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Abstrakt

In dieser Dissertation wird das Verhalten sehr kalter stark korrelierter Quan-
tengase, sowohl in optischen Gittern, als auch in rotierenden Fallen, unter-
sucht.

Im ersten Teil betrachten wir Fermionen auf einen bosonenischem Mot-
thintergrund in einem zweidimensionalen optischen Gitter mit quadratischen
Einheitszellen. Aufgrund der Wechselwirkung zwischen Fermionen und Boso-
nen bilden sich “Composite Fermions”, Fermionen gepaart mit bosnischen
Löchern oder mit Bosonen. Für eine kleine Tunnelrate leiten wir einen
effektiven Hamiltonian her, der das Verhalten der “Composite Fermions”
beschreibt. Mit Hilfe einer einfachen Mean-Field-Rechnung finden wir einen
Mottisolator-Superflüssigkeit Phasenübergang, den wir nummerisch bestä-
tigen

Das nächste Kapitel beschäftigt sich mit Quantengasen in optischen “tri-
merized” Kagomégittern. Für Bosonen finden wir einem Mottisolator mit
einer rationalen Anzahl von Atomen (1/3, 2/3, 1, · · · ) in einer Zelle. Im Falle
einer Fermion-Fermion-Mischung können wir einen effektiven Hamiltonian
für einen Heisenbergantiferromagneten herleiten. Außerdem betrachten ein
Gas bestehend aus polarisierten Fermion. Auch dieses System kann mit
einem effektiven Hamiltonian dargestellt werden. Durch eine exakte Diag-
onalisierung gelangen wir zu einer, in frustrierten Systemen, unerwarteten
Schlußfolgerung: Es gibt keine Energielücke zwischen Grundzustand und
dem ersten angeregten Zustand aber trotzdem finden wir eine langreichweit-
ige Spin-Spin-Korrelation.

Im letzten Kapitel untersuchen wir die Möglichkeit, Wignerkristallisation
in schnell rotierenden polarisiertem Dipolgasen zu beobachten. Wir vergle-
ichen die Energie eines Wignerkristalls mit der Energie eines Laughlinzus-
tandes und stellen fest, dass unter einer kritischen Füllrate der Wignerkristall
energetisch günstiger ist. Weiterhin beschäftigen wir uns mit der Stabilität
einer solchen Kristalls und finden unter Berücksichtigung von Phonon-Pho-
non Wechselwirkungen heraus, dass der Wignerkristall schmilzt, wenn die
Füllrate einen kritischen Wert überschreitet. Wir können nun das Linde-
mannkriterium für den schnell rotierenden dipolaren Wignerkristall formu-
lieren. Die kritische Füllrate für den energetischen Phasenübergang ist etwas
größer als für den Schmelzpunkt.

Schlagwörter: stark korrelierte Systeme, optische Gitter, Wigner Kristall



Abstract

In this thesis we examine the properties of ultracold strongly correlated quan-
tum gases in optical lattices and rotating traps.

In the first chapter we consider fermions on top of a bosonic Mott back-
ground in an optical 2D lattice with a square unitary cell. Due to the interac-
tion between fermions and bosons “composite fermions”, i.e. fermions paired
with bosons, or bosonic holes, are formed. For a small tunneling rate we can
derive an effective Hamiltonian, describing the dynamics of the “composite
fermions”. A simple mean-field calculation yields a Mott-insulator-superfluid
phase boundary, which we confirm then numerically.

The next chapter deals with quantum gases in optical trimerized kagomé
lattices. Loading bosons into the lattice we find a new kind of Mott insu-
lator with a fractional number of atoms per trimer (1/3, 2/3, 1, · · · ). For
a fermion-fermion mixture we obtain an effective Hamiltonian, describing a
Heisenberg antiferromagnet. Moreover, we explore a gas of single component
(polarized) interacting fermions, and obtain also here an effective Hamilto-
nian. Diagonalizing the system exactly we discover a new quantum state: a
“quantum spin-liquid crystal”.

In the last chapter we consider Wigner crystallization in rapidly rotating
dipolar fermion gases. For low filling factors (ν < 1/7) the Wigner crystal
is energetically more favorable than another quantum state: the Laughlin
liquid. We analyze also the stability of the Wigner crystal by incorporating
phonon-phonon interactions, and realize that below a critical filling factor
the Wigner crystal is stable. We formulate the Lindemann criterion for the
Wigner crystal in a rapidly rotating dipolar gas.

Keywords: strongly correlated systems, optical lattices, Wigner crystal
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Chapter 1

Introduction

1.1 Atomic and molecular BEC

1.1.1 Historical review

Many of the branches of cold atom physics, which have been developed in the
last few years, owe their existence to the observation of atomic Bose-Einstein
condensate (BEC).

BEC was predicted by Bose and Einstein [30, 73] in 1924 as a quantum
phase characterized, below a critical temperature, by a macroscopic occupa-
tion of the single particle ground state. Einstein has shown that this phase
occurs in a non-interacting gas. A remarkable feature of BEC in weakly in-
teracting gases is that the coherence length can be of the order of the system
size, or even longer. Already in 1938 London conjectured that BEC could be
the explanation for another phenomenon, namely the superfluidity of liquid
helium [147], which has been confirmed by Penrose and Onsager [183]. Al-
though these two phenomena are tightly related, they share also differences.
For instance, strictly speaking, BEC does not exist in 1D, whereas there are
1D superfluid systems.

In order to realize atomic BEC, extremely low temperatures (in the nK
regime), “high” atom densities, and long storage times are required. Inten-
sive studies and progress in cooling techniques led, in 1995, to the seminal
observation of atomic BEC of Rubidium (Rb87) by the group of Cornell and
Wieman [10], and of Sodium by the group of Ketterle [63].

1.1.2 Cooling methods

Laser cooling

Already before the first BEC experiments a lot of efforts have been done to
develop reliable cooling techniques, such as laser cooling [47], where atoms
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moving towards a red detuned laser beam will shift into the resonance with
the laser. The absorbed photons transfer a momentum opposite to the mov-
ing direction, while the emission goes in an arbitrary direction and has on
average no effect. An atom moving away from the red detuned laser is shifted
out of resonance and will unlikely absorb a photon. Laser pointing from all
directions have the effect of a viscous damping force. Laser cooling of alkali
atoms has led to yet another discovery of polarization gradient cooling and
the Sysiphus effect [57], that allow to reach µK temperatures, although it
was not sufficient to obtain a BEC.

Evaporative cooling

The final breakthrough came with the development of the evaporative cool-
ing, where the Rabi-frequency transition between magnetically trapped and
free states removes the hottest atoms (i.e. those with the highest energy) from
the velocity distribution. Elastic collisions between the remaining particles
restore the thermal equilibrium at a lower temperature. Using this method
in early experiments spin-polarized hydrogen atoms have been cooled down
into the mK regime [113, 158]. Already 1994 Sodium was successfully cooled
down to tens of µK [64]. In order to achieve a condensate its life-time should
be longer than the rethermalization time. In some cases, it is not possible
to fulfill this condition. For instance, polarized fermions do not rethermalize
at all, because Pauli’s principle forbids the exchange of energy via s-wave
scattering.

Sympathetic cooling

A third method to cool atoms, which are, due to their intrinsic properties,
not appropriate for evaporative cooling, is sympathetic cooling [109, 170].
The atoms exchange energy with another species via s-wave scattering. The
atoms of the second species, acting as a reservoir, are cooled down with a
lossy evaporative cooling. Using this method fermionic Li6-atoms have been
already cooled down to 0.05TF [108], where TF is the Fermi temperature.

1.1.3 So far achieved atomic condensates

Motivated by the successful condensation of Rb87 and Sodium atoms, sev-
eral groups created successfully BEC’s with other species, such as Li7 [32],
atomic Hydrogen [54], metastable Helium [197], Rb85 [51], Potassium [168],
Ytterbium [210], quite recently Cesium [230], and Chromium [208].
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1.1.4 Molecular condensates

Further important achievements are the creation of ultracold molecules and
molecular condensates using Cesium [125], with Potassium [102], Rb85 [67],
and Li6 [242]. By sweeping the magnetic field over a Feshbach resonance, the
cooled fermions are brought in to a relative stable molecular state, where the
size of the molecules are of the order of the scattering length.

1.1.5 Coherence phenomena and phase fluctuations

Due to the long coherence length, the question arose whether phenomena ap-
pearing in electro-magnetic waves are also observable in BEC. Consequently,
efforts towards the development of an atom laser [162] have been done and
succeeded by the coherent out-coupling of atoms from a BEC reservoir. An-
other phenomenon in 2D, known to appear also in liquid helium, is the occur-
rence of vortices [2, 28, 45, 160], a quantized circulation of the condensate.
The dynamics of vortices itself is an interesting topic (see e.g. [152, 202]).

In order to make reliable predictions for the lifetime of the condensate,
it is also important to understand the finite temperature effects [185] and
phase fluctuations [112].

1.1.6 Contact interaction between atoms

Atoms approaching each other start to reciprocally perturb their electronical
states, which is for low energy essentially the s-wave scattering. The strength
of this interaction depends on the energy difference between the levels of the
two atoms. Feshbach resonance [212] allows the shifting of molecular energy-
levels and provides a useful tool for tailoring the amplitude, and sign of the
interaction. Since the interaction regime is, compared to typical system size
and coherence length, weak and very short-ranged, one can often treat this
problem in the mean-field approximation. The dynamics is well described
by the Gross-Pitaevski-Equation, which binds again cold matter physics to
nonlinear electrodynamics and other branches of nonlinear physics [69]. A
striking experiment was the creation of dark solitons [39] for repulsive and
bright solitons [130, 207] for attractive interatomic interaction.

In recent experiments the optically manipulation of the scattering length
a has been examined [211]. The so-called optical Feshbach resonance has
been therotically studied in reference [77].
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1.1.7 Dipole-dipole interaction

The exploration of systems with long range interaction is also a very fasci-
nating enterprise. An experimentally feasible system could be a dipolar gas.
Chromium with its relatively strong magnetic dipole [208], is the first example
of experimentally achieved dipolar gas. Also the effects of the dipole-dipole
interaction have been observed clearly, the dipole interaction is several orders
of magnitude higher when electrical dipole forces, present in heteronuclear
molecules, are involved. Therefore, efforts towards the creation of dipolar
molecular gases have been made (e.g. see [23, 123, 216, 217]). Another im-
portant feature of the dipolar gases are the effects caused by the anisotropy
of the dipole-dipole interaction.

1.2 Strongly correlated systems

Although interacting atoms are a perfect playground for studying weakly
interacting gases, it is possible also to study in these settings the, so-called,
strongly correlated systems.

1.2.1 Low dimensional systems

Examples of strongly correlated systems are low dimensional gases, such as a
1D Bose gas in the Tonks regime, which has been experimentally observed by
the groups of Bloch and Kenoshita [132, 181]. Progress in the realization of a
Luttiger liquid, whose key signature is the spin-charge separation [134], has
been reached by the cooling of fermionic atoms into the quantum degenerated
regime [192].

1.2.2 Quantum computing

Quantum information has given new impulses towards the understanding
of quantum phase transitions [117, 137, 163, 172, 176, 178, 221, 222, 226,
238], and helps to get a better insight into the known (and develop new)
numerical methods of treating strongly correlated many-body systems [49,
56, 223]. In general, the physics of strongly correlated systems provides
various ways of quantum information processing (cf. [119, 155]). It has
been also suggested to realize special purpose quantum computers, so-called,
quantum simulators [48] of strongly correlated systems. For the original idea
of quantum simulators see [79].
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1.2.3 Rapidly rotating dipolar gases

A rapidly rotating gas can be properly described by a model of charged
particles moving in a magnetic field. Cold atom physics uses here the results
of many years of research in electronic systems. But, the 1/r3 behavior for
dipole-dipole interactions, compared to the 1/r potential of electrons, is a new
aspect. In the first Landau level, for high filling factors, the ground state of
electrons are described by Laughlin wavefunctions [138, 188]. Such solutions
are suggested to appear also in dipolar gases [15], hence cold atom physics
links to the field of the fractional quantum Hall effect. Contrary, at very low
filling factors, Wigner crystallization is expected to appear. Localizations of
atoms in strongly correlated systems with long range interactions have been
first suggested by Wigner [237].

1.2.4 BEC-BCS transition

Another many-body effect is connected to recently observed BEC-BCS tran-
sition [46, 102, 131]. For a positive scattering length in a gas of fermionic
atoms in two different internal states the formation of molecules has been ob-
served. At sufficiently low temperatures the bimodal momentum distribution
indicates a condensate of these molecules. On the other hand, sweeping the
scattering length two negative values weakly bound BCS pairs have been cre-
ated. BCS denotes the Bardeen-Schrieffer-Cooper transition to a superfluid
state in a Fermi gas or liquid. (see also [17, 18, 103, 240, 241, 243]). Beside
the possibility of creating a molecular BEC, the experiment deals indirectly
with open questions of high Tc superconductivity.

1.3 Optical lattices

The research on condensates stimulated the development of tools for manip-
ulations and engineering of quantum states.

A very widely used, maybe the most important tool, employs the interac-
tion of atoms and light. Depending on the square of the laser field amplitude
|E0(x, t)|2, the energy of the atoms is either lifted up for red- or shifted
down for blue-detuned light, where the detuning denotes the difference of
the shifted light beam from the resonance frequency of the atom. This is
the so-called dynamical (AC) Stark effect. The laser intensity pattern acts
as a conservative potential V (x). The dynamics of the atoms is effectively
described by H = p2/2m+V (x). This simple technique proved to be a very
useful tool in many aspects. For instance, alternatively to a magnetic field,
it can be used to build an external trapping potential.
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A laser field can be used to manipulate in situ and “in vivo” the potential
for the condensate by varying the desired configurations of V (x, t). In this
way it is possible to produce dark solitons [39], stirring condensates to create
crystallized vortices [153, 161] and populate excited modes such as quadropol
modes [175].

The opportunity to build arbitrary potentials with light fields inspired
Jaksch [120] to employ the superfluid-Mott-insulator transition, which can
be used for quantum computing. One of the elements of this proposal was
the perfect preparation of the initial state of the quantum register (atoms
in the lattice). To this aim Jaksch et. al proposed to perform an optical
lattice using off-resonant light fields. Using optical lattices the observation of
the phase transition between Mott insulator and superfluid phase, predicted
by [120] has been experimentally achieved [100, 101] with 87Rb atoms. By
changing the laser intensity and/or detuning, one can control the tunneling to
neighboring sites, as well as the strength of the on-site repulsive interactions,
and therefore one is able to switch between the superfluid phase (dominated
by the tunneling), and the Mott insulator phase with a fixed number of
atoms per site [100, 101]. The free tunability of parameters “in vivo” is a
remarkable advantage compared to systems considered in condensed matter
physics [122].

1.3.1 Application of optical lattices

Without exaggerating, it can be said that the development of optical lattices
created a new and rich field within the area of cold atomic physics, which is
now linked not only to condensed mater physics [100, 101], but also examines
topics related to quantum information theory [119] and even high energy
physics [121, 180, 194].

1.3.2 Lattices in different dimensions

Atoms in optical lattices can be examined in quasi-1D, quasi-2D, or 3D sys-
tems. For example, in the Tonks Giradeau limit in 1D lattices, where bosons
with a strong repulsive interaction, the so-called hardcore bosons, behave in
many aspects like fermion [174]. A very deep potential in two dimensions and
a weak confining in the third dimension leads to an array of 1D configurations
[169].
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1.3.3 The models

The physics of ultracold atomic gases in optical lattices is in general described
by various versions of the Hubbard model, which is probably the most impor-
tant and structurally simplest model of condensed matter physics, capable
nevertheless to describe an enormous variety of physical phenomena, effects
and quantum phases [14, 75], hence atomic ultracold gases serve as a “Hub-
bard model tool-kit” [122]. Moreover, a fermion-fermion model eventually
allows for quantum simulations of high Tc superconductivity [115]. A boson-
fermion model describes the creation of composite fermions via fermion-
boson, or fermion-bosonic hole pairing, c.f. [7, 78, 135, 142]. In a certain
limit Hubbard models reduce to spin models and this possibility has been
also intensively investigated recently for both atomic gases [68, 70, 89, 90],
and ion chains [165, 187]. Spin models enjoy particular interest because
of their simplicity, and thus possible applications for quantum information
processing (c.f. [68, 71]).

1.3.4 Different lattice types

Of course, using lasers one is not confined to square lattices. It is rela-
tively easy to implement setups that can create triangular lattices [186]. In
the regime of current experimental accessibility lies the possibility of creat-
ing trimerized kagomé lattices [198], or even more complicated and exotic
super-lattices, not necessarily having a periodic structure, which is also an
interesting topic to study [105, 106, 186, 190]. Naturally, with higher com-
plexity, the number of tunable parameter increases. In trimerized kagomé
lattice, for instance, one can control the trimerization degree from a perfect
kagomé lattice to a perfect triangular lattice. The topic of particular interest
in this context is the behavior of single species, either bosons or fermions, or
mixtures in trimerized kagomé lattices. Loading fermions in a kagomé lattice
opens the possibility of studying frustrated atomic systems [59], that have
been long investigated and are in the center of interests of modern condensed
matter physics [144, 166].

1.3.5 Analytical and numerical methods

By creating ultracold quantum gases in optical lattices, atom optics is inher-
iting a body of still open questions. The difficulties lie in the fact that apart
from renormalization group approaches, that have limited applications, nu-
merical methods offer the only possibility to examine such systems. In this
respect, Quantum Monte Carlo simulations of the Heisenberg antiferromag-
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net on frustrated lattices, such as triangular and kagomé lattices, are known
to suffer from a “negative sign” problem, so that in 2D and 3D exact diag-
onalization seems to be the only reliable method to simulate these systems.
In 1D one has more methods such as Density Matrix Renormalization Group
methods [191, 235], the Vidal algorithm [224, 225] or the projected entangled
pair state method of Verstraete and Cirac [220] which, in principle, works
also in 2D, but this requires further studies. Moreover, exact diagonalizations
are only possible up to a small number of particles [24]. Analytically one has
to rely either on bosonization methods [93, 96, 159] or, in certain specific 1D
systems, the Bethe ansatz [22, 75]. With optical lattices the opportunity to
study experimentally frustrated antiferromagnets is opened.

1.3.6 Bose glass and Anderson localization

One assumes that by introducing a random pattern either for the potential,
or for the hopping elements, and by taking only one bosonic species one
can already create Anderson localization [11], Bose glass [61] or, in boson-
fermion mixtures, a spin glass [5, 196], beside superfluid and Mott insulator
phases. Over many years, the Anderson localization itself attracted a lot of
attentions [88] and there is the hope of getting a deeper understanding of this
phenomenon by using optical lattices. Pseudo-randomness can be generated
by a standing waves with incommensurate frequencies [66]. To create real
randomness one can use a speckle pattern [151, 201], or one can also “quench”
auxiliary atoms at random lattice sites as random scatters [91].

1.4 Outline

Beside the introduction and the outline, in chapter 1 tools and methods are
described. In particular, we explain briefly the derivation of the Hubbard
model from the field equation. Moreover, the mean-field approximation is
illustrated.

Chapter 2 is devoted to boson-fermion mixtures in square optical lattices.
The bosons form a Mott state. Depending on the sign and the strength of the
interaction between fermions and bosons, the presence of a fermions in a par-
ticular lattice cell will expel or attract bosons. The fermion and the bosonic
holes (or attracted bosons) form a composite fermion. Using a perturba-
tive expansion, an effective model describing the dynamics of the composite
fermions is derived. We consider the a phase transition between Mott insu-
lator and superfluid phase, using a mean field theory. A numerical method
based on the so-called time dependent Gutzwiller ansatz is illustrated, and
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is used to confirm the analytical results for the phase boundary.

Chapter 3 deals with quantum gases in trimerized kagomé lattices. First,
experimental setup is discussed. The Hubbard model is derived using Wan-
nier functions, respectively Gauss functions, obtained in a variational ansatz.
We examine three cases: A fermion-fermion mixture can be effectively de-
scribed with a Heisenberg antiferromagnet model. Applying a mean-field
theory to a Hubbard model describing a Bose gas, leads to Mott insulator
phases with non-integer filling factor per elementary lattice cell. For a single
component fermionic gas we obtain after an exact diagonalization an quan-
tum gas with properties of a Néel antiferromagnet and a spin-liquid, hence,
we term this gas a “spin-liquid crystal”.

In Chapter 4 the possibility of Wigner crystallization in a rapidly rotating
dipolar gas is considered. A rapidly rotating gas can be effectively described,
apart from the interaction terms, by a model of charged particles in a mag-
netic field. Together with long range dipole-dipole interaction, phenomena
similar to those appearing in an electron gas under the influence of a strong
magnetic field, can be expected. For example for a completely filled lowest
Landau level the solution is predicted to be a Laughlin state [15]. In elec-
tronical systems it is known that for low filling factors, charge density waves,
such as a Wigner crystal, are energetically favorable. First, we compare the
ground state energy of the crystalline phase with the energy of a Laughlin
wavefunction at various filling factors and expect a phase transition at a
critical filling factor. We also study the stability by incorporating perturba-
tively contributions, coming from phonon-phonon interaction. An imaginary
phonon dispersion relation is the signature of a melting Wigner crystal.

1.5 The Hubbard model

Standing electromagnetic waves create a periodic lattice potential for the
atoms. Such a lattice can be 1D, 2D or 3D. In 3D, three standing laser
waves, pointing in orthogonal directions are sufficient. In 2D the atoms
have to be strongly confined in the z-direction. The confinement has to be
strong enough to create an energy gap between two vibrational levels that is
bigger than any other relevant energy in the system. In 1D one needs this
confinement in two directions. The atoms interact via the potential Vs(x−y),
where x and y are the positions of the atoms. The lattice potential is Vl(r),
which is periodic. The Hamiltonian reads:

H = H0 +Hint , (1.1)
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with:

H0 =

∫

dx3Ψ†(x)

(

− ~
2

2m
∆ + Vl(x)

)

Ψ(x)

Hint =
1

2

∫

dx3

∫

dy3Ψ†(x)Ψ†(y)Vs(x − y)Ψ(y)Ψ(x) .

In the case, when the potential is:

Vs(x − y) =
4πas~

2

2m
δ(x − y) ,

the interaction Hamiltonian reads:

Hint =
4πas~

2

2m

∫

dx3Ψ†(x)Ψ†(x)Ψ(x)Ψ(x) , (1.2)

where as is the s-wave scattering length and Hint the self-interaction part of
the equation (1.1).

1.5.1 Localized wavefunctions

In the case of a huge potential amplitude the wells can be treated indepen-
dently. In a harmonic approximation the ground state of a single particle
wave is shaped like a Gauss function [182]. In general we can make the
following variational ansatz:

ψ(r) =
1

√

σxσyσzπ
3
2

e

„

− x2

2σ2
x

«

e

„

− y2

2σ2
y

«

e

„

− z2

2σ2
z

«

,

where σi are free parameters to minimize the energy. The set of Gauss
functions centered at different lattice sites is of course not a set of orthogonal
functions, but as long as the overlaps are small that does not pose a problem.
By decreasing the potential depth, however, the coupling between the wells
becomes more pronounced. In a periodic potential the scheme of Bloch is
then the quasi-correct treatment. There the Hamiltonian is diagonalized in
momentum space, and the Bloch functions are completely delocalized. In
order to combine the two opposite regimes Wannier [229] suggested a scheme
to obtain localized atomic functions using Bloch waves. For now, we restrict
ourselves to the first band. The Wannier function is constructed as [14]:

Wi(r) =
1√
N

∑

k

eiφkeirikψk(r) , (1.3)
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where ψk(r) are the Bloch functions with the quasi-momentum k. The phase
factor exp(irik) shifts the center of the Wannier function to the lattice posi-
tion ri, the ith lattice site. The Wannier functions centered at different lattice
sites are orthogonal. The phase coming with every Bloch functions exp(iφk)
is arbitrary, which leads, for N Bloch functions, to N − 1 free parameters.
Here we do not count the overall phase. These parameters can be used to
put certain restrictions to the Wannier function. For instance, the Coloumb
energy of two particles, described by Wannier functions, can be extremized.
Minimizing the width of the density function 〈Wi|r2|Wi〉 − 〈Wi|r|Wi〉2 is an-
other method to uniquely determine the phases. In 1D Kohn [133] was able
to show that a unique set of phases leads to maximally localized Wannier
functions which are characterized by an exponential decay of the envelope
functions in the tails. So far the spatial exponential decay of envelope func-
tions in 3D, taking into account only the first band, has not yet been proven
[157]. From now on, we consider only maximally localized Wannier func-
tions. Increasing the lattice potential, the shape of Wannier functions is
approaching Gauss functions.

1.5.2 Hubbard Hamiltonian

Having a relatively deep lattice potential and a small interaction, the Wannier
functions form a reliable basis. The field operator is expressed in the Wannier
basis and reads:

Ψ†(r) =
∑

i

Wi(r)c†i , (1.4)

where Wi is the Wannier function localized around the lattice site i. Plugging
equation (1.4) into the Hamiltonian (1.1), and using the mean-field approxi-
mation in equation (1.2) the Hamiltonian can be brought into the from:

H = −
∑

〈ij〉

tij(c
†
icj + h.c) +

1

2

∑

i

Uin̂i(n̂i − 1) +
1

2

∑

〈ij〉

Uijn̂in̂j , (1.5)

where the coefficients are:

tij =

∫

dx3Wi(x)

(

~
2

2m
∆ + V (x)

)

Wj(x) , (1.6)

Ui =
4πas~

2

m

∫

dx3|Wi(x)|4 , (1.7)

Uij =
4πas~

2

m

∫

dx3|Wi(x)|2|Wj(x)|2 .
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tij are the tunneling rates, also called hopping elements, between site i and

site j; Ui (Uij) are the self-interaction amplitudes. The ci and c†i are anni-
hilation and creation operators at lattice site i, which can obey, depending
on the considered model, fermionic or bosonic commutation relations. In the
following we denote fermionic annihilation operators with fi and bosonic an-
nihilation operators with bi. Of curse in the case of single component fermions
we set Ui = Uij = 0. If the wavefunctions are sufficiently strong localized, for
instance, when the lattice potential is deep, the density-density overlap of
Wannier function at different, not nearest neighbored, lattice sites is negligi-
ble. The same holds for the tunneling. Therefore, we consider tunneling and
density-density overlap only between neighbored lattice sites. This is in the
Hubbard model (1.5) depicted with a sum over 〈ij〉, labeling the neighboring
sites i and j. The model describes i) hopping between sites with a hopping
probability tij, ii) self-interaction energy between particles with amplitude Ui

iii) interaction between particles in neighboring sites with the amplitude Uij.
Depending on the commutation relation of the operators the model describes
bosonic or fermionic atoms. In the homogeneous case Ui, tij and Uij do not
depend on the lattice site.

1.5.3 Delocalized states

Without nonlinear interactions Ui and Uij the system is exact diagonalizable.
The eigenfunctions are Bloch functions, which are completely delocalized and
phase correlated. Unfortunately, such states are not present in the spatial
description of the Hubbard model. Therefore, it is difficult to classify phase
correlation in this frame directly. In principle, one could describe the system
with the Hubbard model in momentum space. The field operators are a
linear combination of operators, creating and annihilating Bloch waves. The
tunneling is calculated similar as in equation (1.6). The Wannier functions at
lattice position i and j are replaced by Bloch function with quasi-momentum
k and k′. Unfortunately, the self-interaction terms for larger differences of k
and k′ are non-vanishing. Hence, one has to sum in the tunneling term and
in the self-interaction term over all pairs k and k′, which is, compared to the
spatial Hubbard Hamiltonian, a demanding task.

Fortunately, the number of particles does not commute with the phase
operator [n̂,Φ] = i

�
, where n̂ is the number operator, and Φ̂ is the phase

operator [43]. Therefore, when in a given system the particle number per
lattice site is fixed (Mott insulator ) a common phase can not be determined.
On the other hand, when the phase is fixed (superfluid phase), the particle
number at each lattice site fluctuates. Possible candidates for an order pa-
rameter are the deviation of the particle number ∆n2 = 〈n̂2〉− 〈n̂〉2, and the
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superfluid order parameter ψ = 〈ci〉, where ci is the annihilation operator at
the site i and n̂ = c†c is the number operator. In subsection 1.5.4 it is shown,
that the superfluid order parameter minimizes also a variational parameter
in the mean-field theory.

1.5.4 Mean-field theory

The Hubbard Hamiltonian is acting in a Hilbert space of an enormous size.
M bosons distributed in a lattice with N cells leads to NM/M ! orthogonal
states. Brute force diagonalization is only possible for small systems with a
small number of atoms, it suffers then from finite size effects. A way to treat
systems with bigger size are analytical methods, such as the Bethe ansatz,
which however is limited to certain specific 1D systems [22, 75]. A very pow-
erful method to treat a huge range of systems is the Quantum Monte Carlo
algorithm (see e.g. [233]). In some frustrated spin systems, the Quantum
Monte Carlo algorithm suffers from the so-called “ negative sign” problem.
Moreover, this method is numerical demanding, since the computation time
grows rapidly with the demanded accuracy. Another way is the truncation of
the Hilbert space. In the past years successful methods have been developed,
such as the Density Matrix Renormalization Group methods [191, 235], or the
Vidal algorithm [224, 225]. Although attempts to treat systems with higher
dimensions have been made [219, 220], the main applications are 1D systems
with a sufficiently short ranged correlation length. Yet another method is
the strong coupling method [86], which can be applied to higher dimensions.
With relatively little effort one gets results, which have almost the accu-
racy obtained in a Quantum Monte Carlo simulation. For many problems,
the easiest method to get a good insight into the problem are the mean-
field considerations. In the mean-field description [195] one analyzes a local
cell exactly, and treats the site to site tunnel couplings perturbatively. The
Hamiltonian HMF is a sum of single-site Hamiltonians, and reads:

HMF =
∑

i

(

−t2d
(

ψc†i + ψ∗ci − ψψ∗
)

+ Un̂i (n̂i − 1) − µn̂i

)

, (1.8)

where ψ is a variational parameter, and d the dimension of the system. The
form of ψ can be obtained by calculating the energy of the ground state
of HMF, and subtracting the energy of this wavefunctions in the Hubbard
model. Since HMF is a sum of single site Hamiltonians, the ground state is a
product state of single site solutions. The energy difference per site is:

∆E =
E0

N
− EMF

2
= 2dt

(

ψ〈c†〉 + ψ∗〈c〉 − ψψ∗ − 〈c†〉〈c〉
)

.
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Apparently, the difference is minimal at ψ = 〈c〉. In many cases the interest
lies in the energy, which is perturbatively shifted by the neighbored cells.
The perturbation part in equation (1.8) is W = −t2d

(

ψc† + ψ∗c
)

. Up to
second order perturbation theory the ground state energy reads:

E = E0 − tψ2 +
∑

j 6=0

|〈Ψ0|W|Ψj〉|2
E0 − Ej

.

This simple tool gives, in many cases, a good hint for phase transitions
in a system. The method can be improved with little numerical effort by
modifying the superfluidity order parameter self-consistently [38].

In Bose systems for small hopping elements the ground state is a Mott
insulator, which is classified in the mean-field treatment with a vanishing
superfluid order parameter ψ = 0. Considering a square lattice in 2D or 3D
respectively, one has an integer filling per lattice site, and an exponential
decay of the phase coherence length. Creating a particle hole excitation
requires a finite energy, therefore, the Mott insulator phase is incompressible
[80]. In the superfluid phase |ψ|2 > 0 is finite. In 2D the phase correlation
decays algebraically with an increasing distance, and exhibits true long range
order in 3D. The latter statements are modified by the presence of external
trap potentials.



Chapter 2

Composite Fermions in Optical

Lattices

2.1 Introduction

The rethermalization time of an atom gas that initially is not in thermal
equilibrium depends on the scattering rate of the atoms, and determines the
applicability of evaporative cooling. However, for ultracold fermions evapo-
rative cooling is unreliable since they do not interact via s-wave scattering. In
this case, a suitable method is sympathetic cooling using a bosonic reservoir.
This possibility has led to several recent experiments on trapped ultracold
boson-fermion mixtures [108, 109, 167, 200]. So far, temperatures T ∼ 0.05
TF have been obtained, where TF is the Fermi temperature at which the
Fermi gas starts to exhibit quantum degeneracy (typically of the order of 1
- 10 µK).

Although the main goal of these experiments is to achieve the BCS tran-
sition in atomic Fermi gases, several groups have recently shown a growing
interest in the physics of ultracold boson-fermion mixtures themselves, in-
cluding the analysis of the ground state properties, stability, excitations,
and the effective fermion-fermion interaction mediated by the bosons [6, 42,
146, 189, 227]. Additionally, new experimental developments have drawn
attention to the behavior of these mixtures in 1D geometries [44, 62] and
optical lattices [8, 35, 159, 204]. Recently, the first experimental results of
bose-fermion mixtures in optical lattices have been reported [107, 177].

In this chapter a boson-fermion lattice gas is investigated, i.e. a mixture
of ultracold bosonic and fermionic atoms in an optical lattice. We discuss
the limit of strong atom-atom interactions (strong coupling regime) t ¿
U, V at low temperatures, where t is the tunneling rate, U denotes the self-
interaction strength of bosons, and V is the interaction strength between
bosons and fermions (see equation (1.5)). In the first part of this chapter
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the existence of novel quantum phases is predicted. In these phases fermions
are paired either with bosonic holes, if the interaction between fermions and
bosons is repulsive 1, or with bosons, if the interaction is attractive. In
the strong coupling limit the hopping can be treated perturbatively. For
sufficiently low temperatures (in real experiments in the order of 10nK)
we derive an effective Hamiltonian expressed solely with the new composite
fermions. The composite fermions may form a normal Fermi liquid, a density
wave, a superfluid, or an insulator with fermionic domains, depending on the
parameters characterizing the system.

In the second part of this chapter we determine the phase diagram of the
system for arbitrary values of the chemical potential, boson-fermion coupling
and tunneling (hopping) amplitudes, using a relatively simple mean-field
theory [195]. In this sense our results can be considered as a generalization
of the seminal analysis of the Bose-Hubbard model by Fisher et al. [80]. We
obtain the analytic form of the phase boundaries separating the composite
fermion phases, and the phase consisting of a bosonic superfluid coexisting
with a Fermi liquid.

The third part considers a numerical method to verify the analytic results
of the mean-field theory. First, we obtain the ground state by minimizing
the energy using a downhill method; then, the phase diagram is derived by
quasi-statically changing the system parameter using the time dependent
Gutzwiller ansatz. The results are shown to agree with the analytical deriva-
tions.

2.2 Description of the model

The system of fermions and bosons loaded in a lattice is described by the
Bose-Fermi-Hubbard model, which is an extension of equation (1.5):

HBFH = −
∑

〈ij〉

(tBb
†
ibj + tFf

†
i fj + h.c.)

+
∑

i

[

1

2
ni(ni − 1) − µni

]

+ α
∑

i

nimi , (2.1)

The boson-boson interaction amplitude U has been set here to be the energy
unit (see equation (1.7)); b†i , bj, f

†
i , fj are the bosonic and fermionic cre-

ation and annihilation operators, respectively, ni = b†ibi, mi = f †
i fi, µ is the

bosonic chemical potential, and α is the interaction energy between bosons

1The formation of composite fermions in gaseous boson-fermion mixtures was consid-
ered recently for the case of attractive boson-fermion interaction by [129].
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and fermions. The fermionic chemical potential is absent in HBFH, since the
fermion number is fixed. We assume that the temperature is sufficiently low,
or the lattice wells are deep enough, so that kBT ¿ ∆E, where ∆E is the
energy gap between the first and the second band. If the number of fermions
is smaller than the number of lattice sites ρF ≤ 1 , the atoms occupy the
lowest band [8] (c.f. [14]).

The Bose-Fermi-Hubbard model describes:

• nearest neighbor boson (fermion) hopping, with an associated negative
energy, −tB (−tF ); in the following we assume tF = tB = t.

• on-site repulsive boson-boson interactions with an associated energy
U = 1.

• on-site boson-fermion interactions with an associated energy α = V/U ,
which is positive (repulsive) in our consideration.

In the limit of small hopping t ¿ 1 and, α ' 1 the hopping part can be
treated perturbatively.

2.3 Composite fermions

2.3.1 Composite fermions without tunneling

In order to get a first insight into the physics of the system we analyze the
case of vanishing hopping (t = 0). By setting also α = 0, we obtain the
simplest case. Now fermions and bosons are decoupled, which means the
fermions can occupy any available many-body state on top of a bosonic Mott
insulator background.

The energy per lattice cell, which is caused by bosons, is EB = 1/2n(n−
1) − nµB. For µ = 0 the energy is minimized, if n = 0 or n = 1. At integer
µ = K the ground state is degenerated with boson numbers n = K, and
n = K + 1. Consequently, for any chemical potential K ≤ µ ≤ K + 1 the
energy is minimized for n = K + 1. In other words, the number of bosons
in the ground state is n = [µ] + 1, where [µ] is the integer part of µ. If α is
positive and sufficiently large the fermions push the bosons out of the sites
that they are occupying, or, if α is negative, they attract bosons. On a site
occupied by a fermion, the energy reads Ebf = 1/2n(n−1)−n(µ−α). Using
the same argumentation as above the energy is minimized if the number
of bosons is n = [µ− α] + 1. The presence of a fermion at a lattice site
alters the number of bosons by s = [µ] − [µ− α]. Depending on α, s can
be positive, when s bosons are repelled or negative, when (−s) bosons are
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attracted. Summarizing, for µ − [µ] + s > α > µ − [µ] + s − 1, a fermion
creates s holes or, in the case of s < 0, attracts (−s) bosons. The bosons
form a Mott insulator with ñ particles per site. If a fermion is placed at a
particular lattice site, it will expel s bosons. Hence, for the ground state we
obtain the following conservation law:

n(m) = ñ− sm . (2.2)

In the unperturbed ground state we will meet a fermion always paired with s
bosonic holes, or, in the case of s < 0 with (−s) additional bosons. Therefore,
we define the operator:

f̃i =

√

(ñ− s)!

ñ!
(b†i )

sfi

or

(
√

ñ!

(ñ− s)!
(bi)

−sfi

)

. (2.3)

The proof, that f̃i obeys the fermionic commutation relations is written in
the appendix (A.1). It is clear that s must not exceed the maximal possible
numbers of holes limited by ñ. On the other hand, s may attain arbitrary
negative integer values, i.e., we may have composite fermions containing one
fermion and many bosons in the case of very strong attractive interactions,
α < 0, and |α| À 1. From the point of view of experience, the cases of small
s are more interesting, since as we shall see below, the composite fermions
are more mobile for small s.

2.3.2 Phase diagram for zero tunneling

As it was described in the subsection 2.3.1 the form of the composite fermions
depends on the chemical potential for bosons µ and on interaction amplitude
between bosons and fermions α. A phase diagram for different forms of
composite fermions in the α-µ plane is depicted in figure 2.1. Crossing the
border lines between the phases means a fermion is attracting or repulsing an
altered number of bosons, or the number of bosons in the Mott background
changes. Hence, while the number of fermions is fixed, the number of bosons
varies. Of course, this is only possible in a grand canonical system, e.g. we
determine the number of bosons with the chemical potential. In experiments
the system is in a shallow harmonic trap. The r-dependent on-site potential
is equivalent to the spatially dependent chemical potential. With this setup,
one can examine more than one region at the same time.
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2.3.3 Composite fermions at a finite tunneling rate

Tracing out all sites apart of site i, the wavefunction is a linear combination of
all possible Fock states at the position i: |ψ〉i =

∑∞
b=0

∑1
f=0 cb,f |b, f〉i, where

the coefficients cb,f are normalized
∑∞

b=0

∑1
f=0 |cb,f |2 = 1; b (f)is the number

of bosons (fermions) in a particular Fock state. For zero tunneling the system
can be entirely described using the composite fermions, which corresponds
for the case of s = 1 and ñ = 1, to the state |ψ〉i = α|01〉i +β|10〉i. The mean
number of composite fermions at lattice site i is α2. On the other hand, for
finite tunneling one has to check carefully that α2 + β2 ≈ 1, which means,
the most relevant Fock states are |01〉 and |10〉.

µ

α

−1 0 1 2

−1

0

1

2

10

0 0 0

1
2 2

1

−1 −1 −1−1

Figure 2.1. The number of bosons per site in the Mott back-
ground depends on the chemical potential µ. For example the
number of bosons per site is 1 for 0 ≤ µ ≤ 1. The number in
the phase diagram show the number of bosonic holes in the pres-
ence of a fermion. If the number is negative, the fermion attracts
bosons.
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2.4 Degenerate perturbation theory

If the kinetic part H1 = −t∑〈ij〉

[

b†ibj + f †
i fj + h.c.

]

is sufficiently small it

acts as a perturbation of the diagonal part of the Hamiltonian:

H0 =
∑

i

1

2
ni(ni − 1) − µni + αmini .

In the case of vanishing t, and a filling between 0 and 1 fermions per lattice
site, the ground state consisting of composite fermions, is highly degenerated,
e.g. a lattice with N sites and 0 < M < N fermions has

# =

(

N
M

)

orthogonal ground states. We introduce a projector P , which is projecting
any state into the subspace of ground states. The operator Q is orthogonal
to P (Q + P = 1). Hence Pψ = ψ0 and Qψ = ψ1, where ψ0 is an element
of the subspace of degenerated ground states with the corresponding energy
E0 and ψ1 is an exited states. We now apply Q on the Hubbard model (2.1):

Q (H0 +H1) (ψ0 + ψ1) = (E0 + E1)ψ1

⇒ QH0ψ1 + QH1ψ0 = Q (E0 + E1)ψ1 ,

here QH1Qψ = QH1ψ1 is omitted. Therefore, we can express:

ψ1 = Q 1

E0 + E1 −H0

QH1ψ0 .

On the other hand, applying P to equation (2.1) yields:

PH0ψ0 + PH1ψ1 = (E0 + E1)ψ0

⇒
(

PH0P + PH1Q
1

E0 + E1 −H0

QH1

)

Pψ0 = (E0 + E1)ψ0 . (2.4)

This is an effective Hamiltonian acting in the space of the ground states of
H0. We expand equation (2.4) up to second order in t:

{

PH0P + PH1Q
1

E0 −H0

QH1P
}

ψ0 = Eψ0 . (2.5)

The left hand site of this equation acting on any state yields elements of
the degenerated ground state. H1 describes the process of tunneling. For the
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a)

b)

c)
ji

Figure 2.2. a) With the hopping of a fermion from site i to site
j one application of H1 transforms the ground state to an excited
state (big red line). b) Only one part of the second H1 brings
the state back into the subspace of degenerated ground states as
shown in c) (big red line, while the small dashed lines would lead
to other excited states). In the same way the holes hopping to
another place have to come back.

non-trivial case, where s 6= 0 only few contributions of the twofold application
of H1 are important. A process where a boson (fermion) tunnels from site
i to site j is only contributing when in the second hopping process brings
it back from j to i. This virtual tunneling is illustrated in figure 2.2. In
general, the perturbation part of equation (2.5) takes the form:

PH1Q
1

E0 −H0

QH1Pψ0 =





∑

〈ij〉

b†ibj
1

E0−H0

bib
†
j +
∑

〈ij〉

f †
i fj

1

E0−H0

fif
†
j



ψ0.

(2.6)

Up to the second order perturbation theory hopping of composite fermions
is allowed only for |s| = 1. For s = 1 the hopping for composite fermions
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comprises the hopping of a boson and of a fermions and is:

PH1Q
1

E0 −H0

QH1Pψ0 =





∑

〈ij〉

b†ibj
1

E0 −H0

fif
†
j

+
∑

〈ij〉

f †
i fj

1

E0 −H0

bib
†
j + h.c.



ψ0 . (2.7)

The situation is similar for s = −1, where, for the bosons, only the indices i
and j have to be exchanged. In order to analyze equation (2.6) we need the
values of the denominators, which are:

E0 − E(ni + 1, nj − 1,mi = 0,mj = 0) = −(1 −mi)(1 −mj)

E0 − E(ni + 1, nj − 1,mi = 1,mj = 0) = mi(1 −mj)(−α− 1 + s)

E0 − E(ni + 1, nj − 1,mi = 0,mj = 1) = (1 −mi)mj(α− 1 − s)

E0 − E(ni + 1, nj − 1,mi = 1,mj = 1) = −mimj

E0 − E(ni, nj,mi = 0,mj = 1) = −(1 −mi)mjαs ,

where E(ni, nj,mi,mj) is the energy and ni, nj, mi and mj are the cor-
responding number of bosons and fermions occupying the places i and j.
Terms, constant or linear in mi, are energetically independent of the con-
figuration. If we only consider bilinear terms mimj, the perturbative part
reads:

PH1Q
1

E0 −H0

QH1Pψ0 =
∑

〈ij〉

δmi,1δmj ,1

(

ñ(ñ− s+ 1)

1 + α− s
+

(ñ− s)(ñ+ 1)

1 − α + s

−ñ(ñ+ 1) − (ñ− s)(ñ+ 1 − 2) +
1

α2

)

= Keff

∑

〈ij〉

m̃im̃j ,

with the density operator m̃i = f̃ †
i f̃i and:

Keff = 2t2
{

ñ(ñ+ 1 − s)

1 + α− s
+

(ñ− s)(ñ+ 1)

1 − α + s

+
1

αs
− ñ(ñ+ 1) − (ñ− s)(ñ+ 1 − s)

}

.

For s = 0 the fermions and bosons are practically independent, hence, a
perturbative treatment is not required. If |s| = 1 the perturbative expansion
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up to second order in t allows hopping of composite fermions. For s = 1 the
corresponding terms of equation (2.7) can be analyzed:

∑

〈ij〉

f †
i fj

1

E0 −H0

bib
†
j + b†ibj

1

E0 −H0

fif
†
j = −t2

∑

〈ij〉

(1 −mi)mj2
ñ

α
,

while for s = −1 the result is:

∑

〈ij〉

f †
i fj

1

E0 −H0

b†ibj + b†ibj
1

E0 −H0

f †
i fj = t2

∑

〈ij〉

(1 −mi)mj2
ñ+ 1

α
.

In terms of composite fermions the effective Hamiltonian reads:

Heff = −Jeff

∑

〈ij〉

(

f̃ †
i f̃j + h.c.

)

+Keff

∑

〈ij〉

m̃im̃j , (2.8)

with Jeff = t22ñ/α for s = 1 and Jeff = t22(ñ + 1)/α for s = −1. This
model was studied using a Gutzwiller ansatz in reference [196]. In order to
consider hopping for composite fermions with |s| > 1, higher order terms
in t are required. In experiments the temperature has to be lower than
the typical energy scales of the system. Studying the effective Hamiltonian
for |s| = 1 the required temperature is kT ¿ Ut2 (t is normalized by U).
Considering the effects of higher order terms is more demanding, since the
required temperature drops with higher orders in t.

2.5 ”Simple man’s” mean-field theory

With the quite simple technique of changing the hopping element for bosons
by ramping the lattice depth, Greiner et al. have shown the transition from
a Mott insulator to a superfluid phase and vice-versa in a 3D optical lattice.
The same technique should be applicable for examining the phase transition
in our system. When working with composite fermions it is necessary to
know, at least, approximately the boundary of the phases. In this section
we analyze this problem using a simple version of mean-field theory. These
results, however can be confirmed using more sophisticated methods as quan-
tum Quantum Monte Carlo simulation, strong coupling expansion, or in 1D
with Vidal’s algorithm or Density Matrix Renormalization Group methods
[235], respectively in 2D with the method developed by F. Verstraete and
J.I. Cirac [219]. For simplifications we consider the system in the case of
vanishing temperature T → 0, but still kBT À tF , in such a way that we
can safely assume tF = 0. In order to analyze the relevant intermediate
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case tB ' U, V , we employ a mean-field formalism [80, 195, 218], where we
analyze only homogeneous phases. It is shown in appendix (A.2), that the
homogeneous phase, at least, is energetically a local minimum in the Hilbert
space. If the V is sufficiently small, the ground state is homogeneous. The
analysis of finite temperature effects and inhomogeneities caused by the trap
potential [19] is interesting in itself, and has been recently the subject of
investigations in [52]. It is particularly interesting, that a random on-site
chemical potential in a fermion-boson mixtures can lead to various phases in
disordered systems [196].

We use the variational parameter, also known as the superfluid order
parameter, ψ = 〈bi〉 = 〈b†i〉, which is independent of the lattice site. Closed to
a Mott insulator state (ψ−bi)(ψ−b†i ) = O2 holds and, neglecting higher order
in the fluctuations, we can substitute the kinetic term b†jbi = ψ(b†j + bi)−ψ2.
In this way, we model the Hamiltonian HBFH (2.1) by a sum of single-site
Hamiltonians:

HMF =
∑

i

H0i −Wi , (2.9)

with

H0i =
1

2
ni(ni − 1) + αnimi − µFmi − µBni + 2dtBψ

2

Wi = 2dtBψ
(

bi + b†i

)

,

where d is the spatial dimension.
As previously discussed (see equation (2.2)), the ground state of H0i con-

sists of n(m) = ñ − sm bosons per site, where m is the number of fermions
at a particular lattice site. s depends on the particular region in the phase
space plotted in figure 2.1. If one has a fermionic density of 0 ≤ ρF ≤ 1
fermions per lattice the ground state can be chosen to be homogeneous:

|ψ〉 = (1 − ρF )|ñ,m = 0〉 + ρF |ñ− s,m = 1〉 .

In the ground state, for a given fermionic filling factor ρF , the probability
that a fermion occupies a particular lattice site is ρF , respectively (1 − ρF )
for the absence of a fermion. Therefore, the ground state can be written as:

|φ0〉〈φ0| = (1 − ρF )|n = ñ,m = 0〉〈n = ñ,m = 0|
+ ρF |n = ñ− s,m = 1〉〈n = ñ− s,m = 1|.

The zeroth-order energy is of the form E0 +2dtBψ
2, where E0 = E0(ñ, 0)(1−

ρF ) + E0(ñ− s, 1)ρF , with

E0(n,m) =
V

2
n(n− 1) + Unm− µBn− µFm . (2.10)
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Due to the form of Wi in equation (2.9), the lowest order correction intro-
duced by the tunneling occurs at the second order perturbation theory:

E2 = ψ2
∑

n

{ |〈ñ, 0|W|n, 0〉|2
E0(ñ, 0) − E0(n, 0)

(1 − ρF )

+
|〈ñ− s, 1|W|n, 1〉|2

E0(ñ− s, 1) − E0(n, 1)
ρF

}

,

where W =
∑

i Wi. Following the Landau argument for second order phase
transitions, one can easily write E = E0 + 2dtBrψ

2 + O(ψ4). The form of r
is derived in the appendix and reads:

r = 1 − tB2d



(1 − ρF )





(√
ñ−

√
ñ+ 1

)

(ñ− µB) +
√
ñ+ 1

(ñ− µ̃B − 1) (ñ− µB)





+ ρF

(

(√
ñ− s−

√
ñ− s+ 1

)

(ñ− s+ α− µB) +
√
ñ− s+ 1

(ñ− s+ α− µ̃B − 1) (ñ− s+ α− µB)

)]

.

If r > 0 the system minimizes the energy at ψ = 0 (normal phase), whereas,
if r < 0, a nonzero ψ (superfluid) is energetically favorable. Therefore,
the curve r = 0 is a 2D manifold and describes the boundaries between a
superfluid phase and a Mott insulator. We consider two limits. First, without
fermions (ρF = 0), the Mott loops are independent of α, as it was discussed
in reference [80]. If ρF = 1 the fermions form a background and change
effectively the chemical potential for the bosons. The chemical potential
increases linearly with α. Interesting are the intermediate states 0 < ρF < 1.

In figure 2.3 we have depicted the phase boundaries (r = 0) for different
values of α and different regions in the µB-tB phase space at different filling
factors.

2.6 Numerical results

An exact treatment of the problem can be performed by incorporating the
complete Hilbert space. In a system with M lattice sites, F fermions and B
bosons the number of orthogonal states is:

# =

(

M
F

)

MB

B!
.

The Hilbert space of a relative small square lattice with 10 × 10 sites and
half filling of bosons, respectively fermions has ≈ 0.3 × 1065 states. So far,
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Figure 2.3. The phase boundary obtained in mean-field approx-
imations are depicted by the surface plots for different fermion
fillings: a) for ρF = 0.1, b) ρF = 0.5 and c) ρF = 0.9.

we are not able to diagonalize such systems exactly. For large systems, every
numerical method truncates the Hilbert space. It turned out that in 1D Vi-
dal’s algorithm [224, 225] and routines using density renormalization groups
[235] are reliable. Both routines only consider the relevant low dimensional
subspace of an exponential large Hilbert space. In 2D or higher dimension
only in limited cases such routines are applicable [219]. In these dimensions,
despite an exponential decay of the eigenvalues of the density matrix, the
number of relevant non-truncated states is increasing too fast with the sys-
tem size [53]. To examine systems in 2D and 3D the Quantum Monte Carlo
simulation is an appropriate routine [233]. Satisfying results can be obtained
using the mean-field approximation. In higher dimensions the mean-field
approximation becomes exact [92], but it is already reliable in 2D or 3D.

One way of treating the system in a mean-field approximation is to use
the Gutzwiller ansatz, which is a product state of independent local site
solutions. The local solution is a linear combination of Fock states, hence,
the general Gutzwiller ansatz reads:

|φ〉 =
∏

i

Nmax
∑

ni=0

1
∑

mi=0

f (i)
n,m|ni,mi〉 ,

where n denotes the number of bosons and m the number of fermions. The
Gutzwiller coefficients fn,m satisfy the normalization condition

∑

nm |fn,m|2 =
1. The index i runs over all lattice sites. We neglect fermionic anticommuta-
tion rules between operators at different sites 2. As it is shown in figure 2.4,

2For a detailed discussion see appendix (A.4).
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for a low average occupation density for bosons and relative small hopping,
the value of the Gutzwiller coefficients for increasing ni drops fast. For n = 1
we choose Nmax = 5.
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Figure 2.4. The modulus square of Gutzwiller coefficients versus
the tunneling rate for µ = 0.1 and minimized energy. f 2

4 is already
negligible. Also plotted is the number of particles.

In the following, we consider only homogeneous phases, although the cal-
culation can be straightforwardly extended to inhomogeneous phases. Using
periodic boundary conditions, the ground state can be found by minimizing
the energy on a single cell.

Starting from the chosen ground state, we evolve in the phase space by
quasi-statically varying the parameters α and t in a time evolution. In order
to perform this time evolution we extremize:

∂

∂f ∗
n,m

〈i~∂t −H〉 = 0 ,

hence, for the Gutzwiller coefficients we get:

iḟ (i)
n,m =

(

1

2
n(n− 1)

)

f (i)
n,m + tb

[

Φb∗
i

√
n+ 1f

(i)
n+1,m + Φb

i

√
nf

(i)
n−1,m

]

+ tf

[

Φf∗
i δm,0f

(i)
n,1 + Φf

i δm,1f
(i)
n,0

]

+ αδm,1nf
(i)
n,1 ,



28 Chapter 2. Composite Fermions in Optical Lattices

 0

 0.5

 1.5

 2

 0  0.01  0.02  0.03  0.04

 1

 0.05

µ

t

A

A

B

B

Figure 2.5. Phase diagram as a function of the hopping t, and
the bosonic chemical potential µ, for α = 0.25 and ρF = 0.25.
Thin red solid lines: analytical results for tF = 0; Dashed solid
lines: numerical results for tF = tB = t. Phases A are formed
by a Mott insulator phase for the bosons and a Fermi liquid for
the fermions. Phases B are characterized by the formation of
fermionic composites with one fermion and one bosonic hole.

where

Φb
i =

∑

〈ij〉

〈ΨMF |bj|ΨMF 〉 ,

Φf
i =

∑

〈ij〉

f
(j)∗
n,0 f

(j)
n,1 .

These equations determine the dynamics of the fn,m coefficients in the phase
space, and constitute the basis of what has been called dynamical Gutzwiller
ansatz.

In order to draw a phase diagram we want to evaluate the chemical po-
tential at different points in the µ-tB plane. We obtain the chemical potential
by launching two trajectories ψ0(t = 0), ψ1(t = 0) with, respectively, a num-
ber of bosons NB and NB + δN , where δN ¿ NB. We evolve the parallel
trajectories while changing the parameter tB, or α. The chemical potential
can be then approximated as:

µB(t) ≈ 〈ψ1(t)|H(t)|ψ1(t)〉 − 〈ψ0(t)|H(t)|ψ0(t)〉
∆N

.
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During the time evolution the number for bosons and fermions is con-
served, which can be seen by computing the commutation relation of the
bosonic number operator with the kinetic part of the Hamiltonian:

−tB
∑

i

∑

〈kl〉

[

b†ibi, b
†
kbl

]

= −tB
∑

i

∑

〈kl〉

b†i

[

bi, b
†
k

]

bl + b†k

[

b†i , bl

]

bi

= −tBi
∑

〈kl〉

b†kbl − b†kbl = 0 .

Also all other parts of the Hamiltonian (2.1) commute with the fermionic
and bosonic number operator.

Technically, we compute in the first step the ground state by minimizing
the energy using a standard downhill method. The ground state is calculated
for a relative big tB = tF , to assure that we certainly enter a superfluid phase.
We vary the chemical potential for bosons and fermions in order to get the
desired number of particles.

For finite values of α the true energetically minimum is reached, when
the fermionic and/or the bosonic particle number is zero. This can be easily
illustrated for tB = tF = 0. The Hesse matrix for the energy reads:

(

d2E
dndn

d2E
dndm

d2E
dmdn

d2E
dmdm

)

=

(

1 α
α 0

)

,

which is independent of the boson number n and the fermion number m. The
eigenvalues of the Hesse matrix are λ± = 0.5 ±

√
0.25 + α2 , hence λ− < 0

and λ+ > 0. At every set of n 6= 0 and m 6= 0 which has no gradient in the
energy function is in fact a saddle point. Numerically, the routine will not
stop at such saddle point, but run into a configuration, where either n = 0,
or m = 0. In order to obtain finite numbers for bosons and fermions, we
have to evaluate the ground state at α = 0.

Once we find the ground state with the desired number of bosons and
fermions, we increase quasi-statically α. In the next step we decrease t. By
launching various trajectories, we can explore those regions with an incom-
mensurate total number of bosons plus fermions. Consequently, the trajec-
tories do not enter into the regions of the phase diagram, in which commen-
surate phases are expected. Therefore, the expected lob gaps are opened.
As shown in figure 2.5, our numerical and analytical results are in a good
agreement. We must stress out that the effects of the fermionic tunneling are
not taken into account in the analytic calculations, but they can be easily in-
cluded in our numerics. As expected, the lobes of the phases with composite
fermions shrink due to the larger mobility of the fermions.
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Finally, we would like to comment about the validity of the mean-field
approach presented in this chapter. In general, the mean-field approach is
exact at dimension d = ∞, and is expected to be reliable for nÀ 1, since the
relative effects of fluctuations is then small. For the considered cases n ∼ 1, in
a general situation (not at the tips of the lobes) the upper critical dimension
is dc = 2 [80], and therefore, the mean-field approach is reliable. However, at
the tips the transition belongs to an universality class with dc = 3 [80], and
thus our mean-field approach provides only a qualitative picture.

2.7 Results

In the first part of this chapter we have demonstrated the appearance of com-
posite fermions, a fermion couplet with s bosonic holes in the case of repulsive
interaction between fermions and bosons, or with −s bosons in the case of
an attractive interaction. Using degenerated perturbation theory we have
derived an effective Hamiltonian for the composite fermions in the case of
equal hopping of fermions and bosons. Only due to hopping to neighbor sites
we found a nearest-neighbor interaction between composite fermions. This
is of particular interest, since a direct zero-range fermion-fermion interaction
cannot occur between spin-polarized fermions due to Pauli’s principle.

2.7.1 Analysis of the effective Hamiltonian

The effective Hamiltonian (2.8) is analyzed in this section. It is worth to
mention that in particular the case 1 > |s| > 0 is easy to achieve, since the
hopping amplitude is proportional to t2. Nevertheless, the form of the Hamil-
tonian is in general valid for the complete phase space in the µ−α plane. This
Hamiltonian describes two processes. The left side contains nearest neigh-
bor hopping of composite fermions with the corresponding negative energy
−Jeff , while the second part shifts the energy due to composite fermion-
fermion interactions. The associated amplitude Keff may be repulsive (> 0)
or attractive (< 0).

This effective model is equivalent to that of spinless interacting fermions
(c.f. [206]). The interaction, which purely results from the interaction of
the fermions via the bosonic background can not be easily achieved having a
single component gas of ultracold fermions. Contact interaction via s-wave
scattering is forbidden by the Pauli principle. Other alternatives are long
range dipole-dipole interactions [23, 208, 216, 217] or interactions, caused by
p-wave scattering. The latter are, unfortunately, very small.

From this point of view the problem of finding the ground state of the
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original Bose-Fermi-Hubbard model is reduced to the analysis of the ground
state of the spinless interactive Fermi model in equation (2.8).

The physics of the effective model is determined by the ratio

∆ = Keff/2Jeff ,

and by the sign of Keff . In figure 2.6a it is shown, that the interaction can
be attractive (label A), or repulsive (label R). We distinguish the following
cases: In the case of a repulsive effective interaction, Keff > 0, and filling
fraction close to zero, ρF ¿ 1, or one, 1 − ρF ¿ 1, the ground state of Heff

corresponds to a Fermi liquid (a metal), and is well described in the Bloch
representation. In the considered cases, the relevant momenta are small
compared to the inverse lattice constant (the size of the Brillouin zone). One
can thus take the continuous limit, in which the first term inHeff corresponds
to a quadratic dispersion with a positive (negative) effective mass for particles
(holes), while the second term describes p-wave interactions. The lattice is
irrelevant in this limit, and the system is equivalent to a Fermi gas of spinless
fermions (for ρF ¿ 1), or holes (for 1 − ρF ¿ 1). Remarkably, this gas is
weakly interacting for every value of Keff , even when Keff → ∞. The latter
case corresponds to the exclusion of the sites that surround an occupied site
from the space available for other fermions. As a result, the scattering length
remains finite, being of the order of the lattice spacing. Therefore, 1 − ρF

(ρF ) acts as the gas parameter for the gas of holes (particles). This picture
can be rigorously justified using renormalization group approach [206].

The weakly-interacting picture becomes inadequate near half-filling, ρF →
1/2, and for large ∆, where the effects of the interactions between fermions
become important, and one expects the appearance of localized phases. A
physical insight on the properties of this regime can be obtained by using
the Gutzwiller ansatz [142], in which the ground state is a product of on-site
states with 0 or 1 composites,

∏

i(cos θi/2|1〉i+sin θi/2e
φi |0〉i), and which is in

fact well-suited for describing the states with reduced mobility and, therefore,
with small correlations between different sites. Such an approach allows the
determination of the boundaries of various quantum phases relatively well
in 3D, 2D, and even 1D, but does not provide the correct description of
correlations and excitations; these failures become particularly important in
1D, where, strictly speaking, the Gutzwiller ansatz approach is inappropriate.

For Keff > 0 the Gutzwiller ansatz approach maps Heff onto the classi-

cal antiferromagnetic spin model with spins of length 1, ~Si = (sin θi cosφi,
sin θi sinφi, cos θi) [14]. The corresponding ground state is a spin-flop (canted)
antiferromagnet [14] with a constant density, provided ∆ < ∆crit = (1 +
m2

z)/(1 −m2
z), where the “magnetization per spin” is mz = 2ρF − 1. When
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∆ > ∆crit, the Gutzwiller ansatz ground state of the classical spin model
exhibits modulations of mz with a periodicity of two lattice constants. We
expect that the employed Gutzwiller ansatz formalism predicts the phase
boundary ∆crit accurately for ρF close to 1/2. Coming back to the compos-
ite fermion picture, we predict thus that the ground state for ∆ < ∆crit is a
Fermi liquid, while for ∆ > ∆crit it is a density wave. For the special case
of half filling, ρF = 1/2, the ground state is the so-called checkerboard state,
with every second site occupied by one composite fermion. One should stress
that the value of ∆crit in the Gutzwiller ansatz is incorrect for filling factors
ρF close to 0 or 1. In particular, the Gutzwiller ansatz approach predicts
that ∆crit tends gradually to infinity and the density wave phase gradually
shrinks as ρF → 0 or 1, i.e. 1 −m2

z → 0.

The situation is different when the effective interaction is attractive,
Keff < 0, which in the spin description corresponds to ferromagnetic spin
couplings. In the Gutzwiller ansatz approach the ground state for 0 > ∆ ≥
−1 is ferromagnetic and homogeneous. In this description, fixing the fermion
number means fixing the z component of the magnetizationMz = N(2ρF−1).
When |∆| ¿ 1, and ρF is close to zero (one), i.e. low (high) lattice filling,
a very good approach to the ground state is given by a BCS ansatz [65], in
which the composite fermions (holes) of opposite momentum build p-wave
Cooper pairs,

∏

~k(v~k|00〉~k,−~k + u~k|1, 1〉~k,−~k), where v~k and u~k are the coef-
ficients of the Bogoliubov transformation. The ground state becomes more
complex for arbitrary ρF , and for ∆ approaching −1 from above. The system
becomes strongly correlated, and the composite fermions in the superfluid
phase may build not only pairs, but also triplets, quadruplets etc. The situa-
tion becomes simpler when ∆ < −1. In the spin picture the spins form then
ferromagnetic domains with spins ordered along the z-axis. In the fermionic
language this corresponds to the formation of domains of composite fermions
(”domain” insulator). This mean-field result is in fact exact.

2.8 Experimental accessibility

Figure 2.5(b) shows predicted quantum phases for different kind of composite
fermions in the region 0 ≤ µ ≤ 1. The observation of the predicted phases,
constitutes a challenging, but definitely accessible, goal for experiments. Sys-
tems of different dimensionalities are nowadays achievable by controlling the
potential strength in different directions [40, 98, 99, 110]. Recently, also the
bose-fermion mixtures in 3D optical lattice have been already established
[107, 177]. The conditions for the exclusive occupancy of the lowest band,
and for t ¿ α, 1, are fulfilled for sufficiently strong lattice potentials, as
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Figure 2.6. (a) Phase space as a function of µ and α. The
index R (A) denotes a repulsive (attractive) interaction for the
composite fermions. (b) Full phase diagram for the region 0 <
µ < 1, for ρF = 0.4 and t = 0.02. Different phases are present,
including fermionic domains (FD), superfluid (SF), Fermi liquid
(FL) and density-wave phase (DW). The red numbers label the
number of bosonic holes, that are paired with the fermion.

those typically employed in current experiments [100, 101] (10-20 recoil en-
ergies). Additionally, our T = 0 analysis is valid for T much lower than
the smallest energy scale in our problem, namely the tunneling rate. This
regime is definitely accessible for sufficiently large interactions. In typical
experiments, the presence of an inhomogeneous trapping potential leads to
the appearance of regions of different phases [19, 120], and it is crucial for the
observation of Mott insulator phases [100, 101]. The inhomogeneity controls
thus the bosonic chemical potential, which can also be tailored by changing
the number of bosons in the lattice, regulating the strength of the lattice
potential, and/or modifying the interatomic interactions by means of Fesh-
bach resonances [212]. We would like also to note that composite fermions
couplet with one boson or one bosonic hole are easier to study, since the ef-
fective hopping energies are, depending on t not too small, and can compete
with the effective interactions Keff . The predicted phases can be detected
by using three already widely employed techniques. First, the removal of
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the confining potentials, and the subsequent presence or absence of interfer-
ences in the time of flight image, would distinguish between phase-coherent
and incoherent phases. Second, measuring the noise correlation of the boson
(fermion) density after a free expansion reveals the density distribution of
the atoms in the optical lattice before the release [9, 84]. Third, by ramping-
up abruptly the lattice potential, it is possible to freeze the spatial density
correlations, which could be later on probed by means of Bragg scattering.
The latter two should allow to distinguish between homogeneous and modu-
lated phases. An independent Bragg analysis for fermions and bosons should
reveal the formation of composite fermions.



Chapter 3

Quantum Gases in Trimerized

Kagomé Lattices

3.1 Introduction

The kagomé lattice derives from the triangular lattice. It is obtained from
the latter by deleting every third site as demonstrated in figure 3.1. The
distinguishing feature of the kagomé lattice is the absence of common edges
between the elementary triangles, but it is a corner sharing lattice. This
feature lies at the bottom of many remarkable features of physical systems
on this lattice. It can be created by stacking three layers of parallel lines
on top of each other, where the second layer is rotated by 2π/3 and the
third layer by 4π/3. Every intersection corresponds to place which can in
principle be occupied by a particle. Shifting one layer perpendicularly to
the orientation of the parallel lines, the triangular lattice is obtained (figure
3.1b). The intermediate state between the triangular lattice and the kagomé
lattice is called a trimerized kagomé lattice (figure 3.2). In order to examine
all intermediate structures one needs a flexible tool which is tunable between
these limits. Apparently, optical lattices created by laser beams provide such
freedom and, additionally, optical lattices offer the possibility to change the
lattice parameter in situ and “in vivo”. We describe a scheme of a realization
using super-lattice techniques [105, 106, 186, 190]. Non-rectangular lattices
have already been realized (e.g. [127]) and, in an elaborate experiment, ro-
tating triangular lattices have been demonstrated by the group of E. Cornell
[50]. Hence, we believe it is nowadays feasible to create trimerized kagomé
lattices.

From the theoretical point of view, for a sufficiently deep lattice potential,
the dynamics of atoms in optical lattices is properly described by a Hubbard
model. We examine this model and calculate its parameters using Wannier
functions and Gaussian approximation. In the trimerized kagomé lattice we
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ba

Figure 3.1. a) ideal kagomé lattice b) ideal triangular lattice.
The red circles denote the corners, which have to be removed in
order to obtain a kagomé lattice.

will find two different kinds of tunneling, and nearest neighbor interactions,
which lead to new phases.

The first part of this chapter deals with the realization of the optical
kagomé lattice using standing laser waves. In our proposal the light has to
be red detuned. We discuss the effect of inaccuracy in the laser setup.

Moreover, we analyze three different kinds of quantum gases in this lat-
tice:

• a single component Bose gas

• a single component (spin-polarized) interacting fermionic gas

• a two component (“spin” 1/2) fermion-fermion mixture.

For the Bose gas, the superfluid-Mott transition, that has been demonstrated
experimentally [100, 101] for rectangular lattices in 3D, is expected to occur
in the kagomé lattice too. We demonstrate in a mean-field calculation [36,
37, 198] the existence of Mott states with a fractional number of bosons
per trimer. Recently, by using Monte Carlo methods similar considerations
have been made on a triangular lattice [234], where a supersolid-superfluid
transition has been observed. More recently, a perfect kagomé lattice filled
with hardcore bosons has been examined [118] with the same method. In
any case, the solid and supersolid phases appear for a filling of ρ = 1/3 and
ρ = 2/3. We also observe this feature in the mean-field consideration in a
trimerized kagomé lattice.

Moreover, we focus our attention on a trimerized kagomé lattice loaded
with a spinless Fermi gas with nearest neighbor interactions. At 2/3 filling
we derive an effective spin Hamiltonian which has no continuous symmetries.
Using the method of exact diagonalization of the Hamiltonian we show that
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the system exhibits an unexpected behavior at low temperatures. This allow
us to propose a new class of possible behavior of frustrated antiferromagnets
which we call “spin-liquid crystals”. They are characterized by long range
Néel type of order at low temperatures, a gapless excitation spectrum, and
an anomalously large density of low energy excitations.

As it is very well known, fermion-fermion mixture with half filling of
each species can be described effectively, in the strong coupling limit, by an
antiferromagnet Heisenberg model [14].

3.2 Creation of optical kagomé lattices

In the following, we consider the atoms as confined magnetically or optically
in the z-direction to z = 0. The atoms are effectively restricted in a 2D optical
lattice, for instance in the x-y plane. In order to create a kagomé lattice in this
plane one can use red detuned lasers, so that the potential minima coincide
with the laser intensity maxima. A perfect triangular lattice can be created
by three standing waves in the x-y plane: one laser field cos2(k11r + φ) and
two waves cos2(k12,13r − φ) with the wave vectors:

k11 = k0





0
1
0



 k12 =
k0

2





√
3

1
0



 k13 =
k0

2





−
√

3
1
0



 , (3.1)

where φ = 0. The resulting triangles have a side length of λ
√

3, where λ
is the wavelength of the laser. By varying φ the standing waves is shifted
and, for φ = π/6, an ideal kagomé pattern is realized. Unfortunately, this
procedure has two problems. First, three lasers on a plane cannot have
mutually orthogonal polarizations and consequently undesired interferences
between different standing waves occur. This problem has, however, a fairly
simple solution: undesired interferences can be avoided by randomizing the
relative orientation of the polarization between different standing waves, or
by introducing small frequency mismatches, which, however, have to be larger
than any other relevant frequencies. The second problem is caused by the
diffraction limit. Having three standing laser waves, it is only possible to
create either an ideal kagomé or an ideal triangular lattice. This setup does
not allow the creation of a trimerized kagomé lattice.

Let us denote by ξ the ratio of the separation between the maxima of
laser intensity (i.e. minima of the resulting optical potential in the case of
red detuned laser beam) and the half-width at half maximum. To have a
good resolution of the potential minima ξ must be significantly larger than
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2. In the case discussed above, however, ξ is only about 4 at φ = π/6 which
correspondents to an ideal kagomé lattice.

We propose to use the super-lattice technique [105, 106, 186, 190] which
is described in the following paragraphs as a method to generate ideal and
trimerized optical kagomé lattices. The proposed experimental preparation
is schematically shown in figure 3.2. There are three planes of standing wave
laser beams. In the particular case of figure 3.2, we have three standing waves
(a triple) in each plane. The laser fields within each plane are phase-locked.
A kagomé lattice will be formed by the intensity pattern that results from
the sum of the laser intensities of the triples in the x-y plane.

In order to resolve the three potential minima in the unit cell of the
kagomé lattice we need at least two standing waves in each of the three
vertical planes shown in figure 3.2. The wave-fields in the same plane must
have identical polarizations. With this setup consisting of 2 waves per vertical
plane, we obtain the following intensity pattern in the x-y plane:

I(r) = I0

3
∑

i=1

(

cos

(

k1ir + σi
φ

2

)

+ 2 cos

(

k2ir + σi
φ

2

))2

, (3.2)

where σ2 = 1 and σ1 = σ3 = −1 and r = (x, y). The index i enumerates
the vertical planes. The momenta k1i are described in equations 3.1 and k2i

read:
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The pattern formed by the minima of the intensity I(r) changes between a
triangular lattice at φ = 0, and trimerized kagomé lattices by varying the
phase difference width for 0 < φ < π, until at φ = π the uniform kagomé
lattice is reached. In this limit one obtains the value ξ ≈ 7.6 at φ = π. This
is sufficient to create a well resolved ideal kagomé lattice and we will show
that it is large enough for our proposals.

With the additional third beam shown in figure 3.2 the value of ξ increases
to ≈ 14 and remains large in wide range of angles φ. The resulting intensity
pattern reads:

I(r) = I0

3
∑

i=1

[

cos(kir + 3σiφ/2)

+ 2 cos(kir/3 + σiφ/2) + 4 cos(kir/9 + σiφ/6)
]2
. (3.3)
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Figure 3.2. Left: 3D arrangement of the standing laser. Phase-
locked standing waves have equal color.
Right: Top view to the setup. In order to avoid interferences due
to equal polarizations, beams with different colors have to have
either a phase mismatch, or mutually randomized phases.

A shift of the confining plane in z-direction of the order 0.1λ, where λ
is the wave length of the laser, is not critical. Actually at certain shifts in
z-direction one can have a similar behavior as for z = 0. One should avoid
shifts from z = 0.13 − 0.23, 0.45 − 0.65 and 0.83 − 0.93λ. If one chooses a
z shift randomly the probability to find a regime where one can move from
a triangular to kagomé lattice is 70%. A slight tilting of the potential plane
produced by the z-axes laser creates stripes of kagomé lattices and triangular
lattices in the x-y plane. Since triangular lattices have in general a deeper
potential the atoms will go there. An external trap forces the atoms to be in
a particular region of the lattice, so that experiments in trimerized kagomé
lattices are possible, even if the setup is not ideal.

A different approach to create a superlattice uses multiphoton Raman
processes to generate lattice potentials of periodicity λ/(2N), where N is
an integer [193, 231]. A trimerized kagomé lattice can be generated using
periodicities N = 1 and N = 3. The advantage of this method is obvious:
contrary to the setup in figure 3.2 we only need to align standing waves in
the x-y plane.
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Figure 3.3. Potential created by six standing waves. From left
to right in the first row: φ = 0 , z = 0; φ = 0.7π , z = 0, and
φ = π, z = 0. In the second row: φ = 1.3π , z = 0.7; φ = 0.3π,
z = 0.7, and φ = 0, z = 0.2.

3.3 Hubbard Hamiltonian

In a sufficiently deep lattice the system in general can be described by a
Hubbard model:

HHubbard = −
∑

〈ij〉

tij(c
†
icj + cic

†
j) +

1

2

∑

i

Uni(ni − 1) +
1

2

∑

〈ij〉

Uijninj. (3.4)

Here c†i creates an atom in a Wannier state |Wi〉 localized at the lattice site
i. Depending on the atomic species the operators c†i and ci represent either
fermionic or bosonic creation and annihilation operators. The parameters
tij in this Hamiltonian are the nearest neighbor hopping elements of the
one-particle Hamiltonian in the Wannier representation:

tij = 〈Wi|H0|Wj〉, (3.5)

where H0 is the one-particle Hamiltonian:

H0 = − ~
2

2m
∆ + v(r) , (3.6)
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with the one-particle potential v(r) ∝ I(r), written in equation (3.2) or
equation (3.3). For the Bose gas interacting via short range Van der Waals
forces, the scattering at low energies occurs via the s-wave channel, and
is adequately described by the zero-range potential, so that we get for the
interaction amplitudes the expressions:

U = g2D

∫

d2x|Wi(r)|4, (3.7)

whereas

Uij = g2D

∫

d2x|Wi(r)|2|Wj(r)|2, (3.8)

where the coupling is g2D = 4π~
2as/mW with m the atomic mass, and W

the effective transverse width of the 2D lattice in the z direction. In the
case of polarized fermions U vanishes, since s-wave scattering is not possible
due to the Pauli principle. Nearest neighbor interactions, on the other hand,
are possible, and in the case when they are due to dipolar forces (cf.[97]), or
similar long range forces, the couplings become:

Uij ∼
∫

d2xd2x′|Wi(r)|2V (r − r ′)|Wj(r
′)|2, (3.9)

where V (r) is the interparticle potential. Obviously, the same expression
holds also for bosons interacting via the potential V (r). The Hubbard Hamil-
tonian (3.4) does not necessarily describe the physics of bare particles; as it
was discussed in chapter 2, it may equally well describe the physics of com-
posite objects, such as, for instance, composite fermions that arise in the
analysis of fermion-boson mixtures in the lattice in the strong interaction
limit [142]. The nearest neighbor interactions and tunnelings are induced by
the original hopping of bare fermions and bosons, and the corresponding val-
ues of tij and Uij have to be calculated using Wannier functions [133]. Due to
the form of the lattice in the case of trimerization we deal now with different
types of hopping and nearest neighbor interaction elements. Contrary to the
square lattice, this additional freedom promises to exhibit rich physics.

3.4 The coefficients of the Hubbard model

3.4.1 Wannier functions

For periodic boundary conditions the linear part of the Hamiltonian (3.6) can
be diagonalized in the quasi-momentum space using the scheme of Bloch [13].
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In the kagomé lattice a single cell contains three equivalent potential minima,
and hence, three Wannier functions per unit cell are required, which can be
obtained by transforming the Bloch states of the first three bands into the
Wannier basis. Let us first consider one particle that is placed in an isolated
trimer. The Hamiltonian for this system reads H = −t{c†1c2 + c†2c3 + c†3c1 +
h.c.} and its eigenfunctions of this model are obtained by diagonalizing H:

−t





0 1 1
1 0 1
1 1 0



~a = ε~a .

The eigenfunctions of H are ~a0 = (1, 1, 1)T /
√

3 , ~a1 = (−2, 1, 1)T /2 and
~a2 = (0,−1, 1)T /

√
2 with the respective eigenvalues {−2t, t, t}. The trans-

formation matrix (~a0,~a1,~a2)
−1 leads to the states for where just one site of the

triangle is occupied. A similar scheme can also be applied for the Bloch func-
tions ψµ

k (r) = e−ikruµ
k(r), where k is the quasi-momentum, and uµ

k(r) are the
periodic functions of band µ ∈ {1, 2, 3}. For a particular quasi-momentum

δ

δ

2

3

1
δ 6

4

2δ
1

δ 3

δ 5

Figure 3.4. The vectors δi, i = 1 . . . 6, pointing from the corners
of a given trimer to the neighboring trimers. Numbering of the
sites of the trimers is shown in the triangle on the left.

k, the values of ui
k(r) at the potential minima are aµν(k), where ν ∈ {1, 2, 3}

denotes the minimum within the trimer (see figure 3.4). Inverting the ma-
trix aµν for a particular k one obtains complex coefficients cop, which are
then used to construct a periodic function having its density maximum in
only one of the three potential minima: wo

k =
∑

µ coµu
µ
k, where o ∈ {1, 2, 3}

denotes the corners of the trimer. Similarly as the uµ
k, the wo

k are functions
with the same periodicity as the triangular lattice formed by the unit cells of
the kagomé lattice. The summation of these functions over k with a proper
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phase leads to the Wannier functions [133]: W o
R = 1

Nl

∑

k eikRwo
k, where R

denotes the position of the particular trimer on which the maximum of the
Wannier functions is located.

In this construction, the point group symmetry of the lattice is broken due
to the choice of the particular set of basis vectors for the reciprocal lattice.
A direct consequence of this fact is that the Wannier functions within a
trimer cannot be transformed into each other by a rotation of ±2/3π around
the center of the trimer. Hence, one obtains different hopping probabilities
between the sites of the triangle, tij = 〈W i

R|H0|W j
R〉 = 1

N2
l

∑

k

∑

µ ci,µcj,µε
µ
k

where εµk is the energy for the quasi-momentum k in band µ. However, the
Wannier functions can be symmetrized by summing up the periodic functions,
which are now multiplied with a k-dependent phase factor e−ikri , where ri is
the position of one of the three potential minima within a cell. The hopping
elements change then to tij = (1/N 2

l )
∑

k cos k (ri − rj)
∑

o ci,ocj,oε
o
k, which

now are independent of the position. The cost of the symmetrization is
that the Wannier functions are no longer orthogonal. The overlap, however,
remains relatively small.

3.4.2 Gaussian ansatz

Apart from the case of the non-trimerized kagomé lattice, it is difficult to
obtain the Wannier functions reliably. The coefficients for the Hubbard-
Hamiltonian can be alternatively obtained using a Gaussian ansatz [182],
which, in the case of a perfect kagomé lattice and for deep lattice potentials
> 5Erec, leads to results which are practically indistinguishable from those
of the Wannier functions. The Gauss functions for the potential minimum
at x = 0, y = y0 takes the form:

f(x, y) =

√

2

σxσyπ
e

−x2

σ2
x e

−(y−y0)2

σ2
y .

The center y0, the widths σx and σy are variational parameters which are
determined by minimizing the energy functional:

E =

∫ ∞

∞

dx

∫ ∞

∞

dy
[

∇(f(x, y))2 + f(x, y)2V (x, y)
]

.

The Gauss functions for the other two minima in the trimer are obtained by
rotating the Gauss function by ± 2

3
π around the center of the trimer. The

figures 3.5a,b show a comparison of the hopping probability and contact in-
teraction obtained using Wannier functions and the Gauss approximation
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for a perfect kagomé lattice. Figure 3.6 shows the parameters for various
degrees of trimerization. This latter plot was obtained using the Gauss func-
tions. Significant differences in the hopping elements can be already obtained
with relative small shifts of φ. Insofar, it is not essential to have a very high
defraction limit. Using only six standing laser beams one can already access
a large regime for t/t′ > 1.
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Figure 3.5. Parameters for a perfect kagomé lattice ob-
tained with a Gauss function (dotted) and with Wannier functions
(solid). Plot (a): hopping elements, plot (b): self-interaction
terms in units of 3/4g2d.
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in units of 3/4g2d.
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3.5 Spinless single component fermions

In this section we focus our attention on a trimerized kagomé lattice loaded
with spinless fermionic atoms with nearest neighbor interaction. For this
case we derive an effective spin Hamiltonian which shows a very interesting
behavior that has not been observed previously in spin models.

In general frustrated antiferromagnets are attracting attention in modern
condensed matter physics [144, 166]. According to C. Lhuillier and her col-
laborators quantum Heisenberg antiferromagnets at very low temperatures
can exhibit 4 distinct kinds of quantum phases:

• Semi-classically ordered Néel phases, characterized by long-range or-
dered spin-spin correlation function, breaking of the SU(2) symmetry,
and a gapless spectrum of ∆Sz = 1 magnon excitations. The standard
example of such order is provided by the Heisenberg antiferromagnet
on a square lattice in 2D. The theoretical description of such systems
using the spin wave theory (cf. [14]) is quite accurate.

• Valence Bond Crystals (or Solids), characterized by long-range order
in dimer coverings, with prominent examples being the AKLT model
in 1D [4], or the Heisenberg model on a checker-board lattice [144, 166]
(corresponding to a 2D projection of the pyrochlore lattice). Valence
Bound Crystals exhibit no SU(2) symmetry breaking, but the pattern
of dimers or larger singlet plaquettes breaks the translational symmetry
of the lattice. Spin-spin correlations are short ranged and the excitation
spectrum is gaped.

• Resonating Valence Bond spin liquids (Type I), exhibiting a unique
ground state, no symmetry breaking, gaped fractionized “spinon” ex-
citations, and vanishing correlations in any local order parameter. An
example of such a spin liquid is realized in the so-called ring exchange
model in the triangular lattice [144, 166].

• Resonating Valence Bond spin liquids (Type II), exhibiting no symme-
try breaking, no long-range correlations in any local order parameter,
a gapless excitation spectrum, and an extraordinary density of states
in each total S sector. The spin 1/2 Heisenberg antiferromagnet on the
kagomé lattice exhibits this behavior [139, 141, 144, 154, 164, 166, 209,
228].

The effective spin model that will be discussed here exhibits a behavior
that differs from the described classes. We call it a “spin-liquid crystal”.

The motivations to study this model is at least threefold:
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• In a magnetic field such that the trimerized kagomé antiferromagnet is
driven into the magnetization plateau at 1/3 of the saturation magneti-
zation, the physics of the kagomé antiferromagnet is described precisely
by our model [154, 164, 209]. Studying our model will thus shed light
on the theory of the kagomé antiferromagnet and, hopefully, also on
experiments.

• Theoretical studies (using exact diagonalization of the Hamiltonian)
indicate that the model has fascinating properties of, what we have
termed as “quantum spin liquid-crystal”. We expect the behavior ob-
served in this system indeed to be generic for other “multi”-merized
systems. First of all it is clear that optical methods allow for creating
many similar spin models with couplings depending on bond directions.
In the simplest case this can be accomplished for a square lattice where
one could achieve a “square lattice of small squares”, for the triangular
lattice to obtain a “triangular lattice of small triangles” etc. One can
expect that when such procedures are realized for frustrated systems,
this will lead to similar effects as for the kagomé lattice.

• One of the most fascinating possibilities provided by the optical lat-
tices is the possibility of “online” modifications of the lattice geometry.
We may go from triangular to kagomé lattice in real time in a con-
trolled way. Trimerization (or generally “multi”-merization) is a new
experimental option, and it is highly desirable to explore its conse-
quences. Our model (apart from the model of the Bose gas in the
trimerized kagomé lattice) is one of the simplest ones to explore these
consequences.

One of the reasons for the widespread interest in the physics of 2D an-
tiferromagnets is the challenging prediction that 2D antiferromagnetism is
closely related to high temperature superconductivity [14, 140, 232, 236].

The analytical, or numerical treatment of antiferromagnets can be quite
challenging. For systems with long-range Néel order semi-classical approx-
imations and spin wave approach can be applied successfully. In 1D ex-
act results are rare (c.f. [156]), and in practice one has to rely either on
bosonization methods [93, 96, 159], or on numerical methods, such as the
Density Matrix Renormalization Group method. 2D systems can be treated,
apart from renormalization group approaches, with numerical methods, such
as Quantum Monte Carlo simulations. Unfortunately Quantum Monte Carlo
methods are known to suffer from the “negative sign” problem. This problem
occurs in Heisenberg antiferromagnet on the triangular lattice. Therefore, at-
tempts to solve this problem by Quantum Monte Carlo have been futile and
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the main results have been obtained by using an exact diagonalization. Sur-
prisingly, the results, contrary to earlier conjectures, the triangular lattice
exhibits long range order [20, 21].

Moreover, kagomé spin 1/2 antiferromagnets are expected to form a type
II Resonance Valence Bond spin liquid. So far there are no experimental
realizations among solid state systems. Only spin 1 kagomé antiferromag-
nets can be realized in solid state experiments, but that system has a gap
to all excitations, i.e. it does not belong to the type II spin liquids [114].
The physics of the spin 1/2 kagomé antiferromagnet is, however, not fully
understood, and there are papers that suggest Valence Bound Crystal type
of order with large unit cells [171].

3.5.1 The effective Hamiltonian

The spinless Fermi gas in the trimerized kagomé lattice is appropriately de-
scribed by the Fermi-Hubbard Hamiltonian:

HFH = −
∑

〈ij〉

tij(f
†
i fj + h.c.) +

∑

〈ij〉

Uijninj −
∑

i

µni , (3.10)

where tij and Uij take the values t and U for intra-trimer bonds and t′ and

U ′ inter-trimer bonds. µ is the chemical potential, and ni = f †
i fi are the

occupation numbers with fi, f
†
i being the fermion annihilation and creation

operators. In the following we denote the sites of each trimer by 1, 2, 3 in
the clockwise sense as shown in figure 3.4.

In this section, it is our aim to derive from the Hamiltonian (3.10) an
effective spin Hamiltonian that captures in the strongly trimerized limit,
t′, U ′ ¿ t < U , the low-energy physics.
The intra-trimer part of the Hamiltonian HFH is diagonalized by introducing
instead of the local fermion modes f1, f2 and f3 the symmetric mode f = (f1+
f2 + f3)/

√
3 and the left and right chiral modes f± = (f1 + z±f2 + z2

±f3)/
√

3
with z± = exp±i2π/3:

H intra
FH = −3tn+ tn̄+

U

2
(n̄2 − n̄) − µn̄ , (3.11)

where n = f †f and n̄ = n+ f †
+f+ + f †

−f− is the total number of fermions in
the trimer. The operators f , f+ and f− fulfill the fermionic anticommutation
relation. In the strongly trimerized limit the number of fermions is identical
in each trimer. It is controlled by the chemical potential: for U + t <
µ < 2U + t there are two particles in each trimer, one of them occupies
the symmetric state, |1〉 = f †|0〉, while the second one occupies one of the
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chiral states |1±〉 = f †
±|1〉. In the inter-trimer part of the Hamiltonian HHF ,

equation (3.10), we consider only the nearest neighbor interaction and omit
the hopping term,
−∑〈αi,βj〉 t

′(f †
α,ifβ,j + h.c.) (α, β = 1, 2 , 3). Any real (first order) hopping

process leads to a change of the occupation of a neighboring pair of trimers:
one of them is occupied by three fermions while only one fermion remains in
the other. Equation (3.11) shows that such a process increases the energy
of the pair by an amount of the order of O(U). On the other hand, second
order (virtual) hopping processes, which reproduces the original chiral state
are consequently small of the order of t′2/U and will be neglected. Then, the
inter-trimer part of HHF reduces to:

H inter
HF =

U ′

2

∑

i

(n1,in3,i+δ1 + n2,in3,i+δ2 + n2,in1,i+δ3

n3,in1,i+δ4 + n3,in2,i+δ5 + n1,in2,i+δ6) . (3.12)

Here, δν , ν = 1, · · · , 6, denote the six vectors pointing from the central
triangle to the six neighboring triangles, see figure 3.4.

The occupation numbers nα,i , α = 1, 2, 3 can be expressed in terms of
the fermion operators f , f± (we suppress the site index):

n1 =
1

3

[

n̄+ (f †
+ + f †

−)f + f †(f+ + f−) + τ̂x
]

,

n2 =
1

3

[

n̄+ (z+f
†
+ + z−f

†
−)f + f †(z−f+ + z+f−)

+ cos(2π/3)τ̂x + sin(2π/3)τ̂ y] ,

n3 =
1

3

[

n̄+ (z2
+f

†
+ + z2

−f
†
−)f + f †(z2

−f+ + z2
+f−)

+ cos(2π/3)τ̂x − sin(2π/3)τ̂ y] . (3.13)

Here, the (pseudo-)spin operators:

τ̂x :=
1

2
(f †

+f− + f †
−f+)

τ̂ y := − i

2
(f †

+f− − f †
−f+) ,

connect the right- and left-handed chiral fermion states. Inserting the ex-
pressions in (3.13) into H inter

HF , equation (3.12), yields bilinear terms in τ̂ x,
τ̂ y, linear terms in τ̂x and τ̂ y, bilinear terms in f †, f and linear terms in f †

and f . The Hamiltonian (3.12) commutes with the number operators for the
fermions in any trimer, hence, we can set n̄ = 2 in the resulting expression
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for H inter
HF . However, terms containing the annihilation operator f promote

the fermion in the symmetric state of a given trimer into the non-occupied
chiral state of the same trimer which increases the energy by an amount of
O(t). Moreover, the linear terms in τ̂ x

i , τ̂ y
i sum to zero in the sum over the

sites i. We arrive at the following effective inter-trimer Hamiltonian (we omit
an irrelevant constant):

Heff =
J

2

N
∑

i=1

6
∑

ν=1

τ̂i(φi,δν
)τ̂i+δν

(φ̃i,δν
) . (3.14)

Here, i are the sites of a triangular lattice of N sites on which the trimers
are located, J = 4U ′/9, and the vectors δν , ν = 1, · · · 6, are the same as in
figure 3.4. In equation (3.14), τ̂i(φ) = cos(φ)τ̂x

i + sin(φ)τ y
i and φi,δ1 = φi,δ6 =

0, φi,δ2 = φi,δ3 = 2π/3, φi,δ4 = φi,δ5 = −2π/3, φ̃i,δ1 = φ̃i,δ2 = −2π/3,
φ̃i,δ3 = φ̃i,δ4 = 0 and φ̃i,δ5 = φ̃i,δ6 = 2π/3.

3.5.2 Effective spin model: relation to the kagomé antiferro-
magnet

A similar model has been derived by Subrahmanyam [209] and has later
been employed by Mila and Mambrini [154, 164] to explain the origin of
the high density of low-lying singlets of the Heisenberg antiferromagnet on
the kagomé lattice. Mila considers the spin 1/2 Heisenberg model on the
trimerized kagomé lattice with a strong intra-trimer coupling J and a weak
inter-trimer coupling J ′. In the lowest order perturbation expansion with
respect to J ′ he arrives at the effective Hamiltonian:

H trim−kag
eff =

J ′

18

∑

〈ij〉

Hij(S5)Hij(τ) , (3.15)

where Hij(S5) = S5iS5j and where Hij(τ) is that member of our model Heff

that is associated with the bond ij. The operator S5i acts on the total spin
of the trimer at site i, the trimers form a triangular lattice. In the derivation
H trim−kag

eff the Hilbert space of the three S = 1/2 spins of the individual
trimers has been restricted to the subspace of total spin 1/2 states. The four
states of this subspace can be specified by the z-component of their total spin
and by two (spin)-chiralities. The Heisenberg type Hamiltonian Hij(S5) acts
on the two spin states of the trimers at sites i and j , Hij(τ) acts on their

chiralities. Obviously, H trim−kag
eff turns into our model Hamiltonian Heff , if

the trimer spins Sz
5i are fully polarized, e.g. Sz

5 = 1/2 for all i. This state
can be reached by applying a sufficiently strong magnetic field to the original
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trimerized kagomé antiferromagnet such that the total magnetization reaches
1/3 of the saturation magnetization, i. e. a magnetic field that establishes
the 1/3 magnetization plateau.

3.5.3 Effective spin model: classical aspects

As it is obvious from the derivation of the Hamiltonian (3.14), only its
τ = 1/2 quantum version can serve as a realistic effective model for the
atomic Fermi gas in the trimerized kagomé lattice. Nevertheless, in order to
get into the problem, it is useful to first consider this model in the classi-
cal limit and to also calculate its excitation spectrum in the semi-classical
approximation, i. e. in the linear spin wave approximation [76]. We first de-
scribe the symmetries of the model equation (3.14). In the classical limit we
replace the operators real numbers: τ̂ x

i → cos Θi and τ̂ y
i → sin Θi.

Symmetries

We have found that this model, is not only translationally invariant, but is
also invariant under the point group of order 6, Z6 = Z3 · Z2, where the
generator of Z3 (order 3) is the combined rotation of the lattice by the angle
4π/3 and of the spins by the angle 2π/3 around the z axis, while the generator
of Z2 (order 2) is the spin inversion in the x-y plane, τ̂ x

i → −τ̂x
i , τ̂ y

i → −τ̂ y
i .

The model possesses no continuous spin rotational symmetry and the lines
bisecting the angle between two adjacent lattice directions of the triangular
lattice are not mirror lines.

Classical ground states

In figures 3.7a, b, c we show the three ordered classical states with small
unit cells on the triangular lattice that are compatible with this point group
symmetry: a ferromagnetic state and two 120◦ Néel states labeled A and B
which differ by the distributions of the chiralities χ over the cells of the lattice
as indicated by “+” and “-” signs. For an elementary cell of the triangular
lattice whose corners are labeled i,j,k in the counterclockwise, χ is defined
as:

χijk = (τx
i τ

y
j − τ y

i τ
x
j ) + ( i, j → j, k ) + ( j, k → k, i ) . (3.16)

χ is positive (negative) if the spin turns in the counter-clockwise (clockwise)
sense as one moves around a triangular cell in the counter-clockwise sense.
Because of the lack of mirror symmetry mentioned above it is not surprising
that the two Néel states have different energies: EA

class = 3
2
τ 2JN , EB

class =
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θ θ θ

(a) (b) (c)

Figure 3.7. (a) Classical ground state configuration for J < 0
(configure A). (b), (c) Classical ground state configurations for
J > 0 (configuration B and ferromagnetic configuration). The
“+”, “-” signs denote the chirality of the triangular plaquettes
(see equation 3.16).

−3
4
τ 2JN . Here, N is the number of sites and the superscripts A and B

correspond to the labels of the Néel states in figures 3.7a, b.

More surprisingly the ferromagnetic state is found to be degenerate with
the Néel state B in the classical limit, E ferro

class = EB
class. Furthermore, as is

indicated by the angle θ in figures 3.7a, b, the classical energies of the three
structures do not depend on their direction relative to the lattice directions.
In summary, in the classical approximation the Néel state A is the ground
state of model (3.14) for negative coupling, J < 0, while for positive J there
are at least two classically degenerate ground states, the Néel state B and
the ferromagnetic state.

In fact, we have performed a numerical analysis of the 12-spin cell by
fixing the direction of every spin to nπ/3 with n = 0 · · · 5, so that there were
612 classical spin configurations. This analysis has revealed that for J < 0
there are 6 ground states each of them exhibiting the Néel order of type
A (the six fold degeneracy comes from a Z6 symmetry of our model). The
results are dramatically different in the J > 0 case, where we have found
in total 240 degenerate classical ground states, among which the pure Néel
states of type B and ferromagnetic states sum up to a small fraction. For an
illustration, see figure 3.8 where two ordered ground states with very large
unit cells (figures 3.8b, 3.8d) together with their parent states (figures 3.8a,
3.8c) are presented. Moreover, As will be seen below, the large number of
degenerate classical ground states may find its analogue in a large density of
low-lying excitations of the quantum version of equation (3.14). This analysis
has been extended by [41], where also bigger cells are examined. The results
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(a) (b) (c) (d)

Figure 3.8. N=12 spin cell: (a) Configuration B; (b) Local-
ized defect in configuration B marked by the triangular contour.
(c) Ferromagnetic configuration; (d) Line defect in ferromagnetic
configuration. The open arrows present spins that do not belong to
the 12-spin cell. Their orientations are determined by the bound-
ary conditions of the cell.

can be found in table 3.1.

N 12 15 18 21 24 27
DN 240 612 1716 4128 11028 30324
lnDN

N
0.4567 0.4278 0.4138 0.3965 0.3878 0.3822

Table 3.1. DN is the number of classical ground states for J > 0
on a lattice of size N . In the original version of [41] et al. one
angle is fixed. Therefore, they obtain a number of degenerated
ground state that is smaller by a factor of 6. The values in the
last row are proportional to the entropy per particle. A finite value
in the thermodynamic limit would violate the Nernst theorem.

3.5.4 Effective spin model: spin wave theory

We performed a linear spin wave expansion around the ferromagnetic ground
state (J > 0) bases on the Holstein-Primakoff expansion [14, 76] and, for the
two 120◦ structures (J > 0 and J < 0), we closely followed the method
derived by Jolicœur and Le Guillou [76, 126].

Including quantum corrections to the ground state energy, the energy per
particle in the ferromagnetic case reads:

Eferro = −3

4
J [τ(τ + 1) − 0.901τ ] , (3.17)
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where the magnetization locks in on one of the directions of the triangular
lattice ([41] et al.), i. e. the ferromagnetic ground state becomes sixfold
degenerate in accordance with the order of the point group of our model,
equation (3.14).

After including the lowest order quantum correction the ground state
energy of the state B (J > 0) reads:

EB = −3

4
J [τ(τ + 1) − 1.48τ ] . (3.18)

Also here we found sixfold degenerated state. Comparison of equations (3.17)
and (3.18) shows that quantum fluctuations lift the degeneracy of the purely
classical states. In this semi-classical approach it appears that the ferromag-
netic state is the ground state. However, in table 3.1 it is demonstrated that
there is a very large manifold of classical ground states.

3.5.5 Numerical results [58]

Numerical method

In order to understand the physics of spinless fermions on a trimerized optical
kagomé lattice at filling 2/3 we need to consider the model (3.14) for spin
τ = 1/2, i. e. in the extreme quantum limit. Questions to be answered
for this case are: (i) Is the ground state of the model (3.14) an ordered
state or is it a spin liquid either of type I, i. e. a state without broken
symmetry, with exponentially fast decaying spin-pair correlations and a gap
to the first excitation, or of type II, i. e. a kagomé like ground state,
again without broken symmetry, with extremely short ranged correlations,
but with a dense spectrum of excitations adjacent to the ground state. (ii)
What are the thermal properties of our system? After all, the model can
only be realized at finite, albeit low temperatures.

To find answers to these questions we have performed exact diagonaliza-
tions of the Hamiltonian (3.14) for cells of N = 12, 15, 18, 21, 24 and recently
27 [41] sites using ARPACK routines [1]. The sizes of systems that can be
studied by exact diagonalizations are restricted by the amount of memory
space that is required for storing the non-zero matrix elements. To reduce
this requirement we block-diagonalized the Hamiltonian (3.14) by exploiting
its invariance under N -fold translations. This allowed us to reduce the prob-
lem of diagonalization of 2N × 2N matrix to N independent diagonalizations
of matrices of size ∼ 2N/N×2N/N . The block-diagonalization simplification
not only lowers the memory requirements but also greatly reduces the time
of calculation, especially when a large number of excited eigenstates is of
interest.
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Nevertheless, exact diagonalizations of this Hamiltonian remains a de-
manding task, as in contrast to SU(2) invariant spin models the Hilbert
space of the Hamiltonian (3.14) cannot be separated into subspaces of states
with fixed total spin and total z-component of the spin. Because of this last
circumstance we had to limit our study to systems of at most 27 spins. For-
tunately, our results for 21 and 24 spins show qualitative and quantitative
resemblance. Therefore, we regard them as representative for larger systems
too. In presenting our results we shall mainly confine ourselves to the two
largest systems, since the results for smaller systems suffer from strong finite
size effects. We remark that only the 12-, 21-, and the 27-site cell can be
chosen such that these systems possess the full point group symmetry of the
infinite lattice. The lack of this symmetry for the 15- and the 18-site cell
adds to the large finite size effects observed in the results for these cells.

Ground state and low temperature properties

For J < 0, i. e. for attractive interaction U ′ between fermions on nearest
neighbor trimers, the highest-levels of Heff/J and the corresponding eigen-
states are physically most relevant. As will be seen below theses levels are
well separated from each other so that we only need to calculate a few of
them. The situation is drastically different in the case J > 0, where we need
the low-lying states of Heff . It turns out that there is an abundance of such
low lying states. In this respect the spectrum of Heff is reminiscent of the
spectrum of the Heisenberg Hamiltonian on the kagomé lattice [139, 228].
The answer to the question of whether there is a long range order in our
model (3.14) is found in table 3.2 and figure 3.13, where we show our nu-
merical results for the spatial spin-spin correlations for the J < 0 and J > 0
cases, respectively. The cells to which this table and figure refer are shown
in figures 3.9a, b, c.

Let us first consider the case J < 0 (table 3.2). We did not do a systematic
finite-size analysis for these correlations. However, comparing the data for
the quantum τ = 1/2 systems with the classical correlations there can be
little doubt that in its ground state the system orders in the planar 120◦

Néel structure. The smallness of the out-of plane correlations lends further
support to this conclusion. We have also calculated the expectation values of
the chirality χijk, equation (3.16), in the ground states of the 12- and of the
21-site cell and have found perfect agreement with the pattern of positive and
negative chiralities of the classical configuration, figure 3.7a. Apparently, for
J < 0 quantum fluctuations have a rather weak effect on the ground state
properties of our model (3.14).

For the case J > 0 our results for the spin-spin correlations are presented
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Figure 3.9. (a) 12 spin cell, (b) 21 spin cell, (c) 24spin cell.
©, 5, and 2 mark the three sub-lattices. Primed sites belong to
periodic repetitions of the cell containing the unprimed sites.

1st neighbs. 2nd neighbs. 3rd neighbs. 4th neighbs.

d = 1 d =
√

3 d = 2 d =
√

7

classical -0.125 0.25 -0.125 -0.125
N = 12 -0.137 0.251 -0.125
N = 21 -0.134 0.237 -0.117 -0.116

(-0.029) (-0.004) (-0.004) (-0.003)

Table 3.2. Spin-spin correlations, 〈τ̂ x
0 τ̂

x
j + τ̂ y

0 τ̂
y
j 〉 for J < 0 .

In the last row the τ z−τ z correlations are also shown (numbers
in parentheses). Owing to the Z6 symmetry of the Hamiltonian
(3.14) the correlations depend only on the distance d from the
central site 0 (see figure 3.9).

in figure 3.13. As for the case J < 0 we have not been able to perform a
finite size analysis but again we interpret the data in figure 3.13 as evidence
for the existence of planar 120◦ Néel order in the ground state of our model
(3.14). This contradicts the prediction of the linear spin wave analysis accord-
ing to which one might have expected to find a ferromagnetic ground state
(see subsection 3.5.4). However, one must recall that besides the 120◦ Néel
ground state and the ferromagnetic ground state there are many more clas-
sical ground states. In a complete linear spin wave analysis one would have
to consider every one of these states, a task that is practically impossible to
perform. Relative to the in-plane-correlations the magnitude of out-of-plane
correlations, which are not displayed in figure 3.13, is even smaller here than
in the case J < 0. Further support for long-range order in the ground state
of the model (3.14) comes from a comparison of the spin-spin correlations
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of this model with the same correlations of the = 1/2 Heisenberg antiferro-
magnet on the triangular lattice which we have included in figure 3.13. It is
seen there that the ground state correlations of the model (3.14) decay more
slowly than those of the ground state of the triangular lattice which is known
to possess long range 120◦ Néel order [20, 21].

Additional strong support for existence of a Néel ordered ground state in
both J > 0 and J < 0 cases comes from an investigation of chirality patterns.
In both situations the quantum mechanical calculation reveals that there
exists a perfectly periodic pattern of chiralities χijk as in the classical result.
For J > 0 we found that χijk ≈ ∓0.5 while for J < 0 χijk ≈ ±0.69. Both
results are obtained in N = 21, where the χijk was calculated for six triangles
located around the central site (figure 3.7). The ∓, ± notation indicates
opposite chiralities between J > 0 and J < 0 results. A comparison of these
values to ∓0.65 (Néel B configuration) and ±0.65 (Néel A configuration),
leaves little doubt on the nature of these ground states. Finally, please notice
excellent agreement between quantum and classical calculation for J < 0.

Values for the spin-spin correlations of the model (3.14) for finite albeit
small temperatures are also displayed in figure 3.13. For T = 0.005J about
800 low lying eigenstates were needed to achieve convergence in the data for
the correlations. Although these finite temperature correlations are smaller
in magnitude than the ground state correlations, they decay as slowly with
the distance as the ground state correlations i. e. long-range order persists
at finite temperatures. This is not surprising since our model (3.14) has
no continuous symmetry. One thus expects the order to vanish at a finite
temperature Tc in a first or second order phase transition. The temperature
dependence of spin-spin correlations in N = 21 system is depicted in figure
3.10.

The finite size effects affect the correlations very strongly for system sizes
N < 21. In figure 3.11 we plot the spin-spin correlations for the various
system sizes. The data for N=15, 18 are averages of the raw data for fixed
lattice distances over the lattice directions. Because of boundary effects the
correlations do not show the expected six fold symmetry. As a consequence
the data for N=15, 18 cannot be used in a finite-size extrapolation. Nev-
ertheless, despite these large finite size effects, for both cases J > 0 and
J < 0 the ground state energies can be reliably extracted from the data for
all the cell sizes including the smaller ones. From the linear fits shown in
figure 3.10 we obtain EA

GS = −0.40|J | as the ground state energy in case A.
This is to be compared with the classical ground state energy (see subsec-
tion 3.5.3): EA

class = −3
2
τ 2|J | = −0.375|J |, (τ = 1/2). In the same way we

find EB
GS = −0.22J as the ground state energy per site in case B, which is
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Figure 3.10. Left picture: The curves from a bottom to top
correspond to in-plane spin-spin correlation to the 1st neighbor
(black, dash-dotted), 3rd neighbor (green, dashed), 4th neighbor
(blue, dotted) and to the 2nd neighbor (red, solid). Two thousand
lowest eigenstates were used in this calculation. The system size
is N = 21.
Right picture: Ground state energies in units of |J | as a function
of the system size N . Solid (dashed) line is a linear fit to J > 0
(J < 0) data. The fit gives in J > 0 case: −0.22 J N − 0.07 J ,
while in the J < 0 case: 0.40 J N + 0.20 J .

to be compared to the classical ground state energy (see subsection 3.5.3)
EB

class = −3
4
τ 2J = −0.1875J .

Low energy spectra

Let us finally discuss the energy spectra of our model for both cases J < 0
(A), and J > 0 (B). Figures 3.12a, b show the accumulated density of states
of our model (3.14) for the two cases. On account of the breaking of the
discrete symmetries of the Hamiltonian (3.14) by the 120◦ Néel order the
standard expectation would be that the ground state is sixfold degenerate for
the infinite model and, since there is no continuous symmetry that could be
broken, the excitations should be separated from the ground state by a finite
gap of the order of J . For finite systems the ground state degeneracy will be
lifted. Nevertheless, we expected to find six low-lying states in the gap below
the lowest excited state. Figure 3.12a, J < 0, does not reflect this scenario
convincingly. However, there are only a few states with energies substantially
below 0.5|J |. We take this as an indication of a gap of this order of magnitude
in the spectrum of the Hamiltonian (3.14) in the thermodynamic limit N →
∞.

Obviously, for J > 0 the spectrum differs drastically from the above
expectations, see figure 3.12b. There is an abundance of very low-lying exci-
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tations, e. g. for N = 21 there are about 2000 (800) states with energies less
than 0.09J (0.05J) above the ground state. From the perfect symmetry of a
finite temperature spin-spin correlations and their relatively slow decay with
the temperature, we conclude that the majority of these excited eigenstates
support the spin order of the ground state.

Comparison of the lower panel of figure 3.12b with the scenario outlined
above suggests that the gap, if any, is smaller than 0.5 · 10−2J .

Because of the strong finite size effects in the data for N < 21 the growth
law of the accumulated density of states with the system size N cannot be
extracted reliably from our data. They are compatible, however, with an
exponential increase of the number of low-lying states with N .

The features of the low-energy part of the spectrum of our model, equa-
tion (3.14), are strongly reminiscent of the low-energy part of the spin-1/2
Heisenberg antiferromagnet on the kagomé lattice (HAK) [139, 228]. There
is, however, one decisive difference between the two models: while all ground
state correlations were found to be extremely short ranged [141] in the HAK
there is, by all probabilities, long range spin order in the ground state of our
model. The absence of long range order in the HAK led Mila and Mambrini
[154, 164] to study the trimerized HAK in the basis consisting of all inde-
pendent dimer coverings of the lattice by exclusively nearest neighbor singlet
pairs. By definition this restricted basis cannot produce any long range or-
der in the ground state of the HAK. Using it in analytical and in numerical
calculations Mila and Mambrini were able to reproduce the low-lying part
of the spectrum of the HAK. In particular, they were able to determine the
constant α in the growth law αN that describes the increase of the number
of low-lying states in the HAK. However, the approach of Mila and Mam-
brini is not suited for the treatment of our model for at least two reasons:
(i) in contrast to the HAK our model is not SU(2) invariant. Therefore, a
restriction of the full Hilbert space of the model to exclusively singlet states
is unwarranted. (ii) We need to describe spin-ordered states, and this is not
possible in a basis consisting of products of nearest neighbor singlet pairs.
We suggest that for our model (3.14) the abundance of low-lying quantum
states corresponds to the abundance of classical ground state described in
subsection 3.5.3. Zero-point fluctuations lift the degeneracy of the classical
states leaving the spin correlations that are built into these classical states
qualitatively untouched. On account of its low-energy properties we have
proposed the name quantum spin liquid-crystal for our system.
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Figure 3.13. Spin-spin correlations as in Table I, but for J > 0.

Specific heat

The rapid increase of the accumulated density of states that sets in at ex-
citation energies of this order of magnitude leads to peaks in the specific
heat:

cv =
1

N

∂

∂T

∑

iEi exp[−Ei/(kT )]
∑

i exp[−Ei/(kT )]
, (3.19)

at the corresponding temperature. We have checked that the peak shifts
towards lower temperatures as the size of the system increases. Indeed, in
the N = 24 system, we found the peak at kT ≈ 2.5 · 10−3J while for N = 21
it is at kT ≈ 3.6 · 10−3J , see figure 3.14 for the N = 21 results. Recent
results for N = 27 support this tendency. The precise determination of the
peak position and amplitude in the N = 24 system requires, however, a
calculation based on more excited eigenstates than we have been able to get
(∼ 7029, see figure 3.12b). The shift of the peak position between these two
systems reflects the slightly different behavior of their accumulated density
of states. It would be very interesting to know whether this trend continues
for larger N , which has consequences for the behavior of the entropy at very
low temperatures. The entropy can be obtained using the specific heat:

S(t) =

∫ t

0

dt′
cv(t′)

t′
.

One possible scenario is that the temperature of the maximal amplitude
for the specific heat tmax goes to zero as the system size increases, hence,
limt→0 S(t) can have a finite value. A finite entropy per particle at zero
temperature violates the Nernst theorem and has been discussed in [144, 166].



3.6. Bosons 61

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14

C
v/

N

T

N=18
N=21 (all states)
N=24 (7029 states)
N=27 (817 states)

Figure 3.14. Specific heat for different cell sizes.

3.6 Bosons

3.6.1 Bose gas in the trimerized kagomé lattice

In order to facilitate the calculations, we add to the Hamiltonian (3.4) a term
of the form −µ

∑

i ni, where µ is the chemical potential, that controls the
average particle number of the system. In the trimerized kagomé lattice, the
couplings tij take the values t, t′ for intra- and inter-trimer hopping, respec-
tively. We set also Uij = V , = V ′, for intra- and inter-trimer interactions,
respectively.

In reference [198] we have considered the limiting case of hard core bosons,
when U was much larger than any other energy scale, i.e. two bosons were
not allowed at the same site. We have shown then that in the strongly
trimerized case (t′, V ′ ¿ V < t) the system will enter a trimerized Mott
phase with the ground state corresponding to the product over (independent)
trimers. Depending on the particular value of µ̄ ≡ (µ− V )/(2t+ V ) we may
have 0 (µ̄ < −1), 1 (−1 ≤ µ̄ < 0), 2 (0 ≤ µ̄ < 1) or 3 (1 ≤ µ̄) bosons
per trimer, i.e. filling factors ν = 0, 1/3, 2/3 or 1 boson per site. For
fractional filling, the atoms within a trimer minimize the energy forming a,
so-called, W-state [72]: |W 〉 = (|001〉 + |010〉 + |100〉)/

√
3 for ν = 1/3, and

|W 〉 = (|110〉 + |101〉 + |011〉)/
√

3 for ν = 2/3. It is worth noticing that
W -states themselves have interesting applications for quantum information
theory (c.f. [128]).
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Figure 3.15. Left picture: Mott phases (denoted by the cor-
responding particle numbers per trimer) of the state with lowest
energy in the t − (µ + 2t) plane for zero inter-trimer hopping
t′ = 0.
Right picture: Phase boundaries between Mott insulator and su-
perfluid phase in parameter space of the hopping elements t, t′

and the chemical potential µ. Below the loops the state is in a
Mott phase, where the number of bosons per trimer is displayed
in the diagram.

Generalizing the mean-field theory of Ref. [80], we have obtained the
phase diagram in the t̄′ ≡ t′/(2t + V ) and µ̄ plane with characteristic lobes
describing the boundaries of the Mott phases, given by t̄′ = (|µ̄| − 1)/2 for
|µ| ≥ 1, and t̄′ = (3/2)|µ̄|(1 − |µ̄|)/(4 − |µ̄|) for |µ| < 1. Observations of this
Mott transition require temperatures T of the order of t′, i.e. smaller than
t and V . Assuming that U is of the order of few recoil energies [100, 101],
this requires T to be in the range of tens of nK. The results for t < V are
qualitatively similar.

In this section we present a method to generalize these results to the case
when the bosons are not necessarily hard core, i.e. U may be comparable with
t. For simplicity we set Uij = 0, so that the Hamiltonian is still described by
the three parameters: t, t′ for intra- and inter-trimer hopping, and U for the
on-site interactions. Obviously, for vanishing inter-trimer hopping, t′ = 0,
the system is in a Mott insulating state with a fixed number of particles per
trimer. The corresponding Mott states are displayed in the phase diagram in
the t− (µ+ 2t) plane in figure 3.15. As t′ is increased the system undergoes
a phase transition into a superfluid state. To obtain the phase diagram for
this transition, figure 3.15, we have used a generalization of the mean-field
approach of Fisher et al. [80, 195, 218], also investigated in [36, 37]. Details of
the method can be found in the subsection 3.6.2. In our calculations we have
confined ourselves to values of the chemical potential such that the particle
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number per trimer does not exceed four. In figure 3.15, further lobes with
higher particle numbers will occur along the µ-axes for higher values of µ than
those shown. Instead of calculating the, so-called, superfluid order parameter
ψ = 〈bi〉 = 〈b†i〉 self-consistently, a fully analytical expressions describing the
boundaries in figure 3.15 can be obtained, as it is shown in the subsection
3.6.2. We mention that by using a cell strong coupling perturbative expansion
[38, 86] the phase boundary can be obtained with relatively little numerical
effort with the accuracy of a Quantum Monte Carlo simulation.

3.6.2 Mean-field theory for a bosonic gas

The boundaries between Mott insulator and superfluid phases can be ob-
tained by means of a mean-field approach similar as that employed in refer-
ence [142]. We consider only on-site contact-interaction terms, but contrary
to reference [142] we do not restrict ourselves to the hard-core limit. The sys-
tem is governed by a Bose-Hubbard Hamiltonian of the form: H = Htr+Hhop,
with:

Htr = = −t
∑

〈ij〉

(b†ibj + h.c.)

+
1

2

∑

i

ni(ni − 1) − µ
∑

i

ni , (3.20)

Hhop = −t′
∑

〈αβ〉

(b†αbβ + h.c.), (3.21)

where t, t′ (denoting the intra- and inter-trimer hopping) and µ are measured
in units of the on-site interaction potential U . Greek indices denote inter-
trimer hopping.

Assuming a fixed number of atoms n per trimer, we consider all possible
Fock-states of the form |n1n2n3〉 with n1 + n2 + n3 = n. For example,
for one particle per trimer the Hilbert-space contains the Fock-states |100〉,
|010〉 and |001〉. Since the model is invariant under rotation of 2π/3 the
eigenstates are of the form |W1〉 = (|100〉 + z|010〉 + z2|001〉)/

√
3, with z ∈

{

1, exp (i2
3
π), exp (−i2

3
π)
}

, implying states with zero, left- and right-chirality,
also known as W states [72]. We denote z± = exp(±i2π/3) and introduce
the operators B± =

(

b1 + z±b2 + z2
±b3
)

/
√

3, B0 = (b1 + b2 + b3) /
√

3. Their

commutation relations are
[

Bα, B
†
β

]

= δαβ, where α, β ∈ {0,+,−}. The

chirality operator is defined as χ = (B†
+B+ −B†

−B−)mod3. Equation (3.20)
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can be rewritten in the form:

Htr = −t3B†
0B0 + (t− µ)

{

B†
0B0 +B†

+B+ +B†
−B−

}

+
1

6

{(

B†
0

2
+ 2B†

+B
†
−

)

(

B2
0 + 2B+B−

)

+
(

B†
+

2
+ 2B†

0B
†
−

)

(

B2
+ + 2B0B−

)

+
(

B†
−

2
+ 2B†

0B
†
+

)

(

B2
− + 2B0B+

)

}

. (3.22)

One sees that
[

exp i2π(B†
+B+ −B†

−B−)/3, Htr

]

= 0, and hence, the chi-

rality of a state is a conserved quantity. It can be shown that the ground
state has chirality zero, and therefore we restrict ourselves henceforth to these
states.

For a given number of particles n per trimer, we denote by |W µ
n 〉 states

that are symmetrized with respect to the occupation numbers n1, n2 and
n3 of the trimer. The subscript µ specifies a particular one of these non-
chiral states. For instance, for two different states of this kind exist: |W 1

2 〉 =
(|110〉 + |101〉 + |011〉)/

√
3 and |W 2

2 〉 = (|200〉 + |020〉 + |002〉)/
√

3. We can
then diagonalize the Hamiltonian Htr in this basis, Hαβ

n = 〈W α
n |Htr|W β

n 〉,
obtaining the eigenenergies εln and eigenstates |ψl

n〉, where 0 ≤ l ≤ n. The
lowest energies ε0n for each particle number n have to be compared to obtain
the ground state in the (t-µ)-phase space.

If the inter-trimer hopping t′ is small, the phase boundaries in the t-
t′-µ phase diagram can be well estimated by using a mean-field approach
[80, 195, 218]. We introduce the superfluid order parameter ψ = 〈bi〉 = 〈b†i〉,
for every site i. Neglecting fluctuations of bi, b

†
j in the second order, we can

substitute b†jbi = ψ(b†j + bi) − ψ2. Hhop can then be decomposed into a sum

of single-site Hamiltonians of the form: Hhop ≈ 6t′ψ2 − 2
√

3t′ψ(B + B†).
The Hamiltonian H is then decomposed into two parts H = H0 + V , with
H0 = Htr + 6t′ψ2 and V = −2t′

√
3ψ(B0 +B†

0), where H0 is perturbed by V .
In second order perturbation theory, the energy takes the form E = ε0n +rψ2,
where:

r = 6t′ +
∑

m=n±1,i

|〈ψ0
nV ψ

i
m〉|2

ε0n − εim
. (3.23)

The Mott insulator to superfluid transition is identified by setting r = 0: for
r > 0 the energy is minimized for ψ2 is zero (Mott insulator), while for r < 0
ψ acquires a finite value (superfluid state). The equation r = 0 defines a 2D
manifold in the t′-t-µ-parameter space.
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As an example, we determine the expression for the boundaries of the
Mott phase with one particle per trimer. Due to the form of equation (3.23)
this calculation demands the knowledge of the eigenenergies and eigenfunc-
tions for n = 1 and n = 2. For n = 1,
|ψ0

1〉 = (|001〉 + |010〉 + |100〉) /
√

3 = B†|ψ0〉, and ε01 = 〈ψ0
1|Htr|ψ0

1〉 = −µ −
2t. For n = 2:

ε0,1
2 =

1

2

(

1 ∓
√

(1 + 2t)2 + 32t2
)

− t− 2µ, (3.24)

and |ψ0,1
2 〉 = cosφ0,1|W 2

2 〉 + sinφ0,1|W 1
2 〉, with:

tanφ0,1 =
1

4
√

2t
{(1 + 2t) ∓

√

(1 + 2t)2 + 32t2}. (3.25)

At t′ = 0 the region of 1 particle per trimer is provided by the condition
0 ≤ ε01 ≤ ε02, i.e. when −2t ≤ µ ≤ t+ (1 −

√

(1 + 2t)2 + 32t2)/2.
After a straightforward but tedious calculation, we can then calculate the

sum in equation (3.23):

∑

m=0,2,i

|〈ψ0
1|V |ψi

m〉|2
ε01 − εim

= 4t′2ψ2

(

(6µ− 24t− 4)

µ2 − µ(2t+ 1) − 8t2
− 3

2t+ µ

)

. (3.26)

Hence, solving for r = 0, we obtain the value of t′ at the phase boundary:

t′ =
1/2 (µ2 − µ(2t+ 1) − 8t2) (2t+ µ)

(µ+ 8t)(2t+ 1/3) − µ2 − 8t2
.

The results of this and further Mott loops are depicted in figure 3.15.

3.7 Fermion-fermion mixtures

Finally, we consider a fermion-fermion mixture with half filling for each
species, i.e. a spin 1/2 Hubbard model:

HFF = −
∑

〈ij〉

tij(f
†
i fj + f̃ †

i f̃j + h.c.) +
∑

i

V niñi, (3.27)

where the operators fi and f †
i (f̃i and f̃ †

i ) are the creation and annihilation
operators for the two components, ni = f †

i fi (ñi = f̃ †
i f̃i), and, as above,
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tij = t0 (t′0) for intra- (inter-) trimer hopping. In the strong coupling limit,
t0, t

′
0 ¿ V [14], HFF reduces to the Heisenberg antiferromagnet:

H = J
∑

〈i,j〉intra

~si · ~sj + J̄ ′
∑

〈i,j〉inter

~si · ~sj, (3.28)

where J = 4t20/V , and J ′ = 4t′20/V , and ~s = (sx, sy, sz), with n − ñ = 2sz,
f †f̃ = sx + isy, and f̃ †f = sx − isy.

In the strongly trimerized limit [154, 164], the total spin of an individual
trimer takes the minimal value, i.e. 1/2. There are four degenerate states
having sz = ±1/2 and left or right chirality. The spectrum of the system
in the singlet sector consists of a narrow band of low energy states of the
width of order J ′, separated from the higher singlet (triplet) bands by a gap
of order 3J/4 (2J ′/3).

3.8 Conclusions

We have discussed in detail the physics of ultra-cold gases in trimerized
kagomé lattices. The observation of this kind of physics, and detection of the
predicted effects requires various steps: preparation of the trimerized lattice,
loading of the considered gases into the lattice, and detection. The first step,
i.e. the preparation of the kagomé lattice, has been discussed in detail in
section 3.2.

Probably the easiest experiment to perform is the observation of the novel
Mott phases of the Bose gas. Temperature requirements (' 100nK) are
rather moderate. The challenge here is to achieve a filling of 1/3, 2/3, · · ·
atoms per trimer. In principle physics should do it for us, since the “exotic”
Mott phases are the thermodynamic phases of the system at zero tempera-
ture. There is, however, another elegant method of preparing such phases.
To this aim one should start with a triangular lattice and achieve a Mott
state with 1, 2, 3, ... atoms per site. Then one should deform the lattice to a
trimerized kagomé. The detection of such Mott phases can be done simply by
releasing the atoms from the lattice, as in reference [100, 101]. Coherence on
the trimer level will then be visible in the appearance of interference fringes
in time-of-flight images, which should reflect the on-trimer momentum dis-
tribution ∼∑i,j cos~k(~ri − ~rj), where ~ri are the positions of the minima in a
trimer. In spite of the appearance of these fringes, the Mott insulator nature
of the state would be apparent in the presence of a gap for the excitations,
which can be observed by tilting experiments as those of reference [100, 101].
The opening of the gap should be analyzed as a function of the trimerization
degree t′/t, which can be controlled as it has been discussed in section 3.2.
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The experiment with a fermion-fermion mixture is more demanding. The
main problem is, of course, the preparation of the states in the low energy
singlet sector. A possible way to prepare a singlet state in the trimerized
kagomé lattice with T < 3J/4 could employ the recently obtained Bose-
Einstein condensates of molecules consisting of two fermionic atoms [102, 125]
at temperatures of the order of 10 nK. Such BEC’s should be loaded onto an
ideal and weak kagomé lattice. Note that the molecules formed after sweeping
across a Feshbach resonance, are in a singlet state of the pseudo-spin ~s. This
can be easily seen, because the two Fermions enter the resonance from the
s-wave scattering channel (i.e. in the symmetric state with respect to the
spatial coordinates), and thus are in a singlet state of the pseudo-spin (i.e.
antisymmetric state with respect to exchange of electronic and nuclear spins).
Since the interaction leading to the spin flipping at the Feshbach resonance
[213] is symmetric under the simultaneous interchange of both nuclear and
electronic spin, then the formed molecule remains in a pseudo-spin singlet
state. The typical size of the molecule is of the order of the s-wave scattering
length a, and thus can be modified at the resonance [184], which can be
comparable to the lattice period. By increasing the lattice amplitude the
molecule will be broken into two separate fermionic atoms, which occupy
neighboring lattice sites and which are in a singlet pseudo spin state. In this
way, a singlet covering of the kagomé lattice may be achieved, allowing for
the direct generation of a Resonance Valence Bond Crystal [12].

Assuming that we can prepare the system in a singlet state at t′ < T < t,
then the density of states of the low lying singlet levels can be obtained by
repeated measurements of the system energy. The latter can be achieved by
simply releasing the lattice, so that all of the interaction energy in excess of
the zero point energy is transformed into kinetic energy.

In a similar way we can measure the mean value and the distribution
of any nearest neighbor two-spin correlation functions. To this aim one has
to apply at the moment of the trap release an appropriately chosen nearest
neighbor two-spin Hamiltonian and keep it acting during the cloud expansion
(for details see [89, 90]). In a similar manner one can measure the spectrum
of triplet excitation, by using a combination of super-lattice methods and
laser excitation on can flip spins [27]. The measurement of the singlet-triplet
gap requires a resolution better than J ′.

A similar type of measurements can be performed in the ideal kagomé
lattice, when t = t′. In this case, the singlet-triplet gap is filled with singlet
excitations [228]. By varying φ, one can change the lattice quasi-statically
from a strongly trimerized to the ideal kagomé lattice, for which the final
value of J will be smaller than the initial J , but larger than the initial J ′.
The system should remain within the lowest set of 1.15N states that originally
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formed the lowest singlet band. The singlet-triplet gap, if any, is estimated
to be ≤ J/20, and should be measurable using the methods described above.

The observation of properties of the spinless interacting Fermi gas is also
experimentally very challenging. The first step is to create the interact-
ing Fermi gas, obviously. As we discussed it in subsection 3.3 this can be
achieved either with dipolar particles, or composite fermions. Both of these
possibilities are challenging themselves, although the rapid progress in cool-
ing and trapping of dipolar atoms [104] and molecules allows one to hope
that interacting spinless Fermi gases will be routinely available in the near
future.

Preparing of the 2/3 filling is also a challenge. The low energy states may
be prepared by employing quasi-static changes of the degree of trimeriza-
tion of the lattice. For instance one can start with a completely trimerized
lattice; the filling ν = 2/3 may be achieved then by starting with ν = 1,
and eliminating 1 atom per trimer using, for instance, laser excitations. One
can then increase t′ and U ′ slowly, on the time scale slower than the final
1/J ('seconds). Alternatively, one could start with ν ' 2/3 in the moder-
ately trimerized regime. As in reference [100, 101], the inhomogeneity of the
lattice due to the trapping potential, would then allow to achieve the Mott
state with ν = 2/3 per trimer in the center of the trap. Nearly perfect 2/3
filling can be achieved by loading a BEC of molecules formed by 2 fermions
into a triangular lattice, generating an MI state, quasi-statically transform-
ing the lattice to a trimerized kagomé one, “dissociating” the molecules by
changing the scattering length to negative values, and by finally optically
pumping the atoms into a single internal state. Preparing ν = 2/3 might
involve undesired heating (due to optical pumping), which can be overcome
by using laser, or phonon cooling afterwards (cf. [55]). Note that the imper-
fections of ν can be described by a ”t−J”-kind of model, and are of interest
themselves.

Yet another challenge is to measure the predicted properties of the “quan-
tum spin liquid-crystal”. One quantity which should be possible to measure
relatively easy, is the energy of the system. This can be done simply by
opening the lattice; by repeated measurement of the energy E(T ) at (defi-
nite) finite temperatures one would get in this way an access to the density
of modes, i.e. one could compare the results with figure 3.12. From such
measurements one could infer the existence of a gap Egap, since, if Egap is
large enough, E(T ) becomes T -independent for kT ≤ Egap.



Chapter 4

Wigner Crystals in Dipolar Gases

4.1 Introduction

Phenomena appearing in many-particle systems with interactions were al-
ready described in the early days of Quantum Mechanics [82, 111]. For
instance, in 1934 Wigner concluded that interacting electrons occupy local-
ized states [237]. In the eighties, another example of true many-body effects
was given by the seminal discovery of the Fractional Quantum Hall Effect
[188, 214] in an 2D electron gas in a strong magnetic field. To explain this
phenomenon, Laughlin [138] proposed a trial wave function describing an
incompressible quantum fluid with fractional charged quasi-particle excita-
tions. Moreover, for sufficiently small densities of electrons, it is expected
that this so called Laughlin state terminates into a Wigner crystal [199]. In
the case when higher Landau levels are occupied, the ground state behavior
of the system is more subtle and exhibits different new phases such as charge
density waves called stripes and bubble phases [83]. Experimental evidence
for the phase transition between a bubble phase and a Wigner crystal at a
filling factor of approximately ν = 4.22 is the detection of two resonances in
the real diagonal microwave conductivity of a 2D electron system [143].

Nowadays, similar phenomena are being examined in ultracold atomic
gases. Examples are the appearance of the fractional quantum Hall effect for
a filling factor of ν = 1/3 in rapidly rotating fermionic dipolar gases [15] or
the integer quantum Hall effect with atomic fermions [173].

Creating true Coulomb forces in ultracold quantum gases is rather dif-
ficult, since any ionization process implies heating. Another approach for
studying gases with long-range interactions would be using dipole-dipole
forces. A promising setup of this kind, using condensed bosonic Chromium
atoms with a magnetic dipole momentums of 6µB, has been employed to
observe the effect caused by dipole-dipole interactions [208]. On the other
hand, the magnitude of the interaction strength is much higher with electrical
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dipoles, which appear in ultracold heteronuclear molecules, which inspired
efforts towards the creation of dipolar molecular gases [23, 123]. In this line of
research, a scheme of accumulating NH-radicals in a magnetic trap has been
presented in references [23, 216, 217]. In the case of bosons, another way
of obtaining a heteronuclear condensate is with optical lattices [60]. Each
lattice site contains two atoms, one of each species: molecules are created
via photo-association (e.g. see [205]) and, when the lattice potential is quasi
statically ramped down, the superfluid phase is entered.

A useful tool when working with dipolar gases is the creation of a gauge
field by rapidly rotating the gas. This gauge field is equivalent to that of a
magnetic field parallel to the rotation axis, which allows us to transfer the
results known for electrons in the lowest Landau level to fermionic rotating
dipolar gases. In this framework, the appearance of a Laughlin wavefunction
as a ground state at a filling factor of ν = 1/3 was predicted, and an quasi-
particle excitation spectrum was calculated in reference [15]. In this chapter
we discuss the possibility of the formation of a Wigner crystal in a “magnetic
field”. It is expected [148, 149] that above a critical filling factor the crystal
melts down.

In the first part we will compare the energies of a Laughlin state and a
Wigner crystal taking into account a finite extension of the wavefunction in
the axial direction. In the second part we discuss the effect of anharmonic-
ity, which results in the melting of the crystal. For a growing filling factor
the mean deviation of particles from their lattice points increases until the
crystal melts. Knowing the melting point we are now able to a formulate a
Lindemann criterion [145] for the Wigner crystal. The Lindemann criterion
was formulated for classical crystals and says that when the amplitude of
the particle oscillations exceeds a critical value, the crystal melts down. In
quantum systems the oscillation amplitude is replaced by the deviation of
mean value for the particle position.

4.2 The Wigner crystal

4.2.1 The system

In this chapter we consider ultracold dipolar fermionic gases in a quasi-2D
system. The dipole moments are orientated perpendicular to the system
plane, which can be achieved using either a strong electric field for electrical
dipoles or, correspondingly, in the case of magnetic dipoles with a strong
magnetic field, both fields being parallel to the axial direction, thus ensures an
isotropic interparticle interaction in the 2D-plane. Additionally, the system
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is examined in a fast rotating frame. Effectively, the rotation can be mapped
onto a model of a charged particle in a magnetic field.

4.2.2 Classical energy

It is essential for all later considerations to know the lattice type of a Wigner
crystal with dipolar interaction. Finding the configuration with the lowest
energy also determines the phonon interaction behavior and decisively influ-
ences the melting parameter.

Generally, if the dipolar particles are placed at positions ri the energy
per particle reads:

E =
d2

N

∑

i>j

1

|ri − rj|3
, (4.1)

where d is the dipole moment and N the particle number. For charged
particles it is known that, compared to all other configuration, the triangular
lattice structure has the lowest energy [29]. Following the lines of reference
[29] it is possible to show that this is also true for dipolar particles. In
the following, we will demonstrate that for dipolar particles the triangular
lattice structure is at least a stable configuration. First we restrict ourselves
to basis vectors with equal length, and we show that by varying the angle
the triangular lattice is the energetically preferred structure. Then, by fixing
the angle and varying the length of the vectors, we show that basis vectors
with equal length minimize the energy.

A set of basis vectors with the length a can be characterized by the angle
β:

b1 = a

(

0
1

)

b2 = a

(

sin β
cos β

)

. (4.2)

If we trap the N dipoles in a fixed area, meaning the density n is constant,
a depends on β. In the case of β = π/2 the density is n = 1/a2. Varying the
angle the density does not change, n = 1/(sin βa2), therefore a = 1/

√
n sin β.

A particular position is r = lxbx + lyby, where lx and ly are integer numbers
running, for infinity big lattices, from −∞ to ∞. Using the parameterization
in equation (4.2) the energy takes the form:

E =
d2

2
n

3

2 sin
3

2 β
∑

lxly 6=0

1

(l2x + l2y + 2lxly cosβ)
3

2

(4.3)

= d2n
3

2 sin
3

2 β





∑

lxly>0

1

(l2x + l2y − 2lxly cosβ)
3

2

+
1

(l2x + l2y + 2lxly cos β)
3

2

+ 2ζ(3)



 .
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Extrema of this expression correspond to the zeros of its derivative with
respect to β:

∂E

∂β
=

3

2
d2n

3
2







sin β
1
2 cos β









∑

lxly>0

1
(

l2x + l2y + 2lxly cos β
) 3

2





+





∑

lxly>0

1
(

l2x + l2y − 2lxly cos β
) 3

2



+ 2ζ(3)



+ sin β
5
2 lxly

×









∑

lxly>0

1
(

l2x + l2y + 2lxly cos β
) 5

2



−





∑

lxly>0

1
(

l2x + l2y − 2lxly cos β
) 5

2















.

We obtain extrema for two values of β:

∂E

∂β
|β= π

2
= 0

∂E

∂β
|β= π

3
=

3

4
d2n

3
2

√√
3

2





∑

lxly>0

1
(

l2x + l2y + lxly
) 3

2

(

1 + 3
lxly

(

l2x + l2y + lxly
)

)

+
1

(

l2x + l2y − lxly
) 3

2

(

1 − 3
lxly

(

l2x + l2y − lxly
)

)

+ 2ζ(3)





= 0 .

In order to determine a stable configuration we need to calculate the second
derivative:

∂2E

∂β2
=

3

2
d2n

3
2





(

1

2

cos2 β

sin β
1
2

− sin β
3
2

)

2ζ(3)
∑

lx,ly>0

{(

1

2

cos2 β

sin β
1
2

− sin β
3
2

)

×





1
(

l2x + l2y + 2lxly cos β
) 3

2

+
1

(

l2x + l2y − 2lxly cos β
) 3

2





× 8 sin β
3
2 cos βlxly





1
(

l2x + l2y + 2lxly cos β
) 5

2

− 1
(

l2x + l2y − 2lxly cos β
) 5

2





× 10 sin β
7
2 l2xl

2
y





1
(

l2x + l2y + 2lxly cos β
) 7

2

+
1

(

l2x + l2y − 2lxly cos β
) 7

2













 .
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For β = π/2 the result is:

∂2E

∂β2
|β= π

2
= 3d2n

3
2





∑

lx,ly>0





1
(

l2x + l2y
) 3

2

(

10
l2xl

2
y

(

l2x + l2y
)2 − 1

)



− ζ(3)





= −0.9925d2n
3
2 ,

which indicates a local maximum. For β = π/3 the second derivative is
positive:

∂2E

∂β2
|β= π

3

=
3

2
d2n

3
2



2





1

8

√

2√
3

−
(√

3

2

) 3
2



 ζ(3)

+
∑

lx,ly>0











1

8

√

2√
3

−
(√

3

2

) 3
2









1
(

l2x + l2y + lxly
) 3

2

+
1

(

l2x + l2y − lxly
) 3

2





+ 4

(√
3

2

) 3
2





1
(

l2x + l2y + lxly
) 5

2

− 1
(

l2x + l2y − lxly
) 5

2





+10

(√
3

2

) 10
2





1
(

l2x + l2y + lxly
) 7

2

+
1

(

l2x + l2y − lxly
) 7

2















= d2n
3
2 2.2219 ,

and therefore, the configuration β = π/3 corresponds to a local minimum.

Now we fix the angle β = π/3 and vary the lattice length which we can
parameterize with the factor a and the angle α:

b1 = a cosα

(

0
1

)

b2 =
a

2
sinα

( √
3
1

)

. (4.4)

The area per unit cell is a2 sin 2α. To keep the density constant we set
a2 = n/ sin 2α, where n is the density. The energy now becomes:

E =
d2

2

n
3
2

sin
3
2 2α

∑

lxly 6=0

1

(cos2 αl2x + sin2 αl2y + sinα cosαlxly)
3
2

.
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We calculate the first derivative and set α = π/4, which corresponds to
triangular lattice:

∂E

∂α
|α=π

4
=
d2

2

(n

2

) 3
2

32
∑

lxly 6=0

l2y − l2x
(

l2x + l2y + lxly
) 5

2

= 0 .

The second derivative at the angle α = π/4 reads:

∂2E

∂α2
|α=π

4
=
d2

2

(n

2

) 3
2

24
∑

lxly 6=0

7l4x + 6l3xly − 2l2xl
2
y + 6lxl

3
y + 7l4y

(

l2x + l2y + lxly
) 7

2

> 0 .

The odd powers in lx and ly will sum up to zero and the remaining parts
are always positive, hence we conclude that the energy has a local minimum
when the basis vectors have the same length.

Using numerical methods, it can be rigorously shown that the triangular
lattice has the lowest energy. Hence, in the classical limit the energy per
particle, given equation (4.3), reads:

E =
d2

a3
5.513 .

4.3 Phonons in a non-rotating dipolar gas

Classically, the point-like dipoles are arranged in a triangular lattice and
placed at the position r(li). Allowing small displacements u(li) from r(li)
(figure 4.1), the dipole-dipole interaction energy of equation (4.1) can be
expanded in a Taylor series:

Φ = d2
∑

li,lj 6=li

1

|(r(li) + u(li) − r(lj) − u(lj)|3

= Φ0 +
∞
∑

n=1

1

n!

∑

α1...αn

∑

l1...ln

Φα1...αn
(l1 . . . ln)uα1(l1) . . . uαn

(ln), (4.5)

where

Φα1...αn
(l1 . . . ln) =

∂nΦ

∂uα1(l1) . . . ∂uαn
(ln)

∣

∣

∣

∣

u=0

.
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With αi ∈ {x, y} and uα(li) denotes the x(y)-component of the vector u(li),
while the vector l = (lx, ly)T , containing integer components, labels every
site on the lattice. Since the dipoles are placed in potential minima, the first
order term vanishes. Moreover, the harmonic term depends on the difference
ri − rj. The second derivative of the potential can be found in the appendix
(B.1) and is used to calculate the force acting on a displaced dipole. Newtons
second law reads:

m
d2

dt2
uα(l) = −

∑

α′l′

Φαα′(l − l′)uα′(l′) , (4.6)

where Φαα′(l − l′)/m is called the dynamical matrix [31]. We consider a
system with periodic boundary conditions and express the displacements in
the Fourier space:

u (l, t) =
1√
π

∑

k

∫ ∞

∞

dωũ (k, ω) ei(kr−ωt) .

In such a case, equation (4.6) becomes:

ω2
∑

k

ũα(k, ω)e−ikl =
1

m

∑

α′l′k

Φαα′(l − l′)ũα′(k, ω)e−ikl′

=
1

m

∑

α′k

ω2
dFαα′ (k) e−iklũα′(k, ω)

⇒ ω2
α(k)ũα(k) = ω2

d

∑

α′

Fαα′(k)ũα′(k) ,

where ω2
d = d2n3/2/ (a2m) and

ω2
dFαα′ (k) =

∑

l

Φαα′(l)eik(l)

are the Fourier transformations of the second derivatives. The approximate
expression for Fαα′ (k) is given in the appendix (B.7). For a given k, the
problem is reduced to the diagonalization of a 2 × 2-matrix Fαα′ (k). The
eigenvalues give the two branches of the phonon dispersion relation ω2

i (k),
and the corresponding eigenvectors ~ei illustrate the polarization:

ω2
i (k)~ei,α = ω2

d

∑

α′

Fαα′ (k)~ei,α′(k) , (4.7)

where the ωi (k) is the dispersion relation of the phonons in the lattice.
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r i

u i

Figure 4.1. The particle sites on the ith lattice point with coor-
dinate ri. The displacement of the particle from this lattice point
is given by the vector ui.

4.3.1 The phonon Hamiltonian

The dynamics of the phonons are described by the Hamiltonian:

H = H0 +H2 +H3 + · · · ,

where up to the second order the form of H is:

H =
∑

αl

p2
α(l)

2m
+

1

2

∑

αβ

∑

ll′

Φαβ(ll′)uα(l)uβ(l′) ,

with the commutation relation:

[uα(l), pα′(l′)] = i~δll′δαα′ .

All other commutation relations are zero. Using the eigenvalues of the dy-
namical matrix (4.7) we express the coordinates:

uα(l, t) = a

√

ω0

2

∑

ki

~eiα(k)
eikx

√

ωi(k)

(

bi(k)e−iωi(k)t + b†i (−k)eiωi(k)t
)

pα(l, t) =
~

a

1√
2iω0

∑

ki

~eiα(k)
√

ωi(k) eikx
(

bi(k)e−iωi(k)t + b†i (−k)eiωi(k)t
)

,

(4.8)

with ω0 = ~/ (a2m). Now the Hamiltonian takes the compact from:

H =
∑

ki

~ωi(k)

(

b†i (k)bi(k) +
1

2

)

.
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In the ground state we sum up the zero-point oscillations to get the correction
of the energy:

∆E =
~

2

∑

ki

ωi(k) . (4.9)

4.3.2 The dispersion relation

For every momentum k in equation (4.7) one gets two eigenvalues ω2
i (k),

i ∈ {T, L}, denoting the transversal and the longitudinal mode.
The elements of the dynamical matrix Φαα′/m decay with r−5. There-

fore, one gets a very good approximation for the dispersion relation, when
calculating the Fourier transform of the dynamical matrix, summing only the
terms with the smallest r (see appendix (B.7)). The results for the different
components of the Fourier transform take the form:

Fxx(k) ≈ ω2
d

{

−3

2
(cos kr1 + cos k (r1 − r2)) − 24 cos kr2 + 27

}

Fxy(k) = Fyx(k) ≈ ω2
d

{

−15

√
3

2
(cos kr1 − cos k (r1 − r2))

}

Fyy(k) ≈ ω2
d

{

−33

2
(cos kr1 + cos k (r1 − r2)) + 6 cos kr2 + 27

}

, (4.10)

where r1 and r2 are the basis vectors. Now the two branches of the dispersion
relation could be expressed as:

ω1,2(k) =





Fxx(k) + Fyy(k)

2
±

√

(Fxx(k) − Fyy(k))2

4
+ F 2

xy(k)





1
2

,

and are visualized in figure 4.2. The quantum correction of equation (4.9) to
the energy is ∆E = ~ωd3.22.

4.3.3 Existence of a crystal

Placed at their lattice points, the dipoles oscillate around their potential
minimum. If the amplitude of the ground state oscillation exceeds a criti-
cal value, anharmonic terms leading to phonon-phonon interactions are not
negligible. The phonon-phonon interactions yield imaginary frequencies and
the crystal starts to melt. We parameterize the problem with the modified
melting parameter used in references [148, 149, 150]:
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Figure 4.2. Dispersion relation of the phonon Hamiltonian.

γ =
1

a2

∑

α

〈(uα(l, 0) − uα(l + a, 0))2〉

=
1

a2

∑

α

(

2〈u2
α(l, 0)〉 − 〈uα(l, 0)u†α(l + a, 0)〉 − 〈uα(l + a, 0)u†α(l, 0)〉

)

=
2

a2

∑

α

(

〈u2
α(0, 0)〉 − 〈uα(0, 0)u†α(a, 0)〉

)

,

where the vector a points to the neighbored lattice cell. We can perform
the last step due to the invariance under discreet lattice translations. Using
equation (4.8) we get:

γ =
2

a2

∑

α

(

〈u2
α(0, 0)〉 − 〈uα(0, 0)u†α(a, 0)〉

)

=
ω0

N2

∑

α

∑

kk′ii′

~eiα(k)~ei′α(k′)
√

ωi(k)ωi′(k′)

(

1 − eik′a
)

×
(

〈bi(k)b†i′(−k′)〉 + 〈b†i (−k)bi′(k
′)〉
)

.

Since in the Fourier transformed dynamical matrix in equations (4.10) the
quasi-momentum appears only as an argument in even functions, the disper-
sion relations and the polarization vectors are the same for a particular k
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and −k. We rewrite the modified melting parameter:

γ = 2
ω0

N

∑

ki

1 − cos ka

ωi(k)
.

Because ωi(k) scales with ωd, the modified melting parameter grows with
γ ∝ √

a . Apparently, the deviation is small for small a. According to
Lindemanns law [145], a lattice is only stable for a sufficiently small lattice
constant a. In experiments this is only possible up to a certain extent.
If a becomes too small, the long range approximation of the dipole-dipole
interaction is not valid, or the field strength to align the dipoles has to be
extremely large.

4.4 Rotating frame

Alternatively, one can consider the experiment in a rotating frame. Rotating
BEC’s already have been examined quite extensively [2, 33, 45, 50, 153, 160,
203]. They show the well pronounced feature of vortices formations, which
are quantized circulations of BEC’s. In order to realize a rotating gas, it
has to be trapped in an external potential which is approximately harmonic
for small r. The effective potential vanishes if the rotational frequency ap-
proaches the trap potential frequency. Even faster rotational frequencies can
be performed by applying non-harmonic higher order terms of the trapping
potential [33].

A system in a rotational frame, rotating with frequency Ω, and trapped
in an external harmonic potential with the trap frequency ω⊥, is described
with the Hamiltonian:

H = − ~
2

2m
∆ +

1

2
ω2
⊥r2 − ΩLz +HDD

= − ~
2

2m
∆ +

1

2
ω2
⊥r2 − iΩ~ (y∂x − x∂y) +HDD (4.11)

=
1

2m

(

−i~~∇− q

c
~A
)2

+
1

2

(

ω2
⊥ − Ω2

)

r2 +HDD ,

with

~A = mΩ
c

q

(

−y
x

)

.

Here HDD is the interparticle interaction energy caused by the dipole-dipole
potential. The Hamiltonian (4.11) describes a model of a particle carrying
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a charge q in a magnetic field with the corresponding cyclotron frequency
ωc = 2Ω. In the case of non-interacting particles, HDD = 0 and in the regime
of the critical rotation ω⊥ = Ω, the properties of the Hamiltonian (4.11) are
well known. The corresponding energy levels are called Landau levels:

En = ~ωc

(

n+
1

2

)

.

One level has a degeneracy (per unit area) that reads:

nB =
1

2πl2B
,

where lB =
√

~/(qB) is the magnetic length. Henceforth, we express a
length in the unit of lB (lB = 1). The filling factor is defined as:

ν =
n

nB

,

where n is the particle density in the system. Increasing the “magnetic
field” at a constant density leads to lower filling factors. In the following
we consider only states in the lowest Landau level. The contribution to
the energy, coming from the non-interacting part of the Hamiltonian, are
the same for all single particle wavefunctions. Subsequently, we deal with
product states of single particle wavefunctions and, therefore, only consider
the interaction energy.

4.5 Laughlin wavefunction

In the presence of interparticle interaction, finding the ground state of the
system becomes difficult. For an electronic system in the completely filled
lowest Landau level (ν = 1), an approach based on trial wavefunctions is
known to be very successfully. Among many trial wavefunctions the most
known are Laughlin wavefunctions which are close to the ground state at a
filling factor of ν = 1/3 [188].

In order to describe the observed fractional quantum Hall effect, Laughlin
suggested a variational state fulfilling the constraints:

• The many-body wavefunction is comprised of solely single-body wave-
functions lying in the lowest Landau level.

• This wavefunction is entirely antisymmetric.
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• The wavefunction is an eigenstate of the total angular momentum.

Inspired by an approximate solution for small particle numbers, he suggested
a form that is:

ψM(z1 . . . zN) =
N
∏

j<k

(zj − zk)Me−
1
4

PN
l=1 |zl|

2

, (4.12)

here N is the particle number, M ∈ 1, 3, 5, . . . corresponds to the inverse
of the filling factor, and zi is the complex representation of the point in a
2D-plane. In this expression we ignore the normalization. For filling factors
around ν = 1/3, the Laughlin wavefunction is a very good approximation
and it was suggested to appear also in dipolar systems [15]. On the other
hand, it has been shown for systems with Coulomb interaction that, while
reducing the filling factor, the ground state becomes a charge density wave,
for instance a Wigner crystal [95, 124].

4.5.1 Energy of the Laughlin state

We have calculated the energy of the Laughlin wavefunction at different filling
factors. The interaction energy reads:

UL =
d2

2M

∫ ∞

0

drr
g(r)

r3
, (4.13)

where r is measured in units of lB, and g(r) is the pair correlation function:

g(z1 − z2) =
2πMN(N − 1)

〈ψ|ψ〉

∫

dz3 . . . dzN |ψ(z1, z2; z3 . . . zN)|2 . (4.14)

For ν = 1 the correlation function can be analytically obtained in the ther-
modynamical limit [188] and reads:

g(r) = 1 − e−
r2

2 .

Therefore, the interaction energy is U = d2
√

2π /4 ≈ d20.627. For other
values of M , the pair-correlation function g(r) can only be approximately
calculated [94]. We present the results of our Monte-Carlo calculation in
subsection 4.5.2.
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Energy corrections due to the extension in the third dimension

The quasi-2D regime is achieved by strongly confining the gas in one di-
mension, e.g. in the ξ-direction. Nevertheless, the gas has a finite Gauss
shaped extension in this direction, which depends on the trap frequency in
ξ-direction. For sufficiently strong confinement in the ξ-direction the wave-
function can be rewritten in the form:

ψ3D({zi, ξi}) = ψ2D({zi})
(

l
√
π
)−N

2 e−
1

4l2

P

i ξ2
i ,

where l determines the extension in ξ-direction. The trial extend in the ξ-
direction will modify the interparticle interaction in the 2D-plane. Assuming
that two dipoles have a distance r in a 2D-plane, the interaction energy is:

v2D(r) =
d2

l2π

∫ ∞

−∞

dξ1dξ2e
−

ξ21+ξ22
l2
(

(ξ1 − ξ2)
2 + r2

)− 3
2

(

1− 3(ξ1 − ξ2)
2

(ξ1 − ξ2)2 + r2

)

=
d2

l3
√

2π

∫ ∞

0

dξe−ξ r2

2l2

√

ξ

(ξ + 1)3 . (4.15)

In the limit of r À l the potential behaves like:

v2D(r À l) ≈ d2

r3
.

The effective potential is shown in figure 4.3. It appears that v2D(r) is always
smaller than d2/r3. However, the difference v2D(r) − d/r3 only becomes
noticeable for small values of r < lB, and is therefore important for filling
fractions of the order unity or larger.

4.5.2 Monte-Carlo integration

In this subsection we want to obtain the pair correlation function (4.14).
With the help of a Monte Carlo method [188] we perform an integration over
(2N − 4) dimensions where N is the particle number.

Numerical treatment

We calculated the pair correlation g(r) function for filling factors from 1 down
to 1/19 where the number of particles in our computation is 512. In order to
perform the integration we use the “Plasma analogy” [138, 188]. The density
of the Laughlin wavefunction in equation (4.12) reads:

ρ({zi}) = e−
P

i>j 2M ln |zi−zj |+
P

i |zi|
2

.
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Figure 4.3. The effective potential v2D in a log-log plot. For big
r the potential approaches 1/r3.

The integration of ρ over all variables is formally equivalent to the canonical
partition sum of a 2D plasma gas in a harmonic trap at the temperature
T = M . This problem can be solved with standard algorithms. We use
importance sampling by performing a Marcov chain with 232 sample points
which are obtained by a Metropolis algorithm.

In our algorithm one particle is pinned at the origin. We randomly choose
one of the other particles and change the position by a random value either
in the x or in y direction. The update is certainly accepted to be the new
configuration if the “energy of the plasma gas” is decreased. If the energy is
increased the probability of accepting the update is:

p = e−β∆E ,

where ∆E is the energy difference between the old configuration and the
update and β = 1/T is the filling factor. This procedure is known to provide
the proper statistics for the importance sampling. In order to measure the
pair correlation function, the plane is divided into rings with equal width
as demonstrated in figure 4.4. After every interaction step, the number of
particles in each ring is counted. In the end the result in each ring is averaged
over all iterations. The number of rings in our calculation is 640, where the
outer radius of the last ring is r640 = 1.1RM , with RM ≈ µ2NMlB being
radius of the Laughlin wavefunction. The width of the ring is small, but
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Figure 4.4. The plane is divided into rings. In every realization
the particles within a particular ring are counted.

finite, Hence, one has to estimate the mean radius corresponding to the ring.
The value of the radius is limited by the inner and outer radii of this ring. In
order to estimate the radius, we consider the distribution of counted points
within the ring. If the rings are sufficiently narrow, we can approximate the
distribution linearly as g(r) ≈ c+λr, where r is in the range of the considered
ring. We calculate the expectation value for the radius that reads:

〈r〉 =

∫ rR

rR−δr
drg(r)r2

∫ rR

rR−δr
drg(r)r

,

where rR is the outer radius of the ring and δr is the width of the ring. Using
the approximate form of g(r), the expectation value radius for this ring reads:

〈r〉 =
λr3

R + r2
R

(

c− 3
2
λdr
)

− rRdr (c− λdr) + dr2
(

1
3
c− 1

4
λdr
)

λr2
R + rB (c− λdr) − dr

(

1
2
c− 1

3
λdr
) . (4.16)

In order to get the proper amplitude of the pair correlation function, we also
allow the center particle to move within the frame of a “plasma gas” analogy
[138, 188]. The outcome would be the density distribution of the Laughlin
state, which is known to be ρ (r) = 1/ (2πMl2B) where we set lB = 1. On
the other hand, an unpinned center particle does not sufficiently change the
distribution far away from the origin. Consequently, we have to multiply our
results with 2πM . In our calculations the pair-correlation functions have the
amplitude of g(r) ≈ 1, for r sufficiently far away from the center and the
edge.
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For lower filling factors the oscillation amplitude is less dumped (see figure
4.5). In order to calculate the pair correlation functions for filling factors
below 1/19, one has to choose a particle number above N = 512 which is
numerically demanding. As a check we calculate the interaction energy of an
electronical system. The corresponding energy (see [136]) for ν = 1/5 is:

Uel =
e2

2MlB

∫ ∞

0

(drg(r) − 1)

= −e
2

lB
0.32756 ,

which is in a good agreement with earlier outcomes [136] where the energy
is Uel = −e2/lB(0.3277 ± 0.0002). Here e is the charge of the electron.

Accuracy

The sources for inaccuracy are:

• the finite system size,

• the finite resolution,

• the finite number of realization.

We considered a system with 512 particles, therefore, the radius of the
Laughlin state is RM ≈

√
2NM lB ≈ 71lB. Albeit the system is relatively

huge, it suffers from finite size effects, which are responsible for oscillation
with an amplitude of ∆g(r) ≈ 0.005. Therefore, the upper border of inte-
gration determines the result of the interaction energy, which oscillates with
an amplitude of ∆U 1

el ≈ 0.0003. The deviation of the expectation value is
σel = 0.00022.

In order to interpolate the discrete points we are using the Cubic Spline
Interpolation [81]. The resolution is the width of the rings which is ≈ 0.12lB.
The inaccuracy coming from this routine depends on the 4th order Taylor
expansion of the pair correlation function. With a typical oscillation length
of the pair-correlation function of ≈ 5lB, the error coming from the Spline
routine is ∆U 2

el < 0.0001. We want to emphasize that choosing the right
values for the radii of the rings, which is given by equation (4.16), has the
same effect as taking a higher resolution. Since our function is relatively
smooth, we can safely assume that the error of values for λ is less than 10%,
hence the resulting error is ∆U 3

el < 0.00002 which we can neglect. The error
for c is based on the numerical inaccuracy of the metropolis algorithm. It
turns out that this error is ∆U 4

el < 0.00002.
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In order to estimate the inaccuracy coming from the finite number of
samples in the metropolis algorithm, we need to consider the correlation
length between the realizations. Starting from a particular realization, we
only get reliable results if the correlation to the subsequent realizations is
decaying exponentially with consecutive iteration steps. The correlation of
two realizations that are separated by l steps reads:

〈rtrt+l〉 = e−
l
γ ,

here rt is the realization at the step t and 〈rtrt+l〉 is a scalar product between
realizations. The effective uncertainty reads [25]:

σeff = σ

√

1 + 2γ

N
,

whereas N = 232 is the number of realizations and σ is the deviation:

σ2 = 〈n2
R〉 − 〈nR〉2 .

〈nR〉 is the averaged number of particles in the ring R, divided by the area of
the particular ring and multiplied with 2πM respectively; 〈n2

R〉 corresponds
to the averaged square of the counted particle numbers. The deviation in
the energy ∆U 5

el ≈ 0.0001. Our final result is Uel = −0.32756 ± 0.00036 and
it agrees with the result of [136].

4.6 Energy correction of the Wigner crystal

In the classical limit the energy is a sum of all interaction energies of point
like particles. This limit neglects the finite size of the dipole wavefunction
in both the x-y-plane and the extension into the ξ-direction. Due to the
anisotropy of a dipole-dipole potential both corrections have different signs
and we consider them separately.

For low filling factors ν < 1/3 the dipoles are sufficiently separated.
Therefore, the wavefunction is a product state of eigenfunctions in the lowest
Landau level, centered at the positions where the classical energy is mini-
mized. The state reads:

ψW = A
∏

j

φRj
(zj) ,

where A is the antisymmetrization operator. The eigenfunction of the lowest
Landau level takes the form:

φR =
1

√

2πl2B
e
− 1

4l2
B

|z−R|2− 1

4l2
B

(zR∗−z∗R)
.



4.6. Energy correction of the Wigner crystal 87

 25 20 15 10 5 0
 0

 0.5

 1

 1.5

 2

M=

3
1

5
7

9
11

13
15

17
19

g(
r)

lBr in

Figure 4.5. The figure shows the pair correlation functions of a
Laughlin state at different filling factors.

In appendix (B.1) it is demonstrated that for sufficiently low filling factors
the antisymmetrization can be omitted. Hence, the energy between two 2D
wave-packages φ(x, y), separated by the vector R = (0, aR), reads:

E12 =

∫ ∞

∞

dx1dx2dy1dy2φ0(x1, y1)
2φR(x2, y2)

2v2D

(

√

(x1 − x2)2 + (y1 − y2)2
)

=
1

l2B4π

∫ ∞

∞

dxdye
−

(x−aR)2+y2

4l2
B v2D

(

√

(x− aR)2 + y2
)

. (4.17)

v2D(r) is the effective 2D potential and a is the lattice constant, and R ≥ 1
is dimensionless. In the pure 2D case the potential is v(r) = 1/r3. If we omit
the antisymmetrization, the integrand of the second line has a non integrable
pole at r1 = r2, where ri = (xi, yi). On the other hand, the antisymmetric
wavefunction vanishes at this point, hence the density wave function grows
quadratically in the difference r1 − r2. The pole in the integrand is of the
first order, and is therefore integrable. However, the main distribution of the
integral comes from the vicinity of r1 = r2 − R.

The extension in the ξ-direction

Taking into account the extension in the ξ-direction, the effective 2D po-
tential in the case of fully polarized dipoles is given in equation (4.15) and
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reads:

v2D(r) =
d2

l3
√

2π

∫ ∞

0

dξe−ξ r2

2l2

√

ξ

(ξ + 1)3
,

with r2 = x2 + y2. We assume that the extension in ξ direction is smaller
than the interparticle distance l ¿ aR. Now, we can expand the integrand
around ξ = 0 and get:

v2D(r) ≈ d2

l3
√

2π

∫ ∞

0

dξe−ξ r2

2l2

(

√

ξ − 3

2
ξ

3
2 +

15

8
ξ

5
2 − 35

16
ξ

7
2 · · ·

)

=
d2

r3

(

1 − 9

2

(

l

r

)2

+
225

8

(

l

r

)4

− 3675

16

(

l

r

)6

+ · · ·
)

.

As expected, in the limit of vanishing l the potential is v2D(r) = 1/r3.

The extension in the x-y-plane

We develop the effective potential v2D(
√

(x− a)2 + y2 ) around x = 0 and
y = 0 and solve the integral in equation (4.17):

E12 ≈
d2

(aR)3

(

1 + 9
1

R2

[

lB
a

]2

β +
255

2

1

R4

[

lB
a

]4

β2

+
3675

2

1

R6

[

lB
a

]6

β3 +
297675

8

1

R8

[

lB
a

]8

β4 + · · ·
)

,

with

β = 1 − 1

2

[

l

lB

]2

.

With (lB/a)2 =
√

3 /(4πM) and summing over all lattice sites we finally get:

UW ≈ d2

M3/2

{

0.2823 + 0.2146
β

M
+ 0.3388

β2

M2

+0.7456
β3

M3
+ 2.0676

β4

M4
+ · · ·

}

.

In figure 4.6 the interparticle interaction energy of a Laughlin state and a
Wigner crystal at different extensions in the ξ-direction are compared. In
figure 4.7 a phase diagram is presented in the M -l plane. Comparing a
Laughlin state and a Wigner crystal, the state with a lower interparticle
interaction energy is shown. For low filling factors the Wigner crystal is
energetically favorable.
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Figure 4.6. Interaction energies of a Laughlin state and of a
Wigner crystal without extension in ξ-direction (l = 0) and with
a finite extension (l = 1.2lB). The red circles denote the phase
transition.

4.7 Phonons in a rotating crystal

4.7.1 The Bogoliubov transform

In order to examine the spectrum, we diagonalize the Hamiltonian in a “mag-
netic field”, effectively caused by the rotation. The desired shape of the
Hamiltonian is:

H = ~

∑

k

∑

m=−,+

ωm(k)

(

b†m(k)bm(k) +
1

2

)

,

here − and + are two modes. The commutation relations for the annihilation
and creation operators bm(k) and b†m(k) read:

[

bi(k), b†j(k
′)
]

= δi,jδk,k′

[bi(k), bj(k
′)] =

[

b†i (k), b†j(k
′)
]

= 0

⇒ [bm(k), H] = ~ωm(k)bm . (4.18)
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The operators are obtained by a Bogoliubov transformation [26, 87, 150],
generally written as:

bm(k) = wm(k)u(k) + vm(k)p(k)

b†m(k) = w∗
m(k)u(k) + v∗

m(k)p(k) . (4.19)

The right hand site contains scalar products of two component vectors. Using
the commutation relation for components of q and p, we obtain a condition
for the vectors vm and wm. We recalculate the commutator of bi(k) and
b†j(k) using equation (4.19) and obtain:

⇒
[

bm(k), b†m′(k
′)
]

= [wm(k)u(k) + vm(k)p(k),w∗
m′(k′)u(k′) + v∗

m′(k′)p(k′)]

= i~δk,k′δm,m′ (wm(k)v∗
m(k) − w∗

m(k)vm(k))

= δk,k′δm,m′ ,

and get the condition:

wm(k)v∗
m(k) − w∗

m(k)vm(k) = 1 . (4.20)
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We express the original Hamiltonian (4.11) using the Fourier transformed p
and u and it reads:

H =
∑

k

p2(k)

2m
+
ωc

2
(pT (k)uL(k) − pL(k)uT (k))

+
m

2

(

ω2
T (k)u2

T (k) + ω2
L(k)u2

L(k) +
ω2

c

4
u2(k)

)

,

where the frequencies ωT (k) and ωL(k) are the dispersion relations along the
wave vector k. We obtain additional conditions for vm and wm, when we
compute the commutation relations of u and p with H:

[ui(k), H] = i~

(

pi(k)

m
+
ωc

2
εijuj(k)

)

[pi(k), H] = −i~

(

m

(

ω2
i (k) +

ω2
c

4

)

ui(k) − ωc

2
εijpj(k)

)

,

where εij = −εji is the antisymmetric tensor. We again calculate the com-
mutator of bm and H using equation (4.19) and omit the argument (k):

1

~
[bm, H] =

1

~
[wmTux + wmLuy + vmTpx + vmLpy, H]

= i
(

wmT

(px

m
− ωc

2
uy

)

+ wmL

(py

m
+
ωc

2
ux

)

−m
(

vmT

(

ωT +
ω2

c

4

)

+ vmL

(

ωL +
ω2

c

4

))

−ωc

2
(vmTpy − vmLpx)

)

= ωmbm

= ωm (wmTux + wmLuy + vmTpx + vmLpy) .

By identifying the terms containing only ux (respectively with uy, px and py)
one gets equations for v and w:

i
(wmT

m
+ vmL

ωc

2

)

= ωmvmT

i
(wmL

m
− vmT

ωc

2

)

= ωmvmL

i

(

wmL
ωc

2
− vmTm

(

ω2
T +

ω2
c

4

))

= ωmwmT

−i

(

wmT
ωc

2
+ vmLm

(

ω2
L +

ω2
c

4

))

= ωmwmL . (4.21)

The first two lines of equation (4.21) can be rewritten in the form:
(

wmT

wmL

)

= m

(

−iωm −ωc

2
ωc

2
−iωm

)(

vmT

vmL

)

, (4.22)
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where the third and the fourth line lead to:

m

(

ω2
T + ω2

c

4
0

0 ω2
L + ω2

c

4

)

vm =

(

iωm
ωc

2

−ωc

2
iωm

)

wm

= m

(

iωm
ωc

2

−ωc

2
iωm

)(

−iωm −ωc

2
ωc

2
−iωm

)

vm .

(4.23)

Combining equations (4.22) and (4.23) we obtain:

(

ω2
T + ω2

c

4
0

0 ω2
L + ω2

c

4

)

vm =

(

ω2
m + ω2

c

4
−iωcωm

iωmωc ω2
m + ω2

c

4

)

vm .

Hence, we get the relation:

vmT = i
ω2

m − ω2
L

ωmωc

vmL

vmL = −i
ω2

m − ω2
T

ωmωc

vmT

wmT = −im
ω2

m + ω2
T

2ωm

vx

wmL = −im
ω2

m + ω2
L

2ωm

vy ,

hence:
(

ω2
m − ω2

L

) (

ω2
m − ω2

T

)

= ω2
mω

2
c .

Therefore, the two branches of the corresponding dispersion relation are:

ω2
± =

ω2
T + ω2

L + ω2
c

2
±

√

(ω2
T + ω2

L + ω2
c )

2

4
− ω2

Tω
2
L . (4.24)

For huge magnetic fields ω2
c À ω2

L,T (k) the branches are, compared to the
gap between the branches, almost flat with ω2

−(k) ≈ 0 and ω2
+(k) ≈ ω2

c .
Using the normalization condition we get:

vmTv
∗
mT =

1

m~

(

ωm

ω2
m − ω2

T

)(

ω2
cω

2
m

(ω2
m + ω2

T ) (ω2
m − ω2

L) + (ω2
m − ω2

T ) (ω2
m + ω2

L)

)

=
1

2~m

ω2
mω

2
c

(ω2
m − ω2

T )

ωm

(ω4
m − ω2

Tω
2
L)

=
ωm

~m

(ω2
m − ω2

L)

(ω4
m − ω2

Tω
2
L)

, (4.25)
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and

vmLv
∗
mL =

ωm

2~m

(ω2
m − ω2

T )

(ω4
m − ω2

Tω
2
L)

. (4.26)

Due to the form of the dispersion relations ωL,T (k), vmT and vmL are sym-
metric functions in k. If we choose vmT to be real, vmL will have to be purely
imaginary. The position and momentum operators can now be constructed
and takes the form:

u(k) = −i~
∑

m=+,−

(

−v∗
mbm + vmb

†
m

)

p(k) = −i~
∑

m=+,−

(

w∗
mbm − wmb

†
m

)

(4.27)

or

u(r, t) = −i
~√
N

∑

mk

eikr
(

−v∗
m(k)bm(k)e−iωm(k)t + vm(−k)b†m(−k)eiωm(k)t

)

=
∑

mk

eikr
(

ξm(k, t) + ξ†(−k, t)
)

. (4.28)

4.8 The Green’s function in a magnetic field

The anharmonic parts of the potential in equation (4.5) influence the phonon
dispersion relation. They can lead to imaginary frequencies, which is a sig-
nature for the melting of the crystal. Moreover, the deviation of the dipoles
from their lattice points, classically interpreted as the oscillation around the
potential minima, is increased when amplifying the anharmonic parts.

We incorporate the 3rd and the 4th order of the Taylor expansion pertur-
batively:

H = H0 +H3 +H4 .

In order to treat this problem, we introduce the Green’s function as the time
ordered two point correlation function of the displacements:

Dαα′(r, t) = i

{

〈uα(r, t)uα′(0, 0)〉 t > 0
〈uα′(0, 0)uα(r, t)〉 t < 0

. (4.29)

In the harmonic case we can use the equation (4.27) to express the Green’s
function and obtain:

Dαα′(r, t) = i
~

2

N

∑

km

eikr

{

v∗mα(k)vmα′(k)e−iωm(k)t t > 0
v∗mα′(k)vmα(k)eiωm(k)t t < 0

.
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The Fourier transform in space and time variables reads:

Dαα′(k, ω) = −2~
2
∑

m

v∗mα(k)vmα′(k)
ωm

ω2 − ω2
m

.

Using equations (4.25) and (4.26) the components of the matrix Dαα′ has the
form:

DTT (k, ω) = −a2ω0

∑

m=±

(ω2
m − ω2

L)

(ω4
m − ω2

Tω
2
L)

ω2
m

(ω2 − ω2
m)

DLL(k, ω) = −a2ω0

∑

m=±

(ω2
m − ω2

T )

(ω4
m − ω2

Tω
2
L)

ω2
m

(ω2 − ω2
m)

DLT (k, ω) = ±ia2ω0

∑

m=±

√

(ω2
m − ω2

T ) (ω2
m − ω2

L)

(ω4
m − ω2

Tω
2
L)

ωωm

(ω2 − ω2
m)

= ±ia2ω0

∑

m=±

ωcω
2
m

(ω4
m − ω2

Tω
2
L)

ω

(ω2 − ω2
m)

.

In the Cartesian coordinates the Green’s function takes the form:

D0(k, ω) = a2ω0

∑

m=±

ω2
m(k)

(ω4
m(k) − ω2

T (k)ω2
L(k))

1

(ω2 − ω2
m(k))

(

M̂T (k)ω2
L(k) + M̂L(k)ω2

T (k) − ω2
m(k) + iε̂ωcω

)

, (4.30)

where M̂0,1(k) are the projectors to the eigenvectors of the real part of D0(k)
and ε is the antisymmetric tensor. The form of the inverse Green’s function
is relatively simple and is:

(

D0
)−1

(k, ω) =
1

a2ω0

(

M̂T (ω2
T (k) − ω2) + M̂L(ω2

L(k) − ω2) − iε̂ωcω
)

.

(4.31)

4.8.1 Green’s functions in anharmonic systems

Non-vanishing anharmonic terms change the form of the Green’s function
defined in equation (4.29). A common approach to this problem is to treat
the anharmonic terms H3 and H4 perturbatively (see e.g. [3]).

We assume that the perturbative part is turned on at t = −T and turned
off at t = T , where T → ∞. For t > T or t < −T the system is described
with the harmonic Hamiltonian. In order to examine the Green’s function
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for all relevant times, one has to introduce the time evolution operator:

S = T exp− i

~

∫ ∞

−∞

dt (H3(t) +H4(t))

= 1 + T
∞
∑

n=1

1

n!

(

− i

~

)n∫

dt1 . . . dtn (H3(t1) +H4(t1)) . . . (H3(tn) +H4(tn)) ,

(4.32)

where the exponential description is an abbreviation of the sum. T denotes
that the product is time ordered.

The Green’s function can then be expressed with the formula:

Dαα′(r, t) =
i

〈S〉〈T uα(r, t)uα′(0, 0)S〉 , (4.33)

which can be expanded as a sum. The addenda of H3 contain an odd number
of creation and annihilator operators (see appendix (B.5)), hence, the first
non-vanishing term in the sum (4.32) is the second order term of H3. The H4

term is developed up to the first order. It turns out that for large magnetic
fields (ωc À ω0) the amplitude of these two contributions are proportional
to the filling factor ν, while all other nontrivial contributions are of higher
order.

4.8.2 Self-consistent solution of the Dyson equation

The phonon-phonon interaction has to be treated in a perturbative expan-
sion. This can be done by including the sum in equation (4.32) into the
expression for the Green’s function (4.33). Schematically, the addenda of
the perturbation series can be expressed as Feynman diagrams. A phonon

Green’s function is denoted with a thin line . We illustrate the final

exact Green’s function in equation (4.33) with a thick line . The self-
energy block, which contains all one-particle irreducible loops, is depicted

with: Σ .
Remarkably, the exact expression for the Green’s function can be obtained
using the Dyson equation:

( )−1

=

( )−1

− Σ ,

where Σ is the self-energy block without the two external “legs”. One-
particle irreducible, non-trivial loops of the lowest order are the second order
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of the three phonon vortex:  ª
® ©r r

and the first order of the fourth phonon vortex:
nr .

Now we approximate the self-energy block by taking only into account these
loops:

Σ ≈ ª
® ©r r +

nr .

Since we sum up only loops of the lowest order in ν, the self-energy block

Σ is an approximation. However, we can increase the accuracy of our
outcome by solving the Dyson equation self-consistently. In the first iteration
we obtain the Green’s functions up to the lowest order:

( )−1

=

( )−1

− Σ . (4.34)

We use the approximation to recalculate the lowest order loops, and
the self-energy block respectively:

Σ ≈
 ª
® ©
 ª
® ©
 ª
® ©
 ª
® ©r r +

nnmmr ,

already represented without legs. In the next iteration step, the Dyson equa-
tion reads:

( )−1

=

( )−1

− Σ .

We repeat this scheme until we reach convergence or until we have to stop,
for instance due to the appearance of imaginary frequencies.

4.8.3 The first iteration for the Green’s function

Using the Green’s function in equation (4.31), we solve the Dyson equation
when performing the first iteration step:

a2w0

(

D1
)−1

(k, ω) = a2w0

(

(

D0
)−1

(k, ω) − Σ(k, ω)
)

= M̂T

(

ω2
T (k) − ω2

)

+ M̂L

(

ω2
L(k) − ω2

)

− a2w0Σ(ω,k),
(4.35)

where we only consider the real part and neglect corrections coming from the
imaginary part which are of higher order. Now we like to express D−1

1 (k, ω)
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using a form that is similar to the one of D−1
0 (k, ω), thus allowing us to

perform further iteration steps. We are going to approximate equation (4.35)
with:

a2w0

(

D1
)−1 ≈ A−1

0 M̃T

(

ω̃2
T (k) − ω2

)

+ A−1
1 M̃L

(

ω̃2
L(k) − ω2

)

, (4.36)

where the inverse of A0 and A1 are amplitudes, M̃i are projectors and ω̃i(k)
are the branches of the renormalized dispersion relation. We want to find
values for these quantities that approximate the exact solution (4.35) as good
as possible. This approximation is a reasonable choice, because the biggest
contribution in the loops comes from the Green’s function around the poles.
First, we calculate the eigenvalues of D−1

1 (k, ω):

a2w0

(

D1
)−1

(k, ω) = M̃T (k, ω)λT (k, ω) + M̃L(k, ω)λL(k, ω) .

It turned out that for a particular frequency ω = ω0,i one eigenvalue λi(k, ω)
is zero. Terms linear in ω do not appear in the Dyson equation (4.34), hence,
we develop λi(k, ω) around ω2

0,i linear in ω2:

λi(k, ω) ≈ A−1
i (k)

(

ω2
0,i − ω2

)

, (4.37)

for i ∈ {T, L}. We can obtain the desired form of equation (4.36) if we set
the dispersion relations to:

ω̃2
i (k) = ω2

0,i . (4.38)

The projector matrices are obtained at ω2 = ω̃2
T,L(k). Due to the amplitudes

the form of the new Green’s function is more complex, on the other hand,
the following iteration steps can be performed in the same way as in equation
(4.35).

4.9 The melting parameter

4.9.1 Criteria for a stable crystal

We would like to determine the condition for a stable Wigner crystal. There-
fore we consider the following questions:

• Is the energy of the Wigner crystal below the energy of other trial
wavefunctions, in particular of the Laughlin wavefunction?

• Are the renormalized phonon frequencies real?
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• Do we have a converging self-consistent solution?

The first point was already answered in section 4.5. For reasonably high
filling factors ν > 1/5 the Laughlin wavefunction has a lower energy (see
figure 4.7), so that a Wigner crystal cannot appear. Moreover, by performing
an exact diagonalization for a small number of particles at a filling factor of
ν = 1/3 it can be shown that the overlap of the ground state with Laughlin
state is almost one [179], which is consistent with our observation. Below a
critical value for the filling factor (ν < 1/7 for l = 0) the Wigner crystal has
a lower energy.

Going from lower to higher filling factors, the contribution coming from
the phonon-phonon interaction becomes important. We are taking these an-
harmonic effects into account by solving the Dyson equation self-consistently.
Performing an iteration step in the self-consistent Dyson equation leads to
renormalized dispersion relations (see equation (4.38)). A signature for melt-
ing is the appearance of imaginary frequencies at low quasi-momenta, which
leads to a decay of the phonon modes. The highest filling factor, for which
we do not observe imaginary frequencies after solving the Dyson equation
self-consistently, defines the critical filling factor, and for smaller values we
have a stable Wigner crystal. At this critical filling factor we can determine
the modified melting parameter as shown in equation (B.11). We perform
13 iterations and show that the convergence is reached. Figure 4.8 shows the
modified melting parameter at different filling factors. Moreover, it shows
the points where we obtain imaginary frequencies corresponding to the it-
eration. In figure 4.9 the critical modified melting parameter γ and inverse
filling M are plotted against the iteration steps.

4.9.2 The Lindemann criterion

The question whether we can formulate a Lindemann criterion depends on
the universality of our results. We have three typical system parameters,
which we can vary: ω0, ωd, and ωc. Without losing the generality, we can
fix ωd = 1 and express ω0 and ωc in the units of ωd. Then, for every set of
{ω0, ωc} we can check the stability of the crystal. For a given ωc we determine
ω0 at which the crystal melts and compute the critical inverse filling factor
with the formula:

M =
1

2π
√

3

ωc

ω0

.

Of course, the critical inverse filling factor depends on ωc. In figure 4.10
it is shown that for very large values of ωc the critical inverse filling factor
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Figure 4.8. The modified melting parameter γ =
〈u(r1, 0)u(0, 0)〉/a2 is plotted against the inverse filling factor
M = 1/ν. r1 is the vector pointing to the neighbored lattice site.
The red line shows the modified melting parameter, when the an-
harmonicity is omitted. The orange crosses denote, corresponding
to the iteration step, the appearance of imaginary frequencies.
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Figure 4.10. The red dots are the critical melting parameter
versus ωc. The green line is obtained by a least square fit. The
functions reads: Mcr(ωc) ≈ 4.33e−0.00209ωc + 5.77.

converges to a constant. Hence, we can formulate the Lindemann criterion
for a large magnetic field, where the crystal melts at a modified melting
parameter of γ ' 0.077 which corresponds to a filling factor of ν = 0.174.
Both γ and ν are independent of ωc for large magnetic fields.

4.10 Conclusion

We have discussed the occurrence of a Wigner crystal in a rapid rotating 2D
gas. Comparing the Laughlin state with the Wigner crystal, the Laughlin
state has a lower energy for filling factors 1/5 ≤ ν ≤ 1, while below a critical
value of the filling factor, the Wigner crystal is the energetically preferred
state. Figure 4.7 shows the transition point depends on the extension in the
ξ-direction, which is parameterized by l. For example at l = 0 the Laughlin
state has a lower energy for ν ≥ 1/7.

We also considered the stability of a Wigner crystal. At very low filling
factors the system behaves harmonically. However, contributions coming
the from phonon-phonon interactions become important close to the critical
filling factor. We examined the influence of these phonon-phonon interactions
on the dispersion relation by taking into account the second order of the 3-
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vertex loop and the first order of a 4-vertex loop in the self-energy. The
amplitude of both contributions is proportional to the filling factor ν. It
turns out that in the 2D limit and for large values of the “magnetic field”,
the Wigner crystal is stable below a filling factor of ν < 0.174, which is in
a good agreement with the energetic observation, where for l = 0.2lB the
transition takes place at 0.2 ≥ ν ≥ 0.142.

So far we only compared two trial wave functions. In electronic systems
it was shown that in some ranges of the filling factors a Laughlin-Jastrow
correlated Wigner crystal [239] has the lowest energy. Principally, such con-
siderations can also be extended to the system of rotating dipolar gases and it
can be expected that a crystal structure has a lower energy than the Laughlin
state even for slightly higher filling factors.

In order to observe a Wigner crystal one has to prepare a dipolar Fermi
gas, which is a challenging task. Efforts in this direction have been made the-
oretically [16, 60, 97] and experimentally [23, 123, 208, 216, 217]. The dipoles
are polarized in a strong magnetic field or an electric field perpendicular to
the radial direction. In the next step the gas has to be transmitted into a ro-
tating frame, which nowadays can be achieved by using standard techniques
[2, 33, 45, 50, 153, 160, 203]. The model of a particle in a rotating frame
is equivalent to the model of a charged particle in a magnetic field, with a
cyclotron frequency being twice as big as the rotation frequency (ωc = 2Ω).
Close to the critical rotation frequency, when the value of frequency is close
to the radial trap frequency, the effective trapping potential becomes shallow.
The system is considered to be in the homogeneous limit. Any “magnetic
field” can be created by increasing the value of the rotation frequency, if at
the same time, the value of the trap frequency ω⊥ is increased and is always
above Ω < ω⊥.

By changing the “magnetic field” or manipulating the density by modifi-
cations of the external potential, one can control the filling factor. With this
tool it is possible to sweep from a filling factor where the Laughlin state is
energetically favorable, towards a filling factor where we expect the Wigner
crystal to be stable.

Unfortunately, the key signature of the Wigner crystal, the density mod-
ulation, cannot be directly observed by an absorption image. The profile
of a time of flight image corresponds to the momentum distribution in the
gas and will be a featureless Gaussian. On the other hand, Hanbury Brown
and Twiss demonstrated [34] that noise correlations can be used to exam-
ine the properties of a particle source. It has been shown that the density
distribution of a Mott insulator [84] can be recovered, which reflects the un-
derlying ordering in the 3D optical lattice. Similarly, this method has been
used to measure the phase coherence length of an elongated Bose-Einstein
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condensate [112]. The observation of the quantum noise correlation could
also be an appropriate tool to discover the density modulation in the Wigner
crystal. Since the particle number in the Wigner crystal is relatively small,
the noise/signal ratio is big. Because the gas contains fermionic dipoles, the
peaks in the quantum noise correlation function will have a negative sign.
On the other hand, a Laughlin state has a homogeneous density distribu-
tion, and hence, we do not expect peaks in the quantum noise correlation
profile at this point. By preparing states with different filling factors, one
can determine the transition point.



Appendix A

Composite Fermions

A.1 Proof of the fermionic properties of the composite

fermions

In order to proof that the operator f̃i =
(

b†i

)s

fi has Fermionic properties we

are using the complete induction. Assumed that for a certain s the relation:

(ñs − s)!

ñs!
{
(

b†i

)s

fi, b
s
jf

†
j } = δi,j , (A.1)

holds. The conservation low n(m) + sm = n is crucial for the proof. It is a
straight forward calculation to show that this is also true for s+ 1:

{
(

b†i

)s+1

fi, b
s+1
j f †

j }

= b†ibj{
(

b†i

)s

fi, b
s
jf

†
j } − b†i [bj,

(

b†i

)s

fi]b
s
jf

†
j − [b†i , b

s+1
j f †

j ]
(

b†i

)s

fi

= δi,j

(

n(m)
(n(m) +ms)!

n(m) + (m− 1)s!
− s

(

b†i

)s

bsifif
†
j + (s+ 1)bsj

(

b†i

)s

f †
j fi

)

= δi,j

(

n(m)
(n(m) +ms)!

n(m) + (m− 1)s!

+ s(m− 1)
n(m)!

(n(m) − s)!
+ (s+ 1)m

(n(m) + s)!

n(m)!

)

(A.2)
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Since m is either 0 or 1, equation (A.2) can be decomposed:

{
(

b†i

)s+1

fi, b
s+1
j f †

j }

= δi,j

(

m{(n(m) + (s+ 1)m}(n(m) +ms)!

n(m)!

+(1 −m){n(m) − s} n(m)!

(n(m) − s)!

)

= δi,j

(

m
(n(m) + (s+ 1)m)!

n(m)!
+ (1 −m)

n(m)!

(n(m) − (s+ 1))!

)

(A.3)

= δi,j
(ñs+1 − (s+ 1))!

ñs+1!
(A.4)

⇒ ñs+1!

(ñs+1 − (s+ 1))!
{
(

b†i

)s+1

fi, b
s+1
j f †

j } = δi,j ,

where ñs+1 = n(m) + (s + 1)m. Equation (A.3) can be summarized to
equation (A.4), because the left part is zero for m = 0 while the right part
is zero for m = 1. Since for s = 0 ⇒ {fi, f

†
j } = δi,j is true by definition,

the equation (A.1) must hold for any s.

A.2 Homogeneity

Without the kinetic part, which couples different cells, the solution of the
Bose-Fermi-Hubbard Hamiltonian is a product state of single cell solutions,
that reads:

|ψ〉 =
∏

k

∑

n,m

ckn,m|nm〉k .

In the case of inhomogeneity the ground state is degenerated. Without alter-
ing the energy, a homogeneous results can be formed by a linear combination
of the degenerated ground states. Of course, switching on the hopping the
entire Hilbert space has to be considered, but in the mean-field picture we
examine only product states. Homogeneity means that, for a particular n
and m, all cin,m are independent of i. In this case the kinetic energy reads:

−tB
∑

〈ij〉

〈ψ|b†ibj + h.c.|ψ〉 = −tBN2d
∞
∑

n=1

n
(

cnc
∗
n−1 + h.c.

)

,

where d is the dimension of the system. In order to simulate inhomogeneity
we modify in the coefficients for two particular cells. Now, the product state
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reads: :

|ψ(δ)〉 =
∑

n,m

cin,m|nm〉i
∑

n,m

cjn,m|nm〉j
∏

k 6=i,j

∑

n,m

cn,m|nm〉 .

For example, the following coefficients are altered by a small δ:

ci
2

n1,m1 = c2n1,m1 + δ

ci
2

n2,m2 = c2n2,m2 − δ

cj
2

n1,m1 = c2n1,m1 − δ

cj
2

n2,m2 = c2n2,m2 + δ .

This assures, that both, the particle number and the normalization of Fock
coefficients, remain constant. If the cells i and j are not neighbored the
energy difference reads:

∆E = −t2d
(

(cn1−1n1 + cn1+1(n1 + 1)) cn1

(

2 −
√

1 − δ/c2n1
−
√

1 + δ/c2n1

)

+ (cn2−1n2 + cn2+1(n2 + 1)) cn2

(

2 −
√

1 − δ/c2n2
−
√

1 + δ/c2n2

))

,

which grows monotonically with δ. The calculation is the same if n1 6= n2±1.
Considering only the altered cells and if, for instance, n = n1 = n2 + 1 the
energy difference is:

∆E = −t
(

n

(

4cncn−1 −
√

c2n + δ −
√

c2n − δ −
√

c2n−1 + δ −
√

c2n−1 − δ

)

+ (n+ 1)cncn+1

(

2 −
√

1 − δ/c2n −
√

1 + δ/c2n

)

+ (n− 1)cn−1cn−2

(

2 −
√

1 − δ/c2n−1 −
√

1 + δ/c2n−1

))

,

which again grows with monotonically with δ. This example shows, that
any small deviation from a homogeneous product increases the energy. In
general, if the self-interaction becomes dominant, inhomogeneous states lower
the energy.

A.3 Mean-field consideration

The mean-field calculation for composite fermions is quite straight forward.
The perturbation Hamiltonian reads:

W = −tBdψ
(

b†i + bi

)

.
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The second order correction for the energy reads:

E2 = ψ2
∑

n

{ |〈ñ, 0|W|n, 0〉|2
E0(ñ, 0) − E0(n, 0)

(1 − ρF )

+
|〈ñ− s, 1|W|n, 1〉|2

E0(ñ− s, 1) − E0(n, 1)
ρF

}

. (A.5)

Due to the form of W only addenda with either n = ñ± 1 or n = ñ− s± 1
contribute to the correction. The four possibilities are:

|〈ñ, 0|b†|ñ− 1, 0〉|2
E0(ñ, 0) − E0(ñ− 1, 0)

=

√
ñ

ñ− µ̃B − 2

|〈ñ, 0|b|ñ+ 1, 0〉|2
E0(ñ, 0) − E0(ñ+ 1, 0)

= −
√
ñ+ 1

ñ+ µ̃B

|〈ñ− s, 1|b†|ñ− s− 1, 1〉|2
E0(ñ− s, 1) − E0(ñ− s− 1, 1)

=

√
ñ− s

ñ− s− µ̃B + α

|〈ñ− s, 1|b|ñ− s+ 1, 1〉|2
E0(ñ− s, 1) − E0(ñ− s− 1, 1)

= −
√
ñ− s+ 1

ñ− s+ µ̃B − α
.

Therefore, the correction to the energy reads:

E2 = −ψ2tBd



(1 − ρF )





(√
ñ−

√
ñ+ 1

)

(ñ− µB) +
√
ñ+ 1

(ñ− µ̃B − 1) (ñ− µB)





+ ρF

(

(√
ñ− s−

√
ñ− s+ 1

)

(ñ− s+ α− µB) +
√
ñ− s+ 1

(ñ− s+ α− µ̃B − 1) (ñ− s+ α− µB)

)]

.

A.4 Commutation relation between fermionic operators

In this appendix we discuss some technical details concerning the simple
man’s Gutzwiller ansatz for fermions, consisting in writing the variational
wavefunction as a product of on-site Fermi operators, and neglecting the
anticommutation relations between Fermi operators in different sites.

Formally, our variational approach is equivalent to replacing the Fermionic
annihilation and creation operators f̃i, f̃

†
i by spin 1/2 operators σ(i), σ†(i).

This approach can be justified using the exact Jordan-Wigner transforma-
tion in 2D and 3D ([74, 85, 116], see also [215]). In the case of 2D this
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transformation acquires the form:

S+(j) = f̃ †
j ei

P

k 6=j arg(k,j)f̃†
k
f̃k , (A.6)

S−(j) = e−i
P

k 6=j arg(k,j)f̃†
k
f̃k f̃j , (A.7)

Sz(j) = f̃ †
j f̃j −

1

2
, (A.8)

where arg(k, j) is the angle between k − j and an arbitrary space direction
on the lattice, which we choose as x. The Fermionic Hamiltonian of equation
(2.8) becomes then:

Heff = Jeff

∑

〈i,j〉

S+(j)eiA(i,j)S−(i) + h.c.

+Keff

∑

〈i,j〉

(

Sz(i) +
1

2

)(

Sz(j) +
1

2

)

, (A.9)

where the “magnetic vector potential”:

A(i, j) =
∑

k 6=i,j

[arg(k, i) − arg(k, j)](Sz(k) + 1/2) . (A.10)

The simple man’s Gutzwiller approximation corresponds on this level to i) a
variational ansatz for the ground state wavefunction in the form of product
of on-site spin states, and ii) substitution of the “magnetic potential” by its
average, which under assumption of mirror reflection symmetry with respect
to the lattice axes is zero.
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Appendix B

Wigner crystal

B.1 Effect of antisymmetrizing two dipoles

The antisymmetric wavefunction of two particle, separated by the distance
R, in a magnetic field reads:

Φ(x1, y1, x2, y2) =

(

2πl2B
√

2

√

1 − e
− R2

2l2
B

)−1

(

e
−

x2
1+y2

1
4l2

B e
−

x2
2+(y2−R)2

4l2
B e

−i
Rx2
2l2

B − e
−

x2
2+y2

2
4l2

B e
−

x2
1+(y1−R)2

4l2
B e

−i
Rx1
2l2

B

)

,

which is normalized to unity. If the two particles interact with an potential
v2D(r) the energy reads:

U12 =

(

4π2l4B

(

1 − e
− R2

2l2
B

))−1 ∫

dx1dx2dy1dy2

{

e
−

x2
1+y2

1+x2
2+(y2−R)2

2l2
B

− e
−

x2
1+y2

1+x2
2+y2

2−R(y1+y2)

2l2
B cos

R(x2 − x1)

2l2B

}

v2D

(
√

(x1 − x2)
2 + (y1 − y2)

2

)

.
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We substitute x̃1 = 1
2
(x1 + x2), x̃2 = (x1 − x2), ỹ1 = 1

2
(y1 + y2) and ỹ2 =

(y1 − y2). The integral becomes:

U12 =
1

4π2l4B

1

1 − e
− R2

2l2
B

∫

dx̃1dx̃2dỹ1d̃y2

(

e
−

2x̃2
1+2ỹ2

1+1
2 (x̃2

2+ỹ2
2)+R2−2R(ỹ1−

1
2 ỹ2)

2l2
B

−e
−

2x̃2
1+2ỹ2

1+1
2 (x̃2

2+ỹ2
2)−2Rỹ1

2l2
B cos

(

Rx̃2

2l2B

)

)

v2D(
√

x̃2
2 + ỹ2

2 )

=
1

2πl2B

1

1 − e
− R2

2l2
B

∫

dxdy

(

e
−

x2+(y+R)2

4l2
B

−e
−x2+y2

4l2
B e

− R2

4l2
B cos

(

Rx

2l2B

)

)

v2D(
√

x2 + y2 ).

The left part is known from the symmetric wave function. The right hand
side is an exponential small contribution due to the antisymmetrization.

B.2 Expansion of Φ

With displacements u(l) of the dipoles at positions r(l) in the lattice, the
potential reads (equation (4.5)):

Φ = d2
∑

l,l′ 6=l

1

|r(l) + u(l) − r(l′) − u(l′)|3 .

The first derivative of Φ with respect to uα(l) is:

∂Φ

∂uα(l)
= −d23

∑

l′ 6=l

rα(l) + uα(l) − rα(l′) − uα(l′)

|r(l) + u(l) − r(l′) − u(l′)|5 .

Since the dipoles are in the potential minimum, the first order part is sup-
posed to be zero. If l 6= l′ the second derivative reads:

∂2Φ

∂uα(l)∂uα′(l′)

= −d2n
3
2

(

15
(rα(l) + uα(l) − rα(l

′) − uα(l
′)) (rα′(l) + uα′(l) − rα′(l′) − uα′(l′))

|r(l) + u(l) − r(l′) − u(l′)|7

−3
δαα′

|r(l) + u(l) − r(l′) − u(l′)|5
)

.
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In order to get the harmonic part of the potential we set u(l) = 0. In a short
notation it is:

Φα1α2 (l − l′) =
∂2Φ

∂uα(l)∂uα′(l′)

∣

∣

∣

u=0

= − d2

|r (ll′) |5
(

15

|r (ll′) |2 rα (ll′) rα′ (ll′) − 3δαα′

)

, (B.1)

with rαi
(ll′) = rαi

(l) − rαi
(l′) and |r (ll′) | = |r (l) − r (l′) | is the distance is

the distance between two dipoles. Similarly one obtains for the differentiation
at the same position l:

∂2Φ

∂uα(l)∂uα′(l)

∣

∣

∣

u=0
= −

∑

l′ 6=l

Φα1α2 (l − l′) .

The examination of non-harmonic terms requires higher derivative of Φ. One
can already see in equation (B.1) that higher derivative must vanish, if the
derivatives with respect of u(l) are taken on three different lattice positions
l1 6= l2 6= l3. For example, we set l1 = l2 = l and l3 = l′:

Φα1α2α3(l − l′) =
∂3Φ

∂uα1(l)∂uα2(l
′)uα3(l)

∣

∣

∣

u=0

=
d2n

3
2

|r(ll′)|7
(

105
(rα1(ll

′)) (rα2(ll
′)) (rα3(ll

′))

|r(ll′)|2
− 15 {δα1α2rα3(ll

′) + δα1α3rα2(ll
′) + δα2α3rα1(ll

′)}) . (B.2)

The expression on the left hand side is symmetric under permutation of the
α’s. The derivative with respect to equal l reads:

∂3Φ

∂uα1(l)∂uα2(l)uα3(l)

∣

∣

∣

u=0
= −

∑

l6=l′

Φα1α2α3 (l − l′) .
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The fourth derivative is:

Φα1···α4(l − l′) =
∂4Φ

∂uα1(l)∂uα2(l)uα3(l)uα4(l
′)

∣

∣

∣

u=0

= − d2n
3
2

|r(ll′)|7

{

945
rα1(ll

′)rα2(ll
′)rα3(ll

′)rα4(ll
′)

|r(ll′)|4

− 105

|r(ll′)|2 {δα1α2 (rα3(ll
′)) (rα4(ll

′)) + δα1α3 (rα2(ll
′)) (rα4(ll

′))

+ δα1α4 (rα2(ll
′)) (rα3(ll

′)) + δα2α3 (rα1(ll
′)) (rα4(ll

′))

+ δα2α4 (rα1(ll
′)) (rα3(ll

′)) + δα3α4 (rα1(ll
′)) (rα2(ll

′))}

+ 15 (δα1α2δα3α4 + δα1α3δα2α4 + δα1α4δα2α3)

}

, (B.3)

and the derivative with respect to u (l) at the same position l reads:

∂4Φ

∂uα1(l)∂uα2(l)uα3(l)uα4(l)

∣

∣

∣

u=0
= −

∑

l6=l′

Φα1α2α3α4(l − l′) .

All derivatives depend only on the difference between r (l) − r (l′).

B.3 Three-phonon interaction H3

As it is well-known, the quadratic term describes phonons, whereas higher
order corrections are responsible for phonon-phonon interaction. In this sec-
tion, we examine the Hamiltonian for the third order part H3 that reads:

H3 =
1

3!

∑

α1α2α3

∑

l1l2l3

Φα1α2α3(l1, l2, l3)uα1(l1)uα2(l2)uα3(l3) , (B.4)

where u (l) are the phonon operators (see equation (4.28)).

uα(l) =
∑

mk

ei∗krl
(

ξmα(k) + ξ†mα(−k)
)

.

If in the sum in equation (B.4) all li are different l1 6= l2 6= l3, then
Φα1α2α3(l1l2l3) = 0. Therefore, we have to consider two cases:

• All li are equal, l1 = l2 = l3 = l.
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• Two of the li are equal and the third one is different, for example,
l1 = l2 = l and l3 = l′ 6= l.

The contribution of the first case reads:

1

3!

∑

l

Φα1...α3(lll)uα1(l)uα2(l)uα3(l)

= − 1

N3

∑

l

∑

k1...k3

∑

m1...m3

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

eil(k1+k2+k3)
∑

l′ 6=l

Φα1...α3(l − l′)

= − ω2
dm

3!aN 3

∑

k1...k3

∑

m1...m3

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

δk1+k2+k3Fα1...α3(0) .

where Fα1...α3(k) is computed in equation (B.8). In the second case for l1 =
l2 = l, respectively l3 = l′ 6= l we have:

∑

l6=l′

Φα1...α3(lll
′)uα1(l)uα2(l)uα3(l

′)

=
1

3!N 3

∑

l

∑

k1...k3

∑

m1...m3

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

eil(k1+k2+k3)
∑

l′ 6=l

Φα1...α3(l − l′)eik3(l−l′)

=
ω2

dm

3!aN 3

∑

k1...k3

∑

m1...m3

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

δk1+k2+k3F̃α1...α3(k3) .

The other two possibilities can be obtained in a similar way. After combining
all combinations, we obtain for H3 the formula:

H3 =
ω2

dm

3!a

∑

k1...k3

∑

m1...m3

∑

α1...α3

δk1+k2+k3,0

(−Fα1...α3(0) + Fα1...α3(k1) + Fα1...α3(k2) + Fα1...α3(k3))
(

ξm1α1(k1) + ξ†m1α1
(−k1)

)(

ξm2α2(k2) + ξ†m2α2
(−k2)

)(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

.

(B.5)
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B.4 Four-phonon interaction of H4

For the fourth order part of the Hamiltonian reads:

H4 =
1

4!

∑

l1...l4

∑

α1...α4

Φα1...α4 (l1 . . . l4)uα1(l1) . . . uα4(l4) .

The function Φα1···α4 (l1 · · · l4) is only non zero, if the set {l1l2l3l4} contains
not more than two different lattice vectors l’s. Now we have to examine three
different cases:

• All li are the same l1,2,3,4 = l.

• We have two pairs of the same li. For instance l1 = l2 = l and l3 =
l4 = l′ 6= l.

• Three li are the same, for instance, l1 = l2 = l3 = l and the fourth is
different l4 = l′ 6= l.

We consider the first case, where all li are the same and expand it in Fourier
series:

1

4!

∑

l

Φα1...α4(llll)uα1(l) . . . uα4(l)

= − 1

4!N 4

∑

l

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

)

. . .

(

ξm4α4(k4) + ξ†m4α4
(−k4)

)

eil(k1+···+k4)
∑

l′ 6=l

Fα1...α4(l − l′)

= − 1

4!

ω2
dm

a2N4

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

)

. . .

(

ξm4α4(k4) + ξ†m4α4
(−k4)

)

δk1+···+k4F̃α1...α4(0) ,
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where Fα1···α4(k) can be found in equation (B.9). For the second case, where
we have two pairs of equal li we get:

∑

l,l′ 6=l

Φα1...α4(lll
′l′)uα1(l)uα2(l)uα3(l

′)uα4(l
′)

= − 1

N4

∑

l

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

) (

ξm4α4(k4) + ξ†m4α4
(−k4)

)

eil(k1+···+k4)

∑

l′ 6=l

Φα1...α4(l − l′)ei(k3+k4)(l−l′)

= − ω2
dm

a2N4

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

)(

ξm4α4(k4) + ξ†m4α4
(−k4)

)

δk1+···+k4F̃α1...α4(k3 + k4).

The other two contributions for this case can be obtained in a similar way.
And finely, for the third case, in where three li are equal to l, the fourth is
equal to l′ 6= l we have:

∑

l,l′ 6=l

Φα1...α4(llll
′)uα1(l)uα2(l)uα3(l)uα4(l

′)

=
1

N4

∑

l

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

) (

ξm4α4(k4) + ξ†m4α4
(−k4)

)

eil(k1+···+k4)

∑

l′ 6=l

Φα1...α4(l − l′)eik4(l−l′)

=
ω2

dm

a2

∑

k1...k4

∑

m1...m4

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

) (

ξm4α4(k4) + ξ†m4α4
(−k4)

)

δk1+···+k4F̃α1...α4(k4),

and, in the same way, we get the remaining three combinations for this case.
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Finally, the fourth order term of the Hamiltonian reads:

H4 =
ω2

dm

a24!

∑

k1...k4

∑

m1...m4

∑

α1...α3

δk1+k2+k3+k4,0

(

−F̃α1...α4(0) + F̃α1...α4(k1) + F̃α1...α4(k2) + F̃α1...α4(k3) + F̃α1...α4(k4)

−F̃α1...α4(k1 + k2) − F̃α1...α4(k1 + k3) − F̃α1...α4(k1 + k4)
)

(

ξm1α1(k1) + ξ†m1α1
(−k1)

) (

ξm2α2(k2) + ξ†m2α2
(−k2)

)

(

ξm3α3(k3) + ξ†m3α3
(−k3)

) (

ξm4α4(k4) + ξ†m4α4
(−k4)

)

. (B.6)

B.4.1 Fourier transform of the derivatives

We calculate the Fourier transforms of equations (B.1), (B.2) and (B.3) and
obtain the expression for the dimensionless function Fαα′(k) in equations
(4.10), (B.5) and (B.6). For the second order we calculate:

Φ̃α1α2 (k) = ω2
dmFα1α2 (k) =

∑

l

eikr(l)Φαα′(l) , (B.7)

with ω2
d = d2n3/2/ (ma2). Since the values for the addenda decay with

1/|r (l) |5 we approximate the transform by taking only the nearest neigh-
bors into account. This results in:

Fxx (k) = −3

2
(cos kr1 + cos k (r1 − r2)) − 24 cos kr2 + 27

Fxy (k) = −15

√
3

2
(cos kr1 − cos k (r1 − r2))

Fyx (k) = Fxy

Fyy (k) = −33

2
(cos kr1 + cos k (r1 − r2)) + 6 cos kr2 + 27 .

For the third order we calculate in the same way the Fourier transform:

Φ̃α1α2α3 (k) =
ω2

dm

a
Fα1α2α3 (k) =

∑

l

eikr(l)Φα1α2α3(l) , (B.8)
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and, with the same argument as for the second order we only consider the
nearest neighbors in the sum and obtain:

Fxxx(k) = i

{

75

4
(sin k (r1 − r2) − sin kr1) + 120 sin kr2

}

Fxxy(k) = i

√
3

4
45 (sin kr1 + sin k (r1 − r2))

Fxyy(k) = i

{

255

4
(sin kr1 − sin k (r1 − r2)) − 30 sin kr2

}

Fyyy(k) = i

√
3

4
135 (sin kr1 + sin k (r1 − r2)) .

Finely, for the Fourier transform of the fourth order (equation (B.3)) reads:

Φ̃α1···α4 (k) =
ω2

dm

a2
Fα1···α4 (k) =

∑

l

eikr(l)Φα1···α4(l) , (B.9)

which can be approximated by taking only into account the nearest neighbors:

F̃xxxx(k) = −855

8
(cos kr1 + cos k (r1 − r2)) + 720 cos kr2

F̃xxxy(k) = −
√

3
315

8
(cos kr1 − cos k (r1 − r2))

F̃xxyy(k) =
1395

8
(cos kr1 + cos k (r1 − r2)) − 180 cos kr2

F̃xyyy(k) =
√

3
1575

8
(cos kr1 − cos k (r1 − r2))

F̃yyyy(k) =
1665

8
(cos kr1 + cos k (r1 − r2)) + 90 cos kr2 .
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B.5 Second order expansion of the H3 term

The explicit expression for the second order term for the three-phonon ex-
pansion (see section 4.8.2) reads:

 ª
® ©r r

αα′(l, l′; t, t′)

=−i
ω4

dm
2

a23!2N8

1

2~2

∑

qq′

∑

mm′

∑

α1...α3

∑

α′
1...α′

3

∑

k1...k3

∑

k′
1...k′

3

∑

m1...m3

∑

m′
1...m′

3

eiqrleiq′r′
l

∫

dt1

∫

dt2

δk1+k2+k3,0δk′
1+k′

2+k′
3,0 (−Fα1...α3(0) + Fα1...α3(k1) + Fα1...α3(k2) + Fα1...α3(k3))

(

−Fα′
1...α′

3
(0) + Fα′

1...α′
3
(k′

1) + Fα′
1...α′

3
(k′

2) + Fα′
1...α′

3
(k′

3)
)

〈T
(

ξmα(q) + ξ†mα(−q)
)

(

ξm′α′(q′) + ξ†m′α′(−q′)
)

(

ξm1α1(k1) + ξ†m1α1
(−k1)

)

(

ξm2α2(k2) + ξ†m2α2
(−k2)

)(

ξm3α3(k3) + ξ†m3α3
(−k3)

)

(

ξm′
1α′

1
(k′

1) + ξ†m′
1α′

1
(−k′

1)
)

(

ξm′
2α′

2
(k′

2) + ξ†m′
2α′

2
(−k′

2)
)(

ξm′
3α′

3
(k′

3) + ξ†m′
3α′

3
(−k′

3)
)

〉 .

The sums are calculated by using the Wick theorem, taking into account
only connected diagrams. In total, we have 36 non-vanishing contractions,
which are the same , and the final result, expressed in terms of the Green’s
functions from equation (4.29), is:

 ª
® ©r r

αα′(l, l′; t, t′)

=
(−i)5

N2

∑

q

eiq(rl−r′
l
) ω4

d

2a6ω2
0

∑

α1...α3

∑

α′
1...α′

3

∑

k

∫

dt1

∫

dt2

∫

dΩ

2π

∫

dΩ′

2π
∫

dω

2π

∫

dω′

2π
eiΩ(t−t1)eiΩ′(t′−t2)eiω(t1−t2)eiω′(t1−t2)Fα1···α3F∗

α′
1···α

′
3

D0
αα1

(q,Ω)D0
α2α′

2
(k, ω)D0

α3α′
3
(q − k, ω′)D0

α′α′
1
(q,Ω′) , (B.10)

with

Fα1···α3 = −Fα1...α3(0) + Fα1...α3(q) + Fα1...α3(k) + Fα1...α3(q − k) .

After performing the Fourier transform in both, space and time variables, we
obtain:

 ª
® ©r r

αα′(q; Ω) = − i

N

ω4
d

2a6ω2
0

∑

α1...α3

∑

α′
1...α′

3

∑

k

∫

dω

2π
Fα1...α3F∗

α′
1...α′

3

D0
αα1

(q,Ω)D0
α2α′

2
(k, ω)D0

α3α′
3
(q − k,Ω − ω)D0

α′α′
1
(q,−Ω) .
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The corresponding contribution to the self-energy is:

Σ
(3)
α1α′(q,Ω) = − i

N

ω4
d

2ω2
0a

6

∑

α2α3

∑

α′
2α′

3

∑

k

∫

dω

2π
D0

α2α′
2
(k, ω)D0

α3α′
3
(q − k,Ω − ω)

Fα1...α3F∗
α′

1...α′
3

.

With an explicit form of the zero order Green’s function from equation (4.30),
we can now perform the integration over ω. We have to consider three
different cases:

lim
δ→0

∫

dω

2π

1

(ω + ωm1 (k) − iδ) (ω − ωm1 (k) + iδ)

× 1

(Ω − ω + ωm2 (k) − iδ) (Ω − ω − ωm2 (k) + iδ)

= − i(ωm1 (k) + ωm2 (k)

2ωm1 (k)ωm2 (k)
(

Ω2 − (ωm1 (k) i+ ωm2 (k))2)

lim
δ→0

∫

dω

2π

1

(ω + ωm1 (k) − iδ) (ω − ωm1 (k) + iδ)

× ω

(Ω − ω + ωm2 (k) − iδ) (Ω − ω − ωm2 (k) + iδ)

= − iΩ

2ωm2

(

Ω2 − (ωm1 (k) + ωm2 (k))2)

lim
δ→0

∫

dω

2π

ω

(ω + ωm1 − iδ) (ω − ωm1i (k) + iδ)

× ω

(Ω − ω + ωm2 (k) − iδ) (Ω − ω − ωm2 (k) + iδ)

= − i
(

Ω2 − ωm2 (k)2 − ωm1 (k)ωm2 (k)
)

2ωm2 (k)
(

Ω2 − (ωm1 (k) + ωm2 (k))2)



120 Appendix B. Wigner crystal

After combining all contributions, the considered contribution to the self-
energy takes the form:

Σ
(3)
αα′ (q,Ω) = − ω4

d

4a2N

∑

k

∑

m1m2=±

ωm1(k)ωm2(q − k)
(

ω4
m1

(k) − ω2
T (k)ω2

L(k)
)

1
(

ω4
m2

(q − k) − ω2
T (q − k)ω2

L(q − k)
)

1
(

Ω2 − (ωm1(k) + ωm2(q − k))2)

{(ωm1(k) + ωm2(q − k))
[

FαxxF∗
α′xx

(

e2Tω
2
L + e2

Lω
2
T − ω2

m1

)

|k
(

e2Tω
2
L + e2

Lω
2
T − ω2

m2

)

|q−k

+ FαyyF∗
α′yy

(

e2Lω
2
L + e2

Tω
2
T − ω2

m1

)

|k
(

e2Lω
2
L + e2

Tω
2
T − ω2

m2

)

|q−k

+ FαxyF∗
α′xy

(

e2Tω
2
L + e2

Lω
2
T − ω2

m1

)

|k
(

e2Lω
2
L + e2

Tω
2
T − ω2

m2

)

|q−k

+ FαyxF∗
α′yx

(

e2Lω
2
L + e2

Tω
2
T − ω2

m1

)

|k
(

e2Tω
2
L + e2

Lω
2
T − ω2

m2

)

|q−k

+
(

e2Tω
2
L + e2

Lω
2
T − ω2

m1

)

|k
(

eT eL(ω2
L − ω2

T )
)

|q−k

(

FαxyF∗
α′xx + FαxxF∗

α′xy

)

+
(

e2Lω
2
L + e2

Tω
2
T − ω2

m1

)

|k
(

eT eL(ω2
L − ω2

T )
)

|q−k

(

FαyxF∗
α′yy + FαyyF∗

α′yx

)

+
(

eT eL(ω2
L − ω2

T )
)

|k
(

e2Tω
2
L + e2

Lω
2
T − ω2

m2

)

|q−k

(

FαyxF∗
α′xx + FαxxF∗

α′yx

)

+
(

eT eL(ω2
L − ω2

T )
)

|k
(

e2Lω
2
L + e2

Tω
2
T − ω2

m2

)

|q−k

(

FαxyF∗
α′yy + FαyyF∗

α′xy

)

+
(

eT eL(ω2
L − ω2

T )
)

|k
(

eT eL(ω2
L − ω2

T )
)

|q−k
(

FαyyF∗
α′xx + FαxxF∗

α′yy + FαyxF∗
α′xy + FαxyF∗

α′yx

)

− ω2
cωm1(k)ωm2(q − k)

(

FαyxF∗
α′xy + FαxyF∗

α′yx −FαyyF∗
α′xx −FαxxF∗

α′yy

)]

+ iωcωm1(k)Ω
((

e2Tω
2
L + e2

Lω
2
T − ω2

m1

)

|k
(

FαxxF∗
α′xy −FαxyF∗

α′xx

)

+
(

e2Lω
2
L + e2

Tω
2
T − ω2

m1

)

|k
(

FαyxF∗
α′yy −FαyyF∗

α′yx

)

+
(

e2Tω
2
L + e2

Lω
2
T − ω2

m2

)

|q−k

(

FαxxF∗
α′yx −FαyxF∗

α′xx

)

+
(

e2Lω
2
L + e2

Tω
2
T − ω2

m2

)

|q−k

(

FαxyF∗
α′yy −FαyyF∗

α′xy

)

+
(

eT eL(ω2
L − ω2

T )
)

|k
(

FαxxF∗
α′yy −FαyyF∗

α′xx + FαyxF∗
α′xy −FαxyF∗

α′yx

)

+
(

eT eL(ω2
L − ω2

T )
)

|q−k

(

FαxxF∗
α′yy−FαyyF∗

α′xx + FαxyF∗
α′yx−FαyxF∗

α′xy

))}

.
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B.6 First order expansion of the H4 term

The first order perturbation theory leads to:

nr αα′(l, l′; t, t′)

=
ω2

dm

4!a2N6~

∑

qq′

∑

mm′

∑

α1...α4

∑

k1...k4

∑

m1...m4

eiqrleiq′r′
l

∫

dt1δk1+k2+k3+k4,0

(Fβ1...β4(0) − Fβ1...β4(k1) − Fβ1...β4(k2) − Fβ1...β4(k3)

−Fβ1...β4(k4) + Fβ1...β4(k1 + k2) + Fβ1...β4(k1 + k3) + Fβ1...β4(k1 + k4))

〈T
(

ξmα(q) + ξ†mα(−q)
)

(

ξm′α′(q′) + ξ†m′α′(−q′)
)

(

ξm1α1(k1) + ξ†m1α1
(−k1)

)

(

ξm2α2(k2) + ξ†m2α2
(−k2)

)(

ξm3α3(k3) + ξ†m3α3
(−k3)

)(

ξm4α4(k4) + ξ†m4α4
(−k4)

)

〉

Using Wicks theorem, we obtain 12 non-vanishing contractions. The number
of all combinations for the contractions is 12. Taking the zero order Green’s
function in equation (4.29) into account, we obtain:

nr αα′(l, l′; t, t′)

= (−i)3 ω2
d

2ω0a4N2

∑

q

eiq(rl−r′
l
)
∑

α1...α4

∑

k

∫

dt1

∫

dΩ

2π

∫

dΩ′

2π

∫

dω

2π

eiΩ(t−t1)eiΩ′(t1−t′)eiω0Fα1···α4D0
αα1

(q,Ω)D0
α2α3

(k, ω)D0
α′α4

(q,Ω′) ,

with

Fα1···α4 = 2Fα1...α4(0) − 2Fα1...α4(q) − 2Fα1...α4(k)

+ Fα1...α4(q − k) + Fα1...α4(q + k) .

Here we use Fα1···α4 (k) = Fα1···α4 (−k).
The Fourier transform with respect to space and time variables leads us to:

nr αα′(q; Ω) = i
ω2

d

2ω0a4N

∑

α1...α4

∑

k

∫

dω

2π
Fα1···α4D0

αα1
(q,Ω)

D0
α2α3

(k, ω)D0
α′α′

4
(q,Ω) .

We calculate the negative corresponding self-energy contribution:

−Σ
(4)
αα′(q,Ω) = i

ω2
d

2ω0a4N

∑

α2α3

∑

k

∫

dω

2π
D0

α2α3
(k, ω)Fαα2α3α′ .
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Using the explicit expression in equation (4.30) we integrate over ω. The
possible integrations are:

lim
δ→0

∫

dω

2π

1

(ω − ωm + iδ) (ω + ωm − iδ)

= − i

2ωm

lim
δ→0

∫

dω

2π

ω

(ω − ωm + iδ) (ω + ωm − iδ)

= 0

Finely we get:

Σ
(4)
αα′ = − ω2

d

4a2N

∑

k

∑

m

ωm

ω4
m − ω2

Tω
2
L

(

Fαxxα′

(

ω2
T e

2
L + ω2

Le
2
T − ω2

m

)

+ Fαyyα′

(

ω2
T e

2
T + ω2

Le
2
L − ω2

m

)

+ (Fαxyα′ + Fαyxα′) eT eL

(

ω2
L − ω2

T

))

.

B.7 Computation of γ

The modified melting parameter [148, 149, 150] is defined as γ = 〈(u(l1) −
u(0))2〉/a2. Using the Green’s functions in equation (4.29), we can express
the γ in the following form:

γ = −i
2

a2
(Dxx(r = 0, t = 0) + Dyy(r = 0, t = 0)

− Dxx(r = r1, t = 0) −Dyy(r = r1, t = 0))

= −i
2

a2

∫ ∞

−∞

dω

2π

∑

k

(1 − cos kr1) (Dxx(k, ω) + Dyy(k, ω)) ,

where D(k, ω) = D(−k, ω) is used. This holds, because all ω−,+,T,L(k) are
even in k. The expression for the Green’s function is:

Dαα(k, ω) = ω0a
2

[

∑

m=±

A0M̂0,αα

ω2
0,m(k)

(

ω2
0,L(k) − ω2

0,m(k)
)

(

ω4
0,m(k) − ω2

0,T (k)ω2
0,L(k)

) (

ω2 − ω2
0,m(k)

)

+ A1M̂1,αα

ω2
1,m(k)

(

ω2
1,T (k) − ω2

1,m(k)
)

(

ω4
1,m(k) − ω2

1,T (k)ω2
1,L(k)

) (

ω2 − ω2
1,m(k)

)

]

,
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and together with:

ω2
m=±(k) =

1

2

(

ω2
T (k) + ω2

L(k) + ω2
c

)

±
√

1

4
(ω2

T (k) + ω2
L(k) + ω2

c )
2 − ω2

T (k)ω2
L(k) ,

where ω0 = 2~/(a2m), the exact formula for γ reads:

γ =
ω0

N

∑

k

(cos kr1 − 1)

[

A0

ω0,+(k)
(

ω2
0,L(k) − ω2

0,−(k)
)

− ω0,−(k)
(

ω2
0,L(k) − ω2

0,+(k)
)

ω0,+(k)ω0,−(k)
(

ω2
0,−(k) − ω2

0,+(k)
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(
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1,T (k) − ω2
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(

ω2
1,−(k) − ω2

1,+(k)
)

]

=
ω0

N
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k

(1 − cos kr1)

[

A0
ω0,T (k) + ω0,L(k)

ω0,T (k) (ω0,−(k) + ω0,+(k))

+ A1
ω1,T (k) + ω1,L(k)

ω1,L(k) (ω1,−(k) + ω1,+(k))

]

, (B.11)

where we use the relation ω2
−(k)ω2

+(k) = ω2
T (k)ω2

L(k).
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