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Zusammenfassung 
 
Seit kurzem erlaubt eine neuartige experimentelle Strategie die weitergehende Erforschung 

der supramolekularen Struktur der Atmungskette von Säugern, Hefe und Bakterien. Durch 

vorsichtige Solubilisierung der mitochondrialen Proteinkomplexe mit dem milden Detergenz 

Digitonin, gefolgt von einer Auftrennung der Proteinkomplexe durch Blau-native (BN) 

Polyacrylamid Gelelektrophorese (PAGE), konnte die Existenz von supramolekularen 

Strukturen gezeigt werden. Die vorliegende Dissertation hat eine Anwendung dieser Strategie 

zur Untersuchung der supermolekularen Struktur der Atmungskette pflanzlicher 

Mitochondrien zum Gegenstand. Solubilisierung isolierter Mitochondrien aus verschiedenen 

höheren Pflanzen mittels Digitonin erlaubt die Visualisierung von zusätzlichen 

hochmolekularen Banden auf BN-Gelen. Durch die Verwendung von Natrium-Dodecylsulfat-

(SDS) oder BN-PAGE als zweite Gel-Dimension konnte die Untereinheitenkomposition der 

Superkomplexe aufgeklärt werden. In nicht-grünen Geweben von Arabidopsis, Bohne und 

Gerste wurde ein dominanter Superkomplex gefunden, der aus monomerer NADH 

Dehydrogenase (Komplex I) und dimerer Cytochrom c Reduktase (Komplex III) besteht. 

„Substrate Channeling“ innerhalb dieses Superkomplexes könnte den Zugriff der alternativen 

Oxidase (AOX) auf ihr Substrat Ubiquinol einschränken und in vivo die Aktivität dieses 

Enzyms reduzieren. Elektronenmikroskopische Untersuchungen des Superkomplexes mit 

anschließender Einzelpartikel-Analyse zeigen eine hoch definierte Struktur. Die Pflanzen-

spezifische Untereinheit At1g47260 scheint eine entscheidende Rolle bei der Stabilisierung 

des I1III2 Superkomplexes und des singulären Komplex I zu spielen. Eine Insertions-Mutante 

des korrespondierenden Gens zeichnet sich durch eine deutlich verringerte Abundanz beider 

Komplexe aus. Frisch geerntete Kartoffel-Knollen besitzen Superkomplexe, die neben dem 

I1III2-Superkomplex noch ein, zwei oder vier Kopien von Komplex IV zusätzlich besitzen. In 

ethiolierten Kartoffel-Sprossen finden sich außerdem noch Superkomplexe, die eine kleinere 

Form von Komplex IV enthalten. In gel-Aktivitätsfärbungen zeigen eine höhere Aktivität für 

die große Form des Komplexes IV. Umwandlung der einen Form in die andere könnte einen 

Regulationsmechanismus für die Aktivität des Superkomplexes darstellen. Im Vergleich zum 

Succinat Dehydrogenase Komplex aller bisher untersuchten Organismengruppen enthält 

dieser Proteinkomplex in Pflanzenmitochondrien mindestens vier Zusatzuntereinheiten. Diese 

Proteine integrieren wahrscheinlich Nebenaktivitäten in die pflanzliche Succinat 

Dehydrogenase. Solche Zusatzaktivitäten sind bereits für die Komplexe I und III bekannt und 

treffen möglicherweise auch für den Komplex IV pflanzlicher Mitochondrien zu. 

 

Schlagwörter: Atmungskette, Superkomplexe, pflanzenspezifische Untereinheiten 



Abstract 
 
Recently, a novel experimental procedure for the investigation of the supramolecular structure 

of the respiratory chain of mammals, yeast and bacteria has been introduced. Gentle 

solubilization of respiratory protein complexes by the non-ionic detergent digitonin followed 

by Blue-native (BN) polyacrylamide gel electrophoresis (PAGE) revealed the presence of 

several supramolecular structures formed by components of the respiratory chain. This thesis 

is a systematic investigation of the organization of the respiratory chain in mitochondria of 

higher plants. Solubilization of isolated plant mitochondria with digitonin resulted in several 

additional bands in the high molecular range on BN gels. Second gel dimensions employing 

sodium dodecylmaltoside (SDS)-PAGE or BN-PAGE in the presence of n-Dodecylmaltoside 

(DDM) revealed the subunit compositions of these supercomplexes. In non-green tissue of 

Arabidopsis, bean and potato, the dominant supercomplex was found to be composed of a 

single copy of NADH dehydrogenase (complex I) and dimeric cytochrome c reductase 

(complex III). Substrate channelling within the I1III2 supercomplex might reduce access of the 

alternative oxidase (AOX) to its substrate ubiquinone and therefore limit in vivo activity of 

this oxido-reductase. Investigation of the I1III2 supercomplex by electron micrography 

followed by single particle analysis revealed a defined association of this structure. In 

Arabidopsis, the plant specific subunit At1g47420 was found to be essential for the stability 

of this supercomplex and singular complex I. Knockout of the corresponding gene leads to a 

highly decreased abundance of both complexes. In freshly harvested potato tubers, low 

abundant supercomplexes made of the I1III2 supercomplex were found comprising 

additionally one, two or four copies of complex IV. In etiolated potato stems, also 

supercomplexes containing a smaller form of complex IV were present. In gel activity 

staining of complex IV revealed a higher activity of the larger version of complex IV. 

Conversion of one form of complex IV into the other might present a mechanism to regulate 

electron flow through complex IV containing supercomplexes. Finally, the plant succinate 

dehydrogenase (complex II) was found to contain twice as many subunits as known for all 

other organisms investigated so far. These subunits are thought to exhibit side functions not 

related to electron transport. Such subunits are known to be present in the plant respiratory 

complexes I and III. Subunits with side activities are also predicted to be existent in complex 

IV. 
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Abbreviations 
 
1D one dimensional 
2D two dimensional 
AMP Adenosin monophosphate 
AOX alternative oxidase 
ATP Adenosin triphosphate 
BN Blue native 
CL Cardiolipin 
CN Colourless native 
CO2 carbon dioxide 
Complex I NADH dehydrogenase 
Complex II succinate dehydrogenase 
Complex III cytochrome c reductase 
Complex IV cytochrome c oxidase 
Complex V mitochondrial ATP-Synthase 
DDM n-dodecylmaltoside 
DNA desoxy ribonucleic acid 
ETC electron transport chain 
FAD Flavin adenine dinucleotide (oxidiced form) 
FADH2 Flavin adenine dinucleotide (reduced form) 
IMS inter membrane space 
MPP mitochondrial processing peptidase 
NAD+ Nicotinamide adenine dinucleotide (oxidized form) 
NADH Nicotinamide adenine dinucleotide (reduced form) 
NADP+ Nicotinamide adenine dinucleotide phosphate 

(oxydized form) 
NADPH Nicotinamide adenine dinucleotide phosphate  

(reduced form) 
Ndex(NADH) external NADH dehydrogenase 
Ndex(NADPH) external NADPH dehydrogenase 
Ndin(NADH) internal NADH dehydrogenase 
Ndin(NADPH) internal NADPH dehydrogenase 
O2 molecular oxygen 
OXPHOS oxidative phosphorylation 
Pi inorganic orthophosphate 
PPi inorganic pyrophosphate 
PAGE polyacrylamide gel electrophoresis 
PUMP plant uncoupling mitochondrial protein 
UQ ubiquinone 
Qr reduced ubiquinone 
Qt total ubiquinone 
RNA ribonucleic acid 
ROS reactive oxygen species 
SDS sodium dodecylmaltoside 
SHAM salicylhydroxamic acid 
SMP submitochondrial particle 
TIM translocase of the inner mitochondrial membrae 
TOM translocase of the outer mitochondrial membrae 
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Introduction 
 

Energy Metabolism in Plant Cells 

 

According to the second law of thermodynamics, a closed system will allways move towards 

the state of the highest possible entropy. In many respects, a cell can be regarded as such a 

system. To keep the cell in a steady state of low entropy which is required for the proper 

execution of all its different functions, the cell needs a continous supply of energy. Apart from 

this sheer conservation of the status quo, several other processes like growth, movement, 

transport of ions and organic molecules or the execution of non-spontanous chemical 

reactions are also driven by energy supplied by catabolic reactions and/or photosynthesis. 

 

The universal carrier and transmitter of energy in the cell is Adenosin triphosphate (ATP). 

Hydrolytic cleavage of one of the two phosphoanhydride bonds of the molecule is a reaction 

resulting in the liberation of energy, which can be used for the above mentioned purposes. 

The products of ATP hydrolysis are Adenosin monophosphate (AMP) and pyrophosphate 

(PPi) or Adenosin diphosphate (ADP) and orthophosphate (Pi). AMP is converted into ADP 

by the transfer of a phosphoric acid residue from ATP, resulting in two molecules of ADP. 

ADP is then recycled to ATP by phosphorylation, a process which requires energy. 

 

A major site of ATP production in plant cells is the photophosphorylation of ADP in 

chloroplasts. However, the ATP produced in this process is used up in plastids and is 

therefore not available to supply the need of the cell. Instead, trioses synthezised in 

chloroplasts can be transported into the cytoplasm where they can be converted into sucrose. 

In aerobic respiration, oxidation of sucrose to carbon dioxide and water provides energy to 

photosynthetic and non-photosynthetic tissues. Aerobic respiration can be divided into three 

steps. The first step is called glycolysis and takes place in the cytoplasm. Monosaccharides 

are oxydized to organic acids in a series of reactions in which electrons are transferred to 

NAD+, leading to the formation of NADH. Additionally, also ATP is produced by substrate 

chain phosphorylation. The final products of glycolysis in plants are pyruvate and malate. 

Both can be imported into mitochondria by the pyruvate transporter and the dicarboxylate 

transporter, respectively. In the mitochondrial matrix, malate can be directly transformed into 

pyruvate by the action of the NAD malic enzyme or converted to oxalacetate by the malate 

dehydrogenase. During the citric acid cycle, the second step of respiration, pyruvate and 
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malate are oxidized to carbon dioxide and electrons are transferred to the co-enzymes NAD+ 

and FAD+. In contrast to the citric acid cycle of animals, also one molecule of ATP (instead of 

GTP) is generated by the plant succinyl-CoA synthetase in this process. Besides the 

production of ATP and reduced coenzymes, intermediates of the cytric acid cycle serve as 

precursors for the biosynthesis of amino acids, fatty acids, isoprenes, nucleic acids and 

porphyrins.  

The majority of ATP is produced in the last step of respiration, the oxidative phosphorylation, 

which also takes place in mitochondria. The reduced coenzymes generated in the citric acid 

cycle are oxidized and electrons are transferred step by step to molecular oxygen, resulting in 

the formation of water. The free energy of this exergonic reaction is indirectly used to 

phosphorylate ADP.  

 

 

Structure, Evolution and Properties of Mitochondria 

 

Mitochondria are double-membrane bound spherical to elipsoid shaped organelles with a size 

of 1 to 3 µm. Their abundance varies from 1 to 1000 per cell. The two membranes, called 

inner and outer mitochondrial membrane (Douce 1985), enclose the intermembrane space 

(IMS). The outer mitochondrial membrane separates the IMS from the cytosol, the inner 

membrane is highly invaginated forming the so called “cristae” and separates IMS from the 

mitochondrial matrix. A connection between the cristae and the IMS is provided by narrow, 

sometimes long tubular structures (Mannella et al. 1997). This led to the assumption that a 

gradient of ions and molecules exists between these two spaces of the same compartment. 

Lipid and protein content as well as the permeability for solutes and organic molecules of the 

inner and outer membrane are different. Pores allow solutes and small molecules up to a size 

of approximately 10 kDa to pass the outer membrane. The inner membrane restricts the flow 

of molecules into and out of the organelle. Uncharged small molecules like O2, CO2 and 

several hydrophobic inhibitors of mitochondrial respiration are able to pass the lipid bilayer 

by diffusion. Ions and other charged, hydrophilic or big molecules have to be transported 

across the inner mitochondrial membrane by specialized channels or translocases. The lipid 

cardiolipin is responsible for the impermeability of the inner membrane.  

According to the endosymbiont hypothesis, the progenitor of mitochondria was an aerobe 

prokaryote, taken up by the eukaryotic cell by endocytosis (Sagan 1967). This event is 
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assumed to have happened only once in the evolution of the eukaryotic cell. The closest today 

living relatives to this prokaryote are the α-proteobacteria (for review see Gray et al. 2001). 

As most of the genetic information of the mitochondria has been transferred to the nucleus 

during evolution, the majority of the mitochondrial proteins are synthesized in the cytosol and 

imported into the organelle. In A. thaliana, only 57 of the predicted >2000 proteins (The 

Arabidopsis Genome Initiative 2000) are encoded by the organelle (Unseld et al. 1997). They 

are subunits of respiratory protein complexes and ribosomes and are also involved in heme 

and cytochrome assembly. Two specialized transport complexes located in the outer and inner 

membrane (translocase of the outer/inner mitochondrial membran, “TOM/TIM”) and the 

matrix protein complex  HSP70 are involved in the transport process (reviewed in Braun and 

Schmitz 1999). 

Although the genetical system of mitochondria of all organisms derived from the same 

prokaryotic ancestor, many differences can be found between plants and mammals. The 

genome of plant mitochondria is several times bigger than that of mammals (Arabidopsis 

367kb, mammals 16kb) and contains more genes and non-coding sequences. In addition, 

introns can be found in genes of plant mitochondria, which are absent in their mammalian 

counterparts. Several repeats in the plant mitochondrial genome enable it to recombine and to 

form rings coding only for a subset of the mitochondrial proteins (Unseld et al.1997). On the 

RNA level, trans-splicing and editing is common in mitochondria of plants (Covello and Gray 

1989). 

  

 

The Respiratory Chain of Plant Mitochondria and the Oxidative Phosphorylation 

 

The inner mitochondrial membrane harbors the protein complexes of the oxidative 

phosphorylation (OXPHOS) system. Five integral protein complexes, four of them displaying 

oxidoreductive activity, are involved in this process: NADH-Dehydrogenase (complex I), 

succinate dehydrogenase (complex II), cytochrome c reductase (complex III), cytochrome c 

oxidase (complex IV) and the mitochondrial F0F1 ATP synthase, often referred to as complex 

V (Hatefi 1985). Complex II has a dual function by catalyzing the transformation of succinate 

to fumarate in the citric acid cycle as well as being a bifurcation of the respiratory chain. 

Complexes I to IV form the respiratory chain. Electron transport within the respiratory chain 

is performed by two carriers: the lipid ubiquinone and the hydrophylic 12.5kDa protein 

cytochrome c, which is located in the IMS. At complex I, NADH produced in the citric acid 
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cycle is oxidized and the electrons are transferred to ubiquinone which in turn is oxidized at 

complex III. Electrons of FADH2 generated by the succinate dehydrogenase (complex II) are 

also transferred to ubiquinone. At complex III, cytochrome c takes over the electrons and 

passes them to complex IV via cytochrome c. Molecular oxygen is the final electron acceptor. 

The redox reactions at the complexes I, III and IV are exergonic and serve to create a proton 

gradient across the inner mitochondrial membrane. This gradient has an electrochemical 

nature. The return flow of protons into the matrix is only possible via the ATP synthase and 

the uncoupling protein (UCP). The plant uncoupling mitochondial protein (PUMP, Vercesi et 

al. 1995) is suggested to play a role either in thermogenesis during cold stress (Voinikov et al. 

2001) or in translocation of certain fatty acids across the inner mitochondrial membrane 

(Jezek et al. 1997). However, the vast majority of H+ reflux into the mitochondrial matrix 

occurs via the ATP synthase complex which is using the energy of the proton gradient for 

ADP-phosphorylation. The picture of the OXPHOS system as drawn above is true for the 

mitochondria of nearly all organisms with the exception of the yeast Saccharomyces cerevisae 

which lacks complex I but instead possesses three singular non-proton pumping NADH 

dehydrogenases associated with the inner mitochondrial membrane (De Vries et al. 1992, 

Luttnik et al. 1998, Small and McAllister-Henn 1998). 

 

The respiratory chain of plant mitochondria, however, differs from that in many respects. 

Plant mitochondria possess several alternative oxidoreductases which do not contribute to 

proton translocation across the inner membrane but allow an electron flow from NADH 

respectively NADPH to oxygen. These alternative oxidoreductases do not take part in energy 

conservation by not contributing to the formation of the proton gradient. Complex I is 

bypassed by alternative NADH dehydrogenases and the cytochrome c-pathway (complexes 

III and IV) by the alternative oxidase. 

For complex I at least four different alternative rotenone-insensitive NAD(P)H 

dehydrogenases are known (Moller 2001). They are located in the inner mitochondrial 

membrane and are capable of oxidizing either cytosolic or mitochondrial NADH and 

NADPH. According to their location on the IMS-side of the inner membrane they are called 

NDex(NADH) respectively NDex(NADPH). Using mitochondrial generated NADH and 

NADPH as substrates, the other two rotenone insensitive NAD(P)H dehydrogenases are 

located on the matrix-side of the inner membrane. Following the designation of their external 

counterparts, these enzymes are named NDin(NADH) and NDin(NADPH).  
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The alternative oxidase is insensitive to inhibitors of complex III like antimycin, stigmalletin 

and myxothiazol or inhibitors of the regular cytochrome c oxidase like cyanide, carbon 

monoxide or azide but sensitive to salicylhydroxamic acid (SHAM) and n-propyl gallate 

(Siedow 1982). It is also found in some fungi. Together with NDin(NADH) it might protect 

the organelle from the production of reactive oxygen species (ROS) during stress leading to 

rather high amounts of reduced components of the electron transport chain (ETC). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
The liquid state model of the respiratory chain of plants including the alternative oxidoreductases. Taken from 

Buchanan BB, Gruissem W, and Russel LJ (2002) Biochemistry and Molecular Biology of Plants. Courier 

Companies, Inc, USA, page 688. 

 

Another special feature of the respiratory chain of plant mitochondria is the presence of 

subunits in respiratory complexes which are not involved in electron transfer or proton 

translocation but fulfill completely different functions. One example of such subunits are the 

core proteins of complex III. These subunits show mitochondrial processing protease (MPP) 

activity by cleaving off presequences of nuclear encoded proteins after their import into the 

organelle (Braun et al. 1992). A second example of such a subunit is the final enzyme of the 

ascorbate synthesis pathway, the L-galactono-1,4-lacton dehydrogenase, which was found to 

be part of complex I (Millar et al. 2003). For the complexes II and IV so far no subunits with 

side activities have been described.  
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The Liquid and the Solid State Model of the Respiratory Chain 

 

At first the structure of the respiratory chain was described by a solid state model. Hatefi et al. 

reported stoichiometric associations of the protein complexes of the respiratory chain. 

Preparation and reconstitution of an active supercomplex of the complexes I and III of beef 

heart mitochondria and reconstitution of several other supercomplexes containing the 

complexes I, II and III; complexes I, III and IV; complexes II, III and IV and complexes I, II, 

III and IV (Fowler and Hatefi 1961, Hatefi et al. 1961, Hatefi et al. 1962) supported this 

model. 

Later, inhibiton of the activity of the I-III supercomplex by antimycin A was found to be re-

established nearly completely by the addition of free complex III; a result which questioned 

the necessity of an association of the two complexes for electron transfer (Fowler and 

Richardson 1962).  

The solid state model of the respiratory chain was again challenged by experiments diluting 

the inner mitochondrial membrane of rat liver cells with exogenous phospholipids and 

measuring the electron transfer rate from NADH and succinate to cytochrome c and to oxygen 

(Schneider et al. 1980). In respect to electron transfer, a decrease in the activity of the 

complexes I, II and III by this dilution indicated the structural independence and diffusion 

dependance of this complexes. It was also found that the decreased electron transport rate can 

be recovered by the addition of ubiquinone (Schneider et al. 1982). Among others, these 

findings led to the establishment of the liquid state model of the respiratory chain, which 

became widely accepted. According to this model, the electron carriers and the individual 

protein complexes of the respiratory chain are randomly distributed within the mitochondrial 

membrane and free to diffuse laterally. As electron transfer between the carriers and protein 

complexes only occurs by random contacts, this model is also referred to as the random 

collision model (reviewed in Hackenbrock et al.1986).  

In a different approach, associations of cytochrome c oxidase with the bc1 complex (complex 

III) were shown for P. denitrificans and the Gram positive thermophilic bacterium PS3 (Berry 

and Trumpower 1985, Sone et al. 1987). In these experiments, purified cytochrome c oxidase 

by means of gentle solubilization with a non-ionic detergent succeeded by differential 

centrifugation or immunoprecipitation, also displayed ubiquinol oxydizing activities. In 

denaturating SDS-PAGE of this so called ubiquinol oxidase unit, subunits of the complexes 

III and IV were identified. 
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Investigation of the pool behaviour of ubiquinone and cytochrome of yeast using inhibitor 

titration showed no pool behaviour of these carriers at all, indicating the presence of a 

functional unit of electron transfer in yeast mitochondria (Boumans et al. 1998). At the same 

time, the discovery of a dimeric F0F1 ATP synthase in yeast (Arnold et al. 1998) by gentle 

solubilization with Triton X100 and subsequent Blue-native (BN) polyacrylamide gel 

electrophoresis (PAGE) was the starting point for further research on the structure of the 

OXPHOS system employing this technique.  

The solid state model recently experienced a renaissance by demonstrating the presence of 

defined supercomplexes in the respiratory chain of yeast and mammals on the basis of gentle 

solubilization using the mild detergent digitonin and two dimensional BN-PAGE (reviewed in 

Schägger 2002). In contrast to the methods applied before in supercomplex research, this 

solubilization method in combination with the native gel system employing Coomassie dye to 

attach negative charges on proteins allowed for the first time to directly separate native 

supercomplexes electrophoretically and investigate their structure by comparison of subunit 

composition. 

In yeast, associations of the complexes III and IV were found (Schägger and Pfeiffer 2000). A 

yeast knock-out mutant of the Cardiolipin (CL) synthase gene was found to contain nearly 

only dimeric complex III and IV whereas the wild type clearly displayed the presence of a 

III2IV2 supercomplex. Introduction of an exogenous copy of the CL synthase gene under 

exogenous regulation restored the supercomplex formation to a certain level (Zhang et al. 

2002). A role of Cardiolipin in the stabilization of the III2IV1-2 supercomplex of S. cerevisae 

was confirmed later by a slightly different approach (Pfeiffer et al. 2003) but in contrast to the 

results reported by Zhang et al. the formation of the supercomplex was not found to be 

impaired as considerable amounts were visible after CN-PAGE and gel filtration.  

In bovine mitochondria, associations of the complexes I, III and IV of different composition 

were observed: I1III2, I1III2IV1-4, IV2, I1IV1, III2IV1 and III2IV2 (Schägger and Pfeiffer 2000). 

Most of complex I has been found to be associated with complex III whereas only a small 

portion of complex IV was found to be associated with the complexes I or III2. For complex 

II, no participation in any comparable supramolecular structure has been reported. Those 

supercomplexes containing the complexes I, III and IV were suggested to be called 

“respirasomes”, refering to their ability to autonomously transfer electrons from NADH to 

oxygen in the presence of ubiquinol and cytochrome c (Schägger and Pfeiffer 2000). 

  

Chapter 1 - Introduction

8



For P. denitrificans, supercomplexes of I1III4IV4, III4IV4 and III4IV2 composition were found 

with the two smaller ones being probably dissociation products of the respirasome (Schägger 

2002). 

Further evidence supporting the idea of supercomplexes in the respiratory chain was added by 

investigation of a human cytochrome b mutant. Surprisingly, not only the assembly of 

complex III was found to be impaired, these mutants also lacked complex I. Metabolic 

inhibition of complex III resulted in a normal assembly of complex one. These results indicate 

a dependance of complex I assembly upon the presence of complex III (Acin-Perez et al. 

2004) and at least a tight temporary association of these complexes in vivo. Functional 

analysis of bovine submitochondrial particles (SMPs) by flux control measurements seem to 

confirm a complex I – complex III association but exclude a perpetual participation of 

complex IV in the supercomplex (Genova et al. 2003).  

Until now, the organization of the respiratory chain of plant mitochondria has not been 

investigated and the question of existence and possible composition of respiratory 

supercomplexes therefore remains unanswered. Considering the outstanding complexity of 

the respiratory chain in plant mitochondria as known so far, one might also expect to find 

plant specific features in this respect.  

Chapters 2, 3 and 4 of this thesis will show the presence and describe the composition of 

respiratory supercomplexes in mitochondria from higher plants, chapter 5 deals with the 

composition of the respiratory complexes II and IV. Chapter 6 provides evidence for the 

importance of a plant specific subunit for the stability of complex I and the I1III2 

supercomplex. 

 

 

BN-PAGE 

 

The key method for the investigations on the plant respiratory chain presented in this thesis is 

Blue native (BN) PAGE in combination with gentle solubilization of protein complexes and 

supercomplexes by digitonin (Schägger 2001). Since stabilization of large protein complexes 

is achieved by omitting harsh detergents/salts from the sample preparation, it proves to be an 

ideal tool to investigate the structure and composition of protein complexes and 

supercomplexes. Compared to the anionic sodium dodecylmaltoside (SDS) commonly used 

for denaturating sample preparation, in BN-PAGE solubilization of the proteins and the 

attachment of negative charges to them are two separate steps. First, solubilization of the 
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proteins is carried out by mild, non-ionic detergents like Triton X100, dodecylmaltoside or 

digitonin. The dye Coomassie blue is then used to attach negative charges on the proteins. To 

provide a good resolution capacity over a broad size range, acrylamide gels used for BN-

PAGE are favourably gradient gels with the gradient adapted to suit the requirements of the 

sample. Second dimensions employing SDS-PAGE allow to compare the subunit composition 

of putative supercomplexes with singular complexes thereby revealing which protein 

complexes are building the supercomplexes. A second BN dimension in the presence of n-

dodecyl maltoside (DDM), which destabilizes supercomplexes but not the singular respiratory 

complexes, directly displays the protein complex composition of supercomplexes.  
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New Insights into the Respiratory Chain of Plant
Mitochondria. Supercomplexes and a Unique
Composition of Complex II1

Holger Eubel, Lothar Jänsch, and Hans-Peter Braun*

Institut für Angewandte Genetik, Universität Hannover, Herrenhäuser Strasse 2, D–30419 Hannover,
Germany (H.E., H.-P.B.); and Gesellschaft für Biotechnologische Forschung, Mascheroder Weg 1, 38124
Braunschweig, Germany (L.J.)

A project to systematically investigate respiratory supercomplexes in plant mitochondria was initiated. Mitochondrial
fractions from Arabidopsis, potato (Solanum tuberosum), bean (Phaseolus vulgaris), and barley (Hordeum vulgare) were
carefully treated with various concentrations of the nonionic detergents dodecylmaltoside, Triton X-100, or digitonin, and
proteins were subsequently separated by (a) Blue-native polyacrylamide gel electrophoresis (PAGE), (b) two-dimensional
Blue-native/sodium dodecyl sulfate-PAGE, and (c) two-dimensional Blue-native/Blue-native PAGE. Three high molecular
mass complexes of 1,100, 1,500, and 3,000 kD are visible on one-dimensional Blue native gels, which were identified by
separations on second gel dimensions and protein analyses by mass spectrometry. The 1,100-kD complex represents dimeric
ATP synthase and is only stable under very low concentrations of detergents. In contrast, the 1,500-kD complex is stable at
medium and even high concentrations of detergents and includes the complexes I and III2. Depending on the investigated
organism, 50% to 90% of complex I forms part of this supercomplex if solubilized with digitonin. The 3,000-kD complex,
which also includes the complexes I and III, is of low abundance and most likely has a III4I2 structure. The complexes IV,
II, and the alternative oxidase were not part of supercomplexes under all conditions applied. Digitonin proved to be the ideal
detergent for supercomplex stabilization and also allows optimal visualization of the complexes II and IV on Blue-native
gels. Complex II unexpectedly was found to be composed of seven subunits, and complex IV is present in two different
forms on the Blue-native gels, the larger of which comprises additional subunits including a 32-kD protein resembling COX
VIb from other organisms. We speculate that supercomplex formation between the complexes I and III limits access of
alternative oxidase to its substrate ubiquinol and possibly regulates alternative respiration. The data of this investigation are
available at http://www.gartenbau.uni-hannover.de/genetik/braun/AMPP.

Structural basis for oxidative phosphorylation in
mitochondria are five protein complexes termed
NADH dehydrogenase (complex I), succinat dehy-
drogenase (complex II), cytochrome c reductase
(complex III, which is a functional dimer), cyto-
chrome c oxidase (complex IV), and ATP synthase
(complex V). They were first characterized about 40
years ago by solubilizations of mitochondrial mem-
brane proteins using detergents and differential pre-
cipitations or chromatographic separations. Accord-
ing to the popular “liquid state” model, the protein
complexes of the respiratory chain are randomly ar-
ranged in the membrane and freely diffuse in lateral
direction within the inner mitochondrial membrane
(for review, see Rich, 1984). However, other results
rather indicate an ordered association of these pro-
tein complexes forming larger structures. These so-
called “supercomplexes” were first described for bac-
teria (Berry and Trumpower, 1985; Sone et al., 1987;
Iwasaki et al., 1995; Niebisch and Bott, 2003). Later

the existence of respiratory supercomplexes was also
reported for yeast and mammalian mitochondria
(Schägger and Pfeiffer, 2000).

In Brewer’s yeast (Saccharomyces cerevisiae), which
does not comprise complex I, three large mitochon-
drial complexes were identified by Blue-native gel
electrophoresis after gentle protein solubilization us-
ing nonionic detergents: (a) dimeric ATP synthase,
(b) a supercomplex containing dimeric complex III �
one copy of complex IV, and (c) a supercomplex
containing dimeric complex III � two copies of com-
plex IV (Arnold et al., 1998; 1999; Cruciat et al., 2000;
Schägger and Pfeiffer, 2000; Schägger, 2001a, 2002;
Zhang et al., 2002). Dimeric ATP synthase from yeast
includes three dimer-specific subunits, two of which
are directly involved in dimer formation. Supercom-
plexes containing complexes III and IV were not only
prepared by Blue-native gel electrophoresis but also
by gel filtrations and co-immunoprecipitations (Cru-
ciat et al., 2000). Their formation depends on the
cardiolipin content of the inner mitochondrial mem-
brane and also is influenced by growth conditions.
Functional implications of complex III-complex IV
associations were shown by ubiquinol-oxidase activ-
ity measurements in the presence of mild detergents
(Schägger and Pfeiffer, 2000).
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In mammalian mitochondria, five large complexes
were found: (a) dimeric ATP synthase, (b) a supercom-
plex containing dimeric complex III � one copy of
complex I, and (c–e) supercomplexes containing
dimeric complex III � one copy of complex I � one to
three copies of complex IV (Schägger and Pfeiffer,
2000, 2001; Schägger, 2001a, 2002). All of these super-
complexes can be visualized on Blue-native gels after
solubilization of mitochondrial proteins using digito-
nin. Solubilization using Triton X-100 additionally al-
low detection of a supercomplex consisting of dimeric
complex III � monomeric complex I � four copies of
complex IV. A high percentage of complex I forms
part of supercomplexes, whereas dimeric complex III
and monomeric complex IV also exist in singular
form, because abundance of these protein complexes
is significantly higher in comparison with complex I.
NADH-cytochrome c activity measurements in de-
pendence of various mild detergents have revealed
functional importance of supercomplex formation be-
tween complexes III2 � I. The term “respirasome” was
suggested for supercomplexes containing the com-
plexes I, III2, and IV, which autonomously can carry
out respiration in the presence of cytochrome c and
ubiquinone (Schägger and Pfeiffer, 2000).

The supramolecular structure of the respiratory
chain of plant mitochondria is unknown. The five
protein complexes of oxidative phosphorylation are
well characterized and structurally resemble their
counterparts in fungi and mammals (Jänsch et al.,
1996; Vedel et al., 1999; Heazlewood et al., 2003b;
Sabar et al., 2003). Some plant-specific subunits of
respiratory chain complexes were described, e.g. the
subunits of the mitochondrial processing peptidase,
which form an integral part of complex III in plant
mitochondria (Braun et al., 1992a; Eriksson et al., 1994).
Additionally, the electron transfer chain of plant mito-
chondria is very much branched due to the presence of
several alternative oxidoreductases like a cyanide-
insensitve terminal oxidase and rotenone-insensitive
NAD(P)H dehydrogenases (for review, see Siedow and
Umbach, 1995; Vanlerberghe and McIntosh, 1997;
Mackenzie and McIntosh, 1999; Rasmusson et al., 1999).

Here, we describe a systematic investigation of
supercomplexes in plant mitochondria. Using gentle
protein solubilizations with nonionic detergents and
Blue-native gel electrophoresis, three supercom-
plexes could be visualized: (a) dimeric ATP synthase,
(b) a supercomplex formed by dimeric complex III
and complex I, and (c) a supercomplex containing
two copies of dimeric complex III and two copies of
complex I. The complexes II and IV as well as the
alternative oxidase (AOX) do not form part of super-
complexes under all conditions applied. Further-
more, a larger and a smaller form of cytochrome c
oxidase were found, which differ by at least two
protein subunits, and a complex II is described,
which has a very unusual subunit composition.

RESULTS

Identification of Respiratory Supercomplexes in
Mitochondria from Arabidopsis

Blue-native gel electrophoresis was previously em-
ployed for the characterization of the respiratory
chain of plant mitochondria (Jänsch et al., 1995, 1996;
Brumme et al., 1998; Kügler et al., 1998; Karpowa and
Newton, 1999; Ducos et al., 2001; Kruft et al., 2001;
Mihr et al., 2001; Rasmusson and Agius, 2001; Wer-
hahn and Braun, 2002; Bykova and Moller, 2003;
Heazlewood et al., 2003a, 2003b, 2003c; Sabar et al.,
2003). Nevertheless, respiratory supercomplexes
were not described, most likely because very similar
conditions for protein solubilization were chosen,
which seem to have destabilizing effects on labile
protein-protein interactions. In an attempt to system-
atically search for the occurrence of respiratory su-
percomplexes in plants, mitochondria from Arabi-
dopsis were solubilized using varying concentrations
of the nonionic detergents dodecylmaltoside, Triton
X-100, and digitonin and analyzed by Blue-native
PAGE (Fig. 1, A–C). Protein complexes were identi-
fied by their known subunit compositions upon anal-
yses on second gel dimensions and by partial se-
quence analysis of selected proteins using mass
spectrometry (Figs. 1, D and E, and 2; Table I).

Solubilization of Arabidopsis mitochondria with 1 g
dodecylmaltoside g�1 protein allows resolution of
known singular complexes of the oxidative phosphor-
ylation system (Fig. 1, A and D): complex I (1,000 kD),
F0F1 ATP synthase (580 kD), complex III (480 kD),
which always is dimeric for functional reasons, and
the F1 part of ATP synthase (390 kD). Furthermore, the
soluble HSP60 (750 kD) and formate dehydrogenase
complexes (200 kD) are visible on the gel. Addition-
ally, some low amount of dimeric ATP synthase can
be seen at about 1,100 kD, which was overlooked on
the Blue-native gels shown before by Kruft et al.
(2001). In contrast to yeast and mammals, the amount
of dimeric ATP synthase does not increase if mito-
chondrial proteins are solubilized with lower dodecyl-
maltoside concentrations (Fig. 1A). Usage of dodecyl-
maltoside to protein ratios �1 g per g allows
visualization of a supercomplex of about 1,500 kD,
which is composed of the complexes I and III and
probably has the structure III2I. However, only a small
proportion of total complex I forms part of this super-
complex and an even smaller proportion of complex
III, which is more abundant than complex I.

Solubilization of Arabidopsis mitochondria with
Triton X-100 allows visualization of the same protein
complexes and supercomplexes on Blue-native gels
(Fig. 1, B and E). The amount of dimeric ATP syn-
thase is highest between 0.25 and 0.5 g Triton X-100
g�1 protein, which is in line with observations re-
ported for yeast (Arnold et al., 1998). The ratio of
dimeric to monomeric ATP synthase is about 1 upon
solubilization using 0.25 g Triton g�1 protein but
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decreases sharply upon solubilizations using higher
amounts of detergent (Fig. 1B). About 50% of com-
plex I forms part of the III2I supercomplex on Blue-
native gels after protein solubilizations using 0.5 to
1.0 g per g Triton X-100 per g protein (Fig. 1B).

In general, higher detergent to protein ratios are
necessary for protein solubilizations using digitonin,
which is in accordance with results found for yeast
and mammals. However, starting with a digitonin to
protein ratio of 2.5 g per g, this detergent proved to
be very suitable for supercomplex stabilization (Figs.
1C and 2). Under these conditions, about 80% of
complex I forms part of the III2I supercomplex. Fur-

thermore, a supercomplex of about 3,000 kD can be
seen on Blue-native gels (Fig. 1C), which also is com-
posed of subunits of the complexes III and I as found
by two-dimensional Blue-native/SDS gel electro-
phoresis and silver staining (data not shown). This
supercomplex most likely has a III4I2 structure, be-
cause the ratio of single complex I and complex III
subunits is unchanged if compared with their ratio in
the 1,500-kD III2I complex. Dimeric ATP synthase
only is visible at very low digitonin to protein ratios
(data not shown). The F1 part of the ATP synthase
complex is not detectable on the Blue-native gels,
indicating a stabilizing effect of the detergent on

Figure 1. Resolution of mitochondrial protein complexes and supercomplexes by Blue-native PAGE. A through C, Solubi-
lization of mitochondrial protein complexes from Arabidopsis using different detergents. Isolated mitochondria were treated
with varying concentrations of dodecylmaltoside (A), Triton X-100 (B), or digitonin (C), and protein complexes were
subsequently resolved by one-dimensional Blue-native PAGE. Detergent to protein ratios are given above the gels (in grams
of detergent per gram protein), and the identity of protein complexes is given to the right of the gels. D and E,
Two-dimensional resolution of mitochondrial protein complexes from Arabidopsis by Blue-native/SDS PAGE after solubi-
lization with dodecylmaltoside (1.5 g per g protein) (D) and Triton X-100 (0.5 g per g protein) (E). Designations of the protein
complexes are given above the gels. FDH, Formate dehydrogenase; F1, F1-part of the ATP synthase complex; III2, dimeric
cytochrome c reductase; V, ATP synthase; H, HSP60 complex; I, NADH dehydrogenase; I�III2, supercomplex formed by
complex I and dimeric complex III; IVa and VIb, large and small form of cytochrome c oxidase; V2, dimeric ATP synthase.
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complex V (Fig. 1C). Furthermore, in contrast to do-
decylmaltoside and Triton X-100, digitonin allows
solubilization of three novel protein complexes of
about 150, 220, and 300 kD. These protein complexes
do not form visible bands on one-dimensional Blue-
native gels, probably because the background on the
gels is too high in this molecular mass range. How-
ever, these multisubunit complexes nicely are re-
solved on corresponding two-dimensional gels (Fig.
2). The subunit compositions of the 220- and 300-kD
complexes very much resemble the one of cytochrome
c oxidase from potato (Solanum tuberosum; Jänsch et
al., 1996). In contrast, identity of the 150-kD complex
was unclear on the basis of subunit composition.

Protein identifications by mass spectrometry al-
lowed unambiguous identification of subunits of
complexes I, III, and IV (Fig. 2; Table I). Furthermore
the 1,000-kD prohibitin complex was identified, as
was the preprotein translocase of the outer mitochon-
drial membrane, the so-called TOM complex, at 390
kD (Werhahn et al., 2003).

Dissection of Supercomplexes into Protein
Complexes by Two-Dimensional Blue-Native/
Blue-Native Gel Electrophoresis

A novel two-dimensional Blue-native/Blue native
gel electrophoresis method (Schägger and Pfeiffer,
2000) was employed to investigate whether the com-
plexes I and III are the only components of the 1,500-

and 3,000-kD supercomplexes. For this procedure,
protein complexes and supercomplexes are separated
by a first-dimension Blue-native-PAGE in the pres-
ence of digitonin. Afterward, protein supercom-
plexes are destabilized by incubation with dodecyl-
maltoside, which is followed by a second-dimension
Blue-native-PAGE. On the resulting two-dimensional
gels, supercomplexes are separated vertically into
protein complexes, whereas singular protein com-
plexes are located on a diagonal line. Two-
dimensional Blue-native/Blue-native PAGE clearly
revealed that the complexes I and III are the only
constituents of the 1,500- and 3,000-kD supercom-
plexes in Arabidopsis (Fig. 3).

Characterization of Mitochondrial Supercomplexes in
Potato, Bean (Phaseolus vulgaris), and Barley
(Hordeum vulgare)

To investigate whether occurrence of the III2I and
III4I2 supercomplexes and dimeric ATP synthase is a
special characteristic of Arabidopsis or a general fea-
ture of plant mitochondria, the above described ex-
periments were repeated with isolated organelles
from potato, bean, and barley. All protein solubiliza-
tions were done with digitonin (5 g per g protein),
which proved to be optimal for visualizations of
mitochondrial protein complexes and supercom-
plexes in Arabidopsis on Blue-native gels. The III2I
supercomplex is also present in potato, bean, and
barley (Fig. 4). About 50% of complex I forms part of
this supercomplex in bean and potato, whereas even
90% of complex I from barley is associated with
dimeric complex III. Under the conditions applied,
dimeric ATP synthase of all three plants only repre-
sents a very minor fraction of total ATP synthase
complex. Furthermore, the large and the small form
of cytochrome c oxidase are present in all plants
investigated. However, the ratio of large to small
forms varies considerably: In Arabidopsis and bar-
ley, the smaller form is very abundant, whereas in
potato, the larger form is present in higher quantities,
and in bean, both forms of complex IV are of equal
abundance. The newly discovered 150-kD complex is
also present in potato and bean but could not be
clearly detected in barley under the conditions
applied.

The Larger Form of Cytochrome c Oxidase Contains
Additional Protein Subunits

Although Blue-native gel electrophoresis is not a
suitable procedure for precise molecular mass deter-
minations, the larger 300-kD form of the cytochrome
c oxidase complex (IVa) probably cannot be consid-
ered to be a dimer of the 220-kD complex (IVb).
Careful evaluation of the Blue-native gels in the re-
gion of the two forms of cytochrome c oxidase from
Arabidopsis and bean revealed the presence of addi-

Figure 2. Two-dimensional resolution of digitonin-solubilized mito-
chondrial protein complexes and supercomplexes by Blue-native/
SDS-PAGE. Identities of protein complexes are given above the gel
(for designations, see Fig. 1). Arrows indicate proteins identified by
mass spectrometry (Table I).
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tional subunits in the larger form, which might ex-
plain the size difference between the two forms of
this complex (Fig. 5). Data are especially clear for
bean, because both forms of complex IV are equally
abundant. A 32-kD protein and at least one very
small subunit of �6 kD are unique to complex IVa.
Proteins of comparable size are also present in Ara-
bidopsis (Fig. 5) but are difficult to detect in potato
and barley under the conditions applied. According
to our interpretation of the Blue-native gels, the sub-
unit composition of cytochrome c oxidase is as fol-
lows (see scheme in Fig. 5): Complex IVa includes 12
separable proteins, and complex IVb is composed of
10 proteins. Furthermore, complex IVb of Arabidop-
sis can be further subdivided into two complexes of
very similar molecular masses that differ with re-
spect to the presence of a 10-kD subunit.

The 32-kD subunit of complex IVa is homologous
to the 10-kD COX VIb protein of heterotrophic eu-
karyotes (see Table I, protein 17), which is known to
be easily detached from cytochrome c oxidase in
yeast and mammals and which was shown to have
regulatory functions on cytochrome c oxidase activ-
ity (LaMarche et al., 1992; Weishaupt and Kaden-
bach, 1992).

Complex II from Plant Mitochondria Contains
Seven Subunits

The newly discovered 150-kD complex of Arabi-
dopsis comprises seven subunits of 65, 28, 18, 15, 12,
8, and 6 kD. In bean and potato, this complex has a
very comparable subunit composition, except that
the molecular masses of the three smallest subunits

Table I. Identified subunits of mitochondrial protein complexes of Arabidopsis and bean

The numbers of the spots correspond to those given in Figures 2 and 5. Proteins were identified by electrospray tandem mass spectrometry
(ESI), matrix-assisted laser desorption ionization time of flight mass spectrometry (MALDI), or Edman degradation (ED). Amino acid sequences
given in italics represent N-terminal protein sequences determined by Edman degradation. Calculated molecular masses are given for all proteins
with known N-terminal sequence, otherwise molecular masses are estimated on the basis of migration during SDS gel electrophoresis (see Figs.
2 and 5). Protein accessions correspond to the code of the Arabidopsis Genome Initiative.

Spot Identified Peptides
Identification

Strategy
Protein Molecular Mass

Arabidopsis Genome
Initiative Accession No.

kD

Arabidopsis
1 WDPQISQVAGR ESI Subunit of complex I �10 At1g67350

RDPYDDLLEDNYTPPSSSSSSSD
2 SPNVAYLPGGQSMLFALNR ESI Prohibitin 30.4 At5g40770
3 YEDISVLGQRPVEE ESI 8.0-kD subunit, complex III 8.0 At3g52730
4 AVVYALSPFQQK ESI 8.2-kD subunit, complex III 8.2 At3g10860

At5g05370
5 TFIDPPPTEEK ESI 6.7-kD subunit, complex III 6.7 At2g40765
6 IPTAHYEFGANYYDPK ESI TOM40 34.1 At3g20000

IDSNGVASALLEER
7 RLDDIDFPEGPFGTK ESI COX subunit Vb �16 At3g15640
8 – MALDI Flavoprotein subunit, complex II �65
9 DLVVDMTNFYNQYK ESI Iron sulphur subunit, complex II �29 At5g40650

WNPDNPGKPELQDYKIDLK
10 DLVVDMTNFYNQYK ESI Iron sulphur subunit, complex II �29 At5g40650

At3g27380
11 AAEAVEEFGGILTSIK ESI Hyp. prot. (complex II) 18.4 At1g47420

YAEYLDSFEPEEVYLK MALDI
SEDVSHMPEMDSXVLNAFK� ED

12a FMEWWER MALDI Hyp. prot. (complex II) �15 At1g08480
LDTMAAQVK ESI

12b QGPNLNGLFGR ESI Cytochrome c 12.4 At4g10040
At1g22840

13 STISGDIKTTQEEP ED Subunit 3 of complex II 12 At5g09600
14 LVVDTTANQDPLVTK_ ESI Superoxide dismutase 22.5 At3g10920

YASEVYEKESN_
15 QYIQEPATVEK ESI g subunit, complex V �12 At4g29480

LASIPGRYETFWK
16 LNQISILVQR ESI COX subunit II 29.4 y08501

Bean
17 YLEYHR ESI Subunit VIb of cytochrome c oxidase �32 Highly similar to

GDDAPE At1g22450
TPATPEE
LETAPVDFR
EATSEEAVVEK
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slightly vary (Fig. 4). To identify the 150-kD complex,
subunits were subjected to analysis by mass spec-
trometry. Peptide sequences of five of the seven sub-
units allowed identification of corresponding genes
of the Arabidopsis genome (Fig. 6; Table I). Surpris-
ingly the 65-, 28-, and 12-kD proteins could be iden-
tified as being subunits of the succinate dehydroge-
nase complex (complex II) of the respiratory chain:
the flavoprotein subunit (SDH1), the iron-sulfur sub-
unit (SDH2), and the so-called subunit III (SDH3).
Succinate dehydrogenase is well characterized for
several bacteria, fungi, and mammals and is known
to be a four-subunit complex comprising the above
mentioned subunits and one additional subunit in
the size range of 10 to 15 kD termed subunit IV or
SDH4 (Lemire and Oyedotun, 2002; Yankovskaya et
al., 2003). Although the subunits of this protein com-
plex from plants were never biochemically character-
ized, counterparts of the SDH1-SDH4 proteins could
be identified on the basis of sequence similarities of
predicted proteins with known complex II subunits
from mammals, fungi, algae, and protozoans
(Daignan-Fornier et al., 1994; Burger et al., 1996;
Figueroa et al., 2001; Figueroa et al., 2002). However,
sequence identities for the SDH3 and SDH4 proteins,
which constitute a hydrophobic membrane anchor of
this protein complex, are very low (Burger et al.,
1996). Most interestingly, complex II from plants
seems to contain additional subunits of unknown
function. The 18-kD protein corresponds to the pu-
tative At1g47420 protein of Arabidopsis, which was
identified previously in the course of a proteomic
approach to characterize novel mitochondrial pro-
teins of this organisms (Kruft et al., 2001; protein No
4). Furthermore, the 15-kD protein represents the

putative At1g08480 protein. However, presence of
this protein within complex II is slightly uncertain,
because one of the three identified peptides perfectly
matches to Arabidopsis cytochrome c. Hence the cor-
responding protein spot contains more than one pro-
tein. The 8- and 6-kD subunits could not be identified
by mass spectrometry; one of these subunits might
represent the SDH4 protein.

Most likely all seven proteins of plant succinate
dehydrogenase are single-copy subunits of the
150-kD complex, because the sum of their apparent
molecular masses (153 kD) is very close to the appar-
ent molecular mass of this protein complex on Blue-
native gels (150 kD). Furthermore, probably no addi-
tional subunits form part of this complex.

The AOX Does Not Form Part of
Respiratory Supercomplexes

AOX represents a characteristic oxidoreductase of
the respiratory chain of plant mitochondria. Its pos-
sible association with the complexes I to V after
digitonin-solubilization of mitochondrial protein
fractions was investigated by two-dimensional Blue-
native/SDS gel electrophoresis and immunoblotting
using a monoclonal antibody directed against AOX
from Sauromatum guttatum (Elthon et al. 1989). On the
two-dimensional gels, the antibody reacts with a pro-
tein of 32 kD in bean and Arabidopsis, which forms
a smear on the first gel dimension between 30 and
300 kD (Fig. 7). Therefore, AOX seems not to form
part of any supercomplexes but rather aggregates
under the conditions applied. Also the rotenone-
insensitive NAD(P)H dehydrogenases are not at-
tached to respiratory protein complexes or super-
complexes as investigated by similar experiments
using antibodies directed against these proteins (data
not shown).

DISCUSSION

Supercomplexes in Plant Mitochondria

Respiratory protein complexes form supercom-
plexes in plant mitochondria. In the course of our
investigations, V2, III2I, and III4I2 supercomplexes
could be identified. Possibly further supercomplexes
exist in vivo that are instable in the presence of
detergents and Coomassie Blue. Digitonin proved to
be the optimal compound for supercomplex solubi-
lization, which is surprising because it specifically
binds sterols, which are believed to be absent in inner
mitochondrial membranes. Furthermore, digitonin
also allows stable extraction of singular protein com-
plexes that cannot be solubilized by dodecylmalto-
side or Triton X-100. It therefore is a very suitable
tool for plant mitochondrial research.

Between 50% and 90% of complex I from plants
forms part of the III2I supercomplex on Blue-native
gels upon digitonin solubilizations. In contrast, the

Figure 3. Separation of supercomplexes into protein complexes by
two-dimensional Blue-native/Blue-native gel electrophoresis. Identi-
ties of protein complexes are given above and to the left of the gel (for
designations, see Fig. 1).
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same supercomplex from beef only contains 17% of
complex I under identical conditions (Schägger,
2002). However, more than 50% of complex I from
beef is part of even larger supercomplexes that in-
clude dimeric complex III and additionally one to
four copies of complex IV. In Brewer’s yeast, complex
I-containing supercomplexes are absent due to the
general absence of this protein complex, but also in
this organism, the complexes IV and III are associ-
ated forming III2IV or III2IV2 supercomplexes (Schäg-
ger and Pfeiffer, 2000; Cruciat et al., 2000). In con-
trast, associations of complexes III and IV of plant
mitochondria are not detectable on Blue-native gels
under all conditions applied. Also the AOX and the
rotenone-insensitive NAD(P)H dehydrogenases

seem not to be present in supercomplexes. Further-
more, plant complex II only is present in singular
form, which is in line with findings for yeast and
mammals. Dimeric complex V from plants is present
on Blue-native gels after solubilizations using low
concentrations of detergents, but its abundance is
lower than in other organisms (Arnold et al., 1998,
1999). Recently, a very stable dimeric ATP synthase
complex was reported for mitochondria from
Chlamydomonas reinhardtii (van Lis et al., 2003).

What is the functional role of supercomplexes in
plant cells? In yeast, supercomplexes were reported
to enhance activity rates of respiratory electron trans-
port (Schägger and Pfeiffer, 2000). Furthermore, it is
speculated that supercomplex formation increases

Figure 4. Mitochondrial supercomplexes and protein complexes in Arabidopsis, potato, bean, and barley. Proteins were
solubilized by 5 g per g digitonin and separated by two-dimensional Blue-native/SDS PAGE. Identities of protein complexes
are given above the gels (for designations, see Fig. 1).
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the capacity of the inner mitochondrial membrane for
protein insertion (Arnold et al., 1998). The protein
content of this mitochondrial membrane, which is
estimated to lie at about 70%, can only be realized if
proteins are very efficiently packed. In plant mito-
chondria, the III2I supercomplex possibly has impor-
tant consequences for the regulation of alternative
respiration, because it might reduce access of AOX to
its substrate ubiquinol. Because alternative respira-
tion is known to increase under various stress con-
ditions (Vanlerberghe and McIntosh, 1997), the
occurrence of respiratory supercomplexes in Arabi-
dopsis was investigated in mitochondria isolated
from suspension cell cultures that were treated with
antimycin A, a known inhibitor of complex III. How-
ever, our initial data reveal only small differences
concerning respiratory supercomplexes in antimycin-
treated and untreated cells, which are at the border-
line of significance (data not shown). Therefore the
role of supercomplexes in plant mitochondria has to
be further investigated.

Respiratory Protein Complexes in Plant Mitochondria

Recently, the subunit compositions of protein com-
plexes of the oxidative phosphorylation system of
Arabidopsis were studied intensively. Complex I from
plants can be resolved into 27 to 30 different subunits
on two-dimensional Blue-native/SDS gels (Fig. 8) but
possibly comprises more than 40 proteins (Rasmusson
et al., 1998). Heazlewood et al. (2003a) identified 30
subunits of Arabidopsis complex I after separation on

two-dimensional gels by mass spectrometry. Several
of the identified proteins have counterparts in fungi
and mammals, but others seem to be unique to plants.
Using a similar approach, Heazlewood et al. (2003c)
identified 10 subunits of Arabidopsis complex V.
Some further subunits remain to be characterized, be-
cause up to 13 proteins can be resolved on two-
dimensional gels (Fig. 8). All 10 subunits of potato
complex III were biochemically characterized (for re-
view, see Braun and Schmitz, 1995) and counterparts
for all 10 subunits are present in Arabidopsis protein
databases at The Institute for Genomic Research or the
Munich Information Center for Protein Sequences (�-
MPP subunit, At3g02090; �-MPP subunit, At1g51980
and At3g16480; cytochrome b, Y08501; cytochrome c1,
At5g40810 and At3g27240; ‘Rieske FeS’ protein,
At5g13440 and At5g13430; counterpart to 14-kD sub-
unit from potato, At4g32470 and At5g25450; counter-
part to 7.8-kD subunit from potato, At2g01090 and
At1g15120; counterpart to potato 8.0-kD subunit,
At5g05370 and At3g10860; counterpart to potato
8.2-kD subunit, At3g52730; counterpart to potato
6.7-kD subunit, At2g40765).

The least characterized respiratory protein com-
plexes of plants are the complexes IV and II. Arabi-
dopsis complex IV can be resolved in two different
forms on Blue-native gels, which comprise 10 to 12
subunits (Figs. 5 and 8). The identity of the five
largest subunits is known, whereas the identity of
most smaller subunits remains to be established. The
larger form of cytochrome c oxidase includes an ad-
ditional 32-kD protein, which resembles the 10-kD
subunit COX VIb of yeast and beef. This subunit is
very hydrophilic, lacks membrane spanning helices,
and is localized on the intermembrane-space side of
cytochrome c oxidase (Tomizaki et al., 1999). Re-
moval of this protein from complex IV was shown to
activate cytochrome c oxidase of beef (Weishaupt
and Kadenbach, 1992). Furthermore, COX VIb from
beef was shown to be important for dimerization of

Figure 5. Large and small forms of cytochrome c oxidase in bean and
Arabidopsis after two-dimensional resolution by Blue-native/SDS
PAGE. Proteins only forming part of the larger form of this protein
complex are indicated by arrows. Protein number 17 was identified
by mass spectrometry (Table I). A scheme of the two-dimensional
Blue-native/SDS gel of cytochrome c oxidase from Arabidopsis is
given to the right.

Figure 6. Subunit composition of complex II in Arabidopsis. Appar-
ent molecular masses of the subunits and the accession numbers of
the corresponding genes are given to the right of the gel.

Chapter 2

23



cytochrome c oxidase (Tomizaki et al., 1999; Lee et
al., 2001). Genes encoding COX VIb from plants were
characterized previously in Arabidopsis and rice
(Oryza sativa; Ohtsu et al., 1999, 2001). Interestingly,
two forms of COX VIb proteins are encoded by these
genes, which have molecular masses of 10 or 20 kD.
Both forms of this protein very much resemble the
10-kD COX VIb from yeast and beef, but the 20-kD
form has a long N-terminal extension. Curiously,
both predicted forms of the plant COX VIb protein
are much smaller than the 32-kD COX VIb found for
Arabidopsis and bean on Blue-native gels. Also in
rice, a 32-kD COX VIb protein was recently identified
in the course of a mitochondrial proteome project
(Heazlewood et al., 2003b). Consequently, the 32-kD

COX VIb protein either is made by posttranslational
modifications of smaller COX VIb proteins or is en-
coded by additional cox VIb genes, which so far were
not discovered. Also, the functional role of this pro-
tein in plant mitochondria remains to be established.
Possibly, it is important for dimerization of complex
IV like in heterotrophic eukaryotes. However,
dimeric cytochrome c oxidase was not detectable on
our Blue-native gels under all conditions applied.
Further investigations on cytochrome c oxidase of
plant mitochondria are under way in our laboratory.

Surprisingly, complex II from Arabidopsis turned
out to comprise seven subunits, which is three sub-
units more than the well-characterized succinat de-
hydrogenases from fungi, mammals, algae, protozoa,

Figure 7. The AOX does not form part of mitochondrial supercomplexes. Mitochondrial proteins from Arabidopsis (A and
B) and bean (C and D) were solubilized by 5% (w/v) digitonin and separated by two-dimensional Blue-native/SDS PAGE.
Afterward, gels were either directly stained with Coomassie Blue (A and C) or electroblotted onto nitrocellulose membranes
and immunostained with an antibody directed against AOX (B and D). The boxes on the Coomassie Blue gels indicate the
position of the main immunosignals.
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and several bacteria. Theoretically, these additional
subunits could form a different protein complex,
which accidentally runs at an identical position on
Blue-native gels as a four-subunit complex II. How-
ever, this possibility is highly unlikely, because all
seven proteins form an ideal line on Blue-native gels
in three different plants: potato, bean, and Arabidop-
sis. Furthermore, the intensities of the protein spots
on the two-dimensional gels is very much in the same
range. Finally, the sum of the apparent molecular
masses of the seven subunits corresponds to the ap-
parent molecular mass of the protein complex on our
native gels. As a general rule, respiratory protein
complexes in mitochondria include several addi-
tional subunits if compared with their counterparts
in prokaryotes. So far, complex II was the only ex-
ception, which seems not to be valid for plant
mitochondria.

One of the newly described subunits of complex II
from plants represents the hydrophilic At1g47420
protein, which was identified previously in the
course of an Arabidopsis mitochondrial proteome
project and which was reported to be one of the most
abundant proteins on two-dimensional isoelectric fo-
cusing/SDS gels of mitochondrial fractions (Kruft et
al., 2001). On the basis of sequence comparisons, the
role of this protein is unclear. Highly similar proteins
exist in barley (gi 18652408) and rice (CAD40922).
Interestingly, the N-terminal presequence of 89
amino acids has some sequence identity with the
N-terminal domain of the putative transcription fac-

tor APF1 of Arabidopsis (gi13507025). Also, the
newly identified 15-kD subunit of complex II from
Arabidopsis (At1g08480) does not exhibit significant
sequence identity to previously characterized pro-
teins. For the first time, to our knowledge, the plant
SDH3 subunit was biochemically characterized. It
comprises an exceptionally long mitochondrial tar-
geting sequence of 105 amino acids as revealed by
comparison of its N-terminal sequence and the amino
acid sequence deduced from the corresponding gene.
In summary, complex II from plants has unique fea-
tures, which should be characterized by further bio-
chemical and physiological investigations.

Further Protein Complexes in Plant Mitochondria

Besides the V2, III2I, and III4I2 supercomplexes and
the respiratory complexes I to V, several additional
protein complexes are visible on our Blue-native gels:
the prohibitin complex at 1,000 kD, the HSP60 com-
plex at 750 kD, the TOM complex at 390 kD, and a
complex containing formate dehydrogenase at 200
kD (Fig. 2). Further plant mitochondrial protein com-
plexes resolvable on Blue-native gels were not iden-
tified in the course of our study but were reported in
earlier investigations, e.g. a Glu dehydrogenase com-
plex (Heazlewood et al. 2003b). In contrast, some
other protein complexes are known to be present in
plant mitochondria but never were detected on Blue-
native gels possibly due to their instability in the
presence of detergents or Coomassie Blue, e.g. pyru-

Figure 8. Subunit composition of respiratory protein complexes from Arabidopsis on two-dimensional Blue-native/SDS gels.
Proteins were solubilized with digitonin. Sixty-seven different subunits of complexes I through V are separated: 27 subunits
of complex I, seven of complex II, 10 of complex III, 10 of complex IV, and 13 subunits of complex V.
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vate dehydrogenase or the so-called AAA complexes.
Recently, the occurrence of protein complexes com-
prising mitochondrial dehydrogenases of the citric
acid cycle was reported on the basis of diffusion rate
measurements of individual enzymes of this meta-
bolic pathway (Haggie and Verkman, 2002). Most
likely, these protein complexes are too unstable for
biochemical preparations. Protein complexes and su-
percomplexes offer several physiological advantages
in comparison with singular proteins, including sub-
strate channeling, metabolic pathway regulation, and
the realization of complicated biochemical reactions
with reactive intermediates. Therefore the majority of
mitochondrial proteins probably form part of protein
complexes, and possibly most protein complexes are
involved in the formation of even larger supermolec-
ular structures, which remain to be discovered.

MATERIALS AND METHODS

Isolation of Mitochondria from Arabidopsis, Bean
(Phaseolus vulgaris), Potato (Solanum tuberosum), and
Barley (Hordeum vulgare)

Starting material for plant mitochondrial preparations were non-green
Arabidopsis suspension cell cultures, potato tubers, 6-d-old etiolated barley
seedlings, and 18-d-old etiolated bean seedlings. Arabidopsis cell lines were
cultivated in the dark at 24°C to 26°C, 30% humidity, and gentle shaking (90
rpm) as described previously (Werhahn et al., 2001), and etiolated seedlings
were grown at 24°C. All organelle preparations were carried out on the basis
of filtration, differential centrifugation, and Percoll density centrifugation as
outlined by Werhahn et al. (2001) for Arabidopsis; Focke et al. (2003) for
barley; and Braun et al. (1992b) for potato and bean. Purified organelles
were finally resuspended in a buffer containing 0.4 m mannitol, 1 mm EGTA,
0.2 mm phenylmethylsulfonyl fluoride (PMSF), and 10 mm Tricine/KOH,
pH 7.2, at a protein concentration of 10 mg mL�1, divided into aliquots of
100 �L, and directly used for investigations (the amount of some supercom-
plexes was significantly reduced if mitochondrial fractions were frozen and
stored before analyses).

Solubilization of Mitochondrial Proteins

Mitochondrial aliquots were centrifuged for 10 min at 14,300g, and
sedimented organelles were resuspended in one of the following buffers
(conditions adopted from Arnold et al., 1998; Schägger, 2001): (a) 100 �L of
digitonin solubilization buffer (30 mm HEPES pH 7.4, 150 mm potassium
acetate, 10% [v/v] glycerol, 2 mm PMSF, and [1–10 g per g protein] digitonin
[Fluka, Buchs, Switzerland]); (b) 100 �L of dodecylmaltosid solubilization
buffer (750 mm aminocaproic acid, 50 mm BisTris, pH 7.0, 0.5 mm EDTA, 1
mm PMSF, and docedylmaltoside [0.1–2 g per g protein; Roche, Mannheim,
Germany]; and (c) 100 �L of Triton solubilization buffer (50 mm NaCl, 2 mm
aminocaproic acid, 1 mm EDTA, 50 mm imidazole-HCl, pH 7.4, 10% glyc-
erol, 5 mm PMSF, and Triton X-100 [0.1–2 g per g protein; Amersham-
Pharmacia-Biotech Uppsala].

After incubation for 20 min on ice, samples were centrifuged at 18,000g
for 30 min to remove insoluble material and were subsequently supple-
mented with 5 �L of Coomassie Blue solution (5% [w/v] Coomassie Blue in
750 mm aminocaproic acid). Dodecylmaltoside-solubilized samples were
centrifuged immediately after resuspension of organelles in solubilization
buffer and afterward were supplemented with 20 �L of Coomassie Blue
solution. Coomassie Blue-treated protein samples were directly loaded onto
Blue-native gels.

Two-Dimensional Blue-Native/SDS PAGE

One-dimensional Blue-native PAGE and two-dimensional Blue-native/
SDS PAGE were carried out as described by Schägger (2001b). Gradient gels

(4.5%–16% [w/v] acrylamide) were used for the Blue-native gel dimensions
and two-step Tricine-SDS gels (10% and 16% [w/v] acrylamide) for second
gel dimensions. The cathode buffer of Blue-native gel dimensions did not
include detergent; only for electrophoresis of dodecylmaltoside-solubilized
samples 0.03% of the detergent was added. Gels were either stained with
Coomassie-colloidal (Neuhoff et al., 1985, 1990) or with silver (Heukeshoven
and Dernick, 1986)

Two-Dimensional Blue-Native/Blue Native
Gel Electrophoresis

Two-dimensional Blue-native/Blue-native PAGE was carried out as pub-
lished by Schägger and Pfeiffer (2000). It proved to be important to stop
first-dimension electrophoresis runs after 50% completion to avoid protein
complexes and supercomplexes getting stuck in the gels. In contrast, it was
important to extend the electrophoresis runs of second gel dimensions by
factor two, because protein complexes stuck in gels were best resolved.

Protein Preparations for Mass Spectrometry

For mass spectrometry, gels were colloidal stained with Coomassie Blue
(Neuhoff et al., 1990) and single proteins were cut out, transferred into an
Eppendorf tube, and incubated with Milli-Q water for 10 min. Rebuffering
was carried out by incubating the gel pieces for 15 min in acetonitrile and 0.1
m NH4HCO3, respectively. Subsequently, the proteins were dehydrated by
acetonitrile and incubated with 20 �L of digestion solution (0.5 �g of trypsin
[Promega, Madison, WI] in 20 �L of 50 mm NH4HCO3) overnight at 37°C.
Peptide extraction was performed at 37°C as follows: Samples were supple-
mented with 20 �L of 50 mm NH4HCO3 and shaken for 15 min, and
afterward, supernatants were taken and stored. Gel pieces were then shaken
for 15 min in the presence of 20 �L of 5% (v/v) formic acid. Subsequently,
the same volume of acetonitrile was added, and samples were shaken for
another 15 min. Afterward, all supernatants were pooled and dried down to
a volume of about 10 �L. Purification of the generated peptides was
achieved using ZipTips (Millipore, Bedford, MA) according to the manu-
facturer’s instructions.

Matrix-Assisted Laser Desorption Ionization/Time of
Flight Mass Spectrometry

Determination of the molecular masses of Zip-Tip purified peptides was
carried out by positive-ion matrix assisted laser desorption ionization/time
of flight mass spectrometry using an Ultraflex instrument (Bruker, Newark,
DE) equipped with delayed-extraction and a N2 laser (337 nm). For each
sample, 1 �L of matrix solution (10 mg of �-cyano-4-hydroxycinnamic acid
in 1 mL of 60% [v/v] acetonitrile/0.1% [v/v] formic acid) was placed on the
Scout ion source and crystallized as a thin layer. One microliter of sample
was given directly on the top of the thin matrix layer, and cocrystallization
was carried out at room temperature. Spectra were recorded in reflection
mode with an acceleration voltage of 25 kV and a reflection voltage of 26.3
kV. Monoisotopic masses from spectra were selected automatically and
were used for protein identification with the help of MASCOT (Matrix
Science, London).

Electrospray Ionization Tandem Mass Spectrometry

For peptide sequencing, 3 �L of Zip-Tip purified sample was filled into
Au/Pd-coated nanospray glass capillaries (Protana, Odense, Denmark). The
tip of the capillary was placed orthogonally in front of the entrance hole of
a quadropole time-of-flight mass spectrometry instrument (Q-TOF II, Mi-
cromass, Watres, Milford, MA) equipped with a nanospray ion source. A
capillary voltage between 750 and 1,000 V and a cone voltage of 30 V was
applied. Two-fold charged peptides were chosen for collision-induced dis-
sociation experiments, and the corresponding parent ions were selectively
transmitted from the quadropole mass analyzer into the collision cell. Argon
was used as collision gas, and the kinetic energy was set between 20 and 40
eV. The resulting daughter ions were separated by an orthogonal time-of-
flight mass analyzer. Peptide sequencing and protein identification were
carried out with the programs PeptideSequencing of the BioLynx software
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package (v3.5, Mircomass), Sonar of the Knexus software package (Proteo-
metrics, Manitoba, Canada), and MASCOT (Matrix Science).
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Identification and Characterization o f Respirasomes
in Potato Mitochondria1

Holger Eubel, Jesco Heinemeyer, and Hans-Peter Braun*

Institut für Angewandte Genetik, Universität Hannover, D–30419 Hannover, Germany

Plant mitochondria were previously shown to comprise respiratory supercomplexes containing cytochrome c reductase
(complex III) and NADH dehydrogenase (complex I) of I1III2 and I2III4 composition. Here we report the discovery of additional
supercomplexes in potato (Solanum tuberosum) mitochondria, which are of lower abundance and include cytochrome c oxidase
(complex IV). Highly active mitochondria were isolated from potato tubers and stems, solubilized by digitonin, and
subsequently analyzed by Blue-native (BN) polyacrylamide gel electrophoresis (PAGE). Visualization of supercomplexes by in-
gel activity stains for complex IV revealed five novel supercomplexes of 850, 1,200, 1,850, 2,200, and 3,000 kD in potato tuber
mitochondria. These supercomplexes have III2IV1, III2IV2, I1III2IV1, I1III2IV2, and I1III2IV4 compositions as shown by two-
dimensional BN/sodium dodecyl sulfate (SDS)-PAGE and BN/BN-PAGE in combination with activity stains for cytochrome c
oxidase. Potato stem mitochondria include similar supercomplexes, but complex IV is partially present in a smaller version
that lacks the Cox6b protein and possibly other subunits. However, in mitochondria from potato tubers and stems, about 90%
of complex IV was present in monomeric form. It was suggested that the I1III2IV4 supercomplex represents a basic unit for
respiration in mammalian mitochondria termed respirasome. Respirasomes also occur in potato mitochondria but were of low
concentrations under all conditions applied. We speculate that respirasomes are more abundant under in vivo conditions.

Prerequisite for oxidative phosphorylation
(OXPHOS) in mitochondria are five protein com-
plexes termed NADH dehydrogenase (complex I),
succinate dehydrogenase (complex II), cytochrome c
reductase (complex III), cytochrome c oxidase (com-
plex IV), and ATP synthase (complex V). These protein
complexes can be separated by biochemical proce-
dures and are well characterized for several organ-
isms. However, there is mounting evidence that in
vivo these protein complexes specifically interact
forming supermolecular structures called super-
complexes: (1) purification protocols for individual
OXPHOS complexes sometimes lead to the isolation of
stoichiometric assemblies of two or more complexes
which are functionally active (Hatefi et al., 1961; Hatefi
and Rieske, 1967); (2) stable and enzymatically active
supercomplexes can be reconstituted upon mixture of
complexes I and III (Fowler and Hatefi, 1961; Fowler
and Richardson, 1963; Hatefi, 1978; Ragan and Heron,
1978); (3) respiratory protein complexes from several
bacteria were found to form specific supermolecular
structures (Berry and Trumpower, 1985; Sone et al.,
1987; Iwasaki et al., 1995; Niebisch and Bott, 2003); (4)
inhibitor titration experiments reveal that the respira-
tory chain of yeast (Saccharomyces cerevisiae) behaves
like a single functional unit (Boumans et al., 1998); and
(5) flux control experiments indicate specific interac-

tions of respiratory protein complexes (Genova et al.,
2003). Several physiological roles were proposed for
these respiratory supercomplexes, like substrate chan-
neling, catalytic enhancement, protection of reactive
reaction intermediates, and stabilization of individ-
ual protein complexes (Schägger and Pfeiffer, 2000;
Genova et al., 2003).

Recently, characterization of mitochondrial super-
complexes was very much facilitated by the introduc-
tion of a novel experimental strategy which is based on
protein solubilizations using mild nonionic detergents
and separation of the solubilized protein complexes by
Blue-native (BN) gel electrophoresis or gel chroma-
tography (Arnold et al., 1998, 1999; Cruciat et al., 2000;
Schägger and Pfeiffer, 2000; Zhang et al., 2002; Pfeiffer
et al., 2003). Using this approach, several distinct
supercomplexes could be described for mitochondria
from different organisms (for review, see Schägger,
2001a, 2002).

In yeast, dimeric complex III (this protein complex
always is dimeric for functional reasons) forms super-
complexes with one or two copies of complex IV.
Furthermore, complex V was shown to partially occur
in a dimeric state, which includes some dimer-specific
subunits. In contrast, complex II from yeast does not
form part of supermolecular structures under all
experimental conditions applied. In beef, the com-
plexes III2 and I form a supercomplex. Additionally,
this supercomplex can include one to four copies of
complex IV. The resulting large structures are called
respirasomes, because they can autonomously carry
out respiration in the presence of cytochrome c and
ubiquinone (Schägger and Pfeiffer, 2000). Like in yeast,
ATP synthase partially forms dimers, and complex II
does not form part of supercomplexes.
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1829–7/1.
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Meanwhile, protein solubilizations using nonionic
detergents and separations of solubilized protein
complexes by BN-PAGE were used to systematically
investigate the structure of the OXPHOS system of
plants (Eubel et al., 2003). Three different super-
complexes were found in digitonin-solubilized mito-
chondrial fractions of Arabidopsis, potato (Solanum
tuberosum), barley (Hordeum vulgare), and bean
(Phaseolus vulgaris): (1) a 1,500-kD I1III2 supercom-
plex; (2) a 3,000-kD I2III4 supercomplex; and (3)
a 1,100-kD dimeric ATP synthase complex. Depend-
ing on the plant investigated, the percentage of
complex I integrated into the I1III2 supercomplex
varies between 50% and 90%. The I2III4 super-
complex is of lower abundance and only becomes
visible upon prolonged staining of BN gels. While
the I1III2 and I2III4 supercomplexes are stable at high
detergent to protein ratios, dimeric ATP synthase
proved to be only stable at very low detergent
concentrations. In contrast to yeast and mammals,
cytochrome c oxidase (complex IV) of plant mito-
chondria did not form part of supercomplexes under
all conditions applied. Instead, two different forms of
monomeric complex IV are visible on BN gels, which
are termed complex IVa and IVb (about 300 and 220
kD in Arabidopsis). Complex IVa includes at least
one additional subunit, which is homologous to the
Cox6b protein from mammals and yeast (Eubel et al.,
2003).

Here we report a continuation of our efforts to
carefully characterize the supermolecular structure of
the OXPHOS system of plant mitochondria. Using
highly active mitochondria isolated from freshly
harvested potato tubers, five additional supercom-
plexes of about 850, 1,150, 1,850, 2,200, and 3,000 kD
are visible on BN gels. All five protein complexes
include complex IVa as shown by one-dimensional
(1D) BN-PAGE, two-dimensional (2D) BN/SDS-
PAGE, and 2D BN/BN-PAGE in combination with
in-gel activity measurements for cytochrome c oxi-
dase. The novel supercomplexes are of comparatively
low abundance and have III2IV1, III2IV2, I1III2IV1,
I1III2IV2, and I1III2IV4 compositions. Slightly smaller
versions of these protein complexes occur in potato
stem mitochondria, which include complex IVb in-
stead of complex IVa. Hence, the OXPHOS complexes
of plant mitochondria partially form respirasomes,
which most likely have important physiological and/
or regulatory functions.

RESULTS

Identification of Novel Supercomplexes in Potato

Mitochondrial Fractions

Previous investigations of digitonin-solubilized mi-
tochondrial fractions from Arabidopsis, potato, bean,
and barley by BN-PAGE led to the identification of
I1III2 and I2III4 supercomplexes and dimeric ATP syn-

thase (Eubel et al., 2003) but did not reveal hints on
complex IV-containing supercomplexes which were
described for yeast and mammalian mitochondria
(Schägger and Pfeiffer, 2000). However, these findings
were based on mitochondrial isolations from etiolated
seedlings (bean and barley), aged storage organs
(potato), and suspension cell cultures (Arabidopsis),
and it so far cannot be ruled out that mitochondrial
preparations from other tissues or organs might allow
the discovery of further supercomplexes. In an attempt
to re-examine our previous findings, freshly harvested
potato tubers were used for mitochondrial isola-
tions and subsequent characterizations of digitonin-
solubilized protein extracts on 1D BN gels (Fig. 1A).
In parallel, mitochondrial preparations from 20-d-old
etiolated potato stems were analyzed by this pro-
cedure (Fig. 1B).

All molecular masses of protein complexes given in
this publication represent apparent molecular masses
as deduced from separations on BN gels. These values
should be considered with caution, because protein
separations on BN gels do not exactly reflect calculated
molecular masses. Some values for apparent molecu-
lar masses in this publication were corrected in
comparison to the values given in Eubel et al. (2003):
600 kD for complex V (previously 550 kD), 350 kD for
complex IVa (previously 300 kD), and 270 kD for
complex IVb (previously 220 kD).

As expected, all known protein complexes of the
OXPHOS system are visible on our gels (Fig. 1):
complex I (approximately 1,000 kD), complex V
(approximately 600 kD), and dimeric complex III
(approximately 500 kD). Complex IVa (approximately
350 kD), complex IVb (approximately 270 kD), and
complex II result in diffuse bands on the 1D gels
but were clearly identified upon resolution of their
subunits on second gel dimensions, which were
carried out in the presence of SDS (data not shown).
Finally, the I1III2 and I2III4 supercomplexes are visible.
However, the occurrence of the I2III4 supercomplex
and complex IVb was restricted to potato stem
mitochondria. Dimeric ATP synthase could not be
detected in both fractions, most likely because digito-
nin concentrations were too high.

Besides the known mitochondrial protein com-
plexes and supercomplexes, additional complexes of
low abundance showed up on our gels at approxi-
mately 850 kD and above 1,500 kD in both mito-
chondrial fractions (Fig. 1). To test if these protein
supercomplexes include complex IV, in-gel activity
measurements for cytochrome c oxidase were carried
out. Indeed, five novel bands of approximately 850,
1,200, 1,850, 2,200, and 3,000 kD specifically were
labeled in the potato tuber mitochondrial fraction (Fig.
1A). The 850- and 1,850-kD bands also are present in
potato stem mitochondria and additionally two bands
at approximately 770 and approximately 1,770 kD (Fig.
1). Identities of the newly discovered protein com-
plexes were analyzed by 2D gel electrophoresis
systems and are given below.
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Physiological State of Mitochondrial Fractions Used
for Supercomplex Characterizations

Oxygen uptake measurements were carried out
using a Clark-type oxygen electrode to ensure that
mitochondria used for the characterization of the
novel supercomplexes are intact and physiologically
active (Fig. 2). Organelles prepared from freshly
harvested potato tubers exhibited high oxygen con-
sumption rates (on average 155 nmol O2 min�1 mg�1

mitochondrial protein under state III conditions). In
contrast, activity of potato stem mitochondria repro-
ducibly was 40% to 50% lower under the same con-
ditions. Mitochondria prepared from both organs had
comparable state II respiration. Alternative respiration
was low in mitochondrial isolations from potato stems
and even lower in tuber mitochondria. We conclude
that all mitochondrial fractions contained highly ac-
tive organelles, but that mitochondria prepared from
freshly harvested potato tubers exhibited highest state
III respiration.

Optimization of Protein Solubilizations for
Supercomplex Characterizations

To allow optimal visualization of the novel mito-
chondrial supercomplexes, isolated mitochondria

from potato tubers and stems were solubilized by
varying concentrations of digitonin (Fig. 3). As pre-
viously reported (Eubel et al., 2003), 1 g digitonin per g
mitochondrial protein only partially allowed solu-
bilization of membrane-bound protein complexes as
shown by resolutions on 1D BN gels. In contrast,

Figure 1. Identification of complex IV-containing supercomplexes in potato tuber (T) and stem (S) mitochondria. Protein
complexes were solubilized by 5 g digitonin per g protein, separated by 1D BN-PAGE and either visualized by Coomassie
staining (left gel strips) or by in-gel activity staining for cytochrome c oxidase (right gel strips). Activity stains are given in false-
color mode to increase color contrast (red, Coomassie; black, enzyme activity). Molecular masses and identities of known
protein complexes are indicated on the left side of the gels in Roman numerals (I, NADH dehydrogenase; II, succinate
dehydrogenase; III, cytochrome c reductase; IVa and IVb, large and small form of cytochrome c oxidase; V, ATP synthase; I1 III2
and I2 1 III4, supercomplexes of complexes I and III). Additional supercomplexes exhibiting cytochrome c oxidase activity are
indicated by arrows.

Figure 2. Oxygen consumption of isolated mitochondria from potato
tubers and stems. Values are based on three independent mitochondrial
preparations.
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solubilization of protein complexes and super-
complexes was very efficient between 2.5 and 10 g
digitonin per g mitochondrial protein. Under these
conditions, all known protein complexes and the
newly discovered complexes of low abundance could
be resolved. However, abundance of some super-
complexes decreased slightly in the presence of higher
detergent to protein ratios. All further experiments
were carried out with digitonin:protein ratios of 5 g/g.

Compositions of Newly Discovered

Mitochondrial Supercomplexes

Two-dimensional BN/SDS-PAGE was carried out to
characterize the subunit compositions of the novel
mitochondrial protein supercomplexes (Fig. 4). High
protein amounts had to be loaded onto the gels to
overcome their low abundance and to obtain infor-
mation on subunits of these supercomplexes. The 850-
kD complex of potato tuber mitochondria contains
subunits of complexes III and IV and most likely has
III2IV composition (Fig. 4A). The 1,200-kD complex
could not be detected on our 2D gels. The 1,850-,
2,200-, and 3,000-kD complexes of potato tuber mito-
chondria all contain the subunits of the I1III2 super-
complex and additionally the Cox2 protein, which is
the most dominant subunit of complex IV on BN gels
(Fig. 4A). Further subunits of complex IV probably are
present but could not be detected because they overlap
with subunits of the complexes I and III on our gels.
Due to low abundance, densitometric measurements
of individual protein spots did not allow resolution of
the stoichiometry of the protein complexes within
these supercomplexes. However, based on the appar-
ent molecular masses on the BN gels, the 1,850-, 2,200-,
and 3,000-kD supercomplexes probably have I1III2IV1,
I1III2IV2, and I1III2IV4 compositions, which would be in

accordance with findings on respiratory supercom-
plexes in mammalian mitochondria (Schägger and
Pfeiffer, 2000). We conclude that complex IV forms
part of supercomplexes in potato tuber mitochondria.
However, about 90% of complex IV was in monomeric
state under the conditions applied (Fig. 4A).

Slightly different results were obtained upon reso-
lution of mitochondrial protein complexes from potato
stems by 2D BN/SDS-PAGE (Fig. 4B). First of all,
about 50% of monomeric complex IV was not in the
larger IVa (350 kD) but in the IVb form (270 kD), which
could not be detected in the potato tuber mitochon-
drial fraction. Since the mitochondrial fractions from
tubers and stems were treated equally, artificial
generation of this smaller version of monomeric
complex IV during mitochondrial isolations and/or
BN-PAGE seems unlikely. As reported previously for
Arabidopsis and bean, complex IVb lacks at least one
30-kD subunit, which was identified as being homol-
ogous to Cox6b proteins from yeast and mammals
(Eubel et al., 2003). The 850- and 1,850-kD supercom-
plexes containing complex IVare also present in potato
stem mitochondria and additionally two slightly
smaller supercomplexes of 770 and 1,770 kD, which
probably include complex IVb instead of complex IVa.
The complex IV-containing 2,200- and 3,000-kD super-
complexes could not be found in mitochondrial
isolations from potato stems. Instead, the 3,000-kD
I2III4 supercomplex is present, which previously was
described for Arabidopsis (Eubel et al., 2003).

Analysis of the Newly Discovered Supercomplexes
by 2D BN/BN-PAGE

To further investigate the structure of the newly
discovered complex IV-containing supercomplexes
from potato, 2D gel electrophoreses were repeated
using 2D BN/BN-PAGE (Schägger and Pfeiffer, 2000).
This procedure is based on the separation of digitonin-
solubilized protein complexes and supercomplexes on
a first dimension BN-PAGE and subsequently a reso-
lution of the separated supercomplexes on a second
dimension BN-PAGE in the presence of dodecylmalto-
side. Dodecylmaltoside is known to destabilize super-
complexes. Protein complexes and supercomplexes
likewise stable in the presence of digitonin and
dodecylmaltoside form a diagonal line on the resulting
2D gels, whereas supercomplexes destabilized by
dodecylmaltoside dissociate into protein complexes
of higher electrophoretic mobility.

2D BN/BN-PAGE of mitochondrial fractions from
potato tuber (Fig. 5A) confirmed all results obtained by
2D BN/SDS-PAGE: the 850-kD supercomplex consists
of complexes III and IV and the 1,850-, 2,200-, and
3,000-kD supercomplexes of complexes I, III, and IV.
Separation of all these supercomplexes not only re-
vealed occurrence of complex IVa but also presence of
the smaller complex IVb. However, since monomeric
complex IVb is absent in potato tuber mitochondrial
fractions after digitonin solubilizations (Figs. 1A and

Figure 3. Resolution of mitochondrial protein complexes from potato
mitochondria after solubilization using varying digitonin to protein
ratios. Protein complexes were separated by 1D BN-PAGE and
visualized by Coomassie staining. Detergent to protein ratios are given
in g detergent per g mitochondrial protein. The OXPHOS complexes
are designated by Roman numerals (see legend of Fig. 1). Unknown
protein complexes are indicated by arrows.
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4A) but present after additional dodecylmaltoside
treatment (Fig. 5A), this version of complex IV most
likely is artificially generated during BN/BN-PAGE
under the conditions applied. In contrast to 2D BN/
SDS-PAGE, 2D BN/BN-PAGE allowed the analysis of
the 1,200-kD supercomplex present in potato tuber
mitochondria. Like the 850-kD complex, this super-
complex only contains the complexes III and IV and
probably has a III2IV2 composition.

Analysis of mitochondrial fractions from potato
stems by BN/BN-PAGE (Fig. 5B) also confirmed the
findings obtained by 2D BN/SDS-PAGE: the 850- and
1,850-kD complexes include complexes III 1 IVa and
I 1 III 1 IVa (complex IVa is partially converted into
complex IVb as reported for mitochondria from potato
tubers). The 770- and 1,770-kD complexes seem to
have the same composition but most likely include
complex IVb instead of complex IVa. The complex IV-
containing 1,200-, 2,200-, and 3,000-kD supercom-
plexes of potato tuber mitochondria are absent, but
a 3,000-kD I2III4 complex is present.

Interestingly, destabilization of the large complex
IV-containing supercomplexes partially results in
generation of the I1III2 but not of the III2IV1-2 super-

complexes (Fig. 5, A and B). We conclude that inter-
actions between the complexes I and III are stronger
than interactions between complexes III and IV.

In-Gel Activity Measurements for Cytochrome c

Oxidase in 2D BN/BN Gels

To increase sensitivity, a 2D BN-BN gel for potato
stem mitochondria was repeated and stained by in-gel
activity measurements for cytochrome c oxidase. This
measurement was not possible after polymerization of
the 1D BN gel stripe into the sample gel of a second gel
dimension, most likely because N,N,N9,N9-tetrame-
thylethylenediamine (TEMED) and ammonium per-
sulfate (APS) diffused into the gel stripe and destroyed
enzymatic activities. However, fixation of the first gel
dimension with agarose onto the second gel dimen-
sion proved to be compatible with this experimental
approach. As shown in Figure 6, all previously made
conclusions on complex IV-containing supercom-
plexes could be confirmed. Indeed, the 850- and
1,850-kD complexes include complex IVa, which
partially dissociates into complex IVb in the presence
of dodecylmaltoside. In contrast, the 770- and 1,770-kD

Figure 4. Two-dimensional resolution of mitochondrial protein complexes from potato tubers (A) and potato stems (B) by BN/
SDS-PAGE. Mitochondrial proteins were solubilized by 5 g digitonin per g protein. Gels were Coomassie stained. Strips of
corresponding 1D BN gels and identities of protein complexes and supercomplexes are given above the 2D gels. The numbers on
the left indicate the molecular masses of standard proteins. Subunit II of cytochrome c oxidase is marked by arrows.
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complexes only contain the smaller IVb version of the
cytochrome c oxidase complex (Fig. 6).

DISCUSSION

Structure of Respiratory Supercomplexes in Plants,
Animals, and Fungi

Besides the previously described I1III2 and I2III4
supercomplexes and dimeric ATP synthase, potato
tuber mitochondria contain five additional respiratory
supercomplexes of about 850-, 1,200-, 1,850-, 2,200-,
and 3,000-kD, which include complex IV. The 850- and
1,200-kD complexes only contain complexes III and IV
and probably have III2IV1 and III2IV2 compositions; the
other three complex IV-containing supercomplexes
additionally include complex I and most likely have
I1III2IV1, I1III2IV2, and I1III2IV4 structures (Table I;
Fig. 7). Similar supercomplexes were found in potato
stem mitochondria. However, all newly described
supercomplexes are of rather low abundance, because
they only contain about 10% of total complex IV upon
digitonin solubilizations and analysis on BN gels.
Using comparable conditions, nearly 100% of yeast
complex IV is associated with dimeric complex III
(Cruciat et al., 2000; Schägger and Pfeiffer, 2000). In
mammalian mitochondria—which include similar re-

spiratory supercomplexes than potato (Schägger and
Pfeiffer, 2000)—most complex IV also is present in the
monomeric form. However, there are some striking
differences between mammalian and plant mitochon-
dria with respect to respiratory supercomplexes: most
complex I of bovine mitochondria forms part of the
I1III2IV1 complex, whereas in plants the I1III2 complex
is of highest abundance. In fact the I1III2 complex
seems to be of special stability in mitochondria from
potato and other plants. Furthermore, a larger I2III4
supercomplex is present in plant mitochondria, which
could not be described for mammalian mitochondria.

The I1III2IV4 supercomplex was suggested to repre-
sent a basic unit for respiration in mammalian mito-
chondria termed respirasome (Schägger and Pfeiffer,
2000). Respirasomes are also present in plant mito-
chondria (Fig. 8). However, only very minor amounts
of complex IV form part of respirasomes in mammals
and plants (\5%). On the other hand, these structures
might be much more abundant in vivo and only de-
stabilized under the experimental conditions used for
their characterization. Indeed, low digitonin to protein
ratios seem to allow solubilization of higher quantities
of respirasomes in potato (Fig. 3). Possibly in vivo even
larger structures than respirasomes are formed by
oligomerization of supercomplexes. In fact, some very
weak protein bands can be seen above 3,000 kD on the
gels shown in Figure 7. The I2III4 supercomplex of

Figure 5. Two-dimensional resolution of mitochondrial protein complexes from potato tubers (A) and stems (B) by BN/BN-PAGE.
Mitochondrial proteinswere solubilizedby5 g digitonin per g protein. Corresponding strips of 1DBNgels are shown above the 2D
gels. Identitiesof the resolvedproteincomplexes and supercomplexesare givenaboveand to the left of the gels inRomannumerals.
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plant mitochondria could be a building block of these
proposed oligomeric structures.

Are Some Supercomplexes Artificially Formed during
Protein Solubilizations?

So far, formation of specific respiratory super-
complexes by artificial aggregation cannot be com-
pletely excluded but is highly unlikely for several
reasons: (1) all complex IV-containing supercomplexes
proved to be active by in-gel activity measurements
for cytochrome c oxidase; (2) higher abundance of
complex IV-containing supercomplexes in potato
tuber mitochondria in comparison to potato stem
mitochondria correlated with higher state III respira-
tion; (3) the five OXPHOS complexes could theoreti-
cally form 10 different heterodimeric supercomplexes
(composed of two different monomeric complexes);
however, only heterodimeric I-III and III-IV complexes
were observed, which represent the only meaningful
associations with respect to the physiology of the

mitochondrial respiratory chain (besides II-III associ-
ations, which were not observed); and (4) several
physiological data reviewed in the introduction sec-
tion support specific supercomplex formations, like
reconstitution, inhibitor titration, and flux control ex-
periments (Hatefi and Rieske, 1967; Ragan and Heron,
1978; Boumans et al., 1998; Genova et al., 2003).

Assembly of Mitochondrial Supercomplexes

Currently the mechanisms for supercomplex forma-
tion in mitochondria are only poorly understood. In
yeast cardiolipin proved to be essential for super-
complex stability. Based on studies with yeast mutants
deficient in individual subunits of OXPHOS com-
plexes, some proteins possibly forming part of super-
complex interphases could be defined (Pfeiffer et al.,
2003). In potato the I1III2IV1-4 complexes partly
dissociate into the I1III2 supercomplex and monomeric
complex VI, indicating that the complex I-III associa-
tion is much stronger than the interaction between
these complexes and complex IV. This disassembly
order might represent reverse assembly stages.

Experimental Conditions for Supercomplex
Characterizations in Plants

Digitonin solubilization and BN-PAGE proved to be
a powerful tool for the investigation of mitochondrial
supercomplexes from plants. However, visualization
of individual supercomplexes in mitochondrial frac-
tions of plants very much depends on various factors:

1. The digitonin to protein ratio. Five grams detergent
per g protein proved to be optimal for the quan-
titative solubilization of most supercomplexes (Fig.
3). However, lower detergent to protein ratios sig-
nificantly increase the amounts of some super-
complexes on BN gels. In fact, solubilization using
1 g digitonin per g protein seems to mainly

Figure 6. Identification of cytochrome c oxidase-containing super-
complexes of potato stem mitochondria by in-gel activity staining
on 2D BN/BN gels. Mitochondrial proteins were solubilized by 5 g
digitonin per g protein. A corresponding stripe of an activity-stained 1D
BN gel is shown above the 2D gel. Identities of protein complexes and
supercomplexes of the OXPHOS system from potato are given in
Roman numerals. The activity stain is given in false-color mode to
increase color-contrast (red, Coomassie; black, enzyme activity).

Table I. Protein complexes and supercomplexes of the OXPHOS
system in potato tuber and stem mitochondria

Molecular

Mass [kD]
Components

Proposed

Composition

Occurrence

Tuber Stem

3,000 I, III I2 1 III4 — x
3,000 I, III, IVa I1 1 III2 1 IVa4 x —
2,200 I, III, IVa I1 1 III2 1 IVa2 x —
1,850 I, III, IVa I1 1 III2 1 IVa1 x x
1,770 I, III, IVb I1 1 III2 1 IVb1 — x
1,500 I, III I1 1 III2 x x
1,200 III, IVa III2 1 IVa2 x —
1,000 I I1 x x
850 III, IVa III2 1 IVa1 x x
770 III, IVb III2 1 IVb1 — x
600 V V1 x x
500 III III2 x x
350 IVa IVa1 x x
270 IVb IVb1 — x
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solubilize I1III2 and I1III2IV4 supercomplexes (lane 1
of the gels in Fig. 3).

2. The physiological state of the starting material for
mitochondrial isolations. Freshly harvested potato
tubers gave much better results concerning super-
complex visualization on BN gels than potato
tubers stored for some weeks (data not shown).
This most likely explains the absence of complex
IV-containing supercomplexes of potato tubers in
our previous investigations (however, some low
amounts of the 850-kD III2IV1 supercomplex of
potato mitochondria were overseen on the gel in
Figure 4 in Eubel et al., 2003).

3. The plant organs selected for mitochondrial prep-
arations. Potato tubers and stems slightly differ
with respect to occurrence of individual super-
complexes. Overall, stem mitochondria contained
less complex IV-containing respiratory supercom-
plexes. Furthermore, complex IV partially is pre-
sent in the smaller IVb form in stem mitochondria.
So far it cannot be distinguished whether these
differences reflect tissue-specific variations or
rather represent differences in physiological states
of the organelles of these two tissues. Possibly
etiolated seedlings or suspension cell cultures are
not optimal as starting material for the character-
ization of labile interactions of mitochondrial pro-
tein complexes.

We speculate that complex IV-containing super-
complexes are present in other plants depending
on the physiological state of the organs used for
mitochondrial isolations but might be of low abun-

dance. Indeed, mitochondria prepared from Arabi-
dopsis leaves revealed some very small amounts of
complex IV-containing supercomplexes (H. Eubel and
H.-P. Braun, data not shown).

Functional Relevance of the Monomeric Cytochrome c
Oxidase Complexes IVa and IVb of Plant Mitochondria

Monomeric complex IV is represented by two
different forms in plants (Jänsch et al., 1996; Eubel
et al., 2003; Sabar et al., 2003), the larger of which
includes at least one additional protein subunit homol-
ogous to the Cox6b protein of fungi and mammals.
The smaller complex IVb is generated by dissociation
of the larger complex IVa in the presence of dodecyl-
maltoside. However, digitonin-solubilized mitochon-
drial fractions from potato tubers and stems differ
considerably with respect to complex IVb, which is
absent in digitonin extracts of potato tuber mitochon-
dria (Fig. 4A) but represents about 50% of monomeric
complex IV of stem mitochondria (Fig. 4B). Further-
more, supercomplexes of potato stem mitochondria
seem to partially include the smaller IVb form of
cytochrome c oxidase. Complex IVb is enzymatically
active, but specific activity is significantly reduced in
comparison to complex IVa (compare Figs. 1 and 4/5).
At the same time, state III respiration of stem mito-
chondria is reduced as shown by oxygen consumption
measurements of isolated mitochondria (Fig. 2). We
therefore speculate that there might be distinct
physiological roles of the two forms of cytochrome c
oxidase in plants. Possibly plant mitochondria contain
a pool of partially inactivated complex IV which ra-
pidly can be activated upon association with the
Cox6b protein.

An even larger probably monomeric form of com-
plex IV can be seen by activity stainings of BN gels in
the 400-kD range (Fig. 1). This version of complex IV is
not visible on Coomassie-stained BN gels (Fig. 4), and
its identity so far remains a mystery. Possibly this form
of complex IV is a chaperone-bound assembly inter-
mediate of cytochrome c oxidase. Similarly, a slightly
larger form of complex III (550 instead of 500 kD) can
be seen on the 2D BN/BN gel in Figure 5, which is
invisible on the corresponding first gel dimension and

Figure 8. Structure and function of the respirasome in mitochondria.
[M], Matrix; [IMS], mitochondrial intermembrane space.

Figure 7. Identities of protein complexes and supercomplexes of the
OXPHOS system in potato tubers (T) and stems (S) after separation by
1D BN-PAGE. Proteins were solubilized by 5 g digitonin per g protein.
The gels were Coomassie stained. Identities of the protein complexes
and supercomplexes are given by Roman numerals.
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might also represent a chaperone-bound form of this
respiratory complex. Further experiments have to be
carried out to explain these observations.

Outlook

Plant mitochondria exhibit several special features
in comparison to mitochondria from heterotrophic
eukaryotes. Due to the presence of numerous alterna-
tive oxidoreductases, the respiratory chain of plant
mitochondria is very much branched (Vanlerberghe
and McIntosh, 1997; Rasmusson et al., 1999; Moller,
2001; Moore et al., 2003). Furthermore, the protein
complexes of the respiratory chain include plant-
specific protein subunits (Braun and Schmitz, 1995;
Eubel et al., 2003; Heazlewood et al., 2003a, 2003b;
Millar et al., 2003). For instance, the two subunits of the
mitochondrial processing peptidase form an integral
part of complex III in plants (Braun et al., 1992b;
Eriksson et al., 1994). As a consequence, respiratory
supercomplexes most likely have special roles in plant
mitochondria, e.g. in regulating access of alternative
respiratory oxidoreductases to their substrates during
respiration. Experiments to address these questions
are under way in our laboratory.

MATERIALS AND METHODS

Isolation of Mitochondria from Potato Tubers
and Stems

Freshly harvested potato (Solanum tuberosum var. cilena) tubers were

purchased directly from a local farmer. Half of them were stored in the cold

(48C); the other half were planted into soil and grown in the dark at 208C.

Mitochondria were prepared from stored tubers and from etiolated potato

stems after 20 d. Plant material (200 g) was homogenized at 48C using a Waring

blender for 3 3 5 s, filtrated through four layers of muslin, and subsequently

organelles were purified by differential centrifugations and Percoll density

gradient centrifugation as outlined previously (Braun et al., 1992a). Isolated

mitochondria were either directly analyzed by gel electrophoresis or stored

at �808C.

Sample Preparation for Gel Electrophoresis

Mitochondrial samples of 500 mg (50 mg mitochondrial protein) were

sedimented by centrifugation for 10 min at 14,000g, resuspended in 50 mL of

digitonin solution (1%–10% digitonin/30 mM HEPES/150 mM potassium

acetate/10% glycerol), and incubated for 20 min at 08C. Afterwards samples

were centrifuged for 10 min at 18,000g. Finally supernatants were supple-

mented with 5 mL of a Coomassie Blue solution (5% Coomassie Blue/750 mM

aminocaproic acid) and directly loaded onto BN gels.

Gel Electrophoresis

BN-PAGE was carried out as described previously (Schägger, 2001b). Gels

were destained by incubation in fixing solution (40% [v/v] methanol, 10%

[v/v] acetic acid) overnight and subsequently stained with Coomassie col-

loidal (Neuhoff et al., 1985, 1990). Alternatively, strips of BN gels were trans-

ferred horizontally onto second gel dimensions. 2D BN/SDS-PAGE was carried

out according to Schägger (2001b) and 2D BN/BN-PAGE according to

Schägger and Pfeiffer et al. (2000). However, 1D gel strips for BN/BN-PAGE

were fixed by 1.5% agarose onto the second gel dimension and not by direct

polymerization into the stacking gel. This modification proved to be essential

for subsequent in-gel activity measurements.

In-Gel Activity Stains for Cytochrome c Oxidase

In-gel activity of cytochrome c oxidase was measured according to

Zerbetto et al. (1997) and Jung et al. (2000): 1D BN or 2D BN/BN gels

were incubated in 20 mM phosphate buffer (pH 7.4), 1.0 mg/mL DAB

(3,39-diaminobenzidine), 24 units/mL catalase, 1 mg/mL cytochrome c,

and 75 mg/mL sucrose. Reactions were carried out at room temperature for

1 h (1D gels) or overnight (2D gels). Staining was stopped by fixing the gels

in 45% methanol/10% acetic acid. Finally, gels were scanned. To increase color

contrast images were false-colored for Coomassie (red) and catalase activity

(black) by Photoshop software (Adobe Systems, Mountain View, CA).

Oxygen Electrode Measurements

Oxidative phosphorylation of all mitochondrial preparations was analyzed

using a Clark-type oxygen electrode with a reaction chamber of 2 mL

(Oxygraph, Hansatech, Norfolk, England). Oxygen consumption of 10 mg

mitochondria (1 mg mitochondrial protein) in reaction buffer (0.3 M mannitol,

10 mM K2HPO4 (pH 7.2), 10 mM KCl, 5 mM MgCl2) was measured after

supplementation of succinate (15 mM), ADP (5 mM), KCN (5 mM), and

salicylhydroxamic acid (SHAM; 7.5 mM). Mitochondrial oxygen consumption

was calculated in nmol DO2 min�1 mg protein�1.
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Abstract 

 

Supercomplexes are defined associations of protein complexes which are important for several cellular 

functions. This “quintenary” organization level of protein structure recently was also described for the 

respiratory chain of plant mitochondria. Except succinate dehydrogenase (complex II), all complexes of 

the oxidative phosphorylation system (complexes I, III, IV and V) were found to form part of 

supercomplexes. Compositions of these supramolecular structures were systematically investigated using 

digitonin solubilizations of mitochondrial fractions and two-dimensional Blue-native polyacrylamide gel 

electrophoresis. The most abundant supercomplex of plant mitochondria includes complexes I and III at a 

1:2 ratio (I1+III2 supercomplex). Furthermore, some supercomplexes of lower abundance could be 

described which have I2+III4, V2, III2+IV1-2, and I1+III2+IV1-4 compositions. Supercomplexes consisting 

of complexes I plus III plus IV were proposed to be called “respirasome”, because they autonomously can 

carry out respiration in the presence of ubiquinone and cytochrome c. Plant specific alternative 

oxidoreductases of the respiratory chain were not associated with supercomplexes under all experimental 

conditions tested. However, formation of supercomplexes possibly indirectly regulates alternative 

respiratory pathways in plant mitochondria on the basis of electron channelling. In this review, 

procedures to characterize the supermolecular organisation of the plant respiratory chain and results 

concerning supercomplex structure and function are summarized and discussed. 
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Introduction 

 

Respiration has special features in plant cells. While mitochondrial electron transport in most animals is 

based on a linear succession of redox reactions, the respiratory chain of plant mitochondria is branched at 

several points. Besides the “classical” complexes I (NADH dehydrogenase), II (succinate 

dehydrogenase), III (cytochrome c redutase) and IV (cytochrome c oxidase), plant mitochondria contain 

at least five additional so-called “alternative” oxidoreductases which participate in respiratory electron 

transport [41]. Four of these enzymes catalyse electron transfer from NADH or NADPH to ubiquinone 

and are termed “rotenone insensitive NADH dehydrogenases” because their activities are not affected by 

the complex I inhibitor rotenone [33, 28, 29, 26]. The fifth enzyme is a terminal oxidase called 

“alternative oxidase” [44, 35, 45]. It catalyses direct electron transfer from ubiquinol to molecular 

oxygen. All these alternative oxidoreductases do not couple electron transport to proton translocation 

across the inner mitochondrial membrane and therefore seem to catalyse energy wasting reactions. 

However, it is believed that these reactions are important, possibly because they are the basis for 

overflow-protection mechanisms of the respiratory chain in plant cells under certain physiological 

conditions. 

 

Regulation of electron transfer between the “classical” oxidoreductases and regulation of electron 

partitioning between “classical” and “alternative” respiratory pathways in plant mitochondria is not quite 

understood so far. One possible level of regulation are dynamic associations between enzymes of the 

respiratory chain. However, for quite a while, the involved components were considered to be separate 

structures which independently move within the inner mitochondrial membrane by lateral diffusion [42, 

9]. Meanwhile there is mounting evidence that in vivo respiratory protein complexes specifically interact 

forming supermolecular structures called “supercomplexes”. Evidence is based on biochemical 

purification and reconstitution experiments [15,16], inhibitor titration experiments [5, 17, 4] as well as 

characterizations of respiratory mutants [19, 1, 43]. Some years ago, Schägger and co-workers established 

a new experimental strategy to characterize mitochondrial supercomplexes, which is based on protein 

solubilizations using the non-ionic detergents digitonin or Triton X100 and protein separations by two-

dimensional Blue-native (BN) / SDS-PAGE or two-dimensional BN / BN-PAGE [40, 10, 36, 38, 31, 24]. 

Using these procedures, stable supercomplexes containing complexes III and IV were described for yeast 

and even larger supercomplexes that additionally include complex I for mitochondria from mammals. 

Meanwhile this experimental strategy was also used to characterize the supermolecular organization of 
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the respiratory chain in plant mitochondria [12, 13]. In this review, we summarize protocols for 

investigating supercomplexes of plant mitochondria and give an overview on results on the higher-order 

structure of the plant mitochondrial respiratory chain. 

 

 

Methods for the characterization of respiratory supercomplexes in plant mitochondria 

 

First step for biochemical characterizations of membrane proteins usually is membrane solubilization 

(Fig. 1). This step is critical and should be carried out as mild and careful as possible. Concerning 

respiratory protein complexes and supercomplexes of plants, incubation of isolated mitochondria with 5 g 

digitonin per g protein gives optimal results [12]. In combination with 2D Blue-native (BN) / SDS-

PAGE, digitonin solubilizations of plant mitochondrial fractions allow visualization of all five “classical" 

protein complexes of the oxidative phosphorylation (OXPOS) system. Supercomplexes proved to be 

stable under these conditions. In contrast, protein solubilizations using dodecylmaltoside do not allow to 

monitor complexes II and IV on BN gels for most plants investigated. Furthermore, supercomplexes are 

less stable in the presence of dedocylmaltoside and some OXPHOS complexes are cleaved into 

subcomplexes. For instance, mitochondrial F0F1 ATP synthase is partially dissected into the F0 and F1 

parts, which does not take place in the presence of digitonin. Triton X100 is slightly more advantageous 

than dodecylmaltoside for characterizations of plant mitochondrial respiratory protein complexes in 

combination with BN-PAGE, but less suitable than digitonin. However, low concentrations of Triton 

X100 are optimal to visualize dimeric complex V [12].  

 

BN-PAGE represents an ideal tool for the investigation of protein complexes in mitochondria [39, 22, 

37]. Negative charges are introduced into protein complexes and supercomplexes prior to electrophoretic 

separations by incubation of protein mixtures with Coomassie-blue. In contrast to SDS, Coomassie does 

not denature proteins. Subsequently, protein complexes and supercomplexes can be resolved on low-

percentage polyacrylamide gels and their subunits on a second gel dimension, which is carried out in the 

presence of SDS in high percentage polyacrylamide gels. Since Coomassie-treated proteins all become 

negatively charged, artificial associations of proteins are very unlikely due to electric repulsion. 

Visualization of the OXPHOS complexes by 2D BN / SDS-PAGE only requires small amounts of starting 

material (0.1 – 1 mg mitochondrial protein). 
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One-dimensional BN gels can be used for in-gel activity stains (Fig. 2). Protocols for in-gel enzyme 

assays were published for all protein complexes of the OXPHOS system except for complex III [47, 23, 

34]. Furthermore, peroxidase activity could be monitored using 1D BN gels [14] and the activity of the 

mitochondrial processing peptidase was measured after electroelution of the enzyme from a BN gel [8]. 

In general, treatment of protein fractions with Coomassie-blue seems not to interfere with enzyme 

activities. 

 

A novel two-dimensional gel system was recently suggested for investigations of protein complex 

compositions of supercomplexes, which is based on BN-PAGE for both gel dimensions [40]. First 

dimension BN-PAGE is carried out in the presence of a very mild detergent like digitonin, whereas the 

second gel dimension takes place in the presence of a less gentle detergent like dodecylmaltoside. All 

protein complexes and supercomplexes likewise stable in the presence of both detergents form a diagonal 

line on this 2D gel system, whereas supercomplexes specifically destabilized in the presence of the 

second detergent are dissected into protein complexes of higher electrophoretic mobility. 2D BN / BN 

gels also can be used for in-gel activity stains [13]. 

 

If usage of Coomassie-dyes and polyacrylamide gel electrophoreses shall be avoided during protein 

separations, proteins and protein complexes of detergent-treated mitochondrial fractions also can be 

resolved by gel filtration [10] or sucrose gradient ultracentrifugation (Eubel and Braun, unpublished 

results). Interestingly, separated protein complexes and supercomplexes exactly correspond to those 

visible on 2D BN / SDS gels, which supports the reliability of this experimental system. 

 

 
The supermolecular structure of the respiratory chain in plant mitochondria 

 

Using separations of digitonin-treated mitochondrial fractions by two-dimensional BN / SDS and BN / 

BN-PAGE, several respiratory supercomplexes could be characterized for plant mitochondria [12, 13]. 

Plant mitochondria contain a very stable I1+III2 supercomplex of 1500 kDa, which is of high abundance 

(Fig. 3). Depending on the plant investigated, between 50 and 90% of complex I forms part of this 

supercomplex in Arabidopsis, potato, bean and barley. In contrast, this supercomplex is of low abundance 

in mammalian mitochondria. Formation of the I1+III2 supercomplex possibly has an influence on the rate 

of alternative respiration by the alternative oxidase in plant mitochondria due to direct electron 
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channelling between complexes I and III. An even larger supercomplex of 3000 kDa, which also includes 

the complexes I and III2 and which probably has I2+III4 composition, was discovered in mitochondria 

from Arabidopsis and potato [12, 13]. However, this supercomplex is of low abundance and only 

becomes visible on BN / SDS gels upon silver staining (Fig. 3C).  

 

Yeast mitochondria were found to contain a dimeric ATP synthase complex [2, 3, 32, 18]. Interestingly, 

this dimer includes some dimer-specific subunits which are essential for dimer formation. Also the 

mitochondrial ATP synthase complex from Chlamydomonas recently was reported to be mainly in a 

dimeric state [46]. In contrast, dimeric ATP synthase is of low abundance in plant mitochondria. It best 

can be visualized on 2D BN / SDS gels after membrane solubilization by low concentrations of Triton 

X100 (Fig. 4). Under these conditions, most of the complexes I-IV are not solubilized and the ATP 

synthase is visible in monomeric and dimeric state at comparable quantities. Increase of Triton-X100 

concentration during protein solubilization leads to a sharp reduction of dimeric ATP synthase on the 2D 

gels and at the same time to improved visibility of all other protein complexes of the OXPHOS system 

(Fig. 4). 

 

Complex IV containing supercomplexes, which are of high abundance in mitochondria from mammals 

and yeast, could not be detected in Arabidopsis mitochondria isolated from suspension cell cultures. 

However, some low amounts of complex IV form part of respiratory supercomplexes in mitochondria 

isolated from freshly harvested potato tubers or from potato stems grown for 20 days in the dark [13]. 

Analysis by 2D BN / SDS-PAGE and 2D BN / BN-PAGE in combination with in-gel activity stains 

revealed III2+IV1-2 and I1+III2+IV1-4 compositions of these supercomplexes. Interestingly, occurrence of 

the supercomplexes slightly differed between mitochondria isolated from potato tubers and stems. 

Furthermore, the complex IV containing supercomplexes isolated from stem mitochondria partially 

included a smaller version of cytochrome c oxidase (termed complex IVb), which seems to lack one or 

two subunits in comparison to the larger version of this complex (IVa). The physiological significance of 

these findings has to be further investigated.  

 

The term “respirasome” was suggested for I1+III2+IV1-4 supercomplexes, because these structures can 

autonomously carry out respiration in the presence of ubiquinone and cytochrome c. Respirasomes were 

shown to be of high abundance in mammalian mitochondria. In contrast, at least 90% of complex IV was 

in a monomeric state in potato mitochondria and more or less 100% in mitochondria isolated from 

 

Chapter 4

44



etiolated bean and barley seedlings or Arabidopsis suspension cell cultures under the experimental 

conditions applied [12, 13]. However, further plants and plant organs should be investigated with respect 

to respirasomes to understand the importance of these structures in plant respiration. 

 

Alternative respiratory enzymes were not found to associate with respiratory supercomplexes in plants as 

shown by immunoblotting experiments[12]. Alternative oxidase is present in monomeric and dimeric 

forms in Arabidopsis and bean. In potato, an oligomeric AOX complex of about 600 kDa was 

immunologically identified but seems not to be associated with any complex of the OXPHOS system 

(Eubel and Braun, unpublished results). Similarily, alternative NADH / NADPH dehydrogenases were 

immunologically localized on 2D BN/ SDS gels and found to be either represented by monomeric 

proteins or oligomeric structures which are not associated to the “classical” protein complexes of the 

respiratory chain. Based on our findings we conclude that supercomplex formation rather indirectly 

influences alternative electron transport pathways in plant mitochondria. 

 

 

Conclusion 

 

Blue-native gel electrophoresis is a very powerful tool for the characterisation of the supermolecular 

structure of the respiratory chain in plant mitochondria and recently also was successfully used to 

investigate supercomplexes in plastids [21]. However, further experimental approaches have to be used to 

get deeper insights into the structure and function of plant mitochondrial supercomplexes, like analyses of 

detergent-solubilized mitochondrial fractions by electron microscopy in combination with computer image 

analysis. Recently, flux control experiments revealed physiological evidence for interaction between 

complexes I and III [17]. In the future, non-invasive methods should be applied to understand the 

supermolecular structure of the respiratory chain in vivo, e.g. by the usage of fluorescent fusion proteins as 

subunits of individual respiratory protein complexes. At the moment experimental results concerning 

defined associations of respiratory protein complexes are partially contradictory, which possibly reflects 

that these associations are dynamic and that assembled and unassembled supercomplexes co-exist in the 

inner mitochondrial membrane [25, 17]. In yeast, dynamics of supercomplex formation was recently 

shown to depend on the cardiolipin concentration of the inner mitochondrial membrane [48, 31]. 
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Characterization of the supermelecular structure of the respiratory chain using highly similar procedures - 

like solubilization of mitochondrial proteins using 5g digitonin / g mitochondrial protein and subsequently 

separation of the solubilized proteins by 2D BN / SDS-PAGE – indicated some clear differences 

concerning abundance and stability of individual supercomplexes between animals, fungi and plants. Plant 

mitochondria have an especially stable I1+III2 complex, suggesting channelling of electrons between these 

two complexes. Consequences for alternative oxidase, which competes with complex III for electrones of 

ubiquinol, have to be further investigated. Differences in stability of the I1+III2 supercomplex also might 

reflect differing architecture of complexes I and III in animals, fungi and plants. Besides several highly 

conserved subunits, individual subunits of these protein complexes seem to be specific to certain groups of 

organisms. For instance, plant complex I was reported to include a group of five related proteins which 

most likely have carbonic anhydrase activity [20, 30]. Furthermore, the terminal enzyme of the 

mitochondrial ascorbic acid biosynthesis pathway, the L-galactono-1,4-lactone dehydrogenase, was 

recently found to form part of complex I in plant mitochondria [27]. And finally, the core subunits of 

complex III have unique features in plant mitochondria, because they represent the two subunits of the 

mitochondrial processing peptidase [7, 11, 6]. Further experiments have to be carried out to get deeper 

insights into the function of the respiratory protein complexes in plant mitochondria and their 

supermolecular interactions. 
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Figure legends: 
 
Figure1: Procedures to analyse respiratory supercomplexes 
 
Figure 2: Identification of respiratory protein complexes from Arabidopsis by in-gel activity stains. 
Mitochondrial proteins were solubilized by 5 g digitonin per g protein and protein complexes were 
resolved by 1D BN-PAGE. C: Control gel strip, CC: Coomassie-stained control gel strip, I, II, IV: gel 
strips after in-gel stains for complexes I, II and IV. Identities of the separated protein complexes and 
supercomplexes are given to the left: I2+III4 – supercomplex consisting of two copies of complex I and 
two copies of dimeric complex III; I1+III2 – supercomplex consisting of one copy of complex I and one 
copy of dimeric complex III; I – complex I; V – ATP synthase; III2 – dimeric complex III; IV – complex 
IV; II – complex II.  
 
Figure 3: Separation of mitochondrial protein complexes and supercomplexes from Arabidopsis by 2D 
Blue-native / SDS-PAGE. Mitochondrial proteins were solubilized with 5 g digitonin per g protein. A: 
Coomassie-stained 1D Blue-native gel, B: Coomassie-stained 2D Blue-native / SDS gel, C: Silver-stained 
2D Blue-native / SDS gel corresponding to the boxed region on the gel in B. Identities of the separated 
protein complexes are given above the gel (see legend of Figure 2; IVa - larger form of complex IV; IVb – 
smaller form of complex IV) 
 
Figure 4: Separation of mitochondrial protein complexes from Arabidopsis by 2D Blue-native / SDS gel 
electrophoresis. A: Proteins were solubilized with 0.25 g Triton X100 per g protein, B: Proteins were 
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solubilized with 2.0 g Triton X100 per g protein. Both gels were Coomassie-stained. Identities of protein 
complexes are given above the gels (see legend of Figure 2; V2 – dimeric ATP synthase; F1 – F1 part of 
ATP synthase) 
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1 Mitochondrial cytochrome c oxidase and succinate dehydrogenase
2 complexes contain plant specific subunits
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13 Abstract

14 Respiratory oxidative phosphorylation represents a central functionality in plant metabolism, but the
15 subunit composition of the respiratory complexes in plants is still being defined. Most notably, complexes II
16 (succinate dehydrogenase) and complex IV (cytochrome c oxidase) are the least defined in plant mito-
17 chondria. Using Arabidopsis mitochondrial samples and 2D Blue-native/SDS-PAGE, we have separated
18 complex II and IV from each other and displayed their individual subunits for analysis by tandem mass
19 spectrometry and Edman sequencing. Complex II can be discretely separated from other complexes on BN
20 gels and consists of eight protein bands. It contains the four classical SDH subunits as well as four subunits
21 unknown in mitochondria from other eukaryotes. Five of these proteins have previously been identified,
22 while three are newly identified in this study. Complex IV consists of 9–10 protein bands, however, it is
23 more diffuse in BN gels and co-migrates in part with the translocase of the outer membrane (TOM)
24 complex. Differential analysis of TOM and complex IV reveals that complex IV probably contains eight
25 subunits with similarity to known complex IV subunits from other eukaryotes and a further six putative
26 subunits which all represent proteins of unknown function in Arabidopsis. Comparison of the Arabidopsis
27 data with Blue-native/SDS-PAGE separation of potato and bean mitochondria confirmed the protein band
28 complexity of these two respiratory complexes in plants. Two-dimensional Blue-native/Blue-native PAGE,
29 using digitonin followed by dodecylmaltoside in successive dimensions, separated a diffusely staining
30 complex containing both TOM and complex IV. This suggests that the very similar mass of these complexes
31 will likely prevent high purity separations based on size. The documented roles of several of the putative
32 complex IV subunits in hypoxia response and ozone stress, and similarity between new complex II subunits
33 and recently identified plant specific subunits of complex I, suggest novel biological insights can be gained
34 from respiratory complex composition analysis.

36 Introduction

37 Mitochondrial oxidative phosphorylation (OX-
38 PHOS) in most eukaryotes is based on the
39 sequential operation of five protein complexes

40termed complex I (NADH dehydrogenase), com-
41plex II (succinate dehydrogenase), complex III
42(cytochrome c reductase), complex IV (cyto-
43chrome c oxidase) and complex V (ATP synthase
44complex). These protein complexes are all present
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45 in mitochondria from plants, and in addition,
46 plant mitochondria contain special features that
47 further influence the respiratory chain. Firstly,
48 respiratory electron transport in plant mitochon-
49 dria is branched due to the presence of rotenone-
50 insensitive NAD(P)H dehydrogenases and a
51 cyanide-insensitive terminal oxidase (Vanlerberghe
52 and McIntosh, 1997; Rasmusson et al., 1999;
53 Moller, 2001; Moore et al., 2003; Michalecka
54 et al., 2003). Secondly, the mitochondrial genomes
55 of plants code for more subunits of respiratory
56 protein complexes than those of heterotrophic
57 eukaryotes (Unseld et al., 1997), which requires
58 special assembly pathways for protein complexes.
59 Lastly, some respiratory protein complexes in
60 plant mitochondria contain additional subunits
61 that allow them to catalyse secondary or modified
62 functions. For example, the two subunits of the
63 mitochondrial processing peptidase form part of
64 complex III in plant mitochondria (Braun et al.,
65 1992a; Eriksson et al., 1994) and complex I con-
66 tains a LL-galactonol-1,4-lactone dehydrogenase,
67 which catalyses the terminal step of ascorbic acid
68 biosynthesis in plant mitochondria (Millar et al.,
69 2003). Additional plant specific subunits are pres-
70 ent in complex I and V, but are currently of un-
71 known function (Heazlewood et al., 2003a, b;
72 Parisi et al., 2004).
73 The subunit compositions of complexes I, III
74 and V of plant mitochondria have been extensively
75 studied. Complex III from potato was purified by
76 cytochrome c affinity chromatography and shown
77 to comprise 10 different subunits (Braun and
78 Schmitz, 1992). All 10 potato proteins were par-
79 tially sequenced by Edman degradation and the
80 genes encoding these proteins were characterized
81 (reviewed in Braun and Schmitz, 1995). Similarly,
82 complex I was chromatographically purified for
83 different plants and resolved into about 30 differ-
84 ent subunits (Leterme and Boutry, 1993; Herz
85 et al., 1994; Rasmusson et al., 1994; Jänsch et al.,
86 1996; Combettes and Grienenberger, 1999). Re-
87 cently, 30 complex I subunits of Arabidopsis were
88 identified by mass spectrometry (Heazlewood
89 et al., 2003a). Purified complex V of plant mito-
90 chondria can be resolved into about 10–15 differ-
91 ent subunits by electrophoresis (Hamasur and
92 Glaser, 1992; Jänsch et al., 1996). Eleven subunits
93 of this complex could be identified by mass spec-
94 trometry in Arabidopsis (Heazlewood et al.,
95 2003b). Four of these are mitochondrial-encoded,

96including orfb that encodes the plant ATP8 and
97orf25 that encodes the plant ATP4. The product of
98orfb has also been shown to be a component of
99complex V in sunflower (Sabar et al., 2003) and
100the product of orf25 a complex V component in
101protists (Burger et al., 2003). One complex V
102component appears to be plant specific, the
103nuclear-encoded FAd subunit (Smith et al., 1994;
104Jänsch et al., 1996, Heazlewood et al., 2003b).
105In contrast, subunit compositions of complexes
106II and IV are less defined for plant mitochondria
107and our presumptions about these protein com-
108plexes in plants are heavily based on studies car-
109ried out in beef and yeast mitochondria (for
110reviews see Capaldi, 1990; Richter and Ludwig,
1112003). Complex IV from beef comprises 13 differ-
112ent subunits termed Cox I, II, III, IV, Va, Vb, VIa,
113VIb, VIc, VIIa, VIIb, VIIc and VIII. This
114nomenclature reflects the successive discovery of
115these subunits on SDS-PAGE gels with increasing
116resolution capacity (Kadenbach and Merle 1981).
117The core of the complex is formed by the three
118largest subunits (Cox I, Cox II and Cox III), which
119are very hydrophobic and typically are encoded by
120the mitochondrial genome. The remaining 10
121subunits are nuclear-encoded and much smaller in
122molecular mass. Besides Cox IV, which has a
123molecular mass of 17 kDa, all other nine nuclear
124encoded subunits have masses of 4.9–12.5 kDa.
125An 11-subunit cytochrome c oxidase complex has
126been described for yeast. Nine of the 11 subunits
127are similar in sequence to subunits of cytochrome c
128oxidase from beef while the remaining two
129subunits are very small and possibly yeast specific.
130There has been considerable research on the
131genes encoding the Cox I, Cox II and Cox III
132subunits in plants. They are almost always local-
133ized on the mitochondrial genome and were each
134first sequenced about 20 years ago (Fox and Lea-
135ver, 1981; Isaac et al., 1985; Hiesel et al., 1987).
136Careful investigation of these genes and their
137transcription led to the discovery of introns in
138plant mitochondrial genes (Fox and Leaver, 1981),
139editing of transcripts in plant mitochondria
140(Covello and Gray, 1989; Gualberto et al., 1989;
141Hiesel et al., 1989) and polyadenylation of mito-
142chondrial transcripts (Lupold et al., 1999). Earlier
143electrophoretic analyses of chromatographically
144purified cytochrome c oxidase from sweet potato
145had revealed five protein bands of about 39 kDa
146(band I), 33 kDa (II), 26 kDa (III), 20 kDa (IV),
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147 and 6 kDa (V) (Maeshima and Asahi, 1978).
148 Bands I–III correspond to the mitochondrial-en-
149 coded Cox I, Cox II and Cox III proteins. The
150 6 kDa band V was later separated into three dif-
151 ferent proteins on gels with enhanced resolution
152 capacity, and then termed subunits Va, Vb and Vc
153 (Nakagawa, et al., 1987). Direct amino acid
154 sequencing of protein Vc and isolation of the
155 corresponding gene revealed sequence similarity to
156 the Cox VIII subunit from beef (Nakagawa et al.,
157 1990). Further chromatographic purifications of
158 cytochrome c oxidase complexes from pea, maize
159 and wheat revealed similar banding patterns on
160 denaturing polyacrylamide gels. In these organ-
161 isms, cytochrome c oxidase was composed of the
162 three mitochondrial-encoded Cox I, Cox II and
163 Cox III subunits, one further subunit in the
164 18 kDa range, and additional proteins below
165 11 kDa which could not be resolved by gel elec-
166 trophoresis (Matsuoka et al., 1981; Hawkesford
167 et al., 1989; Pfeiffer et al., 1990). The nucleotide
168 sequence of a nuclear gene encoding a protein
169 resembling the CoxVb subunit from beef was
170 characterized in rice (Kadowaki et al., 1996). In
171 summary, besides the three mitochondrial-en-
172 coded Cox I, Cox II and Cox III subunits, cyto-
173 chrome c oxidase of plant mitochondria appears to
174 contain quite a number of additional subunits,
175 most are smaller than 10 kDa and probably all are
176 nuclear-encoded. The sequences of only two
177 nuclear-encoded subunits, similar to the Cox Vb
178 and Cox VIII subunits from beef, have been
179 characterized to date in plants.
180 Better resolution of the small subunits of
181 cytochrome c oxidase has been achieved by using
182 2D Blue-native/SDS-PAGE, which reveals 10
183 subunits in potato and Arabidopsis thaliana
184 (Jänsch et al., 1996; Eubel et al., 2003). For un-
185 known reasons, complex IV from a variety of plant
186 species is visible in two forms on native gels, a
187 larger form termed complex IVa with a native
188 mass of approximately 350 kDa, and a smaller
189 form termed complex IVb of approximately
190 280 kDa (Eubel et al., 2003; Sabar et al., 2003;
191 Eubel et al., 2004). The larger form includes an
192 additional protein subunit that was identified by
193 mass spectrometry from the bean cytochrome c
194 oxidase and resembles the Cox VIb subunit from
195 beef (Eubel et al., 2003). Very recently, 2D Blue-
196 native/SDS-PAGE of digitonin-solubilized mito-
197 chondrial fractions from potato revealed the

198presence of complexes IVa and IVb in respiratory
199supercomplexes (Eubel et al., 2004).
200Complex II has been characterized for bacteria,
201protozoan, fungi and animals and nearly always is
202composed of four subunits: SDH1, a hydrophilic
203protein that carries a FAD group; SDH2, which is
204also hydrophilic and carries FeS clusters; and
205SDH3 and SDH4, two small hydrophobic pro-
206teins, which anchor the two hydrophilic subunits
207to the inner mitochondrial membrane and together
208carry a heme b group (reviewed in Lemire and
209Oyedotun, 2002). Recently, the structure of
210complex II from E. coli was resolved by X-ray
211crystallography (Yankovskaya et al., 2003).
212Complex II from plant mitochondria has been
213isolated from tobacco leaves, beet leaves, batatas
214roots, maize scutulum, bean endosperm and pea
215cotyledons (Hiatt, 1961; Hattori and Asahi, 1982;
216Burke et al., 1982; Igamberdiev and Falaleeva,
2171994). Only the two soluble SDH1 and SDH2
218subunits could be resolved by gel electrophoresis,
219but genes encoding putative SDH3 and SDH4 were
220identified in the genome of Arabidopsis (Figueroa
221et al., 2001; 2002). Surprisingly, very recent char-
222acterizations of plant mitochondria by 2D Blue-
223native/SDS PAGE revealed three additional
224subunits (Eubel et al., 2003). Two of these proteins
225could be identified bymass spectrometry and do not
226resemble any known proteins in public databases.
227In order to further clarify the protein composi-
228tions of complexes II and IV in plant mitochondria,
229we have attempted to systematically identify
230subunits of these complexes after separations by 2D
231Blue-native/SDS-PAGE. Furthermore, peptides of
232the trypsinated holo-complex purified by Blue-na-
233tive/Blue-native PAGE were used for subunit
234identifications by mass spectrometry. Both, cyto-
235chrome c oxidase and succinate dehydrogenase
236were found to be unexpectedly complex. Complex
237IV is composed of more than 10 different protein
238subunits and complex II is an eight-subunit enzyme.
239The identity of several new subunits was elucidated,
240most of which seem to be plant specific components
241of the two respiratory protein complexes.

242Results

243Separation of cytochrome c oxidase and succinate
244dehydrogenase of Arabidopsis by 2D Blue-native/
245SDS-PAGE
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246 Below a native mass of 400 kDa, a range of
247 protein complexes can be resolved by 2D Blue-
248 native/SDS-PAGE of plant mitochondrial mem-
249 branes. In Arabidopsis, this region contains the
250 TOM complex of the outer membrane, closely
251 followed by the cytochrome c oxidase (complex
252 IV) and succinate dehydrogenase (complex II).
253 Figure 1 shows three typical gels highlighting
254 slight variations in the separation of these com-
255 plexes on the first native dimension and the
256 subsequent separation of these complexes by
257 SDS-PAGE. The primary variations between gels
258 are the abundance of the larger form of cyoto-
259 chrome c oxidase (IVa), and the degree of
260 overlap with TOM complex subunits. In the final
261 panel a composite cartoon is depicted, showing
262 the nine protein bands of cytochrome c oxidase
263 (1–9) and the eight protein bands of succinate
264 dehydrogenase (15–22), along with the overlap-
265 ping five protein bands from the TOM complex
266 (10–14).

267 Identification of subunits of cytochrome c oxidase
268 and succinate dehydrogenase from Arabidopsis

269 This set of 22 protein bands were excised, trypsi-
270 nated in-gel and analysed by tandem mass spec-
271 trometry to further identify the protein subunits

272contained by each protein band. Furthermore,
273selected proteins were also analysed by N-terminal
274Edman sequencing. The three high molecular mass
275protein bands from the IVb complex were the
276products of the mitochondrial-encoded cox I, cox
277II and cox III genes (Table 1). The further six
278protein bands (4–9) contained peptides matching
279to 13 nuclear-encoded proteins. These included six
280proteins with clear sequence similarity to Cox
281subunits Vb, Vc and VIa. The additional seven
282proteins (six different protein types, because one
283protein is present in two similar forms) are of
284unknown function and have not previously been
285associated with cytochrome c oxidase in plants.
286The overlapping putative TOM complex protein
287bands (10–14) were confirmed by mass spectrom-
288etry as TOM40, TOM20, TOM9, TOM7 and
289TOM5/6.
290The eight succinate dehydrogenase protein
291bands (15–22) contained peptides, each matching
292to one of eight nuclear-encoded proteins, four
293have clear sequence similarity to the known
294SDH1–SDH4 protein products from other
295organisms. We have previously identified SDH1–3
296(Eubel et al., 2003), but the identification of the
297SDH4 is novel. The remaining four identified
298proteins appear to be plant specific subunits. The
299identification of SDH5 (At1g47420) and SDH6
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Figure 1. Characterization of protein complexes of Arabidopsis mitochondria in the molecular mass range between 150 and 400 kDa

by 2D Blue-native/SDS PAGE. Protein samples represent three different preparations of total mitochondrial protein (TMP1, TMP2,

TMP3) and one preparation of outer membrane protein (OM). Molecular masses of standard proteins are given to the right (in kDa)

and identities of protein complexes on the top (TOM, translocase of the outer mitochondrial membrane; IVa, large form of cytochrome

c oxidase; IVb, small form of cytochrome c oxidase; II, succinate dehydrogenase). Final panel is a cartoon of spots cut out of gels for

further analyses. The numbers indicate proteins (results in Table 1).
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Table 1. Identified subunits of complexes II and IV and the TOM complex of Arabidopsis

Spota Geneb Strategy of

identificationc
Protein MPd Cove MOWSE

scoref
N-terminal sequence

or De novo MS seq

1 AtMg01360 ESI complex IV, subunit 1 (COX I) 1 3 ND (299.2)FSTNHK

2 AtMg00160 ESI, ED complex IV, subunit 2

(COX II)

4 11 166 DAAEPWQLGFQDATP

3 AtMg00730 ESI, ED complex IV, subunit 3

(COX III)

1 3 27 XIESQXXXY

4 At3g15640 ESI complex IV, subunit 5b

(COX Vb)

3 22 73

5 At1g80230 ESI complex IV, subunit 5b

(COX Vb)

6 32 259

6 At5g27760 ESI complex IV, subunit X1 4 44 55

7a At4g37830 ESI complex IV, subunit 6a

(COX VIa)

2 14 67

7b At3g43410 – complex IV, subunit X5 3 75 43

8a At2g47380 ESI, ED Complex IV, subunit 5c

(COX Vc)

5 64 102 XXXKVAXATLK

At5g62400

At5g61310

8b At4g00860 ESI complex IV, subunit X2b 7 51 247

8c At1g01170 ESI complex IV, subunit X2a 3 38 189

8d At4g21105 ESI Complex IV, subunit X4 3 39 95

8e At1g72020 ESI complex IV, subunit X3 2 14 74

8f At2g16460 ESI complex IV, subunit X6 4 16 112

9 – not determined

10 At3g20000 ESI TOM40 22 62 607

11 At3g27080 ESI TOM20

At5g40930 ESI

12 At5g43970 ESI TOM22/TOM9 3 46 162

13 At5g41685 – TOM7g

14 At1g49410 ESI TOM5/6 1 24 60

15 At5g66760 ESI complex II, subunit 1 (SDH1) 1 3 57

16 At5g40650 ESI complex II, subunit 2 (SDH2) 16 40 541

17 At1g47420 ESI, ED complex II, subunit 5 (SDH5) 14 43 370 SEDVSHMPEMDSXVL

NFK

18 At1g08480 ESI complex II, subunit 6 (SDH6) 4 28 82

19 At5g09600 ED complex II, subunit 3 (SDH3) 1 3 42 STISGDIKTTQEEP

At5g32210

20 At3g47833 ESI, ED Complex II, subunit 7 (SDH7) 5 13 225 FH(I/V)E(P/L)G(T/A)

REKALLAEDAt5g62575 –

21 At2g46505 ESI complex II, subunit 4 (SDH4) 1 5 32

22 At2g46390 ED complex II, subunit 8 (SDH8) – – – MIYXKXSLLSXPXV

a The spot numbers correspond to those given in Figure 1.
b Gene nomenclature according to MIPS and TAIR (http://mips.gsf.de/proj/thal/db/index.html, http://www.arabidopsis.org/
index.jsp).
c Identification strategy: ESI, electrospray ionisation tandem mass spectrometry; ED, Edman degradation.
d MP – matching peptides.
e coverage (in percent).
f MOWSE score from the MASCOT software package (http://www.matrixscience.com/).
g Identification of TOM7 was based on gel comparisons (Figure 1) and a previous identification of this protein by mass spectrometry
(Werhahn et al., 2001).
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300 (At1g08480) confirms our previous reports (Eubel
301 et al., 2003), while SDH7 and SDH8 are new
302 identifications.

303 Comparison of cytochrome c oxidase and succinate
304 dehydrogenase subunit composition between plant
305 species

306 To address whether the apparent subunit com-
307 plexity of these respiratory chain complexes occurs
308 widely in plants, we considered this less than
309 400 kDa region on Blue-native/SDS-PAGE gels
310 from a variety of plants compared to Arabidopsis
311 (Figure 2). In separations of potato tuber mito-
312 chondria protein complexes, a complex IVa was
313 present containing 9–10 protein bands and a
314 complex II consisting of eight protein bands. In
315 potato stem, both complex IVa and IVb were
316 present along with the complex II, again with 9–10
317 and 8 protein bands, respectively. In bean cotyle-
318 don mitochondria, the same pattern emerged, with
319 an 8 band complex II and an 8–10 band complex
320 IVa/IVb.

321Purification of cytochrome c oxidase from
322Arabidopsis by 2D BN/BN-PAGE

323To further characterize complex IV in plants, we
324performed 2D Blue-native/Blue-native PAGE to
325move IV complexes away from potential contam-
326inants that can occur due to horizontal streaking
327of bands in Blue-native/SDS-PAGE separations
328(Figure 3). First dimension Blue-native PAGE was
329carried out in the presence of digitonin and 2D
330Blue-native PAGE in the presence of dodecylm-
331altoside. Using this experimental system, super-
332complexes and singular protein complexes specifically
333destabilized by dodecylmaltoside treatment are dis-
334sected into smaller protein complexes, which are
335localized below the diagonal line of protein com-
336plexes on the 2D gels. Complexes I, III2 and V
337proved to be largely stable in the presence of both
338detergents during 2D Blue-native PAGE and were
339represented by clear spots on the diagonal. Some
340low amount of complex V was dissected into de-
341fined subcomplexes, one of which represents the F1

342part. Furthermore, the I + III2 supercomplex was
343dissected into complexes I and III2 as reported
344previously (Eubel et al., 2003; Eubel et al., 2004).
345Complexes IVa and IVb both migrated below the
346diagonal line indicating that subunits are detached
347in the presence of dodecylmaltoside. The spots
348representing the two complexes had identical
349apparent molecular masses and a very diffuse
350shape when compared to most other mitochon-
351drial protein complexes (Figure 3). Direct in-gel
352trypsination of the complexes and analysis of
353peptides by ESI–MS/MS did allow the identifica-
354tion of several of the previously identified subunits
355of cytochrome c oxidase, but also led to the iden-
356tification of subunits of the TOM complex (not
357shown). Therefore, although the two forms of
358complex IV were localized below the diagonal line
359on Blue-native/Blue-native gels, this gel system did
360not allow their complete purification for analysis.

361Discussion

362Purification of complexes II and IV from plants

363Besides considerable progress in the understanding
364of the structure and function of the respiratory
365chain in plant mitochondria, the molecular com-
366position of complexes II and IV has remained

potato
tuber

potato
stem

bean
cotyledon

II

Arabidopsis
cell culture

IVa IVb II IVa IVb II IVa IVb IIIVa

Figure 2. Comparison of protein complexes from Arabidopsis,

potato and bean mitochondria by 2D Blue-native/SDS PAGE

in the molecular mass range between 150 and 400 kDa. Iden-

tities of protein complexes are given above the gels (TOM,

translocase of the outer mitochondrial membrane; IVa, large

form of cytochrome c oxidase; IVb, small form of cytochrome c

oxidase; II, succinate dehydrogenase).
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367 relatively undefined. For reasons not fully under-
368 stood, chromatographic procedures carried out by
369 a variety of research groups have failed to sub-
370 stantially purify these two complexes in intact
371 form. Biochemical studies on complex II from
372 plants only led to identification of the two larger
373 SDH1 and SDH2 subunits, which are rather
374 hydrophilic (Hattori and Asahi, 1982; Burke et al.,
375 1982). Also, analysis of chromatographically
376 purified complex IV from plants did not allow the
377 identification of more than five subunits besides
378 the three mitochondrial-encoded proteins Cox I,
379 Cox II and Cox III (Matsuoka et al., 1981; Nak-
380 agawa et al., 1987; Hawkesford et al., 1989;
381 Pfeiffer et al., 1990). Since complex IV from het-
382 erotrophic eukaryotes is known to include more
383 than 10 subunits, it can be speculated that addi-
384 tional subunits were lost during purification or not
385 resolved during gel electrophoretic analyses.
386 Analyses of dodecylmaltoside-solubilized mito-
387 chondrial fractions from potato by 2D Blue-native
388 PAGE showed 10–12 different subunits in complex
389 IV (Jänsch et al., 1996). However, even using this
390 approach, resolution of complex IV was difficult,
391 because it does not form a sharp band on the blue
392 native dimension. Complex IV from Arabidopsis is

393absent on 2D Blue-native/SDS gels using the same
394experimental system (Kruft et al., 2001). Signifi-
395cantly improved resolution has been possible by
396combining digitonin-based protein solubilizations
397and 2D Blue-native/SDS-PAGE (Eubel et al.,
3982003). Using this procedure, complex IV from
399Arabidopsis was shown to include 10–12 different
400subunits and complex II was surprisingly found to
401have more than the four well-known SDH1–4
402components described for this complex in bacteria
403and heterotrophic eukaryotes. Two-dimensional
404Blue-native/SDS PAGE of digitonin-treated mito-
405chondrial fractions is currently the most gentle
406procedure for investigating complexes II and IV in
407plants. However, even this procedure has clear
408problems, because a larger the so-called IVa form
409of the complex is easily broken into a smaller IVb
410form and because the subunits of the two complex
411IV forms are less sharply focused on the second gel
412dimension than the subunits of other respiratory
413complexes.
414We therefore tested a novel purification strat-
415egy for cytochrome c oxidase, which is based on
4162D Blue-native/Blue-native PAGE in the presence
417of digitonin for the first gel dimension and dode-
418cylmaltoside in the second dimension. However,

IVb

I
V
III2

I+III2

IV
b

II
I 2

VII+
II

I 2

IV
a(a)

(b) (c)

Figure 3. Separation of mitochondrial protein complexes of Arabidopsis by 2D Blue-native/Blue-native PAGE. First dimension gel

electrophoresis was carried out in the presence of digitonin, second dimension gel electrophoresis in the presence of dodecylmaltoside.

a: 1D Blue-native gel in the presence of digitonin, b: 2D Blue-native / Blue-native gel in the presence of digitonin (first gel dimension)

and dodecylmaltoside (second gel dimension), c: enlargement of the inlet indicated in B. Identities of protein complexes and super-

complexes are given to the left and on top of the gels.
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419 even using this 2D gel system, cytochrome c oxi-
420 dase from plants proved to be fragile and also was
421 represented by especially diffuse spots. Most likely
422 the holo-complex has larger hydrophobic inter-
423 faces than the other OXPHOS complexes upon
424 solubilizing mitochondrial membranes.

425 Newly identified subunits of complexes II and IV

426 Complex II of Arabidopsis was found to be com-
427 posed of eight different subunits, seven of which
428 were previously detected on Blue-native/SDS gels
429 (Eubel et al., 2003). The novel protein has an
430 apparent molecular mass of about 5 kDa and only
431 is weakly stained by Coomassie-blue. Evidence for
432 the occurrence of this eight subunit complex II is
433 very strong, because all subunits are localized
434 exactly in one vertical row on 2D Blue-native/SDS
435 gels in all plants investigated. Furthermore, stoi-
436 chiometry of all subunits seems to be very similar,
437 with the exception of the very smallest subunit,
438 which might be sub-stoichiometric. However,
439 staining efficiency is known to be low for very
440 small proteins.
441 The SDH1, SDH2 and SDH3 subunits as well
442 as two plant specific subunits encoded by the
443 At1g47420 and At1g08480 genes were identified
444 previously, whereas the SDH4 protein and the two
445 remaining plant specific subunits encoded by
446 At3g47833/At5g62575 and At2g46390 were first
447 identified in the course of our present study
448 (Table 1). We suggest a nomenclature for the four
449 plant specific complex II subunits to follow on
450 from SDH1–4, namely SDH5, SDH6, SDH7 and
451 SDH8 (Table 1). Apparent molecular masses of
452 the subunits are 65 kDa (SDH1), 29 kDa (SDH2),
453 18 kDa (SDH5), 15 kDa (SDH6), 12 kDa (SDH3),
454 7 kDa (SDH7), 6 kDa (SDH4) and 5 kDa (SDH8).
455 All eight subunits are nuclear-encoded and have to
456 be imported into plant mitochondria. Therefore,
457 complex II from plants contains no mitochondrial-
458 encoded subunits, just like complex II from other
459 heterotrophic eukaryotes. This makes complex II
460 the exception in the electron transport chain, be-
461 cause all other OXPHOS complexes include at
462 least one mitochondrial-encoded subunit in all
463 organisms investigated. SDH3 and SDH5 com-
464 prise very long mitochondrial targeting sequences
465 of 105 and 89 amino acids (Eubel et al., 2003).
466 Also, the SDH4 protein probably has a very long
467 presequence, because the calculated molecular

468mass of the precursor protein is 10 kDa larger
469than the apparent molecular mass of this protein
470on our gels. Based on the same considerations, the
471SDH1 and SDH2 proteins can be predicted to
472have presequences of intermediate length (2–
4735 kDa). Presequences of this length are also found
474in the SDH6 and SDH7 precursor protein se-
475quences, as determined by N-terminal sequencing
476of the mature proteins (Table 1). In contrast, the
477newly discovered SDH8 protein does not have a
478presequence (Table 1), which was previously re-
479ported for several other small nuclear-encoded
480subunits of respiratory protein complexes (Braun
481and Schmitz, 1995). In fact the SDH8 protein,
482which has a calculated molecular mass of 4.9 kDa,
483is the smallest component of any plant respiratory
484chain complex described today. Several of the
485complex II subunits are encoded by more than one
486gene in Arabidopsis. For SDH7, two isoforms
487could be identified by N-terminal Edman degra-
488dation (Table 1).
489Analyses of complex IV by mass spectrometry
490allowed identification of six of the known Cox
491subunits of other organisms (Cox I, Cox II, Cox
492III, Cox Vb, Cox Vc and Cox VIa). Furthermore,
493the Cox VIb subunit was shown to form part of
494the larger IVa complex in Arabidopsis and bean
495(Eubel et al., 2003), which was not identified by
496MS in the current study. Sequence similarity
497searches using all sequences of complex IV
498subunits from yeast and beef identified only one
499further Arabidopsis gene that most likely encodes a
500Cox subunit (Cox VIc, At3g22210). This protein
501was not identified in the course of our study and
502possibly only forms part of the larger IVa com-
503plex. Overall it appears that eight of the complex
504IV subunits of Arabidopsis have counterparts in
505heterotrophic eukaryotes. Unfortunately nomen-
506clature for cytochrome c oxidase subunits is very
507complicated because similar subunits are named
508differently in yeast and beef (Table 2). Based on
509the assignments shown in the table, counterparts
510to the Cox IV (beef)/Cox Va–b (yeast) protein and
511to the Cox Va (beef)/Cox VI (yeast) protein seem
512to be absent in plants.

513Our study newly identified six further protein
514types in the 5–10 kDa range, which putatively
515form part of complex IV in Arabidopsis. However,
516since complex IV is not absolutely pure on 2D BN/
517SDS gels, but co-migrates with the TOM complex
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518 and possibly unknown protein complexes of lower
519 abundance, the assignment of these proteins being
520 subunits of complex IV is, in our view, not defin-
521 itive and awaits independent confirmatory infor-
522 mation. Until further clarification, we suggest
523 these proteins be treated as candidates of complex
524 IV subunits and therefore designated them Cox X1
525 to Cox X6. As a result, cytochrome c oxidase of
526 plants can be assumed to have about 12–14 dif-
527 ferent subunits and therefore is of comparable
528 complexity to the corresponding complex in yeast
529 (11 subunits) and beef (13 subunits).

530 Possible functions of plant specific subunits of
531 complexes II and IV

532 Respiratory protein complexes I and III are
533 known to include plant specific subunits, which
534 integrate side activities into these complexes.
535 Complex III includes the mitochondrial processing

536peptidase in plants (Braun et al., 1992a; Eriksson
537et al., 1994), and complex I the terminal enzyme of
538the mitochondrial ascorbic acid biosynthesis
539pathway as well as putative carbonic anhydrases
540(Millar et al., 2003; Heazlewood et al., 2003a;
541Parisi et al., 2004). The four additional subunits
542present in succinate dehydrogenase of plant
543mitochondria may also present a secondary or
544peripheral activity of this complex. However,
545sequence comparisons between the SDH5, SDH6,
546SDH7 and SDH8 subunits with protein databases
547did not allow identification of similar proteins of
548known functions. Similar sequences exist in several
549higher plants, but none have been functionally
550characterized to date. Therefore, these subunits
551currently have to be considered to be plant specific
552proteins of unknown function.
553The presequence of the SDH5 protein has very
554significant sequence similarity to the presequence
555of one of the putative carbonic anhydrase

Table 2. Subunits of cytochrome c oxidase in beef, yeast and Arabidopsis

Beef Yeast Arabudopsis

Cox I P00396 Cox 1 P00401 Cox I AtMg01360

Cox II P00404 Cox 2 P00410 Cox II AtMg00160

Cox III P00415 Cox 3 P00420 Cox III AtMg00730, At2g07687

Cox IV P00423 Cox 5A P00424

Cox 5B P00425

Cox Va P00426 Cox 6 P00427

Cox Vb P00428 Cox 4 P04037 Cox Vb At3g15640, At1g80230

Cox VIa P13182 Cox 13 P32799 Cox Via At4g37830

Cox VIb P00429 Cox 12 Q01519 Cox Vib At5g57815, At4g28060

At1g22450, At1g32710

Cox VIc P04038 – Cox VIc At3g22210

Cox VIIa P07470 – – –

Cox VIIb P13183 – – –

Cox VIIc P00430 Cox 8 P04039 –

Cox VIII P10175 – Cox Vc At2g47380, At5g62400,

At5g61310

– Cox 7 P10174 –

– Cox 9 P07255 –

– Cox X1 At5g27760, At3g05550

– Cox X2 At4g00860, At1g01170

– Cox X3 At1g72020

– Cox X4 At4g21105

– Cox X5 At3g43410

– Cox X6 At2g16460

13 subunits 11–12 subunits 8 subunits + 6 subunits ?

Designations on the right of the three columns correspond to protein names and designations on the left to protein accession numbers
as given in http://www.expasy.org/sport/. Subunits of Arabidopsis were either identified by mass spectrometry (Table 1) or represent
isoforms of these subunits, which were identified by searching Arabidopsis protein databases. Cox VIc from Arabidopsis was identified
being a homologue of Cox VIc from beef by sequence comparison.
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556 subunits of complex I (At1g47260). Sequence
557 identity in the region of the SDH5 presequence is
558 66%, whereas identity in the region of the mature
559 SDH5 protein is below 15% (Figure 4). We
560 assume that DNA duplication events took place
561 during mitochondrial presequence acquisition in
562 evolution between the genes encoding these two
563 proteins.
564 Some of the newly identified candidates for
565 plant specific complex IV subunits exhibit signifi-
566 cant sequence similarity to previously character-
567 ized proteins. At4g00860 (Cox X2) was previously
568 identified in the course of a study aiming to iden-
569 tify ozone and pathogenesis inducible genes
570 (Sharma and Davis, 1995). The protein was termed
571 AtOZI1 and shown to be induced three to five fold
572 at the transcript level in leaves within 6 h of ozone
573 treatment and sixfold following Pseudomonas
574 infection of Arabidopsis. The authors noted an N-
575 terminal signal sequence on the predicted protein
576 and putative phosphorylation sites. A similar
577 protein in rice is predicted from genome sequenc-
578 ing (Genbank AAF69008), but no sequences with
579 significant similarity are apparent in non-plant
580 organism. Sharma and Davis (1995) noted that
581 AtOZI1 represented a novel stress protein that
582 accumulates in response to the production of
583 active oxygen species. Our finding of this protein
584 as a putatively novel subunit of cytochrome c
585 oxidase opens up new opportunities to interpret
586 these earlier results. Thus AtOZI1 could poten-
587 tially represent a retrograde signal to COX of

588electron transport chain damage and/or a signal
589associated with the ROS activated programmed
590cell death that requires mitochondria involvement
591through cytochrome c release. Notably, a recently
592identified complex I subunit in both mammals and
593plants, GRIM-19, is also a component impli-
594cated in ROS activated programmed cell death
595(Fearnley et al., 2001).
596The At5g27760 product (Cox X1) belongs to a
597family of the so-called ‘hypoxia response pro-
598teins’ found widely among eukaryotic organisms
599and even in some eubacteria. Hypoxia responses
600of family members have been documented in fish,
601human and mouse (Gracey et al., 2001). These
602data lead to the development of a Pfam domain
603family (PF04588) that currently contains 33
604members, three of which are Arabidopsis proteins
605(At5g27760, At3g05550 and At3g48030). The
606domain is based on an N-terminal transmem-
607brane region of each protein. Clearly the role of
608cytochrome c oxidase as an oxygen consumption
609step could be aided or adapted by hypoxia
610detection. Evidence is already available of
611hypoxia response in the expression of COX genes
612in mammals (Dagsgaard et al., 2001). However,
613no specific roles have yet been defined for any of
614the PF04588 domain containing proteins to our
615knowledge.
616Overall, we have concluded the identification of
617complex II subunits and have significantly ex-
618tended our understanding of complex IV compo-
619sition. The apparent difficulties with complex IV
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Figure 4. Alignment of the SDH5 subunit (At1g47420) of complex II from Arabidopsis with a putative carbonic anhydrase subunit

(At1g47260) of complex I from Arabidopsis. Identical amino acids are indicated in blue. The arrowhead indicates the site for

proteolytic processing of SDH5 as determined by cyclic Edman degradation (Table 1).
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620 purification may well mean that final confirmation
621 of its subunits will need to be obtained by alter-
622 native means, such as knock-out removal of
623 putative subunits in Arabidopsis and study of the
624 impact of these genetic manipulations on complex
625 IV size, composition and function.

626 Materials and methods

627 Isolation of mitochondria from Arabidopsis, potato
628 and bean

629 Mitochondria from Arabidopsis were isolated from
630 suspension cell cultures by differential centrifuga-
631 tion and Percoll density gradient centrifugation as
632 described by Werhahn et al. (2001) or Millar et al.
633 (2001). Using a starting material of about 300 g
634 cells, a typical organelle preparation yields about
635 300 mg mitochondria, which corresponds to
636 approximately 30 mg mitochondrial protein.
637 Aliquots of 1 mg mitochondrial protein were
638 stored at �80 �C. Mitochondria from potato tuber
639 and stem and bean cotyledons were purified as
640 outlined in Braun et al. (1992b).

641 Two - dimensional BN/SDS-PAGE and
642 BN/BN-PAGE

643 For gel electrophoresis, aliquots of organelles
644 corresponding to 1 mg mitochondrial protein were
645 directly dissolved in 100 ll digitonin solubilization
646 solution (30 mM HEPES pH 7.4, 150 mM potas-
647 sium acetate, 10% [v/v] glycerol, 2 mM PMSF,
648 and 5 mg digitonin [Fluka, Buchs, Switzerland]).
649 Proteins were incubated for 20 min on ice and
650 subsequently centrifuged at 18,000 g for 30 min to
651 remove insoluble material. Finally supernatants
652 were carefully discarded, supplemented with 20 ll
653 Coomassie-blue solution (5% [w/v] Coomassie-
654 blue in 750 mM aminocaproic acid) and directly
655 loaded into the wells of a blue-native gel (Jänsch
656 et al., 1996).
657 Two-dimensional Blue-native/SDS-PAGE was
658 carried out as recommended by Schägger (2001).
659 Gradient gels of 4.5–16% polyacrylamide were
660 used for the first, and two-step Tricine–SDS gels of
661 10% and 16% polyacrylamide for the second gel
662 dimension. After completion of electrophoresis
663 runs, gels were stained with Coomassie-colloidal
664 according to Neuhoff et al. (1985, 1990). Two-

665dimensional Blue-native/Blue-native gel electro-
666phoresis was carried as reported by Schägger and
667Pfeiffer (2000) with the following modifications: (i)
668time for electrophoresis runs of the first dimension
669was reduced by 50% to avoid protein complexes
670remaining within this gel during the second
671dimension, while the time for electrophoresis run
672of the second dimension was doubled to obtain
673optimal resolution of protein complexes and
674supercomplexes, (ii) fixing of strips of Blue native
675gels onto second dimension gels was performed
676using agarose and not by direct polymerisation of
677strips into the stacking gel.

678Protein identifications by mass spectrometry

679Proteins of interest were directly cut out from 2D
680Blue-native/SDS gels, trypsinated and prepared
681for analyses by Electrospray ionisation tandem
682mass spectrometry (ESI–MS/MS) as outlined in
683Eubel et al., (2003) or by Heazlewood et al.
684(2003a). Alternatively, protein spots representing
685entire protein complexes were cut out from BN/
686BN gels, trypsinated and analysed by liquid
687chromatography (LC-) ESI–MS/MS as outlined in
688Heinemeyer et al. (2004) and Heazlewood et al.
689(2004). Primary data of MS analyses were analy-
690sed using the Mascot server at http://www.
691matrixscience.com/ searching against the NCBI
692Arabidopsis thaliana database, or the translated
693TAIR Arabidopsis protein set (Ath4 release)
694analysed in-house using Mascot version 2.0.

695Protein identifications by Edman degradation

696For N-terminal amino acid determination, pro-
697teins separated on 2D BN/SDS gels were elec-
698troblotted onto PVDF membranes, cut out and
699directly analysed by Edman degradation as
700outlined in Werhahn et al., (2001).
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Abstract 

 

Mitochondrial NADH dehydrogenase (complex I) of plants includes quite a number of plant-specific 

subunits, some of which exhibit sequence similarity to bacterial γ-carbonic anhydrases. A homozygous 

Arabidopsis knockout mutant carrying a T-DNA insertion in a gene encoding one of these subunits 

(At1g47260) was generated to investigate its physiological role. Isolation of mitochondria and separation 

of mitochondrial protein complexes by Blue-native polyacrylamide gel electrophoresis or sucrose 

gradient ultracentrifugation revealed drastically reduced complex I levels in cell suspension cultures. 

Remaining complex I had normal molecular mass, indicating substitution of the At1g47260 protein by 

one or several of the structurally related subunits of this respiratory protein complex. Immuno-blotting 

experiments using polyclonal antibodies directed against the At1g47260 protein indicated its presence 

within complex I, the I+III2 supercomplex and smaller protein complexes, which most likely represent 

subcomplexes of complex I. Changes within the mitochondrial proteome of mutant cells were 

systematically monitored by fluorescence difference gel electrophoresis (DIGE) using 2D Blue-native / 

SDS and 2D IEF / SDS polyacrylamide gel electrophoresis. Complex I subunits are largely absent within 

the mitochondrial proteome. Further mitochondrial proteins are reduced in mutant plants, like 

mitochondrial ferredoxin, others are increased, like formate dehydrogenase. Development of mutant 

plants was normal under standard growth conditions. However, a suspension cell culture generated from 

mutant plants exhibited clearly reduced growth rates and respiration. In summary, At1g47260 is 

important for complex I assembly in plant mitochondria and respiration. A role of At1g47260 in 

mitochondrial one-carbon metabolism is supported by micro-array analyses. 

 

 
 
 
 
 
 
 
 
 
 
 
Key words:  

 
mitochondria, respiratory chain, NADH dehydrogenase complex (complex I), carbonic anhydrase, 
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Introduction 
 

The respiratory chain of plant mitochondria has unique features. Electron transport is very much branched 

due to the presence of “alternative oxidoreductases” which are functional equivalents to cytochrome c 

oxidase (complex IV) and the Rotenone-sensitive NADH dehydrogenase (complex I) (Siedow and 

Umbach 1995, Vanlerberghe and McIntosh 1997, Rasmusson et al. 1999, Moller 2002, Moore et al. 2003, 

Michalecka et al. 2003). Most likely the presence of these enzymes represents the basis for some kind of 

“overflow protection mechanism” of the oxidative phosphorylation (OXPHOS) system under certain 

physiological conditions in plant cells. Furthermore, the respiratory protein complexes of plant 

mitochondria contain a comparatively large number of mitochondrial-encoded subunits (Unseld et al. 

1997). As a consequence, assembly of these protein complexes follows special routes in plants. However, 

the most mysterious features of the respiratory chain in plants are the numerous extra subunits which 

form part of its electron transfer complexes and which partially introduce side activities into them. For 

example, the two subunits of the mitochondrial processing peptidase, which cleaves off the presequences 

of nuclear encoded mitochondrial proteins upon their transport into the organelle, form an integral part of 

the cyochrome c reductase complex (complex III) of the respiratory chain in plants (Braun et al. 1992, 

Eriksson et al. 1994, Braun and Schmitz 1995). In several groups of eukaryotes, mitochondrial fatty acid 

biosynthesis takes place at complex I of the respiratory chain, since the acyl carrier protein (ACP) is 

integrated into this protein complex (Runswick et al. 1991, Sackmann et al. 1991, Zensen et al. 1992, 

Rasmusson et al. 1998, Heazlewood et al. 2003). Complex I from plant mitochondria includes even 

further side activities, because some additionally plant-specific proteins form part of this complex, like L-

galactono-1,4-lactone dehydrogenase, which catalyses the terminal step of mitochondrial ascorbate 

biosynthesis pathway (Millar et al. 2003). Also the complexes II and IV of plant mitochondria include 

several plant specific subunits, whose functions are not known so far (Eubel et al. 2003, Millar et al. 

2004). 

 

Recently, a novel group of structurally related complex I subunits was described for plant mitochondria, 

which initially were called “ferripyochilin binding proteins” based on sequence homology to a putative 

bacterial enzyme (Heazlewood et al. 2003). However, this bacterial protein meanwhile turned out to be 

falsely annotated in sequence databases (Parisi et al. 2004). Novel sequence comparisons and computer 

modelling approaches led the suggestion that these plant specific complex I subunits represent γ-type 

carbonic anhydrases (Parisi et al. 2004). Although not functionally proven, this hypothesis currently is the 
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best working model. A proteomic approach to systematically identify complex I subunits of Arabidopsis 

after purification of this enzyme complex by 2D Blue-native gel electrophoresis and analysis by mass 

spectrometry allowed to identify four different isoforms of this protein (At1g47260, At5g66510, 

At5g63510 and At3g48680) (Heazlewood et al. 2003). A gene encoding a fifth isoform is present in the 

Arabidopsis nuclear genome (At1g19580). All five members of this protein family have calculated 

molecular masses of about 30 kDa, but migrate slightly faster on polyacrylamide gels, most likely due to 

cleavage of mitochondrial targeting sequences. Structurally related subunits were also identified in 

chromatographically purified complex I fractions from potato and broad bean (Leterme et al. 1993, Herz 

et al. 1994, Heazlewood et al. 2003) and in electrophoretically purified complex I from Chlamydomonas 

(Cardol et al. 2004). 

 

In an attempt to better understand the function of these extra subunits of respiratory complex I, 

homozygous Arabidopsis knock-out lines were generated and characterized on a physiological and 

biochemical level. Here we report that deletion of the gene encoding At1g47260 has drastic effects on 

respiration in Arabidopsis cell suspension cultures. Oxygen consumption and growth rates are decreased 

by 30 – 50% and assembly of mitochondrial complex I by 90%. Amounts of singular complex I subunits 

are reduced, suggesting specific protein degradation or down-regulation of the corresponding nuclear and 

mitochondrial genes. At1g47260 is repressed under elevated CO2 concentrations, supporting a role in 

mitochondrial carbon metabolism, and seems to be essential for assembly of complex I in plants. 

 

 
Results 
 

Generation of a homozygous knockout line for locus At1g47260 carrying a single T-DNA insertion 
 

The gene encoding At1g47260 is split into five exons (Fig. 1A). Knockout line Salk_010194 (Kanr) 

carries a T-DNA insertion within exon 4. The insertion was confirmed by PCR using primers derived 

from the left border sequence of the T-DNA and an internal region of AT1g47260 (data not shown). To 

functionally confirm the gene knockout, total mRNA from mutant and wild-type plants was extracted and 

used as template for RT-PCR to amplify transcripts of At1547260. A 700 bp amplification product was 

visible in wild-type but totally absent in some of the mutant plants. Latter plants were considered to be 

homozygous with respect to the T-DNA insertion in the gene encoding At1g47260. To exclude plants 

with secondary T-DNA insertions from future investigations, heterozygous knockout plants were 
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generated by crossing a homozygous ∆At1g47260 plant with a wild-type plant. Subsequently, 20 seeds 

were selected, grown in soil and afterwards plants were self-pollinated for seed amplification. Finally, 

150 seeds of each of the 20 parental lines were plated onto solid MS medium containing kanamycin. 

Lines including a single T-DNA insertion were recognized by a germination rate of about 75% (plants 

homo- and heterozygous with respect to the knock out for At1g47260), whereas lines with higher 

germination rates were considered to possibly have additional insertions. A knockout line carrying a 

single gene deletion was self-pollinated and homozygous plants with respect to the insertion in 

At1g47260 were again selected by RT-PCR as described above (Fig. 1B). 

 

 

Characterization of the phenotype of ∆At1g47260 plants 

 

Knockout of the gene encoding At1g47260 results in absence of the corresponding transcript (Fig. 1B). 

However, comparison of the phenotypic properties and developmental stages between ∆At1g47260 and 

wild-type plants did not reveal any differences. Under normal growth conditions, mutant plants were not 

distinguishable from wild-type plants concerning morphology of roots, leafs, stems and flowers (Fig. 2A, 

data not shown). Also, statistical evaluations of the duration of developmental stages according to Boyes 

et al. (2001) did not reveal any significant differences (Fig. 2B). Furthermore, the volume of produced 

seeds was very similar for mutant and wild-type plants. Both lines exhibited a very comparable fertility. 

Finally, mutant and wild-type plants were compared upon cultivation on solid agarose for two weeks in 

the total absence of light or under normal light conditions but in the presence of 10 or 100 µM salicylic 

acid. Also under these conditions, the two lines were phenotypically not distinguishable (data not shown). 

In summary, conditions to allow visualization of the molecular differences between wild-type and 

∆At1g47260 plants on a phenotytic or developmental level could not be defined so far. 

 

 

Characterization of a cell suspension culture for ∆At1g47260 

 

Cell suspension cultures were established to compare mitochondria of mutant and wild-type plants on a 

molecular level. Cell suspension cultures proved to be a very helpful tool for mitochondrial research in 

Arabidopsis, because they allow the preparation of highly pure organelles (May and Leaver 1993, Davy 

de Virville 1994, Davy de Virville 1998, Werhahn et al. 2001). Proteome projects were initiated to 
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systematically characterize the protein complement of Arabidopsis mitochondria isolated from this 

source, which represent a very fruitful data background for the exploration of mitochondria in plants 

(Kruft et al. 2001, Millar et al. 2001, Werhahn and Braun 2002, Millar and Heazlewood 2003, Giege et al. 

2003, Heazlewood et al. 2004, Brugière et al. 2004, Eubel et al. 2004). Cell cultures from mutant and 

wild-type lines have a similar particle size and colour (Fig. 3A). However, the growth rate of the 

∆At1g47260 cell line was reduced by 30 – 45% (Fig. 3B). Also, respiration of mutant cells (KCN 

sensitive oxygen consumption) was decreased by about 50% (Fig. 3C). 

 

 

Deletion of At1g47260 causes drastic reduction of mitochondrial complex I 

 

One-dimensional Blue-native PAGE was carried out to monitor and quantify respiratory protein 

complexes in mutant and wild-type Arabidopsis cell lines. Solubilization of protein complexes prior to 

gel electrophoresis was based on incubation of isolated mitochondria with digitonin, because this 

detergent proved to be most suitable for the stabilization of mitochondrial protein complexes and 

supercomplexes (Schägger and Pfeiffer 2000, Eubel et al. 2003). Deletion of the gene encoding 

At1g47260 leads to a dramatic reduction of complex I on Blue-native gels, which is estimated to lie in the 

range of  90% (Fig. 4A). Furthermore, the I+III2 supercomplex (Eubel et al. 2003) is absent in the protein 

fractions of the mutant cell line. Remaining complex I has a molecular mass similar to the one from wild-

type cells, possibly indicating that some of the other structurally related putative carbonic anhydrase 

subunits might replace the At1g47260 protein. Abundances of all other protein complexes is largely 

unchanged on the Blue-native gels between mutant and wild-type cells, except for the formate 

dehydrogenase complex, which is induced in protein fractions of mutant cells (Fig. 4A). Complex I 

activity is dramatically reduced in the protein fractions of the mutant cell line, as monitored by an in-gel 

activity assay for this protein complex (Fig. 4B).  
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Complex I from ∆At1g47260 cells lacks only the subunit encoded by the deleted gene 

 

Two-dimensional Blue-native / SDS PAGE was performed to compare the subunit composition of 

complex I in ∆At1g47260 and wild-type Arabidopsis cells. Based on Coomassie-stained gels, the 

subunits of complex I and the I+III2 supercomplex are hardly visible on the 2D gel for the mutant cell line 

(Fig. 5A). Therefore, 2D gels were blotted and immune-stained with an antibody generated against the 

over-expressed At1g47260 protein (Fig. 5C). The antibody strongly recognizes two closely co-migrating 

proteins in the 28 kDa range of wild-type cells which most likely represent At1g47260 and one of the 

structurally related other putative carbonic anhydrase subunits of complex I. The immune reaction mainly 

is visible in the region of complex I and the I+III2 supercomplex, but exhibits some horizontal streaking 

on the 2D gels in Fig. 5C, possibly indicating that further carbonic anhydrase complexes of minor 

abundances occur in plant mitochondria independently of complex I. In ∆At1g47260 cells, no immune-

signal is visible (Fig. 5D). In conclusion, Coomassie and immune-stains of 2D separations of 

mitochondrial proteins on 2D Blue-native / SDS gels confirm the dramatic effect of the deletion of the 

gene encoding At1g47260 on complex I and the I-III2 supercomplex. However, some low amount of 

complex I is still present in protein fractions of the mutant cell line, which can be visualised on 2D Blue-

native / SDS gels upon silver staining (Fig. 6). Complex I of the mutant cell line has an identical subunit 

composition than the same complex in the wild-type line, but lacks a subunit in the 28 kDa range which 

most likely represents the At1g47260 protein. 

 

 

Purification of mitochondrial complex I from mutant and wild-type cells by sucrose gradient 

centrifugation 

 

Since a minor fraction of the At1g47260 protein was not associated with complex I or the I+III2 

supercomplex on Blue-native / SDS gels upon immune-staining, digitonin-solubilized mitochondrial 

fractions were separated by sucrose gradient ultracentrifugation to test the mitochondrial localization of 

the At1g47260 protein on the basis of an independent biochemical separation procedure. Conditions were 

optimized to resolve protein complexes in the 100 to 1500 kDa range. After ultracentrifugation, gradients 

were subdivided into 10 fractions and aliquots of all of them were analysed by 1D BN-PAGE to monitor 

the resolution of protein complexes. For wild-type cells, the I+III2 supercomplex and singular complex I 

were mainly present in fractions 1 and 2, whereas complexes III and V had peaks in fraction 3 (Fig. 7A). 
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As expected, I+III2 supercomplex and singular complex I were largely absent in the corresponding 

fractions of the sucrose gradient of ∆At1g47260 cells (Fig. 7B). Direct analysis of the fractions of the 

sucrose gradients by 1D SDS-PAGE (Fig. 7 C, D) and subsequent immunoblotting (Fig. 7 E, F) revealed 

highest amounts of the At1g47260 protein in the fractions containing I+III2 supercomplex and singular 

complex I. However, the immune-positive bands at 28 kDa also were visible in fractions containing 

smaller protein complexes. As expected, the corresponding immune signal was largely absent in the 

protein fractions of the ∆At1g47260 cells (the faint signal at 28 kDa protein in fraction 1 most likely 

represents a crossreaction with one of the structurally related carbonic anhydrase subunits present in 

complex I). In conclusion, most of the At1g47260 protein is associated with complex I upon fractionation 

of mitochondrial protein complexes by Blue-native gel electrophoresis or sucrose gradient 

ultracentrifugation. However, a smaller proportion of the protein migrates slower upon sucrose gradient 

ultracentrifugation and faster on Blue-native gels. It currently cannot be decided whether the At47260 

protein also occurs separately from complex I under in vivo conditions, or whether it artificially 

aggregates upon solubilization of mitochondrial proteins by digitonin. 

 

 

Monitoring differences between the mitochondrial proteomes of ∆At1g47260 and wild-type cells 

 

2D fluorescence difference gel electrophoresis (2D DIGE) was employed to systematically monitor 

changes in the mitochondrial proteome of ∆At1g47260 cells. For this procedure, digitonin-treated 

mitochondrial fractions from mutant and wild-type cell lines were incubated with two different 

fluorescent dyes, which covalently bind to proteins. Subsequently, the two protein fractions were mixed 

and resolved on a single 2D Blue-native / SDS gel. Finally the gel was scanned at two different 

wavelengths and protein ratios in the two fractions were quantified using the DeCyder software tool. On 

overlapping images, proteins of equal amounts are yellow, proteins reduced in the mutant are green and 

proteins increased in the mutant are red (Fig. 8A). As expected, I+III2 supercomplex and singular 

complex I are reduced in the mutant cell line. Reduction was quantitatively determined and found to lie at 

about 90%, which is in accordance with previous estimations on the basis of Coomassie-stains (Fig. 4 and 

5). The ATP synthase complex (complex V), dimeric complex III and complex IV as well as the HSP60 

complex were unchanged in the mutant cell line.  

Reduction of I+III2 supercomplex and complex I in the mutant cell line could either be the consequence 

of decreased stability of these protein complexes during Blue-native PAGE, or of true reduction of their 
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subunits (by specific protein degradation or down-regulation of the corresponding nuclear and 

mitochondrial genes). To distinguish between these two possibilities, 2D DIGE was performed in 

combination with 2D IEF / SDS PAGE (Fig. 8B). About 50 proteins specifically were reduced in the 

mutant cell line (green spots) and a few others are present in increased amounts (red spots). Some of the 

reduced proteins were previously identified in the course of the Arabidopsis mitochondrial proteome 

project (Kruft et al. 2001, www.gartenbau.uni-hannover.de/genetik/AMPP) and represent known subunits 

of complex I (At5g37510, At5g52840, At3g48680 and At3g63510). The degree of reduction of these 

subunits was in a similar range like previously determined for the DIGE experiment on the 2D Blue-

native / SDS gel. In conclusion, reduction of complex I in mutant cell lines is due to true down-regulation 

of complex I subunits and not to decreased stability of complex I during Blue-native PAGE. Some of the 

proteins reduced in the mutant cell line do not form part of complex I, e.g. adrenodoxin (mitochondrial 

ferredoxin, At5g52840). 

 

 

Expression of alternative oxidoreductases is similar in ∆At47260 and wild-type cells 

 

Immunoblotting experiments were carried out to monitor changes in expression of alternative oxidase 

(AOX) and Rotenone-insensitive NAD(P)H dehydrogenases in the ∆At47260 cell line. Total 

mitochondrial protein of mutant and wild-type cells was separated by 2D Blue-native / SDS PAGE and 

blotted onto nitrocellulose. Blots were immune-stained using antibodies directed against AOX from 

Sauromatum guttatum (Elthon et al. 1989) and the alternative NAD(P)H dehydrogenases NDA and NDB 

from potato (Rasmusson and Agius 2001). All three antibodies recognized proteins of expected molecular 

masses: dimeric AOX at about 65 kDa, NDB at about 60 kDa and NDA at about 53 kDa (Fig. 9C-9H). 

Stained proteins are represented by horizontal streaks, indicating their presence in higher order structures 

during first dimension Blue-native PAGE. Expression of all three enzymes was similar in wild-type and 

∆At47260 cells (Fig. 9C-9H). Also, oxygen consumption measurements using isolated mitochondria 

revealed similar rates of alternative (SHAM-sensitive) respiration for wild-type and mutant cell lines 

(data not shown). 
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Discussion 

 

Reverse genetic approach to investigate the function of plant-specific subunits of complex I 

 

Mitochondrial complex I was isolated and characterized previously for broad bean, potato, red beet, 

sugarbeet and wheat (Leterme and Boutry 1993, Herz et al. 1994, Rasmusson et al. 1994, Trost et al. 

1995, Jänsch et al. 1996, Combettes and Grienenberger 1999, reviewed in Rasmusson et al. 1998). Very 

recently, subunits of this complex were systematically identified for Arabidospis, rice and 

Chlamydomonas by mass spectrometry (Heazlewood et al. 2003, Cardol et al. 2004). In the course of 

these studies, about 9 plant specific subunits of complex I were discovered. Several of them have low 

molecular masses (6 – 12 kDa) and it currently cannot be excluded that they correspond to known 

complex I subunits of animals or fungi but were not recognized due to low primary sequence 

conservation. However, another group of plant-specific complex I subunits includes three to five 

structurally related proteins in the 30 kDa range, which clearly are absent in complex I preparations from 

any other group of organisms. Based on sequence comparisons and computer modelling, these proteins 

were suggested to represent carbonic anhydrases of the γ-type (Parisi et al. 2004). Homozygous knockout 

plants were now generated to functionally characterize these subunits. Here we report the characterization 

of the first such mutant, which includes a T-DNA insertion in the gene encoding At1g47260. Initially, a 

peripheral localization of the protein was assumed due to its plant-specific occurrence. However, 

surprisingly the gene deletion causes a drastic reduction of complex I in cell suspension cultures by 90%, 

possibly reflecting an integral position of the protein (Fig. 4, 5, 8). Complex I subunits are shown to be 

reduced within the total mitochondrial proteome from Arabidopsis as monitored by 2D IEF / SDS PAGE, 

indicating their efficient degradation or the down-regulation of the corresponding nuclear and 

mitochondrial genes. Deletion of the gene encoding At1g47260 has clear effects on the composition of 

the mitochondrial proteome (Fig. 8). 

 

 

Submitochondrial localization of At1g47260 

 

While localization of At1g47260 and other structurally related proteins within complex I in plants has 

now been established by various biochemical and genetic investigations (Leterme et al. 1993, Herz et al. 

1994, Heazlewood et al. 2003, Cardol et al. 2004, this study), an additional localization within 
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mitochondria detached from complex I can currently not be excluded. Immunological localization of 

At1g47260 on blots of 2D Blue-native / SDS gels revealed its presence within the I+III2 supercomplex 

and complex I but also in other gel regions representing protein complexes of lower molecular mass (Fig. 

5). A very similar result was obtained upon resolution of mitochondrial protein complexes by sucrose 

density centrifugation (Fig. 7). However, both experiments were based on solubilization of mitochondrial 

membrane proteins by digitonin, which might lead to some artificial aggregations of membrane proteins. 

Alternatively, presence of At1g47260 in gel regions representing smaller protein complexes might be 

caused by partial degradation of complex I into subcomplexes. Indeed the DIGE experiment revealed 

some complex I subunits in lower molecular mass regions on the Blue-native / SDS gel in Fig. 8. We 

conclude that possibly all of At1g47260 is localized within singular complex I or the supercomplex-

bound form of this respiratory protein complex. 

 

 

The function of At1g47260 

 

At1g47260 and related subunits of complex I exhibit significant sequence identity to a prokaryotic type 

carbonic anhydrase, which first was identified in the archeabacterium Methanosarcina thermophila 

(Alber and Ferry 1994) and which was designated γ-type to distinguish it from previously defined other 

types of carbonic anhydrases (Hewett-Emmett and Tashian 1996). Sequence identity between the γ-

carbonic anhydrase and the plant-specific complex I subunits lies in the range of 30% (Parisi et al. 2004). 

Furthermore, functionally important residues are completely conserved in At1g47260, e.g. three histidine 

residues involved in coordinating a Zn cofactor necessary of enzymatic activity. Structure of the γ-

carbonic anhydrase from Methanosarcina thermophila was recently resolved by x-ray crystallography at 

atomic resolution (Iverson et al. 2000). Computer modelling allows to predict a very similar structure for 

At1g47260 (Parisi et al. 2004).  

 

Involvement of At1g47260 in CO2 metabolism is supported by transcriptome analyses for Arabidopsis. 

Currently, 294 DNA Arabidopsis microarray experiments are publically available at Stanford-Microarray 

Database (http://genome-www5.stanford.edu/cgi-bin/scriptIndex.pl). Concerning the gene encoding 

At1g47260, expression is very constant under all physiological conditions tested. However, the gene was 

clearly repressed (> 80%) if Arabidopsis was cultivated in the presence of an elevated CO2 concentration 
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(700 ppm) (Fig. 10). The same result was obtained for At1g19580, which is one of the other plant-

specific subunits of complex I related to At1g47260 (data not shown). … 

 

Direct physiological evidence of carbonic anhydrase activity of At1g47260 is still lacking. Enzyme 

assays were carried out using At1g47260 protein overexpressed in E. coli, mitochondrial extracts from 

Arabidopsis, or complex I isolated by sucrose density gradient ultracentrifugation (data not shown). Also, 

an in-gel enzyme assay using Blue-native gels was employed to investigate carbonic anhydrase activity of 

complex I. This assay is based on monitoring a local pH shift within a gel at the location of a carbonic 

anhydrase band in the presence of excess of CO2 due to its conversion to HCO3¯ (Galvez et al. 2000). So 

far, carbonic anhydrase activity of complex I from plants could not be demonstrated. Possibly, Coomasie-

blue within gels interferes with this enzymatic acitivity. Furthermore, treatment of mitochondrial 

fractions with digitonin might not be compatible with carbonic anhydrase activity and the E. coli 

overexpressed form of At1g47260 might not have the correct three-dimensional conformation. It 

therefore currently can not be excluded that At1g47260 has a different physiological role within complex 

I of plants. However, carbonic anhydrase activity of At1g47260 is strongly supported by sequence 

comparison, computer modelling and the altered expression of its gene in the presence of varying CO2 

concentrations during cultivation of Arabidopsis. Indirect evidence for involvement of At1g47260 in 

mitochondrial one-carbon metabolism also comes from the observation that formate dehydrogense is 

upregulated in the ∆At1g47260 line (Fig. 4). 

 

What could be the physiological role of γ-carbonic anhydrases in plant mitochondria? Carbon metabolism 

of plant mitochondria has special features. Large amounts of CO2 / HCO3¯ are liberated in plant 

mitochondria not only due to the decarboxylation of citric acid intermediates, but also by the conversion 

of two molecules glycine into serine during photorespiration and by the direct conversion of malate into 

pyruvate by the malic enzyme. Possibly carbonic anhydrases in plant mitochondria are important to avoid 

acidification of the mitochondrial matrix by HCO3¯, which would reduce the electrochemical gradient 

across the inner mitochondrial membrane 

 

For sure At1g47260 is very important for assembly of complex I. Deletion of the gene encoding this 

protein causes reduction of complex I levels by about 90%. The remaining complex I seems to have an 

identical molecular mass on Blue-native gels, indicating that the At1g47260 protein possibly is replaced 

to some degree by one or several of the structurally related plant-specific subunits of complex I.  
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The role of complex I in plant cells 

 

Mutants concerning mitochondrial complex I in plants were characterized previously and gave interesting 

insights into the physiological role of this complex. A well investigated mutant is the “CMSII” line of 

tobacco, which was generated by the regeneration of plants through two successive cycles of protoplast 

culture (Li et al. 1988). The mutant carries a deletion on the mitochondrial genome in the region of the 

NAD7 gene encoding a 40 kDa subunit of complex I (Pla et al. 1995). As a result, NAD7 and other 

complex I subunits are missing and activity of complex I (Rotenone-sensitive oxygen uptake of isolated 

mitochondria) is reduced under certain conditions, especially if glycine is used as a substrate (Gutierres et 

al. 1997, Sabar et al. 2000). At the same time, oxidation rates for exogenous NADH and activity of 

alternative oxidase (AOX) are induced. Mutant plants develop slowly and exhibit partial male sterility, 

which becomes complete under low light. Furthermore, photosynthesis is reduced by 20 to 30% under 

atmospheric CO2 levels (Dutilleul et al. 2003a). Absence of complex I was also reported to affect the 

redox balance within plant cells, induce enzymes of the cellular antioxidant response and cause a higher 

tolerance to abiotic and biotic stresses (Dutilleul et al. 2003b, Noctor et al. 2004).  

 

Another interesting complex I mutant is the “NCS2” line of maize, which carries a deletion in the 

mitochondrial NAD4 gene and has reduced complex I activity (Marienfeld and Newton 1994). Mutant 

plants can be maintained at a heteroplasmic state and show an impaired development resulting in striped 

leaves. Mitochondria of mutant plants include a smaller version of complex I, which is enzymatically 

active (Karpova and Newton 1999). Compensatory increase in the activities or amounts of exogenous 

NAD(P)H dehydrogenase was not observed. Recently, a mutant affecting a nuclear encoded 18 kDa FeS 

subunit of complex I from Arabidopsis was found to cause reduced capacity for cold acclimation and 

accumulation of reactive oxygen species (Lee et al. 2002). 

 

Surprisingly,  ∆At1g47260 plants did not show a phenotype under all conditions tested, although the 

complex I level in cell suspension cultures is reduced by about 90%. Furthermore, levels of alternative 

NAD(P)H dehydrogenases and alternative oxidase are not enhanced in the cultures (Fig. 9). Most likely 

complex I activity is not rate limiting for respiratory electron transport in Arabidopsis under the 

conditions applied. Consequently, plants also had normal fertility. In contrast, oxygen consumption and 

growth rate of a mutant cell suspension culture was clearly reduced, indicating a limiting role of complex 
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I during optimal growth conditions. Interestingly, mitochondrial ferredoxin is downregulated in the 

mutant, pointing to an altered redox state of the mitochondrial matrix.  

 

The ∆At1g47260 line certainly is a very interesting tool to further address the function of complex I in 

plant cells. Also, it might offer to investigate cross-talk between the mitochondrial and the nuclear 

genome in plants, because deletion of the gene encoding At1g47260 seems to result in specific down-

regulation of other nuclear and mitochondrial genes.  

 

 

Materials and Methods 

 

Selection of an Arabidopsis knockout line for At1g47260 

 

Seeds of an Arabidopsis knockout line for locus At1g47260 were obtained from ABRC (T-DNA insertion 

line Salk_010194, Kanr). Mutant and wild-type plants (Arabidopsis ecotype “Columbia”) were grown in 

soil in a growth chamber at 16-h light (22°) and 8-h dark (20°) periods and 50% relative humidity. Plants 

carrying the T-DNA insertion at At1g47260 were selected by PCR using genomic DNA extracted from 

leaves by the CTAB method and primers 5`-GCGTGGACCGCTTGCTGCAACT-3` (specific for the T-

DNA left border) and 5`-CACTCGAGTGGGAACCCTAGGA-3` (specific for At1g47260). PCR settings 

were 1 cycle 94 °C for 1 min, 35 cycles 94 °C for 1 min, 55 °C for 2 min, 72 °C for X min, and a final 

extension at 72 °C for 10 min. An amplification fragment of 925 bp was obtained for mutant plants.  

 

 

RNA Extraction and RT-PCR 

 

RNA of mutant and wild-type plants was isolated from leaves using the Trizol method. CopyDNA 

fragments were amplified by the OneStep RT-PCR kit (Qiagen®) using 1 µg RNA and primers 

APF1minus40 (5'-ATACATATGAGGCATCGGACGTTG-3') and PAF5th (5'-

GACTCGAGTTAGAAGTACTGAG-3') for At1g47260 or primers ATHACT2M  (5´-CTT 

GGAGATCCACATCTGC-3´) and ATHACT2P (5´-TGGCATCACACTTTCTACA-3´) for actin2. RT-

PCR settings were 1 cycle  43°C for 30 min, 1 step 95°C for 3 min and 40 cycles for 45s 95°C, 45s 55°C, 
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45s  72 °C, and a final step at 72 °C for 5 min. Amplification products were separated by gel 

electrophoresis on 1% agarose gels 

 

 

Selection and characterization of homzygeous mutant lines carrying a single T-DNA insertion 

 

Plants lacking the At1g47260 transcript were considered to be homozygous with respect to the T-DNA 

insertion at the corresponding locus. One plant was selected and backcrossed with a wild-type plant to 

generate heterozygous plants. Twenty individual seeds from this crossing were selected, grown in soil 

(pots of 15 cm Ø) and resulting plants were self-pollinated for seed amplification. Subsequently, 150 

surface-sterilized seeds of each of the 20 lines were germinated on petri dishes containing solid MS 

medium including 50µg l-1 kanamycin. After one week, the ratio of resistant / non-resistant seedlings 

from each petri dish was determined. Arabidopsis lines showing a ratio of 3:1 were considered to include 

a single T-DNA insertion. One line was selected, grown in the green house and seeds were collected after 

self-pollination. Homozygous plants with respect to the insertion at At1g47260 were again selected by 

RT-PCR as described above.  

 

For phenotype characterizations, wild-type and mutant plants were sowed in soil (pots of 15 cm Ø), 

placed for 3 days at 4°C to synchronize germination and finally grown until senescence at a 16 h / 8 h 

light-dark period, 22 and 20°C day/night temperatures and 60% humidity.  All measurements were taken 

day by day for 20 individuals per genotype. Growth stages were classified according to Boyes et al. 

2001.. 

 

  

Cell suspension cultures 

 

Arabidopsis suspension cultures were established from wild-type and ∆At1g47260 Arabidopsis lines as 

outlined by May and Leaver (1993): plants were grown under sterile conditions on solid MS medium. 

About one week after germination, short stem pieces were cut and transferred onto solid B5 medium 

(Gamborg et al, 1968) supplemented with glucose (20 g/l), kinetin (50 mg/l), 2,4D MES (0.5 g/l) and 

grown at 24 °C in the dark. After another three to four weeks, callus was transferred into liquid 

suspension cell medium (MS medium supplemented with 3 % sucrose, nicotinic acid [0.5 mg/l], 
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pyridoxol-HCl [0.5 mg/l], thiamine-HCl [100 µg/l], myo-inositol [100 mg/l], 2,4-dichlorphenoxyacetic 

acid [1 mg/l] and ampicillin [100 mg/l], pH 5.7) and cultivated in the dark at 24°C, 30% humidity and 

gentle shaking (90 rpm). Cells were transferred once a week into fresh suspension cell medium. Growth 

rates of the suspension cell cultures were determined by weight determinations at days 3, 5 and 7. 

Oxygen uptake of suspension cells were analysed using a Clark-type oxygen electrode with an reaction 

chamber volume of  2 ml (Oxygraph, Hansatech, Norfolk, England) in a reaction buffer containing 0.3 M 

mannitol, 10 mM K2HPO4 (pH 7.2), 10 mM KCl, 5 mM MgCl2, +/- 5mM KCN. 

 

 

Preparation of mitochondria 

 

Starting material for mitochondrial preparations were about 100 g of Arabidopsis cells from cell 

suspensions. Cell suspension cultures were filtered trough two layers of gaze and dissolved in grinding 

buffer (450 mM sucrose, 15 mM MOPS [3-(N-morpholino)-propanesulfonic acid], 1.5 mM EGTA, 0.2 % 

[w/v] bovine serum albumin [BSA], 0.6 % [w/v] polyvinylpyrrolidone 40, 0.2 mM phenylmethylsulfonyl 

fluoride [PMSF] and 14.3 mM ß-mercaptoethanol/KOH, pH 7.4). Cells were homogenized three times for 

15 s in a Waring blender (once at high speed; twice at low speed) and subsequently mitochondria were 

enriched by a three-step centrifugation procedure at 3000xg for 5 minutes (organelles in supernatant), 

8200xg for 5 minutes (organelles in supernatant) and 17000xg for 10 minutes (organelles in pellet). 

Afterwards, mitochondria were resuspended in washing buffer (300 mM sucrose, 10 mM MOPS, 1 mM 

EGTA and 0.2 mM PMSF/KOH, pH 7.2), dispersed using a Dounce homogenizer (two strokes) and 

placed on top of 30 ml Percoll gradients (10 ml of 18 %, 23 % and 40 % Percoll [v/v] in 0.3 M sucrose 

and 10 mM MOPS/KOH, pH 7.2). After ultracentrifugation for 45 min at 70000xg the mitochondria can 

be isolated from the 23 % / 40 % interphase of the gradients. Percoll was subsequently removed by 

sedimentation of the organelles three times at 14500xg for 10 minutes and resuspension in storage buffer 

(400 mM mannitol, 1 mM EGTA, 10 mM Tricine and 0.2 mM PMSF/KOH pH 7.2). Purified organelles 

were either directly used for biochemical analyses or shock frozen and stored at –80°C.  

Gel electrophoresis procedures 

 

1D SDS-PAGE was carried out according to Schägger and von Jagow (1987) and 1D Blue-native PAGE 

as outlined by Schägger (2001). Protein solubilization for Blue-native PAGE was performed using 

digitonin at a concentration of 5 µg per µg mitochondrial protein as given in Eubel et al. 2003. Blue-
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native separation of protein complexes was carried out in gradient gels of 4.5 – 16 % polyacrylamide. 2D 

Blue-native / SDS PAGE followed a protocol given by Schägger (2001). Conditions for 2D IEF / SDS 

PAGE were adopted from Kruft et al. 2001. All 1D and 2D gels were either stained using the Coomassie-

colloidal procedure (Neuhoff et al. 1985, 1990) or by silver (Heukeshoven and Dernick 1986). Activity 

staining for complex I was carried out according to Zerbetto et al. (1997). 

 

 

2D fluorescence difference gel electrophoresis (2D DIGE) 

 

2D DIGE was performed using CyDye Fluors from Amersham Biosciences, Freiburg, Germany. Freshly 

prepared mitochondria from mutant and wild-type Arabidopsis lines (about 500 µg mitochondrial protein 

/ line) were centrifuged for 10 minutes at 14000xg.  

For 2D Blue-native / SDS PAGE, the pellet was resuspended in 50 µl of a buffer containing 30 mM 

HEPES / pH 7.4, 150 mM potassium acetate, 10 % glycerole and 5 % digitonin. After incubation for 20 

minutes on ice, the samples were centrifuged for 10 minutes at 18300xg for removal of unsolubilized 

material. The pH value required for the labelling reaction was adjusted by adding two volumes of the 

same solubilization buffer set to a pH of 9.0. Checking of pH value was performed by using pH strips. 

10µl of the individual protein samples were incubated for 30 minutes in the dark with 1 µl of a 400 µM 

Cy2Dye or Cy5Dye solution (Amersham Biosciences) prepared according to the manufacturer’s 

instructions for minimal labelling conditions. Labelling reactions were stopped by addition of 1 µl lysine 

solution (10 mM) and incubation for 10 minutes in the dark. Samples from mutant and wild-type plants 

were now mixed, supplemented with 1 µl of a 5 % Coomassie-blue solution (5 % Serva blue G, 750 mM 

aminocaproic acid) and directly loaded onto the gel. Conditions for 2D Blue-native / SDS PAGE were 

adopted from Schägger (2001) 

For 2D IEF / SDS PAGE, samples were resuspended in 50µl “lysis solution” (8 M urea, 4 % CHAPS, 40 

mM Tris base, 0.1 mM PMSF). After checking the pH value, minimal staining and termination of the 

reaction of 10 µl of each sample were performed as described for BN-PAGE. Subsequently 10 µl “lysis 

solution” plus 100 mM DTT were added to each sample. Samples were pooled, supplemented with 300µl 

rehydration buffer (8 M urea, 2 % CHAPS, 40 mM Tris base, 40 mM DTT, 10 µl of IPG buffer, a trace of 

bromophenol blue) and finally loaded onto an IPG strip pH 3-10 NL (Amersham Biosciences). 

Conditions for 2D IEF / SDS PAGE were taken from Kruft et al. (2001).  
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After completion of electrophoresis runs, 2D gels were scanned using the Typhoon laser scanner at two 

different wavelength (Amersham Biosciences). Protein quantification was carried out using the DeCyder 

software tool (Amersham Biosciences). 

 

 

Antibody production and immunoblotting experiments 

 

An antibody directed to the C-terminal region of At1g47260 (amino acid 208 to 278) was generated by 

over-expressing a corresponding DNA fragment in E. coli using the pET24a expression vector (Novagen, 

Madison, WI). The DNA fragment was amplified by PCR using 5’-

TTGGATCCATCTCGCACAGATTC-3’ and 5’-GAGGATCCGTAGAAGTACTG-3’ primers. Isolation 

of overexpressed protein and rabbit immunization was carried out following standard procedures. 

Production of a second antibody directed against the full-length sequence of At1g47260 was described 

previously (Perales et al. 2004). For immunoblotting experiments, gels were blotted onto nitrocellulose 

membranes in transfer buffer (20 mM Tris base, 20% [v/v] methanol, and 150 mM glycine). Blots were 

incubated over night with antibodies directed against At1g47260, alternative oxidase (AOX) or the 

Rotenone insensitive NAD(P)H dehydrogenases NDA and NDB in incubation buffer (100 mM 

TrisHCl/pH 7.4, 0.1 % Tween20, 150 mM NaCl). Staining of immune-positive bands was carried out 

using the Vectastain ABC-Kit (Vector Laboratories, Burlingame, CA) according to the manufacturer’s 

instructions. 

 

 

Separation of mitochondrial protein complexes by sucrose gradient ultracentrifugation 

 

About 0.1 g freshly prepared mitochondria from Arabidopsis (protein concentration: 10 mg/ml) were 

centrifuged for 10 minutes at 14000xg and resuspended in a buffer containing 30 mM HEPES/pH 7.4, 

150 mM potassium acetate, 10 % glycerine and 5 % digitonin. After incubation for 1 hour the sample was 

centrifuged for 10 minutes at 25000xg for removal of unsolubilized material. The supernatant (about 1 

ml) was transferred onto a single sucrose gradient (volume: 11.5 ml) composed of 15 mM TrisBase/pH 

7.0, 20 mM KCl, 0.2 % digitonin and 0.3 to 1.5 M sucrose and centrifuged at 150000xg for 20 h. 

Afterwards fractions of 800 µl were removed from the gradient from bottom to top using a needle 

connected via a hose to a peristaltic pump and collected automatically. 50 µl of each fraction was 
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supplemented with Coomassie blue solution and loaded onto a 1D Blue-native gel to separate 

mitochondrial protein complexes. 
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Figure legends: 

 

Figure 1: Characterization of Arabidopsis knock-out line SALK_010194. A: Location of the T-DNA 

within gene At1g47260. B: Confirmation of gene knockout by RT-PCR. Total mRNA was isolated from 

mutant and wild-type plants and the open reading frame of locus At1g47260 was amplified by RT-PCR. 

As a control, actin2 mRNA was amplified. Sizes of a DNA length standard are given to the left. 

 

Figure 2: Comparison of phenotype and development between wild-type and ∆At1g47260 plants. A: 

Phenotyes of wild-type and ∆At1g47260 plants after growing for 22 days on soil. B: Duration of 

developmental stages of wild-type and ∆At1g47260 plants (in days).  

Figure 3: Comparison of phenotype, growth rate and O2 consumption rate of suspension cell cultures for 

wild-type and ∆At1g47260 plants. A: Suspension cell cultures 5 days after inoculation. B: Fresh weight 

of mutant and wild-type cell lines 3, 5 and 7 days after inoculation. C: KCN sensitive O2 consumption of 

mutant and wild-type cell lines 3, 5 and 7 days after inoculation. 

 

Figure 4: Complex I is strongly reduced in ∆At1g47260 cell lines. Total mitochondrial protein from 

mutant and wild-type Arabidopsis lines was separated by one-dimensional Blue-native PAGE and either 

Coomassie stained (A) or activity stained for complex I (B). Proteins were solubilized with digitonin (5 g 

/ g protein). The molecular masses of standard proteins are given to the left (in kDa) and the identities of 

protein complexes to the right of the gel strips. I+III2: supercomplex formed of complexes I + dimeric 

complex III, I: complex I, H: HSP60 complex, V: ATP synthase complex, III2: dimeric complex III, 

FDH: formate dehydrogenase complex. 
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Figure 5: Two-dimensional resolution of mitochondrial protein complexes of wild-type and ∆At1g47260 

cell lines by Blue-native / SDS PAGE. A,B: Coomassie-stained gels. C, D: Immunoblot of the boxed 

regions in A and B developed with an antibody directed against At1g47260. Molecular masses of 

standard proteins are given to the right (in kDa) and identities of protein complexes above the gels (for 

designations see Figure 4). 

 

Figure 6: Subunit composition of complex I from wild-type and ∆At1g47260 cell lines. The protein 

complex was separated by 2D Blue-native polyacrylamide gel electrophoresis and visualized by silver 

staining. Schemes indicating complex I subunits are given to the right of the gel strips. Molecular masses 

of standard proteins are given on the right (in kDa). 

 

Figure 7: Analysis of  complex I from wild-type and ∆At1g47260 cell lines after purification by sucrose 

density gradient ultracentrifugation. Sucrose gradients were fractionated into 10 fractions (fraction 1: 

bottom of the gradient, fraction 10: top of the gradient). All fractions were analysed by 1D Blue-native 

PAGE and Coomassie-staining (A, B), 1 D SDS PAGE and Coomassie-staining (C, D) and 1 D SDS 

PAGE, western blotting and immune-staining (E, F). The immune-stained region in E, F corresponds to 

the boxed region in C, D. Identities of protein complexes are given in the middle between A and B (for 

designations see Figure 4), the molecular masses of standard proteins between C and D (in kDa). 

 

Figure 8: Analysis of the mitochondrial proteomes of wild-type and ∆At1g47260 cell lines by 2D 

fluorescence difference gel electrophoresis (DIGE). A: 2D Blue-native-SDS PAGE, B: 2D IEF / SDS 

PAGE. Proteins were detected by fluorescence scanning (proteins from the wild-type cell line are given 

in green, proteins from ∆At1g47260 cell lines in red). Yellow spots are equally expressed in both cell 

lines, green spots are of lower abundance in ∆At1g47260 and red spots of lower abundance in wild-type 

cell lines. Molecular masses of standard proteins are given to the right. Designations beneath the gel in A 

refer to identities of protein complexes (see Figure 4) and numbers beneath the gel in B to pI values. 

Proteins identified in the course of the Arabidopsis mitochondrial proteome project 

(http://www.gartenbau.uni-hannover.de/genetik/AMPP) are indicated in B. 
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Figure 9: Immunological quantification of the amounts of alternative oxidase (AOX) and two different 

“Rotenone” insensitive NAD(P)H dehydrogenases (NDA, NDB) in wild-type and ∆At1g47260 cell lines. 

Total mitochondrial protein was separated by 2D Blue-native SDS PAGE (A, B), electroblotted and 

subsequently immune-stained using antibodies directed against NDA (C, D), NDB (E, F) and AOX (G, 

H). The immune-stained regions in C, D, E, F, G and H correspond to the boxed regions in A, B. 

Numbers on the right correspond to molecular masses of standard proteins (in kDa), designation on top of 

the gels to identities of protein complexes (see Figure 4). 

 

Figure 10: Summary of results of micro array gene expression experiments available at the Stanford 

Microarray Database for locus At1g47260 (http://genome-www5.stanford.edu/cgi-bin/scriptIndex.pl). X-

axis: normalized red/green intensity, y-axis: frequency. 
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Fig 3
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Fig. 7
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Supplementary Discussion and Outlook 
 

Careful solubilization of plant mitochondria with digitonin and subsequent separation of the 

protein complexes by BN-PAGE led to the discovery of new supramolecular structures 

formed by components of the respiratory chain. 

For Arabidopsis, bean and barley, only supercomplexes consisting of NADH dehydrogenase 

and cytochrome c reductase were found (Chapter 2). One supercomplex has a I1III2 

composition and a molecular mass of approximately 1500 kD, another supercomplex of about 

3000 kD probably has a I2III4 composition. 

In freshly harvested potato tubers and etiolated potato stems, additonal supercomplexes 

containg also cytochrome c oxidase were found and are supposed to have III2IV1, III2IV2, 

I1III2IV1, I1III2IV2 and I1III2IV4 compositions (Chapter 3). 

Digitonin solubilization of mitochondria also allows separation of the respiratory complexes 

II and IV on 2D BN/SDS-PAGE. Surprisingly, complex II of Arabidopsis consists of 8 

subunits, twice as many as known for bacteria, yeast and mammals. For complex IV, six 

putative additional subunits were identified (Chapter 5). So far, nothing is known about the 

functions of these additional polypeptides. The respiratory complexes I and III are known to 

contain plant specific subunits performing side activities and one can speculate that the 

supplementary complex II and IV subunits also are not involved in electron transfer or proton 

translocation. 

One of the plant specific subunits of complex I, encoded by the gene with accession number 

at1g47260, seems to be highly important for the stability of the complex. Knockout of the 

gene results in an almost complete loss of singular complex I and the I1III2 supercomplex and 

leads to impaired respiration and growth rates in cell suspension cultures (Chapter 6). 

Since the existence, composition and possible functions of respiratory supercomplexes have 

already been discussed in chapters 2 to 6, this discussion will focus on special properties of 

the plant respiratory chain and putative implementations for the regulation of alternative 

respiration. Additionally the applicability of the solubilization technique used will be 

discussed and new results on the structure of the I1III2 supercomplex, which are not included 

in chapters two to six, will be presented. 
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Special Properties of Plant Respiratory Supercomplexes and Regulation of Alternative 

Respiration in Plant Mitochondria 

 

Apart from differences in the ratio of singular to supercomplex-bound complexes, the 

organization of the potato respiratory chain resembles its counterparts found in bacteria and 

mammals (Chapter 3) but is different to the one found in Saccharomyces cerevisae due to lack 

of complex I in this organism. Arabidopsis, bean and barley either seem to lack significant 

amounts of complex IV containing respiratory supercomplexes or these structures are more 

sensitive to dissociation (Chapter 2). Therefore, on BN gels only supercomplexes that 

comprise the complexes I and III were found in significant amounts.  

Although some fungi also possess alternative oxidoreductases, the combination of several 

rotenone insensitive NAD(P)H dehydrogenases and cyanide insensitive terminal oxidases is a 

general feature of plant mitochondria and unique to this kingdom. For this reason, a 

discussion on the structure of the plant respiratory chain has to consider the presence of these 

enzymes, especially because they do not form part of supercomplexes (Chapter 2). 

 

The alternative oxidase and the cytochrome c pathway, which includes cytochrome c 

reductase and oxidase as well as cytochrome c, compete for ubiquinol produced by complex I, 

the alternative NAD(P)H dehydrogenases and complex II (Day et al. 1996). The alternative 

oxidase is believed to perform several functions: i) it prevents the formation of reactive 

oxygen species (ROS) by balancing the Qr/Qt ratio, ii) it keeps the citric acid cycle running 

during state 4 respiration, and iii) it might be useful for the plant during inhibition of the 

cytochrome pathway by naturally occuring cyanide, nitric oxide, sulfide, high concentrations 

of CO2, low temperatures or limited phosphorus concentrations (for review, see Millenaar and 

Lambers 2002).  

But how is the energy wasting action of this dimeric enzyme regulated? Apart from gene 

expression and protein turnover, two major parameters that influence the activity of the 

alternative oxidase in vitro are known to be the concentration of α-keto acids like pyruvate 

(Rhoads et al. 1998, Vanlerberghe et al. 1998) and the reduction state of a conserved Cystein 

residue at the N-terminus of each monomer (Umbach and Siedow 1993). However, in vivo 

these regulatory mechanisms probably are not relevant because the pyruvate concentration 

within the mitochondrium usually is two to ten times higher than the concentration for half 

maximum stimulation (Millenaar et al. 1998). Additionally, the oxidized, less active version 

of the dimer is found only rarely in mitochondria. Very little is known about the regulation of 
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AOX by the Qr/Qt ratio, although it seems to have a certain effect (Millenaar and Lambers 

2002).  

The discovery of respiratory supercomplexes in plant mitochondria could provide a new 

mechanism for AOX regulation. The presence of the highly abundant I1III2 supercomplex in 

plant mitochondria might reduce access of AOX to its substrate ubiquinone by substrate 

channeling of ubiquinone inside the particle. For substrate channeling between the complexes 

I and III, no ubiquinone pool is necessary. However, AOX activity most likely depends on the 

presence of such a pool. How do substrate channeling and the existence of an ubiquinone pool 

fit together? In mammalian mitochondria, which also possess supercomplexes (Schägger 

2002), the presence of an ubiquinone pool has been shown (Kröger and Klingenberg 1973, 

Bianchi et al. 2004), leading to a conflict between physiological and structural data. A model 

of temporary interactions of the complexes I and III has been proposed for mammalian 

mitochondria, allowing the existence of both, ubiquinone pool and I1III2 supercomplex 

(Bianchi et al. 2004). In mitochondria of plants, apart from complex II, various rotenone 

insensitive NADH dehydrogenases (and other enzymes) can additionally reduce ubiquinone 

and do not participate in the I1III2 supercomplex (Chapter 2), making the existence of an 

ubiquinone pool even more likely. On the other hand, the interaction of the complexes I and 

III seems to be very stable, as indicated by the high rate of incorporation of the singular 

enzymes into the supercomplex. Depending on the organism, on BN-gels, 50 to 90 % of 

complex I is integrated into the supercomplex. Excluding artificial protein aggregation as the 

reason for supercomplex formation, the amount of singular complex I might be even lower in 

vivo due to potential dissociation of the supercomplex during sample preparation. This makes 

a dynamic association between the complexes I and III unlikely. 

Two of the seven alternative NAD(P)H oxidases of Arabidopsis recently were found to be 

induced by light, independantly of the state of carbon metabolism. (Escobar et al. 2004). They 

most likely form the basis of an overflow protection mechanism for the standard respiratory 

chain in a situation of excess NADH supply due to photorespiration. The decarboxylation of 

glycine, which is coupled to the generation of NADH, seems to be not or only weakly 

affected by the complex I inhibitor rotenone. Additionally, the cyanide resistant electron 

pathway increases in the presence of ATP. The ATP/ADP ratio in the cytosol of barley 

protoplasts increases in the presence of CO2 but not in CO2-free medium, indicating an 

electron flow via the alternative non-phosphorylating pathways under conditions in which 

photorespiration is induced (Igamberdiev et al. 1997). However, studies on the electron flow 
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between classical and alternative pathways using inhibitors have to be considered with 

caution because they most likely do not reflect electron partitioning in vivo (Day et al. 1996). 

In case of substrate channeling within the I1III2 supercomplex, these results suggest a 

regulation of AOX activity by the supply of reduced ubiquinone via the alternative NADH 

dehydrogenases. Only fine trimming of AOX activity might then be performed by association 

or dissociation of the I1III2 supercomplex. Dissociation possibly leads to a reduced electron 

transport efficiency via this pathway and to an increased level of reduced ubiquinone. This 

would shift the equilibrium of electron transport between the classical and alternative way 

towards the AOX. 

 

However, there is also the possibility of a physiological aggregation of the complexes I and 

III only for structural reasons without featuring substrate channeling. Stabilization of the 

individual respiratory complexes and a more efficient packing of the proteins in the inner 

mitochondrial membrane could be the advantages of the supercomplex over singular 

complexes. Of course, these considerations are also valid in the case of substrate channeling. 

 

A striking difference between (most) plant and mammalian respiratory supercomplexes is the 

participation of complex IV. Only in freshly harvested potato mitochondria, small amounts of 

complex IV containing supercomplexes were found. Two reasons might explain this 

difference: i) supercomplexes containing complex IV really are absent in most plants, ii) the 

interactions between complex IV and the other complexes are more labile in most plants 

compared to mammalian (and yeast) mitochondria or have a more temporary nature and are 

therefore hardly detectable on BN gels. The latter theory is supported by the discovery of faint 

bands representing a III/IV supercomplex in Arabidopsis (data not shown). A more dynamic 

association of complex IV with the I1III2 supercomplex might represent another mechanism to 

influence AOX activity by contributing to an improved electron flow through the classical 

pathway in an associated condition, or by partially inhibiting electron flow in the dissociated 

form. Again, the equilibrium between the two pathways will be shifted towards AOX when 

complex IV is not associated with the I1III2 supercomplex. In potato respirasomes, electron 

flow through this supercomplex might be regulated by the conversion from small to large 

form of complex IV, or vice versa. Activity of the larger, Cox VIb containing complex, is 

higher than the activity of the smaller form. 

In conclusion, regulation of alternative respiration remains an unanswered question. The 

existence of an ubiquinone pool and the finding that electrons of NADH generated by 

 

Chapter 7 - Supplementary Discussion and Outlook

114



photorespiration are transferred to oxygen via the alternative, non-phosphorylating pathway 

do not indicate such a mechanism, at least not for the photorespiratory pathway. Investigation 

of the structure of the I1III2 supercomplex will generate further information about the 

feasability or unlikeliness of substrate channeling in plant respiratory supercomplexes and 

therefore will shed new light on regulation of alternative oxidase. 

 

 

Solubilization of Respiratory Supercomplexes by Digitonin - Artificial Aggregates or 

Defined Physiological Associations? 

 

The glycoside digitonin is a non-ionic detergent which is supposed to interact specifically 

with sterols like Cholesterol. Because the inner mitochondrial membrane is assumed to lack 

this kind of lipids completely, it is normally used to solubilize proteins or protein complexes 

of the outer membrane, i.e. the TOM complex. However, obviously there is an interaction of 

digitonin with components of the inner mitochondrial membrane because solubilizations 

employing this detergent lead to the presence of several protein complexes of the inner 

membrane on BN gels. As indicated by the high amounts of digitonin needed compared to 

DDM or Triton X100, this interaction seems to be rather weak.  

A putative role of digitonin in formation of articial aggregations of protein complexes can not 

be entirely excluded at the moment but the results obtained so far are pointing into the 

opposite direction: 

 

i) Only specific stoichometric interactions were observed, mainly between the 

respiratory complexes I and III. In Arabidopsis, the only supercomplexes 

present on BN/SDS or BN/BN gels displayed I1III2 and I2III4 compositions. In 

barley and bean, just the I1III2 supercomplex was visible. Only in potato, small 

amounts of supercomplexes containing cytochrome c oxidase were found. 

Again, these supercomplexes showed a defined stoichometric organisation. 

The demonstrated tissue specifity for supercomplexes further favors the idea of 

supercomplexes over artificial aggregates. 

ii) In no case participations of complex II, alternative oxidoreductases or other 

mitochondrial protein complexes have been observed, although several of them 

are also known to be at least partly hydrophobic. 
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iii) Supercomplexes contain active complex I and, in the case of potato, 

additionally complex IV in active form as demonstrated by in gel activity 

stains. This might not be the case in unspecific aggregation. 

iv) Coomassie-coated proteins tend to repel each other due to the high amount of 

negative charges added to their surface. 

v) The incubation time of the mitochondria in digitonin-containing solubilization 

solution has no effect on the abundance of the protein complex or 

supercomplex bands on the gel (Heinemeyer et al., unpublished data). When 

Coomassie is added before the digitonin, the result also remains unchanged 

(Eubel et al., unpublished data). This again indicates no unspecific aggregation 

caused by digitonin. 

vi) Flux control measurments clearly indicate an interaction of the complexes I 

and III (Genova et al. 2003). 

vii) Electron microscopy and average image analysis of the digitonin solubilized 

I1III2 supercomplex of Arabidopsis reveals a highly ordered association of the 

two single respiratory complexes, which is not expected for unspecific 

aggregation of proteins (Eubel et al., unpublished data. See also below). 

ix) In mammals, several mutants of the cyt b gene not only show defects in 

complex III assembly but also in the formation of complex I and the I1III2 

supercomplex. This indicates a role of complex III in the formation and/or 

stabilization of complex I (Acin-Perez et al. 2004). 

 

 

A Short Look through the Microscope 

 
Digitonin solubilization of plant mitochondrial supercomplexes and subsequent BN-PAGE 

revealed the presence of a highly abundant supercomplex comprising a single copy of NADH 

dehydrogenase and dimeric cytochrome c reductase. To confirm the presence of this 

supercomplex and to get a detailed impression about of its topology, digitonin was again 

employed to solubilize Arabidopsis mitochondria. Separation of the different protein 

complexes and supercomplexes was then carried out by sucrose density centrifugation. 

Fractions of the gradients were tested for their content by BN-PAGE and those fractions 

containing the I1III2 supercomplex were used for negative stain electron microscopy. For 

single particle analysis, several hundred images of the supercomplex were taken, classified 

and averaged to generate a detailed image of the structure. The combination of electron 
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microscopy and single particle analysis has already been succesfully applied to reveal the 

supramolecular structure of photosystem I (Kruip et al. 1993, Bibby et al. 2001) and 

photosystem II (Boekema et al. 1995, Boekema et al. 1999, Boekema et al. 1998, 

Yakushevska et al. 2001) of several species. Figure 1 shows a preliminary picture of the I1III2 

supercomplex of A. thaliana. Being made of just a few hundred pictures, the image will 

become even more detailled when several thousand pictures are included in the analysis. This 

will allow to determine the orientation of the singular complexes to each other, the contact 

site of the two complexes, the distance between oxidation and reduction site of ubiquinone 

and further support or rebut the idea of substrate channeling in this particular supercomplex. 

 

 

 

 

 

 

 

 

  

 

 

Figure 1: Average picture of the Arabidopsis
I1III2 supercomplex. Isolated mitochondria
were solubilized with 5 g/g digitonin and the
protein complexes subsequently separated by
sucrose density centrifugation. Uranyl acetate
staining was performed prior to electron
microscopy. Several hundred images were
used to create an average picture of the
supercomplex. (Image taken by N. Dudkina
and E.J. Boekema, Groningen Univerity.) 
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