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PeC3 School on Numerical Modeling with Differential Equations

Structure of this spring school

1 Four days

2 Nine lectures à 90 minutes

3 Four practical excercises (one per day) in C++ ranging from 90 - 180
minutes per day (including explanations and summary of the main
findings per day)

4 This spring school is accompanied by a three-day pre-course with an
introduction to C++ and hdnum. The git repository for hdnum can be
accessed here:
git clone https://parcomp-git.iwr.uni-heidelberg.de/Teaching/hdnum
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Key literature related to this spring school
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Springer 2014
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7 T. Wick; Introduction to Numerical Modeling, lecture notes, MAP 502, Ecole Polytechnique,
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8 O. Klein; Lecture Notes Object-Oriented Programming for Scientific Computing, 2018,
https://conan.iwr.uni-heidelberg.de/teaching/oopfsc_ss2018/

9 O. Klein; Lecture Notes Einführung in die Numerik, 2018,
https://conan.iwr.uni-heidelberg.de/teaching/numerik0_ss2018/
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Introduction to Modeling with Differential Equations
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Introduction to Modeling with Differential Equations

Motivation

The Modern Scientific Method

• Experiment: Observe and measure some phenomenon. Nowadays
the amount of data acquired may be abundant.

• Theory : Try to explain observations by a model. Here we consider
mathematical models in terms of differential equations.

• Scientific Computing : Often the parametrization and prediction of
the model is achieved with the help of computers.

• Compare measurements and predictions to improve your model
and/or observations.

• Today often data-driven “models” obtained with machine-learning
are used. A disadvantage of these models is that they do not help us
to understand how the observed system works.
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Introduction to Modeling with Differential Equations

Motivation

Why Differential Equations?

• Differential equations are ubiquitous in science and technology

• Solid mechanics: stability of bridges and buildings
• Fluid mechanics: drag and lift of an airfoil
• Material science: phase diagram of a substance
• Protein folding: How do molecules bind
• Mathematical biology: How does cancer grow
• Hydrology: movement of contamination in groundwater
• Weather and climate prediction

• Numerical methods are often the only way to solve these equations
in practical situations

• Approach was enabled by the digital computer (although already
envisioned by Leibniz 300 years ago!)

• Most of the time on supercomputers is spent solving differential
equations
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Introduction to Modeling with Differential Equations

Motivation

Historical Perspective

• Sir Isaac Newton (1642-1727) and
Gottfried Wilhelm Leibniz (1646-1716)
invent calculus

• Newton described motion of the planets by
differential equations

• Leibniz developed also mechanical
calculating machines

• Euler (1707-1783) and Lagrange
(1736-1813) develop variational calculus

• Euler finds equations for inviscid fluid flow
(1757)

Newton Leibniz

Euler Lagrange
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Introduction to Modeling with Differential Equations

Motivation

Equations of Mathematical Physics

• PDEs ubiquitous in physics

• E.g. to express conservation of mass,
momentum and energy in quantitative
form

• Poisson (electrostatics, gravity) ∼1800

• Navier-Stokes (viscous flow) 1822/1845

• Maxwell (electrodynamics) 1864

• Einstein (general relativity) 1915

• Schrödinger (quantum mechanics) 1926

Poisson Navier

Stokes Maxwell

Einstein Schrödinger
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Introduction to Modeling with Differential Equations

Motivation

Calculating Machines and Computers

• 1671: Leibniz builds a machine to do +,−, ·, /
• 1831: Charles Babbage designs the steam-powered Analytical

Engine, a programmable calculator including conditions and loops
(not completed)

• 1921: Lewis Fry Richardson proposes to predict the weather based
on differential equations using 64000 human computers

• 1937: Alan Turing founds computability theory based on the Turing
machine

• World War II pushed the development of computers: firing tables
(ENIAC 1943-46), deciphering codes (Colossus, 1943)

• 1945: John von Neumann proposes the stored-program computer
(based on others’ ideas)

• 1965: Gordon Moore predicts doubling of # transistors on a chip
every 12 month (it is more like 18)

• Today: You will witness the end of Moore’s law
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Introduction to Modeling with Differential Equations

Motivation

Milestone Algorithms

• ca. 1670: Newton introduces a method to solve polynomial
equations

• 1823: Carl Friedrich Gauß mentions an iterative method to solve
(least squares) linear systems of equations arising in the
triangulation of Hannover

• 1943: Richard Courant publishes an early version of the Finite
Element Method based on the Ritz-Galerkin principle

• 1965: Cooley and Tukey publish the Fast Fourier Transform
algorithm

• 1977: Wolfgang Hackbusch and Achi Brandt independently
introduce the multigrid method

• 1987: Leslie Greengard and Vladimir Rokhlin Jr. introduce the fast
multipole method

• 1999: Wolfgang Hackbusch introduces H-matrices allowing sparse
approximation of non-sparse matrices
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Introduction to Modeling with Differential Equations

Short Review of Calculus

Sequences
• By {ξn : n ∈ N} we denote a sequence of real numbers

• Examples:

ξn =
1

n
, ξn =

2n

n + 1
, ξn+1 =

1

2

(
ξn +

a

ξn

)
• A sequence {ξn} converges to the limit ξ ∈ R if for any ε > 0 there

exists Nε ∈ N such that

|ξ − ξn| < ε for all i ≥ Nε

• A sequence {ξn} is a Cauchy sequence if for any ε > 0 there exists
Nε ∈ N such that

|ξm − ξn| < ε for all m, n ≥ Nε

• Every convergent sequence is a Cauchy sequence

• Completeness axiom: Every Cauchy sequence converges in R (this is
what makes R different from Q)
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Introduction to Modeling with Differential Equations

Short Review of Calculus

Functions and Continuity
• Let I = [a, b] be a closed interval (might also be open or half open)
y : I → R denotes a function y mapping

x ∈ I → y(x) ∈ R

• y is said to be continuous in x if

{xn} → x ⇒ {y(xn)} → y(x)

• Equivalently: for any ε > 0 there exists δε(x) > 0 such that

|y(x)− y(z)| < ε for all 0 < |x − z | < δε(x)

• If y is continuous in all x ∈ I then u is a continuous function

• If δε is independent of x then y is uniformly continuous

• The set C (I ) of all continuous functions on I is closed under
addition and scalar multiplication, thus it forms a vector space

• For I closed y is bounded and (C (I ), ‖.‖∞) is a normed vector space
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Introduction to Modeling with Differential Equations

Short Review of Calculus

Differentiable Functions I

• y ′(x) is called the derivative of y in x if for all sequences {xn}
converging to x the limit

lim
xn→x

y(x)− y(xn)

x − xn

exists and is the same

• Clearly, continuity of y is a necessary condition for the derivative to
exist

• Then both, nominator and denominator, converge to zero

• If y is differentiable in all x ∈ I , y is differentiable and the function
y ′ with values y ′(x) is called the derivative of y

• Later we will use the equivalent notation dy
dx (x) = y ′(x)

• We may write y ′ = Dy . D maps a differentiable function to its
derivative
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Introduction to Modeling with Differential Equations

Short Review of Calculus

Differentiable Functions II

• And we may differentiate again: y ′′ = Dy ′ = DDy = D2y

• And in general y (m) = Dmy is the m’th derivative of y

• It is convenient to set D0y = y

• D : D → R maps a function to a function and is called
“differentiation operator”

• What are its domain D and range R?

• D = C 1(I ) = {y ∈ C (I ) : y is differentiable} ⊆ C (I )

• R = C (I ) = C 0(I )

• In general we denote by Cm(I ) the space of m times continuously
differentiable functions

• D is a linear operator:

D(y1 + y2) = Dy1 + Dy2, D(cy) = cDy , c ∈ R
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Introduction to Modeling with Differential Equations

Differential Equations

What is a Differential Equation?

• A differential equation (DE) relates values of derivatives of one or
more functions over a domain (here interval) I ⊆ R

• An example is

Ψ(y ′(x), y(x), x) = 0 for all x ∈ I (1)

• Ψ : R× R× R→ R is a function in three arguments

• Only values at the same point x are related with each other

• Continuity, differentiability of y relate values at nearby points!

• (1) is a first order ordinary DE in implicit form

• Order: highest derivative occuring

• Ordinary DE (ODE): functions in one variable are involved

• Partial DE (PDE): functions in several variables are involved

• Explicit form would read: y ′(x) = f (x , y(x)) for all x ∈ I
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Introduction to Modeling with Differential Equations

Differential Equations

Fundamental Theorem of Calculus

• The simplest differential equation would be the following:

y ′(x) = f (x) ∀x ∈ I (2)

• Assume y(a) is known, then for any b > a we get∫ b

a

y ′(x)dx = y(b)−y(a) =

∫ b

a

f (x)dx ⇔ y(b) = y(a)+

∫ b

a

f (x)dx

• So, the function y(x) = y(a) +
∫ x

a
f (ξ)dξ solves (2)

• In fact, any function y(x) + c , c ∈ R, is also a solution

• So, the solution of (2) is unique up to a constant

• A specific solution is picked by fixing y(a) at some point a

• The fundamental theorem of calculus states that the function∫ x

a
f (ξ)dξ is well defined and solves (2)
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Introduction to Modeling with Differential Equations

Differential Equations

Two Simple Approximation Methods

We want to solve y ′(x) = f (x) in I = (a, b], y(a) = ya

• Method 1: For N ∈ N set h = (b − a)/N and xhn = a + nh,
0 ≤ i ≤ N. For h sufficiently small,

y(xhn+1)− y(xhn )

h
≈ y ′(xhn ) = f (xhn )

leading to the scheme yh
n+1 = yh

n + hf (xhn )

• Method 2: A good approximation of the integral is the trapezoidal
rule ∫ x+h

x

f (ξ)dξ ≈ h

2
(f (x) + f (x + h))

leading to the scheme yh
n+1 = yh

n + h
2

(
f (xhn ) + f (xhn+1)

)
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Introduction to Modeling with Differential Equations

Growth Models

Conceptual Model for Growth

• We wish to model growth of a population, e.g. bacteria in a petri
dish over time

• From now on we will denote the independent variable by t because
ODE models are often used to model functions of time

• In a conceptual model we list properties we consider (un-) important
for the model
• N(t) is the number of individuals at time t
• As a generalization, let N(t) be a real number
• We assume the spatial extend to be unimportant
• Increase in population during an interval ∆t is proportional to

number N(t) and ∆t
• This last assumption means that infinite resources (food, energy) are

available for growth
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Introduction to Modeling with Differential Equations

Growth Models

Mathematical Growth Model

• Consider the change of the population in a time interval ∆t:

N(t + ∆t) = N(t) + λ∆tN(t) (3)

with a constant λ ∈ R
• Observe similarity of (3) with the numerical method 1 above!

• For a fixed ∆t this is a discrete model. For different ∆t, different
sequences of numbers are obtained

• Rearranging gives

N(t + ∆t)− N(t)

∆t
= λN(t)

• Considering the limit ∆t → 0 we obtain a linear ordinary differential
equation:

N ′(t) = λN(t) (4)
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Introduction to Modeling with Differential Equations

Growth Models

Analytical Solution of Growth Model

• This simple ODE can be solved analytically

• Verify that Ceλt for any C ∈ R is a solution

• The initial condition N(t0) = N0 picks the solution N0e
λ(t−t0)

• Are all solutions of the form Ceλt?

• Let N(t) be any solution of (4), then:(
N(t)e−λt

)′
= N ′(t)e−λt − λN(t)e−λt =

(
N ′(t)− λN(t)

)
e−λt = 0

• From
(
N(t)e−λt

)′
= 0 we conclude

N(t)e−λt = C ⇔ N(t) = Ceλt

• More realistic growth models consider finite resoures, e.g. logistic
growth

N ′(t) = λ(G − N(t))N(t) (Bernoulli DE)
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Introduction to Modeling with Differential Equations

Pendulum

Conceptual Model of a Pendulum

We wish to model a pendulum
In a conceptual model we list properties we
consider (un-) important for the model

• The weight is concentrated in a point
of mass m

• The rod of length ` is assumed rigid
and massless

• The rod is fixed at (0, 0, 0) and
movement is in the plane y = 0

• Air resistance is neglected

We develop a mathematical model based on
Newton’s equations of motion

m

`

φ

(0, 0, 0)
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Introduction to Modeling with Differential Equations

Pendulum

Forces

• Movement is along a circle, only force in
tangential direction is relevant for acceleration

• Tangential force for deflection angle φ:

~FT (φ) = − mg︸︷︷︸
|~F |

sin(φ)

(
cos(φ)
sin(φ)

)

• For example φ = 0, φ = π/2:

~FT (0) = mg 0

(
−1
0

)
, ~FT (π/2) = mg

(
0
−1

)
• Sign encodes direction

m

`

φ

(0, 0)

~F

~FN

~FT
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Introduction to Modeling with Differential Equations

Pendulum

Distance, Velocity, Acceleration

• Distance s(t), velocity v(t), acceleration a(t) satisfy:

v(t) =
ds(t)

dt
, a(t) =

dv(t)

dt
.

• The distance (including sign) satisfies s(t) = `φ(t).

• Therefore velocity satisfies

v(t) =
d s(φ(t))

dt
=

d `φ(t)

dt
= `

dφ(t)

dt

• and acceleration satisfies

a(t) =
d v(φ(t))

dt
= `

d2φ(t)

dt2
.
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Introduction to Modeling with Differential Equations

Pendulum

Equations of Motion

• Insert into Newton’s second law ma(t) = F (t) gives:

m`
d2φ(t)

dt2
= −mg sin(φ(t)) ∀t > t0.

• The force is scalar as we are only considering the distance travelled
where sign encodes direction

• We obtain a second-order nonlinear ordinary differential equation for
the deflection angle φ(t):

d2φ(t)

dt2
= −g

`
sin(φ(t)) ∀t > t0. (5)

• A unique solution is determined by two initial conditions (t0 = 0):

φ(0) = φ0,
dφ

dt
(0) = φ′0. (6)
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Introduction to Modeling with Differential Equations

Pendulum

Solution for Small Deflection Angle

• For small deflection angle φ observe

sin(φ) ≈ φ,

e.g. sin(0.1) = 0.099833417.

• Using this approximation yields the linear ODE

d2φ(t)

dt2
= −g

`
φ(t)

• Which is solved by φ(t) = A cos(ωt). The constants are fixed by the
initial conditions φ(0) = φ0, dφ

dt (0) = 0, giving

φ(t) = φ0 cos

(√
g

`
t

)
(7)
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Introduction to Modeling with Differential Equations

Pendulum

Model Comparison φ0 = 0.5 ≈ 28.6◦

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0  0.5  1  1.5  2  2.5  3  3.5  4

A
us
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nk
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g

Zeit

Zentriertes Verfahren, phi=0.5

vereinfachtes Modell
dt=0.01

dt=0.0001

Even for 28.6◦ the approximation is quite accurate
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Introduction to Modeling with Differential Equations

Pendulum

Model Comparison φ0 = 3.0 ≈ 171◦
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For such large deformations the approximate model is very inaccurate
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Introduction to Modeling with Differential Equations

Chemical Reaction Systems

Elementary Reactions
• A reaction of three substances A,B,C is denoted by

νaA + νbB
k1


k2

νcC (8)

• Forward reaction: νa molecules of A react with νb molecules of B to
give νc molecules of C with reaction speed k1

• The reverse reaction has speed k2

• νa, νb, νc are the stoichiometric coefficients

• Reaction rates kj = Aj exp(−Ej/(RT )) given by Arrhenius’ law

• ODE system: concentrations ci (t), i = A,B,C in mol/m3:

dcC

dt
(t) = νck1c

νa
A (t)c

νb
B (t)− νck2c

νc
C (t)

dcA

dt
(t) = −νak1c

νa
A (t)c

νb
B (t) + νak2c

νc
C (t)

dcB

dt
(t) = −νbk1c

νa
A (t)c

νb
B (t) + νbk2c

νc
C (t)

• Equilibrium given by: k1

k2
=

cνcC

cνaA c
νb
B

(mass action law)
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Introduction to Modeling with Differential Equations

Astrophysical N-body Problem

Astrophysical N-body Problem
• Consider N bodies of mass mi at positions xi (t) ∈ R3

• The gravitational force Fij ∈ R3 excerted from body j on body i is

Fij(xi , xj) = G
mimj

‖xj − xi‖2

xj − xi
‖xj − xi‖

where G is the gravitational constant

• Newton’s 2nd law Fi (t) = miai (t) gives ODE system:

d2xi (t)

dt2
= G

N∑
j=1,j 6=i

mj
xj(t)− xi (t)

‖xj(t)− xi (t)‖3
i = 1, . . . ,N

• Introducing velocity vi (t) = dxi (t)
dt results in first-order system:

dxi (t)

dt
= vi (t),

dvi (t)

dt
= G

N∑
j=1,j 6=i

mj
xj(t)− xi (t)

‖xj(t)− xi (t)‖3
i = 1, . . . ,N

• These are 6N coupled ODEs requiring 6N initial conditions
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Introduction to Modeling with Differential Equations

Astrophysical N-body Problem

Recommended Reading

http://www.csc.kth.se/~jjan/private/cde.pdf
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Introduction to Modeling with Differential Equations

Astrophysical N-body Problem

Summary Lecture 01

• Differential equations as part of the scientific method

• First glimpse on numerical solution

• Derivation of some differential equation models
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Theory of differential equations

Contents

2 Theory of differential equations
Classifications
The model problem
Numerical discretization
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Errors
Numerical concepts
Illustration of physical oscillations versus numerical instabilities
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Theory of differential equations

Differential equations

We recall from lecture 01:

Definition 1 (Differential equation (DE))

A differential equation is a mathematical equation that relates a
(unknown) function with its derivatives.

Differential equations can be split into two classes:

Definition 2 (Ordinary differential equation (ODE) )

An ordinary differential equation (ODE) is an equation (or equation
system) involving an unknown function of one independent variable and
certain of its derivatives. Often: either space x or time t.

Definition 3 (Partial differential equation (PDE) )

A partial differential equation (PDE) is an equation (or equation system)
involving an unknown function of two or more variables and certain of its
partial derivatives. Often: x and t or even (x , y , z) and t.
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Theory of differential equations

Classifications

Classifications

• Order of a differential equation

• Single equations and DE systems

• Nonlinear problems:
• Nonlinearity in the DE
• The function set is not a vector space yielding a variational inequality

• Coupled problems and coupled DE systems.
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Theory of differential equations

Classifications

Order of differential equations

• The order of a differential equation is determined by its highest
derivatives

• First order ODE:

y ′(t) = f (y , t), y(t0) = y0

• Second order ODE:

y ′′(t) = f (y ′, y , t), y(t0) = y0, y
′(t0) = v0

• Higher order, here mth order:

y (m)(t) = f (y (m−1), . . . , y , t)

plus m initial conditions.
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Theory of differential equations

Classifications

Reduction of Higher-order Equations to First-order
Systems

Higher-order DE can be reduced to low-order DE systems by introducing auxiliary
solution functions.

• Given y (m)(t) = f (y (m−1), . . . , y , t)

• Define

y1(t) = y(t)

...

ym(t) = y (m−1)(t)

• This results in the first-order DE system:

y ′1(t) = y2(t)

...

y ′m−1(t) = ym(t)

y ′m(t) = f (t, y1, . . . , ym)

• With this, we can write the original problem in compact form (vector-valued
problem!) as

y ′(t) = f (t, y)
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Theory of differential equations

Classifications

Examples
1 y ′(t) = t−1y(t): is of 1st order, linear with the solution y(t) = t

2 y ′(t) = ty(t)−1: 1st order nonlinear, singular solution for y(t)→ 0.

3 y ′(t) = y(t)2: 1st order nonlinear with a singularity at t = 1. Only
local solution with y(t) =

√
1 + t2

4 Clothesline problem (membrane deformation) on Ω = (0, 1): Find a
deformation (displacements) u such that

−u′′(x) = f and u(0) = u(1) = 0.
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Classifications

Single equations vs. systems
Definition 4 (Single equation)

Let d be the dimension. A single DE consists of determining one solution
variable, e.g.,

u : Ω ⊂ Rd → R.

Typical examples are Poisson’s problem, the heat equation, wave
equation, Monge-Ampère equation, Hamiliton-Jacobi equation,
p-Laplacian.

Definition 5 (DE system)

A diff. eq. system determines a solution vector

u = (u1, . . . , ud) : Ωd → Rd .

For each ui , i = 1, . . . , d , a DE must be solved. Inside these diff. equ.
the solution variables may depend on each other or not. Typical examples
of systems are predator-prey systems, linearized elasticity, nonlinear
elasto-dynamics, Maxwell’s equations.
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Classifications

Implicit differential equations

• So far: y ′(t) = f (y , t), which is an explicit representation of a DE

• However, not always, we can resolve with respect to the highest
derivative:

F (y ′, y , t) = 0.

• Example:
F (t, y , y ′) = (y ′)2 + uu′ − 3(y ′)5.

• Of course explicit forms of DE can always be written as implicit
forms (e.g., model problem):

F (t, y , y ′) = y ′(t)− f (y , t).

• Nonlinear numerical methods (fixed-point or Newton) required for
the solution!
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The model problem

The model problem
• In general a model problem stands as a characteristic class of similar

equations and which can exemplarely analyzed as a prototype
problem!

• The model problem for ODEs is defined as:

Formulation 1
Given a model parameter a ∈ R. Let I := [t0, t0 + T ] the time interval
with the end time value T > 0. Find y : I → R such that

y ′(t) = ay(t), y(t0) = y0, t ≥ t0

The first term is the ODE. Here, y ′ = dy
dt . The second term is the

so-called initial condition.

• Important theoretical concepts such as existence, uniqueness,
stability are usually introduced in terms of this ODE.

• Moreover, important numerical concepts such as convergence order,
efficiency, accuracy, stability are analyzed for this ODE as well.

42 / 331



PeC3 School on Numerical Modeling with Differential Equations
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The model problem

Well-posedness: preliminaries

The concept of well-posedness is very general and in fact very simple:

Definition 6 (Hadamard 1923)

1 The problem under consideration has a solution;

2 This solution is unique;

3 The solution depends continuously on the problem data.

The first condition is immediately clear. The second condition is also
obvious but often difficult to meet - and in fact many physical processes
do not have unique solutions. The last condition says if a variation of the
input data (right hand side, boundary values, initial conditions) vary only
a little bit, then also the (unique) solution should only vary a bit.

Remark 1
Problems in which one of the three conditions is violated are ill-posed.

43 / 331



PeC3 School on Numerical Modeling with Differential Equations

Theory of differential equations

The model problem

Well-posedness: existence, uniqueness, stability
Definition 7 (Lipschitz condition)

Let D := I × Ω ⊂ R× Rd . The function f (t, y) on D is said to be
(uniformly) Lipschitz continuous if for L(t) > 0 it holds

‖f (t, x1)− f (t, x2)‖ ≤ L(t)‖x1 − x2‖, (t, x1), (t, x2) ∈ D.

The function is said to be (locally) Lipschitz continuous if the previous
statement holds on every bounded subset of D.

Theorem 8 (Picard-Lindelöf)

Let f : D → Rd be continuous and Lipschitz. Then there exists for each
(t0, y0) ∈ D a ε > 0 and a solution y : I := [t0 − ε, t0 + ε]→ Rd of the
IVP such that

y ′(t) = f (t, y(t)), t ∈ I , y(t0) = y0.

The proof can be found in classical textbooks on ordinary differential
equations.
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The model problem

What is the model problem good for?

• Model problem is a simplified problem to predict growth of a
population: human beings, animals, bacteria, virus
(see also lecture 01)

• Example:
y ′ = (g −m)y , y(t0) = y0

with growth g and mortalities rates m

• Exact solution (here possible):

y(t) = c exp((g −m)(t − t0)).

with

y(t0) = exp(C ) exp[(g −m)(t0 − t0)] = exp(C ) = y0 =: c .
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The model problem

What is the model problem good for?

• Let us say in the year t0 = 2011 there have been two members of this species:
y(2011) = 2. Supposing a growth rate of 25 per cent per year yields g = 0.25.
Let us say m = 0 - nobody will die.

• In the following we compute two estimates of the future evolution of this
species: for the year t = 2014 and t = 2022. We first obtain:

y(2014) = 2 exp(0.25 ∗ (2014− 2011)) = 4.117 ≈ 4.

• Thus, four members of this species exist after three years. Secondly, we want to
give a ‘long term’ estimate for the year t = 2022 and calculate:

y(2022) = 2 exp(0.25 ∗ (2022− 2011)) = 31.285 ≈ 31.

• In fact, this species has an increase of 29 members within 11 years.

• Translating this to human beings, we observe that the formula works quite well
for a short time range but becomes somewhat unrealistic for long-term estimates
though.

• Solution: construct a better mathematical model! For instance the logistic law
(see e.g., M. Braun; Differential equations and their applications, Springer, 1993)
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Numerical discretization

Solving differential equations: numerical
discretization

• Analytical solutions are often too difficult or even impossible

→ Why?

• Integrals are often not possible to be resolved analytically; if yes, it
may take very long to write down a analytical solution per hand.

• An alternative could be do to experiments!

→ However, they are often too expensive, too far away (moon, planets,
...), too smale (nanoscale)

• Three pillars of science:

Experiments ↔ Scientific computing ↔ Theory
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Theory of differential equations

Numerical discretization

Solving differential equations: numerical
discretization

• Numerical discretization

→ Treat infinite-dimensional problems with the help of
finite-dimensional discretizations (computers can only deal with
finite numbers!)

• Simple example: cut numbers! For instance:
x = 3.1445645645608982345002034098430986...
x̃ = 3.14456456456089

→ Infinite number is x and finite number is x̃ .

→ What is the error between x − x̃ ?
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Numerical discretization

Solving differential equations: numerical
discretization

• Discretization parameter often denoted by ∆t (for temporal
discretization) and h for spatial discretization.

→ Represent a DE with finite numbers! And not infinite numbers!

→ Allows to solve DE with a computer!

• Paradigm: Design numerical schemes in such a way that physical
conservation properties (mass, momentum, energy, ...) are as much
as possible conserved after the discretization!
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Guiding questions

Guiding questions for numerics of DE (1)

• What type of equation are we dealing with?

• What kind of discretization scheme shall we use?

• How do we design algorithms to compute discrete solutions y∆t

(notation for ODEs) or uh (notation for PDEs)?

• Can we proof that these algorithms really work?

• Are they robust (stable with respect to parameter variations),
accurate, and efficient?

• Can we construct physics-based algorithms that maintain as best as
possible conservation laws; in particular when several equations
interact (couple)?

50 / 331



PeC3 School on Numerical Modeling with Differential Equations
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Guiding questions

Guiding questions for numerics of DE (2)

• How far is uh (resp. y∆t) away from u (resp. y) in a certain (error)
norm?
Hint: comparing color figures gives a first impression, but is not
science!

• The discretized systems (to obtain uh) are often large with a huge
number of unknowns: how do we solve these linear equation
systems?

• What is the computational cost?

• How can we achieve more efficient algorithms? Hint: adaptivity
and/or parallel computing.

• How can we check that the solution is correct?
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Errors

Errors: related to numerics and programming

1 The set of numbers is finite and a calculation is limited by machine precision
(floating point arithmetics), which results in round-off errors. Typical issues are
overflow and underflow of numbers.

2 The memory of a computer (or cluster) is finite and thus functions and
equations can only be represented through approximations. Thus, continuous
information has to be represented through discrete information, which results
into the investigation of so-called discretization errors.

3 All further simplifications of a numerical algorithm (in order to solve the discrete
problem), with the final goal to reduce the computational time, are so-called
systematic errors. Mostly, these are so-called iteration errors, for instance the
stopping criterion after how many steps an iterative method terminates.

4 Finally, programming errors (code bugs) are an important error source. Often
these can be identified since the output is strange. But there are many, which
are hidden and very tedious to detect.
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Errors

Errors: related to modeling (will not be discussed in
this school)

5 In order to make a ‘quick guess’ of a possible solution and to start
the development of an algorithm to address at a later stage a
difficult problem, often complicated (nonlinear) differential equations
are reduced to simple (in most cases linear) versions, which results in
the so-called model error.

6 Data errors: the data (e.g., input data, boundary conditions,
parameters) are finally obtained from experimental data and may be
inaccurate themselves.
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Errors

Errors: final statements

• It very important to understand that we never can avoid all these
errors.

• The important aspect is to control these errors and to provide
answers if these errors are sufficiently big to influence the
interpretation of numerical simulations or if they can be assumed to
be small.

• A big branch of numerical mathematics is to derive error estimates
that allow to predict about the size of arising errors.
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Numerical concepts

Numerical concepts1

1 Approximation: since analytical solutions are not possible to
achieve as we just learned in the previous section, solutions are
obtained by numerical approximations.

2 Convergence: is a qualitative expression that tells us when
members an of a sequence (an)n∈N are sufficiently close to a limit a.
In numerical mathematics this limit is often the solution that we are
looking for.

3 Order of convergence: While in analysis, we are often interested in
the convergence itself, in numerical mathematics we must pay
attention how long it takes until a numerical solution has sufficient
accuracy. The longer a simulation takes, the more time and more
energy (electricity to run the computer, air conditioning of servers,
etc.) are consumed. In order to judge whether a algorithm is fast or
not we have to determine the order of convergence.

1Richter/Wick; Springer, 2017 (in german), english translation in http:

//www.thomaswick.org/links/lecture_notes_Numerics_PDEs_Oct_12_2019.pdf
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Numerical concepts

Numerical concepts

4 Errors: Numerical mathematics can be considered as the branch
‘mathematics of errors’. What does this mean? Numerical modeling
is not wrong, inexact or non-precise! Since we cut sequences after a
final number of steps or accept sufficiently accurate solutions
obtained from our software, we need to say how well the (unknown)
exact solution by this numerical solution is approximated. In other
words, we need to determine the error, which can arise in various
forms as we discussed in the previous section.

5 Error estimation: This is one of the biggest branches in numerical
mathematics. We need to derive error formulae to judge the
outcome of our numerical simulations and to measure the difference
of the numerical solution and the (unknown) exact solution in a
certain norm.
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Numerical concepts

Numerical concepts

6 Efficiency: In general we can say, the higher the convergence order of an
algorithm is, the more efficient our algorithm is. But numerical efficiency is not
automatically related to resource-effective computing. For instance, developing a
parallel code using MPI (message passing interface) will definitely yield in less
CPU (central processing unit) time a numerical solution. However, whether a
parallel machine does need less electricity (and thus less money) than a
sequential desktop machine/code is a priori unclear.

7 Stability: Despite being the last concept, in most developments, this is the very
first step to check. How robust is our algorithm against different model and
physical parameters? Is the algorithm stable with respect to different input data?
This condition relates in the broadest sense to the third condition of Hadamard.
In practice non-robust or non-stable algorithms exhibit very often non-physical
oscillations. For this reason, it is important to have a feeling about the physics
whether oscillations in the solution are to be expected or if they are introduced
by the numerical algorithm.
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Illustration of physical oscillations versus numerical instabilities

Physical oscillations versus numerical oscillations
(instabilities)

Figure: Fluid flow (Navier-Stokes) interacts with an elastic beam. Due to a
non-symmetry of the cylinder, the beam starts oscillating. These oscillations
are physical!
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Illustration of physical oscillations versus numerical instabilities

Physical oscillations versus numerical oscillations
(instabilities)

• Observe the tip of the elastic beam!

→ Physical oscillations! Shown in red color for a ‘good’ numerical

scheme.
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• The grey numerical scheme exhibits at some time around t ≈ 10
micro-oscillations which are due to numerical instabilites. Finally the
grey numerical scheme has a blow-up and yields garbage solutions.
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Illustration of physical oscillations versus numerical instabilities

Summary lecture 02

• DE (differential equations) - classifications, examples

• General numerical concepts

• One goal of this spring school is to learn numerical techniques and
corresponding programming in order to analyze and implement DE.

60 / 331



PeC3 School on Numerical Modeling with Differential Equations

Exercise 1

Exercise 1 Overview

In this exercise we explore the pendulum in more detail by

• Recapitulating the derivation of the full model and the simplified
model

• Deriving two numerical methods for its solution

• Implementing these methods in your own C++

• Evaluating these methods by
• Looking at stability,
• Discretization error and
• Modeling error
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Exercise 1

Task 1

• Recapitulate the model for the pendulum

d2φ(t)

dt2
= −g

`
sin(φ(t)) ∀t > t0.

with the two initial conditions

φ(0) = φ0,
dφ

dt
(0) = φ′0.

• For small deflection angle φ derive the approximation

d2φ(t)

dt2
= −g

`
φ(t)

• Show that it has the general solution φ(t) = A cos(ωt) and
determine the constants A, ω from the initial conditions
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Full Model, Method 1
• In the first method, begin by rewriting the second order ODE as a

first order system

dφ(t)

dt
= u(t),

d2φ(t)

dt2
=

du(t)

dt
= −g

`
sin(φ(t)).

• Replacing derivatives by difference quotients

φ(t + ∆t)− φ(t)

∆t
≈ dφ(t)

dt
= u(t),

u(t + ∆t)− u(t)

∆t
≈ du(t)

dt
= −g

`
sin(φ(t)).

• yields the one step scheme

φn+1 = φn + ∆t un φ0 = φ(t0)

un+1 = un −∆t (g/`) sin(φn) u0 = φ′(t0)

Where φn approximates φ(n∆t) for a chosen ∆t Rekursion (Euler):
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Full Model, Method 2

• Now we derive a method that directly approximates the second-order
ODE

• It uses a central difference quotient for the second derivative

φ(t + ∆t)− 2φ(t) + φ(t −∆t)

∆t2
≈ d2φ(t)

dt2
= −g

`
sin(φ(t)).

• Solving for φ(t + ∆t) yields the two step scheme (n ≥ 2):

φn+1 = 2φn − φn−1 −∆t2 (g/`) sin(φn) (9)

with the initial condition

φ0 = φ(t0), φ1 = φ(t0) + ∆t φ′(t0). (10)

The starting value φ1 is derived with method 1
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Task 2

• Write a C++ program implementing schemes 1 and 2 using a time
step ∆t that can be entered by the user

• Write the results to a file, where every line contains

tn φn un

• you can visualize the results using gnuplot as follows
plot "filename"u 1:2

where the x-axis uses the first column and the y -axis uses the
second column

• You may start from the file eemodelproblem.cc available on the
cloud https://cloud.ifam.uni-hannover.de/index.php/s/

Cwe4ZqwLRMixS3J. It solves the problem u′ = λu using hdnum

• Download the file and put it in the directory
hdnum/examples/num1. Compile it with
g++ -o eemodelproblem -I../.. eemodelproblem.cc
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Task 3: Comparisons

• For method 1: choose an initial deflection angle φ0 = 0.1 and a time
step ∆ = 0.1 and compute the solution up to time 4.0. What do
you observe?

• Repeat the experiment with successively smaller time steps, say
0.01, 0.001, 0.0001. What do you observe?

• Try to compute the solution for longer times with the small
timesteps. What happens?

• Repeat the same experiments with method 2. Is there a difference?

• Compare the solution of the full model and the reduced model for
different initial angles φ0 = 0.1, 0.5, 3.0. Use your favourite method
and a timestep ∆t that is small enough to avoid any visibly
numerical error.

• Recapitulate the concepts stability, discretization error and modeling
error in the light of the results of exercise 1.
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Contents

3 Derivation of Numerical Methods
Some Elementary Schemes
Taylor’s Method
Explicit Runge-Kutta Methods
Other Methods

67 / 331



PeC3 School on Numerical Modeling with Differential Equations

Derivation of Numerical Methods

Problem Setting
• We consider first-order systems of ODEs in explicit form

y ′(t) = f (t, y(t)), t ∈ (t0, t0 + T ], y(t0) = u0 (11)

to determine the unknown function u : [t0, t0 + T ]→ Rd

• In components this reads: y ′1(t)
...

y ′d(t)

 =

 f1(t, y1(t), . . . , yd(t))
...

fd(t, y1(t), . . . , yd(t))


• The right hand side f : [t0, t0 + T ]× Rd → Rd is

Lipschitz-continuous

‖f (t, y)− f (t,w)‖ ≤ L(t)‖y − w‖

• Thus, the system has a unique solution
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Some Elementary Schemes

Taylor’s Theorem

An important tool in the derivation and analysis of numerical methods
for ODEs is the following theorem

Theorem 9 (Taylor’s Theorem with Lagrangian Remainder)

Let u : I → R be (m + 1)-times continuously differentiable. Then, for
t, t + ∆t ∈ I , it holds

y(t + ∆t) =
m∑

k=0

y (k)(t)

k!
∆tk +

y (m+1)(t + θ∆t)

(m + 1)!
∆tm+1 θ ∈ [0, 1].

As a consequence of Taylor’s theorem we have for m = 1

y(t + ∆t) = y(t) + y ′(t)∆t +
y ′′(t + ξ)

2
∆t2, 0 ≤ ξ ≤ ∆t

Taken component-wise this holds also for vector-valued y
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Some Elementary Schemes

Explicit Euler Method
• Choose N time steps

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T , ∆tn = tn+1 − tn

• y∆t
n denotes the approximation of y(tn) computed with step size ∆t

• Take Taylor, use ODE and omit error term to obtain the explicit
Euler approximation

y(tn+1) = y(tn) + ∆tny
′(tn) +

y ′′(tn + ξn)

2
∆t2

n

= y(tn) + ∆tnf
′(tn, y(tn)) +

y ′′(tn + ξn)

2
∆t2

n

⇒ y∆t
n+1 = y∆t

n + ∆tnf (tn, y
∆t
n )

• Assuming y∆t
n = y(tn) and subtracting we obtain

y(tn+1)− y∆t
n+1 =

y ′′(tn + ξn)

2
∆t2

n

• The error after one step is O(∆t2), how does it propagate?
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Some Elementary Schemes

Implicit Euler Method

• Using Taylor’s theorem slightly differently gives

y(tn) = y(tn+1 −∆tn) = y(tn+1)−∆tny
′(tn+1) + ∆t2

n
y ′′(tn+1 − ξn)

2

= y(tn+1)−∆tnf (tn+1, y(tn+1)) + ∆t2
n
y ′′(tn+1 − ξn)

2

⇔ y(tn+1)−∆tnf (tn+1, y(tn+1)) = y(tn)−∆t2
n
y ′′(tn+1 − ξn)

2

• Which yields the implicit Euler approximation

y∆t
n+1 −∆tnf (tn+1, y

∆t
n+1) = y∆t

n (12)

• Need to solve a nonlinear algebraic equation to obtain y∆t
n+1 which is

computationally much more demanding!

• Is it worth the effort?
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Some Elementary Schemes

Local Error in Implicit Euler Method

• We can modify the analysis of the explicit scheme
• From the construction of the scheme we obtain

y(tn+1) = y(tn) + ∆tnf (tn+1, y(tn+1))−∆t2
n
y ′′(tn+1 − ξn)

2

y∆t
n+1 = y∆t

n + ∆tnf (tn, y
∆t
n+1)

• Subtracting, taking norms and using L-continuity gives

y(tn+1) − y∆t
n+1 = y(tn) − y∆t

n + ∆tn [f (tn+1, y(tn+1)) − f (tn, y
∆t
n+1)] − ∆t2

n

y′′(tn+1 − ξn)

2

‖y(tn+1) − y∆t
n+1‖ ≤ ‖y(tn) − y∆t

n ‖ + ∆tnL(tn+1)‖y(tn+1) − y∆t
n+1‖ +

∆t2
n

2
‖y′′(tn+1 − ξn)‖

‖y(tn+1) − y∆t
n+1‖ ≤

1

1 − ∆tnL(tn+1)

‖y(tn) − y∆t
n ‖ +

∆t2
n

2
‖y′′(tn+1 − ξn)‖



• For ∆t < 1/L the error after one step is also O(∆t2)

• This time step restriction is actually superficial
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Some Elementary Schemes

Implicit Trapezoidal Rule

• Another approach follows from integrating the ODE with the
trapezoidal rule

y(tn+1)−y(tn) =

∫ tn+1

tn

f (ξ, y(ξ))dξ =
∆tn

2
[f (tn, y(tn))+f (tn+1, y(tn+1))]+O(∆t3

n)

• Resulting in the implicit trapezoidal rule

y∆t
n+1 − y∆t

n =
∆tn

2
[f (tn, y

∆t
n ) + f (tn+1, y

∆t
n+1)]

⇔ y∆t
n+1 −

∆tn
2

f (tn+1, y
∆t
n+1) = y∆t

n +
∆tn

2
f (tn, y

∆t
n )

• which has an error O(∆t3
n) after one step

• The computational effort is the same as for the implicit Euler
method but it is more accurate

⇒ How to solve algebraic systems efficiently?
⇒ How to construct methods with high accuracy systematically?
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Some Elementary Schemes

Fixed Point Iteration in Implicit Methods

• In implicit Euler we need to solve

y∆t
n+1 −∆tnf (tn+1, y

∆t
n+1) = y∆t

n

• Consider the following iteration

y∆t,k+1
n+1 = y∆t

n + ∆tnf (tn+1, y
∆t,k
n+1 ) = g(y∆t,k

n+1 )

and observe

‖g(y)− g(w)‖ = ‖y∆t
n + ∆tnf (tn+1, y)− y∆t

n −∆tnf (tn+1,w)‖ ≤ ∆tnL‖y − w‖

• Then, according to the Banach fixed point theorem this iteration
converges to the unique solution when q = ∆tnL < 1, resulting in
the time step constraint ∆tn < 1/L

• Consider the linear, autonomous ODE y ′ = f (t, y) = Ay , then
L = ‖A‖ which might be large
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Newton Iteration in Implicit Methods

• We rewrite the implicit Euler scheme as

F (y∆t
n+1) = y∆t

n+1 −∆tnf (tn+1, y
∆t
n+1)− y∆t

n = 0

• Newton’s method is based on Taylor expansion of f :

F (y∆t,k+1
n+1 ) = F (y∆t,k

n+1 + ∆y) = y∆t,k
n+1 + ∆y −∆tnf (tn+1, y

∆t,k
n+1 + ∆y)− y∆t

n

≈ y∆t,k
n+1 + ∆y −∆tnf (tn+1, y

∆t,k
n+1 )−∆tn∇f (tn+1, y

∆t,k
n+1 )∆y − y∆t

n = 0

⇒(I −∆tn∇f (tn+1, y
∆t,k
n+1 ))∆y = y∆t

n − y∆t,k
n+1 + ∆tnf (tn+1, y

∆t,k
n+1 )

• For the update ∆y a linear system needs to be solved

• Newton’s method for computing y∆t
n+1 reads

y∆t,k+1
n+1 = y∆t,k

n+1 + (I −∆tn∇f (tn+1, y
∆t,k
n+1 ))−1(y∆t

n − y∆t,k
n+1 + ∆tnf (tn+1, y

∆t,k
n+1 ))

• For y ′ = f (t, y) = Ay this would converge in one iteration without a
time step restriction
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Discussion of Solution Methods

• Fixed point iteration requires a time step restriction ∆tn ≤ q/L to
obtain convergence factor q < 1

• It converges from any initial guess (global convergence)

• But: implicit methods are typically used to avoid time step
restrictions

• Newton’s method can often handle much larger time steps

• Its convergence is guaranteed if the initial guess is close enough to
the solution (local convergence)

• It can require a globalization strategy such as line search

• Combination of both methods is possible

76 / 331



PeC3 School on Numerical Modeling with Differential Equations

Derivation of Numerical Methods

Taylor’s Method

One Step Methods

• All methods discussed so far are called one step methods as they are
computing an approximation at tn+1 from one at tn

• The general one step method has the form

y∆t
n+1 = y∆t

n + ∆tnF (∆tn, tn, y
∆t
n , y∆t

n+1)

• All methods discussed so far can be put in this form

• Question: How can we systematically construct methods where the
error after one step is of the form O(∆tp+1)

• p is called the order of the method (not to be confused with the
order of the ODE)

• Explicit and implicit Euler are first order methods (p = 1)
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Taylor Method
• Recall the Taylor expansion:

y(t + ∆t) =
m∑

k=0

y (k)(t)

k!
∆tk +

y (m+1)(ξ)

(m + 1)!
∆tm+1 ξ ∈ [t, t + ∆t]

• Differentiating the differential equation k − 1 times yields:

y (k)(t) =
dk−1

dtk−1
f (t, y(t)) =: f (k−1)(t, y(t)) (k ≥ 1)

• The n-step Taylor method reads

y(t + ∆t) = y(t) +
m∑

k=1

∆tk

k!
f (k−1)(t, y(t)) +

∆tm+1

(m + 1)!
y (m+1)(ξ)

• Omitting the remainder term yields the numerical method

y∆t
n+1 = y∆t

n +
m∑

k=1

∆tk

k!
f (k−1)(tn, y

∆t
n )
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Why the Taylor Method is Impractical
• We need to compute f (0)(tn, y

∆t
n ), f (1)(tn, y

∆t
n ), f (2)(tn, y

∆t
n ), . . .

• Ok, k = 1 is easy:

f (0)(tn, y
∆t
n ) = f (tn, y

∆t
n )

• k = 2

f (1)
r (t, y(t)) =

d

dt
fr (t, y(t)) =

∂fr
∂t

(t, y(t)) +
d∑

s=1

∂fr
∂ys

(t, y(t))
dys
dt

(t)

f (1)(t, y(t)) = f ′(t, y(t)) +∇y f (t, y(t))f (t, y(t))

• (∇y f (t, y(t)))r ,s = ∂fr
∂ys

(t, y(t)) is the Jacobian of f

• We need to compute derivatives of the function f in d + 1 variables,
i.ee. d(d + 1) derivatives

• For k = 3, 2nd derivatives of f need to be computed, together with
complicated expressions!
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Order and a Way Out
Assuming y∆t

n = y(tn) and subtracting yields:

y(tn + ∆t)− y∆t
n+1 = y(tn) +

m∑
k=1

∆tkn
k!

f (k−1)(tn, y(tn)) +
∆tm+1

n

(m + 1)!
y (m+1)(ξ)

− y∆t
n −

m∑
k=1

∆tk

k!
f (k−1)(tn, y

∆t
n )

=
∆tm+1

n

(m + 1)!
y (m+1)(ξ)

Thus, Taylor’s method has the order p = n

• Idea: It suffices to approximate f (k)(t, y∆t
n ) in such a way that the

error is at least ∆tm+1
n

• This leads to the class of (explicit) Runge2-Kutta3 methods

2Carl Runge, dt. Mathematiker, 1856-1927, Prof. in Hannover and Göttingen
3Wilhelm Kutta,dt. Mathematiker, 1867-1944, Prof. in Aachen and Stuttgart
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Example: A second-order Method

• Consider m = 2 and recall our method:

y(t + ∆t) = y(t) + ∆tf (t, y(t)) +
∆t2

2
f (1)(t, y(t)) + O(∆t3)

• If we approximate (assuming d = 1!) by using Taylor 2 times:

f (1)(t, y(t)) =
1

∆t
[f (t + ∆t, y(t + ∆t))− f (t, y(t))] + O(∆t)

=
1

∆t

[
f (t + ∆t, y(t) + ∆tf (t, y(t)) + O(∆t2)))− f (t, y(t))

]
+ O(∆t)

=
1

∆t
[f (t + ∆t, y(t) + ∆tf (t, y(t)))− f (t, y(t))] + O(∆t)

• we get

y(t + ∆t) = y(t) +
∆t

2
f (t, y(t)) +

∆t

2
f (t + ∆t, y(t) + ∆tf (t, y(t))) + O(∆t3)

• and from that a 2nd order method called Heun’s method
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Explicit Runge-Kutta Methods

• This suggests the following class of methods:

y∆t
n+1 = y∆t

n + ∆tn (b1k1 + . . .+ bsks) with

k1 = f (tn, y
∆t
n ), kr = f

tn + cr∆tn, y
∆t
n + ∆tn

r−1∑
j=1

arjkj

 , r > 1.

• s is the number of stages

• The kr can be computed recursively (explicit method)
• The coefficients are collected in a Butcher tableau:

0 0 · · · 0
c2 a21 0 · · · 0
...

...
. . .

. . .

cs as1 · · · as,s−1 0
b1 · · · bs−1 bs

=
c A

bT

82 / 331



PeC3 School on Numerical Modeling with Differential Equations

Derivation of Numerical Methods

Explicit Runge-Kutta Methods

Systematic Construction of Runge-Kutta Methods I

• Basic idea is comparison of coefficients

• Consider s = 1

• Then the method reads

y∆t
n+1 = y∆t

n + ∆tnb1f (tn, y
∆t
n )

and there is only one parameter to be determined

• From Taylor’s expansion we know

y(tn+1) = y(tn) + ∆tnf (tn, y(tn)) + O(∆t2
n)

• By comparison of coefficients we obtain b1 = 1

• Explicit Euler is the only RK method of order 1
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Systematic Construction of Runge-Kutta Methods II

• For s = 2 one obtains (use Taylor expansion)

y∆t
n+1 = y∆t

n + ∆tn

[
(b1 + b2)f + ∆tnb2c2

∂f

∂t
+ ∆tnb2a21

∂f

∂y
f

]
(tn, y

∆t
n ) + O(∆t3

n)

y(tn+1) = y(tn) + ∆tn

[
f +

∆tn
2

∂f

∂t
+

∆tn
2

∂f

∂y
f

]
(tn, y(tn)) + O(∆t3

n)

• By comparison of coefficients we obtain the three conditions

b1 + b2 = 1 b2c2 =
1

2
b2a21 =

1

2

for four unknown coefficients
• Need to solve under-determined nonlinear algebraic system
• Two solutions are

1 1
1
2

1
2

(Heun) 1
2

1
2

0 1
(modified Euler)
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Remarks About (Explicit) Runge-Kutta Methods

• With s = 2 one can achieve at most order 2

• For s ≤ 4 the order is p = s, for larger s one has p < s

• This is true for the scalar case d = 1, RK methods can be extended
for systems d > 1 but the order is in general lower than for scalar
equations

• The nonlinear conditions become very complicated for larger s.
So-called Butcher trees allow a systematic representation of the
required derivatives

• Alternatively computer algebra systems are used

• For a given maximum achievable order the number of equations is
usually smaller than the number of parameters. This allows for
optimization of additional properties, e.g. stability.
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Some Example Methods

• s = 3, 8 Parameters, 6 conditions

0
1
3

1
3

2
3 0 2

3
1
4 0 3

4

Heun’s 3rd order method

• s = 4, 13 Parameters, 11 conditions

0
1
2

1
2

1
2 0 1

2
1 0 0 1

1
6

2
6

2
6

1
6

THE Runge-Kutta method (order 4)
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Other Methods
• Implicit Runge-Kutta Methods

• Diagonally implicit Runge-Kutta Methods: A is lower triangular.
Need to solve s nonlinear systems of dimension d

• Fully implicit Runge-Kutta Methods: A is full. Need to solve on
nonlinear system of size s · d

• These methods may have very good stability properties and high
order (e.g. p = 2s for Gauß’ method)

• Linear Multistep Methods
• Use several previous values y∆t

n , y∆t
i−1, . . . , y

∆t
i−r to compute y∆t

n+1

• May be very efficient in terms of f evaluations for a given order
• Explicit and implicit variants

• Galerkin’s method
• Approximate solution u in finite-dimensional function space, e.g.

(trigonometric) polynomials
• Use variational principle to determine the approximation
• Good stability properties, a-posteriori error estimates

• Error control and choice of time step ∆t
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Problem statement

Recall:

Formulation 2 (Initial value problem - IVP)

Find a differentiable function y(t) for 0 ≤ t < T <∞ such that

y ′(t) = f (t, y(t)),

y(0) = y0.

We recall from yesterday, the ODE model problem:

y ′ = ay , y(0) = y0, , a ∈ R. (13)

This ODE has the (unique) solution:

y(t) = exp(at)y0.
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Stiff problems

Definition 10
An IVP is called stiff (along a solution y(t)) if the eigenvalues λ(t) of
the Jacobian f ′y (t, y(t)) yield the stiffness ratio:

κ(t) :=
maxReλ(t)<0 |Reλ(t)|
minReλ(t)<0 |Reλ(t)|

� 1.

Here, Re(·) denotes the real part of a complex number.

Remark 2
Stiff problems arise often and in particular in combination with
time-dependent PDEs. Stiff problems require very well designed
numerical algorithms (in terms of stability) as we will see in this lecture.
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Stiff problems: Examples

• For y ′ = ay , the eigenvalue corresponds to a. This means: λ = a.
For big (negative) a we therefore need to be a bit careful with the
design of our numerical schemes.

• Remark: scalar problems cannot really be called stiff when −a� 1.
Here, we already need to use small time step sizes for minimizing the
local discretization error.

• As second example, we consider now a system; namely

u′(t) = Au(t)

with u(0) = (1, 0,−1)T and

A =

−21 19 −20
19 −21 20
40 −40 −40


• The matrix A does not look too horrible on the first view.
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Stiff problems: Examples (cont’d)

• Our definition tells us that we have to compute f ′u(t, u). What is
this here? Well,

f (t, u) = Au(t) ⇒ f ′u(t, u) = A.

• The eigenvalues of f ′u(t, u) = A are λ1 = −2 and λ2,3 = −40± 40i .

• Recall that i :=
√
−1, the imaginary part of a complex number.

• The negative real parts are

Re(λ1) = −2, Re(λ2,3) = −40

• The stiffness ratio is

κ(t) =
| − 40|
| − 2|

= 20� 1.

• Consequently, we consider this as a stiff problem.
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Stiff problems: Examples (cont’d)
The solution components evolve as follows:

What do we observe?
• We observe that at the beginning we see (physical!) variations
• For t ≥ 0.1, we observe u1 ≈ u2 and u3 → 0
• In black dots, an unstable numerical method is used
• Why this occurs and how this can be repaired, we study in the

following
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Numerical analysis: preliminaries

• In the previous sections, we have constructed algorithms that yield a
sequence of discrete solutions {(y∆t)k}k∈N.

• Specifically, in lecture 03, we have seen the first steps how the
convergence order can be detected.

• In the numerical analysis our goal is to derive a convergence result of
the form

‖y∆t
n − y(tn)‖ ≤ Ckα

where α is the order of the scheme.

• This result will tell us that the discrete solution y∆t really
approximates the exact solution y and if we come closer to the exact
solution at which rate we come closer.
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Numerical analysis: splitting into stability and
consistency

• We consider the simplest scheme; namely the forward Euler method

• For the model problem with f (t, y) = λy , it holds:

y∆t
n+1 − y∆t

n

∆t
= λy∆t

n

with ∆t = tn+1 − tn.

• This yields

y∆t
n+1 = (1 + ∆tλ)y∆t

n = BEy
∆t
n ,

with BE := (1 + ∆tλ).

• Let us write the error at each time point tn as:

en := y∆t
n − y(tn) for 1 ≤ n ≤ N.
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Numerical analysis: splitting into stability and
consistency

It holds:

en = y∆t
n − y(tn),

= BEy
∆t
n−1 − y(tn),

= BE (en−1 + y(tn−1))− y(tn),

= BEen−1 + BEy(tn−1)− y(tn),

= BEen−1 +
∆t(BEy(tn−1)− y(tn))

∆t
,

= BEen−1 −∆t
y(tn)− BEy(tn−1)

∆t︸ ︷︷ ︸
=:ηn−1

.
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Numerical analysis: splitting into stability and
consistency

Therefore, the error can be split into two parts:

Definition 11 (Error splitting of the model problem)

The error at step n can be decomposed as

en := BEen−1︸ ︷︷ ︸
Stability

− ∆tηn−1︸ ︷︷ ︸
Consistency

. (14)

The first term, namely the stability, provides an idea how the previous
error en−1 is propagated from tn−1 to tn. The second term ηn−1 is the
so-called truncation error (or local discretization error), which arises
because the exact solution does not satisfy the numerical scheme and
represents the consistency of the numerical scheme. Moreover, ηn−1

yields the speed of convergence of the numerical scheme.
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Numerical analysis: stability

We recapitulate (absolute) stability and A-stability. From the model
problem

y ′(t) = λy(t), y(t0) = y0, λ ∈ C,

we know the solution y(t) = y0 exp(λt). For t →∞ the solution is
characterized by the sign of Re λ:

Re λ < 0 ⇒ |y(t)| = |y0| exp(Re λ)→ 0,

Re λ = 0 ⇒ |y(t)| = |y0| exp(Re λ) = |y0|,
Re λ > 0 ⇒ |y(t)| = |y0| exp(Re λ)→∞.

For a good numerical scheme, the first case is particularly interesting
whether a bounded discrete solution is computed when the continuous
solution is bounded.
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Numerical analysis: stability

Definition 12 ((Absolute) stability)

A (one-step) method is absolute stable for λ∆t 6= 0 if its application to
the model problem produces in the case Re λ ≤ 0 a sequence of bounded
discrete solutions: supn≥0 |y∆t

n | <∞. To find the stability region, we
work with the stability function R(z) where z = λ∆t. We define:

SR = {z = λ∆t ∈ C : |R(z)| ≤ 1}.

Example 3

For the forward Euler scheme from before, we simply have: B(z) := BE .

Remark 4
Nonstability often exhibits non-physical oscillations in the discrete
solution. For this reason, it is important to have a feeling for the physics
in order to decide whether oscillations are physically-wanted or numerical
instabilities. See also Exercise 1 (day 1) and the end of lecture 02.
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Numerical analysis: stability

Proposition 5

For the simplest time-stepping schemes forward Euler, backward Euler
and the trapezoidal rule, the stability functions R(z) read:

R(z) = 1 + z ,

R(z) =
1

1− z
,

R(z) =
1 + 1

2z

1− 1
2z
.
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Numerical analysis: stability
Proof.
We take again the model problem y ′ = λy . Let us discretize this problem
with the forward Euler method:

y∆t
n − y∆t

n−1

∆t
= λy∆t

n−1 ⇒ y∆t
n = (y∆t

n−1 + λ∆t)y∆t
n−1 (15)

= (1 + λ∆t)y∆t
n−1 = (1 + z)y∆t

n−1 (16)

= R(z)y∆t
n−1. (17)

For the (implicit) backward Euler method we obtain:

y∆t
n − y∆t

n−1

∆t
= λy∆t

n ⇒ y∆t
n = (y∆t

n−1 + λ∆t)y∆t
n (18)

⇒ y∆t
n =

1

1− a∆t
y∆t
n ⇒ y∆t

n =
1

1− z︸ ︷︷ ︸
=:R(z)

y∆t
n . (19)

The procedure for the trapezoidal rule is again the analogous. 101 / 331
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Stability domains of forward Euler, backward Euler,
and the trapezoidal rule

Figure: Stability domains (SG) of the forward Euler scheme, backward Euler
scheme and the trapezoidul rule.
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Numerical analysis: A-stability

Definition 13 (A-stability)

A difference method is A-stable if its stability region is part of the
absolute stability region:

{z ∈ C : Re z ≤ 0} ⊂ SR.

Again, Re denotes the real part of the complex number z . A brief
introduction to complex numbers can be found in any calculus lecture.
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Numerical analysis: A-stability, alternative definition

Definition 14 (A-stability)

Let {(y∆t)k}k∈N the sequence of solutions of a difference method for
solving the ODE model problem. Then, this method is A-stable if for all

λ ∈ C− = {λ : Re(λ) ≤ 0}

the discrete solutions are bounded (or even contractive) for arbitrary, but
fixed, step size ∆t. That is to say:

|y∆t
n+1| ≤ |y∆t

n | <∞ for n = 1, 2, 3, . . .
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Numerical analysis: A-stability

Proposition 6

The explicit Euler scheme cannot be A-stable.

Proof.
For the forward Euler scheme, it is R(z) = 1 + z . For |z | → ∞ is holds
R(z)→∞ which is a violation of the definition of A-stability.

Remark 7
More generally, explicit schemes can never be A-stable.

Proposition 8

The implicit Euler scheme and the trapezoidal rule are A-stable; see also
the previous figure.
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Numerical analysis: A-stability

We illustrate the previous statements.

1) In Proposition 5 we have seen that for the forward Euler method it holds:

y∆t
n = R(z)y∆t

n−1,

where R(z) = 1 + z. Thus, according to Definition 13 and 14, we obtain
convergence when the sequence {y∆t

n } is contracting:

|R(z)| ≤ |1 + z| ≤ 1. (20)

• Thus if the value of λ (in z = λ∆t) is very big, we must choose a
very small time step ∆t in order to achieve |1− λ∆t| < 1.

• Otherwise the sequence {yn}n will increase and thus diverge (recall
that stability is defined with respect to decreasing parts of functions!
Thus, the continuous solution is bounded and consequently the
numerical approximation should be bounded, too).

• In conclusion, the forward Euler scheme is only conditionally stable,
i.e., it is stable provided that (20) is fulfilled.
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Numerical analysis: A-stability

2) For the implicit Euler scheme, we see that
• a large λ and large ∆t even both help to stabilize the iteration

scheme
• but be careful, the implicit Euler scheme, stabilizes actually too

much. Because it computes contracting sequences also for case
where the continuous solution would grow.

• Thus, no time step restriction is required.
• Consequently, the implicit Euler scheme is well suited for stiff

problems with large parameters/coefficients λ.
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Example
We briefly compute the time step restriction for the DE system from the
beginning. We had

Re(λ1) = −2, Re(λ2,3) = −40.

Of course, the larger value is more criticial. Therefore:

|1 + ∆tλ| = |1− 40∆t| ≤ 1.

Then, we obtain:

1− 40∆t ≤ 1⇒ −40∆t ≤ 0⇒ ∆t = 0.

−(1− 40∆t) ≤ 1⇒ 40∆t ≤ 2⇒ ∆t =
1

20
.

The first result is useless. The second finding shows that the critical time
step size is ∆t = 1

20 . In order to obtain a stable numerical result, we
need to work with

∆t <
1

20
when using the forward Euler scheme.

108 / 331



PeC3 School on Numerical Modeling with Differential Equations

Introduction to Numerical Analysis

Stability

Stability for higher-order methods: Runge-Kutta

• Consider the Taylor scheme of order R:

y∆t
n = y∆t

n−1 + ∆t
R∑

r=1

∆tr−1

r !
f (r−1)(tn−1, y

∆t
n−1) = y∆t

n−1 + ∆t
R∑

r=1

∆tr−1

r !
λry∆t

n−1

where we recall that f (t, y) = λy .

|y∆t
n | ≤ |y∆t

n−1|

• Then, the stability factor ω(z) is given by:

ω(z) =
R∑

r=0

z r

r !
, z = λ∆t

• We then obtain (without any proofs!), the stability regions shown on
the next slide.
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Stability

Stability for higher-order methods: Runge-Kutta
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Truncation error

Numerical analysis: consistency, local discretization
error/truncation error

• We briefly formally recall Taylor expansion. For a function f (x) we
develop at a point a 6= x the Taylor series:

T (f (x)) =
∞∑
j=0

f (j)(a)

j!
(x − a)j .

• We will obtain the truncation error by plugging the exact solution
y(t) into the numerical scheme.

• To this end, we obtain for the forward Euler scheme and let us now
specify the truncation error ηn−1:

y ′(tn−1) + ηn−1 =
y(tn)− y(tn−1)

∆t
.

• To this end, we need information about the solution at the old time
step tn−1 in order to eliminate y(tn).
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Numerical analysis (cont’d)
Thus we use Taylor and develop y(tn) at the time point tn−1:

y(tn) = y(tn−1) + y ′(tn−1)k +
1

2
y ′′(τn−1)∆t2

We obtain the difference quotient of forward Euler by the following
manipulation:

y(tn)− y(tn−1)

∆t
= y ′(tn−1) +

1

2
y ′′(τn−1)∆t.

We observe that the first terms correspond to the forward Euler scheme.
The remainder term is

1

2
y ′′(τn−1)∆t

and therefore the truncation error ηn−1 can be estimated as

‖ηn−1‖ ≤ max
t∈[0,T ]

1

2
‖y ′′(t)‖∆t = O(∆t).

Therefore, the convergence order is ∆t (namely linear convergence
speed).
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Numerical analysis: convergence

Theorem 15 (Convergence of implicit/explicit Euler)

We have
max
tn∈I
|y∆t

n − y(t∆t
n )| ≤ c(T , y)∆t = O(∆t),

where ∆t := maxn ∆tn.

Remark 9
The following proof does hold for both schemes, except that when we
plug-in the stability estimate one should recall that the backward Euler
scheme is unconditionally stable and the forward Euler scheme is only
stable when the step size ∆t is sufficiently small.
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Numerical analysis: convergence (proof)
It holds for 1 ≤ n ≤ N:

|y∆t
n − y(tn)| = ‖en‖ = ∆t‖

n−1∑
k=0

Bn−k
E ηk‖ ≤ ∆t

n−1∑
k=0

‖Bn−k
E ηk‖ (triangle inequality)

≤ ∆t

n−1∑
k=0

‖Bn−k
E ‖ ‖ηk‖

≤ ∆t

n−1∑
k=0

‖Bn−k
E ‖ Ck (consistency)

≤ ∆t

n−1∑
k=0

1 C∆t (stability)

= ∆tN C∆t

= T C∆t, where we used ∆t = T/N

= C(T , y)∆t

= O(∆t)
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Computational convergence analysis

What does the convergence order ∆t tell us?

• Linear convergence: bisecting ∆t will reduce the error by a factor of
2

• Quadratic convergence: bisecting ∆t will reduce the error by a
factor of 4
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Computational convergence analysis

In order to calculate the convergence order α from numerical results, we
make the following derivation.

• Let P(∆t)→ P for ∆t → 0 be a converging process and assume
that

P(∆t)− P̃ = O(∆tα).

• Here P̃ is either the exact limit P (in case it is known) or some
‘good’ approximation to it.

• Let us assume that three numerical solutions are known (this is the
minimum number of runs if the limit P is not known). That is

P1 := P(∆t), P2 := P(∆t/2), P3 := P(∆t/4).

• Then, the convergence order can be calculated via the formal
approach P(∆t)− P̃ = c∆tα with the following formula.
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Computational convergence analysis

Proposition 10 (Computationally-obtained convergence order)

Given three numerically-obtained values P1,P2 and P3, the convergence
order can be estimated as:

α =
1

log(2)
log
(∣∣∣P1 − P2

P2 − P3

∣∣∣). (21)

The order α is an estimate and heuristic because we assumed a priori a
given order, which strictly speaking we have to proof first.
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Substantiating our theoretical results: example

We solve our ODE model problem numerically.

Formulation 3
Let a = g −m be a = 0.25 (test 1) or a = −0.25 (test 2) or a = −10
(test 3). The IVP is given by:

y ′ = ay , y(t0 = 2011) = 2.

The end time value is T = 2014.

The tasks are:

• Use the forward Euler (FE), backward Euler (BE), and trapezoidal
rule (CN) for the numerical approximation.

• Please observe the accuracy in terms of the discretization error.

• Observe for (stiff) equations with a large negative coefficient
a = −10� 1 the behavior of the three schemes.
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A numerical example

Discussion of the results for test 1 a = 0.25
In the following, we present our results for the end time value
y(T = 2014) for test case 1 (a = 0.25) on three mesh levels:

Scheme #steps (N) \Delta t y_N^{Dt} Error (abs.)

=========================================================

FE 8 0.37500 4.0961 0.13786

BE 8 0.37500 4.3959 0.16188

CN 8 0.37500 4.2363 0.0023295

---------------------------------------------------------

FE 16 0.18750 4.1624 0.071567

BE 16 0.18750 4.3115 0.077538

CN 16 0.18750 4.2346 0.00058168

---------------------------------------------------------

FE 32 0.093750 4.1975 0.036483

BE 32 0.093750 4.2720 0.037974

CN 32 0.093750 4.2341 0.00014538

=========================================================
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A numerical example

Discussion of the results for test 1 a = 0.25

• In the second column, i.e., 8, 16, 32, the number of steps (= number
of intervals, i.e., so called mesh cells - speaking in PDE terminology)
are given. In the column after, the errors are provided.

• In order to compute numerically the convergence order α with the
help of formula (21), we work with ∆t = ∆tmax = 0.375. Then we
identify in the above table that

P(∆tmax) = P(0.375) = |y(T )− y∆t
8 |,

P(∆tmax/2) = P(0.1875) = |y(T )− y∆t
16 |

P(∆tmax/4) = P(0.09375) = |y(T )− y∆t
32 |.
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Discussion of the results for test 1 a = 0.25

• We monitor that doubling the number of intervals (i.e., halving the step size ∆t)
reduces the error in the forward and backward Euler scheme by a factor of 2.
This is (almost) linear convergence, which is confirmed by using Formula (21)
yielding α = 1.0921. The trapezoidal rule is much more accurate (for instance
using N = 8 the error is 0.2% rather than 13− 16%) and we observe that the
error is reduced by a factor of 4. Thus quadratic convergence is detected. Here
the ‘exact’ order on these three mesh levels is α = 2.0022.

• A further observation is that the forward Euler scheme is unstable for N = 16
and a = −10 and has a zig-zag curve, whereas the other two schemes follow the
exact solution and the decreasing exp-function. But for sufficiently small step
sizes, the forward Euler scheme is also stable which we know from our A-stability
calculations. These step sizes can be explicitely determined for this ODE model
problem and shown below.
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Discussion of the results for test 1 a = 0.25

Figure: On the left, the solution to test 1 is shown. In the middle, test 2 is
plotted. On the right, the solution of test 3 with N = 16 (number of intervals)
is shown. Here, N = 16 corresponds to a step size ∆t = 0.18 which is slightly
below the critical step size for convergence. Thus we observe the instable
behavior of the forward Euler method, but also see slow convergence towards
the continuous solution.
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Discussion of the results for test 3 a = −10

The convergence interval for the forward Euler scheme reads:

|1 + z | ≤ 1 ⇒ |1 + a∆t| ≤ 1

In test 3, we are given a = −10, yielding:

|1 + z | ≤ 1 ⇒ |1− 10∆t| ≤ 1

• Thus, we need to choose a ∆t that fulfills the previous relation. In
this case, we easily calculate ∆t < 0.2.

• This means that for all ∆t < 0.2 we should have convergence of the
forward Euler method and for ∆t ≥ 0.2 non-convergence (and in
particular no stability!).
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Discussion of the results for test 3 a = −10

We perform the following additional tests:

• Test 3a: N = 10, yielding ∆t = 0.3;

• Test 3b: N = 15, yielding ∆t = 0.2; exactly the boundary of the
stability interval;

• Test 3c: N = 16, yielding ∆t = 0.1875; from before;

• Test 3d: N = 20, yielding ∆t = 0.15.
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Discussion of the results for test 3 a = −10

Figure: Tests 3a,3b,3d: Blow-up, constant zig-zag non-convergence, and
convergence of the forward Euler method.
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Summary of lecture 04

• Numerical analysis of some numerical schemes:
• forward Euler (first order, explicit, only conditionally stable with time

step size, critical for stiff problems),
• backward Euler (first order, implicit, A-stable),
• trapezoidal rule (second order, implicit, A-stable)

• Numerical tests demonstrating the theoretical results:
• Nonstable schemes exhibit oscillations or blow-up of the solution
• A higher convergence order (trapezoidal rule) has a higher accuracy

and converges faster
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Exercise 2 Overview

• Recapitulate when explicit Euler produces bounded approximations
for the model problem u′ = λu and confirm the results in HDNUM

• Learn how an ODE Solver can be implemented in an object-oriented
way

• Investigate errors and convergence rates of various explicit and
implicit schemes for a linear oscillator problem

• Explore the nonlinear Van der Pol oscillator using explicit and
implicit methods.

127 / 331



PeC3 School on Numerical Modeling with Differential Equations

Exercise 2

Task 1

• Consider the linear, scalar model problem

u′(t) = λu(t), u(0) = 1, R 3 λ < 0

• Derive the explicit Euler scheme

• What is the condition on ∆t such that the explicit Euler scheme
produces bounded approximations for all t > 0

• Confirm your result with the implementation in file
eemodelproblem.cc provided in the exercise yesterday
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Task 2
• We will explain how ODE solvers are implemented in an

object-oriented way in HDNUM

• Download the file linearoscillator.cc available on the cloud
https://cloud.ifam.uni-hannover.de/index.php/s/

Cwe4ZqwLRMixS3J. It solves the problem

u′(t) =

(
0 −1
1 0

)
u(t) in (0, 20π], u(0) =

(
1
0

)
using the methods

# Scheme # Scheme

0 Explicit Euler 4 Implicit Euler
1 Heun 2nd order 5 Implicit midpoint
2 Heun 3rd order 6 Alexander
3 Runge-Kutta 4th order 7 Crouzieux

8 Gauß 6th order

• and provides errors e(T ) and convergence rates for all schemes

• What conclusions can you draw from the tables?
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Task 3
• In this exercise we explore the nonlinear Van der Pol oscillator

u′0(t) = −u1(t) u0(0) = 1

u′1(t) = 1000 · (u0(t)− u3
1(t)) u1(0) = 2

which is an example for a stiff ODE system
• Download an updated version of the file vanderpol.cc from the

cloud
• Compile and run the following four combinations of methods and

timesteps:
• RKF45 method is an adaptive embedded Runge Kutta method of 5th

order. Run it with tolerances TOL1 = 0.2 and TOL2 = 0.001 using
an initial time step ∆t = 1/16

• The implicit Euler method. Run it with ∆t1 = 1/16 and
∆t2 = 1/512

• The output file contains in each line tiu0(ti )u1(ti )∆ti
• Compare the solutions, especially u1(t) as well as the time step sizes

∆ti for all four runs. What do you observe?
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Introduction

A Different Philosophy

• In traditional methods, such as Runge-Kutta, one approximates the
unknown function y(t) at temporal values tn

• In the Galerkin method we approximate y(t) by simple functions
such as polynomials

• In this way the approximation is defined at all points in time

• In addition, the ODE is satisfied in an averaged (weak) sense

• Also the error e(t) = y(t)− y∆t(t) is defined at all times

• This allows the use of more sophisticated mathematical methods for
their analysis

• The presentation follows chapters 6 and 9 from the book
“Computational Differential Equations” by Eriksson, Estep, Hansbo
and Johnson
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Introduction

Variational (or Weak) Formulation
• Consider the first-order systems of ODEs in Rd in explicit form

y ′(t)− f (t, y(t)) = 0, t ∈ (t0, t0 + T ], y(t0) = y0

to determine the unknown function y : [t0, t0 + T ]→ Rd

• Given a suitable function ϕ : [t0, t0 + T ]→ Rd we may multiply and
integrate: ∫ t0+T

t0

(y ′(t)− f (t, y(t))) · ϕ(t) dt = 0

where “·” denotes the Euclidean scalar product.

• Demanding this identity for a sufficiently large class of functions
ϕ ∈ V0 = {v : v(t0) = 0}, we may hope this fixes (uniquely) a
function y ∈ Y = {w : w(t0) = y0}

• This function is called a variational (or weak) solution of the ODE

• Under suitable conditions the weak and strong solution coincide

• The function R[y ], R[y ](t) = y ′(t)− f (t, y(t)) is called residual
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Introduction

Galerkin Method
• The function space V0 is infinite-dimensional, e.g. all continuous

functions (with zero initial value)

• Idea: Replace V0 and Y by finite-dimensional counter parts!

Example: Use global polynomials. Let us fix d = 1

• Define the following classes of polynomials:

Pq = polynomials of degree q

Pq
0 = {p ∈ Pq : p(t0) = 0}

Y q = {p ∈ Pq : p = y0 + v , v ∈ Pq
0 } =: y0 + Pq

0

and note: Pq is a vector space of dimension q + 1, Pq
0 is a proper

subspace of dimension q, Y q is called an affine space

• Then the global Galerkin method reads: Find y∆t(t) ∈ Y q such
that: ∫ t0+T

t0

((y∆t)′(t)− f (t, y∆t(t)))ϕ(t) dt = 0 ∀ϕ ∈ Pq
0
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Introduction

Galerkin Method. Example continued

• How to make this method practical?

• Choose a basis representation:

Pq = span{1, t−t0, . . . , (t−t0)q}, Pq
0 = span{t−t0, . . . , (t−t0)q}

• Make the ansatz y∆t(t) = y0 +
∑q

j=1 ξj(t − t0)j and insert:∫ t0+T

t0

((y∆t)′(t)− f (t, y∆t(t)))ϕ(t) dt = 0 ∀ϕ ∈ Pq
0

∫ t0+T

t0

 q∑
j=1

ξj j(t − t0)j−1 − f

t, y0 +

q∑
j=1

ξj (t − t0)j

 (t − t0)i dt = 0 1 ≤ i ≤ q

q∑
j=1

ξj j
T i+j

i + j
−
∫ t0+T

t0

f

t, y0 +

q∑
j=1

ξj (t − t0)j

 (t − t0)i dt = 0 1 ≤ i ≤ q

• Need to solve q coupled nonlinear equations for the coefficients ξj
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Two Galerkin Methods

Some Choices

The accuracy of the method can be controlled by

• Increasing the polynomial degree (called p-method)
• Algebraic problem might become ill-conditioned
• Remedied by choosing an appropriate basis
• Needs sufficient regularity of the solution of the ODE

• Using piecewise polynomials of degree q (called h-method)
• We will follow this approach below

• Combination of both (called hp-method)

• Using of trigonometric polynomials (spectral method)

• Error control : What is the error in the computed solution y∆t(t)?

• Adaptivity : How to choose q and ∆tn to control the error?
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Two Galerkin Methods

Piecewise Polynomial Functions
• As before we treat d = 1, extend to arbitrary d by making each

component a polynomial

• Choose N time steps as before

t0 < t1 < t2 < . . . < tN−1 < tN = t0 + T , ∆tn = tn+1 − tn,

I = (t0, t0 + T ), In = (tn, tn+1), TN = {In : 0 ≤ i < N}.

• Continuous piecewise polynomials of degree q are

V q
N = {v ∈ C 0(I ) : v |In ∈ Pq, 0 ≤ i < N}

• Continuous piecewise polynomials of degree q with zero initial value

V q
N,0 = {v ∈ V q

N : v(t0) = 0} ⊂ V q
N

• Discontinuous piecewise polynomials:

W q
N = {v ∈ L2(I )) : v |In ∈ Pq, 0 ≤ i < N}

• By vn = v |In we denote the piece on interval In
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Two Galerkin Methods

cG(q) Method
Find y∆t(t) ∈ y0 + V q

N,0 such that∫ t0+T

t0

((y∆t)′(t)− f (t, y∆t(t)))ϕ(t) dt = 0 ∀ϕ ∈W q−1
N

• Note the use of test functions Pq−1 instead of Pq
0 on In

• The choice of discontinuous test functions is essential, since it
allows to solve the problem sequentially! The discrete solution y∆t

can be determined as follows
• Consider I0 = (t0, t1], restricting the test functions ϕn = 0, i > 1:

Find y∆t
0 (t) ∈ y0 + Pq

0 :

∫
I0

((y∆t
0 )′(t)− f (t, y∆t

0 (t)))ϕ(t) dt = 0 ∀ϕ ∈ Pq−1

• Considering In = (tn, tn+1], i > 0, assume y∆t
i−1(t) is available:

Find y∆t
n (t) ∈ y∆t

i−1(tn) + Pq
0 :

∫
In

((y∆t
n )′(t)−f (t, y∆t

n (t)))ϕ(t) dt = 0 ∀ϕ ∈ Pq−1

• The value at the end of interval Ii−1 is used as initial value in In
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Two Galerkin Methods

dG(q) Method

• Now we approximate y∆t in W q
N , i.e. y∆t might be discontinuous at

tn

• For v ∈W q
N introduce the notation

v+
n = vn(tn), v−n = vi−1(tn), v−0 = v0 (v0 a given number)

and the jump
[v ]n = v+

n − v−n , 0 ≤ i < N

• Then the dG(q) methods reads: Find y∆t(t) ∈W q
N such that

N−1∑
i=0

{∫
In

((y∆t)′(t)− f (t, y∆t(t)))ϕ(t) dt + [y∆t ]nϕ
+
n

}
= 0 ∀ϕ ∈W q

N

• Note that both, the solution and the test functions, are in W q
N

• Of course this needs some explanation

139 / 331



PeC3 School on Numerical Modeling with Differential Equations

Galerkin Methods for ODEs

Two Galerkin Methods

dG(q) Method: Sequential Solution

• Without the jump term the solutions in the intervals In would be
completely independent of each other, with the jump term we get

• In the interval I0 = (t0, t1]: Find y∆t
0 (t) ∈ Pq:∫

I0

((y∆t
0 )′(t)− f (t, y∆t

0 (t)))ϕ(t) dt + (y∆t
0 (t0)− y0)ϕ0(t0) = 0 ∀ϕ ∈ Pq

• In interval In = (tn, tn+1], i > 0: Find y∆t
n (t) ∈ Pq:∫

In

((y∆t
n )′(t)−f (t, y∆t

n (t)))ϕ(t) dt+(y∆t
n (tn)− y∆t

i−1(tn))ϕn(tn) = 0 ∀ϕ ∈ Pq

• Thus, the y∆t
n are determined sequentially by solving q + 1 nonlinear

algebraic equations in each interval

• The method can be extended to the vector-valued case
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Two Galerkin Methods

dG(q) Method: Jump Term Explained
• Consider the simple problem

y ′(t) = 0 in (t0, t0 + T ], y(t0) = y0

which has the constant solution y(t) = y0

• Using the weak formulation we obtain using integration by parts:

N−1∑
i=0

∫
In

(y∆t
n )′(t)ϕn(t) dt =

N−1∑
i=0

{
−

∫
In

y∆t
n (t)ϕ′n(t) dt + y∆t

n (tn+1)ϕ(tn+1) − y∆t
n (tn)ϕ(tn)

}
= 0

• With a small change we obtain the correct solution:
N−1∑
i=0

{
−
∫
In

y∆t
n (t)ϕ′n(t) dt + y∆t

n (tn+1)ϕ(tn+1)− y∆t
i−1(tn)ϕ(tn)

}
= 0

(Observe that y∆t
n (t) = y∆t

i−1(tn) solves the problem in each interval)
• The change may be expressed as

N−1∑
i=0

∫
In

(y∆t
n )′(t)ϕn(t) dt + y∆t

0 (t0)ϕ0(t0) − y0ϕ0(t0) +

N−1∑
i=1

(y∆t
n (tn)ϕn(tn) − y∆t

i−1(tn)ϕn(tn)) = 0

• This is exactly the jump term in the formulation
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Two Galerkin Methods

Example: cG(1) Method
• Recall: Find y∆t

n (t) ∈ y∆t
i−1(tn) + P1

0 :∫
In

((y∆t
n )′(t)− f (t, y∆t

n (t)))ϕ(t) dt = 0 ∀ϕ ∈ P0

• P0 = span{1}, for y∆t
n (t) ∈ y∆t

i−1(tn) + P1
0 make the Ansatz

y∆t
n (t) = y∆t

n︸︷︷︸
=y∆t

i−1(tn)

tn+1 − t

∆tn︸ ︷︷ ︸
ψ0

n

+y∆t
n+1

t − tn
∆tn︸ ︷︷ ︸
ψ1

n

• Inserting the Ansatz into the formulation and ϕ = 1:∫
In

y∆t
n

(
− 1

∆tn

)
+ y∆t

n+1
1

∆tn
− f (t, y∆t

n ψ0
n(t) + y∆t

n+1ψ
1
n(t))) dt = 0

⇔ y∆t
n+1 − y∆t

n −
∫
In

f (t, y∆t
n ψ0

n(t) + y∆t
n+1ψ

1
n(t))) dt = 0

• Using 2nd order quadrature yields the implicit trapezoidal rule or the
implicit midpoint rule
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Two Galerkin Methods

Example: dG(0) Method
• Recall: Find y∆t(t) ∈W 0

N such that

N−1∑
i=0

{∫
In

((y∆t)′(t)− f (t, y∆t(t)))ϕ(t) dt + [y∆t ]nϕ
+
n

}
= 0 ∀ϕ ∈W 0

N

• Choose the basis and the Ansatz

ψn(t) =

{
1 t ∈ In
0 else

, y∆t(t) =
N−1∑
i=0

y∆t
n+1ψn(t)

observe that due to In = (tn, tn+1] one may interpret y∆t
n+1 as the

value at the end of the time interval In
• Inserting in formulation gives

−
∫
In

f (t, y∆t
n+1), dt + y∆t

n+1 − y∆t
n = 0

• Which yields the implicit Euler method upon quadrature:

y∆t
n+1 − y∆t

n −∆tnf (t, y∆t
n+1), dt = 0
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Error Control and Adaptivity

• Error control: Stop the computation when

J(y − y∆t) ≤ TOL

where J is some functional of the error e = y − y∆t and TOL is a
user given tolerance

• Adaptivity: Choose TN such that J(y − y∆t) ≤ TOL is achieved
with N as small as possible

• An example would be J(e) = e(T )

• Adaptive time step control for traditional methods tries to estimate
the leading order term of the truncation error

• Galerkin methods allow a much more rigorous and flexible approach
that achieves error control
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Dual Problem in A Posteriori Error Estimation
• We restrict ourselves to the linear ODE

y ′(t) + a(t)y(t) = f (t), t ∈ (0,T ], y(0) = y0

• We will have a glimpse on the dual weighted residual (DWR)
method 4 to estimate the error

e(t) = y(t)− y∆t(t), in particular e(T )

• DWR is based on a so-called dual problem which reads in this case

−ϕ′(t) + a(t)ϕ(t) = 0, t ∈ [0,T ), ϕ(T ) = e(T )

• Note, that this problem runs backward in time with the error e(T )
given as initial value

• With the change of variables t(t̃) = T − t̃ and the identification of
ϕ̃(t̃) = ϕ(t(t̃)) = ϕ(T − t̃) we obtain an equation for ϕ̃:

ϕ̃(t̃) + a(T − t̃)ϕ̃(t̃) = 0, t ∈ (0,T ], ϕ̃(0) = e(T )

4Becker, Rannacher; 1996/2001
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DWR Method for A Posteriori Error Estimation

Error Representation
• Using the dual problem one obtains

0 =

∫ T

0

e(t) (−ϕ(t) + a(t)ϕ(t))︸ ︷︷ ︸
=0

dt

=

∫ T

0

e′(t)ϕ(t) + e(t)a(t)ϕ(t) dt − e(T )ϕ(T )︸ ︷︷ ︸
=e(T )

+ e(0)︸︷︷︸
=0

ϕ(0)

⇔ e2(T ) =

∫ T

0

(e′(t) + a(t)e(t))ϕ(t) dt =

∫ T

0

(e′(t) + a(t)e(t))ϕ(t) dt

=

∫ T

0

(y ′(t)− (y∆t)′(t) + a(t)y(t)− a(t)y∆t(t))ϕ(t) dt

⇒ e2(T )︸ ︷︷ ︸
error at T

=

∫ T

0

(f (t)− (y∆t)′(t)− a(t)y∆t(t))︸ ︷︷ ︸
residual R[y∆t ]

ϕ(t)︸︷︷︸
solution of dual problem

dt

the last step is due to y being the solution of the ODE y ′ + ay = f
• This is an exact representation of the error in terms of the

computable residual R[y∆t ] and the solution of the dual problem
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A Posteriori Error Estimate
• From the exact error representation one may proceed in different

ways to produce an error estimate
• One uses Cauchy Schwarz inequality:

e2(T ) =

∫ T

0

R[u](t)ϕ(t) dt =
N−1∑
i=0

∫
In

R[u](t)ϕ(t) dt

≤
N−1∑
i=0

(∫
In

R2[u](t) dt

) 1
2
(∫

In

ϕ2(t) dt

) 1
2

=
N−1∑
i=0

‖R[y∆t ]‖0,In‖ϕ‖0,In

• This is interpreted as follows:
• The fully computable term ‖R[y∆t ]‖0,In measures the error

contribution in interval In
• The term ‖ϕ‖0,In gives the weight of this contribution in the final

result
• This explains the name DWR

• The solution of the dual problem can be approximated (including the
initial condition e(T )) as it determines only the relative importance
of the residual contribution
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Towards an Adaptive Time-stepping Scheme
How to do error control and adaptivity with the formula

|e(T )| ≤

(
N−1∑
i=0

‖R[y∆t ]‖0,In‖ϕ‖0,In

) 1
2

? (22)

1 Choose ∆t0. Compute solutions y∆t
0 and y∆t

1 with mesh size ∆t0

and ∆t1 = ∆t0/2. From this estimate the error at final time:

|ẽ(T )| = |y(T )− y∆t
0 (T )| = |y(T )− y∆t

1 (T ) + y∆t
1 (T )− y∆t

0 (T )|

≤ |y(T )− y∆t
1 (T )|+ |y∆t

1 (T )− y∆t
0 (T )|

≤ α|y(T )− y∆t
0 (T )|+ |y∆t

1 (T )− y∆t
0 (T )|

⇔ |ẽ(T )| ≤
1

1− α
|y∆t

1 (T )− y∆t
0 (T )|

2 Given an estimate ẽ(T ) of e(T ) solve the dual problem

3 Compute estimate for |e(T )| using (22), if |e(T )| ≤ TOL STOP

4 Halfen the intervals In giving the largest error contribution

5 Recompute y∆t on new mesh, recompute estimate ẽ(T ), goto 2
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Galerkin Orthogonality

• We first need a further result called Galerkin orthogonality

• We may define a piecewise continuous solution yn(t)∫
In

(y ′n(t) + a(t)yn(t))ϕn(t) dt =

∫
In

f (t)ϕn(t) dt ∀ϕn ∈ V (In) yn(tn) = yi−1(tn)

• and the discrete solution in, say cG(q)∫
In

((y∆t
n )′)(t) + a(t)y∆t

n (t))ϕn(t) dt =

∫
In

f (t)ϕn(t) dt ∀ϕn ∈ Pq−1 y∆t
n (tn) = y∆t

i−1(tn)

• Subtracting and summing over all intervals gives the Galerkin
orthogonality relation

N−1∑
i=0

∫
In

(e′(t) + a(t)e(t))ϕ(t) dt =

N−1∑
i=0

∫
In

R[u](t)ϕ(t) dt = 0 ∀ϕ ∈ Pq−1

together with en(tn) = ei−1(tn)
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Another A Posteriori Error Estimate
• The second approach uses an analytical estimate to avoid the

solution of a dual problem
• Again we start from the error relation

e2(T ) =
N−1∑
i=0

∫
In

R[y∆t ](t)ϕ(t) dt

• Using the L2-projection πϕ of the dual solution to piecewise
polynomials we get

e2(T ) =

N−1∑
i=0

{∫
In

R[y∆t ](t)ϕ(t) dt −
∫
In

R[y∆t ](t)πϕ(t) dt

}

=

N−1∑
i=0

∫
In

R[y∆t ](t)(ϕ(t)− πϕ(t)) dt

• For the L2-projection one has the L1-estimate∫
In

|ϕ(t)− (πϕ)(t)| dt ≤ ∆tn

∫
In

|ϕ′(t)| dt
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Another A Posteriori Error Estimate, ctd.

• and with that we may estimate

e2(T ) =

N−1∑
i=0

{
‖R[y∆t ]‖∞,In∆tn

∫
In

|ϕ′(t)| dt
}
≤ max

0≤i<N
(∆tn‖R[y∆t ]‖∞,In )

∫ T

0
|ϕ′(t)| dt

• We have an analytical solution for ϕ from which one obtains

|ϕ(t)| ≤ |e(T )| exp(AT ), ∀0 ≤ t ≤ T , |a(t)| ≤ A

• Introduce the stability factor S(T ) =
∫ T

0
|ϕ′(t)| dt/|e(T )| and

• If |a(t)| ≤ A then S(T ) ≤ exp(A)
• If a(t) ≥ 0 then S(T ) ≤ 1

• To obtain the final estimate

|e(T )| ≤ max
0≤i<N

(∆tn‖R[y∆t ]‖∞,In)
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What Else ?

There are many more important aspects we could not treat in this first
part on ODEs:

• More in-depth treatment of adaptive methods

• E.g. embedded Runge-Kutta methods, extrapolation method

• More in-depth treatment of stiff ODEs

• E.g. different definitions of stiffness, Padé-table, rational
approximations of the exponential function

• Implicit higher order Runge-Kutta methods, collocation method to
derive them

• Linear multistep methods

• Symplectic methods
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Definition of a PDE

Definition 16 (Partial differential equation (PDE) )

A partial differential equation (PDE) is an equation (or equation system)
involving an unknown function of two or more variables and certain of its
partial derivatives.

Example 11

Often, we have x , y , z as spatial independent variables and t as a
temporal variable. These are four independent variables.
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Laplace equation / Poisson’s equation

Formulation 4 (Laplace problem / Poisson problem)

Let Ω be an open set. The Laplace equation reads:

−∆u = 0 in Ω.

The Poisson problem reads:

−∆u = f in Ω.

Definition 17
A C 2 function (C 2 means two times continuously differentiable) that
satisfies the Laplace equation is called harmonic function.
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Laplace equation and Poisson’s problem

Notation

We frequently use:
∂u

∂x
= ∂xu

and
∂u

∂t
= ∂tu

and
∂2u

∂t∂t
= ∂2

t u = ∂ttu

and
∂2u

∂x∂y
= ∂xyu
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Laplace equation and Poisson’s problem

Nabla operators

Well-known in physics, it is convenient to work with the nabla-operator
to define derivative expressions. The gradient of a single-valued function
v : Rn → R reads:

∇v =

∂1v
...
∂nv

 .

The gradient of a vector-valued function v : Rn → Rm is called Jacobian
matrix and reads:

∇v =

∂1v1 . . . ∂nv1

...
...

∂1vm . . . ∂nvm

 .
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Nabla operators

The divergence is defined for vector-valued functions v : Rn → Rn:

div v := ∇ · v := ∇ ·

v1

...
vn

 =
n∑

k=1

∂kvk .

The divergence for a tensor σ ∈ Rn×n is defined as:

∇ · σ =
( n∑
j=1

∂σij
∂xj

)
1≤i≤n.

The trace of a matrix A ∈ Rn×n is defined as

tr(A) =
n∑

i=1

aii .
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Nabla operators

Definition 18 (Laplace operator)

The Laplace operator of a two-times continuously differentiable
scalar-valued function u : Rn → R is defined as

∆u =
n∑

k=1

∂kku.

Definition 19
For a vector-valued function u : Rn → Rm, we define the Laplace
operator component-wise as

∆u = ∆

u1

...
um

 =


∑n

k=1 ∂kku1

...∑n
k=1 ∂kkum

 .
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Laplace equation and Poisson’s problem

Physical interpretation / mathematical modeling of
the Laplace operator

The physical interpretation is as follows. Let u denote the density of
some quantity, for instance concentration or temperature, in equilibrium.
If G is any smooth region G ⊂ Ω, the flux F of the quantity u through
the boundary ∂G is zero: ∫

∂G

F · n dx = 0. (23)

Here F denotes the flux density and n the outer normal vector. Gauss’
divergence theorem yields:∫

∂G

F · n dx =

∫
G

∇ · F dx = 0.

Since this integral relation holds for arbitrary G , we obtain

∇ · F = 0 in Ω. (24)
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Laplace equation and Poisson’s problem

Physical interpretation

• Now we need a second assumption (or better a relation) between the
flux and the quantity u. Such relations do often come from material
properties and are so-called constitutive laws.

• In many situations it is reasonable to assume that the flux F is
proportional to the negative gradient −∇u of the quantity u. This
means that flow goes from regions with a higher concentration to
lower concentration regions.

• For instance, the rate at which energy ‘flows’ (or diffuses) as heat
from a warm body to a colder body is a function of the temperature
difference. The larger the temperature difference, the larger the
diffusion.

• We consequently obtain as further relation:

F = −∇u.
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Physical interpretation

• Plugging into the Equation (24) yields:

∇ · F = ∇ · (−∇u) = −∇ · (∇u) = −∆u = 0.

This is the simplest derivation one can make. Adding more
knowledge on the underlying material of the body, a material
parameter a > 0 can be added:

∇ · F = ∇ · (−a∇u) = −∇ · (a∇u) = −a∆u = 0.

And adding a nonconstant and spatially dependent material further
yields:

∇ · F = ∇ · (−a(x)∇u) = −∇ · (a(x)∇u) = 0.

In this last equation, we do not obtain any more the classical
Laplace equation but a diffusion equation in divergence form.
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Other fields using Poisson’s equation

Some important physical laws are related to the Laplace operator
(partially taken from L. Evans; Partial Differential Equations, AMS,
2010):

1 Fick’s law of chemical diffusion

2 Fourier’s law of heat conduction

3 Ohm’s law of electrical conduction

4 Small deformations in elasticity (recall the clothesline problem)
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Elliptic PDEs: prototype Poisson’s problem

Three important linear PDEs

• Poisson problem: −∆u = f is elliptic: second order in space and no
time dependence.

• Heat equation: ∂tu −∆u = f is parabolic: second order in space
and first order in time.

• Wave equation: ∂2
t u −∆u = f is hyperbolic: second order in space

and second order in time.
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Elliptic PDEs: prototype Laplacian

Formulation 5
Let f : Ω→ R be given. Furthermore, Ω is an open, bounded set of Rd .
We seek the unknown function u : Ω̄→ R such that

Lu = f in Ω, (25)

u = 0 on ∂Ω. (26)

Here, the linear second-order differential operator is defined by:

Lu := −
d∑

i,j=1

∂xj (aij(x)∂xiu) +
d∑

i=1

bi (x)∂xiu + c(x)u, u = u(x), (27)

with the symmetry assumption aij = aji and given coefficient functions
aij , bi , c . Moreover, we assume that A is positive definite (in order words:
the eigenvalues are positive).
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Elliptic PDEs: prototype Laplacian

Formulation 6
Alternatively we often use the compact notation with derivatives defined
in terms of the nabla-operator:

Lu := −∇ · (a∇u) + b∇u + cu.

Finally we notice that the boundary condition (26) is called
homogeneous Dirichlet condition.
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Elliptic PDEs: prototype Laplacian

Theorem 20 (Strong maximum principle for the Laplace problem)

Suppose u ∈ C 2(Ω) ∩ C (Ω̄) is a harmonic function. Then

max
Ω̄

u = max
∂Ω

u.

Moreover, if Ω is connected and there exists a point y ∈ Ω in which

u(y) = max
Ω̄

u,

then u is constant within Ω. The same holds for −u, but then for minima.

Remark 12
The maximum principle has a discrete version and it allows a very first
check whether a numerically-computed discrete solution of the Poisson
problem is correct.
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Parabolic PDEs: prototype heat equation

Time-dependent PDEs

• Depend on space and time

→ We need an analysis and discretization in space and time

• The discretization in time is often based on finite difference methods
as we learned in the lectures 01 - 04.

• Current mathematical-numerical research also concentrates on
Galerkin space/time discretizations in which the temporal part is
treated as described in lecture 05.

168 / 331



PeC3 School on Numerical Modeling with Differential Equations

Modeling with Partial Differential Equations:

Parabolic PDEs: prototype heat equation

Parabolic PDEs: prototype heat equation

Formulation 7
Let f : Ω× I → R and u0 : Ω→ R be given. We seek the unknown
function u : Ω̄× I → R such that5

∂tu + Lu = f in Ω× I , (28)

u = 0 on ∂Ω× [0,T ], (29)

u = u0 on Ω× {t = 0}. (30)

Here, the linear second-order differential operator is defined by:

Lu := −
d∑

i,j=1

∂xj (aij(x , t)∂xiu) +
d∑

i=1

bi (x , t)∂xiu + c(x , t)u, u = u(x , t)

for given (possibly spatial and time-dependent) coefficient functions
aij , bi , c .
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Parabolic PDEs: prototype heat equation

Parabolic PDEs: prototype heat equation

Formulation 8 (Heat equation)

Setting in Formulation 7, aij = δij and bi = 0 and c = 0, we obtain the
Laplace operator. Let f : Ω→ R be given. Furthermore, Ω is an open,
bounded set of Rn. We seek the unknown function u : Ω̄→ R such that

∂tu + Lu = f in Ω× I , (31)

u = 0 on ∂Ω× [0,T ], (32)

u = u0 on Ω× {t = 0}. (33)

Here, the linear second-order differential operator is defined by:

Lu := −∇ · (∇u) = −∆u.
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Hyperbolic PDEs: prototype wave equation
Formulation 9
Let f : Ω× I → R and u0, v0 : Ω→ R be given. We seek the unknown
function u : Ω̄× I → R such that

∂2
t u + Lu = f in Ω× I , (34)

u = 0 on ∂Ω× [0,T ], (35)

u = u0 on Ω× {t = 0}, (36)

∂tu = v0 on Ω× {t = 0}. (37)

In the last line, ∂tu = v can be identified as the velocity. Furthermore,
the linear second-order differential operator is defined by:

Lu := −
d∑

i,j=1

∂xj (aij(x , t)∂xiu) +
d∑

i=1

bi (x , t)∂xiu + c(x , t)u, u = u(x , t)

for given (possibly spatial and time-dependent) coefficient functions
aij , bi , c .
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Hyperbolic PDEs: prototype wave equation

Remark 13
The wave equation is often written in terms of a first-order system in
which the velocity is introduced and a second-order time derivative is
avoided. Then the previous equation reads: Find u : Ω̄× I → R and
v : Ω̄× I → R such that

∂tv + Lu = f in Ω× I , (38)

∂tu = v in Ω× I , (39)

u = 0 on ∂Ω× [0,T ], (40)

u = u0 on Ω× {t = 0}, (41)

v = v0 on Ω× {t = 0}. (42)

where Lu := −∆u.
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Hyperbolic PDEs: prototype wave equation

Remarks to boundary data and initial values
Boundary data:

• Dirichlet (or essential) boundary conditions: u = gD on ∂ΩD ; when
gD = 0 we say ‘homogeneous’ boundary condition.

• Neumann (or natural) boundary conditions: ∂nu = gN on ∂ΩN ;
when gN = 0 we say ‘homogeneous’ boundary condition.

• Robin (third type) boundary condition: au + b∂nu = gR on ∂ΩR ;
when gR = 0 we say ‘homogeneous’ boundary condition.

⇒ In practical real-life applications, boundary conditions are often
unknown and a potential major error source.

Initial data:

• The number of initial values depends as for ODEs on the order of
the time derivative

• For the heat equation, we need one initial condition u(t0) := u0

• For the wave equation, we need two initial conditions
u(t0) := u0, ∂tu(t0) := v0
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Example temperature in a room
We consider the heat equation: Find T : Ω× I → R such that

∂tT + (v · ∇)T −∇ · (K∇T ) = f in Ω× I ,

T = 18◦C on ∂DΩ× I ,

K∇T · n = 0 on ∂NΩ× I ,

T (0) = 15◦C in Ω× {0}.

• The homogeneous Neumann condition means that there is no heat exchange on
the respective walls (thus neighboring rooms will have the same room
temperature on the respective walls).

• The nonhomogeneous Dirichlet condition states that there is a given
temperature of 18C , which is constant in time and space (but this condition may
be also non-constant in time and space).

• Possible heaters in the room can be modeled via the right hand side f .

• The vector v : Ω→ R3 denotes a given flow field yielding a convection of the
heat, for instance wind. We can assume v ≈ 0. Then the above equation is
reduced to the original heat equation: ∂tT −∇ · (K∇T ) = f .

174 / 331



PeC3 School on Numerical Modeling with Differential Equations

Modeling with Partial Differential Equations:

Consequences in numerics

Brief step into numerics

• We deviate a bit and give a brief hint on the numerical discretization
of time-dependent PDEs

• We recall that we need to discretize in time and space

• Three possibilities:

1 First space, then time (method of lines)
2 First time, then space (Rothe method)
3 Everything together: full finite difference discretization (not

recommended!) or full Galerkin approach (space-time; very elegent,
but difficult to implement)

• We concentrate briefly on the second approach: Rothe method.

• Why? We can use the methods that have been presented in the
lectures 02-04
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Modeling with Partial Differential Equations:

Consequences in numerics

Brief step into numerics: temporal discretization of
the heat equation

• Let a ∈ R be a parameter that is (for simplicity) independent of the
space. Let the heat equation be given: Find u(x , t) : Ω× I → R
such that

∂tu − a∆u = f in Ω× I ,

u = 0 on ∂Ω× [0,T ],

u = u0 on Ω× {t = 0}.

• Formal correspondance to ODEs in terms of the time t:

∂tu − a∆u = f

can be written as

∂tu︸︷︷︸
≈y ′

= a∆u + f︸ ︷︷ ︸
≈f (t,y)

y ′ = f (t, y)
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Consequences in numerics

Brief step into numerics (cont’d)

• Perform temporal discretization using the forward Euler scheme:

u∆t
n+1 − u∆t

n

∆t
− a∆u∆t

n = fn

with ∆t = tn+1 − tn.

• We immediately obtain:

u∆t
n+1︸︷︷︸

unknown

= u∆t
n + ∆ta∆u∆t

n + ∆tfn︸ ︷︷ ︸
known

which is from the structure and numerical properties very known to
us.

• We can explicitly compute the current solution u∆t
n+1.
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Consequences in numerics

Brief step into numerics (cont’d)

Second example.

• Temporal discretization based on the backward Euler scheme:

u∆t
n+1 − u∆t

n

∆t
− a∆u∆t

n+1 = fn+1

• Then, we obtain the implicit system:

u∆t
n+1 −∆ta∆u∆t

n+1 = u∆t
n + ∆tfn+1

• This system is implicit because the Laplacian ∆u∆t
n+1 must be

resolved.

• Therefore, we cannot ‘explicitly’ solve for u∆t
n+1.
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Consequences in numerics

Brief step into numerics (cont’d)

Third example.

• Temporal discretization based on the trapezoidal rule
(Crank-Nicolson):

u∆t
n+1 − u∆t

n

∆t
− 1

2
[a∆u∆t

n+1 + a∆u∆t
n ] =

1

2
[fn+1 + fn]

• Then, we obtain the implicit system:

u∆t
n+1 −

1

2
∆ta∆u∆t

n+1 = u∆t
n +

1

2
∆ta∆u∆t

n + ∆t
1

2
[fn+1 + fn]

• Compare again to lecture 03 or 04 for similar terminological
structures in pure ODE problems.

• Other time integration schemes (e.g., Runge-Kutta) may be used as
well
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Consequences in numerics

Brief step into numerics (cont’d)
• As in the ODE lectures, it now depends on the character of the PDE

which time-discretization scheme is best suited.
• For instance: the heat equation is a dissipative equation, which

can be dealt with a dissipative time-discretization scheme (e.g.,
backward Euler).

• Of course higher-order methods yield better accuracy as seen in
lecture 04 and exercise 2.

• The wave equation conserves energy.
• Here, a dissipative time-discretization scheme should not be used!.

Also explicit schemes are not well suited because of numerical
instabilities.

→ The reason is because the spatial Laplacian ‘becomes big’ due to the
spatial discretization as we will later see.

• Consequently: from the three presented schemes, the only ‘good’
option is the trapezoidal rule.

• It now remains to discuss spatial discretization, which is our topic in
the upcoming lecture 07-09.
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Further classifications

Further classifications (we recall from our ODE
studies)

• Order of a differential equation

• Single equations and PDE systems

• Nonlinear problems:
• Nonlinearity in the PDE
• The function set is not a vector space yielding a variational inequality

• Coupled problems and coupled PDE systems.

181 / 331



PeC3 School on Numerical Modeling with Differential Equations

Modeling with Partial Differential Equations:

Further classifications

Further classifications: examples
• p-Laplace equation: Find u : Ω→ R:

−∇ · (|∇u|p−2∇u)p/2 = f (43)

Properties: nonlinear (quasilinear), stationary, scalar-valued.

• Find u : Ω→ R:

−∆u + u2 = f (44)

Properties: nonlinear (semilinear), stationary, scalar-valued.

• Incompressible, isothermal Navier-Stokes equations: Find
v : Ω→ Rn and p : Ω→ R

∂tv + (v · ∇)v − 1

Re
∆v +∇p = f , ∇ · v = 0 (45)

with Re being the Reynolds’ number. For Re →∞ we obtain the
Euler equations. Properties: nonlinear (semilinear), nonstationary,
vector-valued, PDE system.
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Modeling with Partial Differential Equations:

Further classifications

Further classifications: examples
• A volume-coupled problem: Find u : Ω→ R and ϕ : Ω→ R

−∆u = f (ϕ), (46)

|∇u|2 −∆ϕ = g(u) (47)

Properties: nonlinear, coupled problem via right hand sides,
stationary.

• An interface-coupled problem: Let Ω1 and Ω2 with Ω1 ∩ Ω2 = 0 and
Ω̄1 ∩ Ω̄2 = Γ and Ω̄1 ∪ Ω̄2 = Ω. Find u1 : Ω1 → R and u2 : Ω2 → R:

−∆u1 = f1 in Ω1, (48)

−∆u2 = f2 in Ω2, (49)

u1 = u2 on Γ, (50)

∂nu1 = ∂nu2 on Γ (51)

Properties: linear, coupled problem via interface conditions,
stationary.
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Advanced examples

Advanced examples (to give an outlook): elasticity
This example is already difficult because a system of nonlinear equations
is considered:

Formulation 10
Let Ω̂s ⊂ Rn, n = 3 with the boundary ∂Ω̂ := Γ̂D ∪ Γ̂N . Furthermore, let
I := (0,T ] where T > 0 is the end time value. The equations for

geometrically non-linear elastodynamics in the reference configuration Ω̂
are given as follows: Find vector-valued displacements

ûs := (û
(x)
s , û

(y)
s , û

(z)
s ) : Ω̂s × I → Rn such that

ρ̂s∂
2
t ûs − ∇̂ · (F̂ Σ̂) = 0 in Ω̂s × I ,

ûs = 0 on Γ̂D × I ,

F̂ Σ̂ · n̂s = ĥs on Γ̂N × I ,

ûs(0) = û0 in Ω̂s × {0},

v̂s(0) = v̂0 in Ω̂s × {0}.
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Advanced examples

Advanced examples (to give an outlook): elasticity

We deal with two types of boundary conditions: Dirichlet and Neumann
conditions. Furthermore, two initial conditions on the displacements and
the velocity are required. The constitutive law is given by the
geometrically nonlinear tensors (see e.g., Ciarlet 1984):

Σ̂ = Σ̂s(ûs) = 2µÊ + λtr(Ê )I , Ê =
1

2
(F̂T F̂ − I ). (52)

Here, µ and λ are the Lamé coefficients for the solid. The solid density is
denoted by ρ̂s and the solid deformation gradient is F̂ = Î + ∇̂ûs where
Î ∈ R3×3 is the identity matrix. Furthermore, n̂s denotes the normal
vector.
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Advanced examples

Advanced examples (to give an outlook): elasticity

Figure: Deformed elastic flag.
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Modeling with Partial Differential Equations:

Advanced examples

Advanced examples (to give an outlook):
incompressible flow - Navier-Stokes equations

Flow equations in general are extremely important and have an incredible
amount of possible applications such as for example

• water (fluids),

• blood flow,

• wind,

• weather forecast,

• aerodynamics
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Modeling with Partial Differential Equations:

Advanced examples

Advanced examples (to give an outlook):
incompressible flow - Navier-Stokes equations

Formulation 11
Let Ωf ⊂ Rn, n = 3. Furthermore, let the boundary be split into
∂Ωf := Γin ∪ Γout ∪ ΓD ∪ Γi . The isothermal, incompressible (non-linear)
Navier-Stokes equations read: Find vector-valued velocities
vf : Ωf × I → Rn and a scalar-valued pressure pf : Ωf × I → R such that

ρf ∂tvf + ρf vf · ∇vf −∇ · σf (vf , pf ) = 0 in Ωf × I ,

∇ · vf = 0 in Ωf × I ,

vD
f = vin on Γin × I ,

vf = 0 on ΓD × I ,

−pf nf + ρf νf∇vf · nf = 0 on Γout × I ,

vf = hf on Γi × I ,

vf (0) = v0 in Ωf × {t = 0},
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Advanced examples

Advanced examples (to give an outlook):
incompressible flow - Navier-Stokes equations

Here the (symmetric) Cauchy stress is given by

σf (vf , pf ) := −pf I + ρf νf (∇vf +∇vT
f ),

with the density ρf and the kinematic viscosity νf . The normal vector is
denoted by nf .
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Modeling with Partial Differential Equations:

Advanced examples

Advanced examples (to give an outlook):
incompressible flow - Navier-Stokes equations

Figure: Prototype example of a fluid mechanics problem (isothermal,
incompressible Navier-Stokes equations): the famous Karman vortex street.
The setting is based on the benchmark setting Schaefer/Turek et al. 1996 and
the code can be found in NonStat Example 1 in DOpElib www.dopelib.net.
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Modeling with Partial Differential Equations:

Advanced examples

Summary lecture 06

• Different types of PDEs

• Modeling and physical explanations

• Three-important PDEs
• Poisson, heat, wave
• Temporal discretization and the relation to the ODE lectures

• Classifications of the order, linear/nonlinear, PDE systems

• Various further (advanced) examples
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Contents

7 Weak Formulation of PDEs
Equivalent formulations
Derivation of a weak (variational) form
Hilbert spaces
Well-posedness and the Lax-Milgram lemma
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Weak Formulation of PDEs

Recall model problem in 1D: Poisson’s problem

Find u : Ω→ R such that

− u′′ = f in Ω = (0, 1), (53)

u(0) = u(1) = 0. (54)
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Equivalent formulations

Equivalent formulations

We first introduce the scalar product on Ω = (0, 1):

(v ,w) =

∫ 1

0

v(x)w(x) dx .

Furthermore we introduce the linear space

V := {v | v ∈ C [0, 1], v ′ is piecewise continuous and bounded on [0, 1], v(0) = v(1) = 0}.
(55)

We also introduce the linear functional F : V → R such that

F (v) =
1

2
(v ′, v ′)− (f , v).
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Equivalent formulations

Equivalent formulations

Definition 21
We deal with three (equivalent) problems:

(D) Find u ∈ C 2 such that −u′′ = f with u(0) = u(1) = 0;

(M) Find u ∈ V such that F (u) ≤ F (v) for all v ∈ V ;

(V) Find u ∈ V such that (u′, v ′) = (f , v) for all v ∈ V .

• In physics, the quantity F (v) stands for the total potential energy
of the underlying model.

• Moreover, the first term in F (v) denotes the internal elastic energy
and (f , v) the load potential.

• Therefore, formulation (M) corresponds to the fundamental
principle of minimal potential energy and the variational problem
(V) to the principle of virtual work (e.g., Ciarlet 1984).

• The proofs of their equivalence will be provided in the following.
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Equivalent formulations

Equivalent formulations

Proposition 14

It holds
(D)→ (V ).

Proof.
We multiply −u′′ = f with a function φ (a so-called test function) from
the space V defined in (55). Then we integrate over the interval
Ω = (0, 1) yielding

−u′′ = f (56)

⇒ −
∫

Ω

u′′φ dx =

∫
Ω

f φ dx (57)

⇒
∫

Ω

u′φ′ dx − u′(1)φ(1) + u′(0)φ(0) =

∫
Ω

f φ dx (58)

⇒
∫

Ω

u′φ′ dx =

∫
Ω

f φ dx ∀φ ∈ V . (59)
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Equivalent formulations

Equivalent formulations

In the second last term, we used integration by parts.
The boundary terms vanish because φ ∈ V . This shows that∫

Ω

u′φ′ dx =

∫
Ω

f φ dx

is a solution of (V ).

Remark 15
The technique used in this proof is of paramount importance since the
integration by parts is THE standard trick in the finite element method.
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Equivalent formulations

Equivalent formulations

Proposition 16

It holds
(V )↔ (M).

Proof.
We first assume that u is a solution to (V ). Let φ ∈ V and set
w = φ− u such that φ = u + w and w ∈ V . We obtain

F (φ) = F (u + w) =
1

2
(u′ + w ′, u′ + w ′)− (f , u + w)

=
1

2
(u′, u′)− (f , u) + (u′,w ′)− (f ,w) +

1

2
(w ′,w ′) ≥ F (u)

We use now the fact that (V ) holds true, namely

(u′,w ′)− (f ,w) = 0.

198 / 331



PeC3 School on Numerical Modeling with Differential Equations

Weak Formulation of PDEs

Equivalent formulations

Equivalent formulations

And also that (w ′,w ′) ≥ 0. Thus, we have shown that u is a solution to
(M). We show now that (M)→ (V ) holds true as well. For any φ ∈ V
and ε ∈ R we have

F (u) ≤ F (u + εφ),

because u + εφ ∈ V . We differentiate with respect to ε and show that
(V ) is a first order necessary condition to (M) with a minimum at ε = 0.
To do so, we define

g(ε) := F (u + εφ) =
1

2
(u′, u′) + ε(u′, φ′) +

ε2

2
(φ′, φ′)− (f , u)− ε(f , φ).
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Equivalent formulations

Equivalent formulations

Thus
g ′(ε) = (u′, φ′) + ε(φ′, φ′)− (f , φ).

A minimum is obtained for ε = 0. Consequently,

g ′(0) = 0.

In detail:
(u′, φ′)− (f , φ) = 0,

which is nothing else than the solution of (V ).
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Equivalent formulations

Equivalent formulations

Proposition 17

It holds
(V )→ (D).

Proof. We assume that u is a solution to (V ), i.e.,

(u′, φ′) = (f , φ) ∀φ ∈ V .

If we assume sufficient regularity of u (in particular u ∈ C 2), then u′′

exists and we can integrate backwards. Moreover, we use that
φ(0) = φ(1) = 0 since φ ∈ V . Then:

(−u′′ − f , φ) = 0 ∀φ ∈ V .
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Equivalent formulations

Equivalent formulations

Since we assumed sufficient regularity for u′′ and f the difference is
continuous. We can now apply the fundamental principle (see
Proposition 18):

w ∈ C (Ω) ⇒
∫

Ω

wφ dx = 0 ⇒ w ≡ 0.

We proof this result later. Before, we obtain

(−u′′ − f , φ) = 0 ⇒ −u′′ − f = 0,

which yields the desired expression. Since we know that (D)→ (V ) holds
true, u has the assumed regularity properties and we have shown the
equivalence.
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Equivalent formulations

Fundamental lemma of calculus of variations

Proposition 18

Let Ω = [a, b] be a compact interval and let w ∈ C (Ω). Let φ ∈ C∞

with φ(a) = φ(b) = 0, i.e., φ ∈ C∞c (Ω). If for all φ it holds∫
Ω

w(x)φ(x) dx = 0,

then, w ≡ 0 in Ω.

Proof.
We perform an indirect proof. We suppose that there exist a point x0 ∈ Ω
with w(x0) 6= 0. Without loss of generality, we can assume w(x0) > 0.
Since w is continuous, there exists a small (open) neighborhood ω ⊂ Ω
with w(x) > 0 for all x ∈ ω; otherwise w ≡ 0 in Ω \ ω.
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Equivalent formulations

Proof continued.

Let φ now be a positive test function (recall that φ can be arbitrary,
specifically positive if we wish) in Ω and thus also in ω. Then:∫

Ω

w(x)φ(x) dx =

∫
ω

w(x)φ(x) dx .

But this is a contradiction to the hypothesis on w . Thus w(x) = 0 for all
in x ∈ ω. Extending this result to all open neighborhoods in Ω we arrive
at the final result.

Remark 19
The general form of the proof can be found in P. Ciarlet; 2013: Linear
and nonlinear functional analysis with applications.
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Derivation of a weak (variational) form

Derivation of a weak (variational) form: Step 1

Two-step procedure:

• Step 1: Design a function space V that also includes the correct
boundary conditions

• Step 2: Multiply with a test function from V and integrate

For Poisson with homogeneous Dirichlet conditions, we then obtain:
• Take space

V := {v | v ∈ C [0, 1], v ′ is pc. cont. and bound. on [0, 1], v(0) = v(1) = 0}

from before.
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Derivation of a weak (variational) form: Step 2
• Multiply with test function φ ∈ V and integrate:

−u′′ = f (60)

⇒ −
∫

Ω

u′′φ dx =

∫
Ω

f φ dx (61)

⇒
∫

Ω

u′φ′ dx −
∫
∂Ω

∂nuφ ds =

∫
Ω

f φ dx (62)

⇒
∫

Ω

u′φ′ dx =

∫
Ω

f φ dx . (63)

To summarize we have:

Formulation 12
Find u ∈ V such that∫

Ω

u′φ′ dx =

∫
Ω

f φ dx ∀φ ∈ V . (64)
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Derivation of a weak (variational) form

A common short-hand notation in mathematics is to use parentheses for
L2 scalar products:

∫
Ω
ab dx =: (a, b):

(u′, φ′) = (f , φ) (65)

A mathematically-correct statement is:

Formulation 13
Find u ∈ V such that

(u′, φ′) = (f , φ) ∀φ ∈ V . (66)

In the following, we introduce some tools from functional analysis that
are required to analyze further the variational form.
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Hilbert spaces

Hilbert spaces

Definition 22 (Hilbert space)

A complete space endowed with an inner product is called a Hilbert
space. The norm is defined by

‖u‖ :=
√

(u, u).

Example 20

The space Rn from before has a scalar product and is complete, thus a
Hilbert space. The space {C (Ω), ‖ · ‖L2} has a scalar product, but is not
complete, and therefore not a Hilbert space. The space {C (Ω), ‖ · ‖C(Ω)}
is complete, but the norm is not induced by a scalar product and is
therefore not a Hilbert space, but only a Banach space.
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Hilbert spaces

Hilbert spaces: L2

Definition 23 (The L2 space in 1D)

Let Ω = (a, b) be an interval (recall 1D Poisson). The space of
square-integrable functions on Ω is defined by

L2(Ω) = {v :

∫
Ω

v2 dx <∞}

The space L2 is a Hilbert space equipped with the scalar product

(v ,w) =

∫
Ω

vw dx

and the induced norm
‖v‖L2 :=

√
(v , v).
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Hilbert spaces

Hilbert spaces: L2

Using Cauchy’s inequality

|(v ,w)| ≤ ‖v‖L2‖w‖L2 ,

we observe that the scalar product is well-defined when v ,w ∈ L2. A
mathematically very correct definition must include in which sense
(Riemann or Lebesgue) the integral exists. In general, all L spaces are
defined in the sense of the Lebuesgue integral (see for instance books
introducing Lebesgue spaces).
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Hilbert spaces

Hilbert spaces: H1

Definition 24 (The H1 space in 1D)

We define the H1(Ω) space with Ω = (a, b) as

H1(Ω) = {v : v and v ′ belong to L2}

This space is equipped with the following scalar product:

(v ,w)H1 =

∫
Ω

(vw + v ′w ′) dx

and the norm
‖v‖H1 :=

√
(v , v)H1 .
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Hilbert spaces

Hilbert spaces: H1
0

Definition 25 (The H1
0 space in 1D)

We define the H1
0 (Ω) space with Ω = (a, b) as

H1
0 (Ω) = {v ∈ H1(Ω) : v(a) = v(b) = 0}.

The scalar product is the same as for the H1 space.
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Well-posedness and the Lax-Milgram lemma

Well-posedness: existence, uniqueness and stability

Formulation 14 (Abstract model problem)

Let V be a Hilbert space with norm || · ||V . Find u ∈ V such that

a(u, φ) = l(φ) ∀φ ∈ V .

with

a(u, φ) := (u′, φ′),

l(φ) := (f , φ)
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Well-posedness and the Lax-Milgram lemma

Well-posedness: existence, uniqueness and stability

Definition 26 (Assumptions)

We suppose:

1 l(·) is a bounded linear form:

|l(u)| ≤ C‖u‖ for all u ∈ V .

2 a(·, ·) is a bilinear form on V × V and continuous:

|a(u, v)| ≤ γ‖u‖V ‖v‖V , γ > 0, ∀u, v ∈ V .

3 a(·, ·) is coercive (or V -elliptic):

a(u, u) ≥ α‖u‖2
V , α > 0, ∀u ∈ V .
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Well-posedness and the Lax-Milgram lemma

The Lax-Milgram lemma

Lemma 27 (Lax-Milgram)

Let a(·, ·) : V × V → R be a continuous, V -elliptic bilinear form. Then,
for each l ∈ V ∗ the variational problem

a(u, φ) = l(φ) ∀φ ∈ V

has a unique solution u ∈ V . Moreover, we have the stability estimate:

‖u‖ ≤ 1

α
‖l‖V ∗ .

with

‖l‖V ∗ := sup
ϕ6=0

|l(ϕ)|
||ϕ||V

.

The proof can be found in P. Ciarlet; 2013.
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Well-posedness and the Lax-Milgram lemma

The energy norm

The continuity and coercivity of the bilinear form yield the energy norm:

‖v‖2
a := a(v , v), v ∈ V .

This norm is aquivalent to the V -norm of the space V , i.e.,

c‖v‖V ≤ ‖v‖a ≤ C‖v‖V , ∀v ∈ V

and two positive constants c and C . We can even precisely determine
these two constants:

α||u||2V ≤ a(u, u) ≤ γ‖u‖2
V

yielding c =
√
α and C =

√
γ. The corresponding scalar product is

defined by
(v ,w)a := a(v ,w).
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Well-posedness and the Lax-Milgram lemma

The energy norm: example

For the Poisson problem, the energy norm reads:

• Given a(v , v) = (v ′, v ′) =
∫

Ω
(v ′(x))2 dx

• Then:

‖v‖2
a =

∫
Ω

(v ′(x))2 dx .

• The energy norm is the ‘natural’ norm to measure results of
Poisson’s problem

• For instance: a computational convergence analysis (see lecture 04),
could be done with the energy norm

• Moreover, the energy norm measures indeed the ‘physical’ energy of
the given system
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Well-posedness and the Lax-Milgram lemma

Summary of lecture 07

• Equivalent formulations

• Derivation of a weak form from a strong form

• Hilbert spaces

• Well-posedness of linear, stationary PDEs: Lax-Milgram lemma

• Energy norm: natural norm for the Laplace operator
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Exercise 3
Let α ∈ R. We are given the Poisson problem in 1D on the interval
Ω = (0, 1):

−αu′′(x) = f in Ω

u(0) = u(1) = 0

and α = 1 and the right hand side f = −a with a > 0. The code of this
example can be found here:

https:

//cloud.ifam.uni-hannover.de/index.php/s/Cwe4ZqwLRMixS3J

with the password that is known to you.

Remark 21
Please be careful that the above form is only correct when α is constant.
The general formulation is

− d

dx
(αu′)

which reduces to the above one, when α is constant.
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Exercise 3

Please work on the following tasks:

1 Please run the code and observe the results using gnuplot.
Hint: Please work in the optimized compiling mode

2 We play now with three parameters:

1 Please vary the discretization parameter h and use other
parameters. What do you observe?

2 Vary now the model parameter α. What do you observe?
3 Choose now a different right hand side f . What do you observe?

3 Check if the maximum principle holds true.

4 We study in this final task the structure of the code. Go into the
code and try to understand the different functions and methods that
are implemented therein. Please have a specific look into the
assemble_system method.
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Recalling exercise 3 and goals for today

• Yesterday in the exercise, we computed Poisson in 1D

• The computer solved for us everything and no programming was
necessary

• Today we investigate what the computer really did for us

• Also we will see why the computer became ‘slow’ when the mesh
size parameter h is small

→ Goal: we discuss and implement the spatial discretization using a
Galerkin finite element scheme

• FEM = Finite Element Method

• Such a scheme is based on the variational formulation introduced in
lecture 07
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Finite elements in 1D

Finite elements in 1D

In the following we want to concentrate how to compute a discrete
solution for Poisson’s problem using a Galerkin finite element method
The principle of the FEM is as follows:

• Introduce a mesh Th :=
⋃
Ki (where Ki denote the single mesh

elements) of the given domain Ω = (0, 1) with mesh size
(diameter/length) parameter h

• Define on each mesh element Ki := [xi , xi+1], i = 0, . . . , n
polynomials for trial and test functions. These polynomials must
form a basis in a space Vh and they should reflect certain conditions
on the mesh edges;

• Use the variational form of the given problem and derive a discrete
version;
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Finite elements in 1D

• Evaluate the arising integrals;

• Collect all contributions on all Ki leading to a linear equation system
Az = b;

• Solve this linear equation system; the solution vector
z = (z1, . . . , zn)T contains the discrete solution at the nodal points
z1, . . . , zn;

• Verify the correctness of the solution z .
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Finite elements in 1D

The mesh

Let us start with the mesh. We introduce nodal points and divide
Ω = (0, 1) into

x0 = 0 < x1 < x2 < . . . < xn < xn+1 = 1.

In particular, we can work with a uniform mesh in which all nodal points
have equidistant distance:

xj = jh, h =
1

n + 1
, 0 ≤ j ≤ n + 1, h = xj+1 − xj .

Remark 22
An important research topic is to organize the points xj in certain
non-uniform ways in order to reduce the discrete error. This procedure is
called adaptivity.
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Finite elements in 1D

Linear finite elements

In the following we denote Pk the space that contains all polynomials up
to order k with coefficients in R:

Definition 28

Pk := {
k∑

i=0

aix
i | ai ∈ R}.

In particular we will work with the space of linear polynomials

P1 := {a0 + a1x | a0, a1 ∈ R}.
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Hat functions

Linear finite elements

• A finite element is now a function localized to an element Ki ∈ Th
and uniquely defined by the values in the nodal points xi , xi+1.

• We then define the space:

V
(1)
h = Vh := {v ∈ C [0, 1]| v |Ki

∈ P1,Ki := [xi , xi+1], 0 ≤ i ≤ n, v(0) = v(1) = 0}.

• This space V
(1)
h is a finite-dimensional realization of the space V

from lecture 07

• The boundary conditions are build into the space through
v(0) = v(1) = 0. This is an important concept that Dirichlet
boundary conditions will not appear explicitly later, but are
contained in the function spaces.

• All functions inside Vh are so called shape functions and can be
represented by so-called hat functions. Hat functions are
specifically linear functions on each element Ki . Attaching them
yields a hat in the geometrical sense.

227 / 331



PeC3 School on Numerical Modeling with Differential Equations

Conforming Finite Element Method

Hat functions

Hat functions

Figure: Hat functions. Linear finite elements in 1D.
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Hat functions

Construction of hat functions

For j = 1, . . . , n we define:

φj(x) =


0 if x 6∈ [xj−1, xj+1]
x−xj−1

xj−xj−1
if x ∈ [xj−1, xj ]

xj+1−x
xj+1−xj if x ∈ [xj , xj+1]

(67)

with the property

φj(xi ) =

{
1 i = j

0 i 6= j
. (68)
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Hat functions

Construction of hat functions

For a uniform step size h = xj − xj−1 = xj+1 − xj we obtain

φj(x) =


0 if x 6∈ [xj−1, xj+1]
x−xj−1

h if x ∈ [xj−1, xj ]
xj+1−x

h if x ∈ [xj , xj+1]

and for its derivative:

φ′j(x) =


0 if x 6∈ [xj−1, xj+1]

+ 1
h if x ∈ [xj−1, xj ]

− 1
h if x ∈ [xj , xj+1]
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Hat functions

Conforming finite elements

Lemma 29
The space Vh is a subspace of V := C [0, 1] and has dimension n
(because we deal with n basis functions). Thus the such constructed
finite element method is a conforming method. Furthermore, for each
function vh ∈ Vh we have a unique representation:

vh(x) =
n∑

j=1

zjφj(x) ∀x ∈ [0, 1], zj ∈ R.

Proof.
Sketch: The unique representation is clear, because in the nodal points it
holds φj(xi ) = δij , where δij is the Kronecker symbol with δij = 1 for
i = j and 0 otherwise.
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Hat functions

Lagrange finite elements

Remark 23
The finite element method introduced above is a Lagrange method, since
the basis functions φj are defined only through its values at the nodal
points without using derivative information (which would result in
Hermite polynomials).

232 / 331



PeC3 School on Numerical Modeling with Differential Equations

Conforming Finite Element Method

Hat functions

The process to construct the specific form of the
shape functions

• In the previous construction, we have hidden the process how to find
the specific form of φj(x). For 1D it is more or less clear and we
would accept the φj(x) really has the form as previously described.

• In Rn this task is a bit of work. To understand this procedure, we
explain the process in detail. Here we first address the defining
properties of a finite element:
• Intervals [xi , xi+1];
• A linear polynomial φ(x) = a0 + a1x ;
• Nodal values at xi and xi+1 (the so-called degrees of freedom).

• The main task consists in finding the unknown coefficients a0 and a1

of the shape function.
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Hat functions

The process to construct the specific form of the
shape functions

The key property is (68) (also valid in Rn in order to have a small
support) and therefore we obtain:

φj(xj) = a0 + a1xj = 1,

φj(xi ) = a0 + a1xi = 0.

To determine a0 and a1 we have to solve a small linear equation system:(
1 xj
1 xi

)(
a0

a1

)
=

(
1
0

)
.

We obtain

a1 = − 1

xi − xj

and
a0 =

xi
xi − xj

.
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Hat functions

The process to construct the specific form of the
shape functions

Then:

φj(x) = a0 + a1x =
xi − x

xi − xj
.

At this stage we have now to distinguish whether xj := xi−1 or xj := xi+1

or |i − j | > 1 yielding the three cases in (67).

Remark 24
Of course, for higher-order polynomials and higher-order problems in Rn,
the matrix system to determining the coefficients becomes larger.
However, in all these state-of-the-art FEM software packages, the shape
functions are already implemented.

Remark 25
A very practical and detailed derivation of finite elements in different
dimensions can be found in the book of Schwarz 1989.
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The discrete weak form
Now, we use the variational formulation (lecture 07) and derive the
discrete counterpart:

Formulation 15
Find uh ∈ Vh such that

(u′h, φ
′
h) = (f , φh) ∀φh ∈ Vh. (69)

Or in the previously introduced compact form:

Formulation 16 (Variational Poisson problem on the discrete level)

Find uh ∈ Vh such that

a(uh, φh) = l(φh) ∀φh ∈ Vh, (70)

where a(·, ·) and l(·) are defined as

a(uh, φh) := (u′h, φ
′
h), and l(φh) := (f , φh)
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The discrete weak form

Galerkin, Ritz, etc.

Remark 26 (Galerkin method)

The process going from V to Vh using the variational formulation is
called Galerkin method. Here, it is not necessary that the bilinear form
is symmetric. As further information: not only is Galerkin’s method a
numerical procedure, but it is also used in analysis when establishing
existence of the continuous problem. Here, one starts with a finite
dimensional subspace and constructs a sequence of finite dimensional
subspaces Vh ⊂ V (namely passing with h→ 0; that is to say: we add
more and more basis functions such that dim(Vh)→∞). The idea of
numerics is the same: finally we are interested in small h such that we
obtain a discrete solution with sufficient accuracy.
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The discrete weak form

Galerkin, Ritz, etc.

Remark 27 (Ritz method)

If we discretize the minimization problem (M), the above process is
called Ritz method. In particular, the bilinear form of the variational
problem is symmetric.

Remark 28 (Ritz-Galerkin method)

For general bilinear forms (i.e., not necessarily symmetric) the
discretization procedure is called Ritz-Galerkin method.

Remark 29 (Petrov-Galerkin method)

In a Petrov-Galerkin method the trial and test spaces can be different.
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Constructing the solution of the discrete system
We recall and plan:

• Variational form in space V : infinite-dimensional problem

→ Cannot be solved with the computer!

• Discrete counterpart Vh ⊂ V : finite-dimensional problem

• In this finite dimensional space, any vector vh ∈ Vh can be
represented using a linear combination of the basis functions

• What do we need to find our solution uh ∈ Vh?

→ Insert representation of uh into discrete problem and determine the
solution coefficients.

• These solution coefficients are exactly the values (because we work
with Lagrange finite elements) in the support points of the mesh
that we want to know:

x1 x2 . . . xn−1 xn mesh points
z1 z2 . . . zn−1 zn solution coefficients of uh
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Determining the solution coefficients

Realizing the plan from the previous slide:

• We express uh ∈ Vh with the help of the basis functions φj in
Vh := {φ1, . . . , φn}, thus:

uh =
n∑

j=1

zjφj(x), zj ∈ R.

• Since (69) holds for all φi ∈ Vh for 1 ≤ i ≤ n, it holds in particular
for each i :

(u′h, φ
′
i ) = (f , φi ) for 1 ≤ i ≤ n. (71)
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Determining the solution coefficients

• We now insert the representation for uh in (71), yielding the
Galerkin equations:

n∑
j=1

zj︸ ︷︷ ︸
=z

(φ′j , φ
′
i )︸ ︷︷ ︸

=A

= (f , φi )︸ ︷︷ ︸
=b

for 1 ≤ i ≤ n. (72)

• We have now extracted the coefficient vector (z1, z2, . . . , zn)
(neglecting the index h for convenience) of uh and only the shape
functions φj and φi (i.e., their derivatives of course) remain in the
integral.
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The resulting linear equation system
This yields a linear equation system of the form

Az = b

where

z = (zj)1≤j≤n ∈ Rn, (73)

b = ((f , φi ))1≤i≤n ∈ Rn, (74)

A =
(
(φ′j , φ

′
i )
)

1≤j,i≤n ∈ Rn×n. (75)

Thus the final solution vector is z containing the values zj at the nodal
points xj of the mesh.

Remark 30
Here we remark that x0 and xn+1 are not solved in the above system and
are determined by the boundary conditions u(x0) = u(0) = 0 and
u(xn+1) = u(1) = 0.
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Evaluating the integrals

What remains is to evaluate the integrals:

(φ′j , φ
′
i )

and
(f , φi )

More details in lecture 09.
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Remarks on Az = b

Remark 31 (Regularity of A)

It remains the question whether A is regular such that A−1 exists. With
the help of linear algebra arguments this can be shown.

Remark 32
A bottleneck in computational cost (run time of the computer) is the
solution of the system Az = b. For big A (namely small mesh sizes h),
the computational cost becomes huge. More in lecture 09.
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Numerical test: 1D Poisson (see Exercise 3)

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0  0.2  0.4  0.6  0.8  1
u
(x

)

x

h = 0.5, DoFs = 3
h = 0.25, DoFs = 5

h = 0.125, DoFs = 9
h = 0.0625, DoFs = 17

h = 0.03125, DoFs = 33
Min. u(x) = -0.125

Figure: Solution of the 1D Poisson problem with f = −1 using finite elements
with various mesh sizes h. DoFs is the abbreviation for degrees of freedom;
here the number of support points xj . The dimension of the discrete space is
DoFs. For instance for h = 0.5, we have 3 DoFs and two basis functions, thus
dim(Vh) = 3. Please notice that the picture norm is not a proof in the strict
mathematical sense: to show that the purple, and blue lines come closer and
closer must be confirmed by error estimates as presented. Of course, for this
1D Poisson problem, we easily observe a limit case, but for more complicated
equations it is often not visible whether the solutions do converge.
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Numerical test (Exercise 3)

Definition of a finite element

We briefly summarize the key ingredients that define a finite element. A
finite element is a triple (K ,PK ,Σ) where

• K is an element, i.e., a geometric object (in 1D an interval);

• Pk(K ) is a finite dimensional linear space of polynomials defined on
K ;

• Σ, not introduced so far, is a set of degrees of freedom (DoF), e.g.,
the values of the polynomial at the vertices of K .

These three ingredients yield a uniquely determined polynomial on an
element K .
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Numerical analysis: best approximation, interpolation, convergence

Numerical analysis: outline

• Step 1: Approximation estimates (qualitative; no convergence rates
in terms of h powers yet

• Step 2: Interpolation estimates (yielding local h powers)

• Step 3: Convergence results (yielding global h powers)
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Galerkin orthogonality: the first approximation result

We have

(u′, φ′) = (f , φ) ∀φ ∈ V ,

(u′h, φ
′
h) = (f , φh) ∀φh ∈ Vh.

Taking in particular only discrete test functions from Vh ⊂ V and
subtraction of both equations yields:

Proposition 33 (Galerkin orthogonality)

It holds:
((u − uh)′, φh) = 0 ∀φh ∈ Vh,

or in the more general notation:

a(u − uh, φh) = 0 ∀φh ∈ Vh.
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Galerkin orthogonality: illustration

Figure: Illustration of Galerin orthogonality.

• The error measured in the energy norm (defined in lecture 07)
stands orthogonal on the discrete space Vh

• For this reason, it holds the best approximation property
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Galerkin orthogonality: proof

Proof.
Taking φh ∈ Vh in both previous equations yields:

(u′, φ′)− (u′h, φ
′
h) = (f , φ)− (f , φh).

Taking both equations in the discrete space Vh means φ := φh (is no
problem since Vh ⊂ V ) and with that

(f , φh)− (f , φh) = 0.
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Step 1. Céa lemma: a first approximation result

Proposition 34 (Céa lemma)

Let V be a Hilbert space and Vh ⊂ V a finite dimensional subspace. Let
the assumptions of the Lax-Milgram Lemma hold true. Let u ∈ V and
uh ∈ Vh be the solutions of the variational problems. Then:

‖u − uh‖V =
γ

α
inf
φh∈Vh

‖u − φh‖V
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Numerical analysis: best approximation, interpolation, convergence

Step 1. Céa lemma: a first approximation result

Proof.
It holds Galerkin orthogonality:

a(u − uh,wh) = 0 ∀wh ∈ Vh.

We choose wh := uh − φh and we obtain:

α‖u−uh‖2 ≤ a(u−uh, u−uh) = a(u−uh, u−φh) ≤ γ‖u−uh‖‖u−φh‖.

This yields

‖u − uh‖ ≤
γ

α
‖u − φh‖.

Passing to the infimum yields:

‖u − uh‖ = inf
φh∈Vh

γ

α
‖u − φh‖.
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Consequences of Céa

Proposition 35

We assume that the hypotheses from before hold true. Furthermore, we
assume that U ⊂ V is dense. We construct an interpolation operator
ih : U → Vh such that

lim
h→0
‖v − ih(v)‖ = 0 ∀v ∈ U

holds true. Then, for all u ∈ V and uh ∈ Vh:

lim
h→0
‖u − uh‖ = 0.

This result shows that the Galerkin solution uh ∈ Vh converges to the
continuous solution u.
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Consequences of Céa

Proof.
Let ε > 0. Thanks to the density, for each u ∈ V , it exists a v ∈ U such
that ‖u − v‖ ≤ ε. Moreover, there is an h0 > 0, depending on the choice
of ε, such that

‖v − ih(v)‖ ≤ ε ∀h ≤ h0.

The Céa lemma yields now:

‖u − uh‖ ≤ C‖u − ih(v)‖ = C (‖u − v + v − ih(v)‖)
≤ C (‖u − v‖+ ‖v − ih(v)‖) ≤ C (ε+ ε) = 2Cε.

These proofs employs the trick, very often seen for similar calculations,
that at an appropriate place the ‘right’ function, here v is inserted, and
the terms are split thanks to the triangular inequality. Afterwards, the
two separate terms can be estimated using the assumptions of other
known results.
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Step 2. Interpolation estimates in H1 and L2 in 1D

First, we need to construct an interpolation operator in order to
approximate the continuous solution at certain nodes.

Definition 30 (Interpolation operator)

Let Ω = (0, 1). A P1 interpolation operator ih : H1 → Vh is defined by

(ihv)(x) =
n+1∑
j=0

v(xj)φj(x) ∀v ∈ H1.

This definition is well-defined since H1 functions are continuous in 1D
and are pointwise defined. The interpolation ih creates a piece-wise linear
function that coincides in the support points xj with its H1 function.
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Step 2. H1 and L2 interpolation estimates in 1D
The convergence of a finite element method in 1D relies on

Lemma 31
Let ih : H1 → Vh be given. Then:

lim
h→0
‖u − ihu‖H1 = 0.

If u ∈ H2, there is a constant C such that

‖u − ihu‖H1 ≤ Ch|u|H2 .

Proof.
Since

‖u − ihu‖2
H1 = ‖u − ihu‖2

L2 + |u − ihu|2H1 ,

the result follows immediately from the next two lemmas;
namely Lemma 32 and Lemma 33.
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Step 2. H1 and L2 estimates in 1D

Lemma 32
For a function u ∈ H2, it exists a constant C (independent of h) such
that

‖u − ihu‖L2 ≤ Ch2‖u′′‖L2 ,

|u − ihu|H1 ≤ Ch‖u′′‖L2 .

For the proof see: T. Wick; Numerical methods for partial differential
equations: http://www.thomaswick.org/links/lecture_notes_

Numerics_PDEs_Oct_12_2019.pdf
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Step 2. H1 and L2 estimates in 1D

Lemma 33
There exists a constant C (independent of h) such that for all
u ∈ H1(Ω), it holds

‖ihu‖H1 ≤ C‖u‖H1

and
‖u − ihu‖L2 ≤ Ch|u|H1 .

Moreover:
lim

h→∞
‖u′ − ihu

′‖L2 = 0.

For the proof see again: T. Wick; Numerical methods for partial
differential equations: http://www.thomaswick.org/links/lecture_

notes_Numerics_PDEs_Oct_12_2019.pdf
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Step 3a. Convergence in H1

Theorem 34
Let u ∈ H1

0 and uh ∈ Vh be the solutions of the continuous and discrete
Poisson problems. Then, the finite element method using linear shape
functions converges:

lim
h→0
‖u − uh‖H1 = 0.

Moreover, if u ∈ H2 (for instance when f ∈ L2 and in higher dimensions
when the domain is sufficiently smooth or polygonal and convex), we have

‖u − uh‖H1 ≤ Ch‖u′′‖L2 = Ch‖f ‖L2 .

Thus the convergence in the H1 norm (the energy norm) is linear and
depends continuously on the problem data.
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Numerical analysis: best approximation, interpolation, convergence

Step 3a. Convergence in H1

Proof.
The first part is proven by using Lemma 31 applied to Proposition 35,
which yields the first part of the assertion. The estimate is based on the
Céa lemma:

‖u − uh‖H1 ≤ C‖u − φh‖ ≤ C‖u − ihu‖H1 ≤ Ch|u|H2 = O(h).

In the last estimate, we used again Lemma 31.
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Numerical analysis: best approximation, interpolation, convergence

Step 3b. Convergence in L2

Corollary 35

We have
‖u − uh‖L2 ≤ Ch‖u′′‖L2 = Ch‖f ‖L2 = O(h).

Proof.
Follows immediately from

‖u − uh‖H1 ≤ Ch‖u′′‖L2 = Ch‖f ‖L2 ,

and then applying the Poincaré inequality to the left hand side term.

Remark 36
Here the L2 estimate seems to have order h. It can be shown with the
Aubin-Nitsche trick, that L2 is one order better than H1.
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Numerical tests and computational convergence
analysis

Checking programming code and convergence analysis for linear and
quadratic FEM:

Algorithm 37

Given a PDE problem. E.g. −∆u = f in Ω and u = 0 on the boundary
∂Ω.

1 Construct by hand a solution u that fulfills the boundary conditions.

2 Insert u into the PDE to determine f .

3 Use that f in the finite element simulation to compute numerically
uh.

4 Compare u − uh in relevant norms (e.g., L2,H1).

5 Check whether the desired h powers can be obtained for small h.
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Example

We demonstrate the previous algorithm for a 2D case in Ω = (0, π)2:

−∆u(x , y) = f in Ω,

u(x , y) = 0 on ∂Ω,

and we constuct u(x , y) = sin(x) sin(y), which fulfills the boundary
conditions (trivial to check! But please do it!). Next, we compute the
right hand side f :

−∆u = −(∂xxu + ∂yyu) = 2sin(x)sin(y) = f (x , y).
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2D Poisson: linear FEM

Level Elements DoFs h L2 err H1 err

=============================================================================

2 16 25 1.11072 0.0955104 0.510388

3 64 81 0.55536 0.0238811 0.252645

4 256 289 0.27768 0.00597095 0.126015

5 1024 1089 0.13884 0.00149279 0.0629697

6 4096 4225 0.06942 0.0003732 0.0314801

7 16384 16641 0.03471 9.33001e-05 0.0157395

8 65536 66049 0.017355 2.3325e-05 0.00786965

9 262144 263169 0.00867751 5.83126e-06 0.00393482

10 1048576 1050625 0.00433875 1.45782e-06 0.00196741

11 4194304 4198401 0.00216938 3.64448e-07 0.000983703

=============================================================================

• The elements are Ki , i = 0, . . . , n

• The DOFs represent the number of nodal points xi , i = 0, . . . , n + 1
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2D Poisson: quadratic FEM

Level Elements DoFs h L2 err H1 err

=============================================================================

2 16 81 1.11072 0.00505661 0.0511714

3 64 289 0.55536 0.000643595 0.0127748

4 256 1089 0.27768 8.07932e-05 0.00319225

5 1024 4225 0.13884 1.01098e-05 0.000797969

6 4096 16641 0.06942 1.26405e-06 0.000199486

7 16384 66049 0.03471 1.58017e-07 4.98712e-05

8 65536 263169 0.017355 1.97524e-08 1.24678e-05

9 262144 1050625 0.00867751 2.46907e-09 3.11694e-06

10 1048576 4198401 0.00433875 3.08687e-10 7.79235e-07

11 4194304 16785409 0.00216938 6.14696e-11 1.94809e-07

=============================================================================
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1D Poisson: linear FEM

We continue our studies for the 1D Poisson problem. As manufactured
solution we use

u(x) =
1

2
(−x2 + x),

on Ω = (0, 1) with u(0) = u(1) = 0. In the middle point, we have
u(0.5) = −0.125 (in theory and simulations). In the following table, we
plot the L2 and H1 error norms, i.e., ‖u − uh‖X with X = L2 and
X = H1, respectively.
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1D Poisson: linear FEM

Level Elements DoFs h L2 err H1 err

=============================================================================

1 2 3 0.5 0.0228218 0.146131

2 4 5 0.25 0.00570544 0.072394

3 8 9 0.125 0.00142636 0.0361126

4 16 17 0.0625 0.00035659 0.0180457

5 32 33 0.03125 8.91476e-05 0.00902154

6 64 65 0.015625 2.22869e-05 0.0045106

7 128 129 0.0078125 5.57172e-06 0.00225528

8 256 257 0.00390625 1.39293e-06 0.00112764

9 512 513 0.00195312 3.48233e-07 0.000563819

10 1024 1025 0.000976562 8.70582e-08 0.000281909

=============================================================================
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1D Poisson: linear FEM
• We compute the convergence order (recall the formula from lecture 03). Setting

for instance for the L2 error we have

P(h) = 1.39293e − 06

P(h/2) = 3.48233e − 07

P(h/4) = 8.70582e − 08.

Then:

α =
1

log(2)
log
(∣∣∣1.39293e − 06− 3.48233e − 07

3.48233e − 07− 8.70582e − 08

∣∣∣) = 1.99999696186957,

which is optimal convergence that confirm the a priori error estimates from
before.

• The octave code is:

alpha = 1 / log(2) * log(abs(1.39293e-06 - 3.48233e-07)

/ abs(3.48233e-07 - 8.70582e-08))

• For the H1 convergence order we obtain:

alpha = 1 / log(2) * log(abs(0.00112764 - 0.000563819)

/ abs(0.000563819 - 0.000281909))

= 1.00000255878430,

which is again optimal convergence and confirms the theory.
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Summary of lecture 08

• Finite elements in 1D: idea, construction, examples

• Error estimates allowing for the verification of practical results
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Contents

9 Practice of Finite Element Methods
Finite elements on a practical level
Numerical quadrature
Master element
Numerical solution of linear equation systems
Preconditioners
Numerical tests
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Finite elements on a practical level

Basic assembling

Algorithm 38 (Basic assembling - robust, but partly inefficient)

Let Ks , s = 0, . . . n be an element and let i and j be the indices of the
degrees of freedom (namely the basis functions). The basic algorithm to
compute all entries of the system matrix and right hand side vector is:

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n + 1

for all DoFs j with j = 0, . . . , n + 1

aij = aij +

∫
Ks

φ′i (x)φ′j(x) dx
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Basic assembling

Algorithm 39

For the right hand side, we have

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n + 1

bi = bi +

∫
Ks

f (x)φi (x) dx .

Remark 40
This algorithm is a bit inefficient since a lot of zeros are added. Knowing
in advance the polynomial degree of the shape functions allows to add an
if-condition to assemble only non-zero entries.
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Finite elements on a practical level

Basic assembling

• We illustrate the previous algorithm for a concrete example.

• Let us compute 1D Poisson on four support points xi , i = 0, 1, 2, 3, 4
that are equidistantly distributed yielding a uniform mesh size
h = xj − xj−1.

• The discrete space Vh is given by:

Vh = {φ0, φ1, φ2, φ3, φ4}, dim(Vh) = 5.

• The number of cells is #K = 4.
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Basic assembling

It holds furthermore:

z ∈ R5, A ∈ R5×5, b ∈ R5.

We start with s = 0, namely K0:

as=0
00 = a00 =

∫
K0

φ′0φ
′
0 =

1

h
, as=0

01 = a01 =

∫
K0

φ′0φ
′
1 = −1

h
,

as=0
02 = a02 =

∫
K0

φ′0φ
′
2 = 0,

as=0
03 = a03 =

∫
K0

φ′0φ
′
3 = 0,

as=0
04 = a04 =

∫
K0

φ′0φ
′
4 = 0.
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Basic assembling

• Similarly, we evaluate a1j , a2j , a3j , a4j , j = 0, . . . 4.

• Next, we increment s = 1 and work on cell K1. Here we again
evaluate all aij and sum them to the previously obtained values on
K0. Therefore the + = in the above algorithm.

• We also see that we add a lot of zeros when |i − j | > 1. For this
reason, a good algorithm first design the sparsity pattern and
determines the entries of A that are non-zero. This is clear due to
the construction of the hat functions and that they only overlap on
neighboring elements.
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Finite elements on a practical level

Basic assembling

After having assembled the values on all four elements Ks , s = 1, 2, 3, 4,
we obtain the following system matrix:

A =


∑

s a
s
00

∑
s a

s
01

∑
s a

s
02

∑
s a

s
03

∑
s a

s
04∑

s a
s
10

∑
s a

s
11

∑
s a

s
12

∑
s a

s
13

∑
s a

s
14∑

s a
s
20

∑
s a

s
21

∑
s a

s
22

∑
s a

s
23

∑
s a

s
24∑

s a
s
30

∑
s a

s
31

∑
s a

s
32

∑
s a

s
33

∑
s a

s
34∑

s a
s
40

∑
s a

s
41

∑
s a

s
42

∑
s a

s
43

∑
s a

s
44

 =
1

h


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1


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Basic assembling

To fix the homogeneous Dirichlet conditions, we can manipulate directly
the matrix A or work with a ‘constraint matrix’. We eliminate the entries
of the rows and columns of the off-diagonals corresponding to the
boundary indices; here i = 0 and i = 4. Then:

A =
1

h


1 0 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 0 1

 .

Correspondingly, the right hand side in the first and last row has to be
changed to

b0 =
1

h
u(0), b4 =

1

h
u(1)

Alternatively, one can eliminate z0 = u(0) and z4 = u(1) from the system
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Numerical quadrature

As previously stated, the arising integrals may easily become difficult such
that a direct integration is not possible anymore:

• Non-constant right hand sides f (x) and non-constant coefficients
α(x);

• Higher-order shape functions;

• Non-uniform step sizes, more general domains.
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Numerical quadrature

In modern FEM programs, Algorithm 38 is complemented by an
alterative evaluation of the integrals using numerical quadrature. The
general formula reads: ∫

Ω

g(x) ≈
nq∑
l=0

ωlg(ql)

with quadrature weights ωl and quadrature points ql . The number of
quadrature points is nq + 1.

Remark 41
The support points xi and ql do not need to be necessarily the same. For
Gauss quadrature, they are indeed different. For lowest-order
interpolatory quadrature rules (box, Trapez) they correspond though.
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Numerical quadrature

Numerical quadrature

We continue the above example by choosing the trapezoidal rule, which
in addition, should integrate the arising integrals exactly:∫

Ks

g(x) ≈ hs

nq∑
l=0

ωlg(ql)

where hs is the length of interval/element Ks , nq = 1 and ωl = 0.5. This
brings us to: ∫

Ks

g(x) ≈ hs
g(q0) + g(q1)

2
.

Applied to our matrix entries, we have on an element Ks :

aii =

∫
Ks

φ′i (x)φ′i (x) dx ≈ hs
2

(
φ′i (q0)φ′i (q0) + φ′i (q1)φ′i (q1)

)
.
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Numerical quadrature

For the right hand side, we for the case f = 1 we can use for instance the
mid-point rule:

1

hi

∫
Ki

φi (x) dx ≈ 1

hi
hiφi

(
xi + xi−1

2

)
= φi

(
xi + xi−1

2

)
.

Remark 42
If f = f (x) with an dependency on x , we should use a quadrature
formula that integrates the function f (x)φi (x) as accurate as possible.

Remark 43
It is important to notice that the order of the quadrature formula must
be sufficiently high since otherwise the quadrature error dominates the
convergence behavior of the FEM scheme.
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Numerical quadrature
We have now all ingredients to extend Algorithm 38:

Algorithm 44 (Assembling using the trapezoidal rule)

Let Ks , s = 0, . . . n be an element and let i and j be the indices of the
degrees of freedom (namely the basis functions). The basic algorithm to
compute all entries of the system matrix A and right hand side vector b
is:

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n + 1

for all DoFs j with j = 0, . . . , n + 1

for all quad points l with l = 0, . . . , nq

aij = aij + hsφ
′
i (ql)φ

′
j(ql)

where nq = 1. Here + = means that entries with the same indices are
summed. This is necessary because on all cells Ks we assemble again aij .
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Numerical quadrature

Algorithm 45 (Right-hand side)

for all elements Ks with s = 0, . . . , n

for all DoFs i with i = 0, . . . , n + 1

for all quad points l with l = 0, . . . , nq

bi = bi + hs f (ql)φi (ql)
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Master element

In practice, all integrals are transformed onto a master element (or
so-called reference element) and evaluated there. This has the
advantage that

• we only need to evaluate once all basis functions;

• numerical integration formulae are only required on the master
element;

• independence of the coordinate system. For instance quadrilateral
elements in 2D change their form when the coordinate system is
rotated.

The price to pay is to compute at each step a deformation gradient and a
determinant, which is however easier than evaluating all the integrals.
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Master element

• We consider the (physical) element K
(hi )
i = [xi , xi+1], i = 0, . . . n and

the variable x ∈ K
(hi )
i with and hi = xi+1 − xi .

• Without loss of generality, we work in the following with the first

element K
(h0)
0 = [x0, x1] and h = h0 = x1 − x0. The generalization to

s elements is briefly discussed later.

• The element K
(hi )
i is transformed to the master element (i.e., the

unit interval with mesh size h = 1) K (1) := [0, 1] with the local
variable ξ ∈ [0, 1].
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Master element

For the transformations, we work with the substitution rule. Here in 1D,
and in higher dimensions with the analogon. We define the mapping

Th : K (1) → K
(h0)
0

ξ 7→ Th(ξ) = x = x0 + ξ · (x1 − x0) = x0 + ξh.

While function values can be identified in both coordinate systems, i.e.,

f (x) = f̂ (ξ), f̂ defined in K (1),

derivatives will be complemented by further terms due to the chain rule
that we need to employ. Differentiation in the physical coordinates yields

d

dx
: 1 = (x1 − x0)

dξ

dx
⇒ dx = (x1 − x0) · dξ.
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Master element

• The volume (here in 1D: length) change can be represented by the
determinant of the Jacobian of the transformation:

J := x1 − x0 = h.

• These transformations follow exactly the way as they are known in
continuum mechanics.
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Master element
We now construct the inverse mapping

T−1
h : K

(h0)
0 → K (1)

x 7→ T−1
h (x) = ξ =

x − x0

x1 − x0
=

x − x0

h
,

with the derivative

∂xT
−1
h (x) = ξx =

dξ

dx
=

1

x1 − x0
.

A basis function ϕh
i on K

(h0)
0 reads:

ϕh
i (x) := ϕ1

i (T−1
h (x)) = ϕ1

i (ξ)

and for the derivative we obtain with the chain rule:

∂xϕ
h
i (x) = ∂ξϕ

1
i (ξ) · ∂xT−1

h (x) = ∂ξϕ
1
i (ξ) · ξx

with T−1
h (x) = ξ.
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Master element

Example 36

We provide two examples. Firstly:∫
Kh

f (x)ϕh
i (x) dx

Sub.
=

∫
K (1)

f (Th(ξ)) · ϕ1
i (ξ) · J · dξ, (76)

and secondly,∫
Kh

∂xϕ
h
i (x) ·∂xϕh

j (x) dx =

∫
K (1)

(
∂ξϕ

1
i (ξ)

)
·ξx ·

(
∂ξϕ

1
j (ξ)

)
·ξx ·J dξ. (77)
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Master element

We can now apply numerical integration using again the trapezoidal rule
and obtain for the two previous integrals:∫

Th

f (x)ϕh
i (x) dx

(76)
≈

q∑
k=1

ωk f (Fh(ξk))ϕ1
i (ξk) · J

and for the second example:∫
Th

∂xϕ
h
j (x)∂xϕ

h
i (x) dx ≈

q∑
k=1

ωk

(
∂ξϕ

1
j (ξk) · ξx

)
·
(
∂ξϕ

1
i (ξk) · ξx

)
· J.

Remark 46
These final evaluations can again be realized by using Algorithm 44, but
are now performed on the unit cell K (1).
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Generalization to s elements

We briefly setup the notation to evaluate the integrals for s elements:

• Let n be the index of the end point xn = b (b is the nodal point of
the right boundary). Then, n − 1 is the number of elements
(intervals in 1d), and n + 1 is the number of the nodal points
(degrees of freedom - DoFs) and the number shape functions,
respectively:

• K
(hs )
s = [xs , xs+1], s = 0, . . . n − 1.

• hs = xs+1 − xs ;

• Ts : K (1) → K
(hs )
s : ξ 7→ Ts(ξ) = xs + ξ(xs+1 − xs) = xs + ξhs ;

• T−1
s : K

(hs )
s → K (1) : x 7→ T−1

s (x) = x−xs
hs

;

• ∇T−1
s (x) = ∂xT

−1
s (x) = 1

hs
(in 1D);

• ∇Ts(ξ) = ∂xTs(ξ) = (xs + ξhs)′ = hs (in 1D);

• Js := det(∇Ts(ξ)) = (xs + ξhs)′ = hs (in 1D).
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Numerical solution of the arising linear equation
systems

Numerical solution of Az = b

292 / 331



PeC3 School on Numerical Modeling with Differential Equations

Practice of Finite Element Methods

Numerical solution of linear equation systems

Numerical solution

We provide some ideas how to solve the arising linear systems

Az = b

where
A ∈ Rn×n, z = (z1, . . . , zn)T ∈ Rn, b ∈ Rn.

when discretizing a PDE using finite differences or finite elements. We
notice that to be consistent with the previous notation, we assume that
the boundary points x0 and xn+1 are not assembled.
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Numerical solution

For a moderate number of degrees of freedom, direct solvers such as
Gaussian elimination, LU or Cholesky (for symmetric A) can be used.
More efficient schemes for large problems in terms of

• computational cost (CPU run time);

• and memory consumptions

are iterative solvers.

The reason is that Finite Element methods lead to sparse linear systems
due to the choice of basis functions

Illustrative examples of floating point operations and CPU times are
provided in Richter/Wick; 2017 [Pages 68-69, Tables 3.1 and 3.2].
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Problem with Direct solvers: Fill-In

O(n) (n − 1)n + 1 non-zeros

O(n) O(n)

Gauss: add

multiple of

first row to

eliminate

first column

better:

switch rows

and colums;

eliminate

lower row

elements
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Complexity for Various Solvers

Direct solvers d = 2 d = 3

Gaussian elimination (GEM) n3 n3

Banded GEM n2 n7/3

nested dissection ordering GEM n3/2 n2

Iterative solvers

Gauss-Seidel, Jacobi n2 n5/3

conjugate gradient, SOR n3/2 n4/3

multigrid n n
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Fixed-point schemes: Richardson, Jacobi,
Gauss-Seidel

A large class of schemes is based on so-called fixed point methods:

g(z) = z .

We provide in the following a brief introduction. Starting from

Az = b

we write
0 = b − Az

and therefore
z = z + (b − Az)︸ ︷︷ ︸

g(z)

.

Introducing a scaling matrix C (in fact C is a preconditioner) and an
iteration, we arrive at

zk = zk−1 + C (b − Azk−1).
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Fixed-point schemes: Richardson, Jacobi,
Gauss-Seidel

Summarizing, we have

Definition 37
Let A ∈ Rn×n, b ∈ Rn and C ∈ Rn×n. To solve

Az = b

we choose an initial guess z0 ∈ Rn and we iterate for k = 1, 2, . . .:

zk = zk−1 + C (b − Azk−1).

Please be careful that k does not denote the power, but the current
iteration index. Furthermore, we introduce:

B := I − CA and c := Cb.

Then:
zk = Bzk−1 + c .
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Thanks to the construction of

g(z) = Bz + c = z + C (b − Az)

it is trivial to see that in the limit k →∞, it holds

g(z) = z

with the solution
Az = b
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Definition 38 (Richardson iteration)

The simplest choice of C is the scaled identity matrix, i.e.,

C = ωI .

Then, we obtain the Richardson iteration

zk = zk−1 + ω(b − Azk−1)

with a relaxation parameter ω > 0.
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Further schemes require more work and we need to decompose the
matrix A first:

A = L + D + U.

Here, L is a lower-triangular matrix, D a diagional matrix, and U an
upper-triangular matrix. In more detail:

A =


0 . . . 0

a21

. . .

...
. . .

. . .

an1 . . . an,n−1 0


︸ ︷︷ ︸

=:L

+


a11 . . . 0

. . .

. . .

0 . . . ann


︸ ︷︷ ︸

=:D

+


0 a12 . . . a1n

. . .
. . .

...

. . . an−1,n

0 . . . 0


︸ ︷︷ ︸

=:U

.
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With this, we can now define two very important schemes:

Definition 39 (Jacobi method)

To solve Az = b with A = L + D + R let z0 ∈ Rn be an initial guess. We
iterate for k = 1, 2, . . .

zk = zk−1 + D−1(b − Azk−1)

or in other words J := −D−1(L + R):

zk = Jzk−1 + D−1b.
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Definition 40 (Gauß-Seidel method)

To solve Az = b with A = L + D + R let z0 ∈ Rn be an initial guess. We
iterate for k = 1, 2, . . .

zk = zk−1 + (D + L)−1(b − Azk−1)

or in other words H := −(D + L)−1R:

zk = Hzk−1 + (D + L)−1b.
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Theorem 41 (Index-notation of the Jacobi- and Gauß-Seidel
methods)

One step of the Jacobi method and Gauß-Seidel method, respectively,
can be carried out in n2 + O(n) operations (for full A). For each step, in
index-notation for each entry it holds:

zki =
1

aii

bi −
n∑

j=1,j 6=i

aijz
k−1
j

 , i = 1, . . . , n,

i.e., (for the Gauss-Seidel method):

zki =
1

aii

bi −
∑
j<i

aijz
k
j −

∑
j>i

aijz
k−1
j

 , i = 1, . . . , n.

However, for sparse matrices the work is only O(n)! 304 / 331
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Gradient descent

An alternative class of methods is based on so-called descent or
gradient methods, which further improve the previously introduced
methods. So far, we have:

zk+1 = zk + dk , k = 1, 2, 3, . . .

where dk denotes the direction in which we go at each step. For
instance:

dk = D−1(b − Azk), dk = (D + L)−1(b − Azk)

for the Jacobi and Gauss-Seidel methods, respectively.
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To improve these kind of iterations, we have two possiblities:

• Introducing a relaxation (or so-called damping) parameter ωk > 0
(possibly adapted at each step) such that

zk+1 = zk + ωkdk ,

and/or to improve the search direction dk such that we reduce the
error as best as possible.

• We restrict our attention to positive definite matrices as they appear
in the discretization of elliptic PDEs without first-order terms
studied previously in this section.

• A key point is another view on the problem by regarding it as a
minimization problem for which Az = b is the first-order necessary
condition and consequently the sought solution.

• Imagine for simplicity that we want to minimize f (z) = 1
2az

2 − bz .
The first-order necessary condition is nothing else than the derivative
f ′(z) = az − b.

306 / 331



PeC3 School on Numerical Modeling with Differential Equations

Practice of Finite Element Methods

Numerical solution of linear equation systems

Gradient descent

We find a possible minimum via f ′(z) = 0, namely

az − b = 0 ⇒ z = a−1b, if a 6= 0.

That is exactly the same how we would solve a linear matrix system
Az = b. By regarding it as a minimum problem we understand better the
purpose of our derivations: How does minimizing a function f (z) work in
terms of an iteration? Well, we try to minimize f at each step k:

f (z0) > f (z1) > . . . > f (zk)

This means that the direction dk (to determine zk+1 = zk + ωkdk)
should be a descent direction.
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Gradient descent

This idea can be applied to solving linear equation systems. We first
define the quadratic form

Q(y) =
1

2
(Ay , y)2 − (b, y)2,

where (·, ·) is the Euclidian scalar product.
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Algorithm 47 (Descent method - basic idea)

Let A ∈ Rn×n be positive definite and z0, b ∈ Rn. Then for
k = 0, 1, 2, . . .

• Compute dk ;

• Determine ωk as minimum of ωk = argmin Q(zk + ωkdk);

• Update zk+1 = zk + ωkdk .

For instance dk can be determined via the Jacobi or Gauss-Seidel
methods.
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Algorithm 48 (Gradient descent)

Let A ∈ Rn×n positive definite and the right hand side b ∈ Rn. Let the
initial guess be z0 ∈ R and the initial search direction d0 = b − Az0.
Then k = 0, 1, 2, . . .

• Compute the vector rk = Adk ;

• Compute the relaxation

ωk =
‖dk‖2

2

(rk , dk)2

• Update the solution vector zk+1 = zk + ωkdk .

• Update the search direction vector dk+1 = dk − ωk rk .

One can show that the gradient method converges to the solution of the
linear equation system Az = b.
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In order to enhance the performance of gradient descent, the conjugate
gradient (CG) scheme was developed. Here, the search directions
{d0, . . . , dk−1} are pairwise orthogonal. The measure of orthogonality is
achievend by using the A scalar product:

(Ad r , d s) = 0 ∀r 6= s

At step k , we seek the approximation zk = z0 +
∑k−1

i=0 αid
i as the

minimum of all α = (α0, . . . , αk−1) with respect to Q(zk):

min
α∈Rk

Q

(
z0 +

k−1∑
i=0

αid
i

)
=

min
α∈Rk

{
1

2

(
Az0 +

k−1∑
i=0

αiAd
i , z0 +

k−1∑
i=0

αid
i

)
−

(
b, z0 +

k−1∑
i=0

αid
i

)}
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CG: conjugate gradients

The stationary point is given by

0
!

=
∂

∂αj
Q(zk) =

(
Az0 +

k−1∑
i=0

αiAd
i , d j

)
− (b, d j) = −

(
b − Azk , d j

)
,

j = 0, . . . , k − 1.

Therefore, the new residual b − Azk is perpendicular to all search
directions d j for j = 0, . . . , k − 1. The resulting linear equation system

(b − Azk , d j) = 0 ∀j = 0, . . . , k − 1 (78)

has the feature of Galerkin orthogonality, which we know as property of
FEM schemes.
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While constructing the CG method, new search directions should be
linearly independent of the current d j . Otherwise, the space would not
become larger and consequently, the approximation cannot be improved.

Definition 42 (Krylov space)

We choose an initial approximation z0 ∈ Rn with d0 := b − Az0 the
Krylov space Kk(d0,A) such that

Kk(d0,A) := span{d0,Ad0, . . . ,Ak−1d0}.

Here, Ak means the k-th power of A.
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Algorithm 49

Let A ∈ Rn×n symmetric positive definite and z0 ∈ Rn and
r0 = d0 = b − Az0 be given. Iterate for k = 0, 1, . . . :

1 αk = (rk ,dk )
(Adk ,dk )

2 zk+1 = zk + αkd
k

3 rk+1 = rk − αkAd
k

4 βk = (rk+1,Adk )
(dk ,Adk )

5 dk+1 = rk+1 − βkdk

Without round-off errors, the CG scheme yields after (at most) n steps
the solution of a n-dimensional problem and is in this sense a direct
method rather than an iterative scheme. However, in practice for huge n,
the CG scheme is usually stopped earlier, yiedling an approximate
solution.
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Proposition 50 (Convergence of the CG scheme)

Let A ∈ Rn×n be symmetric positive definite. Let b ∈ Rn a right hand
side vector and let z0 ∈ Rn be an initial guess. Then:

‖zk − z‖A ≤ 2

(√
κ− 1√
κ+ 1

)k

‖z0 − z‖A, k ≥ 0,

with the spectral condition κ = cond2(A) of the matrix A.
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CG: conjugate gradients

Remark 51
We see immediately that a large condition number κ→∞ yields

√
κ− 1√
κ+ 1

→ 1

and deteriorates significantly the convergence rate of the CG scheme.
This is the key reason why preconditioners of the form P−1 ≈ A−1 are
introduced that re-scale the system:

P−1A︸ ︷︷ ︸
≈I

z = P−1b.

Computations to substantiate these findings are provided later.
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Preconditioning reformulates the original system with the goal of
obtaining a moderate condition number for the modified system. Let
P ∈ Pn×n be a matrix with

P = KKT .

Then:
Az = b ⇔ K−1A(KT )−1︸ ︷︷ ︸

=:Ã

KT z︸︷︷︸
=:z̃

= K−1b︸ ︷︷ ︸
=:b̃

,

which is
Ãz̃ = b̃.

In the case of
cond2(Ã)� cond2(A)

and if the application of K−1 is cheap, then the consideration of a
preconditioned system Ãz̃ = b̃ yields a much faster solution of the
iterative scheme. The condition P = KKT is necessary such that the
matrix Ã keeps its symmetry.
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We seek P such that
P ≈ A−1.

On the other hand
P ≈ I ,

such that the construction of P is not too costly. Obviously, these are
two conflicting requirements.
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The preconditioned CG scheme (PCG) can be formulated as:

Algorithm 52

Let A ∈ Rn×n symmetric positive definite and P = KKT a symmetric
preconditioner. Choosing an initial guess z0 ∈ Rn yields:

1 r0 = b − Az0

2 Pp0 = r0

3 d0 = p0

4 For k = 0, 1, . . .

1 αk = (rk ,dk )

(Adk ,dk )

2 zk+1 = zk + αkd
k

3 r k+1 = r k − αkAd
k

4 Ppk+1 = r k+1

5 βk = (rk+1,pk+1)

(rk ,gk )

6 dk+1 = pk+1 + βkd
k
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Numerical tests

Poisson problem in 2D and 3D on the unit square with force f = 1.
We use as solvers:

• CG

• PCG with SSOR preconditioning and ω = 1.2

• GMRES

• GMRES with SSOR preconditioning and ω = 1.2

• BiCGStab

• BiCGStab with SSOR preconditioning and ω = 1.2
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The tolerance is chosen as TOL = 1.0e − 12. We also run on different
mesh levels in order to show the dependency on n.

Dimension Elements DoFs CG PCG GMRES GMRES prec. BiCGStab BiCGStab prec.
==================================================================================
2 256 289 23 19 23 18 16 12
2 1024 1089 47 33 83 35 33 21
2 4096 4225 94 60 420 78 66 44
----------------------------------------------------------------------------------
3 4096 4913 25 19 25 21 16 11
3 32768 35937 51 32 77 38 40 23
3 262144 274625 98 57 307 83 69 46
==================================================================================
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Summary of lecture 09

• Finite elements in 1D on a practical level

• Numerical integration

• Master element

• Numerical solution: direct and iterative

• Some numerical examples showing the performance of various solvers
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Exercise 4

This exercise is a continuation of Exercise 3. We are again given the
following problem: Let α ∈ R and the interval Ω = (0, 1): Find
u : Ω→ R such that

−αu′′(x) = f in Ω

u(0) = u(1) = 0

and α = 1 and the right hand side f = −a with a > 0.
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1 Implement P2 finite elements to solve the above problem. Please
first recapitulate quadratic shape functions for yourself by hand.

2 Go into the code and implement the necessary modifications.

3 Implement a numerical quadrature rule in order to evaluate locally
the integrals.

4 Check your code using your ‘physical intuition’. This means, does
the code deliver results that are ‘similar’ to those from yesterday?
Hint: On purpose we do not perform a rigorous computational
convergence analysis in this exercise because in 1D the finite
element method is actually ‘too simple’ and would yield for
point-wise errors exactly zero.
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• First we define the discrete space:

Vh = {v ∈ C [0, 1]| v |Kj ∈ P2}
The space Vh is composed by the basis functions:

Vh = {φ0, . . . , φn+1, φ 1
2
, . . . , φn+ 1

2
}.

• The dimension of this space is dim(Vh) = 2n + 1.
• The mid-points represent degrees of freedom as the two edge points.

For instance on each Kj = [xj , xj+1] we have as well xj+ 1
2

= xj + h
2 ,

where h = xj+1 − xj .
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Definition 43 (P2 shape functions)

On the element K (1) (unit element), we have

φ0(ξ) = 1− 3ξ + 2ξ2,

φ 1
2
(ξ) = 4ξ − 4ξ2,

φ1(ξ) = −ξ + 2ξ2.

These basis functions fulfill the property:

φi (ξj) =

{
1 i = j

0 i 6= j

for i , j = 0, 1
2 , 1. On the master element, a function has therefore the

presentation:

u(ξ) =
1∑

j=0

ujφj(ξ) + u 1
2
φ 1

2
(ξ).
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Exercise 4: Hints to quadratic finite elements
Using these three shape functions we can now evaluate

Ai,j =

∫ 1

0

φ′iφ
′
j dx

and

bj =

∫ 1

0

(−a)φj dx

with the Simpson rule to obtain the local stiffness matrix

A =
1

h

 7 −8 1
−8 16 −8
1 −8 7


and the local right hand side

b =
h

6
(−a,−4a− a)T

327 / 331



PeC3 School on Numerical Modeling with Differential Equations

Conclusions, online materials, end

Conclusions

• Numerical methods for ODEs (Classes 1-4): finite differences of low-
and higher-order

• Galerkin weak formulation for ODEs (Class 5)

• Numerical methods for PDEs (Classes 6-9) based on Galerkin finite
elements

• We touched the three ingredients of scientific computing:

1 Mathematical modeling
2 Design and analysis of numerical schemes
3 Implementation and software design of the developed algorithms

• Specifically, we performed computational analyses by substantiating
the theory with the help of numerical tests.

• Use existing open-source software! There are many packages
available, e.g.
• www.dealii.org

• www.dune-project.org
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Online materials

The materials presented in this spring school are collected here:

https:

//cloud.ifam.uni-hannover.de/index.php/s/Cwe4ZqwLRMixS3J

with the password that is known to you.
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Upcoming: Cusco
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The End

Thanks for the active participating in this PeC3 School on Numerical
Modelling with Differential Equations !

Final questions ?

Peter Bastian
https://conan.iwr.uni-heidelberg.de/

Peter.Bastian@iwr.uni-heidelberg.de

Thomas Wick
https://www.ifam.uni-hannover.de/wick

thomas.wick@ifam.uni-hannover.de
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