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Abstract

This technical report contains additional material to the paper
“On necessity and robustness of dissipativity in economic model predictive control”

by M. A. Müller, D. Angeli, and F. Allgöwer,
IEEE Transactions on Automatic Control, 2015, 60, 1671-1676, DOI: 10.1109/TAC.2014.2361193,

in particular some extensions and proofs. References and labels in this technical report (in particular Equation
labels (1)–(26), references [1]–[23], and all theorem numbers etc.) refer to those in that paper.

In this technical report, we need the following additional notation. For a function F (x) : Rn → Rm, denote by
∇xF (y) the Jacobian matrix of F with respect to x, evaluated at a point y. If F is scalar, then ∇xF (y) denotes
the gradient of F with respect to x, evaluated at a point y. Furthermore, for a function G(x) : Rn → R, ∇2

xG(y)
denotes the Hessian of G evaluated at a point y. For x ∈ Rn and ε ≥ 0, define by Bε(x) the ball of radius ε around
x, i.e., Bε(x) := {y ∈ Rn : |y − x| ≤ ε}. For a set S ⊆ Rn, denote by S its closure.

I. PROOF OF THEOREM 4

For simplicity and without loss of generality, in the following we assume again that `(x∗, u∗) = 0. Similar
to the proof of Theorem 3, we want to induce a contradiction by constructing a feasible state/input sequence
pair x̂(·), û(·) violating (6). By assumption, the linearization of system (2) at the optimal steady-state (x∗, u∗) is
controllable, and hence system (2) is locally controllable at x∗ in n time steps (see [18,Section 3.7]). This means
that for each ε > 0 there exists a δ > 0 such that for each pair of states y′, y′′ ∈ Bδ(x∗), there exists an input/state
sequence pair x′(·), u′(·) such that x′(0) = y′, x′(n) = y′′, and (x′(i), u′(i)) ∈ Bε(x

∗, u∗) for all i ∈ I[0,n−1].
Define ε̂ := maxBε(x∗,u∗)⊆Z ε, and denote the corresponding δ by δ̂. Note that ε̂ > 0 as (x∗, u∗) ∈ int(Z) by
assumption.

Now assume for contradiction that the system is uniformly suboptimally operated off steady-state, but it is not
dissipative on Z0. By Theorem 2, this is equivalent to the fact that the available storage is unbounded on X0, and
hence as in the proof of Theorem 3 we conclude that for each r ∈ I≥0, there exist some y ∈ X0 and a state/input
sequence pair xr(·), ur(·) together with a time instant Tr ∈ I≥0 such that xr(0) = y, (xr(k), ur(k)) ∈ Z0 for all
k ∈ I≥0 and (19) is satisfied. Note that due to continuity of ` and compactness of Z, it follows that Tr → ∞
as r →∞. As the system is uniformly suboptimally operated off steady-state, there exists t̄ ∈ I≥1 such that for all
feasible sequences at least one of the conditions (8a)–(8b) is satisfied with δ = δ̂. Now define c as

c := max
{
n max

(x,u)∈Bε̂(x∗,u∗)
`(x, u),−t̄ min

(x,u)∈Z
`(x, u)

}
(27)

and consider a state/input sequence pair xr(·), ur(·) with r ≥ 1 + 3c. Note that for this sequence, Tr ≥ 3t̄ + 1
as −r < 3t̄min(x,u)∈Z `(x, u). Hence, due to uniform suboptimal operation off steady-state, we conclude that
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|xr(s1) − x∗| ≤ δ̂ for some s1 ∈ I[1,t̄]. Furthermore, as
∑s1−1

k=0 `(xr(k), ur(k)) ≥ s1 min(x,u)∈Z `(x, u) ≥ −c by
definition of c in (27), we have

Tr−1∑
k=s1

`(xr(k), ur(k)) ≤ −(1 + 2c) (28)

and Tr − s1 ≥ 2t̄+ 1 as s1 ≤ t̄. We can now apply the above argument to the shifted sequence x′r(s) = xr(s+ s1)
and conclude by uniform suboptimal operation off steady-state that |x′r(s2) − x∗| = |xr(s1 + s2) − x∗| ≤ δ̂ for
some s2 ∈ I[1,t̄]. Furthermore,

∑Tr−1
k=s1+s2

`(xr(k), ur(k)) ≤ −(1+c) by definition of c in (27), and Tr−s1−s2 ≥ t̄+1

as s2 ≤ t̄. Repeating again the above argument, we conclude that |xr(s1 + s2 + s3)− x∗| ≤ δ̂ for some s3 ∈ I[1,t̄].
We can now distinguish two different cases. Either we have

Tr−1∑
k=s1+s2+s3

`(xr(k), ur(k)) ≥ −c, (29)

or (29) does not hold, in which case the definition of c in (27) implies that Tr−(s1 +s2 +s3) > t̄. In the latter case,
we can apply the above argument recursively to obtain time instances si, i ∈ I≥4, with |xr(s1 + · · ·+ si)−x∗| ≤ δ̂
until

Tr−1∑
k=s1+···+sj

`(xr(k), ur(k)) ≥ −c, (30)

for some j ∈ I≥4. Note that j ≤ Tr − t̄, as (30) is fulfilled as soon as s1 + · · ·+ sj ≥ Tr − t̄ due to the definition
of c in (27) and s1 + · · ·+ sj ≥ j.

Summarizing the above, we have proven that both |xr(s1)− x∗| ≤ δ̂ and |xr(s1 + · · ·+ sj)− x∗| ≤ δ̂, and

s1+···+sj−1∑
k=s1

`(xr(k), ur(k))
(28),(30)
≤ −(1 + c). (31)

Hence, by local controllability at the optimal steady-state (x∗, u∗), there exists a state/input sequence pair x′(·), u′(·)
satisfying x′(0) = xr(s1 + · · ·+ sj), x′(n) = xr(s1), and (x′(t), u′(t)) ∈ Bε̂(x∗, u∗) for all t ∈ I[0,n]. Furthermore,
by definition of c in (27) we have

n−1∑
k=0

`(x′(k), u′(k)) ≤ c. (32)

Now define the following input sequence:

û
(
k(s2 + · · ·+ sj + n) + i

)
=

{
ur(s1 + i) k ∈ I≥0, i ∈ I[0,s2+···+sj−1]

u′(i) k ∈ I≥0, i ∈ I[s2+···+sj ,s2+···+sj+n−1]

(33)

which results in a cyclic state sequence with x̂(k(s2 + · · · + sj + n)) = xr(s1) for all k ∈ I≥0. This state/input
sequence pair fulfills (x̂(t), û(t)) ∈ Z for all t ∈ I≥0 by construction, and furthermore we obtain for all k ∈ I≥0:

s2+···+sj+n−1∑
i=0

`
(
x̂
(
k(s2 + · · ·+ sj + n− 1) + i

)
, û
(
k(s2 + · · ·+ sj + n− 1) + i

)) (31)−(33)
≤ −1. (34)

But this implies that

lim inf
T→∞

T−1∑
k=0

`(x̂(k), û(k))

T

(33)
=

1

s2 + · · ·+ sj + n

s2+···+sj+n−1∑
i=0

`(x̂(i), û(i))
(34)
≤ − 1

s2 + · · ·+ sj + n
< 0

contradicting (6), i.e., optimal steady-state operation. Hence we conclude that the system (2) is dissipative on Z0

with respect to the supply rate s(x, u) := `(x, u)− `(x∗, u∗). �



3

II. PROOF OF THEOREMS 5 AND 6

Before proving Theorems 5 and 6, we first recall some well-known facts from nonlinear programming which will
be needed in the following. To this end, consider again the optimization problem (21) and assume that f0, h and g
are twice continuously differentiable. For every feasible point y, denote by A(y) := {1 ≤ j ≤ ng : gj(y) = 0} the
set of active inequality constraints at y. We say that a feasible point y is regular [23], if the gradients ∇yhi(y),
1 ≤ i ≤ nh, and ∇ygj(y), j ∈ A(y), are linearly independent. We then have the following first-order necessary
conditions for optimality, known as the Karush-Kuhn-Tucker (KKT) conditions:

Proposition 1 ([23]): Suppose that y∗ is regular and a local minimizer of problem P . Then there exist unique
Lagrange multipliers µ ∈ Rnh and ν ∈ Rng such that the following holds:

∇yf0(y∗) +

nh∑
i=1

µi∇yhi(y∗) +

ng∑
j=1

νj∇ygj(y∗) = 0, (35)

νj ≥ 0, νjgj(y
∗) = 0, 1 ≤ j ≤ ng. (36)

�
Furthermore, a KKT point (y∗, µ, ν) is said to satisfy the strong second order sufficiency condition [20,21] if

wT
(
∇2
yf0(y∗) +

nh∑
i=1

µi∇2
yhi(y

∗) +

ng∑
j=1

νj∇2
ygj(y

∗)
)
w > 0, (37)

for all w 6= 0 such that ∇yhi(y∗)Tw = 0, 1 ≤ i ≤ nh, and ∇ygj(y∗)Tw = 0, for all j such that j ∈ A(y∗) and
νj > 0.

Proposition 2 ([23,20]): Suppose that y∗ is a feasible point of problem P which is regular and together with
some (µ, ν) satisfies the KKT conditions (35)-(36) as well as the strong second order sufficiency condition (37).
Then y∗ is a strict local minimizer of problem P . �

Remark: In order for Proposition 2 to hold, it suffices that a slightly weaker condition than the strong second order
sufficiency condition holds. Namely, (37) has to hold only for such w which in addition to the above requirements
also fulfill ∇ygj(y∗)w ≤ 0, for all j such that j ∈ A(y∗) and νj = 0 [23]. In this paper, we use the strong
second order sufficiency condition as it allows us to apply certain sensitivity results also in the case where strict
complementarity (i.e., νj > 0 for all j ∈ A(y∗)) does not hold [20,21]. �

A. Proof of Theorem 5

The proof of Theorem 5 consists of two parts. First, the sensitivity analysis in nonlinear programming [20–22]
is applied to conclude that for sufficiently small |ε|, there exists a steady-state (x∗(ε), u∗(ε)) which is continuous
in ε and a local minimizer of problem P`[ε]. We then show that the storage function λ(x; ε) can be modified
continuously in ε such that (x∗(ε), u∗(ε)) is also a local minimizer of problem Pγ [ε]. In the second part, we show
that (x∗(ε), u∗(ε)) is not only a local but also a global minimizer of problems P`[ε] and Pγ [ε], which implies that
indeed (x∗(ε), u∗(ε)) ∈ S∗ε according to the definition of P`[ε] in (23), and that the system (2) is dissipative for
all (x, u) ∈ Zε with respect to the supply rate s(x, u; ε) = `(x, u)− `(x∗(ε), u∗(ε)) according to the definition of
Pγ [ε] in (25).

Part 1: Let hs(x, u) := x − f(x, u) and Λ(x, u; ε) := λ(x; ε) − λ(f(x, u); ε). As (x∗(0), u∗(0)) is regular and
a strict minimizer of both problems P`[0] and Pγ [0], by Proposition 1 there exist unique Lagrange multipliers
µ`(0) ∈ Rn, ν`(0) ∈ Rr and νγ(0) ∈ Rr such that the following is satisfied:

∇(x,u)`(x
∗(0), u∗(0)) +∇(x,u)hs(x

∗(0), u∗(0))Tµ`(0) +∇(x,u)g(x∗(0), u∗(0); 0)T ν`(0) = 0, (38)

∇(x,u)`(x
∗(0), u∗(0)) +∇(x,u)Λ(x∗(0), u∗(0); 0) +∇(x,u)g(x∗(0), u∗(0); 0)T νγ(0) = 0. (39)

Now consider the term ∇(x,u)Λ(x∗(0), u∗(0); 0). We obtain

∇(x,u)Λ(x∗(0), u∗(0); 0) = [I 0]T∇xλ(x∗(0); 0)−∇(x,u)f(x∗(0), u∗(0))T∇xλ(f(x∗(0), u∗(0)); 0)

=
(

[I 0]T −∇(x,u)f(x∗(0), u∗(0))T
)
∇xλ(x∗(0); 0) = ∇(x,u)hs(x

∗(0), u∗(0))T∇xλ(x∗(0); 0) (40)
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where the first equality follows from the chain rule, the second is due to the fact that (x∗(0), u∗(0)) is a steady-
state, i.e., f(x∗(0), u∗(0)) = x∗(0), and the third follows from the definition of hs. Comparing (38) with (39) and
using (40) as well as the fact that the Lagrange multipliers are unique, we obtain

∇xλ(x∗(0); 0) = µ`(0), νγ(0) = ν`(0). (41)

Next, as (x∗(0), u∗(0)) is assumed to fulfill the strong second order sufficiency condition (37) for problem P`[0],
from the sensitivity analysis in1 [20, Theorem 2] (see also [21, Section 4]and [22, Theorem 5.2]) we obtain the
result that there exists 0 < ε1 ≤ εmax such that for all |ε| ≤ ε1, the problem P`[ε] has a unique local minimizer2

(x∗(ε), u∗(ε)) which is regular and continuous in ε as well as the corresponding unique Lagrange multipliers µ`(ε)
and ν`(ε).

Now consider the problem Pγ [ε] defined in (24)–(25), where the function λ(x; ε) is defined by

λ(x; ε) := λ(x; 0) + λ̃(ε)Tx (42)

with

λ̃(ε) := µ`(ε)−∇xλ(x∗(ε); 0). (43)

Note that as x∗(ε) is continuous in ε, the same holds true for ∇xλ(x∗(ε); 0). As furthermore also µ`(ε) is continuous
in ε, it follows that λ̃(ε) is continuous in ε with λ̃(0) = 0 due to (41) and (43). But this implies that also the
function λ(x; ε) and hence also γ(x, u; ε) are continuous in ε. Moreover, from the above and Assumption (i) in
Theorem 5 it follows that ∇2

(x,u)γ(x∗(ε), u∗(ε); ε) is continuous in ε.
As next step, we want to show that (x∗(ε), u∗(ε)) is not only a strict local minimizer of problem P`[ε], but also

of problem Pγ [ε]. By Proposition 2, this can be concluded if (x∗(ε), u∗(ε)) satisfies both the KKT conditions (35)–
(36) (with some νγ(ε)) and the strong second order sufficiency condition (37) for problem Pγ [ε]. We first verify
the KKT conditions. Taking νγ(ε) = ν`(ε), (36) is immediately satisfied. Furthermore, (35) equals (39) with 0
replaced by ε. Using (40) with 0 replaced by ε as well as (42) and (43), we obtain

∇(x,u)`(x
∗(ε), u∗(ε)) +∇(x,u)Λ(x∗(ε), u∗(ε); ε) +∇(x,u)g(x∗(ε), u∗(ε); ε)T νγ(ε)

(40)
=∇(x,u)`(x

∗(ε), u∗(ε)) +∇(x,u)hs(x
∗(ε), u∗(ε))T∇xλ(x∗(ε); ε) +∇(x,u)g(x∗(ε), u∗(ε); ε)T νγ(ε)

(42),(43)
= ∇(x,u)`(x

∗(ε), u∗(ε)) +∇(x,u)hs(x
∗(ε), u∗(ε))Tµ`(ε) +∇(x,u)g(x∗(ε), u∗(ε); ε)T ν`(ε) = 0.

The last equality follows from the fact that by Proposition 1, equation (38) is satisfied with 0 replaced by ε as
(x∗(ε), u∗(ε)) is a strict local minimizer of problem P`[ε]. Hence (x∗(ε), u∗(ε)) satisfies the KKT conditions for
problem Pγ [ε].

Next, we show that (x∗(ε), u∗(ε)) also satisfies the strong second order sufficiency condition (37) for prob-
lem Pγ [ε], which reads

wT
(
∇2

(x,u)γ(x∗(ε), u∗(ε); ε) +

r∑
j=1

νγ,j(ε)∇2
(x,u)gj(x

∗(ε), u∗(ε); ε)
)
w > 0, (44)

for all w 6= 0 such that ∇(x,u)gj(x
∗(ε), u∗(ε); ε)Tw = 0, j ∈ A(x∗(ε), u∗(ε)) and νγ,j(ε) > 0. Note that as

νγ(ε) = ν`(ε) is continuous in ε, for sufficiently small |ε| it holds that νγ,j(ε) > 0 for all j such that νγ,j(0) > 0.
But then, due to continuity reasons, (44) is satisfied for sufficiently small |ε| as it is satisfied by assumption for
ε = 0. Namely, it this were not the case, then there would exist a sequence {(x∗(εk), u∗(εk))} with εk → 0 and a
corresponding sequence {wk} with |wk| = 1 such that

wTk
(
∇2

(x,u)γ(x∗(εk), u
∗(εk); εk) +

r∑
j=1

νγ,j(εk)∇2
(x,u)gj(x

∗(εk), u
∗(εk); εk)

)
wk ≤ 0

1In various sensitivity results like [20] it is assumed that the function g is twice continuously differentiable in (x, u, ε). However,
differentiability with respect to ε can be relaxed to Assumption (i) in Theorem 5, if only continuity (but not differentiability) of the
locally optimal solution and the corresponding Lagrange multipliers with respect to ε shall be established (compare [21] and [22, Section 5]),
which is what we need here.

2With a slight abuse of notation, we already denote this local minimizer by (x∗(ε), u∗(ε)), although we earlier reserved this notation for a
global minimizer of problem P`[ε]. We will show later that (x∗(ε), u∗(ε)) is not only a local but indeed a global minimizer of problem P`[ε].
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and ∇(x,u)gj(x
∗(εk), u

∗(εk); εk)
Twk = 0 for all j ∈ A(x∗(εk), u

∗(εk)) and νγ,j(εk) > 0. As the sequence wk
is bounded, it has a convergent subsequence. Taking the limit over such a subsequence results in a contradiction
to (44) with ε = 0, as ∇2

(x,u)γ(x∗(ε), u∗(ε); ε), νγ,j(ε), ∇(x,u)gj(x
∗(ε), u∗(ε); ε) and ∇2

(x,u)gj(x
∗(ε), u∗(ε); ε) are

continuous in ε.
Part 2: Summarizing the above, we have shown that for sufficiently small |ε|, there exists (x∗(ε), u∗(ε)) which

is continuous in ε and is a strict local minimizer of both problems P`[ε] and Pγ [ε]. What remains to show is that
for sufficiently small |ε|, (x∗(ε), u∗(ε)) is also a global minimizer of both problems P`[ε] and Pγ [ε]. To this end,
consider the following. As (x∗(ε), u∗(ε)) is a strict local minimizer of problem Pγ [ε] and furthermore g, γ and
(x∗(ε), u∗(ε)) are continuous in ε, there exists δ > 0 such that (x∗(ε), u∗(ε)) is a strict minimizer of γ on the set
Zε ∩ Bδ(x∗(0), u∗(0)). Furthermore, according to Assumption (ii) of Theorem 5, (x∗(0), u∗(0)) is a strict global
minimizer of problem Pγ [0], i.e., (x∗(0), u∗(0)) uniquely minimizes γ(x, u; 0) over Z0. Hence γ(x, u; 0) > 0 for
all (x, u) ∈ Z0 \Bδ(x∗(0), u∗(0)). But then, due to continuity of γ in (x, u, ε), it holds that also γ(x, u; ε) > 0
for all (x, u) ∈ N (Z0) \Bδ(x∗(0), u∗(0)) for each sufficiently small neighborhood N (Z0) of Z0 and sufficiently
small |ε|. For any such open neighborhood, let gj,min(ε) := min(x,u)∈Zmax\N (Z0) gj(x, u, ε), for all j ∈ I[1,r]. Note
that gj,min(ε) is well defined3 by compactness of Zmax \ N (Z0) and continuity of g. Furthermore gj,min(ε) > 0
for sufficiently small |ε| as g is continuous in ε and gj,min(0) > 0. But then, by definition of Zε in (22) and the
fact that Zε ⊆ Zmax for all 0 ≤ |ε| ≤ εmax, it follows that for sufficiently small |ε|, Zε ⊆ N ( mathbbZ0) for
any open neighborhood N (Z0) of Z0, and thus γ(x, u; ε) > 0 for all (x, u) ∈ Zε \Bδ(x∗(0), u∗(0)). Together
with the above established fact that (x∗(ε), u∗(ε)) is a strict minimizer of γ on the set Zε ∩ Bδ(x∗(0), u∗(0))
and γ(x∗(ε), u∗(ε); ε) = 0, this implies that (x∗(ε), u∗(ε)) is indeed a strict global minimizer of problem Pγ [ε].
But this in particular implies that (x∗(ε), u∗(ε)) is also a strict global minimizer of problem P`[ε] due to the
definition of problems P`[ε] in (23) and Pγ [ε] in (25), and the definition of γ (see (24)). But this means that
S∗ε = {(x∗(ε), u∗(ε))}, i.e., (x∗(ε), u∗(ε)) is indeed the optimal steady-state.

Thus, we have established that there exists 0 < ε̄ ≤ εmax such that for all |ε| ≤ ε̄, the system (2) is dissipative
for all (x, u) ∈ Zε with respect to the supply rate s(x, u; ε) = `(x, u) − `(x∗(ε), u∗(ε)), and the corresponding
storage function λ(x; ε) is defined in (42)–(43). This concludes the proof of Theorem 5. �

B. Proof of Theorem 6

As γ is convex by assumption, also γad defined in (26) with λad(x) := λ(x) is convex, as the two functions only
differ by a constant term. Furthermore, due to the definition of problems P`,ad and Pγad

and the definition of γad,
each global minimizer of problem Pγad

which is a steady-state is also a global minimizer of problem P`,ad. As
the KKT conditions are sufficient for optimality in case of a convex optimization problem, for the first statement
of Theorem 6 to hold it is sufficient to show that for each feasible steady-state (y, w) ∈ S, there exists a function
gad(x, u) which is convex and continuously differentiable in (x, u), such that the KKT conditions (35)–(36) for
Problem Pγad

with λad(x) = λ(x) are satisfied at (y, w). It is easily seen that this is possible by choosing,
e.g., gad as a scalar linear function gad(x, u) := [xT uT ]a + b, where a ∈ Rn+m and b ∈ R are such that (i)
a = −∇(x,u)γ(y, w) if ∇(x,u)γ(y, w) 6= 0 (a 6= 0 otherwise) and (ii) gad(y, w) = 0. Then, (35)–(36) are satisfied
with νgad

= 1 and νg = 0 if ∇(x,u)γ(y, w) 6= 0, and νgad
= 0 and νg = 0 otherwise. The second statement of

the Theorem directly follows from satisfaction of the KKT conditions and the above consideration that each global
minimizer of problem Pγad

which is a steady-state is also a global minimum of problem P`,ad. �

III. EXTENSION TO GENERAL SUPPLY RATES

In this section, we show how the robustness results of Theorem 5 can be extended to general parameter dependent
supply rates and constraint sets. To this end, in the following let s(x, u; ε) denote some general supply rate which
depends on parameters ε ∈ Rs and let the constraint set Zε be defined as in (22). As before, we assume that there
exists some εmax > 0 and some compact set Zmax such that for all 0 ≤ |ε| ≤ εmax, the set Zε is non-empty and
Zε ⊆ Zmax. The function γ is defined analogously to (24), but now with general supply rate s, i.e.,

γ(x, u; ε) := s(x, u; ε) + λ(x; ε)− λ(f(x, u); ε). (45)

3In case that Zmax \ N (Z0) = ∅, by convention gj,min(ε) := ∞.
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Again, we want to analyze under what conditions system (2) is robustly dissipative for changing ε, i.e., γ(x, u; ε) ≥ 0
for all (x, u) ∈ Zε. In the following, let (x∗(ε), u∗(ε)) denote a global minimizer of problem Pγ [ε] as defined in (25).
We then have to show that γ(x∗(ε), u∗(ε); ε) ≥ 0 in order to conclude that the system is dissipative. Note that a
necessary condition for this to hold is that s(x, u; ε) ≥ 0 for all steady-states (x, u) ∈ Zε, as γ(x, u; ε) = s(x, u; ε)
there, which will be assumed in the following. In order to extend Theorem 5 to the case of general storage functions,
we define the optimization problem

Ps[ε] := P([x u], s, x− f(x, u), g). (46)

We are now ready to state the following result:
Theorem: Suppose that the following is satisfied:
(i) The functions f, s and g are twice continuously differentiable in (x, u). Furthermore, s and g as well as their

first and second derivatives with respect to (x, u) are continuous in ε.
(ii) For ε = 0, (x∗(0), u∗(0)) is the unique global minimizer of problem Pγ [0] satisfying γ(x∗(0), u∗(0); 0) ≥ 0,

i.e., system (2) is dissipative for all (x, u) ∈ Z0 with respect to the supply rate s(x, u; 0). The corresponding
storage function λ(x; 0) is twice continuously differentiable in x.

(iii) If (x∗(0), u∗(0)) is a steady-state, then (x∗(0), u∗(0)) is regular and satisfies the strong second order sufficiency
condition (37) for problems Ps[0] and Pγ [0].

Then there exists ε̄ with 0 < ε̄ ≤ εmax such that for all |ε| ≤ ε̄ the system (2) is dissipative for all (x, u) ∈ Zε with
respect to the supply rate s(x, u; ε) and storage function λ(x; ε), where λ(x; ε) is twice continuously differentiable
in x and continuous in ε. �

Proof: We distinguish the following three different cases.
Case 1: γ(x∗(0), u∗(0); 0) > 0. In this case, γ(x, u; 0) > 0 for all (x, u) ∈ Z0, as (x∗(0), u∗(0)) is the unique

global minimizer of problem Pγ [0]. Hence by continuity of γ in (x, u), we also have γ(x, u; 0) > 0 for all
(x, u) ∈ N (Z0) for each sufficiently small neighborhood N (Z0) of Z0. As was shown in Part 2 of the proof
of Theorem 5, under the given assumptions it holds that for sufficiently small |ε|, Zε ⊆ N (Z0) for any open
neighborhood N (Z0) of Z0. Therefore, as also s is continuous in ε, it follows that for sufficiently small |ε|,
γ(x, u; ε) > 0 for all (x, u) ∈ Zε with λ(x; ε) = λ(x, 0) in the definition of γ in (45).

Case 2: γ(x∗(0), u∗(0); 0) = 0 and (x∗(0), u∗(0)) is not a steady-state. Choose some λ̄ ∈ Rn such that λ̄T (x∗(0)−
f(x∗(0), u∗(0))) > 0, which is possible as (x∗(0), u∗(0)) is not a steady-state. Due to continuity reasons, there
exists δ > 0 such that also λ̄T (x − f(x, u)) > 0 for all (x, u) ∈ Bδ(x∗(0), u∗(0)) ∩ Z0. Moreover, for (x, u) ∈
Z0 \Bδ(x∗(0), u∗(0)), we have γ(x, u; 0) ≥ γmin for some γmin > 0 as (x∗(0), u∗(0)) is the unique minimizer of
problem Pγ [0], γ is continuous in (x, u) and Z0 is compact. Now consider the function λ̄(x; 0) = λ(x; 0) + λ̄Tx.
Choosing |λ̄| small enough such that λ̄T (x−f(x, u)) > −γmin for all (x, u) ∈ Z0, we obtain that γ̄(x, u; 0) defined
via (45) with storage function λ(x; 0) replaced by λ̄(x; 0) satisfies γ̄(x, u; 0) > 0 for all (x, u) ∈ Z0, which allows
us to apply Case 1 again.

Case 3: γ(x∗(0), u∗(0)) = 0 and (x∗(0), u∗(0)) is a steady-state. This case can be proven analogously to
Theorem 5, but now considering the Problem Ps[ε] as defined in (46) instead of P`[ε]. Namely, one can again apply
the sensitivity results of [20–22] to conclude that the minimizer of Problem Ps[ε] as well as the corresponding
Lagrange multipliers vary continuously in ε for small |ε|. Then, the storage function λ(x; ε) can be defined as
in (42)–(43), i.e., λ(xε) := λ(x; 0) + λ̃(ε)Tx with λ̃(ε) continuous in ε and λ̃(0) = 0, which allows us to show
that the minimizers of Problems Pγ [ε] and Ps[ε] coincide. In a second step, this local result can be extended to a
global one, as shown in Part 2 of the proof of Theorem 5, and hence dissipativity can be established.

Summarizing the above, we have shown that there exists ε̄ such that for all |ε| ≤ ε̄ the system (2) is dissipative
for all (x, u) ∈ Zε with respect to the supply rate s(x, u; ε) and storage function

λ(x; ε) =


λ(x; 0) if γ(x∗(0), u∗(0)) > 0,

λ(x; 0) + λ̄Tx if γ(x∗(0), u∗(0)) = 0 and x∗(0) 6= f(x∗(0), u∗(0)),

λ(x; 0) + λ̃(ε)Tx else.
(47)

The proof is concluded by noting that λ(x; ε) is twice continuously differentiable in x and continuous in ε as
claimed. �
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Remark 1: We note that the uniqueness property of (x∗(0), u∗(0)) in Assumption (ii) is not needed in Case 1,
and also in Case 2 if λ̄ is such that λ̄T (x∗i (0) − f(x∗i (0), u∗i (0))) > 0 for all global minimizers (x∗i (0), u∗i (0)) of
Problem Pγ [0]. The same holds true for the differentiability assumptions on f, s, g and λ, which can be relaxed
to mere continuity in the above cases. Of course, then also the function λ(x; ε) is only continuous and not twice
continuously differentiable in x. �

Remark 2: While the setting of Theorem 5, i.e., the particular storage function used in economic MPC, princi-
pally fits into the generalized framework of this section, we point out the following subtle but important difference.
Namely, in Theorem 5 it was not assumed a priori that the optimal steady-state (x∗(ε), u∗(ε)), and hence also the
supply rate s(x, u; ε), are continuous in ε, as was done in the above theorem. Hence in the proof of Theorem 5,
we could not directly relate the minimizer of Problem Pγ [ε] to Problem Ps[ε] as in this section, but we applied
the sensitivity analysis to Problem P`[ε] instead. This allowed us to verify a posteriori that the optimal steady-state
(x∗(ε), u∗(ε)), and hence also the supply rate s, are indeed continuous in ε. �
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