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Zusammenfassung 
 

Bei den dendritischen Zellen (DCs) handelt es sich um eine heterogene Population von 
antigenpräsentierenden Zellen, die zahlreiche Funktionen im Organismus übernehmen. Die 
genauen Mechanismen und Signalwege zur Entwicklung von dendritischen Zellen (DCs) sind 
jedoch bis heute weitestgehend unbekannt.  
 
Durch Untersuchungen der Expression von Transkriptionsfaktoren unter Anwendung eines 
Micro-Arrays konnte im Rahmen meiner Promotionsarbeit Gfi1 als ein entscheidender 
Transkriptionsfaktor in der GM-CSF-abhängigen Differenzierung von dendritischen Zellen 
(DCs) identifiziert werden. Wie Experimente mit Gfi1+/GFP-Knock-in-Mäusen, bei denen ein 
Gfi1-Allel durch die cDNA von GFP ersetzt ist, darlegten, wird Gfi1 sowohl in dendritischen 
Vorläuferzellen als auch in ausgereiften dendritischen Zellen (DCs) exprimiert. Im Vergleich 
dazu konnte in Gfi1-/--Knock-out-Mäusen eine globale Reduzierung von myeloiden und 
lymphoiden dendritischen Zellen (DCs) in allen lymphatischen Organen nachgewiesen 
werden, wohingegen die Anzahl an epidermalen Langerhans-Zellen erhöht war. Darüber 
hinaus zeigten die Gfi1-/--dendritischen Zellen (DCs) eine ausgeprägte Veränderung bezüglich 
des Phänotypes und der Funktion, was durch eine verringerte Expression von MHC-
Molekülen der Klasse II, eine ausbleibende Hochregulation von Kostimulationsfaktoren als 
Reaktion auf Stimulation und eine reduzierte Fähigkeit zur Stimulierung von spezifischen T-
Zell–Immunreaktionen veranschaulicht wurde. Im Gegensatz dazu wiesen die Gfi1-/--
dendritischen Zellen (DCs) ein erhöhtes Aktivierungprofil auf, welches sich in einer erhöhten 
Sekretion von IL-12 widerspiegelte.  
 
Desweiteren gelang es bei Untersuchungen zur Entwicklung von dendritischen Zellen (DCs) 
nicht, hämatopoetische Gfi1-/--Progenitorzellen in vitro durch Stimulierung mit den Zytokinen 
GM-CSF und Flt3L in dendritische Zellen (DCs) zu differenzieren. Dagegen konnte in diesen 
Experimenten eine Differenzierung zu Makrophagen beobachtet werden, welche durch 
morphologische Untersuchungen, Expressionsanalysen der Zelloberflächenmarker und 
funktionelle Analysen bestätigt werden konnte. Diese gewonnenen Erkenntnisse deuten 
darauf hin, daß der Transkriptionsfaktor Gfi1 eine entscheidende Rolle in der Modulation der 
Entwicklung von dendritischen Zellen (DCs) bzw. Makrophagen spielt.  
 
Untersuchungen des hämatopoetischen Chimärismus in bestrahlten kongenen Rezipienten im 
Rahmen von murinen Transplantationsversuchen konnten einen autonomen Zelleffekt und 
eine unersetzliche Funktion von Gfi1 in der Entwicklung von dendritischen Zellen belegen. 
Ferner konnte durch Überexpression von Gfi1 in Gfi1-/--Progenitorzellen mittels 
Durchführung eines retroviralen Gentransfers der Defekt einer ausbleibenden Entwicklung 
von dendritischen Zellen sowohl in vitro als auch in vivo behoben werden. 
 
Durch Proteinnachweise im Western blot und EMSA-Assay konnte nachgewiesen werden, 
daß die Unfähigkeit der hämatopoetischen Gfi1-/--Progenitorzellen zur Differenzierung in 
dendritische Zellen (DCs) mit einer Abnahme der STAT3-Aktivierung assoziiert ist. 
Zusammenfassend läßt sich festhalten, daß im Rahmen meiner Promotionsarbeit Gfi1 als 
entscheidender Transkriptionsfaktor für die Modulation der Entwicklung von dendritischen 
Zellen (DCs) bzw. Makrophagen identifiziert wurde und Gfi1 eine Schlüsselrolle in der 
Ausreifung sowie Aktivierung von dendritischen Zellen einnimmt. 
 
Schlagworte: dendritische Zellen, hämatopoetische Stammzellen, Transkriptionsfaktoren 
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Synopsis 
 

 
Dendritic cells (DCs) comprise heterogeneous and functionally diverse populations of antigen 

presenting cells. Their developmental pathways remain largely unknown. Using a 

transcriptional profiling approach, the present study identifies Gfi1 as a novel critical 

transcription factor in GM-CSF-dependent DC differentiation. Gfi1 is expressed in precursor 

and mature DCs. Gfi1-/- mice show a global reduction of myeloid and lymphoid DCs in all 

lymphoid organs whereas epidermal Langerhans cells are enhanced in number. Gfi1-/- DCs 

showed marked phenotypic and functional alterations, as exemplified by decreased MHC 

class II expression, absent upregulation of costimulatory molecules upon stimulation and 

reduced ability to stimulate specific T-cell responses. In contrast, Gfi1-/- DCs exhibited an 

increased activation profile as assessed by enhanced secretion of IL12. In vitro, Gfi1-/- 

hematopoietic progenitor cells were unable to develop into DCs in the presence of GM-CSF 

or Flt3L. Instead, they differentiated into macrophages, suggesting that Gfi1 is a critical 

modulator of DC versus macrophage development. Analysis of hematopoietic chimeras and 

retrovirus-reconstituted hematopoietic progenitor cells established a cell autonomous and non-

redundant role for Gfi1 in DC development. The developmental defect was associated with 

decreased STAT3 activation in hematopoietic progenitor cells. In conclusion, the present 

study for the first time reports Gfi1 as a critical transcription factor that controls DC versus 

macrophage development and dissociates DC maturation and –activation. 

 

Key words: Hematopoiesis, Dendritic cells, Transcription factors  
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Abbreviations 
 
 
APCs  Antigen presenting cells 

APC  Allo phycocyanin 

APS  Ammonium persulphate 

BM  Bone marrow 

C  Celcius 

CD  Clusters of differentiation 

CLP Common lymphoid progenitor 

CMP  Common myeloid progenitor 
CR1mix Chozhavendan Rathinam1 mix 

DCs  Dendritic cells 

DTT  Dithiothreitol 

EDTA  Ethylene diamine tetrasodium acetate 

ELISA Enzyme linked immunosorbent assay 

EMSA  Electrophoretic mobility shift assay 

FACS  Fluorescence activated cell sorting 

FCS   Fetal calf serum 

FDCP  Factor dependent cell paterson 

FITC  Flourescein iso thiocyanate 

Flt3L  Fms like tyrosine kinase 4 Ligand 

FSc  Forward scatter 

Gfi1  Growth factor independent 1 

GFP  Green fluorescence protein 

GM-CSF Granulocyte macrophage colony stimulating factors 

GMFI  Geo mean fluorescence intensity 

GMFIi Geo mean fluorescence intensity index 

Hr  Hour 

HSC  Hematopoietic stem cells 

IL  Interleukin 

IRES   Internal ribosome entry site 

ICN  Intra cell domain region of Notch 1 

KDa  kilo daltons 

LCs   Langerhans cells 

Lin  Lineage 
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LPS  Lipo polysaccharide 

MHC  Major histo-compatibility complex 

Min  Minute 

MOI  Multiplicity of infection 

MLN  Mesenteric lymph node 

NaCl   Sodium chloride 

NH4Cl  Ammonium Chloride 

OT  Ova specific T cells 

PB   Peripheral Blood 

PBS   Phosphate buffered Saline 

PE  Phycoerythrin 

Per CP Peridinium chlorophyll protein 

PLN   Peripheral lymphnode 

PIAS  Protein inhibitor of activated STAT 

RBC  Red blood cells 

Sca  Stem cell antigen 

SCF  Stem cell factor 

SDS   Sodium do-decylsulphate 

SP  Spleen 

STAT  Signal transducers of activated transcripts 

TEMED N,N,N’N’-Tetramethylenediamine 

TGF  Transforming growth factor 

TNF  Tumor necrosis factor 

Tris  Tris-(hydroxymethyl)-aminomethane 

VSVG  Vesicular Stomatitis Virus Glycoprotein 
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1.Introduction  

1.1.  The Immune system  

The immune system is complex, intricate and interesting. It is composed of many 

interdependent cell types and specialized organs that collectively protect the body from 

bacterial, parasititic, fungal, viral infections and from the growth of tumor cells. Most of the 

cells of the immune system are derived from hematopoietic stem cells residing in the bone 

marrow. Bone marrow-derived stem cells differentiate into either mature cells of the immune 

system or into precursors of cells that migrate out of the bone marrow to continue their 

maturation in other anatomic compartments. Cells of the immune system include T cells, B 

cells, NK cells, mast cells, granulocytes, macrophages and dendritic cells. Many of these cell 

types have specialized functions. 

 

 

 

 

 

 

 

 

 

 

 

Adaptive (acquired) immunity refers to antigen-specific defense mechanisms that take several 

days to become protective and are designed to react with and remove a specific antigen. 

 

The organs of the immune system (Fig 1.1) have  

been categorized into 2 major subtypes; 

Primary organs include bone marrow and the thymus gland. 

Secondary organs include adenoids, tonsils, spleen, lymph  

nodes, Peyer's patches, and the appendix. 

Immunity is mediated by humoral and cellular effectors.  

The immune responses elicited by this complex network have 

been classified into innate immunity and adaptive immunity.  

Innate immunity refers to antigen-nonspecific  

defense mechanisms that a host uses immediately or  

within several hours after exposure to an antigen. 

 

Figure 1.1. Primary and secondary  
lymphoid organs of the immune system 

(Source: Steinman lab, Rockefeller university) 
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1.2 Hematopoietic stem cells  

Hematopoietic stem cells (HSCs) sustain blood production throughout life (Orkin SH, 2004). 

They are capable of self-renewal to maintain the HSC pool and have the ability for 

multilineage differentiation (Weissman IL, 2000). Multilineage hematopoiesis is maintained 

by a pool of hematopoietic stem cells (HSCs). HSCs comprise phenotypically and 

functionally defined long-term HSCs (LT-HSCs), short-term HSCs (ST-HSCs) and 

multipotent progenitors (MPPs)(Adolfsson et al, 2001; Weissman IL, 2001). This pool of 

cells can give rise to a series of intermediate lineage committed progenitors such as common 

lymphoid progenitors (CLPs) and common myeloid progenitor (CMPs) (Kondo et al, 1997; 

Akashi et al, 2000; Adolfsson et al, 2001; Christensen and Weissman, 2001). 

 

 

 

 

 

 

 

 

 

 

Further steps give rise to progenitors committed to the production of just one cell type (Fig. 

1.2). The steps of commitment can be correlated with changes in the expression of specific 

gene regulatory proteins, needed for the production of different subsets of blood cells. 

 

 

Figure 1.2. The paradigm of hematopoiesis 

CLPs give rise to all the different cell types 

of lymphoid origin including T, B, and NK 

cells (Kondo, 1997) plus dendritic cells 

(Reya et al, 2001). CMPs are capable of 

generating large numbers of all the different 

types of myeloid cells. Especially, they either 

give rise to megakaryocytes/erythrocytes or 

granuocyte/macrophage progenitors (Akashi, 

2000).  
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1.3 Dendritic cells 

DCs represent a key cell type of white blood cells that initiate and control both innate and 

adaptive immunity (Steinman RM, 1998). As sentinels, dendritic cells patrol the body seeking 

out foreign invaders, whether these invaders are bacteria, viruses, or dangerous toxins 

(Steinman RM, 1998) and hence they are referred as “conductors, pacemakers, or gatekeepers 

of the immune system”. DCs were first seen as Langerhans cells (LCs) in the skin in 1868. In 

1973 Steinman and Cohn recognized them as major cells of the immune system. Dendritic 

cells originate in the bone marrow and function as antigen presenting cells (APC). These cells 

are usually found in the structural compartment of the lymphoid organs such as the thymus, 

lymph nodes, spleen and the bone marrow. However, they are also found in the bloodstream, 

skin and other tissues of the body.  

  

 

Different DC subsets display unique sensitivity to certain chemokines (Banchereau J, 2000). 

Immature dendritic cells express a wide range of chemokine receptors such as CCR1, CCR2, 

CCR4, CCR5, CCR6, CXCR1, and CXCR4 in contrast to the mature dendritic cells that 

express only CCR7. The chemokines to which DCs respond include MIP-1α, MIP1-β, 

RANTES, MCP-3, MIP-5, MCPs, TARC, MDC, MIP-3α, MIP-3β, IL-8, SDF-1 and SLC.  

Figure 1.3.  Confocal microscope image 
of a human DC  

(Source: Karla Daniel, uiowa) 

Proliferating DC progenitors in the bone marrow give 

rise to precursor DCs that circulate in the blood. The 

precursors DCs in the blood reach the non-lymphoid

tissue, where they develop into immature DCs (Cella 

M, 1997; Banchereau et al, 2000) through a process 

called ‘migration’. This migration process is tightly 

controlled by chemokines produced upon local 

inflammation.  
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During their migration, DCs are involved in several adhesion events. For instance, E-

cadherin, uniquely expressed by LCs, permits through homotypic interactions, the residence 

of LCs in epidermis (Bell D, 1999; Jakob T, 1998). Ag encounter results in down regulation 

of E-Cadherin that allows LC migration out of the skin (Tang A, 1993). The release of 

collagenase of type IV by LCs may facilitate their migration though the basement membranes 

(Kobayashi Y, 1997). Likewise, human macrophage elastase is highly expressed by DCs and 

may thus contribute to their migration (Bancheraeu J, 2000). 

Immature DCs are very efficient in Ag capture and can use several pathways, such as 

macropinocytosis, receptor mediated endocytosis via C-type lectin receptors (mannose 

receptor, DEC205)(Engering AJ, 1997; jiang W, 1995; Sallusto F, 1995) or Fcγ receptors 

types I and type II (Fanger, N.A., 1996), phagocytosis of particles such as latex beads 

(Matsuno, K., 1996); apoptotic and necrotic cell fragments (Albert, M.L., 1998); viruses and 

bacteria (Inaba, K., 1993) as well as intracellular parasites such as Leishmania major (Moll, 

H. 1993). DCs can also internalize the peptide loaded heatshock proteins gp96 and Hsp 70 

through presently unknown mechanisms (Arnold-Schild, D., 1999). 

 

 

 

 

 

 

Figure 1.4.  The life cycle of dendritic cells. 
Circulating Precursor DCs enter tissues as 
immature DCs. They can also directly 
encounter pathogens (e.g. viruses) that induce 
secretion of cytokines (e.g. IFNα), which in 
turn can activate eosinophils, macrophages 
(MF), and natural killer (NK) cells. After 
antigen capture, immature DCs migrate to lym-
phoid organs to allow selection of rare 
circulating antigen-specific lymphocytes. These 
activated T cells help DCs in terminal 
maturation, which allows lymphocyte 
expansion and differentiation. Helper T cells 
secrete cytokines, which permit activation of 
macrophages, NK cells, and eosinophils. B 
cells become activated after contact with T cells 
and DCs. It is believed that, after interaction 
with lymphocytes, DCs die by apoptosis.  
(Source : SRI biosciences division; Bancheraeu J, 2000) 
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The antigen/pathogen induces the immature DC to undergo phenotypic and functional 

changes that culminate in the complete transition from Ag-capturing cell to APC. DC 

maturation is intimately linked with their migration from peripheral tissue to the draining 

lymphoid organs. Several molecules including CD40, TNF-R, and IL-1R have been shown to 

activate DCs and to trigger their transition from immature to mature DCs. DC maturation is a 

continuous process initiated in the periphery upon Ag encounter and/or inflammatory 

cytokines and completed during the DC-T cell interaction. Numerous factors induce or 

regulate DC maturation including pathogen related molecules (LPS, bacterial DNA, dsRNA), 

the balance between proinflammatory and anti-inflammatory signals in the local micro 

environment (TNF, IL-1, IL-6, IL-10, TGF-β and prosaglandins) and T cell derived signals 

(Rescigno M, 1999; Akbari O, N., 1999; Hartmann G, 1999; Cella M, 1999). 

The maturation process is associated with several coordinated events such as loss of 

endocytic/phagocytic receptors, up regulation of co stimulatory molecules CD40, CD58, 

CD80 and CD86, change in morphology, shift in lysosomal compartments with down 

regulation of CD68 and upregulation of DC-lysosome associated proteins and most 

importantly, a change in class II MHC compartments.  

Morphological changes accompanying DC maturation include a loss of adhesive structures, 

cytoskeleton reorganization, and acquisition of high cellular motility (Winzler C, 1997). 

Even in the absence of invading pathogens, a fraction of the DCs seem to move around. The 

DCs that migrate in the steady state may replenish immature populations or may be on patrol 

to identify invaders. Not every pathogen or antigen induces a strong T cell response, but those 

that do can induce the mobilization and maturation of DCs (Steinman, 1998). 
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1.4 Functions of dendritic cells  

Dendritic cells are efficient stimulators and modulators of T (Steinman RM, 1998), NK and 

NK T cells (Ardavin C, 2003). In addition to stimulating responses against antigens, dendritic 

cells also produce tolerance to self antigens (Steinman RM, 2003).  

 

 

 

 

 

 

 

 

 

Formation of this MHC-peptide complex is critical to the activation of T cells. The DCs, with 

their antigen tags, travel to the lymph nodes, which are rich in T cells and present the antigen 

to the T cell, hence the term antigen-presenting cells (APCs). Once the resting, “naïve” T 

cells are activated, they trigger a complex immune response to either fight or tolerate these 

antigens. 

 DCs also induce tolerance to self-antigens by T cells during its development. This occurs in 

the thymus (central tolerance) by deletion of developing T cells and in lymphoid organs 

(peripheral tolerance) by induction of anergy or deletion of mature T cells. 

Dendritic cells are known to have major effects on B-cell growth and immunoglobulin 

secretion (Steinman RM, 1998). DCs activate and expand T –helper cells, which in turn 

induce B cell growth and antibody production. 

 

DCs use a variety of membrane 

receptors such as DEC205, MMR, FcR, 

Langerin, BDCA-2, DC-SIGN, ASGP-R 

to capture protein antigens (Steinman R 

2003), digest the antigens, and express 

these antigens on the surface membranes 

that are bound to MHC antigens to 

attract T cells (Steinman RM, 1998). 
Figure 1.5.  Antigen specific immune responses of 

lymphocytes are primarily initiated and governed by DCs. 
(Source: Steinman lab, Rockefeller university) 
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 Expression of IgA2 appears to be strictly dependent on a direct interaction between B cells 

and DCs (Fayette j et al, 1997). In addition, Follicular dendritic cells (FDCs) organize the 

primary B cell follicles. In the germinal centers the proliferating B cells (Centro blasts) 

undergo somatic mutation after which they stop dividing and wait to be triggered by an 

immune complex on FDCs. B cells that recognize this immune complex with high affinity 

process the antigen and present it as peptide-MHC complexes to antigen-specific T cells. This 

T-B cell interaction ensures the survival of high affinity B cells. In addition DCs also enhance 

differentiation of CD40-activated memory B cell towards IgG secreting cells (Dubois B, 

1998; Dubois B, 1997). DCs also help the differentiation of activated-naïve B cells into 

plasma cells (Banchereau J, 2000). 

DCs at different stages of differentiation can regulate effectors of immunity such as NK cells 

and NK T cells by both direct cell-cell interactions and indirect cytokine mediated 

interactions. Precursors of CD11c DCs may activate NK cells through the release of IFN-α; 

thereby leading to enhanced anti-viral and anti-tumor activity of NK cells (Cella M., 1997; 

Siegal FP, 1999;). DCs at later stages of development may regulate the activity of NK /NKT 

cells through the release of IL-12, IL-15, and IL-18 (Geldhof AB, 1998). 

 

 

Figure 1.6. Cell mediated immunity is an outcome of an 
interaction between DCs and other lymphocytes. 

(Source: Steinman lab, Rockefeller university) 

Naïve B cells respond uniquely to the 

interstitial non-LC type of DCs (Caux C 

et al, 1997; Dubios B et al, 1997), and 

by secretion of soluble factors (Dubios., 

1997), including IL-12, DCs also 

orchestrate immunoglobulin class 

switching of T cell-activated B cells. 
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1.5 Subtypes of dendritic cells  

 To date several subpopulations of DCs have been identified and described based on the 

expression of cell surface markers, functional characteristics and anatomical localisation. 

Historically, both human and mouse DCs have been named according to their appearance and 

distribution in the body as: Langerhans, Interstitial, Blood, Veiled, Lymphoid or 

Interdigitating dendritic cells that belong to Epidermis, Dermis or Interstitium, Circulatory 

System, Afferent Lymph and Lymph Nodes respectively. During the past decade, DCs were 

further classified by lineage, by maturation stage, by functional and phenotypic characteristics 

of these stages, and by mechanisms involved in migration and function (Cella M et al, 1997; 

Austyn J, 1996). More recently dendritic cells are classified into various subcategories based 

on the expression of defined cell surface molecules. 

Human: In contrast to the many studies on mouse DCs, there are relatively few studies on 

mature human DCs freshly isolated from tissue (Shortman K, 2002). Blood is the only readily 

available source and is a major source of immature dendritic cells (iDCs) and pDCs. Human 

blood dendritic cells are heterogeneous in their expression of a range of markers, but many of 

these reflect differences in the maturation and activation states of DCs rather than separate 

sublineages. (Hart DN, 1997). In few cases human DCs have been isolated from lymphoid 

Figure 1.7.  Multifarious functions of dendritic cells. 
(Source: Steinman lab, Rockefeller university)  
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tissues and analysed for the presence of different subtypes. Splenic and tonsilar DCs show 

heterogeneity in the expression of CD4, CD11b and CD11c indicating a level of complexity 

resembling mouse splenic DCs (Shortman K, 2002). However the relationship between these 

subtypes is not clear. Most human thymic DCs are CD11c+ CD11b-CD45Rlow and lack 

myeloid markers and hence resemble mouse thymic CD8+ DCs. A minority of human thymic 

DCs are CD11chiCD11b+CD45Rhi and express many myeloid markers and thus resemble 

mouse CD8a - DCs (Vandenabeele S et al, 2001; Bendriss VN et al, 2001).  In addition most 

of the insights about human DC subsets have come from in vitro studies (Shortman K, 2003). 

The in vitro differentiation of human CD34+ stem cells gives rise to 3 independent lineages of 

DCs (Caux C et al, 1996; Caux C et al, 1996). One of the lineages, originating in the presence 

of TGFβ, resembles Langerhans cells; in that they have Birbeck granules and expresses the 

Langerhans-associated antigens (Lag) langerin and E-Cadherin. The second lineage resembles 

intestinal DCs, lacking birbeck granules but expresses CD9, CD68 and coagulation factor 

XIIIa. The third lineage produces dendritic cells from the lymphoid-restricted precursors with 

in the CD34 population (Galy A et al, 1995). Additional studies on human monocytes have 

revealed two more intermediate subtypes of DCs; pDC1 and pDC2. pDC1 develop in the 

presence of GM-CSF and IL-4 (Sallusto F et al, 1994; Bender A et al, 1996; Romani N et al, 

1996). They can be identified by expression of surface markers CD14-CD38+ CD86+MHC-

IIhi. In contrast, pDC2 precursors, which develop in the presence of IL-3 and CD40L, 

differentiate into interferon a/ß–producing plasmocytoid cells (Rissoan MC et al, 1999; 

Grouard G et al, 1997) that can be recognised by their plasma-cell-like morphology and their 

unique surface phenotype CD4+IL-3-receptor+CD11c-. In spite of scattered reports on DC 

subtypes, a comprehensive classification system of human dendritic cell subtypes remains to 

be established. 

Mouse: Murine DCs can be classified into many subtypes based on their expression of 

specific surface markers. Irrespective of the subtypes all mature dendritic cells express 
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CD11c- ‘the hallmark of dendritic cells’. Ken Shortman and (2002) Yong-Jun-Liu have 

classified murine dendritic cells into 5 major categories based on their expression for surface 

markers CD4, CD8α, CD11b and CD205 in addition to CD11c in the lymphoid tissues of 

uninfected laboratory mice. According to this system of categorisation, the mouse spleen 

possesses three subtypes of CD11c positive dendritic cells: CD4-CD8α+, CD4-CD8α- and 

CD4-CD8α-DCs. The CD4-CD8α+ DC subtype, which is CD205+CD11b-, is also found in 

moderate levels in LNs, but is the dominant subtype of thymic DCs.  In addition, lymph nodes 

harbour another two novel DC subtypes that are defined by CD4-CD8α-CD11b+CD205int, 

which is believed to be the mature form of tissue interstitial DCs, and CD4-

CD8αlowCD205highCD11b+ langerinhigh, which is believed to be the mature form of 

Langerhans cells.  

Based on an alternative system of categorisation proposed by Ardavin (Ardavin C, 2003), 

mouse dendritic cells are classified into six main subpopulations. In this framework, murine 

DCs in the lymphoid tissues can be divided into CD8α- and CD8α+ subpopulations. CD8α- 

DCs can further be subdivided into CD4-CD8α- and CD4+CD8α- subsets. In addition, DCs 

that express intermediate levels of CD8α (CD8αint) constitute a lymph node specific subset of 

DCs. In peripheral lymph nodes, CD8αint DCs seem to derive from epidermal Langerhans 

cells and in mesenteric lymph node they seem to originate in the intestinal lamina propria. 

Finally, a peculiar DC subtype that is been defined by the expression of B220 (a counterpart 

of human plasmacytoid DCs) is found in all lymphoid organs of the mouse. In spite of the 

phenomenological description of DC categories based on the expression of cell surface 

markers, a uniform and unequivocally acccepted classification system of murine dendritic 

cells is still lacking. 
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1.6 Developmental origin of Dendritic Cells  

Despite the phenotypic characterisation of diverse DC subpopulations, their developmental 

pathways of differentiation from hematopoietic stem cells (HSCs) remain poorly defined 

(Ardavin C, 2003). DCs were originally thought to be derived from myeloid precursors due to 

their functional, phenotypic and morphological similarities with macrophages. Early concepts 

postulated the existence of CD8α+ lymphoid DCs and CD8α- myeloid DCs, originating from 

common myeloid progenitors and common lymphoid progenitors respectively (Vremec, 1992; 

Anjuere, 1999; Wu, 1996). However, this conceptual dichotomy has been challenged when it 

was shown that myeloid progenitor cells can give rise to “lymphoid” DCs and that lymphoid 

progenitor cells can give rise to “myeloid” DCs (Martin, 2000; Manz, 2001; Traver, 2000). 

However, the finding that the differentiation of CD8α+ and CD8α- DCs require different 

cytokines and involves different transcription factors indicates that their developmental 

pathways might differ (Wu, 1998; Guerriero, 2000; Saunders, 1996). Recent findings that are 

derived mainly from in vivo studies of DC development have shown that differentiation of 

DC is more complex than expected. 

 

1.7 Dendritic cell precursors 

The definition of DC committed precursors has remained elusive in both human and mice.  

Human peripheral blood monocytes harbour at least 2 distinct DC precursors; pDC1 (CD14-

CD38+ CD86+ MHC-II high) which differentiate into DC1, and pDC2 (CD45RahiCD11cloIL-

3Rhi) that differentiate into DC2 or plasmocytoid dendritic cells (Rissoan MC et al, 1999; 

Grouard G et al, 1997; Res P.C. et al, 1999; Spits H et al, 2000). The first description of a DC 

restricted precursor population in mouse blood was reported by Ardavin et al (2000). These 

cells were described as CD11c+ MHCClassII- and were able to completely reconstitute splenic 
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CD8α- and CD8α+ and plasmocytoid B220+ DC subpopulations. However, these cells are 

devoid of lymphoid or myeloid differentiation potential (Martinez et al, 2002). 

Recently, another mouse DC progenitor population has been discovered in the bone marrow 

(Amico et al, 2003). These progenitors are defined by the cell surface expression profile Lin-

Sca1-c-kit+Flt3+ and appear to be the earliest precursors of all DC subtypes irrespective of 

their myeloid or lymphoid orientation. These studies are important since it is now possible to 

identify distinct precursor cells of the DC lineage, a prerequisite to define distinct 

developmental steps of DC development.  

 

1.8 Cytokine regulation of dendritic cell development  

Cytokines are diverse and potent chemical messengers secreted by specialized cells such as T 

cells, B cells, macrophages, dendritic cells, epithelial cells, mesenchymal cells and neuronal 

cells. Cytokines and chemokines are pleiotropic, redundant, and multifunctional in nature. 

Upon binding to specific receptors on target cells, cytokines recruit many other cells and 

substances to the field of action. Cytokines encourage cell growth, promote cell activation, 

direct cellular traffic, and destroy target cells—including cancer cells. Because they serve as a 

messenger between leukocytes, many cytokines are also known as interleukins.  

Hematopoiesis is largely controlled by the effects of specific cytokines in vitro. Accordingly, 

DC differentiation from different hematopoietic precursors requires a number of defined 

cytokines (Ardavin C, 2001). Initially, these cytokine combinations (see below) were defined 

on the basis of in vitro differentiation studies using hematopoietic precursors cells. Additional 

information concerning the involvement of cytokines in the differentiation of DCs arises from 

genetically deficient mice. These experimental data indicate that some cytokines appear to 

have a dispensable role, whereas others are strictly required for the generation of DCs. The 

most relevant cytokines involved in the differentiation of DCs are considered. 
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GM-CSF appears to be required for the in vitro differentiation of DCs from BM and blood 

progenitors, but not from thymic progenitors (Inaba K et al, 1992).  Nevertheless, the 

generation of DCs from BM Lin- cells in the absence of GM-CSF was reported (Brasel K et 

al, 2000). It should be noted that GM-CSF or GM-CSFR deficient mice display normal 

development of DCs (Vermac D et al, 1997). 

TNF-a employed in most mouse and human DC and LC differentiation assays from BM 

precursors, and has been proposed to be crucial cytokine for the generation of DCs from 

human CD34+ precursors (Caux C et al, 1992). However no defects in the differentiation of 

DCs have been reported in TNF-α or TNFRI deficient mice (Zhang Y et al, 1997) suggesting 

that TNF-α is not a necessary factor in DC development in vivo. 

Flt3L has been demonstrated to have strong differentiation-promoting potential for mouse 

and human DCs, both in vivo and in vitro (Brasel K et al, 2000; Maraskovsky E et al, 1996; 

Maraskovsky E et al, 2000; Curti A et al, 2001). Consequently Flt3L deficient mice displayed 

important defects in the differentiation of DCs (Mc kenna HJ et al 2000). In addition, Flt3L 

has been claimed to increase the in vitro survival of DC precursors and selectively favor their 

differentiation (Curti A et al, 2001). Thus, Flt3L appears to play an essential role in the 

differentiation of DCs under both in vitro and in vivo conditions.  

IL-4 has been shown to be a key cytokine for inducing the differentiation of DCs from human 

monocytes, and interestingly, it has been shown that IL-4 exerts an inhibitory function on 

macrophage differentiation (Romani N et al, 1994). It has been shown that IL-4 allows the 

generation of murine DCs from bone marrow cells, in combination with GM-CSF 

(Mayordomo JI et al, 1995). 

TGF-ß is an important cytokine for in vitro differentiation of LCs and required to achieve a 

complete and/or more physiological differentiation of Langerhans cells. Importantly, the skin 

of TGF-β deficient mice is devoid of epidermal LCs (Borkowski T A et al, 1996).  
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In addition, CD40L and IL-3 have shown to promote differentiation of DC2 cells from pDC2 

precursors (Rissoan MC et al, 1999; Grouard G et al, 1997). Different cytokines or 

combinations of cytokines are necessary for the development of the various subsets or 

phenotypes of DCs. Some cytokines, such as GM-CSF, have been identified to promote 

growth, maturation and migration of DCs both in vitro and in vivo. Ultimately, cytokine 

induced signalling leads to a change in the transcriptional profile of progenitor cells, including 

a modified expression pattern of transcription factors.  

 

1.9 Transcription factors and dendritic cell development  

The lineage fate of hematopoietic progenitor cells is controlled by an orchestrated expression 

pattern of transcription factors (Orkin S, 2000), yet the molecular mechanisms governing the 

diversification of dendritic cell progenitor cells remain largely unknown. The analysis of 

gene-targeted mice has revealed the functional importance of a few critical transcription 

factors for DC development. Moreover the analysis of DC subpopulations in mice deficient 

for transcription factors involved in myeloid and lymphoid development was undertaken to 

address the derivation of DC lineages. Few critical transcription factors controlling DC 

development have been identified and will be discussed in some detail: 

Ikaros: Ikaros represents a transcription factor of the zinc finger family and was originally 

identified as a factor critical for T cell development (Kaufmann et al, 2003) In addition to the 

T cell phenotype, Mice homozygous for a dominant negative mutation in the Ikaros gene 

(Ikaros DN-/-) displayed a complete lack of all thymic and splenic DCs (Wu et al., 1997). 

Even though a profound deficiency is observed in the lymphoid DC lineages, epidermal LCs 

are being generated in these knockout mice. Mice with an Ikaros null mutation (Ikaros C-/-) 

display less severe defects in lymphoid development, having reduced differentiation of 

CD8α+ DCs in the thymus and spleen, more surprisingly the 8α- DCs were completely absent 

in the spleen. 
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Rel-B: Rel-B is a member of NF-kB/Rel family. Rel-B gene targeted mutant mice were 

reported to lack DC in thymus and spleen and to have impaired antigen presenting cell 

function (Wu L et al, 1998). In these mice the CD8α+ DC appear to be normal. However, 

there is a lack of CD8α- DCs in the spleen. The number of epidermal Langerhans cells 

remains unaffected. 

PU.1: PU.1 is a member of the ets family of DNA binding proteins and is expressed only in 

the hematopoietic cells.  PU.1 deficient mice (Guerriero A et al, 2000) produce functional 

CD8α+ DCs but lack CD8α- DCs. PU.1 deficient mouse hematopoietic progenitor cells fail to 

generate DCs in culture. Thymic DCs couldn’t be detected in the PU.1 deficient mice. 

However the dendritic cells appear to be functional. 

ICSBP:  Interferon consensus sequence binding protein (ICSBP) is a transcription factor that 

belongs to the interferon regulatory factors (IRF) family. The expression of ICSBP is 

restricted to myeloid and lymphoid cell lineages. ICSBP deficient mice lack interferon-

producing cells (IPC) in all lymphoid organs (Schiavoni G et al, 2002). A marked reduction of 

CD8α+ cells in all lymphoid organs was noticed. Moreover, an altered response of CD8α+ 

cells to activation signals is noticed. ICSBP deficient mice exhibited a reduced frequency of 

LCs and a delayed mobility of DCs from skin to lymph nodes. Bone marrow derived DCs 

exhibited an immature phenotype and showed a severe reduction of IL-12 production. 

Id2: Id proteins are a group of proteins (1-4) that possess a highly conserved helix-loop-helix 

(HLH) domain. Id2 knockout mice were deficient in CD8α+ DCs and showed a complete 

absence of epidermal Langerhans cells (Hacker C et al, 2003). 

STAT3:  STAT3 is a cytoplasmic transcription factor that is a key mediator of cytokine and 

growth factor signalling pathways. Mice carrying a conditional deletion of the STAT3 gene in 

the hematopoietic cells showed profound defects in the DC compartments (Laouar Y et al, 

2003). STAT3 deficient mice showed a complete lack of CD8α+ DCs and an abrogated DC 
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development in all the lymphoid organs. Flt3L-mediated in vitro DC differentiation of STAT3 

deficient bone marrow cells failed to generate plasmocytoid (CD11c+ CD11b-) DCs although 

myeloid DCs (CD11c+ CD11b+) DCs could be generated. 

P50 and RelA: P50 and RelA are the subunits of the transcription factor NFkB that play an 

important role in inflammatory and immune response genes. Mice deficient for both P50 and 

RelA showed dramatically impaired DC development (Quaaz F et al, 2002). They showed a 

complete lack of splenic DCs. Both CD8α+ and CD8α- subtypes are reduced and cells that 

exhibit DC morphology were completely absent. 

IRF-2: IRF-2 is a transcriptional repressor that was identified as a regulator of the type I 

interferon system. Severe reduction of CD4+CD11b+ DCs and epidermal langerhans cells was 

noticed even though the CD8α+ DC compartment remained unaffected (Ichikawa E et al, 

2004). Furthermore, reduced frequencies of the generation of mature DCs from IRF-2 

deficient BM in vitro were noticed. 

IRF-4: IFN regulatory factor 4 is a transcription factors that plays an essential role in the 

homeostasis and function of immune systems. Mice deficient for IRF4 show a severe 

reduction of CD4+CD8α- DCs in spleen and the generation of CD11b+ DCs from bone 

marrow of IRF-4 -/- mice was severely impaired (Suzuki S et al, 2004). 

Although the availability of the gene knockout mice mentioned above has greatly enhanced 

our understanding of transcription factor controlled DC development, a comprehensive view 

integrating all decisive factors is still lacking. 

 

1.10 Growth-factor-independent-1 

The gene locus encoding the Growth-factor-independent-1 (Gfi1) protein was discovered in a 

screen for moloney murine leukaemia virus (MoMuLV) proviral integration site in NB2 rat 

lymphoma cells and in T-lymphoid tumors (Gilks et al, 1993; Schmidt et al, 1996; Zöring et 

al, 1996; Scheijen et al, 1997). The Gfi1 gene encodes a 55-kDa nuclear transcription factor, 
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which harbours six carboxy-terminal C2-H2 zinc-finger domains and a characteristic N-

terminal 20 amino acid stretch termed ‘SNAG’ domain, which is well conserved between 

Gfi1 and the proteins Snail and Slug (Grimes et al, 1996; Zweidler-Mckay et al, 1996). 

Reporter gene experiments suggested a transcriptional repressor activity of Gfi1 that depends 

on the DNA binding activity and on intact SNAG domain (Grimes et al, 1996; Zwidler-

McKay et al 1996). An alternative activity of Gfi1 has been discovered through its interaction 

with PIAS (Protein inhibitor of activated STAT) 3, which is an inhibitor of signal transducers 

and activators of transcription (STAT) 3 suggesting a role of Gfi1 in a set of specific cytokine 

signalling pathways (Rodel et al 2000). 

Early studies revealed a key role of Gfi1 in lymphomagenesis and lymphopoiesis (Gilks et al 

1993; Grimes et al, 1996; Schmidt et al, 1998). Gfi1 can act as a dominant oncogene when 

over expressed, and cooperates strongly with other oncoproteins such as Pim1 (a cytoplasmic 

serine/threonine kinase) or Myc (an HLH-LZ transcription factor) in accelerating progression 

of T-cell lymphomagenesis (Zoring et al, 1996; Scheijen et al, 1997; Schmidt et al, 1998). 

Moreover Gfi1 regulates IL-4/STAT6-dependent Th2 proliferation (Zhu et al, 2002), and IL-

6/STAT3-mediated proliferative responses to antigenic stimulation (Rodel et al, 2000). 

Later studies showed that Gfi1 is also expressed in granulocytes and in activated macrophages 

(Karsunky et al, 2002) and in distinct areas of nervous system, most prominently in the inner 

ear hair cells (Wallis et al, 2003). In the immune system, ablation of Gfi1 by gene targeting in 

mice caused defects in early T-cell maturation (Yücel et al, 2003) and led to severe 

neutropenia and a profound monocytosis (Karsunky et al, 2002; Hock et al, 2003).   Recently 

it has been shown that the loss of Gfi1 affects the frequencies of HSCs and progenitors, in 

particular ST- and LT-HSCs and CLPs but leaves MEPs unaltered and suggested a role of 

Gfi1 in regulating the development of distinct myeloid and lymphoid progenitor cell 

populations and HSCs (Zeng et al, 2004). In additon, the importance of Gfi1 in restricting 
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HSC proliferation and in preserving HSC functional integrity has also been reported (Hock et 

al, 2004).   

The current study aimed to use an in vitro DC differentiation system for transcriptional 

profiling using microarray analysis and to determine the transcription factor repertoire 

expressed during the differentiation program of the DCs. The transcriptional repressor Gfi1 

was strongly upregulated in DCs both in vitro and in vivo. Characterisation of Gfi1-/- mice 

demonstrated that Gfi1 was crucial for the development of distinct subtypes of dendritic cells. 

Gfi1-/- mice showed both quantitative and qualitative abnormalities in almost all dendritic cell 

compartments with an exception of langerhans cells. The ablation of DC development in vitro 

by the Gfi1 deficient cells is correlated with the defective STAT3 signaling.   

Hence, the results of this study unravel a previously unrecognized important role of Gfi1 in 

the regulation of development and activation of dendritic cells and in the lineage decision 

between dendritic cells and macrophages. 
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2. Aims of the  proposed study  

 

Hypothesis: 

The fundamental hypothesis guiding my studies was that an analysis of upregulated 

transcription factors during early steps of GM-CSF-dependent DC maturation might help to 

elucidate critical master regulators controlling DC differentiation.  

 

My thesis project had the following specific aims:  

 

1. To analyze murine hematopoietic progenitor cell lines for their potential to 

differentiate into dendritic cells. 

2. To undertake a genome wide screen to identify differentially expressed genes during 

early steps of GM-CSF mediated DC differentiation in vitro. 

3. To study the role of upregulated transcription factors in available transgenic mice. 
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3. Materials and Methods 

3.1 Buffers and Media 

PBS: 137 mM NaCl, 2.7 mM KCl, 8.1 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.2  

PBS, BSA(0.5%) 

PBS, FCS(2%) 

RPMI-medium: RPMI, containing 10% FCS, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 

0.3 mg/ml glutamine, and 10 µM 2- Mercaptoethanol 

IMDM-medium: IMDM, containing 10% FCS, 100 U/ml penicillin, 0.1 mg/ml streptomycin, 

0.3 mg/ml glutamine, and 10 µM 2-Mercaptoethanol 

DMEM-medium: DMEM, containing 10% FCS, 100 U/ml penicillin, 0.1 mg/ml 

streptomycin, 0.3 mg/ml glutamine 

RBC lysis buffer: 7 mM Tris, 140 mM NH4Cl, pH 7.65  

Agarose gel buffer: 89 mM Tris base, 89 mM boric acid, 2 mM EDTA 

RPIA buffer: 10 mM Tris (pH 7.5), 150 mM Nacl, 1 mM EDTA, 1% NP-40, 0.5% Na-

Deoxycholate, 0.1% SDS, PIC (70 uL/mL) 

Protease inhibitor cocktail (PIC): 104 mM AEBSF, 0.08 mM Aprotinin, 2 mM leupeptin, 4 

mM Bestatin, 1.5 mM Pepstatin A, 1.4 mM E-64  

Laemmli electrophoresis buffer:  50 mM Tris-HCl, 0.196 M glycine (pH 8.3), 20% 

methanol  

SDS PAGE buffer: 25 mM Tris, 192 mM glycine, 0.1% SDS 

Transfer buffer (Western): 192 mM glycine, 25 mM Tris 

Blocking buffers (Western): PBS-T, 5% non-fat milk 

Wash buffer (Western): PBS, 0.1% Tween-20 

Coomassie stain solution: 50% Methanol, 7% Acetic acid, 0.1% Coomassie 

Destain solution(Coomassie): 50% Methanol, 7% Acetic acid 

Ponceau stain solution: 0.1% Ponceau S, 5% Acetic acid 
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Hypotonic buffer (EMSA): 20 mM HEPES (pH 7.6), 10 mM KCl, 1 mM MgCl2, 20% 

Glycerin, 0.1% Triton X-100, 0.5 mM DTT, 1 mM Na-Orthovanadate, PIC (70 uL/mL) 

Hypertonic buffer (EMSA): 20 mM HEPES (pH 7.9), 400 mM NaCl, 1 mM EDTA, 20% 

Glycerin, 0.1% Triton X-100, 1 mM DTT, 1 mM Na-Orthovanadate, PIC (70 uL/mL) 

Shift buffer (EMSA): 10 mM HEPES (pH 7.9), 50 mM NaCl, 0.1 mM EDTA, 1 mM DTT, 

5% Glycerine, 0.1% NP-40, 5 mM Na-Orthovanadate 

EMSA running buffer: 44 mM Tris base, 44 mM Boric acid, 1 mM EDTA 

ELISA coating buffer: 0.2 M NaPo4 (pH6.5) 

Wash buffer(ELISA):  0.05% Tween?20 in PBS, pH 7.2 - 7.4. 

Reagent diluent(ELISA): 1% BSA in PBS, pH 7.2 - 7.4, 0.2 µm filtered. 

Stop solution(ELISA): 2 N H2SO4. 

 

3.2 Instruments 

       

FACS Calibur (BD-Pharmingen, SD, CA) 

FACScan (BD-Pharmingen, SD, CA) 

Cell sorter Moflow (DAKO Cytomation, Denmark) 

AutoMACS (Miltenyi-Biotec, Germany) 

ELISA reader (Molecular Devices, MWG-Biotech, Germany) 

Phospho imager (Fuji Image, japan) 

Kodak imaging station (Kodak, Germany) 

Microscope Zeiss (zeiss, Germany) 

Agarose gel chamber (Biorad, Germany) 

Spectrophotometer (Eppendorf, Germany) 

Mastercycler gradient (Eppendorf, Germany) 

Light cycler (Roche, Germany) 
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Western blot apparatus (Biorad, Germany) 

Centrifuge (Sorval; Eppendorf, Germany) 

 

3.3 Methods 

 

Mice: All mice were maintained under specific pathogen free conditions in the central animal 

facility at Hannover Medical School. Age and sex matched transgenic Gfi1-/- and Gfi1GFP/+ 

mice (Karsunky et al., 2002b; Yucel et al., 2004) were used at four to eight weeks of age. 

C57BL/6 Ly5.1-Pep3b (CD45.1) mice were purchased from Jackson Labs (Bar Harbor, 

Maine, USA) and used at 8-12 weeks of age. OT-I and OT-II Rag-/- mice were kindly 

provided by T. Greten, Hannover Medical School.  

 

Cells and cell culture:  FDCP-mix cells were differentiated into DCs according to a 

previously published protocol (Schroeder et al., 2000). In brief, FDCP-mix cells were cultured 

in the presence of r-mGM-CSF (5 ng/mL) and 1% of WEHI supernatant for 7 days (as a 

source of m-IL3) in IMDM medium supplemented with 20% horse serum, 2 mM L-

Glutamine, 1% Penicillin and Streptomycin (all from Gibco,  Karlsruhe, Germany). To 

generate bone marrow derived dendritic cells, bone marrow cells were depleted of Gr1+, 

Mac1+, CD3+, TER119+ and B220+ cells using magnetic beads (Miltenyi Biotech, Bergisch 

Gladbach Germany). Lineage-depleted progenitor cells were cultured in IMDM, 10% FCS, 2 

mM L-Glutamine, 1% Penicillin-Streptomycin, 1 mM Non-essential amino acids, 5 x 10-5 M 

2-mercaptoethanol for 7 days in the presence of recombinant murine GM-CSF and IL-4 

(Sigma, Munich, Germany), or recombinant human Flt3L (Peprotech, Rocky Hill, NJ). In 

some confirmatory experiments, supernatants of the engineered cell lines EL4-GM-CSF and 

EL4-IL4 were used as cytokine source. 



 32 

For in vivo DC analysis, lymphoid organs were cut into small pieces, treated with collagenase 

D (Boehringer, Mannheim,Germany) for 30 min at 37 °C, gently meshed and washed with 

PBS containing 50 µg/mL Dnase I (Roche, Mannheim, Germany) and 2 mM EDTA. In some 

experiments, splenic DCs were purified by labelling splenic single cell suspensions with anti-

CD11c microbeads (N418) and subsequent enrichment by immunomagnetic columns 

(Miltenyi Biotech). For retroviral gene transfer, Sca-1+lin- cells were cultured in IMDM 

containing 10% FCS, 2 mM L-Glutamine, 1% Penicillin-Streptomycin, 1 mM Non-essential 

amino acids, 10 ng/ml rm-IL3, 10 ng/ml rm-IL6, 50 ng/ml rm-SCF, 50 ng/ml rh-Flt3L and 25 

ng/ml h-TPO (all from Peprotech, Rocky Hill, NJ). 

For T cell proliferation studies, Gfi1-/- and Gfi1+/+  splenic DCs were pulsed with 1 µg/ml Ova 

peptide SIINFEKL and Ova323-339, respectively,  irradiated (30 Gy) and incubated with 105  

lymphocytes from either OT-I or OT-II mice in a 96 well plate. Allogeneic T cell proliferation 

was performed using 105 lymph node cells obtained from Balb/C mice as responder cells and 

irradiated (30 Gy) bone-marrow-derived cells as stimulator cells. On day 3 of culture, the 

cells were pulsed with 1 µCi 3H-Thymidine for 16 hours. Incorporated 3H-Thymidine was 

quantified by scintillation counting. 

 

Flow cytometry, immunofluorescence and ELISA: Single cell suspensions were analysed 

by flow cytometry using a FACS-Calibur and CELLQuest software (BD Biosciences, San 

Jose, CA). In some experiments, cell sorting of Sca-1+lin- and Lin-Sca-1+c-kit+ cells was 

performed using a Moflo cell sorter (DAKO Cytomation, Glostrup, Denmark).  

The following monoclonal antibodies (all from BD Pharmingen, San Diego, CA except noted 

otherwise) were used: CD3ε-FITC & -biotin, CD4-FITC & -PE,  CD8α-FITC, -PE & -PerCP, 

CD11b-FITC & -biotin, CD11c-PE & -APC, CD34-FITC, CD40-FITC & -PE, CD45.1-

biotin, CD45.2-FITC, CD80-FITC & -PE , CD86-FITC & -PE, CD117-PE & -APC, B220-

FITC, -PE & -biotin, H2-kb-FITC, I-Ab-PE, TER119-biotin, GR-1-FITC & -biotin, IL7Rα-
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biotin, FcRγ-PE, Sca-1-PE, Flt3-PE, CD45.2-FITC, V 2(B20.1)-biotin, anti-mouse-STAT3, 

goat-anti-mouse-IgG-HRP, F4/80-FITC (Zymed laboratories, South San Francisco, CA), I-

Ab-APC (eBiosciences, San Diego, CA). In all experiments, cells were also stained with 

corresponding isotype-matched monoclonal antibodies. Cells reacted with biotinylated 

monoclonal antibodies were incubated with fluorochrome-conjugated streptavidin-PerCP or 

streptavidin-APC (BD Pharmingen). For in vivo DC maturation studies, α-CD40 (FGK-45) 

monoclonal antibodies were purified from the hybridoma cell line FGK-45 (kindly provided 

by A. Rolink). All fluorescence intensity plots are shown in log scales.  

To enumerate epidermal Langerhans cells, ears were split into dorsal and ventral halves and 

incubated in PBS with 20 mM EDTA for 2.5 hours. Epidermal sheets were fixed, blocked, 

and  stained with APC-conjugated anti-I-Ab monoclonal antibodies. LC density was 

determined by fluorescence microscopy using a micrometer grid (field size: 0.25 mm2). 

For cytokine assays, purified splenic DCs were stimulated in a 96 well plate with 10 ng/ml 

LPS, 100 ng/ml TNF-α (both from Sigma Aldrich) or 10 µM CpG-DNA (TibMolBiol, Berlin, 

Germany) for 48 hrs. The supernatants were harvested and IL-12p70 levels were measured 

using mouse IL-12p70 ELISA set (BD Pharmingen). 

 

Microscopy: Phase contrast images of DCs were taken using a Zeiss Axiovert 200 

microscope at an original magnification of x 100. Photodocumentation was performed using 

an ORCA-2 camera system and Open labT software. Giemsa-stained DCs were observed 

using a Zeiss Axioplan 2 microscope (original magnification x 100). 

 

Protein assays: Extraction of nuclear and cytoplasmic proteins was carried out using standard 

protocols. Briefly, cells were harvested and  lysed in hypotonic buffer containing 20 mM 

Hepes (pH 7.6), 10 mM KCl, 1 mM MgCl2,  2% glycerin, 0.1% Triton-X100, 0.5 mM DTT 

(Roche), 1 mM Pefabloc (Roche), 1 mM sodium-orthovandate (Sigma), 5 µg/mL protease 
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inhibitor cocktail (Sigma). Nuclear and cytoplasmic protein fractions were separated by 

centrifugation (x 1800g). The pellet containing nuclear proteins was re-suspended in 

hypertonic buffer containing 20 mM Hepes (pH 7.9), 400 mM NaCl, 1 mM EDTA, 20% 

Glycerin, 0.1% Triton-X, 0.5 mM DTT (Roche), 1 mM Pefabloc, 1 mM sodium-orthovandate, 

5 µg/mL protease inhibitor cocktail and incubated for 15 min at 4 °C. The lysate was 

subjected to centrifugation (x 16,000g) and the supernatant containing the nuclear proteins 

was collected. Protein quantification was performed using Bradford reagent (Bio-rad, Munich, 

Germany). For Western blot analysis, 20 µg of protein was loaded on an 8% SDS gel, 

separated by electrophoresis and blotted onto nylon membrane. The membrane was exposed 

to anti-STAT-3 primary antibodies and mouse-IgG secondary antibodies conjugated to horse 

radish peroxidase. The enzymatic reaction was visualized using ECL reagents (ECL kit, 

Amersham Biosciences, Freiburg, Germany). 

For electrophoretic mobility shift assays, 5 µg of nuclear protein was incubated with 32P-

labelled synthetic complementary oligonucleotides. SIE-probe 5’-AGCTTCATT 

TCCCGTAAATCCCTA binds to STAT3 and STAT1, OCT1 octamer probe 5’-

GATCCTTAATAATTTGCATACCCTCA was used as a control. Protein-DNA interactions 

were performed in EMSA buffer containing 10 mM HEPES (pH 7.9), 50 mM NaCl, 0.1 mM 

EDTA, 1 mM DTT (Roche), 5% glycerine, 0.1% NP-40 (Sigma), 1 mM Pefabloc, and 5 mM 

sodium-orthovandate. Supershift analysis was performed by preincubating the nuclear 

proteins with a monoclonal antibody recognizing STAT3 or a mouse IgG1 isotype 

monoclonal antibody, respectively. Protein-DNA complexes were resolved on a 5% native 

PAGE using 0.25 x TBE. Autoradiography was performed using a Fujix BAS 1000 (Fuji 

photo film co., LTD, Japan) imaging analyzer. 

 

RNA isolation and Real Time PCR:  Total RNA was isolated with “Absolutely RNA mini 

prep kit” (Stratagene, La Jolla, CA).  cDNA was synthesised by using oligo dT primer and 
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expand reverse transcriptase (Roche). Gfi1 expression was determined by Real Time PCR 

using the specific forward primer 5’-TCCAGTGTGCAAAGCTCATC  and reverse primer 5’-

TCCACAGCTTCACCTCCTCT.  GAPDH specific primers were used as internal controls 

(forward primer 5’ GTCAGTGGTGGACCTGACC; reverse primer 5’-

TGAGCTTGACAAAGTGGTCG). The PCR reaction was performed in duplicates using a 

LightCycler–FastStart DNA Master SYBR Green I kit (Roche) according to the 

manufacturer’s instructions. 

 

Retroviral gene transfer: The murine Gfi1 cDNA was cloned into the retroviral vector SFβ-

91-IRES-EGFP, kindly provided by C. Baum, Hannover. Recombinant VSV-G pseudotyped 

retroviruses were generated using transient transfection into the packaging cell line 293GPG 

(Klein et al., 2000). For retroviral gene transfer, Sca-1+lin- progenitor cells were stimulated 

for 48 hours in the presence of a stem cell cytokine cocktail (see above) and transduced at a 

multiplicity of infection (MOI) of 10 in the presence of 8 µg/ml polybrene (Sigma). In brief, 

cells were exposed to recombinant retrovirus for 1 hour at 37 °C, followed by spinoculation 

for 2 hours at x 700 g and further incubation at 37 °C in 5% C02. Subsequently, cells were 

washed, cultured for additional 48 hours in the presence of the stem cell cytokine cocktail and 

used for in vitro and in vivo experiments. The average transduction efficiency was 50-60%. 

 

In vivo studies: To generate hematopoietic chimeras, red blood cell depleted bone marrow 

cells (106) from CD45.2+ Gfi1+/+ or Gfi1-/- mice were  intravenously injected into irradiated (9 

Gy) CD45.1+ recipient mice. For transplantation of retrovirus transduced hematopoietic stem 

cells, 0.5-1 x 105 transduced progenitor cells were transferred into irradiated (4.5 Gy) 

CD45.1+ recipient mice. DC reconstitution was assessed 4-7 weeks after transplantation of 

stem cells. To assess DC maturation in vivo, 4 week old Gfi1-/- and Gfi1+/+ control mice were 

injected i.p. with either LPS (100 ng/g body weight) or α-CD40 monoclonal antibodies (50   
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µg/mouse). 24 hour after injection mice were sacrificed and single cell suspensions were 

prepared from spleen and stained for DC markers and analyzed by flow cytometry. 

 

DNA Microarray Hybridization and Analysis: Quality and integrity of the total RNA 

isolated from 2-10 x 106 FDCP mix cells was controlled by running all samples on an Agilent 

Technologies 2100 Bioanalyzer (Agilent Technologies; Waldbronn, Germany). For biotin-

labelled target synthesis starting from 3 µg of total RNA, reactions were performed using 

standard protocols supplied by the manufacturer (Affymetrix, Santa Clara, CA). Briefly, 5 µg 

total RNA was converted to dsDNA using 100 pmol of a T7T23V primer (Eurogentec; 

Seraing, Belgium) containing a T7 promotor. The cDNA was then used directly in an in vitro 

transcription reaction in the presence of biotinylated nucleotides.  

The concentration of biotin-labelled cRNA was determined by UV absorbance. In all cases, 

12.5 µg of each biotinylated cRNA preparation were fragmented and placed in a hybridization 

cocktail containing four biotinylated hybridization controls (BioB, BioC, BioD, and Cre) as 

recommended by the manufacturer. Samples were hybridized to an identical lot of Affymetrix 

MG-U74Av2  for 16 hours. After hybridization, the GeneChips were washed, stained with 

SA-PE and read using an Affymetrix GeneChip fluidic station and scanner.  

 

Bioinformatics: Gene expression levels were determined by means of Affymetrix's 

Microarray Suite 5.0 (MAS 5.0). MAS 5.0 software algorithms allow quantitative estimation 

of gene expression and a p-value to establish a confidence level concerning the accuracy of 

measurement of an mRNA of interest (detection p-value) and changes in gene expression 

(change p-value). Concerning the measured p-values the criteria of present (P) or absent (A) 

define the quality of signal measurement, and increase (I) or decrease (D) define the signal 

change, respectively. For normalization all array experiments were scaled to a target intensity 

of 150, otherwise using the default values of the Microarray suite. Filtering of the results was 
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done as follows: Genes are considered as regulated  when their fold change is greater than or 

equal 2 or less than or equal –2, the change p-value not "NC" (No Change) and at least one of 

the two compared signals was detected by high accuracy (absent call for both signals were not 

allowed). 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 38 

4. Results 

4.1.1 DC differentiation from well-defined and available hematopoietic progenitor cell 

lines  

The first goal of this thesis was to identify a cell line permissive for DC differentiation in vitro 

in the presence of recombinant cytokines that promote DC differentiation (GM-CSF and IL-

4). In this regard the following cells were tested, 

1. 32D cells  

2. FDCP- mix cells 

In a first series of experiments, 32D cells were incubated in the presence of recombinant 

murine GM-CSF and IL-4 at 50 ng/ml and  analyzed for expression of the cell surface 

markers CD11c, CD40, CD80, CD86, and MHC class II. However, the cells did not 

differentiate into DCs, as assessed by FACS analysis. Even upon permutation of multiple 

experimental variables such as treatment with GM-CSF, TNF-α, LPS (lipopolysaccharide) the 

results were negative (data not shown). 

In contrast, a systematic analysis of in vitro differentiation properties of FDCP-mix cells 

yielded more promising results. Multiple experimental variables were tested to optimise 

differentiation conditions such as such as in the presence of horse serum or fetal calf serum, 

various concentrations of IL-3, GM-CSF and TNF-α, and various exposure periods of cells 

with the mentioned cytokines. The capacity of the differentiation of the FDCP- mix cells into 

dendritic cells was tested by FACS analysis after staining the in vitro differentiated cells with 

dendritic cell specific surface markers (MHC class I and II, CD80, CD86, CD40 and CD11c). 

For optimizing the differentiation condition, FDCP- mix cells were cultured in the presence of 

0.5 %, 1 % and 10 % of WEHI supernatant (source of mIL-3), with and without GM-CSF. 

After culturing the cells for 3-7 days in the presence of GM-CSF (cytokine that influences 

myeloid dendritic cell differentiation), cells were taken for FACS analysis to study the 

expression of surface markers. FACS data indicate that at low concentrations (0.5 % and 1 %) 
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IL-3 favors the differentiation of FDCP- mix cells into dendritic cells (Fig 4.1.1.1) upon GM-

CSF treatment.  

 

 

 

 

 

 

 

 

 

From the above experiment it was inferred that low concentrations IL-3 favors the 

differentiation of FDCP- mix cells into DCs. However previous studies report that FDCP- mix 

cells can survive only in an appropriate concentration of IL-3, as they are basically IL-3 

dependent cells. The definition of an optimal concentration of IL-3 for both survival and 

differentiation was crucial for further differentiation studies. To find the minimal 

concentration of IL-3 necessary for survival, the FDCP- mix cells were cultured in the 

presence of 0.5 %, 1 % and 10 % of WEHI supernatant (as a source of mIL-3). After 3 days of 

culture the cells were stained with propidium iodide to distinguish the viable cells from dead 

cells and taken for FACS analysis. FACS data indicate that survival of FDCP- mix cells is 

proportional to IL-3 concentration. It was observed that in 0.5 % of IL-3 supernatant only 60 

% of the cells were viable, in 1 % IL-3 supernatant 91 % of the cells were viable and in 10 % 

IL-3 supernatant 99 % of the cells were viable (Fig 4.1.1.2). 1 % WEHI supernatant was 

determined as the optimal concentration for the DC differentiation experiments, since 

viability and differentiation were best. 

 

Figure 4.1.1.1. Effect of IL-3 concentration in the 
differentiation of FDCP- mix cells into dendritic 
cells. 
(a) cells were cultured in the presence of 0.5 % of 
WEHI supernatant (source of mIL-3)  with GM-
CSF. (b) Cells cultured in 1 % of WEHI supernatant  
with GM-CSF. (c) Cells cultured  in 10 % WEHI 
supernatant with GM-CSF. Cells were cultured in 
presence of GM-CSF for 3 days. 
Cells were treated with CD80, CD86, CD40, CD11c  
and  MHC class II  monoclonal antibodies and with 
the respective isotype controls. Histograms with 
black line represent the isotype controls and 
histograms with gray line  represent the expression 
of the indicated  surface marker. Fluorescence intensity (in log scale) 

CD80 CD86 CD40 CD11c I-Ab 

(a) 

(b) 

(c) 
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For differentiating FDCP- mix cells into dendritic cells, the cells were cultured in the presence 

of 1% of WEHI supernatant (as a source of IL-3) and recombinant murine GM-CSF 

(100u/mL) for 8 days. Fig 4.1.1.3 indicates the DC specific surface marker expression in 

differentiated FDCP- mix cells. The results of the FACS analysis suggest that FDCP- mix 

cells can be differentiated into dendritic cells. 

 
  
 
 
 
 
 
 
 
 
 
 
 

 

These studies suggest that FDCP- mix cells are permissive for DC differentiation in vitro. 

However, the following caveats had to be taken into consideration: 

1- Atypical dendritic cell morphology 

2- Incomplete DC differentiation (persistent contamination of granulocytes and 

macrophages). 
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Figure. 4.1.1.2. Viability of FDCP-mix  cells at 
increasing IL-3 concentrations.  Bar diagram represents 
the percentage of  viable cells in the y axis and the 
corresponding IL-3(WEHI supernatants concentration in 
the X axis.  
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Figure. 4.1.1.3. Differentiation of FDCP-mix cells into DCs.   
Cell surface marker analysis of FDCP-mix cells after differentiation into DCs, open histograms represent 
expression of indicated markers, shaded histograms represent isotype controls. 
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4.1.2.1 Generation of a novel hematopoietic progenitor cell line-CR1-mix 

 

Given the inherent limitations of 32D and FDCP- mix cells, an effort was made to create a 

progenitor cell line that allows an optimised DC differentiation system. Various defined 

transgenes have been used to immortalise HSC (Bunting KD et al., 1999; Just U et a1, 1995; 

Audet j et al 2001; Morrow M et al., 2004; Ye M et al., 2003; Varnum F et al., 2000; 

Antonchuk J et al., 2002; Krosl J et al., 2003; Reya T et al., 2003; Pinto O P et al., 2002). 

We have made use of a retrovirus encoding the transcription factor Notch1. The strategy 

followed for making CR1 was initially described by Pears WS et al (2000). This approach 

utilized the retroviral mediated expression of intra cellular domain region of the transcription 

factor notch1 (ICN) to immortalize hematopoietic stem cells. However the generation of a 

hematopoietic cell line differentiating into DCs has not been reported earlier. The retroviral 

particles for the study were produced by transfecting the packaging cell line 293GPG (Klein 

et al, 2000) with the retroviral transfer vectors (kindly provided by David Scadden, Boston ) 

encoding either intracellular domain of Notch1(ICN) along with IRES EGFP (MSCV-ICN-

GFP) or EGFP (MSCV-GFP) only (Fig 4.1.2.1.). 

 

  

 
 
 
 
 

 

The VSVG pseudotyped viral particles were collected for 5 days and the viral supernatant was 

filtered and concentrated by spinning the soup at (16,000 X g) for three and half hours. The 

viral titer of the concentrated virus was determined by transducing 3T3 fibroblasts cells. Then 

murine HSC(Sca-1+ Lin-) cells from the total bone marrow cells were sorted with moflow cell 

 

   LTR GFP IRES

 

    

LTR 

I

ICN LTR IRES GFP LTR 

Figure. 4.1.2.1. Retroviral constructs. 
cDNAs encoding either GFP(top panel) 
or ICN IRES GFP(bottom panel) were 
cloned into Murine Stem Cell Virus  
backbone plasmids. 
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sorter (DAKO cytomation, Sweden ). The sorted cells were pre-stimulated with a stem cell 

cytokine cocktail (that contains recombinant murine cytokines; IL-3, IL-6 and SCF, and 

recombinant human cytokines; Flt3L and TPO) for 36 hours and transduced with a 

multiplicity of infection (MOI) 10 with retroviruses either encoding ICN-IRES-GFP or GFP 

only. The transduction efficiency was determined on the third day of transduction by 

measuring the GFP positive cells by flow cytometry. The transduction efficiencies were 41% 

and 61% in the cells transduced with either ICN-GFP or GFP respectively (Fig 4.1.2.2.a). To 

check the growth potential and dependency of the ICN transduced cells in the presence of 

different cytokines, cells were cultured in the presence of indicated cytokine combinations. As 

Fig 4.1.2.2.b suggests, only the notch transduced Sca-1+lin- cells could survive (∼80%) in the 

presence of the complete cytokine cocktail (mentioned above), where as the viability of the 

GFP-transduced Sca-1+lin-  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

cells was almost lost (∼10%) on day 30 of culture. Next, the dependency and the viability of 

the ICN transduced Sca-1+lin- cells on individual cytokines of the cytokine cocktail were 

determined. As the Fig 4.1.2.2.b suggests, the viability of the cells that were cultured only in 

Figure. 4.1.2.2 Generattion of a novel IL-3 dependent cell line, CR1-mix cells. 
a. Sca-1+Lin- cells were transduced (MOI 10) with retroviruses encoding either Notch1-IRES-GFP(right) or  
GFP(left) followed by a 36 hour pre-stimulation with stem cell cytokine cocktail. Transduced cells were 
analysed for GFP expression by flowcytometer after  78 hours of  transduction. 
b. The ICN IRES GFP(black bars) and  GFP(white bars) transduced cells were cultured under mentioned 
cytokine combinations to check their  dependence on individual cytokines. Cells were harvested 30 days after 
culture and their viability was calculated after staining the cells with propidium iodide and subsequent 
flowcytometric analysis.  
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the presence of IL-3 or in a combination of IL-3 and SCF was comparable with the viability 

of the cells that were cultured in a complete cytokine cocktail, however viability was almost 

lost in the cells that were cultured in the presence of either IL-6 or SCF alone. 

These data suggest that the transduction of Sca1+lin- cells with ICN immortalises the cells and 

that IL-3 is the most important and crucial cytokine for the viability of the ICN transduced 

Sca-1+lin- cells. This is in line with the available data that most of the hematopoietic 

progenitor cells are IL-3 dependent. To check the proliferation potential of the IL-3 dependent 

cells over a longer time period, the cells were continuously cultured in the presence of IL-3 

(10ng/mL). The cells continued to proliferate for more than 6 months. It was concluded that 

the cells were immortalised and emerged as a cell line which was named as ‘CR1-mix’. 

 

4.1.2.2 Genetic and immunophenotypic characterization of CR1-mix 

In many immortalized cell lines the “immortal” phenotype is associated with karyotypic 

abnormalities that could hamper molecular genetic and cell biological investigations of 

developmental pathways.  

To investigate whether the cell line ‘CR1- mix’ has undergone some detectable chromosome 

changes such as chromosomal translocation or rearrangement, the cells were subjected to 

SKY analysis (in collaboration with Prof. Schlegelberger, Institute of Cellular and Molecular 

Pathology, MHH, Hannover). Spectral karyotyping of 10 metaphases revealed a normal 

diploid chromosome pattern without any evidence of clonal numerical or structural 

aberrations (Fig 4.1.2.3). This finding suggests that the karyotype of CR1- mix cells remains 

stable even 12 months after in vitro propagation. 

It was of paramount importance to investigate whether CR1- mix has undergone spontaneous 

differentiation as a consequence of continuous culture in vitro for more than 12 months. To 

this end, cells were checked for the expression of surface markers of myeloid (CD11b, GR-1, 
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CD11c), erythroid (TER119) and lymphoid (B220, CD3e, NK1.1, CD11c) lineages. As 

inferred from the figure 4.1.2.4, CR1- mix cells were clearly negative for all the lineage 

markers. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure. 4.1.2.3. SKY analysis  of CR1-mix 
cells. 
CR1- mix cells were harvested and their 
metaphase chromosomes were assessed by 
SKY technique for abnormal chromosome 
features and genetic recombinations. 

Figure. 4.1.2.4. Analysis on CR1-mix cells for their 
expression of lineage markers. 
CR1-mix cells were stained with lineage antibodies(open 
histograms) and their respective isotype controls(filled 
histogram). Cells were analysed for the expression of 
lineage antibodies by flow cytometer. 
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In addition, to check whether the CR1- mix cells were maintained in a progenitor state, cells 

were analysed for their expression of various hematopoietic stem/ progenitor cell markers 

such as Sca-1, c-kit, Thy1.2, IL-7Rα and Flt3. It was noticed that CR1- mix cells do express 

hematopoietic stem cell markers Sca-1 (73%), c-kit (92%) Thy1.2 (32%), and lymphoid 

progenitor markers IL-7Rα(4%) and Thy1.2 (32%) (Fig 4.1.2.5). Moreover, it was noticed 

that CR1- mix cells also express dendritic and NK cells progenitor marker-Flt3 (10%) in a 

minor proportion. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Interestingly, from the above studies, it was noticed that CR1-mix cells represent a 

heterogeneous cell population that comprises progenitor cells of more than one lineage. 

Especially the expression level of Sca-1, an antigen that is being primarily expressed by all 

the hematopoietic stem and progenitor cells, was quite heterogeneous. Based on this 

observation, it was speculated that this variation in Sca-1 expression could represent a 
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Figure. 4.1.2.5. Immunophenotypic analysis of CR1-mix cells.  
Cells were stained with antibodies that recognise mentioned surface markers and analysed 
by flow cytometer. The gated regions indicate the frequencies of cells expressing the 
respective marker. 
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heterogeneous precursor populations derived from independent clones. In an effort to address 

this hypothesis, CR1-mix cells were stained with Lineage, Sca-1, c-Kit, and either Thy1.2 or 

IL-7Rα antibodies and analysed by flow cytometry.  Lin- CR1-mix cells were gated (G1) and 

the Sca-1, c-kit expression of the gated cells was analysed (Fig 4.1.2.6). Three distinct subsets 

(G2, G3 and G4) were discriminated based on Sca-1/c-kit expression and the expression 

levels of IL7Rα and Thy1.2 in each of these subsets was analysed. Data of these experiments 
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Figure. 4.1.2.6.  Analysis of  CR1-mix cells for their expression of  stem cells/progenitor   cell 
markers. 
Cells were stained with lineage, Sca-1, c-kit, IL 7R-α  and Thy1.2  antibodies and  
analysed by flow cytometer. Lineage negative cells were  gated (G1) and analysed for 
Sca-1 c-kit expression. Sca-1low c-kitlow, Sca-1high c-kithigh  , Sca-1neg c-kithigh cells were 
gated ( G1, G2 and G3 respectively) and their expression levels of  IL7R-α  and Thy1.2  
markers were analysed. 
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identify at least 3 distinct progenitor subsets that can be discriminated as Lin-Sca-1highc-

kitlowIL7Rα+ Thy1.2high, Lin-Sca-1highc-kithighIL7Rα-Thy1.2+ and Lin-Sca-1lowc-kithighIL7Rα-

Thy1.2high in the pool of CR1-mix and thus represent a heterogeneous progenitor cell 

population comprising various maturation stages. Furthermore, the clonality of this cell line is 

currently being investigated by southern blot analysis. 

To check the differentiation potential of CR1-mix in vivo into committed hematopoietic 

lineages, the CR1-mix cells were transplanted into lethally (9.5 Gy) and sub-lethally (4.5Gy) 

irradiated CD45.1 congenic recipient mice. During the first three weeks of transplantation, 

most of the mice from the lethally irradiated group died, presumably due to the inability of 

CR1-mix cells to provide radioprotection. The sublethally irradiated group was sacrificed 

after five weeks of transplantation and the cells of bone marrow, spleen and thymus were 

stained with defined antibodies to recognize the differentiation of CR1-mix into various 

lineages and analyzed by flow cytometry for the presence of donor derived hematopoietic 

cells. Interestingly, CR1-mix derived cells (CD45.2) were found (Fig 4.1.2.7) in bone marrow 

(7-12%), spleen (11-13%), and thymus (32-35%). 
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The differentiation potential of CR1-mix cells was studied by gating the CD45.2 cells and 

analyzing the surface marker expression. As inferred from the Fig 4.1.2.8,  CR1-mix cells 

could differentiate into T-cells (CD3ε), B cells (B220), (NK1.1), DCs (CD11c), macrophages 
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Figure. 4.1.2.7. In vivo proliferation capacity of CR1-mix 
cells. 
CR1-mix cells(1 x106) were transplanted(N=3) i.v. into 
sublethally (4.5Gy) irradiated Ly5.1 recipient mice. Mice 
were analysed on 6(sublethally irradiated) weeks after 
transplantation. Bonamarrow(White bars), Spleen(gray 
bars), and Thymus(black bars) of transplanted mice were 
sacrificed, single cell suspensions were made, stained with  
CD45.2  antibody and analysed by flow cytometer. 
CD45.2 positive cells were gated and their relative 
frequencies were determined.  
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(CD11b, F4/80) and granulocytes (GR-1), however none of the CD45.2 positive cells were 

found to express erythroid markers, suggesting that ICN-transduced cells fail to differentiate 

into the erythroid lineage. 

In summary, CR1-mix cells represent a genomically stable, pluripotent cell line that is 

permissive for DC differentiation in vivo. 
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Figure. 4.1.2.8. In vivo differentiation potential of  CR1-mix cells  into defined hematopoietic 
lineages. 
CR1-mix cells (1 x106) were transplanted i.v. into sublethally (4.5Gy) irradiated Ly5.1 recipient 
mice. Mice were analysed 6 weeks after transplantation. Spleens of transplanted mice were 
harvested(n=3), single cell suspensions were made, stained with antibodies recognising either 
defined hematopoietic lineage (open histograms)  or their corresponding isotype control (filled 
histograms) and analysed by flow cytometry.  
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4.1.2.3 Differentiation of CR1-mix cells into dendritic cells 

Next, I determined whether CR1-mix cells could be differentiated in DCs in vitro. As the 

primary aim of making the CR1-mix cell line was to differentiate them into functionally 

mature dendritic cells, these cells were subjected to various differentiation conditions such as 

GM-CSF concentration, presence or absence of IL-3, with and without addition of TNF-α.  

As CR1-mix cells are IL-3 dependent cells, it was reasonable to check whether the 

concentration of IL-3 plays crucial role in DC differentiation. It was noticed that at higher 

concentration of IL-3, CR1-mix cells don’t differentiate into dendritic cells, whereas at 

decreasing concentrations of IL-3, they could clearly differentiate into DCs (data not shown) 

as documented by the expression of DC specific surface markes (CD11c, CD40, CD80, 

CD86, MHC Class II, MHC Class I upregulation).  

In contrast to FDCP-mix cells, CR1-mix cells could efficiently differentiate into DCs in the 

absence of IL-3.  Therefore, in all subsequent experiments the DC differentiation experiments 

CR1- mix cells were cultured in the absence of IL-3. Fig 4.1.2.9.a compares the DC specific 

surface marker expression in undifferentiated CR1-mix (left panels) with CR1-mix derived 

dendritic cells (right panels) after culturing them in the culture medium containing GM-CSF 

in absence of IL3 for 8 days. Fig 4.1.2.9.b compares the morphology of undifferentiated CR1-

mix with CR1-mix derived dendritic cells. Taken together, these results suggest that CR1-mix 

cells could be differentiated into dendritic cells upon exposure to GM-CSF in vitro and thus 

represent an ideal cell line to study molecular changes governing DC differentiation. 

An alternative differentiation pathway into DCs is controlled by the cytokine Flt3L. Flt3L 

induces differentiation of plasmacytoid DCs in vitro. Interestingly, it was noticed that CR1-

mix cells could also efficiently differentiate into plasmacytoid DCs in vitro. More than 95% 

of the DCs generated in the presence of GM-CSF and IL-4 showed morphological and 
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immunophenotypical features of myeloid DCs (expression of the cell surface markers MHC-

II, CD11c, CD40, CD80 and CD86), whereas 70% of DCs selectively grown in the presence  
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Figure. 4.1.2.9. In vitro differentiation 
of CR1-mix cells into DCs. 
a. CR1-mix cells were cultured in the 
presence of GM-CSF for 7 days. On day 
8, cells were harvested and stained with 
DC specific antibodies and analysed flow 
cytometer. Undifferentiated CR1-mix 
cells were used as controls.  
b. Morphological studies of in vitro 
differentiated DCs. CR1-mix derived DCs 
(bottom panels) were visualized under the 
microscope (100x magnification). As 
controls undifferentiated CR1-mix cells 
(top panels) were used. 
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of Flt3L co-expressed CD11c and B220, a phenotype that characterises plasmocytoid DCs 

(Fig 4.1.2.10). 

 
 
 
 
 

 

 

 

To functionally characterise the in vitro generated CR1-mix derived DCs and to compare 

them with the bone marrow derived primary DCs, the ability of CR1-mix derived myeloid 

dendritic cells to stimulate allogenic T cells was assessed. CR1-mix derived DCs and BM 

derived DCs were irradiated (30 Gy) and cultured with allogenic T cells in an increasing ratio 

of stimulators (DCs) to effectors (T cells) for 48 hours. Cells were further incubated for 12 

hours after adding the radio labelled thymidine(3H). The proliferation of T cells was studied 

by measuring the incorporated radioactive thymidine by scintillation counting. Fig 4.1.2.11 

indicates that CR1-mix derived DCs exhibit high stimulatory potential to induce allogenic T 

cell proliferation and the T cell stimulation capacity of both bone marrow derived DCs and 

CR1- mix derived DCs are comparable (data not shown).  
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Figure. 4.1.2.10. In vitro differentiation of 
CR1-mix cells into pDCs. CR1-mix cells were 
cultured in the presence of either GM-CSF (left 
panels) or Flt3L (right panels) for 10 days. Cells 
were harvested on day 11, stained with pDC 
specific antibodies and analysed by flow 
cytometer. 

Figure. 4.1.2.11 Allogenic T cell stimulation 
capacity of CR1- mix derived DCs.  
CR1-mix cells were differentiated in the 
presence of GM-CSF for 7 days. Increasing 
numbers of  irradiated DCs were incubated with 
allogenic lymph node cells (1 x 105) for 48 
hours. Following a 12 hour pulse with 3H 
thymidine, the proliferating T cells were 
measured. Un stimulated CR1-mix cells were 
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Furthermore, the ability of CR1-mix derived dendritic cells to secrete IL12p70 upon TNF-α 

exposure was examined. Both CR1-mix derived dendritic cells and BM derived dendritic cells 

were differentiated in vitro and stimulated for 48 hours in the presence of TNF-α. Supernatant 

of the cells was collected and ELISA was performed. As represented in the Fig 4.1.2.12, there 

is a 10-fold induction of IL12p70-secretion by CR1-mix cells upon stimulation with TNF-α, 

moreover the quantity of IL-12p70 was comparable in both primary and CR1-mix-derived 

DCs.  

 

 
 
 
 
 
 
 
 
 
 
 
 

Hence it was concluded that constitutive notch 1 expression immortalises hematopoietic cells 

with a DC differentiation potential. Additionally, the thus obtained DCs are morphologically, 

immunophenotypically and functionally comparable with the primary bone marrow derived 

DCs.  

In summary, the present studies yielded both a conventional cell line (FDCP-mix) and a novel 

and optimised cell line (CR1-mix) that were available for the study of GM-CSF dependent 

transcription factor up regulation during DC differentiation in vitro. 
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Figure. 4.1.2.12. IL12 secretion by CR1-mix 
derived DCs. CR1-mix cells were differentiated in the 
presence of GM-CSF for 7 days. On day 8 cells were 
stimulated with TNF-α for 48 hours and the 
supernatant was collected. ELISA was performed to 
quantify the IL12 secretion. The IL12 secretion profile 
of CR1- mix derived DCs was compared with bone 
marrow derived DCs. Unstimulated cells were used as 
controls.  
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4.2.1.1 Microarray analyses to identify transcription factor controlled early DC 

development in FDCP-mix cells. 

To identify the master regulators that control dendritic cell development, microarray analyses 

were performed with the murine hematopoietic progenitor cell line FDCP-mix that is 

permissive for DC differentiation in the presence of GM-CSF. It was reasoned that GM-CSF 

modulates a defined set of decisive transcription factors governing DC differentiation during 

the early stages. To this end, total RNA from FDCP- mix was isolated in duplicates at hours 

0, 6, 24 and 48 of the in-vitro differentiation system after addition of GM-CSF (100 u/ml). 

The extracted RNA was hybridised in duplicates to Affymetrix GeneChips® and analysed by 

K-means cluster analysis. Fig 4.2.1.1 represents cluster analysis of the genes that were 

upregulated during DC differentiation at early time points.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 A certain discrepancy has been noticed between the results of the duplicates at all chosen 

time points except at hour 48. It was believed that this discrepancy could be due to the 

Figure. 4.2.1.1.  Cluster analysis of differentially 
expressed genes. 
 Graphic representation of expression profile analysis 
of selected transcription factors up regulated in  
GM-CSF-treated FDCP-mix cells. Relative expression 
(normalized to the median) is displayed as color 
(green = normalized expression level below, black = 
near to, and red = above the median).  Fold Change 
(hour 48 versus hour 0) is calculated by Affymetrix 
MAS 5.0 and p-values are based on statistical 
parameters as described for MAS 5.0 software. 
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presence of contaminating granulocytes and macrophages in addition to DCs. However, taken 

together at 6 hours 17 genes were upregulated and 10 genes were downregulated, at 24 hours 

57 genes were upregulated and 15 genes were downregulated, and at 48 hours 263 genes were 

upregulated and 116 genes were downregulated. 

The goal of the study was centered the question to identify the transcription  factors controling 

of DC differentiation. Therefore, a special focus was given to transcription factors that were 

upregulated at the given time points. A total of 28 transcription factors, (3 at 6 hours, 7 at 24 

hours and 18 at 48 hours) were found to be upregulated (table 4.2.1.1) from the total list of 

337 upregulated genes at all time points. 

Table 4.2.1.1. List of   transcription factors upregulated at chosen time points during  
DC differentiation 
 

No Name of the transcription factors 
 
Fold change Time points 

1  Histone deacetylase 1 2.4 6 hrs 

2  Hox 2.4 1.84 6 hrs 
3  Zinc ring finger protein 1 2.72 6 hrs 

4  Activating transcription factor 4 1.59 24hrs 
5  Zinc finger protein, subfamily 1A, 1 (Ikaros) 2.5 24hrs 

6  Leukemia/lymphoma related factor 7.38 24hrs 
7  General transcription factor II I 2.02 24hrs 
8  Pre B-cell leukemia transcription factor 3 7.8 24hrs 
9  Homeo box, msh-like 1 3.36 24hrs 

10  GA repeat binding protein, alpha 6.81 24hrs 
11  Inhibitor of DNA binding 1 2.66 48 hrs 
12  Breakpoint cluster region protein 1 1.77 48hrs 

13  Recombination activating gene 2 10.8 48hrs 

14  CCAAT/enhancer binding protein (C/EBP), delta 2.9 48hrs 

15  Histone 4 protein 2.09 48hrs 

16  POU domain, class 2, associating factor 1 3.22 48hrs 

17  Friend leukemia integration 1 1.89 48hrs 

18  Mini chromosome maintenance deficient 5 (S. cerevisiae) 1.54 48hrs 

19  B-cell leukemia/lymphoma 2 related protein A1b(BCl2 A1b) 12.1 48hrs 

20  Growth factor independent 1 2.21 48hrs 
21  RNA binding motif protein, X chromosome retrogene 1.65 48hrs 

22  Mini chromosome maintenance deficient (S.cerevisiae) 1.57 48hrs 

23  Gene rich cluster, C2f gene 1.61 48hrs 

24  RNA and export factor binding protein 1 1.55 48hrs 

25  CCAAT/enhancer binding protein (C/EBP), delta 2.31 48hrs 

26  Splicing factor 3a, subunit 2, 66kD 1.55 48hrs 
27  CCAAT/enhancer binding protein (C/EBP), beta 1.83 48hrs 

28  Cold shock domain protein A 1.81 48hrs 
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4.2.1.2 Real Time PCR analysis to confirm the expression status of the transcription 

factors in FDCP-mix cells.  

In order to validate the microarray result and to confirm the expression status of the identified 

transcription factors, real time PCR analysis was carried out for all 28-transcription factors 

upregulated as by microarray analysis. In contrast to the microarray data, the real time PCR 

data showed an up regulation of only 6 transcription factors (Fig 4.2.1.2) out of 28 chosen 

candidates, namely Histone Deacetylase1 (6hours), General transcription factor II I (24 hrs), 
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Figure. 4.2.1.2. Real time PCR analysis on candidate transcription factors upregulated during  FDCPmix  
derived DC development. 
FDCP cells were differentiated in vitro into DCs in the presence of GM-CSF and IL-4. During 
early time points of differentiation, cells were harvested and RNA was extracted. cDNA synthesis 
was followed by a semi quantification of the target transcripts using light cycler Real Time PCR 
approach. The  expression status of the transcription  factors in cells that were cultured in the 
presence of  GM-CSF(black bars) was compared with those that were cultured in the absence of 
GM-CSF(white bars).  
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Deacetylase1 (6hours), General transcription factor II I (24 hrs), GAAT enhancer binding 

protein –α(24 hrs), Inhibitor of DNA binding 1(48hrs), Growth factor independent 1(48hrs), 

CAAT Enhancer Binding Protein δ(48 hrs). 

 

4.2.2.1 Microarray analyses to identify transcription factor controlled early DC 

development of CR1-mix cells. 

Due to the inconsistency of the microarray results obtained from the duplicate samples of 

FDCP- mix cells, the microarray analysis was repeated using the newly generated cell line 

CR1-mix. As mentioned above, RNA was extracted from CR1-mix cells during early stages 

of DC differentiation (6 hours, 24 hours and 48 hours after addition of GM-CSF). The 

extracted RNA was hybridized to Affymetrix Gene Chips and analyzed by K-means cluster 

analysis. In summary, 628 genes were up regulated at 6, 24, and 48 hours respectively. Out of 

58 transcription factors identified 9 were up regulated at 6 hours (Table 4.2.1.2), 20 were up 

regulated at 24 hours(Table 4.2.1.3)  and 29 were up regulated at 48 hours (Table 4.2.1.4). 

 

      Table 4.2.1.2. List of   transcription factor upregulated after 6 hours of GM-CSF stimulation in  
        CR1-mix cells   

 

 
 
 
 
 
 
 
 

 
No 

 
Name of the transcription factor 

  
Gene symbol 

1 RNA binding motif protein 6 Rbm6 
2 Special AT-rich sequence binding protein 1 Satb1 
3 SRY-box containing gene 4 Sox4 
4 Transcriptional regulator, SIN3B (yeast) Sin3b 
5 RIKEN cDNA 2210412K09 gene 2210412K09Rik 
6 Kruppel-like factor 7 (ubiquitous) Klf7 
7 homeo box A9 Hoxa9 
8 Signal transducer and activator of transcription 5B Stat5b 
9 Hypothetical protein MGC18736 MGC18736 
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Table 4.2.1.3. List of   transcription factor upregulated  after 24 hours of GM-CSF stimulation in  
CR1-mix cells   

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 4.2.1.4. List of   transcription factor upregulated  after 48 hours of GM-CSF stimulation in  
CR1-mix cells   

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
No 

  
Name of the transcription factor 

  
Gene symbol 

1 Ngfi-A binding protein 2 Nab2 
2 Early growth response 1 Egr1 
3 Interferon regulatory factor 7 Irf7 
4 Pleiomorphic adenoma gene-like 2 Plagl2 
5 Tripartite motif protein 30 Trim30 
6 H2.0-like homeo box gene Hlx 
7 Promyelocytic leukemia Pml 
8 Signal transducer and activator of transcription 1 Stat1 
9 Zinc finger protein 36, C3H type-like 1 Zfp36l1 
10 DNA segment, Chr 16, ERATO Doi 465 D16Ertd465e 
11 Avian reticuloendotheliosis viral (v-rel) oncogene related B Relb 
12 Retinoblastoma-like 2 Rbl2 
13 Nucleobindin 2 Nucb2 
14 Transcription factor EC Tcfec 
15 Amyloid beta (A4) precursor-like protein 2 Aplp2 
16 EST AI256856 AI256856 
17 DNA (cytosine-5-)-methyltransferase 3-like Dnmt3l 
18 Early growth response 2 Egr2 
19 Ngfi-A binding protein 2 Nab2 
20 LIM only 4 Lmo4 

 
No 

  
Name of the transcription factor 

  
Gene symbol 

1 Juxn-B oncogene Junb 
2 DNA segment, Chr 16, ERATO Doi 465, expressed D16Ertd465e 
3 Nuclear receptor subfamily 4, group A, member 1 Nr4a1 
4 Nuclear, factor, erythroid derived 2, like 2 Nfe2l2 
5 Interferon concensus sequence binding protein Icsbp 
6 Early growth response 1 Egr1 
7 Interferon regulatory factor 7 Irf7 
8 Jun oncogene Jun 
9 Avian reticuloendotheliosis viral (v-rel) oncogene related B Relb 
10 SFFV proviral integration 1 Sfpi1 
11 H2.0-like homeo box gene Hlx 
12 Transcription factor EC Tcfec 
13 Ngfi-A binding protein 2 Nab2 
14 Tripartite motif protein 30 Trim30 
15 Notch gene homolog 1, (Drosophila) Notch1 
16 CCAAT/enhancer binding protein (C/EBP), beta Cebpb 
17 cAMP responsive element binding protein 3 Creb3 
18 B-cell leukemia/lymphoma 6 Bcl6 
19 DNA methyltransferase 3A Dnmt3a 
20 DNA segment, Chr 16, ERATO Doi 465, expressed D16Ertd465e 
21 E26 avian leukemia oncogene 2, 3' domain Ets2 
22 Interferon activated gene 204 Ifi204 
23 Forkhead box J2 Foxj2 
24 AT motif binding factor 1 Atbf1 
25 Nuclear factor of activated T-cells, cytoplasmic 1 Nfatc1 
26 Early growth response 2 Egr2 
27 Nuclear factor of activated T-cells 5 Nfat5 
28 Zinc finger protein 36, C3H type-like 1 Zfp36l1 
29 Transcriptional regulator, SIN3B (yeast) Sin3b 
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4.2.2.2 Real Time PCR analysis to confirm the expression of the candidate transcription 

factors identified in CR1-mix  

Real Time PCR studies were done in order to reconfirm the expression status of the 

transcription factors that were identified from the global screening using microarrays.  An 

initial screen for transcription factors from the up regulated genes has listed a total of 58 

transcription factors.  
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Figure. 4.2.1.3:  Real time PCR analysis on candidate transcription factors upregulated during  
CR1-mix  derived DC development. 
CR1-mix cells were differentiated in vitro into DCs in the presence of GM-CSF. During 
early time points of differentiation cells were harvested and RNA was extracted. cDNA 
synthesis was followed by a semi quantification of the target transcripts using light cycler 
Real Time PCR approach. Black bars represent the expression of the respective 
transcription factors in the absence of GM-CSF, while the gray bars represent the 
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Figure. 4.2.1.3:  Real time PCR analysis on candidate transcription factors upregulated during  
CR1- mix  derived DC development. 
CR1- mix cells were differentiated in vitro into DCs in the presence of GM-CSF. During 
early time points of differentiation cells were harvested and RNA was extracted. cDNA 
synthesis was followed by a semi quantification of the target transcripts using light cycler 
real time PCR approach. Black bars represent the expression of the respective transcription 
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An initial pre-screening was done based on the signal intensity to choose only those genes that 

have a high probability of upregulation. A total of 35 transcription factors with good signal 

intensities (with signal filters denoted by letter A) were chosen for the Real Time PCR 

studies. The results of the Real Time PCR  (Fig 4.2.1.3) confirmed the upregulation of 27-

transcription factor at mentioned time points. 

Hence, the undertaken transcriptional profiling studies in FDCP mix cell line  have identified 

the involvement of 6 transcription factors. The analysis of CR1-mix cells yielded  27 

transcription factors during the early time points of  DC differentiation.  
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Figure. 4.2.1.3:  Real time PCR analysis on candidate transcription factors upregulated during  
CR1- mix  derived DC development. 
CR1- mix cells were differentiated in vitro into DCs in the presence of GM-CSF. During 
early time points of differentiation cells were harvested and RNA was extracted. cDNA 
synthesis was followed by a semi quantification of the target transcripts using light cycler 
real time PCR approach. Black bars represent the expression of the respective transcription 
factors in the absence of GM-CSF, while the gray bars represent the expression in the 
presence of GM-CSF  
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4. 3. 1. Transcriptional activity of the Gfi1 locus in precursor and mature DC 

For further studies, I chose to focus on a single transcription factor and assess its role in great 

detail. The transcriptional repressor Gfi1 was an interesting candidate, since its role in DC 

development has not been reported. Gfi1 knockout mice  could be obtained from Prof. Tarik 

Möröy, University Hospital Essen. In addition to the Gfi1 knockout mice, a novel Gfi1GFP/- 

knockin mouse has been generated by this laboratory.  

The GM-CSF-dependent Gfi1 upregulation was further confirmed by RT-PCR in CR1-mix 

and primary Sca1+lin- hematopoietic progenitor cells (Fig.4.3.1.1). 

 

 

 

 

 

 

 To assess the physiological expression pattern of Gfi1 in DC, the transgenic Gfi1: GFP 

knock-in mutant mouse system was used. The GFP expression profile in DC development in 

vitro over time was analyzed. Lineage-depleted hematopoietic progenitor cells from Gfi1 +/+ , 

Gfi1 GFP/+ and Gfi1 GFP/GFP mice were purified and the cells were incubated in the presence of 

either recombinant murine GM-CSF or recombinant human Flt3L, two cytokines controlling 

DC differentiation. Aliquots of cells were analyzed for GFP expression by flow cytometry 

every 6-12 hours. 

Expression of GFP revealed transcriptional activation of the Gfi1 locus during early phases of 

DC development and a decline at later phases (Fig. 4.3.1.2.a). However, only in the case of 

GM-CSF a marked increase in the fluorescence intensity during hours 48-72 was observed. In 

homozygous Gfi1GFP/GFP progenitor cells, the levels of fluorescence intensity were generally 
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Figure 4.3.1.1. Quantification of Gfi1 expression in 
CR1-mix and Sca1+in- cells. 
CR1-mix and Sca-1+lin- hematopoietic progenitor 
cells at hour 0(white bars) and 48 hours(black bars) 
after GM-CSF treatment. Shown are the mean 
values of duplicate samples. Data are representative 
of 2 independent experiments. 
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higher and followed a defined pattern over time (Fig. 4.3.1.2.b). This finding might reflect 

Gfi1 autoinhibition in DC development (Raif. et al., 2004), in analogy to a documented role of 

Gfi1 autoinhibition in T cell development. 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
  
To investigate the expression pattern of Gfi1 in differentiated DCs in vivo, the fluorescence 

intensity of various CD11c+ DC subpopulations in lymphoid organs was determined by 

comparing Gfi1GFP/+ and Gfi1+/+ mice. GFP expression was detected at various intensities in 

various subpopulations (CD4+, CD8+, CD4-CD8-, CD11b+, B220+) of CD11c+ DCs obtained 

from spleen, thymus and lymph nodes   (Fig. 4.3.1.3). It was hypothesized that heterogeneity 

in GFP expression in vivo might depend on the activation status of DCs.  

To address this question, the Gfi1GFP/+ mice were injected with LPS or stimulating anti-CD40 

monoclonal antibodies in the peritoneum and the mice were sacrificed 24 hours later. Single 

cell suspensions were made from spleens and lymph nodes. Compared to Gfi1GFP/+ DCs 

isolated from mice treated with PBS, GFP-expression was enhanced in Gfi1GFP/+ DCs 

obtained from mice treated with LPS or anti-CD40 monoclonal antibodies (Fig. 4.3.1.4-top 

panels). Furthermore the expression of Gfi1 in DCs upon activation in vitro was assessed by 

isolating splenic CD11c+ cells by MACS and cultured in vitro for 24 hours after the addition 

of specific stimuli LPS and αCD40 monoclonal antibodies. 

Figure4.3.1.2. Gfi1 expression in DC development in vitro. 
 Lineage-marker depleted bone marrow cells from Gfi1+/GFP mice (a) and Gfi1GFP/GFP mice (b) were cultured 
either in the presence of GM-CSF and IL-4 or Flt3L, respectively. Cells were harvested every 6-12 hours and 
their fluorescence was determined by FACS analysis. Shown is the specific geometric mean fluorescence 
intensity index calculated as follows: GMFIi = GMFI(Gfi1

+/GFP
) – GMFI(Gfi1

+/+
). Results represent the average 

values of duplicate samples. Data are representative of 3 independent experiments. 
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Cells were harvested and GFP expression was measured by flowcytometry. Gfi1GFP/+ DCs 

cultured in the absence of an external stimulus was taken for the baseline Gfi1 expression. 

Compared to unstimulated DCs, GFP-expression was enhanced in DCs cultured in the 

presence of either LPS or anti-CD40 monoclonal antibodies (Fig. 4.3.1.4-bottom panels).  The 

data of these experiments suggest that Gfi1 expression is physiologically increased upon DC 

activation in vivo.  

To validate these in vitro and in vivo findings, GFP expression in DC progenitor cells in 

Gfi1GFP/+ mice in vivo was assessed. GFP expression was noticed in both progenitor DCs 
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Figure4.3.1.3. Gfi1 expression in  various DC compartments in vivo.  
Single cell suspensions from spleen(top panels), thymus(middle panels) and lymphnodes(bottom panels)  of  
Gfi1+/GFP mice were stained  with  antibodies recognising different DC subsets and analysed by flow 
cytometer. Distinct  DC compartments were  gated   and analyzed for GFP expression (open histogram). 
Shaded histograms represent the autofluorescence of Gfi1+/+ DCs used as controls. In each experiment, organs 
from 3-5 mice were pooled. Data are representative of 3 independent experiments. 
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Figure 4.3.1.4. Enhanced transcriptional 
activity upon DC stimulation in vivo.
Gfi1+/GFP mice were i.p. injected with LPS 
or anti-CD40 monoclonal antibodies and 
DC fluorescence was measured by flow 
cytometry 24 hours later (open 
histograms). Shaded histograms represent 
the DC fluorescence from PBS-treated 
Gfi1+/GFP mice. 
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 Figure4.3.1.5. Gfi1 expression in  various DC compartments in vivo. Gfi1 expression in precursor 
DCs. Pooled bone marrow cells from 3-5 mice were analyzed for GFP expression in  Lin-c-kit+Flt3+

cells (top panelss)of bone marrow  and CD11c+I-Ab-/ CD11c+I-Ab+ cells of  bone marrow (middle 
panels) and peripheral blood (bottom panels). Open histograms represents GFP fluorescence in 
Gfi1+/GFP cells, shaded histogram represents autofluorescence of Gfi1+/+ cells. Data are representative 
of 3 independent experiments. 
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(CD11c+MHC-ClassII-) as well as differentiated DCs (CD11c+MHC-ClassII+) of bonemarrow 

(Fig. 4.3.1.5-middle panels) and peripheral blood (Fig. 4.3.1.5-bottom panels). 

GFP expression was also noticed in Flt3+c-kit+lin- precursor DCs in the bone marrrow (Fig. 

4.3.1.5-top panels). Data of the above mentioned experiments strongly suggest that Gfi1 

expression is physiologically regulated in both DC progenitors and completely differentiated 

dendritic cells. 

4. 3. 2 Gfi1-/- mice show decreased numbers of DCs in lymphoid organs 

It was reasoned that the distinct expression profile of Gfi1 at early stages of DC development 

might have important implications for the control of normal DC differentiation. To investigate 

the importance of Gfi1 in dendritic cell development, the lymphoid organs of Gfi1-/- and 

Gfi1+/+ mice were assessed for the presence of dendritic cells. In Gfi1-/- mice, the absolute 

numbers of CD11c+ DCs were significantly reduced in lymph nodes (∼10fold), spleen 

(∼2fold) and thymus (∼20fold) (Fig.  4.3.2.1).  
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 Figure 4.3.2.1.   Absolute DC numbers in lymphoid organs of Gfi1-/- mice.  
Gfi1-/- mice and Gfi1+/+ mice (n=3) were sacrificed and single cell suspensions of spleens (upper left), thymi 
(upper right), peripheral lymph nodes (Lower left) and mesenteric lymphnodes (lower right) were pooled 
prior to enumeration. The absolute number was determined based on the relative FACS profile and total 
number of cells. Shown is the average of 3 mice. 
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 Figure 4.3.2.2 Global decrease of DCs  in lymphoid 
organs of  Gfi1-/- mice.  
(a). Dot plots indicating relative decrease of 
CD11c+CD4+ DCs (upper left) and relative decrease of 
CD11c+CD8+ DCs (upper right)  in speen(top panels), 
thymus(middle panels) and  lymph nodes (lower 
panelss). 
(b) Contour plots indicating relative decrease  of 
selective DC subtypes, CD4+ in spleen (top panels), 
CD4+ (middle panels) and CD8high in lymph nodes 
(lower panels). Analysis was done by gating on the total 
CD11c+ cells of the respective organs.  
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In view of the GM-CSF-specific upregulation of Gfi1 during early DC development, it was 

interesting to find out whether Gfi1 may act as a lineage-specific transcription factor in 

“myeloid” versus “lymphoid” DC development. Therefore the analysis was repeated with a 

specific focus on defined DC subpopulations. As shown in  Figures 4. 3. 2.2, 4.3.2.3 and 

4.3.2.4, the relative proportion of all defined DC subtypes, including myeloid, lymphoid and 

plasmocytoid that are described as CD4+, CD8+, CD8-, CD8high, CD4-CD8-, CD11b+ 

CD4+CD11b+, CD4-CD11b+, CD4+CD11b-, B220+ were drastically reduced in the spleen (top 

panels), thymus (middle panels), lymph nodes (bottom panels) of Gfi1-/- mice.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 Figure 4.3.2.3. Global decrease of DCs  in lymphoid organs of  Gfi1-/- mice.  
Dot plots indicating relative decrease of conventional (CD11c+CD11b+) myeloid DCs (upper left) and relative 
decrease of plasmocytoid CD11c+BB220+ DCs (upper right)  in speen(top panels), thymus(middle panels) and  
lymph nodes (lower panels). 
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In the Gfi1-/- mice, relative DC deficiency affected mostly the CD4+ DC compartment in the 

spleen (21% versus 40%, Fig 4. 3. 2.2. top panels), and thymus (10% versus 22%, Fig 4. 3. 

2.2. middle panels), whereas in the peripheral lymph nodes, mostly CD8high expressing cells 

appeared reduced (7% in Gfi1-/- versus 21% in Gfi1+/+, Fig 4.3. 2.2 bottom panels).  

 

 
 
 
 
 
 
 
 
 
 
                
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Despite the variations in the relative composition of the DC compartment, the absolute 

numbers of all DC subpopulations were significantly reduced in spleen (Fig 4.3.2.5. top 

panel), thymus (Fig 4.3.2.5. middle panel) and lymph nodes (Fig 4. 3. 2.5. bottom panel).  
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Figure 4.3.2.4. Global decrease of DCs  in lymphoid organs of  Gfi1-/- mice.  
Contour plots indicating  the  relative profile of more specific compartments based on CD4/CD11b 
expression(Upper left) and CD8/CD11b expression (upper right)  in speen (top panels), thymus(middle 
panels) and  lymph nodes (bottom panels). Analysis was done after gating on the total CD11c+ cells of the 
respective organs. 
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This finding was further supported by immunofluorescence studies. Tissue sections of the 

lymphoid organs were stained with monoclonal antibodies that recognize T cells (Thy1.2), B 

cells (B220) and DCs (CD11c). Figure 4.3.2.6 depicts the reduction of dendritic cells in the 
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Figure 4.3.2.5 Reduced  absolute numbers of DC subtypes in  lymphoid organs of Gfi1-/-mice.  
Gfi1-/- mice and Gfi1+/+ mice (n=5) were sacrificed and single cell suspensions of spleens (upper panels), thymi 
(middle panels)  and peripheral lymph nodes (lower panels)  were pooled prior to enumeration. The absolute 
number was determined based on the relative FACS profile and total number of cells. Shown is the average of 
2 independent experiments.  
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Figure 4.3.2.6.   Immunofluorescence studies in  lymphoid organs of Gfi1-/-mice.  
Gfi1-/- mice and Gfi1+/+ mice were sacrificed and spleens (upper panels), thymi (middle panels)  and peripheral 
lymph nodes (lower panels)  were isolated. Cryosections were prepared, fixed and stained with B220-FITC, 
Thy1.2-CyC3, CD11c-APC monoclonal antibodes. Sections were mounted and visualised under the fluorescence 
microscope. 
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 spleen (Figure 4.3.2.6-top panel), thymus (Figure 4.3.2.6-middle panel) and lymph nodes 

(Figure 4.3.2.6-bottom panel) of Gfi1-/- mice. In striking contrast to DCs in lymphoid organs, 

the number of epidermal Langerhans cells was increased (LCs, 92/mm2 in Gfi1-/- versus 

40/mm2 in Gfi1+/+, Fig 4.3.2.7), suggesting that Gfi1 does not play a critical role in the 

differentiation of LCs. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
To assess whether the decreased number of DCs was due to cell-autonomous or rather 

extrinsic effects, hematopoietic chimeras were generated by transplanting lineage-depleted 

hematopoietic progenitor cells obtained from Gfi1-/- and Gfi1+/+ (CD45.2) into irradiated 

congenic recipient mice (CD45.1). In these chimeras, DCs of donor origin developed only 

from Gfi1+/+ but not from Gfi1-/- progenitor cells (Fig 4.3.2.8.), suggesting that the non-
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Figure 4.3.2.7 Quantification of epidermal 
Langerhans cells.  
Epidermal sheets from Gfi1-/- and Gfi1+/+ mice 
were stained with an APC-conjugated 
monoclonal antibody reacting against I-Ab. 
Characteristic Langerhans cells were visualized in 
a fluorescence microscope (upper panels) and 
their density was determined using calibrated 
grids (lower panel).  
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hematopoietic environment did not contribute any critical factors causing deficient DC 

development in Gfi1-/- mice.  

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

4. 3. 3. Gfi1 controls DC differentiation from hematopoietic stem cells on multiple levels 

In principle, decreased DC numbers in Gfi1-/- mice could be explained by increased turnover, 

aberrant distribution or decreased production of DCs. To assess whether the lack of DCs in 

the Gfi1-/- mice was due to decreased production, distinct progenitor populations were 

analysed. Hematopoietic stem cells (HSC), classically characterized as negative for lineage 

markers and positive for c-kit, Sca-1 and Thy1.2 (Lin- Sca-1+ c-kit+ Thy1.2low) were 

reduced by three fold in Gfi1-/- mice (Fig. 4.3.3.1.a). HSCs give rise to committed progenitors, 

named CMP (lin-IL7R-c-kit+-FcRγ+CD34+) and CLP (lin-IL7R+c-kit+). Both CMP and CLP 

contain Flt3+ cells that might represent progenitor cells preceding a DC precursor cell. The 

percentage of CMP cells was decreased, while more committed granulocyte-monocyte 

progenitors (GMPs) were enhanced (36% versus 18%, Fig. 4.3.3.1.b). Similarly the 

percentage of  CLP cells was significantly reduced in the bone marrow of Gfi1-/- mice (0.03% 

in Gfi1-/- versus 1% Gfi1+/+, Fig. 4.3.3.1.c). Furthermore, DC precursor cells in bone marrow 
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Figure4.3.2.8.  Development of DC chimerism upon bone marrow transplantation.  
Lineage depleted bone marrow cells from Gfi1-/- mice and Gfi1+/+ mice (CD45.2) were transplanted into lethally 
irradiated congenic recipient mice (CD45.1). Flow cytometric analysis of splenic DCs reveals donor origin 
(CD45.2, upper left) in Gfi1+/+ transplanted mice and recipient origin (CD45.1, upper right) in Gfi1-/- transplanted 
mice. Data are representative of 2 independent experiments. 
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and peripheral blood, defined as CD11c+ MHC class II- cells (0.3% in Gfi1-/- and 1% in 

Gfi1+/+(Fig. 4.3.3.2.a) and c-kit+Flt+lin- (5% versus 18% of lin- c-kit+ cells, Fig. 4.3.3.2.b), 

were significantly reduced in numbers. 
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Figure. 4.3.3.1.  Hematopoietic progenitor cell analysis in Gfi1-/- mice.  
(a) Contour plot showing decreased hematopoietic stem cells  (G2) in Gfi1-/- mice. Mononuclear bone marrow cells 
were stained with lineage-specific monoclonal antibodies reacting against B220, Gr-1, CD11b, CD4, CD8, Ter119, 
IL-7Rα, and stem cell markers c-kit, Sca-1 and Thy1.2. Lineage negative(G1) cells that are positive for both Sca-1 
and c-kit (G2) were analysed for Th1.2 expression. (b) Contour plots showing  fluorescence profile of Lineage 
negative(G1) bone marrow cells stained  with  Sca-1 and c-kit(top panels). c-kit+/Sca-1- cells (G3) cells were 
analysed for FcRγ and CD34 (bottom panels). The frequencies of  of FcR-γlowCD34+ common myeloid progenitors 
(G4) and FcR-γ+CD34+ granulocyte monocyte progenitors (G5) were calculated, both gated on G3. (c) Contour 
plot showing decreased common lymphoid precursor cells (G5) in Gfi1-/- mice. Mononuclear bone marrow cells 
were stained with FITC-labelled lineage-specific monoclonal antibodies reacting against B220, Gr-1, CD11b, 
CD4, CD8, Ter119; IL-7Rα is visualized upon staining with Streptavidin PerCP. 
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Although the exact lineage relations of CMP, CLP, pre-DCs and differentiated DCs are 

currently not yet known, these data suggest that Gfi1 plays a critical role in shaping lymphoid 

and myeloid hematopoiesis. In particular, a severe reduction in lymphoid and DC progenitors 

is contrasted by a relative increase of committed granulocyte-monocyte progenitor cells. 

Results from the extensive progenitor analysis suggest that the decreased numbers of DCs in 

Gfi1-/- mice is primarily due to insufficient production.  
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Figure4.3.3.2 Dendritic cell  progenitor analysis in Gfi1-/- mice. 
 (a) Contour plot showing decreased dendritic cell progenitors (CD11c+ IAb-) cells  in peripheral blood (top panels) 
and bone marrow (bottom panels) of  Gfi1-/- mice. (b) Contour plot showing distribution of (Lin-c-kit+B220-Flt3+) 
precursor DC cells. Lin-c-kit positive  cells (top panels) were gated (G6)  and the frequency of  Flt3+B220-cells was 
determined (lower panels). 
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4. 3. 4. Gfi1-/- DCs show functional abnormalities revealing distinct effects in maturation 

and activation profiles 

DC development is not completely abrogated in Gfi1-/- mice. Since Gfi1 is up regulated upon 

DC activation in Gfi1GFP/+ mice, it was interesting to assess whether the remaining DCs in 

Gfi1-/- mice were characterized by functional defects. First, the expression levels of MHC and 

co stimulatory molecules on DCs as markers of the maturation status in lymphoid organs were 

assessed. In contrast to normal expression levels of MHC class I, CD40, CD80 and CD86, a 

significant reduction in MHC class II expression in all DC subtypes in Gfi1-/- mice (Fig. 4.3. 

4.1) was found.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 

Figure4.3.4.1. Decreased MHC class II expression in Gfi1-/- DCs.  
(a) MHC class II expression in CD11c+ cells of  spleen (top panels) and lymph nodes (bottom panels). MHC 
Class II expression in  DCs of Gfi1+/+(filled histogram)  and Gfi1-/-(open histogram) mice is compared. 
 (b) Geomean fluorescence index (GMFI) of MHC Class II expression in various subtypes of DCs in spleen 
(upper panels) and lymph node (lower panels) of Gfi1+/+ (open bars)  and Gfi1-/- (filled bars) mice was 
represented. Shown is the average GMFI of two independent experiments, pooling organs from 5 mice. Data are 
representative of 6 independent experiments. 
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To further assess whether DC maturation could be triggered by a response to microbial 

components or inflammatory cytokines, Gfi1-/- and Gfi1+/+ mice were injected with anti-CD40 

monoclonal antibodies or LPS, respectively. 24 hours later, splenic DCs were harvested,  
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Figure 4.3.4.2 Gfi1-/- DCs are refractory to upregulate costimulatory molecules upon stimulation. 
Histograms indicating that Gfi1-/- DCs are refractory to upregulate costimulatory molecules. Gfi1-/- and Gfi1+/+ mice 
were injected with LPS or anti-CD40 monoclonal antibodies. Pooled DCs from 3-5 mice were analyzed for 
expression of CD40, CD80 and CD86, I-Ab(open histograms). Shaded histograms represent expression levels on DCs 
from PBS injected mice used as negative controls.  
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stained, and analyzed by flow cytometry. As shown in Fig. 4.3.4.2, Gfi1-/- DCs were 

refractory to up regulation of the costimulatory molecules CD40, CD80, and CD86. Similar 

findings were noted in bone marrow derived DCs. 

To test whether a decreased level of DC maturation/activation might be associated with 

decreased production of inflammatory cytokines such as IL12, splenic DCs from Gfi1-/- and 

Gfi1+/+ mice were purified and stimulated with TNFα or the Toll-like-receptors ligands LPS 

(TLR2, 4) and CpG (TLR9), respectively. Surprisingly, it was found that Gfi1-/- DCs showed  

 
 
 
 
 
 
 
 
 
 
a higher baseline level of IL12 secretion that could not be further increased upon stimulation; 

suggesting that maturation (expression of MHC class II and costimulatory molecules) and 

activation (expression of IL12) of DCs represent the result of at least partially independent 

and distinct molecular events (Fig. 4.3.4.3).  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

0
5
10
15
20
25
30
35
40
45

Untreated CpG LPS TNF-α 

IL
-1

2p
70

 (
pg

/m
L)

 Gfi1+/+ 
Gfi1-/- 

0 
10 
20 
30 
40 

50 
60 
70 
80 

0 10 100 1,000 10,000 

DC number

Gfi1+/+DCs 
Gfi1-/- DCs 

C
.P

.M
. (

1 
x 

10
3 )

0 
20 
40 
60 
80 

100 
120 
140 
160 

0 10 100 1,000 10,000 

DC number

C
.P

.M
. (

1 
x 

10
3 )

Gfi1+/+DCs 
Gfi1-/- DCs

Figure4.3.4.4. Deficient antigen presentation in Gfi1-/- DCs in-vitro. Splenic DCs from Gfi1-/- and Gfi1+/+ mice 
were loaded with peptides and used as antigen presenting cells to stimulate the proliferation of transgenic OT-I 
(upper left) and OT-II cells (upper right), respectively. T-cell proliferation was measured in triplicates by 
incorporation of 3H-Thymidine. Data are representative of 3 independent experiments. 

Figure4.3.4.3. Constitutive secretion of IL12 in 
Gfi1-/- DCs. Splenic DCs from Gfi1-/- and Gfi1+/+ mice 
were purified and stimulated with TNFα and the TLR 
ligands CpG and LPS in duplicates. Shown is one 
representative experiments out of five. Error bars 
represent standard error in ELISA. 
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To further characterize the function of Gfi1-/- DCs, the capacity of Gfi1-/- DCs to present 

specific antigens to T-cells was studied. Splenic DCs from Gfi1-/- and Gfi1+/+ mice were 

isolated and loaded with Ova peptides SIINFEKL and Ova323-339, two epitopes presented by 

MHC class II  and I, respectively. 

The antigen pulsed DCs were incubated with transgenic OT-I and OT-II T-cells recognizing 

Ova peptides in association with MHC class I and class II.  As shown in Figure. 4. 3. 4.4,  

Gfi1-/- DCs induced a significantly reduced OT-I (Fig. 4. 3. 4.4-upper left) and OT-II (Fig. 4. 

3. 4.4-upper right) T-cell proliferation in vitro.  In addition the capacity of Gfi1-/- dendritic 

cells to present a surrogate tumor antigen, ova-albumin,  to ovaspecific T cells (OT-II) was 

analysed. Fig. 4.3.4.5 showst that the Gfi1 deficient DCs had defect in  presenting the ova 

protein to OT-II cells . 

 
 
 
 
 
 
 
 
 
 
 Taken together these data suggest that impaired antigen presentation is an intrinsic feature of 

Gfi1-/- DCs that can not be readily explained by decreased MHC class II expression levels. 

 

4. 3. 5. Gfi1 is a critical cell-intrinsic modulator of DC versus macrophage development  

To further elucidate the mechanism of decreased DC differentiation and –function, DC 

differentiation assays in vitro were performed. Lineage-depleted hematopoietic progenitor 

cells from Gfi1-/- and Gfi1+/+ mice were incubated in the presence GM-CSF or Flt3L, two 

cytokines controlling DC differentiation. Interestingly, in contrast to Gfi1+/+ progenitor cells, 

neither GM-CSF nor Flt3L induced DC differentiation in Gfi1-/- progenitor cells. Instead, in 

conditions classically permissive for DC differentiation, Gfi1-/- progenitor cells differentiated  
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Figure 4.3.4.5. Deficient antigen presentation 
in Gfi1-/- DCs in-vivo. Gfi1+/+ and Gfi-/- mice 
were  transplanted i.v. with ova specific T 
cells(OT-II)  and   subsequent subcutaneous 
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Figure4.3.5.1. Cell surface markers of 
hematopoietic progenitor cells differentiated in 
the presence of GM-CSF and IL-4.  
(a) Lineage-depleted hematopoietic progenitor cells 
from Gfi1+/+ mice and Gfi1-/- mice were assessed for 
expression of characteristic DC markers on day 8 of 
culture. Shaded histograms represent isotype 
fluorescence. The marker profile of differentiated 
Gfi1+/+ cells is typical of DCs, whereas the marker 
profile of Gfi1-/- is characteristic of macrophages.  
(b) Contour plot of GM-CSF differentiated cells 
showing CD11c+, CD11b+, F4/80+ DCs generated 
from Gfi1+/+ progenitor cells and CD11c-, CD11b+, 
F4/80+ macrophages generated from Gfi1-/-

progenitor cells. 
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into macrophages, as assessed by immunophenotype (Fig.4.3.5.1.a & b), morphology ( Fig. 

4.3.5.2.a), and capacity to stimulate allogeneic T-cell proliferation ( Fig. 4.3. 5.2.b ). Since 

Gfi1-/- myeloid cells show an enhanced production of cytokines and since IL6 has been 

described to direct macrophage over DC development in human cells, it was reasoned that this 

diverted development might be secondary to the cytokine milieu in culture. However, 

supernatants from in vitro differentiation assays did not have any effect on DC differentiation 

of Gfi1+/+ progenitor cells (data not shown), suggesting that the deficiency of Gfi1-/- cells to 

develop into DC is a cell-autonomous feature. The data of these experiments suggest that Gfi1 

is a crucial factor for the lineage determination of DC versus macrophages. 
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Figure 4.3.5.2. Characterisation of Gfi1-/-BM 
cells  differentiated in vitro. 
(a) Phase contrast image of progeny cells derived 
from lineage-depleted bone marrow cells cultured in 
the presence of GM-CSF/IL-4. Original 
magnification  x 100. 
(b) Allogeneic T cell response elicited by Gfi1+/+

and Gfi1-/- stimulator cells, respectively. Lineage-
depleted bone marrow cells were cultured in the 
presence of GM-CSF/IL-4 for 8 days.  
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4. 3.6 Retroviral mediated complementation of Gfi1 restores DC differentiation potential 

of Gfi1-/- BM cells 

In vitro differentiation studies of Gfi1-/- BM cells suggest that the defective DC differentiation 

might be a cell intrinsic feature. This notion was further confirmed by complementation 

experiments using Gfi1 encoding retroviruses. The retroviral plasmids encoding Gfi1 cDNA 

was constructed by amplifying the cDNA from the plasmid p-CMV-Gfi1 (kindly provided by 

Prof.Tarik Möröy) by PCR. The amplified PCR fragment was then subcloned into the Topo 

2.1 T-plasmid. The Gfi1 cDNA was released by digesting the Topo-Gfi1 subcloning plasmid 

with Not I and cloned into the NotI site of SFβ91 –IRES-EGFP retroviral plasmid (kindly 

provided by Prof. Christopher Baum,). Figure 4.3.6.1 outlines the cloning strategy followed 

for constructing SFβ91 Gfi1–IRES-EGFP retroviral plasmid.   

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Not I 

Figure4.3.6.1. Cloning stratergy of  Sfβ91-Gfi1-IRES-EGFP-WPRE.  
(a) Gfi1 cDNA was PCR amplified using  pCMV-Gfi1 plasmid  as a template with a 5’ NotI flanking sites. The 
1272 bp amplicon was cloned into Topo 2.1 subcloning vector.  
(b)Then the Gfi1 cDNA was released  from Topo-Gfi1 plasmid by digesting with  NotI and then cloned into the 
NotI site of  Sfβ91 -IRES-EGFP-WPRE to get the final  Sfβ91-Gfi1-IRES-EGFP-WPRE retroviral construct. 
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The pseudotyped retroviral particles were produced by transfecting 293 gpg packaging cells 

with the respective retroviral plasmids. Sca-1+lin- hematopoietic progenitor cells from Gfi1-/- 

mice were isolated and transduced with either a retrovirus encoding the marker gene GFP 

(SFβ91-GFP) or a bicistronic retrovirus encoding Gfi1 and GFP (SFβ91-Gfi1-IRES-GFP). It 

was noted that a significant loss of viability of the transduced cells upon Gfi1 gene transfer, 

presumably secondary to non-physiological levels of retrovirus-mediated Gfi1 expression. 

However, in the surviving cells, 18% showed expression of the DC marker CD11c, 

suggesting a partial reconstitution of DC development in vitro (Fig. 4.3.6.2.a). We also 

addressed reconstitution of the DC development upon transplantation of retrovirus-transduced 

HSC in vivo. Sca-1+lin- HSC from  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 4.3.6.2  Reconstitution of DC development upon retroviral gene transfer.  
(a) Bone marrow progenitor cells  of Gfi1-/- mice were transduced with retroviruses encoding GFP (left panels) 
and Gfi1GFP (right panels), respectively. Cells were then differentiated in the presence of GM-CSF. On day 8 of 
culture, GFP positive cells (upper panels) were gated (G1) and CD11c-expression (lower panels)  was analysed 
by flow cytometry.(b) For in vivo reconstitution assays, Sca-1+lin- cells from Gfi1-/- mice (CD45.2+) were 
transduced with retroviruses encoding either GFP (left panels) or Gfi1-GFP (right panels) and transplanted  into 
irradiated (4.5 Gy) congenic recipient mice (CD45.1+). GFP-positive splenocytes of recipient mice were gated 
(G2)  analysed for CD11c expression  (lower panels). 
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Gfi1-/- mice were transduced either with SFβ91-Gfi1-IRES-GFP or SFβ91-GFP and 

transplanted into irradiated recipient mice. Upon reconstitution of the hematopoietic system,  

the mice were sacrificed and analysed for DC reconstitution. Compared to mice transplanted 

with GFP-expressing progenitor cells, it was determined that the percentage of CD11c+ cells 

among GFP-positive cells was significantly higher in mice that had received Gfi1-transduced 

progenitor cells (4.8%) compared to mice that had received GFP-transduced progenitor cells 

(0.2%, Fig. 4.3.6.2.b), suggesting that the retrovirus mediated expression of Gfi1 corrected the 

defect of DC development 

 
 

4. 3. 7. Deficient DC development in Gfi1-/- mice is associated with decreased STAT3 

activation in progenitor cells 

Previous in vitro data have shown that Gfi1 interacts with PIAS3, a known inhibitor of 

STAT3 (Rodel et al., 2000). STAT3 has recently emerged as an important mediator of DC 

differentiation. Based on the previous studies it was hypothesized that altered STAT3-

signalling may influence the developmental pathway of macrophage versus dendritic cell 

development. To investigate the activation status of STAT3 during DC differentiation, Lin- 

hematopoietic progenitor cells from Gfi1+/+ and Gfi1-/- mice were isolated and cultured in the 

presence of GM-CSF. Cells were harvested at hour 0, 30 min, and 4 hour after GM-CSF 

stimulation and the cytoplasmic and nuclear proteins were isolated. STAT3 activation upon 

GM-CSF stimulation in Gfi1-/- and Gfi1+/+ hematopoietic cells was assessed by Western blot 

analysis, comparing cytosolic and nuclear protein fractions. Whereas the specific band 

corresponding to STAT3 protein in the cytosol was comparable in Gfi1-/- and Gfi1+/+ cells 

(Fig. 4.3.7.1-top panel), a significant reduction of STAT3 in the nuclear protein fraction at all 

time points was documented (Fig. 4.3.7.1- bottom panel), suggesting that the transnuclear 

shift of activated STAT3 was impaired in Gfi1-/- cells.  
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This was further confirmed by electrophoretic mobility shift assays (EMSA), which revealed 

a significant reduction of STAT3 homo- and heterodimers in Gfi1-/- cells (Fig. 4. 3.7.2.a). 

Oct-1 specific EMSA confirmed the equal amount of protein loaded in each lanes. 
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Figure 4.3.7.1. Decreased  STAT3 
translocation in the nucleus. 
Lin-depleted bone marrow cells from 
Gfi1+/+ and Gfi1-/- mice were incubated in 
the presence of GM-CSF and IL-4. 
Cytosolic (upper panels) and nuclear 
protein fractions (lower panels) were 
purified at indicated time points. STAT3 
was detected by western blot using a 
STAT3-specific monoclonal antibody. 
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Figure 4.3.7.2. Decreased  STAT3 translocation in the nucleus.  
(a) Nuclear proteins were incubated with 32P-labeled consensus sequence oligonucleotides (h-SIE) 
recognizing STAT3 protein and subjected to electrophoresis and autoradiography.  
(b) To confirm equal loading, nuclear proteins were incubated with OCT1-specific oligonucleotides  
and subjected to electrophoresis and autoradiography. 
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the OCT1  (Fig. 4.3.7.2.b.)  Specificity of protein-DNA interaction was proven by supershift 

assays (Fig. 4.3.7.3.a) and competition assays using excess of unlabelled oligonucleotides 

(Fig. 4.3.7.3.b). Thus it was concluded that the Gfi1 deficiency and defective DC 

differentiation were associated with impaired, GM-CSF induced STAT3 signalling in 

hematopoietic progenitor cells. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 In summary, the results of this study convincingly demonstrate that Gfi1 plays a vital role in 

DC development and maturation. In the absence Gfi1, dendritic cells of all described lineages, 

except the Langerhans cells, are affected both qualitatively and quantitatively. Preliminary 

studies on the signal transduction pathways of Gfi1 suggest that Gfi1 might control DC 

development through STAT3 signalling. 
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Figure4.3.7.3. Competition and   supershift assays. 
(a)  Competition assay. Nuclear proteins were incubated 
with 32P-labeled consensus sequence oligonucleotides (h-
SIE)  either in the presence or absence of 100 fold 
unlabelled (cold) oligo recognizing STAT3 protein and 
subjected to electrophoresis and autoradiography.  
(b) Supershift assay. Nuclear proteins were pre-incubated 
with STAT3-specific monoclonal antibodies or mouse 
IgG1 isotype control antibodies before reaction with 32P-
labeled STAT3-specific oligonucleotides. The complexes 
were resolved on a polyacrylamide gel and subjected to 
autoradiography.  
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5. Discussion 

5.1 Transcription factor controlled differentiation of dendritic cells  

The very aim of the current study was to increase the understanding of the molecular 

complexity of the differentiation program of dendritic cells from hematopoietic progenitor 

cells. In the past few years, a series of reports have been published regarding the gene 

expression profile of dendritic cells. However, most of these studies attempted to unravel the 

genes that are involved in the maturation process of dendritic cells either in response to 

various pathogens or in response to various stimuli. Several independent approaches have 

been adopted in these studies such as serial analysis of gene expression, (SAGE; Hashimoto 

SI et al., 2000), microarray studies (Granucci F et al., 2001; Matsunaga T et al., 2002; 

Messmer D et al., 2003), combined cDNA subtraction and microarray approaches (Ahn J H et 

al., 2002), and an integrated genomic and proteomic approaches (Richards J et al., 2002; La 

NF et al 2001).   

In addition to the reports on genes involved in DC maturation, a few reports also focused on 

gene expression during DC differentiation from human monocytes (Angenieux C et al., 2001; 

Hashimoto S et al., 1999). Some pilot studies were also performed to study the differentially 

expressed genes in dendritic cells during the development from human CD34+ cells (Fisher M 

et al., 1999; Ju xs et al., 2003) and from mouse spleen derived long-term cultures (LTC; 

Wilson H et al., 2003). 

A recent report by Fohrer et. al has focused on the transcription factors, RelB and PU.1, to 

trace the lineage origin of human thymic dendritic cells and has categorised thymic dendritic 

cells into myeloid and plasmocytoid lineages based on the differences in the expression 

profiles of these transcription factors (Fohrer H et al., 2004).  

Even though most of the reports focus on identifying the genetic control of DC differentiation 

and maturation on a global level, to date, a comprehensive knowledge about the role of 

transcription factors in DC development is still lacking. This lack of knowledge could be 
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explained by the difficulties in obtaining hematopoietic stem cells and to culture dendritic 

cells in-vitro. To circumvent these technical limitations, the present study has set out to 

generate an in vitro DC differentiation system based on a novel cell line CR1-mix. 

A pioneering study on transcription factor based DC development has been recently reported 

by Hacker et al (2003). Even though their studies have identified transcription factors 

involved in DC differentiation and established the role of the transcription factor Id2 in DC 

development, their studies primarily utilised DCs derived from human CD34+ cells. In 

addition, this study was based on a direct comparison on the gene expression profiles between 

the progenitor cells and differentiated dendritic cells. In contrast, the present study differs 

from their work in the following aspects. Firstly, the present study utilised a murine 

hematopoietic DC culture system for the gene expression studies. Secondly, this work focused 

on the transcription factors that were upregulated during the early pathways of DC 

differentiation. Hence, this study for the first time deciphers the role of transcription factors 

that control the early pathways of dendritic cells. 

 

5.2 DCs differentiated from FDCP-mix cells have considerable proportion of 

‘contaminating’ granulocytes and macrophages 

To establish a cell system that allows the molecular analysis of DC differentiation with an 

emphasis on transcription factors, the initial work was done in 32D cells. 32D cells are 

originally described by Valtieri et al (Valtieri M et al, 1987) as a murine, hematopietic, IL3 

dependent cells. Even though the differentiation potential of these cells across granulocytic 

and macrophage lineages (Ramos G, 2004) has been demonstrated, their ability to 

differentiate into DC lineage has not been explored so far. Thus the present study aimed to 

differentiate these cells into DC lineage.  In spite of culturing these cells under various culture 

conditions, successful results could not be obtained. The failure of these cells to differentiate 

into DCs could be explained either by their loss of potential to differentiate into DCs or by the 
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unusual chromosome instability phenomenon (Agliano AM et al, 2000) reported previously in 

this cell line. 

Another hematopoietic cell line, FDCP-mix was used in this study. FDCP-mix cells were 

established by infecting the long-term bone marrow cultures with src virus (Just U, 1991). 

FDCP-mix cells are IL-3 dependent, multipotent hematopietic progenitor cells. Previous 

studies have shown that FDCP-mix cells can be differentiated into granulocytes, macrophages 

(Ford AM,1992), erythrocytes, megakaryocytes, and early B-lymphoid lineage cells in vitro 

(Spooncer et al., 1986; Just et al, 1991; Ford et al, 1992). Recently Schroeder T, et. al (2000) 

have documented the differentiation potential of FDCP-mix into dendritic cells (Schroeder T., 

2000). However in the present studies it was observed that the DCs that were obtained from 

FDCP-mix cells, in the presence of GM-CSF, were quite heterogeneous due to the 

‘contaminating’ granulocyte and macrophage populations: Hence it was inevitable to define a 

novel differentiation system which might allow us to obtain synchronised and homogeneous 

DC population.  

 

5.3 Retroviral mediated overexpression of the intracellular domain of Notch1 generates 

a novel IL3 dependent hematopoietic progenitor cell line 

To date several approaches have been used to immortalize and expand hematopoietic 

progenitor cells. Retrovirus mediated overexpression of genes such as MDR1 (Bunting KD et 

al., 1999), Src (Just U et al 1991), gp130 (Audet j et al 2001), TEL-AML1 (Morrow M et al., 

2004), and myeloid lysozyme gene (Ye M et al., 2003) and transcription factors such as 

Notch1 (Varnum F et al., 2000), Hox B4 (Antonchuk J et al., 2002;), ß-catenin (Reya T et al., 

2003) and Lhx2 (Pinto O P et al., 2002) have been reported in the literature. 

However, none of these cell lines has been reported to have DC differentiation potential. The 

present study made use of the technology initially reported by Varnum-Finney and colleagues 

(2000). These investigators have generated a retrovirus encoding the intracytoplasmic domain 
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of notch1 (ICN) to immortalize hematopoietic stem cells (Varnum F, 2000). In contrast to 

their approach, the present study modified the strategy in various aspects.  Firstly Varnum-F 

al have shown that the overexpression of ICN immortalizes hematopoietic cells. However, 

these investigators did not check ICN transduced cells for their dependency on individual 

cytokines. In contrast, the present work examined the dependency of ICN transduced cells on 

the individual cytokines of the stem cell cytokine cocktail (IL-3, IL-6, Flt3L, SCF) and 

concluded that IL-3 plays a major role in the viability of these cells. Secondly, their goal was 

not to generate a hematopoietic cell line from the ICN transduced cells. In contrast, our 

purpose was to generate a hematopoietic cell line. CR1-mix cells showed a normal karyotype 

and could be maintained in culture for more than 2 years by repeated thawing and freezing. 

Thirdly, this study has shown that  CR1-mix cells could be differentiated into dendritic cells.  

From the transplantation studies it was observed that CR1-mix cells did not provide efficient  

radioprotection to lethally irradiated mice. Nevertheless, their in vivo differentiation potential 

into most of the hematopoietic lineages such as dendritic cells, T cells, B cells, NK cells, 

granulocytes and macrophages except erythrocytes is documented in sublethally irradiated 

mice. The failure of CR1-mix cells to protect the lethally irradiated mice from radiation 

damage could be explained by the inability of these cells to differentiate into erythrocytes, 

despite its potential to generate all the other hematopoietic lineages. Moreover, 

immunophenotypic studies  conducted in this cell line provided an evidence that this cell line  

expresses most of the hematopoietic stem/progenitor cell markers and lack the expression of 

surface markers that indicate a specific hematopoietic lineage. 

Taken together, the present study suggests that CR1-mix cells may be considered as an 

immature multipotent progenitor cell line. 
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5.4 CR1-mix- a novel tool to study both myeloid and plasmocytoid dendritic cell 

development 

In the past, several other cell lines with DC features have been described (Paglia et al., 

1993;Girolomoni et al, 1995; Xu et al, 1995; Rasko et al, 1997, Schroeder T et al, 2000). 

However, these cell lines differ from CR1-mix in various aspects. Some of these cell lines 

were frozen at one stage of DC development; some others are tumorigenic or transformed by 

an oncogene, while the others have an ‘improper’ DC phenotype.  Examples include the 

tumorigenic and factorindependent IGM36 cell line, derived from a GM-CSF transgenic 

mouse (Rasko et al, 1997), the immature skin-derived DC cell line- FDSC (Girolomoni et al, 

1995), the immature spleen derived CB1 cell line (Paglia at al, 1993) and the FDCP-mix cells 

(Schroeder et al 2000). On the other hand none of these cell lines has been shown to 

differentiate equally into both myeloid and plasmocytoid dendritic cells in vitro. Interestingly, 

the data of this study indicate that CR1-mix cells can efficiently differentiate into both 

myeloid and lymphoid dendritic cell lineages in a directed and synchronous manner both in 

vitro and in vivo.  

In addition, the morphology, immunophenotype and functional properties such as IL-12 

secretion and allogenic T cells proliferation capacity of the CR1mix cells resemble bone 

marrow derived primary dendritic cells. These features along with the karyotypic stability 

make the cell line a versatile tool for analysing molecular and biochemical events associated 

with determination, differentiation and maturation of the different dendritic cell lineages.    

 

 

5.5   The transcriptional repressor Gfi1 is critically important for DC development 

Using a transcriptional screening approach, Gfi1 was identified as a crucial transcription 

factor controlling DC-development and -function. Gfi1 is a transcriptional zinc finger 

repressor originally identified as a target gene for proviral insertions leading to IL2 
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independent growth in a T cell lymphoma line (Gilks et al., 1993). Gfi1 contains six C2H2 

zinc fingers and a transcriptional repressor domain (SNAG) (Grimes et al., 1996). Previous 

studies suggest that Gfi1 acts as a protooncogene by accelerating T-cell proliferation and 

inhibiting apoptosis and cell cycle arrest (Grimes et al., 1996; Karsunky et al., 2002a; Schmidt 

et al., 1998). Furthermore, Gfi1 regulates proliferation and differentiation of thymic T-cells 

(Yucel et al., 2003). More recently, an intrinsic role of Gfi1 in granulocyte development has 

evolved, when the analysis of Gfi1-/- revealed an unexpected absence of mature neutrophils 

(Hock et al., 2003; Karsunky et al., 2002b). Heterozygous mutations in Gfi1 have been 

identified in rare patients with hereditary neutropenia, suggesting that dominant negative 

variants may block neutrophil differentiation (Person et al., 2003). The present study provides  

evidence for yet another role of Gfi1 in controlling the complexity of hematopoietic stem cell 

differentiation: Gfi1 deficiency leads to a global reduction in the number of DC precursors 

and their progeny in bone marrow, thymus, spleen and lymph nodes, as well as to incomplete 

DC maturation and function. Furthermore, Gfi1 appears to be key regulator of DC versus 

macrophage development.  

 

5.6 Gfi1 kncokout mice show reduced DC numbers of myeloid, lymphoid and 

plasmocytoid lineages except Langerhans cells 

The initial aim of this study was to identify transcription factors controlling specific subsets of 

DCs, in particular in the development of “myeloid” DCs as progeny of GM-CSF treated HSC. 

Previous reports have implicated a role for PU. 1(Anderson et al., 2000; Guerriero et al., 

2000), RelB (Wu et al., 1998), and Ikaros C (Wu et al., 1997) in the differentiation of 

CD11c+CD8α- “myeloid” DCs. Unexpectedly, a global reduction of all DCs in primary and 

secondary lymphoid organs in Gfi1 deficient mice was observed in this study, irrespective of 

CD8α expression. Although these data do not exclude the existence of “myeloid” DCs, the 

analysis of Gfi1-/- mice does not provide any evidence for a distinct myeloid DC lineage. 
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Interestingly, Gfi1 deficiency did not perturb Langerhans cell development. In that respect, 

Gfi1-deficient mice resemble RelB-/- (Wu et al., 1998) and IkarosC-/- mice (Wu et al., 1997) 

that are characterized by a deficiency of CD8α- DCs while epidermal LC appear normal. In 

contrast, TGFβ−/− (Borkowski et al., 1996) and Id2-knockout mice (Hacker et al., 2003) show 

a complete lack of epidermal LCs, while other DC subpopulations are at least partially 

preserved, supporting the notion of a distinct LC lineage. Thus, the analysis of Gfi1-/- 

deficient mice provides additional evidence for a dissociation of DC development in 

peripheral lymphoid organs and epidermal Langerhans cells.  

 

5.7 Gfi1 plays a crucial role in determining the lineage outcome between dendritic cells 

and macrophages 

The decisive factors controlling macrophage versus DC development remain elusive. Various 

cytokines, such as IL6, TNFα, and interferon-γ induce DC versus macrophage differentiation 

in vitro (Chomarat et al., 2000; Chomarat et al., 2003; Delneste et al., 2003). Other studies 

suggest that the notch ligand delta-1 inhibits macrophage differentiation while permitting DC 

differentiation (Ohishi et al., 2001). However, analysis of cytokine knockout mice has not yet 

revealed any specific factor that dissociates DC and macrophage development. Intracellular 

mechanisms responsible for DC versus macrophage development are currently not known. 

The phenotype of Notch-1-/- mice suggests that both DC and LC development is completely 

independent of Notch-1 (Wilson et al., 2001). In mice doubly deficient for two NFκB subunits 

(p50-/-RelA-/-), GM-CSF-dependent DC development is severely reduced whereas M-CSF 

dependent macrophage development appears normal (Ouaaz et al., 2002). In the undertaken 

study, both Flt3L and GM-CSF, two cytokines inducing DC development in wildtype 

hematopoietic stem cells, drive Gfi1-/- hematopoietic progenitor cells into macrophage 

differentiation. Thus, Gfi1 is a unique factor governing DC versus macrophage development 

in vitro. Previous reports have identified an excess of atypical “immature” myeloid cells in 
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Gfi1-/- mice, characterized by expression of Gr1 and Mac1 (Hock et al., 2003; Karsunky et al., 

2002b). Hock et al. proposed a dual function of Gfi1, which may be required not only for 

neutrophil maturation but also for terminal macrophage differentiation (Hock et al., 2003). 

We have shown that the absence of Gfi1 leads to a significant reduction in HSC, CLP, CMP 

and DC progenitor cells while GMPs are increased in numbers, suggesting that Gfi1 acts on 

multiple levels of progenitor cell differentiation, including critical checkpoints of DC versus 

macrophage development (Fig. 5. 7.1).  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5.8 Gfi1 controlled DC differentiation is dependent on  STAT3 activation 

Mechanistically, the function of Gfi1 is under active investigation. Gfi1 shares the same DNA 

binding- and a SNAG (Snail and Gfi1 family of proteins) repression domain with its 

homologue, Gfi1B. Both factors have redundant and unique biological roles in controlling 

hematopoiesis. As a transcription factor, Gfi1 displays activity in the nucleus. In addition 

there is evidence for a potential cytoplasmatic role for Gfi1 mediated by physical interaction 

with PIAS3 (protein inhibitor of activated STAT3), a specific inhibitor of STAT3. Using a 
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Figure 5..7.1 Proposed Gfi1 dependent checkpoint in DC development  
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STAT3-dependent reporter gene assay, earlier studies have suggested that Gfi1 can increase 

STAT3 signalling by overcoming the inhibitory effects mediated by PIAS3 (Rodel et al., 

2000). The present study confirms and extends this observation in a functional model of DC 

differentiation and provide unequivocal evidence that in the absence of Gfi1, STAT3 

signalling is significantly reduced in early hematopoietic progenitor cells. Further evidence 

for a critical role of STAT3 in DC development has recently been proposed by Laouar et al. 

(Laouar et al., 2003). Their studies determined STAT3 activation as a critical checkpoint of 

Flt3L regulated DC development. In the absence of STAT3, the transition of CLP and CMP to 

Flt3+ DC precursors was severely impaired, while GM-CSF-induced DC differentiation in 

vitro was not altered in this system. In contrast to the complete deficiency of STAT3, in the 

absence of Gfi1, both Flt3L and GM-CSF-dependent DC differentiation is abrogated, 

suggesting that deficient STAT3 signalling is not the only mechanism explaining the 

phenotype of Gfi1-/- hematopoiesis.  These differences could either be explained by residual 

STAT3 activation in Gfi1-/- cells or the effects of multiple STAT3 isoforms present in DC 

development (Welte et al., 1997). Furthermore, Gfi1 acts as a transcriptional modulator and 

influences a multitude of downstream factors. The identification of downstream targets 

illustrates the complexity of Gfi1-dependent pathways. Gfi1 binds to functionally diverse sets 

of genes in myeloid cells such as JAK3, IL8, c-myc and members of the C/EBP family (Duan 

and Horwitz, 2003). Interestingly, Gfi1 also represses its own transcription in vitro (Doan et 

al., 2004; Duan and Horwitz, 2003) and in vivo (Yucel et al., 2004). The observation of 

fluctuating Gfi1 expression and untoward toxic effects of retrovirus-mediated Gfi1 expression 

in the present work, reflect the importance of tight transcriptional regulation of Gfi1 gene 

expression in DC precursor cells. 
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5.9 Gfi1 controls both development and activation of dendritic cells 

 Previous reports have differentiated DC maturation and DC activation as molecularly distinct  

events, phenotypically characterized by upregulation of surface expression of MHC class II 

and the costimulatory molecules CD40, CD80 and CD86 and production of inflammatory 

cytokines (e.g. IL12) (Kaisho and Akira, 2001; Kobayashi et al., 2003; Ouaaz et al., 2002). 

DC maturation is primarily induced upon signalling via Toll-like-receptors (TLR) and CD40. 

Gfi1-/- DCs show decreased expression of MHC class II and decreased upregulation of 

costimulatory receptors upon stimulation with LPS and anti-CD40 monoclonal antibodies, a 

phenotype consistent with impaired DC maturation. TRAF6 has emerged as a point of 

convergence for both TLR- and CD40-mediated signalling cascades, linking both pathways to 

NFκB activation. TRAF6-/- deficient DCs show decreased maturation and thus resemble Gfi1-

/- DCs (Kobayashi et al., 2003). However, in contrast to Gfi1-/- DCs, TRAF6-/- DCs are 

characterized by decreased cytokine production (Kobayashi et al., 2003). The analysis of mice 

deficient for the expression of defined factors regulating NFκB have provided more insights 

into the complex network regulating DC activation and cytokine production. For example, 

mice doubly deficient in the NFkB subunits p50 and RelA exhibit a severe reduction in CD8+ 

and CD8- DCs, while mice doubly deficient in p50 and cRel show impaired CD40L-mediated 

survival and IL12 production (Ouaaz et al., 2002). Furthermore, DCs from mice deficient in 

the negative NFκB regulator NFκB2 show enhanced expression of activation markers but 

produce normal levels of cytokines (Speirs et al., 2004). In contrast to these models however, 

Gfi1-/- deficient DCs reveal a dissociated phenotype characterized by decreased maturation 

and increased activation. In view of these results documenting decreased STAT3 activation in 

DC progenitors, it is tempting to speculate that the increased cytokine secretion is related to 

deficient STAT3 activation in DCs. Targeted STAT3 deficiency in the hematopoietic system 

is associated with chronic enterocolitis, aberrant inflammation and lethality to septic 

peritonitis (Matsukawa et al., 2003; Takeda et al., 1999; Welte et al., 1997). This pathology is 
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associated with increased expression of inflammatory cytokines. No data has been published 

about maturation of STAT3-/- DCs, but overstimulated innate immunity is associated with 

enhanced NFκB activity in STAT3-/- hematopoietic cells (Welte et al., 2003). Thus Gfi1-/- 

mice offer a model system to further dissect the mechanisms controlling DC maturation and 

activation. Recent data suggest a PIAS3-dependent negative regulation of the p65 subunit 

(RelA) of NFkB and thus establish a potential link between STAT3 and NFkB pathways 

(Jang et al., 2004). Further studies are required to elucidate the significance of this potential 

crosstalk. 

 

In conclusion, results of this study demonstrated a key role for the transcriptional repressor 

Gfi1 in DC development and function. These studies also provide insights into the complex 

hierarchical network controlling DC differentiation, maturation and activation, and reveal 

specific pathways that might ultimately be important for the design of rational DC therapies. 
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