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1.  Introduction 
1.1.  The Ras family of GTP-binding proteins. 

The expression of many different receptors on the cell surface enables cells to 

respond to extracellular signals provided by the environment.  After ligand binding, 

receptor activation leads to a large variety of biochemical events in which small GTPases 

(e.g. Ras) are crucial.  Ras (for rat sarcoma virus) proteins are prototypical GTP-binding 

(G-proteins) that have been shown to play a key role in signal transduction, proliferation 

and malignant transformation.  G-proteins are a superfamily of regulatory GTP hydrolases 

which cycle between an inactive, GDP-bound form and an active, GTP-bound form 

(Sprang 1997; Bos 1998; Rebollo & Martinez 1999; Reuter et al 2000) (Figure 1).  

Regulatory proteins which control the GTP/GDP cycling rate of Ras include GTPase 

activating proteins (GAPs, e.g. p120 GAP, neurofibromin-1 and GAP1m) and guanine 

nucleotide exchange factors (GEFs, e.g. SOS and CDC25).  GAPs accelerate the rate of 

GTP hydrolysis to GDP, while GEFs induce the dissociation of GDP to allow association 

of GTP (Rebollo & Martinez 1999; Crul et al 2001).  In the GTP-bound form, Ras couples 

the signals of activated growth factor receptors to downstream mitogenic effectors.  

Proteins that interact with the active, GTP-bound form of Ras (and thus become GTP-

dependently activated) in order to transmit signals are called Ras effectors (Van Aelst et al 

1994; Marshall 1996a,b; Wittinghofer 1998; Katz & McCormick 1997).  GTP-Ras 

influences the activity of its effectors through : (1) direct activation (e.g. B-Raf, PI-3K), (2) 

recruitment to the plasma membrane (e.g. c-Raf-1), and (3) association with substrates 

(e.g. Ral-GDS).  Additional candidates for Ras effectors include protein kinases, lipid 

kinases and guanine nucleotide exchange factors (Van Aelst et al 1994; Marshall 1996; 

Wittinghofer 1998; Katz & McCormick 1997; Rebollo & Martinez 1999). 

The Ras-like small GTPases are a superfamily of proteins that include Ras, Rad, M-

Ras, Rap1A, Rap1B, Rap2, R-Ras, TC21, RalA, RalB, Rheb, Rin, and Rit (Takai et al 

2001). The Ras gene family consists of three functional genes, Harvey (H-), Kirsten (K-) 

and neuronal (N-) Ras.  H-Ras has been assigned to the short arm of chromosome 11 

(11p15.1-15.5), K-Ras to chromosome 12 (12p12.1-pter) and N-Ras to chromosome 1 

(1p22-32) (Barbacid 1987).  The Ras genes encode 21 kDa proteins which contain the 

carboxy-terminal sequence Cys-A-A-X-COOH (Cys, cysteine; A, aliphatic amino acid; 

and X, any amino acid) and are associated with the inner leaflet of the plasma membrane 

(H-Ras, N-Ras and the alternatively spliced K-RasA and K-RasB).  The Ras proteins are 

all comprised of 189 amino acids, except K-RasB, which has 188 amino acids.  Whereas 
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H-Ras, N-Ras and K-RasB are ubiquitously expressed, K-RasA is induced during 

differentiation of pluripotent embryonal stem cells in vitro (Pells et al 1997). 

 

 
 

 

Figure 1.  Schematic diagram of the switch function of Ras.  Ras cycles between an 
active, GTP-bound and an inactive, GDP-bound state.  Mitogenic signals activate guanine-
nucleotide exchange factors (GEF) like SOS and CDC25.  GEFs increase the rate of 
dissociation of GDP and stabilize the nucleotide-free form of Ras, leading to binding of 
GTP to Ras proteins.  Ras can also be activated by the inhibition of the GTPase-activating 
proteins (GAPs) (modified from Reuter et al 2000). 
 

1.2.  Post-translational modification of Ras. 

 Ras proteins are produced as cytoplasmatic precursor proteins and require several 

post-translational modifications to acquire full biological activity.  These modifications 

include prenylation, proteolysis, carboxymethylation and palmitoylation (Glomset & 

Farnsworth 1994; Zhang & Casey 1996; Casey & Seabra 1996; Gelb 1997; Mumby 1997) 

(Figure 2). 

 Protein prenylation by intermediates of the isoprenoid biosynthetic pathway is a 

recently discovered form of post-translational modification. At least three different 
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enzymes catalyze prenylation: protein farnesyltransferase (FTase), protein 

geranylgeranyltransferase type I (GGTase I), and geranylgeranyltransferase type II 

(GGTase II) (Glomset & Farnsworth 1994; Zhang & Casey 1996; Casey & Seabra 1996; 

Gelb 1997; Mumby 1997).  Prenylated proteins share characteristic carboxy-terminal 

consensus sequences and can be separated into proteins with a CAAX  (C, cysteine; A, 

aliphatic amino acid; and X, any amino acid) motif and proteins containing a CC or CXC 

sequence (Reiss et al 1990; Moores et al 1991; Reiss et al 1991; Yokoyama et al 1991).  

FTase I transfers a farnesyl group from farnesyldiphosphate (FPP) and GGTase I transfers 

a geranylgeranyl group from geranylgeranyldiphosphate (GGPP) to the cysteine residue of 

the CAAX motif (Trueblood et al 1993).  GGTase II transfers the geranylgeranyl groups 

from GGPPs to both cysteine residues of CC or CXC motifs. 

 
Figure 2.  Overview of the post-translational modifications of Ras proteins.  Protein 
farnesyltransferase (FTase) transfers a farnesyl group (F) from farnesyl diphosphate (FPP) 
to the thiol group of the cysteine residue in the CAAX motif.  Alternatively, 
geranylgeranyltransferase type I (GGTase I) can modify K- and N-Ras with a 
geranylgeranyl group from geranylgeranyl diphosphate (GGPP) in the presence of farnesyl 
transferase inhibitors (FTIs).  A CAAX-specific endoprotease removes the C-terminal 
tripeptide in the endoplasmatic reticulum.  A prenyl protein-specific methyltransferase 
(PPMTase) attaches the methyl group from S-adenosylmethionine (SAM) to the C-
terminal cysteine.  Finally, a prenyl protein-specific palmitoyltransferase (PPTase) attaches 
palmitoyl groups (P) to cysteines near the farnesylated C-terminus of H- and N-Ras.  FTI, 
farnesyltransferase inhibitor; GGTI, geranylgeranyltransferase inhibitor; REPI, Ras 
sequence-specific C-terminal endoprotease inhibitor; PPMTI, prenyl protein-specific 
methyltransferase inhibitor (modified from Reuter et al 2000). 
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The first step in the post-translational modification of Ras is farnesylation.  This 

modification occurs by covalent attachment of a 15-carbon farnesyl moiety in a thioether 

linkage to the carboxy-terminal cysteine of proteins that contain the CAAX motif (Figure 

3).  The reaction is catalyzed by FTase, a heterodimer consisting of a 48 kDa and a 45 kDa 

subunit (αF/GGI and ßF).  Binding sites for the substrates, farnesyldiphosphate (FPP) and the 

CAAX motif, are located on the αF and ßF subunits (Pellicena et al 1996; Park et al 1997; 

Trueblood et al 1997).  Substrates for FTase include all known Ras proteins, the tyrosine 

phosphatases PTPCAAX1 and PTPCAAX2 (Tamanoi et al 2001), the kinetochore-binding 

proteins CENP-E and CENP-F, nuclear lamins A and B, the γ subunit of the retinal 

trimeric G protein transducin, rhodopsin kinase, and a peroxisomal protein termed PxF 

(Glomset & Farnsworth 1994; Zhang & Casey 1996; Casey & Seabra 1996; Gelb 1997; 

Mumby 1997). 
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Figure 3.  Farnesylation, proteolysis and reversible methylation of Ras proteins.  
Proteins that terminate in a CAAX motif undergo processing events including 
isoprenylation, C-terminal proteolytic cleavage and carboxyl methylation.  In 
Saccharomyces cerevisiae, carboxyl methylation is mediated by an integral endoplasmic 
reticulum membrane protein named Ste14p.  PPi, inorganic phosphate; ICMT, 
isoprenylcysteine carboxyl methyltransferase; SAM, S-adenosyl-L-methionine. 
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 Farnesylation of Ras proteins is followed by endoproteolytic removal of the three 

carboxy-terminal amino acids (AAX) by a cellular thiol-dependent zinc metallopeptidase 

(Akopyan et al 1994) (Figure 3).  This endoproteolytic activity (RACE for Ras and a-

factor converting enzyme) is a composite of two different CAAX proteases: a zinc 

dependent activity encoded by AFC1 and the type IIb signal peptidase-like Rce1 (for Ras 

converting enzyme 1) (Boyartchuk et al 1997).  A mammalian Rce-1 has recently been 

cloned and demonstrated to process Ras proteins (Otto et al 1999, Hollander et al 2000).  

The final step in the carboxy-terminal modification of proteins with a CAAX motif (e.g. 

Ras) is the methylation of the carboxyl group of the prenylated cysteine residue by the 

methyltransferase Icmt (Bergo et al 2000; Bergo et al 2001; Romano & Michaelis 2001; 

Bergo et al 2002). 

While K-Ras contains a lysine-rich region, which is important for proper membrane 

localization, some Ras proteins require further modification to acquire stable membrane 

binding.  For example, palmitoyl groups are attached to one or two cysteines near the 

farnesylated carboxy-termini of H-Ras, N-Ras and Ras2 (Hancock et al 1989; Glomset & 

Farnsworth 1994; Milligan et al 1995; Ross 1995; Zhang & Casey 1996; Casey & Seabra 

1996; Dudler & Gelb 1996; Gelb 1997; Mumby 1997).  Similar to farnesylation, H-Ras 

palmitoylation is important for signaling functions in vivo (Dudler & Gelb 1996).  

Microinjection experiments in Xenopus oocytes revealed that palmitoylation of H-Ras 

dramatically enhances its affinity for membranes, as well as its ability to activate MAP 

kinase and initiate meiotic maturation (Dudler & Gelb 1996; Gelb 1997).  A Ras-specific 

protein palmitoyltransferase has been purified (Liu et al 1996).  Additionally, a palmitoyl-

protein thioesterase has been identified, purified and characterized (Camp et al 1994; 

Duncan & Gilman 1998).  Recently, the crystal structure of the human putative protein 

acyl thioesterase (hAPT1) has been solved (Devedjiev et al 2000).  In contrast to 

farnesylation and proteolysis, palmitoylation and methylation of Ras seem to be reversible 

and may have regulatory roles (Gelb 1997; Mumby 1997). 

 

1.3.  The Ras-to-MAP kinase signal transduction pathway. 

1.3.1.  The MAPK signaling cascades.  Mitogen-activated protein kinase (MAPK) 

pathways are well conserved, major signaling systems involved in the transduction of 

extracellular signals into cellular responses in a variety of organisms including mammals 

(Treisman 1996; Fanger et al 1997; Robinson & Cobb 1997; Elion 1998; Garrington & 

Johnson 1999; Schaeffer & Weber 1999).  Three sequential kinases are the core 
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components of the MAPK signaling cascades : (1) MAP kinase (MAPK or extracellular 

signal-regulated kinase = ERK), (2) MAPK kinase (MAPKK, or MAPK/ERK kinase = 

MEK) and (3) MAPKK kinase (MAPKKK or MEK kinase = MEKK) (Figure 4).  The 

MAPKs are activated by dual phosphorylation on tyrosine and threonine residues by 

upstream dual specificity MAPKKs.  MAPKKs are also phosphorylated and activated by 

serine-/threonine-specific MAPKKKs. 

 

 
 

Figure 4. Mitogen-activated protein kinase modules.  The MAPK cascades consist of a 
MAPKKK, a MAPKK and a MAPK.  MAPKKK are activated through a large variety of 
extracellular signals like growth factors, differentiation factors and stress.  The activated 
MAPKKK can phosphorylate and activate one or several MAPKK which, in turn, 
phosphorylate and activate a specific MAPK.  Activated MAPK phosphorylates and 
activates various substrates in the cytoplasm and the nucleus of the cell including 
transcription factors.  These downstream targets control cellular responses (e.g. apoptosis, 
proliferation, and differentiation) (Robinson & Cobb 1997 ; Reuter et al 2000). 
 
 

At least six MAPK cascades have been identified in mammalian cells (Treisman 

1996; Fanger et al 1997; Robinson & Cobb 1997; Elion 1998; Garrington & Johnson 1999; 

Schaeffer & Weber 1999).  The best characterized MAPK signaling pathways are (1) the 
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Ras-to-MAP kinase signal transduction pathway (or ERK pathway) which is responsive to 

signals from receptor tyrosine kinases, hematopoietic growth factor receptors, and some 

heterotrimeric G-protein-coupled receptors which promote cell proliferation or 

differentiation; (2) the SAPK/JNK pathway which is activated in response to stresses such 

as heat, high osmolarity, UV irradiation, and proinflammatory cytokines such as tumor 

necrosis factor alpha (TNF-α) and interleukin 1 (IL-1); and (3) the p38 pathway which is 

also responsive to heat shock, osmotic stress, TNF-α and IL-1 as well as 

lipopolysaccharide (Figure 4) (Treisman 1996; Fanger et al 1997; Robinson & Cobb 1997; 

Elion 1998; Garrington & Johnson 1999; Schaeffer & Weber 1999).  Scaffolding/adapter 

proteins like MP-1, JSAP-1 and JIP-1 route MAPK modules in mammals by binding ERK-

1 & MEK-1, JNK-3 & SEK-1 & MEKK-1, or JNK & MKK-7 & MLKs, respectively 

(Elion 1998; Schaeffer & Weber 1999). 

1.3.2.  Ras-to-MAPK-signaling via receptor tyrosine kinases and cytokine receptors.  The 

observation that MAP kinases ERK-1 and ERK-2 are activated by various mitogens in all 

cells strongly supports the idea that the Ras-to-MAPK pathway is an essential shared 

element of mitogenic signaling.  Ras functions as a membrane-associated biological switch 

that relays signals from ligand-stimulated receptors to cytoplasmatic MAP kinase cascades.  

These receptors include G-protein coupled serpentine receptors, tyrosine kinase receptors 

(RTKs, e.g. PDGF-, EGF-receptor) and cytokine receptors that cause stimulation of 

associated nonreceptor tyrosine kinases (NRTKs, e.g. src, lyn, fes).  Ligand binding to the 

extracellular domain of receptor tyrosine kinases causes receptor dimerization, stimulation 

of protein tyrosine kinase activity and autophosphorylation (Schlessinger 1993; Marshall 

1995; Marshall 1996a,b; Porter & Vaillancourt 1998; Pawson & Saxton 1999). 

Tyrosine autophosphorylation sites in growth factor receptors (e.g. epidermal 

growth factor receptor, EGF-R) function as high-affinity binding sites for SH-2 (src 

homology) domains of signaling molecules such as PI-3 kinase, phospholipase C-γ (PLC-

γ), p120-GAP, Shc, and SHP-2 tyrosine phosphatase (Porter & Vaillancourt 1998).  SH-2 

domains have been demonstrated to mediate interactions between proteins.  Interactions of 

molecules that contain SH-2 domains (e.g. PLC-γ, Ras-GAP) with autophosphorylated 

EGF receptor indicate the importance of SH-2 domains in different tyrosine kinase 

signaling pathways (Margolis et al 1990; Moran et al 1990; Buday 1999). 

In contrast to receptor tyrosine kinases, cytokine receptors (e.g. the prototypical IL-

3, IL-5, GM-CSF-receptors) do not contain kinase domains.  These receptors are 

heterodimers of a ligand-specific α-subunit and a β-subunit that is common to IL-3, IL-5 
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and granulocyte/macrophage colony stimulating factor (GM-CSF) receptors (Adachi & 

Alam 1998; Guthridge et al 1998; D'Andrea & Gonda 2000).  The NRTKs Lyn and Fes 

and the Janus kinase JAK2 are physically associated with the β-subunit.  The conserved 

proline-rich motifs in the α- and β-subunits (e.g. IL-3, IL-5, GM-CSF-R, IL-2-R, G-CSF-R 

and EPO-R) are critical for JAK2 binding and activation (Figure 5).  After ligand binding 

and receptor dimerization, receptor-bound tyrosine kinases become activated and cause a 

cascade of tyrosine phosphorylations.  Analogous to RTKs, these phosphotyrosines 

represent docking sites for many signaling molecules, including adapter proteins (e.g. PI-

3K, Shc, SHP-2, Grb-2) (Adachi & Alam 1998; Guthridge et al 1998; D'Andrea & Gonda 

2000). 

It has been well established that SH3 domains, like SH2 domains, mediate protein-

protein interactions.  The SH3 domain of Grb-2 binds to SOS, which is a GEF for Ras and 

facilitates the replacement of GDP with GTP (Schlessinger 1993; Van Aelst et al 1994; 

Marshall 1995; Marshall 1996a,b; Wittinghofer 1998; Katz & McCormick 1997; Porter & 

Vaillancourt 1998; Pawson & Saxton 1999).  When Ras becomes GTP-loaded, Ras-

effectors (like Rafs, MEKK, PI-3K and Ral) bind to Ras and become activated.  The Raf 

kinases (A-Raf, B-Raf, c-Raf-1) are important Ras effectors and have been demonstrated to 

act as MAPKKKs/MEKKs in the Ras-to-MAPK (or ERK) pathway by selective 

phosphorylation and activation of MAP kinase kinases MEK-1 and MEK-2 (Schlessinger 

1993; Daum et al 1994; Catling et al 1995; Marshall 1995; Reuter et al 1995; Marshall 

1996; Porter & Vaillancourt 1998; Pawson & Saxton 1999).  Other MEK-1/MEK-2 

activators include TPL-2, MEKK-1 and c-Mos (Posado et al 1993; Patriotis et al 1994; 

Sameron et al 1996).  MEK-1 and MEK-2 are dual specificity kinases that activate the 

MAP kinases of the ERK subgroup (ERK-1 and ERK-2) (Bardwell & Thorner 1996; 

Crews et al 1992; Wu et al 1993; Zheng & Guan 1993; Treisman 1996; Fanger et al 1997; 

Robinson & Cobb 1997; Elion 1998; Garrington & Johnson 1999; Schaeffer & Weber 

1999). 

MAPK was originally described as a 42 kD insulin-stimulated protein kinase that 

phosphorylated the cytoskeletal protein MAP-2 (Sturgill & Ray 1986).  A 44 kD MAPK 

isoform was identified in subsequent studies and named ERK-1 (Boulton & Cobb 1991).  

ERK-1 and ERK-2 are proline-directed protein kinases that phosphorylate Ser/Thr-Pro 

motifs in the consensus sequence Pro-Xaan-Ser/Thr-Pro, where Xaa is any amino acid and 

n=1 or 2.  Several cytoplasmatic and nuclear substrates of the ERKs have been identified.  

The best-characterized ERK substrates are cytoplasmatic phospholipase A2 (cPLA2), the 
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Figure 5.  The classical Ras-to-MAP kinase cascade.  (A) Signaling by cytokine 
receptors.  IL-3, IL-5 and GM-CSF receptors consist of a ligand-specific α-subunit and a 
common β-subunit.  The β-subunit binds the NRTKs Lyn, Fes and JAK2.  After ligand 
binding, the α and β subunits are thought to dimerize, thus activating the receptor-bound 
NRTKs and subsequently causing a cascade of tyrosine phosphorylations.  The 
phosphotyrosine residues represent docking sites for various signaling molecules (e.g. Shc, 
SHP-2).  ERKs are activated via the classical Ras-to-MAPK pathway.  In addition, the 
MAP kinases p38 and JNK become activated.  The activation pathway is not completely 
understood but some lines of evidence support involvement of Ras and/or HPK-1 (for 
hematopoietic progenitor kinase, a mammalian Ste20-related protein).  Activated JAK2 
phosphorylates the STAT family of nuclear factors (which form hetero- and homodimers) 
thus causing their translocation to the nucleus and subsequent binding to γ-activating 
sequences of the promoter region of various genes (Adachi & Alam 1998; Guthridge et al 
1998; D'Andrea & Gonda 2000).  (B) Signaling by RTKs.  Extracellular stimuli such as 
mitogens or stress cause intracellular activation of different MAP kinase cascades.  The 
ERK1/2 pathway is activated by mitogens in all cells and is an essential part of mitogenic 
signaling.  Nuclear translocation of activated ERKs leads to activation of transcription 
factors like Elk-1, CREB, SRF and fos (Pawson & Saxton 1999).  Raf kinases connect 
upstream tyrosine kinases and Ras with downstream serine/threonine kinases.  When Ras 
becomes GTP-loaded, Rafs bind to Ras.  It is unclear if Ras-Raf binding is itself always 
sufficient to activate the Raf kinases, which subsequently phosphorylate and activate the 
downstream MEKs.  GTP-Ras also binds and activates PI 3-kinase (PI 3K) and Ral-GEF.  
PI-3K produces lipid second messengers, which activate AKT (for Akt kinase) and non-
conventional isoforms of protein kinase C (ncPKC).  Ral-GEF activates Ral-GTPases by 
promoting the GTP-bound state of Ral.  Ral-GTP binds to Ral-BP1  (a GAP for CDC42 
and Rac), phospholipase D (PLD1) and calcium calmodulin-dependent protein kinase 
(CaCM).  I, inhibitors of Ras membrane association (e.g. FTI, GGTI, PPMTI, and REPI); 
II, sulindac; III, Raf kinase inhibitors (e.g. Bay439006, GW5074 and ZM336372); IV, 
MEK inhibitors (e.g. PD098059, U0126 and Ro09-2110) (modified from Reuter et al 
2000). 
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ribosomal protein S6 kinases (RSKs) and the nuclear transcription factor Elk-1 (Treisman 

1996; Xing et al 1996; Jaaro et al 1997; Robinson & Cobb 1997). 

Activated Elk-1 forms a complex with serum response factor and the serum 

response DNA element present in many promoters.  Additionally, transcription factors Fos 

and Jun are stimulated by MAPK and join to form the full nuclear transcription factor AP-

1.  AP-1 initiates transcription of the myc gene, which leads to induction of D-type cyclin 

expression and activity.  D-type cyclins are important for the G1 progression into S phase 

of the cell cycle (Lloyd et al 1997; Pumiglia & Decker 1997; Khosravi-Far et al 1998). 

 

1.4.  The Ras-to-Ral and the Ras-to-PI-3 kinase signaling pathways. 

 Since the discovery of Raf as a direct Ras-effector, numerous other putative Ras-

effectors have been identified.  Among these, evidence to date best supports “effector” 

roles for the Ral-GEFs (Ral-GDS, RGL and RGF) and the p110 subunit of PI-3K (Van 

Aelst et al 1994; Carpenter & Cantley 1996; Feig et al 1996; Marshall 1996; Pells et al 

1997; Wittinghofer 1998; Katz & McCormick 1997; Rebollo & Martinez 1999) (Figure 5). 

 Ral-GEFs are activated via binding to GTP-Ras.  Ral-GEFs, in turn, activate Ral-

GTPases by promoting the GTP-bound state of Ral.  Since they are members of the Ras 

subfamily of Ras-related GTPases, Ral proteins (RalA and RalB) also cycle between the 

active GTP-bound states and inactive GDP-bound states.  Ral-GTP binds Ral-BP1 (for 

Ral-binding protein1 or Rlip1 = Rip1, for Ral-interacting protein 1) which is a GAP for 

CDC42 and Rac.  As shown in Figure 4, the GTPases CDC42 and Rac are involved in 

regulation of the actin cytoskeleton, the SAPK/JNK pathway and the p38 pathway. 

 Ras-GTP also binds to and activates the catalytic domain of PI-3 kinase.  The lipid 

second-messenger molecules produced (e.g. phosphatidylinositol phosphates PtdIns 3,4-P2 

and PtdIns 3,4,5-P3) activate the phosphoinositide-dependent kinases PDK1 and PDK2  

which then activate Akt kinase and non-conventional isoforms of protein kinase C 

(ncPKC).  PI-3K has been implicated in four apparently distinct cellular functions 

including mitogenic signaling (DNA synthesis), inhibition of apoptosis, intracellular 

vesicle trafficking/secretion, and regulation of actin and integrin functions.  These 

functions are most likely mediated by distinct phosphoinositide products of PI-3K 

(Carpenter & Cantley 1996)  (Figure 5). 
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1.5.  Role of Ras activation in hematological malignancies. 

 The constitutive activation of Ras appears to be an important factor for the 

malignant growth of human cancer cells.  While the role of R-Ras, M-Ras and TC21 in 

human malignancies is unclear, studies using cell lines have demonstrated that these Ras-

related proteins also possess transforming activities similar to those of Ras (Cox et al 1994; 

Graham et al 1994; Quilliam et al 1999).  Overexpression of normal Ras can lead to 

transformation, however, malignant transformation resulting from mutations is much more 

common (Rodenhuis 1992).  Mutations of Ras proto-oncogenes (H-Ras, K-Ras, N-Ras) are 

frequent genetic aberrations found in 20-30% of all human tumors, although the incidences 

in tumor type vary greatly (Bos 1989; Clark & Der 1995; Reuter et al 2000).  The highest 

rate of Ras mutations were detected in adenocarcinomas of the pancreas (90%), the colon 

(50%) and the lung (30%) as well as in follicular and undifferentiated carcinomas of the 

thyroid (50%).  Ras mutations occur at sites critical for Ras regulation (e.g. codons 12, 13, 

15, 16, 18, 31, 59 and 61) and increase the half-life of activated Ras-GTP through 

abrogation of normal intrinsic and/or GAP-stimulated GTPase activity of Ras (Bos 1989; 

Clark & Der 1995; Sprang 1997; Lin et al 1998; Lin et al 2000; Reuter et al 2000).  While 

wild-type Ras-GTP has a half-life of one to five hours, the half-life of activated forms have 

been reported to be up to nine times longer (Gibbs et al 1984; Sweet et al 1984).  

Transformation results, at least in part, from unregulated stimulation of the mitogenic 

signal transduction pathway (Bos 1989; Clark & Der 1995). 

Ras activation is frequently observed in hematological malignancies such as 

myeloid leukemias and multiple myelomas.  Ras genes are mutationally activated in 

approximately one-third of the myelodysplastic syndromes (MDS) and acute myeloid 

leukemias (AML) (Bos et al 1987; Janssen et al 1987; Farr et al 1988; Padua et al 1988; 

Bos, 1989; Browett et al 1989; Browett & Norton 1989; Hirsch-Ginsberg et al 1990; 

Vogelstein et al, 1990; Byrne & Marshall 1998; Reuter et al, 2000; Schaich et al 2001) 

(Table 1).  N-Ras is mutated and activated in the majority of the cases and the presence of 

the mutation is not associated with any particular FAB type, cytogenetic abnormality or 

clinical feature including prognosis (Byrne & Marshall 1998; Schaich et al 2001).  Ras 

mutations occur in 40-100% of newly diagnosed multiple myeloma patients and the 

frequency increases with disease progression (Hallek et al 1998; Bezieau et al 2001; 

Kalakonda et al 2001).  Mutations in N-Ras – especially codon 61 mutations – are more 

frequent than K-Ras mutations (Neri et al 1989; Corradini et al 1993; Hallek et al 1998; 

Kalakonda et al 2001). 

 17



 In addition to activation by mutation, Ras is thought to be deregulated by 

constitutive activation of proto-oncogenes and inactivation of tumor suppressor genes 

(Sawyers & Denny 1994; Hunter 1997).  Several types of human cancers show oncogenic 

activation of receptor and/or non-receptor tyrosine kinases.  Constitutively activated 

versions of normal receptor tyrosine kinases contain single point mutations (e.g. colony-

stimulating factor-1 (CSF-1) receptor, the Neu/Erb-B2 receptor, and the c-Kit receptor), 

duplications of juxtamembrane domain-coding sequences (e.g. FLT3 receptor) or deletions 

of the negative regulatory regions in the ligand binding or the transmembrane domains 

(e.g. Erb-B receptor).  Point mutations of the CSF-1 receptor (c-FMS) at codons 301 and 

969 were found in 10-20% of acute myeloblastic leukemia (AML) or myelodysplasia 

(MDS) (Tobal et al 1990; Padua et al 1998).  Point mutations in the catalytic domain of the 

c-Kit receptor have been detected in some cases of myeloproliferative disorders and in 

10% of the patients with mastocytosis (Nakata et al 1995; Nagata et al 1995; Buttner et al 

1998).  Additionally, activating tandem internal duplication of the FLT3 receptor has been 

reported in 20% of AML (Kiyoi et al 1999).  Activating point mutations in the tyrosine 

kinase domain of the FLT3 receptor, most predominantly at position D835, have also been 

observed in AML patients (Abu-Duhier et al 2001; Thiede et al 2002; Gilliland & Griffin 

2002).  The members of the c-Kit/c-FMS receptor kinase family (e.g. c-Kit, c-FMS, FLT3) 

are linked with components of the Ras-to-MAPK signaling pathway (e.g. Grb-2 and Shc) 

suggesting that activating mutations of c-FMS and FLT3 may induce activation of Ras 

(Dosil et al 1993; Rohrschneider et al 1997). 

Several chimeric proteins resulting from translocations involving receptor tyrosine 

kinases have been found in human hematological malignancies (Sawyers & Denny 1994; 

Hunter 1997) (Table 1).  (1) Several Tel fusion proteins have been reported.  (a) Tel-

PDGFRß is a fusion protein consisting of the transcription factor Tel (for translocation, 

Ets, leukemia) and the platelet-derived growth factor receptor ß (PDGFRß), a well-known 

receptor tyrosine kinase (Golub et al 1994; Jousset et al 1997).  It is generated by the 

t(5;12) translocation in a subset of chronic myelomonocytic leukemias (CMML) which 

results in receptor dimerization and activation, and thus leads to the constitutive activation 

of the Ras-to-MAP kinase pathway.  (b) Tel-Abl, is generated by the t(12;9) translocation 

in acute myeloid leukemias (AML) (Papadopoulous et al 1995; Golub et al 1996).  (c) Tel-

ARG, t(1;12), consists of the oligomerization domain of Tel and all of the functional 

domains of ARG, including the SH2, SH3 and tyrosine kinase domains (Cazzaniga et al 

1999; Iijima et al 2000).  (d) Tel-TRKC is produced by the t(12;15) translocation that  
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Table 1.  Activation of Ras in hematological malignancies. 
Malignancy Type of Ras Activation Frequency References 
    
A. Ras Point Mutations   
    
Acute myeloid leukemia (AML) K-, N-Ras 20-30% Bos et al 1987; Janssen et al 1987; 

Bos 1989; Byrne & Marshall 1998; 
Reuter et al, 2000; Schaich et al 
2001  

Childhood AML K-, N-Ras 20-40% Farr et al, 1988; Vogelstein et al, 
1990 

Acute lymphoblastic leukemia     
     (ALL) 

K-, N-Ras 20% Neri et al 1988; Browett et al 
1989; Browett & Norton 1989  

Chronic myelomonocytic    
     leukemia (CMML) 

K-, N-Ras 50-70% Padua et al 1988; Hirsch-Ginsberg 
et al 1990; Sawyers & Denny 1994

Juvenile myelomonocytic  
     myeloid leukemia (JMML) 

N-Ras 30% Miyauchi et al 1994 

Multiple myeloma K-, N-Ras 30-40% 
 
 
50-80% 
100% 

Neri et al 1989; Tanaka et al 1992; 
Corradini et al 1993; Liu et al 
1996; Hallek et al 1998; 
Bezieau et al 2001; 
Kalakonda et al 2001 

Plasma cell leukemia K-, N-Ras 50-70% Neri et al 1989; Tanaka et al 1992; 
Corradini et al 1993; Hallek et al 
1998; Bezieau et al 2001 

    
B. c-Kit/c-FMS Family 

Receptor Mutations 
  

    
Acute myeloid leukemia (AML) CSF-1 (c-FMS) 10-20% Tobal et al 1990; Padua et al 1998 
 FLT-3 20-34% Dosil et al 1993;Stirewalt et al 

2001; Yamamoto et al 2001 
Myeloproliferative disorder,  
     Mastocytosis 

c-kit 10% Nagata et al 1995; Nakata et al 
1995; Buttner et al 1998 

    
C. Fusion Tyrosine Kinases   
    
Acute myeloid leukemia (AML) Tel-Abl, t(12;9)  Papadopolous et al 1995; Golub et 

al 1996 
 Tel-ARG, t(1:12)  Cazzaniga et al 1999; Iijima et al 

2000 
 Tel-TRKC, t(12;15)  Eguchi et al 1999; Liu et al 2000 
 CEV14-PDGFR-β, t(5;14)  Abe et al 1997 
Anaplastic large cell lymphoma Npm-Alk, t(2;5) 30-40% Elmberger et al 1995; Waggott et 

al 1995 
Chronic myeloid leukemia  
     (CML) 

Bcr-Abl, t(9;22) 95% Kurzrock et al 1988; Faderl et al 
1999; Zou & Calame 1999 

 Bcr-FGFR1, t(8:22)  Demiroglu et al 2001 
Chronic myelomonocytic  
     leukemia (CMML) 

Tel-PDGFR-β, t(5;12)  Golub et al 1994; Jousset et al 
1997 

 HIP1-PDGFR-β, t(5;7)  Ross et al 1998; Ross & Gilliland 
1999 

    
D. Inactivation of Tumor 

Suppressors 
  

    
Juvenile myelomonocytic  
     myeloid leukemia (JMML) 

Inactivation of NF-1 (Ras-
GAP) 

 Kalra et al 1994; Bollag et al 
1996; Largaespada et al 1996; Side 
et al 1997  
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includes the pointed domain of Tel and the protein tyrosine kinase domain of TRKC, a 

receptor tyrosine kinase that is activated by neurotrophin-3.  Tel-TRKC variants have been 

reported to be potent activators of the MAP kinase pathway (Eguchi et al 1999; Liu et al 

2000).  (2) The Npm-Alk fusion protein, a fusion of the N-terminal portion of Npm with 

the entire cytoplasmatic domain of the receptor tyrosine kinase Alk, is generated by the 

t(2;5) chromosomal translocation in anaplastic large cell lymphoma (Elmberger et al 1995; 

Waggott et al 1995).  (3) Abl is a non-receptor tyrosine kinase that is also mutated and 

activated in chronic myelogenous leukemia (CML) (Kurzrock et al 1988; Faderl et al 

1999; Zou & Calame 1999).  In Bcr-Abl, the product of the t(9;22) translocation, the N- 

terminal Bcr portion serves as an oligomerization domain.  Bcr-Abl is a constitutively 

activated cytosolic tyrosine kinase that causes abrogation of growth factor dependence, 

blockade of differentiation and direct inhibition of apoptosis.  Although Ras mutations are 

extremely rare in CML, the involvement of Ras has been demonstrated in Bcr-Abl positive 

cells by the presence of increased levels of GTP-Ras, which leads to the activation of the 

Raf kinases and other Ras effectors (Kurzrock et al 1988; Faderl et al 1999; Zou & Calame 

1999).  Thus the deregulation of Ras function appears to be a common theme in the 

transformation by activated receptor and non-receptor tyrosine kinases.  Ras activation 

may cause elevated cell cycle progression and inhibition of apoptosis (Kurzrock et al 1988; 

Sawyers & Denny 1994: Hunter 1997; Byrne & Marshall 1998; Faderl et al 1999; Zou & 

Calame 1999). 

 In addition to oncogenes, tumor suppressor genes have also been found to be 

involved in the deregulation of Ras.  The product of the NF-1 tumor suppressor gene, 

neurofibromin, encodes a Ras-GTPase activating protein (GAP) and is mutated in the 

autosomal dominant type 1 neurofibromatosis which is associated with an increased 

tendency to develop myeloid leukemias, especially JMML (DeClue et al 1992; Kalra et al 

1994; Bollag et al 1996; Largaespada et al 1996).  About 15% of children with JMML 

have clinical neurofibromatosis (Niemeyer et al 1997).  Additionally, inactivating 

mutations of the NF1 gene have been found in 15% of JMML without clinical diagnosis of 

neurofibromatosis suggesting the existence of NF1 mutations in approximately 30% of all 

JMML cases (Shannon et al 1994; Side et al 1997).  Ras involvement is demonstrated by 

the observation of moderately elevated percentages of GTP-Ras in leukemic cells from 

children with neurofibromatosis type 1 (DeClue et al 1992; Kalra et al 1994; Bollag et al 

1996; Largaespada et al 1996).  Furthermore, 15-30% of JMML cases lacking the NF1 

mutation have activating Ras mutations (Miyauchi et al 1994).  The observation that 
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human JMML cells exhibit hypersensitivity to granulocyte/macrophage colony-stimulating 

factor suggests a common pathophysiological mechanism involving downstream Ras 

signaling (Miyauchi et al 1994; Largaespada et al 1996; Birnbaum et al 2000). 

 The pathophysiological importance of the Ras-to-MAPK signaling pathway is 

underscored by the positioning of several oncogene and tumor suppressor gene products on 

this pathway.  Furthermore, it has recently been demonstrated that mutant N-Ras induces 

myeloproliferative disorders resembling human chronic myelogenous leukemia (CML), 

acute myeloid leukemias and apoptotic syndroms similar to human myelodysplastic 

syndromes (MDS) in bone marrow repopulated mice (MacKencie et al 1999).  These 

observations make Ras and the Ras-to-MAP kinase pathway a rational target for the 

development of new anticancer agents. 

 

1.6.  Inhibitors of the Ras-to-MAP kinase pathway. 

1.6.1.  Inhibitors of Ras farnesyl transferase (FTase). 

 Elimination of Ras function by homologous gene recombination or antisense RNA 

has demonstrated that expression of activated Ras is necessary for maintaining the 

transformed phenotype of tumor cells (Mukhopadhyah et al 1991; Saison-Behmoaras et al 

1991; Shirasawa et al 1993; Kashani-Sabet et al 1994).  Inhibitors of oncogenic Ras 

activity may therefore prove useful as anticancer agents against Ras-induced tumors.  One 

strategy to impede oncogenic Ras function in vivo is the inhibition of Ras post-translational 

modification.  It has been demonstrated that mutation of the evolutionarily conserved 

CAAX motif in Ras abolishes plasma membrane binding as well as transforming activity 

(Gibbs 1991; Lowy & Willumsen 1995; Omer & Kohl 1997; Heimbrook & Oliff 1998).  

Although Ras undergoes several steps of post-translational modification, only farnesylation 

is necessary for its membrane localization and cell transforming activity (Kato et al 1992).  

Therefore, it has been proposed that the activity of oncogenic Ras could be blocked by 

inhibiting the farnesyl transferase (FTase) responsible for this modification.  However, 

many CAAX-containing proteins need additional palmitoylation for stable membrane 

association. 

 FTase is an attractive target for the development of anticancer agents because 

control of Ras farnesylation can control the function of oncogenic Ras (Gibbs 1991; Lowy 

& Willumsen 1995; Omer & Kohl 1997; Heimbrook & Oliff 1998).  Numerous inhibitors 

of FTase have been synthesized or identified.  These FTase inhibitors can be grouped into 

five classes: 
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 (1) FPP analogs such as (α-hydroxyfarnesyl) phosphonic acid, β-ketophosphonic 

and β-hydroxyphosphonic acid derivatives and J-104,871 (Kato et al 1992; Kang et al 

1995; Yonemoto et al 1998) (Figure 6). 
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Figure 6.  Chemical structures of FPP and FPP-based inhibitors of FTase and 

PPMTase.  FPP is composed of a hydrophobic farnesyl group and a highly charged 
pyrophosphate moiety.  The basic structural element in the FTase inhibitors is a farnesyl 
group, a pyrophosphate isostere and a linker.  

 
 
 
(2) CAAX peptide analogs such as BZA-5B, BZA-2B (James et al 1993, 1995; 

Dalton et al 1995), L-731,734, L-731,735, L-739,749 (Kohl et al 1993, 1994; Prendergast 

et al 1994; Lebowitz et al 1997; Emanuel et al 2000),  L-739,787 (Koblan et al 1995), L-

739,750, L-744,832 (Kohl et al 1994, 1995; Barrington et al 1998; Sepp-Lorenzino et al 

1995; Mangues et al 1998), B581 (Cox et al 1994), Cys-4-ABA-Met and Cys-AMBA-Met 

(Qian et al 1994), FTI-276, FTI-277 (Sun et al 1995; Lerner et al 1995; Bredel et al 1998; 

Bernhard et al 1998), B956 and its methyl ester B1096 (Nagasu et al 1995) (Figure 7). 
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Figure 7.  Chemical structures of CAAX-based FTase inhibitors.  Comparison between 
CAAX-based FTase inhibitors of the pseudopeptide class and the CAAX tetrapeptides 
CIFM and CVFM.  The potent, nonsubstrate FTase inhibitors CIFM and CVFM were 
identified by systematic amino acid replacements within the CAAX-sequence.  In FTI-276 
and FTI-277, the AA-residues of the CAAX-motif have been replaced by a hydrophobic 
linker. 
 
 
 
 
(3) bisubstrate inhibitors such as phosphonic acid analogs, the phosphinate inhibitors 

BMS-185878 and BMS-186511, the phosphonate inhibitor BMS-184467, phosphinyl acid-

based derivatives, and the hydroxamine acid analogs (Patel et al 1995, 1996; Manne et al 

1995) (Figure 8). 
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Figure 8.  Structures of bisubstrate inhibitors of FTase.  In bisubstrate FTase inhibitors 
the farnesyl group of FPP and the tripeptide group of the CAAX motif are connected via a 
linker. 

 

(4) In addition, nonpeptidic, tricyclic FTase inhibitors have been developed such 

as SCH44342, SCH54429, SCH59228 and SCH66336 (Bishop et al 1995; Njoroge et al 

1998a, 1998b; Mallams et al 1998; Liu et al 1999) (Figure 9). 

 

 
Figure 9.  Structures of nonpeptidic, tricyclic FTase inhibitors.  FTase inhibitor 
SCH44342 had no in vivo efficacy.  Further substitutions led to SCH66336, a highly potent 
FTase inhibitor, which is currently being tested in several clinical phase I and II trials. 
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(5) Several natural products have also been identified as FTase inhibitors.  These 

include limonene (Gelb et al 1995), manumycin (UCF1-C) and related compounds UCF1-

A and UCF1–B (Hara et al 1993; Nagase et al 1997; Kainuma et al 1997), chaetomellic 

acid A and B, zaragozic acids, pepticinnamins, gliotoxin (Tamanoi 1993), barceloneic acid 

A (Jayasuriya et al 1995), RPR113228 (Van der Pyl et al 1995), actinoplanic acids A and 

B (Silverman et al 1995), oreganic acid (Silverman et al 1997), lupane derivatives (Sturm 

et al 1996), saquayamycins (Sekizawa 1996), valinoctin A and its analogs (Tsuda et al 

1996), ganoderic acid A and C (Lee et al 1998). 

1.6.1.1.  Effects of FTase inhibitors ( FTIs) in tumor cells. 

Treatment of Ras-transformed cells with FTase inhibitors results in selective 

suppression of Ras-dependent oncogenic signaling.  This includes the inhibition of Ras-

processing which results in: (1) decreased relative amounts of fully processed Ras; (2) 

progressive, dose-dependent cytoplasmatic accumulation of unprocessed Ras and inactive 

Ras-Raf complexes; (3) inhibition of the Ras-induced constitutive activation of MAP 

kinase (Nagase et al 1997; Jayasuriya et al 1995; Van der Pyl et al 1995; Tsuda et al 1996; 

Mahgoub et al 1999); and (4) decreased transcriptional activity of both c-Jun and Elk-1 

(Nagase et al 1997).  Transformation by mutationally activated Raf, MEK, Mos or Fos (all 

of which are downstream of Ras) is not blocked by FTase inhibitors (Njorge et al 1998; 

Gelb et al 1995).  

1.6.1.2. Results of FTIs in animal models. 

FTIs have been demonstrated to revert Ras-dependent transformation and cause 

regression of Ras-dependent tumors in animal models without causing gross systemic 

toxicity in animals (Gibbs & Oliff 1997; Omer & Kohl 1997; Heimbrook & Oliff 1998).  

Some inhibitors (e.g. R115777, BMS-214662, SCH66336, and L-778,123) are presently 

being evaluated in phase I and II clinical trials in human cancers, including AML (Adjei et 

al 2000; Reuter et al 2000; Zujewski et al 2000; Britten et al 2001; Crul et al 2001; Eskens 

et al 2001; Karp et al 2001; Karp 2001; Punt et al 2001). 

 

1.6.2.  Inhibitors of geranylgeranyl transferase I (GGTase I). 

 Since K-Ras mutations are most common in human cancers (Bos 1989; Clark & 

Der 1995), development of inhibitors that block growth of human tumors that harbor 

activated K-Ras is a critical goal.  Additionally, resistance of K-Ras to FTase inhibitors 

(James et al 1996), lack of potency of FTase inhibitors against K-Ras-transformed cells 

(Nagasu et al 1995) and the discovery that K- and N-Ras become geranylgeranylated in the 
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presence of FTase inhibitors (James et al 1995; Whyte et al 1997; Zhang et al 1997; 

Rowell et al 1997; Lerner et al 1997) demonstrate the importance of developing GGTase I 

inhibitors.  The structures of several GGTase I inhibitors are shown in Figure 10.  GGTI-

279, GGTI-287, GGTI-297, GGTI-298, GGTI-2133 and GGTI-2147 are CAAL-based 

peptidomimetics that are selective for GGTase I over FTase (Lerner et al 1995; Qian et al 

1998; Vogt et al 1999; McGuire et al 1996; Miquel et al 1997; Vogt et al 1997; Vasudevan 

et al 1999). 

 

 
 

Figure 10.  Structures of geranylgeranyl transferase I inhibitors. GGTase I catalyzes 
the geranylgeranylation of proteins terminating with CAAX sequences where X is 
restricted to leucine, isoleucine or to a lesser extent, phenylalanine. In cells, 
geranylgeranylation of proteins is far more common than farnesylation. Proteins modified 
by GGTase I include Rap1A, Rap1B, Rac1, Rac2, G25K, and RhoA. 
 

 

1.6.2.1.  Effects of GGTase inhibitors in tumor cells.  H-Ras processing in human tumor 

cell lines was demonstrated to be highly sensitive to FTI-277 and resistant to GGTI-286, 
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while K-Ras4B processing was found to be more sensitive to GGTI-286 than FTI-277 

(Lerner et al 1995a,b).  While processing of H-Ras and N-Ras was inhibited by FTI-277, 

inhibition of K-Ras processing required both FTase and GGTase I inhibitors (Sun et al 

1998).  Furthermore, FTI-277 was demonstrated to preferentially block activation of MAP 

kinase by oncogenic H-Ras, while GGTase inhibitors were found to selectively inhibit the 

activation of MAP kinase by oncogenic K-Ras4B (Lerner et al 1995a,b).  GGTI-298 

blocks PDGF- and EGF-dependent tyrosine phosphorylation of their respective receptors 

and induces G0/G1-phase arrest and apoptosis (Vogt et al 1996; McGuire et al 1996; 

Miquel et al 1997).  The GGTI-induced G1-block has recently been shown to be due to 

upregulation of transcription of the CDK inhibitor p21WAF1/CIP1 (Vogt et al 1997; Adnane et 

al 1998).  One way GGTIs upregulate p21WAF1/CIP1 is through inhibition of RhoA 

geranylgeranylation.  Rho proteins facilitate progression from G1 to S phase in growth-

stimulated cells by promoting degradation of the CDK inhibitor p27Kip1 and by 

downregulating the p21WAF1/CIP1 promoter (Hirai et al 1997; Adnane et al 1998).  

Additionally, treatment with GGTIs results in inhibition of retinoblastoma protein (pRb) 

phosphorylation and partner switching of cyclin-dependent kinase inhibitors, which are 

important for the G1/S transition (Sun et al 1999). 

Recently, synergistic efficiency of a FTI/GGTI combination in adrenocortical and 

human colon cancer cells containing mutant K-Ras has been reported (Mazet et al 1999; Di 

Paolo et al 2001).  In a nude mouse xenograft model, both FTI and GGTI were required to 

inhibit prenylation of oncogenic K-Ras, but each alone was sufficient to suppress human 

tumor growth (Sun et al 1998; 1999).  Furthermore, FTI/GGTI cotreatment and treatment 

with a dual prenylation inhibitor (DPI) which has both FTI and GGTI activity, resulted in 

higher levels of apoptosis in K-Ras transformed cells relative to FTI and GGTI alone 

(Lobell et al 2001).  While the CAAL-based GGTIs described by Sun et al. (1998) were 

non-toxic in mice, the chemically distinct GGTIs and DPIs used by Lobell et al. (2001) 

revealed strong toxicity in mice which may have been caused by an activity unrelated to 

GGTase-I inhibitory activity (Lobell et al 2001). 

 

1.6.3.  Inhibitors of the prenylated protein methyltransferase (PPMTase). 

 The C-terminal prenylated protein methyltransferase (PPMTase) is another 

potential therapeutically relevant target in the development of inhibitors against the post-

translational processing of Ras.  N-acetyl-trans,trans -farnesyl-L-cysteine (AFC) is a 

substrate for PPMTase, and acts as a competitive inhibitor (Volker et al 1991).  Although 
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AFC has been shown to inhibit Ras methylation in Ras-transformed NIH3T3 fibroblasts, it 

does not inhibit the growth of these cells (Volker et al 1991).  New farnesyl derivatives of 

rigid carboxylic acid, e.g. S-trans,trans-farnesylthiosalicylic acid (FTS), have been 

demonstrated to inhibit the growth of H-Ras-transformed cells and to reverse their 

transformed morphology by a mechanism unrelated to the inhibition of Ras methylation by 

PPMTase (Marciano et al 1995; Marom et al 1995).  FTS is thought to interact with Ras 

farnesylcysteine binding domains and affect membrane-anchorage of Ras (Marciano et al 

1995; Marom et al 1995).  In addition, it has been reported that FTS dislodges Ras from H-

Ras-transformed cell membranes and renders the Ras protein susceptible to proteolytic 

degradation (Haklai et al 1998; Jansen et al 1999).  In contrast to FTase inhibitors (e.g. 

BZA-5B), FTS also inhibited the growth signaling of receptor tyrosine kinases (Marom et 

al 1995).  FTS was shown to decrease total cellular Ras levels, MAPK activity, Raf-1 

activity and DNA synthesis in Ras-transformed EJ-1 cells.  This inhibition was also 

demonstrated in serum-, EGF- and thrombin-stimulated, untransformed Rat-1 cells (Gana-

Weisz et al 1997; Haklai et al 1998).  Recently, FTS was shown to : (1) reduce the amount 

of activated N-Ras and wild-type Ras isoforms in human melanoma cells and Rat-1 

fibroblasts, (2) disrupt ERK-signaling, (3) revert their transformed phenotype and (4) cause 

a significant reduction in human melanoma growth in SCID mice (Haklai et al 1998).  S-

farnesyl-thioacetic acid (FTA), another competitive inhibitor of PPMTase, has been shown 

to suppress growth and induce apoptosis in HL-60 cells (Perez-Sala et al 1998). 

 The dorrigocins are novel antifungal antibiotics that were found to reverse the 

morphology of Ras-transformed NIH3T3 fibroblasts through inhibition of the C-terminal 

methylation in K-Ras transformed cells (Kadam & McAlpine 1994). 

 

1.6.4.  Selective inhibitors of Ras C-terminal sequence-specific endoprotease. 

 UM96001, TPCK and BFCCMK are Ras C-terminal sequence-specific 

endoprotease inhibitors (REPI) and potently inhibit ras-transformed rat kidney cell growth 

as well as growth of human cancer cells (Chen 1999).  These compounds have been 

reported to almost completely block the anchorage-independent clonogenic growth of these 

cancer cells, possibly through selective induction of apoptosis (Chen 1999). 

 

1.6.5.  Selective inhibitors of Raf-1 kinase.   

 Bay439006, a Raf-1 inhibitor which has demonstrated efficacy in cell and animal 

assays, is currently being tested in Phase I trials in advanced or metastatic cancers 
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(Strumberg et al 2001).  An ATP-competitive Raf-1 inhibitor with IC50 values between 0.3 

and 2 µM against anchorage-independent growth has also been developed (Heimbrook et 

al 1998).  Additionally, several compounds such as ZM 336372, SB 203580, and GW 5074 

were found to block ERK1 and ERK2 activation in cells with IC50 values in the low 

micromolar range (Hall-Jackson et al 1999a,b; Lackey et al 2000). 

 

1.6.6.  Selective inhibitors of MAP kinase kinases (MEK). 

 PD098059 is a synthetic inhibitor of the Ras-to-MAP kinase pathway that 

selectively blocks activation of MEK-1 and, to a lower extent, activation of MEK-2 (Alessi 

et al 1995; Dudley et al 1995).  Inhibition of MEK-1 activation was demonstrated to 

prevent activation of MAP kinases ERK-1/2 and subsequent phosphorylation of MAP 

kinase substrates both in vitro and in intact cells.  In contrast to FTase inhibitors, 

PD098059 inhibited stimulation of cell growth by several growth factors (Alessi et al 

1995; Dudley et al 1995).  Furthermore, PD098059 reversed the transformed phenotype of 

Ras-transformed BALB3T3 mouse fibroblasts and rat kidney cells (Dudley et al 1995).  

PD098059 failed to inhibit the stress and IL-1 stimulated JNK/SAPK and the p38 

pathways (Alessi et al 1995), demonstrating its specificity for the ERK pathway. 

 Recently, two novel inhibitors of MEK-1 and MEK-2 have been identified: U0126 

(DeSilva et al 1998; Favata et al 1998) and Ro 09-2210 (Williams et al 1998).  U0126 and 

PD098059 are noncompetitive inhibitors with respect to both MEK substrates (ATP and 

ERK) and bind to free MEK as well as MEK*ERK and MEK*ATP complexes.  U0126 

displays significantly higher affinity for all forms of MEK (44- to 357-fold) than does 

PD098059.  U0126 and Ro 09-2210 have an IC50 of 50-70 nM, whereas PD098059 has an 

IC50 of 5 µM (DeSilva et al 1998; Favata et al 1998; Williams et al 1998).  In contrast to 

U0126 and PD098059, Ro 09-2210 also inhibits other dual specificity kinases such as 

MKK-4, MKK-6 and MKK-7, albeit at 4-10-fold higher IC50 concentrations compared to 

its effect on MEK-1 (Williams et al 1998). 

 Another highly selective inhibitor of MEK activation, PD184352, has recently been 

demonstrated to potentiate apoptosis induced by Bcl-2 inhibition in AML cell lines which 

contain constitutively activated MAPK (Milella et al 2002).  PD184352 is currently being 

evaluated in Phase I clinical oncology trials (Van Becelaere et al 2001). 
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1.6.7.  Inhibitors of Ras-transformation with unknown mechanisms of action. 

Screening tests for drugs that revert Ras-transformed cells to a normal phenotype 

led to the identification of a number of compounds such as azatyrosine, oxanosine and 

antipain (Cox et al 1991; Itoh et al 1989; Shindo-Okado et al 1989).  The mechanism by 

which these compounds revert the Ras-induced phenotype is not understood.  The 

pyrazolo-quinoline compound SCH51344 was identified based on its ability to depress 

human smooth muscle α-actin promoter activity in Ras-transformed cells. Treatment of v-

abl-, v-mos-, v-raf-, Ras- and mutant active MEK-transformed NIH3T3 cells resulted in 

growth inhibition of these cells in soft agar (Kumar et al 1995).  SCH51344 had very little 

effect on the activities of proteins in the ERK-pathway.  The ability of SCH51344 to 

inhibit the anchorage-independent growth of RAC-V12-transformed Rat1 cells suggests 

that the point of inhibition is downstream from RAC (Walsh et al 1997). 

The non-steroidal, anti-inflammatory drug sulindac has been demonstrated to 

attenuate the growth and progression of colonic neoplasms in animal models and in 

patients with familial adenomatous polyposis (Giardiello et al 1993; Verhuel et al 1999).  

It was recently demonstrated that sulindac sulfide (the active metabolite of sulindac) 

inhibits Ras signaling and transformation by non-covalent binding to the Ras protein. 

Furthermore, it has been demonstrated that sulindac sulfide impairs Ras-Raf binding, Raf 

activation, nucleotide exchange on Ras and that it accelerates the Ras-GTPase reaction 

(Herrmann et al 1998).  Sulindac is currently being investigated in a randomized study for 

the prevention of colon cancer. 

Disruption of the Ras-to-MAPK signaling pathway has also been shown for the 

benzoquinone ansamycin geldanamycin.  Geldanamycin binds to HSP90 and disrupts the 

HSP90-Raf-1 multimolecular complex, which causes destabilization of Raf-1 through 

enhanced degradation of Raf-1 (Schulte et al 1996).  However, the geldanamycin-HSP90 

complex also causes depletion of other HSP90 substrates such as protein kinases and 

nuclear hormone receptors (including mutant p53 and ErbB2) (Stebbins et al 1997).  

Several NCI-sponsored clinical phase I trials are currently studying the effects of 

geldanamycin analogues in advanced malignancies. 

 

1.7.  Ras-signaling and effects of inhibitors of Ras-signaling in myeloid leukemias. 

Based on the wealth of data reporting the effectiveness of Ras signaling inhibitors 

against human carcinomas harboring activated Ras, coupled with the implications of Ras in 

the pathophysiology of myeloid leukemias, the role of an activated Ras pathway in 
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myeloid leukemia cells was investigated in this study.  Additionally, the effectiveness of 

different types of Ras-signaling inhibitors on leukemia cell growth, cell cycle progression 

and induction of apoptosis was studied. 



2. Material and Methods 

2.1.  Materials 

2.1.1.  Reagents and Solutions 

DNA Molecular Weight Markers  100 bp DNA Ladder (MBI Fermentas) 

Protein Molecular Weight Markers  BenchmarkTM Prestained Protein  
Ladder (Invitrogen, Life Technologies) 
 

0.5 M EDTA     186 g Na2EDTA.2H2O in 800 mL H2O 
       pH 8 with NaOH 
       add H2O to 1 L 
 

50 X TAE     2M Tris 
       0.57 % acetic acid 
       50 mM EDTA, pH 8 
 

6X Agarose gel loading buffer  30 % Glycerol 
       0.25 % (w/v) Bromophenol blue 
       0.25 % (w/v) Xylenecyanol 
 

10 X TBS     24.2 g Tris 
      80 g NaCl 
      pH to 7.6 with 0.1 M HCl 
      Add H2O to 1 L 

 
4 X SDS-PAGE loading buffer  200 mM Tris-HCl, pH 6.8 
      400 mM DTT 
      8 % SDS 
      0.4 % Bromophenol blue 
      40 % Glycerol 
 
SDS-PAGE stacking gel (30 mL)  17.4 mL H2O 
        5.1 mL 30 % Acrylamide (29:1) 
        7.5 mL 0.5 M Tris, pH 6.8, containing 

0.1 % SDS 
150 µL 25% APS 
  20 µL TEMED 
 

 SDS-PAGE separating gel (50 mL)  20.8 mL H20 
      16.6 mL 30 % Acrylamide (29:1) 
      12.5 mL 1.5 M Tris, pH 8.8, containing 

0.4 % SDS 
125 µL 25% APS 

           20 µL TEMED 
 

10 X Glycine stripping buffer  2 M Glycine (75.07 g in 500 mL) 
      pH to 2.6 with 1 M HCl 
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LB broth     10 g tryptone 
       5 g NaCl 
       5 g yeast extract 
       1 mL of 1 M NaOH 

      Add H2O to 1 L and autoclave. 
 

LB agar  Add 15 g agar to 1 L LB broth and  
sterilize by autoclaving. 

 
SOC medium     20 g tryptone 

       0.5 g NaCl 
       5 g yeast extract 
       10 mL 250 mM KCl 

Add H2O to 900 mL and adjust pH to 7  
with 1M NaOH.  Add H2O to 975 mL 
and autoclave.  Let cool, then add : 

5 mL 2 M MgCl2 
20 mL 1M glucose  

 
 

2.1.2.  Cell lines.  Cell lines (AML = HL-60, PLB-985, Kasumi-1, Mutz-2, NB4, 

THP-1, OCI-AML2, OCI-AML5, Mutz-3, ML-2, MV4-11, Mono-Mac-1, KG-1, 

and M-07e; CML = EM-2, K562, MEG-01, LAMA84, and JK-1) were obtained 

from the German Collection of Microorganisms and Cell cultures (DSMZ, 

Braunschweig, Germany).  Growth-factor-dependent cell lines (Mutz-2, Mutz-3, 

M-07e, and OCI-AML5) were grown in medium supplemented with 10% 

supernatant of cell line 5637, which produces several growth factors (e.g. SCF, IL-

1, IL-6, G-CSF, GM-CSF and others).  V-12- and L-61-H-Ras-transformed 

NIH3T3 fibroblasts were a gift from M. Weber (University of Virginia, USA). 

 

2.1.3.  Antibodies.  Antibodies against ERK-1/2, monophospho-ERK1/2, MEK-1/2, 

c-Myc, Rheb, RhoB, Rap2A, Lamin A/C and B, CENP-E and CENP-F, H-, K-, and 

N-Ras were from Santa Cruz Biotechnology Inc. (Santa Cruz, CA).  Diphospho-

ERK-1/2 (PP-ERK-1/2) was purchased from Sigma-Aldrich (Deisenhofen, 

Germany).  Diphospho-MEK-1/2 (PP-MEK-1/2), phospho-c-Myc, CREB-1 and 

phospho-CREB-1 antibodies were from New England Biolabs (Frankfurt, 

Germany). 

 

2.1.4.  Inhibitors of Ras processing and signaling.  The following inhibitors were 

purchased from Calbiochem-Novabiochem (Bad Soden, Germany): B581, Cys-

4Abs-Met, FPT2, FPT3, FTI276, FTI277, GGTI-286, GGTI-287, GGTI-297, 
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GGTI-298, GGTI-2133, GGTI-2147, FTS, PD098059 and U0126.  FTI L-744,832 

was obtained from Biomol Inc. (Plymouth Meeting, PA). 

 

2.1.5.  Plasmid containing the c-Raf-1 domain that binds to activated Ras.  The 

pGEX 2T-RBD construct (encoding a GST fusion protein containing amino acids 

51-131 of c-Raf-1) was a gift from J. Bos (De Rooij & Bos 1997). 

 

2.2.  Methods 

2.2.1.  Mammalian cell culture.  Cell lines were grown in RPMI medium 

containing 10% heat-inactivated fetal calf serum, glutamine (292 µg/mL) and 

antibiotics (penicillin 60.2 mg/mL, streptomycin 133 µg/mL).  Primary AML cells 

and purified CD34+ cells were grown in StemSpanTM supplemented with 100 

ng/mL rh SCF, 100 ng/mL rh Flt3-ligand, 20 ng/mL rh IL-3, and 20 ng/mL rh IL-6 

(CellSystems Biotech., St. Katharinen, Germany).  Cultures were maintained in a 

humidified atmosphere at 37 ˚C and 5 % CO2. 

 

2.2.2.  Trypan blue exclusion assay.  2.5 or 6.25 x 104 cells in 250 µl of media 

were seeded in 96-well plates and incubated 4 days with either solvent control or 

the stated concentration of inhibitor.  Cell counts were evaluated using a 1:1 

dilution of cell suspension in 0.4 % trypan blue solution (Sigma-Aldrich, 

Deisenhofen, Germany).  Viable and nonviable cells were counted in a Neubauer 

cell counting chamber. 

 

2.2.3. Colony forming assays. 

2.2.3.1.  Myeloid leukemia cell lines.  Cells were seeded at 1.0-2.5 x 105/mL of 

cell suspension in 96-well plates and treated with inhibitors as indicated.  After 

four days, aliquots of the cell suspensions were plated in 400 µL of methylcult 

H4230 (CellSystems Biotech., St. Katharinen, Germany) according to the 

manufacturer’s instructions and incubated 7-14 days. 

 

2.2.3.2.  CD34+ cells.  G-CSF primed CD34+ cells were harvested by 

leukapheresis from a healthy volunteer, purified to >98% by magnetic cell 

sorting (Clini MACS, Miltenyi Biotech, Germany) and cryopreserved in liquid 

nitrogen.  CD34+ cells were seeded at 0.88 x 105/mL in StemSpanTM SF 
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Expansion Medium supplemented with 100 ng/mL rhFlt3-ligand, 100 ng/mL 

rhSCF, 20 ng/mL rhIL-3, 20 ng/mL rhIL-6 and incubated four days with 

inhibitors as indicated.  Aliquots of the cell suspensions were plated in 400 µL 

MethocultSFBIT H4436 (CellSystems Biotech., St. Katharinen, Germany).  

Aggregates of more than 25 cells were scored as colonies. 

 

2.2.4.  Sequencing of Ras mutations. 

2.2.4.1.  Primers for PCR amplification of Ras codons 12, 13 and 61.  

Synthetic oligonucleotides were purchased from MWG-Biotech AG (Ebersberg, 

Germany) for use as amplification primers to identify mutations in codons 12, 

13 and 61 of H-Ras, K-Ras and N-Ras (Hirsch-Ginsberg et al 1990; Mortazavi 

et al 2000). 

Primer sequences: 

H-RAS 12,13; 5´:  5´GAC GGA ATA TAA GCT GGT GG 

H-RAS 12,13; 3´:  5´TCC ATG GTC AGC GCA CTC TT 

H-RAS 61; 5´:  5´AGA CGT GCC TGT TGG ACA TC 

H-RAS 61; 3´:  5´CGC ATG TAC TGG TCC CGC AT 

K-RAS 12,13; 5´ : 5´GAC TGA ATA TAA ACT TGT GG 

K-RAS 12,13; 3´:  5´CTA TTG TTG GAT CAT ATT CG 

K-RAS 61; 5´:  5´TTC CTA CAG GAA GCA AGT AG 

K-RAS 61; 3´:  5´CAC AAA GAA AGC CCT CCC CA 

N-RAS 12,13; 5´:  5´GAC TGA GTA CAA ACT GGT GG 

N-RAS 12,13; 3´:  5´CTC TAT GGT GGG ATC ATA TT 

N-RAS 61; 5´:  5´GGT GAA ACC TGT TTG TTG GA 

N-RAS 61; 3´:  5´ATA CAC AGA GGA AGC CTT CG 

 

2.2.4.2.  Amplification of genomic DNA from cell lines.  Genomic DNA 

samples were prepared from cultured myeloid leukemic cells using the 

QIAamp DNA Mini  Kit from QIAgen (Hilden, Germany).  PCR products 

of 103 and 109 base pairs (bp) containing the codons of interest were 

obtained by amplification (35 cycles) of 200 ng of genomic DNA in 50 µL 

reactions containing 200 µM each dNTP, 20 pmol 5´primer, 20 pmol 

3´primer and 1 unit of AmpliTaq Gold (PE Corporation, Norwalk, CT).  The 
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polymerase was activated by heating the samples at 94 °C for 12 min.  The 

different Ras genes were amplified with the following PCR programs : 

H-Ras 12, 13 and 61 
Denaturation : 94 °C, 30 s 

   Annealing : 60 °C, 30 s 
   Extension : 72 °C, 1 min 
    
  K-Ras 12, 13     K-Ras 61 
   Denaturation : 94 °C, 30 s 
   Annealing : 55 °C, 30 s   58 °C, 30 s 
   Extension : 72 °C, 1 min 
    
  N-Ras 12, 13     N-Ras 61 
   Denaturation : 94 °C, 30 s 
   Annealing : 56 °C, 30 s   58 °C, 30 s 
   Extension : 72 °C, 1 min 
    
 

2.2.4.3.  Purification of PCR products.  The PCR products were purified by 

3% agarose gel electophoresis.  Agarose gels were prepared by dissolving 3 

g of agarose in 100 mL of 1X TAE buffer and adding 0.5 µg/mL of 

ethidium bromide to the cooled (50 °C) solution immediately prior to 

casting the gel.  The gels were run at constant voltage (100 V) and the DNA 

bands were visualized by UV trans-illumination.  The size of PCR products 

was determined by co-migration of DNA molecular weight markers (100–

1000 bp, MBI Fermentas, Inc.).  The bands of the correct size were excised 

from the gel with scalpels and the purified PCR products were recovered 

from the gel slices with a QIAquick Gel Extraction Kit (Qiagen, Hilden, 

Germany) and eluted with 30 µL sterile water. 

 

2.2.4.4.  Cloning of purified PCR products.  The TOPO-TA Cloning Kit 

from Invitrogen Corp. (Carlsbad, CA) was used to clone PCR products as 

follows : 

   Purified PCR product  2 µL 
   Sterile H2O   2 µL 
   PCR-2.1-TOPO vector 1 µL 
 

The reaction was allowed to proceed 5 min at room temperature before 

termination by addition of 1 µL of high salt stop buffer and vortexing.  Then 

2 µL of the cloning reaction were gently mixed with one half vial of one 
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shot competent cells (Invitrogen Corp.), incubated 30 min on ice, and heat 

shocked 30 sec at 42 °C.  250 µL of room temperature SOC medium were 

added and the cells were shaken (225 rpm-1) horizontally at 37 °C.  After 30 

min, 30 µL of the cells were spread on LB-Agar plates (containing 50 

µg/mL ampicillin and coated with 30 µL of 20 mg/mL X-Gal) and 

incubated overnight at 37 °C. 

 

2.2.4.5.  Small-scale preparation of plasmid DNA.  Individual colonies 

were picked and grown in 5 mL LB-Amp medium for 12-16 hours.  The 

bacteria were pelleted by centrifugation (2000 g, 10 min) and plasmid 

DNAs were purified using the QIAprep Spin Miniprep kit from Qiagen 

GmbH.  The bacteria pellets were resuspended, lysed and the plasmid DNA 

was bound to the column matrix.  After washing, the plasmids were eluted 

in sterile H2O and quantified by spectrophotometry (1 OD260 corresponds to 

50 µg of double stranded DNA). 

 

2.2.4.6.  Sequencing of PCR products inserted into plasmids.  M13 

forward and reverse primers were employed for sequencing plasmids using 

the Big Dye Sequencing kit from Perkin Elmer.  These two primers bind to 

the regions of the plasmid that flank the insertion site.  The 20 µL 

sequencing reactions contained 400-600 ng plasmids harboring Ras PCR 

products, 5 pmol of primer (M13 forward or reverse primer), and 4 µL of 

Sequenase Master Mix (PE Applied Biosystems).  The first cycle of the 

PCR sequencing protocol included a polymerase activation step (96 °C, 2 

min) and the remaining 24 cycles were run as follows : 

   Denaturation : 94 °C, 5 s 
Annealing : 55 °C, 5 s 

   Extension : 60 °C, 4 min 
 

The PCR products were precipitated for 10 min at room temperature with 50 

µL absolute ethanol and 2 µL 3M NaOAc (pH 5.2), washed with 250 µL 

70% ethanol, air-dried (30 min), redissolved in 20 µL HPLC-grade H2O and 

analyzed by an ABI Prism Sequence Detection System (PE Corporation, 

Norwalk, CT). 
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2.2.5.  Western blot analysis.  Cells were collected by centrifugation, washed twice 

with PBS and then incubated 5-10 min on ice in lysis buffer (50 mM Tris-HCl, pH 

7.5, 100 or 500 mM NaCl, 1% Triton X-100, 5 mM EDTA, 1 mM PMSF, 50 mM 

NaF, 1 mM sodium ortho-vanadate, 1 mM dithiothreitol, and 10 µg/mL pepstatin).  

Cell debris and insoluble proteins were removed by centrifugation for 15 min at 

12,000g and 4 ˚C.  Soluble proteins were recovered by transferring the supernatants 

to clean microcentrifuge tubes.  Cellular protein concentrations were determined 

using the Coomassie dye-binding assay according to Bradford (Bradford 1976) 

(Bio-Rad Laboratories, Hercules, CA).  Equal amounts of total protein from cells 

were mixed with SDS-PAGE loading buffer and analyzed by SDS-PAGE.  

Electrophoresis was accomplished at 30 V until loading dye migrated through the 

stacking gel and then the voltage was increased to 100 V at room temperature or to 

250 V if the cooling apparatus was used (8 ˚C).  Proteins were then transferred 

from the gel to PVDF membranes (Immobilon-P, Millipore) by semi-dry or tank 

transfer. 

 

2.2.5.1.  Semidry Protein Transfer.  For each gel to be transferred, six 

pieces of chromatography paper and one PVDF membrane were cut to the 

size of the gel.  Two papers were soaked in anode buffer I (30 mM Tris-

Base, 20 % MeOH) and placed on the anode.  Air bubbles were removed.  A 

third paper was soaked in anode buffer II (300 mM Tris-Base, 20 % MeOH) 

and placed on top of the other two papers.  Air bubbles were removed.  The 

activated membrane (20 seconds with MeOH  and soaked 5 min in anode 

buffer II) was placed on top of the stacked papers.  Air bubbles were 

carefully removed.  The gel (soaked 10-15 min in cathode buffer) was 

placed on top of the membrane.  The remaining three papers were soaked in 

cathode buffer (25 mM Tris-Base, 40 mM glycine) and placed over the gel. 

Any air bubbles were carefully removed and the cathode was connected.  

Semi-dry transfers were accomplished at constant power (0.8 mA/cm2 of 

membrane). 

 

2.2.5.2.  Tank blot transfer of proteins.  Two pieces of chromatography 

paper were cut for each gel to be transferred.  Transfer cassette and sponges 

were submerged in tank blot transfer buffer (9 g Tris, 21.6 g glycine, 0.02 % 
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SDS, 10 % MeOH in 3 L total volume).  One chromatography paper was 

placed on top of a sponge submerged in buffer, the membrane was centered 

on the paper, the gel was placed on the membrane and the second 

chromatography paper covered the gel.  The stack was completed by 

covering with the second sponge,  the cassette was closed and put into the 

transfer tank.  Transfers were accomplished at constant power (0.5 A) for 3 

h at 8 ˚C. 

 

2.2.5.3.  Incubation of membranes with antibodies.  Membranes were 

blocked for 1-2 h at room temperature with 5 % (w/v) skim milk in 100 mM 

Tris-buffered saline (TBS), pH 7.6.  After blocking, membranes were 

washed three times in 100 mM TBS/0.1% (v/v) Tween-20 (TBS-T).  In 

most cases, primary antibodies were used at a dilution of 1:1000 and 

incubated with the membranes for 1 h at room temperature in TBS-T.  

Phospho-specific antibodies were incubated overnight at 4 ˚C in TBS-T.  

Membranes were then washed 3 times with TBS-T and incubated 1 h at 

room temperature with the appropriate horse raddish peroxidase-coupled 

secondary antibody at a 1:3000 dilution in TBS-T.  The membranes were 

washed 3 times with TBS-T, incubated 1 min with a chemiluminescence 

solution (ECL kit, Amersham-Buchler, Braunschweig, Germany) and then 

exposed to film to visualize the protein bands. 

 

2.2.5.4.  PVDF membrane stripping.  Membranes were re-soaked for 20 

seconds in MeOH and then washed three times (5-10 min each wash) in 

TBS with 0.2 % Tween-20.  The membrane was then soaked in 25 mL of 

200 mM glycine (pH 2.6) for 1 h at room temperature.  The stripping buffer 

was changed three times during the 1 h incubation.  After stripping, the 

membrane was washed twice (10 min each wash) with TBS-T (0.1 %), 

blocked and reused. 

 

2.2.6.  MAP kinase assays.  MAP kinase assays were performed by 

immunoprecipitation of 1 mg total cellular protein with 4 mg of sepharose beads 

coupled to 10 µL rabbit αERK-2 antibodies with rotation 1-2 h at 4 ˚C in 1 mL 

total volume of lysis buffer (50 mM Tris-HCl, pH 7.5, 100 mM NaCl, 1 % Triton 
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X-100, 5 mM EDTA, 50 mM NaF, 200 µM Na3VO4, 100 µM PMSF, 40 mM 4-

nitrophenyl phosphate disodium salt hexahydrate, 20 µg/mL leupeptin, 20 µg/mL 

pepstatin A, and 20 µg/mL aprotinin) (Reuter et al 1995 a,b).  Beads were collected 

by centrifugation, washed twice with 1 mL of lysis buffer, and washed twice with 1 

mL of 50 mM HEPES buffer, pH 7.5, containing 10 mM MgCl2 and 1 mM DTT.  

Beads were resuspended in kinase reaction buffer (50 mM HEPES buffer, pH 7.5, 

containing 10 mM MgCl2, 1 mM DTT, 20 µM ATP, 0.25 mg/mL myelin basic 

protein and 12 µL γ-32P-ATP, mixed by vortexing and incubated 30 min at 30 ˚C.  

The kinase reaction was terminated by addition of loading buffer and the reactions 

were analyzed by 15 % SDS-PAGE.  Proteins were transferred to PVDF 

membranes (Immobilon-P, Millipore) by semi-dry transfer method and the amount 

of radioactive myelin basic protein was determined by autoradiography and by 

scintillation counting of the membranes.  After autoradiography, the membranes 

were subjected to Western blotting to determine relative amounts of activated, di-

phospho-ERK-1/2.  The membranes were subsequently stripped and probed for 

ERK-2 as a control for loading equal protein amounts of the samples. 

 

2.2.7.  Ras-GTP pulldown assay.  RAS-GTP pulldown assays were accomplished 

essentially as described (De Rooij & Bos 1997).  Bacteria containing the construct 

were used to innoculate 5 mL of LB-Ampicillin (10 g bacto-tryptone, 5g bacto-

yeast extract, 10 g NaCl, 0.2 mL 5 M NaOH add water to 1 L and autoclave; when 

solution cools, add ampicillin to 50-100 µg/mL) medium and grown 12-16 h at 37 

˚C and 225 rpm-1.  Two mL of the overnight culture were diluted in 250 mL of LB-

Amp medium and grown to an Abs600 of 0.6-1.  GST-RBD expression in E. coli 

was then induced with 1 mM IPTG for 2-3 hours.  Bacteria were collected by 

centrifugation and sonicated in 50 mL PBS containing 0.5 mM DTT and 1 µg/mL 

aprotinin, leupeptin and pepstatin A.  After addition of 1% Triton X-100, clarified 

lysates were aliquoted and stored at –80 ˚C as glycerol stocks (10%).  The fusion 

protein was purified on glutathione-Sepharose beads (35 µL per sample, Pharmacia, 

Uppsala, Sweden).  For affinity precipitation, the beads were washed three times 

with Mg2+-lysis buffer (1 mL), incubated with fresh cell lysates (1 mg total protein) 

30 min at 4 ˚C, and collected by centrifugation (12,000g at 4 ˚C).  After washing 3 

times with 100-200 µL Mg2+-lysis buffer and incubation in loading buffer (5 min at 
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95 ˚C), samples were analyzed by 15% SDS-PAGE and subjected to Western 

blotting using antibodies against H-, K-, and N-Ras to identify GTP-bound Ras. 

2.2.8.  Cell cycle analysis.  Cell permeabilization (1-2 x 106 cells) was performed 

using the GAS-002 kit from Bio Research (Kaumberg, Austria) essentially 

according to the manufacturer`s instructions.  After washing in phosphate buffered 

saline (PBS), cells were fixed in 100 µL buffer A (15 min, RT), washed in PBS 

(3mL) and permeabilized with 100 µL buffer B (10 min, RT).  1.25 ng of the 

primary antibodies (αMEK-1, αPP-MEK-1/2 or α-rabbit non-specific control) were 

added and incubated 1 h at RT.  Cells were washed with 3 mL 0.1% BSA-PBS and 

then 3 µL of α-rabbit fluorescein isothiocyanate (FITC)-conjugated secondary 

immunoglobulins were added (20 min in the dark, RT).  After washing with 3 mL 

0.1% BSA-PBS, cells were incubated in PI staining buffer (3.4 mM sodium citrate, 

pH 7.4, 0.3% Triton-X-100, 20 µg/mL RNase A, 50 µg/mL propidium iodide, 15-

30 min at 4 °C in the dark).  The cell-cycle profiles (20,000 cells) were analyzed on 

a FACScan flow cytometer (Becton Dickinson, San Jose, CA) using the Modfit LT 

2.0 software (Verity Software House Inc., Topsham, ME). 

2.2.9.  Immunocytochemical staining.  Cells were washed twice in PBS and 

cytospin slides were prepared using standard techniques.  Slides were air-dried for 

2-24 hours and processed for staining or wrapped airtight and stored at -20 ˚C.  

Immunocytochemical staining of the slides was done using the Dako LSAB+ kit 

(DAKO Corp., Carpinteria, CA) according to the manufacturer`s instructions.  

After fixation in 3% paraformaldehyde (30 min, 4 ˚C), cells were washed three 

times with Tris-buffered saline containing 0.1% Tween-20 (TBS-T buffer) (5 min) 

and once with TBS buffer (2 min).  Slides were incubated in 100% methanol (10 

min, -20 ˚C), washed in TBS-T buffer (three times, each 5 min), and blocked with 

5% horse serum in TBS-T buffer (1 h, RT).  Incubation with primary antibodies 

(αMEK-1, αPP-MEK-1/2, αERK-2, αPP-ERK-1/2) or negative control antibodies 

was done overnight at 4 ˚C (1:400 in 5% BSA-TBS-T buffer).  After washing in 

TBS-T (15 min) followed by 0.1% BSA-TBS-T (2 min) and incubation with 

appropriate biotinylated secondary immunoglobulins (DAKO Corp.) staining and 

counter staining with hematoxylin was performed. 

2.2.10.  Detection of apoptosis. 

2.2.10.1.  TUNEL apoptosis assay.  For detection and quantification of 

apoptosis at the single cell level, the in situ cell death detection kit of 
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Boehringer Mannheim was used.  Labeling of DNA strand breaks was done 

according to the manufacturer's instructions applying the TUNEL method.  

Cells were collected by centrifugation (4 min, 300g), washed once with PBS, 

washed twice with 300 µL PBS/0.1% BSA and then fixed one hour at room 

temperature with 100 µL of 4% (w/v) paraformaldehyde in PBS, pH 7.4.  Cells 

were washed once with 300 µL PBS/0.1% BSA, resuspended in 100 µL 

permeabilization fluid (0.1% v/v Triton X-100 in 0.1 % w/v sodium citrate), 

incubated 2 min on ice, washed twice with 300 µL PBS/0.1% BSA and 

resuspended in the TUNEL labeling solution.  After incubating 1 hr at 37 °C in 

5% CO2, cells were washed twice with 300 µL PBS/0.1% BSA, resuspended in 

400 µL PBS and analyzed by flow cytometry. 

 

2.2.10.2. Annexin-V-PE/7-Amino-actinomycin apoptosis assay.  In addition, 

the Annexin V-PE/7-Amino-actinomycin (7-AAD) double staining method 

was used to quantitatively determine the percentage of cells that are actively 

undergoing apoptosis.  After washing once with PBS and twice with Annexin 

V binding buffer (10 mM Hepes, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2), cells 

were resuspended in Annexin V binding buffer (1 mL) and 5 µL of Annexin V-

PE (Pharmingen, USA) was added.  After 15 min at RT in the dark, samples 

were washed twice with Annexin V binding buffer (1 mL each wash) and 

resuspended in 200 µL of binding buffer.  Nucleic acids were stained by 

adding 40 µL of 7-AAD solution (0.2 mg/mL PBS) and incubating 20 min at 4 

°C in the dark.  Finally, 300 µL of Annexin V binding buffer was added to 

each tube and cells were analyzed by flow cytometry. 

 

2.2.11. Proliferation assay of primary cells from leukemia patients.  All 

experiments using patient-derived material were approved by the ethics committees 

of Universität Ulm and the Hannover Medical School.  Primary AML cells were 

obtained from 6 patients (> 18 years) with acute myeloid leukemia (de novo and 

secondary AML) after informed consent was received.  Diagnosis was based on cell 

morphology according to FAB criteria complemented  by cytochemistry and 

immunophenotyping.  Mononuclear cells were purified by Ficoll-Hypaque gradient 

centrifugation (Pharmacia LKB, Uppsala, Sweden).  Samples contained more than 

90% leukemic cells at the time of analysis.  Short term cultures of primary AML 
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cells were grown in StemSpanTM serum-free medium (CellSystems Biotech., St. 

Katharinen, Germany)  supplemented with cytokines (100 ng/mL rh Flt-3 ligand, 

100 ng/mL rh stem cell factor (SCF), 20 ng/mL rh IL-3 and 20 ng/mL rh IL-6).  For 

growth inhibition studies, 250 µL aliquots of primary AML cells (0.4-0.5 x 106 

cells/mL) were treated with inhibitors as indicated.  After three days, 100 µL 

aliquots of the cell suspensions were transferred to a fresh 96 well plate and 20 µL 

of the CellTiter 96R AQueous one solution reagent (Promega, Wisconsin, USA) was 

added to each aliquot and incubated 3-4 h at 37 °C with 5% CO2.  The proliferation 

of the samples was then quantified using an ELISA reader (Abs490). 

 

2.2.12.  Analysis of combined drug effects.  Dose-response curves were initially 

generated for each agent to estimate IC50s for the cells under study.  In subsequent 

experiments, cells were treated with serial dilutions of each drug individually and 

with both drugs simultaneously at a fixed ratio (1 : 1) of doses.  Fractural survival 

(f) was calculated by dividing the number of colonies in drug-treated plates by the 

number of colonies in control plates.  Data were analyzed by the method of Chou 

and Talalay (1984) using the CalcuSyn computer program (Biosoft, Cambridge 

UK).  In brief, log [(1/f)-1] was plotted against log (drug dose) to obtain the 

resulting median effect curves, the X intercept (log IC50) and slope m for each drug 

alone and drug combinations.  These parameters were then used to calculate doses 

of the individual drugs and the combination required to produce varying levels of 

cytotoxicity according to the equation : Dose f = Dose IC50 [(1 – f)/f]1/m .  For each 

level of cytotoxicity, the combination index (CI) was calculated according to the 

equation CI = (D)1/(Df)1 + (D)2/Df)2 + α (D)1 (D)2/(Df)1 (Df)2, where (D)1 and (D)2 

are concentrations of the combination required to produce survival f, (Df)1 and (Df)2 

are the concentrations of the individual drugs required to produce f, and α = 1 or 0 

depending on whether the drugs are assumed to be mutually nonexclusive (totally 

independent modes of action) or mutually exclusive (same or similar modes of 

action), respectively.  Synergy is indicated by CI <1, additivity by CI = 1 and 

antagonism by CI > 1 (Chou & Talalay 1984).  Dose-reduction index (DRI) is a 

measure of the dose reduction of each drug in a synergistic combination at a given 

cytotoxic level as compared to each drug alone.  For two drug combinations, CI = 

(D)1/(Df)1 + (D)2/(Df)2 = 1/(DRI)1 + 1/(DRI)2. 



3.  Results 
 
3.1.  Activation of the Ras-to-MAP kinase cascade. 

3.1.1.  Ras mutations.  The genomic DNA of several myeloid cell lines was analyzed for 

activating mutations in codons 12, 13, 15, 16, 18 and 61 of H-, K- and N-Ras to correlate 

the frequency of Ras mutations with the presence of constitutive activation of the ERK 

pathway.  Four of 14 AML cell lines (28.6%) were found to contain activating Ras 

mutations (Table 2).  As previously reported, a mutation of codon 12 of N-Ras was 

detected in THP-1 (GGT to GAT) and a N-Ras codon 61 mutation in HL-60 (CAA to 

CTA) replacing Gly12 with Asp and Gln61 with Leu (Lübbert et al, 1992).  Two AML cell 

lines (Kasumi-1 and MV4-11) were found to harbor a K-Ras codon 12 mutation (GGT to 

GAT), which also exchanges Gly12 with Asp.  Interestingly, an additional K-Ras codon 18 

mutation was found in the second allele of MV4-11 (GCC to GAC) which leads to 

replacement of Ala18 with Asp.  While no activating mutations of the H-Ras gene were 

detected, three cell lines (MV4-11, Kasumi-1 and NB-4) harbored silent point mutations in  

 

 
 

Figure 11.  Ras mutations detected in AML cell lines and AML blasts from patients.  
AML cell lines HL-60 and THP-1 harbor N-Ras mutations in codons 61 and 12 
(CAA⇒CTA and GGT⇒GAT resulting in Q61L and G12D, respectively).  AML blasts 
from patients 1, 4, 5 and 6 were found to harbor N-Ras mutations (CAA⇒CGA resulting 
in Q61R, GGT⇒GAT resulting in G12D, CAA⇒CAC resulting in Q61H and 
GGT⇒GAT resulting in G12D, respectively).  The codons containing mutations are 
underlined and the point mutations are italicized. 
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codon 59 (GCC to GCT).  Additionally, AML blasts from 4 of 6 patients were found to 

harbor N-Ras mutations (Figure 11). 

 

3.1.2.  Ras activation assays.  Expression of all three Ras isoforms (H-, K- and N-Ras) 

was detected by Western blotting the cellular lysates of all myeloid cell lines tested (not 

shown).  To identify the presence of GTP-Ras, cell lysates were incubated with the 

minimal Ras-binding domain (RBD) of C-Raf-1.  Western blotting with antibodies against 

H-, K- and N-Ras was performed to detect the binding of GTP-Ras with GST-RBD.  

Cellular lysates of H-Ras (L-61)-transformed NIH-3T3 fibroblasts were used as a positive 

control for activated H-Ras.  As shown in Figure 12, only oncogenic H-Ras (L61) could be 

precipitated with GST-RBD from NIH-3T3 lysates, but not endogenous K- or N-Ras.  

THP-1 and HL-60, which harbor N-Ras mutations in codon 12 and codon 61, showed only 

a slight activation of N-Ras in some experiments but no activation of H-Ras or K-Ras.  

Surprisingly, lysates of Kasumi-1 and MV4-11, which harbor a K-Ras codon 12 mutation, 

did not contain substantial amounts of activated K-Ras.  While lysates of most cell lines 

with wild-type Ras did not contain significant amounts of GTP-Ras, high levels of 

activated H-, K- and N-Ras were found in NB-4 and ML-2 cell lysates.  No apparent 

activation of Ras was detected in the CML cell lines, although all express the activated 

BCR-Abl fusion tyrosine kinase, which has been reported to induce Ras activation (Kalra 

et al, 1994; Bollag et al, 1996; Reuter et al, 2000). Of the growth factor-dependent 

myeloid cell lines (AML-OCI-5, Mo-7e, Mutz-2 and Mutz-3), activation of H-, K- and N-

Ras was observed only in AML-OCI-5 upon stimulation by IL-3 or conditioned medium of 

5637 bladder carcinoma cells (not shown). 

 

3.1.3.  Activation of the MAPK cascade.  To determine the frequency and the level of 

activation of signaling proteins downstream of Ras, lysates of myeloid cells were analyzed 

by Western blotting with antibodies against PP-MEK-1/2 and PP-ERK-1/2 (Figure 13).  

Cellular lysates of H-Ras (L61)-transformed NIH-3T3 fibroblasts were used as a positive 

control for activated MEK-1/2 and ERK-1/2.  Significant activation of MEK-1/2 was 

detected in 8/14 AML cell lines and 5/5 CML cell lines.  ERK-1/2 activation was observed 

in 9/14 AML cell lines and 2/5 CML cell lines.  MEK-1/2 activation correlated with ERK-

1/2 activation in 7/14 AML cell lines and 2/5 CML cell lines.  Western blots for 

diphospho-ERK-1/2 were confirmed by immunocomplex MAPK assays using an ERK-2 

antibody, which cross-reacts with ERK-1 (Figure 14).  The presence of PP-ERK-1/2 in  
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Figure 12.  Activation of Ras in myeloid leukemia cell lines.  Lysates of myeloid 
leukemia cell lines were subjected to affinity precipitation (AP) with GST-RBD as 
described in Methods.  Ras proteins were detected by immunoblotting with H-, K-, and N-
Ras antibodies.  H-Ras (L61)-transformed NIH3T3 fibroblasts were used as a positive 
control for activated H-Ras. 
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Figure 13.  Activation of ERK-1/2 and MEK-1/2 in myeloid leukemia cell lines.  
Myeloid leukemia cell lysates were adjusted for protein concentration and equal amounts 
of total cell protein were subjected to SDS-PAGE.  Western analysis was performed with 
antibodies against MEK-1, ERK-2, PP-MEK-1/2 and PP-ERK-1/2.  L61-H-Ras-
transformed NIH3T3 cell lysates were used as positive controls for the Ras-induced 
activation of ERKs and MEKs. 
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Figure 14.  Activation of ERK-2 in myeloid leukemia cell lines.  Lysates of myeloid 
leukemia cell lines were subjected to immunoprecipitation with an antibody against ERK-2 
(which also cross-reacts with ERK-1).  After washing of the immunoprecipitates, 
immunocomplex kinase assays were performed as described in Methods.  (A) Western blot 
of the immunoprecipitates with an antibody specific for ERK-2 and an antibody specific 
for activated PP-ERK-1/2.  (B) Autoradiogram of kinase assay demonstrating MBP 
phosphorylation by immunoprecipitated ERK-1/2.  H-Ras (L61)-transformed NIH3T3 
fibroblasts were used as a positive control for the Ras-induced activation of ERK-1/2.  A 
non-specific antibody was used as a negative control. 
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Western blots of cellular lysates correlated closely with MAPK/ERK activity in 

immunocomplex kinase assays.  Compared to leukemia cell lines, H-Ras (L61)-

transformed NIH-3T3 fibroblasts were found to harbor at least 50% higher amounts of PP-

ERK-1/2.  The presence of Ras mutations or BCR-Abl did not always correlate with 

significant ERK-1/2 activation (Table 2). 

 

3.1.4.  Activation of transcription factors.  Following activation, ERK-1/2 translocates to 

the nucleus resulting in phosphorylation and activation of transcription factors such as 

ELK-1, CREB-1 and c-Myc.  To determine whether activation of ERK-1/2 induces 

activation of these transcription factors, myeloid leukemia cell lysates were subjected to 

Western blotting with specific antibodies against phospho-ELK, phospho-CREB and 

phospho-c-Myc.  Activated CREB-1/ATF-1 and c-Myc were found in 11/14 AML cell 

lines and 2/5 CML cell lines and did not always coincide with the presence of phospho-

ERK-1/2 (Figure 15 and Table 2). 

 

3.1.5. Intracellular localization of PP-ERK-1/2 and PP-MEK-1/2.  To determine 

whether activation of ERK-1/2 and MEK-1/2 was limited to subpopulations of myeloid 

leukemia cells, cytospins were prepared and stained with specific antibodies against ERK-

2, MEK-1, PP-ERK-1/2 and PP-MEK-1/2 (Figure 16).  All cells were stained with anti-

ERK-2 and anti-MEK-1 antibodies.  However, only 1-5% of cells showed strong staining 

with anti-PP-ERK-1/2 and anti-PP-MEK-1/2 antibodies.  Strong nuclear staining was 

found in approximately 50% of PP-ERK-1/2 and PP-MEK-1/2 positive cells whereas the 

other portion showed mainly cytoplasmatic staining.  These results were obtained for all 

samples tested and suggest activation of ERKs and MEKs in subpopulations (e.g. cells in 

certain phases of the cell cycle). 

 

3.1.6.  MEK activation during cell cycle progression.  ERK-1/2 and MEK-1/2 activation 

during cell cycle progression was detected using a novel FACS method for cytoplasmatic 

staining of activated kinases of the Ras pathway.  Cells were double stained with 

propidium iodide and antibodies specific for different members of the ERK signaling 

pathway (e.g. ERK-2, PP-ERK-1/2, MEK-1 and PP-MEK-1/2).  As shown in Figure 17B 

& C, all cells were strongly positive for ERK-2 and MEK-1.  Using anti-PP-ERK-1/2 and 

anti-PP-MEK-1/2 antibodies, most cells were only slightly positive (Figure 17D & E).  

Interestingly, PP-MEK-1/2 staining revealed two additional, strongly positive cell 
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Figure 15.  Activation of MAPK-dependent transcription factors in myeloid leukemia 
cell lines.  Lysates of myeloid leukemia cell lines were subjected to SDS-PAGE followed 
by Western blotting with anti-c-Myc (A) and anti-CREB-1 (B) antibodies.  Activated c-
Myc and CREB-1/ATF-1 were detected with phospho-specific antibodies against activated 
c-Myc and CREB-1. 
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Table 2.  Activation of the Ras-to-MAPK signaling cascade in myeloid leukemia cell 
lines. 

Cell line Leukemia Ras Ras ERK-1/2 MEK-1/2 CREB-1/
  Mutation    ATF-1 

HL-60 AML M2 N-Ras/61 (+) ++ ++ ++ 

PLB-985 AML M2 none - ++ - + 

Kasumi-1 AML M2 K-Ras/12 - (+) ++ + 

Mutz-2 AML M2 none - (+) - + 

NB-4/t15;17 AML M3 none +++ +++ +++ ++ 
PML/RARA       

THP-1 AML M4 N-Ras/12 (+) ++ (+) - 

OCI-AML2 AML M4 none - + + +++ 

OCI-AML5 AML M4 none - (+) - - 

Mutz-3 AML M4 none - (+) (+) - 

ML-2/t6;11, AML M4 none + + + +++ 
MLL/AF6       

MV4-11/t4;11, AML M5 K-Ras/12 - +++ (+) + 
MLL/AF4  K-Ras/18     

Mono-Mac-1 AML M5 none - +++ ++ +++ 

KG-1 AML M6 none - + ++ + 

M-07e AML M7 none - (+) + ++ 

RC2A ALL none - + + + 

EM-2 CML BCR-Abl - - + + 
 blast crisis      

JK-1 CML BCR-Abl - - +  
 erythroid blast 

crisis 

     

K562 CML BCR-Abl - + + ++ 
 blast crisis      

MEG-01 CML BCR-Abl - + + + 
 megakaryocytic 

blast crisis 

     

LAMA-84 CML BCR-Abl - - +++  
 myeloid-

megakaryocytic 
blast crisis 

     

 
Legend: Among the myeloid leukemia cell lines used in this study are 14 acute myeloid leukemia 
(AML) cell lines and 5 chronic myeloid leukemia (CML) cell lines (all from blast crisis).  HL-60 
and THP-1 harbor N-Ras mutations in codons 61 and 12 (CAA⇒CTA and GGT⇒GAT resulting 
in Gln⇒Leu and Gly⇒Asp, respectively).  Kasumi-1 and MV4-11 contain a codon 12 K-Ras 
mutation (GGT⇒GAT resulting in Gly⇒Asp).  An additional codon 18 mutation was detected in 
MV4-11 (GCC⇒GAC resulting in Ala⇒Asp).  A previously unknown silent H-Ras mutation in 
codon 59 (GCC⇒GCT) was observed in MV4-11, Kasumi-1 and NB-4 (Ala).  Relative activation 
levels of signaling proteins were determined by Western blotting and are shown by : +++ = strong 
signal; and - = weak or no signal.  Note: PLB-985 is a clone of HL60 (DSMZ, Braunschweig, Germany). 
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Figure 16.  Immunocytostaining of myeloid leukemia cells with PP-ERK-1/2 and 
PP-MEK-1/2 antibodies.  Cytospins of myeloid leukemia cells were stained with 
antibodies specific for ERK-2, PP-ERK-1/2, MEK-1 and PP-MEK-1/2 as described in 
methods.  Approximately 1-5% of the cells were strongly stained with anti-PP-ERK-1/2 
and anti-PP-MEK-1/2 antibodies.  Note the nuclear staining of some cells while others are 
stained mainly in the cytoplasm. 
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Figure 17.  Activation of MEK-1/2 during cell cycle progression.  HL-60 cells were 
prepared for FACS analysis as described in Methods.  Graph A shows a representative 
control with unspecific mouse IgG antibodies.  Similar results were obtained with rabbit 
and goat controls (data not shown).  All cells were clearly positive when probed with 
ERK-2 or MEK-1 antibodies (graphs B and C), and only slightly positive when stained 
with phospho-specific antibodies against activated PP-ERK-1/2 and PP-MEK-1/2 (graphs 
D and E).  Graph F shows the cell cycle profile of untreated HL-60 cells stained with 
propidium iodide.  Additionally, PP-MEK-1/2 staining revealed two strongly positive 
populations, which correlated with the G0/G1 and G2/M phases of the cell cycle (graphs E 
and F).  Treatment of HL-60 cells with excess thymidine (2.5 mM) for 16 hours: G, 
staining with anti-PP-MEK-1/2 antibodies, H, cell cycle profile.  Treatment of HL-60 cells 
with 5 µg/mL vinblastine for 10 hours: I, staining with anti-PP-MEK-1/2 antibodies, J, cell 
cycle profile. 
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populations (Figure 17E) which correspond to the G0/G1 and G2/M phases of the cell cycle.  

The difference in PP-ERK-1/2- and PP-MEK-1/2-staining might be due to rapid nuclear 

translocation of PP-ERK-1/2.  Incubation with excess thymidine (2.5 mM) resulted in a 

G1/S phase block with an increase of S-phase cells to 60.1 % and a concomitant reduction 

of PP-MEK-1/2-positive cells in G0/G1 and G2/M (<0.1% of the total cell population) 

(Figure 17G and H).  Cell viability was not significantly affected by this treatment.  

Vinblastine treatment of cells (5 µg/mL, 10 hours), which induces depolymerization of 

mitotic interpolar microtubules and a cell metaphase block, increased the mitotic 

population of cells in G2/M to 80.9% and the amount of strongly positive PP-MEK-1/2 

cells in G2/M to 13.1% (Figure 17I and J).  These results demonstrate MEK-1/2 activation 

in the G0/G1 and the G2/M phase of the cell cycle of myeloid leukemia cells.  These results 

were further confirmed by Western blotting (Figure 18). 

 

 

 
 
 

Figure 18.  Cell cycle-dependent activation of MEK-1/2 in myeloid leukemia cell lines.  
Myeloid leukemia cells were treated 16 h with 2.5mM thymidine or 10 h with 5 µg/mL 
vinblastine.  Lysates were adjusted for protein concentration and equal amounts of total 
cell protein were subjected to SDS-PAGE.  Western analysis was performed with 
antibodies against MEK-1 and PP-MEK-1/2.  Untreated, L61-H-Ras-transformed NIH3T3 
cell lysates were used as positive controls for the Ras-induced activation of MEKs. 
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3.2. Effects of Ras-to-MAPK signaling inhibitors in myeloid leukemia cells. 
 
3.2.1.  Effect of inhibitors of Ras-to-MAPK signaling on myeloid leukemia cell growth. 

The effectiveness of several different types of inhibitors of Ras signaling was tested on 

viability and colony formation of myeloid leukemia cell lines.  Inhibitors employed in this 

study included (1) farnesyl pyrophosphate (FPP)-based farnesyltransferase (FTase) 

inhibitors FPT-II and FPT-III; (2) CAAX-based FTIs FTI-276, FTI-277, B581, Cys-4-

Abz-Met and L-744,832; (3) CAAL-based GGTIs GGTI-286, GGTI-287, GGTI-297, 

GGTI-298, GGTI-2133 and GGTI-2147; (4) MEK inhibitors U0126 and PD098059; and 

the (5) prenylated protein methyltransferase (PPMTase) inhibitor FTS.  The compounds 

were initially screened for growth inhibition of myeloid leukemia cells by incubating in 

liquid suspension cultures containing 20 µM (FTI 744,832 and all GGTIs) or 50 µM (the 

remaining compounds) of inhibitor or solvent.  Myeloid cell lines were preincubated in 

liquid suspension cultures for 96 h followed by incubation in methylcellulose to assay 

colony formation in the presence or absence of inhibitor.  Limited growth inhibition was 

obtained by treatment with 50 µM of FTI-276, B-581, and Cys-4-Abz-Met (Table 3).  

Growth inhibition greater than 70% was observed with 50 µM of FPP-competitive FTIs 

FPT-3 (10/19), FPT-2 (4/19), and the CAAX-based FTase inhibitors FTI-277 (19/19) and 

L-744,832 (16/16) (Table 3). 

Only limited growth inhibitory effects were observed in myeloid leukemia cells 

after treatment with 20 µM of GGTI-287 and GGTI-297 (Table 4).  Growth inhibition 

greater than 70% was obtained with 20 µM of the methyl ester derivatives GGTI-286 

(9/19) and GGTI-298 (14/19), and the non-thiol derivatives GGTI-2133 (2/19) and GGTI-

2147 (16/19) (Table 4). 

Growth inhibition greater than 70% was also observed with the PPMTase inhibitor 

FTS (3/19) and MEK inhibitors PD098059 (8/19) and U0126 (19/19) (Table 5). 

 

3.2.2 Inhibition of myeloid leukemia cell growth by Ras signaling inhibitors is 

concentration dependent.  To determine if the inhibition of colony formation caused by 

the compounds was dependent upon concentration, the most potent inhibitors were titrated 

against different cell lines.  Purified CD-34+ cells were utilized as a control for inhibitor 

specificity. 

Only minor growth inhibitory effects on purified CD34+ cells were observed in the 

presence of DMSO, or U0126 and FPT-3 at concentrations up to 50 µM (Figure 19).  FTI-

277 caused inhibition of stem cell colony formation with IC50 value of 10 µM.  NB-4, 
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Table 3. Inhibition of colony formation and cell viability of myeloid leukemia cell lines by farnesyltransferase (FTase) inhibitors. 

Cell line/           Ras-to- Cys-4
Translocation Leukemia         MAPK FPT2 FPT3 B581 Abs-Met FTI-276 FTI-277 L-744,832
          
HL-60          AML M2 ++ 52.9±2.1 84.8 14.3±6.2 13.1±14.4 27.1±8.5 100 85±5.7
N-Ras/61          
PLB-985         AML M2 + 0 32.3±11.2 0 0 0 100 n.d.
Kasumi-1          AML M2 + 90.9±1.0 79.1 0 n.d. 37.6±7.0 100 100
K-Ras/12          
Mutz-2        AML M2 (+) 0 0 0 n.d. 15.6±2.5 83.4±1.5 100
NB-4/ t15;17; AML M3 +++ 97.2±1.1     100 0 15.5±12.4 0 100 100±0
PML/RARA          
THP-1          AML M4 ++ 0 100 0 0 25 87.5 100±0
N-Ras/12          
OCI-AML2        AML M4 - 0 92.1±0.7 0 0 46.2±26.4 100 100
OCI-AML5          AML M4 - 37.3±6.2 72.8±4.5 22.1±6.9 39.3±9.2 32.1±4.3 100 100
Mutz-3        AML M4 - 15.1±1.3 43.2±4.5 0 n.d. 0 99.1±0.2 100
ML-2/ t6;11; AML M4 + 0 0 0 0 0 100 n.d. 
MLL/AF6          
MV4-11/ t4;11 AML M5 ++ 19.4±10.9 52.8±11.3 25.6±3.0 15.5±8.6 20.5±8.9 99.8±0.4 100±0 
K-Ras/12&18          
Mono-Mac-1          AML M5 +++ 30 70 0 70 20 80 n.d.
KG-1 AML M6         + 0 0 0 0 0 87.5 100±0
M-07e         AML M7 + 0 0 0 0 0 96.4±0.9 100±0

  
EM-2          CML/BCR-Abl - 80.5±1.2 100 0 n.d. 75.4±6.3 100 100
JK-1        CML/BCR-Abl - 16.3±10.1 100 15.0±2.3 n.d. 0 100 100
K562     CML/BCR-Abl + 0 12.6±13.5 0 0 0 100 84.2±17.7
MEG-01         CML/BCR-Abl - 77.7±0.6 79.8±3.2 47.7±6.8 n.d. 76.8±4.8 71.6±3.8 100 
LAMA-84        CML/BCR-Abl - 17.4±10.8 40.5±3.0 0 n.d. 86.4±3.6 100 90

        

Legend:  Cells were seeded at 1.0 to 2.5 x 106/mL of cell suspension in a 96-well plate and treated with 20 µM inhibitor or solvent 
control for 4 days.  Aliquots of the cell suspensions were then plated in 400 µL methylcellulose for 7 to 14 days and cell growth was 
evaluated as described in “Methods”.  Inhibition is given in percentage of solvent control.  AML indicates acute myeloid leukemia; 
CML, chronic myeloid leukemia; MAPK, MAP kinase; n.d., not determined.  Note: PLB-985 is a clone of HL60 (DSMZ, 
Braunschweig, Germany). 

 56



Table 4.  Inhibition of colony formation and cell viability of myeloid leukemia cell lines by GGTIs. 

 
Cell line/ Leukemia 

 
Ras GGTI GGTI GGTI GGTI GGTI GGTI

Translocation
 

Mutation
 

286 287 297 298 2133 2147

HL-60 AML M2 N-Ras/61 95.1±4.7 0±0 57±9.9 95.9±9.1 48.5±28.9 87.4±16.3 
PLB-985 AML M2 none 100±0 79.9±28.5 1±1.3 0±0 0±0 100 
Kasumi-1 AML M2 K-Ras/12 100 0 0±0 100±0 0±0 100±0 
Mutz-2 AML M2 none 20±28.3 5.5±7.8 13±18.3 90 2.5±3.5 86.5±12 
NB4/t(15;17) AML M3

 
none 99±1.7 15 5±7.1 100±0 100±0 100±0 

PML/RARA
THP-1 AML M4 N-Ras/12 97.5±4.2 63 25.5±28.9 100±0 10.5±14.8 100±0 
OCI-AML2 AML M4 none 94 0 2.3±4 100±0 12.7±21.9 100±0 
OCI-AML5 AML M4 none 6±8.5 9±12.7 4.5±6.4 47.5±3.5 5.5±7.8 99.5±0.7 
Mutz-3 AML M4 none 23±20.9 12±16.9 31±32.5 3.5±4.9 0±0 89.5±14.8 
ML-2/t(6;11) AML M4

 
none 90 n.d. 0±0 100±0 0±0 100±0 

MLL/AF6
MV4-11/t(4 ;11) 

 
AML M5 
 

K-Ras/12 93.3±11.5 5 20±14.1 100±0 9±2.8 98.5±2.1 
MLL/AF4 K-Ras/18

 Mono-Mac-1 AML M5 none 2 4 6.7±11.5 100±0 0±0 93.3±5.8 
KG-1 AML M6 none 38.1±14.6 0±0 0±0 97.5±3.5 0±0 88.5±12.0 
M-07e AML M7

 
 none 0±0 7±9.9 15.5±21.9 0±0 16±22.7 100 

EM-2/t(9;22) CML, bc BCR-Abl 98±1.4 2.5±3.5 5±7.1 100±0 100±0 100±0 
JK-1/t(9;22) CML, bc BCR-Abl 19.5±3.5 19±19.8 0±0 42.5±19.0 16.8±23.7 74.5±31.8 
K562/t(9;22) CML, bc BCR-Abl 67.1±22.1 0 43±26 74.3±6 29.2±26 0±0 

.5±9.MEG-01/t(9;22) CML, bc BCR-Abl 7.5±10.6
67.5±31.8

26±12.7
5 7.1

7±9.9
4 ±7.

78±1.4
6.5±4.9

0±0
.5

53 2 
LAMA84/t(9;22)  CML, bc BCR-Abl ± 1 .5 8 9 13 ±9.2 83.5±9.2 

      
        

       

       
       
        

      
      

        
     

         
         

        
        

        
   

       
       

        
       

        
         

         
       

        
     

 
Legend:  Cells were seeded at 1.0 to 2.5 x 106/mL of cell suspension in a 96-well plate and treated with 20 µM inhibitor or solvent 
control for 4 days.  Aliquots of the cell suspensions were then plated in 400 µL methylcellulose for 7 to 14 days and cell growth was 
evaluated as described in “Methods”.  Inhibition is given in percentage of solvent control.  AML indicates acute myeloid leukemia; 
CML, chronic myeloid leukemia; bc, blast crisis; n.d., not determined.  Note: PLB-985 is a clone of HL60 (DSMZ, Braunschweig, 
Germany).
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Table 5.  Inhibition of colony formation and cell viability of myeloid leukemia cell 
lines by MEK, and PPMTase. 
      
  Ras-to-    
Cell line Leukemia MAPK U0126 PD098059 FTS 
      
HL-60 AML M2 ++ 100 81.4±8.1 64.4±6.8 
N-Ras/61      
PLB-985 AML M2 + 100 54.6±7.4 54.6±6.5 
Kasumi-1 AML M2 + 100 100 100 
K-Ras/12      
Mutz-2 AML M2 (+) 100 62.1±3.3 37.9±11.4 
NB-4 /t15;17 AML M3 +++ 100 16.5±6.8 46.5±6.0 
PML/RARA      
THP-1 AML M4 ++ 87.5 50 0 
N-Ras/12      
OCI-AML2 AML M4 - 100 100 0 
OCI-AML5 AML M4 - 99.1±0.8 63.3±5.2 20.5±15.5 
Mutz-3 AML M4 - 99.2±0.3 56.3±2.1 0 
ML-2/ t6;11 AML M4 + 100 100 0 
MLL/AF6      
MV4-11/(t4;11) AML M5 ++ 100 100 13.4±7.2 
K-Ras/12&18      
MLL/AF4      
Mono-Mac-1 AML M5 +++ 90 0 20 
KG-1 AML M6 + 90 50 50 
M-07e AML M7 + 100 0 0 
      
EM-2/t(9;22) CML - 100 0 64.4±12.5 
JK-1/t(9;22) CML - 100 70.5±3.9 26.1±12.0 
K562/t(9;22) CML + 100 30.4±25.7 53.3±22.1 
MEG-01/t(9;22) CML - 99.6±0.6 79.4±1.8 97.8±1.6 
LAMA-84/t(9;22) CML - 100 87.6±1.0 100 
 
 
 
 
Legend: Cells were seeded at 1.0 to 2.5 x 106/mL of cell suspension in a 96-well plate and 
treated with 20 µM inhibitor or solvent control for 4 days.  Aliquots of the cell suspensions 
were then plated in 400 µL methylcellulose for 7 to 14 days and cell growth was evaluated 
as described in “Methods”.  Inhibition is given in percentage of solvent control.  AML 
indicates acute myeloid leukemia; CML, chronic myeloid leukemia; MAPK, MAP kinase; 
‘+’ and ‘-‘ indicate activation of the Ras-to-MAPK pathway as determined by Western 
blotting.  Note: PLB-985 is a clone of HL60 (DSMZ, Braunschweig, Germany). 
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Figure 19.  Inhibition of colony growth by U0126, FPT-3, and FTI-277.  Purified 
human CD34+ cells and myeloid leukemia cell lines were incubated in liquid suspension 
cultures with increasing concentrations of the MEK inhibitor U0126, the FPP-based FTI 
FPT-3, and the CAAX-based FTase inhibitor FTI-277.  After four days, viability of the 
cells was determined by trypan blue dye assays.  Aliquots of the samples were incubated in 
methylcellulose for an additional 7-14 days in the presence of freshly added inhibitors.  
Representative experiments are shown.  Results are expressed in percentage inhibition of 
maximal spontaneous colony growth.  Error bars indicate the standard margin of error. 
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ML-2 and THP-1 cells showed significant leukemia selective inhibition of colony 

formation in the presence of FPT-3, U0126 and FTI-277.  The IC50 values for FTI-277 

were <5 µM for these cell lines, suggesting that FTI-277 may elicit leukemia specific 

toxicity in some cell lines.  However, HL-60 and MV4-11 cells revealed IC50 values for 

FTI-277 similar to the IC50 values determined for purified CD34+ cells.  HL-60 and MV4-

11 colony formation was significantly inhibited in the presence of U0126, but HL-60 cells 

were resistant to FPT-3 (Figure 19).  FTI L-744,832 caused inhibition of stem cell colony 

formation with an IC50 value of <1 µM (Figure 20).  At >10-15 µM GGTI-286, GGTI-298, 

and GGTI-2147 elicited substantial toxicity towards purified CD34+ human stem cells.  

Only minor growth inhibitory effects on purified CD34+ cells were observed in the 

presence of DMSO or GGTI-2133 at concentrations up to 20 µM (Figure 20).  Most cell 

lines (e.g. NB-4, HL-60 and THP-1) exhibited significant inhibition of colony formation in 

the presence of GGTI-286, GGTI-298, and GGTI-2147.  At concentrations below 10 µM, 

GGTI-2147 elicited leukemia specific toxicity in some cell lines, e.g. HL-60 (IC50 

12.6µM), ML-2 (IC50 8.2µM), MV4-11 (IC50 4.2µM), NB4 (IC50 <1µM) and THP-1 (IC50 

<1µM), as colony formation of human CD34+ cells (IC50 15-20 µM) was largely 

unaffected (Figure 20). 

 

3.2.3.  Effect of inhibitors of Ras-to-MAPK signaling on cell cycle progression.  To 

elucidate the effects of the most potent inhibitors on cell cycle progression of leukemia 

cells, NB-4 cells were incubated 18 h and 36 h in the presence of 50 µM FPT-3, 50 µM 

U0126 and 20 µM FTI-277 (Figures 21 and 22).  NB-4 cells were studied because they 

showed strong activation of the Ras pathway and revealed high sensitivity towards 

inhibitors of Ras signaling.  After incubation with FPT-3, U0126 and FTI-277, double 

staining with propidium iodide and anti-P-MEK-1/2 antibodies was performed and cells 

were analyzed by flow cytometry.  Incubation with DMSO for 18 hours elicited no 

substantial changes in NB-4 cell cycle progression (Figure 21).  However, incubation with 

DMSO for 36 h resulted in an increase of the G0/G1 fraction to 63.5% compared to 48.5% 

in untreated controls (Figure 22A and B).  In DMSO-treated control cells, 0.8% showed 

strong activation of MEK-1/2 in the G0/G1 phase and 2.4% in the G2/M phase of the cell 

cycle.  These subpopulations were slightly reduced after 36 h (Figure 22A and B). 

After 18 h incubation with 50 µM FPT-3, a strong increase of the sub-G0/G1 

fraction (debris) was observed suggesting rapid induction of apoptotic DNA fragmentation 

(increase of debris from 13.5 to 35.8%) (Figure 21C).  Furthermore, the G0/G1 fraction  
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Figure 20. Inhibition of myeloid leukemia cell and colony growth upon treatment 
with GGTI-286, GGTI-298, GGTI-2147 and GGTI-2133.  Purified human CD34+ cells 
and myeloid leukemia cell lines were incubated in liquid suspension cultures with 
increasing concentrations of the CAAL-based inhibitors of geranylgeranyltransferase-1 
GGTI-286, GGTI-298, GGTI-2147 and GGTI-2133, of the CAAX-based 
farnesyltransferase inhibitor L-744,832 or with DMSO as solvent control.  After four days, 
viability of the cells was determined by trypan blue dye assays.  Aliquots of the samples 
were incubated in methylcellulose for an additional 7-14 days in the presence of freshly 
added inhibitors.  Representative experiments are shown.  Results are expressed in 
percentage inhibition and are normalized to solvent (DMSO) controls.  Error bars indicate 
the standard margin of error. 
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Figure 21.  Effects of U0126, FPT-3 or FTI-277 treatment for 18 hours on the cell 
cycle dependent activation of MEK-1/2.  NB-4 cells were incubated in the absence or the 
presence of 50 µM FPT-3, 50 µM U0126 or 20 µM FTI-277.  After 18 hours, double 
staining with propidium iodide and an antibody specific for activated PP-MEK-1/2 was 
performed as described in Methods.  Representative cell cycle profiles (left) and FACS 
profiles of the double staining (right) are shown.  A, untreated NB-4 cells; B, solvent-
treated (DMSO) NB-4 cells; C, NB-4 cells treated with 50 µM FPT-3; D, NB-4 cells 
treated with 20 µM FTI-277; E, NB-4 cells treated with 50 µM of U0126. 
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Figure 22.  Effects of U0126 or FTI-277 treatment for 36 hours on the cell cycle 
dependent activation of MEK-1/2.  NB-4 cells were incubated in the absence or the 
presence of 50 µM U0126 or 20 µM FTI-277.  After 36 hours, double staining with 
propidium iodide and an antibody specific for activated PP-MEK-1/2 was performed as 
described in Methods.  Representative cell cycle profiles (left) and FACS profiles of the 
double staining (right) are shown.  A, untreated NB-4 cells; B, solvent-treated (DMSO) 
NB-4 cells; C, NB-4 cells treated with 20 µM FTI-277; D, NB-4 cells treated with 50 µM 
of U0126.  FPT-3 treated NB-4 cells are not shown because of nearly complete apoptosis 
at this time point. 
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increased to 46.8%.  PP-MEK-1/2 positive cells were reduced to 1.3% in G2/M, but 

remained unchanged in G0/G1 (1.1 vs. 0.8 and 1.3 % for DMSO and negative controls). 

Treatment of NB-4 cells with FPT-3 for 36 h resulted in nearly complete apoptotic DNA 

fragmentation (not shown). 

Incubation with FTI-277 for 18 h lead to an increase of cellular debris to 16.1%, an 

increase of PP-MEK-1/2-positive cells in G2/M to 5.5% but a decrease in G0/G1 to 0.3% 

(Figure 21D). FTI-277 treatment for 36 h induced a G2/M block with 66.6% of cells in 

G2/M as well as an increase of PP-MEK-1/2-positive cells in G2/M to 13.5%, but a 

decrease in G0/G1 to 0.5% (Figure 22C).  Similarly, incubation of NB4 with FTI L-744,832 

for 18 h lead to an increase of PP-MEK-1/2-positive cells in G2/M from 5.2% to 7.5% but 

a slight decrease in G0/G1 from 2.6% to 2.1% (Table 6).  Treatment with FTI L-744,832 

for 36 h caused a G2/M block with 32.5% of cells in G2/M and a further increase of PP-

MEK-1/2-positive cells in G2/M to 8.7%, but a decrease in G0/G1 to 0.3% (Table 6). 

To elucidate the effects of the most potent GGTIs on cell cycle progression of 

leukemia cells, NB-4 cells were incubated 18 h and 36 h with 20 µM of these inhibitors 

(Table 6).  After incubation with GGTI-286, GGTI-298, GGTI-2133 and GGTI-2147, 

double staining with propidium iodide and anti-PP-MEK-1/2 antibodies was performed 

and cells were analyzed by flow cytometry.  Incubation with DMSO elicited no substantial 

changes in NB-4 cell cycle progression as compared to non-treated cells (Table 6).  After 

18 h, 2.6% of DMSO-treated control cells showed strong activation of MEK-1/2 in the 

G0/G1 phase and 5.2% in the G2/M phase of the cell cycle.  These subpopulations were 

reduced after 36 h reflecting an accumulation of resting cells (Table 6). 

After 18 h incubation with 20 µM GGTI-286, a slight increase of the sub-G0/G1 

fraction (debris) was observed suggesting rapid induction of apoptotic DNA fragmentation 

(increase of debris from 6.6 to 10.8%) (Table 6).  Furthermore, the G0/G1 fraction and 

PP-MEK-1/2 positive cells in G0/G1 increased from 43.2% to 57.2% and from 2.6% to 

7.5%, respectively.  In contrast, the G2/M fraction and PP-MEK-1/2 positive cells in G2/M 

were reduced to 10.3% and 2.0%.  Similar results were obtained for GGTI-298, GGTI-

2133 and GGTI-2147 (Table 6) suggesting that treatment with GGTIs led to a G0/G1 cell 

cycle block with accumulation of PP-MEK-1/2 positive cells in G0/G1. 

Treatment with GGTI-286 for 36 h induced a further increase of cellular debris to 

19.8%, an increase in the G0/G1 fraction to 61.7%, and a substantial decrease in PP-MEK-

1/2 positive-cells in G0/G1 and G2/M as compared to solvent control (0.5% and 0.1% vs. 

1.5% and 1.4%, respectively) (Table 6).  A similar increase of cellular debris and decrease 
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Table 6.  Effect of GGTI treatment on cell cycle progression and induction of 

apoptosis in NB4 cells. 
         Cells (%) 

Inhibitor    Cell cycle phase    Apoptosis (45h) 

   G0/G1  S G2/M  Sub-G0     TUNEL/AnnexinV/7AAD 
 

Control 18h  46.0±1.2           37.7±0.8 16.3±1.1  8.0±0.4      2.9±0.8  
PP-MEK-1/2+  3.3        4.9 
 36h  51.8±0.8           39.5±0.9 8.7±0.4  9.1±0.3   13.4±1.6 
PP-MEK-1/2+  1.6       1.4 
 
 
DMSO 18h  43.2±1.5           38.7±1.3 18.1±1.9  6.6±1.2         0.6±0.3 
PP-MEK-1/2+  2.6       5.2 
 36h  53.3±0.5           38.9±0.3 7.9±0.3  9.8±0.4   19.1±7.5 
PP-MEK-1/2+  1.5       1.4 
 
 
GGTI-286 18h  57.2±0.6           32.4±0.8 10.3±1.1  10.8±0.4       60.3±9.9 
PP-MEK-1/2+  7.5       2.0 
 36h  61.7±0.8           34.0±0.8 4.3±0.4  19.8±1.5   71.6±17.1 
PP-MEK-1/2+   0.5       0.1 
 
 
GGTI-298 18h  56.1±0.5           33.4±0.8 10.4±1.3  8.3±0.4         62.3±9.3 
PP-MEK-1/2+  4.4       1.7 
 36h  60.4±2.1           34.4±2.3 5.2±0.5  24.9±4.6   79.1±10.4 
PP-MEK-1/2+   0.7       0.3 
 
 
GGTI-2133 18h  44.6±0.7           36.8±0.5 18.6±0.3  12.0±0.4       21.1±6.1 
PP-MEK-1/2+  4.4       3.4 
 36h  49.2±0.8           47.3±0.4 3.5±1.2  17.0±0.3   28.8±3.6 
PP-MEK-1/2+   0.5       0.4 
 
 
GGTI-2147 18h  52.6±0.5           31.5±0.6 15.8±0.2  9.1±0.1       86.8 
PP-MEK-1/2+  5.9       2.8 
 36h  50.6±0.8           47.5±0.3 1.9±0.5  17.1±2.4   65.3±7.7 
PP-MEK-1/2+  0.7       0.2 
 
 
FTI L-744,832 18h  48.7±1.2           31.9±2.7 19.4±1.6  7.3±1.5          32.6 
PP-MEK-1/2+  2.1       7.5 
 36h  32.5±2.4           35.0±3.1 32.5±0.7  15.5±3.7   86.9±6.8 
PP-MEK-1/2+  0.3       8.7 
 

 
 
 
Legend:  NB-4 cells were incubated with or without 20 µM GGTI-286, GGTI-298, GGTI-
2133, GGTI-2147 or FTI-744,832.  After 18 h and 36 h, double staining with propidium 
iodide and an antibody specific for activated MEK-1/2 (PP-MEK-1/2+) was performed and 
cells were analyzed by flow cytometry as described in Methods.  Apoptosis of NB4 cells 
was determined after 45 h incubation using in situ TUNEL and annexin V/7-AAD assays 
as described in Methods.  Mean values ± standard deviation are given (n=3).  Note : 
According to ModFit, cell cycle fractions (G0/G1, S and G2M phase) are shown in percent 
of viable cells.  Sub-G0 fractions are expressed as percent debris of total cell counts. 
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of PP-MEK-1/2 positive cells in G0/G1 and G2/M was observed after 36 h incubation with 

GGTI-298, GGTI-2133 and GGTI-2147 (Table 6).  However, the extent of the GGTI-

induced G0/G1 block varied between the different GGTIs at this time point.  The initial 

increase in PP-MEK-1/2+ cells in G0/G1 after 18h treatment with GGTIs and the 

elimination of activated MEK after 36h exposure to GGTIs suggests that GGTI treatment 

interferes with and subsequently disrupts the Ras-to-MAPK cascade. 

Treatment with U0126 for 18 h induced an increase of cellular debris to 22.4%, an 

increase in the G0/G1 fraction to 46.6%, and a slight decrease in PP-MEK-1/2 positive-cells 

in G0/G1 (0.6% vs. 0.8%) (Figure 21B and D).  After 36 h incubation with U0126 the sub-

G0/G1 debris increased to 26.5% and the PP-MEK-1/2 positive-cells were further reduced 

to 0.1% in G0/G1 and 0.4% in G2/M (Figure 22D). 

 

3.2.4.  Apoptosis induction by Ras signaling inhibitors.  Propidium iodide staining 

demonstrated an increase of the sub-G0/G1 fraction (debris) after treatment of NB-4 cells 

with U0126 and FPT-3 (Figures 21 and 22) suggesting apoptotic DNA fragmentation.  To 

confirm induction of apoptosis by these inhibitors, NB-4 cells were incubated for 18 and 

36 hours with FPT-3, U0126 and FTI-277.  DNA strand breaks were detected by labeling 

with flourescein-dUTP using the TUNEL method.  Externalization of membrane 

phosphatidylserine during early stages of apoptosis was monitored by an Annexin V-PE/7- 

amino-actinomycin (7-AAD) assay.  Annexin V binds to negatively charged phospholipid 

surfaces with a higher specificity for phosphatidylserine than most other phospholipids.  7-

AAD was used for the exclusion of nonviable cells.  Quantification of apoptosis at the 

single cell level was accomplished by flow cytometry.  The presence of DMSO had no 

effect on DNA degradation or exposure of phosphatidylserine (Figure 23B).  FPT-3 

treatment resulted in apoptotic DNA fragmentation (86.5% after 18h) and exposure of 

phosphatidylserine on the outer leaflet of the plasma membrane (87.3% after 36 h 

incubation) (Figure 23C).  Similarly, treatment with U0126 induced DNA cleavage 

(47.4%) and externalization of phosphatidylserine (81.5%) (Figure 23E).  In contrast, FTI-

277 treatment for 18 and 36 h, which caused a G2/M block, did not induce apoptosis at 

these time points (Figure 23D). 

GGTI-induced apoptosis was also quantified by the both TUNEL method and the 

Annexin V-PE/7-AAD double staining method.  The presence of DMSO had no effect on 

DNA degradation or exposure of phosphatidylserine (Table 6). GGTI-286 treatment 
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Figure. 23. Induction of apoptosis by treatment with FPT-3, FTI-277 or U0126.  NB-4 
cells were incubated in the presence or absence of 50 µM FPT3, 50 µM U0126 or 20 µM 
FTI-277.  After 18 hours, cells were harvested and labeling of DNA strand breaks was 
performed applying the TUNEL method as described in Methods (left).  M1, no DNA 
fragmentation, M2, DNA fragmentation.  Exposure of phosphatidylserine on the outer 
leaflet of the plasma membrane was detected using an Annexin V-PE/7-AAD double 
staining method as described in Methods (right).  Apoptotic exposure of 
phosphatidylserine is shown in the upper right square.  Results are given in percentage of 
total cell population.  A, untreated NB-4 cells; B, solvent-treated (DMSO) NB-4 cells; C, 
FPT-3 treated NB-4 cells; D, FTI-277 treated NB-4 cells; E, U0126 treated NB-4 cells. 
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Figure 24. Treatment of myeloid leukemia cells with a combination of FTI L-744,832 
and GGTI-286 leads to synergistic growth inhibition.  Myeloid leukemia cell lines were 
incubated in liquid suspension cultures with increasing concentrations of FTI L-744,832, 
GGTI-286 or with a fixed 1:1 ratio of L-744,832 and GGTI-286.  After four days, viability 
of the cells was determined by trypan blue dye exclusion assays.  Aliquots of the samples 
were incubated in methylcellulose for an additional 7-14 days in the presence of freshly 
added inhibitors.  Colony formation was plotted relative to solvent-treated (DMSO) control 
cells.  A, Colony formation (= fraction affected) of HL60 cells in the presence of 
increasing concentrations of FTI L-744,832, GGTI-286 or a fixed 1:1 ratio of both 
inhibitors;  B, median effect plot of data in A; C, plot of combination index (CI) versus 
cytotoxicity calculated from data in B under the assumption that agents are mutually 
exclusive; D, isobolograms for data in A; E, plot of CI calculated from data obtained for 
HL60, MUTZ-2, K562, OCI-AML5 and M-07e cells under the assumption that agents are 
mutually exclusive or non-exclusive (F).  Each panel of results was accomplished at least 
three times.  
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resulted in apoptotic DNA fragmentation (60.3% after 45 h) and exposure of 

phosphatidylserine on the outer leaflet of the plasma membrane (71.6% after 45 h 

incubation) (Table 6).  Similarly, treatment with GGTI-298, GGTI-2133 and GGTI-2147 

induced DNA cleavage (62.3%, 21.1% and 86.8%, respectively) and externalization of 

phosphatidylserine (79.1%, 28.8% and 65.3%, respectively) (Table 6). 

 

3.2.5.  Effects of FTI/GGTI co-treatment on myeloid leukemia cell growth.  To overcome 

resistance caused by alternative geranylgeranylation of K-Ras and N-Ras in the presence 

of FTI treatment, myeloid cell lines were exposed to a fixed ratio (1 : 1) of FTI L-744,832 

and GGTI-286.  Co-treatment of HL60 and other myeloid cell lines with FTI and GGTI 

resulted in stronger inhibition of colony growth than treatment with FTIs or GGTIs alone 

(Figure 24).  The data were analyzed by the median effect method (Chou and Talalay, 

1984) to determine whether the inhibitory effects were additive, synergistic or antagonistic.  

Median effect plots were generated to determine x-intercepts (IC50) and slopes (m) and to 

calculate the combination indices (CI).  CIs < 1 indicate synergism, CIs = 1 indicate 

additive effects and CIs >1 indicate antagonism.  For the combination of FTI L-744,832 

and GGTI-286, the CI calculated under the assumption that the drugs were mutually 

exclusive was <1 over much of the range examined, with mean CI values of 0.272±0.179 

at the IC50, 0.172±0.179 at the IC70 and 0.083±0.093 at the IC90 (n=4) (Figure 24C).  The 

effect of combining FTI-L-744,832 with GGTI-286 was also examined in other myeloid 

cell lines (K562, MUTZ-2, AML-OCI5, M-07e) (Figure 24E and F).  The CI values 

consistently dropped below 1 over much of the range examined (Figure 24E and F).  These 

results indicate that co-treatment of myeloid cell lines with FTIs and GGTIs has synergistic 

cytotoxic effects. 

Interestingly, co-treatment with 10 µM GGTI-286 and 10 µM FTI-L-744,832 

reduced the FTI-induced G2/M-block (at 18 h and 36 h, respectively) and increased cellular 

debris (sub-G0/G1 fraction) (Figure 26E).  Co-treatment of NB-4 cells with GGTI-286 also 

reduced the FTI-induced accumulation of PP-MEK-1/2+ cells in G2/M, suggesting more 

efficient inhibition of Ras prenylation (Figures 25 and 26, panels D and E). 

In agreement with these results, co-treatment of NB-4 cells with 10 µM FTI L-

744,832 and 10 µM GGTI-286 was found to be more effective than treatment with either 

20 µM FTI L-744,832 or 20 µM GGTI-286 alone in inducing translocation of 

phosphatidylserine (99.5% versus 93.6% and 85.6%) and DNA fragmentation (72.0% 

versus 32.6% and 46.2%) (Figure 27). 
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Figure 25.  Effects of 18 h co-treatment with FTI L-744,832 and GGTI-286 on cell 
cycle progression and the cell cycle-dependent activation of MEK-1/2 in myeloid 
leukemia cells.  NB-4 cells were incubated in the absence or the presence of 20 µM 
GGTI-286, FTI L-744,832 or a combination of 10 µM GGTI-286 and 10 µM L-744,832.  
After 18 h, double staining with propidium iodide and an antibody specific for activated 
PP-MEK-1/2 was performed as described in Methods.  Representative cell cycle profiles 
(right) and FACS profiles of the double staining (left) are shown.  A, untreated NB-4 cells; 
B, solvent-treated (DMSO) NB-4 cells; C, 20 µM GGTI-286; D, 20 µM FTI L-744,832; E, 
combination of 10 µM GGTI-286 and 10 µM L-744,832. 
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Figure. 26.  Effects of 36 h co-treatment with FTI L-744,832 and GGTI-286 on cell 
cycle progression and the cell cycle-dependent activation of MEK-1/2 in myeloid 
leukemia cells.  NB-4 cells were incubated in the absence or the presence of 20 µM 
GGTI-286, FTI L-744,832 or a combination of 10 µM GGTI-286 and 10 µM L-744,832.  
After 36 h, double staining with propidium iodide and an antibody specific for activated 
PP-MEK-1/2 was performed as described in Methods.  Representative cell cycle profiles 
(right) and FACS profiles of the double staining (left) are shown.  A, untreated NB-4 cells; 
B, solvent-treated (DMSO); C, 20 µM GGTI-286; D, 20 µM FTI L-744,832; E, 10 µM 
GGTI-286 and 10 µM L-744,832. 
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Figure 27. Co-treatment of myeloid leukemia cells with GGTI-286 and FTI L-744,832 
leads to induction of apoptosis.  NB-4 cells were incubated in the presence or absence of 
20 µM GGTI-286, 20 µM FTI L-744,832, or a combination of 10 µM GGTI-286 and 10 
µM L-744,832.  After 42-45 h, cells were harvested and labeling of DNA strand breaks 
was performed applying the TUNEL method as described in Methods (left).  M1, no DNA 
fragmentation, M2, DNA fragmentation.  Exposure of phosphatidylserine on the outer 
leaflet of the plasma membrane was detected using an Annexin V-PE/7-AAD double 
staining method as described in Methods (right).  Apoptotic exposure of 
phosphatidylserine is shown in the upper left (early apoptosis) and upper right square (late 
apoptosis).  Results are given in percentage of total cell population.  (A) untreated NB-4 
cells; (B) solvent-treated (DMSO); (C) GGTI-286 alone; (D) FTI L-744,832 alone; (E) 
GGTI-286 and FTI L-744,832 co-incubation 
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Figure 28. SDS-PAGE analyses of H-, K- and N-Ras prenylation in myeloid leukemia 
cell lines treated with FTI, GGTI or FTI/GGTI combination.  K-562, THP-1 and NB-4 
cells were incubated 24 h alone (lane 1), with DMSO solvent control (lane 2), 20µM FTI 
L-744,832 (lane 3), 20 µM GGTI-286 (lane 4) or a combination of 10 µM FTI L-744,832 
and 10 µM GGTI-286 (lane 5).  Cell lysates were probed for H-Ras (A), K-Ras2B (B) and 
N-Ras (C).  Unprocessed (U) and processed (P) Ras proteins are indicated. 
 
 
3.2.6.  Effects of FTI L-744,832 and GGTI-286 on Ras prenylation.  Treatment with 20 

µM FTI L-744,832 resulted in an electrophoretic mobility shift corresponding to 

unprocessed H-Ras indicating FTI-induced inhibition of posttranslational prenylation 

(Figure 28A).  Similar results were obtained with a combination of 10 µM FTI L-744,832 

and 10 µM of GGTI-286, whereas treatment with GGTI-286 alone had no effect on H-Ras 

prenylation (Figure 28A).  In some cases an electrophoretic mobility shift of K-Ras2B was 

observed in FTI, GGTI or FTI/GGTI-treated cells (not shown).  However, in contrast to the 

mobility shifts of H-Ras and N-Ras, these changes were not consistent in all experiments.  

K-Ras2A was not detected using an antibody specific for this splice variant (not shown).  

Interestingly, a strong accumulation of unprocessed N-Ras was observed in cells treated 

with FTI L-744,832.  Furthermore, FTI/GGTI co-treatment lead to a substantial increase in 

unprocessed N-Ras, indicating potent inhibition of N-Ras geranylgeranylation in the 

presence of FTI by GGTI-co-treatment (Figure 28C).  

  

3.2.7.  Effects of FTI L-744,832 and GGTI-286 on prenylation of non-Ras proteins.  As 

FTIs induce multiple effects on cancer cells, it has been suggested that multiple 
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farnesylated proteins may be important in mediating the FTI-induced effects (Tamanoi et 

al 2001). Among these, the G-proteins Rheb, Rap2, RhoB, RhoD, Rho6-8, the 

kinetochore-binding proteins CENP-E and CENP-F, the tyrosine phosphatases 

PTPCAAX1 and PTPCAAX2 and the nuclear Lamins A and B have been characterized.  

In order to evaluate the processing inhibition of other FTase substrates in myeloid 

leukemia cells by FTI treatment, several farnesylated proteins known to undergo mobility 

shifts upon FTase inhibition (Adjei et al 2000) were analyzed.  In most experiments, a 

mobility shift of the H-Ras-related G-proteins Rap2A and Rheb was observed (Figure 29A 

and 29B).  Furthermore, FTI-treatment resulted in a shift of intranuclear intermediate 

filament protein Lamin A in K562 cells (Figure 29C).  In the case of Lamin A, this 

mobility shift reflects inhibition of a farnesylation-dependent proteolytic processing that 

removes a 13-amino acid peptide from the C-terminus of Prelamin A (Sinensky et al  

 

 
 
 
Figure 29.  SDS-PAGE analyses of Rap2A, Rheb, Lamin-A/C and Lamin B in 
myeloid leukemia cell lines treated with FTI, GGTI or a FTI/GGTI combination.  K-
562, THP-1 and NB-4 cells were incubated 24 h alone (lane 1), with DMSO solvent 
control (lane 2), 20µM FTI L-744,832 (lane 3), 20 µM GGTI-286 (lane 4) or a 
combination of 10 µM FTI L-744,832 and 10 µM GGTI-286 (lane 5).  Cell Lysates were 
probed for Rap2A (A), Rheb (B), Lamin-A/C (C), or Lamin-B (D).  Unprocessed (U) and 
processed (P)  proteins are indicated. 

 74



1994).  While farnesylation of Lamin B and RhoB has previously been reported to be 

sensitive to FTI treatment, no mobility shifts of these two proteins were observed in 

myeloid cells treated with FTI L-744,832 alone or in combination with GGTIs (Figure 

29D, not shown).  However, FTI treatment resulted in an accumulation of Lamin B which 

might be due to cell-cycle-dependent or FTI-induced expression.   CENP-E and CENP-F, 

which function as centromere-associated kinesin motors and play critical roles in mitosis, 

could not be detected in myeloid cell lysates by Western blotting with commercially 

available antibodies (not shown).  The predominant effect of FTI L-744,832 on N-Ras 

suggests that this FTI exhibits a greater specificity against farnesylation of N-Ras proteins. 

 

3.2.8.  Effects of FTI L-744,832 and GGTI-286 on Ras activation.  To identify the 

presence of GTP-Ras, cell lysates were incubated with the minimal Ras-binding domain 

(RBD) of C-Raf-1.  Western blotting with antibodies against H-, K- and N-Ras was 

performed to detect the binding of GTP-Ras with GST-RBD.  Cellular lysates of H-Ras (L-

61)-transformed NIH-3T3 fibroblasts were used as a positive control for activated H-Ras.  

Mutated L61- and V-12-H-Ras bound to GST-RBD (not shown).  As shown in Figure 28, 

high levels of activated N-Ras were found in NB-4 and THP-1 cell lysates.  FTI-and 

FTI/GGTI-co-treatment resulted in binding of unprocessed N-Ras to GST-RBD, 

suggesting that unprocessed N-Ras is capable of forming inactive N-Ras-Raf complexes 

when GTP-loaded. This finding supports the hypothesis that unprocessed N-Ras may elicit 

a dominant negative effect on Ras-signaling. 

 
3.2.9.  Effect of FTI/GGTI co-treatment on primary AML cells.  To assess the potential 

clinical relevance of our findings, the effects of FTI and GGTI treatment on primary AML 

cells were analyzed.  Treatment with FTI L-744,832 or GGTIs alone induced apoptosis in 

a fraction of cells (Figure 31).  In agreement with results using myeloid cell lines, GGTI-

2147 was found to be more effective than GGTI-286 or GGTI-298 in inducing apoptosis 

and inhibiting AML cell growth (Table 7).  As shown in Table 7 and Figure 31 (panel H vs 

panels B and G), FTI/GGTI co-treatment was found to be even more effective in inhibiting 

cell proliferation and inducing apoptosis than treatment with FTI or GGTI alone.  

Propidium iodide and anti-PP-MEK-1/2 double staining demonstrated lower proliferating 

rates of primary AML blasts as compared to myeloid cell lines (Tables 6 and 7).  Double 

staining of short term cultures of primary AML blasts in RPMI containing 20% FCS 

revealed a large portion of cells in G0/G1 and very low amounts of PP-MEK+ cells in the 

G0/G1 and G2/M phases.  Proliferation of primary AML cells was increased by culturing in 
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Figure 30.  FTI/GGTI co-treatment of myeloid leukemia cells causes accumulation of 
unprocessed, activated N-Ras as demonstrated by affinity precipitation with GST-
RBD.  NB-4 and THP-1 cells were incubated 48 h alone (lane 1), with DMSO solvent 
control (lane 2), 20µM FTI L-744,832 (lane 3), 20 µM GGTI-286 (lane 4) or a 
combination of 10 µM FTI L-744,832 and 10 µM GGTI-286 (lane 5).  Cellular lysates 
were subjected to affinity precipitation (AP) with GST-RBD as described in “Methods”.  
N-Ras proteins were detected by immunoblotting with N-Ras specific antibodies.  
Unprocessed (U) and processed (P)  N-Ras proteins are indicated. 
 
 
 

StemSpanTM containing cytokines (SCF, IL-3, IL-6 and Flt-3 ligand) (Figure 32).  GGTI-

treatment primarily resulted in G0/G1 blocks, whereas FTI-treatment caused either G0/G1 or 

G2/M arrests in primary AML cells, suggesting that FTI-induced G2/M blocks were 

dependent on AML cell type and/or proliferation.  In order to demonstrate synergism of 

FTI/GGTI co-treatment in primary AML cells, AML blasts from 5 AML patients were 

titrated with increasing concentrations of FTI L-744,832, the most effective GGTase I 

inhibitor (GGTI-2147) and a fixed ratio (1 : 1) of both inhibitors.  After 72 h inhibitor 

treatment, cell viability was measured using the trypan blue exclusion assay and the MTS 

cell proliferation assay.  The data were analyzed by the median effect method (Chou and 

Talalay, 1984) and median effect plots were generated to determine x-intercepts (IC50) and 

slopes (m) and to calculate the combination indices (CIs).  As shown in Figure 33, the CI 

values for the FTI/GGTI combination were consistently below 1 over much of the range 

examined, indicating synergism in all AML cases investigated. 
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Figure 31. FTI/GGTI co-treatment leads to induction of apoptosis in primary AML 
cells.  Primary AML cells from patient 5 were incubated in the presence or absence of 20 
µM FTI L-744,832, 20 µM GGTIs, or a combination of 10 µM L-744,832 and 10 µM 
GGTIs.  After 42-45 h, cells were harvested and DNA strand breaks were labeled by the 
TUNEL method as described in Methods.  M1, no DNA fragmentation, M2, DNA 
fragmentation.  Results are given in percentage of total cell population.  A, solvent-treated 
(DMSO); B, 20 µM FTI L-744,832;  C, 20 µM GGTI-286; D, 10 µM GGTI-286 and 10 
µM L-744,832; E, 20 µM GGTI-298;  F, 10 µM GGTI-298 and L-744,832;  G, 20 µM 
GGTI-2147; H, 10 µM GGTI-2147 and 10 µM FTI L-744,832. 
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Table 7.  Effect of FTI and GGTI treatment on cell cycle progression and induction of apoptosis of primary AML cells. 
Patient                             Cells (%)/Increase in Apoptosis (%) 
sex/age/   
leukemia/ Cell cycle phase/ DMSO          FTI    GGTI-              L-744,832+  GGTI-              L-744,832+  GGTI-              L-744,832+  
karyotype TUNEL (+/- cytokines) L-744,832     286             GGTI-286        298              GGTI-298       2147                  GGTI-2147 

 
Patient 1   G0/G1   71.5±1.9         71.9±3.5     79.5±3.5 83.8±2.1  80.6±2.1  83.4±5.4  82.4±1.1  82.6±2.0 
m/59   S   28.5±1.9         25.0±1.9     19.2±2.3 16.2±2.1  18.7±2.3  16.2±5.1  17.6±1.1  17.4±2.0 
sAML/MDS  G2/M     0.1±0.1           3.1±2.2       1.1±1.5     0±0    0.7±0.3    0.4±0.4        0±0       0±0 
46 XY    Sub-G0     6.6±0.4         14.3±0.4     10.1±1.3 15.3±0.9      7.7±0.4  11.7±1.1  15.5±2.7  14.8±0.8 
NRAS/61   

TUNEL + cytokines        0           7.5              5.9      11.3                        0.6       9.5     12.3     24.8 
TUNEL - cytokines        0           4.8               1.4        4.0        4.8       5.3     20.2     34.7 

 

Patient 2   G0/G1   85.5±0.3         90.2±1.6     86.3±0.5 91.5±0.5  84.1±1.6  92.9±0.9  86.3±0.9  92.9±0.5 
f/71   S   11.5±0.7           8.7±1.9     10.5±0.5   7.2±0.8  12.2±1.0    6.1±1.3    9.9±0.8    5.8±0.2 
AML M2, 2. relapse  G2/M     3.0±0.7           1.0±0.5       3.1±0.1   1.3±0.4     3.8±0.7    0.9±0.4     3.9±0.2    1.3±0.6 

Sub-G0      5.7±0.5           8.3±0.8        7.4±0.4 14.8±0.3    5.9±0.9  13.2±0.5      7.5±0.2  16.2±0.2 
 
TUNEL + cytokines        0           5.9              1.5       2.7       -0.9       9.8         0.5     11.3 
TUNEL - cytokines        0           1.4               -1.0       7.2       -1.2       5.7       7.0     16.3 

 
Patient 3   G0/G1   72.1±0.5          77.8±0.9      n.d.  n.d.  n.d.  n.d.  78.2±1.0  84.4±2.8 
m/44   S   26.8±0.6          14.5±0.6      n.d.  n.d.  n.d.  n.d.  14.5±0.6  10.4±1.6 
AML M2   G2M     1.2±1.0            7.7±0.3      n.d.  n.d.  n.d.  n.d.    7.3±0.6     5.2±1.4 

Sub-G0   18.2±1.5          34.8±0.2      n.d.  n.d.  n.d.  n.d.  24.0±2.7  57.9±3.2 
 
TUNEL + cytokines       0           30.6          9.8  41.7     9.3  40.3      23.0      66.1 
TUNEL - cytokines       0           26.6          5.1  27.6     7.5  30.4      40.5      48.2 

 
Patient 4   G0/G1   42.2±2.1          56.6±0.8      n.d.  n.d.  n.d.  n.d.  45.9±0.4  54.3±3.9 
m/57   S   40.0±1.4          25.3±1.0      n.d.  n.d.  n.d.  n.d.  30.9±0.7  29.1±1.8 
sAML/MDS  G2M   17.8±0.7          18.1±0.9      n.d.  n.d.  n.d.  n.d.  23.2±0.8  16.5±5.5 
46 XY 20q-  Sub-G0   12.6±0.5          20.2±2.4      n.d.  n.d.  n.d.  n.d.  16.2±0.2  21.1±0.6 
NRAS/12   

TUNEL + cytokines      0           0.9          -3.4  6.0                 -3.1  -2.6       0.5     10.7 
TUNEL - cytokines      0           14.5          1.1  4.7  2.4   5.4       9.0     26.5 

 
Patient 5   G0/G1   71.3±0.2          59.1±4.2      73.2±0.3 67.1±0.8  72.5±0.9  79.0±1.7  78.5±1.0  82.4±3.1 
m/66   S   24.4±1.0          27.7±3.6      21.4±0.8 20.0±1.2  24.2±0.3  19.5±0.3  17.3±0.3  10.4±1.6 
sAML/MDS  G2M     4.2±1.2          13.2±7.2        5.5±0.6 12.8±1.3    3.4±0.8    1.5±1.7    4.2±1.2    7.2±3.2 
NRAS/61  Sub-G0     9.3±0.4           21.1±0.6        6.0±0.2 13.3±0.1     7.4±0.2  22.3±0.4  14.5±0.7  32.5±2.5 

 
TUNEL + cytokines      0           8.8              -3.8       8.0       1.7     10.2      10.4     53.6 

7TUNEL - cytokines      0           8.4             0.6     12.4       2.3     18.2      46.3     67.
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Legend to Table 7: Primary AML cells were incubated with 20 µM FTI L-744,832, 20 
µM GGTIs or a combination of 10 µM L-744,832 and 10 µM GGTIs for 48 h.  AML 
blasts from patients 1, 4 and 5 were found to harbor N-Ras mutations (CAA⇒CGA 
resulting in Q61R, GGT⇒GAT resulting in G12D, and CAA⇒CAC resulting in Q61H, 
respectively).  Cell cycle progression and apoptosis were determined as described in 
Methods.  Mean values ± standard deviation are given (n=3).  According to ModFit, cell 
cycle fractions (G0/G1, S and G2M phase) are shown in percent of viable cells.  Sub-G0 
fractions are expressed as percent debris of total cell counts.  For in situ TUNEL apoptosis 
assays, cells were cultured in the presence (+ cytokines) and absence (- cytokines) of 
cytokines (SCF, IL-3, IL-6, Flt-3 ligand).  Increase in apoptosis is given as percent solvent 
control (DMSO). 
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Figure 32.  Effects of 48 h co-treatment with GGTI-2147 and FTI L-744,832 on cell cycle progression and the cell cycle-dependent 
activation of MEK-1/2 in primary AML cells.  AML blasts from patient 5 were incubated in the absence or the presence of 20 µM GGTI-
2147, FTI L-744,832 or a combination of 10 µM GGTI-2147 and 10 µM L-744,832.  After 18 h, double staining with propidium iodide and an 
antibody specific for activated PP-MEK-1/2 was performed as described in Methods.  Representative cell cycle profiles (right) and FACS 
profiles of the double staining (left) are shown.  (A-D), AML cells were cultured in RPMI containing 20 % FCS; (E-H), AML cells were 
cultured in IMDM (StemspanTM) containing SCF, IL-3, Il-6 and Flt3-ligand.  A and E, solvent-treated (DMSO) AML cells; B and F, 20 µM 
GGTI-2147; C and G, 20 µM FTI L-744,832; D and H, combination of 10 µM GGTI-2147 and 10 µM L-744,832. 
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Figure 33.  Treatment of primary AML cells with a combination of GGTI-2147 and 
FTI L-744,832 leads to synergistic growth inhibition.  AML cells were incubated in 
liquid suspension cultures (StemSpanTM) with increasing concentrations of GGTI-2147, 
FTI L-744,832 or with a fixed 1:1 ratio of GGTI-2147 and L-744,832.  After 72 h, viability 
of the cells was determined by trypan blue dye exclusion and MTS proliferation assays.  A, 
Viability (= fraction affected) of AML cells treated with GGTI-2147, FTI L-744,832 or a 
fixed 1:1 ratio of both inhibitors;  B, median effect plot of data in A; C, plot of 
combination index (CI) versus cytotoxicity calculated from data in B under the assumption 
that agents are mutually exclusive; D, isobolograms for data in A; E, plot of CI calculated 
from data obtained for leukemic blasts from different AML patients (1, 2, 3, 5, 6) under the 
assumption that agents are mutually exclusive or non-exclusive (F).  Note: CI values for 
patient 4 could not be calculated because FTI L-744,832 had no effect on blast viability.  
However, FTI/GGTI co-treatment was more effective than GGTI alone. 
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4. Discussion 
4.1.  Role of Ras in myeloid leukemias.  There is accumulating evidence supporting a role 

of the deregulation of Ras function in the molecular pathogenesis of myeloid leukemias 

(Sawyers & Denny 1994; Byrne & Marshall 1998; Beaupre & Kurzrock 1999; Reuter et al 

2000).  The importance of the Ras-to-MAPK pathway is underscored by the positioning of 

several oncogene and tumor suppressor gene products on this pathway (e.g. activated 

receptor tyrosine kinases such as CSF-1, fusion tyrosine kinases such as BCR-Abl, and the 

tumor suppressor NF-1, a Ras-GAP).  Furthermore, it has recently been demonstrated that 

mutant N-Ras induces myeloproliferative disorders resembling human chronic 

myelogenous leukemia (CML), acute myeloid leukemias and apoptotic syndromes similar 

to human myelodysplastic syndromes (MDS) in bone marrow repopulated mice 

(MacKencie et al 1999).  Additionally, expression of a dominant negative form of Ras was 

shown to inhibit growth of Bcr-Abl-transformed K562 chronic myeloid leukemia cells by 

90% (Sonoyama et al 2002). 

Aberrant signaling through the Ras-to-MAP kinase cascade can lead to changes in 

several cellular processes, including proliferation, cell cycle progression, differentiation, 

apoptosis and migration.  These are accomplished by activation of and signaling through 

different Ras effectors.  Ras signaling through Raf proteins has been demonstrated to be 

involved in proliferation and differentiation functions in many cell systems (Marshall 

1995).  Activated PI-3K recruits the serine/threonine kinase Akt to the membrane where 

Akt is activated and subsequently inactivates several targets along pro-apoptotic pathways 

(Carpenter & Cantley 1996; Gire et al 2000).  Additionally, changes in cytoskeletal 

organization by RalGDS, another Ras effector, affect adhesion and migration properties of 

cells (Ohta et al 1999).  It was recently reported that activation of the RalGDS pathway 

increases tumor invasiveness and metastasis (Ward et al 2001). 

Expression of matrix metalloproteinases (MMPs) has also been shown to be 

upregulated by Ras (Yanagihara et al 1995, Himelstein et al 1997; Hernandez-Alcoceba et 

al 2000). MMPs are a family of zinc-dependent endopeptidases which have been 

implicated in extracellular matrix turnover and bone remodeling events such as 

angiogenesis, bone resorption and tumor invasiveness (Woessner 1991; Kleiner & Stetler-

Stevenson 1993; Matrisian 1992; Barille et al 1997).  Activity of MMPs is controlled at the 

level of gene expression and by interaction with specific tissue inhibitors of MMPs, known 

as TIMPs.  Both active and inactive MMPs interact with their specific TIMPs, so the 

balance of MMPs to TIMPs seems to be important for the control of MMP activation.  
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Recently, inhibition of geranylgeranylation has been reported to suppress secretion of 

MMP-9 and cell migration in the acute myeloid monocytic leukemia cell line THP-1 

(Wong et al 2001).  The Ras-to-(MAPK) pathway also upregulates transcription of the 

adhesion molecule CD44, which has been demonstrated to contribute to cell migration 

(Hoffman et al 1993). Additionally, other members of the Ras-like family of G-proteins 

mediate cellular adhesion and migration (eg. Rho, Rac and Rap). 

 

4.2.  Activation of Ras signaling in myeloid leukemias.  It has previously been reported 

that approximately 50% (37 out of 73) of AML cases showed a constitutive activation of 

ERKs (Towatari et al 1997; Iida et al 1999; Kim et al 1999).  Consistently, the data 

summarized in Table 2 demonstrates an activation of the ERK cascade in 9/14 AML and 

2/5 CML cell lines.  Furthermore, 4 of 14 AML cell lines (28.6%) and AML blasts from 4 

of 6 patients harbored activating mutations of N-Ras and K-Ras (Figure 11).  Interestingly, 

in MV4-11 two allelic K-Ras mutations were detected (codons 12 and 18).  Previous 

studies have shown that mutations of "non-hot spot" codons 15, 16, 18 and 31 in K-Ras 

frequently occur in addition to the classical codon 12, 13 and 61 mutations (Lin et al 1998; 

Lin et al 2000).  The identification of K-Ras and "non-hot spot" mutations demonstrates 

that the frequency of Ras mutations in myeloid leukemia may be underestimated in the 

published literature as most studies did not analyze all three Ras genes and "non-hot spot" 

codons such as 15, 16, 18, 31. 

The observation that ERK-1/2 activation in myeloid leukemia cell lines does not 

always correlate with the presence of activating Ras mutations or BCR-Abl is also in 

agreement with recent reports (Towatari et al 1997; Iida et al 1999; Kim et al 1999).  It has 

been suggested that the constitutive activation of ERK-1/2 in AML cells results from ERK-

1/2 hyperexpression and downregulation of PAC1, which is a member of the MAPK 

phosphatase family (Kim et al 1999). 

The immunocytochemical staining shown above (Figure 16) reveals that 

approximately 5% of all cells showed strong ERK-1/2 and MEK-1/2 activation.  Two 

patterns of staining were observed: cytoplasmatic and nuclear staining.  These observations 

are in agreement with reports that ERKs and MEKs are phosphorylated and activated after 

growth factor stimulation in the cytoplasm and then translocated into the nucleus (Fukuda 

et al 1997; Brunet et al 1999; Tolwinski et al 1999).  Nuclear translocation of ERK-1/2 is a 

key signaling event for activation of nuclear processes such as transcription (Fukuda et al 

1997; Brunet et al 1999).  In contrast to stable nuclear presence of PP-ERK for several 
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hours, a nuclear export signal (NES) between residues 32 and 42 of MEK-1/2 leads to 

rapid removal of MEKs from the nucleus (Fukuda et al 1997; Tolwinski et al 1999). 

 

4.3.  Ras and the cell cycle.  Cell cycle-dependent activation of the ERK cascade in 

myeloid leukemia cell lines is demonstrated in Figure 17. While most cells were strongly 

positive for MEK-1, two subpopulations of cells were strongly positive for PP-MEK-1/2.  

These two subpopulations correspond to the G0/G1 and the G2/M phases of the cell cycle.   

Several studies report that ERK activation is required in the G1 phase and the M phase of 

the cell cycle of fibroblasts (Dobrowolski et al 1994; Liu et al 1995; Winston et al 1996; 

Shapiro et al 1998; Chiri et al 1998; Zecevic et al 1998; Brunet et al 1999).  ERK-1/2 

expression is increased in mid-G1 phase and ERK phosphorylation and activation occurs 

during G1 phase (Liu et al 1995; Winston et al 1996).  After phosphorylation and 

activation in the cytoplasm, PP-ERK translocates to the nucleus during late/mid-G1 phase 

(Liu et al 1995; Winston et al 1996).  Nuclear ERK-regulated events required for 

progression into S phase include expression of immediate early genes such as Fos and Egr-

1, and transcriptional upregulation of cyclin D1.  Phosphorylation of Rb-1 by the cyclin 

D1/CDK4 complex inactivates the Rb-1 induced block, thus allowing cell cycle 

progression through G1 to S phase.  The observation of cyclin-D1 over-expression in 

myeloma implicates Ras influence in control of the malignant cell cycle (Ronchetti et al 

1999; Arber et al 1996). 

ERKs and MEKs are also activated early in prophase of mitosis before nuclear 

envelope breakdown (Sun et al 1995; Chiri et al 1998; Zecevic et al 1998; Shapiro et al 

1999).  In prophase, activated ERKs associate at kinetochores and within the chromosomal 

periphery of condensed chromosomes (Sun et al 1995; Shapiro et al 1999).  Both activated 

ERKs and MEKs localize to spindle poles between prophase and anaphase, and to the 

midbody during cytokinesis (Sun et al 1995).  The kinetochore motor protein CENP-E and 

topoisomerase IIa are potential mitotic substrates and suggest possible targets for the ERK 

pathway in the modulation of chromatin reorganization events during mitosis and in other 

phases of the cell cycle (Sun et al 1995; Shapiro et al 1999). 

 

4.4.  Effects of Ras-signaling inhibitors in myeloid leukemia.  Although leukemogenesis 

is a multi-step process, the positioning of several oncogenes and tumor suppressor genes 

on the Ras-to-MAPK pathway strongly suggests that inhibition of oncogenic Ras function 

and signaling is a very promising pharmacological strategy.  Therefore, a panel of 10 
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inhibitors of Ras-to-MAPK signaling was evaluated for growth inhibition of myeloid 

leukemia cell lines.  This panel included inhibitors of the posttranslational modification of 

Ras and specific inhibitors of MEK (reviewed in Gibbs & Oliff 1997; Omer & Kohl 1997; 

Reuter et al 2000).  Several FTase inhibitors were not very effective in the inhibition of 

leukemia cell growth (e.g. B581, FPT-2, Cys-4-Abs-Met). 

Treatment with the CAAX-based FTI-277 or L-744,832 resulted in significant 

reduction of cell viability and colony formation in all myeloid leukemia cell lines tested 

(Table 3; Figures 19 and 20).  Unfortunately, these inhibitors also displayed a strong 

toxicity towards purified human CD34+ cells, suggesting that myelotoxicity may be a side 

effect of treatment with some FTase inhibitors.  While similar toxicities have not been 

reported in recent animal studies with these inhibitors (Sun et al 1998; Lantry et al 2000), 

mild myelosuppression, neutropenia and anemia have been observed in phase I clinical 

trials of another FTase inhibitor, R115777 (Miquel et al 1997; Zujewski et al 2000).  

Treatment of myeloid cell lines with FTI-277 or L-744,832 resulted in a G2/M block and a 

subsequent increase in the number of PP-MEK-1/2 positive cells (Figure 22; Table 6).  

Similarly, FTI-277 treatment of lung adenocarcinoma A-549 cells has been reported to 

cause enrichment in the G2/M phase of the cell cycle (Emanuel et al 2000).  In primary 

AML cells, FTI treatment induced G0/G1 or G2/M blocks.  These observations are in 

agreement with previous results which demonstrated G0/G1 or G2/M blocks after treatment 

with CAAX-based FTIs depending on cell type (Miquel et al 1997; Vogt et al 1997; Ashar 

et al 2000; Ashar et al 2001; Morgan et al 2001; Tamanoi et al 2001).  Induction of 

p21WAF1/CIP1 is one pathway through which FTIs cause a G1 arrest.  The FTI-induced G2/M 

arrest is a consequence of an alteration of the microtubule-centromere interaction during 

mitosis by blocking bipolar spindle formation and chromosome alignment (Crespo et al 

2001).  It has been suggested that FTI-induced accumulation of cells in prometaphase is 

due to inhibition of farnesylation of the centromeric protein CENP-E (Ashar et al 2000).  

However, as CENP-E is not essential for spindle pole separation, others have suggested 

that dynein- or Eg5-interacting proteins may be more relevant biologic FTI targets, and are 

responsible for the prometaphase arrest (Crespo et al 2001). 

Additionally, L-739,749 and L-744,832, both CAAX-based FTase inhibitors, have 

recently been shown to inhibit spontaneous JMML granulocyte-macrophage colony growth 

at a dose range of 1-10 µM (Hung & Chuang 1998; Mahgoub et al 1999).  L-744,832 

inhibited H-Ras prenylation and colony growth of NF-1 deficient hematopoietic cells in 

response to GM-CSF, but did not reduce constitutively activated MAPK activity in these 

 85



cells.  Furthermore, a myeloproliferative disorder in NF-1 deficient (NF-/-) mice did not 

respond to L-744,832 treatment (Mahgoub et al 1999).  Its was speculated that the lack of 

efficacy in this model was due to the resistance of N-Ras and K-Ras processing to 

inhibition by this FTase inhibitor (Mahgoub et al 1999). 

The FPP-based farnesyl transferase inhibitor FPT-3 caused significant inhibition of 

the colony formation of 10/19 myeloid cell lines at concentrations which did not 

significantly affect colony growth of purified human CD34+ cells (Table 3; Figure 19).  

Incubation of NB-4 cells with FPT-3 resulted in rapid induction of apoptotic DNA 

fragmentation and exposure of phosphatidylserine (Figure 23).  Recently, FPT-3 has also 

been found to induce apoptosis in ovarian cancer cells by upregulation of Bax and Bcl-xs 

expression and activation of caspase family proteases (Hung & Chuang 1998a,b).  FTIs 

have been demonstrated to induce apoptosis in a wide variety of cancer cell lines by 

release of cytochrome c from mitochondria into the cytosol (Tamanoi et al 2001).  

Cytochrome c forms a complex with Apaf-1 and pro-caspase-9 that results in activation of 

caspase-9 and caspase-3.  Caspase-3 is a key regulator that triggers a variety of apoptotic 

changes, including nuclear condensation and chromosomal DNA fragmentation (Tamanoi 

et al 2001).  Additionally, inhibition of phosphoinositide 3-OH kinase/AKT2-mediated cell 

survival and adhesion pathway was recently shown as a critical target for FTI-induced 

apoptosis (Jiang et al 2000).  Interestingly, it has recently been demonstrated that the 

common alpha subunit of FTase and GGTase I is cleaved by caspase 3 during apoptosis, 

suggesting that inactivation of prenyltransferases by caspases contributes to progression of 

apoptosis (Kim et al 2001). 

Significant growth inhibition (>70%) was also observed upon treatment of myeloid 

leukemia cells with GGTI-286 (9/19), GGTI-298 (14/19) and GGTI-2147 (16/19), whereas 

GGTI-287, GGTI-297 and GGTI-2133 were less effective (Table 4).  Treatment of NB-4 

cells with GGTIs resulted in an increase of cells in G0/G1, induction of apoptosis and a 

decrease in cell-cycle-dependent MEK activation (Table 6).  The GGTI-induced G1-block 

has recently been shown to be due to upregulation of transcription of the CDK inhibitor 

p21WAF1/CIP1 (Vogt et al 1997; Adnane et al 1998).  One mechanism by which GGTIs 

upregulate p21WAF1/CIP1 is via inhibition of RhoA geranylgeranylation.  Rho proteins 

facilitate progression from G1 to S phase in growth-stimulated cells by promoting 

degradation of the CDK inhibitor p27Kip1 and by downregulating the p21WAF1/CIP1 promoter 

(Hirai et al 1997; Adnane et al 1998). 
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As shown in Table 5, treatment with the MEK inhibitors PD098059 and U0126 

significantly inhibited viability, growth and colony formation of most cell lines tested 

(10/19 and 19/19, respectively).  Surprisingly, the MEK inhibitors, which display broad 

inhibitory effects, caused only minor toxicity in purified human CD34+ cells (Figure 19).  

The stronger effect of U0126 is most likely due to a significantly higher affinity of U0126 

to all forms of MEK (44- to 357-fold) as compared to PD098059 (Reuter et al 2000).  In 

contrast to PD098059, U0126 has recently been reported to reverse Ki-Ras-mediated 

transformation by blocking MAPK and p70 S6 kinase pathways (Fukazawa & Uehara 

2000). 

In agreement with previous observations (Miquel et al 1997), a correlation between 

susceptibility towards these inhibitors and the Ras status (e.g. mutation or activation) was 

not always observed in the study presented here.  For example, NB4 cells displayed a 

strong activation of the Ras-to-MAPK cascade and were very sensitive to most inhibitors, 

whereas Mono-Mac-1 cells were resistant to most inhibitors in spite of a strong MAPK 

activation. 

The different cellular responses invoked by the FPP-based inhibitor FPT-3 and the 

CAAX-box based inhibitors FTI-277 and FTI L-744,832 are particularly interesting as 

these compounds all target Ras farnesylation.  This suggests the possibility that specific 

types of FTIs may have different mechanisms of action. 

It has been speculated that alternative geranylgeranylation of K-Ras and N-Ras in 

the presence of FTIs might represent a possible mechanism of FTI-resistance (Sun et al 

1998; Mahgoub et al 1999).  As the majority of Ras mutations in acute myeloid leukemias 

occur in K- and N-Ras, this mechanism of FTI-resistance may have therapeutic 

consequences.  This hypothesis was tested by investigating the effects of GGTIs alone and 

in combination with FTI on myeloid leukemia cell growth, cell cycle progression, 

induction of apoptosis, Ras processing and signaling. 

Co-treatment of myeloid cells with FTI and GGTI resulted in synergistic cytotoxic 

effects which correlated with an increased accumulation of unprocessed N-Ras (Figures 

24, 27 and 28).  The observation that FTI-induced inhibition of H-Ras processing is not 

augmented by co-addition of GGTIs underscores the fact that H-Ras, in contrast to K- and 

N-Ras, is solely farnesylated (Lerner et al 1997; Rowell et al 1997; Whyte et al 1997; 

Zhang et al 1997).  The resistance of K-Ras processing to inhibition by FTIs may be due to 

the increased binding affinity of K-Ras to farnesyl transferase (James et al 1996; Zhang et 

al 1997).  Inhibition of oncogenic K-Ras4B processing required concentrations of FTI-277 
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100-fold higher than those needed for H-Ras inhibition (Lerner et al 1995b).  Ras-Raf 

binding assays demonstrated that unprocessed N-Ras binds to the minimal Ras-binding 

domain of Raf (GST-RBD) (Figure 30).  The accumulation and Raf-binding of 

unprocessed N-Ras in cells treated with FTIs alone or in combination with GGTIs suggests 

dominant negative effects of this biologically inactive version of N-Ras. Accumulation of 

inactive Ras-Raf complexes in the cytosolic fraction and inhibition of Ras-induced 

constitutive activation of MAPK has been observed in FTI-277-treated cells 

overexpressing oncogenic H-Ras (Lerner et al 1995a). 

The results demonstrating synergistic toxicity of FTI/GGTI co-treatment in myeloid 

leukemia cells are in agreement with recent reports describing similar synergistic 

efficiency of a FTI/GGTI combination in adrenocortical and human colon cancer cells 

containing mutant K-Ras (Mazet et al 1999; Di Paolo et al 2001).  In a nude mouse 

xenograft model, both FTI and GGTI are required to inhibit prenylation of oncogenic K-

Ras, but each alone is sufficient to suppress human tumor growth (Sun et al 1998; Sun et al 

1999).  Furthermore, FTI/GGTI cotreatment and treatment with a dual prenylation 

inhibitor (DPI) with both FTI and GGTI activity, resulted in higher levels of apoptosis in 

K-Ras transformed cells relative to FTI and GGTI alone (Lobell et al 2001).  While the 

GGTIs described by Sun et al. and used in the study presented here were non-toxic in mice, 

the chemically distinct GGTIs and DPIs used by Lobell et al. revealed strong toxicity in 

mice which may be caused by an activity unrelated to GGTase-I inhibitory activity (Lobell 

et al 2001). 

As there are over twenty known farnesyltransferase substrates (Table 8), and as it 

has been suggested that Ras may not be the therapeutically relevant loci of FTI treatment 

(Adjei et al 2000a; Prendergast 2001; Tamanoi et al 2001), the effects of FTIs and GGTIs 

on processing of other farnesyl transferase substrates were investigated.  The results 

presented in Figure 29 demonstrate that FTI treatment inhibited processing of the G-

proteins Rap2A and Rheb and of the intranuclear intermediate filament Lamin A in some 

myeloid leukemia cells.  Rap2A and Rheb are two other members of Ras family proteins 

that are farnesylated (Tamanoi et al 2001).  While the biologic function of these G-proteins 

is currently under investigation, it has recently been shown that failure to farnesylate Rheb 

proteins contributes to enrichment of G0/G1 phase cells in S. pombe (Yang et al 2001). 

Although inhibition of H-Ras and N-Ras prenylation was always observed after FTI 

or FTI/GGTI treatment, FTI/GGTI-induced inhibition of the prenylation of K-Ras2B,  
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Table 8.  Substrates of Farnesyltransferase (modified from Tamanoi et al 2001). 
 
Protein   CAAX  Function     Reference 
  Motif 
 
H-Ras  CLVS           Proliferation, Differentiation, Apoptosis inhibition       Farnsworth et al 1994 
K-Ras  CVVM           Proliferation, Differentiation, Apoptosis inhibition 
N-Ras  CVIM           Proliferation, Differentiation, Apoptosis inhibition 
 
Rheb  CSVM           Cell cycle (G1/S)?                          Tamanoi et al 2001 
Rap2A  CNIQ           G-Protein with unknown function 
TC10  CLIT           Transformation, Cytoskeleton 
 
RhoB  CKVL           Endocytosis, Apoptosis, Transcription              Lebowitz et al 1998 
RhoD  CVVT           Cytoskeleton, Endocytosis                Tamanoi et al 2001 
Rho6/Rnd1 CSIM           Adhesion, Cytoskeleton 
Rho7/Rnd2 CNLM           Cytoskeleton 
RhoE/Rho8 CTVM           Cytoskeleton, Adhesion 
 
Lamin A CSIM           Nuclear membrane structural protein               Farnsworth et al 1989 
Lamin B  CAIM 
CENP-E  CKTQ           Cell cycle (G2/M), Centromere binding              Ashar et al 2000 
CENP-F  CKVQ 
 
HDJ-2  CQTS           Chaperone protein                 Adjei et al 2000 
 
PxF  CLIM           Peroxisomal protein with unknown function              James et al 1992 
 
Transducin α CGLF           Visual protein                 Lai et al 1990 
      γ CVIS 
Rhodopsin CVLS           Visual protein                 Inglese et al 1992 
Kinase 
cGMP-PDE α CCIQ           Visual signal transduction                Anant et al 1992 
cGMP-PDE β CCIL 
 
Phosphorylase            Thrombocyte function                Heilmeyer et al 1992 
Kinase α CAMQ 
 β CLVS 
 
InsP3 5-Phos-  
phatase I CVVQ           Inositol signal transduction                Tamanoi et al 2001 
 IV CSVS 
 
PTPCAAX1/ CCIQ           Tyrosine phosphatase                Tamanoi et al 2001 
hPRL1 
PTPCAAX2/ CCVQ 
hPRL2 
hPRL3  CCVM 
 
 
Abbreviations : InsP3 phosphatase, inositol-polyphosphate phosphatase; PDE, 
phosphodiesterase; PRL-1, -2, -3,; cGMP, cyclic guanosine monophosphate; CAAX, C = 
cysteine, A = aliphatic amino acid, X = serine, glutamine, or methionine. 
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Rap2A, Rheb and Lamin A seemed to be less frequent and cell type-dependent. Co-

treatment with FTI and GGTI did not result in an increased accumulation of unprocessed 

Rap2A and Rheb, suggesting that these G proteins do not undergo alternative prenylation.  

Work of several laboratories previously demonstrated that Lamin B and 

Prelamin/Lamin A are farnesylated proteins (Farnsworth et al 1989; Beck et al 1990) and 

that FTI treatment causes inhibition of Lamin A and B farnesylation (Sepp-Lorenzino et al 

1995; Adjei et al 2000; Karp et al 2001; Kelland et al 2001).  While the immunoblotting 

studies described above failed to demonstrate a mobility shift of Lamin B, elevated protein 

levels of Lamin B were observed in cells treated with FTI alone and in combination with 

GGTI.  Furthermore, co-treatment with FTI and GGTI had no synergistic effect on Lamin 

A, B and C prenylation (Figure 29). 

 

 
Figure 34.  Addition of GGTI is one strategy to overcome alternative prenylation of 
K- and N-Ras in FTI-treated cells. 
 
 

RhoB, an endosomal Rho protein that functions in receptor trafficking and which 

has been shown to be both farnesylated and geranylgeranylated, has been proposed as a 

key target of FTIs (Prendergast 2001).  These studies have examined epitope-tagged RhoB 

that is expressed after transfection.  It has been suggested that FTI treatment shifts the 

prenylation status of RhoB to an exclusively geranylgeranylated form which causes 

dominant effects to induce apoptotic and antineoplastic responses (Du et al 1999; Du & 

Prendergast 1999; Liu et al 2000; Prendergast 2001).  However, induction of apoptosis by 

overexpression of either farnesylated or geranylgeranylated versions of RhoB in Panc-1 

cells suggests that both RhoB-F and RhoB-GG function similarly and argues against the 

idea that RhoB-GG has a role different from that of RhoB-F (Chen et al 2000). 

It has been suggested that Ras may not be the therapeutically relevant loci 

(Prendergast 2000).  Determining whether leukemic growth inhibition occurs because of an 

inhibition of Ras-specific cellular events such as MAPK induced cell cycle progression or 

because of alteration of other cellular targets such as RhoB, an endosomal Rho protein that 
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functions in receptor trafficking, is currently under investigation.  The findings reported 

here support a potential role of inhibitors of Ras signaling in the future treatment of 

myeloid leukemias. 

Phase I and II clinical trials investigating FTIs have reported that FTIs are tolerated 

well in humans, with myelosuppression and neurotoxicity as the main dose limiting factors 

(Adjei et al 2000; Reuter et al 2000; Zujewski et al 2000; Britten et al 2001; Crul et al 

2001; Eskens et al 2001; Karp et al 2001; Karp 2001; Punt et al 2001).  The relatively 

disappointing results of FTI monotherapy may be a result of resistance of K- and N-Ras to 

FTI therapy.  However, a recent study demonstrates synergistic induction of apoptosis 

upon co-treatment of a Ras signaling inhibitor (e.g. MEK inhibitor PD184352) and 

antisense oligonucleotides directed against Bcl-2 (Milella et al 2002).  As it has recently 

been reported that lovastatin inhibits Ras prenylation (Wang et al 2000), the statins are 

another potentially interesting class of compounds to combine with FTI in the hopes of 

better combating leukemias. 

In conclusion, the results presented here demonstrate that disruption of Ras 

signaling may be an effective strategy to treat myeloid leukemias and suggest that 

synergistic cytotoxic effects of FTI/GGTI combination is – at least in part – due to 

increased inhibition of N-Ras prenylation.  Regardless of the locus of action, the results 

presented here demonstrate profound in vitro inhibitory effects of FTIs and GGTIs on the 

growth of myeloid leukemia cells irrespective of the presence of Ras mutations, expression 

of BCR-Abl or MAPK activation.  The accumulation of unprocessed N-Ras after 

FTI/GGTI co-treatment of myeloid leukemia cells, suggests that combining FTIs and 

GGTIs in the treatment of myeloid leukemias may lead to higher efficacy by overcoming 

the partial resistance of K- and N-Ras to FTI monotherapy. 
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6.  Abbreviations 
 
A  Adenine 
7-AAD 7-Amino-actinomycin D 
Ala  Alanine 
AML  Acute myelogenous leukemia 
Asp  Aspartic acid 
ATF-1  Transcription factor that binds to the cyclic-AMP response element 
ATP  Adenosine 5´-triphosphate 
BSA  Bovine serum albumin 
C  Cytosine 
CAAX-box peptide recognition motif for prenylation (C, cysteine; A, aliphatic amino 

acid; and X, any amino acid) 
CML  Chronic myelogenous leukemia 
cpm  counts per minute 
CREB  Transcription factor that binds to the cyclic-AMP response element 
C-terminal Carboxy-terminal 
Cys  Cysteine 
DMSO  Dimethylsulfoxide 
DNA  Deoxyribonucleic acid 
dNTPs  Deoxyribonucleotide 5´-triphosphates 
DTT  Dithiothreitol 
EDTA  Ethylene diamine-tetra-acetic acid 
ERK  Extracellular regulated kinase (or MAPK) 
FCS  Fetal calf serum 
FPP  Farnesylpyrophosphate 
FTase  Farnesyltransferase 
FTI  Farnesyltransferase inhibitor 
G  Guanine 
g  Gravitational force 
GGTase Geranylgeranyltransferase 
GGTI  Geranylgeranyltransferase inhibitor 
Glu  Glutamic acid 
Gly  Glycine 
G-protein GTP-binding protein 
GST-RBD Ras-binding domain of c-Raf-1 fused to glutathione 
GTP  Guanosine triphosphate 
GTPase Guanosine triphosphate phosphatase 
GTP-Ras GTP-bound Ras 
h  Hour 
H-Ras  Harvey-Ras 
IC50  concentration at which 50 % of cells are affected 
IgG  Immunoglobulin G 
IL  Interleukin 
IP  Immunoprecipitation 
K-Ras  Kirsten-Ras 
L-61-H-Ras H-Ras activated by mutation to harbor leucine at amino acid position 61 
LB Medium Luria-Bertani medium 
Leu  Leucine 
M  Molarity 
MAPK  Mitogen activated protein kinase (or ERK) 
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MBP  Myelin basic protein 
MEK  MAPK/ERK kinase 
min  Minute 
N-Ras  Neuronal-Ras 
N-terminal Amino-terminal 
PBS  Phosphate buffered saline 
PCR  Polymerase chain reaction 
PI  Propidium iodide 
PP-ERK-1/2 Diphospho-ERK-1/2 
PP-MEK-1/2 Diphospho-MEK-1/2 
SCF  Stem cell factor 
SDS  Sodium dodecyl sulfate 
SDS-PAGE Sodium dodecyl sulfate polyacrylamide gel electrophoresis 
T  Thymidine 
TAE  Tris-acetate/EDTA electrophoresis buffer 
TBE  Tris-borate/EDTA electrophoresis buffer 
TE  Tris/EDTA 
TEMED N,N,N´,N´-tetramethylethylenediamine 
UV  Ultraviolet 
V-12-H-Ras H-Ras activated by mutation to harbor valine at amino acid position 12 
 



7.  Abstract 
Ras proteins are prototypical G-proteins that have been shown to play a key role in 

signal transduction, proliferation and malignant transformation.  Ras proteins are produced as 

cytoplasmatic precursor proteins and require several post-translational modifications to 

acquire full biological activity.  Ras mutations are frequently observed in myelodysplastic 

syndromes (MDS), acute myeloid leukemias (AML), juvenile myelomonocytic myeloid 

leukemia (JMML) and in multiple myelomas.  The importance of deregulation of Ras 

signaling in the molecular pathogenesis of myeloid leukemias is further underscored by the 

positioning of several oncogene and tumor suppressor gene products on this pathway.  Based 

on the wealth of data reporting the effectiveness of Ras signaling inhibitors against human 

carcinomas harboring activated Ras, coupled with the implications of Ras in the 

pathophysiology of myeloid leukemias, the role of activated Ras signaling and the effects of 

these inhibitors on leukemia cell growth were investigated. 

Activation of the Ras-to-MAPK cascade in 14 AML and 5 CML cell lines was 

examined and correlated with the effects of a panel of 10 Ras signaling inhibitors on cell 

viability, colony formation, cell cycle progression and induction of apoptosis.  Activation of 

MEK, MAPK and the transcription factors CREB-1, ATF-1 and c-Myc was observed in the 

majority of the cell lines (9/14 AML and 2/5 CML cell lines).  Activating Ras mutations were 

found in 4 of the 14 AML cell lines (28.6%), including one “non-hot spot” K-Ras mutation in 

codon 18.  While activation of the MAPK cascade did not always correlate with the presence 

of activating Ras mutations or BCR-Abl, activation was found to be linked to the G0/G1 and 

G2/M phases of the cell cycle.  In contrast to most inhibitors (e.g. B581, Cys-4-Abs-Met, 

FPT-2, FTI-276, and FTS), significant growth inhibition was only observed for FTI L-

744,832 (16/16), FTI-277 (19/19), FPT-3 (10/19), and the MEK inhibitors U0126 (19/19) and 

PD098059 (8/19).  Treatment of NB-4 cells with FTI-277 or FTI L-744,832 primarily resulted 

in a G2/M block, whereas FPT-3 and U0126 treatment lead to induction of apoptosis. 

Since alternative geranylgeranylation of K-Ras and N-Ras in the presence of farnesyl 

transferase inhibitors (FTIs) may represent an important mechanism of FTI-resistance, six 

geranylgeranyl transferase-I inhibitors (GGTIs) were screened alone and in combination with 

FTI for growth inhibition of myeloid leukemia cell lines and primary AML blasts from 

patients.  Significant growth inhibition (>70%) in cell lines was observed for GGTI-286 

(9/19), GGTI-298 (14/19) and GGTI-2147 (16/19), whereas GGTI-287, GGTI-297 and 

GGTI-2133 were less effective.  GGTI treatment of NB-4 cells resulted in accumulation of 

cells in G0/G1 and induction of apoptosis.  In all cases, FTI/GGTI co-treatment led to 

 123



 124

synergistic cytotoxic effects in both myeloid cell lines (5/5) and primary AML cells (6/6).  

This synergy coincided with increased apoptosis.  FTI /GGTI co-treatment seemed to have 

little additional effect on processing of H-Ras, Rap2A, Rheb, and Lamins A-C.  However, 

accumulation of unprocessed N-Ras was induced in all cell lines tested and led to increased 

inactive N-Ras-Raf complexes.  The results presented here suggest that molecular targeting of 

both FTase and GGTase I may lead to higher efficacy in the treatment of myeloid leukemias 

by overcoming the partial resistance of N-Ras and possibly K-Ras to FTI monotherapy. 
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8.  Zusammenfassung 
 Ras-Proteine sind klassische G-Proteine, welche eine Schlüsselrolle in der 

Signaltransduktion, Proliferation und malignen Transformation einnehmen.  Sie werden als 

zytoplasmatische Vorläuferproteine produziert und benötigen einige posttranslationale 

Modifikationen, um volle biologische Aktivität zu entfalten.  Ras-Mutationen werden unter 

anderem gehäuft in Myelodysplastischen Syndromen (MDS), akuten myeloischen Leukämien 

(AML), juvenilen myelomonzytären Leukämien (JMML) und in Multiplen Myelomen 

beobachtet.  Die Bedeutung der Deregulierung der Ras-Signaltransduktion für die molekulare 

Pathogenese von myeloischen Leukämien wird durch die Positionierung einiger Onkogene 

und Tumorsuppressorgene auf diesem Signalweg unterstrichen.  Aufgrund der vielen Berichte 

bezüglich der Effektivität von Inhibitoren der Ras-Signaltransduktion gegenüber 

menschlichen Tumoren, die aktiviertes Ras besitzen, und aufgrund der Bedeutung von Ras in 

der Pathophysiologie von myeloischen Leukämien, wurde in dieser Arbeit die Rolle einer 

aktivierten Ras-Signaltransduktion und der Effekt dieser Inhibitoren auf das Wachstum von 

myeloischen Leukämiezellen analysiert. 

 Die Aktivierung der Ras-MAPK-Kaskade wurde in 14 AML- und in 5 CML-Zellinien 

untersucht und mit den Effekten von 10 Inhibitoren der Ras-Signaltransduktion auf 

Zellviabilität, Kolonieformation, Zellzyklusprogression und Apoptoseinduktion korreliert.  

Eine Aktivierung von MEK, MAPK und den Transskriptionsfaktoren CREB-1, ATF-1 und c-

Myc wurde in der Mehrheit der Zellinien beobachtet (9/14 AML und 2/5 CML).  

Aktivierende Ras-Mutationen wurden in 4 dieser 14 AML-Zellinien (28,6%) festgestellt, 

inklusive einer „non-hot spot“-Mutation von K-Ras in Kodon 18.  Während die Aktivierung 

der MAPK-Kaskade nicht immer mit der Anwesenheit von Ras-Mutationen korrelierte, war 

die Aktivierung dieser Kaskade mit der G0/G1- und G2/M-Phase des Zellzyklus verknüpft.  

Im Gegensatz zu den meisten Inhibitoren (B581, Cys-4-Abs-Met, FPT-2, FTI-276 und FTS) 

wurde eine signifikante Inhibition des Leukämiezellwachstums nur für die 

Farnesyltransferase-Inhibitoren (FTI) L-744,832 (16/16), FTI-277 (19/19), FPT-3 (10/19) und 

die MEK-Inhibitoren U0126 (19/19) und PD098059 (8/19) beobachtet.  Inkubation von NB-

4-Zellen mit FTI-277 oder FTI  L-744,832 führte hauptsächlich zu einem G2/M-Block, 

während die Behandlung der Zellen mit FPT-3 und U0126 Apoptose induzierte. 

 Da die alternative Geranylgeranylierung von K-Ras und N-Ras in Anwesenheit von 

FTI ein wichtiger Mechanismus der FTI-Resistenz sein könnte, wurden sechs 

Geranylgeranyltransferase-I-Inhibitoren (GGTI) bezüglich der Wachstumsinhibition von 

myeloischen Leukämiezellinien und primären AML-Zellen untersucht.  Eine signifikante 
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Wachstumsinhibition wurde für GGTI-286 (9/19 Zellinien), GGTI-298 (14/19) und GGTI-

2147 (16/19) beobachtet, während GGTI-287, GGTI-297 und GGTI-2133 kaum 

Wachstumshemmung induzierten.  Die Inkubation von NB-4-Zellen mit GGTI führte zur 

Akkumulation der Zellen in der G0/G1 Phase und zur Apoptoseinduktion.  FTI/GGTI 

Coinkubation führte sowohl in allen myeloischen Zellinien als auch in allen untersuchten 

primären AML-Zellen zu synergistischen zytotoxischen Effekten.  Diese Synergie ging mit 

einer gesteigerten Apoptose einher.  Die Kombination von FTI und GGTI hatte kaum 

zusätzliche Effekte auf die Prozessierung von H-Ras, Rap2A, Rheb und den Laminen A-C, 

führte aber zur zytoplasmatischen Akkumulation von nicht-prozessiertem N-Ras und von 

inaktiven N-Ras-Raf-Komplexen.  Die hier präsentierten Daten lassen vermuten, daß FTase 

und GGTase I molekulare Zielstrukturen für eine Leukämietherapie sein könnten.  Die 

Kombination von FTI und GGTI könnte durch Überwindung der partiellen Resistenz von K-

Ras und N-Ras zu einem besseren Ansprechen in der Behandlung myeloischer Leukämien 

führen. 
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