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Abstract

The exact and numerical solution of integral equations taking the form
λx(s)−

∫∞
−∞ v(s, t)x(t) dt = y(s) in certain weighted subspaces Xw of the

spaceX := BC(R) (of bounded and continuous functions over R) is stud-
ied. Here, Xw denotes the weighted space of all functions x ∈ X satisfy-
ing |w(s)x(s)| = O(1) as |s| → ∞, for some weight function w ≥ 1. The
kernel v is assumed to satisfy the simple condition |v(s, t)| ≤ |κ(s − t)|,
for some κ ∈ L1(R).

Conditions on v and w are obtained, which ensure that the integral op-
erator K in above equation is bounded on X and Xw. These conditions
are then strengthened to imply the equivalence of the spectrum (and es-
sential spectrum) of K on X and Xw as well as several other statements
about the solvability of the above integral equation.

Similar boundedness and spectral results are shown for the operatorsKN

arising from suitable quadrature approximations of the integral op-
erator K. Nyström/product integration and finite section methods are
studied and it is shown that, under certain conditions, whenever a
method is stable on X it is also stable on Xw, with equivalence holding
in many cases. Error estimates in the norm of Xw are given.

The class of kernels considered is large and contains, in particular, all
kernels of the form v(s, t) = κ(s− t), κ ∈ L1(R), leading to convolution
or Wiener-Hopf equations. Special emphasis is laid on families of kernels
of the form v(s, t)k(s, t) or κ(s − t)k(s, t), with k varying in a bounded
and equicontinuous subset W of BC(R2), for which the stability results
hold uniformly in k ∈W .

As an application, numerical methods for a family of kernels v with weak
logarithmic singularity are analysed. For these methods, stability and
convergence results in certain weighted spaces are obtained. The kernels
considered arise, e.g., in boundary integral equations for rough surface
scattering problems over unbounded domains, which are studied as prac-
tical examples. For a combined Nyström and finite section method, novel
error estimates are obtained for the case of a point source.

Keywords: integral equations, Nyström method, weighted spaces



Zusammenfassung

Die exakte und numerische Lösbarkeit von Integralgleichungen der Form
λx(s) −

∫∞
−∞ v(s, t)x(t) dt = y(s) in gewichteten Unterräumen Xw des

Raumes X := BC(R) (der stetigen und beschränkten Funktionen über
R) wird untersucht. Dabei ist Xw ⊂ X der Gewichtsraum aller Funk-
tionen x ∈ X, die der Bedingung |w(s)x(s)| = O(1), |s| → ∞, für eine
Gewichtsfunktion w ≥ 1 genügen. Ferner wird angenommen, dass der
Kern v die einfache Bedingung |v(s, t)| ≤ |κ(s − t)| für ein κ ∈ L1(R)
erfüllt.

Es werden Anforderungen an v und w formuliert, die hinreichend dafür
sind, dass der Integraloperator K in obiger Gleichung beschränkt auf
X und Xw ist. Diese Bedingungen werden so verstärkt, dass sie die
Übereinstimmung des Spektrums (wesentlichen Spektrums) von K auf
X und Xw implizieren und weitere Aussagen über die Lösbarkeit obiger
Integralgleichung angegeben werden können.

Ähnliche Beschränktheits- und Spektralergebnisse ergeben sich für die
Operatoren KN , die durch geeignete Quadraturapproximation des Inte-
graloperators K entstehen. Nyström-/Produktintegrations- und Reduk-
tionsverfahren (finite section methods) werden untersucht und es wird
gezeigt, dass unter bestimmten Bedingungen die Stabilität auf X die
Stabilität auf Xw impliziert und in vielen Fällen sogar Äquivalenz gilt.
Fehlerschranken in den gewichteten Normen werden angegeben.

Die Klasse der betrachteten Kerne ist umfangreich und beinhaltet ins-
besondere sämtliche Kerne der Form v(s, t) = κ(s−t), κ ∈ L1(R), die auf
Faltungsgleichungen bzw. Wiener-Hopf-Gleichungen führen. Ein beson-
derer Schwerpunkt liegt auf Familien von Kernen der Form v(s, t)k(s, t)
oder κ(s − t)k(s, t), wobei k in einer beschränkten und gleichstetigen
Teilmenge W von BC(R2) variiert; die Stabilitätsresultate gelten dann
gleichmäßig für k ∈W .

Als Anwendung werden numerische Verfahren für eine spezielle Familie
von Kernen v mit schwacher logarithmischer Singularität analysiert, für
die Stabilität in bestimmten Gewichtsräumen gezeigt wird. Die betrach-
teten Kerne ergeben sich u.a. bei der Randintegralmethode für Streu-
probleme mit unbeschränkten Oberflächen, auf die besonders eingegan-
gen wird. Für ein kombiniertes Nyström- und Reduktionsverfahren wer-
den im Falle einer punktförmigen Quelle neuartige Fehlerabschätzungen
angegeben.

Schlagwörter: Integralgleichungen, Nyströmverfahren, Gewichtsräume
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Chapter 1

Introduction

The focus of this thesis is on the theoretical and numerical solution of Fredholm integral equations of
the second kind over unbounded domains, which take the following general form:

λx(s)−
∫

Ω

v(s, t)x(t) dt = y(s), s ∈ Ω, (1.1)

where the domain of integration Ω is one of the sets R or R+. In operator notation, (1.1) is written as

λx−Kx = y. (1.2)

Our study is centered around the investigation of (1.2) in the following class of weighted subspaces
of X := BC(Ω) (the space of all bounded and continuous functions over Ω, equipped with the uniform
norm ‖z‖ := sups∈Ω |z(s)|): For an even weight function w : R → R satisfying

w(0) = 1, w(s) ≥ w(t) for s ≥ t ≥ 0, lim
s→∞

w(s) = ∞, (1.3)

we let Xw denote the weighted subspace {x ∈ X : ‖x‖w := ‖xw‖ < ∞} of X. Xw is a Banach space
when equipped with the norm ‖ · ‖w.

We will show that many spectral properties of the operator K and suitable discretizations, obtained
by quadrature methods, are essentially the same on X and Xw. Moreover, we will prove that, for a
wide range of Nyström/finite section methods, stability on X is sufficient for stability to hold also on
Xw, with equivalence holding for many Nyström methods. If stability holds, we provide estimates for
the resulting error when y is contained in Xw.

Integral equations in weighted spaces

Since the ground-breaking work of Fredholm and Riesz at the beginning of the 20th century, second-
kind Fredholm integral equations over finite and infinite intervals have been of continuing interest to
mathematicians (see [11] for a historical account of the theory). A part of their importance stems from
the fact that many problems in physics, electromagnetics and mechanics lead to such equations; the
list of examples is long, and we refer the reader to [39, 41, 54, 29] and the references therein. Indeed,
the reformulation of partial differential equations as boundary integral equations (see, e.g. [28]), in
particular for the Helmholtz equation in two dimensions, is a rich source of practical applications for
the results we present in this thesis (see, e.g., [25, 6, 23]; [27, 53] provide an introduction).

For second-kind integral equations over a bounded interval [a, b] of the real-line, with the integral
operator being compact on a suitable function space, the theory is mostly complete, with the Fredholm
alternative theorem and the Riesz-Schauder theory being the most prominent and useful theoretical tools
(see, e.g. [40]). From 1950 onwards, much effort was devoted to the development and analysis of suitable
numerical methods for solving such equations, some of the most outstanding examples being Galerkin,
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Introduction 2

Nyström, product integration, projection and degenerate kernel methods. An excellent overview of
these can be found in the monograph [10] of Atkinson. In the preface of this book we are also informed
that “this work is nearing a stage in which there will be few major additions to the theory”.

However, if, as in (1.1), the domain of the integral equation is unbounded, we usually lose compact-
ness of the integral operator K and the analysis of the numerical methods mentioned above requires
much more subtlety than in the case of a finite interval.

The most prominent and well-studied examples of integral equations with a non-compact K are
those in which the integral operator is a convolution operator, i.e.

v(s, t) = κ(s− t), s ∈ Ω, a.e. t ∈ Ω, (1.4)

holds, for some κ ∈ L1(R). In this case (1.1) is called a convolution (Ω = R) or Wiener-Hopf (Ω = R+)
integral equation:

λx(s)−
∫

Ω

κ(s− t)x(t) dt = y(s), s ∈ Ω. (1.5)

The solvability of equation (1.5) is usually studied by Fourier transform methods, which give explicit
expressions for the spectrum and essential spectrum of the operator K. The essential results for Lp-
spaces, 1 ≤ p ≤ ∞, and BC(Ω) can be found in [40] (we also mention the recent survey [12], an
up-to-date overview of the Lp-theory for 1 < p < ∞ for Wiener-Hopf operators with discontinuous
symbols, arising when κ is not in L1(R)).

Throughout this thesis, we will consider a much more general class of kernels. Let us make this
precise: Our first pair of standing hypotheses on v are simple regularity conditions (Assumptions (A)
and (B) on page 17), which ensure that the integral operator K is bounded on X. The main restriction
on v throughout most of this thesis is that it is bounded by a convolution kernel, i.e. that

|v(s, t)| ≤ |κ(s− t)|, s ∈ Ω, a.e. t ∈ Ω, (1.6)

holds, for some κ ∈ L1(Ω).
Until the last decade, not much was known about the solvability of (1.1) in this general setting.

However, in a series of papers [17, 24, 26], Chandler-Wilde et al. developed a solvability theory for (1.1).
The key idea in these papers is not to consider a single operator K, which on its own has insufficient
properties, but to consider a whole family of operators {Kk : k ∈ W}. Here W is a set of functions
k ∈ L∞(R2) and Kk denotes the integral operator in (1.1), but with v(s, t) replaced by v(s, t)k(s, t). It
is assumed that W possesses certain translation invariance properties and is such that the operators Kk

enjoy sequential collective compactness in a weaker topology than the norm topology of X. One of the
results obtained is that if λ−Kk is injective, for all k ∈W , then also λ−Kk is surjective, for all k ∈W ,
and the inverses (λ−Kk)−1 are uniformly bounded in k ∈W (for a single, compact operator K on X,
this is a well-known consequence of the Riesz-Schauder theory).

The arguments used to prove this result are a substantial generalisation of the previous analysis of
Anselone and Sloan [9, 2, 3] for the Wiener-Hopf case. The key element of the theory in [3, 17, 24, 26]
is the consideration that the operators Kk, while not being compact on X, still enjoy sequentially
compactness in a weaker topology, namely, the strict topology of Buck [14]. In this text, we will also
often employ this topology and similar arguments as in [3, 17, 24, 26].

Against this background, the first aim of this thesis is now to relate the solvability of (1.1) on X to
its solvability on the weighted space Xw. After reviewing fundamental concepts and introducing some
notation in Chapters 2 and 3, we commence this analysis in Chapter 4, beginning with the special case
when Ω = R+, i.e. when (1.1) is a equation on the half-line.

As a prerequisite, we establish general conditions on v and w, which ensure that K : Xw → Xw and
is bounded. For kernels and weight functions which satisfy slightly stronger conditions, precisely

(E′) sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt→ 0, as A→∞,
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and

(F ′)
w(s+ 1)
w(s)

→ 1, as s→∞,

we obtain the much stronger result that the spectra of K on X and Xw coincide and that the same
holds for the essential spectrum, in symbols

ΣX(K) = ΣXw(K), Σe
X(K) = Σe

Xw
(K). (1.7)

With regard to the integral equation (1.1) the first of these equalities implies that the equation (1.1)
has an unique solution x ∈ X for every y ∈ X if and only if it has an unique solution x ∈ Xw for every
y ∈ Xw.

Sufficient (and easier to check) conditions on v and w for (E′) and (F ′) to hold and several examples
are given in Section 4.4. In particular, we show that if v satisfies (1.4), for some κ ∈ L1(R), and y ∈ X
is a function such that lims→∞ y(s) = 0, then we can always construct a weight function w satisfying
our main assumptions and such that y ∈ Xw. As an application of this construction we further establish
that the spectra of K on X and X0 coincide, where X0 is the subspace of X consisting of those x ∈ X
vanishing at infinity.

Our study continues earlier investigations in [56] (see also the monograph [57] and [62]) which
consider primarily the case w(s) = (1 + s)r for some r ∈ R. In [57, 56, 62] it is shown, using Banach
algebra techniques, that in the Wiener-Hopf case, v(s, t) = κ(s− t), it holds that K ∈ B(Xw) if∫ ∞

−∞
(1 + |t|)r|κ(t)| dt <∞ (1.8)

and that if (1.8) holds then

Σe
Xw

(K) = Σe
X(K) = {κ̂(ξ) : ξ ∈ R} ∪ {0} (1.9)

and
ΣXw(K) = ΣX(K) = Σe

X(K) ∪ {λ ∈ C : [arg(λ− κ̂(ξ))]∞−∞ 6= 0}, (1.10)

where κ̂ is the Fourier transform of κ,

κ̂(ξ) =
∫ ∞

−∞
κ(t)eiξt dt, ξ ∈ R. (1.11)

In [43] (see also [42]) Karapetiants and Samko provide results for convolution kernels which include
the result of [56] as a special case, based on a demonstration that K −Kw is compact on X, where Kw

is defined as the integral operator K, but with v replaced by the kernel vw(s, t) := (w(s)/w(t))κ(s− t).
In both [56] and [43] it is shown that the condition (1.8) guarantees that K is a bounded operator

not just on Xw but also on the corresponding weighted Lp space, 1 ≤ p ≤ ∞, and that (1.9) and (1.10)
hold with X and Xw replaced by Lp(R+) and the corresponding weighted Lp space.

In a series of papers [18, 20, 7] the case when v satisfies (1.6) is considered, with w(s) = (1 + s)p for
some p > 0 (so that w satisfies the conditions (1.3)). It is shown that if

κ(s) = O(s−q), s→∞, (1.12)

for some q > 1 then K ∈ B(Xw) and (1.7) holds for 0 < p ≤ q. A key component of the argument is the
consideration, as in Samko [43], of properties of K−Kw. In the limiting case when p = q, K−Kw may
not be compact but is a sufficiently well-behaved operator to proceed by somewhat similar arguments
to the case when K−Kw is compact. We point out that for many applications the condition that (1.12)
holds for some q > 1 with q ≥ p is a much less onerous condition than (1.8). In particular, in the case
that |κ(s)| ∼ as−q as s → ∞, for some a > 0, in which case necessarily q > 1 given that κ ∈ L1(R),
the results of [57] and [43] give that K ∈ B(Xw) and (1.7) holds for 0 < p ≤ q, while (1.8) holds with
r = p, and so the theory of [57] and [43] applies only if |p| < q − 1.
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We also mention a paper [59] by Rejto and Taboada in which linear Volterra integral equations
are considered (see also [60] for the non-linear case). Such equations are a special case of (1.1) when
v(s, t) = 0 for 0 < s < t. It is shown in [59] that if w is a positive and continuous weight function and
a certain boundedness condition, similar to our condition (4.7) in Chapter 4, is satisfied then K has
zero spectral radius on Xw. This result is proved by constructing the inverse of λ −K, λ 6= 0, on the
weighted space with the aid of Neumann series, a technique that works well for Volterra equations but
fails for most Fredholm equations.

In the Wiener-Hopf case the conditions we impose on k to obtain that K ∈ B(Xw) and the main
results (1.7) are, for many weight functions w, both necessary and sufficient. For example, consider the
particular weight function

w(s) = exp(asα)(1 + s)p
(
ln(e+ s)

)q
, s ∈ R+, (1.13)

and suppose that the constants α ∈ (0, 1), a ≥ 0, p, q ∈ R are such that (1.3) holds and
∫∞
0
w−1(s) ds

is finite. Then the results we obtain imply for the Wiener-Hopf case v(s, t) = κ(s− t), with κ ∈ L1(R),
that a necessary and sufficient condition for K ∈ B(Xw) is

w(s)
∫ s+1

s

|κ(t)| dt = O(1), s→∞. (1.14)

Moreover this condition ensures the spectral equalities (1.7) hold. In the more general case that the
kernel v satisfies (A′) and (B) with κ ∈ L1(R), it remains true that (1.14) also ensures that K ∈ B(Xw)
and (1.7) hold.

Chapter 4 can be considered in large part as an attempt to sharpen and generalise the results and
methods of argument of [18, 20, 7], establishing large classes of kernels v and weight functions w for
which K ∈ B(Xw) and (1.7) holds. The special case referred to above for the weight function (1.13)
contains many of the results of [18, 20, 7]. For the weight w(s) = (1 + s)r with r > 1 and the Wiener-
Hopf case v(s, t) = κ(s − t), the general results of this chapter show that K ∈ B(Xw) if and only if∫ s+1

s

|κ(t)| dt = O(s−r), s→∞. (1.15)

This condition does not imply that K−Kw is compact but, nevertheless, ensures that (1.7) holds. Note
that (1.15) is a considerably weaker condition than (1.8).

We also prove that, under the same assumptions on v and w, equivalences for semi-Fredholmness
corresponding to (1.7) hold, i.e. λ−K is semi-Fredholm on X if and only if λ−K is semi-Fredholm on
Xw, in which case the indices of both operators coincide.

Throughout most of Chapter 4, we restrict our attention to the case when K is an integral operator
on the half-line, i.e. Ω = R+. In Section 4.5 we then show how our conditions may be generalised to
obtain similar results for the real line case when Ω = R.

The weighted space results we present for the equation (1.1) have numerous theoretical and practical
applications. We show under assumption (1.6) the interesting result that if λ −K is Fredholm on X
then necessarily the null space of λ−K on X is contained in the intersection of the spaces Xw, where
w runs through the (non-empty) set of weight functions w satisfying (1.3), (E′) and (F ′).

Some of the results presented in Chapter 4 have recently found an important application in the
analysis of the finite section method for integral equations on the real line of the form

x(s)−
∫ ∞

−∞
κ(s− t)z(t)x(t) dt = y(s), s ∈ R, (1.16)

with κ ∈ L1(R), z ∈ L∞(R). Let xA denote the approximation to x obtained when (1.16) is solved with
the range of integration reduced to [−A,A]. Then, using the results of Section 4.5 it is shown in [21]
that, under certain conditions on z,

|x(s)− xA(s)| ≤ C

(
1

w(s−A)
+

1
w(s+A)

)
ess. sup
|s|≥A

|z(s)x(s)|, |s| ≤ A, (1.17)
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where C is a constant (depending only on κ and z) and w is a weight function, which can be specified
in terms of κ.

Our results on the equivalence of spectra between X and Xw can also be exploited to shed light
on the equivalence of spectra for other spaces. In particular, using the denseness of Xw in L1(R+)
if
∫∞
0
w−1(s)ds < ∞, it is possible to draw conclusions about the spectrum of K as an operator on

Lp(R+), for p = 1, and then, by interpolation, for 1 < p < ∞. See [8] for results in this direction for
the case when (1.6) holds with |κ(s)| = O(|s|−q) as |s| → ∞.

We remark that an earlier, less extensive version of Chapter 4 has been submitted for publication
in [19], with Prof. Dr. Simon Chandler-Wilde as co-author.

Nyström/product integration and finite section methods in weighted spaces

The literature on the numerical solution of (1.1) when K is not compact is extensive. However, the vast
majority of this literature (see, e.g. [3, 4, 32, 36, 48] and the references therein) is restricted to the case
when Ω = R+ and v is a Wiener-Hopf kernel, i.e. (1.4) holds. In some publications the slightly more
general case when K is a compact perturbation of a Wiener-Hopf operator is considered [15, 1, 57].

In the Wiener-Hopf case, general results on stability and optimal convergence orders of Galerkin,
collocation and Nyström quadrature methods using piecewise polynomial basis functions have been
established [1, 15, 32, 31, 36]. In particular, provided a suitably graded mesh is used and the solution
belongs to appropriate weighted Sobolev spaces, with sufficiently many derivatives decaying exponen-
tially at infinity, one obtains in the Lq-norm (1 ≤ q ≤ ∞) the same (polynomial) rates of convergence
that occur when the methods are applied to equations on finite intervals. In [33], even exponential
convergence is obtained using h-p-spline approximation methods.

However, the results that have been obtained to date are in a number of respects unsatisfactory:

1. In many applications the requirement is to compute x with small relative error on the whole
domain. If x vanishes at infinity, estimates in the Lq-norm say nothing about the size of the
relative error when s is large.

2. In those papers where quantitative error estimates are obtained for the numerical solution of (1.5)
(or a compact perturbation) it is invariably assumed that κ and sufficiently many of its deriva-
tives vanish exponentially towards infinity. To our knowledge, the case when κ exhibits only a
polynomial rate of decay (arising in many applications, particularly in scattering theory [23, 64]
or radiative heat transfer [52]), has only been considered in [52, 50, 49].

3. Overwhelmingly, consideration has been focused on the Wiener-Hopf case and several slight gen-
eralisations. Apart from [17, 50] we know of no analysis of the case when v(s, t) is merely bounded
by a convolution kernel.

In Chapters 5 and 6, we make contributions to the numerical analysis of integral equations on the real
line in all three of these directions. But, particularly, our concern is to make progress in regard to the
first of these aspects, focusing on Nyström/product integration methods and their finite section variants
for the approximate solution of (1.1).

Throughout these chapters, we will consider the real line case when Ω = R, but make the point
that our results apply equally well to equations on the half-line. We will also assume that the kernel
of (1.1) is replaced by the product v(s, t)k(s, t), where v(s, t) satisfies the assumptions of Chapter 4 and
k ∈ BC(R2). Then (1.1) becomes

λx(s)−
∫

Ω

v(s, t)k(s, t)x(t) dt = y(s), s ∈ R, (1.18)

or, in operator from,
λx−Kkx = y. (1.19)

We note that the results obtained in Chapter 4, in particular (1.7), also hold, under the same assump-
tions on v, for the integral operators Kk, k ∈ BC(R2).
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We focus on a variant of the Nyström method known as product integration approximation. The idea
is to approximate the integral operator Kk by so-called quadrature or discretized integral operators KN

k ,
defined on X by

KN
k x(s) :=

∑
j∈Z

ωN
j (s)k(s, tNj )x(tNj ), s ∈ R, x ∈ X, N ∈ N. (1.20)

In this definition, the tNj := jhN , are the (equally spaced) abscissae of the Nth in a sequence of
quadrature rules, with hN → 0 as N → ∞, so that N is a parameter controlling the quality of the
approximation. The corresponding weights ωN

j (s) of the quadrature rule, are chosen appropriate to the
kernel v and are usually constructed by integrating the product of v(s, ·) with Lagrange interpolating
functions (e.g. polynomials or trigonometric polynomials).

This form of approximating Kk by KN
k is particularly suitable for badly behaved kernel functions

that may be written as the product of a smooth or at least continuous function k and a discontinuous,
possibly singular function v; see, e.g., [10, 44] and the references therein. A benefit of this approach is
that it allows us to consider families of kernels v(s, t)k(s, t), where k varies in a subset W of BC(R2).

Once the quadrature operators KN
k have been defined, it is hoped that for large N the solution xN

of the equation
λxN −KN

k x
N = y, (1.21)

obtained by solving a system of linear equations in which the unknowns are the values of xN at the
quadrature abscissae, is a good approximation of the solution x of equation (1.19).

Our standing assumptions on the quadrature weights ωN
j (s) throughout this thesis will be two simple

regularity conditions ((QA) and (QB) on page 47), which ensure that KN
k : X → X and is bounded

for all k ∈ BC(R2). From Section 5.2 onwards, we will also assume that the kernel v is such that
(1.6) holds and |κ(s)| is monotonic outside some finite interval and, moreover, that the quadrature
weights ωN

j (s) reflect the decay of both |κ(s − t)| as |s − t| → ∞ and hN as N → ∞ (this is made
precise in the Assumptions (A′′) and (QA′′) of Section 5.2). Under these mild conditions we show
that KN

k : Xw → Xw and is bounded (for all weight functions satisfying (1.3) and real-line versions of
(E′) and (F ′)) and, moreover, that analogues of (1.7) also hold for the operators KN

k , k ∈ BC(R2),
N ∈ N, namely that

ΣX(KN
k ) = ΣXw

(KN
k ), Σe

X(KN
k ) = Σe

Xw
(KN

k ). (1.22)

Thus, if λ /∈ ΣX(Kk)∪ΣX(KN
k ) and the right-hand side y of (1.19) and (1.21) is contained in Xw, the

solution x and its approximation xN are both contained in Xw.
We remark that, up to this point, we have assumed nothing about the convergence of the opera-

tors KN
k to Kk. We take this into account in Section 5.3, where we are additionally assuming that the

pointwise convergence assumption

lim
N→∞

KN
k x(s) = Kkx(s), x ∈ X, s ∈ R, (1.23)

holds for the constant function k(s, t) = 1 (it then also holds for every k ∈ BC(R2)). Provided that
(1.19) is well-posed, for some k ∈ BC(R2), we are then able to show that the Nyström method above
is stable with respect to the uniform norm of X if and only if it is stable with respect to the norm of
Xw (w satisfying (1.3), (E′) and (F ′)). An important feature of our stability theory is that this result
remains valid if we simultaneously consider a whole family of operators Kk and KN

k , with k varying in
a bounded and equicontinuous subset W of BC(R2). The methods used in the proof are based on a
combination of the arguments as in [24, 26] with the weighted space theory developed in Section 5.2.

We then proceed to show that, if stability holds and the right-hand side y of (1.21) is contained in
Xw, then the solutions of (1.19) and (1.21) (for N large) are contained in Xw and the error estimate

‖x− xN‖w ≤ C‖(KN
k −Kk)x‖w (1.24)

holds, where the constant C does not depend on N (nor on k ∈W if a family of operators is considered).
However, since KN

k does not strongly converge to Kk in the norm of Xw, it will usually only be the
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case that the term on the right-hand side of (1.24), and thus ‖x− xN‖w, tends to zero as N →∞ if x
is smooth. Nevertheless, if y ∈ Xw then we show that it will always be the case that, in the uniform
norm,

‖x− xN‖ → 0, as N →∞. (1.25)

(Let us mention at this point that we obtain sharper error estimates in the norm of Xw than (1.24) for
sufficiently well-behaved kernels in Chapter 6; these will be discussed later in this introduction.)

Of course, bounds in the weighted norm will guarantee that the relative error in calculating x is
small only if |xw(s)| is bounded below as well as above by a positive constant. But, we mention also
that, for the Wiener-Hopf equation (1.5) (with Ω = R+), it has been shown in [18] that, if κ(s) ∼ κ∞s

−b

as s→∞, with b > 1, and y(s) ∼ y∞s
−a as s→∞, with 0 ≤ a ≤ b, then

sax(s) →


y∞

1−
∫∞
−∞ κ(t) dt

, if 0 ≤ a < b,

y∞ + κ∞
∫∞
0
x(t) dt

1−
∫∞
−∞ κ(t) dt

, if a = b,
(1.26)

as s → ∞. If the limit (1.26) is non-zero and and x(s) 6= 0, s ≥ 0, then infs≥0 |x(s)w(s)| > 0, for the
weight function w(s) := (1 + |s|)a, in which case ‖x − xN‖w → 0 guarantees convergence in relative
error as N →∞.

While Nyström methods have the advantage that they are usually easy to implement on a computer,
a considerable difficulty in solving the discretized equation (1.21) is that, in general, one has to solve
an infinite system of linear equations. If no periodicity is involved in the coefficients of these equations,
this may be an onerous if not impossible task. Therefore, we will look, in Section 5.4, at the effect of
truncating the summation in the definition of the quadrature operator KN

k to a finite interval [−A,A].
We thereby obtain new quadrature operators, which we denote by KN,A

k . Replacing KN
k by KN,A

k in
(1.21), we are looking at the new equation

λxN,A −KN,A
k xN,A = y. (1.27)

The solution xN,A of (1.27), which is now an approximation of xN (and thus x), may be obtained by
solving a finite linear system.

We show that if the combined Nyström and truncation method is stable on X (meaning that the
inverses of λ−KN and λ−KN,A

k exist on X and are uniformly bounded for all N and A large enough)
then, as was the case for the pure Nyström method, it is also stable on Xw.

For the Wiener-Hopf case in which Ω = R+, v(s, t) = κ(s − t) and k is the constant function
k(s, t) = 1, the approximation of (1.18) by (1.21) has been studied by Anselone and Sloan [4, 5].
In [4] it assumed that κ ∈ L1(R) is bounded and uniformly continuous on R, lim|s|→∞ κ(s) = 0, and
|κ(s)| ≤ λ(s), for some function λ ∈ L1(R) non-increasing on R+ and non-decreasing on R−. It is shown
in [4] that if a certain condition of uniform convergence holds for the quadrature weights (satisfied by,
e.g., the weights of simple compound rules) then, provided that (1.5) is well-posed on X+

u (the closed
subspace of all uniformly continuous functions in BC(R+)), the operators λ − KN,A

k are uniformly
invertible on X+

u for all A and N large enough. Moreover, for x ∈ X+
u the solutions x of (1.19) and

xN,A of (1.27) satisfy

|x(s)− xN,A(s)| → 0, as A,N →∞, uniformly on finite intervals. (1.28)

In this thesis we consider in detail the case when the kernel v(s, t) = κ̃(s − t) is an L1-convolution
kernel (bounded by a convolution kernel κ satisfying the monotonicity condition in (A′′)) and the
quadrature weights satisfy a mild condition of translation invariance (satisfied for, e.g., the standard
simple compound rules). However, in contrast to [4], we are only requiring the kernel function k to be
bounded and uniformly equicontinuous and thus it need not be necessarily constant. We then show
that if such a combined Nyström and finite section method is stable on X then it is also stable on Xw;
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moreover, there always exists a weight function w̃, defined in terms of κ, so that the error estimate

|xN (s)− xN,A(s)| ≤ C
1

w(A)

(
1

w̃(s−A)
+

1
w̃(s+A)

)
‖y‖w, |s| ≤ A, (1.29)

holds for the solutions xN of (1.21) and xN,A of (1.27) when the right-hand side y is contained in Xw.
The constant C > 0 does not depend on the truncation parameter A, nor on N or y. (This error bound
echoes the result (1.17) for the finite section method for the equation (1.16) obtained in [21].) We also
note that inequality (1.29) shows that the error |xN (s)− xN,A(s)| is particularly small when s is near
the origin and increases as s approaches the endpoints of the truncation interval [−A,A].

In particular, if y ∈ Xw then combining (1.29) with (1.25) yields the bound

|x(s)− xN,A(s)| → 0, as A,N →∞, uniformly in |s| ≤ A. (1.30)

Note that (1.29) and (1.30) are much sharper results than (1.28). We remark that our methods of
argument with regard to the finite section method owe a lot to earlier work by Rahman [58, 21] on the
finite-section method for integral equations (without discretization).

In the general case when k(s, t) is not a constant function (or v is not a convolution kernel) the
question of whether the well-posedness (i.e. unique solvability) of (1.21) is sufficient for the corresponding
finite-section method to be stable on X is to a large extend still open (but see [46] for recent results in
this direction). Nevertheless, in some cases stability on X might be obtained for a so-called modified
finite section method in which, in addition to the truncation of the summation to a finite interval the
function k(s, t) is modified for values of t near the endpoints of the interval of truncation (see [51, 49]).
We include this variant in our stability and error analysis.

We conclude Chapter 5 by pointing out how our results generalise to the case whenK = K1+. . .+Kn

is a finite sum of integral operators and different quadrature methods are used to approximate each of
the Ki. We will make use of these generalisations in the applications we present in the final chapter of
this thesis.

Applications

We have already indicated that our results have numerous practical applications. In Chapter 6 of
this thesis, we discuss several examples of integral equations with kernels v satisfying (1.6), for some
κ ∈ L1(R), which exhibits polynomial decay towards ±∞, i.e. when

|κ(s)| = O(|s|−b), |s| → ∞ (1.31)

for some b > 1. Throughout this chapter, we assume that the kernels v are (possibly) weakly singular
at s = t and partially differentiable up to order n for s 6= t, or at least if |s− t| is large, and that these
partial derivatives also exhibit polynomial decay as |s− t| → ∞.

The resulting integral equations and their numerical solvability are then studied in the weighted
spaces Xa := Xwa , with norm ‖ ·‖a := ‖ ·‖wa , where wa is the power weight w(s) = (1+ |s|)a, 0 ≤ a ≤ b
(this is the setting of [18, 20, 7]; see the discussion above).

Under the above assumptions, we decompose v(s, t) into

v(s, t) = ṽ(s, t) + v̂(s, t),

where ṽ is the smooth part of the kernel, supported outside the strip |s − t| ≥ A, for some A > 0,
and v̂ is the (possibly) weakly singular part of the kernel, supported inside the strip |s− t| ≤ A+ ε, ε
being a small constant. Then Kk can be written as the sum of the two integral operators K̂k and K̃k

corresponding to v̂ and ṽ, respectively.
The idea behind this decomposition is that the simple rectangle rule yields quadrature operators K̃N

k ,
which are already good approximations of the “well-behaved” integral operator K̃k. Particularly, we
show that, for k ∈ BCn(R2) and 0 ≤ a ≤ b, an error estimate of the form∥∥K̃kx− K̃N

k x
∥∥

a
≤ CN−n‖x‖BCn

a (R), x ∈ BCn
a (R), (1.32)
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holds, where C > 0 does not depend on x or n; here BCn
a (R) denotes the weighted space of all functions

x ∈ X, whose first n derivatives exist and are contained in Xa.
Since, for fixed s ∈ R, v̂(s, t), as a function of t, is compactly supported quadrature rules suitable for

finite intervals may be used in the approximation of v̂. We prove that, if, for a = 0 and k the constant
function k(s, t) = 1, the error estimate∥∥K̂kx− K̂N

k x
∥∥

a
≤ CN−n‖x‖BCn

a (R), x ∈ BCn
a (R), (1.33)

holds, for C not depending on N or x, and, moreover a simple condition on the quadrature weights is
satisfied, then the estimate (1.33) also holds for every 0 < a ≤ b and k ∈ BCn(R2) and does not depend
on N .

If 0 ≤ a ≤ b, (1.32) and (1.33) hold and v̂ fulfils a simple regularity assumption, we are able to
show the following improved error bound for the solutions x and xN of (1.19) and (1.21), provided that
k ∈ BCn(R), well-posedness and stability hold on X and y is contained in BCn

a (R):

‖x− xN‖a ≤ CN−n‖y‖BCn
a (R). (1.34)

A strong motivation for the considerations in Chapter 6 are the results of Meier et al. [50], who have
recently considered Nyström methods for a class of kernels v with logarithmic singularity at s = t. The
idea in [50] is to perform a similar splitting of the kernel v to the one described above and then to use
a quadrature method based on trigonometric interpolation (due to Kussmaul [45] and Martensen [47])
for the approximation of the kernel v̂. In particular, it is shown in [50] that this Nyström method is
stable on X provided the equation (1.18) is uniquely solvable, and error bounds of the form (1.34) have
been obtained for the case a = 0, i.e. in the uniform norm of X.

We show in Section 6.2 that the methods proposed in [50] match our general assumptions in Chap-
ter 5. Thus we are able to employ our stability theory to extend the results of [50] to the weighted
spaces Xa, 0 < a ≤ b.

A practical problem, that has been studied in [50], is to find the scattered field which arises when a
wave is incident on an unbounded rough surface Γ. Using appropriate Green’s functions and representing
the scattered field as a combined single- and double layer potential, a reformulation of this problem
leads to a boundary integral equation taking the form (1.18), where v is a convolution kernel satisfying
(1.31), with b = 3/2, and the function k, depending on the shape of the scattering surface Γ, is contained
in BCn(R) if the scattering surface is sufficiently smooth. In this formulation, the right-hand side y
models the incident field on the boundary. The scattered field may then be determined by evaluating a
boundary integral once the solution x of (1.18) is known. (We remark that the well-posedness of this
integral equation formulation has recently been shown in [64, 22].)

Following on [50] (see also [51]), Meier proposed in [49] a combined Nyström and modified finite-
section method in which the summation in the quadrature operators KN

k is truncated to a finite interval
[−(A + α0), A + α0] and the values of k(s, t) are modified for A ≤ |t| ≤ A + α0 (corresponding to a
“flattening” of the surface Γ). In [49] it is shown that this method is stable and convergent on X. For y
modelling an incident plane or cylindrical wave (then y ∈ BCn(R)), an error estimate of the form

∣∣x(s)− xN,A+α0(s)
∣∣ ≤ C1N

−n + C2

(
1

(1 +A+ s)1/2
+

1
(1 +A− s)1/2

)
, (1.35)

for |s| ≤ A, where C1, C2 > 0 do not depend on N or A, was given for the exact solution of (1.21) and
the approximate solution xN,A+α0 of the modified finite section equation

λxN,A −KN,A+α0
k′ xN,A = y,

where k′ is the modification of k mentioned above. The summands on the right-hand side of (1.35) are
the respective errors introduced by the Nyström and finite section approximation.

In the special case when the scattered field of an incident cylindrical wave emanating from a point
source above the surface Γ is sought, the right-hand side y can be shown to be contained in the weighted
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BCn
3/2(R). Using our weighted space solvability results, in particular (1.7), we show in Section 6.3 that

the exact solution x is then also contained in BCn
3/2(R). As a consequence, we can demonstrate that

the approximate solutions xN,A+α0 of (1.21), obtained by applying the combined Nyström and finite
section method of [49], are contained in X3/2 and that the following error estimate holds:

∣∣x(s)− xN,A+α0(s)
∣∣ ≤ C1N

−n 1
(1 + s)3/2

+ C2
1

(1 +A)3/2

(
1

(1 +A+ s)1/2
+

1
(1 +A− s)1/2

)
,

for |s| ≤ A, where C1, C2 > 0 do not depend on N , A or α0, Clearly, this inequality is a considerably
sharper error estimate than (1.35).

For the convenience of the reader, an index of notations can be found at the end of this thesis.
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Chapter 2

Background material

If Y, Z are two normed spaces then we write B(Y,Z) and K(Y, Z) for the space of, respectively, all
bounded and all compact linear operators from Y to Z. We write ‖ · ‖Y→Z for the operator norm
in B(Y, Z), and set ‖ · ‖Y := ‖ · ‖Y→Y . The symbol I always denotes the identity operator, but
we will frequently use the abbreviation λ := λI. We will say that L ∈ B(Y, Z) is invertible and
write L−1 ∈ B(Z, Y ) if and only if L has a bounded inverse L−1 defined on all of Z. We denote by
GL(Y, Z) the space of all invertible operators in B(Y, Z). We set B(Y ) := B(Y, Y ), K(Y ) := K(Y, Y )
and GL(Y ) := GL(Y, Y ). If Y1 is a subspace of Y and L ∈ B(Y,Z) then we write L|Y1 for the restriction
of L to Y1. For an operator L : Y → Z we denote by L(U), U ⊂ Y , the set {Ly : y ∈ U}; L(Y )
is called the range or image of L and kerY L := {y ∈ Y : Ly = 0} the null space or kernel of L
(most of the time, we will drop the index Y and just write kerL). If U ⊂ Y then we write spanU
for the set of all linear combinations of elements in U (with spanU = {0} if U = ∅) and spanU for
the closure of spanU (in the norm of Y ). For U,U ′ ⊂ Y we define the distance between U and U ′ by
dist(U,U ′) := infy∈U,y′∈U ‖y − y′‖; for y ∈ U we set dist(y, U ′) := dist({y}, U ′).

If Y is a Banach space then we will write Y = Y1⊕Y Y2 if Y is the direct sum of two closed subspaces
Y1, Y2 of Y ; in this case we say that Y1 and Y2 are complemented in Y . (In most cases we will omit the
subscript and simply write Y = Y1⊕ Y2.) It is a consequence of the closed graph theorem that a closed
subspace of Y1 is complemented in Y if and only if there exists a continuous projection P ∈ B(Y ) such
that P (Y ) = Y1. In a Banach space, every finite-dimensional subspace is closed and complemented.

We denote by N the set of natural numbers {1, 2, . . .} and write N0 for the set {0}∪N. The set of all
non-negative real numbers is denoted by R+. If S is an arbitrary set then 1S denotes its characteristic
function.

2.1 Normal solvability and Fredholm operators

Throughout this section we suppose that Y , Y ′ and Z are Banach spaces and that L ∈ B(Y,Z). Most
of the following results are standard, see e.g. [55], [40] or [12].

The operator L is called normally solvable if and only if its range L(Y ) is closed. We give a number
of useful characterizations of normal solvability in the following lemma.

Lemma 2.1. For L ∈ B(Y, Z) the following are equivalent.

1. L is normally solvable.

2. There exists C > 0 such that for all y ∈ Y there holds ‖Ly‖ ≥ C dist(y, kerL).

3. For every bounded sequence (zn) in L(Y ), there exists a bounded sequence (yn) in Y such that
Lyn = zn, n ∈ N.

11
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Normal solvability is a desirable property of L if we try to solve the equation

Ly = z, z ∈ Z. (2.1)

For every z ∈ L(Y ) this equation has a solution y ∈ Y , which may not be unique. If L is normally
solvable then, whenever (zn) is a convergent sequence in L(Y ), there exists a convergent sequence (yn)
in Y such that Lyn = zn, n ∈ N; in this sense, the solution y of (2.1) depends continuously on z.

If we restrict a normally solvable operator to a closed subspace, the following lemma gives a sufficient
condition for the normal solvability of this restriction.

Lemma 2.2. ([55]) Let L ∈ B(Y,Z) be normally solvable and suppose that Y0 is a closed subspace of
Y . Then the restriction L|Y0 of L to Y0 is normally solvable if and only if Y0 + kerY L is a closed set.

The next lemma shows that compact operators are usually not normally solvable.

Lemma 2.3. ([38]) Let L ∈ K(Y, Z). Then L is normally solvable if and only if L(Y ) is finite-
dimensional, in which case Y = Y ′ ⊕ kerL, for some finite dimensional subspace Y ′ of Y .

For L we define the numbers

α(L) := dim kerL, β(L) := codimZ L(Y ) := dimZ/L(Y ).

α(L) and β(L) are called the nullity and deficiency of L and take values in N0 ∪ {∞}.
We call L semi-Fredholm if L is normally solvable and at least one of the numbers α(L) or β(L)

is finite; then L is called a Φ+-operator if α(L) < ∞ and a Φ−-operator if β(L) < ∞. Moreover, L
is called a Fredholm operator or Φ-operator if both α(L) and β(L) are finite. (We note that there is
some redundancy in these definitions, for every continuous operator acting between two Banach spaces is
normally solvable if its range has finite co-dimension; this follows from a theorem of Kato [38, Th. 55.4].)

We denote by Φ(Y,Z), Φ+(Y, Z) and Φ−(Y, Z) the set of all Fredholm, Φ+- and Φ−-operators in
B(Y, Z), respectively. If Y = Z then we will use the simpler notations Φ(Y ), Φ+(Y ) and Φ−(Y ),
respectively.

If L is semi-Fredholm the index of L is defined as

indL :=


α(L)− β(L), L ∈ Φ(Y, Z),
+∞, L ∈ Φ−(Y,Z) \ Φ(Y, Z),
−∞, L ∈ Φ+(Y, Z) \ Φ(Y,Z).

Fredholm operators are an important tool in the study of equation (2.1). If L is Fredholm then
we know that a solution of (2.1) exists for all z in a space of finite codimension in Z; also for every
z ∈ L(Y ) the set of solutions is given by y + N , where y ∈ Y and N = kerL is a finite dimensional
subspace of Y . Moreover the spaces kerL and L(Y ) are complemented in Y and Z, respectively, so
that, for some closed subspaces Y ′ of Y and Z ′ of Z, there holds

Y = kerL⊕ Y ′, Z = L(Y )⊕ Z ′.

Fredholm operators can be considered “almost invertible” operators. In fact, L is Fredholm if and
only if there exists an operator H ∈ B(Z, Y ) such that HL− I and LH − I are compact operators. In
this case H is called a regulariser of L.

We collect in the following lemmas useful properties of semi-Fredholm operators, using here and
throughout the symbols ± and ∓ whenever we wish to combine two similar statements into one: the
first is formed by taking the upper part of the symbols ±,∓, the second by taking the lower parts.

Lemma 2.4. The sets Φ(Y ) and Φ±(Y ) are open subsets of B(Y ) and the index function ind is constant
on the connected components of Φ(Y ) ∪ Φ−(Y ) ∪ Φ+(Y ).

Lemma 2.5. If L ∈ Φ+(Y, Z) then there exists a compact projection P ∈ B(Y, kerL) such that, for
some constant C > 0,

‖x‖ ≤ C(‖Lx‖+ ‖Px‖), x ∈ Y.
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Lemma 2.6 (Atkinson). If L ∈ Φ±(Y, Y ′) and H ∈ Φ±(Y ′, Z) then LH ∈ Φ±(Y, Z) and indLH =
indL+ indH.

Lemma 2.7. Suppose that L ∈ B(Y, Y ′) and H ∈ B(Y ′, Z) and C ∈ K(Y, Y ′). Then the following
statements hold:

1. If L ∈ Φ±(Y, Y ′) then L+ C ∈ Φ±(Y, Y ′) and indL = ind(L+ C).

2. HL ∈M and H ∈ Φ(Y ′, Z) imply L ∈M, where M denotes one of the sets Φ(Y, Y ′), Φ±(Y, Y ′).

3. If L is normally solvable and H ∈ Φ+(Y ′, Z) then HL is normally solvable.

Obviously, all invertible operators are Fredholm with index zero. The previous lemma thus shows
that every operator of the form λ+ C, with λ 6= 0 and C ∈ K(Y ), is Fredholm of index zero.

If Y = Z then we define the spectrum ΣY (L) and essential spectrum Σe
Y (L) of the operator L by

ΣY (L) := {λ ∈ C : λ− L is not invertible},
Σe

Y (L) := {λ ∈ C : λ− L is not Fredholm}.

Note that Σe
Y (L) is empty if and only if Y is finite-dimensional [35, p. 191]. Obviously, Σe

Y (L) ⊂ ΣY (L).
We also introduce the non-standard notation Σ+

Y (L) and Σ−
Y (L) for the sets

Σ±
Y (L) := {λ ∈ C : λ− L is not a Φ±-operator}.

2.2 Weighted spaces

In this section Ω is one of the sets R+ or R and X := BC(Ω), the space of all bounded and continuous
functions mapping Ω into C.

One major aim of this thesis is to relate, for L ∈ B(X), the solvability of the equation

(λ− L)x = y (2.2)

in X to its solvability in weighted spaces of continuous functions. Our assumption throughout most of
the thesis is that the weight function w ∈ C(R) is even and satisfies

w(0) = 1, w(s) ≥ w(t) for s ≥ t ≥ 0, lim
s→∞

w(s) = ∞. (2.3)

In Section 5.4 it will also be useful to consider slightly more general weight functions w ∈ C(R), requiring
only that w(s) ≥ 1, for all s ∈ R. The remarks in this section pertain in both cases.

We denote by Xw the subspace of X consisting of all functions x ∈ X satisfying xw ∈ X. X and
Xw are Banach spaces, if we equip them with the norms

‖x‖ := sup
s∈Ω

|x(s)|, ‖x‖w := ‖xw‖,

respectively. Throughout we will write ‖ · ‖ and ‖ · ‖w for the operator norms on B(X) and B(Xw).
Note that (2.2) as an equation on Xw is equivalent to the following equation on X:

(λ− Lw)xw = yw, (2.4)

where xw := wx, yw := wy and Lw := MwLMw−1 . Here Mz denotes the operator of multiplication by
a function z : Ω → R. Since w(s) ≥ 1, s ∈ R, the operator Mw : Xw → X is an isometric isomorphism
with inverse Mw−1 . Thus for an operator L : Xw → Xw and λ ∈ C there holds,

λ− Lw ∈M ⇐⇒ λ− L ∈Mw, (2.5)



Background material 14

where M is one of the spaces B(X),GL(X),Φ(X),Φ±(X) and Mw its counterpart in B(Xw),GL(Xw),
Φ(Xw),Φ±(Xw). Moreover, if L : X → X then

λ− Lw injective on X ⇐⇒ λ− L injective on Xw ⇐= λ− L injective on X, (2.6)
λ− Lw normally solvable on X ⇐⇒ λ− L normally solvable on Xw. (2.7)

Further, the following implications hold:

L ∈ B(Xw) =⇒ ‖λ− L‖w = ‖λ− Lw‖, (2.8)
λ− L ∈ GL(Xw) =⇒ ‖(λ− L)−1‖w = ‖(λ− Lw)−1‖. (2.9)

2.3 The strict topology and equicontinuous sets

In this section Ω is one of the sets R+, R or Rm. Then X := BC(Ω), equipped with the sup-norm, is a
Banach space. Let X0 be the subset of all functions in X that vanish at infinity; explicitly, x ∈ X0 if
for every ε > 0 there exists a A > 0 such that |s| > A implies |x(s)| < ε. X0 is a closed subspace of X
and, with the same norm, thus a Banach space in its own right.

For a sequence (fn) in X, we will write fn
s→ f ∈ X and say that (fn) converges strictly or is

s-convergent to f if (fn) is bounded and fn(ξ) → f(ξ) uniformly for ξ in compact subsets of Ω (this is
convergence in the strict topology of Buck [14]). We note that fn

s→ f implies that

‖f‖ ≤ sup
n∈N

‖fn‖. (2.10)

Further, we will say that a set W ⊂ BC(Rm) is relatively s-sequentially compact if every sequence
in W contains an s-convergent subsequence, and we will call W s-sequentially-compact if, additionally,
W contains the limit of each s-convergent sequence.

Recall that a set W ⊂ X is called equicontinuous on a set Ω′ ⊂ Ω, or simply equicontinuous when
Ω′ = Ω, if for all ξ, η in Ω′ and every ε > 0 there exists some δ > 0 such that, for all f ∈ W and
|ξ − η| < δ,

|f(ξ)− f(η)| ≤ ε, (2.11)

which implies that W is uniformly equicontinuous on every compact Ω′′ ⊂ Ω′, i.e. for every ε > 0 there
exists δ > 0 such that, for all ξ, η ∈ Ω′′ with |ξ − η| < δ and all x ∈W , inequality (2.11) holds. We say
that a sequence (fn) in X is (uniformly) equicontinuous (on Ω′) if the set {fn : n ∈ N} is.

We have the following important characterization of relatively s-sequentially compact sets in terms of
equicontinuity, which can be proved with the aid of the Arzelá-Ascoli theorem and a diagonal argument
(see [3]). We will often use this characterization without explicit mention.

Remark 2.8. A set W ⊂ X is relatively s-sequentially compact if and only if it is bounded and
equicontinuous.

We will call a subset Y of X s-sequentially dense in X if every element of X is the limit of an
s-convergent sequence in Y . Examples of such subsets are X0, every weighted space Xw, with w
satisfying (2.3), or the space of all compactly supported functions in X (if x ∈ X then there exists
a bounded sequence (xn) of compactly supported functions with the property that xn(s) = x(s) for
|s| ≤ n and thus xn

s→ x).
We will call L ∈ B(X) s-continuous if it is sequentially continuous in the strict topology, i.e. if

xn
s→ x =⇒ Lxn

s→ Lx

holds. We will call L sn-continuous if the stronger requirement

xn
s→ x =⇒ Lxn → Lx
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holds, where, here and throughout this thesis, → denotes convergence in the norm topology of X, i.e.
uniform convergence on Ω. If L has the property that the image (Lxn) of every bounded sequence (xn)
in X has an s-convergent subsequence then we call L s-sequentially compact.

If λ−H ∈ B(X) is a Fredholm operator and L ∈ K(X) then we know that λ−H+L is Fredholm of
the same index as λ−H, but this may fail for an arbitrary L ∈ B(X). However, the following theorem
shows that we can recover this situation to some extent if H and L are s-sequentially compact and L
is sn-continuous. This perturbation result will become important at several stages in this thesis and is
a generalisation of a recent result in [7].

Theorem 2.9. (cf. La. 2.2 in [7]) Let Y denote one of the spaces X and X0. If H,L ∈ B(Y ), H is
s-sequentially compact and L is sn-continuous then LH is compact. If also L is s-sequentially compact
and λ 6= 0, then λ− L is Fredholm of index zero. Moreover the equivalences

λ−H + L ∈ Φ(Y ) ⇐⇒ λ−H ∈ Φ(Y ),
λ−H + L ∈ Φ±(Y ) ⇐⇒ λ−H ∈ Φ±(Y )

hold and, if λ−H + L and λ−H are both semi-Fredholm, their indices are the same.

Proof. Choose a bounded sequence (xn) in Y . Then (Hxn) has a strictly convergent subsequence,
(Hxnm

). Since L is sn-continuous (LHxnm
) is convergent. Thus LH is compact. Therefore, if L is also

s-sequentially compact, then L2 is compact and so λ−1 +λ−2L is a regulariser for λ−L. Thus λ−L is
Fredholm for all λ 6= 0. But, for |λ| > ‖L‖, (λ−L)−1 ∈ B(Y ), so λ−L has index zero. It follows from
Lemma 2.4 that λ− L has index zero for all λ 6= 0.

Let M denote one of the sets Φ(Y ), Φ±(Y ) and suppose that λ−H ∈M. Then, by Lemma 2.7a),
we have that λ−H + λ−1L(H − L) ∈M as L(H − L) ∈ K(Y ). Since

λ−1(λ− L)(λ−H + L) = λ−H + λ−1L(H − L)

we conclude that the operator on the left-hand side of this equation must be in M and further, since
(λ − L) ∈ Φ(Y ), we obtain from Lemma 2.7 b) that λ −H + L must be in M. Thus λ −H ∈ M ⇒
λ−H +L ∈M. A reversal of the argument, using Atkinson’s lemma, shows the other direction of this
implication.

Lastly, if λ −H + L ∈ Φ±(Y ) and λ −H ∈ Φ±(Y ) then, by Lemma 2.7 a) and Atkinson’s lemma,
there holds ind(λ−H) = ind(λ−H+λ−1L(H−L)) = ind(λ−L)+ind(λ−H+L) = ind(λ−H+L).

Another important feature of s-sequentially compact operators is given in the next lemma. It allows
us to derive information about the range (λ − H)(X) from properties of (λ − H)(Y ), where Y is an
s-sequentially dense subset of X.

Lemma 2.10. Suppose that H ∈ B(X) is an s-sequentially continuous and s-sequentially compact
operator and that λ 6= 0. Let L := λ − H and assume further that at least one of the sets L(X) or
L(X0) is closed in X. Then, if Y ⊂ X0 is an s-sequentially dense subset of X, the s-sequential closure
of L(Y ) is the set L(X). Moreover, provided that L(X) is closed, the set L(X) is s-sequentially closed.

Proof. Denote the s-sequential closure of L(Y ) by L(Y )
ss

. We firstly show that L(Y )
ss
⊂ L(X). Let

(yn) be a s-convergent sequence in L(Y ), yn
s→ y ∈ X say. Then there exists a sequence (xn) in

Y so that Lxn = yn for every n ∈ N. (yn) is contained in L(X0) ⊂ L(X) and since at least one of
these sets is closed in X we may assume that the sequence (xn) is bounded (Lemma 2.1). As H is
s-sequentially compact (Hxn) contains an s-convergent subsequence, Hxnm

s→ z ∈ X say. There holds
λxnm = Hxnm + ynm , m ∈ N, so that xnm

s→ λ−1(y + z) =: x. Since H is s-sequentially continuous
ynm

= Lxnm

s→ Lx = y, whence y ∈ L(X). This proves the desired inclusion. A similar argument
shows that L(X) coincides with its s-sequential closure, provided that L(X) is closed.

On the other hand, if y ∈ L(X) then there exists x ∈ X such that Lx = y. Since Y is s-sequentially
dense in X there exists a sequence (xn) in Y such that xn

s→ x, whence Lxn = (λ−H)xn
s→ y. Hence

L(X) ⊂ L(Y )
ss

and thus we have shown L(X) = L(Y )
ss

.
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Corollary 2.11. Suppose that H ∈ B(X) is an s-sequentially continuous and s-sequentially compact
operator and that λ 6= 0. Assume further that at least one of the sets (λ−H)(X0) and (λ−H)(X) is
closed and that (λ−H)(X0) contains an s-sequentially dense subset of X. Then (λ−H)(X) = X.

Proof. Let X ′ denote one of the spaces X0 and X and suppose that (λ − H)(X ′) is closed and that
(λ − H)(X0) contains an s-sequentially dense subset X, i.e. (λ−H)(X0)

ss
= X. Then the corollary

follows by applying the previous lemma, with Y = X0, to see that (λ−H)(X) = (λ−H)(X0)
ss

= X.

At several stages of this thesis the following result will become useful. It shows that every s-
convergent sequence, which is bounded in a weighted space Xw, is norm-convergent in X.

Lemma 2.12. Let X = BC(R) or X = BC(R+). Assume that the weight function w is even and
satisfies (2.3). If (xn) is a bounded sequence in the weighted space Xw then

xn
s→ x =⇒ xn → x.

Proof. We only prove the lemma for X = BC(R+), for X = BC(R) the proof is similar. Suppose that
(xn) is as in the assumption and xn

s→ x. Then there holds

|w(s)x(s)| ≤ sup
n∈N

|w(s)xn(s)| = sup
n∈N

‖xn‖w <∞, s ∈ R+,

and we see that x ∈ Xw. Now, for A > 0,

‖xn − x‖ ≤ sup
0≤s≤A

|xn(s)− x(s)|+ sup
s≥A

|xn(s)− x(s)| ≤ sup
0≤s≤A

|xn(s)− x(s)|+w(A)−1
(
‖xn‖w + ‖x‖w

)
.

Given ε > 0, we can firstly choose A large enough so that the second term on the right-hand side of
this inequality is < ε/2. Then, if n is large enough, the first term is also < ε/2, since xn

s→ x, whence
xn converges to x uniformly on the compact set [0, A]. Thus ‖xn − x‖ < ε for all n large enough, as
required.



Chapter 3

Integral equations over unbounded
domains

In this chapter we provide the framework for our subsequent analysis of second-kind Fredholm integral
equations on the real-line. Throughout most of this chapter Ω denotes one of the sets R+ and R, and
X the Banach space BC(Ω). For A > 0, we define ΩA := Ω ∩ [−A,A].

We consider classes of integral equations on the real-line where the kernel is the product of a fixed
kernel function v and a variable kernel function k, more precisely, integral equations of the form

λx(s)−
∫

Ω

v(s, t)k(s, t)x(t) dt = y(s), s ∈ Ω, (3.1)

where λ ∈ C. Throughout this thesis, we will assume that v(s, ·) ∈ L1(Ω) for every s ∈ Ω and most of
the time that k varies in a bounded and equicontinuous subset of BC(Ω2).

Define the integral operator K = Kk on X by

Kkx(s) :=
∫

Ω

v(s, t)k(s, t)x(t)dt, s ∈ Ω, x ∈ X, (3.2)

so that we can abbreviate (3.1) in operator notation to

λx−Kkx = y. (3.3)

Suppose that v(s, t) satisfies the following two assumptions:

Assumption (A).

sup
s∈Ω

∫
Ω

|v(s, t)| dt <∞.

Assumption (B). ∫
Ω

|v(s, t)− v(s+ h, t)| dt→ 0 as h→ 0, for every s ∈ Ω.

Then, by a well-known result (e.g. [40]), the operator K = Kk, for k(s, t) = 1, maps L∞(Ω) to X
and is bounded with norm

‖K‖L∞(Ω)→X = ‖K‖ = sup
s∈Ω

∫
Ω

|v(s, t)| dt. (3.4)

In the general case where k ∈ BC(Ω2), (A) and (B) are still sufficient to ensure that K is bounded
on X as the next proposition shows.

17
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Proposition 3.1. If (A) and (B) are satisfied and k ∈ BC(Ω2) then the kernel v′(s, t) := v(s, t)k(s, t)
satisfies (A) and (B), so that Kk : L∞(Ω) → X and is bounded with norm

‖Kk‖L∞(Ω)→X = ‖Kk‖ ≤ ‖k‖ sup
s∈Ω

∫
Ω

|v(s, t)| dt.

Proof. We have that ∫
Ω

|v′(s, t)| dt ≤ ‖k‖
∫

Ω

|v(s, t)| dt, s ∈ Ω,

so that v′ satisfies (A).
The main task is to show that v′ satisfies (B). Let s ∈ Ω, then, for s′ ∈ Ω,∫

Ω

|v(s, t)k(s, t)− v(s′, t)k(s′, t)| dt ≤
∫

Ω

|v(s, t)‖k(s, t)− k(s′, t)| dt+
∫

Ω

|v(s, t)− v(s′, t)||k(s′, t)| dt

≤ 2‖k‖
∫

Ω\ΩA

|v(s, t)| dt+ max
t∈ΩA

|k(s, t)− k(s′, t)|
∫

ΩA

|v(s, t)| dt

+‖k‖
∫

Ω

|v(s, t)− v(s′, t)| dt,

Given ε > 0, we can choose A > 0 large enough so that the first term on the right-hand side is < ε/3.
Further, since k is uniformly continuous on compact sets and (B) holds, the second and third term on
the right are then < ε/3 if |s′ − s| is small enough. We have thus shown that the term on the left-hand
side becomes arbitrarily small if s′ approaches s, whence v′ satisfies (B).

In view of (3.4) and the preceding discussion, Kk : L∞(Ω) → X and the norm bound holds.

We notice that the argument of the previous theorem does not depend on the choice of k, provided k
varies in a bounded and equicontinuous subset W of BC(R2) — for then W is uniformly equicontinuous
on every compact subset of Ω × Ω. As a consequence the operator Kk is s-sequentially compact. We
collect this and some other features of K with regard to the strict topology in the next proposition.

Proposition 3.2. Suppose that v satisfies (A) and (B) and (xn), (kn) are sequences in X and BC(R2),
respectively. Then:

a) If B ⊂ X is bounded and W ⊂ BC(Ω2) is bounded and equicontinuous then the set

V := {Kkx : k ∈W,x ∈ B}

is bounded and equicontinuous and thus relatively s-sequentially compact.

b) If the sequence (kn) is bounded and equicontinuous then (Kkn
xn) contains an s-convergent subse-

quence. In particular, this is the case when (kn) is s-convergent.

c) If xn
s→ x then Kkxn

s→ Kkx, for every k ∈ BC(R2), i.e. Kk is s-continuous.

d) If kn
s→ k and xn

s→ x then Kkn
xn

s→ Kkx.

Proof. To see a), we note that, for k ∈W and x ∈ B,

|Kkx(s)−Kkx(s′)| ≤ ‖x‖
∫

Ω

|v(s, t)k(s, t)− v(s′, t)k(s′, t)| dt,

and, as mentioned above, the term on the right-hand side converges to 0 as s′ → s, uniformly in k ∈W .
a) now follows from Remark 2.8.

The first part of b) is an immediate consequence of a). But so is the second, for kn
s→ k implies

that every sequence in the set W := {kn : n ∈ N} has an s-convergent subsequence and thus, again by
Remark 2.8, that the sequence (kn) is equicontinuous.



Integral equations on the real-line 19

We now prove part d), of which c) is a special case. Suppose that kn
s→ k and xn

s→ x. We may
assume w.l.o.g. that supn∈N ‖xn‖ ≤ 1 and supn∈N ‖kn‖ ≤ 1, whence ‖x‖, ‖k‖ ≤ 1 by (2.10). Now, let
s ∈ Ω. Then, for A > 0 and n ∈ N, |Kkn

xn(s)−Kkx(s)| is bounded above by∫
ΩA

|v(s, t)|
(
|kn(s, t)xn(t)− k(s, t)x(t)|

)
dt+ 2

∫
Ω\ΩA

|v(s, t)| dt

≤
(

sup
t∈ΩA

|kn(s, t)− k(s, t)|+ sup
t∈ΩA

|xn(t)− x(t)|
)∫

Ω

|v(s, t)| dt+ 2
∫

Ω\ΩA

|v(s, t)| dt.

Given ε > 0, we can first choose A large enough so that the last term on the right-hand side is < ε/2
and then, using the uniform convergence of (xn) and (kn) over compact intervals, n large enough so
that the second summand is also < ε/2. Thus we have shown that

lim
n→∞

Kknxn(s) = Kkx(s), s ∈ Ω. (3.5)

By the remark above, the s-convergent sequence (kn) must be equicontinuous. Thus, by part a),
the set {Kknxn : n ∈ N} is bounded and equicontinuous. It now follows from (3.5) that Kknxn

s→ Kkx,
for pointwise convergence on Ω of a bounded and equicontinuous sequence implies uniform convergence
over compact subsets of Ω.

Suppose for a moment that (3.1) were an integral equation over a compact subset Ω of R. An
argument as in the previous proposition shows that Assumptions (A) and (B) would then imply that
K is a compact operator (as it maps bounded sets onto bounded and equicontinuous sets so that the
Arzelá-Ascoli theorem applies). The Riesz theory would then give strong solvability results for the
integral equation (3.3). For example, one fundamental result would be that if λ 6= 0 then

λ−K is injective =⇒ λ−K is surjective and (λ−K)−1 is bounded, (3.6)

yielding the “uniqueness implies existence” criterion important in many applications. But if the do-
main Ω of the integral equation is the whole real line or half-line then Assumptions (A) and (B) are
not enough to ensure that K is compact as an operator on X, as simple counterexamples (see [18,
Ex. 3.1]) show. However, not everything is lost: we still have that the image of every bounded set is
relatively s-sequentially compact. We will make heavy use of this fact throughout this thesis.

As is shown in [3] for the half-line case where v(s, t) = 0 for t < 0, a sufficient condition for the
compactness of K on X is the following: v satisfies (A), (B) and∫

Ω

|v(s, t)k(s, t)| dt→ 0, as |s| → ∞, (s ∈ Ω).

The latter condition is certainly fulfilled if k ∈ BC(Ω2) and (C) is satisfied:

Assumption (C). ∫
Ω

|v(s, t)| dt→ 0, as |s| → ∞, (s ∈ Ω).

Together with (A) and (B), a necessary, yet not sufficient, condition for compactness of K on X is

sup
s∈Ω

∫
Ω\ΩA

|v(s, t)k(s, t)| dt→ 0, as A→∞,

as is shown in [18] for the half-line case. This condition is certainly fulfilled if k ∈ BC(Ω2) and v satisfies
the following assumption:

Assumption (D).

sup
s∈Ω

∫
Ω\ΩA

|v(s, t)| dt→ 0, as A→∞.
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This condition will play an important role in this thesis. Its importance lies in the fact that it
implies the sn-continuity of the operator K (together with (A) and (B)). We show this in the next
proposition.

Proposition 3.3. Suppose that the kernel v satisfies (A), (B) and (D) and that k ∈ BC(R2). Then
Kk is sn-continuous, i.e. if (xn) is a bounded sequence in X then

xn
s→ x =⇒ Kkxn → Kkx.

Proof. For s ∈ Ω and A > 0, the term |Kkxn(s)−Kkx(s)|, is bounded above by

‖k‖

(
sup

t∈ΩA

|xn(t)− x(t)|
∫

ΩA

|v(s, t)| dt+ 2 sup
n∈N

‖xn‖ sup
s∈Ω

∫
Ω\ΩA

|v(s, t)|dt

)
.

Given any ε > 0, the last term in the bracket on the right-hand side can be made ≤ ε/2, for all s ∈ R, by
choosing A large enough; this is possible since v satisfies (D). Keeping this A fixed, the first term can
be made ≤ ε/2, for all s ∈ R, by choosing n large enough because we have assumed (A) and xn

s→ x.
Thus Kkxn → Kkx, as desired.

Throughout most of the thesis we assume that v is bounded by a convolution kernel, precisely, that
v satisfies the following assumption

Assumption (A′). There exists κ ∈ L1(R) such that, for all s ∈ Ω, the following inequality is satisfied
for a.e. t ∈ Ω:

|v(s, t)| ≤ |κ(s− t)|.

We note that (A′) clearly implies that (A) holds. Assumption (A′) is satisfied in most practical
applications, in particular, it is satisfied if v(s, t) is a convolution kernel, i.e. if v(s, t) = κ(s − t), for
some κ ∈ L1(R), in which case v also satisfies Assumption (B) and ‖K‖ = sups∈R+

‖vs‖1 = ‖κ‖1. [40]
As is common practice, we often act as if the elements of L1(R) were functions rather than equivalence

classes of functions.



Chapter 4

Spectral properties of integral
operators in weighted spaces

In this chapter we compare the spectral properties of the Fredholm integral operator (3.2) on X =
BC(R) and the weighted subspaces Xw of X as defined in Section 2.2. For most of the chapter we
assume that k(s, t) = 1 and that v(s, t) = 0 for t < 0, so that (3.2) reduces to an integral equation
on the half line. This makes the notation somewhat simpler and we will point out how our results
generalise to the real-line case in Section 4.5.

We thus focus our attention on the integral equation

λx(s)−
∫ ∞

0

v(s, t)x(t) dt = y(s), s ∈ R+, (4.1)

where the given right-hand side y and the sought solution x belong to the space X = BC(R+).
We have already mentioned that a well-studied special case of some interest is that when v(s, t) =

κ(s− t) for some κ ∈ L1(R), in which case (4.1) is the integral equation of Wiener-Hopf type

λx(s)−
∫ ∞

0

κ(s− t)x(t) dt = y(s), s ∈ R+. (4.2)

In this case (A) and (B) are satisfied and ‖K‖ = ‖κ‖1.
As in (3.2), we define the half-line integral operator K on X as

Kx(s) =
∫ ∞

0

v(s, t)x(t)dt, s ∈ R+. (4.3)

4.1 Boundedness in weighted spaces

A first major aim of this chapter is to derive conditions on v and w, which ensure that K : Xw → Xw

and is bounded. To this end, let Kw denote the integral operator defined by

Kw = MwKMw−1 , (4.4)

where, for w ∈ C(R+), Mw is the operation of multiplication by w. Kw is an integral operator of the
form (4.3) and has the kernel function vw given by

vw(s, t) :=
w(s)
w(t)

v(s, t), s, t ∈ R+. (4.5)

We note that the equivalences and implication in (2.5)–(2.7) hold for L = K and Lw = Kw. Combining
(2.5) and (3.4), we obtain a characterization of the boundedness of K on Xw:

21
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Proposition 4.1. Suppose that the kernel v satisfies Assumptions (A) and (B). Then K ∈ B(Xw) if
and only if

sup
s∈R+

∫ s

0

|vw(s, t)| dt = sup
s∈R+

∫ s

0

∣∣∣∣w(s)
w(t)

v(s, t)
∣∣∣∣ dt <∞, (4.6)

in which case vw also satisfies (A) and (B).

Proof. Necessity: The following inequality shows that (4.6) is a necessary condition for K ∈ B(Xw):

‖K‖w
(2.8)
= ‖Kw‖

(3.4)
= sup

s∈R+

∫ ∞

0

w(s)
w(t)

|v(s, t)| dt ≥ sup
s∈R+

∫ s

0

w(s)
w(t)

|v(s, t)| dt.

Sufficiency: We note that 0 < w(s)/w(t) ≤ 1 if 0 ≤ s ≤ t. Thus,

sup
s∈R+

∫ ∞

0

∣∣∣∣w(s)
w(t)

v(s, t)
∣∣∣∣ dt ≤ sup

s∈R+

∫ s

0

∣∣∣∣w(s)
w(t)

v(s, t)
∣∣∣∣ dt+ sup

s∈R+

∫ ∞

0

|v(s, t)| dt.

The rightmost term in this inequality is finite since (A) is satisfied by v. Hence vw satisfies (A),
provided (4.6) holds. To see that vw also satisfies (B), note that, for s, s′ ∈ R+,∫ ∞

0

|vw(s, t)− vw(s′, t)| dt ≤ |w(s)|
∫ ∞

0

∣∣∣∣v(s, t)− v(s′, t)
w(t)

∣∣∣∣ dt+ |w(s)− w(s′)|
∫ ∞

0

∣∣∣∣v(s′, t)w(t)

∣∣∣∣ dt
≤ |w(s)|

∫ ∞

0

|v(s, t)− v(s′, t)| dt+ |w(s)− w(s′)|
∫ ∞

0

|v(s′, t)| dt.

As w is continuous and (A) and (B) are satisfied by v, the summands on the right-hand side of this
inequality tend to 0 as s′ → s. It follows that vw satisfies (B) and, by Proposition 3.1, K ∈ B(Xw).

In the remainder of the chapter we will assume that v satisfies (A′) and that the kernel bound κ
satisfies the following assumption:∫ s

0

|κ(s− t)|
w(t)

dt =
∫ s

0

|κ(t)|
w(s− t)

dt = O
( 1
w(s)

)
, as s→∞. (4.7)

Clearly, Proposition 4.1 has the following corollary.

Corollary 4.2. Suppose that the kernel v satisfies (A′) and (B). Then K ∈ B(Xw) if (4.7) holds. In
the Wiener-Hopf case v(s, t) = κ(s− t), with κ ∈ L1(R), K ∈ B(Xw) if and only if (4.7) holds.

We note some simple consequences of condition (4.7). Firstly, it follows from (4.7) that

w(s)
∫ s+1

s

|κ(t)| dt = O(1), as s→∞, (4.8)

holds and that, for every A > 0,

1
w(s−A)

∫ 2A

A

|κ(t)| dt = O
( 1
w(s)

)
, as s→∞, (4.9)

because there holds, for s > 2A,∫ 2A

A

|κ(t)|
w(s−A)

dt ≤
∫ 2A

A

|κ(t)|
w(s− t)

dt ≤
∫ s

0

|κ(t)|
w(s− t)

dt.

Unless κ(t) = 0 for almost all t > 0, the integral in (4.9) is non-zero for some A > 0, so that (4.9)
implies that

w(s)
w(s−A)

= O(1), s→∞, (4.10)

for some A > 0. But it is clear that (4.10) must then hold for all A > 0.
Inspired by these observations, let us introduce at this point two additional assumptions which play

a key role in this thesis:
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Assumption (E).

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt = O(1), as A→∞.

Assumption (F ).
w(s+ 1)
w(s)

= O(1) as s→∞.

For weight functions w satisfying (F ) and A > 0, we introduce the notation

∆A
w := sup

|s−t|≤A

w(s)
w(t)

<∞. (4.11)

Clearly, (F ) limits the growth of w, implying that

w(s) ≤ Cebs, s ∈ R+,

for some constants C > 0 and b > 0.
The next proposition, our first important result, shows that (A′), (B), (E) and (F ) are sufficient

conditions to ensure that K ∈ B(Xw).

Proposition 4.3. Assumption (4.7) implies (E). Unless κ(s) = 0 for almost all s > 0, (4.7) also
implies (F ). Conversely, (E) and (F ) together imply (4.7). Thus, if v satisfies (A′), with κ ∈ L1(R),
and (B), (E) and (F ) hold, then K ∈ B(Xw) and vw satisfies (A) and (B).

In the Wiener-Hopf case v(s, t) = κ(s− t), with κ ∈ L1(R), it holds that K ∈ B(Xw) if and only if
(E) and (F ) are satisfied or κ(s) = 0 for almost all s > 0.

Proof. The first two assertions are immediate from the definitions and the discussion in the preceding
paragraph. We thus start by proving that (E) and (F ) imply (4.7). Note that (E) implies that, for
some A > 0 and C > 0, ∫ s−A

A

|κ(s− t)|
w(t)

dt ≤ C

w(s)
, s ≥ 2A. (4.12)

From this inequality it follows that

1
w(2A)

∫ 2A

A

|κ(s− t)| dt ≤
∫ 2A

A

|κ(s− t)|
w(t)

dt ≤ C

w(s)
, s ≥ 3A.

Thus, for s ≥ 2A,∫ A

0

|κ(s− t)|
w(t)

dt ≤
∫ A

0

|κ(s− t)| dt =
∫ 2A

A

|κ(s+A− t)| dt ≤ C
w(2A)
w(s+A)

≤ C
w(2A)
w(s)

. (4.13)

Also, by Assumption (F ),∫ s

s−A

|κ(s− t)|
w(t)

dt ≤ 1
w(s−A)

∫ A

0

|κ(t)| dt ≤ ∆A
w ‖κ‖1
w(s)

. (4.14)

Combining inequalities (4.12) through (4.14) we see that (E) and (F ) imply (4.7). The rest of the
proposition follows from Corollary 4.2 and Proposition 4.1.

4.2 Solvability in weighted spaces

Having established conditions for the boundedness of K on Xw, we now turn our attention to the
Fredholm and invertibility properties of λ−K on Xw. We show that if (A′) and (B) and two stronger
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versions of (E) and (F ) are satisfied then the much stronger result that the spectrum of K is the same
on X as on Xw holds, i.e.

ΣX(K) = ΣXw(K), (4.15)
Σe

X(K) = Σe
Xw

(K), (4.16)

We will also show that then Σ±
X(K) = Σ±

Xw
(K).

Because of equation (2.5) we are able to relate the invertibility and Fredholm properties of λ−K on
X to those of λ−K on Xw by comparing the operators λ−K and λ−Kw acting on X. The difference
between the second and the first of these operators is K −Kw, an integral operator of the form (4.3)
with kernel v − vw. In many cases, for example [20] if κ(s) = O(s−q) as s → ∞ for some q > 1 and
w(s) = (1 + s)p, with 0 < p < q, it holds that K −Kw is compact on X, so that λ−K is Fredholm if
and only if λ −Kw is Fredholm. To obtain the sharpest results, i.e. to show (4.15) and (4.16) for the
widest class of weight functions w, it will prove important also to consider cases when K −Kw is not
compact but v− vw satisfies (A), (B) and (D). For such operators we have the following perturbation
result as an immediate consequence of Theorem 2.9.

Theorem 4.4. Suppose K,K ′ are two integral operators of the form (4.3) with kernels v, v′ satisfying
conditions (A), (B) and v′ also satisfying (D). Then K ′K is a compact operator on X. If, in addition,
λ 6= 0, then λ−K ′ ∈ Φ(X) with index zero,

λ−K +K ′ ∈ Φ(X) ⇐⇒ λ−K ∈ Φ(X), (4.17)

and
λ−K +K ′ ∈ Φ±(X) ⇐⇒ λ−K ∈ Φ±(X),

and if the operators in (4.17) are both Fredholm then their indices are the same. Moreover, if K,K ′ ∈
B(X0) then the theorem also holds with X replaced by X0.

Proof. The assumptions imply that K and K ′ are s-sequentially compact (Proposition 3.2) and that
K ′ is sn-continuous (Proposition 3.3). Theorem 2.9 now yields the desired result.

Clearly, we set K ′ := K −Kw and hope to find conditions on v so that v − vw satisfies (A), (B)
and (D). Let us consider first the Wiener-Hopf case when v(s, t) = κ(s− t) for some κ ∈ L1(R). Since

w(s)
w(t)

=
∣∣∣∣1− w(s)

w(t)

∣∣∣∣+ 1, 0 ≤ t ≤ s,

we have that

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ sup
s≥2A

∫ ∞

A

∣∣∣∣1− w(s)
w(t)

∣∣∣∣ |κ(s− t)| dt+ sup
s≥2A

∫ s−A

A

|κ(s− t)| dt.

Now, for s ≥ 2A, ∫ s−A

A

|κ(s− t)| dt ≤
∫ ∞

A

|κ(u)| du→ 0,

as A → ∞. Thus, in the Wiener-Hopf case, if v − vw satisfies (D) then the following stronger version
of (E) holds:

Assumption (E′).

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt→ 0, as A→∞.

Moreover, if κ does not vanish a.e., and v − vw satisfies (D), then a stronger version of (F ) also
holds, namely
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Assumption (F ′).
w(s+ 1)
w(s)

→ 1, as s→∞.

This assumption limits the growth of w still further, implying that for all b > 0,

w(s) = o(ebs), s→∞.

To see that (D) implies (F ′) in the Wiener-Hopf case, suppose that (F ′) does not hold. Then since,
for all δ > 0, w(s+ 1)/w(s) → 1 as s→∞ if and only if w(s+ δ)/w(s) → 1 as s→∞, it follows that
for every δ > 0 there exists ε > 0 and a sequence (sn) of positive numbers with sn →∞ as n→∞ such
that

w(sn + δ)
w(sn)

≥ 1 + ε, n ∈ N.

It follows that, for every n,

w(sn + δ)
w(t)

≥ 1 + ε, 0 ≤ t ≤ sn,
w(sn)
w(t)

≤ 1
1 + ε

, t ≥ sn + δ.

Now, if v(s, t) = κ(s− t) and v − vw satisfies (D) then for every η > 0 there exists A > 0 such that

sup
s∈R+

∫ ∞

A

∣∣∣∣1− w(s)
w(t)

∣∣∣∣ |κ(s− t)| dt < η.

This implies that, for every n for which sn > A, we have

ε

∫ sn

A

|κ(sn + δ − t)| dt < η,
ε

1 + ε

∫ ∞

sn+δ

|κ(sn − t)| dt < η.

Since sn →∞ as n→∞, it follows that(∫ δ

−∞
+
∫ ∞

δ

)
|κ(t)| dt < η

1 + ε

ε
,

for all η > 0. Thus κ(t) = 0 for almost all t with |t| > δ and, since this holds for every δ > 0, we have
that κ = 0.

In the proof of the following theorem, we show that, conversely, (E′) and (F ′) are sufficient condi-
tions to ensure that v − vw satisfies (D) whenever (A′) holds with κ ∈ L1(R).

Theorem 4.5. Suppose v and w satisfy Assumptions (A′), (B), (E′) and (F ′), with κ ∈ L1(R). Then
the difference kernel v−vw satisfies conditions (A), (B) and (D), so that K−Kw is an sn-continuous
operator. In the Wiener-Hopf case v(s, t) = κ(s − t), with κ ∈ L1(R), v − vw satisfies (A), (B) and
(D) if and only if κ and w satisfy (E′) and (F ′) or κ = 0.

Proof. If v and w satisfy (A′), (B), (E′) and (F ′), then from Proposition 4.3 and Corollary 4.2 we
have that vw satisfies (A) and (B), so v − vw must also satisfy (A) and (B). It remains to check
whether v − vw fulfils (D).

Let s ≥ 0 and 0 < A∗ < A/2. We have∫ ∞

A

∣∣∣(1− w(s)
w(t)

)
v(s, t)

∣∣∣ dt ≤ ∫ ∞

A

∣∣∣1− w(s)
w(t)

∣∣∣|κ(s− t)| dt

≤

(∫ max{s−A∗,A}

A

+
∫ max{A,s+A∗}

max{s−A∗,A}
+
∫ ∞

s+A∗

)∣∣∣1− w(s)
w(t)

∣∣∣|κ(s− t)| dt. (4.18)
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We use (E′) to bound the first integral on the right-hand side of equation (4.18). Note that it is
non-zero only if s ≥ A+A∗. Further, if s ≥ A+A∗ > 2A∗ then∫ max{s−A∗,A}

A

∣∣∣1− w(s)
w(t)

∣∣∣|κ(s− t)| dt ≤
∫ s−A∗

A

w(s)
w(t)

|κ(s− t)| dt ≤ EA∗ ,

where

EA∗ := sup
s≥2A∗

∫ s−A∗

A∗

w(s)
w(t)

|κ(s− t)| dt→ 0

as A∗ →∞, as a consequence of Assumption (E′).
The second integral in (4.18) vanishes for s ≤ A−A∗ < A/2. So∫ max{A,s+A∗}

max{s−A∗,A}

∣∣∣1− w(s)
w(t)

∣∣∣|κ(s− t)| dt ≤ cA∗(A/2)‖κ‖1,

where

cA∗(A) := sup
s≥A

max
{

1− w(s)
w(s+A∗)

,
w(s)

w(s−A∗)
− 1
}
→ 0, as A→∞,

as follows by Assumption (F ′).
Lastly, since 0 ≤ 1− w(s)/w(t) ≤ 1 for s ≤ t, we have for the third integral in (4.18) that∫ ∞

s+A∗

∣∣∣1− w(s)
w(t)

∣∣∣|κ(s− t)| dt ≤
∫ −A∗

−∞
|κ(u)| du→ 0,

as A∗ →∞. Thus

sup
s≥0

∫ ∞

A

∣∣∣∣(1− w(s)
w(t)

)
v(s, t)

∣∣∣∣ ≤ EA∗ +
∫ −A∗

−∞
|κ(u)| du+ cA∗(A/2)‖κ‖1,

and, given any ε > 0, we can choose A∗ such that the sum of the first two terms on the right-hand
side of this inequality is less than ε, and then cA∗(A/2)‖κ‖1 < ε for all sufficiently large A. Therefore,
v − vw satisfies (D) and, by Proposition 3.3, K −Kw is thus sn-continuous.

The results for the Wiener-Hopf case follow from the paragraphs preceding Theorem 4.5 and as a
special case of the general result, since (A′) and (B) are then automatically satisfied.

If the conditions of Theorem 4.5 hold we may invoke Theorem 4.4 with K ′ := K − Kw to obtain
the following central theorem of the present chapter. Here and henceforth we will use the following
notation: If κ ∈ L1(R) then we let W(κ) stand for the collection of all even w ∈ C(R) fulfilling (2.3)
and Assumptions (E′) and (F ′). (We mention the important fact that W(κ) is never the empty set,
but defer its proof until the end of Section 4.4.)

Theorem 4.6. Suppose that v satisfies (A′), (B), with κ ∈ L1(R) in (A′), and that w ∈ W(κ). Then,
for every λ ∈ C, there holds

(λ−K) ∈M ⇐⇒ (λ−Kw) ∈M ⇐⇒ (λ−K) ∈Mw, (4.19)

where M denotes one of the spaces GL(X),Φ(X),Φ±(X) and Mw its counterpart in GL(Xw), Φ(Xw),
Φ±(Xw). The indices of λ−K on X and λ−K on Xw coincide if λ−K is semi-Fredholm. Moreover,

0 ∈ Σe
X(K) = Σe

X(Kw) = Σe
Xw

(K), (4.20)
0 ∈ ΣX(K) = ΣX(Kw) = ΣXw(K), (4.21)

0 ∈ Σ±
X(K) = Σ±

X(Kw) = Σ±
Xw

(K). (4.22)

In order to prove this theorem, we need the following auxiliary proposition, which shows that 0 is
contained in all the spectra in (4.20)–(4.22).
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Proposition 4.7. Suppose that v satisfies (A′), (B), with κ ∈ L1(R) in (A′), and that w ∈ W(κ).
Then K /∈ Φ±(X) and K /∈ Φ±(Xw). In particular K is not Fredholm and not invertible on X and Xw.

Proof. We will prove all claims by contradiction.
(i) Suppose first that K ∈ Φ−(X). Then X = K(X) ⊕ Z for some finite dimensional subspace

Z of X. Let P denote the projection from X onto K(X) along Z and define the sequence (xn) by
xn(s) := exp(ins), n ∈ N. This sequence is obviously not equicontinuous. Now, we let (zn) := (Pxn).
Since (xn) is bounded and P is continuous and has finite dimensional range (zn) is a bounded and
equicontinuous sequence. Thus the sequence in K(X) given by (yn) := (xn − zn) is bounded but not
equicontinuous. However, K is normally solvable and, by Lemma 2.1, there exists a bounded sequence
(x′n) in X such that Kx′n = yn, n ∈ N. Since v satisfies (A) and (B) Proposition 3.2 applies, showing
that the sequence (Kx′n) = (yn) must be equicontinuous, a contradiction. Hence, our assumption was
wrong and K /∈ Φ−(X). The assumptions of the proposition imply, by Proposition 4.3, that vw satisfies
(A) and (B) so that a similar argument shows that Kw /∈ Φ−(X) and thus, by (2.7), K /∈ Φ−(Xw).

(ii) Now suppose that K ∈ Φ+(X). We choose a sequence of functions (xn) in X so that

‖xn‖ = 1, suppxn ⊂
[
n, n+ 1

n

)
, n ∈ N. (4.23)

Let X ′ := span{xn : n ∈ N}, the closure of the linear space spanned by these functions. Since n 6= m
implies that xn and xm have disjoint supports it follows that each x ∈ X ′ must take the form x =
α1x1 + α2x2 + . . ., where (αn) is a sequence in C; moreover, x is then the limit of a sequence in the
closed subspace X0 of X, for each element of span{xn : n ∈ N} has compact support and so lies in X0.
But this means x ∈ X0 and thus αn → 0 as n → ∞. On the other hand, if (αn) is a sequence with
αn → 0 as n→∞ then x := α1x1 + α2x2 + . . . lies in X ′. Thus

X ′ =
{∑

n∈N
αnxn : lim

n→∞
αn = 0

}
⊂ X0.

It is clear that, if U ⊂ X ′ is bounded then U is equicontinuous. Hence each bounded subset of X ′ is
relatively s-sequentially compact (see Remark 2.8).

Since X ′ is closed and kerX(K) is finite-dimensional, X ′ + kerX(K) is closed. It follows from
Lemma 2.2 that the restriction K ′ := K|X′ of K to X ′ is normally solvable. Moreover, N := kerK ′ is
finite-dimensional, whence K ′ ∈ Φ+(X ′, X). By Lemma 2.5, there exists a compact projection P from
X ′ onto N which satisfies

‖x‖ ≤ C(‖K ′x‖+ ‖Px‖), x ∈ X ′, (4.24)

where C > 0 is a constant. Since P is compact and (xn) is bounded, we obtain Pxnm
→ x0 for some

x0 ∈ N and a subsequence (xnm
) of (xn). By (4.24), it holds that

‖xnm − x0‖ ≤ C
(
‖K ′(xnm − x0)‖+ ‖P (xnm − x0)‖

)
, m ∈ N. (4.25)

Observe that, since x0 ∈ N ⊂ X0 and (4.23) holds, the left-hand side converges to 1 as m → ∞.
But the terms in the bracket on the right-hand side converge to 0 as m → ∞: since x0 ∈ N holds
K ′(xnm

− x0) = K ′xnm
and, as v satisfies (A′),

|Kxnm
(s)| ≤

∫ ∞

0

|κ(s− t)||xnm
(t)| dt ≤

∫ nm+1/nm

nm

|κ(s− t)| dt→ 0,

as m → ∞, uniformly in s ≥ 0. This contradicts (4.25), so that K ′ /∈ Φ+(X ′, X). Thus our initial
assumption was wrong, i.e. K /∈ Φ+(X).

(iii) Next, we assume that Kw ∈ Φ+(X). Then the argument in (ii) yields that K ′
w ∈ Φ+(X ′, X),

where K ′
w := Kw|X′ and X ′ is defined as above. It follows from the assumptions that (K −Kw) is sn-

continuous, see Theorem 4.5. Since each bounded set inX ′ is relatively s-sequentially compact we obtain
that (K ′−K ′

w) ∈ K(X ′, X). But, by Lemma 2.7, this means that K ′ = K ′
w + (K ′−K ′

w) ∈ Φ+(X ′, X),
which cannot be true as (ii) has shown. Thus Kw /∈ Φ+(X) and, by (2.5), K /∈ Φ+(Xw).
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With this proposition at hand, we now commence the proof of Theorem 4.6.

Proof. Proposition 4.7 has just shown us that 0 is contained in all of the sets in (4.20)–(4.22). Note
that, by (2.5), we only need to show the first equalities in equations (4.20)–(4.22).

If λ 6= 0 and M is one of the sets Φ(X) and Φ±(X) then (4.19) and the statement about the indices
immediately follow from Theorem 4.4 (applied with K ′ = K −Kw) and Theorem 4.5. Together with
the discussion of the case λ = 0 this shows that (4.20) and (4.22) hold.

To establish (4.19) when M = GL(X), and thus (4.21), note that, by what we have just shown,
(λ−K)−1 ∈ B(X) implies that λ−K is injective and Fredholm of index zero onXw ⊂ X. But this means
that (λ−K) : Xw → Xw is also surjective, and thus, by Banach’s inverse theorem, (λ−K)−1 ∈ B(Xw).

For the other direction, if (λ − K)−1 ∈ B(Xw), then Xw ⊂ (λ − K)(X) and also, by what has
already been shown, λ−K is Fredholm of index zero on X, so that (λ−K)(X) is closed in X. From
Corollary 2.11 it follows that λ−K : X → X is surjective, for (λ−K)(X) contains the s-sequentially
dense subset Xw of X. Since the surjective operator λ−K has index zero on X, it must also be injective,
whence λ /∈ ΣX(K) by Banach’s inverse theorem.

As an immediate consequence of Theorem 4.6 we have the following corollary on the solvability of
the integral equation (4.1).

Corollary 4.8. Suppose v satisfies Assumptions (A′) and (B), with κ ∈ L1(R) in (A′). Assume
further that, for some w ∈ W(κ) or for w(s) = 1, the integral equation (4.1) has an unique solution
x ∈ Xw for every y ∈ Xw. Then, for all w ∈ W(κ) and for w(s) = 1, the integral equation (4.1) has
an unique solution x ∈ Xw for every y ∈ Xw and

sup
s∈R+

|w(s)x(s)| = ‖x‖w ≤ C‖y‖w = C sup
s∈R+

|w(s)y(s)|,

where C is a positive constant depending only on w, v and λ.

Apart from this straightforward interpretation, we can derive more subtle results from Theorem 4.6.
One of them is: whenever the assumptions of Theorem 4.6 are satisfied and λ −K is Fredholm, then
the null space of λ −K (on X) is contained in the intersection of all Xw, w ∈ W(κ). This result is a
consequence of the next proposition, which shows that the range (λ−K)(X) has a complement (with
respect to the space X) that is contained in Xw, provided λ−K ∈ Φ−(X).

Proposition 4.9. Suppose that v satisfies (A′), (B), with κ ∈ L1(R) in (A′), and that w ∈ W(κ).
Let λ ∈ C. Then, if one of the operators L := λ −K on X and Lw := L|Xw

on Xw is a Φ−-operator
then so is the other. Moreover, if both operators are Φ− then there exist finite-dimensional subspaces
Nw and N of Xw such that N is contained in Nw and

X = L(X)⊕N, Xw = L(Xw)⊕Xw Nw. (4.26)

In particular, there holds β(L) ≤ β(Lw).

Proof. The equivalence has already been shown in Theorem 4.6. It remains to prove (4.26). To this
end, suppose that L and Lw are both Φ−-operators. Then we have the following decomposition

Xw = L(Xw)⊕Xw
Nw,

where L(Xw) is closed in Xw and Nw a finite-dimensional subspace Xw.
The subspace L(X) ∩ Nw, which might be 0-dimensional, is complemented in Nw. Let N denote

one of its complementary spaces. Then Xw = L(Xw)⊕Xw

(
L(X) ∩Nw

)
⊕Xw

N ; moreover

Xw ⊂ L(X) +N. (4.27)

We now show that N is the sought complementary space of L(X), i.e. that there holds

X = L(X)⊕N. (4.28)
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By construction, N ∩ L(X) = {0}. Moreover, both L(X) (by assumption) and N (since it is finite-
dimensional) are closed subspaces of X, where here and in the remainder of the proof the terms closed
and bounded are always to be understood with respect to the norm topology of X. Hence, we only need
to show that L(X) +N is indeed the whole space X.

Since L(X) + N is the sum of a closed and a finite-dimensional subspace of X it is closed and,
equipped with the norm of X, a Banach space in its own right. Thus the projection P from L(X) +N
onto N along L(X) is continuous and, since it has finite-dimensional range, also compact.

Choose an arbitrary y ∈ X. We have to show that y = y′ + y′′ with y′ ∈ N and y′′ ∈ L(X). Since
Xw is s-sequentially dense in X there exists a sequence (yn) in Xw such that yn

s→ y. Note that by,
(4.27), this sequence is contained in L(X)+N . Since this sequence must be bounded and P is compact,
(y′n) := (Pyn) has a norm convergent subsequence, y′nm

→ y′ ∈ N say. Thus ynm
− y′nm

s→ y− y′ =: y′′.
But the sequence (ynm

− y′nm
) is contained in L(X). Since v satisfies (A′) and (B) K is s-sequentially

continuous and s-sequentially compact and thus, by Lemma 2.10, we know that L(X) is sequentially
closed with respect to the strict topology. Thus the limit y′′ must be in L(X), whence y = y′ + y′′ ∈
N + L(X) follows. Thus (4.28) holds and the theorem is shown.

As a corollary we obtain in the next proposition, under the same assumptions on v and w, that if
λ−K is Fredholm then the kernel of λ−K is contained in Xw.

Proposition 4.10. Suppose that v satisfies (A′), (B), with κ ∈ L1(R) in (A′), and that w ∈ W(κ).
Then, for every λ 6= 0, if one of the operators L := λ −K on X and Lw := L|Xw

on Xw is Fredholm
then so is the other and moreover,

α(L) = α(Lw), β(L) = β(Lw), (4.29)

so that kerL = kerLw ⊂ Xw.

Proof. By previous results, we already know if one of the operators L and Lw is Fredholm then so is the
other and the indices of both coincide. The null space kerLw is contained in kerL, and hence α(Lw) ≤
α(L) and β(Lw) ≤ β(L). But Proposition 4.9 shows that β(Lw) ≥ β(L), whence β(Lw) = β(L). From
the equality of the indices we then also get that (4.29) holds and the corollary follows.

This proposition has a noteworthy consequence for the solvability of the integral equation (4.1),
when λ−K is Fredholm: for a given y ∈ X, any two solutions x1(s), x2(s) of (4.1), if they exist, show
the same behaviour as s→∞.

Corollary 4.11. Suppose that v satisfies (A′), (B), with κ ∈ L1(R) in (A′), and that w ∈ W(κ).
Further, assume that λ /∈ Σe

X(K) = Σe
Xw

(K). Then the integral equation (4.1) has at least one solution
x1 ∈ X if and only if y ∈ (λ −K)(X); in this case the set S of all solutions of (4.1) with right-hand
side y takes the form

S = x1 + kerXw(λ−K).

Moreover,
lim

s→∞

∣∣x1(s)− x2(s)
∣∣ = 0, x2 ∈ S,

so that, provided the limit lims→∞ x1(s) exists, there holds

lim
s→∞

x1(s) = lim
s→∞

x2(s), x2 ∈ S.

4.3 Sharpness of Assumptions

In the special case that v(s, t) = 0 for 0 ≤ t ≤ s, by Proposition 4.1, K ∈ B(Xw) for every w satisfying
(2.3), as we have observed already for the Wiener-Hopf case in Proposition 4.3. Slightly more can be
said about the relationship between ΣX(K) and ΣXw

(K) in this case.
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Theorem 4.12. If v satisfies (A) and (B) and v(s, t) = 0 for 0 ≤ t ≤ s, then K ∈ B(Xw) and

ΣXw(K) ⊂ ΣX(K). (4.30)

If also (F ′) holds and v satisfies (A′) for some κ ∈ L1(R), in which case κ can be chosen with
κ(s) = 0, s > 0, then Assumption (E′) holds so that Theorem 4.6 applies and, in particular, (4.20) and
(4.21) hold.

Remark 4.13. This result shows that, if v satisfies (A′) and (B), with κ(s) = 0, s > 0, then (4.30)
holds, and that if also w satisfies (F ′) then (4.20) and (4.21) hold. Example 4.14 below shows that, if
w satisfies (F ) but not (F ′), then no stronger relationship between spectra than (4.30) need hold. In
particular, it need not hold that ΣXw(K) = ΣX(K) nor that Σe

Xw
(K) ⊂ Σe

X(K).

Proof. Let u > 0 and define for every y ∈ X the function yu ∈ X by setting yu(s) = y(s) for s ≥ u and
yu(s) = y(u) for all 0 ≤ s < u. Then ‖yu‖ = sups≥u |y(s)|.

Suppose v satisfies the assumptions of the theorem. Then K ∈ B(X) so that for every x ∈ X we
have

|Kx(s)| = |Kxs(s)| ≤ ‖K‖‖xs‖ ≤ ‖K‖ sup
t≥s

|x(t)|, s ∈ R+.

Hence K ∈ B(Xw) with norm not larger than ‖K‖.
To prove (4.30) let us assume that λ /∈ ΣX(K), i.e. (λ−K)−1 ∈ B(X). Then, for every y ∈ X the

integral equation

λx(s)−
∫ ∞

s

v(s, t)x(t) dt = y(s), s ∈ R+. (4.31)

has an unique solution x ∈ X and ‖x‖ ≤ C‖y‖.
Let u > 0 and y ∈ X. Denote by x, xu the unique solution of (4.31) with right-hand side y, yu,

respectively. We shall see in a moment that

x(s) = xu(s), s ≥ u, (4.32)

holds, so that
sup
s≥u

|x(s)| ≤ ‖xu‖ ≤ C‖yu‖ = C sup
s≥u

|y(u)|.

Thus, if y ∈ Xw then x ∈ Xw with ‖x‖w ≤ C‖y‖w. Hence (λ−K)−1 ∈ B(Xw), i.e. λ /∈ ΣXw
(X) which

is what we set out to show.
It remains to prove that (4.32) is true. To this end let us show that the integral equation

λx̃(s)−
∫ ∞

max{s,u}
v(s, t)x̃(t) dt = ỹ(s), s ∈ R+. (4.33)

has an unique solution x̃ ∈ X for every ỹ ∈ X. Denote the kernel of the integral operator K+ in (4.33)
by v+, so that

v+(s, t) =

{
0, 0 ≤ t < u,

v(s, t), u ≤ t,
s ∈ R+.

Also, set v− := v − v+. It is not hard to see that v− satisfies Assumptions (A), (B) and (D). We
apply Theorem 4.4 with K ′ = K −K+ to see that λ −K+ is Fredholm of index 0 since λ −K (as an
invertible operator) is Fredholm of index 0. To see that λ −K+ is also surjective and thus invertible,
choose any ỹ ∈ X and let x := (λ−K)−1ỹ and set

x̃(s) :=

{
x(s)− 1

λ

∫ u

s
v(s, t)x(t) dt, 0 ≤ s < u,

x(s), s ≥ u.

Then x̃ ∈ X and (λ−K+)x̃ = (λ−K)x = ỹ and thus λ−K+ is surjective, whence (λ−K+)−1 ∈ B(X).
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For the last step, we define the function z by

z(s) :=
1
λ

∫ ∞

max{s,u}
v(s, t)

(
x(t)− xu(t)

)
dt, s ∈ R+.

Then, by the definition of x and xu,

z(s) = x(s)− xu(s), s ≥ u. (4.34)

Thus λz = K+z and, since (λ−K+) is injective, z = 0; now (4.34) implies that (4.32) must indeed be
true and the theorem follows.

We now comment further on the necessity of the requirement (F ′) in the Wiener-Hopf case v(s, t) =
κ(s − t). We have seen in Proposition 4.3 that, unless κ vanishes on the positive half line, necessarily
(F ) holds in this case if K ∈ B(Xw). We have seen also that our method of argument, based on
Theorem 4.4 applied with K ′ = K −Kw, so that v− vw must satisfy (D), requires that w satisfies the
stronger condition (F ′). Thus (F ′) is a necessary condition for K −Kw to be compact, though not, as
discussed above, a sufficient condition. But the question arises as to whether, in the Wiener-Hopf case,
Assumption (F ′) is also necessary for the results of Theorem 4.6 to hold.

We can give a partial answer to this question by considering the weight function w(s) = exp(bs),
b > 0, which satisfies (F ) but not (F ′). In this case, if v(s, t) = κ(s − t) with κ ∈ L1(R), then
vw(s, t) = κb(s− t) with κb(s) := κ(s) exp(bs). Thus

K ∈ B(Xw) ⇐⇒
∫ ∞

0

|κ(t)|ebt dt <∞. (4.35)

Further, if (4.35) holds, then, from (1.9) and (1.10) applied with κ = κb, we deduce that

Σe
Xw

(K) = {κ̂(ξ − ib) : ξ ∈ R} ∪ {0} (4.36)

and
ΣXw

(K) = Σe
Xw

(K) ∪ {λ : [arg(λ− κ̂(ξ − ib))]∞−∞ 6= 0}, (4.37)

with κ̂ defined by (1.11). Thus we have explicit expressions in this case for the spectrum and essential
spectrum of K as an operator on both X and Xw and can check for a particular choice of κ whether
these spectra coincide, i.e. whether (4.20) and (4.21) hold. We point out that, if (4.35) holds, then

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt =
∫ ∞

A

ebt|κ(t)| dt→ 0

as A→∞, so that (E′) holds. Thus all the conditions of Theorem 4.6 are satisfied in this case, except
that (F ′) is replaced by the weaker (F ).

The following examples illustrate the range of possible behaviour. The first example shows that
there exists a large class of κ for which (4.20) and (4.21) do hold, while the second example shows that
(4.20) and (4.21) do not hold for a large class of κ. The third example is a case in which κ(s) = 0,
s > 0, and (4.20) and (4.21) do not hold, although, by Theorem 4.12, (4.30) applies.

Example 4.14. Suppose that f is real and even and that∫ ∞

0

ebs/2
(
|f(s)|+ |f(−s)|

)
ds <∞.

Then f̂(ξ) is analytic in the strip |Im ξ| < b/2 and continuous in |Im ξ| ≤ b/2. Further f̂(ξ) = f̂(−ξ),
|Im ξ| ≤ b/2. Define κ(s) := e−bs/2f(s). Then (4.35) holds and

κ̂(ξ) = f̂(ξ + ib/2), κ̂(ξ − ib) = f̂(ξ − ib/2), ξ ∈ R.
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Thus, and from (1.9), (1.10), (4.36) and (4.37) it follows that (4.20) and (4.21) in Theorem 4.6 hold.
If λ−K is Fredholm on X then its index (see e.g. [40, 57]) is

γ :=
1
2π

[arg(λ− κ̂(ξ))]∞−∞

so that the index of λ−K on Xw is

1
2π

[arg(λ− κ̂(ξ − ib))]∞−∞ =
1
2π

[arg(λ− κ̂(−ξ))]∞−∞ = −γ.

Thus the other conclusion of Theorem 4.6 does not hold in this case since, if λ−K is Fredholm on X
and Xw, its index on X is the negative of its index on Xw.

Example 4.15. Suppose that κ is real and even and that (4.35) holds. Then κ̂(ξ) is real and even so
that

ΣX(K) = Σe
X(K) = [κ−, κ+],

where κ− = infξ∈R κ̂(ξ), κ+ = supξ∈R κ̂(ξ). But

κ̂(ξ − ib) =
∫ ∞

−∞
κ(s)ebs cos(ξs) ds+ 2i

∫ ∞

0

κ(s) sinh(bs) sin(ξs) ds, ξ ∈ R.

The imaginary part of κ̂(ξ − ib) is the sine transform of 2κ(s) sinh(bs). By the injectivity of the sine
transform, unless κ = 0, Im κ̂(ξ − ib) 6= 0 for at least one ξ ∈ R, so that

Σe
X(K) 6= Σe

Xw
(K), ΣX(K) 6= ΣX(K).

Example 4.16. Define κ by

κ(s) =

{
0, s ≥ 0
es, s < 0.

Then (4.35) holds for all b > 0 so that K ∈ B(Xw). Also

κ̂(ξ) =
1

1 + iξ
, κ̂(ξ − ib) =

1
1 + b+ iξ

, ξ ∈ R,

so that

Σe
X(K) =

{
λ :
∣∣∣∣λ− 1

2

∣∣∣∣ = 1
2

}
, ΣX(K) =

{
λ :
∣∣∣∣λ− 1

2

∣∣∣∣ ≤ 1
2

}
and

Σe
Xw

(K) =
{
λ :
∣∣∣∣λ− 1

2(1 + b)

∣∣∣∣ = 1
2(1 + b)

}
, ΣXw(K) =

{
λ :
∣∣∣∣λ− 1

2(1 + b)

∣∣∣∣ ≤ 1
2(1 + b)

}
.

Thus ΣX(K) 6= ΣXw
(K) and Σe

X(K) 6= Σe
Xw

(K); in fact Σe
X(K) ∩ Σe

Xw
(K) = {0}. But note that

ΣXw
(K) ⊂ ΣX(K), in agreement with Theorem 4.12.

4.4 Sufficient conditions on kernels and examples

While in applications Assumption (F ′) is often easily verified, Assumption (E′) is typically much
harder to check. In this section we derive simpler conditions which imply that (E′) holds, and give
examples of kernels and weights which satisfy (E′) and (F ′). Further, we provide and discuss examples
of kernels and weight functions to which our results apply.

In most cases of practical interest it holds that w(s) is continuously differentiable, at least for all
sufficiently large s, say s ≥ s0. In this case we have that

w(s)
w(t)

= exp
(∫ s

t

w′(u)
w(u)

du

)
, s0 ≤ t ≤ s, (4.38)
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so that, if
w′(s)
w(s)

→ 0, as s→∞,

then (F ′) holds. Of course, not every w satisfying (2.3) is differentiable. But for every w ∈ C(R+)
satisfying (2.3) the function

w̃(s) :=

∫ s+1

s
w(t) dt∫ 1

0
w(t) dt

, s ∈ R+,

satisfies (2.3) and is continuously differentiable. Further, we have the following result.

Lemma 4.17. Assumption (F ) holds if and only if

w̃′(s)
w̃(s)

= O(1), as s→∞. (4.39)

Assumption (F ′) holds if and only if

w̃′(s)
w̃(s)

→ 0, as s→∞. (4.40)

If w satisfies (F ) then, for some C > 0,

w(s)
w(1)

≤ w̃(s) ≤ Cw(s), s ≥ 0. (4.41)

Proof. For s ≥ 0,
w(s)
w(1)

≤ w(s)∫ 1

0
w(t) dt

≤ w̃(s) ≤ w(s+ 1)∫ 1

0
w(t) dt

≤ w(s+ 1),

so that
w̃′(s)
w̃(s)

=
w(s+ 1)− w(s)

w̃(s)
∫ 1

0
w(t) dt

≤ w(s+ 1)
w(s)

− 1

and, for s ≥ 1,
w(s+ 1)
w(s)

≤ w(1)
w̃(s+ 1)
w̃(s− 1)

= w(1) exp
(∫ s+1

s−1

w̃′(t)
w̃(t)

dt

)
.

From these inequalities the equivalence of (F ) and (4.39) and also that of (F ′) and (4.40) follows.
Further, if (F ) holds then, w(s+ 1) ≤ ∆1

ww(s), s ≥ 0, so that (4.41) is true.

In view of this result, in order to check that (E) and (F ) hold, or that (E′) and (F ′) hold, it
is sufficient to check that w̃ satisfies (4.39) or (4.40), respectively, and that (E) or (E′), respectively,
hold with w replaced by w̃. We will assume in the remainder of this section, when deriving conditions
which ensure that (E′) and (F ′) hold, that w(s) is continuously differentiable for all sufficiently large
s. The reader should bear in mind that if w̃, which is necessarily continuously differentiable, satisfies
the conditions we require in the various propositions below, then w̃ satisfies (4.40), (4.41) and (E′) and
hence, by Lemma 4.17, w satisfies (E′) and (F ′).

Our first two propositions deal with the case when w′(s)/w(s) is bounded by θ/s for some θ > 0
and all sufficiently large s. Note that we have then the bound

1 ≤ w(s)
w(t)

≤ exp
(∫ s

t

θ

u
du

)
=
(s
t

)θ

(4.42)

if s ≥ t and t is sufficiently large. Keeping t fixed in this equation, we see that in this case necessarily
w(s) = O(sθ), s→∞.
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Proposition 4.18. Suppose that v satisfies (A′), with κ ∈ L1(R), and that there exists θ > 0 such that
for all sufficiently large s the inequality

w′(s)
w(s)

≤ θ

s
(4.43)

holds. Further, suppose that either

w−1 ∈ L1(R+) and λ(s) :=
∫ s+1

s

|κ(t)| dt = O
( 1
w(s)

)
, as s→∞, (4.44)

or, alternatively,

w(s)
∫ ∞

s

|κ(t)| dt = O(1), as s→∞, (4.45)

holds. Then Assumptions (E′) and (F ′) are satisfied.

Proof. That (F ′) holds follows from (4.38). Note that, for 1 ≤ u ≤ s,∫ u

u−1

|κ(t)|
w(s− t)

dt ≤ λ(u− 1)
w(s− u)

≤ λ(u− 1)
∫ u+1

u

dt

w(s− t)
. (4.46)

Thus, if (4.44) holds, then, for some C > 0, w(s)λ(s) ≤ C for s ≥ 0, and we obtain, for A sufficiently
large and s ≥ 2A, the bound∫ s/2

A

w(s)
w(t)

|κ(s− t)| dt = w(s)
∫ s−A

s/2

|κ(t)|
w(s− t)

dt ≤ w(s) sup
t≥s/2−1

λ(t)
∫ s−A+1

s/2

dt

w(s− t)

≤ C
w(s)

w(s/2− 1)

∫ ∞

A−1

dt

w(t)
. (4.47)

Note that, by our assumption (4.43), the inequality (4.42) holds for s ≥ t and t large enough. Hence,
and from (4.47), for all sufficiently large A,

sup
s≥2A

∫ s/2

A

w(s)
w(t)

|κ(s− t)| dt ≤ C

(
2

1−A−1

)θ ∫ ∞

A−1

dt

w(t)
→ 0, as A→∞. (4.48)

In the other case, when assumption (4.45) holds, inequality (4.42) implies that for all sufficiently
large A and s ≥ 2A∫ s/2

A

w(s)
w(t)

|κ(s− t)| dt ≤ w(s)
w(A)

∫ s/2

A

|κ(s− t)| dt ≤ 2θw(s/2)
w(A)

∫ ∞

s/2

|κ(t)| dt→ 0 (4.49)

as A→∞, uniformly in s ≥ 2A.
Further, in both cases, for all sufficiently large A it holds that

sup
s≥2A

∫ s−A

s/2

w(s)
w(t)

|κ(s− t)| dt ≤ 2θ

∫ ∞

A

|κ(t)| dt→ 0,

as A→∞. Thus (E′) holds.

If the constant θ in the bound for w′(s)/w(s) is in the interval (0, 1], then 1 ≤ w(s) = O(s) as
s→∞, so that w−1 is not integrable. Thus condition (4.44) of the previous proposition is not satisfied,
and Proposition 4.18 applies only if (4.45) holds. Consider now the example when κ(s) = (1 + |s|)−3/2

and w(s) = (1 + s)3/4. Then

w(s)
∫ ∞

s

|κ(t)| dt = 2(1 + s)1/4,

which is clearly unbounded as s → ∞, so that neither of the two conditions on κ in Proposition 4.18
is applicable. The next proposition gives alternative conditions on κ when θ ≤ 1 which apply to this
example.
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Proposition 4.19. Suppose that v satisfies Assumption (A′), with κ ∈ L1(R), and that, for some
θ ∈ (0, 1],

w′(s)
w(s)

≤ θ

s
, (4.50)

for all sufficiently large s, and

λ(s) :=
∫ s+1

s

|κ(t)| dt =

{
O(s−1) , if θ < 1,
o
(
(s ln s)−1

)
, if θ = 1,

as s→∞.

Then Assumptions (E′) and (F ′) are satisfied.

Proof. Since (4.50) holds for all sufficiently large s, it follows that, for some M > 0, (4.42) holds for
s ≥ t ≥M . Further, if θ < 1, then, for some C > 0,

sλ(s) ≤ C, s ∈ R+. (4.51)

Suppose A > M + 1 and η ∈ (0, 1/2]. Then, for s ≥ 2A,∫ s−A

max{A,ηs}

w(s)
w(t)

|κ(s− t)| dt ≤
(
s

ηs

)θ ∫ s−A

max{A,ηs}
|κ(s− t)| dt ≤ η−θ

∫ ∞

A

|κ(t)| dt. (4.52)

Further, for ηs ≥ A, using (4.46) with w(s) = sθ to obtain (4.54) from (4.53), we see that∫ ηs

A

w(s)
w(t)

|κ(s− t)| dt ≤
∫ s−A

s(1−η)

sθ|κ(t)|
(s− t)θ

dt (4.53)

≤ sθ

(
sup

t≥s(1−η)−1

λ(t)
)∫ s−A+1

s(1−η)

dt

(s− t)θ
(4.54)

≤ Csθ

s(1− η)

∫ ηs

A−1

dt

tθ
. (4.55)

In the case θ < 1, since 0 < η ≤ 1
2 and ηs ≥ A, this expression is bounded above by

2Csθ

s− 2

∫ ηs

0

dt

tθ
=

2sC
(s− 2)(1− θ)

η1−θ ≤ 2AC
(A− 1)(1− θ)

η1−θ ≤ 2(M + 1)C
M(1− θ)

η1−θ. (4.56)

Combining the inequalities (4.52) through (4.56), we see that, for some C1 > 0 and all sufficiently large
A,

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ η−θ

∫ ∞

A

|κ(t)| dt+ C1η
1−θ.

For every ε > 0 we can choose first η small enough so that η1−θC1 < ε/2 and then, for all sufficiently
large A,

sup
s≥2A

∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt < η−θ

∫ ∞

A

|κ(t)| dt+
ε

2
< ε.

so that (E′) follows.
In the case θ = 1, we set η = 1/2 and find from (4.54) that, for A ≥ 2 and s ≥ 2A,∫ s/2

A

w(s)
w(t)

|κ(s− t)| dt ≤ s
(

sup
t≥ s

2−1
λ(t)

)∫ s/2

A−1

dt

t
≤ s
(

sup
t≥ s

2−1
λ(t)

)
ln
s

2
→ 0

as s→∞. Combining this bound with (4.52) we see that (E′) holds.
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Next is an example of a particular weight function for which we are forced to check condition (4.45)
of Proposition 4.18, because (4.44) does not apply and neither does Proposition 4.19.

Example 4.20. Choose a monotonic increasing weight function which satisfies w(s) ∈ C(R+), w(0) = 1
and w(s) := s ln(s), for all s ≥ e. Clearly, w is unbounded. Moreover,

w′(s)
w(s)

=
1 + ln s
s ln s

, s ≥ e,

so that, for every θ > 1,
w′(s)
w(s)

≤ θ

s

for all sufficiently large s. On the other hand, since

w′(s)
w(s)

>
1
s
, s ≥ e,

Proposition 4.19 does not apply. Further w−1 is not integrable over R and thus (4.44) in Proposition 4.18
does not hold. In order to find kernels v satisfying Assumptions (A′) and (E′) for this choice of w,
one would have to check the second condition (4.45) of Proposition 4.18.

The following example considers the important special case of the power weight w(s) = (1 + s)p,
sharpening, as discussed in the introduction, the results of [42, 57, 18].

Example 4.21. Suppose w(s) := (1 + s)p, for some p > 0, and the kernel v satisfies Assumption (A′)
with κ ∈ L1(R). Then Assumption (F ′) holds,

w′(s)
w(s)

=
p

1 + s
, s ∈ R+,

and, by Propositions 4.19 and 4.18, Assumption (E′) holds if

∫ s+1

s

|κ(t)| dt =


O(s−p), p > 1,
o
(
(s ln s)−1

)
, p = 1,

O(s−1), 0 < p < 1,
as s→∞. (4.57)

Thus, if (4.57) is satisfied and v also satisfies (B), then, by Proposition 4.3 and Theorem 4.6, K ∈
B(Xw) and the spectral equivalences (4.20) and (4.21) hold.

In the Wiener-Hopf case v(s, t) = κ(s − t), with κ ∈ L1(R), it follows from Example 4.21 that, if
w(s) = (1 + s)p, for some p > 0, and (4.57) holds, then K ∈ B(Xw) and (4.20) and (4.21) hold. As a
consequence of Corollary 4.2 and since (4.7) implies (4.8), we have also that K ∈ B(Xw) implies that
(1.15) holds for r = p. Thus the statement∫ s+1

s

|κ(t)| dt = O(s−q) as s→∞ =⇒ K ∈ B(Xw) =⇒
∫ s+1

s

|κ(t)| dt = O(s−r) as s→∞ (4.58)

holds for r = q = p if p > 1, for r = 1 and every q > 1 if p = 1, and for r = p and q = 1 if 0 < p < 1.
In the case 0 < p < 1 the implications (4.58) do not hold for any values of q and r with r > p or q < 1
as shown by the following examples.

Example 4.22. Suppose that v(s, t) = κ(s− t) and that, for some p > 0,

κ(t) =

{
t−p, en ≤ t < en + 1, n ∈ N,
0, otherwise.
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Then κ ∈ L1(R), in fact, for s > 0, where bln sc denotes the largest integer ≤ ln s,∫ ∞

s

|κ(t)| dt ≤
∫ ∞

ebln sc
|κ(t)| dt <

∞∑
m=bln sc

e−pm =
e−pbln sc

1− e−p
≤ eps−p

1− e−p
.

Thus, if w(s) = (1 + s)p, then (4.45) is satisfied and, by Proposition 4.18, (E′) and (F ′) hold. It
follows from Proposition 4.3 that K ∈ B(Xw). But note that, for s = en, n ∈ N,∫ s+1

s

|κ(t)| dt > (1 + s)−p,

so that (1.15) holds only for r ≤ p.

Example 4.23. Suppose that v(s, t) = κ(s−t) and that, for some q ∈ (0, 1) and some positive sequences
(an), (bn), with 0 < a1 < a1 + b1 < a2 < a2 + b2 < a3 < . . . it holds that

κ(t) =

{
t−q, an ≤ t < an + bn, n ∈ N,
0, otherwise.

Further, suppose that a− 1 > b ≥ 0, an ∼ na, bn ∼ nb as n→∞, and p ∈ (0, q). Then

‖κ‖1 =
∞∑

n=1

∫ an+bn

an

t−q dt ≤
∞∑

n=1

bnan
−q <∞,

provided aq − b > 1. Moreover, where w(s) = (1 + s)p, it holds that

w(an + bn)
∫ an+bn

0

|κ(t)|
w(an + bn − t)

dt ≥ w(an + bn)
w(bn)

∫ an+bn

an

|κ(t)| dt

>
w(an + bn)
w(bn)

(an + bn)−qbn ∼ nap−aq−bp+b

as n → ∞. Now, suppose that we choose (an) and (bn) so that a > (1 − p)/((1 − q)p) (which ensures
that a(q − p)/(1 − p) < aq − 1) and so that a(q − p)/(1 − p) < b < aq − 1. Then aq − b > 1, so that
κ ∈ L1(R), and ap− aq− bp+ b > 0, so that (4.7) does not hold, and so, by Corollary 4.2, K /∈ B(Xw).
But note that (1.15) holds with r = q.

Having dealt with the case when w′(s)/w(s) is bounded by a multiple of 1/s, we now turn our
attention to the case when w′(s)/w(s) decays at a slower rate.

Proposition 4.24. Suppose that v satisfies (A′), with κ ∈ L1(R), that w′(s)/w(s) is monotonic
decreasing for all sufficiently large s and, for some α ∈ (0, 1), we have that

sw′(s)
w(s)

→∞,
w′(s)
w(s)

= O(sα−1),

as s→∞. Then w satisfies (F ′). If also

λ(s) :=
∫ s+1

s

|κ(t)| dt = O
( 1
w(s)

)
, s→∞, (4.59)

then Assumption (E′) is fulfilled.

Proof. Choose β > 1/(1 − α). By the assumptions of the proposition we have, for some q > 0 and all
sufficiently large s,

β

s
≤ w′(s)

w(s)
≤ q

s1−α
. (4.60)
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Thus, for s ≥ t and t large enough,

(s
t

)β

= exp
(∫ s

t

β

u
du

)
≤ exp

(∫ s

t

w′(u)
w(u)

du

)
=
w(s)
w(t)

≤ exp
(∫ s

t

q

u1−α
du

)
≤ exp

(
q(s− t)tα−1

)
. (4.61)

Keeping t fixed in this equation, we see that s1/(1−α)/w(s) → 0 as s→∞ so that w−1 ∈ L1(R+) and

s

w(s1−α)
→ 0, as s→∞. (4.62)

Now, for all u sufficiently large and s ≥ u, we get from (4.46), our assumption (4.59) on κ and the
fact that w(s)/w(t) is bounded for |s− t| ≤ 1 when s is large enough, the bound∫ u

u−1

|κ(t)|
w(s− t)

dt ≤
∫ u+1

u

λ(u− 1)
w(s− t)

dt ≤
∫ u+1

u

C

w(t− 1)w(s− t)
dt ≤

∫ u+1

u

C1

w(t)w(s− t)
dt,

where C > 0 is some constant and C1 := ∆1
wC. Then, if A > 0 is large enough and s ≥ 2A, we obtain∫ s−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ C1w(s)
∫ s−A+1

A−1

dt

w(t)w(s− t)
= 2C1w(s)

∫ s/2

A−1

dt

w(t)w(s− t)
. (4.63)

Now, for all sufficiently large s, from (4.61),

w(s)
w(s− s1−α)

≤ C2, (4.64)

where C2 is some positive constant. Thus, if A is large enough and s1−α ≥ A− 1,

w(s)
∫ s1−α

A−1

dt

w(s− t)w(t)
≤ w(s)
w(s− s1−α)

∫ ∞

A−1

dt

w(t)
≤ C2

∫ ∞

A−1

dt

w(t)
. (4.65)

Further, by the monotonicity of w′(s)/w(s) for large argument we get that

d

dt

(
w(t)w(s− t)

)
= w(t)w(s− t)

(
w′(t)
w(t)

− w′(s− t)
w(s− t)

)
≥ 0, s1−α ≤ t ≤ s/2,

when s is large enough. Thus, for all sufficiently large s,

w(s)
∫ s/2

s1−α

dt

w(t)w(s− t)
dt ≤ s

2
w(s)

w(s1−α)w(s− s1−α)
→ 0, (4.66)

as s→∞ from (4.64) and (4.62). From (4.63), (4.65) and (4.66) we conclude that (E′) is satisfied.

As an application of the lemmas we have just proved, we now give an example of an important class
of weight functions for which (E′) is satisfied for many kernels v.

Example 4.25. Choose α ∈ (0, 1), a ≥ 0 and p, q ∈ R and define

w(s) = exp(asα)(1 + s)p
(
ln(e+ s)

)q
, s ∈ R+. (4.67)

Moreover, assume α, a, p, q are such that w−1 ∈ L1(R+) (i.e. a > 0 or p > 1 or p = 1 and q > 1) and
(2.3) holds. Then

lnw(s) = asα + p ln(1 + s) + q ln ln(e+ s),
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so that
w′(s)
w(s)

=
d

ds
lnw(s) = aαsα−1 +

p

1 + s
+

q

(e+ s) ln(e+ s)

and

d

ds

w′(s)
w(s)

= −aα(1− α)sα−2 − p

(1 + s)2
− q

(e+ s)2 ln(e+ s)
− q

(ln(e+ s))2(e+ s)2
≤ 0,

for all sufficiently large s. Thus, if∫ s+1

s

|κ(t)| dt = O
( 1
w(s)

)
, as s→∞, (4.68)

the assumptions of Proposition 4.24 (in case a 6= 0) and Proposition 4.18 (in case a = 0) are satisfied,
so that (E′) and (F ′) hold. On the other hand, as has been shown in the previous sections, in the
Wiener-Hopf case v(s, t) = κ(s− t), with κ ∈ L1(R), (E′) and (F ′) imply that (4.8) holds.

The following proposition can be seen as a generalisation of the second case of Proposition 4.18.

Proposition 4.26. Suppose that v satisfies (A′) with κ ∈ L1(R). Assume further that g ∈ C1(0,∞)
satisfies

g(s) > 0, 0 <
g′(s)
g(s)

≤ 1
s
, for s > 0, (4.69)

and that

g(s)
w′(s)
w(s)

= O(1), w(s)
∫ ∞

g(s)

|κ(t)| dt = O(1), (4.70)

as s→∞. Then Assumptions (E′) and (F ′) are satisfied.

Proof. Note that (4.69) implies that g is monotonic increasing and that

1 ≤ g(s)
g(t)

= exp
(∫ s

t

g′(u)
g(u)

du

)
≤ exp

(∫ s

t

1
u
du

)
=
s

t
, 0 < t ≤ s. (4.71)

Note also that the second equation in (4.70) implies g(s) → ∞ as s → ∞ and that the first of equa-
tions (4.70) implies, for some C > 0 and all s ≥ t with t sufficiently large,

w(s)
w(t)

= exp
(∫ s

t

w′(u)
w(u)

du

)
≤ exp

(∫ s

t

C

g(u)
du

)
≤ exp

(
C(s− t)
g(t)

)
, (4.72)

so that (F ′) holds.
Let us now first suppose that for some θ ∈ (0, 1) the inequality g(s) ≤ θs is true for all sufficiently

large s. It follows from (4.71) and the inequality (4.72) that, for all sufficiently large s,

w(s)
w(s− g(s))

≤ exp
(

Cg(s)
g(s− g(s))

)
≤ exp

(
Cg(s)

g((1− θ)s)

)
≤ exp

(
C

1− θ

)
.

Thus, for sufficiently large A and all s ≥ 2A,∫ s−A

min{s−g(s),s−A}

w(s)
w(t)

|κ(s− t)| dt ≤ exp
(

C

1− θ

)∫ ∞

A

|κ(t)| dt,

while ∫ s−g(s)

A

w(s)
w(t)

|κ(s− t)| dt ≤ w(s)
w(A)

∫ ∞

g(s)

|κ(t)| dt.

Combining the last two inequalities and noting (4.70) we see that (E′) must be satisfied.
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If it is not true that for some θ ∈ (0, 1) the inequality g(s) ≤ θs holds for all sufficiently large s,
then there exists sequences θn → 1 and sn → ∞ such that g(sn) ≥ θnsn. From (4.71) it follows that
g(t) ≥ tg(sn)/sn ≥ θnt, 0 < t ≤ sn, and hence that g(t) ≥ t, t > 0, so that, in view of (4.70), (4.43)
holds for some θ > 0 and all sufficiently large s. But also, from (4.71), g(s) ≤ g(1)s, s ≥ 1. Thus
g(s/g(1)) ≤ s, for s ≥ g(1), and so, by (4.70),

w
( s

g(1)

)∫ ∞

s

|κ(t)| dt ≤ w
( s

g(1)

)∫ ∞

g(s/g(1))

|κ(t)| dt = O(1), as s→∞.

Further, from (4.72) and since g(s/g(1)) ≥ s/g(1), for s > 0, it holds that

w(s)

w
( s

g(1)

) ≤ exp(C(g(1)− 1))

for all sufficiently large s. Combining both inequalities, we see that (4.45) holds. It follows from
Proposition 4.18 that (E′) is satisfied.

We now use this proposition to show that, for every kernel v satisfying (A′) with κ ∈ L1(R), there
exists a weight function w such that Assumption (E′) holds. (The construction is based on [18, p.58].)

Suppose we are given a kernel v which satisfies (A′) with κ ∈ L1(R). Then, provided µ(s) > 0 for
all s ∈ R+, a first guess at such a weight function might be w(s) := µ(0)/µ(s), s ∈ R+, where

µ(s) :=
∫ ∞

s

|κ(t)| dt, s ∈ R+. (4.73)

Then, at least for almost all s ∈ R+ (or even for all s ∈ R+ if κ is continuous), the derivative w′(s)
exists and w′(s) = |κ(s)|/µ(s)2, so that Proposition 4.18 shows that (E′) holds if

sw′(s)
w(s)

=
s|κ(s)|
µ(s)

= O(1), s→∞. (4.74)

Alternatively, if, for some α ∈ (0, 1),

sα|κ(s)|
µ(s)

= O(1), s→∞, and
s|κ(s)|
µ(s)

→∞, s→∞, (4.75)

and w′(s)/w(s) is monotonic increasing for all sufficiently large s, then Proposition 4.24 implies that
(E′) holds.

Conditions (4.74) and (4.75) contain rather strong pointwise estimates of κ. It therefore makes sense
to introduce some averaging process in the definition of w. We also augment the definition of w to make
the point that, given any y ∈ X0 := {x ∈ X : x(s) → 0 as s → ∞}, we can construct w such that
y ∈ Xw. Let y ∈ X0 \ {0} and, for some β ∈ (0, 1),

q(s) := min
{
µ(0)
µ(sβ)

,
‖y‖

supt≥s |y(t)|
, (1 + s)1−β

}
, s ∈ R+, (4.76)

and define the weight function w ∈ C(R) ∩ C1(R \ {0}) by

w(−s) := w(s) :=

{
1, s = 0,
2
s

∫ s

s/2
q(t) dt, s > 0.

(4.77)

Note that
(1 + s)1−β ≥ q(s) ≥ w(s) ≥ q(s/2) ≥ 1, s ≥ 0.

We also have that

w′(s) =
2q(s)− q(s/2)− w(s)

s
≥ 0, s > 0.



Spectral properties in weighted spaces 41

Thus (2.3) holds and

w′(s)
w(s)

=
2q(s)− q(s/2)− w(s)

sw(s)
≤ 2q(s)

s
≤ 2

(1 + s)1−β

s
, s > 0.

Thus, setting g(s) := sβ , g(s)w′(s)/w(s) = O(1) as s→∞ and

w(s)µ(s) ≤ w(s)µ(g(s)) ≤ q(s)µ(sβ) ≤ µ(0),

so that our last proposition applies. Further, for s ∈ R+, |y(s)|w(s) ≤ |y(s)|q(s) ≤ ‖y‖, so that y ∈ Xw.
We have thus obtained the following theorem.

Theorem 4.27. Suppose the kernel v satisfies (A′), with κ ∈ L1(R), and y ∈ X0. Then there exists a
weight function w ∈ W(κ), defined by equations (4.73), (4.76) and (4.77), so that y ∈ Xw and

w(s)
∫ ∞

s

|κ(s)| = O(1), as s→∞. (4.78)

Corollary 4.28. If κ ∈ L1(R) then W(κ) 6= ∅.

As an interesting consequence of this result we relate the solvability of (4.1) in X0 to its solvability
in X in the following theorem, which forms an extension of Theorem 5.3 in [18], where the special case
κ(s) = O(s−q) as s→∞, for some q > 1, has been considered and only “⊂” in (4.79) has been shown.

Theorem 4.29. Suppose that the kernel v satisfies (A′), with κ ∈ L1(R), and (B). Then K ∈ B(X)
and K ∈ B(X0). Moreover,

ΣX0(K) = ΣX(K). (4.79)

Proof. By Theorem 4.27, given any y ∈ X0 there exists w = w(y) ∈ W(κ) and y ∈ Xw. From
Proposition 4.3 it follows that Ky ∈ Xw ⊂ X0. Thus, and since we have ‖Kx‖ ≤ ‖κ‖1‖x‖, for all
x ∈ X, it holds that K is bounded on both X and X0.

Now, suppose that λ 6∈ ΣX(K). Then, by Theorem 4.6, for every y ∈ X0, λ 6∈ ΣXw(y)(K). In
particular, for every y ∈ X0, it follows that there exists x ∈ Xw(y) ⊂ X0 such that (λ −K)x = y, so
that λ−K : X0 → X0 is surjective. Moreover, λ−K is injective on X0 ⊂ X since it is injective on X.
Thus λ 6∈ ΣX(K) implies that (λ −K) : X0 → X0 is bijective. Hence, since X0 is a Banach space, it
follows from Banach’s inverse theorem that (λ −K)−1 ∈ B(X0), i.e. that λ 6∈ ΣX0(K). We have thus
shown that ΣX0(K) ⊂ ΣX(K).

For the other inclusion in (4.79) suppose that λ /∈ ΣX0(K). Choose an arbitrary weight function
w ∈ W(κ); in view of Corollary 4.28, this is always possible. By the assumption on v and since
(λ − K)(X0) = X0 is s-sequentially dense in X, K satisfies the Assumptions of Corollary 2.11 (with
H = K). This corollary shows that (λ−K)(X) = X, whence (λ−K) ∈ Φ−(X). Thus, by Theorem 4.6,
(λ−K) ∈ Φ−(Xw). But this implies (λ−K) ∈ Φ(Xw), for λ−K is injective on Xw as it is injective
on X0 ⊃ Xw. We apply Theorem 4.6 again to obtain (λ − K) ∈ Φ(X). But, by Proposition 4.10,
ker(λ −K) = ker(λ −K)|Xw

= {0}, so that λ −K is injective on X. But we have already seen that
(λ−K)(X) = X, whence λ /∈ ΣX(K) by Banach’s inverse theorem.

4.5 The real line case

All our results obtained so far in this chapter were concerned with the integral equation (4.1) and the
corresponding integral operators defined on the half line R+. However, many practical applications lead
to integral equations on the real line of the form

λx(s)−
∫ ∞

−∞
v(s, t)x(t) dt = y(s), s ∈ R,
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to be solved in X = BC(R) and its weighted subspaces Xw as defined in Section 2.2. The aim of this
section is to emulate the analysis in the half line case to show that generalised versions of the main
assumptions yield similar solvability results in the real line case.

In fact, we will devote the rest of this chapter to such equations on the real line. So, from now on,
we will refer to the real-line variants of the integral operator K, the weighted spaces X and Xw and
Assumptions (A), (A′), (B), (C) and (D), with Ω = R in the respective definition (see Chapters 2
and 3; notice that our assumption that k(s, t) = 1 is still in force). Moreover, Kw will now denote the
integral operator MwKMw−1 , whose kernel is given by vw(s, t) := (w(s)/w(t))v(s, t) for s, t ∈ R.

Towards boundedness of K in Xw we can use the symmetry of w to obtain without difficulty the
following variant of Proposition 4.1 and Corollary 4.2.

Proposition 4.30. Suppose that the kernel k satisfies Assumptions (A) and (B). Then K ∈ B(Xw)
if and only if

sup
s∈R

∫ |s|

−|s|
|vw(s, t)| dt = sup

s∈R

∫ |s|

−|s|

w(s)
w(t)

|v(s, t)| dt <∞,

in which case vw also satisfies (A) and (B). If v(s, t) = κ(s− t) for some κ ∈ L1(R), then K ∈ B(Xw)
if and only if ∫ |s|

−|s|

|κ(s− t)|
w(t)

dt =
∫ s+|s|

s−|s|

|κ(t)|
w(s− t)

dt = O
( 1
w(s)

)
, as |s| → ∞. (4.80)

If k satisfies (A′) for some κ ∈ L1(R) then K ∈ B(Xw) if (4.80) holds.

For κ ∈ L1(R), we introduce the following functions on [0,∞), which we will use throughout the
remainder of this thesis.

λ(A) :=
∫ A+1

A

|κ(t)| dt+
∫ −A

−A−1

|κ(t)| dt, (4.81)

µ(A) :=
∫

R\[−A,A]

|κ(t)| dt =
∫ ∞

A

|κ(t)| dt+
∫ −A

−∞
|κ(t)| dt. (4.82)

Arguing as in Section 4.1, if κ 6= 0 then it follows from (4.80) that (F ) holds and, on the other hand,
if (F ) holds and

∫ 0

−∞ |κ(t)| dt 6= 0 and
∫∞
0
|κ(t)| dt 6= 0 then (4.80) implies

w(s)λ(s) = O(1) as s→∞.

Concerning the boundedness of K on Xw, we have the following partial generalisation of Proposi-
tion 4.3, which can be shown using slightly modified arguments. For the formulation of the proposition,
we need the following real-line variant of (E).

Assumption (E).

sup
|s|≥2A

(∫ −A

−|s|+A

+
∫ |s|−A

A

)
w(s)
w(t)

|κ(s− t)| dt = O(1), as A→∞.

Proposition 4.31. If the kernel v satisfies (A′), with κ ∈ L1(R), (B) and, further the real-line
variants of Assumption (E) and (F ) are satisfied then the kernel vw(s, t) = (w(s)/w(t))v(s, t) satisfies
Assumptions (A) and (B) so that K ∈ B(Xw).

Theorem 4.4 remains valid in the real line case. We now introduce a real-line variant of (E′).

Assumption (E′).

sup
|s|≥2A

(∫ −A

−|s|+A

+
∫ |s|−A

A

)
w(s)
w(t)

|κ(s− t)| dt→ 0, as A→∞.
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From now we use the notation (E+) and (E′
+) to refer to the half line variants of (E) and (E′).

Moreover, we will use the notationW(κ), with κ ∈ L1(R), for the collection of all even weight functions w
satisfying (2.3) and for which this modified version of (E′) and also (F ′) are satisfied. (Note that,
since w is assumed even, we do not need to modify (F ′).)

Note that (E′) is satisfied by w and κ if and only if κ and its reflection around the origin κ̆, defined
almost everywhere by κ̆(t) := κ(−t), both satisfy (E′

+) and the following two conditions also hold:

sup
s≥2A

∫ −A

−s+A

w(s)
w(t)

|κ(s− t)| dt→ 0, as A→∞, (4.83)

sup
s≤−2A

∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt→ 0, as A→∞. (4.84)

The next lemma shows that in many cases it suffices to check that both κ and κ̆ satisfy (E′
+), for a

given w, in order to check whether κ and w satisfy (E′). We note that in many applications κ can be
chosen to be symmetric around the origin, in which case it suffices to check that κ and w satisfy (E′

+).

Lemma 4.32. Let κ ∈ L1(R) and w be a weight function satisfying (2.3). Assume that (E′
+) is satisfied

by both κ and κ̆. Then (E′) holds if one of the following conditions is satisfied:

a) w−1 ∈ L1(R) and w(s)λ(s) = O(1), as s→∞.

b) w(s)µ(s) = O(1), as s→∞.

c) for some M > 0, the following functions are monotonic decreasing on the interval [M,∞):

λ+(s) :=
∫ s+1

s

|κ(t)| dt, λ−(s) :=
∫ −s

−s−1

|κ(t)| dt, s ∈ R+.

Remark 4.33. Assumption c) is satisfied if κ and κ̆ are monotonic decreasing on [M,∞), M > 0.

Proof. In view of the discussion above, we only have to check if (4.83) and (4.84) hold whenever κ and
κ̆ satisfy (E′

+) and one of the conditions a), b) or c) is satisfied. In the following we restrict ourselves
to proving (4.83), for (4.84) can then be shown by symmetric arguments.

a) Firstly, let us assume that a) holds. Then there exists some constant C1 such that∫ s+1

s

|κ(−t)| dt ≤ C1

w(s)
=

C1

w(−s)
, s ∈ R+. (4.85)

Let A > 1. For s ≤ −2A we have that w(s)/w(s− n) = w(|s|)/w(|s|+ n) ≤ 1, n ∈ N, and thus

∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤
b|s|−Ac∑
n=bAc

w(s)
w(n)

∫ n+1

n

|κ(s− t)| dt ≤
b|s|−Ac∑
n=bAc

C1w(s)
w(n)w(s− n)

≤
b|s|−Ac∑
n=bAc

C1

w(n)
≤

∞∑
n=bAc−1

C1

∫ n+1

n

1
w(t)

dt =
∫ ∞

bAc−1

C1

w(t)
dt→ 0,

as A→∞, uniformly in s < −2A (here, we have use the notation b·c introduced in Example 4.22). It
follows that (4.83) holds in case a).

b) If b) is true then, there exists C2 > 0 such that∫ ∞

s

|κ(−t)| dt ≤ C2

w(s)
=

C2

w(−s)
, s ∈ R+.
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Thus, if A > 0 and s < −2A,∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ w(s)
w(A)

∫ |s|−A

A

|κ(s− t)| dt ≤ C2w(|s|)
w(A)w(|s|+A)

≤ C2

w(A)
→ 0,

as A→∞, uniformly in s < −2A, whence (4.83) holds also in case b).
c) Finally, suppose that λ−(s) is monotonic decreasing on the interval [M,∞). Then, for A > M+2

and s < −2A,

∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤
b|s|−Ac∑
n=bAc

w(s)
w(n)

∫ n+1

n

|κ(s− t)| dt =
b|s|−Ac∑
n=bAc

w(s)λ−(|s|+ n)
w(n)

≤
b|s|−Ac∑
n=bAc

w(s)λ−(|s| − n)
w(−n)

≤
b|s|−Ac∑
n=bAc

∫ −n+1

−n

w(s)
w(t)

|κ(s− t)| dt ≤
∫ −A+2

s+A

w(s)
w(t)

|κ(s− t)| dt.

Since, by assumption, κ̆ satisfies (E′
+), the last term tends to 0 as A → ∞, uniformly in s < −2A.

Hence (4.83) holds whenever the conditions in c) are satisfied.

It is straightforward to verify that Theorem 4.5 remains valid in the real line case, with the assump-
tions replaced by their real line variants. Thus we can state the following version of the main result of
Section 4.2, Theorem 4.6.

Theorem 4.34. Suppose that v satisfies (the real-line variants of) (A′), (B), with κ ∈ L1(R) in (A′),
and that w ∈ W(κ). Then, for every λ ∈ C, there holds

(λ−K) ∈M ⇐⇒ (λ−Kw) ∈M ⇐⇒ (λ−K) ∈Mw, (4.86)

where M denotes one of the spaces GL(X),Φ(X),Φ±(X) and Mw its counterpart in GL(Xw), Φ(Xw),
Φ±(Xw). The indices of λ−K on X and λ−K on Xw coincide if λ−K is semi-Fredholm. Moreover,

0 ∈ Σe
X(K) = Σe

X(Kw) = Σe
Xw

(K), (4.87)
0 ∈ ΣX(K) = ΣX(Kw) = ΣXw

(K), (4.88)

0 ∈ Σ±
X(K) = Σ±

X(Kw) = Σ±
Xw

(K). (4.89)

The proof of this theorem proceeds analogously to that of Theorem 4.6 and relies on a real line
version of Proposition 4.7. But this proposition, as well as the remaining results of Section 4.2 also hold
in the real-line case with the straightforward modifications to their statements and proofs.

We finish this chapter by stating results which, in accordance with Section 4.4, specify simpler
conditions on w, v and κ that ensure that the conditions of Theorem 4.34 are satisfied. We start with
a variant of Propositions 4.18 and 4.19.

Proposition 4.35. Suppose that v satisfies (A′), with κ ∈ L1(R), and that there exists θ > 0 such that
for all sufficiently large s > 0 the inequality

w′(s)
w(s)

≤ θ

s
(4.90)

holds. Further, suppose that either

w−1 ∈ L1(R) and w(s)λ(s) = O(1), as s→∞, (4.91)

or, alternatively,
w(s)µ(s) = O(1), as s→∞, (4.92)

holds. Then Assumptions (E′) and (F ′) are satisfied.
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Alternatively, if w satisfies (4.90) for some θ ≤ 1 and all sufficiently large s > 0, and also

λ(s) =

{
O(s−1) , if θ < 1,
o
(
(s ln s)−1

)
, if θ = 1,

as s→∞, (4.93)

holds then (E′) is satisfied.

Proof. If any of the three assumptions (4.91)–(4.93) is satisfied then it follows from Proposition 4.18 or
4.19 that κ and κ̆ both satisfy (E′

+). If (4.91) or (4.92) is satisfied then part a) or b) of Lemma 4.32
applies and shows that (E′) holds. Thus we concentrate on the case when θ ≤ 1 and (4.93) holds.

Similar to the first part of the proof of Proposition 4.19, we can then choose positive constants M
and C so that

w(s)
w(t)

≤
(
|s|
|t|

)θ

, |s| ≥ |t| ≥M,

λ(s) ≤

{
C|s|−1, if θ < 1,
C|s| ln |s|−1, if θ = 1,

|s| ≥M.

Now, suppose that A > M + 1, η ∈ (0, 1/2] and s ≤ −2A. Then, arguing as in (4.52),∫ |s|−A

max{A,η|s|}

w(s)
w(t)

|κ(s− t)| dt ≤ η−θ

∫ ∞

A

|κ(−t)| dt. (4.94)

If θ < 1 then we obtain, for A > M + 1 and ηs ≤ −A,

∫ η|s|

A

w(s)
w(t)

|κ(s− t)| dt ≤
∫ η|s|

A

( |s|
t

)θ

|κ(s− t)| dt ≤ C

bη|s|c∑
n=bAc

( |s|
n

)θ
∫ n+1

n

|κ(s− t)| dt

≤ C

bη|s|c∑
n=bAc

( |s|
n

)θ C

|s− n|
≤ C|s|θ

∫ bη|s|c

bAc−1

dt

tθ−1
≤ C|s|θ

∫ η|s|

0

dt

tθ−1
≤ Cη1−θ.

Combining this inequality with (4.94) there holds, for A > M + 1 and η ∈ (0, 1/2],∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ η−θ

∫ ∞

A

|κ(−t)| dt+ Cη1−θ, s ≤ −2A.

The term on the right-hand side of this inequality can be made arbitrarily small, uniformly in s, by
choosing first η small enough and then A large enough. Thus (4.83) holds when θ < 1.

If θ = 1 then we set η = 1/2 and obtain, for A > M + 2 and s < −2A,∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ |s|
(

sup
t≥|s|

λ(t)
)∫ |s|

bAc−1

dt

t
≤ |s| ln |s|

(
sup
t≥|s|

λ(t)
)
→ 0

as A→∞, so that (4.83) holds also when θ = 1.
By symmetric arguments we show that (4.84) also holds when (4.93) is true, whence (E′) must be

satisfied in both cases of (4.93).

Proposition 4.36. Suppose w fulfils the conditions of Proposition 4.24 and that v satisfies (A′), with
κ ∈ L1(R), and, moreover,

w(s)λ(s) = O(1), s→∞.

Then Assumptions (E′) and (F ′) are satisfied.
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Proof. If the assumptions of the proposition are satisfied then it follows from Propositions 4.24 that κ
and κ̆ both satisfy (E′

+).
Let C1 > 0 be the constant in (4.85). Now, for A > 2 and s ≤ −2A, we use the bound w(s − t) ≤

w(|s| − t), for 0 ≤ t ≤ |s|, to see that

∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤
b|s|−Ac∑
n=bAc

w(s)
w(n)

∫ n+1

n

|κ(s− t)| dt ≤
b|s|−Ac∑
n=bAc

C1w(s)
w(n)w(s− n)

≤
b|s|−Ac∑

n=bAc−1

C1

∫ n+1

n

w(s)
w(t)w(|s| − t)

dt ≤ C1

∫ |s|−A+1

A−2

w(|s|)
w(t)w(|s| − t)

dt.

It now follows from the proof of Proposition 4.24 (in particular (4.63), (4.65) and (4.66)) that the
integral on the right-hand side of this inequality tends to 0 as A → ∞, uniformly in s ≤ −2A. Thus
(4.83) and, by symmetry, also (4.84) holds, whence (E′) is satisfied.

Proposition 4.37. Suppose that v satisfies (A′) with κ ∈ L1(R). Assume further that g ∈ C1(0,∞)
is a positive function which satisfies condition (4.69) of Proposition 4.26. Moreover, assume that

g(s)
w′(s)
w(s)

= O(1), w(s)µ(g(s)) = O(1),

as s→∞. Then Assumptions (E′) and (F ′) are satisfied.

Proof. If the assumptions of the proposition are satisfied then it follows from Propositions 4.26 that κ
and κ̆ both satisfy (E′

+).
As in the proof of Proposition 4.26, let us firstly assume that g(s) ≤ θs for some θ ∈ (0, 1) and all

sufficiently large s. Then, for A sufficiently large and s ≤ −2A there holds∫ |s|−A

A

w(s)
w(t)

|κ(s− t)| dt ≤ w(s)
w(A)

∫ ∞

|s|+A

|κ(−t)| dt ≤ w(s)
w(A)

∫ ∞

g(|s|)
|κ(−t)| dt, (4.95)

By assumption there holds w(s)µ(g(|s|)) = w(|s|)µ(g(|s|) ≤ C, |s| > 1, for some constant C > 0,
whence the term on the right-hand side of this inequality vanishes as A → ∞, uniformly in s ≤ −2A.
Thus (4.83) and, by symmetry, also (4.84) holds, whence (E′) is satisfied.

If g(s) ≤ θs is not satisfied, then the last part of the proof of Proposition 4.26 shows that w and κ
satisfy assumptions (4.91) and (4.92) of Proposition 4.35, which in turn shows that (E′) must hold.

Finally, we show that, as in the half line case, for a given kernel v satisfying (A′), for some κ ∈ L1(R),
and given y ∈ X0, we can always construct a suitable weight function w so that y ∈ Xw and w ∈ W(κ).

Theorem 4.38. Suppose the kernel v satisfies (A′), with κ ∈ L1(R), and that y ∈ X0. Then there
exists an even weight function w ∈ W(κ) such that w(s)µ(s) = O(1), as s→∞, and y ∈ Xw holds.

Proof. Let κ and y be given as in the assumption and denote the reflection around the origin of κ and
y by κ̆ and y̆, respectively. By Theorem 4.27 there exist even weight functions w1, w2 satisfying (F ′)
and (E′

+) with κ and κ̆, respectively, and such that

sup
s∈R+

|w1(s)y(s)| <∞, sup
s∈R+

|w2(s)y̆(s)| <∞,

and, as s→∞,

w1(s)
∫ ∞

s

|κ(t)| dt = O(1), w2(s)
∫ ∞

s

|κ(−t)| dt = O(1).

Let w(s) := min{w1(s), w2(s)}, s ∈ R. Then w is even, satisfies (2.3), w(s)µ(s) = O(1) as s→∞ and
y ∈ Xw. Moreover, part b) of Lemma 4.32 shows that w ∈ W(κ) and the proof is complete.

Corollary 4.39. If κ ∈ L1(R) then W(κ) 6= ∅.



Chapter 5

Numerical methods in weighted
spaces

5.1 Nyström and product integration methods

In the previous chapter we have investigated the theoretical solvability of the integral equation

λx(s)−
∫ ∞

−∞
v(s, t)k(s, t)x(t) dt = y(s), s ∈ R, (5.1)

(and its half line variant), in operator form

λx−Kkx = y, (5.2)

on the weighted subspaces Xw of X defined in Chapter 2. In this chapter we now focus on the practical
solution of (5.1), employing variants of the Nyström method, in which we replace the integral operator
Kk in (5.2) by a discretized integral operator KN

k , obtained by quadrature approximation, with N being
a parameter controlling the quality of the approximation. We then try to solve the discretized equation

λxN −KN
k x

N = y. (5.3)

Our methods for the numerical solution of (5.1) are based on an application of a quadrature ap-
proximation, sometimes known as a product integration method , taking the form∫ ∞

−∞
v(s, t)f(t) dt ≈

∑
j∈Z

ωN
j (s)f(tNj ), f ∈ X. (5.4)

In this equation, for N ∈ N and j ∈ Z, tNj := jhN , are the abscissae of the Nth in a sequence of
quadrature rules. The abscissae are equally spaced with distance hN > 0, where hN → 0 as N → ∞.
The corresponding weights of the quadrature rule, appropriate to the weight function v(s, ·) in the
integrand, are ωN

j (s), j ∈ Z, N ∈ N.
As we will make clear soon, the approximation in (5.4) is well-defined for every f ∈ X and depends

continuously on s if we make the following two assumptions,

Assumption (QA).
CQ := sup

s∈R
sup
N∈N

∑
j∈Z

|ωN
j (s)| <∞.

Assumption (QB).

sup
N∈N

∑
j∈Z

|ωN
j (s)− ωN

j (s+ h)| → 0, as h→ 0, for every s ∈ R.

47
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We note that (QB) is the same as Assumption (3.2) in [63], except for the fact that the summation
in [63] is finite.

We cannot, in general, expect convergence as N →∞ of the approximation to the integral in (5.4)
that is uniform in s or f for s ∈ R and f ∈ X (but there is a large class of kernels and quadrature rules
where uniform convergence in s ∈ R and f varying in a bounded and uniformly equicontinuous subset
of X, is possible; we will discuss this phenomenon later in Section 5.3.1). Thus we will be more modest
and assume throughout most of this chapter that the quadrature rule used to approximate the integral
in (5.4) satisfies a weaker pointwise convergence condition:

Assumption (Q).∑
j∈Z

ωN
j (s)f(tNj ) →

∫ ∞

−∞
v(s, t)f(t) dt as N →∞, f ∈ X, s ∈ R.

The above assumptions are closely related to (A) and (B). In particular, we note that if (Q) and
(QA) hold then, for all s, s′ ∈ R and f ∈ X,∣∣∣∣∫ ∞

−∞
v(s, t)f(t) dt

∣∣∣∣ ≤ CQ‖f‖,∣∣∣∣∫ ∞

−∞
(v(s, t)− v(s′, t))f(t) dt

∣∣∣∣ ≤ ‖f‖ sup
n∈N

∑
j∈Z

|wN
j (s)− wN

j (s′)|.

For every z ∈ L1(R), it follows from (3.4), applied with v(s, t) := z(t), that∫ ∞

−∞
|z(t)| dt = sup

f∈X, ‖f‖≤1

∣∣∣∣∫ ∞

−∞
z(t)f(t) dt

∣∣∣∣ .
Thus, there holds

(Q), (QA) ⇒ (A), sup
s∈R

∫ ∞

−∞
|v(s, t)| dt ≤ CQ, (5.5)

(Q), (QA), (QB) ⇒ (A), (B). (5.6)

In the context of numerical methods for integral equations, the process of decomposing a given
kernel into the product of functions v and k is not new. The product-integration approximation∫ ∞

−∞
v(s, t)k(s, t)x(t) dt ≈

∑
j∈Z

ωN
j (s)k(s, tNj )x(tNj ), N ∈ N, (5.7)

is suitable for badly behaved kernel functions that may be written as the product of a smooth or at
least continuous function k and a discontinuous, possibly singular function v (see, e.g. [10, 44] and the
references therein). The quadrature weights ωN

j (s) in (5.7) are usually constructed by integrating the
product of v(s, ·) with Lagrange interpolating functions (e.g. polynomials or trigonometric polynomials).

In analogy to the definition of the integral operators Kk, we define the discretized integral operators
KN

k by setting
KN

k x(s) :=
∑
j∈Z

ωN
j (s)k(s, tNj )x(tNj ), s ∈ R, x ∈ X, N ∈ N. (5.8)

We will see in our first proposition that, under the conditions (Q), (QA) and (QB), the operator
KN

k is a bounded operator on the space X and maps bounded sets onto equicontinuous sets. In order
to prove this result, we need the following technical lemma that will also be useful later on.

Lemma 5.1. Suppose that the quadrature weights ωN
j (s) satisfy (Q), (QA) and (QB). Then, for

every compact set Ω′ ⊂ R and every ε > 0, there exists a constant A > 0 such that

sup
s∈Ω′

sup
N∈N

∑
|tN

j |>A

|ωN
j (s)| < ε. (5.9)
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Proof. We firstly show the lemma for the special case when Ω′ contains just a single point s ∈ R.
Suppose that the lemma does not hold in this case. Then there exists an ε > 0 such that, for every
A > 0 and N0 ∈ N , there holds

sup
N≥N0

∑
|tN

j |>A

|ωN
j (s)| ≥ ε. (5.10)

We will show, in three steps, that this leads to a contradiction.
(i) Let us choose A0 > 0 such that ∫

R\[−A0,A0]

|v(s, t)| dt ≤ ε

4
. (5.11)

Starting with A0, we can choose N1 ∈ N and then A1 > A0 such that∑
|tN1

j |>A0

|ωN1
j (s)| ≥ ε,

∑
|tN1

j |>A1

|ωN1
j (s)| < ε

4
,

and we repeat this process to obtain N2, A2, N3, A3, ... (using the procedure in (i) to obtain Nn from
Nn−1 and An−1) so that (An) and (Nn) are strictly monotonic increasing sequences with the property∑

|tNn
j |>An−1

|ωNn
j (s)| ≥ ε,

∑
|tNn

j |>An

|ωNn
j (s)| < ε

4
, n ∈ N. (5.12)

(ii) We now construct inductively a function x ∈ X with ‖x‖ ≤ 1 as follows:

• We set x(t) = 0, for every |t| ≤ A0.

• Provided x(t) is already defined on the interval [−An−1, An−1], for some n ∈ N, we define x(tNn
j ),

at all quadrature nodes tNn
j with An−1 < |tNn

j | ≤ An and ωNn
j (s) 6= 0, implicitly by

x(tNn
j )ωNn

j (s) =
Cn

|Cn|
· |ωNn

j (s)|.

Here, Cn is given by
Cn :=

∑
|tNn

j |≤An−1

ωNn
j (s)x(tNn

j ) (5.13)

if this sum is non-zero, and Cn := 1 otherwise. All remaining values of x(t), for An−1 < |t| ≤ An,
are then chosen so that |x(t)| ≤ 1 and x is continuous on [−An, An].

(iii) For the function x constructed in (iii) we obtain from (Q) that

lim
n→∞

∣∣∣∑
j∈Z

ωNn
j (s)x(tNn

j )
∣∣∣ =

∣∣∣∫ ∞

−∞
v(s, t)x(t) dt

∣∣∣ ≤ ∫
R\[−A0,A0]

|v(s, t)| dt ≤ ε

4
. (5.14)

For all those n > 1, for which Cn was defined by (5.13), we see, by (5.11), (5.12) and our choice of x,
that∣∣∣∑

j∈Z
ωNn

j (s)x(tNn
j )
∣∣∣ =

∣∣∣ ∑
|tNn

j |≤An−1

ωNn
j (s)x(tNn

j ) +
Cn

|Cn|
∑

An−1<|tNn
j |≤An

|ωNn
j (s)|+

∑
|tNn

j |>An

ωNn
j (s)x(s)

∣∣∣
≥

∣∣∣Cn +
Cn

|Cn|
∑

An−1<|tNn
j |≤An

|ωNn
j (s)|

∣∣∣− ε

4
≥ |Cn|

(
1 +

1
|Cn|

3ε
4

)
− ε

4
≥ ε

2
,
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and, for all other n > 1,∣∣∣∑
j∈Z

ωNn
j (s)x(tNn

j )
∣∣∣ ≥ ∑

An−1<|tNn
j |≤An

|ωNn
j (s)| − ε

4
≥ 3ε

4
− ε

4
=
ε

2
.

Thus (5.14) is contradicted, so that the lemma holds when Ω′ is a singleton.
Finally, we prove the general case. To this end, let Ω′ and ε be as in the assumption of the lemma.

Then, using (QB), we can find a finite set of points Ω′′ in Ω′ such that, for every s ∈ Ω′, there exists
a point s′ ∈ Ω′′ such that

sup
N∈N

∑
j∈Z

|ωN
j (s)− ωN

j (s′)| < ε

2
. (5.15)

By the first part of the proof, we may choose A > 0 large enough such that for all s′ in the finite set
Ω′′

sup
N∈N

∑
|tN

j |>A

|ωN
j (s′)| < ε

2
. (5.16)

Combining (5.15) and (5.16), we see that for every s ∈ Ω′ there is some s′ ∈ Ω′′ such that

sup
N∈N

∑
|tN

j |>A

|ωN
j (s)| ≤ sup

N∈N

∑
|tN

j |>A

|ωN
j (s)− ωN

j (s′)|+ sup
N∈N

∑
|tN

j |>A

|ωN
j (s′)| < ε

2
+
ε

2
= ε,

proving the lemma.

Proposition 5.2. Denote the unit ball in X by B and suppose W ⊂ BC(R2) is a bounded set. Suppose
that the quadrature weights ωN

j (s) satisfy Assumptions (QA) and (QB). Then the following statements
are true:

a) KN
k : X → X and is uniformly bounded in N ∈ N and k ∈W .

b) For every k ∈ BC(R2) and N ∈ N the set KN
k (B) is bounded and equicontinuous, so that KN

k is
s-sequentially compact.

c) If, moreover, Assumption (Q) is satisfied and the set W is equicontinuous then the set

V :=
⋃

N∈N

⋃
k∈W

KN
k (B) = {KN

k x : x ∈ X, ‖x‖ ≤ 1, k ∈W, N ∈ N}

is bounded and equicontinuous.

Proof. We will see in the proof of b) that KN
k x ∈ X, for every x ∈ X. Assumption (QA) implies that,

for s ∈ R, x ∈ B, k ∈W , N ∈ N,

|KN
k x(s)| ≤

∑
j∈Z

|ωN
j (s)k(s, tNj )x(tNj )| ≤

(
sup
k∈W

‖k‖
)∑

j∈Z
|ωN

j (s)| ≤ CQ sup
k∈W

‖k‖,

so that ‖KN
k ‖ ≤ CQ supk∈W ‖k‖, where CQ is the constant in (QA). This proves the uniform bound-

edness of the operators KN
k , k ∈W , N ∈ N, i.e. part a) of the proposition.

To prove c), choose s ∈ R. Then, given ε > 0, we can use Lemma 5.1 with Ω′ = [s− 1, s+ 1] to find
a constant A such that (5.9) holds. Then, for all k ∈W , x ∈ B and N ∈ N, we have by (5.9) and (QA)

|KN
k x(s)−KN

k x(s
′)| ≤

( ∑
|tN

j |≤A

+
∑

|tN
j |>A

)
|ωN

j (s)k(s, tNj )− ωN
j (s′)k(s′, tNj )||x(t)|

≤
∑

|tN
j |≤A

|ωN
j (s)− ωN

j (s′)||k(s′, tNj )|+
∑

|tN
j |≤A

|ωN
j (s)||k(s, tNj )− k(s′, tNj )|+ 2ε‖k‖

≤‖k‖
∑
j∈Z

|ωN
j (s)− ωN

j (s′)|+ CQ max
|tN

j |<A
|k(s, tNj )− k(s′, tNj )|+ 2ε‖k‖, (5.17)
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provided s′ is such that |s− s′| ≤ 1. If s′ → s then the first summand on the right-hand side of (5.17)
converges to 0, uniformly in k ∈ W and N ∈ N, because v satisfies (QB) and W is bounded. The
same is true for the second summand, for W is, by assumption, uniformly equicontinuous over compact
subsets of R2. Since ε was arbitrary, we see that |KN

k x(s) − KN
k x(s

′)| becomes arbitrarily small as
s′ → s, uniformly in k ∈W and N ∈ N, proving the uniform equicontinuity of V .

Finally, to see that b) holds, let s ∈ R, N ∈ N and k ∈ BC(R2). Given ε > 0, there exists A > 0
such that, for all s′ ∈ [s− 1, s+ 1], ∑

|tN
j |>A

|ωN
j (s′)| < ε. (5.18)

Using a similar argument as in the final part of the proof of Lemma 5.1, we obtain from (QA) and
(QB) (only) A > 0 so large that (5.18) also holds uniformly for all s′ ∈ [s− 1, s+ 1]. With this choice
of A, inequality (5.17) holds for all s′ ∈ [s− 1, s+ 1]. Arguing similarly to the proof of c), we see that
|KN

k x(s)−KN
k x(s

′)| → 0 as |s− s′| → 0.

We have shown in Chapter 3 that, if v satisfies (A) and (B) and k ∈ BC(R2), then the integral
operator Kk maps bounded onto equicontinuous sets. Under the assumptions of the previous theorem
this is also true for the discretized integral operator KN

k , k ∈ BC(R2), N ∈ N. We prove some other
features of the discretized integral operators in the next proposition.

Proposition 5.3. Suppose that the quadrature weights ωN
j (s) satisfy (Q), (QA) and (QB). Further,

let (xn) be a bounded sequence in X, (Nn) a sequence in N and (kn) a bounded sequence in BC(R2).
Then the following assertions hold:

a) For every N ∈ N and k ∈ BC(R2) the operator KN
k is s-continuous.

b) If xn
s→ x ∈ X, kn

s→ k ∈ BC(R2) and Nn → N ∈ N then KNn

kn
xn

s→ KN
k x.

If, further, Assumption (Q) is satisfied then the following statements are true:

c) If xn
s→ x ∈ X, kn

s→ k ∈ BC(R2) and Nn →∞ then KNn

kn
xn

s→ Kkx.

d) If the sequence (kn) is equicontinuous then the sequence (KNn

kn
xn) contains an s-convergent sub-

sequence.

e) If W ⊂ BC(R2) is bounded and equicontinuous, then the following set is relatively s-sequentially
compact:

V :=
⋃

N∈N

⋃
k∈W

KN
k (B) = {KN

k x : x ∈ X, ‖x‖ ≤ 1, k ∈W, N ∈ N}.

Remark 5.4. Note that if kn
s→ k then each sequence in the (bounded) set {kn : n ∈ N} has an s-

convergent subsequence. By Remark 2.8, this means that {kn : n ∈ N} is bounded and equicontinuous.
Thus part d) shows that, if (xn) is a bounded sequence in X, (Nn) a sequence in N and (kn) a sequence
in BC(R2) so that kn

s→ k ∈ BC(R2) then (KNn

kn
xn) contains an s-convergent subsequence.

Proof. We begin with the proof of part b), for a) is a special case of b). Assume we are given convergent
sequences (xn), (kn) and (Nn) as in the assumption. Since Nn → N ∈ N implies that (Nn) is eventually
constant, we may assume w.l.o.g. that Nn = N , for every n ∈ N.

Given a compact set Ω′ ⊂ R we now have to show that KN
kn
xn(s) → KN

k x(s), uniformly in s ∈ Ω′.



Numerical solution in weighted spaces 52

Let s ∈ Ω′. Bearing in mind (2.10), we have, for all A > 0,

|KN
kn
xn(s)−KN

k x(s)| ≤
∑

|tN
j |≤A

|ωN
j (s)|

(
|kn(s, tNj )− k(s, tNj )||xn(tNj )|+ |k(s, tNj )||xn(tNj )− x(tNj )|

)
+2
(
sup
n∈N

‖xn‖
)(

sup
n∈N

‖kn‖
) ∑
|tN

j |>A

|ωN
j (s)|

≤ CQ

((
sup
n∈N

‖xn‖
)

max
|t|≤A

|kn(s, t)− k(s, t)|+ ‖k‖max
|t|≤A

|xn(t)− x(t)|
)

+2
(
sup
n∈N

‖xn‖
)(

sup
n∈N

‖kn‖
) ∑
|tN

j |>A

|ωN
j (s)|. (5.19)

Given ε > 0, we can choose A large enough to make the last summand on the right-hand side < ε/2,
for all s ∈ Ω′ (see the argument in the last step in the proof of Lemma 5.1). Next, we use the uniform
convergence of (kn) and (xn) on compact intervals to find that for n ∈ N large enough the first summand
is also less than ε/2 for all s ∈ Ω′. Since ε was arbitrary KN

kn
xn

s→ KN
k x follows.

Now, additionally suppose that Assumption (Q) holds. Then, using Lemma 5.1 to bound the series
in the very last term in (5.19) we see that the argument in b) does not depend on the choice of N ∈ N,
and, hence, xn

s→ x ∈ X, kn
s→ k ∈ BC(R2) imply that KNn

kn
xn −KNn

k x
s→ 0.

We continue with part c). We write

KNn

kn
xn −Kkx =

(
KNn

kn
xn −KNn

k x
)

+
(
KNn

k x−Kkx
)
,

and note that we have just shown that the first bracket on the right-hand side is strictly converging
to 0. We now show that this is also true for the second bracket. Since (Q) holds we already know
that KNn

k x(s) → Kkx(s) pointwise for all s ∈ R. By Proposition 5.2, {KNn

k x : n ∈ N} is bounded
and equicontinuous on R. But, over compact sets, pointwise convergence of an equicontinuous sequence
implies uniform convergence. Thus, for every compact Ω′ ⊂ R, KNn

k xn(s) → Kkx(s) uniformly in
s ∈ Ω′. This proves KNn

k xn
s→ Kkx and c) follows.

Part e) is a consequence of Remark 2.8 and Proposition 5.2, part c). Part d) is immediate from e).

5.2 Boundedness and spectral properties in weighted spaces

Suppose now that v is a kernel satisfying Assumptions (A′) and (B) of the previous chapter, with
κ ∈ L1(R) in (A′). We have then denoted by W(κ) the (non-empty) set of all weight functions for
which Assumptions (E′) and (F ′) are satisfied. For w ∈ W(κ) and k ∈ BC(R2), we have shown that
Kk ∈ B(Xw) and that the spectral equivalences ΣX(Kk) = ΣXw

(Kk), Σe
X(Kk) = Σe

Xw
(Kk) hold.

Suppose we are given a set of quadrature weights ωN
j (s) and an even weight function w satisfy-

ing (2.3). Similar to the definition of the operator Kw in the previous chapter, we now define the
operators Kk,w := MwKkMw−1 and KN

k,w := MwK
N
k Mw−1 , for k ∈ BC(R2) and N ∈ N, where Kk and

KN
k are defined by (3.2) and (5.8), respectively. (We recall that Mw and Mw−1 denote the operators

of multiplication with the functions w, w−1, respectively.) In the sequel, we will sometimes drop the
index k and simply write KN

w when the dependence on k is clear.
KN

k,w is then an approximation of the integral operator Kk with quadrature weights

ωN
j,w(s) :=

w(s)
w(tNj )

ωN
j (s), s ∈ R, N ∈ N, j ∈ Z. (5.20)

Assume further that we have found a set of quadrature weights ωN
j (s) satisfying (Q), (QA) and

(QB). We now seek additional conditions on the quadrature weights, which ensure that KN
k ∈ B(Xw)

(equivalently, KN
k,w ∈ B(X)) for all w ∈ W(κ), and, moreover, that the spectral equivalences

ΣX(KN
k ) = ΣXw

(KN
k ), Σe

X(KN
k ) = Σe

Xw
(KN

k )
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hold, for all w ∈ W(κ). To this end, let us suppose, from now on, that the kernel v fulfils the following
assumption.

Assumption (A′′). For every s ∈ R there holds, for a.e. t ∈ R,

|v(s, t)| ≤ |κ(s− t)|,

where κ ∈ L1(R) is such that, for some A0 > 0, |κ(t)| and |κ(−t)| are monotonic decreasing on [A0,∞).

Clearly, (A′′) is a slightly stronger requirement than (A′). However, (A′′) is still simple enough
to be easily checked in applications and to hold for most kernels of practical interest. The usefulness
of the monotonicity condition imposed on κ in (A′′) will become evident soon. We also remark that,
for kernels satisfying (A′′), the third condition in Lemma 4.32 is satisfied, so that, in order to decide
whether a particular weight function w is contained in W(κ), one has to check whether (E′

+) holds for
κ and κ̆, its reflection around the origin.

If a quadrature approximation as in (5.4) is defined for a particular kernel v satisfying (A′′), then
two reasonable assumptions on the quadrature weights ωN

j (s) are that they reflect the decay of v(s, t) as
|s−t| → ∞ and the decay of hN as N →∞. We express these requirements in the following assumption
on the quadrature weights, where κ is the kernel bound in (A′′).

Assumption (QA′′). For some C∗ > 0 and A1 > 0, the quadrature weights ωN
j (s) satisfy

|ωN
j (s)| ≤ C∗hN |κ(s− tNj )|, N ∈ N, j ∈ Z, |s− tNj | ≥ A1.

(QA′′) is satisfied for many sensible approximations of kernels satisfying (A′′); in particular it is
satisfied for standard rules such as the (compound) trapezium or Simpson’s rule.

The next lemma shows the usefulness of (A′′) and (QA′′), because it will allow us to use the results
of Chapter 4 in our investigation of the boundedness and spectral properties of the operators KN

k on
X and Xw.

Lemma 5.5. Suppose that N ∈ N, that the kernel v satisfies (A′′), for some κ ∈ L1(R) and A0 ≥ 0,
and that the quadrature weights ωN

j (s) satisfy (QA′′), for some C∗, A1 > 0. Assume, further, that
either w(s) = 1, s ∈ R, or that w is an even weight function satisfying (2.3) and (F ′). Then, for M1,
M2 such that max{A0 + hN , A1} ≤M1 < M2 ≤ ∞, the estimates

∑
M1≤s−tN

j ≤M2

1
w(tNj )

|ωN
j (s)| ≤ C

∫ s−M1+hN

s−M2

1
w(t)

|κ(s− t)| dt,

∑
−M2≤s−tN

j ≤−M1

1
w(tNj )

|ωN
j (s)| ≤ C

∫ s+M2

s+M1−hN

1
w(t)

|κ(s− t)| dt,

hold, for every s ∈ R, where C > 0 is some positive constant not depending on s, M1, M2 or N .

Proof. Let M := maxN∈N hN and choose N ∈ N and M1,M2 as in the assumption. Then, for every
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s ∈ R, we obtain from (QA′′) that∑
M1≤s−tN

j ≤M2

1
w(tNj )

|ωN
j (s)| ≤ C∗hN

∑
s−M2≤tN

j ≤s−M1

1
w(tNj )

|κ(s− tNj )|

= C∗
∑

s−M2≤tN
j ≤s−M1

∫ tN
j

tN
j−1

1
w(tNj )

|κ(s− tNj )| dt

≤ C∗
∑

s−M2≤tN
j ≤s−M1

∫ tN
j+1

tN
j

1
w(tNj )

|κ(s− t)| dt

≤ C∗∆M
w

∑
s−M2≤tN

j ≤s−M1

∫ tN
j+1

tN
j

1
w(t)

|κ(s− t)| dt

≤ C∗∆M
w

∫ s−M1+hN

s−M2

1
w(t)

|κ(s− t)| dt,

where ∆M
w has been defined in (4.11). Setting C := C∗∆M

w , we see that the first of the desired
inequalities holds. A symmetric argument shows that second inequality holds as well.

After these preparations we now prove that Assumptions (A′′), (QA), (QA′′) and (QB) together
imply that KN

k is a bounded operator on Xw, for every w ∈ W(κ). In the following theorem and
subsequently we will say that the quadrature weights ωN

j,w(s) satisfy Assumption (Q), if Assumption (Q)
holds when ωN

j and v are replaced by ωN
j,w and vw, respectively.

Theorem 5.6. Suppose that the kernel v satisfies (A′′), with κ ∈ L1(R), and (B) and that w ∈
W(κ). Further, assume that the quadrature weights ωN

j (s) satisfy (QA), (QA′′) and (QB). Then,
the quadrature weights ωN

j,w(s) satisfy (QA) and (QB), so that, for all N ∈ N and k ∈ BC(R2), the
operator KN

k is bounded on Xw. Moreover, if W is a bounded subset of BC(R2) then

sup
N∈N

sup
k∈W

‖KN
k ‖w <∞.

If the quadrature weights ωN
j (s) satisfy (Q) then the quadrature weights ωN

j,w(s) also satisfy (Q).

Proof. Assumption (Q) for the quadrature weights ωN
j,w(s) is easy to verify if weights ωN

j (s) satisfy
(Q); because then, for every s ∈ R and x ∈ X, there holds

∑
j∈Z

ωN
j,w(s)x(tNj ) = w(s)

∑
j∈Z

ωN
j (s)

x(tNj )
w(tNj )

→ w(s)
∫ ∞

−∞
v(s, t)

x(t)
w(t)

dt, N →∞,

showing that the quadrature weights ωN
j,w(s) indeed satisfy (Q).

We now show that the quadrature weights ωN
j,w(s) satisfy Assumptions (QA) and (QB). The

conclusion of the theorem then follows from Proposition 5.2 and equivalence (2.8). We also note that
the following arguments do not depend on the value of the parameter N ∈ N. Further, all bounds can
be chosen such that they are independent of N ∈ N.

To see that the quadrature weights ωN
j,w(s) satisfy (QB), observe that, for all s, s′ ∈ R,∑

j∈Z
|ωN

j,w(s)− ωN
j,w(s′)| ≤ w(s)

∑
j∈Z

|ωN
j (s)− ωN

j (s′)|+ |w(s)− w(s′)|
∑
j∈Z

|ωN
j (s′)|.

By the assumptions on the quadrature weights ωN
j (s) and the continuity of w, both summands on

the right-hand side of this inequality vanish as s′ → s, uniformly in N , proving that the quadrature
weights ωN

j,w(s) satisfy (QB) as desired.
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To see that the quadrature weights ωN
j,w(s) satisfy (QA), we need to prove that

sup
s∈R

sup
N∈N

∑
j∈Z

|ωN
j,w(s)| <∞. (5.21)

We now choose A ≥ max{A0 + 2M,A1}, where A0, A1 denote the constants in (A′′) and (QA′′),
respectively, and M := maxN∈N hN . We then set, for s ∈ R,

S1(s) + S2(s) + S3(s) :=

 ∑
tN
j <s−A

+
∑

|s−tN
j |≤A

+
∑

tN
j >s+A

 w(s)
w(tNj )

|ωN
j (s)| =

∑
j∈Z

|ωN
j,w(s)|, (5.22)

and bound each term separately. For S2(s) we have the bound

S2(s) =
∑

|s−tN
j |≤A

w(s)
w(tNj )

ωN
j (s) ≤ ∆A

w

∑
|s−tN

j |≤A

|ωN
j (s)| ≤ ∆A

wCQ, s ∈ R, (5.23)

where CQ is the constant from Assumption (QA). Thus S2(s) is uniformly bounded in s ∈ R.
By choice of A and Lemma 5.5 we have, for every s ∈ R and some constant C > 0,

S1(s) + S3(s) ≤ C

(∫ s−A+M

−∞
+
∫ ∞

s+A−M

)
w(s)
w(t)

|κ(s− t)| dt ≤ C

∫ ∞

−∞

w(s)
w(t)

|κ(s− t)| dt. (5.24)

The term on the right-hand side of this inequality is uniformly bounded in s, because the kernel
(w(s)/w(t))κ(s− t) satisfies Assumption (A); this was shown in Proposition 4.31.

Combining (5.22), (5.23) and (5.24), we see that (5.21) holds. We have shown that the quadrature
weights ωN

j,w(s) satisfy (QA) and (QB). As indicated above, the first part of the theorem is thus
established.

Recall that we have seen in Proposition 5.3 that Assumptions (QA) and (QB) ensure the s-
continuity of the operator KN

k , for every N ∈ N and k ∈ BC(R2), i.e. there holds

xn
s→ x =⇒ KN

k xn
s→ KN

k x. (5.25)

We now seek conditions on the quadrature weights such that also sn-continuity holds.
A stronger version of (5.9) in Lemma 5.1, key element in the proof of Proposition 5.3, is the following

assumption on the quadrature weights ωN
j (s):

Assumption (QD).
sup
s∈R

sup
N∈N

∑
|tN

j |≥A

|ωN
j (s)| → 0, as A→∞.

Assumption (QD) is a discretized version of (D). The following lemma shows that KN
k will be

sn-continuous if (QA), (QB) and (QD) are satisfied and, moreover, implication (5.27) below holds,
an important tool for our stability analysis later in Section 5.3.

Lemma 5.7. Suppose Assumptions (QA), (QB) and (QD) are satisfied. Then

xn
s→ x =⇒ KN

k xn → KN
k x, (5.26)

for every sequence (xn) in X, k ∈ BC(R2) and N ∈ N, i.e. each such KN
k is sn-continuous. Further,

if (kn) is a bounded sequence in BC(R2) and (Nn) a sequence in N then

xn
s→ 0 =⇒ KNn

kn
xn → 0. (5.27)
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Proof. To show (5.26), we repeat the argument used to show part b) of Proposition 5.3, but with
kn := k, n ∈ N, the set R taking the role of the set Ω′ and using (QD) to bound the very last term in
inequality (5.19), uniformly in N ∈ N.

For the second implication, assume that (kn), (Nn) and (xn) are chosen as in the assumption. We
then have for all s ∈ R and A > 0, using the constant CQ from (QA), that∣∣∣KNn

kn
xn(s)

∣∣∣ ≤ sup
n∈N

‖kn‖
(
CQ sup

|t|≤A

|xn(t)|+ sup
n∈N

‖xn‖
∑

|tN
j |>A

|ωN
j (s)|

)
. (5.28)

The sequences (kn) and (xn) are bounded in BC(R2) and X, respectively. Given ε > 0, we can thus
use (QD) to choose A > 0 so that the second product in the bracket is < ε, irrespective of n ∈ N and
s ∈ R. Keeping this A fixed, we see that the first summand in the bracket is < ε, for all n ∈ N large
enough, as xn

s→ 0. Since ε was arbitrary, we must have KNn

kn
xn → 0 as n→∞.

In the next proposition we show that (QA), (QA′′) and (QB) ensure the sn-continuity of the
difference operator KN

k −KN
k,w.

Proposition 5.8. Suppose that the kernel v satisfies (A′′), (B) and w ∈ W(κ). Further, assume
that the quadrature weights ωN

j (s) satisfy (QA), (QA′′) and (QB). Then the quadrature weights
ωN

j (s)− ωN
j,w(s) satisfy (QA), (QB) and (QD), so that the operator KN

k −KN
k,w is sn-continuous.

Proof. That the quadrature weights ωN
j (s)−ωN

j,w(s) satisfy (QA) and (QB) follows from Theorem 5.6.
Throughout the remainder of the proof we assume that A∗ ≥ max{A0 + 2M,A1} where A0, A1 denote
the constants in (A′′) and (QA′′) and M := maxN∈N hN .

We define, for s ∈ R and A > 0,

SN
1 (s) + SN

2 (s) :=

 ∑
tN
j ≤−A

+
∑

tN
j ≥A

∣∣∣∣∣1− w(s)
w(tNj )

∣∣∣∣∣ |ωN
j (s)| =

∑
|tN

j |≥A

|ωN
j (s)− ωN

j,w(s)|.

In order to prove that ωN
j (s)− ωN

j,w(s) satisfies (QD), it suffices to show that, for i = 1, 2,

sup
s∈R

sup
N∈N

SN
i (s) → 0, as A→∞. (5.29)

For every s ∈ R, we can bound SN
2 (s) as follows:

SN
2 (s) ≤

( ∑
A≤tN

j <s−A∗

+
∑

max{A,s−A∗}≤tN
j

tN
j ≤max{s+A∗,A}

+
∑

max{s+A∗,A}<tN
j

)∣∣∣∣∣1− w(s)
w(tNj )

∣∣∣∣∣ |ωN
j (s)|

=: SN
2,1(s) + SN

2,2(s) + SN
2,3(s). (5.30)

Now, SN
2,2(s) can only be non-zero when s ≥ A−A∗, whence

SN
2,2(s) ≤ cA∗(A)

∑
j∈Z

|ωN
j (s)| ≤ cA∗(A)CQ, s ∈ R, N ∈ N,

where CQ is the constant from (QA) and cA∗(A) is defined as in the proof of Theorem 4.5. For fixed
A∗, cA∗(A), and thus also SN

2,2(s), tends to 0 as A→∞, uniformly in N ∈ N and s ∈ R.
Next, suppose that s > A+A∗ > 2A∗. Then |1−w(s)/w(t)| ≤ w(s)/w(t) holds, for A ≤ t < s−A∗.

By Lemma 5.5, there exists a constant C > 0, not depending on s or N , such that, for all N ∈ N,

SN
2,1(s) ≤

∑
A≤tN

j <s−A∗

w(s)
w(t)

|ωN
j (s)| ≤ C

∫ s−A∗+M

A

w(s)
w(t)

|κ(s− t)| dt ≤ C

∫ s−(A∗−M)

A∗−M

w(s)
w(t)

|κ(s− t)| dt.
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The term on the right-hand side, and thus SN
2,1(s), tends to 0 as A∗ → ∞, uniformly in s ≥ A∗ + A

since w ∈ W(κ) implies that (E′) holds. Since SN
2,1(s) = 0 if s ≤ A+A∗ we conclude that SN

2,1(s) → 0
as A∗ →∞, uniformly in s ∈ R and N ∈ N.

Since |1−w(s)/w(t)| ≤ 1, 0 ≤ s ≤ t, and again by Lemma 5.5, there holds, for all s ∈ R and N ∈ N,

SN
2,3(s) ≤

∑
max{s+A∗,A}<tN

j

|ωN
j (s)| ≤ C

∫ ∞

max{s+A∗,A}−M

|κ(s− t)| dt ≤
∫ ∞

A∗−M

C|κ(−t)| dt,

for some constant C > 0. The term on the right-hand side of this inequality vanishes as A∗ → ∞ so
that SN

2,3(s) → 0 as A∗ →∞, uniformly in s and N ∈ N.
Given ε > 0, we can now choose A∗ large enough so that SN

2,1(s), S
N
2,3(s) < ε/3 for all s ∈ R, N ∈ N.

Keeping this A∗ fixed, we can then choose A sufficiently large so that SN
2,2(s) < ε/3, and thus SN

2 (s) < ε,
for all s ∈ R, N ∈ N. By virtue of (5.30) it follows that SN

2 (s) → 0 as A→∞, uniformly in s ∈ R and
N ∈ N. A symmetric argument shows that the same is true of SN

1 (s). Thus (5.29) holds, whence the
quadrature weights ωN

j (s)−ωN
j,w(s) satisfy (QD) and, in view of Lemma 5.7, the theorem is shown.

After these preparations, we now present the two main results on the solvability of the discretized
integral equation (5.3) in weighted spaces. We show that if the quadrature weights ωN

j (s) satisfy
Assumptions (QA), (QA′′) and (QB) and w ∈ W(κ) then the operator KN

k is invertible (Fredholm)
on X if and only if it is invertible (Fredholm) on Xw.

Theorem 5.9. Suppose that the kernel v satisfies (A′′), with κ ∈ L1(R), (B) and that w ∈ W(κ).
Then, if the quadrature weights ωN

j (s) satisfy (QA), (QA′′) and (QB), there holds, for all λ ∈ C and
k ∈ BC(R2),

(λ−KN
k ) ∈ Φ(X) ⇔ (λ−KN

k,w) ∈ Φ(X) ⇔ (λ−KN
k,w) ∈ Φ(Xw), (5.31)

(λ−KN
k )−1 ∈ B(X) ⇔ (λ−KN

k,w)−1 ∈ B(X) ⇔ (λ−KN
k,w)−1 ∈ B(Xw), (5.32)

and, if these operators are all Fredholm, their indices are the same. Further,

0 ∈ Σe
X(KN

k ) = Σe
X(KN

k,w) = Σe
Xw

(KN
k ), (5.33)

0 ∈ ΣX(KN
k ) = ΣX(KN

k,w) = ΣXw(KN
k ). (5.34)

Proof. Let us first consider the case λ = 0. If N ∈ N then KN
k x = 0 if x ∈ X and x(tNj ) = 0 for all

j ∈ Z. But the space of functions in X enjoying this property is infinite-dimensional. Thus the kernel of
KN

k is infinite-dimensional, whence KN
k is neither Fredholm nor invertible on X. The same argument

works for KN
k,w (on X) or KN

k (on Xw). Thus (5.31) and (5.32) hold for λ = 0 and the statements in
(5.33) and (5.34) will follow if we can show that (5.31) and (5.32) are also true for λ 6= 0.

It follows from the assumptions on the quadrature weights that the operators KN
k and KN

k,w are
s-continuous (Theorem 5.6, Proposition 5.3), s-sequentially compact (Theorem 5.6, Proposition 5.2)
and that the difference operator KN

k − KN
k,w is sn-continuous (Proposition 5.8). We can now apply

Theorem 2.9 with H := KN
k and L := KN

k −KN
k,w to see that (5.31) holds, when λ 6= 0.

It remains to show that (5.32) holds. But this follows from a repetition of the argument to show
that (4.21) is true in Theorem 4.6, with K, Kw replaced by KN

k and KN
k,w, respectively.

5.3 Stability and uniform stability in weighted spaces

Throughout this section, we will assume that the kernel v satisfies the Assumptions (A′′), (B) and
that w is a weight function in W(κ).

Suppose that we have found quadrature weights satisfying (Q), (QA), (QA′′) and (QB), and that
the resulting Nyström/product integration method for the numerical solution of equation (5.1) is stable
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with respect to the uniform norm; precisely, for some N ′ ∈ N, (λ − KN
k )−1 ∈ B(X) for all N ≥ N ′,

with
C := sup

N≥N ′
‖(λ−KN

k )−1‖ <∞. (5.35)

From the results in the previous subsection we may then conclude that (λ−KN
k )−1 ∈ B(Xw), N ≥

N ′, but we do not know if the uniform bound (5.35) also holds with respect to operator norm on B(Xw).
The theorems in this subsection show that this is indeed true, even if we consider simultaneously a whole
class of operators, where k varies in some bounded and equicontinuous set W .

Before we proceed to these key results of this chapter, we prove a preliminary proposition. It is
convenient to use, in this and the following results, the notations KN

k and KN
k,w, with N = ∞, to denote

Kk and Kk,w, respectively.

Proposition 5.10. Suppose the quadrature weights wN
j (s) satisfy (Q), (QA) and (QB). Let (kn) be

a sequence in BC(R2), k ∈ BC(R2), (Nn) be a sequence in N, (yn) be a sequence in X, y ∈ X and
λ 6= 0. If kn

s→ k, Nn → N ∈ N ∪ {∞}, (λ−KNn

kn
)−1 ∈ B(X), for all n ∈ N,

C := sup
n∈N

‖(λ−KNn

kn
)−1‖ <∞, (5.36)

and λ−KN
k is injective on X then (λ−KN

k )−1 ∈ B(X) and ‖(λ−KN
k )−1‖ ≤ C. If also yn

s→ y, then
(λ−KNn

kn
)−1yn

s→ (λ−KN
k )−1y.

Proof. If yn
s→ y then, by (5.36), the sequence (xn), defined by xn := (λ−KNn

kn
)−1yn, n ∈ N, is contained

in X and is bounded. But then, by Remark 5.4, (KNn

kn
xn) contains an s-convergent subsequence. Since

xn = λ−1
(
KNn

kn
xn + yn

)
, n ∈ N,

it follows that (xn) has an s-convergent subsequence, denoted again by (xn). Let x ∈ X be the limit
of this subsequence. But then, by Proposition 5.3, KNn

kn
xn

s→ KN
k x and thus yn = (λ − KNn

kn
)xn

s→
(λ−KN

k )x, n→∞. But yn
s→ y and hence (λ−KN

k )x = y.
Suppose that we are given arbitrary y ∈ X. Then we define the constant sequence (yn), by setting

yn = y, n ∈ N, and use the argument of the preceding paragraph to show that there exists x ∈ X
such that (λ − KN

k )x = y. Hence λ − KN
k , which is injective by assumption, is also surjective and

thus invertible on X by Banach’s inverse theorem. The bound on the inverse follows, for we have seen
that, for every y ∈ X with ‖y‖ = 1, (λ −KNn

kn
)−1y

s→ (λ −KN
k )−1y, whence inequality (2.10) yields

‖(λ−KN
k )−1y‖ ≤ supn∈N ‖(λ−KNn

kn
)−1y‖ ≤ C.

If also (QA′′) holds then we can remove the assumption that λ − KN
k be injective in the above

proposition and relate the uniform boundedness of the inverses on X to that on Xw, w ∈ W(κ). The
following theorem is our first central result on the stability of the Nyström method.

Theorem 5.11. Suppose that the kernel v satisfies (A′′) and (B) and that the quadrature weights ωN
j (s)

satisfy (Q), (QA), (QA′′) and (QB). Let (kn) be a sequence in BC(R2), k ∈ BC(R2), (Nn) be a
sequence in N and λ 6= 0. If w ∈ W(κ), kn

s→ k, Nn → N ∈ N ∪ {∞} and (λ −KNn

kn
)−1 ∈ B(X), for

all n ∈ N, then
C := sup

n∈N
‖(λ−KNn

kn
)−1‖ <∞

if and only if
Cw := sup

n∈N
‖(λ−KNn

kn
)−1‖w <∞

and λ−KN
k is injective on Xw. Further, if C <∞, then λ /∈ ΣX(KN

k ) ∪ ΣXw
(KN

k ), with

‖(λ−KN
k )−1‖ ≤ C, ‖(λ−KN

k )−1‖w ≤ Cw.
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Proof. Note first that if the assumptions of the theorem hold then it follows from Theorem 5.6 that the
quadrature weights ωN

j,w(s) satisfy Assumptions (Q), (QA) and (QB) and, further, that the operators
KNn

kn
on Xw and KNn

kn,w on X are uniformly bounded in n. Also, (λ − KNn

kn
)−1 ∈ B(Xw), n ∈ N, by

Theorem 5.9. The proof of the present theorem now proceeds in a number of steps.
(i) We note first that if C <∞ then λ−KN

k is injective on Xw. To see this, suppose that C <∞,
x ∈ Xw and λx = KN

k x. Let yn := λx−KNn

kn
x, n ∈ N. The operators KNn

kn
are uniformly bounded on

Xw and hence the sequence (yn) is bounded in Xw. Moreover, by Proposition 5.3, yn
s→ λx−KN

k x = 0
as n→∞. It now follows from Lemma 2.12 that yn → 0 and, since

‖x‖ = ‖(λ−KNn

kn
)−1yn‖ ≤ C‖yn‖, n ∈ N,

we must have x = 0.
(ii) We next point out that, if λ−KN

k is injective on Xw and Cw <∞, then λ−KN
k is injective on

X. As λ−KN
k is injective on Xw if and only if λ−KN

k,w is injective on X and, moreover, by

sup
n∈N

‖(λ−KNn

kn,w)−1‖ (2.9)
= sup

n∈N
‖(λ−KNn

kn
)−1‖w = Cw,

it follows from Proposition 5.10 that if λ−KN
k is injective onXw and Cw <∞ then (λ−KN

k,w)−1 ∈ B(X),
so that, by Theorem 5.9, (λ−KN

k )−1 ∈ B(X); in particular λ−KN
k is injective on X.

(iii) We next show that if λ−KN
k is injective on Xw (which implies that λ−KNn

kn,w is injective on
X) then C <∞ if and only if Cw <∞.

Suppose first that C <∞ but Cw = ∞. By passing to appropriate subsequences, denoted again by
(kn) and (Nn), we may assume, that limn→∞ ‖(λ−KNn

kn
)‖w = ∞. Thus there exists a sequence (zn) in

Xw with ‖zn‖w = 1 such that ‖(λ−KNn

kn
)zn‖w → 0. Defining xn := wzn, n ∈ N, we then have

(λ−KNn

kn,w)xn → 0, n→∞. (5.37)

It follows from Proposition 5.3, part d), that (KNn

kn,wxn) has an s-convergent subsequence, so by passing
to subsequences, we may assume that KNn

kn,wxn
s→ λx for some x ∈ X. But then, by (5.37), xn

s→ x.
Now Proposition 5.3 yields KNn

kn,wxn
s→ KN

k,wx. But this means that λx = KN
k,wx. But λ − KN

k,w is
injective, so that x = 0, which implies xn

s→ 0. By Proposition 5.8 and Lemma 5.7, we thus see that
(KNn

kn
−KNn

kn,w)xn → 0. Combined with equation (5.37), this proves (λ−KNn

kn
)xn → 0. Since ‖xn‖ = 1,

n ∈ N, this contradicts C <∞ and thus it must hold that Cw <∞.
If, on the other hand, if Cw < ∞ and λ −KN

k is injective on Xw then we can reverse the roles of
KN

k,w and KN
k in above argument to prove C <∞ (using (ii) to show that λ−KN

k is injective on X).
(iv) From (i)-(iii) two implications follow:

C <∞ =⇒
(
Cw <∞, λ−KN

k injective on Xw

)
=⇒ λ−KN

k injective on X.

Thus, if C < ∞, it follows from Proposition 5.10 that (λ −KN
k )−1 ∈ B(X) with ‖(λ −KN

k )−1‖ ≤ C.
Applying Proposition 5.10 a second time, as in the proof of (ii), we have that (λ −KN

k,w)−1 ∈ B(X),
with ‖(λ−KN

k,w)−1‖ ≤ Cw, so that (λ−KN
k )−1 ∈ B(Xw) with ‖(λ−KN

k )−1‖w ≤ Cw.

The above theorem has a number of important corollaries. The first concerns the stability of the
Nyström/product integration method for a single fixed k, and shows, in particular, that if the Nyström
method is stable on X, i.e. (5.38) holds for some N ′ ∈ N, then it is stable on Xw, for all w ∈ W(κ).

Corollary 5.12. Suppose that the kernel v satisfies (A′′) and (B) and that the quadrature rule (5.7)
satisfies (Q), (QA), (QA′′) and (QB). Further, if, for some N ′ ∈ N, k ∈ BC(R2), w ∈ W(κ) and

λ /∈
⋃

N≥N ′

ΣX(KN
k ),
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then
sup

N≥N ′
‖(λ−KN

k )−1‖ <∞ (5.38)

if and only if
sup

N≥N ′
‖(λ−KN

k )−1‖w <∞

and λx = Kkx has only the trivial solution in Xw. Further, if (5.38) holds, then λ /∈ ΣX(Kk)∪ΣXw(Kk).

The following theorem, our next corollary, shows that the Nyström/product integration method is
even uniformly stable on Xw, for k ∈ W , if it is uniformly stable on X and W ⊂ BC(R2) is bounded
and equicontinuous.

Theorem 5.13. Suppose that the kernel v satisfies (A′′) and (B) and that the quadrature weights ωN
j (s)

satisfy (Q), (QA), (QA′′) and (QB). Assume, further, that W ⊂ BC(R2) is bounded and equicon-
tinuous and N′ ⊂ N. Then

λ /∈
⋃

N∈N′

⋃
k∈W

ΣX(KN
k ), and C := sup

N∈N′
sup
k∈W

‖(λ−KN
k )−1‖ <∞ (5.39)

imply, for every w ∈ W(κ),

Cw := sup
N∈N′

sup
k∈W

‖(λ−KN
k )−1‖w <∞. (5.40)

If (5.39) holds and N′ is unbounded then λ /∈ ΣX(Kk) ∪ ΣXw
(Kk), k ∈W , and

sup
k∈W

‖(λ−Kk)−1‖ ≤ C, sup
k∈W

‖(λ−Kk)−1‖w ≤ Cw.

Proof. If (5.39) holds but (5.40) does not, then there exist sequences (kn) in W and (Nn) in N′ such that
supn∈N ‖(λ−KNn

kn
)−1‖ <∞ but supn∈N ‖(λ−KNn

kn
)−1‖w = ∞. Furthermore, since W is bounded and

equicontinuous and so, by Remark 2.8, relatively s-sequentially compact we can choose these sequences
such that kn

s→ k ∈ BC(R2) and Nn → N ∈ N ∪ {∞}. But this contradicts Theorem 5.11.

From this theorem we draw the following corollary, the last theorem of this subsection, which gives
a first estimate of the error in the weighted norm ‖ · ‖w.

Theorem 5.14. Suppose that the assumptions of the previous theorem are satisfied with N′ unbounded.
Then, for every N ∈ N′, k ∈W and y ∈ Xw, unique solutions x ∈ Xw and xN ∈ Xw of the equations

λx−Kkx = y, λx−KN
k x = y, (5.41)

exist and satisfy
‖x− xN‖w ≤ Cw‖(Kk −KN

k )x‖w. (5.42)

where Cw is the constant in (5.40). Moreover, if (Nn) is a sequence in N′ and Nn →∞ then

‖x− xNn‖ → 0, n→∞. (5.43)

Proof. Theorem 5.13 shows that (λ −Kk)−1, (λ −KN
k )−1 ∈ B(Xw), for all k ∈ W , N ∈ N′. Thus, for

every N ∈ N′, k ∈ W and y ∈ Xw, unique solutions x, xN ∈ Xw of (5.41) exist. Further, we obtain
from λx− y = Kkx that

(λ−KN
k )x− y = (Kk −KN

k )x, N ∈ N′,

and, by applying the operator (λ−KN
k )−1,

x− xN = (λ−KN
k )−1(Kk −KN

k )x, N ∈ N′, (5.44)

holds. Hence, in view of (5.40), (5.42) holds.
To see that (5.43) holds, observe that from Proposition 5.3 we obtain that (Kk − KNn

k )x s→ 0 as
n → ∞. On the other hand, since x ∈ Xw and the operators Kk and KNn

k , for n ∈ N, are uniformly
bounded by Theorem 5.6 we obtain that the sequence (Kk − KNn

k )x is bounded in Xw. But, by
Lemma 2.12, this means that KNn

k x→ Kkx so that, taking into account (5.39) and (5.44), xN → x.
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5.3.1 Sufficient conditions for stability and uniform stability on X

We still assume that the kernel v satisfies the Assumptions (A′′) and (B).
The results shown in the previous section can be used to prove stability of the Nyström method on

Xw, for all w ∈ W(κ), once its stability on X is known. In this short subsection, we now give sufficient
conditions, which ensure the stability of the Nyström method on X and Xw for a certain class of kernels
and quadrature methods.

To this end, we require the following uniform versions of (B) and (QB).

(Bu)
∫ ∞

−∞
|v(s, t)− v(s+ h, t)| dt→ 0 as h→ 0, uniformly in s ∈ R,

(QBu) sup
N∈N

∑
j∈Z

|ωN
j (s)− ωN

j (s+ h)| → 0 as h→ 0, uniformly in s ∈ R.

Clearly (Bu) implies (B) and (QBu) implies (QB). We also note that (Bu) is satisfied if v is a
convolution kernel, i.e. v(s, t) = κ(s− t), for some κ ∈ L1(R), in which case many sensible quadrature
rules for the approximation of v satisfy (QBu).

We obtain the following stronger variants of the statements in Proposition 3.2a) and 5.2c) if (B)
and (Bu) are satisfied.

Proposition 5.15. Suppose that the kernel v satisfies (A) and (Bu) and that the weights ωN
j (s)

satisfy (QA) and (QBu). Further, let W ⊂ BC(R2) be bounded and uniformly equicontinuous and let
B denote the unit ball in X. Then the sets

V1 :=
⋃

k∈W

Kk(B) = {Kkx : x ∈ X, ‖x‖ ≤ 1, k ∈W}, (5.45)

V2 :=
⋃

N∈N

⋃
k∈W

KN
k (B) = {KN

k x : x ∈ X, ‖x‖ ≤ 1, k ∈W, N ∈ N} (5.46)

are bounded and uniformly equicontinuous.

Proof. The boundedness of V1 and V2 has already been shown in Proposition 3.2 and 5.2. For k ∈ W ,
x ∈ B and s, s′ ∈ R, we see that

|Kkx(s)−Kkx(s′)| ≤
∫ ∞

−∞
|v(s, t)− v(s′, t)||k(s, t)| dt+

∫ ∞

−∞
|v(s′, t)||k(s, t)− k(s′, t)| dt

≤ sup
k∈W

‖k‖
∫ ∞

−∞
|v(s, t)− v(s′, t)| dt+ C sup

k∈W,t∈R
|k(s, t)− k(s′, t)|,

where C denotes the supremum in (A). The first term on the right-hand side converges to 0 as
|s− s′| → 0 since W is bounded and (Bu) holds, the convergence being uniform in s. The second term
converges to 0 as |s − s′| → 0, uniformly in s ∈ R and k ∈ W , since W is uniformly equicontinuous.
The uniform equicontinuity of V1 follows.

A similar argument shows that V2 also has the desired properties.

We also require a modified version of (Q).

(Qu) ∀U ∈ U
∑
j∈Z

ωN
j (s)x(tNj ) →

∫ ∞

−∞
v(s, t)x(t) dt as N →∞, uniformly in s ∈ R and x ∈ U,

where U denotes the collection of bounded and uniformly equicontinuous subsets of X.
It is quite obvious that (Q) does not imply (Qu), as one might use, for different values of s, different

quadrature weights ωN
j (s) belonging to quadrature rules with arbitrarily slow rate of convergence so

that the necessary uniform convergence in s required in (Qu) cannot be achieved.
On the other hand, one might surmise that (Qu) is a stronger condition than (Q), but this is not

the case; however, (Q) follows from (Qu) if (QA′′) is satisfied. We will prove both facts in the next
example and lemma.
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Example 5.16. Let the kernel v be given by v(s, t) = 1[−1,1](t). Define the abscissae tNj := j/N , for
j ∈ Z and N ∈ N, and let the quadrature weights ωN

j (s) be given by

ωN
j (s) :=


1
N , |tNj | ≤ 1,
1, |tNj | = N,

−1, |tNj | = N + 1
N ,

0, otherwise,

s ∈ R, j ∈ Z, N ∈ N.

Then, for every x ∈ X, N ∈ N and s ∈ R, we see that∣∣∣∑
j∈Z

ωN
j (s)x(tNj )−

∫ ∞

−∞
v(s, t)x(t) dt

∣∣∣ ≤ ∣∣x(N)− x(N + 1
N )
∣∣+ ∣∣∣ ∑

|tN
j |≤1

x(tNj )
N

−
∫ 1

−1

x(t) dt
∣∣∣.

In order to verify (Qu), we choose an arbitrary U ∈ U . The second summand on the right-hand side
of this inequality converges to 0 as N →∞, uniformly in s ∈ R and x ∈ U , as the compound rectangle
rule for finite intervals is uniformly convergent on bounded, uniformly equicontinuous sets [30]. Since
U is bounded and uniformly equicontinuous the first summand on the right-hand side also converges to
0 as N →∞, uniformly in s ∈ R and x ∈ U , whence (Qu) holds.

On the other hand, to see that (Q) is not satisfied, we can choose f ∈ X so that f has support
outside the interval [−1, 1] and f(N) = 1 and f(N + 1

N ) = −1 for every N ≥ 2. Then∣∣∣∑
j∈Z

ωN
j (s)f(tNj )−

∫ ∞

−∞
v(s, t)f(t) dt

∣∣∣ = |f(N)− f(N + 1
N )| = 2, s ∈ R, N ≥ 2,

so that (Q) cannot hold.

Lemma 5.17. If the quadrature weights ωN
j (s) satisfy (Qu) and (QA′′) then they also satisfy (Q).

Proof. For every A > 0, we choose a “cut-off” function χA ∈ X such that ‖χA‖ = 1, χA(s) = 1 if
|s| ≤ A and χA(s) = 0 if |s| ≥ A + 1. Let f ∈ X and s ∈ R. Then, for every A > 0 and N ∈ N, the
term ∣∣∣∑

j∈Z
ωN

j (s)f(tNj )−
∫ ∞

−∞
v(s, t)f(t) dt

∣∣∣ (5.47)

is bounded above by∣∣∣∑
j∈Z

ωN
j (s)(χAf)(tNj )−

∫ ∞

−∞
v(s, t)(χAf)(t) dt

∣∣∣+ ‖(1− χA)f‖
( ∑
|tN

j |>A

|ωN
j (s)|+

∫
R\[−A,A]

|v(s, t)| dt
)
.

Given ε > 0, we choose first A > 0 large enough so that the second summand is ≤ ε/2, irrespective
of N ∈ N (this is possible as v(s, ·) is integrable and Lemma 5.5, applied with w(s) = 1 and M2 = ∞,
shows that the sum converges to 0 as A → ∞, uniformly in N ∈ N). The function χAf is continuous
and has compact support and thus must be uniformly continuous. By (Qu), the first summand in
(5.47) is thus ≤ ε/2 for all N large enough. We have thus shown that (5.47) can be made ≤ ε for all N
large enough. But this is all that is required to prove (Q).

The key element of our stability proof is the following proposition, a corollary to Theorem 3.6 in
[50].

Proposition 5.18. Let Y be an arbitrary Banach space and suppose that L ∈ B(Y ). Assume further
that (λ− L)−1 ∈ B(Y ), for some λ 6= 0, and that (LN ) is a bounded sequence in B(Y ) for which

‖(LN − L)L‖ → 0, ‖(LN − L)LN‖ → 0, as N →∞, (5.48)
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holds. Then there exists some N ′ ∈ N such that, for all N ≥ N ′, the estimates

‖(λ− L)−1(LN − L)LN‖ < |λ|, ‖(LN − L)(λ− L)−1LN‖ < |λ|, (5.49)

hold and the operator (λ− LN ) is invertible on X with inverse bounded by

‖(λ− LN )−1‖ ≤ 1 + ‖(λ− L)−1‖‖LN‖
|λ| − ‖(λ− L)−1(LN − L)LN‖

.

Remark 5.19. Note that, under the assumptions of the previous proposition, it is easy to see that (5.48)
implies that (5.49) holds for all N large enough: For the first inequality in (5.49) this is clear by the
triangle inequality, for the second this follows from the representation (λ−L)−1 = λ−1(I+L(λ−L)−1)
and the estimate

‖(LN − L)(λ− L)−1LN‖ ≤ |λ|−1‖(LN − L)LN‖+ |λ|−1‖(LN − L)L‖‖(λ− L)−1‖‖LN‖.

We now prove the announced stability result for quadrature weights satisfying (Qu).

Theorem 5.20. Suppose that λ 6= 0, that the kernel v satisfies (A) and (Bu) and the quadrature
weights ωN

j (s) satisfy (Q), (Qu), (QA) and (QBu). Assume, further, that W ⊂ BC(R2) is a bounded
and uniformly equicontinuous set and that (λ−Kk)−1 exists for every k ∈W with

sup
k∈W

‖(λ−Kk)−1‖ =: CW <∞, (5.50)

for some positive constant CW . Then

‖(KN
k −Kk)Kk‖ → 0, ‖(KN

k −Kk)KN
k ‖ → 0, N →∞, (5.51)

uniformly in k ∈W , and there exists N ′ ∈ N so that λ−KN
k is invertible on X for all N ≥ N ′, k ∈W ,

and there holds
sup

N≥N ′
sup
k∈W

‖(λ−KN
k )−1‖ <∞.

Proof. Let B denote the unit ball in X. From the assumptions and Proposition 5.15 we learn that

V :=
⋃

N∈N

⋃
k∈W

(
KN

k (B) ∪Kk(B)
)

is bounded and uniformly equicontinuous. Since W is also bounded and uniformly equicontinuous, so
must be the set U ⊂ X, defined by

U := {k(s, ·)x(·) : s ∈ R, k ∈W,x ∈ V },

i.e. U ∈ U . By (Qu) we thus have that∣∣∣∑
j∈Z

ωN
j (s)x(t)−

∫ ∞

−∞
v(s, t)x(t) dt

∣∣∣→ 0,

as N →∞, uniformly in x ∈ U and s ∈ R. But this entails that (5.51) holds.
Since we have assumed (5.50) we can now apply Proposition 5.18. We obtain that there exists

N ′ ∈ N such that, for all N ≥ N ′ and k ∈W , (λ−KN
k )−1 ∈ B(X) and there holds

sup
N≥N ′

sup
k∈W

‖(λ−KN
k )−1‖ ≤ sup

N≥N ′
sup
k∈W

1 + ‖(λ−Kk)−1KN
k ‖

|λ| − ‖(λ−Kk)−1(KN
k −Kk)Kk‖

<∞.
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If we additionally assume that (A′′) and (QA′′) are satisfied then we can use the weighted space
theory to obtain that stability also holds on Xw. We thus obtain the following theorem, a corollary to
the previous theorem and Theorem 5.13.

Theorem 5.21. Suppose that the assumptions of the previous theorem are satisfied and that, for some
κ ∈ L1(R), the kernel v and the quadrature weights ωN

j (s) satisfy (A′′) and (QA′′), respectively. Let
w ∈ W(κ). Then λ−Kk and λ−KN

k are invertible on Xw, for all N ≥ N ′ and k ∈W ; moreover,

sup
k∈W

‖(λ−Kk)−1‖w ≤ sup
k∈W,N≥N ′

‖(λ−KN
k )−1‖w <∞.

An application of this result to a large class of kernels and quadrature rules satisfying its assumptions
can be found in Section 6.2.

5.4 The finite section method

Throughout most of this section, we will assume that the kernel v is a convolution kernel satisfying
Assumption (A′′), so that v(s, t) = κ(s− t), for some κ ∈ L1(R) satisfying the monotonicity condition
in (A′′). Moreover, we suppose in this section that the quadrature weights ωN

j (s) satisfy (Q), (QA),
(QA′′) and (QB).

The previous sections were devoted to the study of Nyström/product integration methods for the
integral equation

λx−Kkx = y. (5.52)

This has led us to relate the solvability of the discretized equations

λxN −KN
k x

N = y (5.53)

on X to their solvability in the weighted spaces Xw, w ∈ W(κ). In particular, we have seen that, for a
large class of kernel functions v and k and quadrature weights ωN

j (s), the invertibility of λ−Kk on X
is sufficient for the invertibility of λ−KN

k on a class of weighted spaces Xw for large values of N ∈ N.
As has been explained earlier, the solution xN of (5.53) may be obtained by solving an infinite

system of linear equations. However, in many cases, solving this infinite system exactly, or at least
approximately, will be an onerous if not impossible task. Therefore we will now consider the effect of
truncating the summation in the definition of the discretized integral operator KN

k to a finite inter-
val [−A,A], where A > 0, i.e. we replace the quadrature operator KN

k in (5.53) by the operator KN,A
k ,

defined by
KN,A

k x(s) :=
∑

|tN
j |≤A

ωN
j (s)k(s, tNj )x(tNj ), s ∈ R, x ∈ X. (5.54)

Clearly KN,A
k is the operator KN

k defined in (5.8), but with the quadrature weights

ωN,A
j (s) := ωN

j (s)1[−A,A](tNj ), s ∈ R, j ∈ Z, (5.55)

instead of the quadrature weights ωN
j (s). It will be convenient to use the notation KN,A

k := KN
k and

ωN,A
j (s) := ωN

j (s) for A = ∞. We recall also our notational convention KN
k := Kk for N = ∞.

We note that, for every A ∈ (0,∞], KN,A
k (B) ⊂ KN

k (B), where B denotes the unit ball of X or Xw,
w ∈ W(κ), whence the inequalities

‖KN,A
k ‖ ≤ ‖KN

k ‖, ‖KN,A
k ‖w ≤ ‖KN

k ‖w, 0 < A ≤ ∞, (5.56)

hold. Another noteworthy fact is that the operators KN,A
k , A ∈ (0,∞), have finite dimensional range

and hence are compact on X and Xw; more precisely, KN,A
k (Xw) = KN,A

k (X) = span{ωN
j (·)k(·, tNj ) :

|tNj | ≤ A}.
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Replacing KN
k by KN,A

k in (5.53), we obtain the equation

λxN,A −KN,A
k xN,A = y. (5.57)

Provided it exists, a solution xN,A of this equation can be obtained by solving the finite linear system

λxN,A(tNj′ )−
∑

|tN
j |≤A

ωN,A
j (tNj′ )k(t

N
j′ , t

N
j )xN,A(tNj ) = y(tNj′ ), |tNj′ | ≤ A, (5.58)

for the values of xN,A(tNj′ ) at the quadrature nodes tNj′ ∈ [−A,A] and then setting

xN,A(s) :=
1
λ

( ∑
|tN

j |≤A

ωN,A
j (s)k(s, tNj )xN,A(tNj ) + y(s)

)
, s ∈ R.

This method of obtaining an approximate solution xN,A of (5.57) is known as the finite-section method .
Naturally, two questions arise: the first concerns the applicability and stability of the finite section

method, i.e. the question whether the inverses of λ −KN,A
k exist and are uniformly bounded for large

values of A; once this has been answered in the affirmative, the second question asks for estimates of
the accuracy of the approximate solutions. In this section our focus will be on the latter problem, for
the weighted space theory developed earlier in this chapter contributes to its answer.

By definition, it is immediately clear that the procedure of replacing the quadrature weights ωN
j (s)

by ωN,AN

j (s), where (AN ) is a sequence in (0,∞], is consistent with Assumptions (QA), (QA′′), (QB)
and also (Q) if AN →∞. We note this fact in the next lemma.

Lemma 5.22. Suppose that the quadrature weights ωN
j (s) satisfy Assumptions (QA), (QA′′) and

(QB) and that (AN ) is a sequence in (0,∞]. Then the quadrature weights ωN,AN

j (s) also satisfy
Assumptions (QA), (QA′′) and (QB). If the quadrature weights ωN

j (s) additionally satisfy (Q) then
the quadrature weights ωN,AN

j (s) also satisfy (Q).

Proof. Suppose the assumptions of the lemma are fulfilled. It is immediately clear that the quadrature
weights ωN,AN

j (s) satisfy (QA), (QA′′) and (QB), so we are left with proving that they also satisfy
(Q) if AN →∞. To this end, let s ∈ R and f ∈ X; then we obtain∣∣∣∣∣∑

j∈Z
ωN,AN

j (s)f(tNj )−
∫ ∞

−∞
v(s, t)f(t)

∣∣∣∣∣ ≤
∣∣∣∣∣∑
j∈Z

ωN
j (s)f(tNj )−

∫ ∞

−∞
v(s, t)f(t)

∣∣∣∣∣+ ‖f‖
∑

|tN
j |>AN

|ωN
j (s)|.

(5.59)
Since the quadrature weights ωN

j (s) satisfy (Q) we know that the first term on the right-hand side of
this inequality converges to zero as N → ∞. But, since AN → ∞ and in view of Lemma 5.1 (applied
with Ω′ = {s}), the same is true of the second term. Thus the term on the left-hand side of (5.59)
converges to 0 as N →∞, as required in (Q).

This lemma shows that, if AN →∞ the weighted space stability theory of Section 5.3, in particular
Theorems 5.11–5.14, also applies to the finite-section method, provided we can show that show that the
resulting finite section method is stable on X.

However, we will now consider a variant of the finite-section method in which, in addition to the
truncation of the quadrature weights, the function k is modified. The first major result of this section
addresses the stability of these modified finite-section method in weighted spaces. As we have done in
our stability analysis for the Nyström method, we consider simultaneously a class of discretized integral
operators KN

k , with the kernel function k varying in a set W∞, but we also allow k to vary in different
(possibly empty) sets WA depending on the truncation level A. We will discuss possible applications of
this theorem below.
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Theorem 5.23. Suppose that the kernel v satisfies (A′′) and (B) and that the quadrature weights ωN
j (s)

satisfy (Q), (QA), (QA′′) and (QB). Moreover, assume that N′ ⊂ N, W is a bounded and equicon-
tinuous subset of BC(R2) and that, WA ⊂W , for every A ∈ (0,∞].

If
λ /∈

⋃
N∈N′

⋃
A∈(0,∞]

⋃
k∈WA

ΣX(KN,A
k ) (5.60)

and
C := sup

N∈N′
sup

A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖ <∞ (5.61)

then, for every w ∈ W(κ), the operators λ−KN,A
k in (5.61) are also invertible on Xw and

Cw := sup
N∈N′

sup
A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖w <∞.

Let us comment on possible applications of this theorem before we begin its proof. In the simplest
case the sets N′ and W are singletons, WA = W∞ = W holds, for all A larger than some A0 > 0, and
WA = ∅ otherwise. This is the classical finite section method for the equation 5.52. The theorem then
states that the stability of the finite section method on X implies its stability on Xw, w ∈ W(κ).

However, proving the stability on X of the finite-section method for the equation 5.52, i.e. the
existence and uniform boundedness of the inverses of λ − KN,A

k on X, for A large, is difficult and a
general theory, that includes the case when v is not a convolution kernel and k is not the constant
function k(s, t) = 1, does not seem to exist (but see [46] for recent results in this direction).

Nevertheless, sometimes it is possible to obtain the existence and uniform boundedness of the inverses
(λ−KN,A

kA
)−1 on X, for all A sufficiently large, where kA is obtained by modifying k near the endpoints

of the interval [−A,A]. This procedure is sometimes called a modified finite section method and has
been considered in, e.g., [51]. In this case, one would choose W∞ = {k}, WA = {kA}, for all A large
enough, and WA = ∅ otherwise.

Finally, the assumptions allow us to consider the (modified) finite section method for families of
operators λ − KN

k , with N and k varying in N′ ⊂ N and W ⊂ BC(R2). We will consider a specific
application of this variant of the modified finite section method later in this thesis, and now commence
the proof of Theorem 5.23.

Proof. Let A ∈ (0,∞]. If A < ∞ then, by Lemma 5.22 (applied with AN = A, N ∈ N), the quadra-
ture weights ωN,A

j (s) satisfy (QA), (QA′′) and (QB); if A = ∞ this follows immediately from the
assumptions of the theorem. In both cases, we may thus deduce from Theorem 5.9 and (5.60) that
λ /∈ ΣXw(KN,A

k ) for all k ∈WA and N ∈ N′, so that (5.60) holds with X replaced by Xw, w ∈ W(κ).
We are left with proving that Cw is finite, which we will do by contradiction. To this end, assume

that Cw = ∞. Then we could find sequences (Nn) in N′, (An) in (0,∞] and (kn) in W such that

lim
n→∞

‖(λ−KNn,An

kn
)−1‖w = ∞. (5.62)

By passing to appropriate subsequences, we may assume w.l.o.g. that An → A ∈ [0,∞] and, since W
is bounded and equicontinuous and thus relatively s-sequentially compact, kn

s→ k ∈ BC(R2). We
distinguish two cases and will show that each leads to a contradiction.

A = ∞: For every n ∈ N, we choose a function k′n ∈ BC(R2) with the following properties:
(i) ‖k′n‖ ≤ ‖kn‖; (ii) k′n(s, t) = kn(s, t), for all s ∈ R and |t| ≤ An; (iii) k′n(s, t) = 0, for all s ∈ R
and |t| ≥ min{|tNn

j | : tNn
j /∈ [−An, An]}. (We note that k′n = kn if An = ∞.) Then KNn

k′n
= KNn,An

kn
, for

every n ∈ N, so that, by virtue of (5.62), limn→∞ ‖(λ −KNn

k′n
)−1‖w = ∞. However, (i), (ii), An → ∞

and kn
s→ k ensure that k′n

s→ k; moreover, (5.61) shows that supn∈N ‖(λ − KNn

k′n
)−1‖ < ∞. Thus

and by the assumptions on the quadrature weights, Theorem 5.11 applies to the sequences (k′n) and
(Nn), implying that the values of ‖(λ −KNn

k′n
)−1‖w = ‖(λ −KNn,An

kn
)−1‖ must be uniformly bounded,

contradicting (5.62).
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A <∞: If An → A <∞ then An < A+ 1, for all n large enough. Thus, by passing to appropriate
subsequences, we may assume that supn∈N An < A+ 1. In view of (5.62), we can find a sequence (zn)
in Xw such that ‖zn‖w = 1, n ∈ N, and

lim
n→∞

‖(λ−KNn,An

kn
)zn‖w = 0. (5.63)

Then also limn→∞ ‖(λ−KNn,An

kn
)zn‖ = 0 and from (5.61), we get zn → 0. We now choose a non-negative

“cut-off” function χ ∈ X such that ‖χ‖ = 1, χ(s) = 1, |s| < A + 1 and χ(s) = 0, |s| > A + 2. Let
(z′n) := (χzn) and (z′′n) := (zn − z′n). Clearly, (z′n) and (z′′n) are sequences in Xw. Since χ is compactly
supported zn → 0 ensures that ‖z′n‖w → 0, and hence, by choice of (zn), ‖z′′n‖w → 1. Moreover, we
have that KNn,An

kn
z′′n = 0, n ∈ N, since z′′n is always supported outside the interval [−An, An]. Thus

‖(λ−KNn,An

kn
)zn‖w ≥ ‖(λ−KNn,An

kn
)z′′n‖w − ‖(λ−KNn,An

kn
)z′n‖w = ‖λz′′n‖w − ‖(λ−KNn,An

kn
)z′n‖w.

But, since ‖z′n‖w → 0 and, by (5.56) and Theorem 5.6, the operators λ−KNn,An

kn
are uniformly bounded

on Xw, the right-hand side of this inequality converges to |λ| > 0 as n→∞, contradicting (5.63).

We are also interested in estimating the error of the (modified) finite section method. To this end,
we now start with the following general situation: We choose N ∈ N, A > 0, k, k′ ∈ BC(R2) and
suppose that the inverses of the operators λ −KN

k and λ −KN,A
k′ exist on X. Further, let us assume

that k, k′ satisfy, for some D ∈ (0, A],

k(s, t) = k′(s, t), |s|, |t| ≤ D. (5.64)

For a given y ∈ X, we now compare the difference xN−xN,A between the unique solutions xN , xN,A ∈ X
of the equations

(λ−KN
k )xN = y, (λ−KN,A

k′ )xN,A = y,

i.e. the error introduced by the truncation and the replacement of k by k′. To this end, we will investigate
the residual r, defined by

r := y − (λ−KN
k )xN,A = (KN

k −KN,A
k′ )xN,A. (5.65)

Clearly, r ∈ X and we observe that, since xN − xN,A = (λ−KN
k )−1(KN

k −KN,A
k′ )xN,A, there holds

xN − xN,A = (λ−KN
k )−1r,

and hence
‖xN − xN,A‖ ≤ ‖(λ−KN

k )−1‖ ‖r‖. (5.66)

With the aid of our assumption (5.64), we can bound r in terms of the values of xN,A outside the
interval [−D,D]. To achieve this, we split the residual, r = r+ + r−, where, bearing in mind the second
equality in (5.65), r± is given by

r±(s) :=

{∑
±tN

j ≥−D

(
ωN

j (s)k(s, t)− ωN,A
j (s)k′(s, t)

)
xN,A(tNj ), ±s > D∑

±tN
j ≥D

(
ωN

j (s)k(s, t)− ωN,A
j (s)k′(s, t)

)
xN,A(tNj ), ±s ≤ D.

(5.67)

Since (5.64) holds and the quadrature weights ωN,A
j (s) satisfy (QA), (QB) we easily see that r± ∈ X.

We now bound r±(s) as follows:

|r±(s)| ≤
(
‖k‖+ ‖k′‖

)
µN
±D(s) sup

|t|>D

|xN,A(t)|, s ∈ R, (5.68)

where µN
±D(s) are the functions defined by

µN
±D(s) :=

{∑
±tN

j >−D |ωN
j (s)|, ±s > D,∑

±tN
j >D |ωN

j (s)|, ±s ≤ D.
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We observe that, for every N ∈ N, the function µN
±D is a member of L∞(R) with ‖µN

±D‖∞ ≤ CQ (the
constant in (QA)), and the same bound holds for the function µN

D := µN
+D + µN

−D. However, we can
find much stronger bounds on µN

±D, but before we formulate these, we introduce a suitable class of
weight functions.

Given an even weight function w̃(s) satisfying (2.3) and D ≥ 0, let us define the lateral weight
functions

w̃D
+ (s) :=

{
w̃(s+D), s > −D,
1, s ≤ −D,

w̃D
− (s) :=

{
1, s ≥ D,

w̃(D − s), s < D.

If D = 0 then we will also use the simpler notation w̃±(s) instead of w̃D
± (s).

The motivation for this definition is the following lemma, which shows that, under condition (5.69)
below, the functions r± are contained in the weighted spaces X ewD

∓
.

Lemma 5.24. Suppose that v(s, t) = κ̃(s − t) satisfies Assumption (A′′) and that w̃ ∈ W(κ) is such
that

w̃(s)µ(s) = O(1), as s→∞, (5.69)

where µ(s) is defined in (4.82). Further, assume that the quadrature weights ωN
j (s) satisfy Assump-

tions (QA) and (QA′′). Then, for every D > 0, the following inequalities hold,

w̃D
± (s)µN

∓D(s) ≤ C, s ∈ R, N ∈ N, D ≥ 0, (5.70)

where C > 0 is a constant not depending on s, D or N .

Remark 5.25. Given a convolution kernel v as in the lemma, we can always find a weight function
w̃ ∈ W(κ) satisfying (5.69); such a w̃ is constructed in Theorem 4.38.

Proof. We only prove the inequality (5.70) for the lower subscripts, for the other then follows by
symmetric arguments. We let CQ, A0, A1, C

∗ denote the constants in (QA), (A′′) and (QA′′) and
define M := max{hN : N ∈ N}, A2 := max{A0 + M,A1}. We distinguish two cases. If s ≥ D − A2

then w̃D
− (s) ≤ w̃(A2), and hence there holds

w̃D
± (s)µN

∓D ≤ w̃(A2)CQ, s ≥ D −A2. (5.71)

If, on the other hand, s < D −A2 then Lemma 5.5 (applied with w(s) = 1, M1 = D − s and M2 = ∞)
yields

µN
∓D(s) =

∑
tN
j >D

|ωN
j (s)| =

∑
−∞<s−tN

j <s−D

|ωN
j (s)| ≤ C1

∫ ∞

D−hN

|κ(s− t)| dt ≤ C1

∫ ∞

D−M

|κ(s− t)| dt,

(5.72)
where C1 is some constant not depending on D, M or N . Moreover, by (5.69), there exists some
constant Cµ > 0 such that w̃(s)µ(s) ≤ Cµ, for every s ≥ 0. Hence∫ ∞

D−M

|κ(s− t)| dt =
∫ s−(D−M)

−∞
|κ(t)| dt ≤ Cµ

w̃
(
(D −M)− s

) ≤ Cµ∆Mew
w̃(D − s)

=
Cµ∆Mew
w̃D
− (s)

.

Combining this inequality with (5.72), we see that

w̃D
± (s)µN

∓D(s) = w̃D
− (s)

∑
tN
j >D

|ωN
j (s)| ≤ CµC1∆Mew , s < D −A2.

Together with (5.71), this inequality shows that (5.70) holds.
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The error xN − xN,A of the finite-section method is given by (λ−KN
k )−1(r+ + r−). If (5.69) holds

then we deduce from (5.70) and (5.68) that r± ∈ X ewD
∓

. To carry over this bound on the residual to
a bound on the error of the finite section method, we will now study the invertibility of the operators
λ−KN

k on the weighted spaces X ewD
±

.
As a first step in this direction, we are now going to demonstrate that many of the boundedness,

invertibility and stability results for the discretized integral operators KN
k remain valid when Xw is

replaced by X ew± . The next proposition (cf. Theorems 5.6, 5.9, Proposition 5.8) collects the specific
results needed in our error analysis of the finite-section method.

In the formulation of the proposition and in the remainder of the section, we will use the following
notation: given a kernel v(s, t), quadrature weights ωN

j (s) and a weight function w̃, we define the kernel
v±(s, t) := v ew±(s, t) as in (4.5) and the quadrature weights ωN

j, ew±(s) as in (5.20), but with w replaced
by w̃± in both cases. The corresponding integral and quadrature operators are Kk, ew± := M ew±KkM

−1ew±
and KN

k, ew± := M ew±KN
k M

−1ew± , for k ∈ BC(R2).

Proposition 5.26. Suppose that the kernel v satisfies (A′′), with κ ∈ L1(R), and (B). Assume,
further, that the quadrature weights ωN

j (s) satisfy (QA), (QA′′) and (QB). Then, for every w̃ ∈ W(κ),
the quadrature weights ωN

j, ew±(s) satisfy (QA) and (QB), and the quadrature weights ωN
j (s)−ωN

j, ew±(s)
satisfy (QA), (QB) and (QD).

Moreover, if W ⊂ BC(R2) is bounded, the operators KN
k , k ∈W , N ∈ N, are uniformly bounded on

X ew± . Moreover, for every N ∈ N, k ∈ BC(R2), the following statements hold

0 ∈ ΣX(KN
k ) = ΣXew± (KN

k ), 0 ∈ Σe
X(KN

k ) = Σe
Xew± (KN

k ). (5.73)

If, additionally, the quadrature weights ωN
j (s) satisfy (Q) then the quadrature weights ωN

j, ew±(s) also
satisfy (Q) (with v = v±).

Proof. To see that the operators KN
k , k ∈W , N ∈ N, are uniformly bounded on X ew± , it suffices to show

that the quadrature weights ωN
j, ew±(s) satisfy Assumptions (QA) and (QB), for then Proposition 5.2

applies and shows the equivalent statement that the operators KN
k, ew± , k ∈ W , N ∈ N are uniformly

bounded on X (see equation (2.8)).
To verify (Q) and (QB), we use the respective arguments of Theorem 5.6, but with w replaced by

w̃±. That (QA) holds follows from the bound∑
j∈Z

|ωN
j, ew±(s)| ≤

∑
j∈Z

|ωN
j (s)|+

∑
j∈Z

|ωN
j, ew(s)|, s ∈ R,

and the fact that, by Theorem 5.6, the quadrature weights ωN
j (s) and ωN

j, ew(s) both satisfy (QA).
For all s ∈ R and A ≥ 0, the inequality

∑
|tN

j |≥A

∣∣∣∣∣1− w̃±(s)
w̃±(tNj )

∣∣∣∣∣ |ωN
j (s)| =

∑
±tN

j ≥A

∣∣∣∣∣1− w̃±(s)
w̃±(tNj )

∣∣∣∣∣ |ωN
j (s)| ≤

∑
|tN

j |≥A

∣∣∣∣∣1− w̃(s)
w̃(tNj )

∣∣∣∣∣ |ωN
j (s)|

holds. By Proposition 5.8, the quadrature weights ωN
j (s) − ωN

j, ew(s) satisfy (QD) and, hence, so must
the quadrature weights ωN

j (s) − ωN
j, ew±(s). Lemma 5.7 now shows that the operators KN

k −KN
k, ew± are

sn-continuous. Moreover, by Proposition 5.2, each of the operators KN
k , KN

k, ew± is s-continuous and
s-sequentially compact. Now (5.73) follows using a similar argument as in Theorem 5.9, but with KN

k,w

replaced by KN
k, ew± .

We define the translation operators T (1)
a and T

(2)
a , a ∈ R, by setting, for functions x : R → C and

k : R2 → C,
T (1)

a x(s) := x(s− a), T (2)
a k(s, t) := k(s− a, t− a), s, t ∈ R.
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We note that T (1)
a and T

(2)
a , acting on X and BC(R2), respectively, are isometric isomorphisms with

inverses T (1)
−a and T (2)

−a , respectively.
A characteristic feature of convolution kernels v is that T (2)

a v = v holds, for every a ∈ R. In most
cases of practical interest, reasonable quadrature weights ωN

j (s) for the approximation of the convolution
kernel v will also be translation invariant in the following sense:

ωN
j (s) = ωN

j+j′(s+ j′hN ), s ∈ R, j, j′ ∈ Z, N ∈ N. (5.74)

These properties are crucial for our subsequent analysis, for they enable us to relate the invertibility of
λ−KN

k on X to that on X ewD
±

.

Lemma 5.27. Suppose that the quadrature weights ωN
j (s) satisfy Assumptions (QA), (QA′′), (QB)

and (5.74), and that k ∈ BC(R2) and w̃ ∈ W(κ). Then, if D := tNj , for some N ∈ N and j ∈ N0, the
following equivalence holds for every λ ∈ C:

λ−KN
k ∈ GL(X) ⇐⇒ λ−KN

T
(2)
±Dk

∈ GL(X) ⇐⇒ λ−KN
k ∈ GL(X ewD

±
). (5.75)

Further, if λ−KN
k is invertible on X for some λ ∈ C, then

‖(λ−KN
k )−1‖ = ‖(λ−KN

T
(2)
±Dk

)−1‖ and ‖(λ−KN

T
(2)
±Dk

)−1‖ ew± = ‖(λ−KN
k )−1‖ ewD

±
. (5.76)

Proof. From (5.74) we obtain, by straight-forward calculation, T (1)
±DK

N
k = KN

T
(2)
±Dk

T
(1)
±D, and thus

λ−KN

T
(2)
±Dk

= T
(1)
±D(λ−KN

k )T (1)
∓D. (5.77)

Since the mappings T (1)
∓D : X → X and T

(1)
∓D : X ew± → X ewD

±
are isometric isomorphisms and Proposi-

tion 5.26 applies we conclude that

λ−KN
k ∈ GL(X)

(5.77)⇐⇒ λ−KN

T
(2)
±Dk

∈ GL(X)
(5.73)⇐⇒ λ−KN

T
(2)
±Dk

∈ GL(X ew±)
(5.77)⇐⇒ λ−KN

k ∈ GL(X ewD
±

).

Moreover, if all the inverses exist, then

‖(λ−KN

T
(2)
±Dk

)−1‖ (5.77)
= ‖T (1)

±D(λ−KN
k )−1T

(1)
∓D‖ = ‖(λ−KN

k )−1‖,

‖(λ−KN

T
(2)
±Dk

)−1‖ ew± (5.77)
= ‖T (1)

±D(λ−KN
k )−1T

(1)
∓D‖ ew± = ‖(λ−KN

k )−1‖ ewD
±
.

proving the two remaining assertions.

Combing this Lemma with the proposition preceding it, we obtain the following stability result, a
central element of our error analysis of the finite-section method.

Proposition 5.28. Suppose that v(s, t) = κ̃(s− t) satisfies (A′′). Assume, further, that the quadrature
weights ωN

j (s) satisfy (Q), (QA), (QA′′), (QB) and also (5.74). Moreover, let W ⊂ BC(R2) be
bounded and uniformly equicontinuous and N′ ⊂ N. If

λ /∈
⋃

N∈N′

⋃
k∈W

ΣX(KN
k ) and C := sup

N∈N′
sup
k∈W

‖(λ−KN
k )−1‖ <∞ (5.78)

then, for every w̃ ∈ W(κ), N ∈ N′, k ∈ W and D = tNj , j ∈ N0, the operator λ −KN
k is invertible on

X ewD
±
. Moreover, the following inequalities hold

C± := sup
N∈N′

sup
k∈W

sup
D=tN

j , j∈N0

‖(λ−KN
k )−1‖ ewD

±
<∞. (5.79)
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Proof. The existence of the inverses in (5.79) follows from (5.78) by an application of Lemma 5.27. This
lemma also shows that

C
(5.76)
= sup

N∈N′
sup
k∈W

sup
D=tN

j , j∈N0

‖(λ−KN

T
(2)
±Dk

)−1‖ <∞. (5.80)

We are left with showing that C± is finite. In view of the second inequality in (5.76), it suffices to prove

sup
N∈N′

sup
k∈W

sup
D=tN

j , j∈N0

‖(λ−KN

T
(2)
±Dk

)−1‖ ew± <∞. (5.81)

Suppose this were not the case. Then we could find sequences (Nn) in N′, (k̃n) in W , (jn) in N0 such
that, for (Dn) := (tNn

jn
) and (kn) := (T (2)

±Dn
k̃n), there holds limn→∞ ‖(λ−KNn

kn
)−1‖ ew± = 0. By passing

to appropriate subsequences, we may assume w.l.o.g. that Nn → N ∈ N′ ∪ {∞} and kn
s→ k ∈ BC(R2)

(since (kn) is bounded and uniformly equicontinuous as a sequence of translates of functions in W ,
see Remark 2.8). Moreover, there exists a sequence (zn) in X ew± such that ‖zn‖ ew± = 1, n ∈ N, and
limn→∞ ‖(λ−KNn

kn
)zn‖ ew± = 0.

The argument leading to a contradiction is now that in part (iii) of the proof of Theorem 5.11,
with w̃± instead of w, once we have shown that this replacement is allowed. To this end, we need to
verify that: (i) the quadrature weights ωN

j, ew±(s) satisfy (Q), (QA), (QB) (to see that Proposition 5.3
applies); (ii) the quadrature weights ωN

j (s) − ωN
j, ew±(s) satisfy (QA), (QB) and (QD) (to see that

Lemma 5.7 and Proposition 5.8 may be invoked); (iii) the operator λ − KN
k is injective on X ew± (we

recall our notational convention that K∞
k := Kk).

(i) and (ii) have already been shown in Proposition 5.26. Moreover, in view of (5.80) and our
assumptions on the quadrature weights ωN

j (s), we may appeal to Theorem 5.11, showing that λ−KN
k

is invertible on X and thus, in particular, injective on X ew± ⊂ X, whence (iii) also holds. Now, as
indicated above, a contradiction of (5.81) arises and the proposition follows.

We are now ready to prove our main error estimate for the (modified) finite-section method, when
v is a convolution kernel and the quadrature weights ωN

j (s) satisfy (5.74).

Theorem 5.29. Suppose that v(s, t) = κ̃(s − t) satisfies (A′′). Assume, further, that the quadrature
weights ωN

j (s) satisfy (Q), (QA), (QA′′), (QB) and also (5.74). Moreover, assume that W is a
bounded and uniformly equicontinuous subset of BC(R2), N′ ⊂ N and that, for every A ∈ (0,∞],
WA ⊂W . Then the following statements hold: If

λ /∈
⋃

N∈N′

⋃
A∈(0,∞]

⋃
k∈WA

ΣX(KN,A
k ) (5.82)

and
C := sup

N∈N′
sup

A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖ <∞ (5.83)

then, for every w ∈ W(κ), the operators λ−KN,A
k in (5.83) are also invertible on Xw and

Cw := sup
N∈N′

sup
A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖w <∞. (5.84)

Moreover, if k ∈W∞, k
′ ∈WA, for some A ∈ (0,∞], and N ∈ N′ then the equations

(λ−KN
k )xN = y, (λ−KN,A

k′ )xN,A = y (5.85)

have unique solutions xN , xN,A ∈ Xw for every y ∈ Xw. If, additionally, w̃ ∈ W(κ) satisfies

w̃(s)
(∫ ∞

A

|κ(t)| dt+
∫ −A

−∞
|κ(t)| dt

)
= O(1), as s→∞, (5.86)
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and, for some D ≤ A, given by D = tNj , for some j ∈ N, the equality

k(s, t) = k′(s, t), |s|, |t| ≤ D, (5.87)

holds then the error of the finite section method may be estimated by

|xN (s)− xN,A(s)| ≤ C
1

w(D)

(
1

w̃(s−D)
+

1
w̃(s+D)

)
‖y‖w, |s| ≤ D, (5.88)

where C > 0 is some constant not depending on k, k′, N , D or y.

Proof. Provided the assumptions up to (5.83) are satisfied, the existence of the inverses in (5.84) and
their uniform boundedness follows from Theorem 5.23. It is clear that then the statement about the
solvability of (5.85) holds.

Thus we are left with showing (5.88) if also the remaining assumptions of the theorem hold. Let
us assume that these are satisfied and we are given y ∈ Xw and solutions xN and xN,A of (5.85). We
define CW := 2 supek∈W ‖k̃‖ and r± as in (5.67). Then

xN − xN,A = (λ−KN
k )−1(r+ + r−), (5.89)

Then, for s ∈ R, we obtain from (5.68)

|r±(s)| ≤ CWµN
±D(s) sup

|t|>D

|xN,A(t)| ≤ CWµN
±D(s)w(D)−1‖xN,A‖w,

whence, by (5.86) and Lemma 5.24, there exists some constant C0 such that

‖r±‖ ewD
∓
≤ C0CWw(D)−1‖xN,A‖w.

We note that C0 and all constants later in this proof do not depend on k, k′, N , D or y. We have
already shown that (5.84) holds, whence ‖xN,A‖w ≤ Cw‖y‖w. It follows that

‖r±‖ ewD
∓
≤ C1w(D)−1‖y‖w,

for some positive constant C1 > 0. Proposition 5.28 applies and shows that

‖(λ−KN
k )−1‖ ewD

∓
< C ew,

for some C ew > 0. Let e± := (λ−KN
k )−1r±. Then

‖e±‖ ewD
∓
≤ C ew‖r±‖ ewD

∓
≤ C ewC1w(D)−1‖y‖w,

and hence
|e±(s)| ≤ C ewC1

(
w(D)w̃D

∓ (s)
)−1

, s ∈ R

Since xN − xN,A = e+ + e−, and in view of (5.89), adding these two inequalities yields, for |s| ≤ D

|xN (s)− xN,A(s)| ≤ |e+(s)|+ |e−(s)| ≤ C ewC1‖y‖w
1

w(D)

(
1

w̃D
+ (s)

+
1

w̃D
− (s)

)
,

from which (5.88) follows, by the definition of the weight functions w̃D
± .

For an example of how this theorem may be applied, we refer to the end of Section 6.3.
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5.5 Sums of integral operators and their approximation

In some applications it is desirable to consider integral operators Kk, which may be written as a finite
sum of integral operators of the form (3.2), i.e. integral operators of the form

Kk := K1,k1 + · · ·+Kn,kn , (5.90)

where, for i = 1, . . . n, Ki,ki
is defined as in (3.2) with v = vi, k = ki, and k = (k1, . . . , kn) ∈ (BC(R2))n.

Here, we are assuming that the kernels vi, i = 1, . . . , n, satisfy Assumption (A′′), each with the
same κ ∈ L1(R), and also (B).

The advantage of the decomposition (5.90) is that different quadrature formulae may be used for each
of the integral operators K1,k1 , . . . ,Kn,kn

. Thus, let us suppose that KN
1,k1

, . . . ,KN
n,kn

are quadrature
operators, defined as in (5.8), with the quadrature weights ωN

j (s), j ∈ Z, N ∈ N, replaced by ωN
1,j(s),

. . ., ωN
n,j(s), respectively, where, for i = 1, . . . , n, the i-set of quadrature weights satisfies (Q) (with

v = vi), (QA), (QA′′) and (QB).
We combine these operators to define, for k = (k1, . . . , kn) ∈ (BC(R2))n, the operator

KN
k := KN

1,k1
+ · · ·+KN

n,kn
, N ∈ N,

as an approximation of the integral operator Kk.
It then follows from the theory in Chapters 4 and 5 that the operators Kk and KN

k are bounded
on the spaces X and Xw, w ∈ W(κ). Also, the operators Kk and KN

k inherit the continuity and
compactness properties in the strict topology from the operators KN

1,k1
, . . . ,KN

n,kn
, e.g. if each of the

operators KN
1,k1

, . . . ,KN
n,kn

is s-sequentially compact, s-continuous, sn-continuous then, respectively, so
is KN

k . Bearing this observation in mind, it is not hard to modify the proofs of the results in Chapters 4
and 5 to obtain the following variants of Theorems 5.13, 5.14 and Theorem 5.29.

Theorem 5.30. Let v1, . . . , vn be kernels satisfying Assumptions (A′′), each with the same κ ∈ L1(R),
and (B). Suppose that the quadrature weights ωN

1,j(s), . . . , ω
N
n,j(s), satisfy (Q) (with v = vi for the

i-th set of weights), (QA), (QA′′) and (QB). Assume, further, that W ⊂ W1 × · · · ×Wn, for some
bounded and equicontinuous subsets Wi ⊂ BC(R2), and N′ ⊂ N. Then

λ /∈
⋃

k∈W

⋃
N∈N′

ΣX(KN
k ) and C := sup

k∈W
sup

N∈N′
‖(λ−KN

k )−1‖ <∞.

imply, for each w ∈ W(κ), that

Cw := sup
k∈W

sup
N∈N′

‖(λ−KN
k )−1‖w <∞.

If, further, N′ is unbounded then the inverse of (λ−Kk)−1 exists on X and Xw, for every k ∈ W, and

sup
k∈W

‖(λ−Kk)−1‖ ≤ C, sup
k∈W

‖(λ−Kk)−1‖w ≤ Cw.

Moreover, for every N ∈ N′ and y ∈ Xw, unique solutions x, xN ∈ Xw of the equations

(λ−Kk)x = y, (λ−KN
k )xN = y

exist and satisfy
‖x− xN‖w ≤ Cw‖(Kk −KN

k )x‖w.

Theorem 5.31. For i = 1, . . . , n, suppose that vi(s, t) = κi(s − t) and that, additionally, each of the
kernels vi satisfies (A′′), for some κ ∈ L1(R) (the same in each occurrence). Moreover, assume that
the quadrature weights ωN

1,j(s), . . . , ω
N
n,j(s), satisfy (Q) (with v = vi for the i-th set of weights), (QA),

(QA′′), (QB) and (5.74). Assume, further, that W ⊂W1×· · ·×Wn, for some bounded and uniformly
equicontinuous subsets Wi ⊂ BC(R2), that, for every A ∈ (0,∞], WA ⊂ W, and N′ ⊂ N.
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Then
λ /∈

⋃
N∈N′

⋃
A∈(0,∞]

⋃
k∈WA

ΣX(KN,A
k ) (5.91)

and
C := sup

N∈N′
sup

A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖ <∞ (5.92)

imply, for every w ∈ W(κ), that the operators λ−KN,A
k in (5.92) are also invertible on Xw and

Cw := sup
N∈N′

sup
A∈(0,∞]

sup
k∈WA

‖(λ−KN,A
k )−1‖w <∞. (5.93)

Moreover, if k = (k1, . . . , kn) ∈ W∞,k′ = (k′1, . . . , k
′
n) ∈ WA, for some A ∈ (0,∞], and N ∈ N′ then

the equations
(λ−KN

k )xN = y, (λ−KN,A
k′ )xN,A = y (5.94)

have unique solutions xN , xN,A ∈ Xw for every y ∈ Xw. If, additionally, w̃ ∈ W(κ) satisfies

w̃(s)
(∫ ∞

A

|κ(t)| dt+
∫ −A

−∞
|κ(t)| dt

)
= O(1), s→∞, (5.95)

and, for some D ≤ A satisfying D = tNj , j ∈ N,

ki(s, t) = k′i(s, t), |s|, |t| ≤ D (5.96)

holds, for i = 1, . . . , n, then the error of the finite section method may be estimated by

|xN (s)− xN,A(s)| ≤ C
1

w(D)

(
1

w̃(s−D)
+

1
w̃(s+D)

)
‖y‖w, |s| ≤ D, (5.97)

where C > 0 is some constant not depending on k, k′, N , D or y.
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Applications

A common practical situation is that the kernel v(s, t) of the integral equation (5.1) satisfies (A′), (B)
and is smooth for s 6= t, or at least if |s − t| is sufficiently large. In many cases, v(s, t) will then, for
some n ∈ N and b > 1, satisfy the following assumption, which is the leitmotiv of this chapter.

Assumption (A′
n). The kernel v satisfies Assumptions (A′), with κ ∈ L1(R), (B) and there exist

constants Cn, A0 ≥ 0 such that v is n times partially differentiable on the set {s, t ∈ R : |s− t| ≥ A0},
and for all i, j ∈ N0 with i+ j ≤ n, the derivatives satisfy the bound∣∣∣∣ ∂i

∂si

∂j

∂tj
v(s, t)

∣∣∣∣ ≤ Cn

(1 + |s− t|)b
, |s− t| ≥ A0. (6.1)

In this chapter we will always assume that v satisfies this assumption and investigate Nyström
methods for the numerical solution of the corresponding integral equations

λx(s)−
∫ ∞

−∞
v(s, t)k(s, t)x(t) dt = y(s), s ∈ R.

As in the previous chapter, for k ∈ BC(R2), we let Kk denote the integral operator in this equation.
We will show that the operators Kk are bounded (on X and) the weighted spaces Xwa

, where wa(s) :=
(1 + |t|)a and 0 < a ≤ b.

We restrict our attention to this family of weighted spaces in the remainder of this thesis. We recall
that we have seen in Example 4.21 that these weight functions all satisfy Assumption (F ′). To avoid
double subscripts, we will use the notation Xa, ‖ · ‖a, instead of Xwa

, ‖ · ‖wa
, respectively. For a = 0

we set Xa := X, ‖ · ‖a := ‖ · ‖. Moreover, for A > 0, we introduce the notation ∆A
a := ∆A

wa
, i.e.

∆A
a := sup|s−t|≤A

(
(1 + |s|)/(1 + |t|)

)a
<∞.

6.1 A few technical prerequisites

In this short section, we provide some definitions and easy facts, which will be useful in our subsequent
analysis of quadrature and integral operators acting on Xa.

In the sequel, we will work with the special class of weighted spaces we are going to define now: For
n ∈ N0, we let BCn(R), BCn(R2), denote the Banach space of all functions, which, together with their
(partial) derivatives up to order n, are bounded and continuous on R, R2, respectively, equipped with
the norms

‖f‖BCn(R) := max
{
‖f (i)‖ : 0 ≤ i ≤ n

}
,

‖f‖BCn(R2) := max
{
‖∂i

1∂
j
2f‖ : 0 ≤ i, j ≤ n, i+ j ≤ n

}
,

75
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where, here and throughout, ∂1, ∂2 denote the operators of partial differentiation with respect to the
first and second coordinate, respectively. For a ≥ 0 we will use the non-standard notation BCn

a (R) for
the Banach space

BCn
a (R) :=

{
f ∈ BCn(R) : ‖f‖BCn

a (R) := max{‖waf
(i)‖ : 0 ≤ i ≤ n} <∞

}
.

Moreover, we will write BCn
a (R2) for the Banach space

BCn
a (R2) :=

{
f ∈ BCn(R2) : ‖f‖BCn

a (R2) := max{‖w∗a∂i
1∂

j
2f‖ : 0 ≤ i, j ≤ n, i+ j ≤ n } <∞

}
,

where w∗a(s, t) := wa(s− t).
If two functions x, y : Ω′ → C, Ω′ ⊂ R open, are n times differentiable (n ∈ N0) then so is their

product xy : Ω′ → C, with derivatives given by the Leibniz product rule

xy(j) =
j∑

m=0

(
j

m

)
x(m)y(j−m), 0 ≤ j ≤ n. (6.2)

From this fact we draw a number of simple but useful conclusions and collect them in the next lemma.

Lemma 6.1. Suppose that n ∈ N0 and a ≥ 0.

a) If x ∈ BCn
a (R) and y ∈ BCn(R) then xy ∈ BCn

a (R) and

‖xy‖BCn
a (R) ≤ 2n‖x‖BCn

a (R)‖y‖BCn(R). (6.3)

b) If, further, for some s ∈ R and A > 0, y(t) = 0 for all t satisfying |s− t| > A then

‖xy‖BCn(R) ≤ 2n∆A
a (1 + |s|)−a‖x‖BCn

a (R)‖y‖BCn(R). (6.4)

c) If v ∈ BCn
a (R2) and k ∈ BCn(R2), then vk ∈ BCn

a (R2) and

‖vk‖BCn
a (R2) ≤ 2n‖v‖BCn

a (R2)‖k‖BCn(R2). (6.5)

Proof. a) If the assumptions of the lemma are satisfied then, for 0 ≤ j ≤ n, wa(s)|x(j)(s)| ≤ ‖x‖BCn
a (R),

s ∈ R. Thus, and, by the Leibniz product rule, we obtain, for t ∈ R, 0 ≤ j ≤ n,

|(xy)(j)(t)| =

∣∣∣∣∣
j∑

m=0

(
j

m

)
x(m)(t)y(j−m)(t)

∣∣∣∣∣ ≤ 2n(1 + |t|)−a‖x‖BCn
a (R)‖y‖BCn(R). (6.6)

Multiplying these inequalities with (1 + |t|)a and taking the supremum over s ∈ R yields (6.3).
b) If, in addition, y satisfies the assumptions in b) then xy(t) = 0 for |s− t| > A, and for |s− t| ≤ A,

arguing similarly to a), we see that

|(xy)(j)(t)| ≤ 2n(1 + |t|)−a‖x‖BCn
a (R)‖y‖BCn(R) ≤ 2n∆A

a (1 + |s|)−a‖x‖BCn
a (R)‖y‖BCn(R),

holds for 0 ≤ j ≤ n. The inequality in b) follows.
c) Under the assumptions of part c), we obtain, similarly, for 0 ≤ i+ j ≤ n,∣∣∣∣ ∂i

∂si

∂j

∂tj
(
v(s, t)k(s, t)

)∣∣∣∣ =

∣∣∣∣∣
i∑

m=0

(
i

m

)
∂m

∂sm

∂j

∂tj
v(s, t)

∂i−m

∂si−m

∂j

∂tj
k(s, t)

∣∣∣∣∣
≤ 2n(wa(s− t))−1‖v‖BCn

a (R2)‖k‖BCn(R2),

from which the desired inequality follows.
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A particular feature of kernels v satisfying (A′
n) is that they satisfy Assumption (A′), for some

κ ∈ L1(R) such that κ(t) = O(|t|−b) as |t| → ∞ (b is the constant in (A′
n)). Our next proposition

shows that such kernels yield integral operators bounded on the weighted spaces Xa, 0 ≤ a ≤ b. In the
proof, we use the weighted space theory developed in Chapter 4.

Proposition 6.2. Suppose that the kernel v satisfies (A′), with κ ∈ L1(R), and (B), and further that,
for some b > 1, A0 > 0 and C > 0, κ satisfies

|κ(s)| ≤ C(1 + |s|)−b, |s| ≥ A0. (6.7)

Then, for every 0 ≤ a ≤ b, wa ∈ W(κ). Moreover, for every k ∈ BCm(R2), m ∈ N0, and 0 ≤ a ≤ b,
the integral operator Kk, defined by (3.2), is bounded on Xa, with norm bounded by

‖Kk‖a ≤ C‖k‖ ≤ C‖k‖BCm(R2), (6.8)

where C is a constant depending only on v and a.

Proof. The second inequality in (6.8) is trivial, hence we concentrate on proving the first.
Let a = 0. Since (A′) implies (A), the boundedness of Kk on X and the first inequality in (6.8)

are immediate from Proposition 3.1. Thus we now focus on the case when a > 0.
Note first, that we may assume w.l.o.g. that κ is chosen such that κ is non-negative and equality

holds in (6.7). Then κ is monotonic outside the interval [−A0, A0] and both κ and its reflection around
the origin, κ̆, defined by κ̆(t) := κ(−t), satisfy condition (4.57) with p = b > 1. Hence both κ and
κ̆ satisfy Assumption (E′

+) with w = wa; moreover, wa satisfies (F ′) (see Example 4.21). It thus
follows from (6.7) and Lemma 4.32, part c), that κ and wa satisfy Assumptions (E′) and (E), and
hence wa ∈ W(κ). Hence, by Proposition 4.31, the kernel vwa

(s, t) := (wa(s)/(wa(t))v(s, t) satisfies
(A) and (B). From Proposition 3.1, we now obtain that the operators Kwa,k := Mwa

KkMw−1
a

are
bounded on X and satisfy ‖Kwa,k‖ ≤ ‖κ‖1‖k‖. Using (2.5) and (2.8), we infer that Kk : Xa → Xa and
that the first inequality in (6.8) holds.

In a corollary to this proposition, we define two quantities, Θa,b and θA
a,b, which we will use occa-

sionally later on.

Corollary 6.3. Suppose that b > 1, A > 0 and 0 ≤ a ≤ b. Then the following two numbers are finite:

Θa,b := sup
s∈R

∫ ∞

−∞

(1 + |s|
1 + |t|

)a

(1 + |s− t|)−b dt, (6.9)

θA
a,b := sup

0<h≤A
sup
s∈R

h
∑
j∈Z

(( 1 + |s|
1 + |jh|

)a

(1 + |s− jh|)−b

)
. (6.10)

We remark that sum in (6.10) is the rectangle rule approximation of the integral in (6.9), with
distance h between the quadrature abscissae.

Proof. Given a, b as in the assumption, let us consider the convolution kernel v, given by

v(s, t) := (1 + |s− t|)−b, s, t ∈ R.

Then v(s, t) = κ(s−t), with κ ∈ L1(R), given by κ(t) = (1+ |t|)−b, so that v satisfies (A′) and (B). We
have seen in the proof of the previous proposition that then the kernel vwa

(s, t) := (wa(s)/(wa(t))v(s, t)
satisfies (A), which is equivalent to saying that Θa,b <∞.

(ii) For the second part of the lemma, we choose A > 0. For s ∈ R and 0 < h ≤ A, we define

S1(s, h) + S2(s, h) := h
(∑

jh<s

+
∑
jh≥s

) wa(s)
wa(jh)wb(s− jh)

= h
∑
j∈Z

wa(s)
wa(jh)wb(s− jh)

.
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We obtain, for every s ∈ R and 0 < h ≤ A,

S2(s, h) = h
∑
jh≥s

wa(s)
wa(jh)wb(s− jh)

=
∑
jh≥s

∫ (j+1)h

jh

wa(s)
wa(jh)wb(s− jh)

dt

≤ ∆A
a ∆A

b

∑
jh≥s

∫ (j+1)h

jh

wa(s)
wa(t)wb(s− t)

dt ≤ ∆A
a ∆A

b

∫ ∞

s

wa(s)
wa(t)wb(s− t)

dt.

A symmetric argument shows that, for every s ∈ R and 0 < h ≤ A, there also holds

S1(s, h) ≤ ∆A
a ∆A

b

∫ s

−∞

wa(s)
wa(t)wb(s− t)

dt.

Adding these inequalities and taking the suprema yields that θA
a,b ≤ ∆A

a ∆A
b Θa,b <∞.

6.2 Kernels with polynomial decay and error estimates for
smooth inhomogeneities

If the kernel v satisfies Assumption (A′
n) then we immediately obtain from the bound (6.1) that the

kernel bound κ may be chosen such that

κ(s) = Cn(1 + |s|)−b, |s| ≥ A0. (6.11)

holds. Therefore we will, throughout this thesis, often tacitly assume that κ satisfies (6.11) whenever
we say that v satisfies Assumption (A′

n). As a consequence, the kernel v then satisfies (A′′).
Given a kernel v satisfying Assumption (A′

n), we now choose a small η > 0 and a “cut-off” function χ
satisfying

χ ∈ C∞(R), 0 ≤ χ(t) ≤ 1, χ(t) =

{
1, |t| ≤ A0 + η,

0, |t| ≥ A0 + 2η,
(6.12)

unless the constant A0 in (A′
n) is 0, in which case we simply set χ(t) := 0, t ∈ R.

We now split the kernel into a smooth part ṽ and a non-smooth, possibly weakly singular, part v̂.
We let χ∗(s, t) := χ(s− t), notice that χ∗ and 1− χ∗ are functions in BCn(R) and define the kernels

v̂(s, t) := v(s, t)χ∗(s, t), ṽ(s, t) := v(s, t)(1− χ∗(s, t)). (6.13)

We note that if A0 = 0 then v̂ = 0 and v = ṽ. We also see that, since ‖χ∗‖ ≤ 1, v̂ and ṽ both satisfy
(A), (A′), (A′′), and (B), with the same kernel bound κ as v in (A′) and (A′′).

If A0 = 0, v = ṽ ∈ BCn
b (R2) is immediate from (6.1). In the case A0 > 0, (1 − χ∗(s, t)) vanishes

whenever |s − t| ≤ A0 + η, and, again, it follows from (6.1) that ṽ ∈ BCn
b (R2) when A0 > 0 by an

argument, which is essentially that used to show (6.5).
The decomposition (6.13) allows us to split Kk into the integral operators K̂k and K̃k defined by

(3.2), with v replaced by v̂ and ṽ, respectively; then we may write

Kk = K̂k + K̃k.

The next proposition addresses the boundedness of these operators on the weighted spaces Xa.

Proposition 6.4. Suppose that the kernel v satisfies (A′
n). Then v also satisfies (A′′) (not necessarily

with the same κ ∈ L1(R)). Moreover, for every 0 ≤ a ≤ b and every bounded W ⊂ BC(R2), the
operators Kk, K̃k and K̂k, k ∈W , are uniformly bounded on Xa.
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Proof. If v satisfies (A′
n) with κ as in the assumption, then we are automatically assuming that v also

satisfies (A′) and (B). Moreover, we may modify κ outside the interval [−A0, A0] so that (6.11) holds
and v satisfies (A′′) for this modified κ. The uniform boundedness of the operators Kk, k ∈ W , now
follows from Proposition 6.2. Since, by definition, |v̂(s, t)| ≤ |v(s, t)| and |ṽ(s, t)| ≤ |v(s, t)| we see that
‖K̃k‖a, ‖K̂k‖a ≤ ‖Kk‖a, proving the proposition.

The motivation for the splitting of the kernel is that a simple quadrature rule for the approximation
of ṽ, e.g. a compound Newton-Cotes formula, already yields a sufficiently good order of convergence
(and is often very easy to implement on a computer). The kernel v̂ may require a more sophisticated
quadrature rule, but has the advantage that, for fixed s ∈ R, v̂(s, ·) is compactly supported.

In the following, we will consider what is perhaps the simplest approximation for ṽ: the compound
rectangle rule. However, we make the point that our arguments are easily adapted to work with the
other compound rules such as Simpson’s rule.

We define, for N ∈ N and k ∈ BC(R2), the discretized integral operator K̃N
k by

K̃N
k x(s) := hN

∑
j∈Z

ṽ(s, tNj )k(s, tNj )x(tNj ), s ∈ R, x ∈ X, (6.14)

taking tNj = jC/N for some constant C > 0, so that hN = C/N . This means that K̃N
k is the operator

defined in (5.8) with the quadrature weights ωN
j (s) replaced by the quadrature weights

ω̃N
j (s) := hN ṽ(s, tNj ), s ∈ R, j ∈ Z, N ∈ N. (6.15)

The next proposition shows that the quadrature weights ω̃N
j (s) for the rectangular rule are compat-

ible with our assumptions in Chapter 5 and yield bounded quadrature operators on Xa, 0 ≤ a ≤ b.

Proposition 6.5. Suppose that the kernel v satisfies Assumption (A′
n). The quadrature weights ω̃N

j (s),
defined by (6.15), then satisfy Assumptions (Qu) (with v = ṽ), (QA), (QA′′), (QB) and (QBu).
Moreover, for every 0 ≤ a ≤ b and every bounded set W ⊂ BC(R2), the quadrature operators K̃N

k ,
k ∈W , are uniformly bounded on Xa.

Proof. In the first part of the proof, we show that the quadrature weights ω̃N
j (s) satisfy the desired

assumptions.
(QA′′): We may assume w.l.o.g. that κ satisfies κ(s) = Cn(1 + |s|)−b, |s| ≥ A0, so that

|ω̃N
j (s)| = hN |ṽ(s, tNj )| ≤ hN |v(s, tNj )| ≤ CnhN (1 + |s− tNj |)−b,

for all s ∈ R, j ∈ Z, N ∈ N satisfying |s− tNj | ≥ A0. Hence (QA′′) is satisfied (with A1 := A0).
(QA): Since ω̃N

j (s) = 0, if |s−tNj | < A0, we obtain, in view of the above inequality and Corollary 6.3,∑
j∈Z

|ω̃N
j (s)| ≤ CnhN

∑
j∈Z

(1 + |s− tNj |)−b ≤ Cnθ
M
0,b < ∞, s ∈ R, N ∈ N,

where M := max{hN : N ∈ N}. But this means that the quadrature weights ω̃N
j (s) satisfy (QA).

(QBu): Since ṽ ∈ BCn
b (R) we can use the mean value theorem to see that, for all s, t ∈ R, |h| < 1,

|ṽ(s, t)− ṽ(s+ h, t)| ≤ ∆1
b |h|‖ṽ‖BC1

b (R2)(1 + |s− t|)−b. (6.16)

From this inequality we obtain, for all |h| < 1 and s ∈ R,∑
j∈Z

∣∣ω̃N
j (s)− ω̃N

j (s+ h)
∣∣ = hN

∑
j∈Z

∣∣ṽ(s, tNj )− ṽ(s+ h, tNj )
∣∣ ≤ ∆1

b |h|‖ṽ‖BC1
b (R2)

∑
j∈Z

(1 + |s− jhN |)−b.

Irrespective of s ∈ R, the series in the last term is bounded above by θM
0,b (with M as above), whence

the term on the left must tend to 0 as h→ 0, so that (QBu) and (QB) must be satisfied.
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(Qu): Let U ∈ U , i.e. U is a bounded and uniformly equicontinuous subset ofX. Since v̂ ∈ BCn
b (R2),

we may apply Theorem 3.3 in [50] to obtain that, for k the constant function k(s, t) = 1, there holds
‖(K̃k − K̃N

k )x‖ → 0, as N →∞, uniformly in x ∈ U . This is the convergence required in (Qu). Since
U was arbitrary (Qu) holds.

If v satisfies (A′
n) with A0 = 0 then we may use this proposition to show that the Nyström method

based on replacing Kk by KN
k in the equation (λ−Kk)x = y is stable on Xa, 0 ≤ a ≤ b, provided that

the equation (λ−Kk)x = y is uniquely solvable for every y ∈ X.

Theorem 6.6. Let v be a kernel satisfying (A′
n) with A0 = 0 and assume that, for every k in some

bounded and uniformly equicontinuous set W ⊂ BC(R2), λ /∈ ΣX(Kk), and the inverses (λ−Kk)−1 are
uniformly bounded. Then the Nyström method of replacing the integral operators Kk by the rectangle
rule operators KN

k = K̃N
k , k ∈ W , is uniformly stable on X and Xa, 0 ≤ a ≤ b, i.e. for some N ′ ∈ N,

the operators λ−KN
k , N ≥ N ′, k ∈W , are invertible on Xa and

sup
N≥N ′

sup
k∈W

‖(λ−KN
k )−1‖a <∞.

Proof. The previous theorem shows that the quadrature weights ω̃N
j (s) satisfy (Qu), (QA), (QA′′)

and (QBu). In view of (6.16), there holds, for s ∈ R and |h| < 1,∫ ∞

−∞
|ṽ(s, t)− ṽ(s+ h, t)| dt ≤ C|h|

∫ ∞

−∞
(1 + |s− t|)−b dt < |h|CΘ0,b,

where C := ∆1
b‖ṽ‖BC1

b (R2). Letting h→ 0, we see that the kernel v = ṽ satisfies (Bu). By assumption,
v also satisfies (A′′), with κ(s) := Cn(1 + |s|)−b and Cn being the constant in (A′

n).
We have seen that all the assumptions of Theorems 5.20 and 5.21 are satisfied. Let 0 ≤ a ≤ b; then,

since wa ∈ W(κ), these theorems show that the Nyström method is stable on Xa.

To estimate the error of the rectangle rule approximation, we will use the following lemma, which
generalises [50, La. 3.10].

Lemma 6.7. Let 0 ≤ a ≤ b and suppose that the kernel v satisfies (A′
n), for some n ∈ N. Then, for

every x ∈ BCn
a (R) and k ∈ BCn(R2), the error estimate∣∣∣∣∣∑

j∈Z
hN ṽ(s, tNj )k(s, tNj )x(tNj )−

∫ ∞

−∞
ṽ(s, t)k(s, t)x(t) dt

∣∣∣∣∣ ≤ CCn‖k‖BCn(R2)N
−n(1 + |s|)−a‖x‖BCn

a (R)

holds, for every s ∈ R, N ∈ N, where C > 0 is a constant not depending on k, x or N , and Cn is the
constant from (A′

n).

Proof. Throughout this proof C > 0 denotes a generic constant, not necessarily the same at each
occurrence. We will first show the theorem for the case when k is the constant function k(s, t) = 1.

We choose φ ∈ BCn(R) such that φ(s) = −1/2, s ≤ −1/2, and φ(s) = 1/2, s ≥ 1/2. Let φ0(s) :=
φ(s)−φ(s−1) and φi(s) := φ0(s− i) for every i ∈ Z. Then φi ∈ BCn(R), supp φi ⊂ [−1/2+ i, 3/2+ i],
i ∈ Z, and {φi : i ∈ Z} is a partition of unity, because

∑
i∈Z φi(s) = 1 holds for every s ∈ R.

Let, for i ∈ Z and N ∈ N,

eN
i (s) :=

∑
j∈Z

hNφi(tNj )ṽ(s, tNj )x(tNj )−
∫ ∞

−∞
φi(t)ṽ(s, t)x(t) dt, s ∈ R,

so that
eN (s) :=

∑
j∈Z

hN ṽ(s, tNj )x(tNj )−
∫ ∞

−∞
ṽ(s, t)x(t) dt =

∑
i∈Z

eN
i (s), s ∈ R.
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The next step is to estimate eN
i (s). Note that, for s ∈ R and i ∈ Z, the summands and integrands

in the definition of eN
i (s) are zero when t, tNj /∈ [s− 1/2, s+ 3/2]. Lemma 3.9 in [50], an application of

the Euler-Maclaurin sum formula, provides an error estimate for the rectangle rule over finite intervals:

|eN
i (s)| ≤ CN−n max

0≤m≤n
sup

s− 1
2≤t≤s+ 3

2

∣∣(φi(t)ṽ(s, t)x(t)
)(m)∣∣, s ∈ R.

where the differentiation in the last term is with respect to t and the constant C > 0 only depends on n.
Bearing in mind that ṽ ∈ BCn

b (R2), x ∈ BCn
a (R) and φ ∈ BCn(R), we obtain, by repeated application

of the Leibniz product rule, that

|eN
i (s)| ≤ CN−n‖ṽ‖BCn

b (R2)‖x‖BCn
a (R) max

− 1
2+i≤t≤ 3

2+i

(
(1 + |t|)−a(1 + |s− t|)−b

)
, s ∈ R.

where C > 0 is a constant depending only on n and φ. Observing that ‖ṽ‖BCn
b (R2) ≤ CCn, where C > 0

depends only on χ and n, and Cn is the constant in (A′
n), we see that, for every s ∈ R,

|eN (s)| ≤
∑
i∈Z

|eN
i (s)| ≤ CCnN

−n‖x‖BCn
a (R)

∑
i∈Z

max
− 1

2+i≤t≤ 3
2+i

(
(1 + |t|)−a(1 + |s− t|)−b

)
≤ CCnN

−n‖x‖BCn
a (R)∆3/2

a ∆3/2
b

∑
i∈Z

(
(1 + |i|)−a(1 + |s− i|)−b

)
(6.10)

≤ CCnN
−n‖x‖BCn

a (R)∆3/2
a ∆3/2

b (1 + |s|)−aθ1a,b.

where C > 0 depends only on n, φ and χ. The desired inequality now follows.
To prove the general case, we only need to replace ṽ by ṽk in the above arguments and remember

the statement in part c) of Lemma 6.1.

An immediate corollary of the previous lemma is the following proposition, which bounds the error
for the approximation of K̃k by K̃N

k .

Proposition 6.8. Suppose that the kernel v satisfies (A′
n), for some n ∈ N, and that 0 ≤ a ≤ b. Then,

for every k ∈ BCn(R2), x ∈ BCn
a (R) and N ∈ N, the error estimate∥∥K̃kx− K̃N

k x
∥∥

a
≤ CN−n‖k‖BCn(R2)‖x‖BCn

a (R),

holds, where C > 0 is a constant not depending on k, x or N .

If the constant A0 in (A′
n) is not 0 then, for the (possibly weakly singular) part v̂ = v − ṽ of the

kernel, one needs, in general, a better quadrature rule than the rectangle rule to achieve a high order
of convergence (we will later, as a practical example, consider the case where v̂(s, t) has a logarithmic
singularity at s = t and a quadrature rule based on trigonometric interpolation is used).

For the time being, we consider the following generic product integration approximation (cf. (5.7)):∫ ∞

−∞
v̂(s, t)f(t) dt ≈

∑
j∈Z

ω̂N
j (s)f(tNj ), f ∈ X, (6.17)

for quadrature weights ω̂N
j (s) appropriate to the function v̂(s, ·). Let us assume we are using the same

quadrature abscissae (tNj = jC/N) as in the definition of the rectangle rule approximation. This leads
to the definition of the corresponding discretized integral operator. For k ∈ BC(R2), we define

K̂N
k x(s) :=

∑
j∈Z

ω̂N
j (s)k(s, tNj )x(tNj ), s ∈ R, x ∈ X, N ∈ N.

If A0 = 0 then we will assume that K̂N
k is the zero operator.

In many cases of practical interest it is possible to choose the weights ω̂N
j (s) to obtain a high order

of convergence when the integrand f in (6.17) is smooth. Since v̂(s, t) = 0, for |s− t| sufficiently large,
it will also be the case that ω̂N

j (s) = 0 if |s − tNj | is sufficiently large for many choices of quadrature
weights. These two requirements are encapsulated in the following assumption:
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Assumption (Qn). A0 6= 0 and the quadrature weights ω̂N
j (s) for the approximation of v̂ satisfy

1. For some A∗0 > 0, |s− tNj | > A∗0 implies ω̂N
j (s) = 0.

2. For some C > 0, the following error estimate holds: for all N ∈ N and s ∈ R,∣∣∣∣∣∑
j∈Z

ω̂N
j (s)x(tNj )−

∫ ∞

−∞
v̂(s, t)x(t) dt

∣∣∣∣∣ ≤ CN−n‖x‖BCn(R), x ∈ BCn(R).

The next lemma relates (Qn) to the assumptions made on the quadrature weights in the previous
chapter. It shows that (Qn) implies (QA′′) – and also (Q), provided that (QA) is satisfied.

Lemma 6.9. Suppose that, for some n ∈ N, the kernel v satisfies (A′
n). Then the following implications

hold for the quadrature weights ω̂N
j (s):

(Qn) =⇒ (QA′′), (6.18)
(Qn), (QA) =⇒ (Q), with v = v̂. (6.19)

Proof. Assume that (Qn) is true. The kernel bound κ in (A′
n) may be chosen such that (6.11) holds.

The first requirement in (Qn) makes it clear that (QA′′) holds for this choice of κ, A1 := A∗0 and
arbitrary C∗ > 0.

Now, we suppose that also (QA) is satisfied. Let us choose an arbitrary s in R and denote by Ω′
s

the union of the intervals [s − (A0 + 2η), s + (A0 + 2η)] and [s − A∗0, s + A∗0], where A0, η and A∗0 are
the constants from (A′

n), (6.12) and (Qn), respectively. Then there hold v̂(s, t) = 0 and ω̂N
j (s) = 0

whenever t, tNj /∈ Ω′
s.

Given x ∈ X and ε > 0, we can choose x̂ ∈ BCn(R) such that |x(t) − x̂(t)| < ε for all t ∈ Ω′
s.

(This is possible since the Weierstraß approximation theorem allows us to find a polynomial p so that
|x(t) − p(t)| < ε, t ∈ Ω′

s; we then set x̂ := pq, where q is a C∞(R) function with compact support
satisfying q(t) = 1, t ∈ Ω′

s.) Then:∣∣∣∣∣∑
j∈Z

ω̂N
j (s)x(tNj )−

∫ ∞

−∞
v̂(s, t)x(t) dt

∣∣∣∣∣ =
∣∣∣∣∣ ∑
tN
j ∈Ω′s

ω̂N
j (s)x(tNj )−

∫
Ω′s

v̂(s, t)x(t) dt

∣∣∣∣∣ ≤ SN
1 + SN

2 , (6.20)

with SN
1 , SN

2 given by

SN
1 :=

∣∣∣∣∣ ∑
tN
j ∈Ω′s

ω̂N
j (s)(x(tNj )− x̂(tNj ))−

∫
Ω′s

v̂(s, t)(x(tNj )− x̂(tNj )) dt

∣∣∣∣∣,
SN

2 :=

∣∣∣∣∣∑
j∈Z

ω̂N
j (s)x̂(tNj )−

∫ ∞

−∞
v̂(s, t)x̂(t) dt

∣∣∣∣∣.
Since (Qn) is satisfied and x̂ ∈ BCn(R) we infer that SN

2 < ε for all N ∈ N large enough. Moreover,
since ‖x− x̂‖ < ε there holds

SN
1 ≤ ε(CQ + ‖κ‖1), N ∈ N,

where CQ denotes the supremum in (QA). Since ε was arbitrary we have thus shown that the term on
the left-hand side of (6.20) tends to 0 as N → ∞. But this means that the quadrature weights ω̂N

j (s)
satisfy (Q).

For s ∈ R, N ∈ N, j ∈ Z, let us now define the combined weights (if A0 = 0 then we set ω̂N
j (s) = 0)

ωN
j (s) := ω̂N

j (s) + ω̃N
j (s). (6.21)
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Then the operator KN
k , defined for k ∈ BC(R2) by

KN
k := K̂N

k + K̃N
k , (6.22)

is a sensible approximation of the operator Kk = K̂k + K̃k. Clearly, the operator KN
k is the quadrature

operator defined by (5.8) for the combined quadrature weights given by (6.21).

Proposition 6.10. Suppose that the kernel v satisfies Assumption (A′
n), for some n ∈ N. If the

quadrature weights ω̂N
j (s) satisfy Assumptions (Qn), (QA) and (QB) then they also satisfy (Q)

(with v = v̂) and (QA′′). Moreover, for every 0 ≤ a ≤ b and every bounded set W ⊂ BC(R2), the
operators K̂N

k , k ∈W , are uniformly bounded on Xa.

Proof. The first statement follows from Lemma 6.9; the kernel bound in (QA′′) may be chosen such
that (6.11) holds. Now, the second statement is a consequence of Theorem 5.6, bearing in mind that
wa ∈ W(κ), 0 ≤ a ≤ b

Corollary 6.11. Suppose that the kernel v satisfies Assumption (A′
n), for some n ∈ N. If the quadra-

ture weights ω̂N
j (s) satisfy Assumptions (Qn), (QA) and (QB) then the combined weights ωN

j (s),
defined in (6.21), satisfy (Q), (QA), (QA′′) and (QB).

Proof. We conclude from Proposition 6.5 that the quadrature weights ω̃N
j (s) satisfy Assumptions (Q)

(with v = ṽ), (QA), (QA′′) and (QB). Moreover, Proposition 6.10 shows that the quadrature
weights ω̂N

j (s) satisfy Assumptions (Q) (with v = v̂), (QA), (QA′′) and (QB). It is then easily seen
that the combined weights satisfy (Q), (QA), (QA′′) and (QB).

Assumption (Qn) bounds the error in the approximation of Kkx by KN
k x when x ∈ BCn(R). We

now show that a similar bound in the weighted norm ‖ · ‖a holds when x ∈ BCn
a (R), for some a > 0.

Proposition 6.12. Suppose that a ≥ 0, that the kernel v satisfies Assumption (A′
n), for some

n ∈ N, and that the quadrature weights ω̂N
j (s) satisfy Assumption (Qn). Then, for all k ∈ BCn(R2),

x ∈ BCn
a (R) and N ∈ N, there holds∥∥K̂N

k x− K̂kx
∥∥

a
≤ CN−n‖k‖BCn(R2)‖x‖BCn

a (R).

for some constant C > 0, not depending on k, x or N .

Proof. Let A0 and A∗0 denote the constants in (Qn) and (A′
n). We set A := max{A0 + 2η,A∗0} and

choose a “cut-off” function φ with the following properties

φ ∈ BCn(R), 0 ≤ φ(t) ≤ 1, φ(t) =

{
1, |t| ≤ A,

0, |t| ≥ A+ 1.
(6.23)

Let k ∈ BCn(R2) and define, for all s ∈ R, the function zs ∈ X by zs(t) := φ(s − t)k(s, t), t ∈ R.
Then zs(t) = 0 whenever |s− t| > A+ 1; moreover, for every x ∈ BCn

a (R), s ∈ R, N ∈ N, we have

|K̂N
k x(s)− K̂kx(s)| =

∣∣∣∑
j∈Z

ω̂N
j (s)zs(tNj )x(tNj )−

∫ ∞

−∞
v̂(s, t)zs(t)x(t) dt

∣∣∣ ≤ CN−n‖zsx‖BCn(R),

where the equality holds since ω̂N
j (s) = 0, for |s− tNj | > A, and v̂(s, t) = 0, for |s− t| > A; the constant

C > 0 on the right-hand side is the constant in (Qn). By Lemma 6.1 there holds, for all s ∈ R,

‖zsx‖BCn(R)

(6.3)

≤ 2n‖k(s, ·)‖BCn(R)‖φ(s− ·)x‖BCn(R)

(6.4)

≤ C ′(1 + |s|)−a‖k‖BCn(R2)‖x‖BCn
a (R2).

with C ′ := 22n‖φ‖BCn(R)∆A+1
a . Combining the previous two inequalities and taking the supremum

over s ∈ R completes the proof.
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Let us stop here for a moment and summarize what we have done so far.

1. We started with a kernel v satisfies Assumption (A′
n), for some n ∈ N, b > 1 and κ ∈ L1(R)

satisfying (6.11); we split the corresponding integral operator Kk = K̃k + K̂k into a “nice”
operator K̃k and a “singular” operator K̂k.

2. We introduced, in (6.15), the rectangle rule quadrature weights ω̃N
j (s) and assumed that we have

found a set of quadrature weights ω̂N
j (s) satisfying (Qn), (QA) and (QB).

3. We have shown the boundedness on Xa, 0 ≤ a ≤ b, of the corresponding quadrature operators
K̃N

k ,K̂N
k and obtained error bounds in Xa for the approximation of K̃k by K̃N

k and of K̂k by K̂N
k .

Under these assumptions, by virtue of Corollary 6.11, we see that the combined weights ωN
j (s),

defined in (6.21), satisfy (Q), (QA), (QA′′), and (QB). Moreover, for every 0 ≤ a ≤ b and every
bounded set W ⊂ BC(R2), the combined operators KN

k , k ∈ W , defined in (6.22), are uniformly
bounded on Xa. Propositions 6.8 and 6.12 yield an error estimate for the approximation of Kk by KN

k .
Precisely, for x ∈ BCn

a (R), 0 ≤ a ≤ b, k ∈ BCn(R), there holds

‖Kkx−KN
k x‖a ≤ ‖K̂N

k x− K̂kx‖a + ‖K̃N
k x− K̃kx‖a ≤ CN−n‖k‖BCn(R2)‖x‖BCn

a (R), (6.24)

for some constant C > 0 not depending on k, N or x. We now insert this bound into the outcome of
Theorem 5.14 and obtain the following theorem, which is our second major result in this section.

Theorem 6.13. Suppose that the kernel v of the integral equation (5.1) satisfies (A′
n), for some

n ∈ N. Assume, further, that the quadrature weights ω̂N
j (s) satisfy Assumptions (Qn), (QA) and

(QB). Moreover, assume that W ⊂ BCn(R2) is bounded, that N′ ⊂ N is unbounded, and that, for
every k ∈W and N ∈ N′, (λ−KN

k )−1 ∈ B(X) and

sup
N∈N′

sup
k∈W

‖(λ−KN
k )−1‖ <∞. (6.25)

Let 0 ≤ a ≤ b, N ∈ N′ and k ∈W . Then, the equations

λx−Kkx = y and λxN −KN
k x

N = y (6.26)

both have unique solutions x ∈ Xa and xN ∈ Xa for every y ∈ Xa. Moreover, if y ∈ Xa is such that
the solution x is in BCn

a (R), then

‖x− xN‖a ≤ CN−n‖x‖BCn
a (R), N ∈ N′, (6.27)

where C > 0 is a constant that does not depend on y, k or N .

Remark 6.14. In the special case when A0 = 0, the assumptions about the quadrature weights ω̂N
j (s)

may be dropped. A sufficient condition for (6.25) to hold, for N′ := {N ∈ N : N ≥ N ′}, for some N ′ ∈ N,
is then that the inverses (λ−Kk)−1, k ∈W , exist and are uniformly bounded (see Theorem 6.6).

Proof. The proof proceeds in a number of steps.
(i) Suppose that the assumptions in the first part of the proposition are satisfied. We firstly show

that then the assumptions of Theorem 5.13 are fulfilled: a) v satisfies (A′′), for some κ ∈ L1(R)
satisfying (6.11), and also (B). Then wa ∈ W(κ), 0 ≤ a ≤ b. b) Proposition 6.5 (A0 = 0) or
Corollary 6.11 (A0 > 0) shows that the combined quadrature weights ωN

j (s) satisfy (Q), (QA), (QA′′)
and (QB). c) If W is a bounded subset of BCn(R2), n ≥ 1, then W is equicontinuous and bounded in
BC(R2). d) Inequality (5.39) is the same as (6.25).

(ii) We have shown in (i) that Theorem 5.13 applies; hence, for all k ∈W , the inverses (λ−Kk)−1

and (λ − KN
k )−1, N ∈ N′, exist on Xa and are uniformly bounded. Thus the statement about the

solvability of the equations (6.26) is true.
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(iii) Next, suppose that y ∈ Xa and x, xN are as in the second part of the theorem. Since N′ is
unbounded we note that Theorem 5.14 applies and gives

‖x− xN‖a ≤ C ′‖(Kk −KN
k )x‖a,

where C ′ > 0 is a positive constant not depending on k, y or N . Thus, if we additionally suppose that
x ∈ BCn

a (R), inequality (6.24) shows that

‖(Kk −KN
k )x‖a ≤ C ′′N−n‖k‖BCn(R2)‖x‖BCn

a (R),

where C ′′ > 0 is a positive constant not depending on k, y or N . We combine the previous two
inequalities and, bearing in mind that W is bounded in BCn(R2), obtain that (6.27) holds.

6.2.1 Regularity

The previous theorem gives us an idea of the convergence order of xN to x, provided that we know that
x ∈ BCn

a (R). If the kernel v is sufficiently well-behaved then the associated operators Kk, k ∈ BCn(R2)
have certain regularity properties and we may deduce that the solution x is in BCn

a (R) if we know that
the right-hand side y is in BCn

a (R). For n ∈ N and a ≥ 0, we introduce the following regularity
assumption.

Assumption (Ra
n). There exists m ∈ N and a constant C > 0 such that for all k ∈ BCn(R2)

(Kk)m ∈ B(Xa, BC
n
a (R)) and Kk ∈ B(BCn

a (R)) and moreover

‖(Kk)m‖Xa→BCn
a (R) ≤ C(‖k‖BCn(R2))m and ‖Kk‖BCn

a (R)→BCn
a (R) ≤ C‖k‖BCn(R2).

The following proposition shows that if (A′
n) holds then the smooth part ṽ of the kernel v auto-

matically satisfies Assumption (Ra
n), for every 0 ≤ a ≤ b.

Proposition 6.15 (cf. [16, Th. 12]). Suppose that the kernel v satisfies (A′
n) and that 0 ≤ a ≤ b.

Then there exists a constant C > 0 such that, for every k ∈ BCn(R2), K̃k : Xa → BCn
a (R) and is

bounded with norm

‖K̃k‖Xa→BCn
a (R) ≤ C‖k‖BCn(R2), ‖K̃k‖BCn

a (R)→BCn
a (R) ≤ C‖k‖BCn(R2), (6.28)

i.e. ṽ satisfies (Ra
n), with m = 1.

Proof. Choose 0 ≤ a ≤ b and k ∈ BCn(R2). We firstly show that, for every x ∈ Xa, the function K̃kx
is n times differentiable with j-th derivative given by

(
K̃kx

)(j)(s) =
∫ ∞

−∞

∂j

∂sj

(
ṽ(s, t)k(s, t)

)
x(t) dt, s ∈ R. (6.29)

To do so, we first note that (A′
n) implies that ṽ ∈ BCn

b (R2) and hence ṽk ∈ BCn
b (R2) (Lemma 6.1).

Next, we see that, for s, t ∈ R, h ∈ [−1, 1] and 0 ≤ j ≤ n,∣∣∣(∂j
1(ṽk)

)
(s+ h, t)

∣∣∣ ≤ ‖ṽk‖BCn
b (R2)(1 + |(s+ h)− t|)−b ≤ ‖ṽk‖BCn

b (R2)∆1
bCn(1 + |s− t|)−b.

Given s ∈ R, we thus see that the partial derivatives of ṽk with respect to the first variable exist up to
order n on the interval [s−1, s+1]. Moreover, all these derivatives, as functions of t only, are majorized
by the integrable function t→ ‖ṽk‖BCn

b (R2)∆1
bCn(1+ |s− t|)−b. Repeated application of [37, Th. 128.2]

now shows that, for our chosen s, we may exchange differentiation and integration as in (6.29). Since
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s ∈ R was arbitrary, (6.29) holds. Hence, we obtain the bound∥∥∥(K̃kx
)(j)∥∥∥

a
= sup

s∈R

∣∣∣∣(1 + |s|)a

∫ ∞

−∞

∂j

∂sj

(
ṽ(s, t)k(s, t)x(t)

)
dt

∣∣∣∣
≤ ‖x‖a sup

s∈R

∫ ∞

−∞

(
1 + |s|
1 + |t|

)a ∣∣∣∣ ∂j

∂sj

(
ṽ(s, t)k(s, t)

)∣∣∣∣ dt
≤ ‖x‖a‖ṽk‖BCn

b (R2) sup
s∈R

∫ ∞

−∞

(
1 + |s|
1 + |t|

)a

(1 + |s− t|)−b dt

(6.5)

≤ 2n‖ṽ‖BCn
b (R2)‖k‖BCn(R2)‖x‖aΘa,b.

From these (n+1) inequalities we deduce that there exists C > 0 so that the first inequality in (6.28)
holds. But so does the second, since ‖x‖Xa

≤ ‖x‖BCn
a (R) for all x ∈ BCn

a (R).

This preceding proposition tells us that, if v satisfies (A′
n) with constant A0 = 0 (so that Kk = K̃k)

then v automatically satisfies (Ra
n), 0 ≤ a ≤ b. If A0 6= 0 then we cannot repeat the argument for v̂(s, ·)

might have (integrable) singularities near t = s and thus, in general, an equivalent of equation (6.29)
does not hold.

The next proposition, in combination with the previous proposition, shows that, in practice, one
would have to verify that the non-smooth part v̂ of the kernel v satisfies (R0

n) to obtain that v satisfies
(Ra

n), for 0 < a ≤ b.

Proposition 6.16. Let v be a kernel satisfying (A′
n) and assume that v̂ satisfies (R0

n), for some
m ∈ N. Then, for 0 < a ≤ b, v̂ also satisfies (Ra

n), i.e.

‖(K̂k)m‖Xa→BCn
a (R) < Ĉ(‖k‖BCn(R2))m, ‖K̂k‖BCn

a (R)→BCn
a (R) < Ĉ‖k‖BCn(R2), (6.30)

where Ĉ > 0 is a constant not depending on k ∈ BCn(R2).

Proof. We begin with the following observation: Let x ∈ X. Then the values of K̂kx(s) only depend
on the values of x on the interval [s− (A0 +2η), s+A0 +2η], with A0 and η the constants in (A′

n) and
(6.12). Let δ > 0. By induction, it follows that the values of

(
(K̂k)mx

)
(s+ h), for |h| < δ, only depend

on the values of x(t) on an interval of the form [s−A, s+A], where A := (A0 + 2η + δ)m.
For this choice of A, we now choose φ as in (6.23) and define, for every s ∈ R, the function zs by

zs(t) := φ(t − s), t ∈ R. By the above remarks, there holds
(
(K̂k)mx

)
(s + h) =

(
(K̂k)m(xzs)

)
(s + h)

for |h| < δ, s ∈ R. Thus we obtain, for 0 ≤ j ≤ n and x ∈ Xa, the inequality∣∣∣((K̂k)mx
)(j)(s)∣∣∣ = ∣∣∣((K̂k)m(xzs)

)(j)(s)∣∣∣ ≤ ‖K̂k‖X→BCn(R)‖zsx‖ ≤ C(‖k‖BCn(R))m‖zsx‖

where C > 0 is the positive constant in (R0
n). But, by (6.4), ‖zsx‖ ≤ ∆A

a (1+|s|)−a‖x‖a‖φ‖. Combining
these inequalities and taking the supremum, we see that

‖(K̂k)m‖Xa→BCn
a (R) < C ′(‖k‖BCn(R2))m, (6.31)

for some constant C ′ > 0 not depending on k ∈ BCn(R2).
A similar argument, using the inequality

‖zsx‖BCn(R)

(6.4)

≤ 2n∆A
a (1 + |s|)−a‖x‖BCn

a (R)‖zs‖BCn(R), x ∈ BCn
a (R), s ∈ R,

proves that, for some C ′′ > 0, also

‖K̂k‖BCn
a (R)→BCn

a (R) < C ′′‖k‖BCn(R2), (6.32)

holds. Together, (6.31) and (6.32) show that (6.30) hold thus that v̂ satisfies Assumption (Ra
n).
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In those cases when the assumptions of Theorem 6.13 are satisfied and, in addition, v̂ satisfies (R0
n)

then we can improve the error bounds in Theorem 6.13, provided that the right-hand side y of (5.1) is
contained in BCn

a (R).

Theorem 6.17. Suppose that the assumptions of Theorem 6.13 are satisfied and that 0 ≤ a ≤ b. Then,
for every N ∈ N′ and y ∈ Xa, the equations

λx−Kkx = y and λxN −KN
k x

N = y (6.33)

both have unique solutions x ∈ Xa and xN ∈ Xa for every N ∈ N′, k ∈W .
If, additionally, the constant A0 in (A′

n) is 0 or the kernel v̂ satisfies the regularity assumption (R0
n)

then, for every y ∈ BCn
a (R), the following error bound holds for the solutions x and xN of (6.33):

‖x− xN‖a ≤ CN−n‖y‖BCn
a (R). (6.34)

Here, C > 0 is a constant not depending on y, k or N .

Proof. Suppose that the assumptions of the first part of the theorem are satisfied. Then (see the proof
of Theorem 6.13), for every k ∈ W , the operators λ −Kk and λ −KN

k , N ∈ N′, are invertible on Xa

and, moreover, there holds
Ca := sup

k∈W
‖(λ−Kk)−1‖a <∞. (6.35)

Also, it is shown that, when the y ∈ Xa is such that x := (λ−Kk)−1y is contained in BCn
a (R) then

‖x− xN‖a ≤ C0N
−n‖x‖BCn

a (R), (6.36)

holds for the unique solutions x, xN of (6.33). Here, C0 > 0 is a constant not depending on k, N or y.
If A0 6= 0 suppose that the kernel v̂ additionally satisfies the regularity assumption (R0

n), for some
m ∈ N . We set CW := sup{‖k‖BCn(R2) : k ∈W}. Then, the previous proposition and Proposition 6.15
shows that, for all k ∈W ,

‖(K̂k)m‖Xa→BCn
a (R) ≤ C1CW

m, ‖K̂k‖BCn
a (R)→BCn

a (R) ≤ C1CW ,

‖(K̃k)m‖Xa→BCn
a (R) ≤ C2CW

m, ‖K̃k‖BCn
a (R)→BCn

a (R) ≤ C2CW ,

for some constants C1, C2 > 0 (if A0 = 0 then the inequalities involving K̂k = 0 are trivial). Setting
Ĉ := C1 + C2, we conclude from (6.22) that there holds

‖(Kk)m‖Xa→BCn
a (R) ≤ ĈCW

m, ‖Kk‖BCn
a (R)→BCn

a (R) ≤ ĈCW , k ∈W. (6.37)

Now suppose that y ∈ BCn
a (R), k ∈ W and that x, xN are the unique solutions of (6.33). Then

λx−Kkx = y. Let us define Hk := λ−1Kk. Then x = λ−1y+Hkx. We repeatedly insert this equation
into itself and obtain

x = λ−1
(
I +Hk + · · ·+ (Hk)m−1)

y + (Hk)m
x

= λ−1
(
I +Hk + · · ·+ (Hk)m−1)

y + (Hk)m(λ−Kk)−1y. (6.38)

In view of (6.37), the operators (I+Hk + · · ·+(Hk)m−1), k ∈W , are uniformly bounded in B(BCn
a (R)).

From (6.37) and (6.35), we get the information that the operators (Hk)m(I −Kk)−1, k ∈ W , are also
uniformly bounded in B(BCn

a (R)). Thus (6.38) shows that

‖x‖BCn
a (R) ≤ C∗‖y‖BCn

a (R),

where C∗ > 0 is a positive constant that does not depend on y on k ∈W . If we combine this inequality
with (6.36) we obtain (6.34) and the theorem is shown.
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6.2.2 Kernels with logarithmic singularities

In this section we investigate the integral equation

x(s)−
∫ ∞

−∞
l(s, t)x(t) dt = y(t), s ∈ R, (6.39)

for a class of kernels l with logarithmic singularities at s = t. Precisely, we will consider kernels l that
satisfy the following assumption, for some n ∈ N and b > 1 kept fixed throughout most of this section.

Assumption (Ln). The kernel l satisfies l(s, t) = a∗(s, t) ln |s − t| + b∗(s, t), where a∗, b∗ ∈ Cn(R2)
and there exist constants C > 0 and b > 1 such that for all i, j ∈ N0 with i+ j ≤ n∣∣∣∣∂i+ja∗(s, t)

∂si∂tj

∣∣∣∣ , ∣∣∣∣∂i+jb∗(s, t)
∂si∂tj

∣∣∣∣ ≤ C, s, t ∈ R, |s− t| ≤ π, (6.40)

and ∣∣∣∣∂i+j l(s, t)
∂si∂tj

∣∣∣∣ ≤ C

(1 + |s− t|)b
, s, t ∈ R, |s− t| ≥ π. (6.41)

Let us denote by Ll the integral operator on X, defined by

Llx(s) :=
∫ ∞

−∞
l(s, t)x(t) dt, s ∈ R, x ∈ X. (6.42)

We will see soon that this operator is a bounded operator on X if l satisfies (Ln).
For γ > 0, we denote by Λγ the collection of all kernels l satisfying (Ln) with C = γ and by Λ′γ its

subset Λ′γ := {l ∈ Λγ : I − Ll is invertible on X and ‖(I − Ll)−1‖ < γ}.
Kernels of the form above arise in numerous practical applications. In particular, in two dimensions,

the fundamental solutions to elliptic partial differential equations, such as the Laplace and Helmholtz
equation and the equations of linear elasticity, contain logarithmic singularities, and the reformulation of
the associated boundary value problems as boundary integral equations leads to logarithmic singularities
in the kernel of the resulting integral operators (see, e.g. the discussion [44]). We will consider one specific
boundary value problem arising in rough surface scattering in the last section of this chapter.

Kernels satisfying (Ln) and the corresponding integral equations (6.39) have been considered by
Meier et al. in [50]. In [50] certain Nyström/product integration methods for the numerical solution
of (6.39) are suggested and stability and convergence results are established in the unweighted spaces
X and BCn(R2). One aim of the following discussion is to make use of our weighted space theory to
generalise the results of [50] to the weighted spaces Xa and BCn

a (R), 0 < a ≤ b.
To formulate a Nyström method when l satisfies (Ln), we need a “cut-off”-function χ to split the

kernel into a singular and a smooth part. We choose χ so that it has the following properties:

χ ∈ C∞(R), 0 ≤ χ(t) ≤ 1, χ(t) =

{
1, |t| ≤ 1,
0, |t| ≥ π − ε0,

(6.43)

where ε0 > 0 is a small fixed constant. We set χ∗(s, t) := χ(s − t), and note that χ∗ ∈ BCn(R2) for
every n ∈ N. We keep these two functions fixed throughout the remainder of this section.

Now, we define two kernels v1 and v2 by

v1(s, t) :=
χ(s− t)

2π
ln
(

4 sin2
(s− t

2

))
, v2(s, t) := (1 + (s− t)2)−b/2, s 6= t, (6.44)

and assume that v1 and v2 are given by this definition throughout the rest of the thesis. We note
that both v1(s, t) and v2(s, t) depend only on the difference s − t of the arguments, i.e. v1 and v2 are
convolution kernels.
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Proposition 6.18. Suppose that l is a kernel satisfying Assumption (Ln), for some n ∈ N, b > 1 and
C > 0. Then there exists kl = (k1, k2) ∈ (BCn(R2))2 such that

l(s, t) = k1(s, t)v1(s, t) + k2(s, t)v2(s, t), s, t ∈ R, s 6= t, (6.45)
‖k1‖BCn(R2), ‖k2‖BCn(R2) < C ′C, (6.46)

where C ′ > 1 is a constant depending only on χ, b and n.

Proof. Suppose that we are given a kernel l is as in the assumption, i.e.

l(s, t) = a∗(s, t) ln |s− t|+ b∗(s, t), s, t ∈ R, s 6= t,

for some functions a∗ and b∗ as described in (Ln). It follows from the proof of Theorem 2.1 in [50], in
particular equations (2.6) and (2.7) that l may be written as

l(s, t) = l1(s, t)
1
2π

ln
(

4 sin2
(s− t

2

))
+ l2(s, t), s, t ∈ R, s 6= t, (6.47)

where l1 ∈ BCn(R2), l2 ∈ BCn
b (R2) are such that

l1(s, t) = πa∗(s, t)χ∗(s, t), s, t ∈ R and ‖l2‖BCn
b (R2) ≤ C1C, (6.48)

where C1 > 0 is a constant depending only on χ, b and n and C is the constant in (Ln).
Let χ̃ be a second “cut-off”-function with

χ̃ ∈ C∞(R), 0 ≤ χ̃(t) ≤ 1, χ̃(t) =

{
1, |t| ≤ π − ε0,

0, |t| ≥ π,

where ε0 is the constant in (6.43). We set χ̃∗(s, t) := χ̃(s− t), notice that χ̃∗ ∈ BCn(R2) and introduce
the functions k1 and k2 by setting

k1(s, t) := πa∗(s, t)χ̃∗(s, t), k2(s, t) := l2(s, t)v2(s, t)−1, s, t ∈ R.

These functions satisfy (6.45), because, in view of the equality χ∗χ̃∗ = χ∗, there holds, for all s, t ∈ R,

l(s, t)
(6.47)
= πa∗(s, t)χ(s− t)

1
2π

ln
(

4 sin2
(s− t

2

))
+ l2(s, t)

= k1(s, t)χ(s− t)
1
2π

ln
(

4 sin2
(s− t

2

))
+ k2(s, t)v2(s, t)

= k1(s, t)v1(s, t) + k2(s, t)v2(s, t).

Moreover, from the definition of χ̃∗ and (6.40), we deduce

‖k1‖BCn(R2) = π‖a∗χ̃∗‖BCn(R2)

(6.5)

≤ 2nπ‖χ̃∗‖BCn(R2)‖a∗‖BCn(R2) ≤ 2nπ‖χ̃∗‖BCn(R2)C. (6.49)

Moreover, for all i, j ∈ N0 with i+ j ≤ n, there holds

|∂i
1∂

j
2(v2(s, t)

−1)| ≤ C2(1 + |s− t|)b, s, t ∈ R,

where C2 is a positive constant depending only on n and b. From this bound one obtains, by (6.48)
and the Leibniz product rule, that k2 = l2v2

−1 ∈ BCn(R2); moreover,

‖k2‖BCn(R2) ≤ 2nC2‖l2‖BCn
b (R2) ≤ 2nC1C2C.

Together with (6.49) this proves (6.46) when we set C ′ := 2n max{C1C2, π‖χ̃∗‖BCn(R2)}.
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Corollary 6.19. Let γ > 0. Then there exist two bounded subsets W1,W2 ⊂ BCn(R2) with the
following properties: Every l ∈ Λγ may be written in the form (6.46) with k1 ∈ W1, k2 ∈ W2, and the
sets W1 and W2 are uniformly equicontinuous and bounded in BC(R2).

Proof. Both statements are an immediate consequence of the previous proposition, the second holding
since every bounded subset of BCn(R2) is uniformly equicontinuous and bounded in BC(R2).

Now, if a kernel l satisfies (Ln) then, we can always choose k1, k2 as in Proposition 6.18. In analogy
to the definition of the operator Kk in (3.2), we then define the integral operators K1,k1 and K2,k2

by replacing v(s, t)k(s, t) in (3.2) by v1(s, t)k1(s, t) and v2(s, t)k2(s, t), respectively. Every l satisfying
(Ln) we thus associate, here and in the rest of the section, with the operator

Kkl
:= K1,k1 +K2,k2 , kl = (k1, k2),

which, by (6.45), is the integral operator Ll, i.e.

Kkl
x(s) = Llx(s) =

∫ ∞

−∞
l(s, t)x(t) dt, s ∈ R, x ∈ X. (6.50)

Proposition 6.20. The kernels v1 and v2, defined in (6.44), both satisfy (A′
n) and (A′′), for some

κ ∈ L1(R) (the same in each occurrence). If γ > 0, 0 ≤ a ≤ b and l ∈ Λγ then the integral operators
Kkl

, K1,k1 , K2,k2 , are bounded on Xa (with kl = (k1, k2) defined as above). Moreover, the following
three quantities are finite

sup
l∈Λγ

‖K1,k1‖a, sup
l∈Λγ

‖K2,k2‖a, sup
l∈Λγ

‖Kkl
‖a.

Proof. Let κ ∈ L1(R) be defined by

κ(t) := 2b/2(1 + |t|)−b +


2
∣∣ ln(|t|/2)

∣∣, 0 < |t| < π/3,
2, π/3 ≤ |t| ≤ π,

0, |t| > π.

(6.51)

We firstly note that (since 0 ≤ t/2 ≤ sin t ≤ 1/2, for 0 ≤ t ≤ π/6) there holds∣∣∣∣ln(4 sin2
( t

2

))∣∣∣∣ = 2
∣∣∣∣ln(2 sin

( |t|
2

))∣∣∣∣ ≤
{

2 ln(|t|/2), 0 < |t| < π/3,
2, π/3 ≤ |t| ≤ π.

Thus, we see that |v1(s, t)| ≤ κ(s− t), s, t ∈ R.
Using the inequality (1 + |t|2)−1 ≤ 2(1 + |t|)−2, t ∈ R, we observe that

v2(s, t) = (1 + (s− t)2)−b/2 = (1 + |s− t|2)−b/2 ≤ 2b/2(1 + |s− t|)−b, s, t ∈ R,

so that v2(s, t) ≤ κ(s− t), s, t ∈ R. Since κ(t) is monotonic outside the interval [−π, π] it follows that
both v1 and v2 satisfy (A′′) and (A′). As convolution kernels, v1 and v2 also satisfy (A) and (B).

Moreover, v1 also satisfies (A′
n) because v1(s, t) = 0, for |s− t| ≥ π, so that (6.1) holds for A0 := π.

By straightforward calculations, we also see that all partial derivatives ∂i
1∂

j
2v2, with i, j ∈ N0, i+ j ≤ n,

satisfy the inequality
|∂i

1∂
j
2v2(s, t)| ≤ Cn(1 + |s− t|)−b, s, t ∈ R,

for some constant Cn > 0. Hence, the kernel v2 also satisfies (6.1), with A0 = π, and thus (A′
n).

Since they satisfy Assumptions (A′
n) the kernels v1 and v2 both satisfy the assumptions of Propo-

sition 6.4. Given 0 ≤ a ≤ b and γ > 0, we thus obtain constants C1, C2 > 0 so that, for every l ∈ Λγ

and kl = (k1, k2), there holds

‖K1,k1‖a < C1‖k1‖BCn(R2), ‖K2,k2‖a < C2‖k2‖BCn(R2).

The uniform boundedness of the operators Kkl
, K1,k1 , K2,k2 , l ∈ Λγ , is now a consequence of Corol-

lary 6.19 and the inequality ‖Kkl
‖a ≤ ‖K1,k1‖a + ‖K2,k2‖a.
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Suppose now that we are given a kernel l satisfying (Ln) and that kl is defined as in Proposition 6.18.
We will now define a quadrature approximation for the integral operator K1,k1 . Therefore, observe that,
for s ∈ R, x ∈ X, k1 ∈ BC(R2), there holds (see also [50, p. 294])∫ ∞

−∞
v1(s, t)k1(s, t)x(t) dt =

1
2π

∫ s+π

s−π

ln
(

4 sin2
(s− t

2

))
χ(s− t)k1(s, t)x(t) dt,

=
1
2π

∫ s+π

s−π

ln
(

4 sin2
(s− t

2

))
k̃1(s, t)x̃(t) dt

=
1
2π

∫ 2π

0

ln
(

4 sin2
(s− t

2

))
k̃1(s, t)x̃(t) dt. (6.52)

Here, for s, t ∈ R, the functions k̃1 and x̃ are defined implicitly by

k̃1(s, t) :=

{
χ(s− t)k1(s, t), s− π ≤ t < s+ π,

k̃1(s, t+ 2π), t ∈ R,
and x̃(t) :=

{
x(t), s− π ≤ t < s+ π,

x̃(t+ 2π), t ∈ R.

The last equality in (6.52) holds since the integrand is 2π-periodic integrand with respect to t.
As in [50] (following [45] and [47]; see also [44])), we approximate the integral in equation (6.52)

with a quadrature rule based on trigonometric interpolation,

1
2π

∫ 2π

0

ln
(

4 sin2
(s− t

2

))
k̃1(s, t)x̃(t) dt ≈

2N−1∑
j=0

RN
j (s)k̃1(s, tNj )x̃(tNj ), (6.53)

where the quadrature nodes are given by tNj := jπ/N and the quadrature weights are derived from the
Lagrange basis for trigonometric interpolation (see [44, Sec. 11.3]):

RN
j (s) := − 1

N

(
N−1∑
m=1

1
m

cosm(s− tNj ) +
1

2N
cosN(s− tNj )

)
, s ∈ R, N ∈ N, j ∈ Z.

Note that, for every s ∈ R, the function t 7→ k̃1(s, t)x̃(t) is 2π-periodic and, since χ(s ± π) = 0, also
continuous and hence contained in X. It now follows from [44, Sec. 12.3] that,

lim
N→∞

2N−1∑
j=0

RN
j (s)k̃1(s, tNj )x̃(tNj ) =

1
2π

∫ 2π

0

ln
(

4 sin2
(s− t

2

))
k̃1(s, t)x̃(t) dt, s ∈ [0, 2π], (6.54)

sup
s∈[0,2π]

sup
N∈N

2N−1∑
j=0

∣∣RN
j (s)

∣∣ <∞, (6.55)

lim
h→0

sup
N∈N

2N−1∑
j=0

∣∣RN
j (s)−RN

j (s+ h)
∣∣ = 0, s ∈ [0, 2π]. (6.56)

To be consistent with our definition of a general quadrature rule (5.4), we need to transpose this
quadrature rule from the interval [0, 2π] to the interval [s− π, s+ π], in order to find a quadrature rule
of the form ∫ ∞

−∞
v1(s, t)k1(s, t)x(t) dt ≈

∑
j∈Z

ωN
1,j(s)k1(s, tNj )x(tNj ), (6.57)

where the quadrature nodes are given by tNj = jπ/N (as for the rectangle rule above) and that does
not involve the periodic extension of k1(s, ·)x(·)χ(s− ·). We set, for s ∈ R, N ∈ N and j ∈ Z,

ωN
1,j(s) := RN

j (s)χ(s− tNj ), (6.58)
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and define, for k1 ∈ BC(R2) and x ∈ X, the discretized integral operator KN
1,k1

by

KN
1,k1

x(s) :=
∑
j∈Z

ωN
1,j(s)k1(s, tNj )x(tNj ), s ∈ R. (6.59)

The point of this definition is that, because RN
j (s) = RN

j+2N (s) holds for all s ∈ R and N ∈ N, we
obtain, for x ∈ X, (cf. [50, p. 296])

KN
1,k1

x(s) =
∑
j∈Z

RN
j (s)χ(s− tNj )k1(s, tNj )x(tNj ) =

∑
|s−tN

j |≤π

RN
j (s)k̃1(s, tNj )x̃(tNj )

=
2N−1∑
j=0

RN
j (s)k̃1(s, tNj )x̃(tNj ), s ∈ R. (6.60)

Remark 6.21. In the notation of [50], the operators K1,k1 and KN
1,k1

defined above are denoted by KA

and KA
N , respectively, where the function A is given by A(s, t) := χ∗(s, t)k1(s, t), s, t ∈ R.

We now show that the quadrature weights ωN
1,j(s) fit the theory developed in Chapter 5.

Proposition 6.22. The quadrature weights ωN
1,j(s) for the approximation of the kernel v1, defined by

(6.58), satisfy (Q) (with v = v1), (QA), (QA′′) (with κ given by (6.51)), (QB) and (5.74).

Proof. We set k1(s, t) = 1, s, t ∈ R so that k̃1 = k1. Bearing in mind the equalities (6.52) and (6.60), we
observe that (Q) follows from (6.54). Moreover, since (6.60) also holds with RN

j (s) replaced by |RN
j (s)|

Assumptions (QA) and (QB) are satisfied because of (6.55) and (6.56), respectively.
(QA′′) is satisfied since ωN

1,j(s) = 0 whenever |s − tNj | ≥ π, by choice of χ, and ωN
1,j(s) ≤ C, for

|s − tNj | < π, where C denotes the supremum in (6.55). Finally, (5.74) holds, since, by definition, the
value of ωN

1,j(s) depends only on the difference s− tNj if N ∈ N is kept fixed.

One consequence of this result is that the operators K1,k1 are bounded on Xa, 0 ≤ a ≤ b. We can
also give an error estimate for the approximation of K1,k1 by KN

1,k1
.

Proposition 6.23. Let 0 ≤ a ≤ b and γ > 0. Suppose that, for every l ∈ Λγ , k1 is chosen as in
Proposition 6.18. Then the following statements are true:

a) For every l ∈ Λγ , the corresponding operators K1,k1 and KN
1,k1

are bounded on Xa. Moreover,
‖K1,k1‖ ≤ Ca and ‖KN

1,k1
‖a ≤ Ca, for some constant Ca not depending on l or N .

b) For every l ∈ Λγ and x ∈ BCn
a (R), the error estimate

‖KN
1,k1

x−K1,k1x‖a ≤ C ′aN
−n‖x‖BCn

a (R)

holds, where C ′a is a constant not depending on l, x or N .

Proof. a) The uniform boundedness of the operators K1,k1 has already been shown in the proof of
Proposition 6.20. We will show in b) below that the quadrature weights ωN

1,j(s) satisfy (Qn). Since
they also satisfy (QA) and (QB), the uniform boundedness of the operators KN

1,k1
, now follows from

Proposition 6.10 and Corollary 6.19.
b) We prove that the quadrature weights ωN

1,j(s) satisfy (Qn). Condition 1) in (Qn) is satisfied
since, by definition, |s− tNj | ≥ A∗0 := π implies that ωN

1,j(s) = 0. To show that Condition 2) in (Qn) is
satisfied, we apply [50, La. 3.12] (with A(s, t) = χ∗(s, t), see Remark 6.21) and obtain, for the constant
function k1(s, t) = 1,

‖KN
1,k1

x−K1,k1x‖ ≤ CN−n‖χ∗‖BCn(R2)‖x‖BCn(R), x ∈ BCn(R),

for some constant C depending only on n. Thus (Qn) is satisfied by the quadrature weights ωN
1,j(s).

Now the statement in b) now follows from Proposition 6.12 and Corollary 6.19.
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Let us now consider the approximation of K2,k2 by discretized integral operators. The kernel v2
satisfies Assumption (A′

n) with A0 = 0 (see the proof of Proposition 6.20). As suggested in Section 6.2,
we choose the rectangle rule to approximate the integral operator K2,k2 (this is also the approach taken
in [50]).

For N ∈ N and k2 ∈ BCn(R), let KN
2,k2

denote the discretized integral operator K̃N
k defined in

(6.14), but with ṽ = v2, k = k2 and the quadrature abscissae be given by tNj = jπ/N , j ∈ Z. Then

KN
2,k2

x(s) =
π

N

∑
j∈Z

v2(s, tNj )k(s, tNj )x(tNj ), x ∈ X, (6.61)

and the corresponding quadrature weights are given by

ωN
2,j(s) :=

π

N
v2(s, tNj ), s ∈ R, j ∈ Z, N ∈ N.

Proposition 6.24. The quadrature weights ωN
2,j(s) satisfy Assumptions (Q) (with v = v2), (QA),

(QA′′) (with κ given by (6.51)), (QB) and also (5.74).
Moreover, for every l ∈ Λγ and x ∈ BCn

a (R), the error estimate

‖KN
2,k2

x−K2,k2x‖a ≤ C ′′aN
−n‖x‖BCn

a (R)

holds, where C ′′a is a constant not depending on l, x or N .

Proof. The kernel v2 satisfies (A′
n) with A0 = 0. Thus Proposition 6.5 shows that (Q) (with v = v2),

(QA), (QA′′) and (QB) hold. Since v2 is a convolution kernel the value of ωN
2,j(s), for fixed N ∈ N,

depends only on the difference s− tNj , whence the quadrature weights ωN
2,j(s) satisfy (5.74). The error

estimate now follows from Corollary 6.19 and Proposition 6.8.

We have seen in the previous two propositions that, for every k1, k2 ∈ BCn(R2), the discretized
integral operator

KN
kl

:= KN
1,k1

+KN
2,k2

is a reasonable approximation of the integral operator Ll = Kkl
= K1,k1 +K2,k2 .

Remark 6.25. Suppose that the kernel l satisfies Assumption (Ln), for some n ∈ N, and that kl =
(k1, k2) is defined as in Proposition 6.18. Then, in the notation of [50], the operators K2,k2 , K

N
2,k2

, KN
kl

defined above are denoted by KB, KB
N and KN with B := k2v2, respectively.

For the Nyström method we have defined, we now derive the following stability result on the weighted
spaceXa, 0 ≤ a ≤ b. In the proof, we combine our weighted space stability theory with the main stability
theorem (for the unweighted space X) in [50].

Theorem 6.26. Suppose that the kernel l satisfies (Ln) and that 0 ≤ a ≤ b. Assume further that
(I −Kkl

)−1 ∈ B(X). Then there exist constants N ′ ∈ N and Ca, C
′
a > 0 such that, for every N ≥ N ′,

there holds (I −KN
kl

)−1 ∈ B(Xa) and

sup
N≥N ′

‖(I −KN
kl

)−1‖a = Ca <∞, (6.62)

so that, for every N ≥ N ′ and y ∈ Xa, the equations

(I −Kkl
)x = y, (I −KN

kl
)xN = y, (6.63)

have unique solutions x, xN ∈ Xa, for which the estimates ‖x‖a, ‖xN‖a ≤ Ca‖y‖a, and

‖x− xN‖a ≤ Ca‖(KN
kl
−Kkl

)x‖a. (6.64)

hold. Moreover, if y ∈ BCn
a (R) then the solutions x, xN of satisfy the error estimate

‖x− xN‖a ≤ C ′aN
−n‖y‖BCn

a (R). (6.65)

For every γ > 0, the constants Ca and C ′a may be chosen independently of l, for l ∈ Λ′γ .
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Proof. (a=0) We first treat the case a = 0. Given γ > 0, Corollary 6.19 yields bounded subsets W1,
W2 of BCn(R) so that every l ∈ Λ′γ may be written as

l(s, t) = k1(s, t)v1(s, t) + k2(s, t)v2(s, t), s, t ∈ R, s 6= t,

with k1 ∈ W1 and k2 ∈ W2. We now define A(s, t) := k1(s, t)χ∗(s, t) and B(s, t) := k2(s, t)v2(s, t).
With this choice of A and B, KN

kl
= KN = KA

N +KB
N , in the notation of [50].

Theorem 2.1 in [50] shows that the kernels in Λ′γ all satisfy Assumption (C′′
n) of [50] and that

‖A‖BCn(R) + ‖B‖BCn
b (R) < β, for some β > 0 not depending on the choice of l. We may thus invoke

Theorem 3.8 and 3.13 of [50] to obtain that there exists N ′ ∈ N and C0 > 0 so that, for every l ∈ Λ′γ ,
the inequalities (6.62)–(6.65) hold.

(0 < a ≤ b) We have shown above that the kernels v1 and v2 satisfy (A′′), with κ given by (6.51),
and that wa ∈ W(κ), 0 < a ≤ b (see Proposition 6.20, 6.2). Moreover, the quadrature weights ωN

1,j(s)
and ωN

2,j(s) both satisfy (Q) (with v = v1 and v = v2, respectively), (QA), (QA′′) (with κ given by
(6.51)) and (QB). Hence, we may invoke Theorem 5.30 with W1, W2 as above, W := {kl : l ∈ Λ′γ}
and N′ := {N ∈ N : N ≥ N ′}. This theorem yields constants Ca, C

′
a such that inequalities (6.62)–(6.64)

are satisfied.
Now, only inequality (6.65) remains to be shown. To this end, we choose l ∈ Λ′γ and y ∈ BCn

a (R)
and let x, xN denote the solutions of (6.63). Then (6.64) holds and, further, we have

‖(KN
kl
−Kkl

)x‖a ≤ ‖KN
1,k1

x−K1,k1x‖a + ‖KN
2,k2

x−K2,k2x‖a. (6.66)

We now show that x ∈ BCn
a (R). To this end, observe that, the kernel v1 satisfies (A′

n) with A0 = 0
and thus, by Proposition 6.15,

‖K2,k2‖Xa→BCn
a (R) ≤ C1‖k1‖BCn(R2), ‖K2,k2‖BCn

a→BCn
a (R) ≤ C1‖k1‖BCn(R2), (6.67)

for some constant C1 > 0. We remark that this constant, and the constants we introduce below can
all be chosen so that they do not depend on l ∈ Λ′γ . It follows from Corollary 2.8 and Theorem 2.1 in
[50] (we apply these with k := v1k1, a kernel which satisfies Assumption (C′′

n) of [50]) that the kernel
v1 satisfies (R0

n) with m := 2n, so that, for p = 0,

‖(K1,k1)
m‖Xp→BCn

p (R) < C2(‖k2‖BCn(R2))m, ‖K1,k1‖BCn
p (R)→BCn

p (R) < C2‖k2‖BCn(R2), (6.68)

for some constant C2 > 0 (note that we have tacitly used the following inequality: ‖k1χ
∗‖BCn(R2) ≤

2n‖k1‖BCn(R2)‖χ∗‖BCn(R2)). The argument of Proposition 6.16 then shows that (6.68) also holds for
p = a, (perhaps) with a larger value of C2. Since y ∈ BCn

a (R) and there holds (cf. (6.38))

x =
(
I +Kkl

+ · · ·+ (Kkl
)m−1

)
y + (Kkl

)m(I −Kkl
)−1y,

we thus obtain from (6.62), (6.67) and (6.68) that x ∈ BCn
a (R).

Using the fact that ‖k1‖BCn(R2), i = 1, 2, are uniformly bounded for l ∈ Λ′γ , there holds

‖x‖BCn
a (R) ≤ C3‖y‖BCn

a (R), (6.69)

for some constant C3 > 0 not depending on the choice of l.
Now, in view of Propositions 6.23 and 6.24, we see that, for some constant C4 > 0

‖KN
1,k1

x−K1,k1x‖a ≤ C4N
−n‖x‖BCn

a (R), ‖KN
2,k2

x−K2,k2x‖a ≤ C4N
−n‖x‖BCn

a (R). (6.70)

Now the desired inequality follows from (6.64), (6.66) and (6.70).
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6.3 A problem in rough surface scattering

As an application of our error estimates in the weighted norms ‖ · ‖a, we will now consider a class
of integral equations in scattering theory. The problem we consider arises in the scattering of time-
harmonic waves by unbounded rough surfaces and leads to a boundary integral equation over R. It
was used before in [50, 49] as a model problem to illustrate the error bounds for the Nyström method
proposed in the same paper, which is, as we have seen the same as the Nyström method considered in
the previous section.

To illustrate the behaviour of the error in the weighted norm, we will consider the special case
when the incident wave is emanating from a point source, which, as we will see soon, implies that the
inhomogeneity of the integral equation is contained in the weighted space X3/2.

We begin with a description of the problem. The propagation of time-harmonic acoustic waves with
wave number κ̄ for a domain Ω is governed by the Helmholtz equation

∆u(x) + κ̄2u(x) = 0, x ∈ Ω. (6.71)

We consider two-dimensional domains that can be described as the area above the graph of a smooth
function, namely, domains of the form Ω = {x = (x1, x2) ∈ R2 : x2 > f(x1)}, where the function f
is contained in BCn+2(R) for some n ∈ N0 and there are positive constants c1, c2 such that 0 < c1 ≤
f(s) ≤ c2 for all s ∈ R. Let Γ := ∂Ω denote the boundary of Ω and Φ denote the free-field Green’s
function for the Helmholtz equation,

Φ(x,y) :=
i

4
H

(1)
0 (κ̄|x− y|), x,y ∈ R2, x 6= y,

where H(1)
0 denotes the first-kind Hankel function of order zero. We will also make use of the nota-

tion UH := {x ∈ R2 : x2 > h} and ΓH := {x ∈ R2 : x2 = h}, for H ≥ 0.
We now consider the following scattering problem:

Scattering Problem. Given the incident field ui, find the scattered
field us ∈ C2(Ω) ∩ C(Ω) such that

1. us satisfies the Helmholtz equation (6.71),

2. us = −ui on Γ,

3. the upwards propagating radiation condition of [25] holds in Ω,
i.e. for some h > sup f and some φ ∈ L∞(ΓH)

us(x) = 2
∫

ΓH

∂Φ(x,y)
∂y2

φ(y) ds(y), x ∈ Uh,

4. us is bounded in the horizontal strip Ω \ UH for every H > 0.

We only consider the sound-soft case where the total field u = ui + us vanishes on the boundary Γ.
To illustrate our error bounds in weighted spaces we will consider the particular incident field given by

ui(x) = Φ(x, z), x ∈ R2

where z = (z1, z2) ∈ R2 is some point above the boundary, i.e. z2 > f(z1). This choice of ui models a
monopole point source located at z, so that, in the real two-dimensional acoustic problem, the incoming
wave is a cylindrical wave emanating from the point z (see Figure 6.1).

We now reformulate the scattering problem as a boundary integral equation. To this end, we need
the Green’s function for the Helmholtz equation in the half-plane U0 with Dirichlet boundary conditions,
namely

G(x,y) := Φ(x,y)− Φ(x,y′), x,y ∈ U0,x 6= y,
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Figure 6.1: A rough surface scattering problem for a monopole sound source located at z

where y′ := (y1,−y2) corresponds to y = (y1, y2). Let z′ := (z1, 2f(z1) − z2) ∈ R2 \ Ω. We make the
following modified Brakhage and Werner ansatz [13] for the scattered field

us(x) = −Φ(x, z′) +
∫

Γ

(
∂G(x,y)
∂n(y)

− iηG(x,y)
)
ψ(y) ds(y), (6.72)

where η > 0 is some fixed constant, n(y) denotes the unit normal to Γ at y, directed into Ω, and the
function ψ ∈ BC(Γ) is called a density. We note that −Φ(x, z′) is the scattered field in the special case
when Γ = ΓH with H = f(z1).

It follows from the results in [64] that a scattered field of this type is a solution to the scattering
problem if and only if the density ψ satisfies the boundary integral equation

ψ +Dψ − iηSψ = −2
(
Φ(·, z′)− Φ(·, z)

)
on Γ, (6.73)

where S and D are the single- and double-layer potential operators, acting on BC(Γ), given by

Sψ(x) := 2
∫

Γ

G(x,y)ψ(y) ds(y), Dψ(x) := 2
∫

Γ

∂G(x,y)
∂n(y)

ψ(y) ds(y), x ∈ Γ.

We parameterize Γ as {(s, f(s)) : s ∈ R} and set

x(s) := ψ(s, f(s)), y(s) := −2
(
Φ((s, f(s)), z)− Φ((s, f(s)), z′)

)
, s ∈ R. (6.74)

Then (6.73) is equivalent to
x− Llfx = y (6.75)

where Llf is the integral operator defined by (6.42), with kernel lf given by

lf (s, t) := 2
(
iηG(x,y)− ∂G(x,y)

∂n(y)

)√
1 + f ′(t)2, s, t ∈ R,

where x = (s, f(s)), y = (t, f(t)). [50, Th. 4.3] shows that, for every n ∈ N0 and f ∈ BCn+2(R), l
satisfies assumption (Ln) with b = 3/2. The same shows, further, that, for every c1,M > 0, there
exists a constant γ > 0 such that for all

f ∈ Bn
c1,M := {f ∈ BCn+2(R) : c1 ≤ inf f, ‖f‖BCn+2(R) ≤M} (6.76)

there holds
lf ∈ Λγ , (6.77)



Applications 97

with the same constant γ for every f ∈ Bn
c1,M . Thus, in view of Proposition 6.20, for f ∈ Bn

c1,M , the
operators Llf : Xa → Xa and are uniformly bounded, 0 ≤ a ≤ 3/2.

The next theorem tells us that the problem of finding a solution of equation (6.75) (which is a first
step towards the solution of the scattering problem) is well-posed for a large class of surfaces. It also
shows that we may replace Λγ by Λ′γ in (6.77).

Theorem 6.27 ([22, Th. 3.2]). For every f ∈ BCn+2(R), n ∈ N0 the operator I −Llf has a bounded
inverse on X. Further, for every c1,M > 0 there exists β > 0 such that

sup
f∈Bn

c1,M

‖(I − Llf )−1‖ ≤ β.

It follows from results in [61] that — and this is the motivation for our modified Brakhage/Werner
ansatz (6.72) with Φ(x, z′) added to the combined potential — the function Φ(x, z)− Φ(x, z′) satisfies
the following estimate: For given ε > 0 there holds

|Φ(x, z)− Φ(x, z′)| ≤ C(1 + x2)(1 + y2)
|x− z|3/2

, |x− z| ≥ ε > 0, (6.78)

where C is a constant, not depending on x. Since Φ(x, z)−Φ(x, z′) satisfies the Helmholtz equation it
follows from standard regularity estimates for elliptic partial differential equations in [34] that bounds
such as (6.78) also hold for every partial derivative of Φ(x, z) − Φ(x, z′) up to any order. As a conse-
quence, the right-hand side y of (6.75), given by (6.74), is contained in the weighted space BCn

3/2(R).
Further, it follows that if z is kept fixed, then the collection of all such right-hand sides y, as f runs
through Bn

c1,M , is uniformly bounded in BCn
3/2(R).

We can thus appeal to the error estimates in weighted spaces, which we have obtained in the previous
section for the Nyström method introduced in [50]. To this end, we associate, with every f ∈ Bn

c1,M and
the corresponding kernel l = lf , the quadrature operator KN

kf
, N ∈ N, as defined in the previous section;

more precisely KN
kf

:= KN
1,k1

+ KN
2,k2

, where kf = (k1, k2) ∈ BCn(R2) is defined in Proposition 6.18
(applied with l = lf ), and KN

1,k1
, KN

2,k2
are defined in (6.59) and (6.61), respectively. We note that, for

improved readability, we have written KN
kf

and kf instead of KN
klf

and klf , respectively.

The next theorem shows that if the surface Γ is smooth then the approximate solutions xN of (6.79)
below always exist when N is large enough and, moreover, xN is rapidly converging to the exact solution
x (with superalgebraic convergence if f ∈ BC∞(R)). Moreover, for fixed n, c1, M , the convergence
does not depend on f ∈ Bn

c1,M , in particular not on the amplitude and slope of the surface Γ.

Theorem 6.28. Let n ∈ N, c1,M > 0 and y be given by (6.74), so that y models a cylindrical wave
emanating from a point z = (z1, z2) with z2 > M . Then there exists some N ′ ∈ N such that, provided
that N ≥ N ′ and f ∈ Bn

c1,M , the equations

(I − Llf )x = y and (I −KN
kf

)xN = y (6.79)

have unique solutions x, xN ∈ X3/2.
Further, there exists a constant C > 0 such that, for every f ∈ Bn

c1,M , the numerical solution xN

and the exact solution x of (6.79) satisfy the estimate

‖x− xN‖3/2 ≤ CN−n,

where the constant C does not depend on the choice of f .

Proof. Theorem 6.27 shows that {lf : f ∈ Bn
c1,M} ⊂ Λ′γ , for some γ > 0 large enough. Since y ∈

BCn
3/2(R) (with a norm that remains bounded as f varies in Bn

c1,M ), the theorem is now immediate
from Theorem 6.26.
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The approximate solution of (I −Llf )x = y by a modified finite-section method and its stability on
X has been considered in [51]; in [49] these results have then been combined with the stability analysis
of [50]. We will now combine the results in [49] with our analysis of the modified finite section method
in Section 5.4. As an outcome we present novel error estimates, improving those in [49] in the special
case when the right-hand side y is given by (6.74).

As yet, there seems no way of proving the stability of the unmodified finite section method for the
equation (I −KN

kf
)y = x in (6.79) (or for the integral equation in (6.79)), but it is shown in [49] that

stability holds for a modified finite-section method, in which the scattering surface is “flattened” near
the endpoints of the truncation interval.

To describe this flattening, we choose a “cut-off” function ν: let α > 0 and ν ∈ C∞(R) satisfy
0 ≤ ν(s) ≤ 1, s ∈ R, and ν(s) = 0 if s ≥ α and ν(s) = 1 if s ≤ 0. We keep α and ν fixed throughout
the remainder of this section.

Using the cut-off function ν, we approximate the function f by fA, defined by

fA(s) = f(s)ν(s−A)ν(−s−A) + f(A)
(
1− ν(s−A)

)
+ f(−A)

(
1− ν(−s−A)

)
, s ∈ R. (6.80)

Then fA(s) = f(s), |s| ≤ A, fA(s) = f(A), s ≥ A+ α and fA(s) = f(−A), s ≤ −A− α. Moreover, it
is not hard to see that

f ∈ Bn
c1,M =⇒ fA ∈ Bn

c1,M ′ , (6.81)

for some constant M ′ ≥M , depending only on M and ν but not on A.
With every f ∈ B, α0 ≥ α and A > 0, we can thus associate the operator KN,A+α0

kfA
, defined as

KN
kfA

, but with the summations reduced to the interval [−A + α0, A + α0]. The following stability
theorem is shown in [49].

Theorem 6.29. Let n ∈ N, c1,M > 0. Then there exists some N ′ ∈ N and α′0 ≥ 0 such that, provided
that N ≥ N ′, α0 ≥ α′0, A > 0 and f ∈ B := Bn

c1,M , the operator I − KN,A+α0
kfA

is invertible on X;
moreover

sup
N≥N ′

sup
f∈B

sup
A>0,α0≥α′0

‖(I −KN,A+α0
kfA

)−1‖ <∞. (6.82)

This theorem allows us to invoke Theorem 5.31, which gives the following error estimate for approx-
imate solution of the boundary integral equation (6.75) by the modified finite section method.

Theorem 6.30. Let n ∈ N, c1,M > 0 and y be given by (6.74), so that y models a cylindrical wave
emanating from a point z = (z1, z2) with z2 > M . Then there exists some N ′ ∈ N and α′0 ≥ 0 such
that, provided that N ≥ N ′, A > 0, α0 ≥ α′0 and f ∈ Bn

c1,M , the equations

(I − Llf )x = y (I −KN,A+α0
kfA

)xN,A+α0 = y (6.83)

have unique solutions x, xN,A+α0 ∈ X3/2.
Further, if A = tNj , for some j ∈ N, there exists a constant C > 0 such that, for every f ∈ Bn

c1,M ,
the numerical solution xN,A+α0 ∈ X3/2 and the exact solution x ∈ X3/2 of (6.83) satisfy the estimate

|x(s)−xN,A+α0(s)| ≤ C1N
−n(1+ |s|)−3/2 +C2(1+A)−3/2

(
(1+A+s)−1/2 +(1+A−s)−1/2

)
, |s| ≤ A.

(6.84)
where the constants C1, C2 > 0 do not depend on A, f , α0 or N .

Proof. As mentioned before, we wish to invoke Theorem 5.31, thus we need to check that the assump-
tions of the theorem are satisfied. That the kernels v1 and v2 and the quadrature weights ωN

1,j(s) and
ωN

2,j(s) satisfy the requirements of Theorem 5.31, apart from (5.74), has already been shown in the
proof of Theorem 6.26. However, that the quadrature weights ωN

1,j(s) and ωN
2,j(s) fulfil (5.74) has been

proved in Propositions 6.22 and 6.24, respectively.
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For 0 < A ≤ α′0, we let WA := ∅, moreover, we define

WA+α0 := {kfA : f ∈ Bn
c1,M}, A > 0, and W∞ := {kf : f ∈ Bn

c1,M}.

Let W := W∞ ∪
⋃

A>0 WA. Then, by (6.81), (6.76)/(6.77) and Corollary 6.19, the set W satisfies the
boundedness and equicontinuity assumptions of of Theorem 5.31.

Further, it then follows from Theorem 6.29, the proof of Theorem 6.28 and Theorem 6.26 that (5.91)
and (5.92) are satisfied (for λ = 1), where N′ := {N ∈ N : N ≥ N ′}, with N ′ chosen as in Theorem 6.26.

Thus all assumptions up to (5.95) of Theorem 5.31 are satisfied and the statement about the solv-
ability of (6.83) follows.

We have already remarked that the kernels v1, v2 satisfy (A′
n), for b = 3/2, some Cn > 0 and κ

given by (6.51). For this κ, the function µ(s), defined in (4.82), satisfies µ(s) ≤ C ′(1 + |s|)−1/2, s ≥ 0,
for some constant C ′ > 0, and hence (5.95) holds for the weight function w̃ := w1/2.

If we are given f ∈ Bn
c1,M , A = tNj > 0 and α0 ≥ α′0 then kf and kfA , satisfy (5.96) for D := A.

We can now apply Theorem 5.31 (with A taking the role of D and A + α0 taking the role of A in
that theorem). Since y ∈ BCn

3/2(R), n ∈ N, we thus obtain, from (6.84) and (5.97), the following error
estimates for the solutions x, xN,A and xN,A+α0 of the equations (6.79) and (6.83).

|x(s)− xN (s)| ≤ C1N
−n(1 + |s|)−3/2, |s| ≤ A,

|xN (s)− xN,A+α0(s)| ≤ C2(1 +A)−a
(
(1 +A+ s)−1/2 + (1 +A− s)−1/2

)
, |s| ≤ A,

where C1, C2 > 0 are constants not depending on f , A, α0 or y. Since

|x(s)− xN,A+α0(s)| ≤ |x(s)− xN (s)|+ |xN (s)− xN,A+α0(s)|, |s| ≤ A,

combining these two inequalities yields (6.84) and the theorem is shown.
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edition.

[39] A. J. Jerri, Introduction to integral equations with applications, Wiley-Interscience, New York,
1999, second edition.

[40] K. Jörgens, Linear Integral Operators, Pitman, London, 1982.

[41] R. P. Kanwal, Linear integral equations, Birkhäuser Boston Inc., Boston, MA, 1997, second
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quadrature weights, 47
RN

j (s), 91
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s-convergent, 14
s-sequentially compact

relatively, 14

sequence, 15
set, 14

s-sequentially dense, 14
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