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Abstract 
 
The present work is divided into five chapters. The first chapter gives a comprehensive 

introduction, its contents include a brief literature review on soil borne Phytophthora 

fungal pathogens; Phytophthora cactorum causing crown rot disease and Phytophthora 

fragariae var. fragariae causing red stele disease in strawberry.  

 
In the second chapter different in vitro (dual culture and culture filtrate tests), greenhouse 

and field studies were conducted to evaluate the potential of selected rhizobacteria 

against crown rot (Phytophthora cactorum) and red stele disease (Phytophthora fragariae 

var. fragariae) of strawberry. Three antagonistic bacterial isolates viz.: Raoultella 

terrigena strain G-584, Bacillus amyloliquefaciens strain G-V1 and Pseudomonas 

fluorescens  strain 2R1-7 proved to be potential biocontrol agents in dual culture, culture 

filtrate and greenhouse studies. In greenhouse experiments following bacterial treatment, 

the disease symptoms of crown rot (Phytophthora cactorum) and red stele disease 

(Phytophthora fragariae var. fragariae) of strawberry were significantly reduced after 90 

days. In all field experiments, tested rhizobacteria such as R. terrigena G-584,  

B. amyloliquefaciens G-V1 and P. fluorescens 2R1-7 showed different level of biocontrol 

efficacy and in some cases efficacies were similar to the chemical control Aliette. 

 
The third chapter describes the spread of bacteria in the rhizosphere of strawberry. The 

investigations revealed that the applied rhizobacterium R. terrigena G-584 labeled with 

Green Fluorescent Protein (GFP), could successfully colonize strawberry plant roots.  

 
The fourth chapter deals with the mode of action of the antagonistic bacteria. Results 

revealed that the three tested rhizobacteria have direct effect on morphology of both 

Phytophthora spp. with hyphal distortion. Moreover, productions of different 

extracellular enzymes have been observed from the three antagonistic bacteria as an 

indication for the antifungal effect. 

 
The fifth chapter describes the detection of specific genes from the antagonistic bacteria. 

2,4-diacetylphloroglucinol gene from P. fluorescens 2R1-7, cellulase gene from B. 

amyloliquefaciens G-V1, phytase gene from R. terrigena G-584 were identified. 
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Additionally genes were partially sequenced. Finally, 2,4-diacetylphloroglucinol gene 

expression pattern from P. fluorescens 2R1-7 was studied under different pH conditions 

and results revealed that this gene is pH dependent.  

 

Keywords: Biological control, Phytophthora fragariae var. fragariae, 

Phytophthora cactorum, Rhizobacteria 
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Kurzfassung  
 
Die vorliegende Arbeit gliedert sich in fünf Abschnitte. Der erste Teil gibt eine 

umfassende Einführung zum Thema mit einer kurzen Literaturübersicht über die 

bodenbürtigen pilzlichen Pathogene, Phytophthora cactorum, den Erreger der 

Rhizomfäule und Phytophthora fragariae var. fragariae, den Erreger der Roten 

Wurzelfäule der Erdbeere. 

 
Im zweiten Kapitel sind verschiedene in vitro Untersuchungen (Dualkultur und 

Kulturfiltrattests), Gewächshaus- und Freilandversuche wiedergegeben, um das 

antagonistische Potential der ausgewählten Rhizobakterien gegen die beiden 

bodenbürtigen Pilzkrankheiten näher zu charakterisieren. Dabei zeigten die drei 

eingesetzten Bakterienisolate Raoultella terrigena Stamm G-584, Bacillus 

amyloliquefaciens Stamm G-V1 und Pseudomonas fluorescens  Stamm 2R1-7 jeweils 

einen hohen Hemmeffekt gegenüber den Pathogenen in Dualkultur und  Kulturfiltrat wie 

auch in den Gewächshaustests. In den Gewächshausversuchen waren die 

Krankheitssymptome von Rhizomfäule und Roter Wurzelfäule in signifikanter Weise 

reduziert (90 Tage nach Behandlung). In den Freilandversuchen zeigten die drei 

eingesetzten bakteriellen Antagonisten unterschiedliche Wirkungsgrade, wobei in einigen 

Fällen ein gleicher Effekt wie der chemische Standard Aliette erzielt wurde. 

 
Im dritten Abschnitt der Arbeit ist die Verbreitung der bakteriellen Antagonisten in der 

Rhizosphäre der Erdbeerpflanze. Diese Untersuchungen ergaben, dass das eingesetzte 

Rhizobakterium Raoultella terrigena G-584 nach Markierung mit GFP (Green 

Fluorescent Protein) die Wurzeln der Erdbeerpflanzen erfolgreich kolonisieren konnte.  

 
Der nächste Teil der Arbeit befasst sich mit Untersuchungen zum Wirkungsmechanismus 

der antagonistischen Bakterien. Aus den Ergebnissen geht hervor, dass die drei 

Rhizobakterien jeweils einen direkten Effekt auf die morphologische Struktur der 

Hyphen von beiden Phytophthora-Arten ausüben. Darüber hinaus konnte von den drei 

Antagonisten die Produktion von unterschiedlichen extrazellulären Enzymen 

nachgewiesen werden, was als ein Hinweis für den antifungalen Effekt herangezogen 

werden kann. 
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Das fünfte Kapitel befasst sich mit molekularen Untersuchungen zum Nachweis von 

spezifischen Genen der antagonistischen Bakterien, die zur Aufklärung des 

Antagonismus durchgeführt wurden. Zunächst wurden das 2,4-Diacetylphloroglucinol-

Gen von P. fluorescens 2R1-7, das Cellulase-Gen von B. amyloliquefaciens G-V1, das 

Phytase-Gen von R. terrigena G-584 identifiziert und anschließend partiell sequenziert. 

Zum Abschluss wurde das 2,4-Diacetylphloroglucinol-Gen von P. fluorescens 2R1-7 bei 

unterschiedlichen pH-Bedingungen untersucht und eine pH-Abhängigkeit des Gens 

nachgewiesen. 

 

Schlagwörter: Biologische Bekämpfung, Phytophthora fragariae var. fragariae, 

Phytophthora cactorum, Rhizobakterien 
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I. General Introduction 
 
                   
The strawberry (Fragaria x ananassa Duchesne) is a herbaceous, perennial member of the 

Rosaceae, subfamily Rosoideae, along with blackberries and raspberries. There are about 

34 other species of Fragaria found in Asia, North and South America and Europe, of 

which two are cultivated commercially for their fruit: Fragaria moschata, the Musky or 

Hautboy strawberry, and F. vesca, the Wood or Alpine strawberry (Ellinger, 1995).  These 

species were cultivated for centuries, but there is very little production of them today, due 

to the success of Fragaria x ananassa. The name "Strawberry" may have derived from the 

practice of using straw mulch for cultivation many years ago. Alternatively, it may have 

come from the Anglo-Saxon word "strew" meaning to spread, as strawberry plants spread 

by runners. "Strewbery" or a similar word was changed to strawberry in English.  

 

Strawberries are produced in 71 countries worldwide on 506,000 acres. Strawberries are 

among the highest yielding of all fruit crops. Average yields worldwide are just under 

14,000 lbs/acre, but approach 40,000 lbs/acre in the USA, the most productive country. 

Many tree crops with much greater leaf area per unit of land cannot produce fruit yields as 

high as strawberry. 

 

Medicinal Properties and Non-Food Usage:  Strawberries are higher in vitamin C than 

many citrus fruits. Roots and leaves were made into lotions and gargles in England, and 

used for fastening loose teeth. Fruit juice was used for mouth ulcers. Using a different 

species, Indians in Western Washington made a tea from leaves and used it against 

diarrhea. Fruit of the parent species (F. virginiana and F. chiloensis) were considered folk 

remedies for diarrhea, gout, stomach ache, and kidney stones. They were used as 

astringents, diuretics, and mild laxatives. Strawberries are symbolic of "perfect excellence". 

(http://www.uga.edu/fruit/strawbry.htm). 
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Top 10 Countries 

(% of world production, 2002 FAO) 

1. USA (27%) 

2. Spain (10%)    

3. Japan (6%) 

4. Korea, Rep of (6%) 

5. Poland (5%) 

6. Italy (5%) 

7. Mexico (4%) 

8. Russia (4%) 

9. Turkey (4%) 

10. Germany (3%) 

 

Tab. 1: World production of strawberries in the top 10 countries 

 

The yield of fruits depends on soil conditions, photoperiod, temperature and losses caused 

by pests and diseases. Both biotic and abiotic factors play an important role in the growth 

and yield of the plant. The genetically different clones and cultivars of strawberry vary in 

their reactions to many pathogens. Viral, bacterial and fungal diseases are common to 

strawberry. Of the fungi attacking strawberries the most important pathogens are Botrytis 

cinerea, Colletotrichum acutatum, Verticillium dahliae, Phytophthora fragariae var. 

fragariae and Phytophthora cactorum. 

 

Soilborne Phytophthora diseases of strawberry 

 
The genus Phytophthora is grouped in the class oomycetes and covers over 40 species, 

which worldwide cause a large number of plant diseases. The genus Phytophthora is 

distinguished from the related oomycete genus Pythium by the complete differentiation of 

motile zoospores within sporangia before expulsion (Smith et al., 1988). The Phytophthora 

pathogens of strawberry, Phytophthora fragariae var. fragariae causing red stele and 

Phytophthora cactorum causing crown rot, are morphologically very similar, soilborne and 

facultative or obligatory parasites. However, they vary in their ability to attack the plant 
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hosts. Infections are predominantly initiated by asexually formed zoospores, which are 

differentiated in zoosporangia. A prerequisite for formation of sporangia and zoospores is 

high soil moisture content. Root exudates and particularly the root tips exercise a strong 

attraction on the zoospores.  

Phytophthora isolates were obtained from either roots or soil, using both selective culture 

media, plant baiting and were identified on the basis of morphological and cultural features 

(Ribeiro and Olaf, 1978), the electrophoretic pattern of mycelial proteins (total proteins and 

isozymes), the polymorphism of DNA sequences amplified by RAPD-PCR as well as the 

PCR amplification of all or part of the Internal Transcribed Spacers (ITS) of rDNA with 

restriction digests (ITS-RFLP) of the resultant products combined with limited DNA 

sequencing  (Bonants et al., 1997;  2004). 

Phytophthora cactorum has a wide spectrum of host plants. It occurs in areas with a 

moderate climate and predominantly attacks plants from the Rosaceae family (Nienhaus, 

1960) including apple, apricot, cherry and peach, in addition to numerous shrubs e.g. 

Rhododendron as well as ornamental plants e.g. lilies and tulips (Hoffmann et al., 1985). In 

Germany the disease was first observed in Hamburg (Deutschmann, 1954) and later in 

South Germany (Schmidle, 1961). Since the 1950’s, P. cactorum has spread from Germany 

to several other European countries and became a major hazard to the field crops in 

Southern France (Molot and Nourrisseau, 1966). A warm period with prolonged wetness 

favours infection by P. cactorum. Especially high temperatures, water stress and day 

lengths less than 13 h favour disease development (Lederer and Seemüller, 1992). The 

temperature that favours disease spread in the field lies between 17 °C and 25 °C (Ribeiro 

and Olaf, 1978). The minimum, optimum and maximum temperatures are 4°, 25° and 30 

°C. In the field, oospores germinate at temperatures ranging from 10–20 °C and zoospores 

are produced via sporangia. The infection is caused mainly by zoospores; however, 

deciduous sporangia may also cause infection. The disease symptoms are first observed in 

the above ground plant parts by sudden withering and dying of the plant. A further 

characteristic symptom is the red-brown necrosis in the rhizomes. At first, small defined 

areas are affected. At later stages the entire rhizome may be destroyed. Penetration through 

wounds (Werres, 1987; Lederer, 1990) and leaf sheaths has been described. Cultivation of 
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the crop in the same field over many years can increase the severity of the disease.  

The red stele or red core disease caused by P. fragariae was first described in 1920 in 

Scotland (Montgomerie, 1977). By 1940 the disease had spread in the United Kingdom and 

since the end of the seventies, the disease has also been observed in Germany (Smith et al., 

1988). Different from Phytophthora cactorum, Phytophthora fragariae var. fragariae is 

host-specific and found only in strawberry (Duncan, 1990). However, other genera of the 

Rosaceae family can also be infected with P. fragariae under experimental conditions. 

Montgomerie (1967) reported that a British race of P. fragariae attacked all cultivars and 

clones on which it was tested. The root rot caused by this fungus is known as red core in 

Europe and red stele in North America (Smith et al., 1988).  Red stele (Phytophthora 

fragariae), a very serious fungus disease of strawberries, attacks plants during the cool part 

of the year, but above-ground symptoms are most apparent from March to July. The fungus 

persists for many years in the soil, and it occurs most frequently in poorly drained areas. 

The causal fungus spreads from one area to another in the roots of infected plants and 

within an area in surface water or in soil carried on farm implements. Red stele affected 

plants become stunted and wilt in dry weather. Older leaves turn yellow or red particularly 

along the margin. The symptom that helps to identify red stele is the brick red discoloration 

in the center (stele) of live white roots. The red color may extend the length of the root, or 

it may show up for only a short distance above the dead root tip. This symptom is obvious 

only during winter and spring. The discoloration does not extend into the crown of the 

plant. Infected plants usually die by June or July.  

These two pathogens can cause substantial economical damage in strawberry production 

(Seemüller, 1998). As a result in areas, where P. fragariae var. fragariae and P. cactorum 

are a major problem, cultivation of strawberry is mainly depending on the use of chemicals. 

In most countries, two different fungicides viz. Ridomil with Metalaxyl and Aliette with 

Aluminium-Fosetyl as active substances are used against these pathogens. However, in 

some fields where Metalaxyl was used for many years, resistant strains of P. fragariae var. 

fragariae have been found (Seemüller and Sun 1989, Nickerson, 1998). The problems 

assoicated with the use of agrochemicals have promoted researching in the field of 

biological control of plant diseases as an alternative method of control. 
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Fig. 1: Typical disease symptom of red stele (Phytophthora fragariae var. fragariae) and 
crown rot (Phytophthora cactorum) in strawberry 
 

Biological control has been known since 1874 when Roberts showed the suppressive 

activity of Penicillium glaucum against bacteria and regarded this phenomenon as 

antagonism. The biological control of root pathogens is known over 80 years (Deacon, 

1991). At the end of 19th century, Russian agriculturists began showing that the application 

of bacteria increased growth parameters and yield in different culture crops. However, 

many of these experiments were conducted with unspecific species of bacteria (Mithustin 

and Naumova, 1962). 
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One of the most intensively studied fields of biological control is the use of bacteria and 

fungi against soilborne pathogens (Weller, 1988; Cook, 1993; Weller et al., 2002). Becker 

and Schwinn (1993) described the different advantages of biocontrol over the conventional 

agrochemical. The effect of biocontrol may be prolonged, there is less chance for the 

development of resistance against antagonists and most importantly there is no evidence 

that biocontrol has any negative effect on nature. Biological control measures are generally 

well accepted by the authorities responsible for certifying pesticides. Commercialization of 

a number of microbial biocontrol products (Fravel and Larkin, 1996) has further intensified 

research in biological control.  

 

Interest in biological control of soilborne diseases has increased in the past two decades. 

Bacteria have been applied to soil and on the roots of different plants in order to increase 

plant growth and yield (Suslow, 1982; Suslow and Scrroth, 1982; Kloepper, 1991;  Gupta 

et al., 2000; Kloepper et al., 2004) and to reduce the disease intensity (Sikora, 1992; 

Hoffmann-Hergarten, 1994; Keuken, 1996; Gulati, 1997; Koch, 1997). Species of Bacillus 

are among the most intensively studied biocontrol agents (Schisler et al., 2004). Treatment 

of seed or plants with bacilli promoted plant health of different crops viz. grains 

(Merriman, 1974), vegetables (Merriman and Birkenhead, 1977), onions (Reddy and Rahe, 

1989) peanuts (Turner and Backmann, 1991), apple (Utkhede and Smith, 1992) and 

tomatoes (Keuken, 1996; Gulati, 1997; Hoffmann-Hergarten et al., 1998). Among the 

gram-negative bacteria, Pseudomonas species were the most commonly used biocontrol 

agents against soilborne pathogens (Weller, 1988; Hemming, 1990; O’ Sullivan and 

O’Gara, 1992; Lemanceau and Alabouvette, 1993; Keel et al., 1996; Weller et al., 2002; 

Haas and Défago, 2005). 

 

Plant growth promoting rhizobacteria (PGPR) are naturally occuring soil microorganisms 

that colonize roots and stimulate plant growth. Such bacteria have been applied to a wide 

range of agricultural species for the purposes of growth enhancement, including increased 

seed emergence, plant weight, and disease control. Yield increases between 10 % and 20 % 

with PGPR applications have been documented for several agricultral crops (Kloepper et 

al.,1991). 

 



_________________________________________________________________________ 

 7

When compared to the crops mentioned above, efforts to control diseases of strawberry 

with bacteria or fungi are limited. There are a number of studies related to biological 

control of Botrytis cinerea (Elad, 1994; Freeman et al., 2004) on aboveground plant parts 

on strawberry. Tronsmo (1976) showed that application of spores of the antagonistic 

fungus Trichoderma pseudokoningii to strawberries at flowering could considerably reduce 

the disease. Similar results were obtained with Bacillus pumilus and Pseudomonas 

fluorescens (Swadling and Jeffries, 1998). Liu (1993) reported that different isolates of 

actinomycetes, fungi and bacteria (Bacillus and Pseudomonas spp.) caused significant 

reductions in mycelial growth of B. cinerea in dual culture tests. Studies on biocontrol of 

soilborne diseases of strawberry are rare. Kurze et al. (1998) reported that three different 

isolates of Serratia plymuthica showed antifungal effects against different soilborne 

pathogens of strawberry viz Verticillium dahliae Kleb, Rhizoctonia solani Kühn and 

Phytophthora cactorum (Lebert and Cohn) J. Schröt in in vitro experiments. Previous 

studies have shown that dip treatment of roots with Bacillus licheniformis, Enterobacter 

agglomerans and Pseudomonas fluorescens (Hessenmüller and Zeller, 1996) and 

Pseudomonas chlororaphis (Koch et al., 1998) resulted in reduction of disease index of red 

stele and crown rot disease of strawberry. 

Hence in this study, an attempt has been aimed to study the antagonistic effect of 

rhizobacteria against both Phytophthora spp. in strawberry. 
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II. Biological control of crown rot (Phytophthora cactorum) and red stele 
(Phytophthora fragariae var. fragariae) disease of strawberry with 

rhizobacteria 
 
 

1.0 Introduction  
 
 
Strawberry is one of the important berry cultures in Germany. The yield of fruits depends 

on the soil conditions, photoperiod, temperature, and losses caused by pests and diseases. 

The most important fungal pathogens of strawberry are Botrytis cinerea, Colletotrichum 

acutatum, Verticillium dahliae, Phytophthora fragariae var. fragariae and Phytophthora 

cactorum.  Losses in crops due to root rots caused by various Phytophthora species are 

well documented (Scheer van der, 1971; Seemüller and Schmidle, 1979). Red stele (P. 

fragariae var. fragariae) and crown rot (P. cactorum) disease of strawberry can cause 

substantial economic damage (Seemüller, 1998).  Rijbroek et al. (1997) reported that 

Phytophthora cactorum, causal agent of crown rot of strawberry, caused serious losses in 

the Netherlands and described the difficulty in management of the disease. Therefore, in 

areas where P. fragariae and P. cactorum are present cultivation of strawberry depends 

directly on the use of chemicals. The number of fungicides available for the control of P. 

fragariae and P. cactorum are limited. In Germany, Aliette is the only registered fungicide 

against crown rot and red stele disease of strawberry (Anonymous 1999). In some fields 

where Metalaxyl was used for years, resistant strains of P. fragariae var. fragariae have 

been found (Nickerson, 1998). As resistance of Phytophthora species to Metalaxyl has 

been documented (Seemüller and Sun, 1989). Biological control methods proved in recent 

years as an alternative to chemical treatments for disease management. Thus, bacteria have 

been applied to soil and on roots of different plants in order reduce the disease intensity 

(Sikora, 1992; Koch, 1997). 

 

 

In the present study, after a screening of more than 100 bacterial isolates out of the 

rhizosphere of fruit orchards and potato crops in dual culture test, three with the best 

inhibition effect against the two Phytophthora pathogens, were further used for greenhouse 
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and field experiments. The following bacterial isolates were used: Raoultella terrigena 

(formely Klebsiella terrigena) strain G-584, Bacillus amyloliquefaciens strain G-V1 and 

Pseudomonas fluorescens strain 2R1-7. 

Taxonomic identification of the used bacterial strains: Raoultella terrigena strain G-584, 

Bacillus amyloliquefaciens strain G-V1 was carried out by the German Collection of 

Microorgansims and Cell Cultures (DSMZ), Braunschweig, based on 16S rDNA 

sequencing and physiological test. Pseudomonas fluorescens strain 2R1-7 was from the 

University of Rostock. 

 

The aims of the present study were to:  

 

Test the efficacy of Raoultella terrigena strain G-584, Bacillus amyloliquefaciens 

strain G-V1 and Pseudomonas fluorescens strain 2R1-7 against Phytophthora 

cactorum and Phytophthora fragariae in in-vitro experiments. 

 

Evaluate the effect of these strains on crown rot (Phytophthora cactorum) and red 

stele (Phytophthora fragariae var. fragariae) disease of strawberry in greenhouse 

and field experiments under artificially and naturally infested soils in different parts 

of Germany. 
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2.0 Materials and methods 
 
a) Media 

King’s B medium (KBB) 

10 g Protease Peptone No.3 

10 g Glycerine 

1.5 g K2HPO4x3H2O 

1.5 g MgSO4x7H2O 

1000 ml distilled H2O (pH 7.2-7.4) 

 
Potato Dextrose Broth (PDB) 

24 g PDB (Difco) 

1000 ml distilled H2O (pH 6.5) 

 

Tryptic Soy Broth (TSB) 

30 g TSB (Difco) 

1000 ml distilled H2O (pH 7.2-7.4) 

 
Vegetable Broth (V-8) 

200 ml V-8 vegetable juice (albi)  

3.0 g CaCO3   

1000 ml distilled H2O (pH  6.5) 

 For agar plates, 15 g agar (Difco) was added to the respective media. Media were 

autoclaved for 20 minutes at a temperature of 121°C. 

 
Cultivation of antagonistic bacteria  

The bacterial isolates were prepared by growing in Tryptic Soy Broth for 24 h at 26 °C, 

cells were harvested by centrifugation and diluted to an optical density of 0.20 at 660 nm; 

109 to 1011  cfu/ml  were used for the experiments.  

 
Cultivation of the pathogens 

Inocula of P. fragariae var. fragariae and P. cactorum were cultured in 1-L Erlenmeyer 

flasks on autoclaved vermiculite media composed of vermiculite (250 g),  
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wheat-bran (100 g), rye seeds (100 g), Vegetable juice 100 ml, and aqua  dest. (250 ml) for 

4 weeks at 18 °C and 3 % (w/w) of inoculum used for artificial infestation of soil. 

2.1 In vitro experimental design 
 

2.1.1 Influence of culture media on growth of bacteria and fungi  
 
To determine a suitable medium for the co-cultivation of fungi and bacteria, three different 

media were tested: Potato Dextrose Agar (PDA), Tryptic Soy Agar (TSA) and Vegetable-8 

Agar. A loop full of bacteria from 2 days old TSA media culture was streaked on agar 

plates and growth of bacteria was recorded (*** = excellent growth, ** = good growth, * = 

almost no growth). A 5 mm disk of fungal mycelial was placed in the centre of agar plates 

and mycelial growth was measured. The number of replications was six. The growth of 

bacteria was assessed after 24 h. The fungal growth was rated 72-96 h after inoculation 

using a scale of 1-3. The best media for both organisms was then used for in vitro tests.  

 

 

2.1.2 In vitro tests for antagonistic activity of rhizobacteria 

The antagonistic effect of the Raoultella terrigena G-584, Bacillus amyloliquefaciens G-V1 

and Pseudomonas fluorescens 2R1-7 was evaluated by the dual culture test and culture 

filtrate test. 

 

Dual culture test: Agar disks carrying actively growing mycelium of the different fungi 

were placed in the centre of V-8 agar plates and cells of bacteria were streaked 3 cm away 

at both sides. Plates without bacteria served as control (Fig. 2). The number of replications 

was twelve. The growth of mycelium (average of width and length of mycelium) on control 

plates was taken as reference for computing the antagonistic activity of bacteria with the 

following equation: 

Reduction in mycelium growth %   =    Control-Treatment   x 100  

                                                              Control 

Treatment = (mycelial growth of fungus in plate with streaked bacteria) 

Control = (mycelial growth of fungus in plate without bacteria)  
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  (a) Control  (b) B. amyloliquefaciens G-V1 treated 

Fig. 2: Dual culture test (b) shows the reduction of P. cactorum mycelial growth by 
Bacillus amyloliquefaciens G-V1 
 

 

Culture filtrate test: Two loops of bacteria from 2 day old TSA culture were transferred into 

a 200 ml glass flask with 50 ml of sterile TSB medium. The medium with bacteria was 

shaken (96 rpm) on a rotary shaker for 24 h in an incubator at 24 ± 2 °C. One ml of this 

culture was added to a 200 ml Erlenmeyer glass flask with 50 ml of sterile medium and was 

shaken (96 rpm) on a rotary shaker for 24 h in an incubator at 24 ± 2 °C. 

 

In order to separate cells and culture filtrate the culture was centrifuged at a speed of 6000 

rpm at 6-8 °C for 20 – 25 min. The bacterial pellet was discarded and the supernatant 

solution was filtered through 0.2 µm nitrocellulose filters. The filtrate was added to V-8 

agar at a concentration of 30 %. TSB culture medium (30 %) was mixed into V-8 agar as a 

control. One week old agar disks carrying actively growing mycelium of fungi were placed 

in the centre of agar plates. The plates were incubated at 20 °C in darkness. The number of 

replications was twelve. Mycelial growth of the fungi was measured at regular intervals 

and percent reduction of mycelial growth on test plates was computed in relation to 

mycelial growth on control plates at the termination of experiment.  
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2.2 Greenhouse experiments on biological control of red stele (Phytophthora fragariae 
var. fragariae) and crown rot (Phytophthora cactorum) diseases of strawberry  
 

Tests were performed with strawberry (Fragaria x ananassa Duchesne) plants of cv. " 

Elsanta "(Frigo) and "Honeoye". Both varieties are highly susceptible to red stele and crown 

rot disease. 

 

Roots of young strawberry (“Elsanta” Frigo) plants were individually dipped for 15 min. 

into the bacterial suspension in order to have direct exposure of the roots to the antagonistic 

bacteria. Roots of control plants were either dipped in tap water or 0.5 % Aliette. Plants 

were then transferred to 14 cm plastic pots with artificially infested soil using 3 % of 

inoculum. 90 days after  planting, roots were carefully washed and symptoms scored using 

a 1-6 scale (1: root healthy, 2: 20 % root rot, 3: 40 % root rot, 4: 60 % root rot, 5: 80 % root 

rot, 6: plant dead) and disease severity was recorded on 25 plants for each treatment. 

Disease index was calculated with the following scheme as follows: 

% Disease index   =     Sum of the rating value x 100 
                                     Total no. of plants x 6 (Highest rating value)   
 
 
 

 

Biological control efficacy was calculated using the formula according to Abbot (1925):  

% Disease control =   (Disease index of control – Disease index of treatment) x 100 
                                                       Disease index of control 
 
Moreover plant growth promotion effect was determined in the absence of pathogen, three 

months after treatment of the strawberry plants by measuring (20 plants per treatment) 

fresh weight of shoots and roots .  
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2.3 Field trials on biological control of red stele (Phytophthora fragariae var. fragariae) 
and crown rot (Phytophthora cactorum) disease of strawberry  
 

Field trials were conducted at four different locations in Germany under artificially 

(Darmstadt: South Hessia) and naturally (Jork: North Germany, Grossostheim: North West 

of Bavaria and Denzlingen: South Germany) infested soil conditions in the season 

2003/2004. In the season 2004/2005, field trials were conducted at two different locations 

(Darmstadt and Jork). The experimental design was a completely randomized. 

 

2.3.1 Experiments under artificially infested soil conditions: 2003/2004 

 

The experiment at Darmstadt  was carried out in the research field of the Institute for 

Biological Control, Federal Biological Research Centre for Agriculture and Forestry 

(BBA), (plot size: 13 m in length and 8 m in width); it started in June, 2003, roots of  

strawberry (Elsanta (Frigo)) plants were dipped in three antagonistic preparations of R. 

terrigena strain G-584, B. amyloliquefaciens strain G-V1 and P. fluorescens strain 2R1-7, 

Alliete (0.5 %) or tap water for 15 minutes. Then treated plants were planted in artificially 

infested soil (P. fragariae var. fragariae and P. cactorum inoculum was applied to each 

planting hole). The plants were harvested 3 months after planting, disease severity recorded 

on 80 plants for each treatment.   

 

2.3.2 Experiments under naturally infested soil conditions: 2003/2004 

 

The trial at Jork carried out in the research field of Fruit-growing laboratory (Obstbau-

Versuchs-und Beratungszentrum-OVB) under naturally infested soil conditions started in 

August, 2003. Five treatments i.e. suspensions of B. amyloliquefaciens G-V1, R. terrigena 

G-584, mixture of G-V1 and G-584, Aliette (0.5 %) and a water control were used. Treated 

strawberry (Elsanta) plants were planted in soil naturally infested with Phytophthora spp. 

(plot size: 15 m x 10 m). The plants were harvested in May, 2004, disease severity was 

recorded on 85 plants for each treatment.  
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The trial at Grossostheim carried out on a commercial Farm (Hans Ballman) under 

naturally infested soil conditions, started in August, 2003. Four treatments i.e. suspension 

of B. amyloliquefaciens G-V1, R. terrigena G-584, Aliette (0.5 %), and a water control 

were used. Then strawberry (Elsanta) plants were planted in soil naturally infested with 

Phytophthora spp. (plot size: 15 m x 10 m). Rating of disease, the number of dead and 

infected plants (based on shoot symptoms) was noted in July, 2004, disease severity was 

recorded on 100 plants for each treatment. 

 

The trial at Denzlingen carried out on a commercial organic Farm (Christof Höfflin), 

started in August, 2003. Four treatments, i.e. suspensions of B. amyloliquefaciens G-V1, 

 R. terrigena G-584, Aliette (0.5 %) and a water control were used and treated strawberry 

(Honeoye) plants were planted in soil naturally infested with Phytophthora spp (plot size: 

15 m x 10 m).  Rating of disease: the number of dead and infected (based on shoot 

symptoms) were noted in August, 2004, disease severity was recorded on 100 plants for 

each treatment.   

 

 

2.3.3 Experiments under artificially infested soil conditions: 2004/2005 

 

The experiment at Darmstadt was carried out in the research field of Institute for Biological 

Control, BBA, (plot size: 13 m x 8 m); it started in May, 2004, roots of strawberry (Elsanta 

(Frigo)) plants were dipped in three antagonistic preparation of R. terrigena G-584,  

B. amyloliquefaciens G-V1 and P. fluorescens 2R1-7, Alliete (0.5 %) or tap water for 15 

min. Then treated plants were planted in artificially infested soil (P. fragariae var. 

fragariae and P. cactorum inoculum was applied to each planting hole). The plants were 

harvested 3 months after planting, disease severity recorded on 80 randomly selected plants 

for each treatment 
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2.3.4 Experiments under naturally infested soil conditions: 2004/2005 

 

The trial at Jork carried out in the research field of Fruit-growing laboratory (Obstbau-

Versuchs-und Beratungszentrum -OVB) under naturally infested soil conditions started in 

August, 2004. Six treatments i.e. suspensions of B. amyloliquefaciens G-V1, R. terrigena 

G-584, Pseudomonas fluorescens 2R1-7,  mixture of G-V1 and G-584, Aliette (0.5%) and a 

water control were used. Treated strawberry (Elsanta) plants were planted in soil naturally 

infested with Phytophthora spp (plot size: 15 m x 10 m). The plants were harvested in 

May, 2005; disease severity was recorded on 100 plants for each treatment.  

 
2.4 Statistical analysis 

Statistical significance was computed with SAS (SAS Institute Inc., NC, USA) using the 

Tukey Test. 
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Fig.  3: Field experiment locations in Germany 
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Fig. 4: Greenhouse and Field experiments on different locations in Germany 
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3.0 Results 

 

3.1 In vitro studies 

 

Influence of culture media on growth of bacteria and fungi  
 

Bacteria and fungi were cultured on different media to find a suitable medium for 

simultaneous cultivation of both groups of organisms. On tryptic soy agar and in vegetable 

8 agar (V-8 agar) all tested bacterial isolates showed excellent growth (Tab. 2). However, 

the growth of fungi was best on V-8 agar. Vegetable 8 agar was therefore taken as a 

standard media for dual culture and culture filtrate tests. 

 

 

Bacteria and Fungi Potato dextrose agar Tryptic soy agar Vegetable-8-agar

Bacillus amyloliquefaciens  

 G-V1 

 
*** 

 
*** 

 
*** 

Raoultella terrigena G-584 ** *** *** 

Pseudomonas fluorescens 

2R1-7 

** *** *** 

Phytophthora cactorum ** ** *** 

Phytophthora fragariae ** * *** 

 

*** = excellent growth, ** = good growth, * = almost no growth 

 

Tab. 2: Influence of culture media on growth of bacteria and fungi in petri dishes 
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Dual culture test: The mycelial growth of P. cactorum and P. fragariae var. fragariae was 

reduced up to 60 % in dual culture tests with the three rhizobacteria (Fig. 5). The tested 

three antagonistic strains showed nearly the same level of effect against the both 

Phytophthora spp. 
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Fig. 5: Effect of B. amyloliquefacines G-V1, R. terrigena G-584 and P. fluorescens 2R1-7 
on mycelial growth of Phytophthora spp. in dual culture test. Results are presented as 
reduction in mycelial growth compared to control, n=12, (± standard deviations) 
 

 

Culture filtrate test: In culture filtrate test the mycelial growth of P. fragariae was 

reduced about 61 % by P. fluorescens 2R1-7, followed by B. amyloliquefaciens G-V1 with 

29 % and 25 % from R. terrigena G-584. The tested three strains showed same level of 

mycelial growth reduction against P. cactorum (Fig. 6).  
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Fig. 6: Effect of B. amyloliquefaciens G-V1, R. terrigena G-584 and P. fluorescens 2R1-7 
on mycelial growth of Phytophthora spp. in culture filtrate test. Results are presented as 
reduction in mycelial growth compared to control, n=12, (± standard deviations) 
 

3. 2 Greenhouse experiments on biological control of red stele (Phytophthora fragariae 
var. fragariae) and crown rot (Phytophthora cactorum) diseases of strawberry 
 

3.2.1 Test on biocontrol activity of the three rhizobacteria 

 

Under greenhouse conditions, the three rhizobacteria showed nearly same level of 

biocontrol activity towards P. fragariae var. fragariae (red stele) and P. cactorum (crown 

rot). All bacterial treatments gave a significant effect compared to infected control (Tab. 3). 

The higher percentage of biological control was obtained against red stele disease by using 

Pseudomonas fluorescens 2R1-7 with 59.3 %. In the case of crown rot disease with 56.9 % 

using G-584 of Raoultella terrigena, these results were nearly comparable with the 

chemical control Aliette of red core and crown rot diseases of 61 % and 66.1 % 

respectively.  
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               Red stele disease            Crown rot disease  

Treatments Disease   
index   % 

 

Disease    
control  % 

  Disease 
index  % 

Disease     
control  % 

Control 47.2 a  52.0 a  

R. terrigena  G-584 26.4 b 44.0 22.4 b 56.9 

B. amyloliquefaciens  G-V1 28.0 b 40.6 25.6 b 50.7 

P. fluorescens  2R1-7  19.2 b 59.3 26.4 b 49.2 

Aliette 18.4 b 61.0 17.6 b 66.1 

 
Tab. 3: Influence of rhizobacteria in controlling red stele and crown rot diseases of     
strawberry under artificially infested soil conditions in greenhouse. Disease index followed 
by different letters are significantly different according to Tukey Test, P<0.05, n=25 
 
3.2.2 Test for plant growth-promoting properties 

The effect of root bacterization on plant growth in the absence of the pathogens was 

evaluated based on production of plant fresh matter. All the treatments with rhizobacteria 

showed nearly equal fresh-shoot weight of strawberry plants with that in the control. Data 

in Table 4 show that fresh weight of root systems of strawberry plants treated with P. 

fluorescens 2R1-7 decreased compared to control. 

 

Treatments 
Shoots fresh 

weight (g) 

Roots fresh weight (g) 

Control 23.55 a 6.01 a 

R. terrigena G-584 24.98 a 6.48 a 

B. amyloliquefaciens G-V1 24.57 a 5.59 ab 

P. fluorescens  2R1-7 20.11 a 3.93 b 

Aliette 23.62 a 5.78 ab 

 
Tab. 4: Effect of rhizobacteria on  fresh shoot- and root- systems of strawberry plants, 
different letters are significantly different  according to Tukey Test,  P<0.05, n=20 
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3.3 Field trials on biological control of red stele (Phytophthora fragariae var. fragariae) 
and crown rot (Phytophthora cactorum) diseases of strawberry 

 
3.3.1 Experiments under artificially infested soil conditions 2003/2004  

 
The trial at Darmstadt: Data in Table 5 showed that the application with the three 

rhizobacteria gave a significantly considerable degree of protection against both pathogens 

under field conditions. The percentage of biological control was obtained for the control of 

red stele disease using the isolate 2R1-7 of P. fluorescens with 45.0 % followed by of B. 

amyloliquefaciens strian G-V1 and R. terrigena strain G-584 with 37.6 % and 35.0 % 

respectively. On the other hand, the three genera of bacteria R. terrigena, P. fluorescens 

and B. amyloliquefaciens with nearly the same percentages of control effect (35.1 %, 39.7 

% and 29.6 %, respectively) against crown rot. Aliette showed 49.6 % control efficacy 

against red stele and 52.5 % on crown rot. 

 

     Red stele disease                 Crown rot disease           Treatments 

Disease     
index  % 

Disease 
control  % 

Disease      
index  % 

Disease   
control  % 

 Control 37.7 a  32.7 a  

R. terrigena  G-584 24.5 b 35.0 21.2 bc 35.1 

B. amyloliquefaciens  G-V1 23.5 b 37.6 23.0 b  29.6 

P. fluorescens 2R1-7 20.7 b 45.0 19.7 bc 39.7 

Aliette 19.0 b 49.6 15.5 c 52.5 

 

Tab. 5: Efficacy of rhizobacteria in controlling the red stele and crown rot diseases of 
strawberry under artificially infested soil conditions in the field at Darmstadt, June, 2003. 
Disease index followed by different letters are significantly different according to Tukey 
Test, P<0.05, n=80 
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3.3.2 Experiments under naturally infested soil conditions 2003/2004  

Under natural conditions the infection pressure with the pathogen was different in the 

locations mentioned before (Fig. 3) and also a differentiation of both Phytophthora diseases 

could not be evalauted. Therefore it is described as the general Phytophthora incidence of 

the infested field. 

The trial at Jork (OVB):  The level of control based on number of infected or dead plants at 

the termination of experiments is shown in Fig. 7. Through the treatment with the 

rhizobacteria a reduction of disease could be observed about 37.5 % at this location in 

North West Germany. Fig. 7 indicated that the rating of the diseases of strawberry grown in 

naturally infested field was reduced compared with control (23.2 %), when each of B. 

amyloliquefaciens G-V1 and R. terrigena G-584 was together (14.5 %). However, 

individual application with B. amyloliquefaciens G-V1, R. terrigena G-584 and Aliette 

showed no significant effect. 
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Fig. 7: Efficacy of rhizobacteria in controlling Phytophthora spp. of strawberry grown in 
naturally infested soil at Jork, 2003/2004. Different letters show statistically significant 
differences among treatments according to Tukey Test, P<0.05, n=85 
 

 



_________________________________________________________________________ 

 25

The trial at Grossostheim: Fig. 8 showed the reduction on the rating of disease caused with 

Phytophthora spp. of strawberry by the applied bacterial antagonistic strains, grown in a 

commercial farm. Disease control efficacy in this naturally infested field reached nearly to 

50 % in all treatments either using rhizobacteria or Aliette when it was compared with that 

in the control (Fig. 8).   
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Fig. 8: Efficacy of rhizobacteria in controlling Phytophthora spp. of strawberry grown in 
naturally infested soil at Grossostheim, 2003/2004. Different letters show statistically 
significant differences among treatments according to Tukey Test, P<0.05, n=100 
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The trial at Denzlingen: In the last experiment under naturally infested soil conditions in a 

commercial organic farm in South West Germany (Fig. 9), the incidence of the fungal 

disease was with 25 % in control. At this site none of the rhizobacterial antagonists 

significantly reduced disease index compared to the control except the chemical Aliette 

(Fig. 9). Disease reduction by Aliette was 56.8%. 
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Fig. 9: Efficacy of rhizobacteria in controlling Phytophthora spp. of strawberry grown in 
naturally infested soil at Denzlingen 2003/2004. Different letters show statistically 
significant differences among treatments according to Tukey Test, P<0.05, n=100 
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3.3.3 Experiments under artificially infested soil conditions 2004/2005 

The trial at Darmstadt: Data in Table 6 showing that the application with the three 

rhizobacteria showed efficacy in different to field trail 2003 (Tab. 5). Significant 

percentage of biological control was obtained for control of red stele disease using the 

isolate of B. amyloliquefaciens G-V1 with 27.2 %, other treatments showed no significant 

effect compared to control. On the other hand, treatment with Aliette only showed 

significant control effect of 36.7 % against crown rot compared to other rhizobacterial 

treatments.   

 

     Red stele disease                 Crown rot disease Treatments 

Disease       
index % 

 Disease 
control % 

 Disease        
index % 

 Disease   
control % 

 Control 52.9 a  61.2 a  

R. terrigena  G-584 46.4 ab 12.2 47.7 ab 22.0 

B. amyloliquefaciens  G-V1 38.5 b 27.2 49.7 ab 18.7 

P. fluorescens 2R1-7 44.1 ab 16.6 57.0 a 6.8 

Aliette 40.4 ab 23.6 38.7 b 36.7 

 

Tab. 6: Efficacy of rhizobacteria in controlling of red stele and crown rot diseases of 
strawberry under artificially infested soil conditions in the field at Darmstadt, June, 2004. 
Disease index followed by different letters are significantly different according to Tukey 
Test, P<0.05, n=80                        
 

3.3.4 Experiments under naturally infested soil conditions 2004/2005 

The trial at Jork (OVB): Fig.10 showing that the application with R. terrigena G-584 

showed significant percentage of biological control effect with 45.1 %. However, the other 

treatments, mixture of G-584 & G-V1, B. amyloliquefaciens G-V1, P. fluorescens 2R1-7 

and Aliette showed no significant effect  compared to control which is in different to field 

trail 2003 (Fig. 7). 
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Fig. 10: Efficacy of rhizobacteria in controlling Phytophthora spp. of strawberry grown in 
naturally infested soil at Jork, 2004/2005. Different letters show statistically significant 
differences among treatments according to Tukey Test, P<0.05, n=100 
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4.0 Discussion  
 

In vitro studies 

 

The aim of the present study was to test three rhizobacteria from different genera for their 

efficacy against the crown rot and red stele disease of strawberry. In the study here, in 

vitro, greenhouse and field experiments were conducted. In comparing experiments the 

growth of bacteria was similar on almost all the selected media. However, the V-8 media 

was most suitable for the growth of fungi. Therefore for dual culture and culture filtrate 

tests V-8 media was determined as the suitable nutrient media. Cultivation media play an 

important role in biological control of plant pathogens (Dickie and Bell, 1995; Borowicz 

and Omer, 2000) and a suitable environment is the best for the performance of experiments 

(Dhingra and Sinclaire, 1985).  

 

 

In vitro experiments described in this part of study have been used by other authors for 

testing the antagonism of rhizobacteria against fungal pathogens (Koch et al., 1998; 

Velahzazan et al., 1999).  The positive results achieved in vitro tests systems, however, 

may not always be the same in the field (Harman and Lumsden, 1990). The antagonistic 

potential of a biocontrol agent not can be successfully explored with in vitro experiments. 

However, in vitro methods are a quicker means of testing the antagonistic potential of the 

selected isolates than greenhouse tests (Kempf, 1988; Renwick et al., 1991) or field studies. 

They also save time and material in selection of potential antagonists (Kloepper, 1991).  
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Greenhouse experiments on biological control of crown rot (Phytophthora cactorum) 
and red stele (Phytophthora fragariae var. fragariae) disease of strawberry  
 

Bacterial isolates:  The used antagonistic bacteria, Raoultella terrigena G-584, Bacillus 

amyloliquefaciens G-V1 originating from apple orchards and Pseudomonas fluorescens 

2R1-7 from potato crop proved to be good antagonists in the test system used. Strains of 

Bacillus and Pseudomonas spp. have in the past also been reported to be very good 

biological control agents of plant diseases (Bochow, 1992; Cook, 1993; Raaijmakers et al., 

1995; Koch et al., 1998; Zeller, 1999). Cook and Weller (1987) reported that an isolate 

should be selected from the same location where it is to be used as an antagonist due to the 

fact that rhizobacteria are often relatively host specific, cultivar specific which effects root 

colonization and plant growth promotion (Schroth and Becker, 1990). However, generally 

isolates are selected from different crops and then used to control diseases in other cultures 

(Harman and Lumsden, 1990).  

 

Bacteria treatment: The method of application or treatment of biological agents can play an 

important role in the efficacy of the applied agent on the target pathogen. Biological control 

agents can be applied prior to sowing, on transplants, tissue culture plantlets or as drenches. 

In previous studies root bacterization or application of bioagents has been done at the time 

of planting (Koch et al., 1998) or at sowing (Hoffmamm-Hergarten, 1994; Keuken, 1996; 

Gulati, 1997). Tu and Zheng (1996) showed that a single treatment of Bacillus subtilis or 

Pseudomonas fluorescens could significantly control Verticillium wilt of tomato caused by 

Verticillium dahliae. In the experiments conducted here strawberry plants were used 

therefore the roots of the plants were dipped in bacteria cell solution (109 - 1011 for 15 

minutes) before planting. Similar concentrations have also been used in root dip treatments 

of other plants with positive results (Sikora, 1988; Gulati, 1997; Lottmann et al., 1998; 

Koch et al., 1998; Hoffmann-Herrgarten et al., 1998). The advantage of this method in 

treatment of plant roots is that the roots are directly exposed to the bacterial inoculum free 

of soil. The other advantages are that the pre-treatment insures higher levels of activity, 

reduces production costs, simplifies formulation and application, reduces extension costs 

and minimizes impact on the environment (Sikora, 1997). The experiments were done in a 

greenhouse at a temperature of 20 °C as this is regarded as an optimum temperature for the 
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growth of the two species of Phytophthora and favours infection (Duncan and Kennedy, 

1995).  

 

Disease rating: The aim of this part of the study was to measure the antagonistic potential 

of Raoultella terrigena G-584, Bacillus amyloliquefaciens G-V1, Pseudomonas fluorescens 

2R1-7 or in comparision with standard fungicide Aliette against crown rot and red stele 

disease of strawberry. Antagonistic root-associated bacteria are an important functional 

group of benificial bacteria responsible for the control of soilborne pathogens (Weller, 

1988). As a result of the first screening, three genera of bacteria were found to produce 

detectable inhibition zones against Phytophthora spp. The production of clear inhibition 

zones in dual culture screens is due to the production of antibiotics, toxic metabolites or 

siderophores as mechanisms for biological control (Swadling and Jeffries, 1998).  

 

In the present study an antagonistic potential of three selected rhizobacteria Raoutella 

terrigena G-584, Bacillus amyloliquefaciens G-V1 and Pseudomonas fluorescens 2R1-7 

against Phytophthora spp. the causal organism of crown rot and red stele diseases of 

strawberry was observed. Bacillus spp. and Pseudomonas spp. are well known antagonists 

of different plant pathogens (Bochow, 1992; Cook, 1993; Koch et al., 1998; Mansour and 

Farag, 1999;  Zeller, 1999; Duffy et al., 2004). But until now, no data on the control of 

Phytophthora spp. by Raoultella terrigena, a Gram negative enteric bacterium, have been 

reported. This species was first isolated from soil and water (Izard et al.,1981). Another 

species, Klebsiella oxycota have been used on a large scale to improve plant growth of 

several important crops in China (Lin, 2000). In this study, Raoultella terrigena strain G-

584 had moreover a high inhibitory activity against the Phytophthora spp. The results of 

dipping the plants in bacterial cell suspensions at the time of planting are in agreement with 

that of Koch et al, (1998). In previous studies Hessenmüller and Zeller (1996) showed that 

following plant treatment with A. radiobacter, B. licheniformis and P. fluorescens the 

disease rate of P. cactorum was reduced to 68 % and P. fragariae to 41 % in strawberry 

plants after four weeks in soils artificially inoculated with the pathogen. Koch et al. (1998) 

also showed that in greenhouse experiments following treatment with P. chlororaphis 

isolate I-112 the severity of infection by P. fragariae was significantly reduced compared 

to untreated control and also in field experiments considerable control was achieved in 
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artificially inoculated soils. Bacteria and fungicide treatment must have provided protection 

to the young strawberry plants from P. cactorum and P. fragariae after plantation. 

Reduction of mycelial growth in vitro experiments and reduction of disease rate of plant 

roots show that there is a correlation between the reduction of the mycelial growth of the 

fungi in in vitro and greenhouse studies. Similar results were also obtained in studies in the 

past with Bacillus, Erwinia and Pseudomonas species (Sauer and Zeller, 1992; 

Hessenmüller and Zeller, 1996; Koch et al., 1998).  

 

Plant growth promoting activites: The goal of this part of the study was to determine if 

strawberry growth would be influenced by bacterization of the plant root. Treatment with 

selected rhizobacteria was observed with no direct plant growth promotion. Plant growth-

promoting bacteria can have an impact on plant growth and development in two different 

ways: indirectly or directly.  The indirect promotion of plant growth occurs when these 

bacteria decrease or prevent some of the deleterious effects of a phytopathogenic organism 

by any one or more of several different mechanisms.  On the other hand, the direct 

promotion of plant growth by plant growth-promoting bacteria generally entails providing 

the plant growth with a compound that is synthesized by the bacterium (Glick, 1994). In 

other studies it has also been documented that bacteria play a positive role in the 

rhizosphere that results in improved plant health (Weller, 1988; Kempf et al., 1993). Sikora 

(1988) differentiated the bacterial isolates according to their mode of action as either plant 

growth or plant health promoting. Nieto and Frankenberger, (1990) observed that growth 

promotion in bacterial treatments could be due to the production of phytohormones such as 

cytokinins. Previous investigations have also shown that bacterization can increase root 

growth through increased lignin content (Boller and Metraux, 1988).   
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Field trials on biological control of crown rot (Phytophthora cactorum) and red stele 
(Phytophthora fragariae var. fragariae) diseases of strawberry 
 

Field Experiment: Field experiments gave a real picture of the antagonistic potential of 

isolates under the abiotic and biotic conditions existing in the ecosystem (Merriman and 

Russel, 1990; Pusey, 1990). It is known that the results are often reproducible in in vitro or 

in greenhouse experiments however not in the field (Mahaffee and Backmann, 1993). In 

the present study field experiments were conducted in two successive years (2003-2005) in 

different locations in Germany under artificially infested field and natural densities of 

Phytophthora cactorum and Phytophthora fragariae.  

 

In all field experiments, the plants were dipped in bacterial cell suspension at the time of 

planting. Tested rhizobacteria such as Raoutella terrigena G-584, Bacillus 

amyloliquefaciens G-V1 and Pseudomonas fluorescens 2R1-7 showed different level of 

biocontrol efficacy against Phytophthora spp. the causal organism of crown rot and red 

stele diseases of strawberry.  The results are in agreement with that of Koch et al. (1998). 

They documented that following treatment of P. chlororaphis isolate I-112 a considerable 

degree of protection against P. fragariae in the field in soils artificially inoculated with the 

pathogen occured after 8 weeks of planting. Variability among biocontrol experiments is 

not uncommon and the inability to obtain repeatable results in realistic conditions is a 

major problem in the development of biological control (Weller, 1988; Campbell, 1989). 

The poor results recorded may be due to different reasons. The variation in results can be 

due to different abiotic or biotic factors. Abiotic factors such as soil type, moistures and 

temperature as well as variation in application technology may play a direct role in the 

potential of the biocontrol agent. It is well known that P. fragariae var. fragariae exists as 

oospores in soil and on plant debris and as mycelium in infected roots. Wet or moist soils, 

where the soil water level is very near the saturation point favours the production and 

release of zoospores and red stele is more severe when the preceding winter has been cold 

and wet (Nickerson, 1998). The warm climatic conditions favour the development of the P. 

cactorum infection and colder conditions in the winter favour the development of P. 

fragariae infection (Nickerson, 1998). Koch (1999) also reported that the weak 

performance of the bacteria in his experiments might be due to the high level of the disease 
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pressure. Biotic factors such as competition in root colonization with the soil-specific 

microbial community may have been responsible for the variation in two years field 

experiement. The intensity of the pathogens may have been higher in this field due to 

favourable weather conditions for the development of the disease. The virulence of 

naturally occurring strains could have also been another factor for the limited control of the 

disease in the fields.  

 

Another aspect investigated was to test if mixtures of bacteria species give a better control 

against the crown rot and red stele disease of strawberry than one bacterium alone. From 

previous studies it is known that combinations of different isolates may lead to improved 

antagonistic activity (Weller and Cook, 1983; Weller, 1988). Application of mixtures of 

antagonistic micro-organisms, preferably with different modes of action, has been proposed 

as a strategy to increase the efficacy and to improve the consistency of disease control 

(Thomashow et al., 1990, Pierson and Weller, 1994; Schisler et al., 1997). In this study, 

field trial (2003-2004) at Jork with root bacterization of strawberry with dual mixtures of B. 

amyloliquefaciens G-V1 and R. terrigena G-584, observed with improved control 

compared to individual isolates.  However, the results of mixture of B. amyloliquefaciens 

G-V1 and R. terrigena G-584, treatment in 2004-2005 could not be confirmed. A 

combination of different isolates also may result in negative results (Hadar et al., 1983). 

Sikora et al. (1990) also showed a negative effect by combining antagonistic bacteria 

against Pythium ultimum. Koch et al. (1998) also observed that seed bacterization of 

cucumber with dual mixtures of isolates did not improve control of Pythium ultimum and 

Pythium aphanidermatum on cucumber compared to single isolate treatment. In lettuce the 

root length of plants treated with B. sphaericus isolates A-1 and A-2, B. amlyloliquefaciens 

isolate VM-1-1 was decreased (Gulati, 1997). Decreased root length and root weight has 

also been reported after B. subtilis isolates S-20 and S-26 treatments of tomato (Keuken, 

1996). The application of a certain strain may also have a direct effect on the existence of 

other strains of bacteria or vice versa (Cook, 1993). Some bacteria have the capability of 

producing antibiotics in vitro and in vivo (Weller and Thomashow, 1993) that may not only 

be toxic to microorganism in the soil but also have a negative effect on the plant growth 

(Kim et al., 1995).  
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Despite intensive research on biological control of soil borne diseases, practical methods of 

biological control of soil borne pathogens are limited. Future research to increase the 

efficacy of the bacterial antagonists should concentrate on application methods, different 

formulations and frequent sprays. To improve biological control agents there is a need to 

combine the biological control agents with fungicides of lower doses thereby reducing the 

quantity of the chemicals needed and the risk that the pathogen may become resistant to a 

certain chemical.  
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III. Characterization of microbial colonization following root 

bacterization 
 

1.0 Introduction 
 

In biological control of soil borne pathogens the rhizosphere plays an important role. Plant 

roots release an enormous amount of root exudates, leading to a significant stimulation of 

the microbial density and activity.  The rhizosphere was defined in 1904 by Hiltner, as the 

contact zone between soil, roots and microorganism. Rhizosphere is also known as the 

component of intensive microbial activity and is affected by the activity of the plant roots 

such as exudates and due to lysis of plant cells (Lynch et al., 1990). Rhizosphere 

colonization following the introduction of bioagents is considered to be an important factor 

for successful biological control of plant diseases. Strong colonization of roots is generally 

necessary for disease suppression (Parke, 1991). Weller (1988) reported that insufficient 

root colonization has been one of the limiting factors in the use of rhizobacteria as 

biocontrol agents. Similarly, Lemanceau and Alabouvette (1993) reported that inefficient 

root colonization of introduced pseudomonads is often responsible for the inconsistent 

performance. Gamalero et al. (2003) described that there are different methods for 

investigating root colonization or for measuring colonization of plant roots by applied 

rhizobacteria. 

 

Different techniques have been used for investigating root colonization and for measuring 

rhizobacteria colonization of plant roots for example: 

 
 
 Antibiotic resistance  
 
Antibiotic resistances have been widely used as markers in microbial ecology. Although 

various plasmids and transposons have been used (Prosser, 1994; Van Overbeek et 

al.,1997), most of the studies on bacterial survival kinetics are based on the use of 

spontaneously occurring antibiotic-resistant mutants. Rifampicin resistant strains have 

been frequently used in re-isolation of applied rhizobacteria from the rhizosphere 

(Kloepper and Beauchamp, 1992). Hoffmann-Hergarten (1994) and Saddlers (1996) used 
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this technique for studying the population dynamics of applied rhizobacteria from tomato 

plants and Hessenmüller and Zeller (1996) in strawberry roots. Kanamycin and 

streptomycin resistance obtained by Tn5 mutagenesis with the suicide plasmid method of 

Simon et al, (1983) was also described as a possible marker (Van Elsas et al., 1986). The 

maintenance of Tn5 in the mutant JM218 was ascertained by comparing bacterial densities 

of this mutant in root suspensions, estimated by serology, with bacterial density estimated 

by plate count on King’s B medium supplemented with kanamycin (Lemanceau et al., 

1992). However, possible genetic changes associated with chromosomal- mediated 

antibiotic resistance may affect several ecologically important traits (Blot et al., 1994; 

Mahaffee et al., 1997). Moreover, the use of antibiotic tagged bacteria carries with it the 

risk of contributing to the spread of antibiotic resistance in nature (Jansson, 1995).  

 

Serological markers  
 
Immunological techniques are relevant especially for the detection, enumeration and 

localization of introduced bacterial strains in the soil and rhizosphere. Among the 

serological methods, the enzyme-linked immunosorbent assay (ELISA) is a very sensitive 

immunoassay for the detection of antigens. ELISA is based on direct or indirect sandwich 

methods. The ELISA method has been used to study and quantify the external and internal 

root colonization of maize by two P. fluorescens strains (Benizri et al., 1997) and the 

distribution of two diazotrophic enterobacterial strains, Pantoea agglomerans and 

Klebsiella pneumoniae, on cereal shoots and roots (Remus et al., 2000). The critical aspect 

of serological methods is the specificity of the antibodies used. Polyclonal or monoclonal 

antibodies may be applied according to their specificity. Monoclonal antibodies are 

obviously more expensive to raise but are more specific. The specificity of the antibodies, 

especially polyclonal ones, should be checked to decrease the occurrence of possible cross-

reactions. Usually, a high enough specificity may be obtained for fluorescent pseudomonad 

strains with polyclonal antibodies raised against membrane proteins (Glandorf et al., 1992).  
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Fluorescent markers 
 
Stable and unstable green fluorescent proteins are another attractive marker system for 

monitoring bacterial cells in the environment is the green fluorescent protein (GFP). The 

GFP is a 27 KDa polypeptide which converts the blue chemiluminescence of the Ca2+-

sensitive photoprotein (aequorin from the jellyfish Aequorea victoria) into green light 

(Chalfie et al., 1994). A series of red shifted GFP mutants, 20–35 times stronger than the 

wild type, with various excitation and emission wavelengths such as the ECFP (enhanced 

cyan), EGFP (enhanced green) and EYFP (enhanced yellow), have been recently developed 

(Tsien, 1998). The advantages and disadvantages of this marker have been extensively 

discussed by Errampalli et al., (1999). Some of the most relevant advantages are that GFP 

is extremely stable and resistant to proteases, is easily detectable, does not require 

exogenous substrate and allows the monitoring of single cells even in real time. Moreover, 

GFP is continuously synthesized and there is no background in indigenous bacterial 

populations. However, the interference of soil particles, the variability of GFP expression 

in different species, the inability to work in anaerobic conditions and the instability of the 

plasmid should be considered. In order to overcome the latest limitation and reduce the risk 

of a plasmid transfer to other microorganisms, bacterial strains used are preferentially 

chromosomally marked. For that purpose, several Tn5 transposon suicide delivery vectors 

have been developed (Suarez et al., 1997; Tombolini et al., 1997). The stability of the GFP 

varies according to the variants and plasmid constructs in the range of hours or days 

(Jansson et al., 2000).  

 

Specific primers and oligonucleotidic probes 

 

Introduced bacteria can be monitored using primers or probes that allow amplification or 

hybridization of sequences which are strain-specific. Specific probes can be used to 

hybridize bacterial colonies after in vitro growth (Werner et al., 1996) or bacterial cells for 

in situ studies. Probes are usually covalently linked to a fluorochrome such as fluorescein, 

rhodamine, Texas red, Cy3 and Cy5 (Amann et al., 2001). Specific sequences may be 

introduced by a genetic construction. As an example, a specific primer amplifying across 
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nptII-lacZ junctions on the Tn5B20 construct was used to follow the survival kinetics in the 

soil and rhizosphere of the strain P. fluorescens R2f tagged by the lacZ-nptII marker gene 

(Van Overbeek et al., 1997). However, as stressed before, genetic constructs may affect the 

ecological behavior of bacterial strains. Another strategy consists of identifying sequences 

specific to the strains in order to design primers and probes. Different approaches have 

been proposed to develop this identification. One is to compare homologous nucleic acid 

sequences of ribosomal RNA (rRNA) to sequences available in databases. Since rRNA are 

present in all living microorganisms in high copy number and are quite stable, 

oligonucleotidic probes can be applied (Amann et al., 2001). They are either species-

specific or even strain specific in some cases (Assmus et al., 1995). Pseudomonas specific 

primer has been designed by Braun-Howland et al (1993). This PSMg primer was applied 

to describe the dynamic of indigenous populations of Pseudomonas in soil hot-spots 

(Johnsen et al., 1999) and to characterizing the succession of Pseudomonas on barley root 

in a perturbed environment (Thirup et al., 2001). Analysis of the 16S rDNA of the 

Paenibacillus azotofixans strain with that of 2000 bacteria also enabled (Rosado et al., 

1996) to identify the presence of three highly variable regions that were used to design 

primers for studying the kinetics of this bacterial strain in the soil and wheat rhizosphere. 

Monitoring introduced bacteria on the basis of its specific RAPD-PCR pattern has also 

been proposed but is very time consuming (Latour et al., 1999).  

 

Culture-dependent methods  

 

These methods are based on the suspension-dilution of soil and/or root samples and on 

inoculation of growing media (solid or liquid) with adequate dilutions. The culture-

dependent methods differ according to the type of marker used giving the specificity to the 

growing media. This type of method is quite simple to perform, not too expensive and quite 

sensitive (102–103 cfu per g), but labor-intensive and shows some limitations (Jansson et 

al., 2000). This type of method underestimates the number of bacteria present in soil or in 

the rhizosphere. Bacteria may remain physically attached to the soil particles, may be killed 

in the dilution medium or may fail to grow on growth media (Kloepper et al., 1992). Some 

of them may remain aggregated even during the dilution process in such a way that a cfu 

may be originated by more than one cell. Suspension dilution can either be plated on solid 
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media or introduced into liquid media with various dilutions in order to determine from 

which dilution there is no more bacterial growth. This last method, named Most Probable 

Numbers (MPN), requires the use of probability tables to process data that contribute to 

reducing the sensitivity of the analysis compared with plating (Mac Crady, 1915). The most 

basic method consists of plating mutants resistant to antibiotics on solid growth medium 

supplemented with the corresponding antibiotic and with an anti-eucaryotic compound 

such as cycloheximide. This method is widely used, especially for survival kinetics of 

introduced bacteria and for competition studies between wild-type strains and mutants 

impaired in specific phenotypes (Orvos et al., 1990; Mavingui  et al., 1992).  

 

 

The aim of the present study was:  

 

To study the root colonization properties of Raoultella terrigena G-584 on strawberry root, 

the GFP marker system was used in order to make the strain visible on the root system. 
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2.0 Materials and methods 

 

Bacterial strains and growth conditions 
  
Raoultella terrigena G-584 was routinely cultured in KB at 28 °C. Donor strain (E. coli  

DH5α)  and  Helper strain (E.coli HB 101) was routinely cultured in Luria-Bertani medium 

(LB) supplemented with kanamycin (final concentration of 30 µg/ml). 
 

2.1.1 GFP Transformation 
 

GFP-tagged strain 
 
Helper strain: E. coli HB 101 carrying kanamycin-resistance plasmid pRK2013 provided 

by Prof. M. Ullrich, International University Bremen. 

 

Donor strain: E.coli DH5α containing GFP plasmid pEGFP-c1/1 carrying kanamycin 

resistance was provided by Dr. Vladimir Benes, Embl, Heidelberg. 

 

Triparental matting method (Cohen et al., 1994) was used to transfer the GFP plasmid to 

Raoultella terrigena G-584 by using Donor and Helper strains. 

 

Triparental conjugation 

 

Triparental conjugations on solid media were carried out using overnight cultures grown in 

10 ml LB (with antibiotic selection) at 30 ºC and 100 rpm.  Aliquots of 400 µl of both 

donor (E.coli DH5α) and recipient (Raoultella terrigena G-584) strains were transferred to 

a sterile eppendorf and 300 µl of E. coli HB 101 (helper plasmid) was transferred.  The 

eppendorf was centrifuged for 5 min at 14,000 rpm.  The supernatant was removed and the 

pellet was re-suspended in 200 µl of LB.  The 200 µl was vortexed and plated onto LB and 

incubated at 30 ºC.  The plate was washed with 5 ml of NaCl solution (0.85 %) into a 

sterile universal bottle. A 100 µl aliquot of the conjugation wash suspension was used to 

prepare spread plates on selective media and incubated for 24-48 h at 30 °C. Selection of 
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transconjugants was done on minimal media supplemented with kanamycin (30 µg/ml) and 

Kings B media. 

 

2.1.2 Greenhouse experiments  

Tests were performed with strawberry (Fragaria x ananassa Duchesne) plants of cv.  

Elsanta (Frigo). Roots of young strawberry plants were individually dipped for 15 min into 

the bacterial suspensions in order to have direct exposure of the roots to the antagonistic 

bacteria. Roots of control plants were dipped in tap water. Plants were then transferred to 

14 cm plastic pots with soil.  

 
 
Bacteria harboring plasmids with GFP genes were examined using fluorescence 

microscopy. Filter block L3 were used (Excitation: Band pass filter 450-490 nm & 

Emission: Band pass filter 525/20 nm) 

 

Strawberry roots colonized by Raoultella terrigena G-584 were observed from 3 to 35 days 

after inoculation with intervals. Triplicate samples of plant roots were removed and fixed 

for 30 min in 4 % para formaldehyde in phosphate-buffered saline (PBS).  

3.0 Results 

Visualization of GFP-tagged strain in strawberry root system 

Bacterial colonies on the roots were typically seen in the primary root system and 

frequently in the root tip (Fig. 11a, b, c d & e).  They were also often detected at sites of 

emergence of lateral roots. Bacterial colonies were found in the root system up to two 

weeks, although visualization of bacteria in the root after approximately 4 weeks of growth 

was problematic, probably due to plasmid loss during the course of experimentation. No 

fluorescent bacterial colonies were detected on roots of untreated plants (Fig. 11f). 

Occasionally, roots of strawberry plants in the untreated control were covered with auto 

fluorescing dust particles.    
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a      b 
 
 

     
c      d 
 
 

      
e      f 
                                 

Fig. 11: Surface of strawberry plant roots treated with GFP-labelled Raoultella terrigena 
G-584, a: root tip & b, c, d, e: primary root with fluorescent bacterial colonies, f: control, 
Bar= 100µm 

 



_________________________________________________________________________ 

 44

4. 0 Discussion 

The use of GFP as a marker is a useful tool for studying plant-microbe interactions 

(Andersen et al., 1998, Chapon et al., 2002; Chitarra et al., 2002). This marker is well 

suited to study the colonization patterns of bacteria within plants because there is no 

requirement for exogenous substrate or co-factors. In addition, GFP can be detected in 

single cells with no concern for its presence in the background. A potential disadvantage of 

using fluorophore markers is the deterioration in contrast generated by autofluorescing 

plant tissue.  The stability of the marker plasmid is also a cause for concern. However, here 

the abundance of GFP-tagged bacteria colonizing the plant root did not suggest significant 

marker loss. In this study, colonization of strawberry root by Raoultella terrigena G-584 

was distinct in that it was typically found in the primary root and root tip. Colonization 

events by diazotrophs have been studied in several grass species. Cells of K. pnuemoniae 

colonization was studied on stem and root system of maize (Zea mays), bacteria were 

detected in both the plant roots and stems. Bacterial colonies on the roots were typically 

seen in the regions of elongation and more frequently in the root hair region of maturation 

(Chelius and Triplett, 2000). Bacteria were also detected at the point of lateral root 

emergence. Herbaspirillum seropedicae colonizes the sugarcane root cortex intra- and 

intercellularly, as well as the xylem vessels (Björklöf and Jørgensen 2001). Azoarcus sp. 

colonizes rice and kallar grass in the root cortex, root cap, epidermis, exodermis, and xylem 

(Burlage and Kuo, 1994; Benizri et al., 1997). Pantoea agglomerans has been found in the 

intercellular spaces of wheat roots (Burr et al., 1978).  

 

Dijkstra et al., 1987 showed that when bacteria were applied on the root tips, they were re-

isolated from all the root parts. Kluepfel (1993) in microscopic studies reported that 

bacteria dominate in colonization of rhizosphere. The passive spreading of bacteria on roots 

may be due to the precolating water (Parke et al., 1986). The presence of bacterial colonies 

towards the root tips in this study may also be due to the precolating water, which may 

have helped the bacteria to move. The capability of gram-negative Pseudomonas to 

colonize plant roots make them potential candidates in biological control (Howell and 

Stipanovic, 1980; Weller and Cook, 1983). From the present study it is found that R. 

terrigena G-584 has the potential to colonize the strawberry plant root system. However, 



_________________________________________________________________________ 

 45

further studies are needed to determine the colonization patterns of applied rhizobacteria 

quantitatively, this could be done with some of the methods mentioned before. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



_________________________________________________________________________ 

 46

IV. Mode of action of the antagonistic bacteria 
 

1.0 Introduction 

In general mode of action include: Inhibition of the pathogen by antimicrobial compounds 

(antibiosis); competition for iron through production of siderophores; competition for 

colonization sites and nutrients supplied by seeds and roots; induction of plant resistance 

mechanisms; inactivation of pathogen germination factors present in seed or root exudates; 

degradation of pathogenicity factors of the pathogen such as toxins; parasitism that may 

involve production of extracellular cell wall-degrading enzymes, for example, chitinase and 

ß-1,3 glucanase that can lyse pathogen cell walls (Kloepper et al., 1980;  Keel and Défago, 

1997). None of the mechanisms are necessarily mutually exclusive and frequently several 

modes of action are exhibited by a single biocontrol agent. Indeed, for some biocontrol 

agents, different mechanisms or combinations of mechanisms may be involved in the 

suppression of different plant diseases.  A few specific examples of the modes of action 

involved with bacterial biocontrol of fungal pathogens in the rhizosphere are given below.  

 
Antibiosis 

 
There are numerous reports of the production of antifungal metabolites (excluding metal 

chelators and enzymes) produced by bacteria in vitro that may also have activity in vivo. 

These include 2,4-diacetylphloroglucinol (Ph1), pyoluterin (Plt), pyrrolnitrin (Pln), 

viscosinamide, HCN, kanosamine, Oligomycin A, Oomycin A, phenazine-1-carboxylic acid 

(PCA),  xanthobaccin, zwittermycin A, ammonia, butyrolactones, as well as several other 

uncharacterized moieties (Milner et al., 1996; Nielsen et al., 1998; Kim et al., 1999; Thrane 

et al., 1999; Nakayama et al., 1999, Mansour and Farag, 1999, Haas and Défago, 2005). To 

demonstrate a role for antibiotics in biocontrol, mutants lacking production of antibiotics or 

over-producing mutants have been used (Bonsall et al., 1997; Chin-A-Woeng et al., 1998). 

Alternatively, the use of reporter genes or probes to demonstrate production of antibiotics 

in the rhizosphere is becoming more common place (Kraus and Loper, 1995; Raaijmakers 

et al., 1997). Indeed, isolation and characterization of genes or gene clusters responsible for 

antibiotic production has now been achieved (Kraus and Loper, 1995; Bangera and 

Thomashow, 1996; Hammer et al., 1997). Significantly, both Phl and PCA have been 
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isolated from the rhizosphere of wheat following introduction of biocontrol strains of 

Pseudomonas (Thomashow et al., 1990; Bonsall et al., 1997; Raaijmakers et al., 1999), 

finally confirming that such antibiotics are produced in vivo. Further, Ph1 production in the 

rhizosphere of wheat was strongly related to the density of the bacterial population present 

and the ability to colonize roots (Raaijmakers et al., 1999). PCA from Pseudomonas 

aureofaciens Kluyver Tx-1 has even been used as a direct field treatment for the control of 

dollar spot (Sclerotinia homeocarpa F. T. Bennett) on creeping bentgrass (Agrostis 

palustris Hudson) (Powell et al., 2000).  

 

 
 
 

 

 

 

 

 

 

 

 

 

 

                                      
                           Hass & Défago., 2005 

                                                                                                                                   
Fig. 12: Interactions between biocontrol plant growth-promoting rhizobacteria (PGPR), 
plants, pathogens and soil. These elements interact with one another through biotic and 
abiotic signals, many of which are still unknown. ISR, induced systemic resistance 
 
 

Biocontrol PGPR 
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Interestingly, signalling between pathogenic fungi and potential biocontrol bacteria has also 

been detected. In one case, trehalose derived from Pythium debaryanum Hesse up-regulated 

genes in its biocontrol strain Pseudomonas fluorescens ATCC 17400 (Gaballa et al., 1997) 

and yet in another example Pythium ultimum Trow caused a down-regulation of five gene 

clusters of P. fluorescens F113 which provides biocontrol of this pathogen in the 

rhizosphere of sugar beet (Beta vulgaris L.) (Fedi et al., 1997). These findings may be of 

considerable significance for bacterial–fungal interactions in general and has major 

implications for the control of gene expression in complex microbial communities.  

 
 

Parasitism and production of extracellular enzymes 
 

The ability of bacteria, especially actinomycetes, to parasitize and degrade spores of fungal 

plant pathogens is well established (El-Tarabily et al., 1997). Assuming that nutrients pass 

from the plant pathogen to bacteria, and that fungal growth is inhibited, the spectrum of 

parasitism could range from simple attachment of cells to hyphae, as with the Enterobacter 

cloacae (Jordan) Hormaeche & Edwards–Pythium ultimum interaction (Nelson et al., 

1986), to complete lysis and degradation of hyphae as found with the Arthrobacter–

Pythium debaryanum interaction (Mitchell and Hurwitz, 1965). If fungal cells are lysed and 

cell walls are degraded then it is generally assumed that cell wall-degrading enzymes 

produced by the bacteria are responsible, even though antibiotics may be produced at the 

same time. Considerable effort has gone into identifying cell wall-degrading enzymes 

produced by biocontrol strains of bacteria even though relatively little direct evidence for 

their presence and activity in the rhizosphere has been obtained. For example, biocontrol of 

Phytophthora cinnamomi Rands root rot of Banksia grandis was obtained using a cellulase-

producing isolate of Micromonospora carbonacea Luedemann & Brodsky (El-Tarabily et 

al., 1996) and control of Phytophthora fragariae var. rubi Hickm causing raspberry root rot 

was suppressed by the application of actinomycete isolates that were selected for the 

production of ß-1,3-, ß-1,4- and ß-1,6-glucanases (Valois et al., 1996).  
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Induced resistance 
 

Perhaps the greatest growth area in biocontrol in the last few years has been concerned with 

induced resistance defined as ‘the process of active resistance dependent on the host plant's 

physical or chemical barriers, activated by biotic or abiotic agents (inducing agents)’ 

(Kloepper et al., 1992; 2004). Most work has focused on the systemic resistance induced by 

non-pathogenic rhizosphere-colonizing Bacillus and Pseudomonas species in systems 

where the inducing bacteria and the challenging pathogen remained spatially separate for 

the duration of the experiment, and no direct interaction between the bacteria and pathogen 

was possible (Sticher et al., 1997; van Loon, 1997). Such split root or spatial root 

inoculation experiments were used to demonstrate the phenomenon in radish (Raphanus 

sativus L.) and Arabidopsis against Fusarium oxysporum (Leeman et al., 1996a; van Wees 

et al., 1997) and in cucumber (Cucumis sativus L.) against Pythium aphanidermatum 

(Edson) Fitzp. (Chen et al., 1998). Various combinations of timing and position have 

indicated that induced resistance also occurs in carnation (Dianthus caryophyllus L.) (van 

Peer et al., 1991), tobacco (Nicotiana tabacum L.) (Maurhaufer et al., 1994) and tomato 

(Lycopersicon esculentum Mill.) (Duijff et al., 1997). Bacteria differ in ability to induce 

resistance, with some being active on some plant species and not others; variation in 

inducibility also exists within plant species (van Loon, 1997). The full range of inducing 

moieties produced by bacteria is probably not yet known, but lipopolysaccharides (Leeman 

et al., 1995) and siderophores (Métraux et al., 1990; Leeman et al., 1996b) are clearly 

indicated.  

 

Changes that have been observed in plant roots exhibiting ISR include: (1) strengthening of 

epidermal and cortical cell walls and deposition of newly formed barriers beyond infection 

sites including callose, lignin and phenolics (Benhamou et al., 1996, 2000; Duijff et al., 

1997; M'Piga et al., 1997); (2) increased levels of enzymes such as chitinase, peroxidase, 

polyphenol oxidase, and phenylalanine ammonia lyase (M'Piga et al., 1997; Chen et al., 

2000); (3) enhanced phytoalexin production (van Peer et al., 1991; Ongena et al., 1999); (4) 

enhanced expression of stress-related genes (Timmusk and Wagner, 1999). However, not 

all of these biochemical changes are found in all bacterial–plant combinations (Steijl et al., 

1999). Similarly, the ability of bacteria to colonize the internal tissue of the roots has been 
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considered to be an important feature in many of the bacterial–root interactions involving 

ISR, but is not a constant feature of them all (Steijl et al., 1999).  

 

 
The aim of this present study was to find out some further indication to the antagonism of 

the 3 rhizobacteria.  As mentioned before the antagonistic activity can be caused by volatile 

compounds, in the following aerated plate method was used, to find out, if these 

compound(s) could play a specific role. Moreover the influence of extracellualr enzyme 

was analysed with Microplate and API ZYM kit methods. 
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2.0 Materials and methods 
    
2.1 Aerated plate method 
 
Five mm wide central strip of agar was removed aseptically from V-8 agar medium plates 

to provide physical separation between the fungus and the bacterium cultured on either 

half. Each of Bacillus amyloliquefaciens G-V1, Pseudomonas fluorescens 2R1-7, and 

Raoultella terrigena G-584 were individually spread over one side of the V-8 agar 

medium, other side was individually inoculated with 5 mm disk of P.cactroum and 

P.fragariae. Similar plates were prepared without bacteria served as a control. Incubation 

was made at 25 °C up to two weeks. Fungal growth was recorded on 12 plates for each 

treatment and microscopically examined.    

 
2.2 Enzyme assays 
 
Preparation of bacterial culture filtrates 

Two loops of bacteria from 2 days old culture on KB medium culture were transferred into 

a 200 ml glass flask with 50 ml of sterile KB medium. The medium with bacteria was 

shaken (96 rpm.) on a rotary shaker for 24 h in an incubator at 24 ± 2 °C. One ml of culture 

was added to a 200 ml Erlenmeyer flask with 50 ml of sterile medium and was shaken at 96 

rpm on a rotary shaker for 24 h in an incubator at 24 ± 2 °C in darkness. In order to 

separate the cells and culture filtrate, the culture was centrifuged at a speed of 6000 rpm at 

4 °C for 20 – 25 min. 

Two different methods were used.  Firstly, Microplate assay was carried out according to 

the method of Wirth and Wolf (1992), bacterial culture filtrate (100 µl), substrate (100 µl) 

(CM-Cellulose-RBB for Cellulase, CM-Curdlan-RBB for Glucanase, CM-Chitin-RBV for 

Chitinase and Casein-RBB for Protease) and sodium acetate (0.5 M; pH 5) buffer (100 µl) 

were added in an eppendorf tube and kept in a water bath at 37 °C for 1 h. The enzyme 

reaction was terminated by adding 1 N HCL (100 µl) then the sample was centrifuged 

(5000 rpm at 4 °C for 5 min) and the supernatant (100 µl) was measured at 595 nm. 

Secondly, API ZYM kit (Head and Ratnam, 1988) was employed, a semi quantitative 

micromethod consisting of 20 micro cupules, 19 of which contain dehydrated chromogenic 

substrate for detecting 19 performed enzyme activities. The test strips are inoculated with 

bacterial culture filtrates (50 µl) and incubated aerobically at 37 °C for 1 h, and the two 
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reagents (supplied with kit) are added to develop the chromogenic substrates. The resultant 

colorimetric reactions are indicative of the degree of enzyme activity and they are 

compared with the control well and a colour chat. 
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3.0 Results  
      
      3.1 Aerated plate method 

 
Aerated plate method showed that the tested rhizobacteria have reduction effect (Fig. 13) 

on the mycelial growth of P. fragariae var. fragariae and P. cactorum. This strongly 

indicates that the antagonistic bacteria are producing some diffusible or volatile secondary 

metabolites. B. amyloliquefaciens G-V1 showed higher inhibiton activity compared to 

other two antagonistic strains, 43.5 % against P. fragariae and 48.3 % on P. cactorum.   R. 

terrginea G-584 produced 25 % of mycelial growth inhibiton on P. fragariae and 10 % on 

P. cactorum.  P. fluorescens 2R1-7 showed 18.5 % against P. fragariae and 21.6 % on P. 

cactroum. The microscopic examination of the plates showed physiological abnormalities 

of the hyphae, including hyphal distortion and vacuolation (Tab. 7, Fig. 15 and 16). 

 

0

10

20

30

40

50

60

B.
am

yl
ol

iq
ue

fa
ci

en
s

G
-V

1

R.
 te

rr
ig

en
a 

G
-

58
4

P.
 fl

uo
re

sc
en

s
2R

1-
7

Re
du

ct
io

n 
in

 m
yc

el
iu

m
 g

ro
w

th
 %

 

P. fragariae
P. cactroum

 
Fig. 13: Effect of B. amyloliquefacines G-V1, R. terrigena G-584 and P. fluorescens 2R1-7 
on mycelial growth of Phytophthora spp. in aerated plate. Results are presented as 
reduction in mycelial growth compared to control, n=12, (± standard deviations) 
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             a) P. fluorescens 2R1-7 treated                b) Control 
                
Fig.14: Aerated plate method (a), shows the reduction effect of P. fluorescens 2R1-7 on the 
growth of Phytophthora cactorum 
 
 
 
 
 
 

 
Bacteria 

 
P. fragariae var. fragariae 

 
P. cactorum 

 
B. amyloliquefaciens G-V1 

 

 
15.8 a 

 
15.9 a 

 
P. fluorescens 2R1-7 

 
16.1 a  

 
10.4 b 

 
R. terrigena G-584 

 

 
16.9 a 

 
12.4 b 

 
Control  

 

 
 5.8 b 

 
6.1 c 

 
 
Tab. 7: Width of hyphae (µm) of Phytophthora fragariae var. fragariae and P. cactorum 
exposed to three genera of bacteria, n=10, Different letters show statistically significant 
differences among treatments according to Tukey Test, P<0.05 
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 a 
 

                                      
                                                                 b 
 

                                     
 c 
 
  
 
 
 
 
 
 
 
 d   
 
Fig. 15: Hyphal abnormalities of  Phytophthora fragariae var. fragariae treated with B. 
amyloliquefaciens G-V1 (a), R.  terrigena G-584 (b), P. fluorescens 2R1-7 (c) and normal 
hyphae: untreated control (d), Bar=50µm  
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 a 
 
 
 
 
 
 
 
 
 b 
 

                                     
 c 
 

                                    
 d 
 
 
Fig. 16: Hyphal abnormalities of  Phytophthora cactroum  treated with B. 
amyloliquefaciens G-V1 (a), R. terrigena G-584 (b), P. fluorescens 2R1-7 (c) and normal 
hyphae: untreated control (d), Bar=50µm 
 
 
 
 



_________________________________________________________________________ 

 57

3.2 Enzyme assays 
 

Table 8 shows, the enzyme profile of the R. terrigena G-584, B. amyloliquefaciens G-

V1 and P. fluorescens 2R1-7 were recorded according to two different methods of enzyme 

assay. Presence of cellulase, glucanase, alkaline phosphatase, esterase (C4) and esterase 

lipase (C8) were found from B. amyloliquefaciens. R. terrigena culture filtrate showed 

glucanase, alkaline phosphatase, leucine arylamidase and acid phosphatase activity. The 

chitinase enzyme activity only was found from culture filtrate of P. fluorescences. In 

general, cellulase, glucanase and chitinase have been reported as part of biocontrol activity 

of bacterial antagonists.  

  
Enzymes Bacterial antagonists 
 R.  terrigena G-584 B. amyloliquefaciens 

 G-V1 
P. fluorescens  2R1-7 

Micro plate assay 
Cellulase - + - 
Glucanase + + - 
Chitinase - - + 
Protease - - - 

Test kit API ZYM 
Alkaline phosphatase + + - 
Esterase (C 4) - + - 
Esterase Lipase (C 8) - + - 
Lipase (C 14) - - - 
Leucine arylamidase + - - 
Valine arylamidase - - - 
Cystine arylamidase - - - 
Trypsin - - - 
α-chymotrypsin - - - 
Acid phosphatase + - - 
Naphthol-AS-Bl-
phosphohydrolase 

- - - 

α-galactosidase - - - 
ß-galactosidase - - - 
ß-glucuronidase - - - 
α-glucosidase - - - 
ß-glucosidase - - - 
N-acetyl-ß-
glucosaminidase 

- - - 

α-mannosidase - - - 
α-fucosidase - - - 

 

 + = Positive reaction, - = Negative reaction 

Tab. 8: Determination of enzymes by Micro-plate assay (4) & Test kit API ZYM (19) from 
bacterial antagonists 
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4.0 Discussion 

Aerated plate method 

The described aerated plate method in this part of study has been used by other authors for 

testing Bacillus subtilis volatile compound(s) against fungal pathogens (Fiddaman and 

Rossall, 1993; Mansour and Farag, 1999). The results found in this study are similar to 

Fiddaman and Rossall (1993), who found that a strain of Bacillus subtilis which produce a 

volatile compound(s) was antifungal to Rhizoctonia solani and Pythium ultimum. Growth 

of the fungi was severely impaired in the presence of the volatiles and physiological 

abnormalities of the hyphae were observed, including hyphal distortion and vacuolation. So 

it can be concluded also from this study that volatiles of B. amyloliquefaciens G-V1 has a 

similar effect. 

The morphological changes, which were observed by using P. fluorescens 2R1-7 in the 

study, can be an indication for a possible production of  Hydrogen cyanide (HCN), which is  

a broad-spectrum antimicrobial compound involved in biological control of root diseases 

by many plant-associated fluorescent pseudomonads. Production of HCN by biocontrol 

fluorescent pseudomonads is implicated in suppression of diseases caused by 

phytopathogenic fungi, such as Thielaviopsis basicola on tobacco (Voisard et al., 1989; 

Laville et al., 1998), Septoria tritici, and Puccinia recondita f. sp. tritici on wheat (by 

recombinant HCN-producing P. putida strains) (Flaishman et al., 1996). Direct inhibition 

of the fungi by HCN is thought to be the main mechanism of action (Blumer and Haas 

2000), in which case, the effect of the bacterium would be comparable to the HCN-

mediated plant defense mechanism (Luckner 1990).  

First report of R. terrigena G-584 volatiles on mycelial reduction of Phytophthora spp. was 

observed here, but compared with B. amyloliquefaciens G-V1 on a lower level. 

Cyanide of microbial origin has not been measured in the rhizosphere (Hass and Défago, 

2005).  However, in one historical experiment (Timonin, 1947), the effect of added cyanide 

was tested directly in the field. This treatment killed fungi en masse, significantly reduced 

‘grey speck’ disease of oats, and tripled oat grain yields. No side effects on the fauna were 

recorded.  
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In general, from the present study there is an indication that volatiles of the three 

antagonistic bacteria have an influence on the morphological structure of the two tested 

Phytophhtora spp. Identification of the volatile compound(s) can elucidate more their 

importance. 

Enzyme assay 

Certain enzymes excreted by bacteria are suspected to play an important role in suppression 

of pathogens (Buchenauer, 1998). If fungal cells are lysed and cell walls are degraded then 

it is generally assumed that cell wall-degrading enzymes produced by the bacteria are 

responsible, even though antibiotics may be produced at the same time. In the present study 

(Tab. 8), the production of cellulase from B. amyloliquefaciens G-V1, glucanase from B. 

amyloliquefaciens G-V1 and R. terrigena G-584, and chitinase from P. fluorescens 2R1-7 

were found, which are known as cell wall degrading enzymes. 

Considerable effort has gone into identifying cell wall-degrading enzymes produced by 

biocontrol strains of bacteria. For example, biocontrol of Phytophthora cinnamomi Rands 

root rot of Banksia grandis was obtained using a cellulase-producing isolate of 

Micromonospora carbonacea (El-Tarabily et al., 1996) and control of Phytophthora 

fragariae var. rubi causing raspberry root rot was suppressed by the application of 

actinomycete isolates that were selected for the production of ß-1,3-, ß-1,4- and ß-1,6-

glucanases (Valois et al., 1996). Fridlender et al. (1993) demonstrated biocontrol of 

Rhizoctonia solani by an isolate of Burkholderia cepacia and showed hyphal damage 

presumed to be due solely to the production of ß-1,3-glucanase activity. Lim et al. (1991) 

showed that growth inhibition and cell wall lysis of Fusarium solani by Pseudomonas 

stutzeri was caused by a combination of extracellular ß-1,3-glucanase and chitinase 

activities.  

 The other enzymes found in this study like alkaline and acid phosphatases which were 

found from R. terrigena G-584 and B. amyloliquefaciens G-V1, could involve in phosphate 

solubilization in the soil. Plant meets their phosphorus requirement through the uptake of 

phosphate anions from the soil. To be available to plants, organic form of soil phosphorus 
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must be mineralized by those processes which are mediated by phosphatase enzymes 

(Bieleski and Ferguson, 1983). Plant-stimulatory effects exerted by PGPR might also be 

due to an enhanced availability of limited plant nutrients such as nitrogen, phosphorus, B-

vitamins and amino acids in the rhizosphere caused by phosphate-solubilizing and 

diazotrophic bacteria (Rozycki et al., 1999; Nautiyal et al., 2000).  

Generally, the enzyme amino acid arylamidase catalyzes the hydrolysis of an N-terminal 

amino acid from peptides, amides, or arylamides. Arylamidase may play an important role 

in nitrogen mineralization in soil (Acosta-Martínez and Tabatabai, 2000). Direct role of 

esterase and esterase lipase (C8) could not be correlated in some antagonistic activity. 

Summarizing the relationship of extracellular enzyme production of the three studied 

antagonistic bacteria, results presented are first indication of the cell wall degrading 

enzymes and other enzymes in the antagonistic activity of the tested rhizobacteria. 
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V. Polymerase Chain Reaction (PCR) analysis for detecting 
2,4-diacetylphloroglucinol, cellulase and phytase gene from the bacterial 

antagonists 
 

1.0 Introduction 

 

Biological sources for plant disease control remain an important potential alternative to the 

use of chemical pesticides. Biological controls that are based on introduced microbes could 

be an alternative, but however, have been slow to develop due to inconsistencies in their 

performance (Weller, 1988).  Such inconsistencies often result from a lack of understanding 

the mechanisms by which individual microorganisms function to control disease. It is often 

difficult to gain a complete understanding of how biocontrol agents control diseases, since 

many functions through a variety of mechanisms. In such cases, identifying contributing 

mechanisms often requires a systematic approach that directly evaluates individual traits 

and their contributing roles to the overall operating mechanisms. 

 

DNA technology and biochemical research techniques have led to an improved 

understanding of the mechanism of antibiosis (Fravel, 1988; Défago and Hass, 1990). The 

hypothesis that secondary metabolites produced by rhizobacteria play a vital role in the 

biocontrol activity has been confirmed by constructing and testing mutants deficient in 

production of these metabolites (Thomashow and Weller, 1988; Voisard et al., 1989; Keel 

et al., 1992; Maurhofer et al., 1994; Chin-A-Woeng et al., 2001; Huang et al., 2004). By 

using PCR-based techniques Raaijmakers et al. (1997) concluded that a population of 

Pseudomonas spp. that produced phloroglucinol was responsible for decline of take-all 

disease. Different known metabolites produced by Pseudomonas species include: 

 

i) Biosurfactants: e.g. rhamnolipids (Stanghellini and Miller, 1997) and hydrogen 

cyanide (Voisard et al., 1989; Schippers et al., 1991) 

ii)  Lytic enzyme: e.g. β-1,3 glucanase (Friedlender et al., 1993)  

iii)  Plant hormones and other plant growth promoting substances e.g. auxins, indole-3-

acetic acid (Loper and Schroth, 1986), gibberellins (Lubczynka et al., 1997) and 1-

aminocyclopropane-1-carboxylate deaminase (Jacobson et al., 1994) 
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iv) Siderophores e.g. pyoverdin, pseudobactin and pyochelin (Teintze et al., 1981; Van 

der Hofstad et al., 1986; Duijff et al., 1994) 

v) Antibiotics e.g. phenazine (Brisbane et al., 1987; Thomashow and Weller, 1988; 

Whistler and Pierson III, 2003) pyoluteorin (Howell and Stipanovic, 1980; Kraus 

and Loper, 1995), pyrrolnitrin (Elander et al., 1968; Lambert et al., 1987) and 

phloroglucinols (Keel et al., 1992: Landa et al., 2003) 

 

Bacillus species have been shown to control phytopathogenic fungi (Bochow, 1990; 

Mansour and Farag, 1999; Alippi et al., 2000) and bacterial diseases (Schmiedeknecht et 

al., 1998) in greenhouse and under field conditions (Douville and Boland, 1992). There are 

a number of antifungal compounds produced by Bacillus species e.g. Bacylysin, 

Bacillomycin, Fungistatin, Mycosybtilin and Iturin (Katz and Demain, 1977, Ohno et al., 

1992), Rhizoctin (Kugler et al., 1990). In later studies production of antibiotic Kanosamine 

was identified from Bacillus cereus UW85 (Milner et al., 1996). Sadlers, (1996) also 

reported that Bacillus spp. isolate S-18 reduced the growth of various phytopathogenic 

fungi. Other antifungal substances identified from Bacillus species include Fengomycin 

(Vanaittanakom et al., 1986) and Rhizoctin A (Kugler et al., 1990). 

Determining the exogenous environmental signals that modulate the biosynthetic regulation 

of antifungal compounds has been comparatively slow, largely because isolating and 

quantifying metabolites produced in the soil and rhizosphere is tedious (Thomashow and 

Weller, 1996). Numerous reporter systems for gene expression have been described which 

ultimately may help identify conditions triggering antibiotic biosynthetic genes. Reporter 

systems in biocontrol pseudomonads have also been used as a preliminary investigative tool 

to examine the influence of iron availability on the expression of pyoverdine genes (Loper  

and Henkels, 1997) and the influence of Pythium culture filtrates on the expression of 

trehalase genes (Gaballa et al., 1997) and genes thought to be involved in rhizosphere 

competence (Fedi et al., 1997).  

Understanding the environmental factors that regulate the biosynthesis of antimicrobial 

compounds by disease-suppressive strains, is an essential step towards improving the level 

and reliability of their biocontrol activity.  
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 The goal of the following set of experiments was:  

 

-    Identification of 2,4-diacetylphloroglucinol gene from Pseudomonas fluorescens 

2R1-7 and studying the influence of pH on 2,4-diacetylphloroglucinol gene 

expression. The polyketide antimicrobial metabolite, 2,4-diacetylphloroglucinol 

(DAPG), has emerged as one of the most important antimicrobial compounds 

produced by biocontrol strains of Pseudomonas fluorescens (Keel et al., 1992,  

Thomashow and Weller, 1996) 

 

- Identification of cellulase gene from Bacillus amyloliquefaciens G-V1.  Certain 

enzymes excreted by bacteria are suspected to play an important role in 

suppression of pathogens (Buchenauer, 1998), moreover cellulase enzyme 

production was found from this strain (in chapter IV, see table. 8) 

 
- Identification of phytase gene from Raoultella terrigena G-584. In R. terrigena 

comb.nov., as phytase activity is known to increase after cells reach the stationary 

phase  (Greiner et al., 1997) and the role of extracellular phytase activity on plant 

growth promotion has been reported (Elsorra et al., 2002)   
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2.0 Materials and methods 
 
2.1 Polymerase Chain Reaction (PCR) for gene amplification 
 
 Sequence alignment & Primer designing 
 
Database Searching for 2,4-diacetylphloroglucinol gene from Pseudomonas spp., cellulase 

gene from Bacillus spp. and phytase gene from Raoultella spp. and other bacterial spp. All 

database searching was done through the website of the National Center for Biotechnology 

Institute (NCBI) at http://www.ncbi.nlm.nih.gov/. Sequences collected were catalogued by 

accession number, length, DNA or protein, bacterial species, and the type of enzyme within 

the family.  Nucleotide sequences from NCBI were saved as GenBank and FASTA files. 

Multiple Sequence alignments (MSA) were performed using the ClustalX algorithm 

(Chenna et al., 2003) (Fig. 17). Stringency was varied to achieve an alignment with the 

smallest number of gaps and mismatches. Altering the stringency was also done to yield as 

many regions with a high degree of sequence similarity as possible.  Primers were designed 

manually.  

 
 

 
 
Fig.17: ClustalX algorithm- Multiple Sequence Alignments 
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Isolation of genomic DNA  
 
Overnight grown culture of Bacillus amyloliquefaciens G-V1, Pseudomonas fluorescens 

2R1-7 and Raoultella terrigena G-584 in LB medium was centrifuged  at 10,000 rpm at 4 

ºC for 5 minutes. The pellet was re-suspended in 200 µl TE Buffer. The following 

purification protocol was used (using Fermentas Genomic DNA purification kit). 

 
Purification Protocol  
 
The 200 µl sample was mixed with 400 µl lysis solutions and incubated at 65 °C for 5 min. 

After incubation, 600 µl chloroform were added, gently emulsified by inversion and 

centrifuged at 10,000 rpm for 2 min. Precipitation solution were prepared freshly (mix 720 

µl water nuclease-free, with 80 µl of the supplied 10X concentrated solution). The upper 

aqueous phase containing DNA were transferred to a fresh tube, 800 µl precipitation 

solution added, mixed at room temperature for 1-2 min and centrifuged at 10,000 rpm for 2 

min. Supernatant were completely removed, DNA pellet were dissolved completely in 100 

µl 1.2 M NaCl solution. Finally, 300 µl cold ethanol added to the sample, incubated at -20 

°C for precipitation and centrifuged for 3-4 min at 10,000 rpm, the ethanol were poured off. 

Lastly, the pellet was washed with 70 % cold ethanol, dissolved in 100 µl nuclease free 

water. 

 
 
 
Reagents and Primers 
 

a) Detection of   2,4-diacetylphloroglucinol gene from Pseudomonas fluorescens  
2R1-7 

 
Reagents for one reaction volume of 25 µl 
 
2.5 µl Taq buffer (1X) 
1.5 µl MgCl2 (1.5 µM) 
0.5 µl dNTPS (200 µM of each dATP, dCTP, dGTP, dTTP) 
0.625 µl forward primer (0.25 µM) 
0.625 µl reverse primer (0.25 µM) 
0.125 µl Taq polymerase (Hot Start) 
1 µl DNA (100 ng/µl) 
18.2 µl Sterile distilled water 
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PCR condition: 
Step 1: 94 ºC for 15 minutes 
Step 2: 94 ºC for 30 seconds 
Step 3: 63.2 ºC for 30 seconds 
Step 4: 72 ºC for 1 minute 
Step 5: repeat from step 2 for 35 times 
Step 6: 72 ºC for 3 minutes 
 
Forward Primer: 5’ CTCAARCTGTCGCGAGA٭ 
Reverse Primer: 5’ CACSGGKTTCATGATGCC٭ 
 

b) Detection of  cellulase  gene  from Bacillus amyloliquefaciens G-V1 
 
Reagents for one reaction volume of 25 µl 
 
2.5 µl Taq buffer (1X) 
1.5 µl MgCl2 (1.5µM) 
0.5 µl dNTPS (200 µM) 
0.625 µl Forward primer (0.25 µM) 
0.625 µl Reverse primer (0.25 µM) 
0.125 µl Taq Polymerase (Hot Start) 
1 µl DNA (100 ng/µl) 
18.2 µl Sterile distilled water 
 
PCR condition: 
Step 1: 94 ºC for 15 min 
Step 2: 94 ºC for 30 sec 
Step 3: 45 ºC for 30 sec 
Step 4: 72 ºC for 1 min 
Step 5: repeat from step 2 for 35 times 
Step 6: 72 ºC for 3 min 
  
F Primer: 5’ GAYGAARTYGGY TTYATGGT٭ 
R Primer: 5’ CCDACY TCYTCYTGMACVGTTSC٭ 
 

c) Detection of  phytase gene from Raoultella terrigena G-584 
Reagents for one reaction volume of 25 µl 
 
2.5 µl Taq buffer (1X) 
1.5 µl MgCl2 (1.5 µM) 
0.5 µl dNTPS (200 µM) 
0.625 µl forward primer (0.25 µM) 
0.625 µl reverse primer (0.25 µM) 
0.125 µl Taq Polymerase (Hot Start) 
1 µl DNA (100 ng/µl) 
18.2 µl Sterile distilled water 
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PCR condition: 
Step 1: 94 ºC for 15 min 
Step 2: 94 ºC for 30 sec 
Step 3: 45 ºC for 30 sec 
Step 4: 72 ºC for 1 min 
Step 5: repeat from step 2 for 35 times 
Step 6: 72 ºC for 3 min 
 
F Primer: 5’ GACTGGCAGCTGGAGAAAG٭ 
R Primer: 5’ CGCCTGTTTCAATAGCTGG٭ 
 
 
  IUPAC-IUB SYMBOLS FOR NUCLEOTIDE NOMENCLATURE  ٭
        Extended DNA / RNA alphabet: (includes symbols for nucleotide ambiguity) 
        ------------------------------------------ 
        Symbol       Meaning      Nucleic Acid 
        ------------------------------------------ 
         A            A                     Adenine 
         C            C                     Cytosine 
         G            G                     Guanine 
         T            T                      Thymine 
         U            U                     Uracil 
         M          A or C 
         R          A or G 
         W          A or T 
         S          C or G 
         Y          C or T 
         K          G or T 
         V        A or C or G 
         H        A or C or T 
         D        A or G or T 
         B        C or G or T 
         X      G or A or T or C 
         N      G or A or T or C 
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Assay of amplification 

 

Primers were tested for efficacy by doing PCR with B. amyloliquefaciens genomic DNA, 

P. fluorescens genomic DNA, R. terrigena genomic DNA and a negative control. The PCR 

reaction was carried using PTC-thermo cycler with the above  mentioned PCR program. 

 
Samples were loaded into a 2 % agarose gel. DNA ladders were loaded in 2 µl volumes, 

while 5 µl of sample was loaded with 2 µl of loading dye. The gel was allowed to run for 

~45minutes. Test results were visualized with a Alphamanager TM 2200 &1220  

Documentation & Analysis system and Ethidium Bromide (EtBr) staining.  

 
 
 
 
TOPO® Cloning 
 
 
TOPO® Cloning (Invitrogen) method was used to clone the PCR DNA fragment. This was 

done by cloning the PCR fragment into a vector, transforming into E. coli cells, and using 

blue/white selection to determine transformants. 

 
The key to TOPO® Cloning is the enzyme DNA topoisomerase I, which functions as both a 

restriction enzyme and a ligase. Its biological role is to cleave and rejoin DNA during 

replication. To harness the religating activity of topoisomerase, over 30 vectors are 

provided linearized with topoisomerase I covalently bound to each 3' phosphate. This 

enables fast ligation of DNA sequences with compatible ends. After only 5 minutes at room 

temperature, the ligation is complete and ready for transformation into E. coli. 
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Ligation and Transformation  
 
4 µl of DNA was mixed with 1 µl of TOPO Vector (It is important to keep the TOPO 

vector on ice at all times. The Topo vector self-catalyzes the ligation reaction via 

topoisomerases, when left at room temperature these enzymes lose activity) in an 

eppendorf tube and ligation was carried out at room temperature for 5 minutes.  

 
After ligation, chemically competent E. coli cells (TOP10 competent cells supplied with 

the kit) were added to the Topo mixture and gently mixed (do not mix by pipetting up and 

down). They were kept on ice for 20 minutes followed by heat shock at 42 ºC for 30 sec 

and suddenly the TOPO mixture were kept on ice. Finally 250 µl of SOC medium was 

added to the Topo mixture and incubated for 1 h at 37 ºC with shaking horizontally (200 

rpm). 

 
Plating cells: Selective LB plates (100 µg/ml, ampicillin) were spread with 40 µl of X-gal 

(5-bromo-4-chloro-3-indoyl-ß-D-galactopyranoside) is a chromogenic substrate used to 

identify recombinant plasmids. In the presence of X-Gal, bacterial colonies appear blue, 

whereas recombinant colonies appear white) (40 mg/ml) and prewarmed for 1 h at 37 ºC. 

From the TOPO mixture, 20 and 50 µl were spread on LB plates and incubated for 37 ºC 

for overnight. 

 
Selection of Clones: Colonies that have acquired the cloned PCR product/topo vector 

construct were selected by Blue/white colonies. Blue colonies are ones that have most 

likely not contaning the insert/vector. White colonies were acquired the insert/vector, 

selected for sequencing & further studies (Fig. 18). 
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Fig. 18: Selection of recombinants  
 
 
2.2 DNA sequencing 

The recombinant plasmid from the clone was sequenced using Sanger’s dideoxy chain 

terminator method (Sanger et al., 1977) in a MegaBace 1000 automated sequencer at the 

European Molecular Biology Laboratory, Heidelberg, Germany. 

 

2.3 2,4-diacetylphloroglucinol gene expression 

Growth condition: P. fluorescens 2R1-7 was grown on LB media for 24 hours at 25°C 

and the pH of the media was adjusted to 7.2, 6.5, 6, 5.5, 5. 

 

RNA Isolation  
 
Total RNA was isolated using the Qiagen RNeasy kit according to the manufacturer’s 

instructions. To isolate total RNA, the following procedure was used. The cells in a 1-ml 

suspension were pelleted by centrifugation at 5000 rpm for 5 min at 4 °C. Remaining steps 

were done at room temperature. The pellet was thoroughly resuspended in 100 µl of 

lysozyme (400 µg/ml)-containing TE buffer by vortexing and incubated for 3-5 min at 

room temperature. 350 µl buffer RLT (Lysis buffer) were added to the sample and mixed 

thoroughly by vortexing. To the sample 250 µl ethanol (96-100 %) were added and mixed 

thoroughly by pipetting.  The sample mixture were added to the RNeasy mini column  
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placed in a 2 ml collection tube and centrifuged for 15 sec at 8000 rpm and flow-through 

were discarded. 700 µl buffer RW1 (Wash buffer) were added to the RNeasy column and 

centrifuged for 15 sec at 8000 rpm and flow-through were discarded. The RNeasy column 

was transferred into a new 2 ml collection tube. To wash the column 500 µl buffer RPE 

(Wash buffer) were added onto the RNeasy column, centrifuged & flow-through were 

discarded. Again 500 µl buffer RPE were added to the RNeasy column and centrifuged for 

2 min. After centrifugation, the RNeasy column was transferred into a new 1.5 ml 

collection tube for eluting the RNA. 30-50 µl RNase-free water were added directly onto 

the RNeasy Silica-gel membrane and centrifuged for 1 min at 8000 rpm and finally flow-

throw collected (containing RNA). 

 
To eliminate carryover DNA, DNase I digestion was performed about 20 min at 30 °C. The 

amount of RNA was determined using spectrophotometer and quality of RNA checked in  

1 % Agarose gel.  

 
cDNA synthesis 
       
Reverse transcription into cDNA was performed using the StrataScript kit (Stratagene). 

Reaction volume of 20 µl containing 200 ng of RNA, 2.0 µl of first strand buffer (10x), 3.0 

µl of random primers (0.1 µg/µl), 0.8  µl of dNTP mix (25 mM each  dNTP), RNase-free 

water  incubated at 65 °C for  5 min. The mixture were cooled at room temperature and 1 

µl StrataScript RT (50 U/µl) added and they were kept at 42 °C for 60 min. Finally the 

reaction were terminated by incubating at 70 °C for 15 min, chilled rapidly on ice and 

stored at -20 °C. 
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Real-time quantitative RT-PCR 
 
Reagents and Primers 
 
Reaction volume (25 µl)  
 
1 µl cDNA   
1.25 µl Forward Primer (10 µM) 
1.25 µl Reverse Primer (10 µM) 
12.5 (2x) SYBR Green PCR Master Mix (Eurogentec) 
9 µl distilled water 
 
Primers for 2,4-diacetylphloroglucinol 
 
Forward Primer: 5` GTCATCGGCGCGCATAA 
Reverse Primer: 5` CGTTCATATCAGCCGCGTTA 
 
Primers for 16S RNA (Internal control: reference gene) 
 
Forward Primer: 5` TCCACGCCGTAAACGATGT 
Reverse Primer:  5` TGCGTTAGCTGCGCCACTA 
 
Real-time quantitative RT-PCR (relative quantification) was done with ABI Prism 7500 

detection system (Applied Biosystems). The value used for comparison and quantitation 

was the threshold cycle (CT), defined as the cycle number at which the fluorescence 

emission exceeds an arbitrarily set baseline or threshold level. This threshold level reflects 

a midpoint in the linear range of amplification. During amplification, the amount of 

amplified target is directly proportional to the input amount of target. Thus, the higher the 

initial amount of specific template in each reaction mixture, the fewer the cycles that are 

required to exceed the threshold value. Expression levels for gene in each environment are 

presented as fold induction relative to expression levels determined for RNA isolated 

(Pfaffl et al., 2002).  
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3.0 Results 
 
 
3.1 Identification of 2,4-diacetylphloroglucinol gene from  P. fluorescens  2R1-7 and 
partial sequencing 
 
A fragment of 585 bp (Fig. 19) length was observed after PCR with genomic DNA from P. 

fluorescens strain 2R1-7 with primers designed by multiple sequence alignment. In order to 

identify the sequence of the PCR fragment, the PCR product was cloned into Topo Vector 

and transformed into E. coli; positive clones were selected by Blue/White colonies (Fig. 

18). The partial gene sequence was identified after DNA sequencing reaction (Fig. 20 & 

Fig. 21). NCBI Blast was used to analyse the homology with other prokaryotic system. As 

high as 99 % identity was found with Pseudomonas fluorescens and most relevant results 

presented (Fig. 22). 
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Fig. 19: Amplification product in agarose gel after PCR of genomic DNA of Pseudomonas 
fluorescens 2 R1-7 for 2,4-diacetylphloroglucinol gene (M= DNA Marker, S= Sample) 
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CTCAAGCTGT CGCGAGACTG CGCGACCCGA CCGGGTTCCA AGTCCAGTTG  
CAGGACCAGT TCATCAAGAA TTTTCCGTCC GCCGGTATGG AAGATGAAAA  
AGTCATTTTG AGCGCAATGT TGATTGAAGG TCTCGTAGTT CAATTCCTCC  
ATCATCGGTG CGACATCTTT AATGGAGTTC ATGACAGCCT TGTCCAAGGT  
GAAATGAAAG CCGCTGTCTT TAACGTCGTA TTTAATGTAG TGCTCGCTAT  
CAGGCAGGAA GTAAGACCCG GTATTGGCGA TCTTGAAACC AGGCGCCTGG  
TCATCGGCGC GCATAACGCG GGCCGATACG GCATCGCCGA ATAACGCGGC  
TGATATGAAC GCGTGCAACT TGGTGTCCTG GGGTTGATAG CAGAGCGATG  
AGAACTCCAG GGAGACGATG AGGACATGGT TGTCCGGCGC CCGGCTGGCG  
AAGTCATTGG CTCGATTGAT CGCCGCAGCG CCTGCCACGC AGCCCAGTTG  
AGCGATGGGC AGTTGTACGG TCGACGTTCG CAGGCCCAGG TCATTGATCA  
AGTGGGCTGT CAGCGAGGGC ATCATGAAAC CGGTG 
 
Fig. 20: Partial 2,4-diacetylphloroglucinol gene sequence 
 
 
 
T G F Met Met P S L T A H L I N D L G L R T S T V Q L P I A Q L G C V A G A A A I 
N R A N D F A S R A P D N H V L I V S L E F S S L C Y Q P Q D T K L H A F I S A A 
L F G D A V S A R V Met R A D D Q A P G F K I A N T G S Y F L P D S E H Y I K Y 
D V K D S G F H F T L D K A V Met N S I K D V A P Met Met E E L N Y E T F N Q H 
C A Q N D F F I F H T G G R K I L D E L V L Q L D L E P G R V A Q S R D S L 
 
Fig. 21: Partial 2,4-diacetylphloroglucinol gene sequence translation 
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Fig. 22: Homology analysis of partial 2,4-diacetylphloroglucinol gene of  Pseudomonas 
fluorescens 2R1-7 
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3. 2 2,4-diacetylphloroglucinol gene expression from P. fluorescens  2R1-7 

 

To investigate the influence of pH on 2,4-diacetylphloroglucinol gene expression from P. 

fluorescens 2R1-7, relative quantification showed the expression of this gene is depended 

on pH (Fig. 23).  The data in Fig. 23, showed the gene expression in fold change, when 

compared to the pH range 7.2, the maximum 13.5 fold change of upregulation of this gene 

is observed in pH 6.5 and fold change decrease against decreasing pH range. 
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Fig. 23: 2,4-diacetylphloroglucinol gene expression pattern in P. fluorescens 2R1-7 in 
response to different pH conditions 
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3.3 Identification of cellulase gene from B. amyloliquefaciens G-V1 and partial 
sequencing 
 
The multiple sequence alignment led to the determination of two primer sequences for 

cellulase gene in B. amyloliquefaciens G-V1.  PCR with genomic DNA of G-V1 strain with 

designed primers was detecting the gene, resulted in amplification of a gene with 444 bp 

length (Fig. 24). The PCR fragment was cloned in Topo Vector and transformed into  

E. coli, positive clones were selected by Blue/White colonies (Fig. 18). Partial cellulase 

gene sequence was identified when the clones were subjected to DNA sequencing (Fig. 25 

& Fig. 26). The partial nucleotide sequence was analysed for homology with other 

prokaryotic system using NCBI Blast. Most relevant results presented (Fig. 27) and as high 

as 81 % of identity was recorded with Bacillus licheniformis DSM 13. 

 
 
 
 
 
 
                              M                   S 

                           

bp

2176

1033

653

394

 
 
 
Fig. 24: Amplification product in agarose gel after PCR of genomic DNA of  
Bacillus amyloliquefaciens G-V1 for cellulase gene (M= DNA Marker, S= Sample) 
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TGATGAAGTT GGTTTCATGG TGACGCAAAT CACTGATAAA GGCTTTCTCC  
GCTTCCAAAC GGTCGGCGGC TGGTGGTCTC AGGTGATGCT GGCCCAGCGC  
GTCACCGTCG TGACAAAAAA AGGAGACACC ACGGGAATCA TCGGTTCGAA  
GCCGCCGCAT ATTTTACCGC CTGACGCCAG AAAAAAAGCC GCCGATATCA  
AAGAGATGTT CATCGATATC GGGGCGTCCA GCCGTGAAGA AGCAATGGAA  
TGGGGCGTTC TTCCGGGTGA CCAGGTTGTG CCGTATTTTG AATTTACAGT  
GATGAACAAT GAAAAACATT TATTGGCGAA AGCATGGGAC AATCGTATCG  
GCTGTGCGAT TGCCATCGAT GTATTAAAAA ATCTGAAAAA CAGTGATCAT  
CCGAATGAAG TATACGGAGT GGGAACCGTT CAGGAAGAAG TAGG 
 
Fig. 25: Partial cellulase gene sequence 
 
 
 
D E V G F Met V T Q I T D K G F L R F Q T V G G W W S Q V Met L A Q R V T V V 
T K K G D I T G I I G S K P P H I L P P D A R K K A A D I K E Met F I D I G A S S R 
E E A Met E W G V L P G D Q V V P Y F E F T V Met N N E K H L L A K A W D N R 
I G C A I A I D V L K N L K N S D H P N E V Y G V A T V Q E E V 
 
Fig. 26: Partial cellulase gene sequence translation 
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Fig. 27: Homology analysis of partial cellulase gene of Bacillus amyloliquefaciens G-V1 
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3.4 Identification of phytase gene from R. terrigena G-584 and partial sequencing  
 
PCR with genomic DNA of Raoultella terrigena G-584 with primers for detecting the 

phytase gene, resulted in amplification of a gene with 486 bp length (Fig. 28). When the 

PCR product was cloned and transformed into E.coli, positive clones were selected by 

Blue/White colonies (Fig. 18). Partial phytase gene sequence was identified using DNA 

sequencing reaction (Fig. 29 & Fig. 30). As high as 86% of identity was recorded with 

Klebsiella pneumoniae when the partial nucleotide sequence was analysed for homology 

with other prokaroyotic system using NCBI Blast, most relevant result presented (Fig. 31). 
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Fig. 28:  Amplification product in agarose gel after PCR of genomic DNA from Raoultella 
terrigena G-584 for phytase gene (M= DNA Marker, S= Sample) 
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CGCCTGTTTC AATAGCTGGA TGGTGGGCTC CAGGGCCCGG CGGCGCAGCG  
CCAGGTCGCC GGCTTTTTTT TGCACCTCCG CCAGCTGCCG GGCAGGATCG  
GTCTGGGTTG TCGCGAACCG GTCGGTCTGG AACAGCGGGT CAGCGTCGCC  
GGCGACATAG TGAATGCGCG TCCCGCATCC CGGAAACGCG CCGTCAACCA  
GGGCCTCAGC GGTGGCTCGC GTGCGCTGCA GCGGGCTGGC GCGGACGTAG  
ATGTCGCCCG GGGTCGGGCA GCCGGCGCTC AGCAGCCCGA GCGCGCGGTA  
GTGCGCGCCC TCGGCCCGCC CTTTGTTCAC GACCGCCGCG TAGCCGTGGC  
CGGTTAATTC CCCGTCGCGG GTTGTCCACT GCGTCCATGG GCGTTGGGTG  
GCGGCCTCGA TGGCTTCGCG GTTGCCCGCC GTCGGCGGGC GGATCCCGTG  
GCGACTGAGC TCAACCACTT TCTCCAGCTG CCAGTC 
 
Fig. 29:  Partial phytase gene sequence 
 
 
 
 
D W Q L E K V V E L S R H G I R P P T A G N R E A I E A A T Q R P W T Q W T T R 
D G E L T G H G Y A A V V N K G R A E G A H Y R A L G L L S A G C P T P G D I Y 
V R A S P L Q R T R A T A E A L V D G A F P G C G T R I H Y V A G D A D P L F Q 
T D R F A T T Q T D P A R Q L A E V Q K K A G D L A L R R R A L E P T I Q L L K 
Q A 
 
Fig. 30: Partial phytase gene sequence translation 
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Fig.31: Homology analysis of partial phytase gene sequence of Raoultella terrigena G-584 
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4.0 Discussion 

 
The in vitro test in chapter II showed that the production of antifungal substances by the 

three antagonistic rhizobacteria was one of the mode of action responsible for the reduction 

of mycelial growth. In the present study, PCR analysis led to the amplification of genes 

such as 2,4-diacetylphloroglucinol (from P. fluorescens 2R1-7), cellulase (from B. 

amyloliquefaciens G-V1) and phytase (from R. terrigena G-584). Additionally genes were 

partially sequenced; NCBI Blast analysis revealed the homology with other identified gene 

sequence in prokaryotic system. 

 

The identification of 2,4-diacetylphloroglucinol-encoding gene in strain 2R1-7, will be 

instrumental in determining the overall contribution of 2,4-diacetylphloroglucinol 

metabolite to biocontrol by means of site-directed mutagenesis for the sequential 

inactivation of  gene. To demonstrate a role for antibiotics in biocontrol, mutants lacking 

production of antibiotics or over-producing mutants have been used in other studies 

(Bonsall et al., 1997; Chin-A-Woeng et al., 1998). For example, introduction of gene(s) 

phlx encoding a monoacetylphloroglucinol acetyl transferase into a wild-type strain 

(M114) of Pseudomonas sp., which is unable to synthesize the more active antifungal 

metabolite 2, 4-diacetylphloroglucinol, has resulted in an enhanced  biocontrol ability of 

strain M114 against Pythium ultimum both in the laboratory and in greenhouse experiments 

(Fenton et al., 1992). P. fluorescens Pf-5 with a mutation in the apdA sensor gene lost the 

ability to produce pyoluterin (Plt) and pyrrolnitrin (Pln) (Hrabak and Willis, 1992; Corbell 

and Loper, 1995) and P. fluorescens CHA0 with a defect in the gacA response gene lost the 

ability to produce pyoluterin (Plt) as well as protease and phospholipase C (Laville et al., 

1992; Sacherer et al., 1994). Further, the development of a constitutively siderophore-

producing mutant improved siderophore-mediated biocontrol under condition of high iron 

in in vitro (O’ Sullivan and O’ Gara, 1991).  Moreover in the present study, 2,4-

diacetylphloroglucinol gene expression from P. fluorescens  2R1-7  under different pH 

conditions showed this gene expression depends on the pH range, it could directly 

influence the production of antifungal metabolites.  The results achieved in present study 

could be similar to results reported by Dickie and Bell (1995) who showed a small change 

in the pH value can alter the inhibition of pathogen growth. Hultberg et al. (2000) 
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documented that a P. fluorescens strain 5.014 known to produce phloroglucional 

compounds suppressed Pythium ultimum damping-off of tomato seedlings significantly 

when compared to the mutant strain. 2,4-diacetyl-phloroglucional (Phl) is a major 

determinant for the protection of wheat against take-all diseases in Washington State soils 

(Raaijmakers et al., 1997) and this can also be an indication for the biocontrol activity of 

the studied  P. fluorescens strain  2R1-7. 

 

The PCR analysis with genomic DNA of the antagonistic strain of  B. amyloliquefaciens G-

V1 amplified the cellulase gene and in chapter IV cellulase enzyme prouduction from this 

strain was confirmed by enzyme assay, makes it evident that this strain in excreting this 

enzyme. Lytic enzymes excreted by bacteria are suspected to play an important role in 

suppression of pathogens (Buchenauer, 1998). The identification of cellulase-encoding 

gene in strain G-V1, will be ideal in determining the overall contribution of cellulase 

enzyme to biocontrol against the tested Phytophthora spp. by means of site-directed 

mutagenesis for the sequential inactivation of gene. For example, Tn5 mutants of E. 

agglomerans (Beijerinck) deficient in chitinolytic activity were unable to protect cotton 

(Gossypium barbardense L.) and expression of the chiA gene for endochitinase in 

Escherichia coli, allowed the transformed strain to inhibit R. solani on cotton seedlings 

(Chernin et al., 1997). Similar techniques involving Tn5 insertion mutants and subsequent 

complementation demonstrated that biocontrol of Pythium ultimum in the rhizosphere of 

sugar beet by Stenotrophomonas maltophila W81 was due to the production of 

extracellular protease (Dunne et al., 1997). The biocontrol activity of a genetically 

manipulated strain of Trichoderma virens was enhanced against cotton seedling disease 

incited by R. solani (as compared with wild-type strain) due to the overexpression of a 

chitinase gene (Cht 42) (Back et al., 1999). Biocontrol of Phytophthora cinnamomi Rands 

root rot of Banksia grandis was obtained using a cellulase-producing isolate of 

Micromonospora carbonacea (El-Tarabily et al., 1996) and control of Phytophthora 

fragariae var. rubi Hickm causing raspberry root rot was suppressed by the application of 

actinomycete isolates that were selected for the production of ß-1,3-, ß-1,4- and ß-1,6-

glucanases (Valois et al., 1996).  
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Plants producing phytases (Greiner and Larsson , 2001) display only low activity in roots 

and other plant organs, and occurrence of plant-secreted phytase within the rhizosphere is 

not documented. This suggests that plant roots may not possess an innate ability to acquire 

phosphorus directly from soil phytate. The possible role of microbial phytases produced by 

PGPR in supporting plant growth under phosphate limitation is limited and recently the role 

of extracellular phytase activity on plant growth promotion has been reported (Elsorra et 

al., 2002). Phytase has been isolated and characterized from a few Gram-positive and 

Gram-negative soil bacteria, e.g. B. subtilis (Kerovuo et al., 1998), Bacillus 

amyloliquefaciens DS11 (Kim et al., 1998), Klebsiella terrigena (Greiner et al., 1997), 

Pseudomonas spp. (Richardson and Hadobas, 1997) and Enterobacter sp. 4 (Yoon et al., 

1996). Besides other factors, the ability of some root-colonizing bacteria to make the 

phytate phosphorus in soil available for plant nutrition under phosphate-starvation 

conditions might contribute to their plant-growth-promoting activity. Another beneficial 

effect due to bacterial phytase activity in the rhizosphere is elimination of chelate-forming 

phytate, which is known to bind nutritionally important minerals (Reddy et al., 1989).  The 

identification phytase-encoding gene in strain G-584, will be useful in determining the 

contribution of phytase enzyme to biocontrol activity of Raoultella terrigena strain G- 584 

which has been observed in this study against the Phytophthora spp. by means of site-

directed mutagenesis for the sequential inactivation of gene. 
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VI. General Discussion 
 

Phytophthora pathogens and other soilborne pathogens can cause severe damage to plants. 

Biological control offers an environmental friendly alternative to chemical control of plant 

diseases. The knowledge of mechanisms contributing to plant protection by biocontrol 

agents can facilitate more effective use of existing agents and identification and 

development of new ones.  

 

In the present study, three rhizobacteria were tested against the crown rot (Phytophthora 

cactorum) and red stele disease (Phytophthora fragariae var. fragariae) of strawberry. In 

in vitro tests the mycelial growth of the fungus was significantly reduced by Bacillus 

amyloliquefaciens G-V1, Raoultella terrigena G-584 and Pseudomonas fluorescens 2R1-7.  

In greenhouse experiments an antagonistic potential of three selected rhizobacteria against 

Phytophthora spp. was observed. Bacillus spp. and Pseudomonas spp. are well known 

antagonists of different plant pathogens (Bochow, 1992; Cook, 1993; Koch et al., 1998; 

Mansour and Farag, 1999; Zeller, 1999). But until now, no data on the control of 

Phytophthora spp. by Raoultella terrigena, a Gram negative enteric bacterium, have been 

reported. In this study, Raoultella terrigena G-584 had moreover a high inhibitory activity 

against the Phytophthora spp.  

 

In all field experiments, tested rhizobacteria such as Raoutella terrigena G-584, Bacillus 

amyloliquefaciens G-V1 and Pseudomonas fluorescens 2R1-7 showed different level of 

biocontrol efficacy and in some cases with similar effect compared to the chemical control 

Aliette against the two Phytophthora diseases on strawberry. Another aspect was to test if 

mixtures of these bacterial species give a better control against both diseases than the 

bacterium alone, as in previous studies has been shown that combinations of different 

isolates may lead to improved antagonistic activity (Weller and Cook, 1983; Weller, 1988). 

Application of mixtures of antagonistic micro-organisms, preferably with different modes 

of action, has been proposed as a strategy to increase the efficacy and to improve the 

consistency of disease control (Pierson and Weller 1994; Schisler et al. 1997). In the field, 

field trial (2003-2004) at Jork with root bacterization of strawberry with dual mixtures of  
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B. amyloliquefaciens G-V1 and R. terrigena G-584, an improved control effect compared 

to individual isolates could be observed.  However, the results of mixture of B. 

amyloliquefaciens G-V1 and R. terrigena G-584, treatment in 2004-2005 could not be 

confirmed. A combination of different isolates also may result in negative results (Hadar et 

al., 1983). Sikora et al. (1990) also showed a negative effect by combining antagonistic 

bacteria against Pythium ultimum. The inconsistent results achieved in the field experiment 

of the present study may be related to the different environmental conditions from year to 

year and site to site.  

 

The capability of gram-negative Pseudomonas to colonize plant roots makes them potential 

candidates in biological control (Howell and Stipanovic, 1980; Weller and Cook, 1983). 

From the present study, it is found that R. terrigena G-584 has the potential to colonize the 

strawberry plant root system, which has been found by using the GFP-marker in the 

microscopic studies of chapter III. Therefore this strain can be considered as a good root 

colonizer. 

 

Out of the enzyme assays of the tested antagonistic bacteria, excretion of different extra 

cellular enzymes could be observed. This can be considered as a further antagonistic effect, 

as this capability has been also detected in biological control from other antagonistic strains 

in many studies (Lim et al., 1991; Fridlender et al., 1993; El-Tarabily et al., 1996, Valois et 

al., 1996). 

 

In the molecular studies in chapter V, specific genes could be detected from the three 

antagonistic bacteria, as for instance 2,4-diacetylphloroglucinol gene from P. fluorescens 

strain 2R1-7. 2,4-diacetylphloroglucional (Phl) is a major determinant for the protection of 

wheat against take-all diseases in Washington State soils (Raaijmakers et al., 1997). 

Hultberg et al. (2000) documented that a P. fluorescens strain 5.014 known to produce 

phloroglucional compounds suppressed Pythium ultimum damping-off of tomato seedlings 

significantly when compared to the mutant strain. Morover in the present study,  

2,4-diacetylphloroglucional gene expression from P. fluorescens 2R1-7, found to be pH 

dependent, it could directly influence the production of antifungal metabolites.  This could 

be similar to results reported by Dickie and Bell (1995) who showed a small change in the 
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pH value can alter the inhibition of pathogen growth. 

 

The identification of 2,4-diacetylphloroglucinol-encoding gene in strain 2R1-7, will be 

instrumental in determining the overall contribution of 2,4-diacetylphloroglucinol 

metabolite to biocontrol by means of site-directed mutagenesis for the sequential 

inactivation of gene. Also the information of cellulase- encoding gene in strain G-V1 and 

phytase-encoding gene in strain G-584, will be useful in determining the overall 

contribution of each enzyme to biocontrol by means of site-directed mutagenesis for the 

sequential inactivation of each gene.  Another important method would be in modifying the 

known antifungal metabolite producing strains genetically so that the bacteria produce 

more antifungal substances. Ligon et al., (2000) reported that by modifying pyrrolnitrin 

genes within a P. fluorescens strain, a significant increase in the production of this 

metabolite over the wild-type strain was achieved.  

 

In summarizing, the three antagonistic bacteria against the Phytophthora diseases in 

strawberry, a reduction of the disease could be detected from the antagonists.  The studies 

on the mode of action and genetic basis could demonstrate that the antagonistic effect was 

correlated with the production of specific enzymes (cellulase and phytase) and 2,4-

diacetylphloroglucinol compound. More studies in molecular biological aspects should be 

done to improve the strains efficacy for bio-control of the Phytophthora diseases based on 

the present results. 
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