
 

 

Efficacy of Entomopathogenic Nematodes for the Control 

of the Western Flower Thrips Frankliniella occidentalis  
 

 

 

 

 

 

 

Von der Naturwissenschaftlichen Fakultät 

der Universität Hannover 

zur Erlangung des akademischen Grades eines 

 
Doktors der Gartenbauwissenschaften 

- Dr. rer. hort. - 

 
genehmigte 

Dissertation 

 

 
von 

Lemma Ebssa (MSc) 
geboren am 28.06.1972 in West Shoa, Oromia, Äthiopien 

 

2005 

 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Institutionelles Repositorium der Leibniz Universität Hannover

https://core.ac.uk/display/237445638?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 

Referent:   Prof. Dr. Christian Borgemeister 

 

Korreferent:   Prof. Dr. Ralf-Udo Ehlers 

 

Tag der Promotion: 02.05.2005 



 

 

 

 

Dedicated to my late grandmother 

Dawiti Bedhaso 



Abstract   i 

Abstract  

Efficacy of Entomopathogenic Nematodes for Control of the Western 

Flower Thrips Frankliniella occidentalis  

Lemma Ebssa  

Since its accidental introduction from California into Europe in the early 1980s, the 

western flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae) has become an important cosmopolitan pest of vegetables and ornamentals in 

greenhouses. Due to its cryptic feeding behaviour and life strategy, control of WFT is 

extremely difficult. Entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae 

and Heterorhabditidae) are known to infect the soil-dwelling development stages of WFT. 

However, high concentrations of EPNs are required to assure high control levels of WFT. 

The general objectives of this study were (i) to assess factors that might be responsible for 

the high EPN concentrations needed for WFT control and (ii) to combine EPNs with other 

biocontrol agents that target the foliar-feeding development stages of WFT, with the 

overall aim of improving the biological control of F. occidentalis. The experiments were 

mainly carried out in a growth chamber. For experiments with plants, green beans 

Phaseolus vulgaris L were used as a model plant and Fruhstorfer Erde as a commercially 

available growing substrate. Depending on the nature of the respective experiments EPN 

concentrations of 50, 100, 200, 400, or 1000 infective juveniles (IJs) cm–2 were used.  

In a screening experiment involving 16 EPN species/strains, variability among nematodes 

in their pathogenicity to WFT was confirmed. In general Heterorhabditis spp. were more 

pathogenic to WFT than Steinernema spp. When selected EPN species were further tested 

at different concentrations, temperatures, and host densities, superiority of H. indica Poinar 

(strain LN2) to other EPN species/strains could be shown, and up to 80% WFT corrected 

mortality was obtained at 400 IJs cm–2. In general, increasing EPN concentrations resulted 

in an increase in thrips mortality. EPN strains originated from warmer and cooler climate 

performed better at higher and lower temperatures, respectively. Independent of the 

geographic origin of the EPN species/strains, highest thrips mortality was attained at 25°C. 

Host densities affected efficacy of EPNs differently depending on the foraging behaviour 

of the nematodes, i.e., ambushers that follow a ‘sit and wait’ strategy, and cruisers that 
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actively search for hosts. Unlike in the ambusher S. bicornutu Tallosi, Peters, & Ehlers, 

WFT mortality caused by the cruiser H. indica increased with increasing host densities but 

depending on concentrations. 

When tested at different substrate moisture levels and different amounts of post-application 

irrigation levels, differences in WFT mortality due to varying EPN concentrations 

depended on nematode species/strain. The lower EPN concentration was sufficient and 

resulted in similar WFT control compared to a four-fold increase in concentration only 

when moisture level was kept at >78% relative moisture content for the cruiser H. indica. 

However, to obtain a higher thrips mortality by the ambusher S. bicornutum, always higher 

moisture levels were required. Furthermore, it was only at an appropriate amount of post-

application irrigation (that then resulted in a relative moisture content of 88%) or a 

sufficient volume of EPN application (that caused a moisture content closer to the 

saturation point of the substrate) that the lower EPN concentration resulted in a similar 

WFT mortality compared to the higher concentration.  

When tested at varying depths of thrips pupation, a higher concentration of the cruiser 

H. indica was required for WFT that pupated deeper than 1.0 cm. At such a pupation 

depths, increasing concentrations of the ambusher S. bicornutum did not result in a higher 

WFT control. At high thrips densities and/or EPN concentrations, a greater proportion of 

the thrips tended to avoid pupating deep. 

The cruiser H. bacteriophora Poinar (strain HK3) persisted longer at a higher than a lower 

concentration. The ambusher S. carpocapsae (Weiser) could persist relatively long even at 

a lower concentration. In a separate experiment early and repeated applications of 

H. bacteriophora at 200 IJs cm–2 resulted in a better WFT control than one-time 

application of the same nematode at 400 IJs cm–2 irrespective of the time of application. 

When assessing the single and combined effects of EPNs and releases of the predatory 

mite Amblyseius cucumeris (Oudemans) for WFT control in a controlled environment 

experiment, control levels of up to 83% were achieved by combined applications of the 

two natural enemies. Thrips control in the combined treatment was significantly better than 

in both individual applications of the biocontrol agents. In general, the extent of WFT 

control depended on the density and concentrations of mites and nematodes, respectively. 

Results in a similar greenhouse experiment were less straightforward, with no differences 
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between individual and combined applications of the same biocontrol agents. Most likely 

the compatibility of EPNs and mites highly depend on the climatic conditions in 

greenhouses, with extreme temperatures and low humidity generally being unfavourable 

for the biological control of WFT.  

Results of this study clearly indicate that environmental conditions such as host density, 

temperature, pupation depth, substrate moisture content, and post-application irrigation are 

important factors that are partly responsible for the requirement of high EPN 

concentrations for WFT control. Thus, identifying efficient EPN species/strains against the 

soil-dwelling life stages of WFT and testing the nematodes under such environmental 

conditions can lead to higher levels of WFT control at lower EPN concentrations. 

Moreover, the appropriate time and frequency of EPN applications and their potential to be 

applied along with other natural enemies of WFT will contribute to improving the 

biological control of WFT. 

Keywords: biological control, entomopathogenic nematodes, Frankliniella occidentalis, 

nematode concentration, western flower thrips 
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Zusammenfassung 

Effizienz entomopathogener Nematoden zur Bekämpfung des 

Kalifornischen Blütenthrips Frankliniella occidentalis 

Lemma Ebssa 

Seit der Einschleppung des aus Kalifornien stammenden Kalifornischen Blütenthrips 

Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae) nach Europa Anfang der 

80er Jahre, hat sich der Thrips zu einem der bedeutensten Schädlinge im Unterglasbereich 

an Gemüse- und Zierpflanzen entwickelt. Auf Grund seiner kryptischen Lebensweise und 

Nahrungsaufnahme ist die Bekämpfung von F. occidentalis sehr schwierig. 

Entomopathogene Nematoden (EPN) (Rhabditida: Steinernematidae und 

Heterorhabditidae) können die bodenbewohnende Entwicklungsstadien von F. occidentalis 

infizieren. Allerdings müssen derzeit vergleichsweise hohe Konzentrationen von EPN 

verwandt werden um einen befriedigenden Bekämpfungserfolg zu gewährleisten. Die Ziele 

der vorliegenden Arbeit sind (i) Faktoren zu identifizieren, die für die hohen EPN 

Konzentrationen zur Bekämpfung von F. occidentalis verantwortlich sind und (ii) 

Applikationen von EPN mit anderen biologischen Bekämpfungsmitteln zu kombinieren, 

die auf die oberirdische vorkommenden Entwicklungsstadien von F. occidentalis wirken. 

Das Hauptziel dieser Arbeit ist eine Verbesserung der derzeitigen biologischen 

Bekämpfung von F. occidentalis. Die meisten Versuche wurden in Klimakammern 

durchgeführt, und in allen Experimenten die Pflanzen involvierten wurden Gartenbohnen 

Phaseolus vulgaris L. und Fruhstorfer Erde als Substrat verwandt. In den Versuchen 

wurden EPN Konzentrationen von 50, 100, 200, 400, oder 1000 Dauerlarven (DL) cm–2 

eingesetzt. 

Zunächst wurden in einem Screening-Versuch die Pathogenität von 16 EPN Arten oder 

Stämme gegenüber F. occidentalis untersucht. Es zeigte sich allgemein, dass mit einer 

Behandlung mit Heterorhabditis spp. ein höherer Bekämpfungserfolg erzielt werden kann 

als mit Steinernema spp. Insbesondere H. indica Poinar (Stamm LN2) erwieß sich 

gegenüber den anderen EPN Arten/Stämmen konnte bei unterschiedlichen 

Konzentrationen, Temperaturen und Wirtsdichten zumeist als überlegen. Dieser Stamm 

verursachte bei einer Konzentration von 400 DL cm–2 eine korrigierte Mortalität von bis zu 



 Zusammenfassung  v 

80%. Allgemein bewirkten steigende EPN Konzentrationen eine erhöhte Thripsmortalität. 

Es zeigte sich des weiteren, dass EPN Stämme aus warmen bzw. kalten Klimaten eine 

bessere Leistung bei hohen bzw. tiefen Temperaturen aufwiesen. Unabhängig von der 

geographischen Herkunft der EPN Arten/ Stämme wurden die höchsten Thripsmortalitäten 

bei 25 °C beobachtet. Die Effizienz der EPN wurde in Abhängigkeit von ihrer 

Suchstrategie ("foraging behaviour") unterschiedlich durch variierende Wirtsdichten 

beeinflusst. Beispielsweise verfolgen „ambusher“ eine sogenannte "sit-and-wait" Strategie, 

während "cruisers" aktiv geeignete Wirte suchen. Im Gegensatz zum "ambusher" 

S. bicornutu Tallosi, Peters & Ehlers stieg die durch den "cruiser" H. indica verursachte 

Mortalität von F. occidentalis mit steigender Wirtsdichte in Abhängigkeit der EPN-

Konzentrationen an. 

Bei Versuchen mit unterschiedlichen Substratfeuchten und unterschiedlichen 

Bewässerungsmengen nach einer EPN Anwendung hing die Mortalität von F. occidentalis 

bei wechselnden EPN-Dichten von der jeweiligen Nematodenart oder –stamm ab. 

Niedrigere EPN-Konzentrationen erwiesen sich als vergleichbar erfolgreich wie vierfach 

höhere wenn z.B. bei dem "cruiser" H. indica die Substratfeuchte bei >78% relativer 

Feuchte gehalten wurde. Jedoch benötigt der "ambusher" S. bicornutum immer höhere 

Substratfeuchtegehalte um ähnlich hohe Thripsmortaltitäten zu verursachen. Außerdem 

ergaben sich nur bei ausreichender post-applikation Bewässerung (die in einem relativen 

Substratfeuchtegehalt von 88% resultierte) oder bei einer EPN-Anwendung, die zu einem 

Feuchtegehalt nahe des Sättigungspunkts des Substrat führte, vergleichbar hohe 

Thripsmortalitäten bei geringen und hohen EPN-Konzentration. 

Wenn sich F. occidentalis tiefer als 1 cm verpuppte wurden hohe Konzentrationen des 

"cruiser" H. indica benötigt. Bei solchen Verpuppungstiefen führten steigenden 

Konzentrationen des „ambusher“ S. bicornutum nicht zu einem verbesserten 

Bekämpfungserfolg bei F. occidentalis. Bei hohen Thripsdichten und/oder EPN 

Konzentrationen verpuppte sich der mehrzahl der Thripse in den oberen Bodenschichten 

(bis 96 %). 

Die Persistenz des "cruisers" H. bacteriophora Poinar (Stamm HK3) war länger bei 

höheren als bei niedrigen Konzentrationen, während der "ambusher" S. carpocapsae 

(Weiser) auch bei geringen Konzentrationen eine relativ hohe Persistenz aufwies. Bei 

gesplitteten Behandlungen bewirkten frühe und wiederholte Anwendungen von 200 DL 
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cm–2 von H. bacteriophora einen höheren Bekämpfungserfolg als eine einmalige 

Anwendung derselben Nematodenart mit doppelter Konzentration (400 DL cm–2). 

Bei kombinierten Applikationen von EPN und der Raubmilbe Amblyseius cucumeris 

(Oudemans) konnten in einem Experiment unter kontrollierten Bedingungen ein bis zu 

83%iger Bekämpfungserfolg von F. occidentalis erzielt werden. Die Thripsbekämpfung 

war in der kombinierten Variante signifikant besser als in den Einzelanwendungen der 

beiden natürlichen Gegenspieler. Allgemein hing das Ausmaß des Bekämpfungserfolges 

von der Dichte bzw. Konzentration der Milben und Nematoden ab. In einem 

nachfolgenden Gewächshausversuch konnten diese Ergebnisse aber nicht bestätigt werden, 

da hier keine Unterschiede im Bekämpfungserfolg von F. occidentalis zwischen der 

kombinierten und der einzelnen Anwendung der natürlichen Gegenspieler erzielt wurden. 

Ursache hierfür waren höchtswahrscheinlich die phasenweise sehr hohen Temperaturen 

und niedrigen Luftfeuchten in dem Gewächshaus. Wahrscheinlich ist die Kompatibilität 

von EPN und Raubmilben stark von den klimatischen Verhältnissen im Gewächshaus 

abhängig.  

Zusammenfassend zeigen die Ergebnisse dieser Studie, dass biotische Faktoren wie z.B. 

Wirtsdichte, Temperatur, Verpuppungstiefe, Feuchtegehalt des Substrates und das Ausmaß 

der post-applikation Bewässerung die entscheidenden Faktoren sind, die für die hohen 

EPN-Konzentrationen, die z.Z. für eine erfolgreiche F. occidentalis-Bekämpfung benötig 

werden, verantworlich sind. Ein Testen von potentiell vielversprechenden EPN Arten/ 

Stämmen zur Bekämpfung der bodenbürtigen Entwicklungsstadien von F. occidentalis 

unter solchen Bedingungen in zukünftigen Screening-Versuchen kann zu einer 

verbesserten Thripsbekämpfung bei niedrigeren EPN-Konzentartionen führen. Darüber 

hinaus kann der geeignete Behandlungszeitpunkt sowie gesplittete Behandlungen, aber 

auch der kombinierte Einsatz von EPN und anderer natürlicher Gegenspieler zu einer 

verbesserten biologischen Bekämpfung von F. occidentalis beitragen. 

Schlagwörter: Biologische Bekämpfung, Entomopathogene Nematoden, Frankliniella 

occidentalis, Kalifornischer Blütenthrips, Konzentration der Nematoden  
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General Introduction 

 

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae) is the most worldwide-distributed species of the genus Frankliniella, which 

includes about 180 species, causing a significant impact on crop plant (Mound, 1997; 

Mound and Kibbi, 1998). Pergande (1895) reported F. occidentalis for the first time from a 

specimen collected in California, USA. The international spread of this pest from its origin 

was started in the late 1970s most likely due to the intense use of insecticide in horticulture 

that left insecticide resistant strains. It continued to distribute mainly through the 

movement of horticultural materials and becomes one of the major worldwide crop pests 

(Frey, 1993b; Kirk, 2002; Kirk and Terry, 2003).  

Adult western flower thrips are very small in size having a length of 0.9–1.4 mm from the 

tip of antenna to the tip of the abdomen (van Lenteren et al., 1995). The life history of 

WFT consists of an egg, two actively feeding larval stages (L1 and L2), two non-feeding 

stages (prepupa and pupa) followed by an adult. Adults deposit eggs in parenchymatous 

tissues of plants (leaves, buds, flowers, or young fruits). Depending on environmental 

conditions and nutrient levels female WFT may live for 20–45 days and lay 150–300 eggs 

per female (Gaum et al., 1994; Hulshof et al., 2003). The first and second larvae resemble 

a mature version of the adult apart from the absence of wings and genital appendages, and 

having reddish eyes and less segmented antennae. Upon maturity, the majority of the 

second instar larvae descend to the soil for pupation at a depth of 1.5–2.0 cm (van Lenteren 

et al., 1995). The larvae develop to prepupal and then to pupal stages both of which are 

immobile unless disturbed. Fully matured pupae change to adult and emerge from the soil 

to re-colonise plants. The reproduction lifecycle of WFT depends on several factors among 

which temperature is the most important. At 25–30 °C, WFT requires less than 10 days to 

complete its lifecycle. In the greenhouse, F. occidentalis reproduces continually, producing 

more than 10 generations per year (Bene et al., 1998). 

WFT is one of the most important pests of greenhouse-grown vegetable and ornamental 

crops worldwide (Giliomee, 1989; Katayama et al., 1997; Malipatil et al., 1993; Oda et al., 

1997; Shipp et al., 1991; van Lenteren et al., 1995). The pest attacks also several outdoor 

plants being a highly polyphagous species with at least 250 plant species from 65 families 

1 
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(Anonymous, 1989; Yudin et al., 1986). It causes direct damages by feeding on or 

ovipositing in young fruits and ornamentals resulting in silvery scarring or even 

malformation. Flower abortion may result in total loss of fruits. The dark faecal droplets 

and the scars by WFT on leaves, flowers, and fruits significantly reduce the market values 

of the products (Rosenheim et al., 1990; van Lenteren et al., 1995). In addition to the 

reduction in aesthetic qualities of crops, Shipp et al. (1998b) reported that more than 1200 

larval-days per sweet pepper plant has negative impacts on plant physiology and yield. 

WFT causes also indirect damages by vectoring tospoviruses (e.g. Tomato spotted wilt 

virus (TSWV), impatiens necrotic spot virus (INSV), Tomato chlorotic spot virus (TCSV), 

Groundnut ringspot virus (GRSV), and Chrysanthemum stem necrosis virus (CSNV)). Out 

of more than nine thrips species that can transmit tospoviruses, F. occidentalis is the major 

vector (Mound, 2002; Nagata et al., 2002; Wijkamp et al., 1995). Among the tospoviruses, 

INSV and TSWV, which are transmitted mainly by WFT, are serious diseases of many 

economically important crops (Daughtrey et al., 1997; Nagata et al., 2002). TSWV attacks 

174 plant species from 35 plant families including dicots and monocots (Goldbach and 

Peters, 1994; Parrella et al., 2003; Peters et al, 1996) having a host range of ornamentals, 

vegetables, and field crops, which is a unique host range among plant-infecting viruses. 

INSV is also a common viral disease on ornamental plants of more than 300 species from 

50 plant families (Windham et al., 1998). The polphagous nature of WFT attacking several 

plants including high value crops under protected cultivation, high vectoring efficiency of 

important plant viruses of high value crops, and its worldwide distribution are some of the 

factors that may categorize WFT among extremely important plant pests of high priority 

requiring urgent control.  

Managing and efficient control of WFT is difficult because they: are very small and easy to 

overlook; spend one-third of their life cycle in the soil; like to feed and hide in flowers, 

flower buds, and leaf buds making them hard to spot and reach with pesticides; live on a 

wide variety of host plants; are opportunistic by feeding on other insects and mites; 

reproduce rapidly in warm greenhouses; hide in plant materials and are transported 

worldwide; transmit tospoviruses to a wide range of plant species; and are resistant to a 

number of insecticides. As low as 5 adults per trap per week was reported a damage 

threshold level of some ornamental plants (Frey, 1993a). On the other hand, a loss in 

commercial value of crops as a consequence of the development of dark spots caused by 

TSWV results in almost zero economic threshold (Frey, 1993a; Maymo et al., 2002; Sadof 
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and Raupp, 1997; Windham, 1998). To combat the high reproduction rate and low 

economic threshold levels of WFT in several high value crops, several groups of 

insecticides have been repeatedly applied. However, this practice has lead to develop 

resistant strains of WFT to commonly used insecticides aggravating the problem of WFT 

(Immaraju et al., 1992; Zhao et al., 1995). There are limited ranges of natural enemies, 

including anthocorid bugs of Orius spp. (Heteroptera: Anthocoridae) and phytoseiids mites 

of Amblyseius spp. (Acarina: Phytoseiidae) (Shipp and Wang, 2003; van Lenteren, et al., 

1995). However, these predators attack only the foliage-feeding life stages of WFT and 

hence, the soil-dwelling late L2, prepupae and pupae are not within the reach of these 

biocontrol agents. Moreover, due to the low economic threshold levels of WFT in many 

crops (e.g., Shipp et al., 1998a,b), releases of Orius spp. and Amblyseius spp. have resulted 

in insufficient control levels of WFT (e.g., Jarosik and Pliva, 1995). Therefore, research on 

different directions of WFT biological control strategies have been initiated. In these new 

approaches, the soil-dwelling life stages of WFT are targeted by soil-dwelling biological 

control agents, that include entomopathogenic nematodes (EPNs) (e.g. Chyzik et al., 1996; 

Ebssa et al., 20001a,b) and soil-dwelling predatory mites (Berndt et al., 2004). 

Premachandra et al. (2003b) also indicated that the prospects of combined releases of 

EPNs and Hypoaspis aculeifer Canestrini (Acarina: Laelapidae) against WFT. Moreover, 

several attempts were made to use other control options (Antignus et al., 1996; CAB 

International, 1999; Lindquist and Casey, 1990) including entomopathogenic fungi 

(Azaizeh et al., 2002; Vestergaard et al., 1995) and parasitic nematodes (Arthurs and 

Heinz, 2003). However, each control strategy individually applied does not seem to 

provide a sufficient control of WFT populations mainly because of the low economic 

threshold levels. Hence, WFT has to be targeted from several possible directions, meaning 

that only a combination of several and compatible control strategies will assure that the 

pest will be kept below the economic threshold level(s). 

Entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae and 

Heterorhabditidae) are important biological control agents of a great variety of insect pests 

(Poinar, 1986). EPNs have a simple life cycle that includes the egg, four juvenile stages, 

and the adult. The third juvenile stage, called infective juveniles (IJs), carries symbiotic 

bacteria in its gut. Xenrohabdus and Photorhabdus are the two bacterial genera 

mutualistically associated with EPNs from genera Steinernema and Heterorhabditis, 

respectively (Boemare, 2002). After entering the haemocoel of insect host via natural 
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openings or spiracles the IJs release the associate bacteria, which then proliferate and 

produce a wide range of toxins and hydrolytic exoenzymes that are responsible for the 

death of insect host within 24–48 h and bioconversion of the insect cadaver into a nutrient 

soup that is ideal for growth and reproduction of the nematodes (Frost and Clarke, 2002; 

Smart, 1995).  

As EPNs are found naturally in the soil, they are particularly suited for control of soil-

inhabiting insects (Ehlers, 1996). Researches already reported the successful use of EPNs 

against many insects under field conditions (e.g., Boselli et al., 1997; Shapiro-Ilan et al., 

2004b; Sulistyanto et al., 1996). EPNs possess certain attributes that make them potentially 

attractive biocontrol agents. EPNs can be mass-produced (Ehlers et al., 1998; Surrey and 

Davies, 1996) and hence are available commercially, have a rather broad host range 

(Poinar, 1986) but only limited effects on non-target organisms (Bathon, 1996), are fast-

acting (Smart, 1995), are widespread (Hominick et al., 1996) thus can be obtained from 

every ecology, are amenable for genetic improvement (Burnell and Dowds, 1996), and are 

easily compatible with other control measures like insecticides and other biocontrol agents 

(Koppenhöfer and Kaya, 1997; Premachandra et al., 2003b; Rovesti and Deseo, 1991; 

Shapiro-Ilan et al., 2004a).  

However, the IJs emerging from the insect cadaver or applied as biological control agents 

and searching for hosts may encounter many potential hazards, for instance extremes in 

temperature, soil texture, soil moisture, UV light, toxic root exudates, secondary plant 

metabolites, inter- and intra-specific competition in EPNs, and natural enemies of EPNs 

(Brown and Gaugler, 1997; Kaya and Koppenhöfer, 1996). Generally, factors operating at 

the time of application and over the following few hours are most critical for the 

establishment and efficacy of EPNs in the soil. Foraging behaviours of EPN affect, directly 

or indirectly, the extent of tolerance of the nematodes to some of these factors (Glaser, 

2002; Lewis, 2002). Based on their capability to attach to mobile versus sedentary hosts, 

which is expressed through their ability of movement during foraging and their response to 

host cues, EPN species are classified as ambusher, cruiser, or intermediate (Lewis, 2002). 

The ambushers have a sit-and-wait strategy by remaining near or at the soil surface and 

nictating to attach to mobile insects whereas cruisers have an active searching strategy by 

responding to chemical cues from host or plant exudates and attacking even sedentary 

hosts (Lewis, 2002).  
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In the control of WFT so far only few species/strains of EPN were tested. In these studies, 

though up to 80–90 and 60% WFT mortality were obtained under laboratory and 

microcosm conditions, respectively, high nematode concentrations were required (Ebssa et 

al., 2001a,b). These have necessitated screening greater numbers of EPN species/strains, 

and testing several factors that may improve the efficacy of the applied nematode. 

Furthermore, the compatibility of efficient EPN strains against WFT with other biocontrol 

agents was envisaged. Thus, the general objectives of this study were to enlarge the 

screening for well-suited EPNs species/strains in their efficacy, assess biotic and abiotic 

constraints for efficient use of EPN, and investigate compatibility of EPN with other 

biocontrol agents of WFT. 
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Abstract 

Entomopathogenic nematode (EPN) species/strains (Rhabditida: Steinernematidae and 

Heterorhabditidae) were tested at a concentration of 200 infective juveniles (IJs) cm–2 

against mixed soil-dwelling life stages (i.e., second instar larvae, prepupae, and pupae) of 

the western flower thrips (WFT) Frankliniella occidentalis (Thysanoptera: Thripidae), in a 

plant growing substrate under laboratory conditions. The different EPN species/strains 

resulted in WFT corrected mortality (CM) values ranging between 2.6 and 60%. In 

general, Heterorhabditis spp. were more virulent than Steinernema spp. Increasing 

concentrations of selected EPN species/strains led to an increase in thrips CM, with 

significant differences among species/strains. Heterorhabditis indica (strain LN2) caused 

higher CM than the other strains, with 30 and 90% as highest CM at the lowest and highest 

concentration tested, i.e. 100 and 1,000 IJs cm–2, respectively. In an experiment with 

different WFT densities, CM caused by S. bicornutum negatively correlated with host 

density. However, with H. indica, CM increased, though not always significantly, with 

increasing host densities. Generally, the effect of host density on efficacy of EPNs 

depended on concentrations. When tested over a range of temperatures, 25 °C was the 

optimal temperature for both H. indica LN2 and S. bicornutum. Heterorhabditis indica 

LN2, tropical in origin, and S. bicornutum, isolated from a more temperate environment, 

performed better at higher and lower temperatures, respectively.  
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2.1. Introduction 

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is an important polyphagous greenhouse and field pest in many parts of the 

world (van Lenteren et al., 1995). Vegetables and ornamental crops are among the most 

important host plants of WFT. It causes direct damage on the plants and indirect damage as 

a vector of important plant viral diseases, e.g. tomato spotted wilt virus (Marchoux et al., 

1991). 

WFT post-embryonic development involves two larval instars (i.e., L1 and L2) as well as 

prepupal and pupal stages. Upon maturity, the late L2 moves from the plant and enters the 

soil (Berndt, 2002). At a depth of 1.5–2.0 cm, the larvae develop into prepupae and 

subsequently pupae. Both prepupae and pupae are immobile unless disturbed and do not 

feed. Shortly after emergence from soil, adult WFT feed on leaves and flowers of the host 

plant. The adult starts laying eggs in parenchymatous tissues of their host plant within 72 h 

after emergence (Moritz, 1997; van Lenteren et al., 1995). 

Entomopathogenic nematodes (EPNs) (Rhabditida: Steinernematidae and 

Heterorhabditidae) have a simple life cycle that includes the egg, four juvenile stages, and 

the adult (Boemare et al., 1996). The third-stage juvenile, often termed dauer larva or 

infective juvenile (IJ), is the infective life stage of EPNs. IJs live in symbiosis with bacteria 

that they release after host penetration. The bacteria then cause the septicemic death of the 

insect within 48 h (Bedding and Molyneux, 1982). EPNs are important biological control 

agents of a great variety of insect pests (Poinar, 1986). However, EPN species/strains vary 

in their virulence (expressed in terms of pathogenicity) against different host insects (e.g., 

Mason and Wright, 1997). In addition, efficacy of EPN species/strains is affected, among 

others, by concentration, host density, and temperature (Zervos et al., 1991). 

Previous studies have shown that soil-dwelling stages of WFT are susceptible to EPNs 

(Chyzik et al., 1996; Ebssa et al., 2001a; Premachandra et al., 2003a). In these studies six 

strains of Heterorhabditis spp. and 11 strains of Steinernema spp. were tested. However, 

high concentrations were required to effectively control WFT, rendering this control 

approach presently not economical. Thus, we hypothesized that selection of a more 

virulent EPN species/strain and an improvement of environmental factors lead to an 

enhanced control of WFT. Therefore, the objectives of the present study were to assess the 



Chapter 2. Entomopathogenic nematodes against Frankliniella occidentalis 9 

 

efficacy of a large number of EPN species/strains and to evaluate the most effective 

nematodes at different concentrations, host densities, and temperatures. 

2.2. Materials and Methods 

Nematode and thrips cultures 

All EPN species/strains used in this study were obtained from the Institute of 

Phytopathology, Christian-Albrechts University Kiel, Germany. Except for S. feltiae 

(Nemaplus® [E-Nema GmbH, Raisdorf, Germany]), the different EPN species/strains 

were reared in the laboratory at 23 ± 2 ºC in greater wax moth larvae Galleria mellonella 

(L.) (Lepidoptera: Pyralidae) by a modified production system described by Kaya and 

Stock (1997). All nematodes were stored at 4 °C until used, except for the H. indica strains 

that were kept at 15 °C. To obtain uniform-aged insects for the experiments, WFT was 

reared on pods of green beans Phaseolus vulgaris L. (Fabaceae) in an incubator (23 ± 2 ºC, 

50 ± 60% relative humidity (rh), and L16:D8 h photoperiod) following the modified 

protocol described by Ullman et al. (1992). 

Assay arena 

Six g of Fruhstorfer Erde, a commercially available growing substrate (Archut GmbH, 

Lauterbach-Wallenrod, Germany), was added into a plastic pot (diameters of 8 and 5 cm at 

the top and bottom, respectively, and a height of 6 cm), leading to a substrate depth of 1.5 

cm and top area of 23.75 cm2. The substrate is composed of humus, clay and peat in a 

proportion of 15:35:50, respectively, and has a high water holding capacity (i.e., 480%, 

weight of water to weight of oven-dry substrate) due to the high proportion of peat. The 

moisture content of the substrate at the time of WFT introduction into the pots was ca. 50–

55% w/w (i.e., weight of water to weight of the substrate with the water). Twenty late L2 

WFT (8 to 9 days old after the emergence of the neonate) were transferred to the top of the 

substrate in the pots. The L2 descended into the substrate immediately after the transfer. A 

Petri dish (diameter 10 cm) was used as a cover for the pot. A small hole (diameter 20 mm) 

was drilled in the center of the Petri dish, onto which nylon tissue (64 µm pore size) was 

glued to allow ventilation but preventing thrips from escaping. The inner part of the Petri 

dish, except the hole, was painted with insect glue (Temmen GmbH, Hattersheim, 

Germany) (and hereafter referred to as ‘sticky trap’) to trap emerging adult thrips. Two 
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days later, thereby enabling some of the L2 to moult into prepupae and pupae 

(Premachandra et al., 2003a) and thus providing a population mixture of different 

developmental stages in the substrate, different suspensions of EPNs were pipetted on the 

top of the substrate. The nematodes were not more than 1 month old after being harvested 

from the G. mellonella larvae and were acclimatized for at least 6 h at room temperature 

before use. To prepare a new concentration from nematodes in a stock culture, the 

quantification method described in Kaya and Stock (1997) was used.  

In all experiments, a control treatment was pipetted with distilled water instead of 

nematode suspension. The experiments were carried out in a growth chamber at 23 ± 2 °C, 

ca 70% rh, and L16:D8 photoperiod unless indicated otherwise. All experiments were 

repeated twice over time, with two and three replicates, respectively, giving a total of five 

replications per treatment. In all repetitions, an assay arena was randomly assigned to a 

treatment depending on the types of experimental designs used in the respective 

experiment (for details see below). Starting from the second day after EPN application, 

emerged WFT adults on the sticky traps and the top of the substrate in the pots were daily 

counted under a binocular for one week until no more adult thrips were observed in the 

assay arena. EPN efficacies in the different experiments were assessed using data on WFT 

adult emergence.  

Efficacy of EPN strains (experiment I)  

EPN strains listed in Table 2.1 were tested against a mixture of different soil-dwelling life 

stages of WFT, using the assay arena described above. All strains were applied at 200 IJs 

cm−2 using a completely randomized design.  

EPN Concentration studies (experiment II) 

The most pathogenic EPN strains from the EPN efficacy experiment were further tested at 

100, 150, 200, 400 and 1,000 IJs cm−2 in the assay arena. The experiment was conducted in 

a split plot design, using concentrations as a sub-factor and EPN species/strains as a main 

factor. 
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Efficacy of EPN as affected by WFT densities (experiment III) 

Three population densities of soil-dwelling life stages of WFT were established in the 

assay arena by introducing 10, 20, or 50 late L2 into the assay arena. Two days later, 

H. indica LN2 or S. bicornutum were pipetted to the arena at concentrations of 100, 200, or 

400 IJs cm−2. The numbers of L2 and concentrations were combined factorially for a given 

EPN strain.  

Effect of temperature on the efficacy of EPNs against WFT (experiment IV) 

Suspensions of H. indica LN2 and S. bicornutum at concentrations of 100 and 400 IJs cm−2 

were applied to a host density of 20 WFT per arena. After application of the EPNs, the 

assay arenas were transferred to different climate controlled growing chambers at 20, 25, 

30, or 35 °C (± 2 °C in all cases), and the efficacy of the EPNs was recorded as previously 

described. A split-split-plot design with EPN species as main factor, concentration as sub-

factor, and temperature as sub-sub-factor was used. The four temperature regimes were 

chosen as representative ranges of temperatures in greenhouse plant production. 

Statistical analyses 

WFT mortality data were corrected for control mortality using Abbott’s corrected mortality 

(CM) formula (Abbott, 1925). The efficacy of EPN strains was evaluated using the CM 

data. The CM data were arcsine transformed before subjected to statistical analyses. Data 

of experiments repeated over time were checked for homogeneity of variance using the 

HOVTEST = LEVENE option of SAS version 8 (SAS Institute, 1999) and pooled only 

when variance homogeneity could be assumed. The data were analyzed using the PROC 

GLM procedure in SAS to determine single or interaction effects of factors (SAS Institute, 

1999). For correlation analyses Pearson’s correlation coefficient (r) was used with the 

PROC CORR procedure of SAS; furthermore, regression analyses were performed using 

the PROC REG procedure in SAS. Lack-of-fit was used to determine the appropriate 

model in the regression analyses. Whenever significant interactions were observed 

between factors, the level of one factor was compared at each level of the other factor. CM 

means caused by EPN applications under different conditions were compared to zero (the 

CM of the control treatment) using Dunnett’s two-sided test. When significant factor 

effects were detected by means of ANOVA, CM means at different levels of the respective 
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factor were compared using Tukey’s multiple means comparison procedure unless 

mentioned otherwise. A significance level of α = 0.05 was used in all analyses. Data are 

presented as means ± SE. 

2.3. Results 

Efficacy of EPN (experiment I)  

The EPN species/strains varied greatly in terms of efficacy against WFT, with CM values 

ranging between 2.6 and 60.2% (Table 2.1). Mean (+ SE) CM values <50% were recorded 

for 67 and 43% of the tested Steinernema and Heterorhabditis species/strains, respectively. 

The commercial product Nemaplus® and the hybrid Heterorhabditis bacteriophora strain 

PS8 were among the least effective strains.  

Except for Nemaplus® and S. carpocapsae strain A1 B5, WFT mortality in all tested EPN 

species/strains was significantly higher than the control mortality which was 12.5 ± 3.3% 

(Dunnett test: P < 0.0001). Twenty-five percent of the tested species/strains resulted in 

mean CM values ≥50%. EPN strains that caused mean CM values >45%, i.e., H. indica 

LN2, H. indica LN10, H. bacteriophora PAL H04, S. abassi PAL S09, and S. bicornutum, 

were further evaluated. 
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Table 2.1. Mean (± SE) corrected mortality (CM) (%) of mixed soil-dwelling life stages of western 

flower thrips as induced by different entomopathogenic nematode (EPN) species/strains applied at 

200 IJs cm−2. 

EPN species Strain name Origin CM Test c 

Steinernema feltiae (Filipjev) Nemaplus ® a Europe 2.6 ± 4.6 f 

S. carpocapsae (Weiser) A1 B5 Italy 12.2 ± 5.6 ef 

Heterorhabditis bacteriophora Poinar PS8 hybrid b − 24.3 ± 2.0 de 

Steinernema sp. Morocco Morocco 30.5 ± 7.4 cde 

H. bacteriophora PAL H05 Palestine 32.0 ± 5.4 cd 

S. carpocapsae S.N2 Egypt 34.2 ± 10.5 bcd 

S. carpocapsae DD136 USA 40.6 ± 6.5 abcd 

S. carpocapsae S.S2 Egypt 40.7 ± 4.9 abcd 

H. marelatus Liu & Berry Strain USA 41.8 ± 8.6 abcd 

H. bacteriophora  HK3 Germany 43.3  ± 7.1 abcd 

S. abassi Elawad, Ahmad, & Reid PAL S09 Palestine 45.0 ± 5.5 abc 

S. arenarium (Artyukhovsky) Strain Russia 46.4 ± 5.5 abc 

H. bacteriophora PAL H04 Palestine 49.6 ± 4.5 abc 

S. bicornutum Tallosi, Peters, & Ehlers Strain Yugoslavia 54.1 ± 4.0 ab 

H. indica Poinar, Karunakar, & David LN2 India 57.5 ± 5.5 a 

H. indica LN10 India 60.2 ± 6.3 a 

a Nemaplus® is a hybrid of several European S. feltiae strains and was supplied by E-Nema GmbH 

(Raisdorf, Germany) in a clay formulation. After estimating the numbers of IJs g−1 product (by 

counting the IJs in a suspension which was prepared from the product), a suspension of the 

product containing a concentration corresponding to 200 IJs cm−2 was prepared by diluting the 

product in distilled water. 
b PS8 hybrid is a hybrid from eight strains of H. bacteriophora. 
c CM means followed by the same letters are not significantly different (Tukey’s test, α = 0.05). 
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Concentration studies (experiment II) 

The effect of increasing EPN concentrations for control of WFT depended on the type of 

the EPN strain used (EPN*Dose: F20, 121 = 2.78, P = 0.0003). Thus, WFT mortalities across 

different concentrations for a given EPN strain were compared to the natural WFT 

mortality in the control treatment. WFT mortality by H. bacteriophora PAL H04 and 

S. abassi PAL S09 at 100 IJs cm−2 did not differ significantly from the water-treated 

control (Table 2.2). 

Table 2.2. Mean corrected mortality (CM) (%) of mixed soil-dwelling life stages of western flower 

thrips as induced by five different entomopathogenic nematode (EPN) species/strains at different 

concentrations (100, 150, 200, 400, and 1,000 infective juveniles cm−2). 

EPN concentrations 

EPN species/strains 
100 150 200 400 1000 

H. indica LN2 30.6 c a 39.0 c 60.9 b 80.5 a 89.7 a 

H. bacteriophora PAL H04 12.7 d ns 20.3 d 46.3 c 66.9 b 84.6 a 

H. indica LN10 28.1 c 36.1 bc 54.6 b 66.0 ab 79.2 a 

S. abassi PAL S09 14.7 c ns 15.1 c ns 32.6 b 42.2 ab 51.9 a 

S. bicornutum 20.7 d 30.7 dc 45.1 bc 60.1 b 76.3 a 

a CM means within a row followed by the same letters are not significantly different (Tukey’s test, 

α = 0.05). 
ns CM mean at the respective concentration did not differ significantly from the control mortality.  

The effect of increasing concentrations was additionally analyzed for each EPN 

species/strain separately. For all strains, a concentration of 150 IJs cm−2 did not 

significantly increase WFT mortality compared to a concentration of 100 IJs cm−2. 

Similarly, even though highest CM values were recorded at 1,000 IJs cm−2, these values 

did not differ from CM values obtained at 400 IJs cm−2 except for H. bacteriophora PAL 

H04 and S. bicornutum. Generally, WFT mortality increased with increasing 

concentrations (Table 2.2), but the degree of increment differed significantly among the 
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species/strains, as indicated by significantly different slopes of the linear regression 

coefficients of the five species/strains (Table 2.3). The three Heterorhabditis spp. had 

significantly greater slopes than the two Steinernema spp., indicating that the former ones 

responded stronger to the increase in concentrations than the latter ones. However, an 

increase in concentration of Heterorhabditis spp. beyond 1,000 IJs cm−2 may not result in a 

further increase in WFT mortality as the quadratic function for the three Heterorhabditis 

species/strains were significant (Table 2.3). Concentrations >1,000 IJs cm−2 for the two 

tested Steinernema spp. may result in further increases in CM since the quadratic 

coefficients of the two Steinernema spp. were non-significant. Generally, increasing 

concentrations resulted in only slight differences in terms of efficacy within the two EPN 

genera.  

Table 2.3. Regression coefficients for the effects of concentrations of entomopathogenic 

nematodes (EPN) on the mortality of western flower thrips for the regression equation:  

 CM = α+ βC + γC2 where CM = corrected mortality, C = concentrations. 

EPN α β γ P R2 

H. indica LN2 8.20 ab 0.26*** −0.0002*** < 0.0001 0.82 

H. bacteriophora PAL H04 −11.55 a 0.28*** −0.0002** < 0.0001 0.83 

H. indica LN10 10.63 b 0.18*** −0.0001** < 0.0001 0.76 

S. abassi PAL S09 17.02 c 0.04*** ns < 0.0001 0.52 

S. bicornutum 27.16 c 0.06*** ns < 0.0001 0.67 

The test for a null hypothesis that β = 0 and/or γ = 0 is indicated by ns or asterisk showing that ns = 

non significant; **, and *** = significant at α= 0.01, and 0.001, respectively. 

P and R2 are the probability level and regression coefficient for the model, respectively. Slopes of 

the linear coefficient (β) of different EPN species/strains followed by the same letter are not 

significantly different. 
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Host density (experiment III)  

The three-way interactions (EPN*Concentration*Density: F4, 53 = 2.68, P = 0.0413) were 

significant. Accordingly, the effect of host density on the efficacy of EPNs was analyzed 

separately for each EPN species/strain at their respective concentrations.  

At all host densities, WFT mortality by H. indica LN2 and S. bicornutum at all 

concentrations were significantly higher than the control mortality (P < 0.05). However, 

the effect of host density on the efficacy of EPNs depended on the strains (EPNs*Density: 

F2, 53  = 11.23, P < 0.0001). For H. indica LN2 WFT mortality significantly increased with 

increasing concentrations at host densities of 10 (r = 0.83, P = 0.0009) and 20 (r = 0.9, P < 

0.0001) but not significantly at 50 WFT/arena (r = 0.56, P = 0.058). In S. bicornutum, 

except at the medium host density (r = 0.68, P = 0.022), no significant correlation of WFT 

mortality and EPN concentration was observed at the lowest (r = −0.11, P = 0.72) and 

highest (r = −0.83, P = 0.43) host densities. Generally, in S. bicornutum the maximum 

WFT mortality was reached at a concentration of 200 IJs cm−2 in both the lowest and 

highest host density (Fig. 2.1). A further increase in concentration at 10 (P = 0.007) and 50 

(P = 0.018) WFT/arena lead to sharply reduced CM levels (Tukey’s test for the 

comparison of CM values at 200 and 400 IJs cm−2).  

Fig. 2.1. Mean corrected mortality (CM) (%) of western flower thrips (WFT) caused by 

entomopathogenic nematode (EPN) strains Heterorhabditis indica LN2 and Steinernema 

bicornutum at different concentrations applied to varying host densities (i.e. 10, 20, or 50 WFT 

larvae per arena). CM means at a given concentration for a given EPN strain that differ 

significantly are indicated by * (P < 0.05). Non-significant differences are indicated by ns. 
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Host density to concentration ratio negatively and significantly correlated with CM in 

S. bicornutum. However, there was no significant correlation in H. indica LN2 application 

(Fig. 2.2). A quadratic model was fitted to assess the combined effects of host density and 

concentration on the mortality of WFT. Using the lack-of-fit method, higher degrees were 

discarded from the analysis. Thus, the fitted model was: 

2
21

2
21 HHCHCCCM γγηββα +++++=  

where CM = corrected mortality of WFT caused by a given EPN strain; β,  γ and η are 

coefficients of the concentration (C), the host density (H) and the interaction term of the 

two factors, respectively. The interaction term was not significant for both H. indica LN2 

(t = 1.98, P = 0.056) and S. bicornutum (t = 0.77, P = 0.45). Based on the above equation, 

host density and concentration of H. indica LN2 affected the mortality linearly leading to 

the following equation: 

HCCM 28.01.09.28 ++= (F2, 33 = 27.7, P < 0.0001, R2 = 0.63). 

For S. bicornutum the equation turned out to be quadratic: 

22 04.09.1001.054.01.28 HHCCCM −+−+−= (F 4, 30 = 7.39, P = 0.0003, R2 = 0.50) 

Derivatives of the equations were used to determine a concentration or a host density at 

which the maximum WFT mortality can be obtained, given one of the two variables. Since 

the equation was linear for H. indica LN2, the maximum CM could not be estimated, 

indicating that by increasing one of the two variables it may be possible to maximize the 

control level of WFT. However, for S. bicornutum, given a host density between 10 and 50 

WFT, the maximum WFT mortality would be attained when a concentration of 

approximately 270 IJs cm−2 is applied. Likewise, given a concentration between 100 and 

400 IJs cm−2 of S. bicornutum, a maximum WFT mortality would be attained when the 

host density is 23.75 per arena (equals one WFT L2 cm−2). 
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Fig. 2.2. Correlation of host density (10, 20, 50 larvae per arena) to concentration (100, 200, and 

400 IJs cm−2) ratio and the corrected mortality (CM) values of western flower thrips caused by an 

application of entomopathogenic nematode strains Heterorhabditis indica LN2 and Steinernema 

bicornutum. 

Temperature  

Steinernema bicornutum-induced mortalities at a concentration of 100 IJs cm−2 at 30 (P = 

0.56) and 35 °C (P > 0.99), and at 400 IJs cm−2 at 35 °C (P = 0.28) did not differ from the 

control mortality. In contrast, for H. indica LN2 mortalities at temperatures between 20 

and 35 °C were significantly higher than the control mortality.  

The two-way interactions (EPNs*Concentration, EPNs*Temperature, and Concentration* 

Temperature) were significant (Table 2.4), indicating that the two strains differed in their 

efficacy against WFT depending on their concentrations and on the temperature at which 

the experiment was carried out.  

EPN-induced mortality values by S. bicornutum, an EPN species originating from cooler 

climates, did not differ significantly from H. indica LN2, an EPN strain originating from 

warmer climates, at 20 °C at the lower concentration tested (Table 2.5). On the other hand, 

at the higher concentration and 20 °C CM values in H. indica LN2 were significantly 

higher than in S. bicornutum. The highest CM in both EPNs at the higher concentration 

was recorded at 25 °C. In H. indica LN2 but not in S. bicornutum, CM levels at 25 °C did 

not differ significantly from those recorded at 30 °C. At the lower but not at the higher 
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concentrations CM by S. bicornutum at 25 °C were not different from the one at 20 °C 

(Table 2.5), indicating that S. bicornutum in general was more effective at lower, while H. 

indica LN2 was more effective at higher temperature regimes.  

The rate of WFT adult emergence was significantly faster at 30 and 35 °C (Fig. 2.3 A & 

B). However, the emergence rate was not significantly affected by the concentrations (F2, 96 

= 0.16, P = 0.856). 

Table 2.4. Summary of ANOVA results for corrected mortality values of western flower thrips 

caused by entomopathogenic nematode (EPN) strains Heterorhabditis indica LN2 and Steinernema 

bicornutum at two concentrations (100 and 400 infective juveniles cm−2) under four different 

temperature (Temp) regimes (i.e. 20, 25, 30 and 35 °C). 

Source of variations df F P 

EPN 1 73.19 < 0.0001 

Concentration 1 20.26 < 0.0001 

Temp 3 30.12 < 0.0001 

EPN*Concentration 1 10.31 0.0024 

EPN*Temp 3 9.86 < 0.0001 

Concentration*Temp 3 5.43 0.0027 

EPN*Concentration*Temp 3 0.26 0.8558 
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Table 2.5. Corrected mortality (%) of mixed soil-dwelling developmental stages of western flower 

thrips caused by entomopathogenic nematode species Heterorhabditis indica LN2 and 

Steinernema bicornutum at two concentrations (100 and 400 infective juveniles cm−2) as affected 

by four different temperature (°C) regimes. 

 100   400  

Temperature  H. indica  S. bicornutum H. indica S. bicornutum 

20 23.6 B a 29.8 A a 54.2 B a 34.1 B b 

25 48.9 A a 39.3 A b 84.0 A a 47.0 A b 

30 36.4 AB a 3.2 B b 77.7 A a 14.1 C b 

35 26.4 AB a 0.0 B b 27.2 C a 0.0 D b 

Corrected mortality means (%) within a column or a row for a given concentration followed by the 

same upper or lower case letter, respectively, are not significantly different. 

Finally, after checking the data for the appropriate model to be selected using lack-of-fit 

test, the effect of temperature on the CM of WFT was fitted to a quadratic function 

( 2
21 TTCM ββα ++= , where β1 and β2 are linear and quadratic slopes, respectively, CM 

is corrected mortality, and T is temperature). For H. indica LN2, the data from all 

temperatures were fitted. For S. bicornutum, the result showed a zero CM for almost all 

observations at 35 °C, and hence S. bicornutum data at this temperature were excluded 

from the analysis. The results indicate that in all cases for both EPN species the data fitted 

to the quadratic equation with high degrees of correlation (0.79 ≤ R2 ≤ 0.99) and 

significance (0.048 ≤ P < 0.0001) (Table 2.6). These data indicate that extreme 

temperatures beyond the ones tested in this study will result in lower CM of WFT for 

H. indica LN2 and S. bicornutum at the two concentrations tested. 
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Fig. 2.3. Daily (A) and cumulative (B) adult western flower thrips emergence (%) (previously 

introduced as L2 to the assay, refer to Materials and Methods part for details) three to seven days 

after entomopathogenic nematode application at different temperatures (i.e. 20, 25, 30 and 35 °C); 

* indicate significant differences in adult emergence within the respective temperature regimes 

tested. 
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Table 2.6. Regression coefficients of the effects of four temperature regimes (20, 25, 30, and 35 

°C) on the efficacy of entomopathogenic nematodes (EPN) at different concentrations (Conc) 

against mixed soil-dwelling life stages of western flower thrips for the regression equation: CM = 

α+ βT + γT2, where CM = corrected mortality (%), and T = temperature (°C). 

EPN  b Conc  α β γ  Pβ  Pγ  R2 

100 – 219.9 19.3 – 0.35 0.048 0.047 0.7942 

H. indica  
400 – 473.4 42.4 – 0.80 < 0.001 < 0.001 0.998 

100 – 463.5 42.9 – 0.92 0.020 0.015 0.990 
a S. bicornutum  

400 – 475.4 43.8 – 0.91 0.004 0.003 0.990 

a For Steinernema bicornutum, data from 35 °C were excluded from the analysis (see text for the 

details). 
b Concentrations are given as numbers of infective juveniles cm−2. 

The test for a null hypothesis that β = 0 or γ = 0 is indicated by their respective P-value, i.e., Pβ 

and Pγ  and R2 shows regression coefficient for the model. 

2.4. Discussion 

Results of this study clearly show that EPNs are efficient control agents of soil-dwelling 

life stages of WFT, confirming reports of several previous studies (Chyzik et al., 1996; 

Ebsaa et al., 2001a,b; Premachandra et al., 2003a). However, efficacy of EPNs against 

WFT largely varied among species and strains, and concentrations. Moreover, 

environmental factors such as temperature and host density, had a considerable impact on 

the efficiency of the tested EPN species/strains. 

EPN strains (experiment I) 

EPNs, even strains of the same EPN species, differ in their pathogenicity to different insect 

species (Hay and Richardson, 1995). In their study S. carpocapsae strain S.S2 from Egypt 

caused significantly higher CM in WFT than the S. carpocapsae strain A1 B5 from Italy, 

which might be due to the different geographical origin and environmental adaptations of 

the two strains. 
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Although we tested more Steinernema than Heterorhabditis spp./strains, we found more 

effective strains with Heterorhabditis against WFT. Similar results were also reported in 

other studies (Chyzik et al., 1996; Premachandra et al., 2003a) suggesting that WFT is 

more susceptible to Heterorhabditis than to Steinernema spp./strains; thus, in future studies 

more emphasis should be given to Heterorhabditis spp./strains.  

Concentration (experiment II) 

At 200 IJs cm−2, except for S. abassi PAL S09, WFT mortality in this experiment was 

similar to the one recorded in experiment I. On the other hand, even the most efficient EPN 

strain in our study, i.e., H. indica LN2, yielded only CM levels of up to 40% at 100 IJs 

cm−2. Yet, for other pests concentrations of 150 IJs cm−2 in the field or under semi-field 

conditions can result in pest population reductions >50% (e.g., McCoy et al., 2000; Samish 

et al., 1999). In our study, however, an increase in EPN concentration lead to an increased 

WFT mortality, corroborating results of previous studies (Chyzik et al., 1996; Ebssa et al., 

2001a,b; Premachandra et al., 2003a). In experiment I, some EPN strains applied at 200 IJs 

cm–2 did not differ in their pathogenicity against WFT. With increasing concentrations the 

tested EPN species/strains responded differently in their efficacy against WFT. In general, 

the tested Heterorhabditis spp./strains resulted in significantly steeper slopes than the 

Steinernema spp./strains, indicating that the former responded more to an increase in their 

concentrations than the latter. 

Host density (experiment III) 

For a given entomopathogen, there may exist a maximum host density at which the 

optimum pathogen efficiency is reached (Bellows and Hassell, 1999). In our study, 

increasing the WFT density from 10 to 20 per arena (i.e., thrips densities of 0.42 and 0.84 

cm−2) did not significantly affect the efficacy of H. indica LN2. However, at 50 WFT per 

arena (i.e., 2.1 thrips cm−2), H. indica LN2 showed a higher proportion of host mortality 

than at the lower host densities. This result may indicate that H. indica LN2, even at lower 

concentrations (100 and 200 IJs cm−2), was under utilized at the lower host densities.  

Using the methodology described in Ebssa et al. (2001a), H. indica LN2 was found to be 

more cruiser in terms of its foraging behavior than S. bicornutum (data not presented). 

Thus, due to its limited mobility, a further increase in host density to 50 WFT/arena was 
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probably beyond the capacity of S. bicornutum to parasitize its hosts, resulting in 

significantly lower WFT control at this density compared to the lower host densities. In 

most cases, the effect of EPN concentration depended on host density, but at high EPN 

concentrations, intraspecific interactions may negatively affect the host-finding behavior of 

the nematodes (Lewis et al., 1995b, 1996). In S. bicornutum, an increase in concentrations 

from 200 to 400 IJs cm−2 at 10 and 50 L2 WFT/arena, but not at the medium host density, 

negatively affected the host mortality. In H. indica LN2, however, the maximum CM at all 

host densities was attained at 400 IJs cm−2 though it was not significantly higher than at 

200 IJs cm−2 and the highest host density. In general, the efficacy of EPNs against WFT 

could be affected by EPN species/strains, concentration, host density, or interactions of 

these factors indicating that increasing EPN concentrations may not necessarily increase 

WFT mortality. 

Temperature (experiment IV) 

Similar reductions and low variability of the moisture content (MC) of the substrate used in 

the assay arena at the different temperatures tested was recorded (data not presented). This 

was probably due to the constant relative humidity (rh) of 60−70% maintained in this 

study. Thus, the differences in EPN efficacy at different temperatures tested can be mainly 

attributed to the effects of temperature but not to rh and/or MC.  

Steinernema bicornutum, a species originating from Yugoslavia, was more effective at 

lower than at higher temperatures. Likewise, H. indica LN2, which originates from a 

tropical region in India, was more effective at higher than at lower temperatures. These 

results indicate that efficacy of EPNs may be affected by the origin of the nematodes 

(Glazer, 2002; Griffin, 1993). 

At 20 °C and 100 IJs cm−2, H. indica LN2 did not significantly control WFT better than 

S. bicornutum. However, at this temperature, H. indica LN2 benefited more from an 

increase in concentration, and hence, CM levels by H. indica LN2 at 400 IJs cm−2 were 

significantly higher than the ones caused by S. bicornutum at the same concentration. This 

might indicate that the comparatively lower efficacy of H. indica LN2 at 20 °C was not 

due to its lower ability to parasitize WFT but due to its limited movement at relatively 

lower temperatures. 
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As long as the IJs are active and immature WFT are available as hosts in the arena, the 

infection process, i.e., searching, infecting, and killing of hosts, can be expected to be 

continuous. At the end of the experiment, IJs were observed on the top of the substrate in 

the arena. On the other hand, our results indicate that adult WFT emergence rate is faster at 

30 and 35 °C than at 20 and 25 °C. Thus, the time in which both nematodes and immature 

WFT are present in the same ecological niche was shorter at higher than at lower 

temperatures. This means that even if the nematodes are capable of infecting and killing 

their hosts at higher temperatures like 30 °C, overall WFT mortality could be lower 

compared to a lower temperature like 25 °C due to the reduced contact time at higher than 

at lower temperatures. Accordingly, WFT could utilize their faster rate of development at 

higher temperatures as an escape mechanism against EPNs. Alternatively, the lower CM 

levels at lower temperatures may be due to the direct impact of temperatures on the 

efficacy of the IJs though under such conditions IJs may have a relatively longer contact 

time with their hosts.  

In summary our results clearly demonstrate the great potential of EPNs as control agents of 

soil-dwelling life stages of WFT. Yet, generally high concentrations even for the most 

efficient EPN species/strains were required to achieve high control levels. However, at the 

comparatively low concentration of 100 IJs cm−2 and 23 °C, CM levels caused by 

H. indica LN2 increased from ca. 30% at a density of 20 WFT to ca. 50% at a density of 

50 WFT. Thus, in the future more emphasis should be given to study factors that might 

enhance the efficacy of EPNs for WFT control. Moreover, costs for mass production of 

EPNs have substantially decreased during the last 10 years and most likely will continue to 

do so (Ehlers, 2001). Hence in the near future applications of EPNs for WFT control, even 

at comparatively higher concentrations, may become economical, particularly in high value 

crops like ornamentals.  
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Abstract 

Efficacy of entomopathogenic nematodes (Steinernema bicornutum Tallosi, Peters and 

Ehlers and/or Heterorhabditis indica (strain LN2) Poinar, Karunakar and David) against 

soil-dwelling life stages of western flower thrips Frankliniella occidentalis (Pergande) 

(Thysanoptera: Thripidae) was assessed under different moisture conditions in a 

commercial plant growing substrate in laboratory experiments. In the first experiment both 

nematode species were tested at substrate moisture ranges of 67, 78, 88, or 95% relative 

moisture content that were maintained before applying the nematodes at 100 or 400 

infective juveniles cm–2. In the second experiment 10, 25, 50, 100, or 120 ml irrigation 

water, resulting in relative moisture contents of 72, 81, 90, 99%, or more than the 

saturation level of the substrate, respectively, was applied to the substrate. Heterorhabditis 

indica was applied either in 3 ml water and followed by irrigation, or by suspending the 

infective juveniles in the water amounts indicated above to apply the nematodes in higher 

water volume. Results indicated that at the higher application rate, initial moisture content 

did not significantly affect the efficacy of H. indica at the higher application rate. On the 

other hand, increasing moisture content resulted in improved efficacy of H. indica and 

S. bicornutum at lower and higher application rates, respectively. Similar thrips control 

levels of 44 and 60% at the lower and higher application rate of H. indica, respectively, 

were obtained at 88% relative moisture content. In the second experiment higher and 

statistically similar thrips mortality of 40 and 50% at lower and higher application rates of 

H. indica, respectively, were obtained when the infective juveniles were applied in a high 

volume suspension of 100 ml, or when followed by irrigation with 25 ml water, resulting 

in both cases in 81% relative moisture content. Generally, efficacies of the nematodes for 

thrips control can be improved by using an appropriate moisture content and/or post-

application irrigation. Thus, the high nematode application rates required for successful 

F. occidentalis control can be partly attributed to substrate moisture content and/or post-

application irrigation.  

3.1. Introduction 

Western flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae) is one of the most important insect pests of many important horticultural crops 

in greenhouses and open fields (Brødsgaard and Albajes, 1999). Chemical control of WFT 



Chapter 3. Nematode efficacy and soil moisture 28 

 

is difficult and several pest strains have already developed resistance to many commonly 

used insecticides (Brødsgaard, 1994; Espinosa et al., 2002). Present biological control 

strategies, especially inundative releases of predatory mites and bugs, e.g. Amblyseius 

cucumeris Oudemans (Acari: Phytoseiidae) and Orius spp. (Hemiptera: Anthocoridae), 

often do not provide sufficient control of WFT (Castañè et al., 1999), particularly in high 

value crops like ornamentals because of their low economic threshold levels. Hence the 

development of alternative biological control strategies for WFT is of paramount 

importance. 

For completing their life cycle the majority of WFT undergoes a soil-passage, where the 

late second instar larva descends the plants; subsequent prepupa and pupa develop in the 

soil (Berndt et al., 2004). This opens up the possibility for use of soil-born biocontrol 

agents. Entomopathogenic nematodes (EPNs) (Nematoda: Heterorhabditidae and 

Steinernematidae) can successfully attack soil-dwelling life stages of WFT (Chyzik et al., 

1996; Ebssa et al. 2001a,b, 2004; Premachandra et al., 2003a,b). Yet so far only few EPN 

species/strains like Heterorhabditis indica Poinar, Karunakar, and David strain LN2 and 

Steinernema bicornutum Tallosi, Peters, and Ehlers caused high mortality in WFT and only 

when applied at comparatively high application rates (Ebssa et al., 2004a).  

Appropriate soil moisture levels (Fujiie et al., 1996; Grant and Villani, 2003; Koppenhöfer 

et al., 1995) and post-application irrigation (Selvan et al., 1994) can enhance the efficacy 

of EPNs. High EPN survival and movement require optimum films of free water in soil 

particles (Glazer, 2002; Kondo and Ishibashi, 1985). At lower soil moisture levels, 

movement and infectivity of EPN can be inhibited and under dry soil or exposed 

conditions there is a risk of desiccation (Glazer, 1992; Grant and Villani, 2003). At high 

soil moisture the host-seeking of nematodes is restricted since all soil pores are filled with 

water, thereby eliminating the water-film surface tension, which nematodes require to push 

against for locomotion (Gaugler, 1988). For a better percolation of the EPN suspension the 

soil has to be moist prior to nematode application. Additionally, to assist nematodes in 

their search for hosts, EPN applications need to be followed by irrigation to assure that the 

infective juveniles (IJs) can reach the soil depths where the different hosts are found 

(Cabanillas and Raulston, 1996a,b; Selvan et al., 1994).  

In the last decades peat has increasingly become the substrate of choice in plant pot 

cultures (Nappi and Barberis, 1993). Thus testing the efficacy of biocontrol agents in such 
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a media is crucial. Substrates with high proportions of peat have greater total porosity 

(macro- and micropores), container capacity, and available water (Brückner, 1997). These 

physical properties of the substrate determine, among others, the mobility of IJs in the 

media (Kung et al., 1990; Smith, 1999), which in turn affects the efficiency of EPNs to 

locate and parasitize their hosts. Finally, the amount of irrigation water needed to rinse the 

nematodes down to their target region in the containers strongly depends on the type of 

plant growth media used. Hence we tested the efficacy of EPNs for WFT control in a peat-

based commercial growth substrate (Fruhstorfer Erde, Archut GmbH, Lauterbach-

Wallenrod, Germany). The specific objectives of this study were (i) to test the effects of 

soil moisture level and irrigation water on the efficacy of two nematode species with 

different foraging strategies against F. occidentalis, and (ii) to determine if soil moisture 

and irrigation need to be adjusted to reduce the nematode application rates without 

affecting their efficacies in controlling WFT. 

3.2. Materials and Methods 

Nematodes and thrips cultures 

Heterorhabditis indica and S. bicornutum were obtained from the Institute of 

Phytopathology, Christian-Albrechts University Kiel, Germany. In terms of their foraging 

behaviour the former is more a cruiser, while the latter is more an ambusher strategist 

(Ebssa et al., 2004a). The nematodes were reared in the laboratory at 23 ± 2 ºC in greater 

wax moth larvae Galleria mellonella (L.) (Lepidoptera: Pyralidae) following the standard 

EPN rearing procedures (Kaya and Stock, 1997). Heterorhabditis indica (a tropical strain) 

and S. bicornutum (a temperate strain) were stored at 15 and 4 °C, respectively, until use. 

The nematodes were not more than one month old after harvested from G. mellonella 

larvae and were acclimatized for at least 6 h at room temperature before use. Required 

application rates of the nematodes were prepared from stock cultures following a 

quantification and dilution procedure described in Kaya and Stock (1997). Uniform-aged 

WFT required for the experiments were obtained by rearing the thrips on pods of green 

beans Phaseolus vulgaris L. (Fabaceae) in an incubator (23 ± 2 ºC, 50−60% relative 

humidity (rh), and L16:D8 h photoperiod) (Berndt et al., 2004). 

 



Chapter 3. Nematode efficacy and soil moisture 30 

 

General methodology 

Substrate, i.e., Fruhstorfer Erde, was sieved with a 1.2 × 1.2 mm sieve, and then added to 

the assay arena in the respective experiments. Plastic pots (5.0, 8.0 and 5.0 cm height, top 

and base diameter, respectively) were used as arenas. Fruhstorfer Erde is composed of 

humus, clay and peat in a proportion of 15:35:50, respectively, and has a high water 

holding capacity (i.e., ca. 480% weight of water to weight of oven-dried substrate) due to 

its high proportion of peat (Kuntze, 1972). Late second instar larvae (L2) of WFT (8 to 9 

days old after the emergence of the neonates) were transferred to the top of the substrate in 

the arena using a fine camel hairbrush. A Petri dish (diameter 10 cm) was used as a cover 

for the arena. To allow ventilation, a small hole (diameter 20 mm) was drilled into the 

centre of the Petri dish and to prevent thrips from escaping, thrips-proof gauze (64 µm pore 

size) was glued onto the hole. The inner part of the Petri dish, except the hole, was painted 

with insect glue (Temmen GmbH, Hattersheim, Germany) and served as a ‘sticky trap’ to 

trap emerging adult thrips. The thrips in the arena were incubated in a growth chamber for 

two days so that some of the L2 could moult into prepupae and pupae (Premachandra et al., 

2003a), thereby providing a population mixture of different developmental stages in the 

substrate. On the second day after L2 introduction, EPN suspensions were pipetted on the 

top of the substrate. An equal amount of distilled water to the EPN suspensions was 

pipetted in the untreated controls. WFT adults started to emerge two days after EPN 

application. Hence, starting from the second day after EPN application, adult WFT on 

sticky traps and on the top of the substrate in the arena were removed and counted daily 

under a binocular for one week until no more adult thrips were observed. In all 

experiments an assay arena was randomly assigned to a treatment depending on the types 

of experimental designs used in the respective experiment. The experiments were carried 

out in a growth chamber (23 ± 2 °C, ca 70% rh, and L16:D8 h photoperiod). All 

experiments were repeated twice over time, with two and three replicates, respectively, 

giving a total of five replications per treatment. Levels of efficacy of EPNs in the different 

treatments were assessed using data on WFT adult emergence. 

Experiment I: Effect of substrate moisture levels on the efficacy of EPNs  

In a preliminary experiment, the maximum water holding capacity (WHC) of Fruhstorfer 

Erde, the model substrate used in our study, was determined by the oven-dry method 
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(Cassel and Nielsen, 1986). The moisture content (MC) at the maximum water holding 

capacity (MCWHC) is 84.5% (w/w). It was calculated by dividing the amount of water 

retained in the substrate after drainage ceased by the weight of the fully wet substrate after 

drainage ceased. To determine the amount of water retained in the substrate after drainage 

ceased, the weight of the oven-dried substrate was deducted from that of the fully wet 

substrate. The drainage ceased 6 h after watering the substrate as suggested by Cassel and 

Nielsen (1986). To minimize the loss of substrate moisture during the course of the 

experiment, and to keep thrips and EPNs in the arena, the perforated base holes of the pots 

were fully closed. Ten g of the substrate (MC ca. 55%, i.e., weight of water to weight of 

the substrate with water) was added per pot. Then, 20 late L2 WFT were introduced to 

each pot and incubated for two days as indicated above. Two days after L2 introduction 0, 

3, 8, or 13 ml water was added per pot. After ca. 30 min, which assured that the water had 

uniformly moistened the substrate, an EPN suspension in 2 ml water was applied. The 

different amounts of water were added to the substrate to obtain different MC levels. Based 

on high natural mortality in thrips and/or low efficacy of EPNs at the two extreme MCs of 

the substrate, the lowest and highest MCs included in this experiment were determined in 

preliminary experiments and adjusted to the ones indicated in Table 3.1. A relative 

moisture content (RMC) of the substrate, a more practical moisture level indicative than 

the actual moisture content, was used as treatments. The RMC at a given MC of the 

substrate was calculated as: 100*%
WHCMC

AMCRMC =  where %RMC = relative moisture 

content of the substrate as a percentage of the actual moisture content (AMC) to the 

moisture content at the maximum water holding capacity (MCWHC) of the substrate.  
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Table 3.1. Amounts of water (ml) used for pre-nematode application to establish different moisture 

contents (%) of the substrate and nematode suspensions (Experiment I), and for nematode 

suspension and post-nematode application to rinse the nematodes (Experiment II).  

 Amount of water 1 AMC 2 RMC 3 Water potential 4 

0 + 2 56.5 67 – 30  

3 + 2 65.5 78 – 8 

8 + 2 74.5 88 – 4 Ex
pe

rim
en

t I
 

13 + 2 79.9 95 – 2 

3 + 10 61.0 72.0 – 25 

3 + 25 68.5 81.0 – 6 

28 + 0 68.5 81.0 – 6 

3 + 50 76.1 90.1 – 4 

3 + 100 83.9 99.3 – 1 

Ex
pe

rim
en

t I
I 

103 + 0 83.9 99.3 – 1 

 3 + 120 More than saturation 

1 In Experiment I, EPN suspension was applied in 2 ml distilled water after the substrate was 

moistened with 0, 3, 8, or 13 ml of water. In experiment II, for the amount of water indicated as 

X + Y, the nematodes were suspended in X ml water and pipetted on the surface of the substrate 

in the arena before applying Y ml water, which was used for rinsing the nematodes down. 
2 The actual moisture content (AMC, in %) of the substrate was determined through an oven-dried 

method (w/w).  
3 Relative moisture contents (RMC, in %), a more practical soil moisture parameter than AMC in 

entomopathogenic nematode studies, was expressed as the ratio of AMC to the moisture content 

of the used substrate at its maximum water holding capacity (84.5%). 
4 The water potential (kPa) was determined using the filter paper method (Kaya and Stock 1997). 
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Finally, H. indica or S. bicornutum at 100 or 400 IJs cm−2 in 2 ml distilled water were 

applied to an arena, resulting in the final MC of the substrate (Table 3.1). EPN species, 

application rate, and moisture content were combined factorially in a completely 

randomised block design. Each treatment, i.e., different RMC of the substrate, applied with 

EPNs had its own untreated control treatment where 2 ml distilled water instead of an EPN 

suspension were pipetted to the substrate.  

Experiment II: Amount of water required for rinsing EPNs down to the WFT 

pupation depth 

The perforated base holes of the pots were closed with thrips-proof gauze (64 µm pore-

size) that allowed IJs to pass through. In preliminary experiments, in a similar arena but 

only with a depth of ca. 0.5 cm, more than 80% of the applied IJs could pass through the 

gauze. In post-nematode applications, the IJs can be washed down below the depth of host 

insect if the amount of water used in post-application is higher than the saturation level of 

the substrate. The arenas were filled with 60 g substrate (MC = 58% ± 2.2), forming a top 

area of 33.2 cm² and a depth of 4.5 cm. Twenty late L2 WFT were transferred to the arena. 

Then the arena was covered with a sticky trap as indicated above. Approximately 100 g 

substrate was added to another plastic pot (10 cm base diameter) and the arenas with WFT 

were placed individually on the top of the substrate in the second pot. Two days later, i.e., 

after mixed soil-dwelling developmental stages of WFT had developed, H. indica at 

application rates of 100 or 400 IJs cm−2 was pipetted to the top of the substrate in the arena 

(MC = 54% ± 0.60). Due to decreasing virulence in S. bicornutum over several generations 

in vivo rearing, this nematode was excluded from this experiment. In order to wash the 

nematodes down to the depth where the thrips pupate, different amounts of rinsing water 

were used (Table 3.1). Any excess water in the arena could percolate down to the substrate 

in the bigger second pot. The main factors, i.e., rinsing water levels, and EPN application 

rates, were combined factorially in a completely randomised block design. For all EPN 

treatments, equal amounts of distilled water were applied in the untreated controls. 

Statistical analyses 

WFT mortality data were corrected for control mortality using Abbott’s corrected mortality 

(CM) formula (Abbott, 1925). The efficacy of EPN strains under different conditions was 

evaluated using the CM data. CM values were arcsine transformed before subjected to 
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statistical analyses. Data were analysed using SAS version 8 (SAS Institute, 1999). Data of 

experiments repeated over time were checked for homogeneity of variance using the 

HOVTEST = LEVENE option in the ANOVA procedure and pooled only when variance 

homogeneity could be assumed. The data were analysed using the GLM procedure in SAS 

to determine single or interaction effects of factors. Regression analyses were performed 

using the REG procedure. Lack-of-fit tests were used to determine the appropriate model 

to be used in the regression analyses. Whenever significant interactions were observed 

between factors, treatment means of one factor were compared at each level of the other 

factor. CM means caused by EPN applications in different treatments were compared to 

zero (the CM of the control treatment) using Dunnett’s two-sided test. When significant 

factor effects were detected by means of ANOVA, CM means at different levels of the 

respective factor were compared using least significance difference (LSD) and t-test mean 

comparison procedure for all pairwise and two sample comparisons, respectively. A 

significance level of α = 0.05 was used in all analyses. Data are presented as means ± SE. 

3.3. Results 

Experiment I 

WFT suffered higher mortality in the untreated control at higher substrate moisture (Table 

3.2). The highest proportion of emerged adults in the untreated control treatment was 

obtained at a RMC of 67%. Except in S. bicornutum at 100 IJs cm−2 and 67% RMC thrips 

mortalities in all EPN treatments were significantly higher (P < 0.05, Dunnett test) than in 

the untreated controls. 

The effect of the relative moisture content of the substrate on the efficacy of EPNs 

depended on the nematode species and the application rates (EPN*Concentration*RMC: 

F3, 59 = 2.87, P = 0.037). Thus, the effect of RMC was assessed for each EPN species at the 

different application rates. Corrected mortality values at different RMCs ranged from 7.4–

63.5% depending on the two EPN species and their application rates. At 400 IJs cm−2, 

RMC did not significantly affect the efficacy of H. indica (F3, 21 = 0 24, P = 0.867). 

However, at 100 IJs cm−2 WFT mortality was significantly reduced at a RMC of 67%. On 

the other hand, RMC levels significantly affected the efficacy of S. bicornutum at both 100 

and 400 IJs cm−2. The lowest CM values at 100, and 400 IJ cm−2 were obtained at RMCs of 

67 and 95, and at 67%, respectively (Table 3.2).  
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Table 3.2. Mean (± SE) of adult western flower thrips emerged (%) in untreated controls, and 

corrected mortality (%) values (± SE) of western flower thrips caused by Heterorhabditis indica 

(strain LN2) and Steinernema bicornutum at two application rates (100 and 400 IJs cm−2) as 

affected by the different moisture contents of the substrate (expressed as the relative moisture 

content (RMC, %) of the substrate; see text for details).  

 H. indica   S. bicornutum  
RMC Emergence 

100 400 100 400 

67 94 ± 6.4 a 21 ± 6.7 A b 55 ± 6.0 A a 7 ± 4.7 A b  17 ± 3.6 B c 

78 88 ± 4.1 ab 31 ± 3.9 A ab 64 ± 6.9 A a 27 ± 2.4 A a  28 ± 4.0 B bc 

88 76 ± 6.0 bc 44 ± 3.9 A a 59 ± 7.7 A a 15 ± 6.3 B ab 35 ± 6.4 B b 

95 66 ± 5.0 c 38 ± 9.1 A ab 59 ± 9.3 A a 8 ± 3.4 B b  52 ± 3.8 A a 

Means within a column and row (for a given application rate) followed by the same lowercase and 

uppercase letters, respectively, are not significantly different (LSD-test). 

The difference between the two EPN species depended on their application rates and the 

substrate moisture. At lower moisture levels and lower nematode application rates, and 

near the saturation level of the substrate at higher EPN application rates, WFT mortality 

did not significantly differ (Table 3.2). 

The negative effect of higher RMC levels on the efficacy of the two nematode species was 

not evident except for S. bicornutum at 100 IJs cm−2, in which the relationship between 

WFT mortality and RMC lead to a significant quadratic function (Y = 12.8X – 0.1X2 – 

149.5, P-value of both terms = 0.0148; Y is thrips corrected mortality, and X is the relative 

moisture content). At 100 and 400 IJs cm−2 of H. indica (Y = 0.71X – 24.2, P = 0.036), and 

S. bicornutum (Y = 1.2X – 64.9, P < 0.0001) respectively, increase in RMC resulted in 

significantly higher efficacy of the nematodes as indicated by the significant slopes of the 

linear functions.  

In terms of their efficacy against WFT, H. indica, and S. bicornutum significantly 

responded to increases in their application rates only at 67 and 78%, and at 95% RMC, 

respectively (Table 3.3). Furthermore, considering RMC as a covariate variable, an 
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increase in WFT mortality due to an increase in EPN application rates from 100 to 400 IJs 

cm−2 was significantly affected by moisture content in S. bicornutum (F1, 32 = 8.3, P = 

0.007) but not in H. indica (F1, 37 = 1.6, P = 0.213). Moreover, increases in WFT mortality 

due to an increase in application rate of S. bicornutum at 67 and 78% RMC were 

significantly lower than the ones at other RMC levels except for H. indica at 95%.  

Table 3.3. Slopes for increase in western flower thrips mortality due to an increase in application 

rates of entomopathogenic nematodes (EPN) from 100 to 400 IJs cm−2 at different relative moisture 

contents (RMC) of a substrate expressed as the actual moisture content of the substrate to the 

moisture content of the substrate at its maximum water holding capacity. 

EPN RMC (%) Slope 

67 0.110 ab * 

78 0.109 ab * 

88 0.049 b 
H. indica LN2

95 0.071 abc 

67 0.032 c 

78 0.001 c 

88 0.067 b 
S. bicornutum 

95 0.148 a *** 

Slopes followed by the same letters are not significantly different (adjusted multiple t-test, Zar, 

1999). *, *** indicate that a slope at a particular RMC is significantly different from zero at α = 

0.05, and 0.0001, respectively. 

Experiment II 

Rinsing water had a significant impact on adult emergence in WFT (F6, 24 = 6.44, P = 

0.004). Under the use of excess rinsing water, WFT suffered significantly higher natural 

mortality than when lower amounts of water were used. Moreover, rinsing water of 100 ml 

resulted in a lower adult WFT emergence (Table 3.4) than other lower amounts of rinsing 

water.  
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Table 3.4. Effect of different water volumes (ml) used for suspending Heterorhabditis indica LN2 

and as irrigation in post-nematode application on (i) emergence of adult western flower thrips 

(mean % ± SE) in non-EPN control treatments, and (ii) efficacy of H. indica at two application 

rates for western flower thrips control.  

Mean (% ± SE) corrected mortality  1 Volume of 

suspension + irrigation 
Adult emergence 

100 IJs cm−2 400 IJs cm−2 

3 + 10 94 ± 2.9 a 18.6 ± 3.1 ab 28.7 ± 1.1 bc 

3 + 25 86 ± 5.3 a 36.6 ± 6.3 a 49.7 ± 4.0 a ns

28 + 0 91 ± 2.9 a 20.7 ± 6.3 ab 43.5 ± 6.4 ab 

3 + 50 85 ± 2.0 a 35.8 ± 3.5 a 53.0 ± 1.1 a 

3 + 100 62 ± 3.2 b 25.0 ± 3.5 ab 51.4 ± 1.8 a  

103 + 0 67 ± 8.0 b 39.0 ± 10.3 a 48.1 ± 2.8 a ns

3 + 120 43 ± 4.3 c 13.2 ± 7.1 b 16.4 ± 4.8 c ns

1 For the volume of water indicated as X + Y, the nematodes were suspended in X ml water and 

pipetted on the surface of the substrate in the arena before applying Y ml irrigation water. 

Means within a column followed by the same letter are not significantly different (LSD test). 
ns Thrips corrected mortality values at 100 and 400 IJs cm−2 are not significantly different at the 

particular treatment (t-test). 

The amount of post application water significantly affected EPN efficacy in WFT control 

(F6, 39 = 6.51, P < 0.0001). On the other hand, the post application irrigation did not depend 

on the application rate of the nematode suspension (for interaction term: F6, 39 = 0.51, P = 

0.795). Except under the use of excess water, i.e., 120 ml water (P = 0.418 for both 

application rates, Dunnett test), corrected mortalities in all post application irrigation 

treatments for both nematode application rates were significantly higher than the natural 

mortality in the untreated control treatment. Application of the nematodes in a 3 ml 

suspension that was followed by 25 or 50 ml post-application irrigation at both application 

rates and 100 ml at the higher EPN application rate resulted in significantly higher thrips 

mortality compared to the use of excess irrigation, i.e., 120 ml at the respective application 
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rates (Table 3.4). Moreover, suspending the nematodes in 103 ml water followed by no 

additional irrigation caused high thrips control. On the other hand, 10 ml water was not 

sufficient to rinse the nematodes down; hence, the mortality in this treatment was lower 

than the one in which sufficient irrigation water was used (Table 3.4). The efficacy of the 

nematodes did not differ between the use of the nematode in a higher amount of 

suspension or rinsing the nematodes that had been applied in only a little amount of 

suspension.  

Increasing the nematode application rates from 100 to 400 IJs cm−2 under the use of excess 

irrigation water did not improve thrips control. However, in all treatments, except at an 

application of the nematodes in 3 or 103 ml suspension followed by an irrigation of 25 or 0 

ml, respectively, thrips mortalities at an application rate of 400 were significantly higher 

than at 100 IJs cm−2 (Table 3.4).  

3.4. Discussion 

When the substrate was saturated up to 95% of its maximum water holding capacity, as 

high as 35% thrips natural mortality was recorded, probably due to suffocation of the 

thrips. Helyer et al. (1995) reported up to 40% thrips mortality in a compost experiment, 

suggesting that natural mortality in thrips can be rather high. Even if such substrate 

saturation limits movement of thrips, thereby hampering their potential escape from an IJs 

attack, migration of the nematodes could be also negatively affected (Molyneux and 

Bedding, 1984). Consequently we recorded lower thrips mortality at low application rates 

of S. bicornutum, the less mobile nematode species used in our study. On the other hand 

WFT preferred relatively drier substrate conditions. In such a dry substrate, IJs encounter 

problems in mobility and persistence (Grant and Villani, 2003). When IJs are able to 

persist for several days in the substrate, one can presume continuous infection attempts. 

However, when nematode persistence is interrupted because of drier substrate conditions, 

the infection process could cease even if WFT in their susceptible developmental stages 

remain in the substrate. Thus, in our study EPNs caused lower WFT mortalities at lower 

moisture conditions, possibly because of difficulties in migration and/or persistence of the 

IJs. 

In our study, moisture levels differently affected the ability of the two nematode species to 

control thrips, corroborating results from earlier studies (Fujiie et al., 1996; Grant and 
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Villani, 2003; Koppenhöfer et al., 1995; Molyneux and Bedding, 1984). Heterorhabditis 

indica was less affected by different moisture levels than S. bicornutum, as indicated by the 

slope of the regression equation of WFT mortality and moisture levels. In H. indica at the 

lower application rate, the level of the substrate moisture was crucial for an even 

distribution of the nematodes in the substrate. At higher substrate moisture levels, 

H. indica migration was improved, possibly leading to higher numbers of IJs at the depth 

of pupation of thrips, and consequently causing higher WFT mortality. Yet levels of 

moisture content did not affect thrips mortality at the higher application rate. Possibly here 

already at the lower moisture level a sufficient number of IJs were present at the depth 

where thrips pupate to cause high mortality in WFT. Increasing the moisture levels might 

have enabled even more IJs to reach regions where WFT pupates, but as there is no linear 

relationship between H. indica application rates and WFT mortality (Ebssa et al., 2004a) a 

further increase in IJs did not result in higher rate of host infection.  

For a less mobile EPN species like S. bicornutum, the advantage of increased substrate 

moisture could be that the IJs might have been carried to deeper depths with the water used 

for suspending the nematodes if the substrate is already moist enough. In such situations, 

when the nematode is applied at a low application rate, most of the IJs could percolate with 

the EPN-suspending water even to the deeper depth than WFT, though some IJs may be 

retained on the way down in the substrate. From such a depth ambusher IJs like 

S. bicornutum may not be able to ascend in searching of their hosts, possibly explaining the 

low efficacy of S. bicornutum at 100 IJs cm−2 even at an increased moisture content of the 

substrate. However, at higher application rates more IJs on their way down with the 

percolating water might stick to substrate particles at various depths. In such a scenario, the 

number of IJs at the depth of WFT pupation could be high enough for efficient WFT 

control. Yet in our study similar WFT control was achieved at lower and higher EPN 

application rates, like in H. indica, when the appropriate substrate moisture was 

maintained. At RMC 88 and 95% high WFT mortality was caused by H. indica at 100 and 

400 IJs cm−2, with no significant differences between the two application rates. For 

S. bicornutum higher nematode application rates were always required to achieve higher 

thrips mortality. 

For field applications of EPNs most often large spray volumes are required (Shetlar, 1999). 

When lower spray volumes are used, pre- and/or post-application irrigation may be 
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required to help nematodes to reach their target hosts in the soil (Downing, 1994; Shetlar, 

1999). In our study, similar and higher WFT mortalities were obtained for a given 

application rate when the IJs were either formulated in a higher amount of suspension (i.e., 

100 ml) or when IJs were formulated in a low volume suspension (i.e., 3 ml) but followed 

by medium to high amounts of post-application irrigation (25−100 ml). Up to 80% of WFT 

pupate at a depth of 3−5 cm (Ebssa et al., 2004c). Thus, the majority of the applied 

nematodes need to be washed down to this depth. In over saturated substrates (i.e., 120 ml 

post-application irrigation) the pores were most likely filled with water, thereby hampering 

the mobility of the IJs. Moreover, up to 30% of the applied IJs could be recovered from the 

water that had percolated through the substrate (data not shown). Thus, low WFT mortality 

in the high amount of post-application irrigation treatments was probably due to lower 

application rates and/or reduced mobility of the IJs. Use of intermediate amounts of post-

application irrigation water (25 ml irrigation) or high volume EPN suspension (103 ml 

EPN suspension followed by no irrigation) resulted in similar levels of WFT mortality at 

lower (100 IJs cm−2) and higher (400 IJs cm−2) EPN application rates. However, very low 

(10 ml) or high (100 and 120 ml) amounts of irrigation water, or low volumes of EPN 

suspension (28 ml) without any post-application irrigation caused lower thrips mortality at 

the lower than the higher nematode application rates. 

In summary, it is possible to achieve similar levels in WFT mortality using a four times 

lower application rate of H. indica, making the use of EPNs an economically interesting 

strategy for WFT control. Hence, use of an efficient EPN species/strain, appropriate 

substrate moisture when applying, and sufficient post-application irrigation are some of the 

key factors for successful control of WFT by EPNs. However, the exact levels of substrate 

moisture and/or amount of irrigation water depend on several factors including nematode 

species/strains used. For Fruhstorfer Erde, our model substrate, a substrate moisture of 

88% RMC was the most appropriate pre-application moisture condition. Alternatively, 

applications of low volume EPN suspensions should be followed by intermediate amounts 

of irrigation water or the EPNs should be formulated in higher volumes of suspension. In 

ongoing studies, we are investigating in the greenhouse post-EPN-application irrigation 

systems at different moisture conditions of several commercial growing substrates to 

optimise use of EPNs for control of soil-dwelling life stages of WFT.  



Chapter 4. Thrips pupation depth and nematode efficacy  41 

 

Efficacy of Entomopathogenic Nematodes against Western Flower 

Thrips Frankliniella occidentalis at Different Pupation Depths  

 

 

 

Ebssa, L., Borgemeister, C., Semrau, J., Poehling, H.-M.  
 

Institute of Plant Diseases and Plant Protection, University of Hannover, Herrenhaeuser 

Str. 2, D-30419 Hannover, Germany 

 

 

Nematology 6: 495 – 505. 

 

Copyright © Brill Academic Publishers. Used by Permission 

 

 

4 



Chapter 4. Thrips pupation depth and nematode efficacy  42 

 

Abstract 

To study effects of western flower thrips (WFT) Frankliniella occidentalis (Pergande) 

pupation depth on the efficacy of entomopathogenic nematodes (EPNs), Heterorhabditis 

indica strain LN2 and Steinernema bicornutum were applied at concentrations of 100 and 

400 infective juveniles (IJs) cm−2 to WFT that had pupated at different depths. 

Additionally, effects of EPN concentrations and thrips densities were tested on the 

pupation depth of WFT. A higher concentration of H. indica was required when the thrips 

pupated deeper. Yet applications of S. bicornutum even at a high concentration resulted in 

a significantly lower WFT mortality at greater than shallower depths. Generally, WFT 

control levels of 5–57% were obtained depending on depth of pupation, EPN species, and 

concentrations. The results clearly indicate that WFT at high EPN concentrations seem to 

remain at a certain soil depth in order to avoid EPN attraction by moving around. Without 

or at low EPN concentrations, up to 80% of WFT pupated at the deepest depth of 3−5 cm. 

However, at higher thrips densities and EPN concentrations, 45−48% of WFT pupated in 

the medium depth of 1−3 cm. Thus, depth of pupation is an important factor in WFT 

control using EPNs. 

4.1. Introduction 

Western flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae) has become a major pest, especially in vegetable and ornamental crops. It 

causes considerable crop damage through direct feeding and as a virus vector of for 

example Tomato Spotted Wilt Virus (TSWV) (Kirk, 2002). Several control strategies for 

WFT have been developed (Jacobson, 1997), but it is often not possible to keep WFT 

below the economic threshold level, particularly in high value crops such as ornamentals in 

greenhouses (Sadof and Sclar, 2002). This has been partly attributed to the short life cycle 

and high fecundity of thrips females, often leading to fast population build-up (Gaum et al., 

1994), and the low economic threshold levels in ornamentals (Sadof and Raupp, 1997).  

To complete its life cycle WFT undergoes six developmental stages: eggs, first and second 

instar larvae, prepupae, pupae, and adults. The late second instar larvae (L2) of WFT 

exhibit positive geotaxis by moving away from plants towards the soil for pupation (Berndt 

et al., 2004). In compost that was compacted loosely using a spatula, WFT was reported to 

pupate as deep as 3.5 cm (Helyer et al., 1995). According to van Lenteren et al. (1995) the 
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majority of WFT pupate at depths between 1.5 and 2.0 cm. Unless disturbed both prepupae 

and pupae stages are immobile and do not feed. Depending on suitability of the host plants, 

prepupal and pupal stages last for 1 to 5 days at temperatures between 20 and 30 °C (van 

Lenteren et al., 1995). 

Entomopathogenic nematodes (EPN) are widely used as biocontrol agents against insect 

pests in the soil (Ehlers, 1996) and on leaves as foliar application (Williams and Walters, 

2000) mainly because of their symbiotic bacteria that cause septicemic death to the insect 

hosts. However, EPNs differ in their efficacy depending on, among other factors, EPN 

species/strains and susceptibility of host insects (e.g., Hay and Richardson, 1995). Abiotic 

(such as soil texture and moisture, temperature, aeration, plant root exudates etc.) and 

biotic factors (such as host density, host size, intra- and inter-specific competition, natural 

enemies etc.) also affect the efficacy of EPNs (Ebssa et al., 2004a; Kaya and Koppenhöfer, 

1996; Koppenhöfer et al., 1995; Zervos et al., 1991). In their foraging behaviour, EPNs are 

categorized into ambushers, which have a ‘sit-and-wait’ strategy, ‘cruisers’, which actively 

search for their hosts, and intermediates, which show both types of foraging behaviour 

(Lewis, 2002). Depending on their foraging behaviour, EPN performance may vary under 

different environmental conditions. Provided sufficient time, cruisers may perform better 

in finding their hosts at different depths in the soil than ambushers. However, to reach their 

hosts at deeper soil depths, ambushers often need to be washed down into the soil by 

means of post-application irrigation (Cabanillas and Raulston, 1996b). 

Potential use of EPNs as biocontrol agents against WFT has already been reported (Chyzik 

et al., 1996; Ebssa et al., 2001a; Premachandra et al., 2003a). All soil-dwelling life stages 

of WFT are highly susceptible to EPNs, but adult thrips through their negative geotaxis can 

escape a nematode attack by leaving the soil (e.g. Ebssa et al., 2004a). Yet, EPN 

species/strains differ in their efficacy against WFT and high nematode concentrations are 

required for WFT control. Heterorhabditis indica Poinar, Karunakar, and David (strain 

LN2) and Steinernema bicornutum Tallosi, Peters, and Ehlers (type strain) are among the 

most efficient EPN species/strains for control of F. occidentalis (Ebssa et al., 2004a). 

Substrate moisture and the amount of irrigation water used post application can markedly 

affect the efficacy of H. indica and S. bicornutum (Ebssa et al., 2004b).  

EPNs can be applied where soil-dwelling life stages of WFT are already present in the soil. 

However, it may take some time until the nematodes reach the depth where the majority of 
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WFT pre/pupae stay. If the time required for the nematodes to reach these levels is greater 

than the time the thrips need to complete their life cycle, the majority of the thrips might 

escape an EPN attack by emerging as adults, thereby leading to decreasing levels of EPN-

induced mortality in WFT. Moreover, it is possible that the depth of pupation in WFT is 

influenced by the thrips density and/or EPN concentrations. Likewise, depth of thrips 

pupation may affect the efficacy of EPNs. Thus, our objectives were to test the efficacy of 

EPNs against WFT that pupate at different depths and to assess if the depth of pupation of 

WFT is affected by thrips density and application of nematodes. 

4.2. Materials and Methods 

Maintenance of nematodes and thrips 

Heterorhabditis indica and S. bicornutum, obtained from the Institute of Phytopathology, 

Christian-Albrechts- University Kiel, Germany, were reared (24 ± 1 ºC) in greater wax 

moth larvae Galleria mellonella (L.) (Lepidoptera: Pyralidae) (Kaya and Stock, 1997). 

Until use, H. indica, a tropical strain, was kept at room temperatures while S. bicornutum, 

a temperate strain, was stored at 4 °C. The nematodes were a maximum of one month old 

and acclimatized for at least 6 h at room temperatures before use. From the EPN stock 

cultures, quantification and dilution procedures described in Kaya and Stock (1997) were 

used to prepare the required concentration of the nematodes. The WFT culture was 

maintained by rearing insects on pods of green beans Phaseolus vulgaris L. (Fabaceae) at 

23 ± 2 ºC, 50−60% relative humidity (rh), and L16:D8 h photoperiod (Berndt et al., 2004). 

General methodology 

Assay arenas were prepared from plastic pots (top and base diameters 8 and 5 cm, 

respectively, and height 5 cm). Fruhstorfer Erde, a commercially available growing 

substrate (Archut GmbH, Lauterbach-Wallenrod, Germany), sieved with a 1.2 × 1.2 mm 

mesh sieve, was used as a model substrate and added to an assay arena in the respective 

experiments. This substrate is composed of humus, clay, and peat (15:35:50) and has a 

water holding capacity of ca 480% wt/dry wt substrate. A Petri dish (diameter 10 cm) was 

used to cover the arena. A 20 mm diameter hole was drilled into the centre of the Petri dish 

to allow ventilation into the arena. To prevent thrips from escaping, thrips-proof nylon 

gauze (64 µm pore size) was glued onto the hole. The inner part of the Petri dish, except 
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the hole, was painted with insect glue and served as a ‘sticky trap’ to trap emerging adult 

thrips. Four days after the introduction of late L2 WFT (8–9 days old after neonate) into 

the arena, adult thrips started to emerge. Hence, adult thrips were daily counted from sticky 

traps and the top of the substrate in the arena under a stereomicroscope for one week until 

no more WFT were observed. To repeat the experiments over time, the trials were carried 

out in two runs with two and three replicates in the first and second runs, respectively, 

giving a total of five replicates per treatment. The experiments were conducted in a 

climate-controlled chamber (23 ± 2 °C, ca. 70% rh, and 16L:8D h photoperiod). 

Depth of WFT pupation and EPN efficacy 

To prepare assay arenas, the bases of the pots were cut out at different heights serving as 

different pupation depths of 0.5, 1.0, 2.0, 3.0, and 4.0 cm (Fig. 4.1.1) (and hereafter 

referred as arena). The bottom of the arena was closed with thrips-proof nylon gauze (64 

µm pore size) that allowed water percolation but prevented WFT leaving the arena. Each 

arena was placed in another similar plastic pot without cutting but filled, except for the 

volume left for the arena, with the substrate. The substrate in the bottom pot served as a 

reservoir for any excess percolating water from the arena. Additional substrate, i.e., 1.6 to 

2.7 g substrate, depending on the base area of the arena, was added to the arena so that a 

substrate depth of ca. 0.2–0.3 cm could be maintained before introducing late L2 WFT 

(Table 4.1). To allow thrips to pupate at any depth within the total 5.0 cm substrate depth, 

a ‘free pupation’ depth treatment pot, which was similar to the other pots but without any 

cutting and fully closed base, was filled with 45 g substrate before introducing the L2 

WFT. Each treatment was replicated five times. In the first two replicates, 20 L2 per pot 

were introduced in all treatments. In the last three replicates different numbers of L2 were 

introduced to maintain WFT density equal to approx. 0.6 L2 cm−2 at the base of the arena 

at which insects were placed (Table 4.1). Immediately after all introduced L2 had 

descended into the substrate, the remaining upper part of the arena was filled with substrate 

to the top of the pot. The total amount of substrate in the bottom pot and in the arena was 

approximately 45 g for all arenas with different heights. Thus, a similar moisture content of 

the substrate in the arenas was assured among pots with different treatments. Then, the 

arena was covered with a sticky trap and incubated for two days to obtain a mixture of late 

L2, prepupae, and pupae.  
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Table 4.1. Amount of substrate (g) added to the arena before and after introducing different 

numbers of late second instar larvae (L2) of western flower thrips (WFT) into assay arenas that 

vary in their base area (cm2) and height (cm), and hence allowing WFT to pupate at different 

depths. 

Assay arena Amount of substrate added to the arena 

Height Base area 2 

L2 per pot 3 

Before L2 introduction After L2 introduction

0.5 34.2 20 2.7 7.1 

1 31.2 18 2.4 14.3 

2 28.3 17 2.1 22.9 

3 25.5 15 1.7 28.7 

4 22.9 13 1.6 36.2 

Free pupation1 36.3 21 45.4 − 

1 Arenas for this treatment were prepared from plastic pots (5.0 cm) without any cutting and were 

filled with the substrate before placing WFT L2 onto the top of the substrate. 
2 This is the top area of the substrate in the pot onto which L2 were placed. 
3 Varying numbers of WFT were used to maintain equal numbers of L2 per area (i.e., 0.6 L2 cm–2) 

in three out of five replicates. In the remaining two replicates, 20 L2 WFT were used in all 

treatments. 
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Fig. 4.1. Experimental assay arenas prepared from plastic pots (5.0 cm height): (1) The pots were 

cut out to create arenas with different heights (0.5, 1.0, 2.0, 3.0, and 4.0 cm) and a non-cut pot 

(thus, 5.0 cm). The arenas with different heights and non-cut pots but similar to the arenas were 

filled with the required amount of substrate so that they fitted into one another. Then, second instar 

larvae of WFT were introduced from the top and the remaining part was filled with the substrate. 

(2) Plastic pots were cut to create arenas with 1 or 3 cm height that were filled with substrate. The 

appropriately cut pots were placed into one another so that pupation depths of 0–1, 1–3, and 3–5 

cm were established. 

Two days after L2 introduction, H. indica or S. bicornutum were applied to the top of the 

substrate in the arenas at concentrations of 100 and 400 IJs cm−2 in 3 ml distilled water. 

For all pupation depth treatments, the control treatment was distilled water (3 ml) only. To 

maintain the final moisture content of the substrate equal to ca. 70% and to wash the IJs 

down into the substrate, in all treatments 10 ml distilled water was pipetted onto the 

substrate after application.  
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Influence of thrips density and EPN concentrations on WFT pupation depth  

The lower portion of the plastic pots described above was removed to create pots with 

heights of 1 or 3 cm, termed pot A and B, respectively (Fig. 4.1.2). Gauze with 1.5 mm 

diameter pore size was used to close the bottom end of pots A and B allowing both thrips 

larvae and IJs to easily pass through. Pots A and B were then filled with 9.3 and 25.6 g 

substrate to maintain 1and 2 cm substrate depths, respectively. Further substrate (22.9 g) 

was added to form a substrate depth of 2 cm in non-cut pot (pot type C). Pot A then was 

placed into the empty portion of pot B directly onto the substrate and finally placed into 

pot C (Fig. 4.1.2; the reassembled three pots are termed an arena). Twenty, 50, or 70 L2 

WFT were placed onto the top of the substrate in the arena. The larvae penetrated into the 

substrate immediately after this transfer. Heterorhabditis indica (100 or 400 IJs cm−2 in 3 

ml distilled water) was then uniformly pipetted on the top of the substrate in the arena, 

creating a moisture content of ca. 70%. In the untreated control only distilled water was 

used. An arena was randomly assigned to one of the factorially combined thrips density 

and EPN concentration treatments. Finally, each arena was covered with a sticky trap and 

incubated for 3 days in the climate chamber, during which 70% of the larvae develop to 

prepupae or pupae (Premachandra et al., 2003a). Thus after 3 days the majority of the 

insects were in an immobile development stage and further movement within the arena 

would be insignificant. Three pots, (A, B and C), were then dismantled (Fig. 4.1.2). To 

avoid thrips escape and excessive moisture loss through the bottom part of the pots, A and 

B were placed separately in another similar plastic pot that was filled with the same 

substrate. Pots A and B were carefully fitted into the lower pots avoiding any gap between 

the top and lower pots (Fig. 4.1.2). All pots (A, B, and C, were covered with a sticky trap 

and returned to the climate chamber. From day 2 onwards, emerging adult WFT were daily 

counted until no more thrips emerged. The effect of thrips density and EPN concentration 

on the depth of thrips pupation was determined from the proportion of WFT adult counted 

from pots A, B, or C, in the different treatments.  

Statistical analyses 

WFT mortality data were corrected for control mortality using Abbott’s formula (Abbott, 

1925). The efficacy of EPN species under different conditions was evaluated using the 

corrected mortality (CM) data. The CM data were arcsine transformed before statistical 

analyses. For the experiment on the effects of WFT density and EPNs on pupation depth, 
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the proportion of adults that had emerged for a given EPN concentration and thrips density 

at a given depth was calculated as the ratio of number of adult thrips recovered for the 

treatment combination at the particular depth to the total number of adult thrips recovered 

for the same treatment combination over all depths. Data of experiments repeated over 

time were checked for homogeneity of variance using the HOVTEST = LEVENE option 

of ANOVA procedure in SAS version 8 (SAS Institute, 1999) and pooled only when 

variance homogeneity could be assumed. Single or interaction effects of factors were 

determined using the GLM procedure. Regression analyses were performed using the REG 

procedure of SAS. Lack-of-fit tests were used to determine the appropriate model in the 

regression analyses. Whenever significant interactions were observed between factors, the 

level of one factor was compared at each level of the other factor. Mean mortalities caused 

by EPN applications under different conditions were compared to zero (the CM of the 

untreated control) using Dunnett’s two-sided test. When significant factor effects were 

detected by means of ANOVA, means at different levels of the respective factor were 

compared using the least significance difference (LSD) mean comparison procedure. A 

significance level of α= 0.05 was used in all analyses. Data are presented as means ± SE. 

4.3. Results 

Depth of WFT pupation and EPN efficacy 

In the EPN-free control treatments up to 90% of the introduced L2 WFT were recovered as 

emerged adults at the end of the experiment. The percentage of WFT recovered from 

different pupation depths did not differ significantly (F 5, 38 = 1.62, P = 0.179) (Table 4.2). 

Using the different numbers of L2 as a covariate variable, L2 densities did not significantly 

affect the efficacy of the two EPN species at both concentrations (F 1, 56 < 0.001, P = 

0.991). Thus, all treatments here after were analysed irrespective of the initial numbers of 

L2 used. 
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Table 4.2. Mean (± SE) percentage of adult western flower thrips that had emerged from second 

instar larvae placed at different depths (cm) in a pot in the untreated control. 

Depth  Adults emerged ns 

0.5 81.0 ± 5.3 

1 75.0 ± 5.6 

2 79.7 ± 5.7 

3 75.2 ± 6.2 

4 89.0 ± 7.7 

Free pupation1 77.8 ± 3.5 

ns The proportion of WFT emerging from different depths of pupation did not differ significantly 

(ANOVA: F 5, 38= 1.62, P = 0.179). 
1 L2 were placed on the top of a fully substrate filled pot (see text for details). 

Heterorhabditis indica at 100 and 400 IJs cm−2 applied to WFT at different pupation 

depths resulted in significantly higher WFT mortality than in the respective untreated 

control treatments (P < 0.05). However, S. bicornutum at 100 IJs cm−2 applied to WFT at 

pupation depths of 2, 3, and 4 cm, and a ‘free pupation’ treatment did not cause 

significantly higher WFT mortality than in the respective untreated control treatments (P = 

0.150, 0.310, 0.120, 0.216, respectively; Dunnett test). 

Generally, pupation depth affected the efficacy of both EPN species similarly. Moreover, 

the effect of EPN concentrations did not depend on the depth of pupation (Table 4.3). 

Except in H. indica at 400 IJs cm−2, significantly lower CM was recorded at the deeper 

pupation depths of 3 and 4 cm than the shallower 0.5 cm (Table 4.4). In general, increase 

in pupation depth had a negative impact on the efficacy of both EPN species as indicated 

by negative slopes of regression equations though not significant in all cases (Table 4.5). 

Yet, when L2 were left free to pupate at any position in a substrate of 5 cm depth, i.e. the 

‘Free pupation’ treatment, the CM did not significantly differ from the one at the 
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shallowest pupation depth (i.e., 0.5 cm) except for S. bicornutum at 100 IJs cm−2 (Table 

4.4).  

Table 4.3. ANOVA table for single and interaction effects of applying two entomopathogenic 

nematodes (EPN) at two concentrations (Conc) to control western flower thrips that pupated at 

different depths (Depth).  

Source of variations df F  P  

EPN 1 46.22 < 0.0001 

Depth 5 7.37 < 0.0001 

Conc 1 34.73 < 0.0001 

EPN*Depth 5 0.62 0.6866 

EPN*Conc 1 7.30 0.0086 

Depth*Conc 5 1.75 0.1339 

EPN*Depth*Conc 5 1.00 0.4225 

Error  72 − − 

 

In H. indica, only at the deepest pupation depth did an increase in concentration result in 

significantly higher WFT mortality (Table 4.4). However, in S. bicornutum the higher 

concentration most often caused significantly higher WFT mortality except at 1 and 4 cm 

pupation depths (Table 4.4). In general, though not always significant, H. indica at both 

concentrations resulted in higher thrips mortality than S. bicornutum at the corresponding 

concentrations at a given pupation depth. At 4 cm pupation depth, S. bicornutum at the 

higher concentration caused significantly lower mortality compared with H. indica at the 

lower concentration. 



Chapter 4. Thrips pupation depth and nematode efficacy  52 

 

Table 4.4. Corrected mortality (%) of western flower thrips (WFT) at different pupation depths 

(cm) caused by applications of Heterorhabditis indica and Steinernema bicornutum at 

concentrations of 100 and 400 infective juveniles cm−2. 

 H. indica S. bicornutum 
Pupation depth  

100 400 100 400 

0.5 53.5 a A 57.4 a A 26.7 b A 53.3 a A 

1.0 42.8 a AB 54.9 a A 20.2 b AB 28.2 b BC 

2.0 34.2 ab BC 42.9 a A  5.1 c C 26.6 b BC 

3.0 22.8 a C 37.7 a A  7.3 b C 20.4 a C 

4.0 29.5 b BC 42.2 a A  5.9 c C 16.5 c C 

Free pupation1 36.0 b ABC 54.5 a A 13.4 c BC 42.2 ab AB 

Means within a column (row) followed by the same upper (lower) case letters are not 

significantly different (LSD, α = 0.05). 
1 Second instar larvae of WFT were left free to pupate at any position in a substrate of 5 cm depth. 

Influence of thrips density and EPN concentrations on WFT pupation depth 

Irrespective of the different pupation depths, 73.4% (SE = 6.9) of the introduced larvae 

were recovered as adult thrips in the untreated control at the end of the experiment. This 

rate of recovery in the control did not depend on the density of the thrips (F 2, 8 = 0.70, P = 

0.5252). Thus, the proportion of recovered adults at a given depth was used to assess the 

effect of host densities and EPN concentrations on the pupation depth of WFT. 
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Table 4.5. Regression coefficients of an equation CM = α + βD, where CM is corrected mortality 

(%), D is pupation depths (i.e., 0.5, 1, 2, 3, and 4 cm), for two entomopathogenic nematodes 

(EPNs), i.e., Heterorhabditis indica and Steinernema bicornutum, applied at 100 and 400 infective 

juveniles cm−2 to western flower thrips second instar larvae pupated at different depths.  

EPNs Concentrations α β ns, 1 R² P-value 

100 51.3 −6.7 0.78 0.0040 
H. indica 

400 58.5 −5.43 0.49 0.0800 

100 25.4 −4.8 0.50 0.0504 
S. bicornutum 

400 48.9 −9.5 0.75 0.0040 

ns Linear slopes at different concentrations of the two EPN species are not significantly different 

(adjusted multiple t-test [Zar, 1999]). 
1 Using lack-of-fit test, the equations fitted only linearly. 

In general, 50−80% of the L2 migrated to the bottom part of the arena (i.e., 3 to 5 cm 

depth) and only negligible proportions (0.6–6.9%) pupated at 0 to 1 cm depth. Analysis of 

variance indicated that the proportion of thrips pupating at different depths differed 

significantly. Furthermore, for the proportion of emerged adult WFT from different depths 

under different treatment, depth significantly interacted with both thrips density and 

nematode concentration (Table 4.6). Accordingly, the effects of host density and EPN 

concentration on thrips pupation were assessed separately for the different pupation depths.  
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Table 4.6. ANOVA table for single and interaction effects of entomopathogenic nematodes 

(EPNs), concentrations (Conc) and thrips density on the proportion of western flower thrips at 

different depths. 

Source of variations df F P 

Depth 2 397.98 < 0.0001 

Density 2 1.09 0.3409 

Conc 2 0.43 0.6496 

Depth*Density 4 5.16 0.0008 

Depth*Conc 4 10.37 < 0.0001 

Density*Conc 4 0.41 0.7990 

Depth*Density*Conc 8 1.36 0.2252 

Error 99 − − 

 

The proportion of thrips that pupated at 1 to 3 and 3 to 5 cm depths, but not at 0 to 1, 

differed depending on the concentration of nematodes applied and the density of thrips 

introduced (Table 4.7). However, the interaction of host density and nematode 

concentration was not significant at any depth. Except at the higher WFT densities of 50 

and 70 L2 per arena and an EPN concentration of 400 IJs cm−2, the proportion of WFT 

pupating at the intermediate depth (1 to 3 cm), was significantly lower than the ones at 3 to 

5 depth (Table 4.8). The proportion of WFT that pupated at 0 to 1 cm depth was usually 

significantly lower than the ones at 1 to 5 cm depth (Table 4.8) and at 20 L2 per arena, 

except at a depth of 3 to 5 cm, the proportion of adults that emerged did not depend on 

nematode concentration (Table 4.8). However, at higher thrips densities significantly 

higher proportions of thrips pupated at the intermediate depth when 400 IJs cm−2 were 

applied than 0 or 100 IJs cm−2. Similarly, at the deeper thrips pupation depth and higher 

thrips densities, significantly lower thrips proportions were recovered when 400 IJs cm−2 

were applied than 0 or 100 IJs cm−2. However, in most cases, the proportion of thrips that 
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remained on the top part of the arena (0 to 1 cm depth) was not affected by the nematode 

concentration (Table 4.8). 

Table 4.7. ANOVA table for single and interaction effects of entomopathogenic nematode 

concentrations (Conc) and thrips density on the proportion of western flower thrips at a given 

pupation depth (in cm). 

Depth  Source of variations df F P 

Density 2 2.10 0.1400 

Conc 2 2.98 0.0656 

Density*Conc 4 0.74 0.5708 
0 to 1 

Error  31 − − 

Density 2 5.09 0.0123 

Conc 2 5.68 0.0079 

Density*Conc 4 1.50 0.2265 
1 to 3 

Error 31 − − 

Density 2 4.86 0.0151 

Dose 2 16.66 < 0.0001 3 to 5 

Density*Conc 4 0.95 0.4482 

 
Error  29 − − 

 

The proportion of thrips that pupated at the shallower depth at the different EPN 

concentrations was not affected by the WFT density (Table 4.9). However, a significantly 

lower proportion of thrips pupated at the intermediate depth at thrips densities of 20 or 50 

compared with 70 for nematode applied treatments. At the lower concentration the 

proportion of thrips pupating at a depth 3 to 5 cm was also significantly lower at the 

highest thrips density (Table 4.9). 
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Table 4.8. Proportion (%) of western flower thrips (WFT) that pupated at different depths (cm) in 

an assay arena in which different thrips densities (L2 per arena) were established and subsequently 

treated with 100 or 400 infective juveniles cm−2 of Heterorhabditis indica. The corresponding 

overall corrected mortality (CM, in %) of WFT at a given concentration was calculated using the 

number of survived adult thrips from all depths in the respective EPN treatment and in the 

untreated control. 

Proportion of WFT pupated at different 

pupation depths  Density  Concentration  

0 to 1 1 to 3 3 to 5 

Overall CM 

0 3.9 c A 18.3 b A 77.8 a A 0.0 C 

100 2.5 c A 20.6 b A 77.0 a A 19.7 B 20 

400 6.2 b A 24.4 b A 69.4 a B 41.0 A 

0 5.4 c A 24.3 b B 70.3 a A 0.0 B 

100 0.6 c B 18.1 b B 81.3 a A 19.1 A 50 

400 5.3 b A 47.0 a A 47.7 a B 25.2 A 

0 6.9 c A 24.3 b B 68.8 a A 0.0 C 

100 5.4 c A 29.8 b B 64.8 a A 21.5 B 70 

400 6.1 b A 45.1 a A 48.8 a B 39.3 A 

Means of proportion of WFT pupation within a row (a column) for a given density followed by the 

same lower (upper) case letters are not significantly different. CM means within a column for a 

given host density followed by the same letters are not significantly different (LSD, α = 0.05). 

Since the proportion of thrips that pupated at a given depth depended partly on the 

nematode concentration (Table 4.7), thrips mortality due to different EPN concentrations at 

a given pupation depth could not be statistically compared. Thus, efficacy of the nematode 

in the overall arena, i.e., including all depths, was assessed for a given density. For the 

overall depth, thrips density did not affect EPN efficacy (F 2, 35 = 0.7, P = 0.5021). 

Furthermore, the difference in nematode concentration did not depend on the thrips density 
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(for interactions Density*Concentration: F 4, 35 = 0.55, P = 0.7037). At all thrips densities 

WFT mortalities at both EPN concentrations were significantly higher than in the untreated 

control(s) (Table 4.8). The higher nematode concentration caused significantly higher 

mortality compared with the lower one at the lowest and highest host densities. Generally, 

low EPN efficacy was recorded even at the higher concentration of IJs (Table 4.8). 

Table 4.9. Proportion (%) of western flower thrips (WFT) that pupated at different depths (cm) in 

an assay arena in which different thrips density (second instar larvae per arena) were established 

and subsequently treated with 100 or 400 infective juveniles cm−2 of Heterorhabditis indica. 

Proportion of WFT pupated at different WFT densities  

Depth Concentration  20 50 70 

0 3.9 a 5.4 a 6.9 a 

100 2.5 a 0.6 a 5.4 a 

0 to 1 400 6.2 a 5.3 a 6.1 a 

0 18.3 a 24.3 a 24.3 a 

100 20.6 b 18.1 b 29.8 a 1 to 3 

400 24.4 b 47.0 a 45.1 a 

0 77.8 a 70.3 a 68.8 a 

100 77.0 a 81.3 a 64.8 b 3 to 5 

400 69.4 a 47.7 a 48.8 a 

Means within a row followed by the same letters are not significantly different (LSD, α = 0.05). 



Chapter 4. Thrips pupation depth and nematode efficacy  58 

 

4.4. Discussion 

The late L2 WFT used in the present experiment were 8–9 days old and ready for pupation. 

WFT at this developmental stage exhibit positive geotaxis (van Lenteren et al., 1995) and 

hence only few, if any at all, of the introduced L2 were expected to ascend in the arena 

after they had been placed at a desired depth of pupation and any descent was limited by 

thrips-proof gauze. Hence, the majority of the introduced L2 probably remained in the 

small amount of substrate (0.2–0.3 g) that had been added onto the gauze in the arena 

before introducing the larvae. Consequently, our assay arena could be used to test the 

efficacy of EPNs against WFT that pupated at a defined depth in the arena. In our 

experiments, the substrate in the assay arena was loosely compacted with a moisture 

content of about 68% (w/w), which is ca. 78% of the maximum water holding capacity of 

the substrate (Ebssa et al., 2004b). Under such conditions, WFT placed at a substrate depth 

of 4.0 cm could emerge easily and the depth at which L2 WFT were placed did not affect 

the proportion of adult thrips that emerged when no EPNs were applied. 

Generally, H. indica performed better than S. bicornutum, however, their specific efficacy 

differed depending on thrips pupation depth. Heterorhabditis indica, a more cruiser type 

nematode in its foraging behaviour than S. bicornutum (Ebssa et al., 2004a), infested a 

similar proportion of the applied WFT whether the thrips pupated at a shallower or deeper 

depth, especially at sufficiently high EPN concentration. On the other hand, S. bicornutum, 

a more ambusher type nematode in its foraging behaviour (Ebssa et al., 2004a), could not 

control WFT when thrips pupated at depths of 2.0 cm or deeper, especially at the lower 

nematode concentration. Efficacy of S. bicornutum at higher concentrations against WFT 

that were allowed to pupate at any position within the 5.0 cm depth was as good as in those 

tests in which WFT pupated at shallower depth. Furthermore, at 4.0 cm, S. bicornutum at 

400 IJs cm-² caused significantly higher mortality in WFT than at 100 IJs cm−2 but resulted 

in significantly lower CM than H. indica at 100 IJs cm−2 indicating that S. bicornutum was 

less effective when WFT pupate at greater depth. 

Koppenhöfer et al. (1996) reported that at shallower depth ambushers infect their hosts 

more efficiently than cruiser EPN. Our experiment shows that efficacy of an intermediate 

ambusher EPN species, such as S. bicornutum at greater depth may be improved up to a 

certain level by increasing the concentration of IJs applied. Increasing the concentrations 
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of S. bicornutum IJs at the shallowest pupation depth dramatically increased thrips 

mortality compared with mortality at greater depths. This is probably due to the 

intermediate ambusher foraging behaviour of S. bicornutum in which a high concentration 

of IJs may cover most of the thrips pupation zone at the shallower depth and could thus 

reach and successfully infest a high proportion of the thrips. On the other hand, for the 

thrips that pupated at the greater depths an increase in IJ concentration may be required not 

only for the horizontal distribution of nematodes but also for a vertical coverage of the 

entire thrips pupation zone. Therefore, for insects found at deeper soil depths, only an 

increase in concentration of an ambusher or an intermediate EPN species may not help 

much since the IJs need to travel from the point of application to the point of thrips 

pupation. In a study on vertical distribution of EPNs Campbell et al. (1996) reported that 

S. carpocapsae, an ambusher nematode, was mostly recovered from the first 1 cm of the 

soil column even at high nematode concentrations while H. bacteriophora, a cruiser EPN, 

was uniformly recovered throughout an 8 cm vertical soil column. In our study out of the 

400 IJs cm−2 of H. indica applied on the top of the substrate in the arena, some of them 

might have reached even the deeper part of the substrate, resulting in similar WFT 

mortality to the one at the shallower depth.  

Several soil born pests feed on plant roots at deeper depths. Following root exudates and 

provided sufficient time, EPNs may be successfully used as biocontrol agents in control of 

such pests that dwell deep in the soil (Boff et al., 2002; Kanagy and Kaya, 1996). 

However, as in F. occidentalis the soil-dwelling stages are non-feeding (van Lenteren et 

al., 1995), no such plant-derived cues can be expected that might help IJs to locate their 

hosts. Additionally, because of the rather short duration of the soil phase in WFT (Berndt 

et al., 2004) even a cruiser nematode has limited time to ‘chase’ and attack its hosts before 

they can complete their development and emerge as, EPN non-susceptible, adults. 

According to van Lenteren et al. (1995) WFT can pupate at depth as shallow as 2 cm. 

Among other factors, the depth of insect pupation depends on soil types, moisture content 

of the soil, and soil compaction (Dimou et al., 2003). Helyer et al. (1995) reported that 

WFT pupate as deep as 3.5 cm in a moderately compacted experimental arena. Other thrips 

(e.g. Stenothrips graminum (Uzel)) can pupate as deep as 110 cm in river clay soil (Kirk, 

1997). Therefore, for effective use of EPNs in WFT control, use of irrigation in post EPN 

application may be required to assist the nematodes to reach deeper depth where WFT 

pupae/prepupae stay (Ebssa et al., 2004b; Selvan et al., 1994). 
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In our experiment on the effects of EPN concentrations and thrips density on the pupation 

depth preference of WFT, the introduced L2 could easily pass through the wider gauze and 

up to 80% of the introduced thrips pupated at 3–5 cm depth. In the control without EPNs of 

the previous experiment similar numbers of adult WFT emerged from a pupation gradient 

of 0.5–4 cm depth, indicating that the amount of substrate above the soil-dwelling life 

stages did not affect their ability to successfully emerge as adults. We assessed the effects 

of EPN and density of thrips on the pupation depth using the proportion of emerging adults 

in the different treatments. To avoid any disturbance of thrips and nematodes, the arenas 

were kept closed throughout the entire experiments. Hence, we did not record the actual 

numbers of soil-dwelling life stages of WFT and/or IJs in the different zones. Using 

emergence data for adult thrips to assess where WFT prefers to pupate, one might argue 

that a low proportion of emergence at a given depth is due to high EPN-induced mortality. 

However, in such a situation higher proportions of emerging adults should be expected in 

the controls. Yet, our results clearly show that at the shallower depth, where EPNs are 

preferably active (as revealed by our previous experiment), proportions of emerging WFT 

adults did not differ significantly between the control and even high EPN concentration. 

Thus measuring the proportion of emerging adults enabled us to study the pupation 

preference in WFT. 

The proportion of thrips that pupated at greater depths strongly depended on the density of 

the thrips and concentrations of EPNs applied. We initially had hypothesised that at the 

high EPN concentration, WFT may prefer to pupate at deeper depth as a strategy to avoid 

contact with EPN. However, our results indicate that at no or low EPN concentrations, 

higher proportions of thrips pupated at deeper depth. On the other hand, in high EPN 

concentrations and high thrips densities similar proportions of thrips pupated at the 

intermediate (1–3 cm) and greater (3–5 cm) depths. This probably indicates that at high 

concentration of EPNs large proportions of WFT prefer to remain at a given pupation 

depth and avoid moving, thereby possibly minimizing the probability of encountering IJs.  

To assure that the applied IJs stayed at the top portion of the arena at least during the first 

hours after EPN and WFT introduction, no post-application irrigation water was used in 

experiment 2 though sufficient moisture content was maintained. Hence it is possible that 

in this experiment lower numbers of IJs of H. indica managed to migrate in time to the 

deepest pupation depth before the thrips could successfully accomplish their development 



Chapter 4. Thrips pupation depth and nematode efficacy  61 

 

cycle and emerge as adults, consequently resulting in lower overall WFT mortalities than 

in a previous study (Ebssa et al., 2004a). 

In our experiments the L2 were introduced to the arena immediately before applying the 

nematodes. If EPNs had been present in the soil prior to introducing the thrips, the decision 

of the WFT larvae at which soil depth to pupate might have been different. As a contact-

avoidance defence mechanism they might avoid zones occupied by the nematodes. 

However, this hypothesis remains to be investigated. Moreover, data on numbers of IJs at 

different depth were not recorded in our experiments. Yet, it is evident from the 

significantly higher thrips mortality at both concentrations compared with control that 

H. indica followed the thrips up to greater depth in the substrate, resulting in high EPN-

induced thrips control.  

Our results demonstrate that thrips pupation depth is an important factor that needs to be 

considered in WFT control using EPNs. Thrips that pupated deeper in the substrate may 

escape an EPN attack when the nematodes are applied in low concentrations, and/or if 

EPNs with an ambusher foraging behaviour are used. Thus, in substrates, in which WFT 

pupate at deeper depth, the use of cruiser EPN species/strains and/or post-application 

irrigation may be required. Our data clearly show when using ambushers for WFT control, 

high concentrations are required if the thrips pupate at greater depth. In ongoing studies, 

we are additionally investigating the potential use of foliar applications of EPNs against 

thrips life stages on the plants. 
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Time and Frequency of Applications of Entomopathogenic 

Nematodes and Their Persistence for Control of Western Flower 

Thrips Frankliniella occidentalis 

 

Abstract 

Post application persistence of two entomopathogenic nematode (EPN) strains, i.e. 

Heterorhabditis bacteriophora Poinar strain HK3 and Steinernema carpocapsae (Weiser) 

strain DD136 was studied against soil-dwelling late second instar larvae (L2) of western 

flower thrips (WFT) Frankliniella occidentalis (Pergande) (Thysanoptera: Thripidae). The 

nematodes were applied at 200 and 400 infective juveniles (IJs) cm–2, and L2 WFT were 

introduced at 0 (same day), 3, 6, 9, or 12 days after nematode application (DANA). 

H. bacteriophora caused higher thrips mortality than S. carpocapsae in most of the cases 

and both species persisted at least for 6 days, causing WFT mortality of up to 76 and 

37.8%, respectively. In a separate experiment, H. bacteriophora and S. feltiae (Filipjev) 

Sylt were applied at 200 and 400 IJs cm–2 once (10, 15, or 20 days) or twice (10 and 15, 10 

and 20, or 15 and 20 days) after introduction of ten female and two male WFT adults onto 

bean plants (Phaseolus vulgaris L.). An early repeated application of H. bacteriophora at 

200 IJs cm–2 resulted in significantly lower numbers WFT than a single applications at 400 

IJs cm–2 indicating that higher WFT control can be achieved if the same concentration is 

split over time. However, an early application of H. bacteriophora at 400 IJs cm–2 

controlled WFT better than late applications indicating that time of EPN application is 

additionally very crucial in WFT control. For S. feltiae, higher WFT mortality was 

recorded when nematodes were repeatedly applied on the 10th and 15th days than in any 

other applications at a given concentration. Thus an early application of an efficient and 

relatively more persistent nematode species/strains at a lower concentration but in a 

repeated manner can result in higher thrips control than a single application at the higher 

concentration.  

 

5 
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5.1. Introduction  

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is a worldwide pest attacking a wide range of economically important crops in 

the field and greenhouses (Brødsgaard, 1989; Yudin et al., 1986). The life cycle of 

F. occidentalis consists of the adult, egg, two feeding larval instars (first and second instar 

larvae), followed by two immobile non-feeding stages (the prepupa and pupa) that both 

occur predominantly in the soil. The foliar-feeding life stages damage plants through direct 

feeding and/or ovipositing on leaves, leaf buds, flowers, flower buds and fruits (Childers 

and Achor, 1995; Rosenheim et al., 1990) and through vectoring tospoviruses such as 

tomato spotted wilt virus and impatiens necrotic spot virus (Kirk, 2002).  

Generally, western flower thrips is difficult to control because of its cryptic feeding habits 

and life strategy. Repeated applications of insecticides, often considered necessary because 

of the high fecundity and short generation time of F. occidentalis, resulted in the 

development of WFT strains resistant to many insecticides (Brødsgaard, 1994; Immaraju et 

al., 1992; Zhao et al., 1995). A limited range of natural enemies, including several Orius 

spp. (Heteroptera: Anthocoridae) and phytoseiids such as Amblyseius barkeri (Hughes) and 

A. cucumeris (Oudemans) (Acari: Phytoseiidae), are used mainly against the first instar 

larvae of WFT on the foliage (van Lenteren et al., 1995); the soil dwelling life stages of 

WFT are not within reach of these beneficials. Thus, the presently available biocontrol 

strategies do not suffice to efficiently control western flower thrips, especially on high-

value crops like ornamentals (Jarosik and Pliva, 1995).  

Entomopathogenic nematodes (EPNs) in the families of Steinernematidae and 

Heterorhabditidae (Rhabditida) are important biological control agents of a large number 

of insect pest species in the soil and cryptic habitats (Kaya and Gaugler, 1993). The free 

living (third juvenile) stage, the so called ‘infective juveniles’ (IJs) of EPNs carry and 

transmit symbiotic bacteria that are lethal to their hosts (Boemare et al., 1996). Previous 

studies showed that soil-dwelling life stages of F. occidentalis are highly susceptible to 

different EPN species/strains (Chyzik et al., 1996; Ebssa et al., 2001a,b, 2004a; 

Premachandra et al., 2003a,b; Tomalak, 1994).  

Following application, EPNs are exposed to environmental factors such as radiation, low 

or high soil moisture, extreme temperatures etc., which may have negative effects on their 
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persistence and efficacy (Glazer, 2002). EPN species/strains that are sufficiently virulent 

against WFT and additionally can persist for several days under field conditions are thus of 

paramount importance for efficient thrips control. A singe treatment with such an EPN 

species/strain may suffice to control WFT life stages that are already present in the soil at 

the time of application; moreover, depending on the persistence of the respective nematode 

species/strain also late L2 that enter the soil for pupation during the subsequent days/weeks 

can become targets. Recently, Premachandra et al. (2003a) showed that under laboratory 

conditions EPNs can persist for at least six days without losing virulence against 

F. occidentalis. However, no information is available on post application persistence of 

EPNs under more practical conditions. EPNs need to be applied early enough to avoid that 

thrips can escape a nematode attack by developing into adults that are not susceptible to 

EPNs and start emerging from the soil. Repeated applications of EPNs may be required 

depending on their persistence and WFT densities in the soil. Consequently EPNs need to 

be applied timely and at an appropriate frequency to well target the susceptible life stages 

of the WFT populations in the soil. The rate of development and population build up in 

WFT may depend on several factors such as temperature and host plant. Therefore, the 

objectives of the present study were (i) to assess the short-term post application persistence 

of EPNs under semi-field conditions, and (ii) to investigate time and frequency of EPNs 

applications following releases of adult thrips to the plants.  

5.2. Materials and Methods 

Nematode and thrips cultures 

Heterorhabditis bacteriophora (Poinar) strain HK3, Steinernema feltiae (Filipjev) strain 

Sylt and S. carpocapsae (Weiser) strain DD136, EPN species/strains used in the present 

study, were obtained from the Institute of Phytopathology, Christian-Albrechts University 

of Kiel, Germany. The nematodes were reared at 23 ± 2 °C in the last instar larvae of the 

greater wax moth, Galleria mellonella (L.) (Lepidoptera: Pyralidae), using a modified 

rearing procedure originally developed by Kaya and Stock (1997). IJs were stored at 4 °C 

until they were used. The nematodes were acclimatized at room temperature for 

approximately 12 h before use in the respective experiments. The required EPN 

concentrations were prepared by quantification and dilution procedures as described in 

Kaya and Stock (1997). 
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Western flower thrips were reared on pods of green beans (Phaseolus vulgaris L. 

[Fabaceae]) (Ullman et al., 1997) in a climate-controlled chamber at 23 ± 2 °C 

temperatures, 50–60% relative humidity (rh) and 16L:8D h photoperiod. Only uniformly 

aged insects were used in the experiments. 

General methodology 

For the following experiments bean plants were raised in plastic pots using Fruhstorfer 

Erde Type P, a commercially available plant growing substrate (Archut GmbH, 

Lauterbach-Wallenrod, Germany). The substrate is composed of humus, clay, and peat 

(15:35:50). Due to its high peat content the substrate has a high water holding capacity. 

The pots had a perforated base and were 7.5 and 8.5 cm in base diameter and height, 

respectively. A single seedling per pot was caged at the two-leaf stage using an acryl-

cylinder (84 mm in diameter) following the methodology developed by Ebssa et al. 

(2001b). A defined number of a given developmental stage of WFT was introduced to the 

cage depending on the nature of respective experiments. To prevent escaping of thrips 

from the cage, the gap between the pot and the acryl-cylinder was filled with modelling 

clay. To cover the top open end of the cage, a thrips-proof nylon tissue (64 µm pore size) 

was glued on the edge of the cylinder. Additional ventilation to the cage was provided 

using two side holes on the upper portion of the cylinder and the holes were covered with 

the same nylon tissue. Two similar side holes in the lower portion of the cylinder were 

used as ‘windows’ for releasing F. occidentalis larvae and for pipetting nematode 

suspension. Either 6 ml of an EPN suspension (in the EPN treatments) or only distilled 

water (in the untreated control) per pot was uniformly pipetted on the top of the substrate 

in the pot. Thereafter, the pots were irrigated with 40 ml tap water to rinse the nematodes 

down. At the end of the experiments, the cylinder and shoot parts of the plants were 

removed. Both the shoots and the cage were examined for WFT. The pot was covered with 

a “sticky trap”, i.e. a Petri dish (100 mm in diameter) with two central holes (25 mm in 

diameter). To prevent thrips from escaping, the holes used for ventilation, were covered 

with thrips-proof nylon tissue. The inner part of the Petri dish, except for the holes, was 

painted with insect glue. Starting from the next day after removal of the cage, emerging 

F. occidentalis in all treatments were counted daily from the sticky traps as well as from 

the top of the substrate in the pot for 10 consecutive days until no further adults emerged. 
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The experiments were conducted in a growth chamber at 23 ± 2 °C temperatures, ca. 70% 

rh and 16L:8D h photoperiod.  

Persistence study 

Bean plants were caged as described above. Plants were used in this experiment to mimic 

natural situations in which the soil loses its water through plant evapo-transpiration, which 

in turn may affect the persistence of EPN. Suspensions of H. bacteriophora or 

S. carpocapsae, at a concentration of 200 or 400 IJs cm−2, were applied onto the substrate 

in the pots. Using a fine camelhair brush, 20 late second instar larvae (L2) of WFT were 

transferred onto the surface of the substrate in the pot on the following days after nematode 

application (DANA): 0 (same day), 3, 6, 9, or 12 days. To synchronize the L2 in the thrips 

rearing culture with the DANA, 9-day-old L2 were used in three out of five replications for 

treatments 6 and 9 DANA while in the remaining DANA’s 8-day-old L2 were used in all 

repetitions. Each DANA treatment had its own untreated control. The whole experiment 

was repeated twice over time in which two replications during the first and three 

replications during the second repetitions were carried out, giving a total of five 

replications per treatment.  

In a similar preliminary experiment, adult WFT started emerging four days after L2 

introduction, and hence, the cylinder and shoot parts of the plants were removed in the 

main experiment three days after thrips introduction and the pot was covered with a sticky 

trap. Data on emerging adult thrips were gathered daily starting from the next day after 

removal of the cage until no further adults emerged.  

Population dynamics of WFT  

This experiment was conducted using bean plants to determine the composition of different 

developmental stages of WFT at a given time after a release of a defined number of adult 

thrips. The plants were grown in plastic pots and caged at a two-leaf stage as previously 

described. Ten female and two male F. occidentalis (derived from a cohort 20 days after 

the emergence of neonate larvae) were introduced onto the caged plant. Both the cage and 

shoot part of the plant were removed on the 10th, 15th and 20th day after adult introduction 

and the pots were subsequently covered with a sticky trap as described before. The 

removed shoot was washed with a soap and water solution to collect all thrips development 
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stages on the plant. Those thrips that stuck on the inside wall of the cage were collected 

using a fine camelhair brush. The thrips-containing soap and water solution was first 

filtered through a sieve (30 µm pore size) and then through a lined Whatman # 1 filter 

paper (185 mm in diameter) folded like a funnel. Seventy percent ethyl alcohol was added 

on the filter paper to remove the foam of the soap, and to kill and preserve the thrips until 

they were counted under the binocular. For each day of cage removal (i.e., 10, 15 and 20 

days after adult introduction) the number of thrips on the plant and cage were counted 

separately as larvae, prepupae/pupae, and adults. The majority of WFT population in the 

soil at a given time consists of pupae and/or prepupae. Hence, WFT developmental stages 

in the soil at the time of cage removal were considered to be pupae and/or prepupae and 

were inferred from the number of emerging adult F. occidentalis from the soil (as recorded 

on the sticky trap). The experiment was repeated twice over time with three replications 

each, giving a total of six replications per treatment (i.e., days after adult thrips 

introduction).  

Time and frequency of EPN applications 

Ten female and two male F. occidentalis were released on a caged green bean seedling as 

described above. Due to its comparatively low efficacy against WFT in the persistence 

study, S. carpocapsae was replaced by S. feltiae (see results). Hence, either 

H. bacteriophora or S. feltiae at a concentration of 200 or 400 IJs cm−2 were uniformly 

pipetted to the top of the substrate in the pots once (i.e. on the 10th, 15th, or 20th day) or 

twice (i.e. on the 10th and 15th, 10th and 20th, and 15th and 20th day) after adult thrips 

introduction. In the corresponding untreated controls distilled water only were applied. In 

all treatments, plants were kept for 22 days after adult thrips introduction. Then, both the 

shoot part of the plant and the cage were removed and thereafter the pots were covered 

with a sticky trap. All thrips development stages on the shoot of the bean plants, and the 

emerged adults on the sticky trap were collected and counted as previously described. Six 

replications per treatment were used and the experiment was split over two periods with 

three replications in each run.  

Statistical analyses 

To assess the significant effects of the nematode treatments on thrips population reduction, 

mean numbers of thrips in the different EPN treatments were compared to the number of 
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thrips in the untreated controls using Dunnett’s two-sided test in SAS version 8 (SAS 

Institute, 1999). Since equal numbers of insects were introduced in all treatments in the 

persistence study, EPN-induced mortality in the different treatments was corrected for 

natural mortality using Abbott’s formula (Abbott, 1925). In the other experiments, the 

numbers of thrips recorded in the different treatments were compared. To stabilize 

variance of percent mortality and thrips count data, the values were arcsine and square 

root, respectively, transformed before subjected to data analyses. Data from the two 

periods of repetition of an experiment was pooled only when the variance homogeneity 

assumption was not violated using the HOVTEST = LEVENE option of the ANOVA 

procedure in SAS. Individual and interaction effects of factors on thrips mortality and 

density were analysed using the general linear model (PROC GLM) of SAS. Whenever 

two factors (e.g. strains and concentrations) showed a significant interaction, means of the 

levels of one factor were compared at each level of the other factor. In the absence of 

significant interactions, means of the level of one factor were compared regardless of the 

levels of the other factor (Sokal and Rohlf, 1994). When ANOVA results indicated 

significant treatment effects, two and multiple comparisons were performed using the 

student’s t-test and the least significant difference (LSD) mean comparison procedure in 

SAS, respectively. A significant level of α = 0.05 was used in all analyses. Data are 

presented as means ± SE. 

5.3. Results 

Persistence study 

The emergence rate of adult thrips in the no-nematode treatments ranged between 67 and 

95% of the initial number of introduced thrips. At both concentrations and for all DANA, 

the numbers of emerged adult thrips in the H. bacteriophora treatments were significantly 

lower than in the control treatments (P < 0.001, Dunnett’s test). Similarly, in the 

S. carpocapsae treatments, except for 6 DANA at 200, and 6 and 9 DANA at 400 IJs cm–2, 

significantly lower numbers of thrips than the in the corresponding control treatments were 

recorded. 

Thrips mortality differed depending on EPN species and DANA (Table 5.1). Except for 

Concentration*EPN all two-ways and the three-ways interaction turned out to be not 

significant. At the lower concentration no significant difference were observed between the 
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two EPN species across all DANAs except for 9 DANA (Table 5.2). However, at the 

higher concentrations H. bacteriophora resulted in significantly higher thrips mortality 

than S. carpocapsae up to 9 DANA. Furthermore, changing concentrations of the 

nematodes did not significantly affect thrips mortality for both EPN species on all DANAs 

(Table 5.1). However, trend of means showed that higher thrips mortalities were obtained 

at higher and lower concentrations of H. bacteriophora and S. carpocapsae, respectively 

(Fig. 5.1). 

Fig. 5.1. Mean corrected mortality (% + SE) of western flower thrips late second instar larvae 

introduced on 0 (same day), 3, 6, 9 and 12 days after applications of Heterorhabditis bacteriophora 

or Steinernema carpocapsae at 200 and 400 infective juveniles (IJs) cm−2. Means for a given EPN 

species at a given concentration followed by the same letters do not differ significantly (LSD, α = 

0.05). Note: Concentration did not differ significantly for a given EPN species at a given DANA.  

Moreover, thrips mortality depended on the time between the EPN application and the 

subsequent introduction of F. occidentalis. Generally, the more the introduction of the 

thrips was delayed after the EPN application, the lower the efficacy of the nematodes 

recorded (for DANA, P = 0.0033, Table 5.1). For instance significantly lower thrips 

mortality was obtained on 9 DANA than 0 and/or 3 DANAs for both EPN species at high 

and/or low concentration (Fig. 5.1). For S. carpocapsae at high concentration thrips 

mortality was significantly reduced even on 6 DANA compared to earlier DANAs. 

However, thrips mortality at 12 DANA was not statistically different from earlier DANAs 

for S. carpocapsae at both concentrations and for H. bacteriophora at the higher 

concentration (Fig. 5.1).  
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Table 5.1. Single and interaction effects of the entomopathogenic nematode (EPN) Heterorhabditis 

bacteriophora and Steinernema carpocapsae applied at concentrations (Conc) of 200 and 400 

infective juveniles (IJs) cm–2 on the mortality of second instar larvae of western flower thrips 

introduced 0 (same day), 3, 6, 9, or 9 days after nematode application (DANA). 

Source of variations df F P 

EPN 1 63.41 < 0.0001 

Conc 1 0.06 0.8075 

DANA 4 4.37 0.0033 

Conc*EPN 1 12.48 0.0007 

DANA*EPN 4 1.91 0.1188 

Conc*DANA 4 0.20 0.9349 

Conc*DANA*EPN 4 0.23 0.9213 

Error 70 − − 

 

Table 5.2. Comparison of efficacy of Heterorhabditis bacteriophora vs. Steinernema carpocapsae 

at 200 and 400 infective juveniles cm–2 for control of late second instar larvae of western flower 

thrips, introduced on 0 (same day), 3, 6, 9 and 12 days after nematode application (DANA). 

 200  400 
DANA 

t P t P 

0 0.72 0.472 3.18 0.016 

3 2.28 0.056 4.08 0.026 

6 1.19 0.311 6.70 0.002 

9 3.23 0.018 17.21 < 0.0001 

12 0.01 0.996 2.11 0.120 
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Population dynamics study  

Total numbers of WFT per plant increased from 226 on the 10th to 390 on 20th day after 

adult thrips introduction to bean plants (Fig. 5.2). Composition of thrips developmental 

stages was significantly affected by the time of data assessment (Stage*time: F4, 45 = 35.04, 

P < 0.0001). The experiment was stopped before the F1 adults started reproducing and 

when the majority of the F1 larvae had already developed into prepupae/pupae. Thus, 

generally, the number of larvae showed a decreasing trend from the 10th to the 20th day 

after adult introduction. Ten days after the introduction of adult WFT, about 13% of the 

total immature WFT developmental stages per plant had already left the plant to pupate in 

the soil (Table 5.3). The proportion of these soil-dwelling stages significantly increased 

with time, reaching more than 70% of the total immature stages on the 20th day after adult 

thrips introduction and a density of about 3 thrips cm–2 in the soil (Table 5.3). However, 

the time of introduction of adult thrips did not significantly affect the total percentage of 

pupation in the soil (F2, 10 = 1.91, P = 0.1988); on average 94.8 ± 1.4% of the thrips left the 

plant and pupated in the soil. Yet on the 20th day after adult WFT introduction, about 70% 

of the soil-dwelling life stages that had been recorded on the 15th day already emerged as 

F1 adult thrips (recalculated from data in Fig. 5.2). However, during the period between 15 

and 20 days after adult introduction, more numbers of late L2 had left the plant and entered 

the soil for pupation. 
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Fig. 5.2. Mean numbers of larvae, adults (both counted from the plant), and pupae/prepupae 

(counted from the plant and also as emerged adults from the soil) and total numbers of western 

flower thrips (WFT) per plant on the 10th, 15th and 20th day after introducing 10 female and 2 male 

adult thrips per bean plant. Different thrips developmental stages on a given day and the same 

developmental stages across different days followed by different lower and upper case letters, 

respectively, are significantly different (LSD, α = 0.05). 
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Table 5.3. Mean (% ± SE) proportion (number of prepupae and pupae divided by the total number 

of thrips, or by the total number of immature developmental stages expressed in %) and density 

(mean (± SE) numbers of prepupae and pupae cm−2) of western flower thrips (WFT) in the soil on 

the 10th, 15th, and 20th day after introduction of 10 female and 2 male adult WFT onto bean plants.  

1 Proportion of WFT in the soil: 
Days 

From total no. WFT From total no. immature 

2 WFT density  

10 12.3 ± 2.7 c 12.8 ± 2.8 c 0.39 ± 0.11 b 

15 38.9 ± 5.7 b 40.0 ± 5.7 b 1.45 ± 0.37 b 

20 56.5 ± 4.5 a 73.5 ± 5.2 a 2.88 ± 0.40 a 

Means within a column followed by the same letter do not differ significantly at α = 0.05 (LSD). 
1 Numbers of prepupae/pupae in the soil were inferred from the numbers of emerged adults from 

the soil in treatments in which shoot parts of the plants were removed on 10, 15 and 20 days after 

adult introduction; see text for details. 
2 The top area of the substrate in the plastic pot, which was used for raising the bean plants, was 78 

cm2. 

Time and frequency of EPN applications  

The total numbers of adult WFT per plant in the no-nematode treatments at the end of the 

experiment ranged between 175 and 258, with an average of 228 ± 12.1. In all nematode 

treatments significantly (P < 0.001) lower numbers of adult WFT compared to the 

corresponding control treatment were recorded. The lowest and highest adult WFT 

population reductions in EPN treatments compared to the thrips in control treatment were 

17.8 ± 2.8 and 62.3 ± 4.5% for H. bacteriophora applied once on the 20th day at 200 IJs 

cm–2 and H. bacteriophora applied twice on the 10th and 15th day at 400 IJs cm–2, 

respectively (recalculated from data in Fig. 5.3). The numbers of adult thrips differed 

significantly between/among the two EPN species, their concentrations, and time of 

applications with a significant interaction of EPN species and time of applications (Table 

5.4).  
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Fig. 5.3. Numbers of adult western flower thrips (WFT) as affected by applications of 

Heterorhabditis bacteriophora and Steinernema feltiae at 200 ( ) and 400 ( ) IJs cm–2 

once (on the 10th, 15th, or 20th day) or twice (on the 10th and 15th, 10th and 20th, or 15th and 20th days) 

after adult thrips introduction. Any bars for a given nematode species followed by the same letters 

are not significantly different (LSD test). ** Denotes that numbers of adult WFT in control 

treatment is significantly higher than all EPN treatments (P < 0.001, Dunnett’s test). 
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In H. bacteriophora, except for the single application on the 10th and repeated applications 

on the 10th and 20th day, increasing concentrations on a given application date did not 

result in a significant decrease in adult thrips population (Fig. 5.3). At the higher 

concentration of H. bacteriophora, a single early application on the 10th day resulted in 

significantly lower numbers of adult thrips than single late applications on 15th and on 20th 

days (Fig. 5.3). However, the effect of a single early application of the lower concentration 

of H. bacteriophora was so low that the nematodes did not significantly result in a better 

control level than late applications at both concentrations. In a repeated application at a 

given concentration, delaying the first and/or the second application resulted in higher 

thrips numbers than early-repeated applications on the 10th and 15th day after adult 

introduction. Repeated applications of 200 IJs cm–2 on the 10th and 15th day after adult 

introduction caused significantly higher thrips control than single applications at the 

double concentration irrespective of the day of application (Fig. 5.3).  

Table 5.4. ANOVA summary for effects of the entomopathogenic nematodes (EPN) 

Heterorhabditis bacteriophora and Steinernema feltiae on the number of adult thrips after an initial 

introduction of 10 female and 2 male western flower thrips (WFT) to bean seedlings. EPNs were 

applied at concentrations (Conc) of 200 or 400 infective juveniles (IJs) cm–2 at different times 

(once: 10, 15, or 20 days after introduction of adult WFT, or twice: 10 and 15, 10 and 20, or 15 and 

20 days after introduction of adult WFT). 

Source of variations df F P 

EPN 1 23.12 < 0.0001 

Conc 1 14.07 0.0003 

Time 5 32.27 < 0.0001 

EPN*Conc 1 0.03 0.8533 

EPN*Time 5 2.97 0.0146 

Conc*Time 5 0.84 0.5254 

EPN*Conc*Time 5 2.2 0.0591 

Error 115 − − 
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In S. feltiae significantly lower adult thrips numbers were recorded by increasing nematode 

concentrations only in repeated applications on the 10th and 15th, and on the 15th and 20th 

day after adult introduction (Fig. 5.3). In single treatments, WFT control was affected 

neither by the time of application nor by the EPN concentration. The significantly highest 

level of WFT suppression was obtained in repeated applications of the higher 

concentration on the 10th and 15th day after adult thrips introduction (Fig. 5.3).  

As the two-way interaction between EPN species and concentration was not significant 

(Table 5.4) the two EPN species were compared irrespective of their concentrations. 

Unlike in single applications on any day after adult thrips introduction, repeated 

applications of H. bacteriophora resulted in significantly lower numbers of thrips than that 

of S. feltiae (Table 5.5). 

Table 5.5. Comparison of numbers of western flower thrips after applications of Heterorhabditis 

bacteriophora vs. Steinernema feltiae once (on the 10th, 15th, or 20th day) or twice (on the 10th and 

15th, 10th and 20th, or 15th and 20th days) after adult thrips introduction. 

Days of nematode application after 

initial introduction of adult thrips 
t P 

10 1.48 0.153 

15 0.52 0.612 Once: 

20 –1.18 0.251 

10 and 15 2.43 0.024 

10 and 20 3.35 0.003 Twice: 

15 and 20 2.32 0.030 

Note: Since nematode concentrations significantly interacted neither with time nor nematode 

species (see Table 5.4), data of the two nematode concentrations were pooled for this analysis.  
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5.4. Discussion  

Short-term persistence of EPN 

With 5–33% natural mortality we recorded a high variability in thrips emergence in the 

untreated controls. Ebssa et al. (2001a) and Helyer et al. (1995) discussed that in 

experiments with WFT high natural mortality is a common phenomenon. In our 

methodology we mimicked greenhouse conditions in which EPNs may be applied in a 

prophylactic manner, i.e. before plants are attacked by WFT. Hence it is of paramount to 

know how long the nematodes can persist in the soil in the absence of suitable host 

development stages.  

For logistical reasons we used in the 6 and 9 DANA treatments of this experiment cohorts 

of 9-day old L2 thrips whereas in the other treatments cohorts of 8-days old L2 were 

introduced. This could be one reason for the lower thrips mortality in S. carpocapsae at 6 

and 9 compared to 12 DANA. Possibly, a higher proportion of the one day older L2 

developed into immobile prepupae/pupae, thereby reducing the chances for IJs of a ‘sit-

and-wait’ strategist (‘ambushing’ behaviour) like S. carpocapsae to come into contact with 

the hosts thrips, leading to a reduced EPN-induced mortality in WFT. In contrast, 

H. bacteriophora has a ‘cruiser’ foraging strategy and can thus parasitize both sedentary 

and mobile hosts. These findings corroborate earlier reports of Campbell and Gaugler 

(1997), Choo et al. (1989), Georgis and Gaugler (1991), and Lewis et al. (1993) that 

ambushers are more effective against mobile hosts at the soil-litter interface, while cruisers 

are more effective against less mobile insects in the soil. 

In all cases H. bacteriophora caused higher mortality at 400 than at 200 IJs cm−2, though 

not always significant, corroborating previous results by Ebssa et al. (2001a) and Chyzik et 

al. (1996). However, in S. carpocapsae we recorded higher thrips mortality at the lower 

than the higher concentrations. Differences in EPN-induced mortality in WFT between the 

two EPN strains at the two tested concentrations might be caused by their specific 

responses to host cues and in their different foraging strategies. IJs of ambushing 

nematodes like S. carpocapsae respond to host cues only when they come into direct 

contact with the cuticle of a passing-by host; yet, IJs of cruisers can respond from a 

distance (Lewis et al., 1993 and 1995b). Moreover, IJs of S. carpocapsae remain on the top 
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region of the soil while IJs of the cruiser H. bacteriophora may migrate deeper into the 

substrate to the levels where WFT prefers to pupate (Campbell et al., 1996; Ebssa et al., 

2004c). Hence, if the number of IJs on the top of the soil is very high with respect to the 

host density, IJs of ambushers will not only encounter passing hosts but also conspecific 

IJs that make repositioning move (Campbell and Gaugler, 1993), possibly confusing their 

host recognition capacity (Lewis et al., 1996) and thus resulting in lower EPN-induced host 

mortality. This could be the most probable reason for having a decreasing trend in 

mortality of WFT by increasing concentrations of S. carpocapsae.  

In terms of short-term persistency for H. bacteriophora, results at the higher concentration 

are rather variable. WFT mortality at 9 DANA at both concentrations was significantly 

lower than the ones at 3 DANA. On the other hand, unlike at 200 IJs cm–2, WFT mortality 

at 400 IJs cm–2 on 12 DANA was not significantly different from the one at 3 DANA at the 

same concentration. This may indicate that at the higher application rate a larger proportion 

of the nematodes can persist longer and may result in a similar mortality level to an early 

application of the same concentration. Yet, this does not explain why mortality at the 

higher concentration at 9 DANA was significantly lower than at 3 DANA. However, in 

general H. bacteriophora at both the lower and higher concentrations could persist at least 

for 6 and 12 days, respectively. In S. carpocapsae at the higher nematode concentration 

also significantly lower WFT mortality was recorded at 6 and 9 but not at 12 DANA 

compared to 0 and 3 DANA, though this might have attributable to one-day age 

differences in the test larvae (see previous paragraph). Yet these results indicate that, like 

in H. bacteriophora, IJs of S. carpocapsae can persist for at least 12 days in the soil 

without significant loss of their virulence. At the higher concentration H. bacteriophora 

caused significantly higher thrips mortality than S. carpocapsae up to 9 DANA; however, 

no differences between the two species were recorded at 12 DANA suggesting that the 

persistence of IJs of H. bacteriophora was shorter than that of S. carpocapsae. 

Physiological and behavioural differences between the two EPN species might be 

responsible for the observed differences in persistence. Lewis et al. (1995a) recorded in IJs 

of S. carpocapsae a lower metabolic rate than in H. bacteriophora, resulting in longer 

persistence of the former compared to the latter EPN. Moreover, IJs of cruisers like 

H. bacteriophora consume more energy reserves when actively passing through the soil 

profile (Aguilar et al., 1999; Molyneux, 1985).  



Chapter 5. Persistence and time of entomopathogenic nematode applications 79 

 

Time and frequency of EPN applications 

In this study, the timing of EPN applications had a profound effect on WFT control. For 

single applications of H. bacteriophora, an early application at the higher concentration 

caused higher WFT mortality than the late application, probably because at this time the 

host density was near to optimal for the nematodes. Ebssa et al. (2004a) reported that a 

pupal density of 2.1 cm–2 is beyond the capacity of some EPN species like S. bicornutum 

Tallosi, Peters and Ehlers. In the course of the present study the late L2 continuously 

descended from the plants and penetrated into the soil leading to a population of thrips in 

the soil up to density of ca. 3 thrips cm–2, which may exceed the control capacity of 

H. bacteriophora. However, as IJs can persist for at least 6 days in the soil, early-applied 

nematodes may be able to continuously infect new incoming WFT larvae. Yet if EPNs are 

applied late, thrips that are already present in the soil might escape a nematode attack and 

successfully emerge as adults. At the lower concentration repeated applications of 

H. bacteriophora within intervals of 5 days resulted in significantly higher WFT control 

than a single application at the higher concentration. However, the control level decreased 

when the interval between the first and second EPN applications increased to 10 days, 

probably because at the time of the second EPN application a high proportion of thrips 

adults had already emerged, thus successfully had escaped a nematode infection. 

Moreover, when repeatedly applied, EPN-induced mortality in WFT did not differ between 

the low and high concentrations of H. bacteriophora. Thus, for H. bacteriophora it is 

possible to reduce the EPN concentration if the second application is well timed, i.e. 

coincides with the appropriate age and density of susceptible thrips life stages in the soil. 

At a given concentration of S. feltiae, unlike in H. bacteriophora, no significant differences 

in numbers of thrips were found in single applications at different application dates. This 

may indicate that a single application of S. feltiae cannot control thrips over extended 

periods, and thus irrespective of the time of application a similar proportion of the thrips 

population is killed. Furthermore, repeated applications of S. feltiae at the lower 

concentration did not result in higher WFT control than a single application at the double 

concentration. The highest mortality was recorded following early and narrowly timed 

repeated applications of the higher nematode concentration. Repeated applications of 

H. bacteriophora caused higher levels of WFT control than in S. feltiae corroborating 

results of previous studies in which WFT were found to be more susceptible to 
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Heterorhabditis than Steinernema spp./strains (Ebssa et al., 2001a, 2004a; Premachandra et 

al., 2003a)  

In our experiments EPN-induced mortality in WFT, even at higher concentrations, was 

lower than levels recorded in previous studies (Ebssa et al., 2001a; Premachandra et al., 

2003a). The most likely reason for these discrepancies is the higher host density used in 

this compared to the previous studies. There is no repeated foraging in an individual EPN 

(Lewis, 2002). Moreover, in WFT EPNs are incapable of self-perpetuation (Belay, 2003), 

most likely because of the small host size.  

In the population dynamics study 10 days after adult introduction, more than 10% of the 

immature stages were already in the soil for pupation, and this proportion increased up to 

20 days. Hence for WFT control EPNs have to be applied immediately after the first 

discovery of adult thrips on the plants and/or sticky traps. If the applied EPN species/strain 

has good persistence abilities and/or the environmental conditions are conducive for the 

persistence of the IJs (Glazer, 2002), early applied IJs would commence controlling the 

first pupating thrips and potentially target the larvae that will penetrate the soil during the 

first consecutive days after the application. Results of the present study and those of 

previous ones (e.g., Berndt et al., 2004) clearly show that a very high proportion of the 

thrips pupates in the soil, stressing the great potential of EPNs for control of the soil-

dwelling life stages of WFT. 

In conclusion we observed that EPNs of the two tested species/strains can persist at least 

for 6 to 9 days under semi-field conditions without losing their virulence; persistence was 

longer in ambushers than in cruisers. Moreover, it is possible to reduce the concentrations 

of EPNs for WFT control if the nematodes are repeatedly applied at lower concentrations 

and if the timing of the applications coincides well with the presence of susceptible life 

stages of WFT in the soil.  
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Compatibility of Entomopathogenic Nematodes and Predatory Mites 

to Control Western Flower Thrips Frankliniella occidentalis 

 

Abstract  

Single and combined effects of entomopathogenic nematodes (EPNs) [i.e., Heterorhabditis 

bacteriophora Poiner (strain HK3) and H. indica Poinar, Karunakar and David (strain 

LN2)] and predatory mites [i.e., Amblyseius cucumeris (Oudemans) (Acarina: 

Phytoseiidae)] for the control of the western flower thrips (WFT) Frankliniella 

occidentalis (Pergande) (Thysanoptera: Thripidae) were investigated in a climate 

controlled growth chamber and under greenhouse conditions. The mites and nematodes 

were tested at different densities and concentrations, respectively, at different WFT 

densities, using beans (Phaseolus vulgaris L.) as model plant. In the growth chamber 

experiment, the presence of A. cucumeris on the plants caused more second instar larvae of 

WFT to drop off the plants in order to pupate in the soil, thereby increasing the number of 

available hosts for the EPNs. Single and combined applications of A. cucumeris and EPNs 

always resulted in significantly greater thrips control than in no natural enemies treatments. 

In general, extent of WFT control depended on the density and concentrations of mites and 

nematodes, respectively. In no case significantly lower WFT population reduction was 

recorded in a combined application of both biocontrol agents than in individual 

applications. In the growth chamber experiment releases of 10 adult A. cucumeris per plant 

and applications of 200 infective juveniles (IJs) cm–2 of both EPN species resulted in up to 

83% reduction of the thrips, which was significantly higher than individual applications of 

the natural enemies.  Due to high summer temperatures and low relative humidity, weekly 

applications of EPNs at 50 IJs cm–2 failed to significantly reduce WFT populations in the 

greenhouse experiment. Yet, weekly applications of both EPN species at 200 IJs cm–2 

and/or releases of 3 A. cucumeris per plant significantly reduced thrips populations when 

applied individually or in combination. However, unlike the results from the growth 

chamber experiment, no significant differences in WFT control were obtained between 

single and combined applications of the two natural enemies. The prospects of combined 

applications of biocontrol agents for control of foliage-feeding and soil-dwelling life stages 

of WFT are discussed. 

6 
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6.1. Introduction 

Western flower thrips (WFT), Frankliniella occidentalis (Pergande) (Thysanoptera: 

Thripidae), is a cosmopolitan pest in both protected and open plant production. It is 

economically one of the most important pests of vegetables and ornamentals in 

greenhouses (Shipp et al., 1991; van Lenteren et al., 1995). In addition to the quantitative 

and qualitative damage it causes to plant products through its direct feeding, WFT is also 

one of the major vectors of tospoviruses like tomato spotted wilt virus (Kirk, 2002). In its 

lifecycle WFT passes through foliar-feeding stages, i.e., adult, and first and second instar 

larvae, as well as soil-dwelling developmental stages, i.e., late second instar larvae, 

prepupae, and pupae. WFT can complete its life cycle in less than two weeks, especially at 

high temperatures in greenhouses and thus, several generations of F. occidentalis can 

overlap during a production cycle of a given plant (Higgins, 1992; McDonald et al., 1998; 

Pickett, 1988). Hence, often growers apply several groups of insecticides in a repeated and 

frequent manner. However, due to their cryptic feeding behaviour and since the majority of 

the thrips pupate in the soil (Berndt et al., 2004) they are not easily accessible for chemical 

control. Moreover, because of the repeated and frequent applications of insecticides, strains 

of WFT resistant to several groups of insecticides have already been reported (Broadbent 

and Pree, 1997; Immaraju et al., 1992; Jensen, 2000). An ideal biological control strategy 

would target both the foliar-feeding and soil-dwelling development stages of the pest. 

However, to date most of the commonly used biocontrol agents like the predatory 

anthocorid bugs of the genus Orius spp. (Hemiptera: Anthocoridae) and phytoseiid mites 

like Amblyseius spp. (Acarina: Phytoseiidae) feed only on the foliar feeding stages of 

WFT. Yet, according to Berndt et al. (2004) depending on host plant species, up to 98% of 

WFT pupate in the soil. Moreover, under high temperatures and low humidity the efficacy 

of anthocorids and phytoseiids is limited (Shipp and van Houten, 1997; Shipp et al., 1996) 

whereas such environmental conditions favour high reproduction of WFT (McDonald et 

al., 1998). In addition, several species/strains of Orius and Amblyseius spp. diapause under 

short-day length conditions in greenhouses (Morewood and Gilkeson, 1991; 

Rodriguezreina et al., 1994) whereas WFT continue reproducing under all photoperiods. 

Amblyseius cucumeris (Oudemans) is one of the predators attacking the plant-feeding live 

stages of WFT. The first and second stage nymphs and adults are predacious but only on 

the first instar larvae of thrips (Bakker and Sabelis, 1989). Moreover, A. cucumeris can be 
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economically produced in large numbers, making it a suitable species for inundative 

releases in greenhouses (Jacobson, 1997).  

The soil-dwelling developmental stages of WFT can be successfully controlled by 

applications of entomopathogenic nematodes (EPNs) (Rhabditida: Steinernamatidae and 

Heterorhabditidae) (Chyzik et al., 1996; Ebssa et al., 2001a,b, 2004a; Premachandra et al., 

2003a), predatory mites Hypoaspis spp. (Acari: Laelapidae) (Berndt et al., 2004), and 

combinations of both (Premachandra et al., 2003b). However, high dose rates of EPNs are 

needed to assure sufficiently high control levels in WFT (Ebssa et al., 2004a; 

Premachandra et al., 2003a). Thus, the general objective of this study was to test combined 

applications of A. cucumeris and EPNs against WFT under greenhouse conditions. An 

additional objective was to investigate whether a combination of both biocontrol agents at 

lower densities/concentrations would result in higher control than individual applications 

of A. cucumeris and EPNs at higher densities/concentrations.  

6.2. Materials and Methods 

Source and maintenance of thrips, mites, and nematodes 

The western flower thrips culture was maintained on fresh pods of green beans Phaseolus 

vulgaris L. (Fabaceae) according to the rearing protocol by Berndt et al. (2004) at 23 ± 2 

°C, 50–60% relative humidity, and 16L:8D h photoperiod. Only uniform aged insects were 

used in the experiment. Specimens of A. cucumeris were freshly obtained from Katz 

Biotech AG (Germany). For the experiments, uniform-sized adult mites were individually 

selected under a binocular. EPNs, originally obtained from the Institute of Phytopathology, 

Christian-Albrechts University Kiel, Germany, were reared in greater wax moth larvae 

Galleria mellonella (L) (Lepidoptera: Pyralidae) at 23 ± 2 °C according to the protocol 

originally developed by Kaya and Stock (1997). Based on the results of previous studies by 

Ebssa et al. (2001a, 2004a) on the potential of EPNs for WFT control two Heterorhabditis 

spp., i.e., H. indica Poinar, Karunakar and David (strain LN2) and H. bacteriophora Poinar 

(strain HK3) were used in the experiments. Infective juveniles (IJs) were stored at 15 and 4 

°C for H. indica and H. bacteriophora, respectively, until used in the experiments. Only 

fresh nematodes, not older than one month, were used in all experiments. Before 

application nematodes were acclimatized at room temperature for about 6 hours. The 
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required concentrations of the nematodes in the respective experiments were prepared by 

quantification and dilution procedures (Kaya and Stock, 1997). 

Growth chamber experiment 

One P. vulgaris seedling was planted in a plastic pot (11 cm diameter) at the two-leaf 

stage. The commercially available substrate Fruhstorfer Erde Type P (Archut GmbH, 

Lauterbach-Wallenrod, Germany) was used as plant growing media. The substrate is 

composed of humus, clay, and peat in the proportion of 15:35:50, respectively, and due to 

its high content of peat it has a high water holding capacity. Each seedling was caged with 

an acryl cylinder, equipped with several ventilations holes covered with thrips-proof gauze 

(64 µm pore size) as described in Ebssa et al. (2001b), into which 10:2 or 5:1 female:male 

thrips were released, mimicking the sex ratio in the thrips stock culture. The caged plants 

were further kept in a growth chamber at L16:D8 h photoperiod (for additional climatic 

data refer to Table 6.1). Under such conditions eggs of F. occidentalis are expected to 

hatch four days after the release of the adult thrips (Ebssa, 2000). Hence on the fourth day 

after the adult thrips release 0, 3, or 5 in replication 1 to 3 and 0, 5, or 10 in the replication 

4 to 6, uniform-sized female adult A. cucumeris were released on each plant. Using a 

similar experimental set-up Ebssa et al. (2001b) observed that WFT pupation starts eight to 

10 days after the introduction of adult thrips. Thus, in the present experiment eight and 13 

days after the adult thrips release H. indica or H. bacteriophora were applied in two 

repeated applications at 0, 100, or 200 IJs cm–2. The nematode suspensions were pipette in 

10 ml distilled water on the top of the substrate in the pot via the lower ventilation hole in 

the cylinder (Ebssa et al., 2001b). After about 15–30 min 20 ml water was pipetted to the 

surface of the substrate to rinse the nematodes down. In a preliminary experiment adult 

thrips, i.e., the F1, started emerging from the soil on the 13th day after the initial adult 

thrips introduction. Hence, in the main experiment, the plants were cut on the 15th day after 

adult thrips introduction. To remove the upper plant parts, the cylinder was partially lifted 

up from the pot and the plant was cut at the base. The shoot part of the plant was placed in 

the cylinder with the open end of the cylinder sealed with parafilm and kept at 4 °C until 

counting. The pot was covered with a ‘sticky trap’ prepared from a Petri dish (diameter 10 

cm). To trap emerging adult thrips, the inner part of the sticky trap was painted with insect 

glue. A hole was made into the centre of the sticky trap for ventilation but covered with 

thrips-proof gauze. Adult thrips emerged from the soil were counted from the sticky trap 
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and the top surface of the substrate in the pot for ten consecutive days until no more 

emerging thrips were recorded. The removed shoot was washed with a soap and water 

solution to collect all development stages of WFT on the plant. Those thrips that got stuck 

on the inside wall of the cage were collected using a fine camelhair brush. The thrips-

containing soap and water solution was first filtered through a 30 µm pore sized sieve and 

stored in a 30% alcohol solution in glass vials. All foliar feeding life stages of WFT on the 

plant were counted under binocular and classified into adults, larvae and pre-/pupae. A 

split-split plot design was used in which the thrips density, mite density, EPN species, and 

nematode concentrations were assigned to a main plot, sub-plot, sub-sub plot, and sub-sub-

sub plot, respectively. The experiment was repeated five times with one replication running 

at a given time.  

Table 6.1. Mean day and night (± SE) temperatures (°C), relative humidity (rh) (%), and vapour 

pressure deficits (VPD) (kilo Pascal) during experiments conducted in a growth chamber and the 

greenhouse.  

 Growth chamber Greenhouse 

Parameters day night day night 

Temperature 23.9 a B ± 0.22 23.9 a A ± 0.17 29.2 a A ± 2.42 19.3 b B ± 1.28 

rh 67.7 a A ± 0.96 68.7 a A ± 0.45 38.0 b B ± 6.00 63.9 a A ± 12.54 

VPD 0.55 a B ± 0.021 0.53 a A ± 0.01 1.56 a A ± 0.15 0.49 b A ± 0.17 

Note: Means in a row for a given experimental place and for a given time followed by the same 

lower and upper case letters, respectively, are not significantly different (P > 0.05) (LSD test). 

Greenhouse experiment 

Similar to the experiments in the growth chamber, two been seedlings were transplanted 

into a plastic pot at the two-leaf stage. Three pots, individually placed on a tray, were kept 

in a thrips-proof cage (0.6 m × 0.6 m area and 1.1 m height) in a greenhouse at the Faculty 

of Horticulture, Hannover University. The greenhouse is equipped with heating and 

passive-ventilation systems but not with a humidity controller. To ensure sufficient 

ventilation in the cage but preventing WFT to escape from the cage, two sides were made 
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of thrips-proof gauze (64 µm pore size) and the remaining sides from transparent acryl 

plastics. Each cage represented an experimental unit to which one of the different treatment 

combinations was applied. Fifteen female and 3 male adult WFT were introduced to the 

cage directly onto the seedlings. Four days later, three unsexed, uniform-sized adult 

A. cucumeris were placed in an Eppendorf tube and attached to one bean plant per pot. 

Thus a total of nine mites were released per cage/ experimental unit. On average the mites 

left the Eppendorf tubes and colonised the plant within 15 min. In the control treatment no 

predatory mites were released. Eight days after the adult thrips release, H. indica or 

H. bacteriophora was pipette to the top of the substrate in the pots at concentrations of 0, 

50, or 200 IJs cm−2. The pots were irrigated before and after application of the nematode to 

moist the soil and to rinse the nematodes, respectively. The treatments were arranged in 

split-split plot design in which A. cucumeris releases (with or without), EPN species, and 

EPN concentrations were assigned to the main plot, subplot, and sub-sub plot, respectively. 

Both mites and nematodes were applied weekly up to the end of the experiment. Twenty-

five days after adult thrips introduction, a blue sticky insect trap card (10 cm × 20 cm) was 

hung above the plant canopy inside the cage. Subsequently, every five to seven days adult 

thrips on the traps were counted, then removed, and the card was returned to the cage. At 

the end of the experiment, trap data were recorded before the plants were cut at base. The 

shoot parts of all six bean plants per cage were placed together in a plastic bag for 

collecting all foliar-feeding life stages of F. occidentalis (for details see previous 

paragraph). The pots remained inside the cage and the blue sticky trap was hung directly 

above them. Emerging adult WFT from the pots that got stuck on the trap were counted 

over the following days until no more adults emerged. The experiment was repeated in the 

same greenhouse but in different months of 2004 (Table 6.2).  
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Table 6.2. Temperature and relative humidity (rh) recorded inside the insect cages in the 

greenhouse during the experimental periods in different replications (Reps) in 2004.  

 Temperature (°C)   rh (%)  
Reps Time, in 2004 

Min Max Mean Min Max Mean 

1 Mar 4–Apr 13 14.5 31.4 21.3 20.2 64.8 45.3 

2 and 3 Jun 8–Jul 7 19.2 46.6 26.9 16.5 80.0 55.1 

4 and 5 Aug 11–Sep 16 8.8 45.4 23.8 13.7 91.2 65.4 

 

Data on temperatures and relative humidity in the growth chamber and greenhouse, for the 

latter inside and outside the insect cages, were recorded every 30 min using data loggers 

(Gemini Data Loggers Ltd, UK). The vapour pressure deficit (VPD) was calculated 

according to List (1984) and Prenger and Ling (2004). VPD is the difference between the 

amount of moisture in the air and how much moisture the air can hold when it is saturated, 

and some arthropods like A. cucumeris are greatly affected in their performance by the 

VPD (Shipp and van Houten, 1997). The temperature, relative humidity and VPD for both 

experiments are presented in tables 1 and 2. 

Statistical analyses 

Data of an experiment repeated over time were first tested for the variance homogeneity 

assumption using the HOVTEST = LEVENE option of the ANOVA procedure in SAS 

version 8 (SAS Institute, 1999) and were pooled only if the assumption was not violated. 

Except when assessing the influence of A. cucumeris on the pupation behaviour of WFT 

and when evaluating single and combined effects of the two biocontrol agents on the 

population reduction in F. occidentalis in the growth chamber experiment, data on mean 

numbers of thrips were used to determine the impact of a treatment. For evaluating the 

influence of the predatory mites on WFT pupation behaviour, the proportion (%) of the 

number of pre- and pupae on the plants to the total number of pre- and pupae in the system 

in the no nematode treatment (control) was used. For the experiment in the growth 

chamber, data on the number of adult thrips in the treatments were corrected for number of 

adult thrips in the no natural enemy treatment (control) using Abbott’s formula (Abbott, 



Chapter 6. Compatibility of nematodes and mites   88 

 

1925). To stabilize the variance, numbers of thrips and percentage values in different 

treatments were square root and arcsine, respectively, transformed before subjected to any 

data analyses (Zar, 1999). To assess the significance of a treatment, mean numbers of 

thrips under single or combined effects of natural enemies were compared to the mean 

numbers of thrips in the no natural enemy treatment using Dunnett’s test (SAS Institute, 

1999). Single and interaction effects of factors were detected by fitting the data to a mixed 

model in SAS (Little et al., 1996) considering repetition time and initial number of adult 

thrips released (in the growth chamber experiment) and repetition time (in the greenhouse 

experiment) as random effects. In case of a significant interaction between factors, 

different levels of a factor were compared at a given level of the second factor; otherwise, 

data were pooled. Whenever the ANOVA resulted in a significant effect of a given factor, 

means of different levels of the factor were compared by the PDIFF option on the 

LSMEANS statement in mixed model of SAS (Little et al., 1996). In all analyses a 0.05 

alpha level was used. Mean values estimated in the mixed model of SAS are presented as 

LSMEANS ± SE. 

6.3. Results 

Growth chamber experiment 

Thrips population on the plant: In the no natural enemy (control) treatment 15 days after 

adult thrips introduction to the bean plants 68.9 ± 3.5% of the total thrips population were 

on the plants, with 67.3 ± 3.4, 14.5 ± 2.1, and 18.2 ± 2.1% larvae, pre- and pupae and 

adults, respectively. On average, in the control treatment 89.9 ± 12.5 and 117.6 ± 9.1 

individual WFT per plant were recorded following an initial infestation by 5:1 or 10:2 

female and male thrips per plant, respectively. The ratios of WFT on the plants and in the 

soil were not affected by the initial release density of the thrips (F17, 1 = 0.78, P = 0.3908). 

Fifteen days after adult thrips 25.4 ± 4.0% of the total number of pre- and pupae were 

recorded on the plants while the remaining pupated in the soil as inferred from the numbers 

of adults that had emerged from the soil and were then counted on the sticky traps.  

Due to the duration of the experiment no F2 larvae could occur on the plants. Hence, EPNs 

in their different concentrations did not significantly affect the numbers of immature foliar 

dwelling life stages of F. occidentalis (Concentration: F2, 122 = 0.77; P = 0.4641). Thus, to 

assess the efficacy of A. cucumeris on the number of immature foliar dwelling stages of 
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WFT at the time of plant cutting, a reduced model was fitted excluding the effect of EPNs 

and their concentrations. Both the initial density of adult WFT and the release density of 

A. cucumeris had a significant effect on the numbers of immature stages of F. occidentalis 

on the plants (Table 6.3). However, the effects of the mite release densities did not depend 

on the initial numbers of released thrips. 

Table 6.3. ANOVA summary for the effects of the numbers of Amblyseius cucumeris (AC) and the 

initial numbers of adult western flower thrips (WFT) released (Adult0) on the number of immature 

foliar dwelling life stages of WFT (larvae and pre- and pupae) 15 days after adult thrips release 

onto bean seedlings in a growth chamber experiment. 

F  P 
Variations df Larvae Pre- and pupae Larvae Pre- and pupae 

Adult0 1, 162 43.67 21.68 < 0.0001 < 0.001 

AC 3, 164 13.37 15.54 < 0.0001 < 0.001 

Adult0*AC 3, 163 0.56 1.55 0.6404 0.203 

 

Releases of A. cucumeris always significantly reduced the number of WFT immatures on 

the plants compared to the no predator treatment, and the highest mite release rate resulted 

in significantly greater control of F. occidentalis larvae and pre- and pupae than the two 

lower A. cucumeris densities (Table 6.4).  

On the other hand, using the full model consisting of single and interaction effects of initial 

number of adult thrips released, release densities of A. cucumeris, EPN species, and EPN 

concentrations, the numbers of adult WFT on the plants were only significantly affected by 

the concentrations of the EPNs (F2, 123 = 3.68, P = 0.0279) and the release densities of 

A. cucumeris (F3, 124 = 7.47, P < 0.0001). Among all interactions, only 

Adult0*Concentration (F2, 123 = 3.39, P = 0.0368) turned out to be significant. Hence 

compared to the no predator treatment, independent of EPN applications, significantly 

lower numbers of adult WFT were recorded only at the highest A. cucumeris release rate 

(Table 6.4). Furthermore, significantly lower numbers of adult thrips on the plant were 

recorded in EPN treatment than no nematode treatment only at 10 adult thrips density 

(Table 6.5).  
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Table 6.4. Mean numbers (± SE) of immature foliar-dwelling life stages and adults of western 

flower thrips (WFT) per bean plant 15 days after initial release of adult thrips onto bean seedling as 

affected by different release densities of adult Amblyseius cucumeris (AC) per pot and applications 

of different concentrations (in number of infective juveniles cm−2) of entomopathogenic nematodes 

(EPN) in a growth chamber experiment.  

Adult WFT at three concentrations of EPNs 
AC Larvae Pre- and 

pupae 0 100 200 

0 75.7 ± 7.4 a 11.6 ± 2.0 a 18.4 ± 2.4 a 13.9 ± 2.4 a 14.49 ± 2.4 a 

3 58.2 ± 8.4 b 7.1 ± 2.1 b 17.3 ± 3.3 a 12.7 ± 3.0 ab 11.49 ± 3.0 ab 

5 61.6 ± 7.4 b 8.2 ± 2.0 b 14.7 ± 2.4 ab 13.0 ± 2.4 ab 11.69 ± 2.4 ab 

10 38.5 ± 8.4 c 5.1 ± 2.1 c 10.2 ± 2.7 b 9.1 ± 2.7 b 8.89 ± 2.7 b 

Note: Data in this table are pooled from two initial adult thrips release densities and from two EPN 

species since all factors, except for EPN concentration * initial numbers of released thrips (F2, 123 = 

3.39, P = 0.0368), did not interact significantly.  

Means within a column followed by the same letters are not significantly different (P > 0.05). 

Number of adult thrips across different EPN concentration for a given AC densities are not 

compared since EPN concentrations significantly interacted with initial numbers of released thrips.  

Table 6.5. Effect of different concentrations of entomopathogenic nematodes (EPN) on the mean 

numbers (± SE) of adult western flower thrips (WFT) per plant 15 days after initial releases of 5:1 

or 10:2 female:male WFT per plant in a growth chamber experiment.  

 Initial number of female:male WFT released 
EPN concentrations 

5:1 10:2 

0 12.2 ± 2.52 a 18.2 ± 2.50 a 

100 12.5 ± 2.51 a 13.0 ± 2.50 b 

200 10.2 ± 2.50 a 12.9 ± 2.50 b 

Means within a column followed by the same letters are not significantly different (P > 0.05). 
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Effect of Amblyseius cucumeris on the pupation behaviour of WFT: In the no nematode 

treatments, the ratios of WFT pre- and pupae on the plants to the total numbers of pre- and 

pupae on the plants and in the soil (the latter figure derived from the number of emerging 

adults from the soil) were significantly affected by releases of A. cucumeris (F3, 46 = 5.8, P 

= 0.0018) but not by the initial number of thrips released (F1, 46 = 0.30, P = 0.5858) nor by 

the interaction of the two factors (F3, 46 = 0.69, P = 0.6077). Hence, following releases of 

A. cucumeris a significantly lower proportion of the thrips pupated on the plants, though 

this was not affected by the different mite release densities (Table 6.6). 

Table 6.6. Proportion of western flower thrips pupating on the plant at different release densities of 

Amblyseius cucumeris (AC).  

AC densities Pupation on the plant (% ± SE) 

0 25.5 ± 3.45 a 

3 14.1 ± 4.68 b 

5 10.8 ± 3.39 b 

10 14.4 ± 4.56 b 

Means followed by different letters are not significantly different (P > 0.05). 

To assess if the presence of A. cucumeris and/or higher initial WFT density lead to an 

earlier pupation in F. occidentalis, the proportion of adult WFT in the no EPN treatments 

that emerged from the soil during the end of the data collection (i.e., from the 6th to the 10th 

day after the first adult WFT started to emerge from the soil) were compared in the 

different A. cucumeris and initial thrips density treatments. Neither A. cucumeris (F3, 43 = 

1.22, P = 0.3133) nor the initial WFT densities (F3, 46 = 0.93, P = 0.3407) significantly 

affected the proportion of adult thrips that emerged late from the soil. On average 23.4% 

(SE = 2.7) of all adult WFT in the no nematode treatment emerged from the soil during the 

last four days of data collection. 

Efficacy of Amblyseius cucumeris and/or EPNs: In the no natural enemy control 

treatment 37.8 ± 9.7 and 67.0 ± 12.8 adult WFT emerged from the soil in the low and high 

initial thrips release density treatments, respectively. These numbers were significantly 
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higher than those recorded in all EPN alone treatments, the highest A. cucumeris release 

rate, and all combined applications of EPNs and A. cucumeris (P < 0.05, Dunnett’s test). 

The single and/or combined effects of the predatory mites and EPNs on F. occidentalis 

was assessed after correcting the numbers of adult thrips on the plants and in the soil in the 

natural enemy treatments with those figures from the no natural enemy treatment (control). 

Release densities of A. cucumeris and EPN concentrations, but not EPN species and initial 

thrips release density, significantly affected corrected mortality in WFT (Table 6.7). The 

two-way interaction of A. cucumeris release densities and EPN concentrations was 

significant, whereas all other two-way and the three-way interactions were not. 

Table 6.7. ANOVA summary of the effects of three release densities of Amblyseius cucumeris 

(AC) and two entomopathogenic nematode species (EPN) at three different concentrations (Conc) 

on the corrected mortality of western flower thrips at two initial thrips release densities (Adult0) on 

bean seedlings in a growth chamber experiment. Note: error df = 101.  

Source of variations df F P 

Adult0 1 1.65 0.2019 

AC 3 15.07 < 0.0001 

EPN 1 1.18 0.2796 

Conc 2 82.68 < 0.0001 

Adult0*Conc 2 2.36 0.0994 

AC*Conc 6 4.96 0.0002 

All others   > 0.05 

 

Individual releases of 3 and 5 A. cucumeris per plant resulted in lower WFT control than 

both EPN concentrations alone and all combinations of the two natural enemies (Table 

6.8). Increasing the mite density to 10 per plant resulted in a similar control level to all 

EPN only treatments. However, the highest A. cucumeris release rate caused significantly 

lower thrips control than all combined applications except for the lowest mite density and 

the combination of the intermediate A. cucumeris release rate and the lower EPN 

concentration (Table 6.8). Furthermore, increasing the EPN concentration in both species 
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did not result in significantly higher thrips control. In no cases we recorded significantly 

lower thrips mortality in combined treatments compared to individual applications of the 

natural enemies. In addition, the combinations of the highest A. cucumeris release density 

and the higher EPN concentration always caused significantly higher thrips control than 

the respective individual treatments (Table 6.8).  

Table 6.8. Percentage population reduction in western flower thrips (WFT) (± SE) by applications 

of entomopathogenic nematodes (EPN) alone (Heterorhabditis bacteriophora (Hb) or H. indica 

(Hi)) at 0, 100, or 200 infective juveniles cm–2, releases of Amblyseius cucumeris (AC) only at 0, 3, 

5, or 10 adult females per plant, or combined applications of the two natural enemies in a growth 

chamber experiment.  

 AC densities 
EPN Concentrations 

0 3 5 10 

Control 0 – * 15.5 ± 9.1 d 24.6 ± 6.3 d 47.1 ± 7.6 c 

100 55.8 ± 6.3 bc 47.2 ± 9.1 c 62.3 ± 6.3 bc 68.0 ± 7.6 ab
Hb 

200 64.6 ± 6.3 bc 60.2 ± 9.1 bc 68.2 ± 6.3 ab 82.9 ± 7.6 a 

100 60.1 ± 6.3 bc 67.9 ± 9.1 bc 57.4 ± 6.3 bc 73.2 ± 7.6 ab
Hi 

200 64.7 ± 6.3 bc 64.1 ± 9.1 bc 67.9 ± 6.3 ab 83.1 ± 7.6 a 

Note: Since numbers of adult thrips initially released did not significantly interact with any other 

factors, data from the two thrips densities were pooled.  
* The mean (± SE) number of adult WFT in the no natural enemy control treatment (62.4 ± 8.3) 

was significantly higher than those at all levels of EPNs alone, at the highest A. cucumeris release 

density, and at all combinations of predatory mites and EPNs (Dunnett’s test).  

Means in any two cells followed by different letters differ significantly (P > 0.05). 

Greenhouse experiment 

The climatic conditions in the greenhouse during the course of the experiment could not be 

kept at a comparatively constant level. Temperatures inside the insect cages ranged from as 

low as 9 °C to as high as 47 °C, and relative humidity levels occasionally dropped to below 

15% (Table 6.2). The high summer temperatures were very conducive for a massive 
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population build-up of WFT. In the no natural enemy treatment 35 days after the initial 

release 15 female and 3 male F. occidentalis a mean number 579.3 ± 102.5 adult and 892.5 

± 130.5 thrips larvae per cage was recorded. However, no nymphal stages of A. cucumeris, 

but adult mites, were observed on the plants. No significant differences in numbers of adult 

thrips per sticky blue trap were observed between the different treatments (P < 0.05 for all 

trapping times). Thus, the total number of adults recorded throughout the entire experiment 

(i.e., data from all sticky trap catches and from the plants) and the number of thrips larvae 

counted on the plants at the end of the experiment were used to assess single and combined 

effects of A. cucumeris releases and EPN applications. Individual weekly treatments of 

both EPN species at 50 IJs cm–2 did not lead to a significantly reduced thrips density 

compared to the no natural enemy control (Fig. 6.1). However, EPN applications at 200 IJs 

cm–2, releases of A. cucumeris alone, and combined applications of the two EPN species at 

both concentrations and the predatory mite resulted in significantly lower thrips numbers 

than in the control treatment. Though, no significance differences were found between the 

individual and combined natural enemy treatments (Fig. 6.1). 
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Fig. 6.1. Total number of adult western flower thrips (WFT) recorded in a greenhouse cage 

experiment on blue sticky traps and number of WFT larvae and adults counted on bean plants. The 

plants were treated with either no natural enemies (control), or weekly applications of 

Heterorhabditis bacteriophora (Hb) and H. indica (Hi) at 50 or 200 infective juveniles cm–2, 

Amblyseius cucumeris (AC) at a release rate of 9 unsexed adults per greenhouse cage, or 

combinations of the two natural enemies (see materials and methods for details). Bars of a given 

thrips developmental stage followed by different letters differ significantly (P > 0.05). 

6.4. Discussion  

The relative importance of two natural enemies may depend on their 

densities/concentrations used and densities of their prey/host (Bellows and Hassell, 1999; 

Hansen, 1989). In the present study we chose different densities and concentrations of 

A. cucumeris and H. indica and H. bacteriophora, respectively, to identify the best 

combination for WFT control, using beans as a model plant. To exclude the effects of 

environmental factors, such as extreme temperatures and low humidity, the potential 

compatibility of mites and nematodes was first tested in a climate-controlled growth 

chamber. To assess the compatibility of the two natural enemies under more practical 

conditions, where, depending on the weather and the greenhouse architecture, climatic 

conditions can greatly vary, we conducted a second experiment in a greenhouse.  
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Growth chamber experiment 

Fifteen days after introducing the adult WFT, more than 65% of the foliar feeding life 

stages were larvae. During this period a great proportion of the thrips were in the L1 stage, 

on which A. cucumeris preferably preys (Bakker and Sabelis, 1989). According to van 

Lenteren et al. (1995) an adult A. cucumeris can consume on average 4.9 L1 per day at 25 

°C. In the present study even at the lowest release density of A. cucumeris the numbers of 

immature stages of WFT per plant were significantly reduced. In general, rising mite 

densities lead to increased levels of WFT control. At the highest A. cucumeris release 

density, both numbers of immature and adult F. occidentalis were reduced by 

approximately 50%. 

Similar to previous studies 15 days after introducing the adult WFT about 30% of the total 

thrips population were in the soil for pupation (Ebssa et al., 2001b; Premachandra et al., 

2003b). Thus, at a given time, about one-third of the thrips population are potential hosts 

for EPNs. Unlike A. cucumeris, however, nematodes when applied to the soil only attack 

the soil-dwelling developmental stages of F. occidentalis that have already caused damage 

to the plants as larvae. Hence, in such a case EPNs reduce the population density of the 

subsequent generation. Both EPN species at 100 IJs cm–2 reduced the number of emerged 

adult WFT by more than 50% though mortality did not increase at a higher EPN 

concentration. EPN-induced mortality in WFT as affected by different nematode 

concentrations may be influenced by several factors such as thrips developmental stages 

(Ebssa et al., 2001a), host density (Ebssa et al., 2004a), EPN species/strains (Chyzik et al., 

1996), moisture level of the substrate (Ebssa et al., 2004b), and pupation depth of 

F. occidentalis (Ebssa et al., 2004c).  

The efficacy of A. cucumeris was assessed by evaluating its effect not only on the 

immature foliar-feeding life stages of F. occidentalis but also on the number of F1 adult 

thrips. However, for a comparison of the impact of A. cucumeris and EPNs on WFT only 

the data of emerged adult WFT can be used as in the present study nematodes were only 

applied to the soil and data collection stopped before F1 adults started to produce 

offspring. Yet, this may underestimate the efficacy of A. cucumeris in comparison to that 

of EPNs. 
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Both natural enemies occupy different niches, and hence no antagonistic effects can be 

expected. Moreover, in the presence of A. cucumeris on the plants a higher proportion of 

late L2 larvae of WFT descends the plants to pupate in the soil, thereby increasing the 

numbers of potential hosts for EPNs. In a similar study Premachandra et al. (2003b) 

reported no antagonistic effects between the soil-dwelling predatory mite H. aculeifer 

Canestrini and EPNs although both forage in the soil. Combined applications of the highest 

A. cucumeris release density with both EPN concentrations resulted in significantly higher 

WFT control than any individual application of the mites or the nematodes, yielding up to 

83% reduction in adult WFT.  

Our results clearly indicate that in a controlled environment EPNs are highly compatible 

with A. cucumeris for control of WFT. However, the concentrations of EPNs used in this 

study are comparatively higher than the ones used for control of some other insect pests 

(e.g., McCoy et al., 2000; Samish et al., 1999). Yet in certain pests very high EPN 

concentrations are required, for instance in the citrus root weevil Diaprepes abbreviatus 

(L.) (Coleoptera: Curculionidae) (Shapiro-Ilan, 2002). During the last 10 years costs for in 

vitro production of EPNs have substantially decreased and most likely will continue to do 

so (Ehlers, 2001). Thus, in future applications of EPNs for WFT control, even at similarly 

high concentrations as in the present study, may become economically feasible, especially 

in high value crops like ornamentals.  

Greenhouse experiment 

High temperatures are conducive for the production of many vegetable and ornamental 

crops (Salunkhe and Kadam, 1998), but WFT populations also build up faster under such 

conditions (Higgins, 1992). To assess the potential compatibility of EPNs and 

A. cucumeris also under high temperatures, we did not reduce the temperature in the 

greenhouse during the summer. However, due to technical reasons, the heating system of 

the greenhouse did not always function properly, leading to the recorded low night 

temperatures in March and September.  

High temperatures and low humidity can limit the virulence of EPNs by influencing their 

persistence, activity, survival and activity of their symbiotic bacteria (Brown and Gaugler, 

1997; Grewal et al., 1994; Griffin, 1993; Kung et al, 1991). In the present study, weekly 

applications of both tested EPN species at 50 IJs cm–2 did not significantly reduce WFT 
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populations. Moreover, in a preliminary experiment only 10% of the late L2 descended the 

plants via the stem for pupation, while the remaining ones dropped off the plant canopy to 

the ground (L. Ebssa, unpublished data). Thus, in our study probably a high proportion of 

the L2 dropped off the plants in such a manner and hence pupated outside the pots, leading 

to a reduced impact of the EPNs and possibly explaining the contrasting results between 

the growth chamber and greenhouse experiments.  

According to Shipp and van Houten (1997) survival of A. cucumeris decreases rapidly at 

temperatures ≥25 °C and at a vapour pressure deficit ≥1.0 kPa. Moreover, Shipp et al. 

(1996) showed that at a constant temperature, the rate of predation of A. cucumeris on 

WFT L1 decreases with increasing vapour pressure deficit, and according to the same 

authors the maximum rate of predation of the mites in greenhouses is achieved at a vapour 

pressure deficit of ≤0.75 kPa at the recommended production temperatures. In the present 

study, the average daytime vapour pressure deficit in the greenhouse over the course of the 

trial period was 1.56 kPa, with maximum temperatures of up to 45 °C. This is probably the 

reason why weekly releases of nine adult A. cucumeris per cage did not lead to a strong 

reduction in the WFT population. Furthermore, unlike in the growth chamber experiment, 

combined applications of mites and nematodes in the greenhouse did not result in greater 

thrips control than individual applications of the two natural enemies. However, higher 

concentrations of both EPN species, releases of A. cucumeris and their combination 

significantly reduced WFT densities compared to the untreated control.  

In conclusion, results of this study indicate that under controlled conditions, combined 

applications of A. cucumeris and EPNs lead to a significantly higher control of WFT than 

individual applications of both natural enemies. However, in the greenhouse high 

temperatures and low humidity can lead to a high population build up of WFT, and at the 

same time reduce the efficacy of both predatory mites and EPNs.  
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General Discussion 

 

In previous studies the susceptibility of soil-dwelling developmental stages of WFT to 

selected EPN species/strains has already been demonstrated (Chyzik et al., 1996; Ebssa et 

al., 2001a; Premachandra et al., 2003a), and up to 90% mortality levels were recorded by 

these authors. However, high mortality levels were obtained only when high EPN 

concentrations, i.e., 400 IJs cm–2 or more, were applied, and in general mortality levels 

increased with increasing concentrations for most tested strains. For other insect pests, a 

population reduction >50% can be obtained with a concentration of <150 IJs cm–2 (e.g., 

McCoy et al., 2000; Samish et al., 1999). With this background the present study was 

initiated to investigate the potential use of EPNs for WFT control from three different 

angles: (i) Studying different environmental factors potentially responsible for the high 

EPN concentrations needed in WFT control (Chapters 2, 3, and 4); (ii) applying EPNS at 

an appropriate time and frequency to target the majority of the soil-dwelling thrips life 

stages before they develop into adults and thereby escape the nematodes by emerging from 

the soil (Chapter 5); (iii) combining EPNs at economically acceptable concentrations with 

other biocontrol agents that target the foliar-feeding stages of thrips (Chapter 6). 

EPN species/strains possess different pathogenicity levels to different insect pests (e.g., 

Gazit et al., 2000; Mason and Wright, 1997; Wang et al., 2002). According to the present 

work (Chapter 2) high variability exists among the different EPN species/strains tested in 

their efficacy against WFT. In general, Heterorhabditis spp. are more virulent against 

WFT than Steinernema spp. So far, H. bacteriophora strain HK3 and H. indica strain LN2 

have been identified as the most virulent EPN species against WFT, making them ideal 

candidates for future investigations on EPNs for WFT control. In studies on foliar 

applications of nematodes against WFT, H. indica was also found to be one of the most 

promising EPN species (Halaweh, 2004). However, we cannot rule out the possibility of 

obtaining even more virulent EPN species/strains. Results of the present study suggest that 

such future screenings should focus on Heterorhabditis spp. 

The efficacy of EPNs also depends on several factors (Chapter 2, 3, and 4). For instance, 

higher H. indica concentrations are required for high WFT control at low compared to 

higher thrips densities (Chapter 2). Similarly, high H. indica concentrations are required if 

7 
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thrips pupate deeper (Chapter 4), the substrate is not moist enough, or no or insufficient 

amounts of rinsing water were used after an EPN application (Chapter 3). On the other 

hand, S. bicornutum that caused similar WFT mortality to H. indica in the initial screening 

experiments proved to be inferior to H. indica under most of the before mentioned 

conditions. Thus, an EPN species/strain that shows high virulence against WFT in 

screening experiments necessarily needs to be further tested under such different 

conditions. Moreover, in Europe and North America WFT is primarily a greenhouse pest, 

and in such greenhouses plants are often produced at comparatively higher temperatures. 

Thrips population build up accelerates under such warm conditions, especially during the 

summer (Chapters 2 and 6). Thus, future screening of EPNs for WFT control should focus 

on nematode species/strains from warmer climates that may be perform better at higher 

temperatures (Chapter 2).  

WFT density in the soil is another factor that proved to be, among others, a reason for the 

high EPN concentrations needed for high control of thrips (Chapter 2). This could be 

associated with the behaviour and size of the hosts, as well as the foraging behaviour of the 

nematodes. The body length of soil-dwelling life stages of WFT is only about twice that of 

the IJs (van Lenteren et al., 1995; Adams and Nguyen, 2002). Furthermore, the specific 

foraging behaviour of EPNs affects their locating and invading ability of their host (Lewis, 

2002). IJs of cruiser EPN species like H. indica in the current study actively move in their 

search for hosts. However, the fact that the soil-dwelling immature stages of WFT (pre- 

and pupae) are non-feeding (van Lenteren et al., 1995), and hence do not provoke plants to 

release chemical cues as a result of the feeding activity of a herbivore (Boff et al., 2001; 

Lewis et al., 1993), and move upon disturbance, may negatively affect the host-finding and 

invading capability of the nematodes. IJs of ambushers like S. bicornutum in the current 

study remain near or at the soil surface and nictate to attach themselves to mobile insects 

(Lewis, 2002). When applying lower or higher EPN concentrations to the soil, a higher 

proportion of the L2 descends deeper for pupation or pupate at shallower depth, 

respectively (Chapter 4). Thus, efficacy of ambushers in WFT control may be affected 

from two different angles: (1) Pupating at deeper levels may enable thrips to avoid contact 

with IJs of an ambusher. (2) When WFT pupates at a shallower depth, the lack of motion 

of the hosts may render the nictating behaviour and subsequent attempts of an infective 

juvenile of an ambusher to attach to a host less successful. Thus, in general, the results of 

the present study indicate that for WFT control by EPNs limiting factors are more related 
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to host locating and colonisation, than to penetration and killing. Boff et al. (2001) 

discussed that once invasion and penetration are successful, only few IJs suffice to kill a 

smaller than a bigger host; however, a higher EPN concentration is needed to enable the IJs 

to successfully locate and infect a smaller than a bigger host. This is probably also the case 

in WFT late L2, prepupa and pupa, which are very small hosts. In laboratory studies, WFT 

immatures when attacked by few IJs rapidly disintegrated (Belay, 2003). These may 

explain why the host density in relation to the EPN concentration seems to be one of the 

limiting factors in WFT control by EPNs. However, these hypotheses need to be verified in 

future studies. 

Results from chapter 3 clearly indicate that the substrate moisture content levels before an 

EPN application and the amount of post-application irrigation required largely affect the 

EPN concentrations needed for WFT control. For instance, a higher H. indica 

concentration was needed at a low moisture content of the substrate and inappropriate 

irrigation levels. An appropriate moisture level may be required not only at the time of 

nematode application but also during the following days when the IJs are expected to infect 

the susceptible life stages of their hosts (Georgis and Gaugler, 1991; Shapiro et al., 2002). 

However, the rate of water loss in substrates depends on several factors, such as 

temperature (e.g., Lakshmi et al., 2003) and substrate types (Bilderback and Fonteno, 

1993). Thus, the initial moisture content of the substrate, which greatly affected the EPN 

concentrations needed to assure high WFT control, may depend on other factors that were 

kept constant in the present study (Chapter 3). For instance, under higher temperatures, the 

substrate probably will loose its moisture faster, thereby affecting the persistence of the 

EPNs. Hence, depending on the rate of loss of moisture from the substrate repeated post-

application irrigations might be required to keep the substrate moist enough during the 

days following an EPN application (Cabanillas and Raulston, 1996b). Additionally, the 

amount of irrigation needed for rinsing the IJs down to the horizons where they can 

encounter their hosts may depend on the application volume (Chapter 3), soil moisture 

content before the EPN application (Grant and Villani, 2003), and the pupation depth of 

WFT (Chapter 4). 

Results of the present study clearly show that depending on the foraging behaviour of 

EPNs (i.e., cruisers vs. ambushers), the depth of pupation in WFT is one of the most 

critical factors explaining the high EPN concentrations presently needed for WFT control 
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(Chapter 4). Furthermore, it could be shown that depending on EPN concentrations and 

thrips densities, WFT adjust their pupation depths in the substrate. However, the respective 

experiment was conducted under rather artificial conditions. Under more practical/ 

greenhouse conditions, the pupation depth may depend on different characteristics of the 

substrate such as substrate type, moisture content, level of compaction etc. (Dimou et al., 

2003). Depending on the extent of post-application irrigation (Chapter 3) and EPN 

foraging behaviour (Koppenhöfer et al., 1996), most of the applied IJs may reach the depth 

where the majority of WFT pupates differently in different substrate types.  

Results of chapters 2, 3 and 4 so far have shown that for lowering the EPN concentrations 

required in WFT control various environmental conditions need to be optimised. In 

addition, the use of more persisting EPN species and/or split-application of the nematodes 

proved to be a viable strategy (Chapter 5). Second instar larvae of WFT continuously drop 

off the plant for pupation in the soil. Thus, the applied EPN should not only target the 

WFT in the soil at the time of application but also the L2 that will enter the soil during the 

following days, necessitating a certain level of persistency in the EPN species/strain. In the 

present study (Chapter 5), applying a more persistent EPN species at a higher 

concentration resulted in better control of WFT over a longer period than at a lower 

concentration. However, persistence in EPNs is affected by several external factors like 

extreme temperatures and desiccations (Glazer, 2002). On the other hand, in less persisting 

EPN species repeated applications at a reduced concentration might be required. Early and 

repeated applications of H. bacteriophora at a lower concentration caused higher WFT 

control than a single treatment at twice concentration independent of the time of 

application (Chapter 5). Hence under uncertain weather conditions that may negatively 

affect the survival and/or efficacy of the applied EPNs (Glazer, 2002), split applications at 

a reduced concentration can be a better approach than applying the nematodes once at a 

higher concentration. Moreover, probably because of its small size, WFT cannot sustain a 

complete life cycle of an EPN (Belay, 2003). Hence for WFT control by EPNs, by 

definition, nematodes can be only used in an inundative manner, and especially under 

unfavourable conditions and for non-persisting EPN species/strains, repeated applications 

are needed.  

Another approach that might enable the use of lower EPN concentrations could be 

combined applications of nematodes with other biological control agents that target the 
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foliar-feeding (Chapter 6) or soil-dwelling life stages of WFT (Premachandra et al., 

2003b). In the current study the potential compatibility between the predatory mite 

A. cucumeris and EPNs for WFT control was first conducted under controlled conditions in 

a growth chamber and then under more practical conditions in the greenhouse (Chapter 6). 

Results from the growth chamber experiment demonstrate for the first time the feasibility 

of simultaneously using nematodes for WFT control in the soil and releases of predatory 

mites against the thrips on the plants. As both biological control agents forage in different 

habitats (soil vs. plant) no antagonistic effects are expected, thus assuring the absence of 

intra-guild predation (Finke and Denno, 2003) and hence a full compatibility between 

mites and nematodes. Foliar-feeding stages of WFT that escaped a mite attack were further 

targeted by EPNs in the soil, resulting in an overall better WFT control compared to the 

individual applications of mites and nematodes, respectively. In the greenhouse 

experiment, WFT was significantly controlled only at a high EPN concentration, release of 

predatory mite, or combinations of the two biocontrol agents. Due to high temperatures 

and low humidity, the combined application of the two organisms in the greenhouse did 

not result in a better thrips control than individual releases of the natural enemies. 

Environmental conditions, such as temperatures, humidity, and soil moisture, are some of 

the main factors that are often responsible for insufficient pest control levels after 

treatments with EPNs (Shapiro-Ilan et al., 2002) and/ or releases of A cucumeris (Shipp et 

al., 1996; Shipp, van Houten, 1997) in the field or greenhouses. In the current greenhouse 

experiment technical problems and insufficient ventilation facilities, resulted in great 

variations in temperatures and relative humidity, negatively affecting the efficacy of both 

natural enemies. However, such environmental problems can be overcome by equipping 

greenhouses with appropriate cooling/heating system, continuous irrigation facilities, and 

humidity controller, and future studies on the combined use of EPNs and predatory mites 

should be tested under such conditions.  

Because of major technical improvements, costs of in vivo EPN production have 

significantly decreased during the last few decades (Ehlers, 2001) and most likely will do 

so in the future, thus probably increasing the economic feasibility of a use of EPNs for 

WFT control. On the other hand, use of an efficient EPN species/strain at 400 IJs cm–2, the 

concentration that repeatedly provided best thrips control (Chapters 2, 3, 4, and 5), could 

still be economically feasible in certain high value ornamental crops. Hence in future the 

use of one of the efficient EPN species/strains identified in this study should be 
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investigated under practical greenhouse conditions by optimising all environmental factors 

previously mentioned. Recently foliar applications of EPNs have been proposed for control 

of foliar-feeding insect pests including WFT (e.g., Broadbent and Olthof, 1995; Piggott 

and Wardlow, 2002) but with several limitations as discussed in Arthurs et al. (2004). In 

WFT control, for instance, Wardlow et al. (2001) reported that weekly foliar applications 

of S. feltiae efficiently controlled thrips on chrysanthemums. Foliar applications of EPNs 

primarily target the foliar-feeding life stages of WFT, however, the run-off of the EPN 

formulations possibly as well affect the soil-dwelling life stages, though this so far has not 

been investigated. Moreover, novel adjuvants can improve the formulations used in foliar 

application of EPNs, resulting in some studies in higher controls levels (Baur et al., 1997; 

Mason et al., 1998) though in others not (Belair et al., 2003; Halaweh, 2004). Hence, more 

in-depth research is needed to conclusively evaluate the impact of foliar applications of 

EPNs on pests like WFT.  

In conclusion, in this study several options for improving the efficacy of EPNs for WFT 

control have been identified, thereby providing a better understanding of the potential use 

of EPNs as one component in the biological control of F. occidentalis. Moreover, their 

compatibility with foliar acting biocontrol agents, at least under controlled conditions, may 

open up new prospects for biological control of WFT by targeting simultaneously both 

foliar-feeding and soil-dwelling thrips developmental stages, possibly leading to increased 

control levels.  
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Annex A: Preliminary experiments 

1. Substrate moisture content 

Three additional pots, along with the other experimental pots to which a treatment was 

assigned, were used to determine (i) the moisture content of the substrate at the time of pot 

filling and (ii) moisture loss during the three-day stay of the experimental material in a 

climate chamber before adding EPNs. The moisture content of the substrate was 

determined through oven-dry method in the three pots (Fig. 1). On the third day the 

amount of water or EPN suspension required to obtain an appropriate moisture level was 

determine (Fig. 1). 

 

Fig. 1. Schematic representation of a method of moisture content determination. Note: the 

abbreviations given in this figure are used in different formulas to calculate different parameters 

(see text).  

The original moisture content (MC0) of the substrate before added to the beaker (or pot) 

was calculated as1: 

substratedriedovenofWeightsubstratetheinwaterofWeight
substratetheinwaterofWeightwwcontentMoisture

+
=)/(

 

                                                 
1 The abbreviations of different parameters are given in Fig 1. 
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==>
S

BSBSMC )(
0

−−=   (Eq. 1) 

where MC0 is original moisture content of the substrate, S is weight of the substrate added 

to the beaked before oven-dried, B is weight of the beaker, SB is weight of the oven-dried 

substrate and the beaker (see fig. 1).  

The amount of water in the substrate that was added to the pot was obtained from the 

following equation:  

000
0

0
0 * SMCW

S
WMC ===>=   (Eq. 2) 

where, W0 is amount of water in the substrate, S0 is weight of the substrate added to the pot 

(Fig 1). The substrate was kept in the climate chamber and the weight (S1) was determined 

three days thereafter as follows: 

S1 = PS – P  (Eq. 3) 

Where PS is the weight of the pot and the substrate after three days in climate chamber and 

P is the weight of the pot. Then, water lost during the three days (Wlost) was determined as: 

Wlost = S0 – S1  (Eq. 4) 

Thus, moisture content (MC1) of the substrate after three days in the climate chamber is: 

1

0

0

0
1 )( S

WW
SWW

WWMC lost

adlost

lost −=
+−

−=    (Eq. 5) 

where Sad is the theoretical weight of the dried substrate, S1 is the actual weight of the 

substrate added as determined in Eq. 3. After adding W1 ml water (or EPN suspension), the 

final moisture content (MCF) of the substrate in the pot was calculated as:  

( )
( )[ ]

( )
11

10

10

10

SW
WWW

SWWW
WWWMC lost

adlost

lost
F +

+−=
++−

+−=   (Eq. 6) 
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Conversely, to get a given moisture content (MCF) of the substrate in which the nematodes 

were expected to perform best, the required amount of additional water or suspension of 

EPNs was obtained by rearranging equation 6: 

1
* 10

1 −
−−

=
F

Ftlos

MC
SMCWW

W  

To start with moist enough substrate, water was added to the substrate and mixed 

uniformly before filling the experimental pot. In a pot with six g substrate, the moisture 

contents under different cases are indicated below (Fig. 2). 

Fig. 2. Moisture content of the substrate at the time of pot filling (original moisture content), three 

days after stayed in climate controlled chamber in similar conditions to the main experiments, but 

without adding any water, and after adding 2 or 3 ml water.  

2. Water holding capacity of the substrate 

Water holding capacity (WHC) of a soil can be determined by the amount of water held in 

the soil sample vs. the dry weight of the sample. Soil water holding capacity is controlled 

primarily by the soil texture (particle size distribution) and the soil organic matter content. 

Fruhstorfer Erde, the substrate used in our experiment, is composed of humus, clay and 

peat in a proportion of 15:35:50, respectively and hence it holds a good amount of 

moisture. It can be awkward to re-damp if allowed to get to dry. 
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Field capacity is the amount of water remaining in a soil after it has been saturated and 

allowed to drain for 24 hours (Cassel & Nielsen, 1986). Thus, field capacity, which is a 

term used for soils in the field, is the maximum amount of water that a soil can hold (i.e., 

WHC) after saturated and allowed to drain for a satisfactory period of time. As field 

capacity is used for field soils, a term ‘container capacity’ is used for soils or other 

growing media (mixture of vermiculite, bark, peat moss, coarse sand, and soils) that are 

used in pots in greenhouse plant production. The concept is the same in both cases.  

Thus, using the following procedure (Cassel & Nielsen, 1986), a container capacity (i.e., 

maximum WHC) of our model substrate was determined before using in EPN experiments 

(Fig. 3). 

A given amount of substrate was added into a plastic pot that had holes at the base. Water 

was poured to the media until water begins to flow out of the container through the holes at 

base (Fig 3). The top open part of the pot was covered to prevent evaporation the container 

was positioned in such a way that water dripped freely into the air from the holes in the 

base of the container. To make sure that all of the excess water is drained, the container 

was allowed to drain for 6 h. Normally, drainage cease in <1 h for many potting media. 

Then, soil samples of a defined weight was taken from the container and oven dried at 105 

degree for 24 h, and reweighed. 

 

Fig. 3. A pot set-up through which water holding capacity of the substrate (i.e., container capacity) 

was determined. 

Then, container capacity CC (or WHC) was calculated as: 
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SubstrateDryOvenofWeight
waterofWeightCC =    (Eq. 7) 

Table 1 An example of water holding capacity (WHC) of 30 g Fruhstorfer Erde, a model substrate 

used in the present study, after oven-drying the saturated. Note: 100 ml water was added to the 

substrate and drained for 1 h. 

Rep. Beaker (B) Substrate (S) B+S (oven-dried) Oven-dried S Water in S WHC 

1 46.67 18.20 49.53 2.86 15.34 536.36

2 97.42 22.63 101.00 3.58 19.05 532.12

3 41.27 18.72 44.33 3.06 15.66 511.76

 

Based on the above procedure, WHC was determined (Table 1). To assess the drainage 

time required in our model substrate and calculate its WHC, the water added to the 

substrate (Fig. 3) was drained for 1, 2, or 48 h. The results indicated that drainage did not 

cease before 1 h and hence water remained in the substrate after 1 h drainage was 

significantly higher than drainage after 2 and 48 h. On the other hand, the water retained in 

the substrate after 2 and 48 h did not significantly differ, indicating that drainage must have 

ceased before 2 h (Table 2). Thus, the average WHC was determined after allowing the 

saturated substrate for 2 and 48 h. The WHC was 484.2% (weight of water in the substrate 

divided by weight of oven-dried substrate). The moisture content of the substrate at the 

WHC was calculated according to equation 1 above and was 84.04%. 
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Table 2. Water retained in the substrate after different drainage time (i.e. 1, 2, 48 h). Note: 100 ml 

water was added to 30 g substrate and allowed to drain (Fig. 3). 

Time (h)  Water retained (%) b 

1 526.8 a 

2 483.2 b 

48 478.8 b 

48 (Chamber) a 490.7 b 

a The percent water retained was determined for the substrate that stayed in the climate chamber 

(23°C, and 70% rh) for three days representing the actual experimental setup. 
b Percentage of water retained in the substrate was calculated in a similar way that WHC was 

determined (i.e., weight of water retained after a given drainage time divided by oven dry weight 

of the substrate, Eq. 7). 

To test the efficacy of EPNs under different substrate moisture, relative moisture content 

(RMC) was used instead of the actual moisture content alone. RMC was calculated as the 

actual moisture content (AMC) divided by the moisture content of the substrate at its 

maximum water holding capacity (MCWHC). To obtain different RMC (e.g., 60, 65, 70, 75, 

80, 85, 90, 95, 100%), first of all the original moisture content of the substrate (and hence 

water contained in the substrate) was obtained through oven-dry method (Fig. 1). The 

additional water required to reach the desired AMC was calculated using the following 

formula (e.g. for AMC at the 60% RMC): 

substratedriedovenofWeightsubstratetheinwaterofWeight
substratetheinwaterofWeightcontentMoisture

+
=  

60
1601

601 AMC
SWW

WW =
++

+    (Eq. 8) 

=> 60
601

1)11(60 W
AMC

WSWAMC =
−

−+ , 

where AMC60 is the actual moisture content of the substrate at 60% RMC, W1 is the 

amount of water already in the substrate before treatment, S1 is the weight of oven-dried 

substrate, and W60 is the additional amount of water required to result in AMC60. 
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The AMC of the substrate was determined according to figure 1 and equation 1 before 

potted and placed in the climate chamber. Likewise, the AMC of the substrate in the plastic 

pot that stayed in the climate chamber was assessed before and after adding different 

amount of water to acquire different level of AMC of the substrate. Then the RMC 

corresponding to these AMC of the substrate after adding different amount of water was 

calculated as: 

100*
WHCMC

AMCRMC =  

where MCWHC  is the actual moisture content of the substrate at the maximum water 

holding capacity of the substrate, which is equal to 84.04% as indicated above. 

An example of different AMC and the corresponding RMC after adding different amount 

of water to 10 g substrate is given in figure 4.  

Fig. 4. Actual and relative moisture content (%) of the substrate (Fruhstorfer Erde) before it was 

added to a plastic pot (Original), after the substrate in the assay arena stayed in a climate chamber 

for three days (After 3 days), and after adding different amount of water to the substrate that stayed 

in the climate chamber. 
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After three days in the climate chamber the substrate lost 6.5% moisture. Application of 1 

ml water to the substrate increased the AMC only to 52%, which was 62% RMC. With the 

application of 22 ml of water (20 ml of distilled water plus 2 ml of EPN suspension), the 

MC of the substrate reached 84.5%, which was 100.6% of the MC at the maximum WHC.  

At 62% RMC, except for H. indica at a concentration of 400 IJs cm–2 (i.e., CM = 18%), no 

mortality of WFT by EPNs was recorded. At 100% RMC, WFT suffered high natural 

mortality (i.e., 80%). Thus, both the lowest and the highest moisture levels were omitted 

from the treatments in the main experiment hence the treatments were adjusted as indicated 

in Table 3. 

Table 3. Application of different amount of water (ml) to establish different actual moisture 

content of the substrate (AMC), and hence different relative moisture content (RMC) of the 

substrate). 

Water and EPN suspension a AMC (%) RMC (%) 

0 + 2 56.5 67.3 

3 + 2 65.5 77.9 

8 + 2 74.5 88.6 

13 + 2 79.7 94.9 

a EPN suspension was applied in 2 ml distilled water after the substrate was moistened with a 

required amount of water. 

3. Water potential of the substrate with different moisture levels 

A procedure for water potential determination was adapted from Kaya and Stock (1997) 

and described as follows: 

1. obtain the dry weight of the filter paper before placing into the substrate because 

the weight of the filter paper varies by 10%. 

2. sandwich the weighed filter paper between two other pieces of filter paper.  

3. add 10 g substrate into a plastic pot and place the sandwiched filter paper in the 

middle of the substrate in the pot 



Annex   113 

 

4. add a required amount of water to obtain the target AMC of the substrate. 

5. allow the filter paper to equilibrate with water in the substrate.  

6. retrieve the weighed filter paper after 24 h. 

7. reweigh the paper and calculate the percentage moisture as follows: 

paperfilterofmoisture
weightDry

weightDryweightWet %=−  

8. Determine the water potential (kPa) of the substrate by reading off the graph in the 

figure 5. 

Fig. 5. Calibration curve for Whatmann no. 42 filter papers showing water potential in kilopascal 

(kPa) of soil against filter paper water content (modified after Kaya and Stock, 1997). 

For the moisture levels used in the main experiment, the corresponding water potential was 

determined according to the above procedure and the result is presented in table 4.  
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Table 4. Water potential of Fruhstorfer Erde, a model substrate used in the present study.  

Water per pot (ml) RMC (%) Moisture of filter paper (%) Water potential (kPa) 

2 67 80 - 30 

5 78 115 - 8 

10 88 140 - 4 

15 95 156 - 2 

Note: The moisture content of filter paper was calculated after placing sandwiched filter paper in 

the substrate with a required level of moisture. The water potential corresponding a filter paper 

moisture level was read from a graph in figure 5 (see text for detail). 

4. Do thrips crawl on the plant or jump down to pupate in the soil? An implication 

for nematode applications in potted plant production 

Four concentric circles with radius of 5, 10, 13, and 16 cm were marked on a blue sticky 

trap (40 cm × 26 cm). A hole (2 cm in diameter) was drilled at the centre of the circles. The 

card was opened by cutting from the outer edge of its longest side up to the central hole. A 

bean plant seedling at two-leaf stage was transplanted into a plastic pot (11 cm in 

diameter). Throughout the experimental period, the seedlings were kept upright by clipping 

them to a stalk in a greenhouse at temperature ranges of 18–26°C and L16:D8 h 

photoperiod. Inserting the seedling and the stalk through the opened side of the card, the 

prepared blue card was horizontally placed on the top of the pot. The horizontal opening of 

the card was fitted edge-to-edge to avoid any gap. A black sponge was used to close the 

central hole of the card through which the seedling and the stalk have been inserted. The 

sponge was painted with insect glue to trap any WFT crawling down on the plant during 

pupation. The pots were placed individually on a tray and watered accordingly. The 

seedlings were kept for one additional week until more numbers of leaves emerged and the 

lower two leaves were removed so that the canopy of the leaves remains only hanging over 

the circles. Then, 10 L2 of WFT, four-day-old after emergence of neonate larvae, were 

transferred to the centre of the upper most leaves of the seedlings. Ten replications were 

run. Five days later, all the introduced larvae left the plant for pupation and hence counted 

from the different circles on sticky card.  
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Table 5. Percentage of western flower thrips (WFT) counted from different concentric circles on 

the sticky blue card.  

Radius of the circle (cm) Percent WFT counted (Mean ± SE) 

0 10 ± 4.7 a 

5 40 ± 3.7 b 

10 30 ± 6.2 b 

Note: 0 cm radius is WFT counted on the central hole closed with sticky sponge. Means within a 

column followed by same letters are not significantly different (P >0.05, Tukey’s test) 

During the experimental period, the outer most part of the leaf canopy was hanging over 

only up to the 10 cm radius mark. About 90% of the introduced thrips were recovered from 

the sticky cards. Ten percent of the thrips counted on the card were recovered from the 

central hole closed by sticky sponge indicating that at least 90% of thrips drop down from 

the leaves to pupate. Since there were no thrips found outside the canopy of the plant, it is 

not evident that thrips jump down for pupation.  
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Annex B: Data steps in SAS 

DATA name; 
INPUT  
Replication FactorA FactorB FactorC

 Thrips_number Mortality Varabl3; 
 
/* transformation */ 
Thrips_numberY = SQRT(Thrips_number + 0.5); 
MortalityY = ARSIN(SQRT(Mortality/100)) * 57.3;  
/* ‘Mortality’, e.g., Corrected mortality, expressed in % */ 
 
/* Any calculations, e.g., ratio of emergence */ 
Ratio = Thrips_number/Varabl3 x 100; 
 
CARDS; 
/* Data go here… */ 
; 
 
PROC PRINT DATA = name;  
RUN; 
 
PROC MEANS DATA = name CV VARDEF = DF MEAN STD STDERR; 

CLASS FactorA FactorB FactorC; 
VAR Thrips_number Mortality Varabl3;  

RUN; 
 
/* For variance homogeneity test between several repetitions 
over time */ 
PROC ANOVA;  

CLASS Repetition; 
MODEL MortalityY = Repetition; 
MEANS Repetition/HOVTEST=LEVENE; 

RUN; 
 
 
/* For ANOVA summery using GLM*/ 
PROC GLM DATA = name; 

CLASS Replication FactorA FactorB FactorC; 
MODEL Thrips_numberY MortalityY Ration = FactorA 

FactorB FactorC FactorA*FactorB FactorA*FactorC 
FactorB*FactorC FactorA*FactorB*FactorC; 

MEANS FactorA/LSD; 
MEANS FactorA/TUKEY; 
LSMEANS FactorA/PDIFF = ALL; 

RUN; 
 
PROC MIXED DATA =name; 

CLASS Replication FactorA FactorB FactorC; 
MODEL MortalityY = FactorA FactorB FactorC  
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FactorA*FactorB FactorA*FactorC FactorB*FactorC 
FactorA*FactorB*FactorC/ DDFM=SATTERTH ; 

      RANDOM Replication FactorA * Replication; 
   LSMEANS FactorB /PDIFF ; 
   LSMEANS FactorA* FactorB /SLICE = FactorB DIFF; 
   LSMEANS FactorB * FactorC/SLICE = FactorB DIFF;   
RUN; 
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