IPG strip, pH 4-7, followed by separation on 12% SDS-PAGE and 
transferred to a PVDF membrane. The blot was probed with Chit30 antibody followed by goat anti-rabbit 
IgG. A, Induced E. coli cells harboring pUChit30 expression vector; B, Total protein from tobacco (clone 
03-04); C, Total protein from pea (clone 02-04 with 35S promoter); D, Total protein from pea (clone 14-04 
with vst promoter); +C, positive control; M, BioRad low molecular weight protein marker.
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6   DISCUSSION 
Biotechnological techniques, including plant transformation, are considered to amend 

conventional plant breeding since these technologies offer novel possibilities for gene 

transfer between different species. A look on the recent increase of GMO cropping areas 

will illustrate the success but also different public acceptance of this new technology. The 

global area of transgenic crops was 1.7 million hectares in 1996 and increased to 52.6 

million hectares in 2001 (3000 %). An increase of 20 % was reported between 2003 and 

2004 and 11 % between 2004 and 2005. This resulted in a total cropping area of about 90 

million hectares (Fig. 53). The most important transgenic crops produced were soybean, 

maize, cotton and canola. The introduced transgenes were herbicide tolerance (77 % in 

2001) and insect resistance genes (15 % in 2001). The market value of biotech crops was 

around $ 4.7 billion (Clive, 2003, 2004 and 2005). 

         

 

 

 

 

 

 

 
 

 

 

 

Fig. 53. Global area of genetically modified crops, in million hectares from 1996-2005. (Adapted from Clive 
James, 2004 and 2005). 

 

Most of the other crops did not find the same interest by multinational companies, 

particularly grain legumes, which play a role in developing countries. Fungal disease 

resistance took less attention although it is an important factor as yield reducer in both 

developed and developing countries. Therefore, producing such resistant plants would 

greatly affect the sustainability of production of these staple foods, which in turn can have 

a great socioeconomic effect. In addition, fungi resistant plants require less or no 

fungicides and have fewer problems with mycotoxines. One way to increase antifungal 
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resistance level in plants is to over express of pathogenesis-related proteins which has 

important roles in plant defense system such as chitinase which believed to play such a 

role in plant through different classes and isoformes found during fungal attack. 

6.1   Cloning of chitinase gene   
The unique advantage of biotechnology is the principle cross kingdom usage of genes. The 

recent most competitive transgenic plants harbor transgenes providing highly effective 

monogenetic resistances against herbicides and insect pests, characters that are not 

available in wild type pea cultivars. So the successful cloning and vector construction 

depend on the correct procedure to identify the gene of interest, cloning the gene and 

transformation into E. coli cells and then into Agrobacterium for plant transformation. 

Different molecular tools were used to check and characterize the cloned genes, like PCR, 

restriction digest and sequencing of the binary vector and blast the sequencing results with 

the original sequence to check if there are any errors, deletion or substitution of any base 

pair which may affect the open reading frame of the gene and the final product of the gene 

as functional protein. Since it was difficult to check the vector in Agrobacterium using 

restriction digest and sequencing, re-transformation of E. coli was done with plasmids 

isolated from Agrobacterium and then isolated plasmids from E. coli were confirmed.  

6.1.1   Streptomyces chitinase gene Chit30 
In this study, the chitinase gene Chit30 from Streptomyces olivaceoviridis ATCC 11238 

(identified by R.M. Kroppenstedt), which has an open reading frame of 888 bp and 

consists of 296 amino acids with a GTG start codon (it was changed to ATG later) and a 

total of 70 % GC content with a molecular weight of the mature protein of 28.9 kDa, was 

used in the present study in order to increase disease resistance of plants against fungal 

pathogens. The soil-borne Gram-positive mycelia-forming bacterium was used for a 

fungal cell wall degradation test of viable filamentous ascomycetes (Beyer and Diekmann, 

1985 and 1984). They also found that, under certain conditions Streptomyces releases high 

enzyme activities into the culture medium. This chitinase was used for fungal protoplast 

preparation in good yield (Romaguera et al., 1993) and cellulase production (designed 

Actinomyces sp., QM-B814, Reese et al., 1950). In addition, actinomycetes (including 

Streptomyces) are interesting agents for biological control of soil-borne root diseases of 

crops, where different reports show that actinomycetes are a promising group of 

antifungal, root-colonizing microbes and which showed protection from soil-borne fungal 
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pathogens, making them a promising tool for crops protection (Crawford et al., 1993). 

The structure of Chit30 is similar to other family 19 chitinases. It is composed of a 

catalytic domain (CAD) and a function-undefined domain (FUD) as shown in Fig. 54 (Li, 

2001). The FUD was later assigned as chitin-binding domain (Dr. Jochen Meens, personal 

communication), which makes it similar to ChitC from Streptomyces griseus HUT6037 

(Watanabe et al., 1999). Family 19 chitinases mainly contain plant chitinases classes I, II 

and IV and Streptomyces chitinase, which have catalytic domain homology to plants and 

chitin-binding domain at the N-terminaus. Ohno et al. (1996) and Watanabe et al. (1999) 

explained the relationship between plant and Streptomyces chitinases by proposing two 

hypotheses. The first proposed that the ancestral chitinase was present before plants and 

bacteria and then evolved independently to them. The second possibility is that 

Streptomyces get the chitinase from plants by horizontal gene transfer. 

 

 

 

 
Fig. 54. Primary structure of Chit30 gene. SP, Signal peptide; FUD, functional-undefined domain; CAD, 
catalytic domain (Li, 2001). 

 

Chit30 (GOI) and bar (selectable marker) genes were cloned into the pGreenII vector 

under control of two different promoters. For chitinase, either the constitutive cauliflower 

mosaic virus (CaMV) 35S RNA promoter or the inducible vst promoter were used, 

whereas for controlling bar gene expression the Agrobacterium nopaline synthase (nos) 

promoter was used. The nos promoter is considered to be weaker than the 35S promoter 

and its activity is organ-, position- and developmental-stage dependent, taking into 

consideration the fact that nos promoter activity is differentially expressed in various 

organs, which indicates potential problems in regenerating transformants, the activity of 

the nos promoter differs between different plant species (An et al., 1987 and 1988). 

Sanders et al. (1987) compared the CaMV 35S promoter and the nos promoter at 

transcriptional levels in transgenic petunia plants, where they found that 35S promoter was 

at least 30 times stronger than the nos promoter. These results were similar to those 

obtained by Harpster et al. (1988). The chitinase and bar genes were arranged in divergent 

orientation to reduce antisense effects and for efficient expression (Becker et al., 1992). 

Tobacco plants were used in the present study as model plant for testing the functionality 
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of the binary vector and cloned chitinase gene, and pea as legume model plant. 

6.1.2   Chimeric Chit30 gene with Arabidopsis signal peptide sequence  
In addition to the original bacterial gene cassette, the FUD / CAD domains were N-

terminally fused to a plant secretion signal peptide, since the highest prediction score for 

the bacterial gene after heterologous expression in eukaryotic cells shows an aberration of 

the mature protein. These aberrations would most probably not affect the functionality of 

the heterologous expressed gene but could result in low efficient secretion of the chitinase. 

It was reported by Lund and Dunsmuir (1992) and Lund et al. (1989) that the secretion of 

a ChiA gene from Serratia marcescens in tobacco plants was more efficient when they 

replaced the bacterial signal peptide with a plant signal peptide from tobacco PR1b, where 

they found that ChiA was completely secreted. In addition, there was no secretion of ChiA 

when signal peptide sequence was absent. Similar results were reported by Su et al. 

(2004), using GFP protein fused to Arabidopsis basic chitinase gene, which was 

introduced into a tobacco cell culture. The authors found secreted GFP in the medium of 

cell culture due to a regulated secretion. The explanation of an improved secretion was 

that plant signal peptide lead the protein to the secretory pathway. There are contradictory 

reports on the ability to use signal peptides from different origin. Kaiser et al. (1987) 

reported that the replacement of an original signal peptide of Saccharomyces cerevisiae 

invertase with random peptide sequences was functioning, whereas Bird at el. (1987) 

reported that signal peptide sequences of Saccharomyces cerevisiae were not functioning 

in mammalian cells and they concluded that the signal peptide which is functioning in one 

organism not necessarily functions in another organism. 

The signal peptide of A. thaliana was fused to the coding region of the chitinase gene 

(Haseloff et al., 1997). According to the cleavage prediction for an authentic mature 

protein the secretion signal peptide was adopted. That no major differences were observed 

regarding the functionality of the chimeric chitinase gene in comparison to the wild type 

gene could be explained by the fact that the catalytic domain of the chitinase gene is 

located at the C-terminus (Fig. 54).  

6.2   Tobacco transformation  
Shoots from different leaf explants were regenerated 6-8 weeks after inoculation with 

Agrobacterium suspension. 80 % of the inoculated explants showed regeneration of 

shoots. The response of explants to regeneration was affected by genotype and 
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developmental stage as well as endogenous growth regulators level, since the explants 

were in vitro-derived plants. Shoots were individualized and subcultured on selection 

medium containing 15 mg/ PPT and were afterwards rooted on MS hormone-free medium. 

Rooted transformed plants were acclimatized and then transferred to the greenhouse for 

further analysis and to set seeds. Transgenic tobacco plants were healthy growing, fertile 

and without any aberrations from the natural phenotype, except one clone (T1-1) from a 

transformation experiment with the vst promoter construct, showing a different leave color 

phenotype in T0 (Fig. 55). In the following generations, this kind of difference could not 

be seen any more, which may be due to the segregation and selection after BASTA® spray 

of the germinating T1 seedlings.   

 

 

 

 

 

 

 

  
 

Fig. 55. Phenotype difference of clone T1-1 (left) compared to control plant (right). 

 

Seed grown progenies from herbicide resistant plants were germinated and sprayed with 

600 mg/l BASTA®. Different T1 sibling plants were characterized at the molecular level, 

proving the presence of chitinase and bar genes. The progeny of clone T1-1 was confirmed 

to be transgenic, showing a normal phenotype. 

By applying leaf paint assay, the transgenic plants could be discriminated from non-

transgenic plants, by exhibiting the resistance against the total herbicide BASTA® (600 

mg/l PPT), whereas non-transgenic plants shows necrosis and the treated part or the whole 

leaf turned yellow and died. Due to possible gene silencing phenomena, the herbicide 

sensitive plants are not necessarily non-transgenic and due to this fact the leaf paint assay 

only allows positive selection.  

It is well known that T-DNA transfer to the plant cells occurs in a defined direction, 

starting from the right border to the left border (Becker et al., 1992; Zambyski, 1992), 
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where the selectable genes are located to ensure selecting transformants containing 

complete T-DNA insertions. 

Almost all tested transformants according to Southern analysis after EcoRI and XbaI 

digest of gDNA showed multiple copy integration. When XbaI was used, different 

integration patterns were detected with copy numbers ranging from 1 to 6 copies in T0 

plants. This dramatically reduced in T1 and T2 plants due to segregation or methylation, 

where transformant like R-1-3 with 4 copies in T0 showed 2 copies in T2, and L-15 which 

had 4 copies in T0 resulted in only one copy in T2. On the other hand, when EcoRI was 

used in T0, 75 % showed multiple copies, but resulted in a single copy in the T1 and T2, 

due to segregation whereas single copy insertion was detected in 25 % of the tested plants. 

Binary vector backbone was detectable in T0 plants, using PCR (with nptI primers) and 

Southern analysis. When the membrane was hybridized with the nptI probe, it showed a 

single insert in most of the tested clones (12 out of 19 clones or 63 %), one clone (L-14) 

showed two copies. 6 clones out 19 showed no backbone integration. In the T1 generation, 

most clones that showed single copy in T0 showed again the same copy except clone L-15, 

which showed no backbone copy any more in T1 and T2. This may be due to a periclinal 

chimeric phenomenon by integration in different cell layers since germ-line originate from 

L2-layer (Satina et al., 1940), but the clone L-14 which had two copies in T0 showed 

single insert in T1. The backbone of pGreen vector was also observed in transgenic rice by 

Vain et al. (2003). They detected 45 % of the lines with multiple copy insertion with 

backbone, while only 15-20 % of the lines contained single copy T-DNA integration 

without backbone and the overall expression did not improve with increasing the copy 

number of T-DNA. The difference detected using the two different restriction enzymes 

could be ascribed according to the digestion site, where EcoRI was cutting the genomic 

DNA outside the T-DNA while XbaI was cutting in the T-DNA once. This will explain 

higher copy numbers resulting from the use of XbaI compared to EcoRI. There is a 

possibility that the different inserts are somehow linked and behave as one copy while 

XbaI ensures avoidance of this kind of linkage by cutting in the T-DNA.    

At the transcriptional level, the expression could be confirmed by using RT-PCR in 

different clones and subsequent generations. All transformed T0 plants in the greenhouse 

were tested by using the leaf paint assay. Most plants showed a positive leaf paint test, and 

some were in between. This indicates either sectorial or periclinal chimeric character. It 

also resulted in relatively low expression rates of the recombinant chitinase. Post-
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transcriptional silencing or methylation is rather unlikely in this stage, but could not be 

excluded, since the bacterial signal peptide is GC rich (82 %). However, T1and T2 plants 

harboring the bacterial signal peptide exhibited full functional properties. In contrast, T0 

plants of the chimeric chitinase gene with Arabidopsis signal peptide (GC content 35 %) 

did show signal in the Western blot. No cross-reaction was found using the protein 

extracts from non-transformed negative control plants. In most cases, two bands could be 

detected at an expected level of 29 kDa and 31-32 kDa depending on the signal peptide 

used, which may be due to either cleavage of the signal peptide with a molecular weight of 

2.9 kDa and 2.1 kDa for the bacterial signal peptide and Arabidopsis signal peptide, 

respectively, or post-translational protein modifications like N-glycosylation. Apparently, 

chitinase contains at least two predicted glycosylation site (from NetNGlyc 1.0 Server - 

Technical University of Denmark) at position 145 (Asn-V-Ser) and 259 (Asn-G-Ser) for 

chitinase with bacterial signal peptide or position 135 (Asn-V-Ser) and 249 (AsnG-Ser) for 

chitinase with the Arabidopsis signal peptide. It is also possible that the post-translational 

processing is incomplete in a heterologous host. This processing is necessary for the 

correct folding and targeting. The lower bands, which sometimes appear, could be 

degradation products of the chitinase as proposed for ChiA from Serratia marcescens 

when introduced into tobacco (Lund et al., 1989). The chimeric character of some T0 

plants could also be one of the reasons for the BASTA® sensitivity but this is even more 

an explanation for the negative immuno-blots from T0 material. The expression level 

proved to be varying between different clones from the same transformant and even 

between plants from one clone “inter individual differences” (Richter et al., 2005 in press). 

Linked and unlinked copies of introduced genes and related endogenous genes in plants 

can be silenced by homology-based mechanisms at transcriptional or post-transcriptional 

level, through DNA methylation or triggering RNA turnover (Matzke and Matzke, 1998). 

In addition, the expression level can be affected by adjacent plant DNA and the different 

sequences flanking the integration sites, which are known as “position effect” (Hobbs et 

al., 1990; Finnegan and McElory, 1994). The variation in expression can be of several 

reasons: a different T- DNA copy number in different transgenic plants, cis-acting 

elements such as silencers and enhancers at the T-DNA target site, transcriptional 

interference of T- DNA and target expression units and the general chromatin structure 

(Birch, 1997; Warkentin and McHughen, 1991). Some authors concluded positive 

correlation of copy numbers (Klimaszewska et al., 2003). Hobbs et al. (1990) found that 
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two allelic copies of T-DNA resulted in doubling the expression, whereas non-allelic 

copies reduced the expression. This may explain the incomplete co-suppression of the 

introduced chitinase gene in the T0 generation in this study, since most of the plants 

derived contained multiple insertions. It may also be due to endogenous auxin and 

cytokinin levels, which showed suppression of glucanase and chitinase transcription in 

tobacco tissue (Mohnen et al., 1985; Shinshi et al., 1987).  

In T1 and T2 the translation product of the chitinase was detectable using Western blot 

and immunostaining and in-gel assay. Although there were still clones with more than one 

copy like R-1-3, C-2, F-1, L-14 and H-4, chitinase activity using in-gel assay was lower 

for the clones L-14 and F-1, which contain more than two copies. Clone H-5-1 (1 copy) 

and clone H-4-2 (2 copies) showed no difference in immunostaining. The presence of two 

copies did not improve the expression of chitinase where the two clones showed similar 

activity using in-gel assay 0.134 U and 0.140 U for clone H-4 and H-5 respectively. This 

was confirmed in the colorimetric assay.  

Hobbs et al. (1993) explained that the nature of the T-DNA is much important than copy 

number which can increase or decrease the level of expression.  

6.2.1   Promoter analysis 
By comparing the promoters used in this study to drive the expression of the chitinase 

gene, we found higher levels of expression when the inducible promoter (vst) was used 

and induced by UV light compared to the 35S constitutive promoter, probably because a 

background activity of endogenous chitinase, which is obviously also UV inducible. The 

expression kinetics show that the inducible promoter was higher over time (2 h. vs. 24 h.), 

similar to the results observed in lettuce plants transformed with a chimeric gus gene and a 

tobacco pathogenesis-related protein PR1a promoter, where the expression was 3-50 fold 

higher than with the 35S promoter (Enomoto et al., 1990). A peroxidase promoter (isolated 

from sweet potato) was also used to drive the expression of a gus gene in transgenic 

tobacco which produced 30 times more GUS activity after induction by hydrogen 

peroxide, wounding or UV light than the 35S promoter (Fischer et al., 2004). The 35S 

promoter has properties that make it useful in transgenic crop development because of 

constitutively rather high levels of gene expression activity in many plant cells. It is one of 

the best-studied elements controlling gene expression in plants. However, there are some 

disadvantages of using 35S promoter as it shows morphological, developmental and 

physiological alterations in the transgenic plants (Fladung et al., 1997). Several other 
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promoters from viruses have been reported to have activities similar to the 35S promoter. 

Samac et al. (2004) compared the activity of three constitutive promoters, i.e., the 35S 

promoter (CaMV), the cassava vein mosaic virus (CsVMV) promoter and the sugarcane 

bacilliform badnavirus (ScBV) promoter, which each were fused to the gusA gene in 

transgenic alfalfa plants. They found that the highest GUS activity was obtained using the 

CsVMV promoter followed by the 35S promoter. The activity was approximately 24-fold 

greater than the activity from the 35S promoter and 38-fold greater than the activity from 

the ScBV promoter.  

In the present study, leaf samples were used for crude protein extraction since the 35S 

promoter confers high levels of expression in leaves and stems of transgenic tobacco 

plants and lower expression in flowers and seeds (Malik et al., 2002). 

6.2.2   Suspension culture and apoplast  
For both constructs, protein extracts from suspension cultured cells showed a stronger 

signal compared to the proteins extracted from medium, suggesting that the chitinase is not 

fully secreted to the medium since there were two bands presented in the Western blots 

which can be ascribed to processing of the chitinase protein. The upper band may 

represent the pre-protein without cleaving the signal peptide sequence and the lower band 

the mature protein (about 3 kDa smaller), which needs to be studied more in detail. The 

two bands shown in Western blots are from a construct containing the bacterial signal 

peptide sequence. As it could be expected there is cleavage of the signal peptide in a 

different position than it should be (Sig-Pred program results for prediction of signal 

peptide cleavage site), whereas the construct containing a plant signal peptide sequence 

showed one band, indicating the correct processing of the mature protein. Similar results 

were obtained by Liu et al. (2001) using GFP as reporter gene fused to a N-terminal signal 

peptide and a C-terminal H/KDEL sequence. The authors could detect GFP in the cells 

and in the medium. The H/KDEL improved the stability and folding of the protein leading 

to an improved expression since it is not sufficient to retain the protein in ER (Liu et al., 

2001).  

On the other hand, two bands could be clearly detected from samples extracted from 

apoplast, one band had the same size as the positive control purified from bacteria, 

presenting the mature protein and the other band had a higher molecular weight, which 

could be the full-length protein without cleavage of the signal peptide. These bands were 

not due to nonspecific binding of the antibody since no signal was detected in non-
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transformed negative plants. Unfortunately, we could not test the contamination of 

apoplast proteins with cytoplasmic protein, which would require an antibody against 

cytoplasmic proteins. Even though, contamination with cytoplasmic protein due to cell 

damage could not be excluded even when a gentle treatment was used. Lund at el. (1989) 

and Botha et al. (1998) proposed that only 0.15 % and less than 2 % respectively of 

cytoplasmic proteins were found in the apoplast proteins. The weak signal on Western blot 

was mainly due to the limited amount of total protein (20-50 µg total protein), which could 

be applied for SDS-PAGE vs. 100-200 µg as it was used by Lund et al. From the 

observation of cell culture and apoplast proteins using Western blot and immunostainig, it 

can be concluded that the bacterial signal peptide could be recognized in plant cells and 

enters the secretory pathway. As it was also concluded by Lund et al. (1989), the ChiA 

bacterial chitinase is glycosylated by plant cells. However, the roles of this modification 

still not clear. 

6.3   Pea transformation and regeneration 
Regeneration of mature plants with identical phenotype and genotype is a pre-requisite for 

any successful transformation. Adventitious regeneration can be obtained either by 

somatic embryogenesis or by shoot organogenesis, and both types of regeneration can be 

either direct or indirect via a callus phase. The direct regeneration from pre existing 

meristems is preferred for genetic modification in pea. Callus based regeneration systems 

have the disadvantage that they have a much higher chance of yielding plants with 

somaclonal variation than direct regeneration. In the present study, direct shoot 

organogenesis was used from mature embryos after inoculation with Agrobacterium 

tumefaciens harboring the binary vectors pGIIvst-N-Chit or pGII35S-N-Chit containing a 

chimeric bacterial chitinase gene fused to an Arabidopsis signal peptide sequence. Pea was 

also transformed with the original constructs pGIIvst-Chit and pGII35S-Chit but so far 

there are no solid data since the transformants are still in selection medium.  

In the present study, TDZ at concentration of 5 µM was used in the first two to three 

weeks to induce normal shoot regeneration; this concentration was favorable over 10 µM 

in lentil regeneration (Hassan, 2001). Murthy et al. (1998), applied TDZ to induce a 

diverse array of cultural responses ranging from induction of callus to formation of 

somatic embryos. They found that TDZ exhibits the unique property of mimicking both 

auxin and cytokinin effects on growth and differentiation of cultured explants. A number 

of physiological and biochemical events in cells are likely to be influenced by TDZ, since 
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several authors reported that higher TDZ concentrations (20 µM) result in stunted shoots 

and consequently slow development, elongation and failure in root production (Lu, 1993; 

Malik and Saxena, 1992).    

In the present study, the first transgenic seed could be obtained after 6-8 months 

depending on the number of repeated subcultures in between, where regenerated shoots 

were subcultured for 2 or 3 times on selection medium containing 10 mg/l or 15 mg/l PPT 

to ensure elimination of escape shoots and for multiplication of the clones selected. This 

period, from transformation to harvesting transgenic seeds looks realistic and comparable 

to other protocols. For example, Davies et al. (1993) and Grant et al. (1995) reported 

around 7 months from explant inoculation to getting the seed-bearing primary regenerants. 

Bean et al. (1997) obtained transgenic shoots in 4 months after inoculation. Polowick et al. 

(2000) required 6 months to get transgenic plants in the greenhouse, and, Švàbovà et al. 

(2005) required 5-6 months to get mature transgenic seeds using an in vitro system and 

only 3-4 months using in vivo system, whereas Schroeder et al. (1993) and Nadolska-

Orczyk and Orczyk (2000) got plants bearing seeds in 9 months. Puonti-Kaerlas et al. 

(1990) required longer time for getting transgenic plants as they needed 6 months for shoot 

induction and 15 months for the whole experiment. The time was comparable with other 

legumes, where azuki bean required 5-7 months (Yamada et al., 2001). Transgenic 

medicago was obtained within 4-5 months (Chabaud et al., 2003), but regeneration of 

transgenic pigeonpea was achieved in 3 months only (Dayal et al., 2003). In faba bean 

primary seeds of T1 were recovered within 9-10 months (Hanafy et al., 2005).  

6.3.1   Transformation efficiency 
The transformation efficiency obtained in the present study varied from 0.31 % to 1.4 %, 

with an average of 0.6 % for the whole transformation experiments, but when eliminating 

the experiments, which did not render any transgenic shoots, the efficiency became 0.9 %. 

These results correspond to results of other authors taking into account different 

Agrobacterium strains used, different explants and selection procedures applied. When 

using strain EHA105, the transformation efficiency was 1.1±0.43 % (Bean et al., 1997), 

8.2 % (Nadolska-Orczyk and Orczyk, 2000), 0.6 % (Polowick et al., 2000) and 0.6-0.9 % 

(Pniewski and Kapusta, 2005). On the other hand, when strain AGL1 was used, the 

transformation efficiency was 1.4-4.1 % (Pniewski and Kapusta, 2005), 0.8-3.4 % (Grant 

et al., 1995) and 1.5-2.5 % (Schroeder et al., 1993), while for other strains, the rate was 2.2 

% (strain C58C1), 0.7-3.3 % for AGL0 (Pniewski and Kapusta, 2005) and 1 % for 
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LBA4404 (Nadolska-Orczyk and Orczyk, 2000). 

6.3.2   Selectable marker 
Selectable marker plays an important role on the transformation efficiency of pea. There 

are two kinds of markers used in all publications, either antibiotic or herbicide resistance. 

It is noticeable that the higher transformation efficiency was achieved when antibiotics 

were used. The efficiency were 0.8-3.4 % (Grant et al., 1995), 8.2 % (Nadolska-Orczyk 

and Orczyk, 2000), 1.44 % (Davies et al., 1993) and 2.5 % (De Kathen and Jacobsen, 

1990) when kanamycin was used. When hygromycin was used as selective marker, the 

transformation efficiency was 4.9 % (De Kathen and Jacobsen, 1990), or up to 12 % 

(Puonti-Kaerlas et al., 1992). However, there were contradictory results when antibiotics 

were used, where Puonti-Kaerlas et al. (1992) could not get any transformants when 

kanamycin was used, whereas, Nadolska-Orczyk and Orczyk (2000) reported the same 

result when hygromycin was used, in addition fertility problems occurred with antibiotic 

resistance genes. The alternative for antibiotic was to use a herbicides like 

phosphinothricin as selectable marker. The transformation efficiency were up to 4.1 % 

(Pniewski and Kapusta, 2005), 1.5-2.5 % (Schroeder et al., 1993), 1.47 % (Grant et al., 

1995), 1.1 % (Bean et al., 1997) and 3.6 % (Nadolska-Orczyk and Orczyk, 2000). For the 

same groups, when they used different selectable markers, they got different 

transformation efficiency like 8.2 % for kanamycin vs 3.6 % for phosphinothricin 

(Nadolska-Orczyk and Orczyk, 2000) and 0.8 %-3.4 % for kanamycin vs 1.47 % for 

phosphinothricin (Grant et al., 1995; Grant et al., 1998). Comparing the results of these 

two groups who used two different markers, it was clear that the transformation efficiency 

was higher for kanamycin, but this result may be due to the fact that the regenerants on 

kanamycin were chimeric or not transgenic “escapes”. In addition, kanamycin has long 

stay and causes abnormal phenotype plants and changes the nuclear DNA content, while 

phosphinothricin-resistant plants were phenotypically identical (Nadolska-Orczyk and 

Orczyk, 2000).  

In the present study, phosphinothricin was used for selection of the transformants since it 

is much more stringent in decreasing the rate of escapes and chimerics in comparison to 

kanamycin. On the other hand, transgenic plants with herbicide resistant genes can be used 

as dual strategy as selective marker in vitro and as weed control in the field. For biosafety 

aspects in Europe, it might be more accepted by the public and easier to commercialize. In 

addition, the PAT proteins have been shown to be rapidly degraded by digestion and 



DISCUSSION    

 

123

 

heating (Novartis Seeds AG, 1999). No reports indicated the allergenicity or toxicity of the 

PAT protein or its degradation products (Nap, 1999). From the investigations carried out 

by Novartis Seeds AG (1999) feeding mice with transgenic maize containing PAT gene, 

they found no toxicological or potential effects on health, especially when the seeds were 

processed.             

6.4   Molecular and biochemical characterization of pea 
Molecular analyses indicate successful integration of T-DNA into genomic DNA of T0, 

T1 and T2 transgenic pea clones as it was confirmed by PCR and Southern blot analysis. 

Single copy was obtained in most of T1 tested clones but also tow copies was also 

obtained when using EcoRI enzyme, but when XbaI was used some of the single copy 

insert from EcoRI digest showed two copies, i.e. clones 03-04-1-3,30 which may be 

indicate closely linked inserts which behave as single copy. Two clones progeny i.e., 02-

04-7-1 and 02-04-7-4 were subjected to homozygosity test to predicate the homozygosity 

of the parental clones which showed homozygosity ranged between 73.74-98.88 % for the 

clone 02-04-7-1 and between 83.81-86.94 % for the clone 02-04-7-4, these values depend 

on the number of tested seeds and as higher the sample size as better the homozygosity test 

result which give the homozygosity of the parental line. 

Chitinase activity assays according to Trudel and Asselin (1989, 1990). In the present 

study we used a modified protocol by adding the substrate directly to the gel. The assay 

showed the presence of three additional isoform bands compared to non-transformed pea, 

which showed one band. This was consistent with the western blot analysis without cross-

reaction in the non-transformed plant or non-expressing plants (Fig. 40 A and 41 A; lanes 

7 and -C) which even proved positive in PCR. This result is in agreement with the results 

of Mohammadi and Karr (2002) where they could detect 4 isoformic bands in chitinase 

activity and western blot analysis. In the present study, we used the SDS-PAGE gels as 

well as chitin agar plate (Gohel et al. 2005, Chernin et al. 1998) to detect chitinolytic 

activity only, without showing the different isoforms or bands. The migration in SDS-

PAGE containing the glycol chitin as substrate was slower compared with gels without 

glycol chitin. This is due to the presence of the polysaccharide in the gel. The enzyme 

denatured in SDS-PAGE could be renatured using renaturation buffer to remove the SDS, 

while addition of reducing agent caused irreversible denaturation due to the disulfide bond 

reduction (Hung et al. 2002). 
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6.5   Functional analysis 

6.5.1   Leaf paint assay 
Successful expression and functionality of the bar gene was confirmed by the leaf-painting 

assay. A high concentration of BASTA® was used (600 mg/l) compared to others, who 

used 200 mg/l (Pniewski and Kapusta, 2005; Nadolska-Orczyk and Orczyk, 2000), 5-10 

l/ha (Schroeder et al., 1993), 3 mg ml/l (Bean et al., 1997), 3 l/ha (Grant et al., 1995),   or 

400 mg/l on faba bean (Hanafy et al., 2005). Herbicide tolerance gives another advantage 

for the transformed plants as they to survive when the same herbicide is used to control 

weeds. 

Despite the plants showing negative leaf paint as in the case of clone 14-04-2-4 (which 

was positive in PCR). This may be due to gene inactivation, methylation or co-suppression 

(D' Halluin et al., 1992) or due to the physical loss of the gene due to incomplete T-DNA 

transfer to the plant genome, since the bar gene is located next to the chitinase gene near 

the left border. This can explain negative PCR results for bar and positive one for 

chitinase.   

6.5.2   In-gel and agarose diffusion assays 
In this assay, glycol chitin was used as substrate, which is the most suitable substrate to 

detect the catalytic activity of family 19 chitinase (Itoh et al., 2003). The agarose diffusion 

assay was originally optimized for muskmelon seeds (Zou et al., 2002) and cucumber 

(Velasquez and Hammerschmidt, 2004). This assay needs to be optimized for tobacco and 

pea plants as used in the present study. There are different factors affecting the assay, like 

pH, substrate concentration, agarose concentration, buffer, incubation time and 

temperature. In the present study, overnight incubation at 28 °C or 37 °C with 1 % or 1.6 

% agarose for gel preparation were used. The results were obtained with 37 °C in 1.6 % 

agarose overnight. Combining the conditions of the previous two methods. We used the 

direct measurement of the halo diameter by electronic digital caliper of the photographed 

plates. This needed to be scaled from photo size to the original plate size. However, 

Velasquez and Hammerschmidt (2004) used an automated method of image digital 

analysis by measuring the number of pixels in the activity area, area and diameter of the 

halos, where they got the best resolution after 4 hrs. of incubation. The results were used 

to generate regression analysis where there was a difference in the linearity due to 

enzymatic reaction and possible interference of the reaction product with the reaction 
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(Algranati, 1963).  

In general, the chitinase activity of UV induced pea plants with the vst promoter controling 

chitinase was higher than with 35S promoter. Although the 35S constitutive promoter is 

highly expressed in most tissues, it can yield high activities. The samples were taken from 

the middle of the plant between node 4 and 8, which presumably has an effect on the 

expression level due to the fact that the expression is tissue, developmental-stage- and 

species-dependant. This may explain the variation of activities between different samples 

and between samples and negative controls, which ranged from 0.07 to 0.14 U/ 10 µg of 

total protein in tobacco. The activity was higher in pea where it ranged between 0.9 and 

0.25 U/ 10 µg of total protein. Statistically, significant difference could be detected 

between some vst promoter samples before and after induction such as 15-04-1-2,1 and 

07-04-4-4,7,1 and between vst promoter and 35S promoter plants such as 15-04-1-2,1 and 

03-04-1-3,5,2. The unexpected lower chitinase activities of some samples compared to the 

negative controls in tobacco and pea suggest that the recombinant chitinase can inhibit 

expression of the endogenous chitinase as similar results were reported for tobacco plants 

transformed with tobacco class I endochitinase (Neuhaus et al., 1991). This variation in 

activity between tobacco and pea was similar using in-gel activity assay using SDS-

PAGE, where crude extracts of pea showed stronger effects and more catalytic response 

than tobacco. The induction level of total chitinase activity after UV light was around one 

fold, which was much lower than in other reports. In bean, between two and five fold 

higher activity was detected upon infection with incompatible fungus and Fusarium solani 

respectively (Lange et al., 1996), while a 30 fold increase was detected after 24 h. after 

ethylene induction in bean leaves (Boller et al., 1983). In grapevine, wounding and 

salicylic acid induced total chitinase activity by a factor of 4.9 and 5.5, respectively 

(Derckel et al., 1996). A 5-fold increase in chitinase activity was detected after 24 h in rice 

cells treated with fungal elicitors (Velazhahan et al., 2000). It seems that UV light has a 

lower capacity in chitinase induction compared to other methods used, but this should be 

studied more by prolonging the exposure time to UV light or by using a different 

wavelength than we did in this study.      

Agarose diffusion has a number of advantages over SDS-PAGE based activity assays 

(Trudel and Asselin, 1989 and 1990) as it allows quantifying the total chitinase enzyme 

activity. Interfering chemicals (acrylamide, bis-acrylamide and TEMED) are also avoided. 

Denaturation of the protein, which needs renaturation after running the gel, can be avoided 
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since native crude extracts of proteins are used without any SDS or boiling steps, retaining 

the whole activity. The agarose diffusion method is simple, less error-prone and easy to 

perform compared to the SDS-PAGE method. On the other hand, the advantages of SDS-

PAGE over agarose diffusion are differentiation of different isoforms of chitinase, 

comparing it with non-transformed control plant and calculation of the molecular weight 

referring to a protein molecular standard marker. In the original protocol of Trudel and 

Asselin (1989), glycol chitin was added to a separate acrylamide gel and overlaid with 

resolving gel. Thereafter, the overlaid gel was stained with florescent staining. In the 

present study, the substrate was added directly to the resolving gel of SDS-PAGE without 

using another gel. This method was also used by Van Sluyter et al. (2005).     

In-gel assay showed the presence of additional three isoform bands at 28, 32 and 50 kDa 

compared to non-transformed pea, which shows only one band at 30 kDa. This was 

consistent with the western blot analysis but without cross-reaction in the non-transformed 

plant or non-expressing plants (Fig. 40 A and 41 A; lanes 7 and -C). This result is in 

agreement with the results of Mohammadi and Karr (2002) who could detect four isoforms 

of chitinase activity in soybean nodules using non-denaturing polyacrylamide gel and 

silver-stained with molecular weight of 27, 35, 71 and 94 kDa. These isoforms showed 

cross-reactivity and could be detected using immunoblotting. Van Sluyter et al. (2005) 

detected up to six chitinase isoforms in grape extracts separated by SDS-PAGE. In wheat, 

7 distinct isoforms were detected in healthy plants with induction of one or two new 

isoforms after injury and ethylene treatment of plants, respectively (Botha et al., 1998). 

The reason for different chitinase isoforms found in plants is that chitinase, in addition to 

its antifungal activity, has different roles in regulation of plant development or regulation 

of legume response to rhizobial node factors (Kaomek et al., 2003). However, little 

information is known about expression and enhancement of different isoforms using 

elicitors or pathogens (Botha et al., 1998). 

6.5.3   In vitro bio-assay 
Trichoderma harzianum was used to study the antifungal effects of chitinases and lectins 

on fungal hyphae growth since its walls contain chitin-glucan (Mirelman et al., 1975; 

Schlumbaum et al., 1986). Watanabe et al. (1999) used ChitC of Streptomyces griseus to 

study the inhibition of hyphal extension of T. reesei, Itoh et al. (2003) used protein extracts 

from rice transformed with ChitC. They found that ChitC showed antifungal effects by 

inhibiting the hyphal extension. Tsujibo et al. (2000) proved the antifungal effects of 
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Chit25 and Chit35 from S. thermoviolaceus in contrast to the non-antifungal activity, 

which was detected using other bacterial chitinases, which belong to family 18. Fung et al. 

(2002) tested antifungal activity of tobacco-expressing BjCHI1 from Brassica juncea 

using T. viride. They found that the chitin-binding domain enhances antifungal activity, 

but an additional domain did not improve the fungal inhibition. Chye et al. (2005) and Iseli 

et al. (1993)  used T. viride to study antifungal effects in potato expressing BjCHI1 and 

tobacco basic chitinase A, respectively.  

In the present study, T. harzianum was used to study the antifungal effect of crude extracts 

from tobacco and pea transformed with Chit30, where different samples clearly inhibited 

the extension of the hyphae. Inhibition could be shown to occur after 8 h. and 16 h. 

However, in many cases, the fungi could overgrow the inhibition effect after 24-30 h. This 

was in agreement with results of Mauch et al. (1988) when using T. viride. The inhibition 

varies among different samples where some show strong effects and others less. This can 

be attributed to the use of total protein extract whereas the other investigators used purified 

chitinase, especially when they used expression vectors in E. coli. 

The inhibitory effects of crude extracts of tobacco and pea were much higher for plants 

transformed with an inducible vst promoter after UV induction compared to non-induced 

plants. To abolish the endogenous chitinase effect, non-transformed negative controls were 

used before and after induction in the same way as transformed plants, and in both cases 

protein crude extracts from non-transformed did not show any hyphae extension 

inhibition. This clearly demonstrates that the effect on T. harzianum was due to the 

recombinant protein expression and not due to an endogenous chitinase. This may indicate 

that the endogenous chitinase level is lower than the threshold to show an inhibition effect, 

or that UV light is not sufficient to induce it. It may also be due to the specific interaction 

between pathogen and host plant and the pathogens ability to produce peptides 

(inhibitors), which inhibit plant chitinases, whereas, the recombinant protein is 

incompatible. This may be explained as an evolutionary adaptation of the pathogen to one 

of the plant's defenses (Mauch et al., 1988). 

Mauch et al. (1988) explained why an in vitro assay is more sensitive in showing anifungal 

activity than in vivo responses. This may be due to the fact that the fungi do not come in 

contact with the hydrolysing enzymes which accumulated in vacuoles but need to be 

secreted to the extracellular space. This occurs through a hypersensitive response. 

However, the presence of the inhibitors will prevent fungal colonization and will increase 
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the half-life of in vivo generated elicitors leading to resistance of plants to fungal pathogen 

(Cornelissen and Melchers, 1993).       

There are different inducers for the PR-related proteins such as H2O2, wounding, elicitors, 

ethylene, heavy metals as well as pathogens. El Ghaouth et al. (2003) used UV light to 

induce chitinase in peach fruit where they got two folds of induction after 96 h. However, 

the level of induction should be sufficient in order to overcome the pathogen, which acts 

with other defense systems differing due to different inducers and plants responses to 

induce specific isoforms, either acidic or basic, where certain isoforms of chitinase act 

unrealistically with glucanase and are able to defend plants against particular pathogens 

(Sela-Buurlage et al., 1993).  

When the crude extract was boiled, there was no inhibitory activity against hyphae 

extension, which indicates that the chitinase lost its activity during boiling. A similar result 

was reported by Mauch et al. (1988) where the samples lost their activity against all tested 

fungi after boiling for 10 min. 

Comparing two signal peptides showed no difference in inhibition of hyphae extension 

and both constructs show similar effects.  

The antifungal effects of crude protein from tobacco cell culture of chitinase with a 

bacterial signal peptide or a plant signal peptide were compared with non-transformant cell 

culture. Crude extracts of both types of cells could clearly show the inhibition of the 

hyphae extension, whereas the samples of culture medium could not show clear effects. 

This may be due to not fully secreting chitinase to the medium or due to the hormonal 

constitution of the medium (Kunze et al., 1998), which subsequently, was not enriched in 

the medium. These findings suggest and confirm that recombinant chitinase of 

Streptomyces olivaceoviridis ATCC 11238 inhibits fungal growth in vitro which make it a 

good candidate to produce fungal resistant plants. Still, the targeting of the chitinase may 

play an important role in plants after pathogen challenge. 

Examination of spores mixed with different protein crude extracts, and incubated 

overnight, showed under light microscope clear effects on spores, which became enlarged 

and did not germinated completely as compared to crude extract from non-transformed 

plant which showed fully germination of spores and extension of the hyphae. Similar 

results were obtained by Huang et al. (2005) when they mixed the conidia of B. elliptica 

with purified chitinase ChiCW from E. coli. They got 84 % inhibition on conidia 

germination.    
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Different fungus were tested for inhibition assays, but no results could be obtained since 

they had very slow growth in vitro compared to T. harzianum, which can grow very fast 

and the results of the assay could be recorded after a few hours (after 8 and 16 hrs.). Its 

growth is also inhibited by chitinase alone, while other fungi require a combination of 

chitinase and glucanase (Mauch et al. 1988).  

6.6   2-D-electrophoresis  

Proteomics is considered as one of the most promising techniques to identify the proteins 

in different developmental stages by studying induction, repression, or post-transcriptional 

modification (Schiltz et al., 2004). In the present study, 2D-electrophoresis was used to 

study the different patterns of proteins and spots using immunostaining, when total 

proteins were extracted from E. coli induced by IPTG and separated in two dimensions. 

The result of immunostaining showed the presence of four spots separated in the first 

dimension according to IEF at 30 kDa, which may present different isoforms and one spot 

in the second dimension with lower molecular weight, which could be the mature protein 

after cleaving the signal peptide sequence. No spots could be detected in non-induced E. 

coli cells. 

The pattern was different when using total proteins from plants (tobacco and pea) where at 

least six spots in two rows could be detected with approximate molecular weights of 30 

kDa, which may be also present unprocessed and mature proteins. It was worthy to 

mention that the induced vst promoter showed much stronger exression than the 35S 

promoter, no cross-reaction could be detected when total proteins from non-transformed 

plants were used. It was not possible to detect any spots after running the second 

dimension in SDS-PAGE containing glycol chitin as substrate for activity assay, since the 

activity of protein was lost and could not be retained due to different reducing agents used 

in protein preparation even after incubating the gels in re-naturation buffer containing 

Triton X-100. 

“A new agriculture, combining genetic modification technology with sustainable farming, 

is our best hope for the future” Trewavas (1999).
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7   OUTLOOK AND FURTHER EXPERIMENTS 
In the present study, different transgenic pea clones could be obtained from different 

binary vectors. Several lines are still in vitro culture and need to be grafted and transferred 

to the greenhouse in order to further analyse them. 

It is necessary to continue multiplication of the selected clones in order to establish 

homozygous lines, which could be used for crossing and gene stacking with the other 

existing lines developed in the institute. These lines express different antifungal proteins 

i.e., PGIP, RPGIP, Vst and also glucanase, which has a synergistic effect with Chitinase. 

Further studies are needed to investigate the differences regarding the protein targeting, 

secretion efficiency and C-terminal modification. 

Since the crude extract could inhibit the in vitro hyphal extension of Trichoderma 

harzianum, it will be effective to test the antifungal effect in vivo under field conditions 

with different fungi (pathogen challenging).
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