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Zusammenfassung 
 

Die Maniokproduktion wird durch mehrere Krankheiten stark beeinträchtigt, unter ihnen der 

Maniokbakterienbrand (CBB) als zweitwichtigste Maniokkrankheit in Afrika. Eine 

Voraussetzung, integrierte Bekämpfungsmaßnahmen für den Bakterienbrand zu entwickeln, 

ist die Kenntnis der Verbreitung und der Befallsstärke der Krankheit in den verschiedenen 

Ökozonen Togos. Ein Hauptelement in der integrierten Bekämpfung ist die Entwicklung 

resistenter Sorten. Deshalb wurden die Reaktion von Sorten gegenüber CBB und ihre 

Interaktion mit der Umwelt in verschiedenen Ökozonen Togos getestet. Die Virulenz von 

Xanthomonas axonopodis pv. manihotis (Xam) Stämmen aus allen Ökozonen Togos wurde 

bestimmt, und Sorten wurden nach Inokulation mit einem Set von Stämmen aus verschiedener 

geographischer Herkunft in Afrika charakterisiert, um Pathotyp x Sorte Interaktionen zu 

identifizieren. Als weitere Elemente der integrierten Bekämpfung wurden 

Hygienemassnahmen und an Ökozonen angepasste Kulturmassnahmen getestet, wie 

Mischkulturanbau, Mulchen und Düngergaben.  

 

In einem Survey zur Festellung der Maniokkrankheiten in vier agro-ökologischen Zonen von 

Togo wurde ein starkes Auftreten von Maniokbakterienbrand, Maniokmosaikkrankheit 

(CMD) und Cercospora-Krankheiten beobachtet. In der Trockensavanne waren 90,5% der 

Felder mit CBB befallen, in der Waldsavannenübergangszone 70%, in der Feuchtsavanne 

64% und in der Regenwaldzone 52,6 %, mit einem durchschnittlichen Befall der 

Einzelpflanzen pro Feld von 27,4% in der Regenwaldzone bis zu 72,7% in der 

Trockensavanne. CMD wurde in nahezu 100% aller Felder in den vier Ökozonen gefunden, 

mit einem hohen Einzelpflanzenbefall pro Feld von bis zu 86,9%. Cercospora-

Blattkrankheiten – Braune Blattflecken (BLS), Blattbrand (BlLS) und Weisse Blattflecken 

(WLS) – traten in allen Ökozonen mit Häufigkeiten von 68% bis 100% der Felder auf. 

Negative Korrelationen zwischen CBB und CMD beziehungsweise CMD und WLS wurden 

beobachtet, während BLS und BlLS, BLS und WLS und auch BlLS und WLS positive 

korreliert waren. Die Befallshäufigkeit der Felder mit CBB war positiv korreliert mit dem 

Pflanzenalter, mit der Regenfallmenge – einem höheren Befall in den trockeneren Ökozonen 

(p < 0,01) – und der Stärke der Verunkrautung der Felder (p < 0,05). Weitere signifikante, 

aber negative Korrelationen traten zwischen CBB und dem Vegetationstyp (Anzahl Bäume) 

in der Umgebung der Felder auf. Zwischen dem Vorkommen von Braunen Cercospora-

Blattflecken und der Anzahl Bäume in der Umgebung des Feldes und dem Faktor Anzahl 

Früchte pro Feld (intercopping) trat eine signifikant negative Beziehung auf, während Weisse 
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Cercospora-Blattflecken negativ mit dem Anteil Sand im Boden korreliert war. Ein weiterer 

Survey zur Bestätigung der Ergebnisse wird empfohlen. Maßnahmen zur Bekämpfung der 

Maniokkrankheiten, insbesondere des Bakterienbrandes, werden empfohlen um schwere 

Epidemien zu vermeiden. 

 

Die Auswahl resistenter Sorten ist ein wichtiges Element in der Entwicklung einer 

integrierten Bekämpfungsstrategie von Maniokbakterienbrand. Deshalb ist die Kenntnis der 

Virulenz und Diversität der Stämme von Xam notwendig. Siebenundvierzig Stämme wurden 

aus Blattsymptomen von Blättern, die während des Survey in den Ökozonen Trockensavanne, 

Feuchtsavanne, Wald-Savanne-Übergang und Regenwald gesammelt wurden, isoliert und 

mittels Stängelinokulation auf der anfälligen Sorte Ben86052 auf ihre Virulenz getestet. Die 

meisten Stämme (94%) waren hoch virulent, und es wurden generell nur geringe Unterschiede 

zwischen den Stämmen festgestellt. Die Unterschiede waren unabhängig von der Ökozone, 

aus der die Stämme stammten. 

 

Um die Resistenzeigenschaften von Manioksorten gegen Bakterienbrandbefall unter 

Feldbedingungen zu untersuchen, wurden 23 lokale Sorten und Zuchtsorten unter natürlicher 

Infektion und nach Sprüh-Inokulation in der Regenwaldzone und der Wald-

Savannenübergangszone in den Jahren 1998 und 1999, und in der Feuchtsavanne im Jahr 

1999 gescreent. Starke Sorten x Umwelt Interaktionen wurden beobachtet, und es wurde 

keine Sorte mit einer Krankheitsresistenz in den drei Standorten in den 3 Ökozonen gefunden. 

Die Sorten CVTM4, Main27, TMS30572 und TMS92/0429 zeigten jedoch eine resistente 

Reaktion in wenigstens einer Umgebung (Ort und/oder Jahr) und eine mittlere Resistenz in 

den anderen Standorten und Jahren, während die Sorten Lagos, Toma289 und Toma 378 unter 

allen Bedingungen anfällig waren. CBB war signifikant negative mit dem Erntegewicht der 

Maniokwurzeln in den sprüh-inokulierten Feldern in den Standorten in der Regenwaldzone in 

den Jahren 1998 und 1999, und in den nicht sprüh-inokulierten Feldern in der Wald-

Savannen-Übergangszone und der Feuchtsavanne in den Jahren 1998 beziehungsweise 1999 

korreliert. Die Analyse der Entwicklung der verschiedenen Symptomtypen – Flecken, Brand 

und Blattwelke – für jede Sorte ergab, dass generell die Stärke von Blattflecken und 

Blattbrand positiv korreliert waren, während keine oder eine negative Beziehung zwischen 

Blattsymptomen und Blattwelke auftrat. Dieselbe Beobachtung wurde bei der Gesamt-

Analyse der Symptomdaten von allen Sorten unter allen Bedingungen gemacht. Eine 

signifikant negative Beziehung bestand zwischen der Anzahl Blätter mit Brand- und 

Welkesymptomen und dem Wurzelgesicht in jeder der 3 Ökozonen, und zwischen 
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der Anzahl Blätter mit Blattflecken und dem Erntegewicht der Wurzeln in der 

Regenwaldzone. 

 

Zusätzlich zum Feldsrceenen der Sorten wurden 24 lokale Sorten und Zuchtsorten aus Togo 

auf ihre Reaktion nach Stängelinokulation mit 4 hoch virulenten X. axonopodis pv. manihotis 

Stämmen aus verschiedenen Afrikanischen Herkünften unter kontrollierten Bedingungen 

untersucht. Die lokalen Sorten Nakoko und Toma159 waren am anfälligsten gegen die 4 

Stämme, während die meisten anderen Sorten einschließlich der Referenzsorte Ben86502 

anfällig gegen wenigstens zwei und resistent gegenüber mindestens einem Stamm reagierten. 

Sechs Sorten waren resistent gegen alle 4 Stämme. Unter ihnen waren die lokale Sorte 

Gbazékouté und die Zuchtsorte CVTM4 die resistentesten. Sechs Gruppen von Sorten mit 

einer differentiellen Reaktion gegenüber den vier Stämmen wurden gebildet, und die Stämme 

konnten somit als Pathotypen definiert werden. 

 

Eine Voraussetzung für den Aufbau einer gesunden Maniokplantage ist die Verwendung von 

nicht-infiziertem Pflanzgut. Deshalb wurde die Verteilung von X. axonopodis pv. manihotis in 

Manioksstängeln untersucht, mit dem Ziel, Empfehlungen für die Auswahl von gesundem 

Pflanzmaterial zu geben. X. axonopodis pv. manihotis wurde in den Stängeln der anfälligen 

Sorten Ben86052 und Fétonégbodji in einer diskontinuierlichen Verteilung und nicht auf 

einen Stängelabschnitt beschränkt gefunden. Die Anzahl von X. axonopodis pv. manihotis 

Zellen war im oberen Stängelabschnitt mit circa 107 cfu/g in Sorte Ben86052 und 106 cfu/g in 

Sorte Fétonégbodji, einschlisslich Pflanzen ohne systemische Symptome, höher als als in den 

mitteleren und unteren Stängelabschnitten, in denen die geringsten Anzahlen gefunden 

wurden. Obwohl in 90-100% und 50-90% der Stängelabschnittte der Sorten Ben86052 

beziehugnsweise Fétonégbodji das Pathogen gefunden wurde, entwickelten sich nur aus 40-

50% beziehungsweise 20-40% der Stängelabschnitte infizierte Sprösslinge. Aus den meisten 

Stängelabschnitten, in denen X. axonopodis pv. manihotis nicht nachgewiesen wurde, 

entwickelten sich gesunde Sprösslinge. An der Sorte TMS30572 traten im Feld keine 

Bakterienbrandsymptome auf, das Pathogen wurde in keinem Teil des Stängels gefunden, und 

keiner der neuen Sprösslinge zeigte Bakterienbrandsymptome. Daher können Stecklinge der 

symptomlosen, resistenten Sorte TMS30572 für pathogenfrei gehalten werden. Die Selektion 

von bakterienbrandfreiem Pflanzmaterial von resistenten Sorten kann den Bauern zur 

Eindämmung der Krankheit empfohlen werden. 
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Als weiteres Element der integrierten Bekämpfung des Bakterienbrandes wurde der Einfluss 

von Mischkulturanbau mit wichtigen Grundnahrungsfrüchten in Togo, der Effekt einer 

Kaliumdüngung mit Aufwandmengen von 60 und 120 kg/ha und das Mulchen mit Cassia 

siamea auf den Kranheitsbefall unter Feldbedingungen in 4 agroökologischen Zonen getestet. 

Die Befallsstärke wurde signifikant reduziert im Mischanbau Maniok-Taro und Maniok-Mais 

gegenüber Maniok Monokultur bei mittlerem und hohem Inokulumdruck in der Regenwald-

Hochlandzone, im Maniok-Mais Mischanbau in der Wald-Savannenübergangszone bei 

mittlerem, aber nicht bei hohem (p < 0,01) Inokulumdruck, und im Maniok-Mais Mischanbau 

in der Feuchtsavanne bei hohem Inokulumdruck (p < 0,05). Obwohl die 

Befallsverminderungen signifikant waren, waren sie generell eher gering (6-23%), führten 

aber generell nicht zu einer Ertragsreduktion.  

 

Die Kaliumgabe und das Mulchen zeigten nur unklare krankheitsreduzierende oder -fördernde 

Effekte und können deshalb nicht als Teil einer Bekämpfungsstrategie empfohlen werden.  

Da keine Sorten mit einer hohen Resistenz unter den getesteten lokalen Sorten und den 

Zuchtsorten gefunden wurden, wird die Kombination von mittel-resistenten Sorten wie 

TMS92/0429, TMS30572 und TMS91/02316 mit niedrigem Befall und hohem Ertrag und der 

Mischanbau, beides angepasst an die jeweilige Ökozone, den Bauern zur Bekämpfung des 

Bakterienbrandes empfohlen. Die Sorten TMS92/0326, TMS92/0057, Cameroon und 

Ben86052, die sich als tolerant gegenüber CBB zeigten, sollten wegen der Gefahr der 

Verschleppung von Inokulum nicht angebaut werden. Die Sorten Main27 und CVTM4, 

resistent, aber mit geringem Ertrag, werden Züchtern zum Einbringen ihrer 

Resistenzcharakteristika in das Zuchtmaterial empfohlen. Auch die Sorten TMS30572 und 

TMS92/0429 sollten von Züchtern wegen ihrer hohen Resistenz gegen Welkensymptome zum 

Einkreuzen in Sorten mit hoher Anfälligkeit für systemische Infektion genutzt werden. Zur 

Identifizierung von Stamm-Sorte Interaktionen sollten Sorten mit verschiedenen Pathotypen 

inokuliert werden. Um Sorten zu identifizieren, die für die Produktion von gesundem 

Pflanzmaterial geeignet sind, sollten Züchter die Sorten auf ihre Eigenschaften zur 

Unterdrückung systemischer und latenter Infektion und der Ausbildung gesunder Schößlinge 

als zusätzliche Resistenzmerkmale untersuchen. Mischkulturanbau Maniok-Mais und/oder 

Maniok-Taro, je nach Ökozone, reduzierte den Krankheitsbefall gegenüber Monokultur in der 

Hochlandwaldzone, in der Feuchtsavanne und in der Wald-Savannen-Übergangszone, 

generell ohne negativen Einfluss auf den Ertrag, und kann deshalb den Bauern in diesen 

Ökozonen als Element einer integrierten Bekämpfung von Bakterienbrand empfohlen werden. 

Schlagworte: Maniokbakterienbrand, integrierten Bekämpfung, Westafrika. 
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Abstract 
 
Cassava production is reduced by several diseases among which cassava bacterial blight 

(CBB) is the second important in Africa. Prerequisite to develop integrated control measures 

of CBB is the knowledge on the distribution and the severity of the disease in different 

ecozones of Togo. A major element in the integrated control of CBB is host plant resistance. 

Therefore, genotypes were screened for durable resistance to CBB by characterizing their 

interactions with the environment in field trials in different ecozones. Virulence of 

Xanthomonas axonopodis pv. manihotis (Xam) strains across ecozones was established. 

Selected genotypes were challenged by stem-inoculation with a set of representative, virulent 

Xam strains in order to identify possible pathotype x genotype interactions. As further 

elements of integrated control, crop sanitation and cultural measures adapted to ecozones e.g. 

intercropping, as well as soil amendments with mulch and potassium fertilizer were studied. 

 

A cassava disease survey was conducted in four agroecological zones of Togo. High 

incidences of cassava bacterial blight (CBB), cassava mosaic disease (CMD) and 

cercosporioses were observed across ecozones. CBB field incidences of 90.5% in the dry 

savanna zone, 70% in the forest savanna transition zone, 64% in the wet savanna zone and 

52.6% in the forest zone, were recorded, with plant incidences ranging from 27.4% in the 

forest zone to 72.7% in the dry savanna zone. CMD field incidences were nearly 100% in all 

the ecozones and high plant incidences up to 86.9% were found. Cercospora leaf diseases  

– brown leaf spot (BLS), blight leaf spot (BlLS) and white leaf spot (WLS) - occurred in all 

the ecozones with incidences ranging from 68% to 100%. Negative correlations between CBB 

and CMD, and between CMD and WLS were found, while BLS and BlLS, BLS and WLS, 

and BlLS and WLS were positively correlated. Field incidence of CBB was positively 

correlated with plant age, ecozones - higher severity in dryer ecozones - (p < 0.01), and weed 

density (p < 0.05). Further significant, but negative correlations occurred between CBB and 

vegetation type in surroundings of the field (number of trees) (p < 0.05). Cercospora brown 

leaf spot (BLS) was significantly negatively associated with the number of trees in the 

surroundings of a field and the number of crops in a field (intercropping) (p < 0.05), and 

Cercospora white leaf spot with more sandy soils (p < 0.01). A further survey is 

recommended to confirm the present data. Measures to control cassava diseases, especially 

cassava bacterial bight, should be taken to avoid severe epidemics. 
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The selection of resistant genotypes is a major element in the development of an integrated 

control system of CBB. Therefore, knowledge on the virulence and diversity of pathogen 

strains is important. Fourty-seven strains of Xanthomonas axonopodis pv. manihotis were 

isolated from leaf samples collected during the disease survey from the forest savanna 

transition, forest, wet savanna and dry savanna zones of Togo and tested for virulence by 

stem-inoculation of the susceptible cassava genotype Ben86052. Most (94%) strains were 

highly virulent, and generally only slight differences in virulence among strains were 

observed. Differences in virulence were independent of their origin in agroecological zones. 
 

To monitor the resistance characteristics of cassava genotypes to CBB infection under field 

conditions, 23 improved and local genotypes from Togo were screened under natural infection 

and after spray-inoculation with X. axonopodis pv. manihotis in the forest and forest savanna 

transition zones in years 1998 and 1999, and in the wet savanna zone in year 1999. High 

genotype x environment interactions were observed, and no genotype with disease resistance 

in the three sites in the forest savanna transition and forest zones over a two year-experiments 

and wet savanna zone in a one-season trial was found. However, genotypes CVTM4, Main27, 

TMS30572 and TMS92/0429 were resistant in at least one environment and medium resistant 

in other environments, and Toma159 and TMS91/02316 were medium resistant across 

environments, while Lagos, Toma289 and Toma378 were over all susceptible. Cassava 

bacterial blight severity was significantly negatively correlated to cassava root yield in 

inoculated plots in the site in the forest zone in 1998 and 1999, and in non-inoculated plots in 

the forest savanna transition zone and the wet savanna zone in 1998 and 1999, respectively. 

Analysing the development of the different symptom types by genotypes, generally spot and 

blight symptom development was positively correlated, while there was no relation, or a 

negative correlation between leaf symptoms and the wilt symptom development. The same 

oberservation was made, when data were analysed across genotypes and environments. 

Significant negative correlations were observed between blight and wilt symptoms, and root 

yield in each of the three ecozones, and between spots and root yield in the forest zone. 

 

Additonally to the field screening of cassava genotypes, 24 improved and local genotypes 

from Togo were screened for resistance to cassava bacterial blight by stem-inoculation with 

four highly virulent Xanthomonas axonopodis pv. manihotis strains from different geographic 

origins in Africa under controlled conditions. The local genotypes Nakoko and Toma159 were 

most susceptible against the four strains, while most other genotypes including the reference 

genotype Ben86052, with susceptible reaction against at least two strains were resistant to at 
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least one strain. Six genotypes showed a resistant reaction against the four strains. Among 

them, the local genotype Gbazékouté and the improved CVTM4 were the most resistant ones. 

Six groups of genotypes, with differential reactions to the strains were formed, and the strains 

were defined as pathotypes. 

 

A prerequisite for a healthy cassava plantation is the use of non-infected planting material. 

Therefore, the distribution of X. axonopodis pv. manihotis in cassava stems was studied with 

the aim to develop recommendations for the selection of healthy stem material. X. axonopodis 

pv. manihotis was detected in stems of the susceptible varieties Ben86052 and Fétonégbodji, 

in a discontinuous colonization pattern and not restricted to any part of the stem.  

X. axonopodis pv. manihotis numbers were higher in the upper parts, with about 107 cfu/g in 

Ben86052 and 106 cfu/g in Fétonégbodji, including plants without systemic symptoms, than 

in the middle and basal parts, where the lowest numbers were found. Although 90-100% and 

50-90% of cuttings of varieties Ben86052 and Fétonégbodji, respectively, harboured the 

pathogen, only 40-50% and 20-40%, respectively, of emerging sprouts were infected. From 

most of the cuttings in which X. axonopodis pv. manihotis was not detected, healthy sprouts 

emerged. No bacterial blight symptoms occurred on genotype TMS30572 in the field, and the 

pathogen was not found in any part of the plants, nor did any of the new shoots from the 

planted cuttings show bacterial blight symptoms. Thus, symptomless plants of the latter 

genotype could be considered free of X. axonopodis pv. manihotis. The selection of bacterial-

blight-free cassava planting material from symptomless, resistant varieties is recommended to 

farmers to reduce disease incidence. 
 

As further element in the integrated control of CBB, the influence of intercropping cassava 

with common staple crops in Togo on cassava bacterial blight, and the effects of potassium 

(KCl) fertilizer doses of 60 and 120 kg/ha and the application of Cassia siamea mulch on 

disease development were studied under field conditions in four agro-ecological zones of 

Togo. Bacterial blight severity was significantly reduced compared to sole cassava in the 

forest highland in cassava-taro and cassava-maize intercropping at medium and high 

inoculum levels; in cassava-maize intercropping in the forest savanna transition zone at 

medium, but not at high inoculum levels (p � 0.01), and in cassava -maize intercropping in the 

wet savanna zone at high inoculum level (p � 0.05), with generally no significant negative 

effect on yield. Though significant, disease reductions by intercropping generally were low 

(6-23%). The application of potassium and mulch revealed only unclear disease reducing and 

increasing effects and can, thus, not be recommended as part of a disease control strategy. 
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Since no varieties with complete resistance had been identified among local and local 

improved varieties across ecozones in Togo, the combination of medium resistant varieties 

and an intercropping system, both adapted to the respective ecozone, is recommended to 

farmers. 

 

Since no genotypes with stable resistance were identified among local and local improved 

genotypes across ecozones in Togo, the combination of medium resistant genotypes such as 

TMS92/0429, TMS30572 and TMS91/02316 with low disease severity and high root yield 

and an intercropping system, both adapted to the respective ecozone, is recommended to 

farmers. Genotypes TMS92/0326, TMS92/0057, Cameroon and Ben86052, tolerant to the 

disease, should be avoided by farmers due to the risk of dissemination of inoculum. 

Genotypes Main27 and CVTM4, resistant, but with low root yield could be recommended to 

breeders to introduce their resistance characteristics into the breeding materials. Additionally, 

genotypes TMS30572 and TMS92/0429 should be used to introgress their higher resistance to 

the wilt symptom into genotypes with susceptibility to systemic symptoms. To identify strain 

x genotype interactions, genotypes should be screened for their reaction to inoculation with 

different pathotypes. To select genotypes which are suitable for production of healthy planting 

material, breeders should consider differences between genotypes in restriction of systemic 

infection, latent infection of stems and restriction of sprout symptoms as additional 

characteristics in selection for resistance. Intercropping cassava-maize and/or cassava-taro, 

according to the ecozone, significantly reduced disease severity compared to cassava 

monocropping in the forest highland, the wet savanna and the forest savanna transition zones, 

with generally no significant negative yield effect, and thus, can be recommended in these 

ecozones as part of an integrated control strategy for CBB. 

Key words: Cassava bacterial blight, integrated control, West Africa. 
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General introduction 

 

The cultivated forms of cassava belong to the species Manihot esculenta Crantz, which derive 

from the wild populations of Manihot esculenta subsp. flabellifolia (Olsen and Schaal, 1999). 

The crop is of Central and South America origin, from where it spread to other parts of the 

world. It was introduced to Africa in the 16th centry by Portugese traders (Jones, 1959). 

Cassava is a perennial shrub of 1 to 5 m height of the family Euphorbiaceae, cultivated mainly 

for its starchy roots. The roots are adventitious and develop to a fibrous root system. Some 

roots bulk and become storage roots, while the remaining ones are involved in water and 

nutrient absorption. Cassava has a sympodial branching. The stems are woody, cylindrical, 

and with alternating nodes and internodes. Leaves are simple, deep-lobed with palmated 

veins, and spirally arranged. Cassava is a monoecious plant, cross-pollinated by insects. The 

fruit is a globular, trilocular, dehicent capsule. 

 

Cassava is a plant of the humid tropics, with an optimal rainfall of 1000-2000 mm per year, 

however, it is drought tolerant. Cassava needs an open position with no shade and with as 

much sunlight as possible. The crop is propagated vegetatively through stem cuttings or 

stakes. Cassava can be planted on a flat ground, as well as on ridges or mounds. In Africa, it is 

usually grown in mixed stands with other crops (IITA, 1997). 

 

It is the sixth most important source of calories in the human diet, and one of the most 

important food staples in the tropics (FAO, 1999). Total world cassava production was 

estimated at 158,620,000 tons of root fresh weight (FAO, 1998), with Africa as the leading 

producing region (Hillocks, 2002). Cassava serves as primary staple food of millions of 

people in the tropics and subtropics, and is used as a carbohydrate source in animal feed. It is 

used as a raw material in the manufacture of processed food, animal feed and industrial 

products (Plucknett et al., 1998). 

 

Pests and diseases are the most important production constraints of cassava all over the world.  

The major pests of cassava include cassava green mites (Mononychellus spp.), elegant 

grasshopper (Zonocerus elegans Thunb. and Z. variegatus L.), cassava mealybug 

(Phenacoccus manihoti Matile -Ferrero) (Hillocks, 2002). Cassava is susceptible to various 

diseases of fungal, bacterial and viral origin and to nematodes (Hillocks and Wydra, 2002; 

Wydra and Verdier, 2002). Among all these diseases, cassava mosaic virus disease, cassava 
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bacterial blight, cassava root rots and cassava anthracnose disease are of major economic 

importance (CIAT, 1996; Fokunang et al., 2000). 

 

Cassava mosaic disease (CMD) is the most widespread cassava disease and commonly found 

in Africa and Southern India causing important yield losses (Geddes, 1990; Thresh et al., 

1994). The disease is caused by Begomoviruses [Geminiviridae: Geminivirus Sub-group III] 

(Otim-Nape et al., 1997) transmitted by the whitefly Bemisia tabaci Genn (Legg et al., 2001). 

CMD is characterized by a mosaic pattern of chlorotic areas of the leaves which vary in size 

depending on the severity of the disease, and stunting of the plant when severely infected.  

 

Cassava root rots are caused by various pathogens often in a mixed infection. Roots infected 

by Rosellinia necatrix are initially surface-covered with white mycelial strands, which 

subsequently turn black. The disease is common in areas where cassava is planted after forest 

clearance and in soils with a high organic matter content (Hillocks and Wydra, 2002). The 

tissue of roots infected by Sclerotium rolfsii  shows soft rotting with pale brown discoloration. 

White mycelial growth can be observed (Nwufo and Fajola, 1986). The disease is favored by 

warm, wet periods and the presence of non-decomposed organic matter. Further fungal 

pathogens causing root rots include Phytophthora drechsleri, Pythium,  and Fusarium species 

(Hillocks and Wydra, 2002). Botryodiplodia theobromae is extremely common throughout 

the tropics. Infected roots may appear healthy externally, although the skin may be somewhat 

wrinkled. The internal tissue is dark-blue discolored (Akinyele and Ikotun, 1989) and, under 

humid conditions, the development of white and subsequently dark grey mycelia occurs. 

 

Cassava anthracnose disease (CAD) caused by Colletotrichum gloeosporioides f. sp. 

manihotis Henn. (Penz) Sacc. is characterized by development of cankers on stems, branches 

and fruits, leaf spots and tip dieback (Théberge, 1985). The disease is favoured by humid, wet 

conditions (Fokunang et al., 1999). CAD incidence of up to 90% has been reported in Africa 

(Wydra and Msikita, 1998). 

 

Cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Vauterin et al., 

1995), former X. campestris pv. manihotis (Bondar, 1915), is the most important bacterial 

disease of cassava with a worldwide distribution (Lozano, 1986; Maraite, 1993). CBB was 

observed in different countries of West Africa in all ecozones, with higher site incidence of 

more than 60% (Wydra and Msikita, 1998). Recently, CBB field and plant incidences of more 
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than 90% and 70%, respectively, were reported in Togo (Banito et al., 2001). Typical 

symptoms of CBB include water-soaked angular leaf spots, blighting, wilting, defoliation, 

vascular necrosis of the stem, production of exudates on leaves, petioles or stems, and stem 

dieback (Lozano and Sequeira, 1974; Maraite and Meyer, 1975). Root yield losses of more 

than 50% due to CBB were reported (Wydra et al., 2001a; Wydra, 2002). Since chemical 

control of the disease does not exist, integrated control measures were suggested (Wydra and 

Rudolph, 1999) including the use of resistant genotypes, crop rotation, weeding and mixed 

cropping associating cassava with maize (Fanou, 1999; Fanou et al., 2001). The importance of 

CBB across ecozones and the relationship between the disease and ecological and agronomic 

characteristics have never been established in Togo. Though trials on host-plant resistance 

were initiated (Boher and Agbobli, 1992), the selection of cassava cultivars for resistance to 

CBB in various ecozones, investigations on genotypes x environment interactions (Zinsou, 

2003), on the association of cassava with other crops and the use of fertilization to control 

CBB were not conducted in Togo. 

 

Objectives of the studies 
 

While surveys on the status of cassava diseases were recently carried out in all ecozones of 

several African countries (Wydra and Msikita, 1998; Wydra and Verdier, 2002), the 

distribution of cassava diseases has never been established in all agroecological zones of 

Togo. Since the surveys on CBB by Boher and Agbobli (1992) covering some ecozones, no 

suitable control measures have been used in Togo. The present studies in chapter 1 aimed at 

determining the incidence, severity and geographic distribution of cassava diseases in the 

major ecological zones of Togo, including a systems approach to elucidate conditions that 

could influence and determine disease outbreaks. Knowledge on the virulence of strains 

deriving from different ecozones in Togo is important for screening for resistance and the 

most virulent strains occurring in an area concerned should be used for inoculation (CIAT, 

1978). Therefore, the pathological characterization of strains from Togo described in chapter 

2 is the prerequisite to select resistant cassava genotypes and recommend suitable genotypes 

to farmers. 

 

Improved and local genotypes from Togo have never been characterized for their reaction to 

bacterial blight in various agroecological zones of Togo. Therefore, in the present studies, 

selected cassava varieties from Togo and from an international collection were evaluated for 

reaction to cassava bacterial blight under field conditions in different ecozones to select 
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resistant, high yielding genotypes suitable for farmers (chapter 3). For further 

characterization, the genotypes were evaluated for their reaction to cassava bacterial blight by 

inoculation of four highly virulent X. axonopodis pv. manihotis strains from different 

geographic origins in a glasshouse experiment (chapter 4). 

 

The distribution of Xam in infected stems of field plants was reported for some varieties 

(Fanou, 1999), but never established in detail for varieties frequently grown in Togo. Also the 

incidence of infected sprouts deriving from infected cuttings has not been studied in detail. To 

develop sanitation measures in areas with a high pressure of cassava bacterial, the role of 

infected cuttings in disease dissemination has to be known. Therefore, (i) the distribution  

of Xam in different parts of stems of cassava varieties from Togo, and (ii) the incidence of 

infected sprouts, were determined in order to develop recommendations for the selection  

of healthy stem cuttings (chapter 5). 

 

Since stable resistance to cassava bacterial blight has never been reported, measures 

contributing to an integrated control of cassava bacterial blight were investigated. Generally, 

intercropping has been reported as one of the measures to reduce CBB (Nyango, 1979; Terry, 

1974). Ene (1977) reported that CBB was significantly reduced by providing shade or 

intercropping cassava with maize or melon. The use of intercropping was proposed as means 

to reduce CBB in the dry savanna (Tabot, 1995) and in the humid forest (Arene, 1976). 

Significant reduction of CBB severity in cassava intercropped with cowpea and maize 

compared to cassava monoculture were observed in the forest savanna transition zone of 

Nigeria, with the highest disease reduction of 53% in cassava-maize intercrop, without 

significant yield effect due to cropping system (Fanou, 1999). The latter author suggested that 

intercropping could have a barrier effect to inhibit the transport of the inoculum of  

X. axonopodis pv. manihotis since bacterial diseases are generally disseminated in the field by 

rainsplash and aerosols combined with wind. The effect of intercropping on CBB severity 

may vary with intercrops used and across ecozones. Therefore, as part of an integrated control 

system for cassava bacterial blight suggested by Wydra et al. (2001b; 2003), an intercropping 

system adapted to agroecological conditions should be developed in each cassava growing 

area. In Togo, studies on the use of intercropping to reduce CBB, have never been conducted. 

Thus, the effectiveness of intercropping cassava with common staple crops in controlling 

CBB under field conditions in various agroecological zones in Togo was investigated 

(chapter 6). 
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Rainsplashing is the most important mean of dissemination in the field or between fields over 

short distances (Lozano and Sequeira, 1974; Otim-Nape, 1976). Ene (1977) found that CBB 

could be controlled by the use of means such as mulching which reduce the impact of rain 

splash. Additionally, a green manure is known to release nutrients for the plant, suppress 

weeds, support root development and increase soil moisture (Maliki et al., 1997). The 

application of mulch produced significantly greater corm yield, but also showed a higher 

incidence of corm rots of taro compared to non-mulched plots (Miyasaka et al., 2001). The 

use of lower potassium rates in reducing CBB compared to those proposed by Arene and 

Odurukwe (1979), could be ideal to minimize the cost of fertilizer application. Therefore, KCl 

fertilizer doses of 60 and 120 kg/ha and the Cassia siamea mulch were tested for their effect 

on cassava bacterial blight development under field conditions in different ecozones of Togo 

(chapter 6). 
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1 Assessment of cassava diseases in Togo in relation to agronomic and environmental 

characteristics in a systems approach 

 

Abstract 

 

A cassava disease survey was conducted in four agroecological zones of Togo. High 

incidences of cassava bacterial blight (CBB), cassava mosaic disease (CMD) and 

cercosporioses were observed across ecozones. CBB field incidences of 90.5% in the dry 

savanna zone, 70% in the forest savanna transition zone, 64% in the wet savanna zone and 

52.6% in the forest zone, were recorded, with plant incidences ranging from 27.4% in the 

forest zone to 72.7% in the dry savanna zone. CMD field incidences were nearly 100% in all 

the ecozones and high plant incidences up to 86.9% were found. Cercospora leaf diseases  

– brown leaf spot (BLS), blight leaf spot (BlLS) and white leaf spot (WLS) - occurred in all 

the ecozones with incidences ranging from 68% to 100%. Negative correlations between CBB 

and CMD, and between CMD and WLS were found, while BLS and BlLS, BLS and WLS, 

and BlLS and WLS were positively correlated. Field incidence of CBB was positively 

correlated with plant age, ecozones - higher severity in dryer ecozones - (p < 0.01), and weed 

density (p < 0.05). Further significant, but negative correlations occurred between CBB and 

vegetation type in the surroundings of the field (number of trees) (p < 0.05). Cercospora 

brown leaf spot (BLS) was significantly negatively associated with the number of trees in 

surroundings of a field and the number of crops in a field (intercropping) (p < 0.05), and 

Cercospora white leaf spot with more sandy soils (p < 0.01). 

 

Key words: Cassava bacterial blight, mosaic disease, cercosporiose, incidence. 
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1.1 Introduction 

 

Cassava (Manihot esculenta) is a major staple crop in the tropics. Its production is largely 

reduced by biotic constraints (Hahn et al., 1989) among which diseases are of high 

importance. Major cassava diseases in Africa include cassava mosaic disease (CMD), cassava 

bacterial blight (CBB), cassava root and stem rots, cassava anthracnose disease (CAD) and 

Cercospora leaf diseases (Hillocks and Wydra, 2002). 

 

Cassava bacterial blight (CBB), caused by Xanthomonas axonopodis pv. manihotis (Vauterin 

et al., 1995), former Xanthomonas campestris pv. manihotis (Arthaud-Berthet & Bondar) 

Dye, is worldwide distributed (Lozano, 1986; Maraite, 1993). CBB was first recorded in 

Brazil in 1912 but has since been reported in several countries in South America (Lozano, 

1973; Lozano and Sequeira, 1974), Africa (Hahn and Williams, 1973; Maraite and Meyer, 

1975; Persley, 1977) and Asia (Leu and Chen, 1972; PANS, 1978; Booth and Lozano, 1978). 

CBB distribution was recently established in Ghana, Benin, Nigeria and Cameroon, with 

variable incidence and severity according to ecozones (Wydra and Msikita, 1998). Severe 

CBB incidence and severity were observed in all ecozones in Benin, but the disease was 

rarely found in Ghana (Wydra and Verdier, 2002). The disease was reported for the first time 

in Togo by Olympio (1977). Later investigations on the distribution of CBB in Togo revealed 

that the disease was prevalent and more severe in the forest savanna transition zone and was 

sporadically recorded in the wet savanna zone, while it was not found in the forest zone. 

However, in the region of Kara in the South part of the dry savanna zone, CBB was most 

frequently found with variable severities (Boher and Agbobli, 1992). 

 

Typical symptoms of CBB include water-soaked angular leaf spots, blighting, wilting, 

defoliation, vascular necrosis of the stem, production of exudates on leaves, petioles or stems, 

and stem dieback (Leuschner et al., 1980; Lozano, 1986; Maraite, 1993). Root yield losses 

exceeding 50% to 75% depending on the severity of the disease (Maraite, 1993; Wydra and 

Rudolph, 1999; Wydra, 2002; Wydra et al., 2003), or complete loss of yield and planting 

material in case of severe infections (Lozano and Booth, 1976; Ezelio, 1977) were reported. 

Yield losses due to CBB in Africa were estimated up to 7.5 million tons (CIAT, 1996). The 

vascular disease affects the quality and quantity of planting material (Boher and Verdier, 

1994). 
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Cassava mosaic disease (CMD) is the most widespread cassava disease and commonly found 

in Africa and Southern India causing important yield losses (Lozano et al., 1981; Geddes, 

1990; Thresh et al., 1994). The disease is caused by Begomoviruses [Geminiviridae: 

Geminivirus Sub-group III] (Leuschner et al., 1980; Théberge, 1985; Otim-Nape et al., 1997) 

transmitted by the whitefly Bemisia tabaci Genn (Agrios, 1997; Legg et al., 2001). CMD 

occurred frequently in all ecozones of Ghana and Benin, with higher incidence in all ecozones 

of Ghana (Wydra and Verdier, 2002). During the 1990s, East African cassava mosaic virus 

Uganda variant (EAMV-Ug) spread through Uganda and into the neighbouring countries of 

Kenya, Rwanda and Tanzania, causing a devastating pandemic of unusually severe cassava 

mosaic disease (Otim-Nape et al., 1997; Legg, 1999; Legg et al., 2001). Cassava mosaic 

disease was most prevalent with field and plant incidence near 100% in all ecozones of Benin, 

Cameroon and Ghana (Wydra and Msikita, 1998). Nevertheless, low average plant incidence 

was regionally observed in different ecozones in Benin and Cameroon, ranging from 29% in 

the moist savanna of Cameroon to 46% in the transition forest of Benin, whereas in most 

other regions and ecozones plant incidence was between 64% and 97% (Wydra and Msikita, 

1998). The outbreaks of CMD curbed cassava production in the Democratic Republic of 

Congo, the second largest producer in the region (FAO/GIEWS, 2001). The average annual 

yield loss caused by cassava mosaic disease to cassava production in Africa is estimated to 

50% of the total (Agrios, 1997). CMD is characterized by a mosaic pattern of chlorotic areas 

of the leaves which vary in size depending on the severity of the disease, and stunting of the 

plant when severely infected. The most promising methods of controlling CMD is by using 

resistant cultivars (Leuschner et al., 1980; Agrios, 1997; Legg et al., 2001). 

 

Cassava anthracnose disease (CAD) caused by Colletotrichum gloeosporioides f. sp. 

manihotis Henn. (Penz) Sacc. is characterized by development of cankers on stems, branches 

and fruits, leaf spots and tip dieback (Théberge, 1985; IITA, 1990). The disease is favoured 

by humid, wet conditions (Fokunang et al., 1999). The importance of the insect 

Pseudotheraptus devastans, facilitating the infection by the fungus, in the occurrence and 

spread of CAD has been established (Muimba-Kankolongo et al., 1984; Boher et al., 1983; 

Fokunang et al., 2000b). The disease has been reported from cassava in many countries of 

Latin America, Africa and Asia (CIAT, 1972; Chadrasekharan-Nair et al., 1979; Makambila, 

1994). Makambila (1979) found anthracnose disease in all cassava-growing regions in the 

People’s Republic of Congo, but disease severity varied across regions. Field and plant 

incidence of cassava anthracnose disease up to 90% and 64%, respectively, in the rainforest, 
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and 56% and 26%, respectively, in the transition forest zones were recorded in Ghana, Benin, 

Nigeria and Cameroon, while in the savanna zones the disease was less important (Wydra and 

Msikita, 1998). Recently, CAD distribution was established in all ecozones in Benin and 

Ghana in up to one third of inspected fields, but disease severity was generally low (Wydra 

and Verdier, 2002). Also, cassava anthracnose disease was generally estimated to be of minor 

importance (Lozano and Booth, 1976; Wydra and Verdier, 2002). To reduce the incidence of 

CAD, use of disease-free planting material and planting during the late season is 

recommended (Leuschner et al., 1980). 

 

Cercospora leaf diseases are essentially confined to the foliage where they cause spots and 

blight: brown leaf spot (BLS) caused by C.  [Mycosphaerella] henningsii Allesch, white leaf 

spot (WLS) caused by C. caribaea Cif. [Phaeoramularia manihotis] and blight leaf spot 

(BlLS) by C. [Mycosphaerella] vicosae Muler & Chupp (Lozano and Booth, 1976). 

Cercosporioses are widely distributed in all cassava-growing areas (Théberge, 1985), but are 

mostly of minor importance (Lozano and Booth, 1974; Silva et al., 1988; Frison and Feliu, 

1991). 

 

While surveys on the status of cassava diseases were recently carried out in all ecozones of 

several African countries (Wydra and Msikita, 1998; Wydra and Verdier, 2002), the 

distribution of cassava diseases has never been established in all agroecological zones of 

Togo. Since the surveys on CBB by Boher and Agbobli (1992) covering some ecozones, no 

suitable control measures have been used in Togo. The present studies aimed at determining 

the incidence, severity and geographic distribution of cassava diseases in the major ecological 

zones of Togo, including a systems approach to elucidate conditions that could influence and 

determine disease outbreaks. 

 

1.2 Materials and Methods 

 

Cassava is grown in four main agroecological zones in Togo: in the forest savanna transition 

zone in the South part of Togo, which is characterized by a shrubby vegetation with few trees, 

the forest zone in the South-West with a rainforest vegetation, the wet savanna in the Center 

part, characterized by more shrubby vegetation, and the dry savanna zone in the North part 

with herbaceous vegetation. The savanna transition and the forest zones are characterized by a 

sub-equatorial climate with one long rainy season (March – June), one short dry season  
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(July – August), one short rainy season (September –  October) and one long dry season 

(November – March); whereas the wet savanna and the dry savanna zones are characterized 

by a tropical climate with one long rainy season (April –  September) and one long dry season 

(October – March) (Lamouroux, 1979). The average annual rainfall is about 1,200 mm in the 

forest savanna transition zone, 1,400 mm in the forest and wet savanna zones, and 1,300 mm 

in the dry savanna zone, with the average temparature of 28 °C, 24 °C, 27 °C and 28 °C, 

respectively. Annual rainfall up to 2,027 mm in the forest, 1,810 mm in the wet savanna and 

1,651 mm in the dry savanna zones were recorded (DMN, 2001). 

 

A country-wide survey was carried out shortly after the rainy season in the first two weeks of 

November 1998. Eighty-five fields covering the four ecozones were visited: 20 fields in the 

forest savanna transition zone, 19 fields in the forest zone, 25 fields in the wet savanna zone, 

and 21 fields in the dry savanna zone. Fields of about 1/16 ha minimum size were selected 

from the cassava-growing areas at a minimum of 10 km intervals (rarely less than 10 km) 

along the main practicable roads, and CBB symptoms were evaluated on plants following two 

diagonals across the field. Fifteen plants randomly selected within the two diagonals were 

assessed for CBB incidence and severity by scoring the expression of symptoms in five 

severity classes: class 1 - no symptom, class 2 - angular leaf spots, class 3 - angular leaf spots, 

blighting, wilting, defoliation, and sometimes exudates on stems, petioles or leaves,  

class 4 - blighting of leaves, wilting, defoliation, exudates and tip dieback, class 5 - blighting 

of leaves, wilting, defoliation, exudates, abortive lateral shoot formation, stunting, complete 

dieback. The 15 plants were also assessed for cassava mosaic disease (CMD), anthracnose 

disease (CAD) and Cercospora diseases (brown leaf spot, blight leaf spot and white leaf 

spot). Cassava mosaic disease symptoms were scored in five severity classes,  

1 = no symptom, 2 = mild chlorotic patterns and slight distortion of only the base of leaves,  

3 = mosaic patterns on all leaves, leaf distortion, 4 = mosaic patterns on all leaves, leaf 

distortion, and general reduction in leaf size, 5 = leaves twisted/misshapen, and stunting of the 

whole plant. For anthracnose disease and Cercospora diseases, one severity score was given 

for all the 15 plants: 1 = not present, 2 = symptoms of low severity on plants, 3 = symptoms 

of medium severity on many plants, 4 = severe symptoms on all the plants. Additionally, 

agronomic, varietal and ecological characteristics were recorded in each field, and coded for 

statistical analysis following the method of Cardwell et al. (1997), modified by Wydra and  

Verdier (2002): 
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Vegetation type in surroundings    Soil moisture  

1 = herbaceous savanna    0 = dry 

2 = herbaceous savanna with few trees  1 = humid 

3 = forest savanna     2 = temporary waterlogged 

4 = forest      3 = waterlogged 

 

Soil texture       Type of branching 

1 = clay      0 = no branching 

2 = sandy loam     1 = late branching 

3 = loamy sand     2 = profusely branching 

4 = sand 

5 = lateritic soil      Plant age in months  

 

Crop system       Variety mixture    

1 = monoculture     1 = one cassava variety 

2 = 2 to 3 associated cultures     2 = mixture of cassava varieties 

3 = more than 3 associated cultures   Field zise  

4 = cassava plants as field border only  Estimated in ha. 

 

Ecozones      Weed score 

1 = forest      0 = no weeds  

2 = forest savanna transition    1 = very few weeds 

3 = wet savanna     2 = few weeds 

4 = dry savanna     3 = medium abundant weeds 

4 = abundant weeds 

 

For each disease surveyed, field incidence was calculated as the percent of infected fields in 

an ecozone, and plant incidence as the percent of plants showing disease symptoms. 

 

Statistical analysis 

 

Field incidence, plant incidence and severity were determined using SAS software system 

(SAS, 1990; 1997). The relationship among cassava diseases and their interactions with the 

agronomic, ecological and varietal characteristics was established. Using the SAS program, 
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canonical correlations analysis (CANCORR) was performed between disease variables  

(Y-variables) on the one hand and agronomic, ecological and varietal variables (X-variables) 

on the other hand, to determine the extent of the association between these two sets of 

variables. CANCORR is a powerful multivariate statistical tool useful in exploring 

association between two sets of related variables. The technique consists of finding several 

linear combinations of the disease variables and the same number of linear combination of the 

agronomic, ecological and varietal variables in such a way that these linear combinations best 

express the correlations between the two sets. CANCORR finds a linear combination from 

each set, called canonical variables, such that the correlation between the two canonical 

variables is maximized (SAS, 1990; Afifi and Clark, 1990). The resulting canonical 

correlations are tested for significance using F-statistic approximation. 

 

For the stepwise regression, the level of significance was set to 5%. However, higher 

probability of 6% levels were used in the preliminary analyses in order to check for and 

further examine any marginal variables and interactions that might be lost at the restrictive 

probability level of 5%. The frequency of diseased plants in severity classes was determined 

for CBB and CMD. Analysis of variance (ANOVA) of disease incidences was performed to 

compare ecozones. 

 

1.3 Results 

 

Field incidence, plant incidence and severity of cassava diseases 

 

Cassava bacterial blight was observed, in 70% of the fields visited, and occurred in all the 

four agroecological zones of Togo, but with variable severity between ecozones (Fig. 1). In 

the forest savanna transition zone, the disease was observed in 70% of fields visited, partly 

with severe symptoms. Highest symptom severities were scored at Davié, Kpogamé, Ahépé, 

Tabligbo and Tokpli. In the forest zone, the disease was found in 52.6% of fields, however 

with lower severity than in the other zones. In the wet savanna, where cassava is one of the 

main crops, CBB occurred in 64% of fields, though with less severity than in the forest 

savanna transition zone. Nevertheless, a high disease severity was recorded in Blitta, 

Sotouboua, Bassar, and in the region of Sokodé, where some fields were scored with the 

highest CBB symptom class 5. In the dry savanna zone, where cassava production is less 

important, CBB was observed in 90.5% of fields, with highest disease severities in the region 
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of Kara. From this region to the extreme North of the country, CBB was rarely found, with 

only low incidence in the region of Dapaong. The plant incidence of CBB by field was high in 

all ecozones except in the forest zone. A plant incidence of 100% was observed in six fields in 

the wet savanna zone, 5 fields in the dry savanna zone and one field in the forest savanna 

transition zone. The highest ecozonal plant incidence (percent plants infected in an ecozone) 

of CBB was recorded in the dry savanna zone (72.7%), while the lowest was recorded in the 

forest zone, with 27.4% of plants infected. The field and plant incidences were significantly 

higher in the dry savanna zone than in the other ecozones (p < 0.01), but no significant 

differences among the forest savanna transition, the forest and the wet savanna zones were 

found (Table 1). In all the ecozones, the frequency of diseased plants in severity classes 

decreased from class 2 to class 5. Systemic infection of CBB - classes 3 to 5, with most of the 

plants in class 3 - occurred in the four ecozones including the forest zone. Plants with the 

highest symptom severity of class 5 - corresponding to dieback of the plant - were recorded in 

the savanna and forest savanna transition zones - mainly in the region of Sokodé (Fig. 1), but 

no plant with dieback symptoms was observed in the forest zone. 

 

Table 1: Field and plant incidence (%), and frequency distribution in four severity classes of 

bacterial-blight infected plants (%) in four ecozones of Togo 

 

    No. of Field Plant Plants in severity classes1 [%] 

 Ecozone fields incidence incidence 2 3 4 5 

      [%] [%]         

 FST 202 703b 42.74 b 19.3 14.7 7 1.7 

 Forest 19 52.6 b 27.4 b 20.4 6.3 0.7 0 

 WS 25 64 b 45.3 b 17.6 16 8 3.7 

 DS 21 90.5 a 72.7 a 27.9 24.4 17.8 2.5 

                  

FST = forest savanna transition; WS = wet savanna; DS = dry savanna; 1Severity classes: class 2: angular leaf 
spots; class 3: angular leaf spots, blighting, wilting, defoliation, and sometimes exudates on 
stems/petioles/leaves; class 4: blighting of leaves, wilting, defoliation, exudates and tip dieback, class 5: 
blighting of leaves, wilting, defoliation, exudates, abortive lateral shoot formation, stunting, complete dieback; 
2Total number of fields visited in the ecozone; 3Percentage of infected fields in the ecozone; 4Percentage of 
infected plants from all plants sampled in the ecozone. 
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Fig. 1: Distribution of cassava bacterial blight in Togo across ecozones in severity classes 
Symptom classes: class 1 - no symptom, class 2 - angular leaf spots, class 3 - angular leaf spots, blight, wilt, 
defoliation, and sometimes exudates on stems, petioles or leaves, class 4 – blight on leaves, leaf wilt, defoliation, 
exudates and tip dieback, class 5 - blight on leaves, leaf wilt, defoliation, exudates, abortive lateral shoot 
formation, stunting, complete dieback. 
 

Cassava mosaic disease (CMD) was widely observed across all ecozones surveyed with an 

ecozonal field incidence of about 100%. A higher plant incidence of 86.9% was recorded in 

the wet savanna zone, while it was slightly lower (63.7%) in the forest savanna transition zone 

than in the other zones. A significant difference was only observed between the wet savanna 

zone and the forest savanna transition zone (p < 0.05) (Table 2). Severe CMD symptoms 

(classes 3-5) were observed in all the zones with higher severities of 44% and 37.9% recorded 

in the wet savanna and forest zones, respectively. 

 

Table 2: Field and plant incidence (%), and frequency distribution in four severity classes of 

cassava mosaic disease infected plants (%) in four ecozones of Togo 

 

Ecozone No. of Field  Plant Plants in severity classes1 [%] 

 fields incidence incidence 2 3 4 5 

    [%] [%]         

FST 202 953a 63.74 b 36.0 16.3 10.0 1.3 

Forest 19 94.7 a 78.9 ab 41.1 17.5 13.0 7.4 

WS 25 100 a 86.9 a 42.9 22.4 18.7 2.9 

DS 21 100 a 75.2 ab 52.1 18.4 4.4 0.3 

FST = forest savanna transition; WS = wet savanna; DS = dry savanna; 1Severity classes: class 2 = mild 
chlorotic patterns and slight distortion of only the base of leaves; class 3 = mosaic patterns on all leaves, leaf 
distortion; class 4 = mosaic patterns on all leaves, leaf distortion, and general reduction in leaf size;  
class 5 = leaves twisted/misshapen, and stunting of whole plant; 2Total number of fields visited in the ecozone; 
3Percentage of infected fields in the ecozone; 4Percentage of infected plants from all plants sampled in the 
ecozone. 
 

Cercospora leaf diseases occurred in all the ecozones with high field incidences (Table 3). 

BLS and BlLS were observed in all the fields visited across ecozones with an incidence 

between 90-100%. WLS was significantly lower in the forest and the wet savanna zones than 

in the other ecozones (p < 0.01), while BLS was significantly higher in the wet savanna zone 

than in the other ecozones (p < 0.05), and BlLS was significantly lower in the dry and wet 

savanna zones than in the forest and forest savanna transition zones (p < 0.001). 
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Table 3: Field incidence (%) of Cercospora leaf diseases in four ecozones of Togo 

 

  Ecozone No. of fields BLS BlLS WLS 

            

 FST 201 952 b 100 2 a 95 2 a 

 Forest 19 89.5c 100a 73.7b 

 WS 25 100a 96b 68c 

 DS 21 95.2b 95.2b 95.2a 

FST = forest savanna transition; WS = wet savanna; DS = dry savanna; BLS = brown leaf spot; BlLS = blight 
leaf spot; WLS = white leaf spot; 1Total number of fields visited in the ecozone; 2Percentage of infected fields in 
the ecozone. 
 

Relationship between cassava disease variables 

 

Negative correlations were observed between CBB and CMD as well as between CMD and 

WLS field incidences (p < 0.05) (Table 4). The severities of Cercospora leaf diseases were all 

positively correlated ( BLS/BlLS: p < 0.001; BLS/WLS: p < 0.01; BlLS/WLS  

p < 0.05). 

 

 

Table 4: Correlation matrix (Pearson correlation coefficients) between the severity scores of 

cassava diseases in 85 fields 

 

    CBB CMD BLS BlLS WLS 

 CBB 1 -0.220* -0.074 -0.072 -0.004 

 CMD  1 -0.099 0.055 -0.237* 

 BLS   1 0.403*** 0.281** 

 BlLS    1 0.226* 

  WLS     1 

CBB = cassava bacterial blight; CMD = cassava mosaic disease; BLS = brown leaf spot; BlLS = blight leaf 
spot; WLS = white leaf spot; *probability level = 0.05 ; **probability level = 0.01; ***probability  
level = 0.001. 
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Relationship between cassava diseases and the agronomic, ecological and varietal 

characteristics 

 

In the Pearson correlation analysis (Table 5), significant positive correlations occurred 

between severity of CBB and plant age, ecozones - higher severity in dryer ecozones - (p < 

0.01), and weed density (p < 0.05). Further significant, but negative correlations occurred 

between CBB and soil moisture, field size and vegetation type in surroundings of the field  

(p < 0.05). Cassava bacterial blight was more severe in savanna zones than in the forest zone. 

The highest CBB incidence and severity were recorded in the herbaceous savanna without 

trees (dry savanna zone) followed by the herbaceous savanna with few trees (wet savanna 

zone) and the forest savanna, while severity was lowest in the forest. Cassava plant age and 

ecozones had highest influence on CBB occurrence. The highest severities of CBB were 

observed in two fields of 16 years monoculture cassava in the wet savanna zone and one field 

of 18 years monoculture cassava in the dry savanna zone. For CMD a significant positive 

correlation was observed only with soil moisture (p < 0.05). Cercospora brown leaf spot 

(BLS) was significantly negatively associated with the number of trees in surroundings of a 

field and intercropping cassava with other crops (p < 0.05), and Cercospora white leaf spot 

with more sandy soils (p < 0.01), while no significant correlation occurred between 

Cercospora blight leaf spot and agronomic, ecological and varietal characteristics (Table 5). 

 

The stepwise regression analyses of cassava diseases on each of agronomic, ecological and 

varietal characteristics revealed for CBB significant positive regression coefficients for 

ecozones and plant age (p < 0.0001), indicating an increase in CBB severity in older 

plantations and in dryer ecozones (Table 6). All other variables did not meet the significance 

criterion for entering the model. The variation in CBB was largely unaccounted for by those 

two variables as the model R2 was only 25%. Cassava mosaic disease (CMD) was 

significantly related to soil moisture, vegetation type in surroundings of the fields, branching 

type (p < 0.01) and mixture of cassava varieties in a field (p < 0.05). CMD occurred more 

frequently on more profusely branching cultivars. The stepwise analysis showed a significant 

regression coefficient for variety mixture (growing of more than one cassava genotype in a 

field). The disease was favored by soil moisture, whereas trees in surroundings of a field 

seemed to have a suppressive effect on its occurrence. No other variables measured met the 

significance criterion of the model. Three variables affected significantly Cercospora brown 

leaf spot (BLS). The disease was significantly reduced with more trees in surroundings of a 
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field (p < 0.01), intercropping cassava with other crops (p < 0.05) and in sandy soils  

(p < 0.05). Cercospora brown and white leaf spots were more severe on loamy sand and 

sandy loam soils than on sandy soils (p < 0.05 and p < 0.01, respectively). Among the cassava 

diseases, CBB variation was more affected by the agronomic, ecological and varietal 

variables left in the model (R2 = 0.25) than CMD (R2 = 0.23), whereas BLS (R2 = 0.16) and 

WLS (R2 = 0.12) were less influenced, though significant, by these characteristics, indicating 

a significant contribution of these characteristics to the variation of CBB, CMD, BLS and 

WLS (Table 6). 

 

Table 5: Pearson correlation between severities of cassava diseases and the agronomic, 

ecological and varietal characteristics in 85 fields 

 

    CBB CMD BLS BlLS WLS   

 Ecozones 0.28** 0.02 -0.15 -0.16 -0.17  

 Field size -0.23* 0.12 0.04 -0.03 0.09  

 Vegetation type -0.23* -0.18 -0.23* -0.06 0.14  

 Soil texture 0.13 0.15 -0.12 -0.19 -0.28**  

 Soil moisture -0.27* 0.22* 0.01 -0.16 -0.12  

 Weed score 0.26* 0.07 0.11 0.12 0.07  

 Crop system 0.04 0.02 -0.22* 0.02 -0.17  

 Variety mixture -0.16 0.19 -0.12 0.1 -0.21  

 Branching type -0.12 0.19 -0.01 0.15 0.04  

 Plant age 0.29** -0.14 0.09 0.14 0.09  

CBB = cassava bacterial blight; CMD = cassava mosaic disease; BLS = brown leaf spot; BlLS = blight leaf spot; 
WLS = white leaf spot; *probability level = 0.05; **probability level = 0.01. 
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Table 6: Stepwise regression analysis of severities of cassava diseases on agronomic, 

ecological and varietal characteristics 

 

  Disease Variable  

Parameter 

estimate 

Standard 

error F Probability 

 CBB Intercept 0.08 0.34 0.05 0.8228 

  (R2 = 0.25) Plant age 0.10 0.02 18.91 0.0001 

   Ecozones 0.33 0.08 18.20 0.0001 

       

  Intercept 1.34 0.45 8.82 0.0039 

 CMD Soil moisture 0.26 0.09 7.62 0.0072 

 (R2 = 0.23) Vegetation type -0.38 0.11 10.99 0.0014 

   Branching type 0.66 0.22 9.01 0.0036 

    Variety mixture 0.47 0.19 5.74 0.0189 

       

   Intercept 5.22 0.62 70.22 0.0001 

 BLS Vegetation type -0.36 0.11 9.76 0.0025 

 (R2 = 0.16) Crop system -0.54 0.23 5.64 0.0199 

    Soil texture -0.19 0.09 4.58 0.0354 

       

  Intercept 3.77 0.47 64.47 0.0001 

 WLS Soil texture -0.24 0.09 7.06 0.0095 

  (R2 = 0.12) Variety mixture -0.42 0.22 3.75 0.0561 

CBB =  cassava bacterial blight; CMD = cassava mosaic disease; BLS = brown leaf spot; BlLS = blight leaf 
spot; WLS = white leaf spot. R2 is approximately the percentage of the total variance (or variation) in the 
dependent variable (each of the diseases measurements: CBB, CMD, WLS or WLS) explained by the 
independent variables entered (agronomic, ecological or varietal variables). 
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Canonical correlations between cassava disease variables and agronomic, ecological and 

varietal characteristics 

 

The canonical correlation analysis revealed further relations between the groups of variables. 

The first three canonical correlations between disease variables and agronomic, ecological 

and varietal variables were significant (p = 0.0001, p = 0.001 and p = 0.03, respectively) using 

the approximate likelihood ratio significance test (Table 7). In the first canonical variate of 

the disease variables, CMD had the highest weight of 0.86, while coefficients of BLS and 

CBB were lower. WLS had a negative coefficient of -0.25, indicating a moderately reversed 

influence on the relationship between disease and agronomic, ecological and varietal 

variables. BlLS did not considerably contribute to the relationship (coeff. = 0.001). 

Vegetation in the surroundings of a field (canonical coefficient of -0.84) had a reverse 

influence on the first canonical variate of the non-disease variables that is a disease-

decreasing effect, while branching varieties, abundance of weeds in a field, high soil moisture 

and a mixture of cassava varieties in a field had a positive influence, that is, increasing effect 

on the severity of cassava diseases (Table 7). 

The second canonical correlation between the two groups of variables were significant  

(p = 0.001), and CBB had the greatest influence (coeff. = 0.88) for the disease variables, 

while plant age (coeff. = 0.76) and ecozones (coeff. = 0.46) had the highest weight for the 

non-disease variables. In the third canonical variates of the disease variables, WLS and BlLS 

had the highest reverse direction weight (coeff. = -0.62 and coeff. = -0.47, respectively), 

whereas for the non-disease variables ecozones and soil texture had the highest positive 

influence (coeff. = 0.62 and coeff. = 0.63, respectively). These canonical correlations 

confirmed the relation between WLS and soil texture (Table 6) and newly revealed an 

importance of the variables ecozones, soil moisture, vegetation type in surroundings of a field 

(was shown for BLS also by Pearson correlation analysis) and abundance of weeds for the 

Cercospora diseases, especially WLS. 
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Table 7: Canonical correlations between cassava disease variables and agronomic, ecological 

and varietal variables, and standardized canonical coefficients for these variables 

 

    1st canvar 2nd canvar 3rd canvar 

 CBB 0.41 0.88 0.12 

 CMD 0.86 -0.30 -0.06 

 BLS 0.52 0.19 -0.26 

 BlLS 0.001 0.05 -0.47 

 WLS -0.25 0.003 -0.62 

          

 Ecozones 0.23 0.46 0.62 

 Field size 0.10 -0.12 -0.25 

 Vegetation type -0.84 -0.17 0.39 

 Soil texture 0.08 -0.12 0.63 

 Soil moisture 0.41 -0.29 0.47 

 Weed score 0.43 -0.12 -0.34 

 Crop system -0.21 -0.11 0.06 

 Variety mixture 0.29 -0.30 0.15 

 Branching type 0.65 -0.26 -0.30 

 Plant age -0.02 0.76 0.24 

 

Canonical 

correlation Standard Error F Probability 

1 0.603 0.069 2.188 0.0001 

2 0.560 0.075 1.969 0.0014 

3 0.483 0.084 1.655 0.0328 

4 0.405 0.091 1.319 0.2027 

5 0.239 0.103 0.747 0.6139 

CBB = cassava bacterial blight; CMD = cassava mosaic disease; BLS = brown leaf spot; BlLS = blight leaf 
spot; WLS = white leaf spot; 1st canvar = first canonical variate; 2nd canvar = second canonical variate;  
3rd canvar = third canonical variate. 
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1.4 Discussion 

 

A country-wide survey for cassava diseases in Togo revealed the occurrence of cassava 

diseases across ecozones. Statistical analyses indicated the relationship among these diseases, 

and between the diseases and agronomic, ecological and varietal variables. 

 

Cassava bacterial blight was observed in all the major agroecological zones in Togo. The 

incidence and severity varied across ecozones, with higher severity in the dry and wet savanna 

and in the forest savanna transition ecozones than in the forest zone. However, significant 

differences in field and plant incidences were observed only between the dry savanna and the 

other ecozones. Earlier observations in Togo reported a higher severity of the disease in the 

forest savanna transition zone than in the wet savanna zone, where it was rarely found, and 

the absence of the disease in the forest zone (Boher and Agbobli, 1992). These authors also 

reported the frequent occurrence of the disease in the region of Kara in the dry savanna zone 

which confirms our observations. Cassava bacterial blight was found in various ecozones 

across four West African countries, with generally higher incidences in the savanna than in 

the transition forest zones, and rarely or not described in the forest zones (Wydra and Msikita, 

1998; Wydra and Verdier, 2002). 

 

In the present data, differences in CBB incidences were not significant between the forest, the 

wet savanna and the forest savanna transition zones. This may be due to the generally high 

variability of survey data influenced by factors such as field history, plant age and weed 

density which are avoided in well planned field trials. The significant correlations observed 

among some of these factors and the incidence of CBB may confirm their influence on the 

disease occurrence. The low severity of the disease in the forest zone compared to the savanna 

zones may be due the vegetation type (forest) that could not provide optimal environmental 

development conditions to the disease, since great differences in night versus day 

temperatures were reported to promote the disease (Takatsu et al., 1978). Nevertheless, it has 

to be considered, that conclusions based on data from a survey of one year should be 

confirmed by studies covering several years. CBB was not observed in the rainforest of 

Cameroon (Wydra and Msikita, 1998) and in the rainforest - and the Sudan savanna - zones of 

Ghana in 1993 (Wydra and Verdier, 2002) and hardly found in the rainforest of Ghana and 

Benin in 1994, with disease incidence of 2% and 4%, respectively. Low CBB incidences of 
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8.3% and 9.8% were reported from the rainforest zones of Nigeria-West and Nigeria -East, 

respectively (Wydra and Msikita, 1998). 

 

Our results showed a high CBB incidence of 27.4% of plants as never reported before from 

the forest zones in Africa. Although the lowest average disease severity of 1.7 (data not 

shown) was recorded from this zone, systemic infections (classes 3-5) were also observed. 

Glasshouse experiments revealed that Xam survived longer under dry than moist conditions 

(Fanou et al., 2001) which may contribute to the lower disease severity observed in the forest 

zone than in the savanna zones. The increase of the disease incidence and severity observed in 

the forest zone of Togo may be due to the continuous introduction of infected planting 

material deriving from the epidemic areas, especially the forest savanna transition zone, high 

rainfall which provides high relative humidity and the deforestation due to human activities. 

These factors may offer favorable development conditions for the disease. Similar 

observations of high CBB incidence (up to 100%) and severities were reported from 

deforested high rainfall areas in Nigeria (Wydra and Verdier, 2002). Also, CBB was reported 

to occur more frequently in warm and wet weather (Leu, 1978). 

 

Higher field incidence and severity of CBB in the savanna zones than in the forest transition 

and rainforest zones was reported earlier in Congo and in Central Africa (Daniel et al., 1979, 

1981; Persley, 1979). In Benin, CBB incidence of 85% in the dry savanna zone (Wydra and 

Msikita, 1998) and 86% in the Sudan savanna zone (Wydra and Verdier, 2002) were reported. 

The incidence of the disease in the savanna transition zone may be favored by two rainfall 

seasons alternated by two dry seasons (Lamouroux, 1979) supporting a better survival of the 

pathogen (Fanou et al., 2001), and the old establishment of the pathogen in this area 

(Olympio, 1977). The fact that cassava fields were in close neighbourhood may have 

increased the transmission of the pathogen by insect vectors from infected to healthy plants 

and from diseased to healthy fields (Terry, 1974; Daniel and Boher, 1985; Fanou et al., 2001; 

Zandjanakou et al., 2001). Additionally, the possibility that the pathogen spread from one area 

to another by the use of infected planting material or cuttings (Lozano and Sequeira, 1974; 

Otim-Nape, 1976) coupled with the easy exchange of planting material between farmers may 

contribute to the dissemination of the disease. In Togo, the disease may have been introduced 

in the wet savanna and in the dry savanna by infected planting material deriving from the 

littoral zone (forest savanna transition) from which the cultivation of cassava spread all over 

the country and where the disease was reported for the first time (Olympio, 1977). Epiphytic 
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and systemic survival of the causal agent of CBB in the cuttings and plants was frequently 

demonstrated (Lozano and Sequeira, 1974; Terry et al., 1979; Fanou, 1999; Banito, this 

thesis). Nevertheless, no rigorous and suitable quarantine measures against CBB were 

introduced after the disease was reported from the last survey of Boher and Agbobli (1992). 

 

Cassava bacterial blight was positively correlated with ecozones, with decreasing incidence 

and severity from the herbaceous savanna without trees (dry savanna zone) to the herbaceous 

savanna with few trees (wet savanna zone), the forest savanna transition and to the forest 

zone. The suppressive effect of vegetation and soil moisture was confirmed by Pearson 

correlation and canonical correlations analyses. A vegetation with many trees may offer high 

humidity and shade, and low temperature fluctuations between day and night which may be 

unfavorable for the development of the disease. The role of day and night temperatures in 

CBB occurrence was established by Lozano (1986) who reported the increase of the disease 

severity by wide fluctuations in night/day temperatures during the rainy season. Also, Wydra 

and Verdier (2002) observed higher severity of CBB in old than in young plantations in Benin 

and Ghana. A long vegetative period of an infected cassava plant may provide enough time to 

Xam for its multiplication and systemic colonization, and for infection of the whole plant, 

especially in susceptible varieties. CBB was more important in weedy plantations, indicating 

that weeds could play a role in the spread of the disease. The epiphytical survival and 

multiplication of Xam on weeds have been reported (Daniel and Boher, 1985; Fanou et al., 

2001). The survival of Xam up to 60 days on some African weeds has been established 

(Fanou, 1999). Thus, weeds may constitute an inoculum source that can be transferred to 

cassava plants by insects such as Zonocerus variegatus (Terry, 1974; Fanou, 1999; 

Zandjanakou et al., 2001) and by rain splash. However, no weed has been identified as 

alternative hosts of Xam (Ikotun, 1981; Amusa et al., 1992; Fanou, 1999).  

 

Our results revealed that cassava mosaic disease incidence and severity were more prevalent 

than CBB in all ecozones of Togo as it was also reported from several countries in West and 

Central Africa (Wydra and Msikita, 1998; Wydra and Verdier, 2002). Cassava mosaic disease 

occurred in all ecozones with high incidences ranging from 63.7% to 86.9%. For CMD and 

the other cassava diseases, except CBB, no ecozonal differentiation was found. Similar 

observations were made for CMD in Benin and Ghana by Wydra and Verdier (2002) and in 

Rwanda by Legg et al. (2001), who did not find clear differences between ecozones. 

However, CMD was reported to be prevalent in the wet coastal areas in Kenya (Bock, 1994) 
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and in the rainforest of Côte d’Ivoire (Fauquet et al., 1988), and Legg et al. (2001) observed 

that CMD symptoms were more severe in the North-East administrative region than in the 

other areas surveyed in Rwanda. Our results revealed an average CMD incidence of 76%, 

while Wydra and Verdier (2002) observed incidences of 31% and 80% in Benin and Ghana, 

respectively. The differences in CMD incidence observed between Benin, Ghana and Togo 

may be due to population differences of the whitefly (B. tabaci), the vector insect of the 

disease. Legg (1999) and Legg et al. (2001) reported that the spread into Rwanda of the 

EACMV-Ug associated pandemic of severe CMD, was evident through migration of 

viruliferous whitefly populations from the neighbouring countries of Uganda and/or Tanzania, 

which had been affected in previous years. Our results revealed that CMD severity increased 

when several cassava varieties were grown in mixture in a field and in fields with abundant 

weeds as confirmed by the observations of Wydra and Verdier (2002) in Benin and Ghana. 

Fargette et al. (1994) found that CMD was less severe in old cassava plantations, while the 

present analysis did not reveal this relationship. 

 

Cercospora leaf diseases occurred in all the ecozones of Togo with high field incidences. An 

increasing susceptibility to the disease on sandy loam and loamy sand soils was observed. 

Also, few trees in the surroundings of a field and intercropping systems favored the infection 

by C. henningsii, while a mixture of cassava varieties in a field had a suppressive effect on 

white leaf spots. Lozano and Booth (1974) and Boher et al. (1978) observed that Cercospora 

brown leaf spots occurred more in dryer areas, while Wydra and Verdier (2002) found BLS 

associated with trees in the surroundings of a field. In Congo, Cercospora white leaf spots 

occurrence showed no ecological preference (Boher et al., 1978), but Lozano and Booth 

(1974) found that the disease was associated to more humid and cooler ecozones in Latin 

America. 

 

Correlation analysis on a field basis revealed significant negative correlations between CBB 

and CMD incidences and between CMD and Cercospora white leaf spots, while no 

significant correlation was found between CBB and Cercospora leaf diseases. Evaluating 

cassava genotypes for reaction to major diseases, Fokunang et al. (2000c) found that CBB and 

CMD incidence were not significantly correlated. However, significant correlation was 

observed between CBB and CMD severity in a cassava germplasm collection (Fokunang et 

al., 2000a). 
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Conclusions  

 

The cassava disease survey conducted in farmers’ fields in four agroecological zones of Togo, 

provided country-wide and detailed data on cassava bacterial blight compared to the previous 

studies on the disease, and on two other cassava diseases, cassava mosaic disease and 

cercosporioses, never reported at this level before in Togo. The present studies revealed high 

field incidences of the three diseases in all the ecozones surveyed and found correlations 

between the diseases and between these and the agronomic, ecological and varietal 

characteristics. A further survey is recommended to confirm the present data.  

 

Thus, bacterial blight is becoming more severe in all the ecozones, including the forest zone, 

where the disease was not found some years before. Therefore, measures to control cassava 

diseases must be taken to avoid possible epidemics and prevent losses of yields in farmers’ 

productions. 
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2 Pathological characterization of Xanthomonas axonopodis pv. manihotis strains from 

Togo 

 
 
Abstract 
 
The selection of resistant genotypes is a major element in the development of an integrated 

control system of CBB. Therefore, knowledge on the virulence and diversity of pathogen 

strains is important. Fourty-seven strains of Xanthomonas axonopodis pv. manihotis were 

isolated from leaf samples collected during the disease survey from the forest savanna 

transition, forest, wet savanna and dry savanna zones of Togo and tested for virulence by 

stem-inoculation of the susceptible cassava genotype Ben86052. Most (94%) strains were 

highly virulent, and generally only slight differences in virulence among strains were 

observed. Differences in virulence were independent of their origin in agroecological zones. 
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2.1 Introduction 
 
Cassava, Manihot esculenta Crantz (Euphorbiaceae), is the basic staple crop for 500 million 

people in tropical and sub-tropical parts of the world (FAO and FIAD, 2000), one of the 

major carbohydrate sources throughout Asia’s and Africa’s lowland tropics (Nilmanee, 

1986), and one of the most important crops in Africa (FAO/GIEWS, 1995). Cassava 

provides smallholder households with cash income and low-income urban consumers with 

a low-cost carbohydrate supply (Nweke, 1998). It is mainly produced in the forest savanna 

and wet savanna zones (DESA, 1998; DSID, 1999). Global production reached 167.7 

million tons in 1999 (FAO and FIAD, 2000), but generally stagnated over the last years 

(FAO, 1997; 1998). 

 

Cassava production is largely reduced due to the attack by pests and diseases (Hahn et al., 

1989; Hillocks and Wydra, 2002) among which cassava bacterial blight is of major 

importance (Wydra and Msikita, 1998). The disease is characterized by angular leaf spots 

developping into blight areas, and by a systemic infection of the stem leading to necrosis of 

vascular tissues, exudation of bacterial ooze, wilt, and tip die-back (Lozano and Sequeira, 

1974). Causal agent is Xanthomonas axonopodis pv. manihotis (Vauterin et al., 1995), 

former Xanthomonas campestris pv. manihotis (Bondar, 1915). Cassava is propagated by 

planting cuttings of stems, which are a primary source of dissemination of the pathogen 

(Lozano, 1986; Boher and Verdier, 1994). Cassava bacterial blight can be reduced through 

the use of X. axonopodis pv. manihotis-free planting material and by growing resistant 

genotypes (Cooper et al., 1997; Wydra et al., 2001; Zinsou et al., 2001; Wydra, 2002). 

However, selection of resistant genotypes needs information on the diversity and 

geographical distribution of the pathogen. 

 

Considerable variation has been described among African X. axonopodis pv. manihotis 

strains in relation to biochemical and physiological (Fessehaie, 1997; Grousson et al., 

1990), serological (Wydra et al., 1999) and genetic characters (Verdier et al., 1998; 

Assigbétsé et al., 1999). Differences in virulence among X. axonopodis pv. manihotis 

strains first described by Robbs et al. (1972), were also observed among strains from Brazil 

(Takatsu et al., 1978; Alves and Takatsu, 1984), and Africa (Maraite and Meyer, 1975; 

Wydra et al., 1999), but were never established for strains from different ecozones of Togo. 

The variability of aggressiveness among X. axonopodis pv. manihotis strains led to a wide 

range of classifications of strains into different groups of virulence, but generally no 
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correlation between aggressiveness and geographic origin have been found (Alves and 

Takatsu, 1984; Fessehaie, 1997). However, Restrepo and Verdier (1997) reported that the 

pathogen showed high levels of diversity and geographic differentiation in Colombia. 

Knowledge on the virulence of strains is important for screening for resistance, and the 

most virulent strains occurring in an area concerned should be used for inoculation (CIAT, 

1978). Therefore, the pathological characterization of strains from Togo is the prerequisite 

to select resistant cassava genotypes and recommend suitable genotypes to farmers. 

 
2.2 Materials and Methods  

 

During a field survey covering the ecozones of Togo – forest savanna transition, forest, wet 

savanna and dry savanna zones -, leaves showing early symptoms of the disease were 

sampled for isolation of bacteria from each field, where cassava bacterial blight was 

observed.  

Forty-seven X. axonopodis pv. manihotis strains – ten from the forest savanna transition, 6 

from the forest, 13 from the wet savanna and 18 from the dry savanna zones – were isolated 

on GYCA medium (glucose 5 g/l, yeast 5 g/l, CaCO3 10 g/l, agar 15 g/l) (Dye, 1962) and 

incubated at 30 °C for 48 to 72 hours. Isolated X. axonopodis pv. manihotis strains were 

conserved on GYCA medium modified with 20 g calcium carbonate in test tube slants at  

16 °C until further utilization. 

 

The virulence test was conducted in an air-conditioned glasshouse with temperatures from  

25 to 30 °C at the International Institute of Tropical Agriculture (IITA) station in Benin. 

The highly susceptible cassava genotype Ben86052 was used. Cuttings from apparently 

healthy plants were planted in pots of 16 cm diameter filled with field soil. Normal 

watering was applied during the whole experiment. One-month old vigorous plants were 

stem-inoculated with 48-hour old bacterial cultures of X. axonopodis pv. manihotis strains 

by stem puncture in the upper third of the stem using a sterile toothpick with inoculum 

taken directly from the agar plate (Maraite et al., 1981). Five plants were inoculated with 

each strain. Five control plants were stem-punctured using sterile toothpicks without 

inoculum. Symptoms were evaluated from 5 dpi every five up to 30 days on a 1 to 5 scale: 

class 1 - no symptoms, class 2 - wilting of 1 leaf, class 3 - wilting of 2 to 4 leaves, class 4 - 

wilting of more than 4 leaves, class 5 - dieback of the plant. Plant height was measured on 

the day of inoculation. 
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Statistical analysis 

 

Means of symptom classes of 5 plants were calculated for each date of evaluation for each 

strain. For the discrimination of the bacterial strains on basis of their virulence  

(Andrivon, 1993), the area under disease progress curve (AUDPC) for the whole evaluation 

period was calculated for each replication as follows (Shaner and Finney, 1977; Jeger and 

Viljanen-Rollinson, 2001): 

AUDPC = ∑i[(DSi + DSi-1)*(ti – ti-1)]/2 

where “i” ∈ {5; 10; 15; 20; 25; 30} are the days after inoculation, “DS” is the disease score 

using the severity scale of 1 to 5 as described above, and “t” represents the days  

post- inoculation. To avoid the area due to the note 1 (class1) which is supposed to be 

“zero”, each “DS” value was transformed by subtracting “one” before integrating into the 

above formula. AUDPC values were log-transformed to stabilize variances and the analysis 

of variance was performed using the General Linear Model (GLM) of SAS software  

(SAS, 1990; 1997). The Tukey test was performed to compare the means of AUDPC values 

(Danielie, 1975). Pearson correlation analysis between AUDPC and plant height at 

inoculation time was performed to analyse a possible relationship between plant height at 

time of inoculation and symptom development. 

 

2.3 Results 

 

Fourty-seven strains of Xanthomonas axonopodis pv. manihotis were isolated from leaf 

samples from the forest savanna transition, forest, wet savanna and dry savanna zones and 

tested for virulence by stem-inoculation of the susceptible cassava genotype Ben86052. 

Symptoms commenced about three to five days post inoculation (dpi) with an olive-green 

colored water-soaked spot developed first at the inoculation point, followed by the 

appearance of yellowish to yellow brown exudates on the inoculation point and along the 

stem in case of severe infections. Subsequently, wilting of leaves and defoliation occurred - 

before 10 dpi with highly virulent strains -, and, finally, dieback of the apex and plant death 

in case of highly virulent strains. 

 

Only slight differences in virulence among strains were observed. At 15 dpi, 41 strains 

were scored higher than a mean symptom note of 2.2 (Fig. 1 A), of which 16 strains were 

recorded with a note ≥ 3, at 20 dpi 37 strains were scored higher than note 3 and 14 strains 
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were recorded with a note ≥ 4 (Fig. 1 B). At 25 dpi, 19 strains had caused dieback of at 

least 2 plants, while 20 strains had caused dieback of 5 plants (Fig. 1 C). At 30 dpi, 44 

strains were scored higher than 4, of which 8 strains had caused dieback of at least 4 plants 

and 31 strains had caused dieback of all 5 plants (Fig. 1 D). 
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Fig. 1: Frequency distribution of strains from different origin in Togo over symptom 

classes at 15, 20, 25 and 30 days after stem inoculation under glasshouse conditions 

Symptom classes: class 1: no symptoms, class 2: wilting of 1 leaf, class 3: wilting of 2 to 4 leaves,  
class 4: wilting of more than 4 leaves, class 5: dieback of the plant. 
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Statistic Analysis Of Variance (ANOVA) also showed slight significant differences among 

strains (p < 0.05) (Table 1). Five virulence classes were formed according to the statistical 

analysis –  class 5 = very highly virulent (“a”, “ab”, AUDPC 55.0–62.0), with 32% of 

strains; class 4 = highly virulent (“abc”, AUDPC 35.5-54.9) with 62% of strains; class 3 = 

virulent (“bc”, AUDPC 26.4-35.4) with 2% of strains; class 2 = lowly virulent (“c”, 

AUDPC 23.8–26.3) with 4% of strains; and class 1 = without symptoms (control). 
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Table 1: Virulence expressed as area under disease progress curve (AUDPC)  
of X. axonopodis pv. manihotis strains on cassava genotype Ben86052 in the 
glasshouse after stem inoculation 
 

  Code of strain Ecozone AUDPC Tukey test Virulence class 
 TGXAM/98/57 Wet savanna 62.0±4.11 a 5 
 TGXAM/98/3 FST 60.0±4.7 ab 5 
 TGXAM/98/12 FST 59.0±3.7 ab 5 
 TGXAM/98/38 Dry savanna 58.8±4.7 ab 5 
 TGXAM/98/11 FST 57.5±4.8 ab 5 
 TGXAM/98/13 FST 57.5±4.8 ab 5 
 TGXAM/98/39 Dry savanna 57.5±6.0 ab 5 
 TGXAM/98/9 FST 56.9±8.7 ab 5 
 TGXAM/98/41 Dry savanna 56.7±7.3 ab 5 
 TGXAM/98/14 Forest 55.0±3.2 ab 5 
 TGXAM/98/15 Forest 55.0±3.5 ab 5 
 TGXAM/98/23 Forest 55.0±4.2 ab 5 
 TGXAM/98/35 Dry savanna 55.0±5.0 ab 5 
 TGXAM/98/40 Dry savanna 55.0±2.7 ab 5 
 TGXAM/98/59 FST 55.0±5.0 ab 5 
 TGXAM/98/28 Wet savanna 53.3±4.4 abc 4 
 TGXAM/98/42 Dry savanna 53.3±4.4 abc 4 
 TGXAM/98/44 Dry savanna 53.0±3.7 abc 4 
 TGXAM/98/48 Dry savanna 53.0±5.0 abc 4 
 TGXAM/98/16 Forest 52.5±2.5 abc 4 
 TGXAM/98/29 Wet savanna 52.5±8.3 abc 4 
 TGXAM/98/31 Wet savanna 52.5±2.5 abc 4 
 TGXAM/98/34 Wet savanna 52.5±4.8 abc 4 
 TGXAM/98/51 Dry savanna 51.7±6.7 abc 4 
 TGXAM/98/56 Wet savanna 51.0±2.4 abc 4 
 TGXAM/98/49 Dry savanna 50.0±5.2 abc 4 
 TGXAM/98/54 Wet savanna 50.0±4.5 abc 4 
 TGXAM/98/1 FST 49.0±3.7 abc 4 
 TGXAM/98/47 Dry savanna 48.8±5.5 abc 4 
 TGXAM/98/18 Forest 48.1±7.7 abc 4 
 TGXAM/98/26 Wet savanna 48.1±6.9 abc 4 
 TGXAM/98/8 FST 48.0±3.4 abc 4 
 TGXAM/98/27 Wet savanna 48.0±5.1 abc 4 
 TGXAM/98/37 Dry savanna 48.0±3.0 abc 4 
 TGXAM/98/6 FST 47.5±7.5 abc 4 
 TGXAM/98/45 Dry savanna 47.5±5.5 abc 4 
 TGXAM/98/25 Wet savanna 44.4±4.6 abc 4 
 TGXAM/98/53 Dry savanna 44.4±8.6 abc 4 
 TGXAM/98/36 Dry savanna 42.5±4.3 abc 4 
 TGXAM/98/19 Forest 40.0±3.4 abc 4 
 TGXAM/98/30 Wet savanna 39.4±7.8 abc 4 
 TGXAM/98/50 Dry savanna 39.2±8.2 abc 4 
 TGXAM/98/24 Wet savanna 36.9±2.4 abc 4 
 TGXAM/98/46 Dry savanna 35.5±6.7 abc 4 
 TGXAM/98/43 Dry savanna 31.9±4.5 bc 3 
 TGXAM/98/55 Wet savanna 26.3±4.1 c 2 
 TGXAM/98/7 FST 23.8±5.9 c 2 
 Control  0.0 d 1 
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1Standard error; AUDPC = area under disease progress curve (mean of five plants and standard error); FST = 
forest savanna transition; Class 1 = without symptom (control); class 2 = lowly virulent; class 3 = virulent; 
class 4 = highly virulent; class 5 = very highly virulent. 
 
 
Regarding ecozonal distribution, 94% of the strains across ecozones were highly or very 

highly virulent (classes 4 and 5) (Table 2), with 100% of the strains from the forest zone 

belonging to these classes. No correlation was found between plant height on the day of 

inoculation and virulence of X. axonopodis pv. manihotis strains (coeff. –0.11, p = 0.12). 

 
 
Table 2: Frequency distribution of X. axonopodis pv. manihotis strains from four ecozones 
in virulence classes 
 

Ecozone Class 1 Class 2 Class 3 Class 4 Class 5 

FST 0 1 0 3 6 

Forest 0 0 0 3 3 

Wet savanna 0 1 0 11 1 

Dry savanna 0 0 1 12 5 
  0% 4% 2% 62% 32% 
Class 1 = without symptom (control); class 2 = lowly virulent; class 3 = virulent; class 4 = highly virulent;  
class 5 = very highly virulent; FST = forest savanna transition. 
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2.4 Discussion 

 

The virulence test of X. axonopodis pv. manihotis strains on the susceptible cassava 

genotype Ben86052 revealed that most of the strains were highly virulent. Only slight 

differences in virulence among the strains were observed in all ecozones, indicating low 

variability in their virulence characters. Although the lowest cassava bacterial blight 

severity and field incidence were recorded in the forest ecozone (Banito et al., 2002), all 

strains collected in this zone were highly virulent. The virulence of the pathogen may be 

masked under field conditions in the forest zone due to favorable growing conditions for 

the plant. These strains were probably newly introduced to the forest zone, since cassava 

bacterial blight had not been reported from the last disease survey in this zone (Boher and 

Agbobli, 1992). Although the pathogen did not cause high disease severity in the forest 

zone, it had maintained its virulence. Thus, the virulence of strains was independent of 

ecozones, although differences in disease incidence and severities had been observed 

during a survey (Banito et al., 2002). Genetic studies using restriction fragment length 

polymorphism (RFLP) on 218 X. axonopodis pv. manihotis strains from Togo including 

strains used in the present studies revealed genetic diversities among strains and nine 

different haplotypes were defined. Cluster analysis on genetic characteristics of strains 

revealed the existence of 7 groups at 70% similarity (Mosquera et al., unpublished). 

 

An ecozonal differentiation in the occurrence of highly virulent strains was also not 

observed among strains from Ghana, Benin, Nigeria, Cameroon and Uganda by Wydra et 

al. (1999). Verdier et al. (1993, 1994) reported differences in the speed of symptom 

development among X. axonopodis pv. manihotis strains, suggesting variations in 

aggressiveness. The use of five cultivars allowed them to define 10 pathotypes among 91  

X. axonopodis pv. manihotis strains in Venezuela (Verdier et al., 1998). Variation in 

virulence has also been found among X. axonopodis pv. manihotis strains from Brazil 

(Takatsu et al., 1978; Alves and Takatsu, 1984), from Africa (Maraite and Meyer, 1975; 

Grousson et al., 1990; Fessehaie, 1997), and from Africa, Asia and South America (Maraite 

et al., 1981). X. axonopodis pv. manihotis strains collected from different geographic 

regions in Africa revealed great differences in virulence as well as in physiological, 

biochemical and serological features (Wydra et al., 1999), but the latter characteristics were 

not correlated with virulence. Mutations changing virulence have been considered to occur 

readily among Xanthomonas species (Stolp et al., 1965), and may explain not only the high 

virulence of the strains from the dry and wet savanna zones, but also the recent epidemics 
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in these ecozones as reported in several cassava-growing regions of West Africa (Wydra 

and Verdier, 2002). 

 

Our studies aimed to select virulent strains by testing their aggressiveness on one 

susceptible genotype. Nevertheless, the pathogenic variability found among the highly 

virulent strains has to be tested with various cultivars to investigate the presence of strain x 

genotype interactions, which were observed with strains from other African origin (Zinsou 

et al., 2002) and, thus, to provide a representative set of strains for the selection of resistant 

genotypes (Verdier et al., 1998). 

 

The stem puncture inoculation allowed the discrimination among X. axonopodis pv. 

manihotis strains. Stem puncture inoculation and leaf inoculation methods were used for 

pathogenicity tests of X. axonopodis pv. manihotis strains (Maraite et al., 1981; Restrepo et 

al., 2000). The stem inoculation technique was reported as a suitable method for resistance 

screening of cassava cultivars for bacterial blight resistance (Restrepo et al., 2000), and for 

clear differentiation among cultivars and X. axonopodis pv. manihotis strains (Maraite et 

al., 1981). Nevertheless, additional leaf inoculation experiments may reveal more 

pathogenic diversity and mechanisms of resistance of the plant (Zinsou et al., 2002).  

 

The virulence classification of the strains based on the statistical analysis of the area under 

the disease progress curve (AUDPC) provided similar results as the classification based on 

the time of symptom development on the plants (Banito, 2001), developped by Wydra et al. 

(1999). A similar, but less exact classification method, with evaluation of disease symptom 

classes 1, 2 and 4 weeks after inoculation was used by Restrepo and Verdier (1997) to 

evaluate the virulence of X. axonopodis pv. manihotis strains from Latin America. Thus, 

the inoculation of few strains –  from different ecozones, in case that virulence determinants 

might differ - selected among the highly virulent group is recommended to test genotypes 

for resistance to cassava bacterial blight. 
 

During a cassava diseases survey across ecozones in Togo (Banito et al., 2001), generally, 

higher cassava bacterial blight incidences and severities were observed over all ecozones 

compared to the results of a previous survey conducted by Boher and Agbobli (1992). 

Besides the possible spread of the pathogen by the exchange and use of infected planting 

material all over the cassava growing areas and possible changes in environmental 

conditions due to the deforestation, the present results suggest that an increase of pathogen 

aggressiveness over years could be responsible for the increase of disease severity. 
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3 Characterization of resistance and tolerance of cassava to bacterial blight based on 

genotype x environment interaction studies 

 
Abstract 
 
To monitor the resistance characteristics of cassava genotypes to CBB infection under field 

conditions, 22 improved and local genotypes from Togo were screened under natural 

infection and after spray-inoculation with Xanthomonas axonopodis pv. manihotis in the 

forest and forest savanna transition zones in years 1998 and 1999, and in the wet savanna 

zone in year 1999. High genotype x environment interactions were observed, and no genotype 

with disease resistance in the three sites in the forest savanna transition and forest zones over 

a two year-experiments, and wet savanna zone in a one-season trial, was found. However, 

genotypes CVTM4, Main27, TMS30572 and TMS92/0429 were resistant in at least one 

environment and medium resistant in other environments, and TMS91/02316 was medium 

resistant across environments, while Lagos, Toma289 and Toma378 were over all susceptible. 

Cassava bacterial blight severity was significantly negatively correlated to cassava root yield 

in inoculated plots in the site in the forest zone in 1998 and 1999, and in non-inoculated plots 

in the forest savanna transition zone and the wet savanna zone in 1998 and 1999, respectively.  

 

Analysing the development of the different symptom types by genotypes, generally spot and 

blight symptom development was positively correlated, while there was no relation, or a 

negative correlation between leaf symptoms and the wilt symptom development. The same 

oberservation was made, when data were analysed across genotypes and environments. 

Significant negative correlations were observed between blight and wilt symptoms, and root 

yield in each of the three ecozones, and between spots and root yield in the forest zone.
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3.1 Introduction 
 
Cassava (Manihot esculenta Crantz) is a major food crop in sub-Saharan Africa (Nweke, 

1996) and also serves as raw material for local industries (Onabolu and Bokanga, 1998; 

Sanni et al., 1998). Cassava was the first crop in terms of production among the major 

staple crops in 1999 in Togo, followed by yam and maize (DSID, 1999). However, the 

yield was constantly below the African average yield  of 8.2-8.3 t/ha (FAO, 1997; 1998), 

and the production generally stagnated over the last years (DESA, 1998; DSID, 1999). 

 

Cassava bacterial blight caused by Xanthomonas axonopodis pv. manihotis (Vauterin et al., 

1995), former X. campestris pv. manihotis (Bondar, 1915) is one of the most severe 

diseases of cassava in South America and Africa (Lozano, 1986) and an epidemic disease 

distributed by infected cuttings (Lozano, 1986; Boher and Verdier, 1994). The disease is 

characterized by symptoms comprising water-soaked angular leaf spots, leaf blight and 

wilt, defoliation, exudation on stems, petioles and leaves, vascular necrosis and dieback. 

Cassava yield losses of more than 50% due to CBB were reported (Fanou, 1999; Wydra 

and Rudolph, 1999). 

 

Due to the long growth cycle and the vegetative propagation of cassava, the most 

appropriate approach to control CBB is by growing resistant cultivars (Lozano, 1973; 

Wydra et al., 2001), as element of an integrated control system (Wydra and Rudolph, 

1999). Careful selection of cassava bacterial blight-free cassava stakes (Lozano and 

Laberry, 1982; Lozano, 1986), and the use of planting material derived from tissue cultures 

to establish cassava plantations for production of propagation material may support disease 

control by resistant genotypes and reduce the occurrence of CBB (Kpémoua et al., 2001). 

But, since most cassava growers are small farmers (Phillips, 1974) with traditional 

technical know-how and few economic resources (Lozano and Laberry, 1982), there is 

usually no alternative to the production of own planting material. In this situation, use of 

resistant genotypes is the most important control measure. Additionally, quarantine 

regulations to avoid the introduction of the pathogen into bacterial-blight free areas are 

indispensable (Elango and Lozano, 1981; Lozano, 1986). The movement of planting 

material should be controlled and cuttings for distribution be tested by available pathogen 

isolation and molecular detection techniques (Verdier et al., 1998; Ojeda and Verdier, 

2000). 
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Genotypes with different levels of resistance were reported (Fanou, 1999; Fokunang et al., 

2000b; Restrepo et al., 2000b; Zinsou et al., 2003a). Defense mechanisms against  

X. axonopodis pv. manihotis were observed in the vascular system of stems of infected 

cassava plants by Kpémoua et al. (1996), with differential reactions comparing susceptible 

and resistant cultivars. In the leaf mesophyll of resistant cultivars no mechanisms limiting 

bacterial multiplication were found by some authors (Boher and Verdier, 1994), and after 

leaf inoculation by wounding of four cassava genotypes, Restrepo et al. (2000a) could not 

correlate leaf reactions with resistance. Also, after leaf infiltration with Xam suspensions at 

higher concentrations ( � 108 cells.ml-1), no significant differences in bacterial populations at 

leaf level were observed between resistant and susceptible genotypes (Flood et al., 1995). 

However, Zinsou et al. (2001) clearly demonstrated differences in symptom development 

and bacterial multiplication on leaf level comparing resistant, medium resistant and 

susceptible cultivars, using lower inoculum levels. Also Wydra et al. (2003b) observed 

differences in cell wall pectins of leaves with different levels of resistance. 

 

Resistance in M. esculenta introgressed from a wild relative, M. glaziovii, is polygenic and 

additively inherited. Accessions for genetic diversity and resistance to cassava bacterial 

blight revealed a high level of polymorphism among cassava genotypes (Sãnchez et al., 

1999). Jorge et al. (2000) identified six regions of the cassava genome controlling 

resistance to X. axonopodis pv. manihotis strains, confirming the polygenic character of the 

resistance. A specific interaction between the cassava plant and the pathogen was 

suggested, and resistance markers specific for African strains were recently identified 

(Wydra et al., 2003b). 

 
Screening cassava genotypes for resistance to cassava bacterial blight was performed by 

observing symptom development in the field under strong disease pressure over several 

crop cycles (Boher and Verdier, 1994). Under controlled conditions, differentiation 

between susceptible and resistant genotypes after leaf infiltration was observed only at an 

incoculum concentration of lower than 102 cfu ml-1 (Flood et al., 1995). On the contrary, 

Zinsou et al. (2003b) identified an inoculum concentration of 105 cfu ml-1 as most 

differentiating for screening of genotypes for resistance. Zinsou (2002) described 

differences in spot symptom development comparing genotypes of different resistance after 

leaf inoculation under controlled conditions. Genotypes also differed in symptom 

development with respect to leaf- and stem inoculation, suggesting different mechanisms of 

resistance in different parts of the cassava plant. Differences in symptom type development 
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of genotypes have not been investigated unter field conditions in various environments. 

 

Evaluation of a cassava germplasm collection for reaction to three major diseases under 

natural infection revealed that cassava tuber number and tuber dry matter were significantly 

negatively correlated with cassava bacterial blight, African cassava mosaic disease and 

cassava anthracnose disease severity (Fokunang, 2000a). Among twenty-three cassava 

genotypes screened for resistance to cassava bacterial blight in three ecozones, no cassava 

genotype with complete field resistance was found, however, differences in reaction to the 

disease allowed to classify the cultivars into susceptible, moderately resistant and resistant 

groups (Fanou, 1999). The genotypes Ben86052 and I91/02322 were among the susceptible 

ones, while I89/02078 and TMS30572 were overall resistant. The latter author observed 

that the CBB-susceptible genotypes TME1 and Ben86052 yielded high root weight, 

whereas the most resistant genotype I89/02078 had the lowest root weight. It was suggested 

that a high genotype x environment interaction and tolerance characteristics in some 

cultivars play a role in disease development and root formation (Wydra, 2002). Also Zinsou 

et al. (2003a) observed high genotype x environment interactions among local and 

improved genotypes from Benin. 

 

Improved and local genotypes from Togo have never been characterized for their reaction 

to bacterial blight infection in various agroecological zones of Togo. Therefore, in the 

present studies selected cassava genotypes from Togo and from an international collection 

were evaluated for their reaction to cassava bacterial blight under field conditions in the 

forest savanna transition, forest and wet savanna zones to select resistant, high yielding 

genotypes suitable for farmers. 

 

3.2 Materials and methods  

 

Experimental sites 

Field experiments were conducted at two sites in the forest savanna transition and forest 

zones in 1998-1999, at Davié and Adéta [Institut Togolais de Recherche Agronomique 

(ITRA) stations], respectively, and in three sites in the forest savanna transition, forest and 

wet savanna zones in 1999-2000, at Davié, Adéta and Sotouboua (ITRA stations), 

respectively, in Togo. The trials were not conducted in year 1998 at Sotouboua in the wet 

savanna zone due to the lack of planting material. The sites are typical for their respective 

ecozones. The forest savanna transition zone (littoral zone) in the South part of the country, 
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is characterized by a shrubby vegetation with few trees, the forest zone in the South-West is 

predominated by rainforest vegetation, and the wet savanna in the Center part of the 

country is characterized by dominance of a shrubby vegetation. The savanna transition and 

forest zones are characterized by a sub-equatorial climate with one long rainy season 

(March – June), one short dry season (July-August), one short rainy season (September –  

October) and one long dry season (November – March). The wet savanna is characterized 

by a tropical climate with one long rainy season (April – September) and one long dry 

season (October – March) (Lamouroux, 1979). The average annual rainfall is about 1200 

mm in the forest savanna transition zone and 1400 mm in the forest and wet savanna zones, 

with average temperatures of 28 °C, 24 °C and 27 °C, respectively. However, annual 

rainfall up to 2027 mm in the forest zone and 1810 mm in the wet savanna zone were 

recorded (DMN, 2001). In years 1998, 1999 and 2000, the average rainfall was 855.4 mm, 

1,204.8 and 713.0 mm in the forest savanna transition zone, 1,018.2 mm, 864.5 mm and 

1,483.1 mm in the forest zone and 1,371.0 mm, 1,309.1 mm and 1,309.8 mm in the wet 

savanna zone, spread over 9 months in the first two ecozones and over 7 months in the 

latter one.  

 

Planting materials 

Cuttings from the 27 local, Togolese and improved cassava genotypes Fétonégbodji, 

Nakoko Lagos, Cameroon, Tuaka, Gbazékouté, Ankra (local), and Toma378, Ben86052, 

TMS92/0057, Toma219, TMS30572, Toma289, TMS92/0343, 312-524, TMS91/02316, 

TMS4(2)1425, CVTM4, TMS92/0326, Toma159, TMS92/0067, Main27, TMS91/02322, 

TMSCBS10(80411), Boram, Sorad and TMS92/0429 (improved by IITA) derived from 

plants apparently free of CBB symptoms were received from ITRA Lomé/Togo, or farmers 

fields, and Ben86052 and TMS30572, the susceptible and resistant standard genotypes, 

respectively, from IITA (International Institute of Tropical Agriculture) Benin-Station. Due 

to insufficient of planting material 22 of the 27 genotypes were tested in all ecozones, 

genotype TMSCBS10(80411) was used instead of Toma159 in the wet savannazone, and 

genotype Toma219 was replaced by genotypes Boram and Sorad in the forest and wet 

savanna zones, respectively. 

 

Experimental design, planting and maintenance 

The trial set up was an augmented complete randomized block design with three 

replications of ten plots. This design is used for the assessment of a large number of 



Genotype x environment interactions 57 

genotypes when a randomised complete block design is not possible due to availability of 

land and lack of planting material. The concept is to establish a standard replication design 

using check genotypes. Each replicate forms a complete block of the standard design. 

Additional unassigned plots are created within each replicate, and non-replicated genotypes 

are assigned to these plots in the form of an incomplete block design (Scott and Milliken, 

1993; Wolfinger et al., 1997). 

 

The augmented design avoids the space-consuming repetition of all the 24 genotypes. 

Cassava genotypes Ben86052, Gbazékouté and TMS30572 were used as checks because of 

their susceptible and resistant - the latter genotype - reaction to cassava bacterial blight, and 

their general good performance (Boher and Agbobli, 1992; Akparobi et al., 1998). These 

were replicated throughout the blocks, with each block consisting of the three checks and 7 

other genotypes (non-replicated). Each plot (20 m2) representing one genotype consisted of 

two rows of 10 m, at a spacing of 1 m, with 1.5 m between plots. Cassava stem cuttings of 

20 cm length of each genotype were single planted at a spacing of 1 x 1 m on well prepared 

flat ground in June. Each plot with an area of 20 m2 (10 m length and 2 m width) consisted 

of 2 rows of 10 plants. The control plots were separated by a screen of maize plants of 5 m 

from the inoculated plots. Weeding was conducted, when necessary, and no additional 

watering was applied. 

 

Bacterial suspension and spray inoculation 

 

A 48-hour old culture of X. axonopodis pv. manihotis strain X27 from Togo produced on 

GYCA (glucose 5 g/l, yeast 5 g/l CaCO3 10 g/l, agar 15 g/l) medium (Dye, 1962) was 

harvested from agar plates using 0.01 M MgSO4 solution, diluted to 107 cfu/ml and used for 

inoculation. One-month old cassava plants were inoculated with the bacterial suspension by 

spraying the abaxial surface of leaves using a motorized sprayer. A total of three 

inoculations were performed at 3-weekly intervals. 

 

Symptom assessment  

 
Disease symptoms were assessed 3 weeks after each of the 3 inoculations and during the 

six and the twelve months harvests on ten plants (five plants at harvesting) randomly 

selected in each plot by counting leaves bearing angular leaf spots or blight or 

wilted/dropped leaves and the number of shoot tips with dieback among the total shoot tips. 
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When leaves showed more than one symptom type, they were recorded under the more 

severe symptom type. The percentages of leaves with spots, with blight, wilted/dropped 

leaves and shoots with dieback were calculated for each plant. The severity index (Si) was 

calculated for each plant at each evaluation date as follows: 

Si = (1xS + 2xB + 1xW + 2xD)/6 

where S, B, W and D represent the percentage of leaves with spots, blight, wilt and shoots 

with dieback, respectively. The weight attributed to the symptoms blight and dieback is an 

estimation resulting from regression analysis of symptom and plant growth data, revealing 

blight as most important factor influencing root yield, and dieback with highest influence 

on overall plant growth (leaf and stem weight) (unpublished data). The standardized area 

under the severity index progress curve (AUSiPC) was calculated for each plant at six 

evaluation dates, by the trapezoidal integration (Shaner and Finney, 1977; Jeger and 

Viljanen-Rollinson, 2001) according to ecozones. In the forest and forest savanna transition 

zones: 

AUSiPC = [(Si1+Si2)x21/2 + (Si2+Si3)x21/2 + (Si3+Si4)x60/2 + (Si5+Si6)x120/2]/275 

In the wet savanna zone: 

AUSiPC = [(Si1+Si2)x21/2 + (Si2+Si3)x21/2 + (Si3+Si4)x30/2 + (Si5+Si6)x90/2]/215 

where Si1, Si2, Si3, Si4, Si5 and Si6 represent the severity index at the evaluation dates 1, 

2, 3, 4, 5 and 6, respectively. Si4 and Si5 correspond to severity index during the dry season 

and are equal to zero. The area under the severity index progress curve in days over the 

growing period was divided by the evaluation period of 275 or 215 days, corresponding to 

365 days minus the dry season period of 90 days in the forest and forest savanna transition 

zones and 150 days in the wet savanna zone, respectively, in order to receive the 

standardized AUSiPC comparable between ecozones. The AUSiPC values of each 

symptom type were also calculated. 

 

Harvest 

 

Cassava roots were harvested at 12 months after planting by uprooting 5 plants randomly 

selected per plot. All the roots of each plot were mixed and a sub-sample was taken, cut 

into small pieces, weighed and dried in an oven at 105 °C for 72 hours for dry weight 

determination. 
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Statistical analysis 

 

Standardized area under severity index progress curve (AUSiPC) and dry root weight 

values were log-transformed to stabilize variances and the analysis was performed using the 

Linear Mixed Model ANOVA (Harville, 1988; Bernardo, 1994; Tempelman and Gianola, 

1996). Values and standard errors in tables are the real, non-transformed values. The 

analytical procedures for augmented design using mixed models as implemented in the 

SAS software (SAS, 1990; 1997) were performed as described by Korie and Okechukwu 

(2000). The analysis involves estimation of block effects and plot error using replicated 

checks. In each environment, the percentages of mean AUSiPCs of genotypes were 

calculated considering the highest AUSiPC value as 100%. The genotypes were classified 

into resistant (R, AUSiPC < 50%), medium resistant (MR, AUSiPC 50%-74.9%) and 

susceptible (S, AUSiPC 75%-100%) groups. The two-dimensional biplot of principal 

component analysis on genotypes was performed to show grouping of genotypes and 

genotype x environment interactions based on symptom severity, severity of symptom 

types and root yield data. Pearson correlation analysis using 22 genotypes grown in all 

environments including inoculated and non-inoculated treatments was performed to 

establish the relationship between symptom severity (AUSiPC) and cassava dry root 

weight, between severity values of different symptom types, and between severity of 

symptom types and dry root weight. Regression analysis of symptom severity (AUSiPC) 

and root dry weight was performed with of 4 genotypes selected for their high yield in spite 

of high disease severity.  

 

3.3 Results 

 

The disease developed during the rainy season, with a peak at 4 months after planting  

(Fig. 1). Symptoms disappeared during the dry season and reappeared in the rainy season of 

the following year. In the inoculated plots, the severity index was high from the second 

month after planting, while it was close to zero during the first 3 months after planting in  

non-inoculated plots. Genotype Ben86052 developped a higher severity index than 

genotypes Gbazékouté and TMS30572 in the inoculated plots, while the first 2 genotypes 

did not differ in the non-inoculated plots. 
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Fig. 1: Development of severity index in the susceptible genotypes Ben86052 and 

Gbazékouté, and the resistant genotype TMS30572 in non-inoculated (A) and 

inoculated (B) treatments in the forest zone in year 1998 (dates of inoculation: 30, 51 

and 72 days after planting) 
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Comparing the reaction of 27 genotypes, of which 22 were repeated in each environment in 

inoculated plots in three sites in three ecozones over two years the highest disease severity 

expressed as standardized area under severity index progress curve (AUSiPC) was recorded 

in the forest zone (total AUSiPC 166.8), with a range of 4.1-9.1 in year 1999 and the lowest 

in the forest savanna transition zone (total AUSiPC 139.3), with a range of 4.4-8.0 in 1998 

(Table 1). In the non-inoculated plots, the highest total AUSiPC of 146.5 was recorded in 

the forest zone, with a range of 3.9-8.2 (data not shown, Annex 1). However, generally, the 

AUSiPC values in the non-inoculated plots did not differ sufficiently to classify the 

genotypes. Therefore, the classification was based on the AUSiPC values of the inoculated 

plots. 

 

The disease severity of the total of 27 genotypes varied between ecozones and years, with 

lowest AUSiPC for genotypes CVTM4 and TMS30572 in 1998, and Main27 and 

TMS30572 in 1999 in the forest zone, TMS30572 and TMS92/0429 in 1998, and 

TMS92/0429 and TMS91/02316 in 1999 in the forest savanna transition zone, and 

genotypes TMS92/0429 and Main27 in the wet savanna zone. The highest disease 

severities were recorded in genotypes Lagos and Toma289 in 1998 and Nakoko and 

TMS4(2)1425 in 1999 in the forest zone, Lagos and Gbazékouté in 1998 and Ankra and 

Toma289 in 1999 in the forest savanna transition zone, and Tuaka and Lagos in the wet 

savanna zone. 

 

No genotype was found with a resistant reaction in more than two environments (Table 2). 

Most of the genotypes were medium resistant and/or susceptible across ecozones over the 

two years. The local genotype Lagos and the improved genotypes Toma289 and Toma378 

were susceptible in all environments, and the local genotypes Ankra, Gbazékouté and 

Nakoko, and the improved Ben86052 were susceptible in four of the five environments. 

The four genotypes TMS30572, CVTM4, Main27 and TMS92/0429 were resistant in at 

least one environment and were never susceptible in the 3 sites over the 2 years, with 

genotype Main27 showing resistance in one year in two ecozones. Genotype TMS91/02316 

was medium resistant over all environments, while TMS4(2)1425 showed high variability 

between years across ecozones, being among the medium resistant, extremely susceptible 

and susceptible ones. 
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Table 1: Disease severity expressed as standardized area under the severity index curve 

(AUSiPC) of cassava genotypes spray-inoculated with X. axonopodis pv. manihotis in three 

sites in the forest, forest savanna transition and wet savanna zones in two years in 

decreasing order of the total mean of AUSiPC 

 
    Forest   Forest savanna transition   Wet savanna 

  1998 1999  1998 1999  1999 

  Genotypes AUSiPC AUSiPC   AUSiPC AUSiPC   AUSiPC 
 Lagos 8.4 8.5  8.0 6.6  8.5 
 Sorad nd nd  nd nd  7.8 

 Boram 7.7 7.8  nd nd  nd 
 Toma289 8.2 6.9  6.5 7.2  7.6 
 Ankra 6.4 8.8  7.1 7.6  6.3 

 Nakoko 6.9 9.1  5.4 6.1  8.0 
 Toma378 6.8 7.7  7.1 6.1  7.6 
 Gbazékouté “C” 6.0 7.7  7.2 6.6  7.3 

 Ben86052 “C” 7.2 7.9  5.6 6.0  7.4 
 Fétonégbodji 6.0 8.3  5.1 6.1  7.5 
 312-524 5.9 7.3  5.9 5.5  8.2 
 Cameroon 6.9 7.7  5.5 6.1  6.5 
 Toma219 nd nd  6.3 6.5  nd 
 TMS92/0057 6.1 6.8  5.8 6.3  6.5 
 TMS92/0067 6.6 7.3  5.3 6.4  5.4 
 Tuaka 5.9 5.1  4.7 6.2  8.9 
 TMS92/0343 7.2 5.7  5.7 5.6  6.6 
 TMS92/0326 6.5 6.3  5.6 5.9  6.1 
 TMS4(2)1425 4.9 9.0  6.4 4.7  4.7 
 TMS91/02322 5.4 6.5  5.7 6.0  5.6 

 TMS91/02316 6.3 6.3  5.3 4.6  6.6 
 Toma159 6.1 6.4  5.1 5.1  nd 
 TMSCBS10(80411) nd nd  nd nd  5.3 

 CVTM4 3.7 6.0  5.9 5.1  5.1 
 Main27 4.8 4.1  5.1 5.6  4.3 
 TMS30572 “C” 4.4 4.5  4.4 5.1  5.3 

 TMS92/0429 4.9 4.9  4.6 4.0  3.9 
  Total AUDPC 149.4 166.8   139.3 141.2   156.8 
  Range 3.7 - 8.4 4.1 - 9.1   4.4 - 8.0 4.0 - 7.6   3.9 - 8.9 
 SE C 0.27 C 0.23  C 0.66 C 0.26  C 0.66 
 SE X 0.48 X 0.40  X 1.12 X 0.45  X 1.15 
“C” = check genotype;”X” = non-replicated genotypes; nd = not determined; SE = standard error. 
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Table 2: Reaction of 25 cassava genotypes, of which 22 were tested in all environments, to 

spray-inoculation with X. axonopodis pv. manihotis in three sites in three ecozones of Togo 

 

    Forest   Forest savanna transition   Wet savanna 

  Genotypes 1998 1999   1998 1999   1999 

 Boram S S  nd nd  nd 

 Toma219 nd nd  S S  nd 

 Lagos S S  S S  S 

 Toma289 S S  S S  S 

 Toma378 S S  S S  S 

 Gbazékouté “C” MR S  S S  S 

 Ankra S S  S S  MR 

 Ben86052 “C” S S  MR S  S 

 Nakoko S S  MR S  S 

 Cameroon S S  MR S  MR 

 Fétonégbodji MR S  MR S  S 

 TMS92/0067 S S  MR S  MR 

 TMS92/0326 S MR  MR S  MR 

 312-524 MR S  MR MR  S 

 Tuaka MR MR  MR S  S 

 TMS4(2)1425 MR S  S MR  MR 

 TMS91/02322 MR MR  MR S  MR 

 TMS92/0057 MR MR  MR S  MR 

 TMS92/0343 S MR  MR MR  MR 

 Toma159 MR MR  MR MR  nd 

 TMS91/02316 MR MR  MR MR  MR 

 CVTM4 R MR  MR MR  MR 

 TMS30572 “C” MR R  MR MR  MR 

 TMS92/0429 MR MR  MR MR  R 

 Main27 MR R  MR MR  R 
                  
“C” = check genotype; R = resistant (0-50%); MR = medium resistant (50-74.9%); S = susceptible  
(75-100%); nd = not determined; genotypes Sorad and TMSCBS10(80411) were tested only in the wet 
savanna zone and reacted with S and MR, repsectively. 
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The frequency distribution of 27 genotypes, of which 22 were repeated in each site 

(ecozone), in inoculated treatments across disease severity values varied between ecozones 

and years (Fig. 2). The disease developped tendenciously more in the forest and the wet 

savanna zones than in the forest savanna transition zone, where most of the genotypes were 

found in the severity index classes � 7. 

 

Comparing genotypes in non-inoculated and inoculated plots, differences in reaction of 

genotypes to inoculation were observed across environments (data not shown, Annex 1). 

Some genotypes, such as Boram, Lagos, TMS92/0067 and Toma289 in 1998 and 

TMS4(2)1425 in 1999 in the forest zone and Tuaka in the wet savanna zone in 1999 reacted 

strongly to inoculation, with a considerable difference in AUSiPC compared to the non-

inoculated treatment, while others reacted not or only slightly. Among the resistant 

genotypes, genotypes TMS30572, Main27 and TMS92/0429 reacted generally less on 

inoculation. In the forest savanna transition zone all 24 genotypes did not react or only 

slightly to inoculation over the two year experiments. 
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Fig. 2: Frequency distribution of 22 genotypes repeated in each site (ecozone) and year 

according to their disease development expressed as standardized area under severity index 

progress curve in inoculated treatments in the forest, forest savanna transition (FST) and 

wet savanna zones in years 1998 and 1999 
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The principal component analysis of AUSiPC of 22 genotypes of inoculated plots across all 

environments revealed six genotypes with low disease severity (genotypes left of the 

midpoint), with genotypes TMS92/0429 (19), TMS30572 (11) and Main27 (9) being most 

resistant, and 9 highly susceptible genotypes (genotypes right of the midpoint), with 

genotypes Lagos (8) and Toma289 (20) being highest susceptible (Fig. 3). Among the 22 

genotypes, only the genotypes CVTM4 (5), TMS92/0057 (15) and Nakoko (10) with low 

IPCA2 scores showed negligible interactions with environments and were stable in their 

disease reaction, while most of the genotypes had high positive or negative IPCA2 scores 

and revealed medium or high genotype x environment interactions. 
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Fig. 3: Relation between IPCA1 and IPCA2 scores of standardized area under severity 

progress curve of 22 genotypes grown in 10 environments 

Genotype identification 1: 312-524, 2: Ankra, 3: Ben86052, 4: Cameroon, 5: CVTM4, 6: Fétonégbodji,  
7: Gbazékouté, 8: Lagos, 9: Main27, 10: Nakoko, 11: TMS30572, 12: TMS4(2)1425, 13: TMS91/02316,  
14: TMS91/02322, 15: TMS92/0057, 16: TMS92/0067, 17: TMS92/0326, 18: TMS92/0343,  
19: TMS92/0429, 20: Toma289, 21: Toma378, 22: Tuaka. 
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Development of spot, blight and wilt symptoms 

The principal component analysis of area under symptom progress curve of percentage of 

leaves with spot symptoms of 24 genotypes showed six genotypes with lower spot symptom 

development, with genotypes Main27 (9), TMS30572 (11) and Nakoko (10) being the most 

resistant, and seven genotypes with higher spot symptom development, with genotypes Lagos 

(8), TMS92/0057 (15) and Toma378 (21) being the most susceptible  

(Fig. 4A). Analysing blight symptom development, genotypes Main27 (9), TMS92/0429 (19) 

and TMS92/0067 (16) showed less leaves with blight symptoms, whereas genotypes 

Toma289 (20), Lagos (8), Gbazékouté (7) and Ankra (2) revealed high susceptibility to the 

blight symptom (Fig. 4B). Comparing wilt symptom development, six genotypes had a lower 

percentage of leaves showing wilt, with genotypes TMS92/0429 (19), TMS30572 (11), 

CVTM4 (5) and Main27 (9) being the most resistant, while genotypes Ankra (2), Toma289 

(20) and Lagos (8) revealed high susceptibility (Fig. 4C). Considering the three symptom 

types, genotypes Main27 (9), TMS92/0429 (19) and TMS30572 (11) were over all resistant, 

while genotypes 8, 7, 20, 21, 2 and 3 were susceptible. Genotypes 19, 11, 5 and 9 with low 

wilt symptom development also showed low spot and blight symptom development, while not 

all genotypes with low spot and/or blight symptom development revealed a low pecentage of 

systemic symptoms (wilt), e.g. genotype 1 with resistance against spot and blight was 

susceptible to wilt, genotype 10 showed only lower spot symptom development, while 

genotype 16 developed only less blight symptoms. The number of genotypes with low wilt 

symptom development was lower than the number of genotypes, which showed low spot and 

blight symptom development. Genotypes 11, 13 and 7 for spot, 9, 17 and 15 for blight, and 6, 

7 and 20 for wilt symptoms showed negligible interactions with environments, and were 

stable in their reaction to the respective symptom types, while genotypes 12 and 15 for spot, 

21, 7, 6 and 20 for blight, and 19 and 9 for wilt revealed high genotype x environment 

interactions. In susceptible genotypes the influence of the environment on leaf symptom 

development was generally higher than in the more resistant genotypes. 
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Fig. 4: Relation between IPCA1 and IPCA2 scores of standardized area under 

severity progress curve of spot (A), blight (B) and wilt (C) of 22 genotypes 

grown in 10 environments 
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Genotype identification 1: 312-524, 2: Ankra, 3: Ben86052, 4: Cameroon, 5: CVTM4, 6: 
Fétonégbodji, 7: Gbazékouté, 8: Lagos, 9: Main27, 10: Nakoko, 11: TMS30572, 12: TMS4(2)1425, 
13: TMS91/02316, 14: TMS91/02322, 15: TMS92/0057, 16: TMS92/0067, 17: TMS92/0326, 18: 
TMS92/0343, 19: TMS92/0429, 20: Toma289, 21: Toma378, 22: Tuaka. 
 
 

Relationship between symptom types 

The relationship between the number of leaves with symptom types expressed as area under 

symptom type progress curve was analysed. Spot symptoms were significantly positively 

correlated with blight symptoms in the three sites (ecozones) over the two years, except in the 

forest zone in 1998 (Table 3). In some environments, spot and blight symptoms were 

positively correlated with wilt symptoms. When data were analysed irrespective of the 

inoculation treatment, spot, blight and wilt symptoms were generally significantly correlated 

across sites (ecozones) (Table 4). 

 
Table 3: Correlation coefficients between different bacterial blight symptom types (spot, 

blight and wilt) expressed as area under curve of percentage of leaves with symptom type 

calculated for 22 genotypes in 10 environments 

 

  Non-inoculated genotypes   Inoculated genotypes 
  spot blight wilt  spot blight wilt 
  spot 1 0.06 0.38*   1 0.01 0.49** 
Forest 1998 blight  1 0.25   1 0.32 

  wilt     1       1 
  spot 1 0.43* 0.51**   1 0.74*** 0.57** 
Forest 1999 blight  1 0.42*   1 0.62*** 
  wilt     1       1 
         
 spot 1 0.54** 0.34  1 0.71*** 0.38* 
FST 1998 blight  1 0.18   1 0.27 

  wilt     1       1 
  spot 1 0.58*** 0.09   1 0.62*** 0.21 
FST 1999 blight  1 0.28   1 0.44* 
  wilt     1       1 
         
 spot 1 0.57*** 0.47**  1 0.43* 0.15 
Wet savanna 1999 blight  1 0.70***   1 0.39* 

  wilt     1       1 
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* = significant at probability level of p < 0.05; * * = significant at probability level of p < 0.01;  
** * = significant at probability level of p < 0.001; FST = forest savanna transition. 
 
 
Table 4: Correlation coefficients between different bacterial blight symptom types (spot, 

blight and wilt) expressed as area under curve of percentage of leaves with symptom type 

calculated for 22 genotypes in 10 environments, irrespective of inoculation, but by ecozone 

and year 

 
      spot blight wilt 
   spot 1 0.36** 0.54*** 
 Forest 1998 blight  1 0.41** 
   wilt     1 
   spot 1 0.71*** 0.49*** 
 Forest 1999 blight  1 0.44*** 
   wilt     1 
      
  spot 1 0.66*** 0.36** 
 FST 1998 blight  1 0.23 
   wilt     1 
   spot 1 0.60*** 0.15 
 FST 1999 blight  1 0.36** 
   wilt     1 
      
  spot 1 0.61*** 0.29* 
 Wet savanna 1999 blight  1 0.51*** 
    wilt     1 
* * = significant at probability level of p < 0.01; ** * = significant at probability level of p < 0.001;  
FST = forest savanna transition. 
 
 
 

When the relationship between severity of symptom types expressed as area under curve of 

percentage of leaves with symptoms was determined irrespective of genotype, inoculation 

treatment, ecozone and year, spot and blight symptoms were highly significantly correlated  

(r = 0.63, p < 0.001) (Table 5). Analysing the relationship between symptom types for each 

genotype across treatments, sites and years revealed significant positive correlations between 

spot and blight for 15 genotypes, whereas generally no relationship between spot and wilt, 

and blight and wilt symptom development was observed (Table 6). Only in genotypes 

TMS92/0057 and TMS92/0326 spot, and spot and blight, respectively, were significantly 

negatively correlated to wilt symptom development. 
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Table 5: Correlation coefficients between severity of symptom types expressed as area under 

curve of percentage of leaves with symptom type, and between them and root yield calculated 

for 211 genotypes in 10 environments, irrespective of inoculation, ecozone and year 

 

    spot blight wilt root DW 

  spot 1 0.63*** 0.02 -0.03 

 blight  1 0.02 -0.07 

 wilt   1 0.03 

 root DW    1 
            
** * = significant at probability level of p < 0.001; root DW = root dry weight. 

1
Genotype Tuaka not 

included due to a missing root weight value in the forest savanna transition zone in the inoculated plot in 
year 1999. 
 

Cassava yield 

 
In the forest zone, significant differences in root yield were found between check genotypes 

over the two years. Genotype TMS30572 recorded significantly higher root yield (20.2 t/ha 

and 33.2 t/ha in 1998 and 1999, respectively) than Ben86052 (14.6 t/ha and 22.9 t/ha, 

respectively) over the two years in inoculated plots (p = 0.01), but no significant differences 

were observed between these and the local check genotype Gbazékouté (data not shown, 

Annex 2). Genotypes TMS91/02322 and TMS30572 in 1998 and TMS30572 and 

TMM92/0429 in 1999 recorded the highest root yield of 22.6 t/ha and 20.2 t/ha, and 33.2 t/ha 

and 29.2 t/ha, respectively, while Toma289 and Fétonégbodji were the lowest yielding 

genotypes with 4.4 t/ha and 4.3 t/ha in 1998 and 1999, respectively. In the forest savanna 

transition zone, a significant difference was observed between check genotypes in non-

inoculated plots in 1999, with Ben86052 (18.2 t/ha) yielding higher than TMS30572  

(11.9 t/ha) and Gbazékouté (9.4 t/ha). Genotypes TMS92/0057 (29.1 t/ha), CVTM4  

(28.1 t/ha) and Lagos (25.3 t/ha) recorded a high dry root weight, and the local genotypes 

Fétonégbodji (0.3 t/ha) and Tuaka (1 t/ha) the lowest yield. In the wet savanna zone, the 

highest yield was obtained by genotype TMS92/0057 (23.1 t/ha and 21.1 t/ha in  

non-inoculated and inoculated plots, respectively), however, no significant difference was 

observed between check genotypes (Annex 2). 
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Table 6: Correlation coefficients of severity of symptom types expressed as area under curve 
of percentage of leaves with symptom type calculated for 22 genotypes in 10 environments, 
irrespective of inoculation, ecozone and year, but per genotype (genotypes in decreasing order 
from susceptible to resistant, according to the total mean of AUSiPC, see Table 10) 
 

  Genotype   spot blight wilt   Genotype   spot blight wilt 

 Lagos spot 1 0.66* 0.36  312-524 spot 1 0.96*** -0.28 
  blight  1 -0.12   blight  1 -0.27 

  wilt   1   wilt   1 
            

 Toma289 spot 1 0.46 0.004  TMS92/0326 spot 1 0.93*** -0.78** 

  blight  1 -0.17   blight  1 -0.72* 

  wilt   1   wilt   1 
            
 Gbazékouté spot 1 0.47 -0.48  Tuaka spot 1 0.96*** -0.21 

  blight  1 -0.53   blight  1 -0.09 

  wilt   1   wilt   1 
            

 Toma378 spot 1 0.49 -0.28  TMS92/0067 spot 1 0.71* 0.17 

  blight  1 -0.58   blight  1 0.16 

  wilt   1   wilt   1 
            
 Ankra spot 1 0.41 0.25  TMS91/02322 spot 1 0.75* -0.27 

  blight  1 0.23   blight  1 -0.48 

  wilt   1   wilt   1 
            
 Ben86052 spot 1 0.83** 0.01  TMS4(2)1425 spot 1 0.83** 0.28 

  blight  1 -0.46   blight  1 0.25 

  wilt   1   wilt   1 
            
 Nakoko spot 1 0.85** 0.15  TMS91/02316 spot 1 0.95*** -0.36 

  blight  1 -0.08   blight  1 -0.41 
  wilt   1   wilt   1 
            

 Cameroon spot 1 0.52 -0.57  CVTM4 spot 1 0.49 -0.45 

  blight  1 -0.18   blight  1 0.09 

  wilt   1   wilt   1 
            
 Fétonégbodji spot 1 0.83** 0.21  Main27 spot 1 0.91*** -0.42 

  blight  1 0.27   blight  1 -0.53 

  wilt   1   wilt   1 
            

 TMS92/0057 spot 1 0.28 -0.70*  TMS30572 spot 1 0.90*** -0.4 

  blight  1 -0.31   blight  1 -0.47 

  wilt   1   wilt   1 
            

 TMS92/0343 spot 1 0.29 -0.34  TMS92/0429 spot 1 0.87*** -0.01 

  blight  1 -0.51   blight  1 -0.04 

  wilt   1   wilt   1 
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* = significant at probability level of p < 0.05; * * = significant at probability level of p < 0.01;  
** * = significant at probability level of p < 0.001. 
 

The principal component analysis of dry root yield of 21 genotypes across 10 environments 

revealed four genotypes with low root yield, with genotypes Fétonégbodji (6) and Toma289 

(20) being the lowest yielding, and one high yielding genotype, TMS92/0057 (15). Seven 

genotypes with low IPCA2 scores showed negligible interactions with environments  

(Fig. 5). 
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Fig. 5: Relation between IPCA1 and IPCA2 scores of standardized root dry weight 

of 21 genotypes grown in 10 environments 

Genotype identification 1: 312-524, 2: Ankra, 3: Ben86052, 4: Cameroon, 5: CVTM4,  
6: Fétonégbodji, 7: Gbazékouté, 8: Lagos, 9: Main27, 10: Nakoko, 11: TMS30572,  
12: TMS4(2)1425, 13: TMS91/02316, 14: TMS91/02322, 15: TMS92/0057, 16: TMS92/0067,  
17: TMS92/0326, 18: TMS92/0343, 19: TMS92/0429, 20: Toma289, 21: Toma378. 
 
 

Relationship between symptom severity and root yield 

Pearson correlation analysis of disease severity (AUSiPC) and dry root yield revealed a 

significant negative correlation between AUSiPC and root yield in inoculated plots in the 

forest zone in 1998 and 1999 (r = -0.48, p = 0.006 and r = -0.50, p = 0.004, respectively), and 

in non-inoculated plots in the forest savanna transition zone in 1998  

(r = -0.43, p = 0.017) and in the wet savanna zone in 1999 (r = -0.51, p = 0.003) (Table 7). 
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Table 7: Correlation coefficients between disease development expressed as area under severity 
index progress curve (AUSiPC) and root yield calculated with 21 genotypes grown in 10 
environments 
 

      Non-inoculated genotypes Inoculated genotypes 

 Forest 1998 0.34 -0.48** 

 Forest 1999 -0.21 -0.50** 

 Forest savanna  1998 -0.43* -0.03 

 transition 1999 -0.32 -0.22 

  Wet savanna 1999 -0.51** -0.07 
** = significant at probability level of p < 0.01; * = significant at probability level of p < 0.05. 
 

Significant correlations were observed between spot, blight and wilt symptom development and 

dry root weight in some environments (Table 8). In non-inoculated plots the blight symptom was 

generally negatively correlated to yield, while in inoculated plots wilt symptoms were generally 

negatively correlated to yield. 

 
Table 8:  Correlation coefficients between bacterial blight symptom types expressed as area 

under curve of percentage of leaves with symptom type and root yield calculated for 21 

genotypes grown in 10 environments 

 

    Non-inoculated genotypes   Inoculated genotypes 

      spot blight wilt   spot blight wilt 

 Forest 1998 0.33 0.40* -0.004  -0.25 -0.40* -0.34 

 Forest 1999 0.07 -0.23 -0.21   -0.40* -0.46* -0.43* 

 Forest savanna  1998 -0.27 -0.38* -0.29  0.14 0.24 -0.43* 

 transition 1999 0.01 -0.41* -0.23   0.19 0.01 -0.37* 

 Wet savanna 1999 -0.15 -0.39* -0.58***  0.08 0.08 -0.31 
                    
** * = significant at probability level of p < 0.001; * = significant at probability level of p < 0.05. 
 
Analysing the relationship between area under curve of symptom types and root yield 

irrespective to inoculation treatment, ecozone and year, no significant relationship was observed 

(Table 5). When the same data were analysed by genotype, a significant relationship was 

generally not found (Table 9). Only in genotype Cameroon the blight symptom was related to a 

significant yield loss, while in genotypes Ben86052 and in TMS92/0067 the wilt symptom and in 

Main27 the spot and blight symptoms were positively correlated to yield. 
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Table 9: Correlation coefficients between severity of symptom types expressed as area under 

curve of percentage of leaves with symptom type and root yield calculated with 21 genotypes in 

10 environments, irrespective of inoculation, ecozone and year, but per genotype 

 

  Genotype spot blight wilt 

 312-524 0.08 -0.09 0.26 

 Ankra 0.04 0.59 0.52 

 Ben86052 0.08 -0.25 0.81** 

 Cameroon -0.47 -0.86** 0.46 

 CVTM4 -0.06 0.49 0.39 

 Fétonégbodji -0.17 -0.11 -0.05 

 Gbazékouté 0.21 0.28 0.18 

 Lagos -0.14 -0.27 0.58 

 Main27 0.65* 0.71* -0.57 

 Nakoko -0.05 0.22 -0.41 

 TMS30572 -0.41 -0.10 0.04 

 TMS4(2)1425 0.37 0.23 0.50 

 TMS91/02316 -0.25 -0.38 0.35 

 TMS91/02322 0.08 0.12 -0.16 

 TMS92/0057 -0.38 0.29 0.22 

 TMS92/0067 0.07 0.18 0.66* 

 TMS92/0326 -0.36 -0.49 0.34 

 TMS92/0343 -0.03 -0.21 0.37 

 TMS92/0429 -0.30 -0.24 0.33 

 Toma289 -0.17 -0.24 0.50 

 TOMA378 0.16 -0.28 0.62 
          
* = significant at probability level of p < 0.05; * * = wsignificant at probability level of p < 0.01. 
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Considering the mean AUSiPC and root yield across 10 environments, 22 genotypes were 

ranked in decreasing order (Table 10). Genotypes TMS91/02316, TMS30572 and TMS92/0429 

belonged to the more resistant group (AUSiPC lower than 5.4) and had a high root yield (� 14 

t/ha), while Lagos, Ben86052, TMS92/0057 and TMS92/0343 had a higher disease severity 

(AUSiPC > 5.9), but also a high root yield. To identify a possible tolerant reaction of the latter 

genotypes, a regression analysis between disease severity (AUSiPC) and root dry weight was 

performed. No significant relationship between severity and root yield was found (p > 0.05, r2 = 

0.07, 0.02, 0.04 and 0.004, respectively). With increasing disease severity, root yield was not 

affected (Fig. 6). 
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 Table 10: Ranking of 22 genotypes according to means for AUSiPC and dry root yield (t/ha) in 

10 environments 

 

  Genotypes Mean AUSiPC Genotypes Dry root yield (t/ha) 

 Lagos 7.1 TMS92/0057 21.3 

 Toma289 6.9 TMS92/0326 17.1 

 Gbazékouté “C” 6.6 TMS91/02316 16.6 

 Toma378 6.6 TMS30572 “C” 16.6 

 Ankra 6.6 Cameroon 16.1 

 Ben86052 “C” 6.4 TMS92/0429 15.8 

 Nakoko 6.4 TMS92/0343 15.5 

 Cameroon 6.3 Ben86052 “C” 15.0 

 Fétonégbodji 6.2 Lagos 14.7 

 TMS92/0057 6.1 Gbazékouté “C” 13.8 

 TMS92/0343 5.9 CVTM4 13.8 

 312-524 5.9 TMS91/02322 13.3 

 TMS92/0326 5.8 TMS92/0067 12.2 

 Tuaka 5.8 Toma378 11.9 

 TMS92/0067 5.7 312-524 11.9 

 TMS91/02322 5.7 Main27 8.6 

 TMS4(2)1425 5.4 Tuaka 8.51 

 TMS91/02316 5.2 TMS4(2)1425 8.4 

 CVTM4 4.8 Ankra 7.5 

 Main27 4.5 Nakoko 6.4 

 TMS30572 “C” 4.5 Toma289 5.3 

 TMS92/0429 4.2 Fétonégbodji 4.5 
          
 “C” = check genotype; AUSiPC = area under severity index progress curve; 1Mean value of  
9 environments instead of 10 due to missing value of root dry weight in the inoculated plots in the 
forest savanna transition zone in year 1999. 
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Fig. 6:  Regression analysis between disease severity (AUSiPC) and root dry weight of 

genotypes Ben86052, Lagos, TMS92/0057 and TMS92/0343 
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3.4 Discussion 

 

Cassava has a long vegetative cycle and severe epidemics such as cassava bacterial 

blight develop on susceptible genotypes under favorable environmental conditions. 

Since chemical control is not possible, and the systemic infection by X. axonopodis pv. 

manihotis facilitates the distribution of the pathogen by vegetative propagation of 

cassava, host plant resistance is the best means for a long term control of cassava 

bacterial blight (Wydra and Rudolph, 1999). In the present study, 24 cassava genotypes 

were screened for resistance to cassava bacterial blight after spray-inoculation in three 

sites in three agroecological zones of Togo over two years, except in the wet savanna 

site with one trial year, to identify high yielding genotypes with stable resistance to 

cassava bacterial blight. No genotype with resistance across the sites (ecozones) was 

found, but genotypes TMS92/0429, TMS30572, CVTM4 and TMS91/02316 had a 

lower disease severity combined with high yield. The difference in rainfall quantity and 

distribution between the sites in the forest and the forest savanna transition ecozones in 

the trial years were marginal, since in both sites a rainy season of 7 months was 

recorded. 

 

No cultivar with complete disease resistance was reported from field evaluation of 

cassava cultivars in Latin America (CIAT, 1995; 1998). Also, Fanou (1999) and Zinsou 

et al. (2003a) did not find completely resistant genotypes among  

twenty-three and sixteen genotypes, respectively, tested in ecozones of Nigeria and 

Benin, respectively.  

 

High variability in disease expression was observed. The three genotypes Lagos, 

Toma289 and Toma378 showed susceptible reactions to CBB across ecozones and over 

years, while the other genotypes revealed genotype x environment interactions, with 

variability between and/or within ecozones over the two years.  

Genotype x environment interactions in reaction to CBB as well as to other cassava 

diseases among cassava cultivars were reported from Benin and Nigeria (Fanou, 1999; 

Dixon and Nukenine, 2000; Zinsou et al., 2003a). Field evaluation of CBB of Togolese 

cassava cult ivars in the forest savanna transition zone had revealed Fétonégbodji and 

Tuaka as highly susceptible genotypes (Boher and Agbobli, 1992), which, in our 
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studies, showed genotype x environment interactions, with medium resistant or 

susceptible reactions depending on the environments. 

 

Genotype TMS30572, a widely distributed improved genotype in West Africa, 

disseminated by the International Institute of Tropical Agriculture (IITA) as resistant to 

CBB, revealed medium resistance in four of the five environments and resistance in 

one environment, the forest zone, while it was relatively resistant to cassava bacterial 

blight in former field trials in the forest savanna transition and the humid forest zones 

(Boher and Agbobli, 1992; Akparobi et al., 1998; Fanou, 1999). Genotype 

TMS91/02322 showed medium resistance in four environments and was susceptible in 

one environment, while Fanou (1999) identified this genotype as susceptible in two 

environments. The evaluation of genotype Ben86052  

as susceptible to bacterial blight in four of five environments confirmed former 

observations (Fanou, 1999). 

 

The highest cassava bacterial blight severities were recorded in the forest zone. This 

could be due to the high rainfall and relative humidity in this ecozone, and the possible 

effect of the progressive degradation of the forest to a forest savanna allowing higher 

fluctuations of day/night temperatures. Disease severity was enhanced by wide 

fluctuations in night/day temperatures during the rainy season, especially in the range 

of 15 to 30 °C (Lozano, 1986). The importance of rainfall and high relative humidity in 

the development of cassava diseases was emphasized by Terry (1976), and by Fanou 

(1999) for cassava bacterial blight, who observed highest cassava bacterial blight 

severity in the humid forest in 1996. On the contrary, during a cassava bacterial blight 

survey in Togo conducted by Boher and Agbobli (1992), and in surveys in Ghana and 

Cameroon (Wydra and Verdier, 2002; Wydra and Msikita, 1998), the disease 

symptoms were not found in the forest zones and only rarely observed in neighbouring 

areas. However, a recent cassava disease survey in Togo revealed high cassava 

bacterial blight incidence and severity also in the forest zone (Banito et al., 2000, 

2001), suggesting that conditions for epidemics are becoming more favorable in this 

ecozone. 

 

Genotypes TMS92/0429, TMS92/0343, TMS92/0326, TMS92/0057, TMS91/02316 

and CVTM4 were medium resistant in at least three of the five environments, when 
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spray-inoculated under field conditions, but resistant in greenhouse trials after  

stem-inoculation with X. axonopodis pv. manihotis strains from Benin, Nigeria and 

Uganda (Banito et al. 2002). On the other hand, genotypes Toma289 and Toma378, 

susceptible under field conditions, were resistant after stem-inoculation. The local 

genotype Gbazékouté was highly resistant to stem-inoculation with strains not 

originating from Togo under controlled conditions, but showed high suceptibility under 

field conditions in four environments. However, some genotypes such as Ben86052, 

Lagos, Ankra, Nakoko, and Fétonégbodji, which were susceptible after stem-

inoculation, revealed susceptibility in at least three environments under field 

conditions. On the other hand, the highest susceptible genotype Toma159 after stem-

inoculation was medium resistant in the four environments in which it was tested, and 

genotype Main27, also susceptible after stem-inoculation, reacted medium resistant in 

three environments and resistant in two environments. These observations point to a 

high genotype x pathotype interaction. Pathotypes overcoming the resistance of 

genotype Gbazékouté may have developed in the region, while in Togo also some 

genotypes may have been selected which are adapted to local conditions (strains) and, 

thus, are medium resistant or resistant. Also, Banito et al. (2002) and Wydra et al. 

(2003b) in Africa and Restrepo et al. (2000a) and Restrepo and Verdier (1997) in 

Colombia recently described pathotypes of X. axonopodis pv. manihotis, which caused 

disease in only some genotypes. 

 

Lozano and Laberry (1982) observed that the plant reaction to cassava bacterial blight 

under controlled conditions and during the first cycle of field testing were similar, 

however, some genotypes that were rated resistant under controlled conditions showed 

susceptibility under field evaluation. Resistance in cassava to  

X. axonopodis pv. manihotis is polygenic (Sãnchez et al., 1999) and pathotype-specific 

(Wydra et al., 2003b). Mew and Natural (1993) suggested that multigenic resistance in 

Xanthomonas diseases of bean and cotton may be ineffective in some areas due to 

influences of the environment. Cassava genotypes selected for resistance to cassava 

bacterial blight in areas of high disease pressure in Colombia were susceptible after 

artificial leaf-inoculation under conditions optimal for disease development (Flood et 

al., 1995). Comparing the screening of cassava genotypes under greenhouse and field 

conditions revealed that genotypes resistant under controlled conditions were also 

resistant in the field, but genotypes susceptible in the greenhouse trial could be resistant  
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under field conditions (Restrepo et al., 2000b). 

 

Thus, the pathotype as well as the environment influence the reaction of the cassava 

plant and determine the high genotype x environment interaction. Genotypes also 

showed genotype x environment interactions in their reaction to the different cassava 

bacterial blight symptom types, spot, blight and wilt. Thus, the observations of 

genotypes with some resistance to spot and/or blight symptoms combined with a 

suseptibility to wilt symptoms suggest the existence of an independent resistance 

mechanism on stem level. Also, the number of genotypes with some resistance against 

the leaf symptoms was higher than the number of genotypes showing resistance against 

systemic symptoms. Nevertheless, it has to be considered that the reactions in some 

genotypes were highly influenced by the environment, which may have an increasing 

or inhibiting effect on the development of various symptom types. Generally, the 

influence of the environment on the development of the wilt symptom in the more 

resistant genotypes was higher compared to the development of leaf symptoms in the 

more resistant genotypes. Thus, some genotypes (e.g. 9, 11, 19) with resistance against 

wilt showed highest interactions with the environment, indicating that a possible 

mechanism inhibiting the development of the wilt symptom is depending on the 

ecological condititions. 

 

The analysis of the relationship between symptom types comparing genotypes revealed 

that generally, neither the spot nor the blight symptom development were significantly 

correlated to the development of systemic symptoms and, therefore, supports the 

hypothesis that leaf and stem symptom development in the more resistant genotypes 

are regulated by different resistance mechanisms. Especially the reaction of genotypes 

with a strong negative correlation between spot and blight symptom development on 

the one hand and wilt symptom developoment on the other hand (e.g. in genotypes 

TMS92/0057 and TMS92/0326) indicate independent mechanisms of resistance on leaf 

and stem level, depending on the cassava genotype.  

 

Also Zinsou et al. (2002; 2003a) observed differential reactions of genotypes to leaf- 

compared to stem-inoculation under controlled conditions. Wydra et al. (2003a) 

suggested the involvement of cell wall characterstics, specifically pectic  
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polysaccharides, in the resistance reaction of cassava leaves to X. axonopodis pv. 

manihotis. Thus, in breeding for resistance, genotypes with different types of resistance 

or a combination of both types should be considered.  

 

High variability in cassava dry root yield was observed across and within ecozones 

over the two years, denoting high genotype x environment interactions as was also 

reported by other authors for cassava yield (Otoo et al., 1994) and yield components 

(Dixon and Nukenine, 2000), irrespective of disease factors. Widely grown local 

genotypess such as Fétonégbodji, Nakoko, Ankra, Tuaka and Main27 revealed a 

generally low yield potential across ecozones, even when symptom severity was low 

(e.g. gentoype Main27), while most of the improved genotypes had higher root 

production, among them TMS92/0057, with highest production across ecozones, and 

TMS30572 with the highest root yield of 33.2 t/ha in the forest zone in 1999 (data not 

shown) recorded during the trials. 

 

A significant negative correlation between disease severity and root yield was found in 

some environments. The principal component analysis results were in accordance with 

the grouping based on the mean AUSiPC values, thus each of both methods can be 

used for ranking. Although cassava bacterial blight severity generally was higher in the 

forest zone than in other ecozones, root yield was highest in this ecozone (data not 

shown), and, even higher than in the forest savanna transition zone where the lowest 

disease severity was recorded.  

 

Considering the influence of symptom types on root yield, blight and wilt were found 

to significantly decrease root yield. Nevertheless, analyzing this relationship by 

genotypes, few significant decreases were generally not observed with one exception, 

but also significant increases were observed in three genotypes. This may be due to the 

growth habit of some genotypes, which quickly formed new sprouts resulting in high 

increases in photosynthetic area, when one stem was heaviliy infected (own 

observations).  

 

Thus, depending on the environment and the genotype, cassava may easily recover 

from the disease under favorable growing conditions, or suffer losses in leaf, stem and 

root material (data not shown) under harsh conditions. These observations indicate a 



Genotype x environment interactions 84 

high genotype x environment interaction in disease expression as well as root 

formation, influencing the interaction between plant and pathogen, but also with high 

impact on root yield, independent of the disease. Additionally, pathogenic 

specialization in form of pathotype prevalence in different ecozones resulting in 

pathotpye x genotype interactions has to be considered (Banito, this thesis). Therefore, 

a prediction of yield loss due to bacterial blight and the determination of a threshhold 

for loss seems impossible. 

 

Fokunang et al. (2000b) reported that cassava bacterial blight incidence was 

significantly negatively correlated with storage root weight and fresh tuber number of 

cassava, respectively. Also, the percentage of dry matter content of yield was 

significantly positively correlated with cassava bacterial blight severity (Fokunang et 

al., 2000a). But, they only evaluated trials of one year and used only disease data of a 

geveral scale of 1 to 5 at 3 and 6 months after planting for their analysis, while our 

disease evaluation considered the development of different symptom types over the 

whole growing period. However, Fanou (1999), using a similar disease evaluation 

method, found no relation between disease severity and dry root yield. 

 

Some genotypes including Lagos, TMS92/0057, TMS92/0343 and Ben86052, though 

highly susceptible, had a high root yield, and could be identified as tolerant, since they 

did not react with a yield decrease on an increasing disease level. A tolerance effect of 

gentoype Ben86052 in reaction to cassava bacterial blight, observed across ecozones 

and years, was also described by Wydra (2002). 

 

In conclusion, differences in reaction of genotypes to cassava bacterial blight and in 

yield production across and/or within ecozones were observed. Genotypes differ in the 

development of different symptom types, indicating the existence of  independent 

mechanisms of resistance in different plant parts. Also, the relationship between 

symptom severity and between different symptom types and yield depends on the 

genotypes, but also on the environment. Thus, tolerance reactions were observed in 

some genotypes. 

 

Gentoypes TMS92/0429, TMS30572 and TMS91/02316 with low disease severity and 

high root yield could be recommended to famers. Genotypes TMS92/0326, 
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TMS92/0057, Cameroon and Ben86052, tolerant to the disease, may be high yielding, 

but should be avoided by farmers due to the risk of dissemination of inoculum. 

Genotypes Main27 and CVTM4, resistant, but with low root yield could be 

recommended to breeders to introduce their resistance characteristics into the breeding 

materials. Additionally, genotypes TMS30572 and TMS92/0429 genotypes should be 

used to introgress their high resistance to the wilt symptom into genotypes with 

susceptibility to systemic symptoms. 
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4 Strain x genotype interactions of cassava genotypes and African Xanthomonas 

axonopodis pv. manihotis strains  

 
Abstract 
 
Twenty-four improved and local genotypes from Togo were screened for resistance to cassava 

bacterial blight by stem-inoculation with four highly virulent Xanthomonas axonopodis pv. 

manihotis strains from different geographic origins in Africa under controlled conditions. The 

local genotypes Nakoko and Toma159 were most susceptible against the four strains, while 

most other genotypes including the reference genotype Ben86052, with susceptible reaction 

against at least two strains were resistant to at least one strain. Six genotypes showed a 

resistant reaction against the four strains. Among them, the local genotype Gbazékouté and 

the improved CVTM4 were the most resistant ones. Six groups of genotypes, with differential 

reactions to the strains were formed, and the strains were defined as pathotypes. 

 

Key words: CBB, varieties, resistance, X. axonopodis pv. manihotis, pathotypes. 
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4.1 Introduction 

 

Cassava, Manihot esculenta Crantz (Euphorbiaceae), is one of the major sources of 

carbohydrate throughout Asia’s and Africa’s lowland tropics (Nilmanee, 1986) and one of the 

most important crops in Africa (FAO/GIEWS, 1995). It provides smallholder households with 

cash income and low-income urban consumers with a low-cost carbohydrate source  

(Nweke, 1994). Cassava production is reduced due to many abiotic and biotic constraints, 

with the attack by pests and diseases being among the major ones (Nilmanee, 1986; Hahn et 

al., 1989). Among the pathological constraints of cassava production, bacterial blight, caused 

by Xanthomonas axonopodis pv. manihotis (Vauterin et al., 1995), former  

Xanthomonas campestris pv. manihotis (Bondar, 1915), is one of the most severe diseases in 

South America and Africa (Lozano, 1986). Typical symptoms of cassava bacterial blight 

(CBB) include water-soaked angular leaf spots, leaf blight and wilt, defoliation, exudation on 

stems, petioles and leaves, vascular necrosis and dieback. Cassava yield losses of more than 

50% due to CBB were reported (Fanou, 1999; Wydra and Rudolph, 1999). 

 

Most cassava growers are small farmers (Phillips, 1974) with traditional technical know-how 

and few economic resources (Lozano and Laberry, 1982), and usually produce their own 

planting material. Since chemical control of the disease does not exist, growing resistant 

cultivars as element of an integrated control system (Wydra and Rudolph, 1999; Wydra et al., 

2003a) is an important control measure. 

 

Defense mechanisms against X. axonopodis pv. manihotis were observed in the vascular 

system of stems of infected cassava plants (Kpémoua et al., 1996), with differences in 

reactions comparing susceptible and resistant cultivars. Resistance in  

M. esculenta introgressed from a wild relative, M. glaziovii is polygenic and additively 

inherited. Genetic diversity and resistance to cassava bacterial blight revealed a high level of 

polymorphism among cassava varieties (Sãnchez et al., 1999). Jorge et al. (2000) identified 

six regions of the cassava genome controlling resistance to X. axonopodis pv. manihotis 

strains, confirming the polygenic character of the resistance. A specific interaction between 

the cassava plant and the pathogen was suggested, and resistance markers specific for African 

strains were recently identified (Wydra et al., 2003a). 
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Variation has been observed among X. axonopodis pv. manihotis strains in biochemical and 

physiological (Fessehaie, 1997), serological (Wydra et al., 1999) and genomic characteristics 

(Restrepo et al., 1999; Assigbétsé et al., 1999). Strain x genotype interactions were reported 

after stem-inoculation (Restrepo and Verdier, 1997), and pathotypes were defined among  

X. axonopodis pv. manihotis strains in Colombia (Restrepo et al., 2000) and Africa  

(Wydra et al., 2003b). 

 
Local and improved cultivars from Togo were not characterized for their reaction to strains of 

X. axonopodis pv. manihotis. Therefore, in the present studies selected cassava genotypes 

from Togo and from an international collection were inoculated with strains from various 

geographic origin and their reaction evaluated. 

 

4.2 Materials and methods  

 

Planting materials and bacterial strains 

 

Cuttings from the 24 local, Togolese and improved cassava genotypes Ankra, Cameroon, 

Fétonégbodji, Gbazékouté, Lagos, Nakoko, Tuaka (local), and 312-524, Ben86052, CVTM4, 

Main27, TMS30572, TMS4(2)1425, TMS91/02316, TMS92/0057, TMS92/0067, 

TMS91/02322, TMS92/0326, TMS92/0343, TMS92/0429, Toma159, Toma219, Toma289 

and Toma378 (improved by IITA), derived from plants apparently free of cassava bacterial 

blight symptoms, were received from ITRA Lomé/Togo, or farmers fields, and Ben86052 and 

TMS30572, the susceptible and resistant standard genotypes, respectively, from IITA 

(International Institute of Tropical Agriculture), Benin-Station. The three highly virulent 

strains of X. axonopodis pv. manihotis from different geographic origins GSPB2506, 

GSPB2507 and GSPB2511 (Göttinger Sammlung phytopathogener Bakterien, Institut für 

Pflanzenpathologie und Pflanzenschutz der Universität Göttingen, Germany) isolated by  

K. Wydra (IITA, Cotonou, Benin), in Cotonou, Benin and in Ibadan and Onne, Nigeria, 

respectively, and the strain Uganda12, isolated by B. Boher ( IRD, France) in Uganda were 

used.  

 

Planting, maintenance and inoculation 

 

Cuttings were planted in pots with field soil in a glasshouse (25 to 30 °C) at the IITA Benin-

Station. Water was provided to plants when necessary during the experimental period.  
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X. axonopodis pv. manihotis strains were grown for 48 hours on glucose yeast calcium 

carbonate agar medium (glucose 5g/l, yeast extract 5g/l, calcium carbonate 10g/l, agar 15g/l) 

(Dye, 1962). One-month old, vigorous plants were stem-inoculated with bacterial cultures of 

the four X. axonopodis pv. manihotis strains by stem puncture using a sterile toothpick with 

inoculum taken directly from the agar plate (Maraite et al., 1981; Restrepo and Verdier, 

1997). Each cassava genotype was inoculated with each of the four X. axonopodis pv. 

manihotis strains in four replications. Control plants were stem-punctured using sterile 

toothpicks without inoculum. Plant height was measured on the day of inoculation. 

 

Symptom assessment  

 

Symptoms were evaluated from 5 days post inoculation every five up to 30 days on a 1 to 5 

scale: class 1 - no symptoms, class 2 - wilting of 1 leaf, class 3 - wilting of 2 to 4 leaves, class 

4 - wilting of more than 4 leaves, class 5 - dieback of the plant. The area under the disease 

progress curve (AUDPC) was calculated on a single plant basis by the trapezoidal integration 

over the whole observation period as follows (Shaner and Finney, 1977; Jeger and Viljanen-

Rollinson, 2001): 

AUDPC = ∑i[(DSi + DSi-1) x (ti –  ti-1)]/2 

where “i” ∈ {5; 10; 15; 20; 25; 30} are the days of evaluation, “DS” is the disease score using 

the severity scale of 1 to 5 as described above, and “t” represents the days post- inoculation. 

To avoid the area due to the note 1 (class 1) which is supposed to be “zero”, each “DS” value 

was transformed by subtracting “one” before integrating into the above formula. AUDPC 

values were log-transformed to stabilize variances and the analysis of variance was performed 

using the General Linear Model (GLM) of SAS software (SAS, 1990; 1997). Based on the 

percentage of AUDPC of each strain, - means of highest AUDPC values of the 4 strains taken 

as 100% -, groups of resistant (0-33.2%), medium resistant (33.3-49.9%) and susceptible 

genotypes (50-100%), were formed. After adding the AUDPC values of the 4 strains  

(total AUDPC), groups of resistant, medium resistant and susceptible genotypes were defined 

using the same percentage ranges as above. Principal component analysis of disease severity 

expressed as area under disease progress curve (AUDPC) of 4 strains was performed to 

confirm the grouping of differential genotypes. Pearson correlation analysis between AUDPC 

and plant height at inoculation time was performed to examine the relationship between plant 

height and virulence of X. axonopodis pv. manihotis strains. 
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4.3 Results 

 

A continuum of genotype reactions to the four strains from susceptible to resistant was 

observed (Table 1, 2). Nevetheless, strong differential reactions with one or two of the strains 

occurred with some genotypes, such as Ankra, Ben86052, Cameroon, Fétonégbodji, Main27 

and Tuaka. 

 

Eleven of the 24 varieties revealed a resistant, four a medium resistant and nine a susceptible 

reaction against the four strains (Table 1). The reference genotype Ben86052 was susceptible, 

with the highest total AUDPC of 104.5, while the standard CBB-resistant genotype 

TMS30572 was medium resistant. Analysing strain x genotype interactions, six groups of 

differential genotypes which could be useful for pathotype identification, were identified 

among the 24 genotypes (Table 2). Strains Uganda12 and GSPB2507 were significantly 

higher virulent than GSPB2511 and GSPB2506 (p < 0.0001). The four strains represented 

four different pathotypes (Table 2). 

 

No correlation was found between plant height at inoculation time and virulence of strains 

(coeff. –0.04, p = 0.40). Principal component analysis of disease severity expressed as area 

under disease progress curve (AUDPC) of 24 genotypes revealed high variation among the 

genotypes (Fig. 1). Nine genotypes on the right side of the midpoint with high AUDPC were 

generally susceptible, while 11 genotypes revealed low AUDPC, with lowest AUDPC for 

CVTM4 (24) and Gbazékouté (23). Genotypes with high differential reactions fell under high 

or low IPCA2 score. Additionally, Toma159 (2) and TMS92/0057 (18) were revealed as 

genotypes with highly variable reaction. But, differential genotypes Main27 (4), 312-524 (11), 

TMS91/02322 (13), TMS92/0343 (14), TMS92/0429 (15) and TMS92/0067 (17) were 

identified to have low genotype x strain interactions in the principal component analysis. 
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Table 1: Reaction of 24 local and improved genotypes to stem-inoculation by four highly virulent 
X. axonopodis pv. manihotis strains under controlled conditions expressed as area under 
disease progress curve (AUDPC) over 30 days 
 

  Genotypes Uganda127 GSPB2507 GSPB2511 GSPB2506 Total AUDPC 
Total 

reaction 

1 Ben860524, 8 10.6±1.6 28.8±9.8 16.3±7.4 48.86±1.2 104.55 S1 

2 Toma159 28.86±5.2 27.5±2.7 27.5±2.5 15.0±5.3 98.8 S 

3 Nakoko 15.0±1.8 23.8±1.3 20.0±2.7 13.1±1.9 71.9 S 

4 Main27 19.4±7.1 8.8±5.2 18.8±3.3 23.1±9.1 70.1 S 

5 Tuaka4 27.5±2.5 18.8±5.3 16.3±9.9 5.0±0.0 67.6 S 

6 Ankra4 20.6±4.8 15±2.3 28.16±5.9 0.0±0.0 63.7 S 

7 Cameroon4 8.8±3.6 32.56±3.2 9.4±2.6 8.1±5.9 58.8 S 

8 Fétonégbodji4 24.4±0.6 18.1±4.5 7.5±4.8 5.0±2.3 55 S 

9 Lagos 11.9±4.3 16.9±6.7 13.1±1.2 12.5±4.6 54.4 S 

10 Toma219 13.1±4.3 12.5±7.5 15.6±5.8 4.4±2.1 45.6 MR2 

11 312-524 17.5±6.8 9.4±3.6 5.6±3.6 5.6±4.1 38.1 MR 

12 TMS305728 16.3±1.6 8.8±5.6 3.8±2.2 8.1±4.9 37 MR 

13 TMS91/02322 15.0±6.1 18.1±4.3 3.1±0.6 0.6±0.6 36.8 MR 

14 TMS92/0343 18.1±1.2 12.5±2.3 1.3±1.3 1.3±0.7 33.2 R3 

15 TMS92/0429 10.6±6.2 18.8±6.8 0.6±0.6 2.5±2.5 32.5 R 

16 TMS92/0326 18.8±5.9 1.9±1.2 6.9±4.0 1.9±1.2 29.5 R 

17 TMS92/0067 18.8±1.3 3.8±2.2 1.9±1.2 4.4±1.9 28.9 R 

18 TMS92/0057 5.6±3.6 8.3±5.8 0.0±0.0 7.5±4.4 21.4 R 

19 Toma289 13.8±3.9 2.5±1.4 2.5±1.4 0.0±0.0 18.8 R 

20 Toma378 8.1±3.6 8.12.4 1.3±0.7 1.3±1.3 18.8 R 

21 TMS4(2)1425 5.6±2.6 6.3±3.3 1.9±1.2 0.0±0.0 13.8 R 

22 TMS91/02316 6.3±3.3 0.6±0.6 5.6±3.3 0.0±0.0 12.5 R 

23 Gbazékouté 5.6±2.8 0±0.0 0.6±0.6 0.0±0.0 6.2 R 

24 CVTM4 0.6±0.610 0.0±0.0 5.0±1.8 0.0±0.0 5.6 R 

  Total AUDPC9 340.8a 301.8a 212.7b 168.2b     
1S = susceptible 50-100% T (total)-AUDPC 52.3-104.5; 2MR = medium resistant 33.3-49.9% T-AUDPC  
34.8-52.2; 3R = resistant 0-33.2% T-AUDPC 0-34.7; 4genotypes with differential reaction between strains;  
5Highest AUDPC value used as 100% to determine the reaction group according to the total AUDPC; 6The mean 
of the highest AUDPC values of the 4 strains was used as 100% value in order to determine the reaction group for 
each of the strains; 7X. axonopodis pv. manihotis  strains from Cotonou, Benin (GSPB2506), Ibadan, Nigeria 
(GSPB2507), Onne, Nigeria (GSPB2511) and Kampala, Uganda (Uganda12); 8Ben86052 and TMS30572 as 
susceptible and resistant standard, respectively; 9Sum of AUDPC values of 24 genotypes; 10Standard error. 
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Table 2: Reaction of cassava genotypes stem-inoculated with four X. axonopodis pv. 
manihotis strains under controlled conditions, and differential genotypes for pathotypes 
identification 
 

  Pathotypes  

  Genotypes1 Uganda121 GSPB2507 GSPB2511 GSPB2506 
Groups of 
diff. gt.2 

1 Ben86052 R3 S MR4 S5 16 

2 Toma159 S S S MR - 

3 Nakoko MR S S MR - 

4 Main27 S R S S 2 

5 Tuaka S S MR R 3 

6 Ankra S MR S R 3 

7 Cameroon R S R R 5 

8 Fétonégbodji S S R R 4 

9 Lagos MR MR MR MR - 

10 Toma219 MR MR MR R - 

11 312-524 S R R R 6 

12 TMS30572 MR R R R - 

13 TMS91/02322 MR S R R 4 

14 TMS92/0343 S MR R R 4 

15 TMS92/0429 R S R R 5 

16 TMS92/0326 S R R R 6 

17 TMS92/0067 S R R R 6 

18 TMS92/0057 R R R R - 

19 Toma289 MR R R R - 

20 Toma378 R R R R - 

21 TMS4(2)1425 R R R R - 

22 TMS91/02316 R R R R - 

23 Gbazékouté R R R R - 

24 CVTM4 R R R R - 
              
1X. axonopodis pv. manihotis from Cotonou, Benin (GSPB2506), Ibadan, Nigeria (GSPB2507), Onne, Nigeria 
(GSPB2511) and Kampala, Uganda (Uganda12); 2diff. gt. = differential genotypes; 3R = resistant 0-33.2%, with 
AUDPC 34.6 (mean of highest value of the 4 strains) set as 100%, AUDPC 0-11.4;. 4MR = medium resistant 
33.3-49.9%, AUDPC 11.5-17.2; 5S = susceptible 50-141.0%, , AUDPC 17.3-48.8; 6The same numbers indicate 
that the corresponding genotypes belong to one differential group. 
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Fig. 1: Principal component analysis of area under disease progress curve (AUDPC) after 

stem-inoculation of 24 genotypes with four X. axonopodis pv. manihotis strains, with 

genotypes 1-9 (susceptible), 10-13 (medium resistant) and 14-24 (resistant) 

Genotype identification 1: Ben86052, 2: Toma159, 3: Nakoko, 4: Main27, 5: Tuaka, 6: Ankra, 7: Cameroon,  
8: Fétonégbodji, 9: Lagos, 10: Toma219, 11: 312-524, 12: TMS30572, 13: TMS91/02322, 14: TMS92/0343,  
15: TMS92/0429, 16: TMS92/0326, 17: TMS92/0067, 18: TMS92/0057, 19: Toma289, 20: Toma378,  
21: TMS4(2)1425, 22: TMS91/02316, 23: Gbazékouté, 24: CVTM4. 
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4.4 Discussion 
 

Host-plant resistance is an important element in the integrated control of cassava bacterial 

blight. In the present study the reaction of 24 cassava genotypes from Togo and from an 

international collection to cassava bacterial blight (CBB) to stem-inoculation with four  

X. axonopodis pv. manihotis strains from various geographic origins was evaluated, and 

genotype x strain interactions were analysed. 

 

The genotypes such as Ankra, Cameroon, Fétonégbodji, Lagos, Nakoko and the reference 

genotype Ben86052, which were susceptible after stem-inoculation revealed susceptibility in 

field trials in Togo (Banito, this thesis), while genotypes 312-524, TMS91/02322 and the 

standard CBB-resistant genotype TMS30572 were medium resistant after inoculation of the 

four strains as well as in field experiments. The susceptibility of genotypes Tuaka and 

Fétonégbodji to the disease in a stem-inoculation trial under field conditions (Boher and 

Agbobli, 1992) was confirmed by the present studies with 4 strains under glasshouse 

conditions. Genotypes CVTM4 and TMS91/02316 were resistant after stem inoculation and 

also belonged to the more resistant group in the general ranking across ecozones in field trials, 

while genotypes Gbazékouté, Toma289 and Toma378 were resistant to CBB after stem-

inoculation, but were among the most susceptible genotypes in field trials (Banito, this thesis). 

 

The stem-inoculation method was reported as a suitable method to screen cassava cultivars for 

resistance to CBB (Maraite et al., 1981; Restrepo et al., 2000). Defense mechanisms in 

cassava stems were described and an important role of phloem and xylem parenchyma cells in 

resistance was found. During the systemic infection of the vascular tissue, barriers such as 

gels and tyloses block the xylem vessels and reduce water movement in the xylem, and 

antimicrobial compounds accumulate to inhibitory concentrations in the infected vessels 

(Deshappriya, 1992; Kpémoua, 1995). Differences in these structural features, physiological 

activities, and morphological modifications between resistant and susceptible cultivars were 

observed (Kpémoua et al., 1996), and could contribute to the susceptibily or resistance of 

genotypes in the present data. Also, mechanisms of resistance of cassava on leaf level were 

suggested by Zinsou et al. (2002; 2003) and Wydra et al. (2003a). 

 

Strain x genotype interactions were observed, and the four X. axonopodis pv. manihotis 

strains GSPB2506, GSPB2507, GSPB2511 and Uganda12 were identified as different 

pathotypes according to their reactions on six groups of differential genotypes. Genotypes 
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deriving from a backcross of five F1 individuals with female parent TMS30572 varied in their 

reaction on leaf and stem levels against the four X. axonopodis pv. manihotis strains, which 

were also defined as different pathotypes according to their reaction by Zinsou et al. (2002; 

2003). A specific interaction between the cassava plant and the pathogen was suggested, and 

resistance markers specific for African strains were recently identified (Wydra et al., 2003b). 

Restrepo and Verdier (1997) reported strain x genotype interactions on stem level and 

pathotypes were identified among X. axonopodis pv. manihotis strains in Colombia (Restrepo 

et al., 2000). Wydra et al. (2003b) and Zinsou (2002) reported on differences between 

genotypes in reaction towards leaf- compared to stem-inoculation and suggested the existence 

of independent mechanisms of resistance on leaf level. This may contribute to the differences 

observed between field evaluation and reaction to stem-inoculation in the glasshouse. 

 

The principal component analysis was generally in accordance with the grouping based on the 

AUDPC differences. However, genotype Toma159 which was not among the differential 

genotypes based on the AUDPC differences, was revealed as a highly variable genotype in the 

principal component analysis. But, this variability did not include a resistant reaction. On the 

other hand, some differential genotypes were identified to have low genotype x strain 

interactions in the principal component analysis. This position in the two-dimensional biplot 

is due to the fact that in the principal component analysis the real AUDPC values were used, 

while the grouping of differential genotypes was based on a grouping of a percentage of 

AUDPC. Considering the differences in reaction of genotypes to stem- and leaf-inoculation, 

and between stem-inoculation and field evaluation, field-testing in various ecozones and leaf-

inoculation are recommended for selection of resistant genotypes. 

 

Genotypes, TMS30572 and TMS91/02316, with resistant, medium resistant and resistant 

reaction, respectively, after stem-inoculation, showed low disease severity and high root yield 

in field trials, while TMS92/0326 and TMS92/0057, and Cameroon and Ben86052, resistant 

and susceptible, respectively, after stem-inoculation, revealed tolerance to the disease under 

field conditions (Banito, this thesis). Thus, genotypes, TMS30572 and TMS91/02316 can be 

recommended to famers. Stem-inoculation with a set of pathotypes under controlled 

conditions revealed important to analyse genotype x pathotype interactions, and is, therefore, 

recommended to breeders to select resistant genotypes. 
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5 Distribution of Xanthomonas axonopodis pv. manihotis in stems of cassava genotypes 

and the impact on new sprouts 

 

Abstract 

 

A prerequisite for a healthy cassava plantation is the use of non-infected planting material. 

Therefore, the distribution of X. axonopodis pv. manihotis in cassava stems was studied with 

the aim to develop recommendations for the selection of healthy stem material. X. axonopodis 

pv. manihotis was detected in stems of the susceptible varieties Ben86052 and Fétonégbodji, 

in a discontinuous colonization pattern and not restricted to any part of the stem.  

X. axonopodis pv. manihotis numbers were higher in the upper parts, with about 107 cfu/g in 

Ben86052 and 106 cfu/g in Fétonégbodji, including plants without systemic symptoms, than 

in the middle and basal parts, where the lowest numbers were found. Although 90-100% and 

50-90% of cuttings of varieties Ben86052 and Fétonégbodji, respectively, harboured the 

pathogen, only 40-50% and 20-40%, respectively, of emerging sprouts were infected. From 

most of the cuttings in which X. axonopodis pv. manihotis was not detected, healthy sprouts 

emerged. No bacterial blight symptoms occurred on genotypes TMS30572 and Ggazékouté in 

the field, and the pathogen was not found in any part of the plants, nor did any of the new 

shoots from the planted cuttings show bacterial blight symptoms. Thus, symptomless plants of 

the latter genotypes could be considered free of X. axonopodis pv. manihotis. The selection of  

bacterial-blight-free cassava planting material from symptomless, resistant varieties is 

recommended to farmers to reduce disease incidence. 

 

Key words: Bacterial blight, planting material, Xanthomonas campestris pv. manihotis. 
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5.1 Introduction 

 

Cassava is an important staple crop in the tropics, and Africa produces more cassava than the 

rest of the world (FAO, 1998). However, most of the increases in cassava production in 

Africa have been due to increases in area under cultivation, rather than increases in yield per 

hectare (Hillocks, 2002). Cassava is affected by a wide range of virus, bacterial, fungal, and 

nematode diseases, among which cassava bacterial blight (CBB), caused by Xanthomonas 

axonopodis pv. manihotis (Vauterin et al., 1995), former Xanthomonas campestris pv. 

manihotis (Bondar, 1915), is the second most important disease of cassava in Africa (Hillocks 

and Wydra, 2002). Annual yield losses due to cassava bacterial blight in Africa is estimated 

up to 7.5 million tons (CIAT, 1996). 

 

Cassava is propagated vegetatively, and cassava stem cuttings are used by farmers to establish 

a new plantation. Dissemination of CBB from one area to another and the carry-over of the 

pathogen from one growing season to the next are largely due to the use of infected planting 

materials or cuttings (Lozano, 1986; Boher et al., 1996). Symptoms of cassava bacterial blight 

include angular leaf spots, blighting, wilting, vascular necrosis of the stem, production of 

exudates and dieback (Maraite, 1993). In a later stage of infection, the pathogen invades the 

plant systemically resulting in often symptomless stems where it can survive for over one year 

(Lozano and Laberry, 1982; Dinesen, 1990; Boher and Verdier, 1994). As part of an 

integrated control of cassava bacterial blight (Wydra et al., 2001, 2002) careful selection of 

CBB-free planting material is important (Lozano, 1986; Pacumbaba, 1987). For instance, after 

use of control measures including careful selection of planting material from only the most 

lignified – basal – portion of the stem, CBB severity was reduced, and cassava production in 

Cuba increased from 7-8 t/ha to 20 t/ha (Cock, 1985). The basal stem part was suggested to be 

the most resistant to cassava bacterial blight, because of lignification and high accumulation 

of pectin and cellulose (Cock, 1985). During the systemic infection of the vascular tissue, 

barriers such as gels and tyloses block the xylem vessels and reduce water movement in the 

xylem, and antimicrobial compounds accumulate to inhibitory concentrations in the infected 

vessels (Deshappriya, 1992; Kpémoua, 1995). Differences in these structural features, 

physiological activities, and morphological modifications between resistant and susceptible 

cultivars were observed, and dead X. axonopodis pv. manihotis cells were found close to 

tyloses in tissues of infected, CBB-resistant cassava plants (Kpémoua et al., 1996). 

Bactericidal activity of phenolics in Xanthomonad-infected plants such as cotton, rice, and 
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cabbage was reported (Jalali et al., 1976; Horino and Kaku, 1989; Reimers and Leach, 1991; 

Nmasivayam et al., 1971). 

 

However, X. axonopodis pv. manihotis was found to invade the cassava stem down to the 

basal part above ground level also in resistant and intermediate-resistant genotypes after 

inoculation of leaves (Lozano and Laberry, 1982; Fanou, 1999). Pruning most of the above 

ground portion of infected plants (Lozano, 1986) or cutting off diseased leaves (Fanou, 1999) 

to delay spread of the disease and secondary infections was reported to reduce CBB severity. 

Also heat-treated plantlets derived from meristem cultures were reported as a successful 

means of producing bacteria-free cuttings for propagation (Lozano, 1986). 

 

The distribution of X. axonopodis pv. manihotis in infected stems of field plants was reported 

for some varieties (Fanou, 1999), but never established in detail for varieties frequently grown 

in Togo. Also the incidence of infected sprouts deriving from infected cuttings has not been 

studied. To develop sanitation measures in areas with a high pressure of cassava bacterial 

blight, the role of infected cuttings in disease dissemination has to be known. Therefore, the 

aim of the present studies was to determine (i) the distribution of X. axonopodis pv. manihotis 

in different parts of stems of cassava varieties from Togo, and (ii) the incidence of infected 

sprouts, in order to develop recommendations for the selection of stem cuttings. 

 
5.2 Materials and methods  

 

Cuttings of the local, susceptible varieties Fétonégbodji and Gbazékouté and the improved 

highly susceptible and resistant varieties Ben86052 and TMS30572, respectively, (Boher and 

Agbobli, 1992; Banito et al., 2001) were planted in the field in the forest savanna transition 

zone at the Institut Togolais de Recherche Agronomique (ITRA) station, Lomé, Togo. Plants 

were inoculated three times with a bacterial suspension of 107 cfu/ml of a 48-hour old culture 

of a virulent X. axonopodis pv. manihotis strain from Togo (X27) at intervals of three weeks. 

Ten stems per variety from 14 months old plants were sampled at random in the field and 

CBB symptoms described on each selected plant. Detection followed the method described by 

Fanou (1999) with few modifications. The plants were divided into upper, middle and basal 

part, and surface-disinfected with 70% ethanol. For each part, a cutting of 40 cm length was 

used and 10 cm of both sides were cut off, weighed, cut into small pieces, crushed using a 

mixer blender and suspended in 0.01 M MgSO4 for one hour. The suspension was filtered 

through cheesecloth and centrifuged for 20 min at 4,000 x g. The pellet was suspended in 5 ml 
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of sterile 0.01 M MgSO4 and serial dilutions were performed. Fifty ìl of each dilution were 

plated on GYCA (glucose 5 g/l, yeast 5 g/l, CaCO3 10 g/l, agar 15 g/l) (Dye, 1962) medium 

supplemented with Cycloheximide (Sigma, Germany) (250 mg/l GYCA medium) and 

incubated at 30 °C. After 48 to 72 hours, X. axonopodis pv. manihotis colonies were counted. 

 

To check symptom development on sprouts, cassava stem cuttings of 20 cm length from the 

40 cm sample of each stem part were planted at a spacing of 0.5 x 0.5 m on well prepared flat 

ground in the field. Weeding and watering were applied when necessary. Evaluation of CBB 

symptom development started five days after planting and was followed up every five days up 

to 40 days. 

 

5.3 Results 
 
X. axonopodis pv. manihotis was detected in stem cuttings of the local, improved variety 

Ben86052 from Benin and the local, susceptible variety Fétonégbodji from Togo (Table 1), 

while no bacteria were found in stems of the improved variety TMS30572, and the local 

variety Gbazékouté from Togo, which also did not show CBB symptoms on the selected 

plants in the field. 

 

All the plants of the susceptible variety Ben86052 selected for X. axonopodis pv. manihotis 

detection showed CBB symptoms in the field, but no dieback. Exudates were observed on the 

tips of four plants and five plants showed wilt symptoms, while three plants showed no 

systemic symptoms. Ninety percent of the cuttings from the upper and basal parts, and all the 

cuttings from the middle part were infected with numbers of up to 4.3 x 107 cfu/g in the 

upper, 6.6 x 104 cfu/g in the middle and 2.5 x 104 cfu/g in the basal part. The average bacterial 

number was significantly higher in the upper part than in the middle and basal parts  

(p = 0.02). Only among the 3 stems without systemic symptoms (stem numbers 1, 2, 3), two 

showed a discontinuous distribution of X. axonopodis pv. manihotis, while X. axonopodis pv. 

manihotis was detected in all 3 parts of the stems of plants with systemic symptoms. Infected 

sprouts developped from 40-50% of the cuttings planted. Also sprouts derived from cuttings 

with low numbers of bacteria or no detection of bacteria developped symptoms, while 

cuttings with high bacteria numbers did not always develop infected sprouts. 

 

Seven plants of the variety Fétonégbodji selected for X. axonopodis pv. manihotis detection 

showed dieback in the field, exudates were observed on six plants. Only one plant did not 
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show systemic symptoms. Ninety percent of the cuttings from the upper, 70% from the 

middle and 50% from the basal part were infected with up to 6.1 x 106 cfu/g, 4.1 x 103 cfu/g, 

and 2.3 x 103 cfu/g, respectively. Differences in the average bacterial numbers between stems 

parts were not significant (p = 0.1). X. axonopodis pv. manihotis was found in all 3 parts of 

the stem in four, and not continuously detected in six plants, one of them being the plant 

without systemic symptoms. Also from a cutting without bacterial detection, a wilted sprout 

developped. Infected sprouts emerged from 20% of cuttings from the basal and upper parts, 

and from 40% of the middle part, although 50, 90 and 70% of the cuttings, respectively, 

harboured X. axonopodis pv. manihotis. 

 

Stems of variety Ben86052 harboured higher average bacterial numbers in all three parts than 

variety Fétonégbodji. In both varieties, the bacterial concentration decreased from the upper 

to the basal part of the stems, though not significantly in variety Fétonégbodji, with higher 

numbers in the upper part of Ben86052, but similar numbers in basal parts of both varieties. 

Fourty-three percent of sprouts from Ben86052 and 27% from Fétonégbodji were infected. 

No correlation between the bacterial number in stems and symptom development on the 

sprouts in genotype Ben86052 (coeff. 0.09) nor in Fétonégbodji (coeff. 0.33) was found  

(p > 0.05). Symptoms on sprouts occurred generally earlier in variety Fétonégbodji than on 

sprouts of Ben86052. 
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Table 1: Detection of Xanthomonas axonopodis  pv. manihotis in stems of 14-month old cassava plants and the symptoms on new sprouts 
 
  Ben86052 
 Symptoms on 14-month old plants Mean cfu/g   Mean cfu/g   Mean cfu/g   

Stems spot blight wilt exudates dieback Basal part Symptoms Middle part Symptoms Upper part Symptoms 
1 + + - - - 2.8 x 102 - 6.0 x 102 W 10 3.8 x 106 - 
2 - + - - - 0 E 15, W 20 6.0 x 104 E, W 20 1.7 x 107 E 10 , W 25 
3 - + - - - 1.1 x 103 E 10, W 25 1.4 x 103 - 0 - 
4 + + + - - 3.5 x 102 - 4.5 x 104 W 15 4.3 x 107 W 10 
5 - + + + - 3.2 x 103 - 6.6 x 104 - 3.5 x 104 - 
6 + - - + - 3.6 x 102 - 1.3 x 103 - 2.2 x 107 W 20 
7 + + + + - 4.1 x 102 - 1.1 x 104 - 2.8 x 105 - 
8 + + + - - 2.4 x 103 E 30 4.6 x 103 E 35 4.3 x 106 E 15 , W 20 
9 + - - + - 5.4 x 103 W, W 35 2.1 x 103 - 1.6 x 103 - 
10 + + + - - 2.5 x 104 - 3.6 x 102 - 7.4 x 102 E, W 40 

 Mean CFU/g of infected stems 4.3 x 103 b*  1.9 x 104 b  1 x 107a  
 Infected stems/sprouts (%) 90 40 100 40 90 50 
  Fétonégbodji 
 Symptoms on 14-month old plants Mean cfu/g   Mean cfu/g   Mean cfu/g   

Stems spot blight wilt exudates dieback Basal part Symptoms Middle part Symptoms Upper part Symptoms 
1 + + - - - 0 - 4.4 x 102 - 2.5 x 106 B, E 10 
2 - + + + + 0 - 0 - 2.1 x 105 - 
3 + + - + + 2.3 x 103 - 8.0 x 102 B 10 1.5 x 105 - 
4 + - + - + 6.8 x 102 W 10 4.1 x 103 - 2.5 x 106 - 
5 - - + + - 5.2 x 102 - 2.6 x 103 W 10 6.1 x 106 B, E 10 
6 + + - - + 7.9 x 102 - 0 - 6.6 x 104 - 
7 + + - - + 0 - 0 W 10 2.1 x 105 - 
8 - + - + + 0 - 1.1 x 103 - 0 - 
9 + - + + - 0 W 10 1.6 x 102 - 3.8 x 105 - 
10 - + - + + 1.8 x 102 - 4.8 x 102 B 10 1.5 x 104 - 

 Mean CFU/g of infected stems1 8.9 x 102 a  1.4 x 103 a  1.4 x 106 a  
  Infected stems/sprouts (%)   50 20 70 40  90 20 
1significant differences in means of cfu/g between stem parts at p < 0.05; + = present; - = absent; W = wilt; E = exudates; B = blight; 
e.g. B 10 = blight symptoms observed 10 days after planting. 
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5.4 Discussion 

 

Cassava bacterial blight is an important and world-wide occurring disease of cassava that is 

subjected to international phytosanitary quarantine. Infected cassava stems are largely 

responsible for the carry-over of X. axonopodis pv. manihotis from one growing season to the 

next, and for dissemination to different areas. Therefore, recommendations to farmers on the 

choice of planting material are necessary. The study was designed to investigate the 

colonization and distribution of X. axonopodis pv. manihotis in different parts of the stem of 

infected cassava plants of two locally important cassava varieties, Gbazékouté and 

Fétonégbodji, compared to the standard susceptible and resistant varieties Ben86052 and 

TMS30572, respectively. 

 

The basal, middle and upper stem parts of the varieties Ben86052 and Fétonégbodji were 

colonized by X. axonopodis pv. manihotis, continuously or discontinuously, with more  

X. axonopodis pv. manihotis-free cuttings in variety Fétonégbodji. Also Fanou (1999) and 

Daniel and Boher (1985) found partly discontinuous colonization of cassava plant stems.  

X. axonopodis pv. manihotis invaded cassava stems downwards until five centimeters above 

ground level on resistant and intermediate-resistant genotypes after leaf-inoculation (Lozano 

and Laberry, 1982). But, these authors did not relate the bacterial number in stems to the 

symptoms on the plant in the field and to latent infection, nor was the relation of infected 

stems to infected sprouts studied. In both susceptible varieties, the average X. axonopodis pv. 

manihotis concentration was by a factor of 103 higher in the upper part than in the middle and 

basal parts. Although some plants of the susceptible varieties had only shown leaf symptoms 

when sampling, bacteria were generally found in all parts of the stems, indicating that the 

pathogen invaded the stem from the infected leaves, but stayed in a latent phase in stems. 

Nevertheless, infected sprouts emerged from stem parts in which no bacteria were detected. 

Bacteria still existing inside stems in low numbers might not have been detected due to 

methodological limits in sampling and bacterial detection, since the parts used for planting 

could not be used for bacterial detection, but only small portions on the ends of the planted 

cuttings were tested for bacteria, and low bacterial numbers may not always be detected by 

the agar plating method. Daniel and Boher (1981) reported that the classical techniques of 

isolation on agar may fail to detect low levels of pathogen populations in seeds. Nevertheless, 

isolation is still considered as among the most sensitive method for detection of bacteria. 
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X. axonopodis pv. manihotis was not found in the CBB-resistant genotype TMS30572 and the 

local genotype Gbazékouté, which also had not shown symptoms on mother plants of cuttings 

in spite of several inoculations, nor on emerging sprouts. The variety Gbazékouté was among 

the highly resistant varieties, whereas Fétonégbodji was susceptible after stem-inoculation 

with four highly virulent strains from different geographic origins (Banito et al., 2000, 2001). 

Nevertheless, symptoms had been observed in previous field trials in all the tested genotypes, 

and for the 4 genotypes, the following order of CBB severity calculated as area under severity 

index progress curve (AUSiPC) was established: Gbazékouté > Ben86052 > TMS30572 > 

Fétonégbodji (unpublished data). Among them, Gbazékouté showed resistance to CBB after 

stem-inoculation (Banito et al., 2000, 2001), but was susceptible under field conditions. Also 

Fanou (1999) detected no X. axonopodis pv. manihotis in stems of variety TMS30572 

deriving from symptomless stems, but only in stems of plants showing CBB symptoms. 

Zinsou (2001) found lower X. axonopodis pv. manihotis numbers in stems and leaves of some 

plants of the resistant variety TMS30572 than in the suceptible Ben86052 after  

leaf-inoculation under greenhouse conditions, and after leaf-infiltration of low inoculum 

concentrations, no CBB symptoms occurred on variety TMS30572. 

 

Multiple resistance factors are induced in resistant plants after inoculation (Mansfield, 1983; 

Nicholson and Hammerschmidt, 1992), and defense mechanisms in CBB-resistant cassava 

plants were demonstrated (Kpémoua et al., 1996). Cassava cultivars may vary in their 

resistance to X. axonopodis pv. manihotis due to toxin concentrations (Perreaux et al., 1982; 

1985), some of which were found to be too low in susceptible cultivars (Cooper et al., 1995). 

In few cases bacteria were not detected although exudate had been observed on stems of 

susceptible genotypes. This might be due to the discontinuous distribution of X. axonopodis 

pv. manihotis in stems and the destructive sampling method which did not allow to detect  

X. axonopodis pv. manihotis in the whole stem. 

 

Surprisingly, 50-80% of the planted cuttings from the stem parts of Ben86052 and 

Fétonégbodji did not develop CBB symptoms on the new sprouts, although the stems 

harboured the pathogen. Although sprout infection was less in Fétonégbodji, sprout symptoms 

generally developed faster than in Ben86052. These observations could be generally due to 

the discontinuity of the colonization of X. axonopodis pv. manihotis or to differences in 

vascular connections between the xylem of new sprouts and the one of the old cuttings 

(unpublished data). New shoots generate a new system of xylem apart from the old vessels of 
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the previous stem. Most of the new xylem was observed to be unconnected to the old xylem 

as demonstrated by dye uptake and standard light microscopy (unpublished data). 

Additionally, old xylem was heavily occluded by tylosis. Thus, X. axonopodis pv. manihotis 

is unlikely to cross easily between old and new xylem because living parenchyma cells 

separate them. However, occasionally a connection was found, and X. axonopodis pv. 

manihotis could cross over from the xylem of the old stem to the new shoots, but this seems 

to be an infrequent event (Cooper, personal communication) and may depend on storage 

conditions of the cuttings and environmental conditions after planting (Wydra, personal 

communication). 

 

Since the pathogen was not found in any part of the 10 tested plants of varieties TMS30572 

and Gbazékouté, nor did any of the new shoots from the planted cuttings show CBB 

symptoms, symptomless plants of both cultivars could be considered free of X. axonopodis 

pv. manihotis. But, in case of field plants with symptoms, also these varieties may harbour the 

pathogen in their cuttings (Fanou, 1999). Therefore, a careful selection of cuttings from plants 

of resistant varieties without symptoms is recommended to farmers to receive CBB-free 

cassava planting material. A latent infection of symptomless cuttings of any stem part has 

always to be considered when cuttings come from an infected field. Therefore, also the basal 

part of the stems should not, contrary to recommendations of Cock (1985), be used to receive 

healthy planting material. Furtheron, breeders should consider differences between varieties 

in restriction of systemic infection, latent infection of stems and restriction of sprout 

symptoms as additional characteristics in selection of varieties for resistance. 

 
 



Distribution of bacteria in stems of cassava 114 

5.5 References 
 
Banito, A., Kpémoua, E. K., Wydra, K. and Rudolph, K. 2000. The occurrence of bacterial 

blight of cassava in Togo and studies of the virulence of the pathogens and the 

resistance of varieties. Deutsche Pflanzenschutztagung, München. Mitteilungen 

Biologische Bundesanstalt 376: 663. 

Banito, A., Kpémoua, E. K., Wydra, K. and Rudolph, K. 2001: Bacterial blight of cassava in 

Togo: its importance, the virulence of the pathogen and the resistance of varieties. In: 

Plant Pathogenic Bacteria, Xth Intern. Conf., Charlottetown, Canada. S. DeBoer (ed.). 

Kluwer Academic Press. pp. 259-264. 

Boher, B. and Agbobli, C.A. 1992. La bactériose vasculaire du manioc au Togo: 

caractérisation du parasite, répartition géographique et sensibilité variétale. Agron. 

Trop. 46: 131-136. 

Boher, B. and Verdier, V. 1994. Cassava bacterial blight in Africa: the state of knowledge and 

implications to designing control strategies. Afr. Crop Sci. J. 2: 1-5. 

Boher, B., Brown, I., Nicole, M., Kpémoua, E. K., Verdier, V., Bonas, U., Daniel, J. F., 

Geiger, J. P. and Mansfield, J. 1996. Histology and cytochemistry of interactions 

between plants and Xanthomonads. M. Nicole and V. Gianinazzi-Pearson (eds.). 

Histology, Ultrastructure and Molecular Cytology of Plant-Microorganism 

Interactions. pp. 193-210. 

Bondar, G. 1915. Molestia bacteriana da mandioca. Boletim de Agricultura, Sao Paulo 16: 

513-524. 

CIAT. 1996. Global Cassava Trends. Reassessing the Crop’s Future. Working document No. 

157, Henry, G. and Gottret, V., Centro Internacional de Agricultura de Tropical 

(CIAT), Cali, Colombia. 

Cock, J. H. 1985. Cassava. New Potential for a Neglected Crop. Westview Press, Inc., 

Boulder, CO. 191 p. 

Cooper, R. M., Deshappriya, N. Clarkson, J. M. and Henshaw, G. G. 1995. Bacterial blight of 

cassava: pathogenicity and resistance and implications in development of resistant 

lines. Proc. 2nd Intern. Conf. Cassava Biot. Network, Bogor, Indonesia. CIAT, Cali, 

Colombia. pp. 473-484. 

Daniel, J. F. and Boher, B. 1981. Contamination of cassava flowers, fruits and seeds by 

Xanthomonas campestris pv. manihotis. In: Proc. 5th Int. Conf. of Plant Path. Bact. 

Cali, Colombia. pp. 614-617. 



Distribution of bacteria in stems of cassava 115 

Daniel, J. F. and Boher, B. 1985. Etude des modes de survie de l’agent causal de la bactériose 

vasculaire du manioc, Xanthomonas campestris pv. manihotis. Agronomie 5: 339-346. 

Deshappriya, N. 1992. Xanthomonas blight of cassava: Studies on bacterial pathogenicity and 

host reponses in vitro and in planta. Ph.D. Thesis. University of Bath. 337 p.  

Dinesen, I. G. 1990. Production of plants free of pathogenic bacteria. In: 5th Intern. Conf. 

Plant Path. Bact. Cali. pp. 510-522. 

Dye, D. B. 1962. The inadequacy of the usual determinative tests for the identification of 

Xanthomonas spp. New Zealand J. Sci. 5: 393-416. 

Fanou, A. 1999. Epidemiological and ecological investigations on cassava bacterial blight and 

development of integrated methods for its control in Africa. PhD thesis, University of 

Göttingen, Germany. 199 p. 

FAO. 1998. FAO Production Yearbook. Vol. 52. 1998. 

Hillocks, R. J. 2002. Cassava in Africa. In: Cassava: Biology, Production and Utilization. R. 

J. Hillocks, J. M. Thresh and A. C. Bellotti (eds.). CAB Intern. pp. 41-54. 

Hillocks, R. J. and Wydra, K. 2002. Bacterial, Fugal and Nematode Diseases. In: Cassava: 

Biology, Production and Utilization. R. J. Hillocks, J. M. Thresh and A. C. Bellotti 

(eds.). CAB Intern. pp. 261-280. 

Horino, O. and Kaku, H. 1989. Defence mechanisms of rice against bacterial blight caused by 

Xanthomonas campestris pv. oryzae, the bacterial blight of rice. In: Proc. of the Int. 

Workshop, March, 1988. Intern. Rice Research Institute, Manila, Philippines.  

pp. 14-18. 

Jalali, B. L., Singh, G. and Groveer, R. K. 1976. Role of phenolics in bacterial blight 

resistance in cotton. Acta phytopathol. Acad. Sc. Hung. 11: 81-83. 

Kpémoua, E. K. 1995. Etude comparative du developpement de Xanthomonas campestris pv. 

manihotis chez les varietés de manioc sensibles et resistantes; approches histologiques, 

ultrastructurales et cytochimiques des mécanismes de la pathogénèse. Thèse de 

Doctorat, Université de Nantes, Nantes, France. 186 p. 

Kpémoua, E. K., Boher, B., Nicole, M., Calatayud, P. and Geiger, J. P. 1996. Cytochemistry 

of defence responses in cassava infected by Xanthomonas campestris pv. manihotis. 

Can. J. Microbiol. 42: 1131- 1143. 

Lozano, J. C. 1986. Cassava bacterial blight: A manageable disease. Plant Dis. 70:  

1089-1093. 

Lozano, J. C. and Laberry, R. 1982. Screening for resistance to cassava bacterial blight. Plant 

Dis. 66: 316-318. 



Distribution of bacteria in stems of cassava 116 

Mansfield, J. W. 1983. Antimicrobial compounds. In: Biochemical Plant Pathology. Eds. 

Callow. John Willey, C. A. and Sons, Chichester. pp. 237-265. 

Maraite, H. 1993. Xanthomonas campestris pathovars on cassava: cause of bacterial blight 

and bacterial necrosis. In: Xanthomonas. J. G. Swings and E. L. Civerolo (eds.). 

Chapman and Hall, London. pp. 18-24 

Nicholson, R. and Hammerschmidt, R. 1992. Phenolic compounds and their role in disease 

resistance. Annu. Rev. Phytopathol. 30: 369-389. 

Nmasivayam, L., Hedge, R. K. and Balasubramanian, A. 1971. Studies on the biochemical 

changes in cabbage plants infected with Xanthomonas campestris. (Pam.) Dow. 

Phytopathol. Mediterr. 10: 63-67. 

Pacumbaba, R. B. 1987. A screening method for detecting resistance against cassava bacterial 

blight disease. J. Phytopathol. 119: 1-6. 

Perreaux, D., Maraite, H. and Meyer, J. A. 1982. Identification of  3-methylthio propionic acid 

as a blight inducing toxin produced by Xanthomonas campestris pv. manihotis in 

vitro. Physiol. Mol. Plant Pathol. 20: 313-319. 

Perreaux, D., Maraite, H. and Meyer, J. A. 1985. Detection of 3-methylthio propionic acid in 

cassava leaves infected by Xanthomonas campestris pv. manihotis in vitro. Physiol. 

Mol. Plant Pathol. 28: 323-328. 

Reimers, P. J. and Leach, J. E. 1991. Race-specific resistance to Xanthomonas oryzae pv. 

oryzae conferred by bacterial blight resistance gene Xa-10 in rice (Oriza sativa) 

involves accumulation of a lignin-like substance in host tissues. Physiol. Mol. Plant 

Pathol. 38: 39-55. 

Vauterin L., Hoste B., Kersters, K. and Swings, G. J. 1995. Reclassification of Xanthomonas. 

Intern. J. System. Bact. 45: 472-489. 

Wydra, K., Agbicodo, E., Ahohuendo, B., Banito, A., Cooper, R.M.C., A. Dixon, R., Jorge, 

V., Kemp. B., Kpémoua, K., Rudolph, K., Verdier, V., Witt, F., Zandjanakou, M. and 

Zinsou, V. 2002. Integrated control of cassava bacterial blight by (1) combined 

cultural control measures and (2) host plant resistance adapted to agro-ecological 

conditions, and (3) improved pathogen detection. 8th Trienn. Symp. Intern. Soc. Trop. 

Root Crops – Africa Branch (ISTRC-AB), Ibadan, Nigeria. (in press) 

Wydra, K., Fanou, A., Sikirou, R., Zandjanakou, M., Zinsou, V. and Rudolph, K. 2001. 

Integrated control of bacterial diseases of cassava and cowpea in West Africa. In: 

Plant Pathogenic Bacteria. Xth Intern. Conf., Charlottetown, Canada. S. DeBoer (ed.). 

Kluwer Academic Press. pp. 280-287. 



Distribution of bacteria in stems of cassava 117 

Zinsou, V. 2001: Studies on the expression of resistance of cassava genotypes – including 

individuals of the mapping population – to cassava bacterial blight. MSc thesis. 

University of Göttingen, Germany. 57 p. 



 118 

6 Studies on intercropping and soil amendments for control of cassava bacterial blight 
 
 
Abstract 
 
The influence of intercropping cassava with common staple crops in Togo on cassava 

bacterial blight, and the effects of potassium (KCl) fertilizer doses of 60 and 120 kg/ha and 

the application of Cassia siamea mulch on disease development were studied under field 

conditions in four agro-ecological zones of Togo. Bacterial blight severity was significantly 

reduced compared to sole cassava in the forest highland in cassava-taro and cassava-maize 

intercropping at medium and high inoculum levels; in cassava-maize intercropping in the 

forest savanna transition zone at medium, but not at high inoculum levels (p � 0.01), and in 

cassava-maize intercropping in the wet savanna zone at high inoculum level (p � 0.05), with 

generally no significant negative effect on yield. Though significant, disease reductions by 

intercropping generally were low (6-23%). The application of potassium and mulch revealed 

only unclear disease reducing and increasing effects and can, thus, not be recommended as 

part of a disease control strategy. Since no varieties with complete resistance had been 

identified among local and local improved varieties across ecozones in Togo, the combination 

of medium resistant varieties and an intercropping system, both adapted to the respective 

ecozone, is recommended to farmers. 
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6.1 Introduction 
 

Cassava production is largely reduced due to the attack by pests and diseases (Nilmanee, 

1986; Hahn et al., 1989; IITA, 1990), with bacterial blight caused by Xanthomonas 

axonopodis pv. manihotis (Vauterin et al., 1995), former Xanthomonas campestris pv. 

manihotis (Bondar, 1915), being one of the major constraints (Lozano and Booth, 1974; 

Wydra and Msikita, 1998). Symptoms include angular leaf spots, blighting, wilting, 

defoliation, vascular necrosis of the stem, exudation and dieback. The vascular symptoms 

affect the quality and quantity of planting material (Boher and Verdier, 1994; Banito, this 

thesis), while root yield losses due to bacterial blight of more than 50% (Wydra and Rudolph, 

1999; Wydra, 2002) and 77% in some cassava varieties in the dry savanna zone (Fanou, 1999) 

were reported. 

 

Due to the instable and environmentally dependent nature of resistance to bacterial blight 

(Wydra, 2002), only an integrated control system combining host plant resistance with 

agronomic and cultural measures is promising to reduce bacterial blight epidemics  

(Wydra and Rudolph, 1999; Wydra et al., 2003). Intercropping and soil amendments were 

described to reduce diseases in several crops. 

 
Intercropping  
 
In the intercropping system two or more crops are grown simultaneously on the same area of 

land for a substantial part of their growing periods, but crops are not necessarily sown or 

planted at exactly the same time. Intercropping provides an efficient utilization of resources, 

economic stability for farmers, and is a dominant system of farming in Asia, Africa and South 

America, where population pressure is high and resources are limited. The increase of food 

production due to intercropping was reported in the United States (Murdock and Wells, 1978; 

Helsel and Wedin, 1981). Andrews and Kassam (1976) described various intercropping 

methods including mixed intercropping, row intercropping, strip intercropping, relay cropping 

and alley cropping. Especially in tropical areas of the world, cereals such as maize, sorghum, 

millet, but also common bean, cowpea, peanut and soybean are commonly used as 

components of intercrop combinations (Robinson, 1984). A useful strategy in areas with 

unreliable rainfall distribution is to intercrop a relatively short-duration crop with a long-

season one for which the periods of maximum demand on water resources are different  

(Davis and Woolley, 1993). In Africa, more than 75% of the total area under cultivation are 

intercropping systems (Nweke et al., 1994). Intercropping cassava with other staple crops was 
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reported as the most common system of cassava production in the tropics  

(Olasantan et al., 1994) and more than 60% of the farmers intercrop cassava with maize 

(Biaou and Issaka, 1997). Nevertheless, monocropping of cassava is increasing, especially in 

marginal areas (unpublished data). 

 

Intercropping can affect disease and pest incidence and severity (Van Rheenan et al., 1981; 

Ofuya, 1991; Trenbath, 1993). Intercropping cassava with cowpea reduced egg populations of 

Aleurotrachelus socialis and Trialeurodes variabilis, compared to those in monoculture  

(Gold et al., 1990), while intercropping cassava with maize did not reduce egg populations 

(Gold, 1993), indicating that the success of this technique can depend on the intercropped 

species. However, intercropping is a promising means of reducing pest populations for  

small-scale farmers (Bellotti, 2002). Thus, the combination of improved genetic resistance 

with the benefits of intercropping should result in a more sustainable control of diseases and 

pests (Davis and Woolley, 1993). Besides the decrease of bacterial blight under the cassava-

maize intercropping system, Larios and Moreno (1976, 1977) and Moreno (1979) also 

observed a delay in the development of superelongation of cassava (Elsinoe brasiliensis) and 

of rust (Uromyces manihotis), and a reduced incidence and severity of mildew, 

superelongation, and anthracnose (Colletotrichum sp.) in a cassava-common bean association 

in Turrialba, Costa Rica, while Ghosh et al. (1986) reported a reduction of brown leaf spots 

(Cercosporidium henningsii) in cassava associated with Eucalyptus sp. and Leucaena sp. 

Intercropping cassava-maize has been reported to reduce weeds up to 37% compared to sole 

cassava (Zuofa et al., 1992). However, a reduction of incidence and severity of diseases and 

pests by intercropping does not always occur (Woolley and Davis, 1991). The latter authors 

found that intercropping maize-bean reduced most of bean insects, but among diseases, 

anthracnose may be increased. 

 

Generally, intercropping has been reported as one of the measures to reduce cassava bacterial 

blight (Nyango, 1979; Terry, 1974). Ene (1977) reported that cassava bacterial blight was 

significantly reduced by providing shade or intercropping cassava with maize or melon. The 

use of intercropping was proposed as means to reduce cassava bacterial blight in the dry 

savanna (Tabot, 1995) and in the humid forest (Arene, 1976). Significant reduction of cassava 

bacterial blight severity in cassava intercropped with cowpea and maize compared to cassava 

monoculture were observed in the forest savanna transition zone of Nigeria, with the highest 

disease reduction of 53% in a cassava-maize intercrop, without significant yield effect due to 
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cropping system (Fanou, 1999). The latter author suggested that intercropping could have a 

barrier effect to inhibit the transport of the inoculum of X. axonopodis pv. manihotis since 

bacterial diseases are generally disseminated in the field by rainsplash and aerosols combined 

with wind. The effect of intercropping on cassava bacterial blight severity may vary with 

intercrops used and across ecozones. Therefore, as part of an integrated control system for 

cassava bacterial blight suggested by Wydra et al. (2001), an adapted intercropping system 

should be developed in each cassava growing area. In Togo, studies on the use of 

intercropping to reduce cassava bacterial blight, have never been conducted. Thus, the 

objective of the present studies was to determine the effectiveness of intercropping cassava 

with common staple crops in controlling cassava bacterial blight under field conditions in 

various agroecological zones in Togo. 

 
Fertilization  
 
In many tropical areas, cassava is grown on poorest soils and still produces a considerable 

yield under conditions, where other staple crops such as maize would fail. Cassava is suitable 

for marginal areas with adverse climatic and soil conditions because of its exceptional 

tolerance to drought and to acid, infertile soils (Howeler, 2002). This tolerance of cassava to 

marginal soils has often led to the opinion that cassava, either grown alone or intercropped, 

does not require high soil fertility for good yields nor responds to fertilizer application. 

However, cassava commonly requires some application of nitrogen and potassium for 

maximum growth and root yields (Obigbesan and Fayemi, 1976; Howeler, 1991). But, yield 

depressions have been observed at potassium rates higher than 200 kg/ha applied in the form 

of KCl (CIAT, 1974). The lack of potassium has been reported to affect the plant’s response 

to nitrogen and phosphorus (CIAT, 1975). In acidic soils, a low availability of potassium, 

phosphorus and calcium may affect cassava production (CIAT, 1995). In Colombia, no 

difference in yields was observed between KCl and K2SO4 application at SO4 content of 9.0 

ppm in the soil, while at low SO4 content, with K2SO4 application significantly higher yields 

than with KCl were produced (Ngongi, et al., 1976). For cassava fresh root yield of 35.7 t/ha, 

an average removal of 55 kg/ha nitrogen (N), 13.2 kg/ha phosphorus (K) and 112 kg/ha 

potassium (K) were observed (Howeler, 1991). 

 

The application of fertilizers was suggested to reduce cassava bacterial blight (Ezumah and 

Terry, 1974). Studying the effect of NPK fertilization on cassava bacterial blight, Arene 

(1978) found, that only potassium reduced significantly the severity of the disease in 
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greenhouse trials. A significant reduction of cassava bacterial blight incidence and severity 

was also observed in field trials at potassium rates of 90 and 180 kg K2O/ha compared to 0 kg 

K2O/ha, while no difference occurred between the two doses (Arene and Odurukwe, 1979). 

 

Rainsplashing is the most important factors of dissemination in the field or between fields 

over short distances (Lozano and Sequeira, 1974; Otim-Nape, 1976). Ene (1977) found that 

cassava bacterial blight could be controlled by the use of any means such as mulching which 

reduce the impact of rain splash. Additionally, a green manure is known to release nutrients 

for the plant, suppress weeds, support root development and increase soil moisture  

(Maliki et al., 1997). The application of mulch produced significantly greater corm yield, but 

also showed a higher incidence of corm rots of taro compared to non-mulched plots 

(Miyasaka et al., 2001). The use of lower potassium rates in reducing cassava bacterial blight 

compared to those proposed by Arene and Odurukwe (1979), could contribute to minimize 

the cost of fertilizer application. Therefore, the present study was designed to investigate the 

effects of KCl fertilizer doses of 60 and 120 kg/ha and the Cassia siamea mulch on cassava 

bacterial blight development under field conditions in different ecozones of Togo. 

 

6.2 Materials and Methods  
 
Experimental sites 

 

Intercropping and fertilization trials were conducted in four sites in stations of the Institut 

Togolais de Recherche Agronomique (ITRA), Togo, in 1999-2000: in the forest savanna 

transition zone at Davié, in the forest lowland zone at Adéta, in the forest highland zone at 

Danyi, and in the wet savanna zone in Sotouboua. The vegetation in the forest savanna 

transition zone (littoral zone) in the South part of the country is characterized by a shrubby 

vegetation with few trees, in the forest zone in the South-West by a rainforest vegetation, and 

in the wet savanna in the Center part of the country by more shrubby vegetation. The forest 

savanna transition and the forest zones are characterized by a sub-equatorial climate with one 

long rainy season (March – June), one short dry season (July-August), one short rainy season 

(September – October) and one long dry season (November – March), whereas the wet 

savanna is characterized by a tropical climate with one long rainy season (April –  September) 

and one long dry season (October –  March) (Lamouroux, 1979). The average annual rainfall 

is about 1,200 mm in the forest savanna transition zone and 1,400 mm in the forest and wet 

savanna zones, with an average temperature of 28 °C, 24 °C and 27 °C, respectively  
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(DMN, 2001). In years 1999 and 2000, the average rainfall was 958 mm in the forest savanna 

transition zone, 1,403 mm in the forest zone and 1,326 mm in the wet savanna zone, spread 

over 9 months in the first two ecozones and over 7 months in the latter one. 

 

Planting materials and planting 

 

The bacterial blight-susceptible variety Ben86052 was used in both intercropping and 

fertilization experiments. Cassava stem cuttings of 20 cm deriving from apparently healthy 

field plants were single planted at a spacing of 1 x 1 m on well prepared flat ground in June 

1999. Each treatment consisted of three plots (20 m2 per plot) of 20 plants. The non-

inoculated and inoculated plots were separated by a 5 m wide screen of maize plants. 

Intercropping. Cassava was intercropped with maize in a row intercropping system. 

Additionally in the forest highland, cassava was row-intercropped with taro, a common tuber 

crop in this area. Maize plants within rows were 40 cm spaced apart, while cassava and taro 

were 1 m spaced. The three crops were planted at the same time. 

Fertilization. Potassium chloride (KCl) was applied in two doses (60 kg/ha, 120 kg/ha) to 

cassava plants two weeks after planting. For mulching, leaves of Cassia siamea 

(Caesalpinaceae) were applied at a rate of 2 t/ha dry matter at the planting day. The control 

plots for both experiments did not receive potassium nor mulch. 

Experimental design 

In both trials, block design was not used due to accessity of land. Each treatment was in  

3 plots non-replicated. Control plots were the same for all treatments. Weeding was conducted 

when necessary and no watering was applied.  

 
Bacterial suspension and inoculation 

 

A 48-hour old culture of X. axonopodis pv. manihotis strain X27 from Togo was harvested in 

mass from GYCA (glucose 5 g/l, yeast 5 g/l, CaCO3 10 g/l, agar 15 g/l) plates (Dye, 1962) 

using 0.01 M MgSO4 solution. One-month old cassava plants were inoculated with a bacterial 

suspension of 107 cfu/ml by spraying the abaxial surface of cassava leaves with a motorized 

sprayer. All the plants of each plot in the fertilization trial were sprayed, whereas in the mono- 

and intercropping, only the border plants (outer rows of each plot) were inoculated. A total of 

three inoculations were performed at 3-weekly intervals. 
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Disease assessment 

 

Disease symptoms were evaluated 3 weeks after each inoculation and after six and twelve 

months, by counting leaves with angular leaf spots, blight or wilt on ten randomly selected 

plants per plot in the fertilization trial, and selected within rows between the inoculated outer 

rows of each plot in the intercropping trial. When leaves showed more than one symptom 

type, they were recorded under the more severe symptom type. The total remaining leaves, 

dropped leaves (number of scarifications remaining on stem) and number of shoot tips with 

dieback were also recorded. The percentages of leaves with spots, blight, wilted/dropped 

leaves and shoots with dieback were calculated for each plant. The severity index (Si) was 

calculated for each plant at each evaluation date as follows: 

Si = (1xS + 2xB + 1xW + 2xD)/6 

where S, B, W and D represent the percentage of leaves with spots, blight, wilt and shoots 

with dieback, respectively. The weight attributed to the symptoms blight and dieback is an 

estimation resulting from regression analysis of symtom and plant growth data, revealing 

blight as most important factor influencing root yield, and dieback with highest influence on 

overall plant growth (leaf and stem weight) (unpublished data). The effect of fertilization and 

mulching as well as the effect of the cropping system on cassava bacterial blight severity were 

assessed by calculating the area under the severity index progress curve (AUSiPC) for each 

plant at six evaluation dates, by the trapezoidal integration (Shaner and Finney, 1977; Jeger 

and Viljanen-Rollinson, 2001) according to ecozones. In the forest and forest savanna 

transition zones: 

AUSiPC = [(Si1+Si2)x21/2 + (Si2+Si3)x21/2 + (Si3+Si4)x60/2 + (Si5+Si6)x120/2]/275 

In the wet savanna zone: 

AUSiPC = [(Si1+Si2)x21/2 + (Si2+Si3)x21/2 + (Si3+Si4)x30/2 + (Si5+Si6)x90/2]/215 

where Si1, Si2, Si3, Si4, Si5 and Si6 represent the severity index at the evaluation dates 1, 2, 

3, 4, 5 and 6, respectively. Si4 and Si5 correspond to severity index during the dry season and 

are equal to zero. The AUSiPC in days over the growing period was divided by the evaluation 

period of 275 or 215 days, corresponding to 365 days minus the dry season period of 90 days 

in the forest and forest savanna transition zones and 150 days in the wet savanna zone. To 

receive an average comparable between ecozones. Thus, all AUSiPC values are standardized. 
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Harvests 

 

Cassava roots were harvested at 12 months after planting by uprooting ten plants randomly 

selected in each plot in the fertilization trial, and selected within rows between the inoculated 

outer rows of each plot in the intercropping trial. Plant height was measured, and roots of each 

plant were counted and weighed. All the roots of each plot were mixed and a sub-sample was 

cut into small pieces, weighed and dried in an oven at 105 °C for 72 hours for dry weight 

determination. 

 

Statistical analysis 
 

Standardized area under severity index progress curve (AUSiPC) and of dry root weight 

values were log-transformed to stabilize variances and the analysis was performed using the 

Linear Mixed Model ANOVA (Harville, 1988; Bernardo, 1994; Tempelman and Gianola, 

1996). Values and standard errors in tables are the real, non-transformed values. Analysis of 

variance was performed on AUSiPC and root dry weight values using the General Linear 

Model (GLM) procedure in the SAS system (SAS, 1990; 1997). The Student-Newman-Keuls 

(SNK) test was used to compare the means of AUSiPC and root dry weight values  

(Danielie, 1975), and to discriminate between the KCl fertilizer doses and mulch as well as 

the intercropping patterns. 

 

6.3 Results 

 

Effect of intercropping on cassava bacterial blight severity 
 

Cassava bacterial blight severity expressed as area under severity index progress curve 

(AUSiPC) was significantly reduced in the forest highland in cassava-taro and cassava-maize 

intercropping in inoculated (p = 0.0003) and in non-inoculated (p < 0.0001) treatments 

compared to sole cassava, in the forest savanna transition zone in cassava-maize intercropping 

in non-inoculated treatment (p = 0.007) and in the wet savanna zone in cassava-maize 

intercropping in the inoculated treatment (p < 0.0001) (Table 1). Though significant in some 

treatments, disease severity reductions by intercropping were generally low (6-23%). In two 

non-inoculated treatments, disease severity was significantly lower in cassava monocropping. 
 

In the forest highland, the disease develops during the rainy season, with the highest values at 

2 and 4 months after planting (Fig. 1). Symptoms disappear during the dry season and 

reappear in the rainy season of the following year. 
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Table 1: Effect of intercropping cassava-maize and cassava-taro on cassava bacterial blight 
severity expressed as area under the severity index progress curve (AUSiPC) in four ecozones 
of Togo 
 

    Forest lowland   Forest highland (plateau) 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Crop system AUSiPC   AUSiPC   AUSiPC   AUSiPC 

 Cassava 5.8±0.11
1
b***  7.5±0.19a  5.1±0.11a***  5.8±0.11a*** 

 Cassava-maize 6.4±0.08a  7.5±0.17a  4.8±0.10b  5.2±0.08b 

 Cassava-taro nd2  nd  4.3±0.07c  5.2±0.14b 

    Forest savanna transition   Wet savanna 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Crop system AUSiPC   AUSiPC   AUSiPC   AUSiPC 

 Cassava 6.4±0.10a**  6.3±0.05a  6.4±0.24b***  7.8±0.32a*** 

 Cassava-maize 5.9±0.12b  6.2±0.07a  7.9±0.21a  6.0±0.08b 
* = significant (SNK test) at probability level p < 0.05; ** = significant at probability level p < 0.01;  
*** = significant at probability level p < 0.001; 1 = standard error, 2 nd = not done. 
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Fig. 1: Development of severity index in intercropping patterns in the susceptible genotype 
Ben86052 in the inoculated treatment in the forest highland in year 1999 (dates of 
inoculation: 30, 51 and 72 days after planting) 
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Effect of intercropping on cassava yield 

 

Generally, no significant differences in yield (root dry weight) were observed between 

cassava monoculture and cassava intercropping plots across environments and treatments, 

except in the forest highland (non-inoculated plots) and the forest savanna transition zones 

(inoculated plots), where intercropping cassava-taro and cassava-maize, respectively, 

significantly reduced root yield (p = 0.02, p = 0.007, respectively) (Table 2). 

 

Table 2: Effect of intercropping on cassava yield (t/ha) in four ecozones of Togo 
 

    Forest lowland   Forest highland 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Crop system Root DW   Root DW   Root DW   Root DW 

 Cassava 20.7±2.971a  26.1±3.86a  20.2±1.47a*  19.5±2.23a 

 Cassava-maize 23.9±1.77a  23.1±1.90a  18.1±2.08ab  15.3±3.94a 

 Taro-Cassava nd2  nd  13.1±1.31b  20.0±3.29a 

    Forest savanna transition   Wet savanna 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Crop system Root DW   Root DW   Root DW   Root DW 

 Cassava 17.0±2.55a  26.3±2.21**  5.6±1.36a  17.3±1.92a 

 Cassava-maize 15.2±1.73a  15.8±2.47b  9.5±1.71a  12.4±1.92a 
* = significant (SNK test) at probability level p < 0.05; ** = significant at probability level p < 0.01;  
Root DW = root dry weight; 1 = standard error, 2 nd = not done. 
 

 

Effect of KCl fertilizer and Cassia siamea mulch on cassava bacterial blight severity 

 

The effects of potassium and mulch treatment on cassava bacterial blight severity were 

variable across ecozones and treatments (inoculated, non-inoculated) (Table 3). Significant 

reductions in cassava bacterial blight  severity comparing control and treatments were 

observed in the forest-savanna transition zone in all treatments in the non-inoculated plots  

(p < 0.0001) and in the KCl 60 kg/ha treatment in inoculated plots (p = 0.0002), in the wet 

savanna zone in the KCl 120 kg/ha treatment in non-inoculated plots, and in the mulching and 

in the KCl 120 kg/ha treatments in inoculated plots (p < 0.001), and in the forest highland in 

the KCl 120 kg/ha in non-inoculated plots (p < 0.001). The disease severity reductions, 

though significant, were generally low (8-19%). The inverse situation was observed in all 

treatments in non-inoculated plots, in the forest lowland and in the KCl 60 kg/ha treatment in 
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the forest highland zones, where disease severity increased significantly compared to the 

control (p < 0.001). 

 

Table 3: Effect of potassium (KCl) and mulch from Cassia siamea on cassava bacterial blight 
severity expressed as area under the severity index progress curve (AUSiPC) in four ecozones 
of Togo 
 

    Forest lowland   Forest highland (plateau) 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Fertilizers AUSiPC   AUSiPC   AUSiPC   AUSiPC 

 Control 5.8±0.11
1
c*  7.5±0.19ab*  5.1±0.11b***  5.8±0.11a 

 KCl 60 6.5±0.09b  7.9±0.26a  5.6±0.08a  5.8±0.19a 
 KCl 120 6.2±0.12b  7.2±0.28ab  4.6±0.09c  5.7±0.13a 
 Mulch 6.9±0.09a  7.0±0.12b  5.3±0.09ab  5.3±0.16a 

    Forest savanna transition   Wet savanna 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 
  Fertilizers AUSiPC   AUSiPC   AUSiPC   AUSiPC 
 Control 6.4±0.10a***  6.3±0.05a***  6.4±0.24a***  7.8±0.32a*** 
 KCl 60 5.9±0.09b  5.8±0.08b  6.6±0.16a  7.9±0.37a 
 KCl 120 5.9±0.05b  6.2±0.10a  5.6±0.13b  6.8±0.26b 
 Mulch 5.8±0.08b  6.2±0.09a  7.0±0.11a  6.3±0.28b 
* = significant (SNK test) at probability level p < 0.05; *** = significant at probability level p < 0.001;  
1 = standard error. 
 
In the wet savanna, a peak of disease severity occurs in the rainy season at 2 months after 

planting, symptoms disappear during the dry season and symptom development starts again in 

the rainy season of the following year (Fig. 2). 

 

Effect of fertilizer and mulch application on cassava yield 

 

Generally, no significant differences in root yield were observed between the fertilizer and 

mulch applications and the control (Table 4). Nevertheless, in the forest highland zone, yield 

in the mulch plots was significantly higher than yield obtained by the KCl rate of 60 kg/ha in 

non-inoculated plots (p = 0.03). In the forest savanna transition zone, significant reduction of 

root weight was observed at a KCl rate of 120 kg/ha in inoculated plots (p = 0.05). In the wet 

savanna zone, mulch significantly reduced root dry yield compared to the control in the 

inoculated plots (p = 0.004), while with the KCl dose of 120 kg/ha a significantly higher root 

yield was recorded than with the mulch treatment under natural infection (p = 0.007). 
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Fig. 2: Development of severity index in fertilization patterns in the susceptible genotype 
Ben86052 in the inoculated treatment in the wet savanna zone in year 1999 (dates of 
inoculation: 30, 51 and 72 days after planting) 
 
 
 
Table 4: Effect of potassium (KCl) and mulch from Cassia siamea on cassava yield (t/ha) in 
four ecozones of Togo 
 

    Forest lowland   Forest highland (plateau) 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Fertilizers Root DW   Root DW   Root DW   Root DW 

 Control 20.7±2.971a  26.1±3.86a  20.2±1.47ab*  19.5±2.23a 
 KCl 60 16.7±2.11a  27.2±3.84a  21.0±3.04b  18.7±1.62a 

 KCl 120 21.9±2.53a  32.7±4.33a  21.2±1.29ab  19.6±3.28a 
 Mulch 18.8±2.00a  31.2±4.24a  33.4±4.70a  13.4±1.49a 

    Forest savanna transition   Wet savanna 

  Non-inoculated  Inoculated  Non-inoculated  Inoculated 

  Fertilizers Root DW   Root DW   Root DW   Root DW 
 Control 17.0±2.55a  26.3±2.21a*  5.6±1.36b**  17.3±1.92a*** 

 KCl 60 16.0±2.76a  21.2±3.78ab  6.1±1.08ab  11.3±1.97ab 
 KCl 120 22.1±2.87a  15.3±2.97b  11.3±1.35a  9.4±1.43ab 

 Mulch 23.5±2.04a  18.4±3.07ab  4.3±1.22b  7.1±1.93b 
* = significant (SNK test) at probability level p < 0.05; ** = significant at probability level p < 0.01;  
*** = significant at probability level p < 0.001; Root WD = root dry weight. 1 = standard error. 
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6.4 Discussion 
 

The effect of intercropping cassava-maize and cassava-taro on cassava bacterial blight was 

investigated. Significant, but relatively low reductions of cassava bacterial blight severity 

(AUSiPC) were observed in cassava-maize intercropping in the forest savanna transition zone 

and in the wet savanna zone, and in cassava-maize and cassava-taro intercropping in the forest 

highland zone. Intercropping can influence disease and pest incidence and severity  

(Van Rheenan et al., 1981; Ofuya, 1991; Davis and Woolley, 1993). Cassava bacterial blight 

reduction due to cassava-maize and cassava-cowpea intercrops in the forest savanna transition 

zone and cassava-maize intercrop in the dry savanna zone in Nigeria was reported by Fanou 

(1999) and Tabot (1995), respectively. Intercropping was proposed to reduce Ralstonia 

solanacearum causing bacterial wilt, in potato (Autrique and Potts, 1987; Kloos et al., 1987) 

and tomato (Pan, 1990), while other studies only revealed a slight reduction or no reduction of 

bacterial wilt under intercropping of tomato with cowpea, soybean or Welsh onion  

(Michel et al., 1997). Also Sikirou (1999) did not observe clear effects on cowpea bacterial 

blight when cowpea was intercropped with maize or cassava in the forest-savanna transition 

zone of West Africa. On the other hand, cassava-maize intercropping increased the severity of 

powdery mildew, and a bean-cassava association showed no effect on scab, rust, and 

Cercospora leaf spots of cassava (Moreno, 1979). The reduction of the disease severity 

observed in intercropping might be due to the barriers provided by maize or taro plants, which 

could reduce plant-to-plant dissemination of the disease through rainsplash or drops of water 

carried by wind. Ene (1977) reported that cassava bacterial blight was significantly reduced 

by providing shade or intercropping cassava with maize or melon. Also, a reduced bacterial 

blight incidence and severity in cassava intercropped with maize and melon in the humid 

forest zone was observed by Arene (1976). 

 

A relation between significant reduction of disease severity which occurred in few treatments 

and yield data was not observed. Comparing cropping systems, generally, no significant yield 

loss occurred in intercropped cassava compared to monocropping, except a significant yield 

reduction in intercropping cassava with maize in the inoculated treatment in the forest 

savanna transition zone and in intercropping cassava with taro in the non-inoculated treatment 

in the forest highland. The latter reduction may be due to a high competition between the two 

root crops. Intercropping cassava with maize in the forest savanna transition zone of Nigeria 

(Fanou, 1999), and across a wide range of environments in South Nigeria under nitrogen 

fertilization (Ezumah et al., 1988) did not cause a reduction in yield, while, on the contrary, a 
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significant cassava yield loss due to intercropping cassava with maize was reported from the 

rainforest zone of Nigeria (Zuofa et al., 1992). Okoli et al. (1996) reported significant cassava 

root yield losses up to 40% in susceptible and up to 35% in resistant cassava cultivars 

intercropped with cowpea, while Fanou (1999) found no significant difference in cassava root 

yields between cassava-maize and cassava-cowpea intercropping and monocropping cassava. 

In maize-soybean intercropping, Mohta and De (1980) reported increased total grain yield, 

whereas Crookston and Hill (1979) observed no grain yield effect. Also yields of intercropped 

soybean with maize were up to 32% less than yields of soybean in monoculture, however, 

yield of intercropped maize was increased up to 53% compared with the yield of monoculture 

maize and compensated for the reduced yield of soybean (Herbert et al., 1984). Thus, the 

present results and studies of other authors show that intercropping may cause a yield 

reduction of the main crop, but, even when yield reductions of the main crop occur, the 

additional yield gained by the intercrop has to be considered, which increases the land 

equivalent ratio (Sikirou, 1999). Higher cash incomes in cassava intercropped with maize and 

groundnut compared to cassava monoculture were reported in Togo (Marqette and  

Pouzet, 1988). 

 

Since intercropping cassava-maize and cassava-taro reduced disease severity slightly, but in 

most cases significantly in the forest highland, the wet savanna and the forest savanna 

transition zones, with no significant negative yield effect due to the cropping system with two 

exceptions, these cropping systems can be recommended in these ecozones as part of an 

integrated control strategy for cassava bacterial blight. A suppressive effect of intercropping 

might be more obvious, when a medium resistant variety is used. Since no resistant varieties 

were identified among local and local improved varieties across ecozones in Togo  

(Banito, this thesis), the combination of medium resistant varieties and an intercropping 

system, both adapted to the respective ecozone, could be recommended to farmers. Besides 

the possible effect of disease reduction, yield stability and an additional yield would be 

achieved by planting the second crop. 

 

The application of potassium and mulch revealed only unclear disease reducing and 

increasing effects and can, thus, not be recommended for a disease control strategy. In the 

present studies, no significant effect of the KCl fertilizer on cassava bacterial blight severity 

was observed across ecozones and environments, except a significant reduction of cassava 

bacterial blight severity of the susceptible genotype Ben86052 by KCl in some environments. 
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However, generally no obvious effect of potassium chloride was found across environments. 

On the contrary, the application of NPK fertilizer was reported to reduce bacterial blight of 

cassava under greenhouse conditions, with potassium (K) being the main component 

responsible for the reduction (Arene, 1978). Greenhouse trials on the effect of fertilizer based 

on N, P and K revealed significant reductions of cassava bacterial blight incidence and 

severity on a susceptible variety with the potassium dose of 90 kg/ha (Adeniji and Obigbesan, 

1976) and of 90 and 180 kg/ha (Arene and Odurukwe, 1979). Also Boher and Verdier (1994) 

suggested that the potassium fertilization enhances cassava plant resistance to X. axonopodis 

pv. manihotis infection. This was not obvious in the present data. Mulching had generally no 

disease reducing effect, however, the use of green manure in farmers’ cultivation may have 

other advantages, such as maintenance of soil moisture and soil fertility, improvement of soil 

structure, limitation of soil erosion, support of soil microfauna, and inhibition of weeds’ 

competition. By reducing weeds in the field, an additional inoculum source in form of 

epiphytic populations of X. axonopodis pv. manihotis on weeds (Fanou et al., 2001) can be 

avoided. 

 

Our results revealed a significant yield increase only at KCl application of 120 kg/ha under 

natural infection in the wet savanna, while significant depressions on root yield were recorded 

at the KCl dose of 120 kg/ha in the forest savanna transition zone in the inoculation treatment 

and with the application of mulch in the wet savanna zone. Yield depressions of cassava have 

been reported at potassium rates higher than 200 kg/ha applied in the form of KCl  

(CIAT, 1974). Similar yield depressions at high potassium rates were observed for yam 

(Ferguson and Haynes, 1970). Ngongi et al. (1976) found that at a high level of soil sulfur 

content, no differences in cassava yields occurred between potassium in the form of KCl and 

K2SO4, but at low soil sulfur content, K2SO4 produced significantly higher cassava root yields 

than KCl. In the present studies a significant yield increase was found only at KCl dose of 120 

kg/ha in the wet savanna zone, but the sulfur content of the soil had not been determined. The 

effectiveness of KCl application on cassava yields in relation to the SO4 content in the soil 

(Ngongi et al., 1976) could explain our generally variable results observed across 

environments. 

 

Conclusions  
 

Intercropping cassava with maize and taro revealed a disease reducing effect in some 

ecozones, with generally no effect on yield, and can thus be recommended as part of a cassava 
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bacterial blight control strategy. No clear effect of potassium fertilizer and mulch on cassava 

bacterial blight severity was observed. However, due to many other advantages of the green 

manure, mulching can be recommended to farmers. The results should be confirmed in a 

second season trial. 
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General conclusions 

 

Knowledge on the status of a disease and on the virulence of pathogen strains from different 

ecozones are a prerequisite to develop control strategies and important for screening varieties 

for resistance. Cassava diseases were assessed in the forest, forest savanna, wet savanna and 

dry savanna zones of Togo in relation to agronomic and environmental characteristics, and 

strains of cassava bacterial blight pathogen Xanthomonas axonopodis pv. manihotis (Xam) 

were pathologically characterized. Genotype-pathogen and genotype-pathogen-environment 

interactions were investigated for selection of resistant cassava genotypes suitable to an 

integrated control system of cassava bacterial blight (CBB). Therefore, cassava genotypes 

were tested for their reaction to CBB by leaf-inoculation under field conditions in different 

ecozones of Togo. Furthermore, the genotypes were evaluated for their reaction to stem-

inoculation with four highly virulent Xam strains from different geographic origins in a 

glasshouse experiment, and the existance of Xam pathotypes was studied. To develop 

sanitation measures in areas with a high pressure of cassava bacterial, the distribution of Xam 

in different parts of stems of cassava genotypes and the incidence of infected sprouts were 

determined. Control measures suitable to farmers’ conditions and adapted to ecozones, 

contributing to an integrated control strategy of CBB are recommended. 

 
1. Assessing cassava diseases, high incidences of CBB were observed in all ecozones, even in 

the forest zone where earlier observations revealed the absence of the disease. However, 

disease severities were higher in the dry savanna, wet savanna and forest savanna transition 

zones than in the forest zone. CBB was negatively correlated with rainfall, with decreasing 

incidence and severity from the herbaceous savanna without trees (dry savanna zone) to the 

forest zone. Suppressive effects of vegetation and soil moisture on CBB was observed. The 

disease was more important in weedy plantations, indicating that weeds could play a role in 

the spread of the disease. 

Cassava mosaic disease (CMD) occurred in all ecozones with high incidences. Correlation 

analysis revealed an increased CMD severity when several cassava varieties were grown in 

mixture and in fields with abundant weeds. Cercospora leaf diseases occurred in all the 

ecozones with high incidences. The susceptibility of genotypes increased on sandy loam and 

loamy sand soils. Also, few trees in the surroundings of a field and intercropping systems 

favored Cercospora brown leaf spots (BLS), while a mixture of cassava varieties in a field 

had a suppressive effect on white leaf spots (WLS). Significant negative relationship between 

CBB and CMD and between CMD and WLS were found. The cassava disease survey 
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conducted in farmers’ fields in the four agroecological zones provided country-wide and 

detailed data on cassava bacterial blight, and on two other cassava diseases, cassava mosaic 

disease and cercosporioses, never reported at this level before in Togo. CBB is becoming 

more severe in all the ecozones, including the forest zone, where the disease was not found 

some years before. A further survey is recommended to confirm the present data. Measures to 

control cassava diseases must be taken to avoid possible epidemics and prevent losses of 

yields in farmers’ productions. 

 
2. Fourty-seven X. axonopodis pv. manihotis strains from the forest, forest savanna transition, 

wet savanna and dry savanna zones, were isolated from leaf samples collected across 

ecozones. Pathological characterization conducted on the susceptible cassava genotype 

Ben86052 by stem-inoculation revealed, that most of the strains were highly virulent 

independent of their geographic origin. Only slight differences in virulence among the strains 

from the four ecozones were observed. Although the lowest CBB severity and field incidence 

were recorded in the forest zone, all strains collected in this zone were highly virulent. An 

increase of pathogen aggressiveness over years could be responsible for the increase of 

disease severity. However, the pathogenic variability of strains has to be tested with various 

genotypes to investigate strain x genotype interactions, and additional leaf-inoculation 

experiments may reveal more pathogenic diversity and mechanisms of resistance of the plant. 

The inoculation of few strains selected among the highly virulent ones is recommended to test 

genotypes for resistance to cassava bacterial blight. 

 
3. To identify suitable high yielding genotypes with resistance to cassava bacterial blight, 23 

improved and local cassava genotypes from Togo and from an international cassava collection 

from the International Institute of Tropical Agriculture (IITA), were screened under natural 

infection and after spray-inoculation with Xam in the forest, forest savanna transition and wet 

savanna zones. No genotype with stable resistance to CBB across the ecozones was found, but 

genotypes TMS92/0429, TMS30572, CVTM4 and TMS91/02316 had a lower disease 

severity combined with high yield. 

High variability in disease expression was observed. The three genotypes Lagos, Toma289 

and Toma378 showed susceptible reactions to CBB across all ecozones and over years, while 

the other genotypes revealed high genotype x environment interactions, with variability 

between and/or within ecozones over the two years. Genotype TMS30572, a widely 

distributed improved genotype in West Africa, revealed medium resistance in four of the five 

environments and resistance in one environment. High CBB severities expressed as area 
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under severity index progress curve (AUSiPC) were recorded from the forest zone, suggesting 

that conditions for epidemics are becoming more favorable in this ecozone. Genotypes also 

showed genotype x environment interactions in their reaction to the CBB symptom types, 

spot, blight and wilt. Genotypes Main27, TMS30572 and TMS92/0429 with partly resistance 

against wilt showed highest interactions with the environment in this character, indicating that 

a possible mechanism inhibiting the development of the wilt symptom is depending on the 

ecological conditions. Generally, neither the spot nor the blight symptom development were 

significantly correlated to the development of systemic symptoms. The reaction of genotypes 

with a strong negative correlation between spot and blight symptom development on the one 

hand and wilt symptom development on the other hand (e.g. in genotypes TMS92/0057 and 

TMS92/0326) indicated independent mechanisms of resistance on leaf and stem levels, 

depending on the cassava genotype. Thus, in breeding for resistance, genotypes with different 

types of resistance or a combination of both types should be considered. 

High variability in cassava dry root yield was observed across and within ecozones over the 

two years, denoting high genotype x environment interactions. Widely grown local genotypes 

such as Fétonégbodji, Nakoko, Ankra, Tuaka and Main27 revealed a generally low yield 

across ecozones, even when symptom severity was low (e.g. genotype Main27), while most 

of the improved genotypes had higher root production, among them TMS92/0057, with 

highest production across ecozones, and TMS30572 with the highest root yield of 33.2 t/ha in 

the forest zone. CBB severity significantly reduced cassava root yield in some environments. 

Investigating the effect of symptom types on yield, blight and wilt were found to significantly 

decrease root yield. However, analyzing relationships between CBB symptom types and root 

yield by genotype, significant decreases of yield in correlation to symptom type were 

generally not observed. 

Genotypes including Lagos, TMS92/0057, TMS92/0343 and Ben86052, though highly 

susceptible, had a high root yield, and could be identified as tolerant, since they did not react 

with a yield decrease on an increasing disease level. Genotypes TMS30572 and 

TMS91/02316 with low disease severity and high root yield could be recommended to 

farmers, whereas genotypes TMS92/0326, TMS92/0057, Cameroon and Ben86052, tolerant 

to the disease, in spite of their higher yield, but should be avoided by farmers due to the risk 

of dissemination of inoculum. Genotypes Main27 and CVTM4, resistant, but with low root 

yield could be recommended to breeders to introduce their resistance characteristics into the 

breeding materials. Additionally, genotypes TMS30572 and TMS92/0429 should be used to 
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introgress their high resistance to the wilt symptom into genotypes with susceptibility to 

systemic symptoms. 

 

4. After stem-inoculation with 4 Xam strains from different geographic origins, six genotypes 

showed a resistant reaction against the four strains, with genotypes CVTM4 and Gbazékouté 

being the most resistant. Most of the genotypes tested including the reference genotype 

Ben86052, with susceptible reaction against at least two strains were resistant to at least one 

strain. Thus, strain x genotype interactions were observed, and six groups of  differential 

genotypes which could be useful for pathotype identification, were determined, and the four 

strains, Uganda12, GSPB2506, GSPB2507 and GSPB2511, originating from Uganda, 

Cotnou, Benin and Ibadan and Onne, Nigeria, respectively, represented four different 

pathotypes. 

Analyzing data from greenhouse experiments and field trials, genotypes Ankra, Cameroon, 

Fétonégbodji, Lagos, Nakoko and the reference genotype Ben86052, which were susceptible 

after stem-inoculation revealed susceptibility in field trials, while genotypes 312-524, 

TMS91/02322 and TMS30572 were identified as medium resistant after inoculation of the 

four strains as well as in field experiments. Genotypes CVTM4 and TMS91/02316 were 

resistant after stem-inoculation and also belonged to the more resistant group in the general 

ranking across ecozones in field trials, while genotypes Gbazékouté, Toma289 and Toma378 

were resistant after stem-inoculation, but were among the most susceptible genotypes after 

leaf-inoculation in field trials. Field-testing in various ecozones and stem- and  

leaf-inoculation are recommended for selection of resistant genotypes. 

 

5. The colonization and distribution of Xam in different parts of the stem of infected cassava 

plants of two locally important cassava genotypes, Gbazékouté and Fétonégbodji, compared 

to the standard susceptible and resistant genotypes Ben86052 and TMS30572, respectively, 

were investigated. Although some plants of the susceptible genotypes Ben86052 and 

Fétonégbodji had only shown leaf symptoms in the field, bacteria were generally found in all 

parts of the stems, indicating a latent phase of the pathogen in stems. However, most of the 

planted cuttings from the stem parts of Ben86052 and Fétonégbodji did not develop CBB 

symptoms on the new sprouts, although the stems harboured the pathogen. These observations 

could be generally due to the discontinuity of the colonization of Xam in stems or to 

differences in vascular connections between the xylem of new sprouts and the one of the old 

cuttings hindering the transfer of the pathogen. Since the pathogen was not found in any part 
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the tested plants of genotype TMS30572 nor did any of the new shoots from the planted 

cuttings show CBB symptoms, and due to its medium resistant reaction to leaf-inoculation in 

field trials, symptomless plants of this genotype selected from non-infected fields could be 

considered free of Xam, and, thus, TMS30572 is recommended to farmers to receive  

CBB-free cassava planting material. Furtheron, breeders should consider differences among 

varieties in restriction of systemic infection, latent infection of stems and restriction of sprout 

symptoms as additional characteristics in selection of varieties for resistance. 

 

6. Intercropping cassava-maize and/or cassava-taro, according to ecozone, significantly 

reduced disease severity in a susceptible genotype compared to cassava monocropping in the 

forest highland, the wet savanna and the forest savanna transition zones, with generally no 

significant negative yield effect. Thus, these cropping systems can be recommended in these 

ecozones as part of an integrated control strategy for CBB. A suppressive effect of 

intercropping might be more obvious, when a medium resistant genotype is used. Therefore, 

the combination of medium resistant genotypes and an intercropping system, both adapted to 

the respective ecozone, could be recommended to farmers. Besides the possible effect of 

disease reduction, yield stability and an additional yield would be achieved by planting the 

second crop. No clear effect of potassium fertilizer and mulch on CBB severity was observed. 

However, due to many other advantages of the green manure, mulching can be recommended 

to farmers. The results should be confirmed in a second season trial. 
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Annex 1: Disease severity (AUSiPC) of non-inoculated and inoculated genotypes in forest, forest savanna transition and wet savanna zones in 
two years 
    Forest zone   Forest savanna transition zone   Wet savanna zone 

  1998  1999  1998  1999  1999 

  Non-inoc. Inoc.  Non-inoc. Inoc.  Non-inoc. Inoc.  Non-inoc. Inoc.  Non-inoc. Inoc. 

  Genotypes AUSiPC AUSiPC   AUSiPC AUSiPC   AUSiPC AUSiPC   AUSiPC AUSiPC   AUSiPC AUSiPC 
 312-524 4.7 5.9  6 7.3  4.7 5.9  5.5 5.5  5.2 8.2 

 Ankra 4.2 6.4  7.1 8.8  6.5 7.1  6.7 7.6  5.2 6.3 
 Ben86052 “C” 5.4 7.2  7.1 7.9  5.4 5.6  5.7 6  6.5 7.4 
 Boram 4.5 7.7  6.7 7.8  nd nd  nd nd  nd nd 

 Cameroon 4.8 6.9  6.5 7.7  5.6 5.5  6 6.1  7.2 6.5 
 CVTM4 4.1 3.7  4.9 6  4.9 5.9  5.1 5.1  3.1 5.1 
 Fétonégbodji 4.1 6  6.2 8.3  6.2 5.1  6.5 6.1  6.4 7.5 

 Gbazékouté “C” 5.6 6  6.8 7.7  6.4 7.2  6.3 6.6  6.2 7.3 
 Lagos 4.5 8.4  7.3 8.5  6.2 8  6.1 6.6  6.7 8.5 
 Main27 3 4.8  4.7 4.1  4.8 5.1  5.3 5.6  3.7 4.3 

 Nakoko 4.7 6.9  6.2 9.1  5.6 5.4  6.5 6.1  5.4 8 
 Sorad nd nd  nd nd  nd nd  nd nd  5.4 7.8 
 TMS30572 “C” 3.3 4.4  4.5 4.5  4.9 4.4  5.2 5.1  3.5 5.3 
 TMS4(2)1425 3.8 4.9  5.3 9  5.4 6.4  5.2 4.7  4 4.7 
 TMS91/02316 4 6.3  5.1 6.3  4.6 5.3  5 4.6  4.5 6.6 
 TMS91/02322 4.7 5.4  5.2 6.5  6.2 5.7  6.6 6  4.8 5.6 

 TMS92/0057 5.3 6.1  6.5 6.8  6.1 5.8  6.3 6.3  5.1 6.5 
 TMS92/0067 2.9 6.6  6 7.3  5.8 5.3  6 6.4  5.3 5.4 
 TMS92/0326 5 6.5  5.7 6.3  5.5 5.6  5.7 5.9  5.7 6.1 

 TMS92/0343 5 7.2  6.4 5.7  5.1 5.7  6.2 5.6  5.5 6.6 
 TMS92/0429 4.5 4.9  3.9 4.9  3.2 4.6  4.7 4  3.5 3.9 
 TMSCBS10(80411) nd nd  nd nd  nd nd  nd nd  4.6 5.3 

 Toma159  3.9 6.1  6.5 6.4  5.4 5.1  5.3 5.1  nd nd 
 Toma219  nd nd  nd nd  6 6.3  7.3 6.5  nd nd 
 Toma289  4.7 8.2  8.2 6.9  6.7 6.5  7.3 7.2  5.7 7.6 

 Toma378  6.1 6.8  7.6 7.7  5.8 7.1  5.6 6.1  5.6 7.6 
 Tuaka 3.6 5.9  5.9 5.1  5.4 4.7  6.3 6.2  5.8 8.9 
 Total AUSiPC 106.6 149.4  146.5 166.8  132.6 139.3  142.2 141.2  124.7 156.8 

  Range 2.9 - 6.1 3.7 - 8.4   3.9 - 8.2 4.1 - 9.1   3.2 - 6.7 4.4 - 8.0   4.7 - 7.3 4.0 - 7.6   3.1 - 7.2 3.9 - 8.9 

 SE C 0.51 C 0.27   C 0.39 C 0.23   C 0.22 C 0.66   C 0.13 C 0.26   C 0.41 C 0.66 
  SE X 0.80 X 0.48  X 0.66 X 0.40  X 0.34 X 1.12  X 0.21 X 0.45  X 0.71 X 1.15 
“C” = check genotype; X = other genotypes than check;SE = standard error; Non-inoc. = non-inoculated; Inoc. = inoculated; nd = not determined. 
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Annex 2: Screening of 24 cassava genotypes for resistance to cassava bacterial blight (CBB) in three ecozones of Togo: root dry weight (DW) 
in (t/ha) 
    Forest zone   Forest savanna transition zone   Wet savanna zone 

  1998   1999  1998   1999  1999 

  Non-inoc. Inoc.**  Non-inoc. Inoc.**  Non-inoc. Inoc.  Non-inoc.** Inoc.  Non-inoc. Inoc. 

  Genotypes Root DW  Root DW   Root D W Root DW   Root DW Root DW   Root DW Root DW   Root DW Root DW 

 312-524 17.8±3.96 7.8±1.57  19.3±1.97 17.1±2.14  10.0±1.71 9.1±1.26  10.6±1.26 9.1±2.39  6.2±2.20 11.9±3.72 

 Ankra 2.2±0.15 10.3±3.46  15.5±2.99 10.9±4.07  2.2±1.43 12.1±1.93  8.8±2.65 6.7±0.72  2.6±3.44 3.8±1.48 

 Ben86052 “C” 12.3±2.93 14.6±2.71  23.9±4.19 22.9±4.86  13.8±2.78 18.4±2.85  18.2±3.36 12.0±3.59  2.0±0.99 11.9±2.62 

 Boram 3.7±1.30 4.9±0.74  3.1±1.01 7.0±1.47  nd nd  nd nd  nd nd 

 Cameroon 18.3±2.67 13.8±2.93  22.3±4.38 16.8±2 .57  21.0±6.10 18.2±3.76  20.3±2.20 21.0±2.73  0.6±0.07 8.2±2.56 

 CVTM4 11.9±1.49 13.5±3.24  9.2±1.59 15.8±2.96  15.8±2.56 28.1±9.58  12.9±1.60 10.5±1.50  9.7±2.02 10.5±2.98 

 Fétonégbodji 6.3±1.29 5.5±2.17  5.2±1.10 4.3±1.08  5.5±0.73 0.3±0.72  5.6±0.62 5.8±1.23  3.8±0.75 2.7±0.53 

 Gbazékouté “C” 12.7±1.98 17.8±1.66  16.8±3.35 26.9±5.22  12.6±1.53 19.4±2.59  9.4±1.97 8.0±1.33  3.1±1.08 11.6±2.88 

 Lagos 9.8±3.24 10.3±0.70  18.0±3.46 17.5±2.75  17.8±1.63 25.3±4.28  18.6±3.01 17.5±2.81  2.5±0.81 9.9±3.16 

 Main27 6.4±0.96 11.5±1.81  10.7±2.24 16.9±5.56  5.6±2.29 7.1±1.55  4.8±1.02 6.0±0.73  8.6±0.85 9.0±2.86 

 Nakoko 7.8±0.98 11.3±2.59  6.2±1.62 6.5±2.08  6.4±2.23 7.9±2.99  5.1±1.11 4.8±0.66  3.4±2.06 4.2±1.22 

 Sorad nd nd  nd nd  nd nd  nd nd  5.0±2.98 3.9±1.21 

 TMS30572 “C” 14.7±3.20 20.2±3.68  21.6±4.90 33.2±7.43  15.6±2.97 21.3±4.61  11.9±1.63 8.8±1.10  9.7±3.01 8.8±1.85 

 TMS4(2)1425 13.4±4.29 9.7±5.31  13.1±3.60 17.4±3.83  5.9±0.27 6.2±1.52  3.3±0.49 9.4±1.95  4.0±1.44 1.2±3.75 

 TMS91/02316 21.4±5.43 11.8±3.95  22.5±2.32 22.8±3.75  16.6±4.67 18.7±5.73  14.0±2.56 14.0±1.97  10.9±2.20 13.3±1.92 

 TMS91/02322 7.1±1.38 22.6±4.70  26.5±3.15 19.2±6.32  9.6±2.15 12.9±1.47  9.2±1.91 6.5±1.03  8.1±1.64 11.2±3.42 

 TMS92/0057 15.4±3.44 16.5±3.62  32.1±2.57 26.1±0.95  17.7±1.45 29.1±4.81  18.9±4.65 12.9±2.07  23.1±4.42 21.1±1.99 

 TMS92/0067 3.8±5.08 16.5±4.92  29.0±5.74 21.6±3.93  6.9±1.63 12.3±1.19  14.2±0.77 9.8±1.35  2.5±1.07 5.8±1.55 

 TMS92/0326 19.8±2.55 7.3±2.53  27.3±2.47 26.9±4.88  14.0±3.77 17.2±4.46  15.8±3.16 17.0±3.25  7.7±0.99 17.7±3.42 

 TMS92/0343 14.9±4.13 14.7±3.40  23.0±2.78 19.0±2.87  16.3±2.52 21.1±1.56  14.9±2.10 11.2±1.28  8.3±2.01 11.9±3.81 

 TMS92/0429 10.8±2.13 13.7±0.94  25.4±6.86 29.2±5.14  11.1±3.27 8.5±3.41  13.3±4.23 20.9±6.07  12.8±2.42 12.2±2.41 

 TMSCBS10(80411) nd nd  nd nd  nd nd  nd nd  6.3±0.51 13.9±2.31 

 Toma159  4.3±0.14 10.6±2.18  16.2±1.75 7.0±0.62  3.9±2.35 8.9±2.38  18.4±10.54 5.6±1.31  nd nd 

 Toma219  nd nd  nd nd  9.6±0.39 5.6±0.37  4.6±0.30 6.1±1.58  nd nd 

 Toma289  2.9±0.82 4.4±1.32  3.7±0.26 5.5±1.59  8.0±0.27 8.6±0.88  8.4±1.07 7.9±2.77  0.9±2.88 2.4±0.66 

 Toma378  9.6±1.96 13.6±2.36  15.0±1.57 17.2±3.24  12.9±1.18 14.0±1.66  14.3±5.08 7.9±1.28  7.2±0.13 7.6±1.41 

  Tuaka 4.0±0.81 12.6±3.29   17.2±1.67 25.1±7.75   1.5±1.95 8.1±2.15   1.0±0.46 -2   0.8±2.68 6.8±0.87 
**= significance at probability level of 0.01 between check genotypes “C” (Ben86052, Gbazékouté and TMS30572); 1 standard error; 2 missing value of root dry weight in the 
inoculated plots in the forest savanna transition zone in year 1999; Non-inoc. = non-inoculated; Inoc. = inoculated; Root DW = root dry weight. 
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Annex 3: Rainfall (mm) in 12 sites of Togo 

  Year Jan. Feb. Mars April May June July Aug. Sept. Oct. Nov. Dec. Total 

Tabligbo1 1998 20.0 42.2 2.6 24.3 236.0 176.1 74.4 68.4 87.4 144.8 53.5 2.1 931.8 

 1999 34.7 29.1 169.8 100.5 129.8 173.3 162.3 143.8 139.9 229.7 28.6 0.0 1341.5 

 2000 7.1 11.5 62.0 40.7 109.4 86.2 86.7 90.1 87.9 120.8 16.4 0.0 718.8 

Tsévié1 1998 37.1 16.3 73.9 0.0 168.6 128.0 51.6 14.3 110.9 138.2 39.4 0.7 779.0 

 1999 49.0 2.5 98.3 48.8 118.9 200.5 128.9 67.7 165.4 122.7 64.9 0.4 1068.0 

 2000 2.3 24.2 53.8 83.0 37.5 106.7 26.9 79.7 83.2 117.4 72.4 20.0 707.1 

Kpalimé2 1998 33.2 52.0 33.6 162.2 194.8 254.8 117.3 52.8 141.5 238.7 14.7 19.4 1315.0 

 1999 27.7 82.2 106.6 138.6 98.9 386.8 370.8 232.7 238.5 261.6 82.3 0.0 2026.7 

 2000 0.0 0.0 48.3 59.4 162.6 392.6 118.7 80.0 448.0 92.0 43.9 6.5 1452.0 

Adéta2 1998 2.5 7.4 25.8 91.3 253.2 199.6 80.2 97.4 93.1 154.1 8.8 4.8 1018.2 

 1999 0.0 2.8 70.1 64.1 133.8 120.1 97.0 89.2 110.4 146.6 30.4 0.0 864.5 

 2000 21.3 0.0 82.3 78.6 161.5 351.5 201.3 265.0 241.0 74.0 4.6 2.0 1483.1 

Danyi2 1998 6.0 58.3 31.2 124.4 122.7 161.6 80.6 116.5 208.4 105.8 20.0 17.6 1053.1 

 1999 15.0 58.6 25.2 74.0 82.9 140.7 188.4 104.7 188.5 196.2 90.7 0.0 1164.9 

 2000 17.6 0.0 42.0 95.3 91.5 291.4 300.5 200.0 216.7 148.1 22.1 0.6 1425.8 

Atakpamé3 1998 0.1 74.9 6.4 284.2 240.0 131.0 195.3 189.6 62.6 116.1 0.4 0.4 1301.0 

 1999 170.0 47.2 54.2 153.3 165.2 156.5 309.5 350.4 221.4 168.7 13.7 0.0 1810.2 

 2000 6.5 0.0 14.5 110.9 109.6 152.1 140.5 156.7 259.9 115.8 2.3 0.0 1089.6 

Stouboua3 1998 13.3 45.2 36.7 65.1 96.7 189.8 195.7 281.8 277.7 167.0 0.0 2.0 1371.0 

 1999 0.0 34.7 22.8 69.9 212.7 134.2 204.2 217.1 287.2 188.1 19.2 0.0 1309.1 

 2000 0.2 0.0 17.5 175.5 117.9 242.4 161.5 322.5 175.9 96.4 0.0 0.0 1309.8 

Sokodé3 1998 9.9 0.7 0.3 111.4 95.2 149.6 213.9 240.0 327.5 229.3 0.0 19.0 1396.8 

 1999 0.0 29.0 49.1 180.5 84.3 78.5 162.3 330.3 219.8 123.7 12.5 0.0 1270.0 

 2000 0.0 0.0 5.3 87.7 84.0 189.7 243.8 239.6 210.8 104.5 0.0 0.0 1165.4 

Kara4 1998 0.0 5.6 0.0 64.7 192.2 323.5 203.3 246.4 243.0 137.3 0.0 0.0 1416.0 

 1999 0.0 63.7 19.6 87.2 78.3 107.1 158.0 266.3 193.0 200.0 0.0 0.0 1173.2 

 2000 7.0 0.0 24.2 54.5 93.1 185.7 182.3 260.0 292.6 90.3 13.3 0.0 1203.0 

Niamtougou4 1998 10.0 1.0 35.6 50.9 147.0 206.1 247.1 293.3 208.3 106.7 0.0 0.0 1306.0 

 1999 0.0 29.5 2.6 69.1 160.3 188.1 284.7 312.4 374.9 229.1 0.0 0.0 1650.7 

 2000 38.2 0.0 3.6 89.2 89.3 166.4 237.4 305.5 267.9 133.6 0.0 0.0 1331.1 

Mango4 1998 0.0 0.6 0.0 33.2 126.8 173.7 154.6 355.3 342.5 93.3 0.0 0.0 1280.0 

 1999 0.0 1.1 17.8 86.9 84.5 115.1 227.6 400.3 306.9 169.7 0.0 0.0 1409.9 

 2000 0.0 0.0 0.0 96.5 147.0 140.9 126.6 95.9 254.9 45.7 0.0 0.0 907.5 

Dapaong4 1998 0.0 0.0 0.0 134.9 161.1 170.1 140.5 351.2 215.9 105.5 0.0 0.0 1279.2 

 1999 0.0 40.0 8.6 90.6 22.5 76.8 217.3 439.4 283.3 46.2 0.0 0.0 1224.7 

  2000 0.0 0.0 0.0 33.9 82.8 112.8 112.7 175.6 208.2 101.3 0.0 0.0 827.3 
1forest savanna transition zone; 2forest zone; 3wet savanna zone; 4dry savanna zone.
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