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Abstract I 
 

Abstract 
In this work the fundamentals of a numerical model for flow processes in the subsurface 

are developed. Additionally, various illustrative examples are presented. The model is based 

on the finite element method and covers the simulation of saturated single-phase flow, unsatu-

rated single-phase flow, density driven flow and multiphase flow in fractured and porous me-

dia. It is coupled to a single-phase, single-component tracer transport model, which is ex-

tended to the scope of multiphase, multi-component tracer transport and coupled to the flow 

model to take into account for transport processes. The numerical scheme is enhanced in its 

applicability for fracture networks by a scheme based on the method of characteristics, which 

is extended for the special case of transport in fracture networks. 

The implementation was done in the framework of the development of the subsurface 

flow and transport simulator package RockFlow 3, which is developed by the groundwater 

modelling group at the Institute for Fluid Mechanics in Civil Engineering of the University of 

Hannover. The simulator works with grid adaptive strategies and is coded in the programming 

language C. The implementation uses object-oriented concepts for time uncritical parts of the 

simulator, thus making later enhancements of the code easier. 

Due to the multitude of regarded physical processes within the flow model, a scalable 

approach is derived, which can treat flow processes of different complexity by up- and down-

sizing of a superset model. Thus, the chosen physical model is adapted to the relevant physi-

cal processes in the domain (model adaptivity). The downsizing methods are automatized and 

are suitable to adapt the underlying physical model dynamically. 

A set of test applications for the developed model is regarded. Included are test cases for 

single-phase, density driven and multiphase flow and transport processes in porous and frac-

tured media. Where analytical solutions are available, these are compared to the results of the 

model in order to quantify the accuracy. 

Because of the lack of available benchmarks for density driven flow in partially satu-

rated media, a laboratory scale experiment was performed. The laboratory experiments were 

designed according to initial simulations from the numerical model, thus underlining the pre-

dictive capacity of the model. Though the predicted behaviour of the system was quite unex-

pected, the experimental work proved the correctness of the prior numerical simulations. 

Simulations on the basis of the actual experimental data reproduce the behaviour of the ex-

periments qualitatively and quantitatively. In future the experimental data can serve as a 

benchmark for other numerical models. 

Keywords: fractured porous medium, adaptive numerical model, density driven and multi-

phase flow. 



II Kurzfassung 
 

Kurzfassung 
In der vorliegenden Arbeit werden die Grundlagen für ein numerisches Modell zur Si-

mulation von Strömungsprozessen im geklüftet-porösen Untergrund entwickelt und zusam-

men mit Beispielen für die Anwendung präsentiert. Das Modell basiert auf der Finite-Ele-

mente-Methode und beschreibt einphasige und mehrphasige sowie dichtebeeinflusste Strö-

mungen. Durch die Erweiterung eines bereits vorhandenen Tracertransportmodell um den 

Transport mehrerer Komponenten in mehreren Fluidphasen und die Kopplung mit dem Strö-

mungsmodell ergibt sich ein Mehrphasen-Mehrkomponenten-Modell mit optionalem Dichte-

einfluss. Um die Effizienz der Simulation von Transportvorgängen in Kluftnetzwerken zu 

verbessern, wird ein speziell angepasstes Charakteristikenverfahren vorgestellt. 

Die Implementierung wurde im Rahmen der von der Grundwassermodellierungsgruppe 

des Instituts für Strömungsmechanik der Universität Hannover betriebenen Entwicklung des 

Simulationspakets RockFlow 3 durchgeführt. Der Simulator arbeitet mit gitteradaptiven Me-

thoden und ist in der Programmiersprache C entwickelt worden. Die Implementierung ver-

wendet objekt-orientierte Ansätze für zeitunkritische Teile des Simulators (z.B. Randbedin-

gungen, Materialdatenverwaltung) und bietet so gute Voraussetzungen für spätere Erweite-

rungen. 

Um der Vielzahl zu betrachtender physikalischer Prozesse gerecht zu werden, wird ein 

skalierbarer Ansatz entwickelt, der durch gezieltes Vereinfachen eines übergreifenden Mo-

dells das zu den abzubildenden Prozessen passende Modell auswählt. Dieses Vorgehen kann 

als Adaption des gewählten physikalischen Modells an die im Simulationsgebiet herrschenden 

Verhältnisse bezeichnet werden (Modelladaption). Es werden Möglichkeiten zur Automatisie-

rung dieser Anpassung des zugrundegelegten physikalischen Modells vorgestellt, die zur dy-

namischen Adaption geeignet sind. 

Zur Überprüfung des entwickelten Modells werden diverse Testbeispiele betrachtet. 

Darunter sind Beispiele für Ein- und Mehrphasenströmungen sowie für dichtebeeinflusste 

Strömungen und Transportprozesse in geklüfteten und porösen Medien. Soweit analytische 

Lösungen verfügbar sind, werden diese herangezogen um die Genauigkeit des numerischen 

Modells quantifizieren zu können. Da keine Testbeispiele für dichtegetriebene Strömungen in 

teilgesättigten Systemen bekannt sind, wurde zu diesem Zweck ein Laborexperiment durchge-

führt. Der Laborversuch wurde auf der Basis von numerischen Vorabsimulationen entworfen. 

Obwohl das so vorhergesagte Systemverhalten höchst unerwartet war, haben die späteren 

Experimente die numerische Vorhersage bestätigt. Simulationen auf der Basis der tatsächli-

chen experimentellen Daten reproduzieren das Verhalten des Experiments sowohl qualitativ 

als auch quantitativ. Damit steht auch für andere numerische Modelle ein Testfall zur Modell-

überprüfung zur Verfügung. 

Schlagworte: geklüftet-poröses Medium, adaptives numerisches Modell, Dichte- und Mehr-

phasenströmung 
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α Used as index: Regarded fluid phase [-] 
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f Fractional flow [-] 
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h Grid spacing [m] 
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kr Relative permeability [-] 
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nodes Number of nodes [-] 

ω Basis function [-] 
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1 Introduction 
In groundwater systems, fluid fluxes can be present in both saturated and partially satu-

rated zones. In natural systems water and air are most common, in some places additionally 

crude oil or gas may be found. In areas of current or former human industrial activity the 

products of this activity may be found, e.g. liquid chemical waste. The waste forms together 

with the natural fluids a complex, interacting flow system. 

In order to develop remediation strategies for contaminated areas, to give proposals 

about possible groundwater contamination, or to judge the behaviour of groundwater reser-

voirs, numerical simulators can be a worthwhile tool. One of the scopes of numerical simula-

tion is to increase the understanding of those complex natural systems and eventually to pro-

duce predictions for the behaviour of these systems. This task largely depends on the quality 

and amount of the available data, the quality of the numerical model, the knowledge of the 

modeller and finally on the available computer power.  

Groundwater recharge

Overland flow

Saltwater intrusion

Freshwater
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Fig. 1.1: Sketch of a natural groundwater system in a coastal region. The 

complex interaction between saturated and unsaturated zone, salt- and  

freshwater must be regarded. 

For simple processes like single-phase groundwater flow the numerical simulation al-

ready has found its way into everyday engineering practice. For more complex processes, like 

saltwater intrusion in partially saturated systems (Figure 1.1) or multiphase flow simulation 

for remediation tasks, the numerical tools are not yet applicable for everyday use. On the one 

hand this is due to a lack in understanding of the physical processes and on the other because 

of the state of development of the numerical tools. This work is an attempt to provide an im-

provement to the latter branch of problems. 
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1.1 Descr iption of the fractured porous medium 
Flow and transport processes in a fractured porous medium depend on both the structure 

of the fracture network and on the porous medium. Actually, it many cases it will be difficult 

to differentiate a dense network of fissures from a porous medium. A hint for a differentiation 

can either be the genesis of the regarded material (fluvial materials are initially porous, but 

can solidify over time and fracture afterwards) or the bulk porosity (sic!). Furthermore, the 

differentiation must be related to the scale of observation. 

1.1.1 The porous medium 

For a porous medium the pore channels and their connection with each other determine 

the movement of fluids. From a microscopic point of view the material parameters change 

rapidly from grain to grain. The direct numerical simulation of the Navier-Stokes equation on 

this scale is possible, though it is not feasible for large scales, because of the numerical effort 

for this approach. Furthermore, the micro scale geometry of the porous medium is unknown, 

so that statistical approaches must be used to generate surrogate systems. Anyhow the nu-

merical analysis on this scale can help to understand the physical behaviour of the system and 

to derive parameterised approaches for larger scales. On a larger scale, the small scale grain 

based material parameters are averaged over larger, typically geological, units. This scale is 

commonly used for engineering practice. It is assumed that the averaged physical parameters 

sufficiently describe the porous medium within each unit. Thus, a representative elementary 

volume (REV) would be suited to describe the system (Range for U0 in Figure 1.2) on a local 

scale, while large scale heterogeneities must explicitly be described as different materials. If 

averaging approaches are used on even larger scales, the internal heterogeneities force the 

modeller to care for them by using an appropriate physical upscaling model (Braun, 2000). 

 

Fig. 1.2: Concept of a representative elementary volume (REV) for a porous medium (Bear 

and Verruijt, 1987). The range for U0 denotes the scale for which a REV is suitable. 
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The porosity n of a porous medium on the macro scale is described by the relation be-

tween the volumetric amount of pore space in the REV and the volume of the REV: 

 
REVofVolume

REVin spaceporeofVolume=n  (1.1)

For some special problems it can be useful to define different porosities for different 

physical processes, e.g. to use a limited porosity for the fluid flow, because it is assumed that 

the fluid in the smallest fissures is unmoveable due to surface effects. This approach is not 

followed here for simplicity reasons. 

1.1.2 The fractured medium 

Fluid flow in fractures or fracture networks can be characterized by various approaches. 

The simplest one describes the whole system as a continuum, for which bulk parameters are 

estimated. Though this approach is suitable for simple physical processes, such as steady-state 

single-phase flow, it fails to capture the behaviour of more complex processes. Therefore, 

more sophisticated approaches are needed. 

In order to describe flow and transport in fractured systems, the system can be treated 

by describing the system as a fractured, but otherwise homogeneous porous medium. In this 

approach the fractures and the porous medium are treated as two connected systems (e.g. Ber-

kowitz et al., 1988 and Wollrath, 1990). 

The double (or even multiple) continua approaches assume that the fracture network can 

be replaced by an equivalent porous medium on a large scale. This artificial continuum is in-

terwoven with the continuum of the porous medium. Thus, each place in space is a part of two 

continua. These continua are coupled to each other by flux interchanges between the media 

(Barenblatt et al. ,1960; Warren and Root, 1963). 

The approaches presented above are the most prominent ones to describe fractured po-

rous media. Each of them has specific advantages and disadvantages. The description of sin-

gle fractures requires exact knowledge of the spatial distribution of the fractures and addition-

ally of their properties. Even in very well prospected areas it is virtually impossible to deter-

mine those parameters for all fractures of all sizes. Thus, only the largest features will be de-

scribed on the basis of direct measurements, while the typically large amount of smaller scale 

fractures will either be treated by statistically generated fractures, or as a part of the porous 

medium.  

The multiple continua models suffer from the introduced coupling parameters between 

the continua. As the number of those parameters increases with the number of continua, the 

modeller gets many screws to turn in order to tune his model. Though simulations will even-



4 Density driven flow 
 

tually nicely reproduce the measurements, this does not mean that they catch the behaviour of 

the natural system for a different set of boundary conditions. 

Fig. 1.3: System of multiple overlapping continua. The fractured porous medium is  

described by a backbone of single fractures and (multiple) homogeneous porous media. 

In this work a discrete fracture model with attached matrix was chosen, because it is ca-

pable of reproducing known features nicely. Furthermore a discrete fracture model – single 

matrix continuum can later be extended to a coupled discrete fracture - multiple continua 

model, i.e. a model that describes known fractures as separate features in space and couples 

those to multiple continua that describe the properties of the unknown small scale fractures 

and the porous medium (Figure 1.3). 

1.2 Density dr iven flow 

The movement of fluids in porous media, under mixed conditions of applied pressures 

and buoyancy forces, has been evaluated in many experimental and numerical set-ups. In par-

ticular, a considerable number of studies have dealt with density-dependent flow, emphasizing 

saltwater-freshwater interactions under fully saturated conditions. Classical experimental set-

ups include those of Henry (1960), as an example of saltwater intrusion into a coastal aquifer, 

and of Benard (1900, in Holzbecher, 1998), which treats free convection in a Hele-Shaw cell 

due to heat. The example by Benard was later re-analysed by Elder (1967) for applications to 

porous media. Diersch (1984) analysed numerically the behaviour of saltwater beneath a 

pumping well. More recently, Schincariol and Schwartz (1990) expanded analyses to the be-

haviour of mixed convection in heterogeneous systems in a laboratory set-up. Over the years 

these and other experiments have formed the basis for the evaluation of numerical models that 

are incorporated, e.g., in the so-called HYDROCOIN (1990) test suite. An overview of the 

common benchmarks for coupled flow and transport simulations is provided by Kolditz et al. 

(1998a). It should be stressed, however, that all of the studies mentioned above are limited to 

analysis of density-driven flow in fully saturated systems. 

 

Fractured porous 
medium 

Discrete fractures (Multiple) porous 
media  
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Boufadel et al. (1999) examined numerically the behaviour of water flow below dry 

lakes with a two-dimensional model. They extended the well-known test case of Elder (1967) 

for application to partially saturated systems, but did not validate their numerical results with 

laboratory experiments. Simmons et al. (1999) compared numerical results for density-driven 

flow under an evaporating salt lake with experimental results from a Hele-Shaw cell. Though 

the numerical code would in principle have been able to simulate flow in partially saturated 

regions, only flow in the fully saturated system was investigated. Recently, Li et al. (2000) 

applied an adaptive multi-grid technique for the numerical solution of density-driven flow in 

saturated and partially saturated systems. They provide two brief examples that focus on 

evaluation of their numerical methods, but the systems they considered were not based on or 

compared to experimental data. 

1.3 Multiphase flow 
The flow of multiple phases in the subsurface is a question that has been under investi-

gation for a rather long time. The research in this field was initiated by the commercial inter-

est of the oil industry, resulting in a multitude of early pioneering works in this area. In the 

most recent years the search for secure atomic waste depositories and for remediation strate-

gies for contaminated aquifers raised more attention. 

In the context of this work the expression “phase”  is used to characterize fluids or solids 

that do not mix into each other. De facto they can mix in small amounts, but tend to form lar-

ger aggregates if the concentration rises above the solubility. On the boundary between two 

phases the physical properties of the media change with no transition. Thus, a phase is a part 

of an inhomogeneous system that is bounded by a surface and that is homogeneous within its 

boundaries. 

The “saturation”  S α of a phase α denotes the volumetric amount of the pore space (or 

of the free aperture of a fracture) that is occupied by the regarded phase in relation to the total 

pore space: 

 
REVin spaceporeofVolume

REVin�phase (fluid)ofVolume=αS  (1.2)

Thus, the saturation of a phase is always between zero and one. Furthermore, all phase 

saturations sum up to unity: 

 1S
1phases

0

=
� −

=α
α  

(1.3)

In an early work Leverett (1938) developed the conceptual model of relative permeabili-

ties, based on a set of experiments, in order to quantify how much multiple fluid phases hin-



6 Objective of this work 
 

der each other in their movement. Later Leverett (1940) additionally described the capillary 

pressures as functions of the fluid saturations.  

In the probably first serious attempt to quantify multiphase flow, Buckley and Leverett 

(1941) developed a conceptual model for displacement processes of water and oil under ex-

ternal pressures. They used relative permeabilities to couple the phase saturations with the 

pressure field. Their physical model for multiphase flow was limited to advective processes, 

capillary pressures were not regarded. 

Later Snell (1961) experimentally investigated the behaviour of three-phase flow in 

sand and derived relative permeability functions. In more recent works Parker et al. (1987a) 

re-evaluated several parametric functions for relative permeabilities and capillary pressures in 

two- and three-phase systems. In an additional paper Parker and Lenhard (1987b) described a 

set of hysteretic functions. 

Flow behaviour of water in the partially saturated zone is often described using the 

equation derived by Richards (1931), which can be regarded as a simplified formulation of 

the multiphase flow problem (e.g., Bear, 1990) adapted to a partially saturated, single-phase 

system. The most common parametric functions for this approach are based on the work of 

van Genuchten (1980). The parametric functions by van Genuchten are used in full multi-

phase formulations, too. 

The flow of multiple phases in fractures and in heterogeneous media was for a long time 

simplified by assuming equivalent porous media for those systems. As discrete fracture mod-

els in single-phase flow gained more attention, the research in multiphase flow was enhanced, 

too. Kueper and McWhorter (1991) investigated the infiltration of DNAPL into fractured clay 

and rock. Persoff and Pruess (1995) worked with artificial fractures and found that linear ap-

proaches are not valid for multiphase flow in fractures. In an earlier work by Pruess and 

Tsang (1990), numerical simulations were used to determine the parametric functions for nu-

merous different realizations of rough walled fractures. They found that the permeability - 

saturation relationship can be described by a power law model. The work by Murphy and 

Thomson (1993) points into the same direction, they simulated two-phase flow in a single 

rough fracture. 

The heterogeneity of the media can lead into discrepancies between the different con-

ceptual models. Duijn et al. (1995) described in detail the physics of capillary pressure in het-

erogeneous porous media and a possible method to circumvent problems on the boundary 

between different materials. Helmig and Huber (1998) compared different numerical methods 

for two-phase flow in heterogeneous media. 

1.4 Objective of this work 
Though already a large number of numerical simulation packages are available for dif-

ferent physical processes in the subsurface, most of these simulators are specialized in some 
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aspects of the flow processes described in the prior chapters. During the development of the 

numerical simulator package RockFlow 3 (Kolditz et al., 1999), it became obvious that it is 

desirable to have a flow simulator that is scalable based on the complexity of the relevant 

physical processes for a given task. Thus, the goal was to develop a flow module that is suit-

able for a multitude of different flow processes, i.e. 

- single-phase saturated flow, 

- single-phase unsaturated flow, 

- multiphase flow and 

- density driven single- and multiphase flow 

of compressible and incompressible fluids in a fractured porous medium. 

The developed flow module is model adaptive, as it adapts the physical model to the 

processes that are relevant in the system. This adaptation is separated into two parts. In an a 

priori adaptation step the modeller decides which general class of problems he wants to re-

gard. Later the model during runtime automatically adapts this preselection to the actual situa-

tion in the system. 

At the beginning of the implementation work, a grid adaptive transport model formed 

the basis for the later development (Barlag, 1997 and Schulze-Ruhfus, 1996). This model had 

to be enhanced to the context of multiple components tracer transport in multiple fluid phases. 

Furthermore, a superset simulator for the flow processes presented above was to be devel-

oped. 

As it is difficult, if not impossible, to verify a complex numerical model, it was com-

pared to a large set of test cases. These are either based on known analytical solutions or, for 

more complex processes and geometries, on the results of other researchers or at least on 

plausibility considerations. Clearly, there is a lack of experimental measurements on density-

driven flow in partially saturated and coupled saturated/partially-saturated systems, which are 

suitable for verifying numerical models. Thus an effort was made to address this problem, by 

combining experimental and numerical investigations of density-driven flow patterns in cou-

pled saturated/partially-saturated systems.  

1.5 Implementation of the numer ical model 
A large part of this work is based on computer implementation. Thus, a few words are 

necessary to describe the development. As already pointed out in the prior chapter, a grid 

adaptive numerical model for tracer transport simulations was the condensation core for the 

further developments. The development of the new RockFlow 3 was based on this software 



8 Implementation of the numerical model 
 

basis and subsequently absorbed the capabilities of the prior RockFlow 2 (Wollrath, 1990, 

Kröhn, 1991, Helmig 1993) and aTM (Barlag, 1997 and Schulze-Ruhfus, 1996). Apart from 

the author of this work, M. Schulze-Ruhfus (1996), U. Jüttner (1999), O. Kolditz, R. Kaiser 

and A. Habbar (Kolditz et al., 1998b and Kolditz et al., 1999) worked on the concept and in-

ner kernels of RockFlow 3. Very helpful was the work of T. Rother (2001), who was involved 

in grid generation, and R. Ratke, who coded the very efficient storage and preconditioning 

scheme for large, sparse systems of linear equations. 

Why C? 

Due to the requirement of dynamic memory allocation for the grid adaptive procedures, 

RockFlow 3 was no longer implemented in FORTRAN 77, but in C. It is important to note 

that at the time of this decision FORTRAN 90, C++, Java etc. were either not yet available, 

established or approved by a standard. In the long run, this decision has proven to be a good 

choice. The software concept incorporated in the simulator combines a good set of object-

oriented approaches with sufficient freedom for further developments and numerical effi-

ciency. Thus, C has proven to be flexible enough for the numerous demands on the program-

ming language, as it easily transforms into a high level object-oriented language for structures 

that are not computationally intensive and can come down to high speed for numerical tasks. 

Or, as D. M. Ritchie, one of the inventors of C, stated it (Ritchie, 1993): “C is quirky, flawed, 

and an enormous success. While accidents of history surely helped, it evidently satisfied a 

need for a system implementation language efficient enough to displace assembly language, 

yet sufficiently abstract and fluent to describe algorithms and interactions in a wide variety of 

environments.”  

 



Mathematical model 9 
 

 

2 Mathematical model 
The physical processes tackled in this work are described by multiple nonlinear coupled 

partial differential equations (PDEs). These PDEs describe the conservation and movement of 

fluids and tracers within them. In the current implementation PDEs for the 

- pressure field, 

- saturation distributions and 

- tracer distributions. 

are regarded. The types of the regarded PDEs depend on the choice of the material pa-

rameters and on the coupling functions. For many applications the pressure field is mainly 

parabolic, while the other PDEs are hyperbolic. Due to the extreme nonlinearity of the cou-

pling functions between pressure and saturation fields, the saturation fields can develop shock 

fronts and are therefore difficult to be treated numerically. 

The regarded PDEs are restricted in the following by some constraints. The regarded 

systems are assumed to be non-deformable and isothermal. Furthermore, phase transitions are 

not further investigated, though an interface is given to add them via the regarded source and 

sink terms in the model. 

2.1 Governing equations 
In general the balance equation of an extensive quantity E within the domain U can be 

expressed verbally (Bear, 1990) by: 

 � �
�

�� �
+� �

�
�� �

=� �
�

�� �
U  withinE of

production of rate net

 S surfacethrough U

 into E of influx net

U  withinE of

onaccumulati of rate
 

(2.1)

After applying Gauss’  theorem to the first term of the right hand side and shrinking the 

volume to an arbitrary point this is equivalent to a PDE for the conservation of an extensive 

quantity e: 

 ( ) 0nSnSnSediv
t

nSe =τ−++
∂

∂
jV  

(2.2)

In this formulation n denotes the porosity, S the saturation, e the extensive quantity per 

volume unit of the pore space, V the fluid’s velocity, j  diffusive or dispersive fluxes and τ the 

production rate of the regarded quantity. Here and in the following bold letters denote vectors 

and matrices while standard letters denote scalars. 
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2.1.1 Fluid mass conservation 

Starting from the general mass conservation equation (2.2), the conservation of mass for 

a fluid phase α is regarded. For this formulation it is assumed that in the REV the volumetric 

amount occupied by a fluid phase α is reduced due to porosity n and saturation Sα. The prod-

uct of porosity, saturation and fluid velocity was replaced by the Darcy velocity qα. The den-

sity ρ was separated from the production term, so that the production Q denotes the produc-

tion in volume units per volume and time unit. 

 
( ) ( ) 0Qdiv

t
nS =ρ−ρ+

∂
ρ∂

αααα
αα q  

(2.3)

A modified Darcy’s law is used to describe the special case of multiphase flow (Bear 

1972, Busch et al. 1993, Sahimi 1995). The velocity qα of phase α is assumed to be a nonlin-

ear function of the head gradient (expressed by the gradient of the phase pressure αp  and the 

gravitational force gαρ ), the permeability tensor k, the fluid viscosity µ and the relative per-

meability krα: 

 ( )g
k

Vq αα
α

ααα ρ−
µ

−== α pgrad
k

nS r   
(2.4)

The changes of system variables can induce changes of the relative permeability krα 

(due to changes of all phase saturations or nonlinear behaviour because of non-negligible iner-

tial forces), the fluid viscosity µα and fluid density ρα (changes of fluid composition, tempera-

ture or pressure): 

 ( ) ( ) ( )αβαααβααα− =ρ=µ=
α

p,T,cf,p,T,cf,v,S,...,Sfk ,3,21phases01r              (2.5)

Generally it is difficult to take care of all effects on the relative permeability in a single 

approach. Therefore it is supposed to treat the effects separately and to multiply all single 

relative permeabilities to each other, so that a total relative permeability is gained. 

 ∏ αα
=

effects

effect
rr kk  (2.6)

Later this product row will be multiplied with the basic permeability tensor k to achieve 

the final permeability for a fluid phase. 

The phase pressures pα can be described as relative pressures versus a reference pres-

sure. This can either be one of the phase pressures or a weighted pressure in between. Here, 

one of the phase pressures is chosen as reference pressure, denoted by pref in the following. 

The difference between a regarded phase pressure pα and the reference phase pressure pref can 

be evaluated from the corresponding capillary pressures pc0,α and pc0,ref , which depend on the 

fluid saturations of all phases. The capillary pressures, e.g. pc0,α , are evaluated as the pressure 
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difference between the least wetting phase (index 0) and the regarded phase (index α or index 

ref). Thus, the capillary pressures pc are positive.  

 

( )

( )
ref,0,0

ref,0

,0

,...0

ccref
c0ref

c0

1phases0c

pppp
ppp

ppp

S,..,Sfp

−−=
�
�
�

−=
−=

=

α

α

α
α

−

 
 

(2.7) 

After inserting Equation 2.4 into Equation 2.3 and expanding the time derivative of the 

conservation equation, the final conservation equation, which has to be fulfilled for each fluid 

phase, is obtained:  

 ( )( ) 0Qpgrad
k

div
t
n

S
t

S
n

t
nS r =ρ−��

	



��
�



ρ−

µ
ρ−

∂
∂ρ+

∂
∂ρ+

∂
∂ρ

αααα
α

ααα
α

α
α

α
α g
k

 
(2.8) 

2.1.2 Multiphase flow field equations 

In the simulation of multiphase flow systems several formulations are feasible. The 

most common ones are: 

- Pressure formulations 

- Pressure-saturation formulations 

- Saturation formulations 

The pressure formulation requires a capillary pressure function that is strictly monotic. 

Only for this case it is possible to replace the saturation in the equations with the reverse cap-

illary pressure function. This is a vast restriction, as the gradient of the capillary pressures 

function can change rapidly (on material borders) or be very small for some materials 

(Peaceman, 1977). This makes this formulation unusable for the class of problems regarded 

here. 

For the pressure-saturation formulation the capillary pressures are used to determine 

the phase pressures in relation to the pressure of a reference phase. Furthermore the saturation 

of the phase can be replaced by taking into account the additional condition that all saturations 

sum up to unity. This type of formulation is quite robust and widely used. It is feasible too for 

systems with steep gradients of the capillary pressure function. In the following a formulation 

will be presented which is related to the family of so-called “ IMPES” (IMplicit Pressure, Ex-

plicit Saturation) formulations. In this name the terms “ implicit”  and “explicit”  do not neces-

sarily denote the time level for which the equations will be solved, but the necessity to solve a 

system of linear equations or not. Though some authors suggest that this type of formulation 

is not suitable for compressible fluids (e.g. Helmig, 1998b) the formulation presented in the 

following is suitable for compressible fluids, too. 
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The saturation formulation is based on the idea that a common transport equation for 

both phases can be set up if both fluids are incompressible (Peaceman, 1977). This transport 

equation contains the “ fractional flow function”  which is used in the Buckley-Leverett exam-

ple (Chapter 4.3). Due to the limitation to incompressible fluids, no further investigation was 

carried out. 

2.1.2.1 Pressure Field 

With the assumption of non-deformable pore space and by division with the fluid’s den-

sity the mass conservation equation (2.8) is transformed to a volumetric type: 

 ( )( ) 0Qpgrad
k

div
1

t
S

n
t

1
nS r =−��

	



��
�



ρ−

µ
ρ

ρ
−

∂
∂+

∂
∂ρ

ρ ααα
α

α
α

αα

α
α

α g
k

 
(2.9) 

The linear combination of the conservation equations for all phases results in an equa-

tion describing the common pressure field for all phase: 

 ( ) 0Qpgrad
k

div
1

t
S

n
t

1
nS

1phases

0

r =�
�

�
�
�

�
−��
	



��
�



ρ−

µ
ρ

ρ
−

∂
∂+

∂
∂ρ

ρ�
−

=α
ααα

α
α

α

αα

α
α

α g
k

  
(2.10)

The additional condition that all phase saturations sum up to unity can be used to elimi-

nate the time derivatives of the saturations: 

 01
t

S
tt

S
1S

1phases-

0�

�

1phases-

0�

�

1phases-

0�

� =
∂
∂=

∂
∂=

∂
∂

�= ���
===

 
(2.11) 

This eliminates the saturation derivatives from the balance equation and leads to the fi-

nal form of the pressure equation, which will be used in the following: 

 ( ) 0Qpgrad
k

div
1

t
1

nS
1phases

0

r =�
�

�
�
�

�
−��
	



��
�



ρ−

µ
ρ

ρ
−

∂
∂ρ

ρ�
−

=α
ααα

α
α

α

α

α
α

α g
k

  
(2.12) 

This is the governing equation of the combined pressure field of all phases. In contrast 

to the formulation proposed by Bear (1990) this expression does not contain the time deriva-

tives of the saturations. Though this is of lower interest for systems where the densities of the 

phases are virtually equal (e.g. oil-water systems), it can give an advantage in convergence 

speed for highly advective systems with highly varying densities, i.e. flow of gases and liq-

uids under high external pressure gradients. For systems that are governed by capillary forces 

it can be useful to reformulate the pressure field equation in terms of the most wetting fluid.  

2.1.2.2 Richards’  approximation for  par tially saturated systems 

For soil systems that are connected to the surface it is a common assumption (Richards, 

1931) that pressure differences in the gaseous phase can be neglected. In this formulation it is 

assumed that the air pressure is constant within the domain. This leads to a direct dependency 
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between water pressure and water saturation. For water pressure above the reference pressure 

the pore space is assumed to be fully saturated, whereas in the partially saturated system the 

water saturation is a function of the water pressure (e.g. the capillary pressure). Starting with 

Equation 2.9, we obtain for a single phase 0: 

 ( )( ) 0Qpgrad
k

div
1

t
S

n
t

nS
0000

0

r
0

0

00

0

0 0 =ρ−��
	



��
�



ρ−

µ
ρ

ρ
−

∂
∂+

∂
∂ρ

ρ
g

k
 

(2.13) 

As the compressibility of the second phase (i.e. air) and of the matrix are missing in this 

equation, it is common to introduce the soil storativity S0 as a lumped parameter for all com-

pressibility effects (i.e. the compressibility of water, residual gas and the solid matrix) and to 

replace the term that contains temporal derivative of the density by the new term tpS 00 ∂∂0S : 

 ( )( ) 0Qpgrad
k

div
1

t
S

n
t

p
S 0000

0

r
0

0

00
0

0 =ρ−��
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�



ρ−

µ
ρ

ρ
−

∂
∂+

∂
∂

g
k

0S  
(2.14) 

This expression can either be solved with the saturation or with the pressure as the pri-

mary variable. It is equivalent to the one proposed by Celia et al. (1990). If the saturation is 

used as primary variable, the equation is only valid in partially saturated areas. With the pres-

sure as primary variable it is valid for all saturations. 

Additionally it is possible to replace the temporal derivative of the saturation by the 

product of the derivative of the capillary pressure function multiplied with the temporal de-

rivative of the pressure. In the derivative of the capillary pressure function the phase pressure 

p0 is equivalent to the negative capillary pressure. This is the classic Richards’  approximation. 

It has the disadvantage that it is only mass conservative if finite, and non-zero derivatives of 

the saturation–capillary pressure function can be determined for all suction pressures in the 

system. 

 ( )( ) 0Qpgrad
k

div
1

t
p

p
S

nS 000
0

r
0

0

0

0

0
0

0 =−��
	



��
�



ρ−

µ
ρ

ρ
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∂
∂+ g

k
0S  

(2.15) 

After evaluating either Equation 2.14 or Equation 2.15, the phase pressures are used to 

calculate new saturations. This is performed by evaluating the inverse capillary pressure func-

tion. This procedure is enclosed into an iterative loop and will be evaluated until sufficient 

convergence is reached. 

Furthermore it is possible to use “mixed”  equation types, i.e. to switch the primary vari-

able of the equation based on the current results. Forsyth et al. (1995) proposed this so-called 

Primary Variable Switching Technique (PVST). 
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2.1.3 Generalized pressure field equation 

The pressure field equation for multiphase flow (2.12) and the Richards’  equation (2.15) 

are combined to a common equation, thus forming an equation that describes the superset of 

all regarded physical processes. In this equation the excessive compressibility effects must be 

switched on or off in respect to the desired physical behaviour: 
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(2.16) 

In the next equation the time derivatives of the densities are replaced by using the fluid 

compressibility. This simplification introduces the assumption that changes of the fluid vol-

ume are only induced by compressibility. If further reasons for volumetric changes shall be 

regarded (thermal contraction, volume changes due to solutes), they have to be incorporated 

here. 
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(2.17) 

This equation is the “superset”  pressure equation, which can be transformed to corre-

spond to either single-phase flow of compressible or incompressible fluids, unsaturated flow 

(Richards’  approach, Equation 2.15) or multiphase flow (Equation 2.12) by choosing the 

number of phases and appropriate physical parameters. By this means the chosen physical 

model is adapted to the needs of the modeller. This approach, called “ model adaptivity”  in the 

following, was developed in order to keep the amount of redundant computer code low, as it 

can be reused for a large class of problems. Some typical examples for the model adaptive 

approach are presented in Chapter 3.5.1. 

As the superset pressure equation still contains multiple pressures pα, it is necessary to 

replace them against relative pressures versus a reference pressure pref in order to obtain a 

single primary variable (Equation 2.7). This reference pressure can either be one of the phase 

pressures or a weighted pressure in between. Here, as reference pressure one of the phase 

pressures is used: 

 ( )
ref,0,0 ccref pppp −−=

αα  (2.18) 

Thus, now the primary variable is pref: 
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(2.19) 

If heterogeneities are in the system, it is recommended to use the most-wetting phase 

pressure as reference, because otherwise unphysical pressure jumps on the boundary can oc-

cur, if capillary pressure functions with non-zero entry pressures are used. 

2.1.4 Saturation field equation for multiphase flow 

Starting with the conservation Equation 2.8, similar steps as for the pressure field equa-

tion are performed. Again the mass conservation equation is converted to a volumetric one by 

dividing with the fluid’s density. Furthermore, the assumption is introduced that the fluid vol-

ume is only influenced by changes of the pressure. 

 ( ) 0Qpgrad
k

div
1

t
S

n
t

p
p

1
nS r =−��

	



��
�



ρ−

µ
ρ

ρ
−

∂
∂+

∂
∂

∂
∂ρ

ρ ααα
α

α
α

αα

α

α

α
α

α g
k

  
(2.20) 

In this equation only the first two terms contain the primary variable S, thus large parts 

of the equation can be treated explicitly, because the pressure is already known from the prior 

calculation of the pressure field. 

If the saturation field is not evaluated for the same phase �  as the pressure field, the 

pressure of the regarded phase is evaluated from the capillary pressures and the reference 

pressure. This is not very effective if capillary forces govern the system. In this case, it is sug-

gested to incorporate the derivative of the capillary pressure function into the equation. If the 

pressure of phase 0 is used as reference pressure, this leads to the following formulation: 

0QS grad
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This increases the “ implicitness”  of the scheme and therefore enhances the convergence. 

It requires that the derivative of the capillary pressure function is definite and sufficiently 

smooth. 
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As all phase saturations sum up to unity, for one of the phases the saturation equation 

must not be solved. Instead Equation 2.11 can be used to determine the saturation. Another 

approach (Forsyth et al., 1995) is to evaluate the saturation for all phases. As this produces 

redundant and possibly contradictory information about the saturation fields, afterwards a 

weighting procedure is used to determine the final saturations. This approach seems to be 

promising and should be investigated for future developments. 

The boundaries between different materials impose special problems. As the phase pres-

sures (and therefore the capillary pressure, if the saturations are above the residual satura-

tions) are constant across the boundary, the saturation will have a jump on the boundary if the 

capillary pressure functions differ (s. Chapter 3.5.1.5). As the error diminishes by sufficiently 

refining the grid, this will not be done here. Anyhow it is supposed for future development to 

assign multiple saturations to a node on the boundary between different materials. 

2.1.5 Tracer mass conservation 

2.1.5.1 Governing equation for  tracer  transport 

This work mainly focuses on flow processes in the subsurface space. The tracer trans-

port equations are only used to model the impact of a tracer on the fluid properties. Therefore 

only inert, non-reactive tracers like sodium chloride are regarded. Furthermore phase transi-

tions are not taken into account. The modelling of reactive tracer transport processes is de-

scribed e.g. by Habbar (2001). For the handling of phase transitions further literature (e.g. 

Kolditz, 1996, Helmig, 1998 or Bear, 1990) should be reviewed. It is easily possible to extend 

the chosen formulation; phase transitions and reactive exchange terms can be taken into ac-

count via the sink/source terms in the equations. 

Starting with the conservation equation for extensive quantities (2.2) the conservation of 

a tracer in a one of the phases can be described. The regarded quantity e is in this case: 

 βα= ,ce  (2.22) 

In this equation cα,β denotes the concentration of tracer β in phase α. The concentration 

is defined as the tracer mass per volume unit of the fluid. The advective flux term is described 

by assuming that the Darcy velocity is related to the average absolute velocity Vα of phase α 

by saturation and porosity: 

 α
α

α = qV
nS

1
 

(2.23) 

Furthermore diffusive and dispersive fluxes j  are described by a modified Fick’s law, 

introducing the diffusion tensor D: 

 βαβα ⋅−= ,, c gradDj  (2.24) 
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Thus an advection dispersion equation (ADE) is used to model the transport process. 

The ADE is largely under discussion, as it produces fairly bad results for fracture systems that 

are treated by single continuum models. Due to the modelling concept with the discrete de-

scription of fractures that is used here, this restriction is not necessarily valid, so that in the 

following the ADE will be used to describe the motion and conservation of a conservative 

tracer β in phase α: 
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(2.25) 

Equation 2.25 can be expanded to: 
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(2.26) 

In this expression the second term denotes the changes of the fluid volume in the REV 

due to compressibility of the fluid, changes of the pore space or the fluid’s saturation under 

multiphase flow conditions. After inserting the fluid continuity equation 2.3 this equation 

simplifies to: 

 ( ) 0Qgrad cDnSdivdiv cq
t

c
nS � ,�� ,�� ,��� ,��

� ,�
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(2.27) 

This equation has to be fulfilled for each component β in each fluid or solid phase α. 

The numerical treatment of this equation will not be presented completely in this work, as it 

was derived in the prior work of Kröhn (1991) and implemented in its current form by Barlag 

(1997). In this work the implementation by Barlag was revised and extended to the scope of 

multiple component tracer transport in multiphase flow. Furthermore, a Method of Character-

istics (MOC) scheme was added to improve the performance in fracture networks. Only the 

differences to the original implementation will be pointed out where it is appropriate. 

The diffusive flux scaling factor D is a combined diffusion-dispersion tensor according 

to Scheidegger (1961). In the simplest form it is the sum of molecular diffusion Dm (reduced 

by the tortuosity factor T) and hydro-mechanical dispersion. The dispersion tensor D is de-

scribed as the product of the components of the velocity vector V and dispersion length α. In 

most cases the dispersion length α is split into αl and αt, denoting the differences between 

longitudinal and transversal dispersion. Frequently the longitudinal dispersion coefficient is 

assumed to be about 5 to 10 times bigger than the transversal dispersion coefficient. 
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The dispersion tensor is dependent on the flow directions and velocities on the one hand 

and on the heterogeneous and anisotropic structure of the porous media on the other. In multi-

phase flow the dispersion will furthermore be influenced by the fluid saturations. The diffu-

sion is dependent on both the type of solute and fluid. Furthermore, it is a function of the tem-

perature. The dispersion is supposed to describe the influence of small scale heterogeneous 

and anisotropic soil structures on the tracer distribution, while the (known) large scale struc-

tures should be resolved directly. More complex variants of the dispersion tensor may be used 

for special cases.  

For example one could take into account strong density differences in the fluids. In this 

case the vertical dispersion would be reduced by the stabilizing effect of the stratification, 

while the horizontal dispersion is not influenced or even increased. Rinnert (1983) performed 

a set of experiments with a horizontal flow field. He found a significant decrease of the trans-

versal dispersion of about 40% for a salt content of 30 g/l. Later Moser (1995) showed in an-

other set of experiments that the longitudinal dispersion length is reduced for his vertically 

arranged soil column, if fluids with varying density are used. Summarizing both works, it 

must be pointed out that the stratification modifies neither transversal nor longitudinal disper-

sion, but the vertical dispersion. This decrease is a function of Peclet and Rayleigh numbers 

(after Rinnert, 1983): 
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In this equation d denotes the characteristic diameter of the regarded heterogeneities. In 

the work by Rinnert this was set to the grain diameter, as he used a homogeneous filling. 

Furthermore the tortuosity and the dispersion lengths can be functions of the saturation. 

Some authors (in Bear 1990) suppose to relate the tortuosity to the saturation by: 
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(2.30) 

2.1.5.2 Operator  splitting technique 

The ADE can change its classification from a parabolic type for diffusive problems to a 

hyperbolic type for advective problems. The Peclet number Pe characterizes the ratio of the 

advective tracer transport against the diffusive transport: 
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Within this equation V denotes the fluid velocity, L a typical length (i.e. the grid spac-

ing in a numerical simulation) and D the diffusion/dispersion coefficient. For Pe << 1 the 

ADE is mainly diffusive, for Pe >> 1 mainly advective. As the performance and suitability of 

different numerical schemes largely depend on the Peclet number, it is desirable to use a 

scheme that fits with the expected range of Peclet numbers. 

Especially in fracture networks the Peclet numbers inside the fractures can be very high. 

If the fractures network is not treated by a “ lumped”  model with a single ADE for the whole 

domain, but by a discrete approach, the numerical scheme must deal with this problem. 

As a solution for these objectives a split of the ADE into a more diffusive part that is 

treated by an Eulerian approach (named after Leonhard Euler, 1707 - 1783) and an advective 

one that is treated by a Lagrangian approach (named after Joseph-Louis Lagrange, 1736 - 

1813) is suitable. In Eulerian schemes the equations are formulated from the point of view of 

a fixed observer, while the fluid moves in front of him. In a Lagrangian formulation the ob-

server moves within the fluid. Obviously this is a superior way to examine fast moving fluids 

(Figure 2.1). 

 

Fig. 2.1: Lagrangian and Eulerian points of  

view while investigating moving fluids. 

The operator splitting offers the possibility to treat parts of the PDE by different numeri-

cal schemes. The time derivative of the concentration in Equation 2.27 is discretized (Chapter 

3.3). The indices of c where dropped here for simplicity reasons. The derivative can be sepa-

rated into two parts: 
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This leads to the split form of the conservation equation (after Hinkelmann, 1997): 
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(2.33)

These equations can be solved separately by an adequate scheme, e.g. by a Lagrangian 

characteristics scheme for the advective part and an Eulerian finite-element approach for the 

diffusive part. 

2.2 Equations of state 

A set of equations of state is necessary to couple the conservation equations to each 

other and thus close the set of equations. The equations of state can be sorted into several 

groups. One group covers the interaction between fluid and porous medium. Often these func-

tions differ in space, because the porous medium changes. A second group of functions de-

scribes the impact of the primary variables on the physical properties of the fluids (i.e. func-

tions describing density, viscosity, diffusion etc.). A third group would be the combination of 

the two, describing the influence of changes of the primary variables on the equations of state 

of the porous medium. The first group of functions is mainly related to geophysical sciences, 

while the second one belongs to the research area of chemical engineering. The combination 

of different influences on the parameters opens a broad field for functional dependencies, 

which depend on the regarded species.  

It is impossible to define “general”  functions that are numerically feasible and cover all 

possible physical processes. Therefore, the software concept incorporated in RockFlow uses 

an open, object oriented interface, which makes it easy to incorporate any kind of function. 

Due to this ease in enhancing the physical dependencies, only a limited subset of the possible 

functions was implemented and will be presented here. 

2.2.1 Permeabilities 

The general idea of Darcy’s law (i.e. a linear relation between pressure gradient and ve-

locity) is only valid for a very limited range of conditions. The system 

- must be fully saturated, 

- apertures must be big enough (otherwise Knudsen flow for gases and surface effects 

for liquids dominate the system) and 

- velocities must be in a certain range. 

Various approaches are available to describe the permeability as a function of some 

properties of the porous medium. The most famous one is the Kozeny-Carman equation 
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(Bear, 1979). It is based on the porosity n, the specific inner surface Ms of the porous medium 

and a scaling factor C0, for which Carman suggested 1/5: 
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(2.34) 

If fractures are represented by a „parallel plate“  model with low local variability of the 

aperture b, the local permeability k can be approximated from so-called “ cubic law“  

(Witherspoon et al., 1980). The cubic law originally described an approach to evaluate the 

transmissivity of a fracture. Thus, it is divided by the aperture b to obtain the permeability: 
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This approximation is only valid if the fracture roughness is low compared to the open 

aperture of the fracture. 

To extend Darcy’s law for multiphase systems multiple approaches are available in the 

literature (Helmig, 1998b, gives a good overview of common approaches) to describe the im-

pact of all phases on the total flow field. These approaches can either be rather simple ones 

like the Brooks-Corey approach (Brooks and Corey, 1966), for which the relative permeabil-

ity for each phase is directly related to the corresponding phase saturation, or rather compli-

cated for approaches with interaction of all saturations on the relative permeability of the 

other phases. 

2.2.2 Relative permeability-velocity function 

The linear dependency between pressure head and fluid velocity is not valid over the 

complete range of Reynold’s numbers Re: 
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In this equation b denotes a characteristic length, for example a pore diameter or the 

fracture aperture. For very low Reynold’s numbers (Re<<1), and especially for very thin frac-

tures or fissures, the molecular bounds between water and rock matrix can significantly hinder 

the water from moving. For slightly larger Reynold’s numbers the linear approach of Darcy’s 

law is valid. For Reynold’s numbers between 10 and approximately 100 the flow field is still 

laminar, but inertial forces in the Navier-Stokes equation should no longer be neglected. 

The classical approach to describe this behaviour was developed by Forchheimer 

(1914). It relates the pressure drop in the porous medium to a first and a second order function 

of the velocity: 



22 Equations of state 
 

 ( )gqq ρ−−=βρ+µ
pgrad

k
2   

(2.37) 

In this expression the first term rises in importance for low velocities. It characterizes 

the linear dependency between pressure drop and velocity, which is typical for laminar flow. 

The second term is of importance for high velocities and resembles the pressure loss due to 

inertial forces. The variable β is used as a scaling factor for this effect.  

The nonlinear flow behaviour can be accounted for by an element in the product row of 

relative permeability effects (Equations 2.6). In this case the “ turbulent”  relative permeability 

kr,turb.<1 is used to scale the permeability. It should be pointed out that turbulence does only 

occur under very rare conditions. The index “ turb”  denotes nonlinear flow because of inertial 

forces and, additionally, the rare case of real turbulence: 

 ( )qfk .turb,r =  (2.38) 

The main problem is that the regarded systems are locally heterogeneous, thus the flow 

field is turbulent in parts while it is still laminar in others. A smooth transition from the linear 

to the nonlinear regime is needed to describe the averaged behaviour. Some restrictions can be 

formulated for the relative permeability function for nonlinear flow: 

- kr,turb. = 1 for small velocities (laminar flow) 

- kr,turb. = qα  for high velocities (turbulent flow) 

- kr,turb. must be strictly monotic dropping with rising velocities 

The first constraint leads to the classic Darcy approach with a linear dependency be-

tween pressure drop and velocity. The second constraint describes the quadratic pressure drop 

for turbulent flow. A smooth transition between the two approaches would be useful, because 

the REV will not completely switch its behaviour at a certain velocity. For multiphase flow it 

might be useful to enhance this approach by relating the function to the fluid saturation. 

2.2.3 Relative permeability-saturation functions 

If more than one fluid phase exists in the pore space of a porous medium those fluid 

phases will interact with each other. Even if the drag on the fluid surfaces is neglected, this 

will result in a reduced effective permeability for the regarded phase. This disturbance is 

characterized by the relative permeability krα. Several authors worked on the determination of 

the relative permeability at the micro scale. Models to analyse this behaviour are e.g. network 

models, which describe the underground as a network of nodes and interconnecting capillary 

tubes (Parker et al. 1989). Those investigations confirmed the well known macro scale rela-

tions between relative permeability and saturation of a phase in the medium. These functions 

can be hysteretic, i.e. the behaviour for draining and imbibition is differing. Furthermore they 
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differ between the fluid with a higher affinity for the solid matrix (“wetting fluid”) and other 

ones with a lower affinity (“non-wetting fluids”). 

A summary of different models for the relative permeability-saturation function is given 

e.g. by Miller et al. (1998) or Helmig (1998b). It was assumed that the relative permeability is 

a scalar, though it is supposed to be a tensor. This simplification is made because of the lack 

of available functions to describe this tensor, and, even more so, the lack of experimental data. 

Furthermore, the relative permeability functions for fractures can be influenced by the fluid 

velocity (Fourar et al., 1993). This is the case, if the local equilibrium is not governed by cap-

illary pressures, but by external pressures and inertial forces. 

Here a set of scalar functions is presented, these are currently implemented in the simu-

lator. Due to the object oriented concept and the open interfaces of RockFlow, the simulator 

can easily be enhanced to other functions is this necessary. 

In the following the effective saturation Seffα will be used to simplify the equations: 
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(2.39) 

Here, Sresα denotes the residual saturation and Sfullα the saturation, for which the maxi-

mal relative permeability is reached. 

User  defined curve 

This is a very generic approach. The user can specify curves simply by entering a set of 

points along the desired curve. By this means any type of curve can easily be specified, i.e. 

experimentally gathered data can directly be used (after some smoothing) without of the ne-

cessity to fit it to a special function.  

Perfectly mobile 

All phases show perfect mobility and do not interact with each other. This means that 

krα is equal to unity for all phases: 

 1k r =
α

 (2.40) 

Linear  function 

In this approach the permeabilities rise linearly between the residual saturation and the 

maximal saturation. If the Richards’  approach is used to compute the seepage in large scale 

systems, the linear approach is suitable to take into account the reduced flow through partially 
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flooded elements. In two-phase systems the full saturation is determined by the residual satu-

ration of the other phase: 

 α=
α effr Sk  (2.41) 

Exponential function 

An exponential dependency with a variable exponent is frequently used and a “classic”  

approach. An exponent between two and five is common for the wetting phase, while the non-

wetting phase usually is described by a lower exponent. 

 ( )a
effr Sk α=

α
 (2.42) 

Books-Corey functions 

Brooks and Corey (1964) distinguished the non-wetting phase permeability krnw from 

the wetting phase permeability krw:  
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Van Genuchten function 

This approach was derived from the one proposed by Van Genuchten (1980). The main 

field for this approach are infiltration problems of water into the soil. In the original work 

only the relative permeability for the wetting phase was addressed. Thus, for the non-wetting 

phase another approach must be chosen. The wetting phase relative permeability is calculated 

from: 
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Haverkamp function 

The approach is a slightly modified version of the formula proposed by Haverkamp 

(1977). As the Van Genuchten approach, it is mainly used for infiltration problems of water 

into the soil and no information about the non-wetting phase is given: 
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In the original publication the following form factors were used: 

 610611.1a ⋅= ; 197.1b = ; 610175.1c ⋅=  
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2.2.4 Capillary pressure functions 

Another important characteristic of multiphase processes is the existence of interfaces 

between the phases at the micro scale. Surface tensions on the interfaces between the phases 

induce the movement of the fluids until a local equilibrium is reached. This local equilibrium 

depends among other influences on the fluids themselves, the solutes inside them, the sur-

rounding porous material and the temperature. The different affinity of wetting and non-

wetting fluids for the matrix of the porous medium can be observed on the micro scale as a 

difference in the contact angles between fluids and solid. 

On a medium scale the soil can be interpreted as a network of capillary tubes of differ-

ent diameters. If a certain amount of a wetting fluid is infiltrated into this network, the fluid 

will settle finally in equilibrium. The smallest pores are filled first (due to the high suction 

pressure), while larger pores are filled later. Obviously the system will not show the same 

behaviour during imbibition and draining, i.e. the behaviour is hysteretic (as it is in nature). 

This type of model was successfully used for two-phase flow (Lenormand et al., 1988) and 

three-phase flow (Soll and Celia, 1993). 

For larger scales heuristic approaches are widely used. They can be interpreted as func-

tions that relate saturations and capillary pressures. These functions can either be gained from 

experimental data or by volume averaging the results of the network models mentioned previ-

ously. 

1.00

Main wetting curve

Swr 1-Snr

 
 

Fig. 2.2: General description of a capillary pressure-saturation function (Redeker, 1999). 
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Figure 2.2 shows a typical hysteric capillary pressure–saturation function. The hystere-

sis has several reasons: 

- Differences in the contact angle between advancing and withdrawing liquid. 

- The “ ink-bottle”  effect of pores of different shape. 

- Reaction of the porous material on the fluid (e.g. swelling of clay particles). 

Several models for the capillary pressure - saturation relationship are available. A sum-

mary of these models is given in Miller et al. (1998). The functions used in this work will be 

outlined in the following. The inverse function has been added, as it is useful for the Rich-

ards’  approach. If the inverse function is not known, it is possible to use a Newton or a regula-

falsi scheme to determine the inverse value, though this is less effective 

User  defined curve 

The most flexible approach is the possibility to define a curve based on several single 

points. The inverse function can easily be determined numerically: 

 ( )α=
α

Sfpc  (2.46) 

Linear  function 

The capillary function is assumed to be a linear function of the saturation. This ap-

proach is useful for the Richards’  approach, as it can be used to specify artificial capillary 

pressures if the saturation changes are too sharp and numerical stability problems are encoun-

tered. Furthermore for systems with large vertical extent of the unsaturated zone this approach 

is useful to specify curves, which fulfil the criteria for the Richards’  approach: 
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Exponential function 

The capillary pressure rises with an exponent 1/b in the area between minimal and 

maximal saturation. It is scaled by the multiplier a: 
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Van Genuchten function 

The approach by Van Genuchten (1980) has developed to a standard for infiltration 

problems. It has the form: 
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In this approach a, m, n are form factors of the capillary pressure function. A large 

amount of literature is available with form factors for multiple soils. 

Haverkamp function 

The approach by Haverkamp (1977) is mainly suited for infiltration problems, too. It 

was originally formulated for the water retention curve, re-evaluation for capillary pressures 

gives: 
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In the original publication the following form factors were used: 

 610611.1a ⋅= ; 96.3b = ; 5101c ⋅=  

Brooks-Corey function 

The Brooks-Corey model (Brooks and Corey, 1966) uses a more physical approach to 

describe the properties of the porous medium. Their approach uses the bubbling (or threshold) 

pressure pb (the pressure at which the non-wetting phase starts to enter the system), the resid-

ual saturation Sres and the pore size distribution factor λ to characterize the capillary pressures. 
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In contrast to the van-Genuchten approach, the capillary pressure is not zero for a satu-

ration equal to unity. This is the so-called threshold pressure, which must be surpassed by the 

non-wetting phase before it can enter the porous medium. If it is assumed that the soil is a 

network of tubes, this is equal to the assumption that the distribution of tube diameters has a 

sharp upper boundary and the largest tube has a capillary pressure equal to the entry pressure. 

In contrast, the van-Genuchten approach assumes that the pore size distribution has no sharp 

upper bound. For technical systems and very well sorted natural porous media, the Brooks-
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Corey approach is superior, while the van-Genuchten approach is better suited for natural 

porous media with a wide range of pore diameters. 

2.2.5 Fluid and tracer proper ties 

The properties of the regarded fluids and tracers are depending on multiple parameters. 

Pressure, temperature, mixing ratio and the choice of materials themselves for two or more 

components opens an overabundance of possible interactions. The evaluation of those pa-

rameters belongs to the field of chemical engineering and only some aspects will be presented 

in the following. It must be pointed out that the object oriented software concept of RockFlow 

(Kolditz et al., 1998b) easily enables the incorporation of any other equation of state if this is 

necessary. 

2.2.5.1 Fluid Density 

The density of a fluid is influenced by multiple factors, i.e. pressure, temperature and 

solved solutes. For gases the density can be described by the Boyle-Marriot formula. For ideal 

gases and isothermal conditions it can be simplified to: 

 p
p∂
ρ∂=ρ  

(2.52) 

The pressure only to a small degree influences the density of liquids, as liquids are 

nearly incompressible. For liquids the dependency between density, temperature and pressure 

is not necessarily linear. A good example is water, which has a density maximum at four de-

grees centigrade. For temperatures that are sufficiently high, a linear approximation is accu-

rate enough to estimate the temperature dependency in a small range from the reference tem-

perature: 

 T
T

p
p.ref ∂

ρ∂+
∂
ρ∂+ρ=ρ  

(2.53) 

The effect of solutes on the liquid density can be linearized for low solute concentra-

tions, as they mix with the liquid with no volumetric changes. Thus the prior equation is ex-

tended to: 

 β+
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ρ∂+ρ=ρ cT

T
p

p.ref  
(2.54) 

For specific liquids, i.e. water, more sophisticated approaches are available to determine 

the density for a wide range of pressures, temperatures and salinities. For example Stuyfzand 

(1989, in Holzbecher 1998) proposes for saline water: 

 ( )( )2
m

6
mwater c2204T105.6c805.011000 ⋅+−⋅−⋅+⋅=ρ −  (2.55) 
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As already pointed out, multiple other functions are available to describe the density of 

a liquid. For seawater intrusion problems the formula by the UNESCO (1981) should be in-

vestigated further. Due to the open interface concept of the developed program, any function 

can easily be added to the system. 

2.2.5.2 Fluid Viscosity 

The viscosity of liquids changes largely with temperature, but is quite invariant against 

pressure changes. It is interesting to note, that this is not only valid for liquids, but also for 

gases. For water Pawlowski (1991) proposes the following function for the temperature de-

pendency: 

 ( )( ) 572.13
water 15.293T01551.0110 −− −⋅+⋅=µ  (2.56) 

Another approach is given by Reid et al. (1988). It is a more general approach and is 

approximately valid for all liquids, if the temperatures are far enough from the freezing and 

boiling temperature. In the following equation A and B are fitting parameters: 

 T

B
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e
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=µ  
(2.57) 

Furthermore the viscosity of liquids can be influenced by solutes. Small salt contents 

have a rather small effect on the viscosity, i.e. seawater with 35 kg salt per cubic metre in-

creases the viscosity by less than 10%. For brines with high salt contents of up to 300 kg/m3, 

changes in viscosity must be taken into account as the viscosity is increased by more than 

100% (Spitz, 1985). 

2.2.5.3 Tracer  diffusion 

The molecular diffusion coefficient Dm determines the mass of tracer that diffuses 

through an area of one square meter, if the concentration gradient (with the concentration be-

ing defined as mass per volume) is equal to unity (DVWK, 1985). 

In a porous medium the diffusion is hindered by the structure of the medium. It is possi-

ble to take this into account by multiplying the molecular diffusion Dm (which is a property of 

the fluid and the solute) with the tortuosity T of the porous medium. Furthermore very small 

pore diameters can influence the diffusion, as the collisions of molecules between each other 

are superposed by the collisions with the wall (Knudsen diffusion). 

For many ions (like sodium chloride) the diffusion coefficient in water can be expected 

to be a range between 1⋅10-9 m2/s and 2⋅10-9 m2/s at 20°C. The diffusion is highly dependent 

upon temperature. For water self diffusion rises approximately from 1⋅10-9 m2/s to 5⋅10-9 m2/s  

between freezing and boiling temperature (Reid et al., 1988). The pressure or the concentra-
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tion only to a small degree influence the diffusion coefficient of a liquid, so that those influ-

ences can be neglected. 
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3 Numerical approximation 
The basic idea is to replace the rather complex to find solution for the mathematically 

formulated physical problem by a simpler one, i.e. solving a system of linear equations. In 

this work the physical problem is described by the conservation equations which were evalu-

ated in Chapter 2.1. 

For the temporal discretization of those equations among others the finite element 

method (FEM) as well as the finite differences method (FDM) are suitable. Due to the simpler 

general structure, the FDM has been chosen for the temporal discretization (Chapter 3.3). For 

the spatial discretization a large amount of numerical methods is available. The most promi-

nent ones are 

- the finite differences method (FDM), 

- the finite volume method (FVM), 

- the finite element method (FEM), 

and a lot of hybrid methods, which are in between. For a general overview it is recom-

mended to review a textbook (e.g. Hirsch, 1988) on computational fluid dynamics (CFD). All 

of the methods presented above have strong and weak points. The most important points will 

be outlined in the following. 

The FDM has been largely successful in the numerical simulation due to a number of 

good reasons. First of all it is straightforward to understand and to implement in computer 

codes. The spatial derivatives of variables are approximated by polynomials, which are evalu-

ated on rectangular grids. It is possible to use coordinate transformed formulations, so that the 

actually modelled domain is no longer rectangular. In that case (useful for example for rivers) 

the grid would be rectangular after applying a backward coordinate transformation on the 

grid. The FDM results in systems of linear equations, which are filled to a small degree 

(“sparse”) and show a banded structure. The main advantage of the FDM is the ease in im-

plementation on the one hand and the speed in execution on the other. It must be pointed out 

that this is only true if the computational effort per number of nodes is regarded. This type of 

evaluation of the efficiency of numerical methods is misleading, as the quality of the results 

per number of nodes may differ between the methods. Thus the achieved quality per CPU 

time should be compared. Actually, for cases with complex geometries (e.g. fracture systems 

or heterogeneous soils with thin layers) the FDM may be inefficient, because the necessity to 

place a high number of nodes in areas with changing material properties forces the placement 

of other nodes due to the restriction to rectangular grids. This can be partially circumvented 

by using “zoom” methods or floating refined grids. Furthermore the FDM in standard form 
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has the disadvantage of not being mass conservative. Thus the modeller is forced to use 

higher order interpolation schemes to keep mass losses bounded and phase speed errors low. 

The FEM and the FVM are both based on elements of not necessarily rectangular shape 

and are therefore well fitted to approximate arbitrarily shaped geometries. Furthermore they 

are globally mass conservative and produce, like the FDM, sparse systems of linear equations. 

Traditionally the FEM has been largely used in modelling solid mechanics, while the FVM is 

increasingly popular in fluid mechanics. The FVM is quite often supposed to be superior be-

cause of the so-called “ local conservation” . Actually the local conservation only describes the 

ease in understanding (and implementing) the method, not a numerical quality. Gresho and 

Sani (1998) demonstrate that the FVM in fact is comparable to a lower order FEM, and shows 

lower accuracy in modelling the phase speed. The following table is supposed to recapitulate 

the statements made above: 

Table 3.1: Comparison of important features of the regarded numerical schemes. 

 FDM FEM FVM 

Efficiency of spatial discretization - + + 

Efficiency per node + - - 

Global mass conservation o + + 

Implementation  + - o 

For hydro-geological systems very complex geological structures must be reproduced. 

This is important for layered, non-fractured aquifer system, but even more important for frac-

ture systems. Thus the FDM has not been chosen for the spatial discretization. Both the FEM 

and the FVM or their hybrid forms are suitable for the spatial discretization of geological sys-

tems.  

In general the FEM produces good results for mechanical problems (i.e. the pressure 

field equation), while the FVM shows nice behaviour for transport processes. As it is planned 

to incorporate mechanical problems into the numerical code and a variety of methods are 

available to enhance the performance for transport simulations, the FEM has been chosen for 

the further steps. For future development it should be considered to use the FVM to describe 

transport processes. 
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3.1 Discretization with the finite element method 

3.1.1 Spatial discretization 

The continuous solution for the whole domain is replaced by a number of small, inter-

connected sub-domains called finite elements. The temporal discretization is treated by Finite 

Differences (Chapter 3.3) and the nonlinearities are resolved by an external iteration loop 

(Chapter 3.4). 

The process of partitioning the domain into single elements is called mesh generation. It 

depends on the types of available finite elements and on the geometry of the underlying geo-

physical system. In this work one-dimensional two node line elements, two-dimensional four 

node elements and three-dimensional eight node elements (Figure 3.1) are used. These ele-

ments can freely be interconnected in 3D-space, in order to represent preferential flow paths, 

fractures, and the solid matrix. If this coupling is used, it is important that the volumes of the 

coupled elements are suitable to describe the relevant processes, i.e. if 2D elements (repre-

senting a very thin fracture) are connected to large 3D elements (representing the rock ma-

trix), the mass storage of the 3D elements would hinder the movement in the fractures in an 

unphysical manner. In this case it is necessary to use a graded layer of matrix elements or to 

implement special transition conditions between fracture and matrix. 

2D elements for two-dimensional
features, e.g. fractures or faults

1D elements for one-

dimensional features, e.g.

preferential flow paths

3D elements for the matrix
or the porous medium

 

Fig. 3.1: Coupling of different element types in three-dimensional space. Line elements for 

preferential flow paths, planar elements for fractures and hexahedral elements for the matrix 

can freely be coupled to represent complex geological systems. 

The geometry of the mesh should be adapted to the simulated physical processes. For 

example, it is possible to use streamline oriented meshes, if transverse numerical dispersion is 

to be reduced (Figure 3.2). 
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Fig. 3.2: Streamline adapted finite element mesh 
for a gallery of three wells (Thorenz, 1995). 

Furthermore, the mesh should be sufficiently fine in regions where large changes of the 

regarded quantities occur. As the regarded problems are transient, a grid-adaptive scheme is 

used to re-adapt the mesh during runtime of the simulator (Barlag, 1997 and Kaiser, 2001). In 

this work linear interpolation functions are used to describe the local changes of spatially 

varying quantities. Thus, the second order derivatives of those quantities (i.e., the curvatures 

in space) are a good estimate for the neglected higher order parts of a Taylor series analysis of 

the spatial distribution. This means that the second order derivatives can be used to trigger a 

local refinement of the grid. 

If a continuous natural system is replaced by a discretized system, a procedure is re-

quired to minimize the introduced errors. In the following, the method of weighted residuals 

(MWR) will be used for this task.  

A set of single steps must be performed for the FEM: 

- Evaluation of the conservation equations (Chapter 2.1). 

- Spatial interpolation of the domain (Ritz’  method, Chapter 3.1.2). 

- Orthogonalization of the equations (MWR, Chapter 3.1.3). 

- Evaluation of element or patch based system matrices (Chapter 3.1.3). 

- Assembling and solving of a linear system of equations (Chapters 3.1.7 to 3.1.10). 

These steps will be treated in short form in the following chapters. For a more detailed 

description on applying the FEM the books by Gresho and Sani (1998) and Zienkiewicz and 

Godbole (1975) can be recommended.  

3.1.2 Spatial interpolation (Ritz’ approach) 

Some factors of the conservation equations can be regarded as constant in space, while 

other have non-zero spatial derivatives. These are described in the FEM with the help of a set 
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of functions, called “basis functions” . These are chosen in a way that they fulfil the following 

restrictions: 

- Each function is based on a node of the mesh. 

- The function is equal to unity on its node. 

- The function is equal to zero on all other nodes. 

- The sum of all functions is equal to unity in the domain. 

These features can be fulfilled by multiple functions, more simple linear ones or higher 

order polynomials. The necessary order of the polynomials is determined by the order of the 

spatial derivatives in the conservation equations. If second order derivatives are used in the 

conservation equations, at least quadratic basis functions must be used. In this work the 

Gauss-Green integral theorem is used to reduce the order of the derivatives, so that linear ba-

sis functions can be used. 

The variable u is approximated by û, which is the sum of the products of all node values 

ui and their basis functions ωi over all nodes: 

 �
=

ω=≈
nodes

1i
iiuûu  

(3.1)

In Figure 3.3 a set of linear basis functions is presented. The upper picture shows the 

linear functions belonging to each node i, the lower picture presents the resulting interpolated 

function. This function is the sum of all nodal basis functions after they are multiplied with 

the appropriate node value. 

In the following the sum of products between basis functions and primary variables will 

be replaced by a vector notation: 

     u�=ω�
=

n

1i

iiu  
(3.2)

In this expression � denotes the horizontally oriented vector of basis functions for all 

nodes and u  the vector of node values of the regarded variable. 
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Fig. 3.3: Ritz’  method for interpolation. The upper picture shows the basis functions  

and the lower picture the resulting piecewise linear interpolation of a given function. 

Generally this approach has to be chosen for all variables that vary in space. Due to 

simplicity of the numerical implementation, it is sometimes convenient to assume that the 

spatial variance is sufficiently approximated by using element-by-element constant variables. 

This is the case for material parameters like porosity and permeability of the porous medium, 

as this enables sharp changes of the material properties on element boundaries. For most of 

the calculations presented in this work the porosity, permeability, storativity, compressibility 

and capillary pressure function are assumed to be element-by-element constant. In the follow-

ing the pressures, relative permeabilities, viscosities, densities, saturations and concentrations 

are evaluated by using Equation 3.1. If the density of a phase is in the denominator of an ex-

pression, the density is assumed to be constant in the element for the denominator. 

All dependent values that vary in space (ua and ub in Equation 3.3) can either be re-

placed by a constant value for each element or by a Ritz’  approximation. The pressures, satu-

rations and concentrations as the primary unknown variables must be replaced by the ap-

proximation gained from the Ritz’  approach (Equation 3.1). To avoid the multiplication of the 

separate linear approximations for all dependent variables, some authors suggest using the 

Group FEM or Product Approximation (Equation 3.3). The Group FEM approach is equiva-

lent to a local linearization, thus the accuracy is lower than for the standard Galerkin FEM. 
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This approach was suggested by Swartz and Wendroff (1969) and later by Christie et al. 

(1981) and other authors. It will not be used in this work, because it reduces the accuracy of 

the numerical solution. Anyhow it would be easy to change the numerical scheme appropri-

ately, in order to trade numerical accuracy for computational speed. 

The Group FEM can have a performance advantage if numerous spatial variables are 

multiplied in a single term. For the evaluation of the mobility �r
�k � k  on a single hexahedral 

element with three integration points for each direction (compare Equation 3.19), the Group 

FEM requires eight evaluations of the mobilities on the nodes and afterwards 27 interpola-

tions of the mobilities to the Gaussian points. The Galerkin FEM requires to interpolate all 

relevant primary variables to the 27 Gaussian points and to evaluate relative permeabilities 

and viscosities on each of them. Obviously the effort for the Galerkin FEM is much bigger, 

anyhow it was chosen due to the better accuracy. 

3.1.3 Or thogonalization of the equations 

The resulting superset pressure equation (2.17) and the saturation equation (2.20) are 

treated by the Method of Weighted Residuals by multiplying them with the vector of weight-

ing functions and integrating the result over the domain V. Only a linear independent subset 

of the total space of weighting functions is regarded. The subset has as many member func-

tions ϕi as the system has degrees of freedom. In this work each node has one degree of free-

dom for each equation, so the number of weighting functions is chosen equal to the number of 

nodes. Thus, we have to solve multiple equations, one for each node i: 
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In the Bubnov-Galerkin FEM the weighting functions ϕi are equal to the basis functions 

ωi of the Ritz’  approach (Equation 3.1). This is not strictly necessary. In Chapter 3.1.6 some 

effects of different weighting functions are presented. 

Rearranging integrals and sums of the pressure field equation leads to: 
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The second order derivatives cannot be treated adequately by linear finite elements. The 

Gauss-Green integral theorem transforms them into lower order derivatives: 
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The integrals over the surface S in this formulation denote fluxes into and out of the re-

garded domain. They will be treated separately by applying appropriate sink and source 

boundary conditions to the right hand side of the equation system and therefore will not be 

regarded in this context anymore. 
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3.1.4 Application of Ritz’ approach on the or thogonalized equations 

Replacing the spatial variables of the regarded variables according to Ritz’  approach 

(Equation 3.2) and some rearrangement leads to: 
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By this procedure the regarded primary variables are extracted from the integrals. In the 

following the point of view will be switched from a global to an element-by-element view-

point. Another possibility would be a patch-wise evaluation. The patch based scheme has a 

larger memory demand, as the system matrices of the patches overlap. Therefore an element-

by-element scheme is used here. First the local element integrals are evaluated and later the 

local element-by-element view is replaced again by the global view by summing up all ele-

ment integrals: 

 ( ) ( )
� �� −

=

=
1elements

0E V

E

V E

dV...  dV...  
(3.11) 

To evaluate the local element integrals, a vertically aligned vector ϕϕϕϕE is introduced for 

the weighting functions of an element. It contains the parts of the weighting functions ϕi be-

longing to the regarded element E. Both the integral over the sum of all patch based weighting 
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functions and the sum over all element integrals are equal to the volume of the regarded do-

main: 
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The same procedure is used for the horizontally aligned vector of basis functions � . In 

the following the subset E� , which is belonging to the regarded element E, is used. Both vec-

tors have a number of entries that is equivalent to the number of nodes for element E. 

3.1.5 Resulting element matr ices 

To simplify the expressions, a set of matrices and vectors is introduced. In these matri-

ces all spatial variables are evaluated according to their local position. The Ritz’  approach is 

seemingly not used here for dependent variables. It is used in the actual integration procedure 

but is left out here, because otherwise the readability of the equations would suffer: 
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(3.17) 

It must be pointed out that ϕϕϕϕE and E�  are function vectors. The derived matrices are as-

sembled to the global system of equations according to the procedure outlined in Chapter 

3.1.7.  

For further simplification of the equations, the sum of all element matrices of a certain 

type is abbreviated: 
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The same procedure is used for the element matrices B, C and D. The matrices of type 

E are not treated as matrices in the code, but instead equivalent single node loads are evalu-

ated. 

3.1.5.1 Element integration 

The element matrices can be integrated analytically for one-dimensional elements (Ap-

pendix A), for elements of higher dimension a Gaussian quadrature is used. The Gaussian 

quadrature is performed on a normalized element by replacing the integral with the sum of 

single point values and their appropriate weight (Lapidus and Pinder, 1999). 
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In this expression det[J] denotes the determinant of the Jacobian matrix. The weighting 

factors w are dependent on the number of integration points n and the current integration point 

in local coordinates r, s and t (Table 3.2). The needed number of integration points largely 

depends on the shape of the elements and on the nonlinearity of the integrands. For simple 

linear problems and rectangular element shape two Gauss points in each local element direc-

tion are sufficient; for nonlinear problems or arbitrary shaped elements at least three Gauss 

points are required to reach sufficient accuracy in the integration. 

Tab. 3.2: Integration points and weighting factors for Gauss integration 

Number of 
Gauss points n 

Integration point in local 
coordinates t,s,r   ±  

Weighting factor wi,j,k 

1 0.000000 2.000000 

2 0.577350 1.000000 

3 0.774600 

0.000000 

0.555556 

0.888889 

4 0.861136 

0.339981 

0.347855 

0.652145 
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3.1.6 Special weighting functions 

The weighting functions �  are not necessarily equal to the basis functions � . They are 

equal for the special case of the Bubnov-Galerkin FEM. Other variants are possible: piecewise 

constant functions (CVFEM), higher order polynomials, point collocation etc. In the follow-

ing two special methods, upwinding and mass lumping, will be focused upon. It must be 

pointed out that those methods are in general of lower accuracy than the Bubnov-Galerkin 

FEM. Anyhow they are very useful, as they produce more stable results. For hyperbolic prob-

lems these methods may be necessary to achieve any result at all, though the modeller should 

be careful not to believe too much in “smooth”  solutions. This smoothness is paid for by un-

physical numerical diffusion that is added to the system. Numerical oscillations (“wiggles” ) 

can be valuable information for the modeller, as they tell him that his numerical solution is 

doubtable. Or, as J. Ferziger was quoted by Gresho and Sani (1999): “ The greatest disaster 

one can encounter in computation is not instability or lack of convergence, but results that 

are good enough to be believable but bad enough to cause trouble.”  

3.1.6.1 Upwinding 

Upwinding is based on the idea to modify the weighting functions in a way that ensures 

a higher weighting of the information coming from upstream (Brooks & Hughes, 1982). Add-

ing either higher or lower order polynomials to the weighting functions can do this. Helmig 

(1993) proposed to used higher order polynomials for multiphase flow problems. In this work 

the standard streamline upwind Petrov-Galerkin (SUPG) method was used for both multi-

phase flow and transport problems and was enhanced by an additional mobility upwinding for 

the multiphase flow processes. 

Generally upwinding of the weighting functions is useful for advection dominated prob-

lems as expressed by the Peclet number Pe (Equation 2.31). For multiphase flow problems the 

Peclet number can be interpreted as the relation between phase pressure gradients and capil-

lary pressure gradients. If the capillary pressures are low and linear basis functions are used, it 

is necessary to use an upwinding method in multiphase flow problems, because otherwise the 

solutions will loose their physical meaning. 

For the SUPG scheme a constant value is added to the weighting functions (Figure 3.4) 

on the streamline upward side of the weighting function. On the opposite side the same value 

is subtracted from the weighting function. The same is true for elements of higher dimension. 
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Fig. 3.4: Weighting functions for a one-dimensional element. The weighting functions are 

shifted upwards on the upstream side and downwards on the downstream side. 

Due to the definition of the FEM, this modified weighting function has to be used for all 

terms of the regarded conservation equation. Anyhow it can be advantageous to upwind only 

parts of the regarded PDE (“Partial upwinding”). For the tracer transport equation it is possi-

ble to limit the upwinding to the advective term of the PDE (“Advection upwinding” ). 

The upwinding factor α can furthermore be related (Equation 3.20) to the Peclet num-

ber: 
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This has the advantage that only in the advection dominated parts of the domain up-

winding will be used, while in the diffusion dominated rest of the domain the original weight-

ing functions are used and therefore higher accuracy is reached. A similar effect can be gained 

by using advection upwinding, because the impact of upwinding vanishes if the advective 

term looses its dominance in the PDE. 

For multiphase flow problems it is necessary to use an upwinded scheme to achieve the 

physically correct behaviour. In Figure 3.5 the results of the not upwinded and the SUPG 

schemes are compared to the analytical solution of the Buckley-Leverett test case (Chapter 

4.3). This test case is difficult to handle, as no capillary pressures are regarded. Thus, the be-

haviour is purely advective. Furthermore the front is self-sharpening. It is obvious that the 

scheme without upwinding largely misses to catch the system behaviour, though it still fulfils 

the mass conservation and is, in contrast to the statement by Helmig and Huber (1998), stable, 

though not oscillation free. The SUPG scheme shows a better performance and is much nearer 

to the analytical solution, though oscillations are still obvious. 
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Fig. 3.5: Impact of SUPG on the solution of the Buckley-Leverett test case. The solution with 

SUPG is significantly closer to the analytical solution than the standard solution. 

Another very simple approach is streamline upwards shifting of the Gaussian integra-

tion points (Table 3.2) in the element (Figure 3.6). This procedure will be called Gaussian 

point upwinding (GPU) in the following. The upstream weighting of the fluid mobility during 

the integration of the flux and gravitation matrices (Equations 3.15 and 3.16) largely enhances 

the results. Though this is not strictly derivable from a mathematical point of view, this ap-

proach has proven to be very useful in multiphase flow simulations. For this approach the 

normalized velocity vector in local element coordinates is multiplied with the user specified 

upwind factor and then subtracted from the local integration point coordinates. 

As the coordinates have to be in the range between minus one and plus one, two alterna-

tive limiting strategies are added. The first one scales the vector appropriately, so that none of 

the shifted points will violate the constraint (Figure 3.6). Thus, a part of the spatial informa-

tion transverse to the flow direction is kept. 
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Fig. 3.6: Upwinding of Gaussian integration points. The integration points 

are shifted streamline upwards until an element bound is reached. 
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The second, more simplistic approach, limits the result of the shifting operation for each 

of the coordinates separately to the desired range. In practice this means that for large 

upwinding factors a single node value will determine the mobility assigned to the whole ele-

ment. This is equivalent to the fully upwind Galerkin (FUG) method as proposed by Helmig et 

al. (1998). Some spatial information is lost in this procedure, compared to the one proposed 

before. The FUG method has shown good performance for heterogeneous systems, where the 

entry behaviour of the non-wetting phase is difficult to reproduce numerically. 

The impact of the GPU for the fluid phase mobility is presented in Figure 3.7. It shows 

again the results for the Buckley-Leverett test case. In comparison to the SUPG scheme the 

oscillations on the plateau are largely reduced and the shock front is matched significantly 

better.  
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Fig. 3.7: Impact of mobility upwinding on the solution of the Buckley-Leverett test case. The 

solution with GPU is close to the analytical solution and is oscillation free on the plateau. 

Additionally the SUPG and the mobility upwinding scheme can be combined. The re-

sults are not presented here, as they resemble the expected behaviour: If both methods are 

used to their full extent, the front is heavily smoothed and shows no more oscillations. If both 

methods are applied with a halved upwind factor, the results are between the results of the 

single methods. 

3.1.6.2 Mass lumping 

This procedure is very common to suppress wiggles which result from the inability of 

the FEM to reproduce high spatial frequencies of the field variables. Already the approxima-

tion of the initial conditions with the mass matrix will produce wiggles in the solution, if the 

initial conditions are not smooth enough. 

The basic idea behind mass lumping is to modify the mass matrix M (Matrix A in Equa-

tion 3.13 and matrix B in Equation 3.14) in a way that only the diagonal elements have non-
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zero entries. For the numerical simulation of partially saturated systems this was first sug-

gested by Neumann (1973). This is equivalent to the decoupling of each node from his 

neighbours, as far as the mass matrix is concerned. In the FEM meaning this can be done ei-

ther by summing up the mass matrix rows or by using modified weighting functions: 

 ( ) ( )�� =→=
V

ML

V

dV...dV... �
�

M��M  (3.21) 

In this equation δδδδ denotes a vector, containing the parts of a Kronecker delta at each 

element node that are belonging to the regarded element. This is equivalent to moving all 

weight of the weighting functions to the single node i. This type of formulation is related to 

Box-FEM and Control-Volume-FEM schemes. The mass lumping procedure can be inter-

preted as using a different numerical method for the storage term of the PDE. Here it is op-

tionally applied to the storage matrices A (Equation 3.13) and B (Equation 3.14). The proce-

dure is equivalent to replacing the storage term by a typical volume that is assigned to the 

regarded node. This volume is gained in the mass lumping procedure by integrating over the 

patch volume; it can also be gained by using a Voronoi partitioning or other partitioning 

methods in order to assign a specific volume to the node. 
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Fig. 3.8: Impact of mass lumping and mobility upwinding on the solution of the Buckley-

Leverett test case. Mass lumping is a very effective tool to suppress wiggles in the solution. 

Together with the mobility upwinding a solution close to the analytical one can be reached.  

Figure 3.8 shows the impact of mass lumping on the results of the Buckley-Leverett test 

case. For the not upwinded solution the wrong physical behaviour is still obvious, though the 

solution is now oscillation free. For the mobility upwinding the solution was enhanced, 

though now a small mass loss becomes obvious. The combination of SUPG and mass lump-

ing is not possible, as the lumping of the mass matrices eliminates the influence of the SUPG 

on those matrices. 

It must be pointed out that lumping the mass matrices reduces the accuracy of the re-

sults. This is especially true for non-uniform grids. Finalizing, mass lumping can be a very 

useful enhancement for FEM formulations, though it should be used with care and not in gen-
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eral. For critical situations where large curvatures of the field cannot be resolved by the FEM 

(e.g. the upstream side of sources of tracers, self-sharpening fronts or fracture intersections) 

mass lumping should be switched on automatically as needed. 

3.1.7 Assembling of systems of linear equations 

The matrices and vectors introduced with the Equations 3.13 to 3.17 form the basis of a 

construction set for multiple physical problems. Together with the temporal semi-

discretization (introduced in Chapter 3.3), it is possible to assemble the global system of lin-

ear equations for each of the primary variables. After an introductory part concerning the stor-

age of the element matrices in the global system matrix, the typical assemble procedures for 

the superset pressure equation and the saturation field equation will be outlined. The adapta-

tion to several classes of simpler problems is outlined in Chapter 3.5.1. 

3.1.7.1 Pr inciples of matr ix storage handling 

Before assembling the system matrices to the global system of equations, it is useful to 

set up a translation table between the node numbers and their appropriate line/column in the 

system of linear equations. This process, called renumbering, leads to ordered systems of 

equations that show a banded structure. In Figure 3.9 the map of non-zero entries in the sys-

tem of linear equations for the four fracture system described in Chapter 4.7 is presented. 
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Fig. 3.9: Map of non-zero entries in the system of linear equations. Both Cuthill-McKee and 

Gibbs-Poole-Stockmeyer renumbering significantly reduce the bandwidth of the matrix. 

The left image shows the structure of the system of linear equations if no renumbering 

is applied. Obviously both the Cuthill-McKee (1969) and the Gibbs-Poole-Stockmeyer (1976) 

renumbering scheme largely reduce the bandwidth. The Gibbs-Poole-Stockmeyer scheme 

(implemented by R. Ratke) produces the most compact system, avoiding the strong outer 

bands of the Cuthill-McKee scheme. The renumbering not only compacts the system, but also 

has a positive impact on the convergence of iterative solvers. 
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The matrix of the system of linear equations is not stored completely, as most of the en-

tries are equal to zero. Instead it is useful to use a sparse storage like compressed row or com-

pressed column storage. The main idea of those storage schemes is not to store the rows or 

columns themselves, but to have a set of two arrays for each row or column that is limited to 

the rows or columns that actually have entries. The first array contains a list of indices, denot-

ing the column or row to which the entry of the second array belongs. 
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Fig. 3.10: Principle of compressed row storage. Only a limited subset of the matrix is stored. 

In Figure 3.10 the basic idea of compressed row storage is illustrated. An array of point-

ers is used to refer to the appropriate arrays of column indices and values. In the example pre-

sented in Figure 3.10 the access to matrix element A(35,29) would first result in a pointer to 

the double array belonging to row 35. Searching in this array for column 29 returns the corre-

sponding value of –0.22. It is useful to extract the diagonal entries from this scheme, as it is 

faster to store them into a separate vector. In RockFlow a compressed row storage scheme 

(implemented by M. Schulze-Ruhfus) and a combined compressed row/column storage 

scheme (implemented by R. Ratke) are used. 

3.1.7.2 Discretized field equations 

To describe the field equations for multiple phases α, the matrices for all phases must 

be considered. Furthermore, it is necessary to choose a reference pressure in order to reduce 

the number of variables (Equation 2.7) in the pressure field equation. 

After applying the temporal semi-discretization (Chapter 3.3) on the pressure field equa-

tion (2.19), this leads to the matrix formulation for the pressure field in terms of a freely se-

lectable reference phase pressure pref: 
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(3.22) 

After solving the pressure field equation, additionally phases-1 saturation field equa-

tions (2.20) must be solved. Again first the temporal semi-discretization (Chapter 3.3) must be 

applied on the equations. Then the discretized equation can be assembled using the same ma-

trices as for the previously described pressure field equation, apart from the fact that the mass 

storage matrix B must be considered additionally. This approach is only valid if the same time 

collocation point θ (Chapter 3.3) is used in both equations, otherwise it would be necessary to 

recalculate the matrices. In this work it was assumed that θ is chosen equal for the pressure 

and the saturation fields. 
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(3.23) 

If the regarded phase “α" is not equal to the reference phase “ ref”  that was previously 

considered in the pressure field calculation, the phase pressures must be calculated with the 

help of Equation 2.7. If the phases are equal, the capillary pressures in the prior equation are 

equal to zero. Further aspects of treating the saturation field equations are covered in Chapter 

3.5.1.5. 

If the mass matrix is built using the mass lumping procedure described in Chapter 

3.1.6.2, the system of linear equations will only have entries on the diagonal. Thus, no equa-

tion solver is needed; the values can directly be evaluated. If the simulator is working with 

adaptive grids, the treatment of irregular nodes (Chapter 3.1.9.1) introduces new values on 

both sides of the diagonal, so that a system of equations must be solved again. 
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3.1.7.3 Treatment of systems with large ver tical extent 

If systems with very large vertical extent and low horizontal gradients are regarded, the 

limited number accuracy of computer programs can lead into numerical problems. In the 

Equation 3.22 the right hand side vector will carry very large numbers arising from the grav-

ity terms in the equations. Additionally, the solution vector will contain very large numbers, 

which mainly reflect the hydrostatic pressure in the system. Due to the limited accuracy, the 

small pressure differences that actually drive the fluid movement in the system can easily van-

ish in the numerical noise that is introduced by the limited accuracy of the floating point 

number representation. This is especially true, if an iterative equation solver is used, because 

the rounding errors increase due to the multiple iteration cycles. 

To circumvent the problems outlined above, it is possible to use high accuracy numeri-

cal libraries. These are available in arbitrary precision and could easily solve the problems. 

The drawback of those libraries is the extremely low performance, as the basic operations are 

no longer directly processed in the floating point unit(s) of the processor, but are split into 

multiple operations.  

Another possibility to steer clear of those problems is to change the way of assembling 

the system of equations. The primary variable pref is replaced by the difference dpref to the 

known prior time level. The pressure on the old time level already contains the hydrostatic 

pressure, so that it is no longer contained in the new solution vector. Introducing a new pri-

mary variable dp performs this: 
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If the discretized form (Equation 3.22) of the superset pressure field Equation 2.17 is 

treated with this replacement, the following expression is obtained: 
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(3.25) 

It should be pointed out that still the same set of system matrices is used for this formu-

lation, no changes on the matrices are required. The new formulation has the advantage that 

the right hand side terms Cpref (the gradient of the pressure field in the old time step) and D 

(the gravitational forces) nearly cancel against each other. If Cpref and D are added upon each 

other before adding them upon the right hand side vector, the information that is contained in 

the other right hand side expressions will not be largely falsified by the “small differences of 
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large numbers”  errors any more. Due to the impact on the program structure, the procedure 

proposed above was not yet adopted to all boundary condition types described in the next 

chapters. 

The matrix expression that is presented in Equation 3.25 can be downsized in order to 

achieve formulations similar to the ones presented in the prior chapters. As the primary vari-

ables are exchanged in the procedure outlined above, the treatment of boundary conditions 

must be exchanged, too. This is done by subtracting the pressure of the old time level from 

the desired boundary condition value before actually applying it. 

If the saturation fields are evaluated with a formulation that uses the derivatives of the 

capillary pressure function, it is necessary to take care that the derivative is actually defined 

and has a value. For the Richards’  approach this can be achieved by using a piecewise linear 

dependency between capillary pressure and saturation, which covers the whole range of pos-

sible suction pressures. 

3.1.8 Boundary conditions 

If nothing else is explicitly specified, the FEM automatically treats all boundaries as 

impermeable for fluxes. Most boundary conditions can be treated in a very simple and natural 

way. It must be pointed out that “boundary”  conditions in a FEM formulation are not limited 

to the actual boundary of the domain. It is a convenient fact that the boundary treatment can 

be applied to any node of the FEM mesh. The following boundary conditions will be regarded 

here: 

- Fixed value boundary conditions (“Dirichlet” , or first type), 

- fixed flux / fixed gradient boundary conditions (“Neumann”, or second type), 

- mixed type boundary conditions (“Cauchy” , or third type), 

- boundary conditions for special questions. 

To assign boundary conditions to nodes it is necessary to specify the nodes that are to 

be treated. The most obvious way to do this would be the direct specification of the node 

numbers. Actually this is quite inconvenient, as changes of the mesh (e.g. because the model-

ler decides that the mesh is not good enough) require re-evaluating which nodes have to be 

treated. Furthermore the dynamic grid adaptation generates new nodes during simulation. 

Thus originally closed chains of boundary condition nodes would be broken up by the new 

nodes, which subsequently would not be treated. Due to this reason a set of geometrically 

based methods has been derived to assign the boundary conditions to nodes that fulfil geomet-

ric criteria. Among them are methods to: 



52 Discretization with the finite element method 
 

- Set a fixed value to all nodes in a distance ε from a point. 

- Set a fixed value to all nodes in a distance ε from an open polygon. For each point of 

the polygon a specific value can be set. Those values are interpolated to the nodes. 

- Set a hydrostatic fixed value to all nodes in a distance ε from an open polygon. 

- Set a fixed value to all nodes in a distance ε from a plain, if they are additionally in-

side a closed four cornered polygon on this plain. For each point of the polygon a 

specific value can be set, which will be assigned to the node by a bilinear interpola-

tion. 

- Set a hydrostatic fixed value to all nodes in a distance ε from a plain that are inside a 

closed four cornered polygon. 

- Distribute a given flux along a line source. The flux is in this case given by the re-

garded quantity per length and time and will be placed onto all nodes in distance ε 

from an open polygon. The fluxes will be distributed to the nodes according to the 

spacing of their projection points on the polygon. Thus an equal flux is gained even 

if the node spacing is not equidistant. 

- Distribute a given flux (u/s) onto all nodes in distance ε from a given point. Further-

more a distance weighting can be specified, so that the applied fluxes can be graded 

according to their distance. This is very helpful for multiphase flow situations, where 

single point sources otherwise can result into local oscillations. 

All the methods stated above are available for all field equations in model. They are 

based on vector geometry. It would blast the frame of this work to elaborate on them. Further 

information should be taken from any textbook on vector geometry. 

In the following the linear system of equations will be referred to by using this form: 

 bAx =  (3.26) 

In Equation 3.26 A denotes the system matrix, x the vector of unknown variables and b 

the right hand side vector. 

3.1.8.1 Flux or  gradient type boundary conditions 

The Neumann (second type) boundary condition is referred to in the literature to clas-

sify either fluxes or gradients of the extensive variable over a given boundary. In this work the 

Neumann boundary condition was interpreted as a flux boundary condition. Other authors 

preferred to set the projection of the gradient of the regarded variable u onto the boundary 

normal vector n to a certain value c: 

 cugrad =  n  (3.27) 
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This is quite easy to implement and is meaningful for a FDM formulation, but is less 

useful for the FEM. In the FEM the special case c = 0 is fulfilled automatically for each 

boundary of the system if no boundary conditions are explicitly specified. Due to the possibil-

ity to use arbitrary shaped grids in the FEM the treatment of gradient type boundary condi-

tions is quite complicated and less practical. Thus the much easier and obvious method to 

specify fluxes is used.  

The flux values are gained by integrating the base functions of the regarded node over 

the spatial function that defines the flux. For point sources this comes down to the straight-

forward approach to simply add the desired flux value to the corresponding node. It is impor-

tant to node that single point sources lead to singularities in the regarded differential equation, 

thus they should be spread across several nodes instead.  

For the fluxes a vector f is defined, which is set to the value of the desired flux on the 

places belonging to nodes with flux boundary conditions (according to the renumbered order-

ing described in Chapter 3.1.7.1) and to zero everywhere else. 

A new right hand side vector b  is derived by evaluating: 

 fbb +=  (3.28) 

Thus a modified system of linear equations is to be solved: 

 bAx =  (3.29) 

3.1.8.2 Fixed value boundary conditions 

The first type boundary conditions or so-called Dirichlet type boundary conditions for 

nodes can simply be regarded as known values in the linear system of equations. Thus they 

can be eliminated from the system of equations. For the elimination a vector c is defined. This 

vector is set to the value of the desired boundary condition on the places belonging to nodes 

with boundary conditions (again following the renumbering described in Chapter 3.1.7.1) and 

to zero everywhere else. It must be noted that the sequence of treating fluxes and fixed 

boundary conditions is not random. The fixed boundary conditions must be treated last, be-

cause otherwise the fluxes might overwrite the previous entries. 

A new right hand side vector b  is derived: 

 Acbb −=  (3.30) 

Afterwards the row and column entries are set to zero in the matrix for each boundary 

node. Afterwards the boundary condition is inserted into the system of equations. This should 

not be done by setting the diagonal to unity and the right hand side value to the desired 

boundary condition value, as this destroys the numerical properties of the system matrix. In-
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stead the diagonal value should be kept and the right hand side is set to the product of diago-

nal value and desired boundary condition value. By this procedure, the impact on the proper-

ties of the matrix is minimized: 

 n,nni,nn,i 0 AcbAA n ⋅===        ,n except i all for   (3.31) 

Finally the following system of equations is to be solved: 

 bAx =  (3.32) 

3.1.8.3 Mixed type boundary conditions 

Third type or Cauchy boundary conditions are defined by evaluating a flux f that is de-

pending on a reference value uref of the regarded variable, the actual value u of the variable 

and a scaling factor c: 

 
c

uu
f

−
= ref  

(3.33) 

This type of boundary condition is useful to simulate the infiltration of water in rivers 

and lakes, if a mud layer covers the riverbed or lakebed. In this work the Cauchy boundary 

condition was not regarded, as the same effect can be achieved by adding a thin layer of finite 

elements with reduced permeability and a fixed value boundary condition. They show the 

same behaviour as the Cauchy boundary condition.  

3.1.8.4 Special var iants of boundary conditions 

The simulation of some natural systems requires enhancing the standard boundary con-

ditions. A quite common problem is the definition of “open”  boundary conditions. They are 

supposed to be a gateway for the regarded extensive quantity and should have a minimal im-

pact on the solution inside the domain. This problem has to be solved for the transport of trac-

ers and for the fluid mass in multiphase flow problems. The advective transport of tracers out 

of the system is automatically treated by the FEM, whereas these boundaries are closed for 

diffusive fluxes. As the regarded systems are mostly advective, this is not further investigated. 

3.1.8.5 Open boundary for  multiphase flow problems 

The test case by Buckley & Leverett (1941, described in Chapter 4.3) is a typical appli-

cation where special treatment of the saturation equation is required. In Figure 3.11 the satura-

tion field for different times is presented. If the open boundary on the right hand side is not 

treated adequately, the saturation field starts to oscillate when the front reaches the boundary 

(solid line in Figure 3.11). 
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Fig. 3.11: Instable behaviour of the saturation field if no open boundary correction is applied. 

Omitting the boundary integrals of the saturation conservation equation causes this be-

haviour. In the following a procedure to treat them is presented. 

If the fluxes are evaluated according to the procedure derived in Chapter 3.1.11 this in-

formation can be used to determine the boundary fluxes. For boundary nodes the entries of the 

flux vector are added to the right hand side of the assembled system of linear equations of the 

saturation conservation equation. Thus, they are added as fluxes into the saturation equation. 

This enhances the result for the Buckley-Leverett problem largely (Figure 3.12) in compari-

son to the uncorrected results (Figure 3.11).  
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Fig. 3.12: Stable behaviour of the saturation field if open boundary correction is applied. 

This type of open boundary condition is also used for the four-fracture system described 

in Chapter 4.7. Again the performance on the boundaries of the system is reasonable, though 
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some small oscillations are observed near the open boundary. These can be related to the 

strong curvature of the flow field near the boundary conditions and are dependent on the reso-

lution of the grid, i.e. for smaller grid sizes the oscillations are smaller, too. 

Additionally the method presented above was coupled to a conditional Dirichlet bound-

ary condition for the saturation. If the pressure field changes dramatically, so that the previous 

outflow boundary will become an inflow boundary, the saturation will be treated in a way 

corresponding to the tracer boundary condition described in the next chapter. 

3.1.8.6 Conditional boundary conditions for  tracer  transport problems 

If a Dirichlet type boundary condition for the tracer transport is set on an outflow 

boundary, the mesh has to be refined to a very high degree. This is necessary, as under those 

conditions the physical process of backward diffusion has to be resolved numerically. Accord-

ingly the grid must be refined until the grid Peclet number (Equation 2.31) is smaller than 

unity. This results in very small grid sizes near the boundary conditions and the time steps 

have to be reduced, too, according to the Neumann criterion (Equation 3.51) and the Courant 

criterion (Equation 3.50). 

Especially for the class of density driven flow problems it is not known a priori which 

nodes on the boundary can safely be set to a fixed value. For a steady state system the model-

ler can perform multiple runs of the simulator to evaluate the nodes to be set to a fixed value. 

Though this is possible, it is time consuming. If the process is transient, it is even impossible. 

Summarizing, it seems useful to ignore the boundary condition on nodes that are on an 

outflow boundary. The fluxes on the boundary nodes are gained from the vector of residuals r  

of the assembled system of linear equations (3.41). For boundary nodes with negative fluxes 

the Dirichlet boundary condition is switched off (first condition in Equation 3.34). This pro-

cedure has successfully been applied (Kröhn, 1991) to the saltwater intrusion problem by 

Henry (1960). According to the considerations about the influence of the Peclet number 

(Equation 2.31) presented above, the method should be enhanced by adding an additional 

constraint (second condition in Equation 3.34), i.e. the boundary condition should not be 

switched off if the local grid Peclet number is below unity. Node flux ri and the element Peclet 

numbers of the connected elements have to fulfil the combined criterion for the fixed bound-

ary condition to be switched off (Equation 3.34). 
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3.1.8.7 Combined infiltration and free seepage boundary condition 

In natural systems the flow regime is quite often too complex to be described by simple 

flux and fixed pressure boundary conditions. In partially saturated systems it is necessary to 

treat the groundwater recharge by infiltration, free seepage conditions and a combination of 
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the two (compare Figure 1.1). Those systems can be tackled by the Richards’  approximation 

in the model. To take density driven flow effects into account, the coupling to a transport 

model is necessary. The type of boundary condition for the transport model can change; hence 

it is necessary to treat the tracer transport boundary conditions with special methods as al-

ready mentioned above. 

To treat the seepage condition and the recharge by infiltration, the decision method pre-

sented in Figure 3.13 is derived. It must be pointed out that in the following a reference pres-

sure p = 0 Pa is used in the Richards’  approximation. Thus, pressures above zero correspond 

to full saturation, while pressures below zero indicate partial saturation. 

Is node partially
saturated (p<0)?

yes no Is there a flux
to the outside?

Is the influx Q
smaller than the
maximal flux?

yes no

yes no

Apply the
desired flux

Apply the
maximal flux
or apply a
fixed value p=0

Apply fixed
value p=0

Do nothing

 

Fig. 3.13: Decision tree to handle combined groundwater recharge and free  

seepage boundary conditions in the Richards’  model. A pressure p = 0 Pa denotes the transi-

tion between partial and full saturation in the Richards’  model. 

The flux into the system on open surfaces must be limited in order to resemble the natu-

ral imbibition process. The maximal flux is determined by integrating the volume of the pore 

space around the regarded node which is not yet saturated and dividing the result by the time 

step dt: 

 ( )( )� −ω≤ dVS1
dt

n
Q ii

!

i   
(3.35) 

In this integral iω is the set of base functions and Si the water saturation on node i. If the 

saturation is evaluated on the old time level, the downward directed fluxes that lead to further 



58 Discretization with the finite element method 
 

desaturation are not included in this expression. Evaluating the applied flux iteratively can 

circumvent this: 

 ( )( ) i
tt

ii
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1iter
i QdVS1

dt

n
QQ <−ω+= �

∆++   
(3.36) 

To fulfil the condition in Equation 3.35, either the flux Qi may be limited to the maxi-

mum flux or the type of boundary condition can be switched. Switching the boundary condi-

tions is performed, if the criterion in Equation 3.35 is not fulfilled. The pressure on the re-

garded node is set to zero, thus the saturation will be equal to unity. 

3.1.9 Considerations about gr id adaptation 

The simulator package RockFlow is capable of performing automatic grid adaptation 

(“h-adaptation”). This procedure has proven to be very efficient for coupled groundwater flow 

and transport problems (Kaiser, 2001). Applying those methods to the problems considered in 

this work requires some additional considerations and certain drawbacks are encountered. 

First of all the method loses part of its efficiency, if multiple primary variables (i.e. 

pressure, saturations, concentrations, heat etc.) are regarded, as the requirements of all those 

influences on the grid refinement are treated in an additive way. Thus, the grid is refined in 

several areas for all processes, while eventually only one of the processes requires the adapta-

tion. This situation can be enhanced by using the model adaptive procedures presented in 

Chapter 3.5, as they reduce the computational effort for the processes with low temporal vari-

ability. 

Another possible drawback is the influence of changing the grid on the equilibrium that 

is maintained in the nonlinear coupled equations. Due to the changes of the grid, the prior 

equilibrium is no longer valid and some iterations must be performed to reach a new equilib-

rium that corresponds with the new grid. This situation is worst, if the error margins for refin-

ing and coarsening the grid are very close to each other. Therefore it is useful to do some ex-

cessive refinement in order to avoid too many changes of the grid, though this results in an 

increased number of nodes. 

3.1.9.1  Treatment of non-conforming elements 

In the current implementation of the RockFlow simulator package, the grid adaptive 

scheme will produce so-called “ irregular nodes” . These nodes are seemingly missing a con-

nection to one side and require special treatment. In Figure 3.14 the interchange of informa-

tion between the nodes on a finite element mesh is illustrated. Obviously the vertical inter-

change is blocked for the irregular nodes, thus a significant error is introduced if no special 

treatment is used. 
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Irregular node

 

Fig. 3.14: Interrupted information exchange near irregular nodes on a finite element mesh. 

The double arrows show the information interchange within the grid. 

One possibility to circumvent this problem is to eliminate those nodes by using trans-

formation matrices upon the element matrices of all elements connected to an irregular node 

(Barlag, 1997). This procedure eliminates the entries for the irregular node, so that the corre-

sponding row and column in the system of equations are left empty. After solving the system 

of equations, the value for the irregular node is interpolated from its regular neighbours. 

An alternative approach is used in this work. The irregular nodes are directly eliminated 

from the system of linear equations, i.e. row and column entries of an irregular node are dis-

tributed onto the surrounding regular neighbours. This is done by multiplying the row and 

column entries of each irregular node with 0.5 for irregular nodes on edges (two regular 

neighbours) or 0.25 for irregular nodes on plains (four regular neighbours). The result is 

added to the rows and columns of the corresponding regular neighbour nodes (two for irregu-

lar nodes on edges, four for irregular nodes on plains). 

The pseudo-code for the elimination of an irregular node next to an edge is presented in 

Equation 3.37. The elimination of an irregular node next to a plain is similar. The number of 

regarded neighbouring nodes and their weights must be adjusted accordingly. The linear sys-

tem of equations is represented as Ax=b. The index irr denotes the entry of the irregular node, 

while the indices reg1 and reg2 correspond to its regular neighbours. 
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(3.37) 

Afterwards the row of the irregular node is set to zero and the column is replaced by the 

interpolation condition. In Equation 3.38 the pseudo-code for the irregular node on an edge is 

given. It should be pointed out that the interpolation condition is introduced in a way that 

keeps the diagonal entry for the irregular node unchanged. Otherwise, the estimation of errors 

in the linear solver would be difficult, because the size of the entries for irregular nodes dif-

fers by several orders of magnitude from the other entries. 
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(3.38) 

3.1.9.2 Influence on nonlinear  coupled systems 

As shown in the prior chapter, the variable values on irregular nodes are forced to a lin-

ear interpolation of the regular neighbour’s results. This procedure is well suited for linear 

systems, but produces some contradictions in nonlinear coupled system. This means, if one of 

the nonlinear coupled system variables fulfils the interpolation condition, the other probably 

will not. This is true for most of the nonlinear couplings described in Chapter 2.2. 

This problem becomes especially obvious in density driven flow. Here, the pressure and 

the concentration as primary variables in the flow and transport equations are forced to a lin-

ear interpolation on the irregular nodes. As the density is nearly a linear function of the con-

centration, a quadratic increase in hydrostatic pressure is expected for a linear concentration 

increase over depths. This is a contradiction to the interpolation condition for the pressure on 

irregular nodes. As the pressures on the irregular nodes are forced to a linear interpolation and 

the neighbouring free nodes reproduce the correct quadratic increase, erroneous velocities are 

encountered in the elements near irregular nodes. In Figure 3.15 (left picture) a magnification 

of the simulation results for one of the set-ups described in Chapter 4.6 is presented. The sys-

tem is heavily stratified (dashed lines are iso-lines of salinity). Obviously the velocity vectors 

near the irregular nodes are erroneous in this case.  
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Fig. 3.15: Impact of irregular nodes on the velocity calculation for density driven flow prob-
lems. Left picture shows standard solution, right picture corrected solution. 

For the special case of density-driven flow a work-around was used. For elements that 

are connected to irregular nodes, the velocity calculations are performed on the coarser ele-

ment belonging to the elements with irregular nodes. This enhances the velocity calculation 

largely (Right picture in Figure 3.15). This approach was used for the post-processing and for 

the transport calculations. 

A more general approach to avoid these problems would be to use another grid-

adaptation method, i.e. to use triangles or tetrahedrons to replace the coarse element next to 

the irregular node. This would convert the irregular node to a regular one and would be suit-

able for all types of nonlinear couplings. As the grid adaptation is not the primary object of 

interest in this work but is used as a tool, this will not be deepened here. 

3.1.10 Solving of systems of linear equations 

After the system of linear equations is assembled, it is the next task to actually solve the 

system. A large amount of literature is available on solving large systems of linear equations. 

Only some basics will be outlined here. In the following the regarded systems are referred to 

by the matrix equation: 

 bAx =  (3.39) 

In this equation A denotes the system matrix, x the vector of unknowns and b the right 

hand side vector. The systems under consideration fall into the class “ large, sparse, diagonal 

dominant, asymmetric”  matrices. “Large”  means that the number of unknowns equals the 

number of nodes in the FEM grid for the formulation regarded here, i.e. they can be in the 

order of 105 at the time being if standard computers are used. For this type of matrices direct 
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solvers like the Gaussian elimination show a weak performance and desire enormous amounts 

of memory.  

Much better performance is achieved with iterative solvers. The iterative solvers can be 

divided into two groups: 1) stationary solvers like the Jacobi, the Gauss-Seidel or the succes-

sive over-relaxation (SOR) solvers. These solvers are largely outperformed for the regarded 

problem class by the 2) non-stationary solvers. Typical solvers of this class are the different 

derivatives of the conjugate gradient (CG) method and of the minimal residual (MinRes) 

method (Barrett et al., 1994). In RockFlow a large variety of solvers is incorporated (Habbar, 

1995). 

Recently multi-grid solvers (Hackbusch, 1991) gained much attention in numerical 

analysis. These solvers are a combination of two (or more) of the methods mentioned above. 

The main idea is the combination of a “smoothing”  solver like SOR with a “sharp”  solver like 

a CG scheme on grids of different spacing. These solvers show excellent performance even if 

no initial estimate of the solution is known. As the regarded problems of this work are tran-

sient, the results of the last time step should be very near to the solution of the next time step 

and thus, a multi-grid solver is not expected to perform so much better that the implementa-

tion effort seems justified. 

In this work a stabilized Bi-Conjugate Gradient solver (BiCGStab) was used (based on a 

template by Barrett et al., 1994), as it is suitable for asymmetric matrices and shows a reason-

able performance. To enhance the convergence rate of iterative solvers it can be useful to in-

corporate a preconditioning scheme into the solution process. Simply spoken a pre-

conditioner is a matrix (M in Figure 3.16) that is multiplied with the system of linear equa-

tions in order to enhance the numerical quality of the system of equations. A very simple one 

is the Jacobi (or point) pre-conditioner, which consists of the reciprocal values of the matrix 

diagonal. More complex are block methods or multi-grid based schemes. Generally invoking 

pre-conditioners is a cost trade-off. The computational effort to determine the preconditioning 

matrix can be significant; on the other hand the possible advantages for the iterative solution 

are rather large. 

In this work an incomplete left-diagonal-upper (iLDU) factorisation was used (imple-

mentation by R. Ratke). The preconditioning matrix is left-multiplied to the system of equa-

tions. The cost for using the pre-conditioner largely pays off in terms of computational efforts, 

as it increases the convergence of the BiCGStab solver remarkably. The pseudo-code of the 

solver algorithm is presented in Figure 3.16. 
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Fig. 3.16: Pseudo-code for solving large sparse systems of linear equations with  

the BiCGStab method (modified version of a template by Barrett et al, 1994). 

Within the algorithm an error criterion ε must be set. It is useful to scale an initial error 

ε0 criterion with a set of properties derived from the system of linear equations. It is difficult 

to choose a universal criterion that is suitable for all possible physical processes and situa-

tions, good results where achieved with the following criterion: 

 ( )bAx,b,Ax 00 −= max��

0  (3.40) 
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If no scaling for the error criterion and no pre-conditioner is used, the components of the 

residual vector r  can be interpreted as erroneous fluxes into or out of the system. These fluxes 

can be compared to the “physical”  fluxes inside the system in order to judge over the intro-

duced error in the mass balance. 

If a simple Jacobi pre-conditioner is used (i.e. scaling the system diagonal to unity), the 

components of the residual vector can be interpreted in a different manner. If the matrix is 

sufficiently diagonal dominant (it is in most cases), the residual vector components give a 

rough estimate of the absolute error of the regarded variable. 

The standard BiCGStab solver was improved by the possibility to restart the solver after 

the error criterion is reached. This can be advantageous, as rounding errors tend to accumulate 

in the solution of CG solvers. If the solver is restarted, the initial guess is already close to the 

solution, so that only a few further iterations are required to reach convergence again. Thus, a 

more accurate solution is obtained. 

3.1.11 Calculation of fluxes 

After assembling the local matrices of the pressure equation to a linear system of equa-

tions (Chapter 3.1.7) and before applying the boundary conditions, the pressure field of the 

last time step is used to determine the residual of the linear system of equations: 

  Axbr −=  (3.41) 

The residual on each node is equivalent to the total volumetric flux of all phases leaving 

or entering the system. Together with the fractional flow function (Chapter 4.3) the flux rαi of 

each phase α on each node i can be separated: 
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After the fluxes have been separated, they can be added as additional sinks to the con-

servation equation of the fluid saturation on open boundary nodes. It must be pointed out that 

this procedure is only strictly valid for advection dominated systems that are homogeneous on 

the boundary conditions.  

If capillary pressures dominate the system or the material parameters change on the 

boundary conditions, an evaluation of the fluxes on each element will produce better results. 

Thus the local flux for each element and each phase is evaluated. 

 EEE
ααα = pAr  (3.43) 
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In this expression E
αA denotes the assemble of all matrices of a single element belonging 

to phase α,  E
αp  is the vector of pressures of phase α on the nodes belonging to this element 

and E
αr  is the resulting vector of fluxes on the nodes of the element.  

3.2 Spatial discretization for tracer transpor t processes in 
fracture networks 

The simulation of tracer transport processes in fracture networks can either be described 

by volume averaged approaches (e.g. equivalent porous media) or by the direct modelling of 

discrete fractures and matrix blocks. Multiple numerical schemes are suitable for the model-

ling of transport processes, e.g. Eulerian ones, like the finite-elements-method (FEM), or the 

finite-volume-method (FVM) or Lagrangian ones, like the method of characteristics (MOC) 

or particle tracking (PT). The FEM implementation of tracer transport processes is not the 

main scope of this work; it is extensively covered in the prior works by Kröhn (1991), Woll-

rath (1990) and Barlag  (1997). 

As the number of elements needed to represent the fracture system rises rapidly with the 

number of intersected fractures, a vast computational effort is necessary to perform a transport 

simulation, even if only the fractures and not the matrix are considered. Furthermore the 

transport regime in fractures is often mainly advective, leading to numerical problems and 

time step restrictions for Eulerian schemes (Chapter 2.1.5.2). Thus, a Lagrangian scheme for 

the tracer transport is supposed to be effective (Thorenz, 2000). 

Earlier work (e.g. Geier et al. 1995) presented the application of PT to fracture net-

works. In contrast to PT the MOC requires the uniqueness of characteristics, which is not the 

case in fracture networks as mixing occurs at the intersections. This work presents an exten-

sion to the MOC, which enables the tracing of characteristics across intersections and there-

fore enhances the applicability of the MOC to fracture network simulations. 

3.2.1 Method of character istics (MOC) 

The advective step of the split conservation equation (2.33) 
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is equivalent to a zero total derivation 
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i.e. the concentration remains conserved, while following a characteristic at the fluid’s 

speed (e.g. Abbott, 1966). Therefore, the integration of velocity vectors over time gives a 

scheme to determine the new position of a fluid element at the new time level. At this position 

(the base point of the characteristic) the concentration is interpolated from the concentration 

of the surrounding nodes and is transferred back to the starting node. This transfer is possible 

in both directions (forward or backward in time). In this implementation an upstream tracing 

is chosen (i.e. characteristics are followed upstream or backward in time from a given node). 

A particle tracker would compute the new position of one of the particles in a similar 

way, if only advection is regarded. The resulting concentration would be gained by dividing 

the number of particles in a cell through the cell’s volume. A large number of particles are 

necessary to achieve smooth approximations, while in a MOC scheme the number of charac-

teristics to be followed is equal to the number of nodes. 

3.2.1.1 Tracing of character istics 

Starting from a mesh node, the velocity vectors are followed from edge to edge in the 

mesh along the regarded characteristic. The required travel times are summed up until they 

reach the length of the time step. Finally the tracing will be stopped and the node values are 

interpolated from the surrounding nodes to the current position. This information will be 

transferred back to the starting node (Fig. 3.17).  

Velocity vector

Backtracedcharacteristic

Starting node

Interpolation nodes

Basepoint

 

Fig. 3.17: Tracing of characteristics through the mesh. After tracing along a characteristic the 

information about concentrations are interpolated to the base point and then transferred to the 

starting node. 
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Treatment of non-unique character istics 

The standard implementation of the MOC requires the uniqueness of followed charac-

teristics. In fracture networks this uniqueness cannot be guaranteed. The following method 

extends the capabilities to the tracing of characteristics over intersections. 

Q out
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Fig. 3.18: Mixing at a single intersection. The concentration in the downstream branch(es) is 

determined from concentrations and fluxes of the upstream branches. 

Assuming total mixing at intersections, the resulting concentration behind a single inter-

section (Fig. 3.18) can be computed as follows: 
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(3.46)

where cout is the resulting concentration, Qin are volumetric fluxes to the intersection, cin 

is the corresponding concentration of each flux. It is possible to introduce a local weighting 

factor w. This factor describes the influence of the upstream branches on the downstream 

branches and therefore on the starting node. A number of new characteristics (corresponding 

to the number of influxes) will be followed. Each of them carries its individual weight w. This 

approach is independent from the number of upstream or downstream branches. 

If a number of intersections i is crossed during the tracing, this concept has to be ex-

tended. On each intersection encountered, the weight will be distributed again by multiplying 

the previous weight of the characteristic with the new local weights. The sum of all weights in 

the system remains always equal to one. The new node concentration cnode is gained by fol-

lowing a characteristic backwards in time across several intersections on its way. Thus the 

resulting concentration cnode is obtained as the sum of several results multiplied with the cor-

responding weight: 
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Finally the resulting concentration is computed from the sum of the concentrations cj for 

j base points (Equation 3.47), each of them multiplied with the corresponding weight wj. 

Therefore the main task is to determine the resulting weight wj of a characteristic’s base point. 

This process can be described as the gathering of information (Figure 3.19). 
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Fig. 3.19: Gathering of information along the paths of multiple characteristics in a fracture 

network. The numbers on the arrows correspond to their weight in the information stream. 

3.2.2 Implementation 

The tracing along characteristics is implemented in an object oriented way. So called 

“agents“  are introduced, which are represented by a set of information and methods (Figure 

3.19). 

Independent "agents"

MethodsInformation

Position
Travel time
Weight

Tracing
Interpolation
Inf. transfer

 

Fig. 3.20: Informational content of the agents. Each  

agent is treated is independent data object. 

At each starting node a single agent is generated with a weight of one. Each agent trav-

els along a characteristic until an intersection with more than one influx is reached. According 

to the number of influxes, a set of new agents is generated; the old agent dies and passes 

weight and travel time to the new ones. The weight of each new agent is the result of the old 
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agents weight, multiplied with the new local weight. This procedure is equivalent to the de-

termination of the local weighting w in Equation 3.46. 

Each agent travels until his time is used up (i.e. the end of the time step is reached) and 

then reports its own weight and the interpolated concentration of the tracer back to the starting 

node, where both values are multiplied and summed up. By this simple scheme the more 

complex expression of Equation 3.47 has been largely simplified. 

This scheme has been implemented recursively and is embedded into a loop over all 

nodes in the system. After all agents reported back their weights and concentrations, the total 

sum of weights per node should be equal to one. A small error can be encountered as charac-

teristics with very little weight can optionally be neglected if the weight falls below an adjust-

able tolerance. To further increase the efficiency of the scheme, it would be useful to change 

the implementation to a stack-based scheme. Each generated agent would be added to the 

stack. It would be deleted when giving birth to children or when its travel time is used up. 

This stack would not be used in standard FIFO (“First in first out” ) or LIFO (“Last in first 

out” ) style, but it should be sorted based on the weight of the agents in stack. Thus it could be 

called HWFO (“Highest weight first out” ). This implementation should largely speed up the 

calculation, if the lower weighted agents are neglected because the user specified minimum 

return of information is reached already with a lower number of regarded agents. 

After the advective step the FEM core is started for the diffusive step. At this point decay 

and sources or sinks are integrated, too. Examples for the application of the MOC scheme are 

presented in Chapter 4.5. 

3.3 Temporal discretization 

As the regarded processes are transient, a discretization in time is necessary. Though it 

is possible to use the FEM for the discretization, Finite-Differences (FD) are in general pre-

ferred for this scope, as they are much more straightforward in formulation and implementa-

tion. 

All transient variables u are approximated by the expression 
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with the time weighting (“collocation“ ) factor θ determining the weighting in time. 

Though it can be chosen freely, three choices are of special interest: 

- θ = 0.0: Forward-Euler or fully explicit scheme. 

- θ = 0.5: Crank-Nicolson or central differences scheme. 

- θ = 1.0: Backward-Euler or fully implicit scheme. 
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The time derivatives are computed by evaluating: 

 
( ) ( )∂

∂
u

t

u u

t

t t t=
−+∆

∆
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In different prior works (e.g. Gärtner, 1987) it was shown by a Taylor series expansion 

that the choice of θ = 0.5 leads to the most accurate numerical scheme, as it is of second order 

accuracy. Experience shows that values of θ between 0.6 and 0.7 are a good trade-off between 

accuracy and stability. 

In this work all physical processes are discretized using the same time step. This is not 

strictly necessary, in so-called staggered time stepping schemes this is avoided and suitable 

time steps can be selected for each single process. Due to the tight nonlinear coupling of the 

manifold of regarded processes, a staggered time stepping is difficult to handle and therefore 

was not used. 

3.3.1 Stability based time stepping cr iter ia 

The time stepping for each of the coupled PDEs is limited by additional criteria. These 

criteria influence the stability and the accuracy of the numerical scheme. The numerical 

scheme is called “stable” , if small perturbations of the solution (e.g. by rounding due to lim-

ited accuracy of the computer) vanish over time rather than grow over all bounds. The actual 

accuracy of the scheme cannot be determined, as the “ true”  solution is not known in most 

cases. Thus the scheme can only be tested against a variety of simple test cases with known 

solutions. Anyhow if the scheme is consistent (i.e. truncation errors tend to zero with tempo-

ral and spatial discretization length going to zero), accuracy can be evaluated by reducing the 

discretization length. It should be pointed out that stability is a weak criterion in comparison 

to accuracy. 

Due to the nonlinear coupling of the PDEs “ it is difficult, if not impossible, to generate 

results on stability, convergence, and consistency for nonlinear PDE approximations”  

(Lapidus and Pinder, 1999). Thus, a formal stability analysis cannot be employed to the sys-

tem of PDEs. Anyhow, under the assumption that the stability of the local linearized scheme 

is an essential condition for the global scheme, some considerations can be employed for the 

linearized system. 

3.3.1.1 Courant-Fr iedr ichs-Lewy cr iter ion 

The advective transport time step in Eulerian formulation is characterized by the Cou-

rant-Friedrichs-Lewy (CFL) number, which specifies the way a fluid particle travels during a 

time step relative to the grid spacing (Courant et al., 1967). Due to accuracy considerations it 

should be limited, so that the information travelling speed V multiplied with the time step ∆t 

is smaller than the grid spacing ∆h: 
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This concept is generally used only for the transport equation. It can be used to deter-

mine an upper bound for the time steps in respect to the saturation equation, too. Though this 

is formally possible, it is generally not useful. Convergence of the nonlinear iterative scheme 

is mostly only gained for much smaller time steps than those derived from the CFL criterion 

formulated for the saturation equation. 

3.3.1.2 Von Neumann cr iter ion 

The time step for diffusive or dispersive transport is limited by the Neumann number 

Neu. The basic idea is that diffusive fluxes during a time step should be limited, so that they 

do not change the sign of the concentration gradient: 

 Neu
D t

h
= <2

1
2

∆
∆
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The Neumann criterion can also be used to determine a maximal time step for solving 

the pressure equation for compressible fluids. Again the restrictions for convergence of the 

nonlinear scheme are much tighter in most cases, so that this additional criterion is not used. 

3.3.1.3 Stability considerations 

As stated above, it is difficult to specify general bounds for stability based on the CFL 

or Neumann numbers for nonlinear processes. Even if only the transport equation is regarded, 

the additional influence by the Peclet number Pe (Equation 2.31) and the time collocation 

factor (Equation 3.48) complicate the considerations. Furthermore the chosen numerical tech-

nique (mass-lumping, upwinding etc.) has an impact on the stability. Only for a very limited 

range of combinations of the factors mentioned above strict deductions of stability limits are 

available. 

For explicit numerical schemes with a time collocation factor θ smaller than 0.5 the sta-

bility criteria must be fulfilled strictly, while numerical schemes with θ bigger than 0.5 can be 

stable even if the criteria are violated. Gresho and Sani (1998) suggested the following crite-

rium for fully explicit (θ = 0) schemes: 
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(3.52)

These restrictions are not valid for implicit numerical schemes. Anyhow the CFL and 

Neumann criteria should not be violated largely or in large parts of the domain for implicit 

schemes due to accuracy considerations. 
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3.3.2 Heur istic time stepping cr iter ia 

In nonlinear coupled systems the CFL and Neumann criteria quite often lead to unrea-

sonable big time steps, for which the nonlinear numerical scheme cannot reach convergence. 

Thus, it is necessary that additional limitations are derived on the basis of the global perform-

ance of the numerical algorithm. Several methods like  

- neural networks, 

- best performance search, 

- genetic algorithms or  

- desired value fit. 

are suitable for this task. All of the methods mentioned above share the problem that the 

optimal time step can only be estimated on the basis of the performance of the algorithm for 

the last time steps. As several influences have an impact on the performance, which are not 

known a priori (changing boundary conditions, changing grid, transient processes reaching 

heterogeneities in the systems etc.), a formal optimisation is not feasible. In this work the 

“Best performance search”  and “Desired value”  schemes are used. 

3.3.2.1 Desired value fit 

A very simple scheme is the choice of the time step on the basis of results of the previ-

ous time step. It is possible to divide or multiply the time step ∆t by a factor m if the number 

of iterations i in the nonlinear solver reaches critical limits (e.g. Helmig 1993, Simunek et al, 

1999). 
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A more flexible approach is a functional coupling between the actual number of itera-

tions i, the desired optimal number of iterations iopt and the time step ∆t (Thorenz, 1996): 
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t optoldnew ⋅=  (3.54)

In this approach the functions f can be chosen freely. Several functions were evaluated 

in the framework of this work; good results can be achieved with a simple exponential func-

tion: 
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(3.55)
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In this formulation the parameters α1, α2 specify how aggressive the time stepping 

scheme reacts on time steps that diverge from the user-desired value for the number of itera-

tions. 

The methods described above can also be used to control the changes of primary vari-

ables, e.g. to keep changes of the phase saturations or tracer concentrations per time step be-

low a certain value or in a given range (Forsyth et al., 1995). 

3.3.2.2 Best per formance search 

The user of a numerical model is in general interested in a good ratio between advance 

in simulation time and used real time. This ratio is in the following called the performance P 

of the scheme: 
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Many modern computers are multi-user, multi-tasking system. Thus, the total system 

load can change during the simulation. Therefore, the real time should not be used to deter-

mine P, but instead the used CPU time of the simulation task should be regarded. Unfortu-

nately the ANSI standard C library does not contain functions to query the CPU time. Multi-

ple machine dependent implementations for this task are available, but they suffer from port-

ability problems, limited accuracy or overruns of the counters. This situation can be circum-

vented on single-user systems, where the simulation can be run as the only CPU intensive 

task, so that the real time is used instead of the CPU time. This situation is expected to be en-

hanced with the next definition of the C standard, as it is planned to add better support for 

CPU time queries. 

If one would have the possibility to test multiple time steps before actually choosing 

one, it would be possible to gather the best possible performance for the next time step on the 

basis of a formal optimisation. As the testing would be very costly, this is not a real choice. 

Under the assumption that the optimal time step does not change too much from one 

time step to another, it is possible to collect the data of the last time steps and derive the esti-

mated optimum from this pool of information. The most obvious way is a curve fitting on the 

basis of sampled data. For the fitted curve the maximum can easily be determined. This 

scheme works only if the sample data spreads sufficiently around the optimal time step. If all 

of the current sample data is quite near the optimal point, this scheme will fail. In this case it 

is easier to determine the slope of the performance curve for the last values. If the slope is 

negative, the time step should be reduced, if it is positive, the time step should be increased. 

Thus the time step is modified by: 
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In this equation the index i denotes the current time step. The parameters a0 and a1 are 

user defined parameters. The performance of this time stepping control scheme is presented in 

Figure 3.1. It shows the development of the chosen time step during the simulation. The re-

garded system is based on the Buckley-Leverett test case (Chapter 4.3), with the enhancement 

of a source boundary condition that varies in time.  
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Fig. 3.1: The time step is dynamically adapted due to changing boundary conditions.  

The dashed-dotted line represents the multiplier for the fluid source, the solid line  

the automatically chosen time step. 

The system quickly adapts the time step (solid line) according to the applied boundary 

conditions (dashed-dotted line). After 5·107 seconds the applied flux changes drastically. As 

no convergence can be found for the original time step length, the time step length is reduced 

and the time step is re-evaluated repeatedly until convergence is reached again. After 5·107 

seconds the boundary flux returns to its initial value and the simulator quickly adapts the time 

step to the new situation. Near the end of the simulation (between 1·108 and 1.2·108 seconds) 

the flux is increased again, following a slope function. Again the time step is adapted ade-

quately by the automatic time stepping scheme. 

Evaluating the slope of the performance curve and normalizing it with the values for 

performance and time step can further enhance this method: 
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In this scheme α1, α2 and α3 are used as control parameters. The scheme acts smoother 

in varying the time step, but the differences in performance in comparison to the simple 

scheme are not remarkable. 

3.4 L inear ization 

3.4.1 I teration schemes 

As already described in the prior chapters, a set of nonlinearly coupled PDEs is re-

garded. In order to resolve those nonlinearities, multiple schemes are feasible. The most 

prominent ones among them are the Newton method and the fixed point or Picard iteration. In 

this work a Picard type iteration was used, the convergence rate was enhanced by a simple 

linear predictor scheme: 
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(3.59)

In this equation u denotes the vector of node values of the regarded quantity, s is a scal-

ing value between zero and unity. This expression is evaluated at the beginning of a time step 

for all variables. As the expression is node independent, it is not necessary to store an addi-

tional third time level of the node values. The ratio of current and old time step length is nec-

essary to scale the predictor appropriately if the time step length changes. 

For the Newton method a system of coupled nonlinear equations is set up. This system 

is obtained from the FEM formulation for all nonlinear coupled primary variables, i.e. the size 

of the equation system is equal to the number of nodes times the number of primary variables. 

Thus, the following equation must be solved: 

 ( ) 0xf =  (3.60)

In this expression x is a vector of nonlinear functions. The standard procedure requires 

setting up the Jacobian matrix f ′(x) for this system. The Jacobian is obtained by evaluating 

the partial derivative of each column in respect to the corresponding variable: 

 ( ) ( ) ( )( )xfxfxf n1 ,...,∂∂=′  (3.61)
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This procedure can be difficult, if in nonlinearly coupled systems the analytical deriva-

tives are not available. In this case, the derivatives must be obtained by numerically approxi-

mating them. This will reduce the convergence speed and increase the numerical effort. The 

resulting numerical scheme is referred to as “Quasi-Newton”  methods. The method after 

Broyden (1967) is a very successful member in this class of schemes. 

After setting up the Jacobian, it is necessary to solve the linearized system of equations: 

 ( ) ( )kkk ff xsx −=⋅′  (3.62)

The iteration vector is updated by setting: 

 kk1k sxx +=+  (3.63)

Afterwards the procedure is started again with the recalculation of the Jacobian. If the 

coupling function are weakly nonlinear, it is not necessary to do this in each iterative step. 

Convergence of Newton’s scheme is only possible if the initial guess is already sufficiently 

near to the solution and if the Jacobian is non-singular. Thus, it is necessary that the coupling 

functions (Chapter 2.2) have non-singular derivatives. 

To increase the convergence radius of the Newton scheme it is possible to use a Trust-

Region scheme or Line-Search algorithms. Trust-Region schemes evaluate the size of the cor-

rection step and scale it appropriately to keep it in certain bounds. For Line-Search algorithms 

the residual of f(x)k+1 is related to the residual of f(x)k. If necessary, the correction vector is 

scaled until the new residual is smaller than the prior one. 

If the determination of the Jacobian is difficult or impossible, so that a finite differences 

approach must be used, it should be considered to use Broyden’s approach instead. After ini-

tially estimating f ′(x) by finite differences it is automatically determined by the iterative pro-

cedure. 

A more simplistic approach is the Picard iteration scheme. It involves solving multiple 

systems of linear equations subsequently, where each system has a number of unknowns that 

is equal to the number of nodes. After solving one of the systems, the matrix of the next sys-

tem will be updated corresponding to the new values. Thus, instead of solving a single large 

system of linear equations like in the Newton scheme, multiple smaller systems are solved. 

This reduces the effort for solving the system of linear equations, as most linear solvers scale 

nonlinear with the number of nodes. Another advantage is the larger convergence radius com-

pared to the Newton scheme. The drawback is that the convergence rate of the Picard scheme 

is lower than the one of the Newton scheme near the correct solution. 

A Picard scheme was chosen because of the ease in adding physical processes into the 

iterative scheme, and because of the straightforward method of implementation. Although a 

Newton scheme often yields a better convergence rate, this advantage is only partly valid if 

the analytical derivatives of the coefficients are not known. If the derivatives must be com-

puted during runtime by a finite difference method, the convergence suffers. Lehmann et al. 
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(1998) have shown that the Picard and Newton schemes demonstrate similar performance for 

the class of problems regarded in this work.  

As the Picard scheme shows a larger convergence radius than the Newton scheme, it is 

supposed to use a combined scheme for further developments, i.e. to first perform one or a 

few Picard iteration steps and to switch afterwards to the locally faster converging Newton 

scheme. 

3.4.2 Relaxation 

The methods presented above share the problem that the computed correction vector or 

the values for the next iteration are not always optimally scaled. Sometimes a larger correc-

tion step would be possible, in other situations a smaller one would be preferable to increase 

the convergence rate. A so-called relaxation parameter λ can be introduced to scale the cor-

rection vector c before using it to update the vector of values u for the regarded quantity: 

 � citer1iter −=+ uu  (3.64) 

This enables the free scaling of the correction vector. The scaling factor λ should be 

chosen between zero and unity. 
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Fig. 3.2: Iterative behaviour for a system with two unknowns (x and y) and shallow outer 

slope of the error ε. The left picture shows the “unrelaxed”  behaviour of the iterative process, 

the right picture “ relaxed”  behaviour. 

To illustrate the problem a problem with only two unknown variables x and y is re-

garded. A simple iterative scheme is used (fastest decline), for which Figure 3.2 presents a 

fictitious plot of the error cone ε for a system with a shallow outer slope. The initial correction 

steps are chosen too big (left picture in Figure 3.2), so that a large number of iterative steps 

are needed. If each of the correction steps would be halved (right graphic in Figure 3.2) the 

convergence rate would be significantly better. 
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Fig. 3.3: Iterative behaviour for a system with two unknowns (x and y) and steep outer slope 

of the error ε. The left picture shows the “unrelaxed”  behaviour of the iterative process, the 

right picture “ relaxed”  behaviour. 

For other situations it would be unreasonable to reduce the computed correction. In the 

left picture of Figure 3.3 the unrelaxed behaviour for a steep outer slope is presented. In this 

case the relaxation (right picture of Figure 3.3) largely increases the number of needed itera-

tions. 

If a Newton iteration scheme is used, the so-called “ line search”  procedure can be ap-

plied to solve this problem. For the line search algorithm the correction vector will be reduced 

until it is guaranteed that the total system error is reduced. This procedure is not applicable for 

the Picard iteration scheme used in this work, thus another method is proposed. 

The comparison of the two cases shows that a dynamic relaxation parameter would be 

helpful to increase the convergence. This task was solved with line search algorithms for sys-

tems with a modest nonlinear coupling between the equations. If the coupling is depending on 

multiple variables and can even change during the simulation a mathematical approach is dif-

ficult to handle. Thus a heuristic approach has been developed to keep oscillations of the 

iteration bounded. The scheme uses the directions of the entries in the correction vectors and 

compares them to the previous corrections. If to many of them change their direction, the re-

laxation factor will be reduced so that oscillations are depressed. Weighting the vector entries 

with their size can enhance this simple scheme. 
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Fig. 3.4: Computational effort for different fixed and an automatically 

chosen dynamic relaxation parameter. Numerous trials are needed to find a fixed relaxation 

parameter that is slightly superior to the automatically chosen one. 
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This scheme was tested for multiple test cases. Figure 3.4 presents the computational ef-

fort for hand trimmed static relaxation and automatically chosen dynamic relaxation. The dy-

namically chosen relaxation parameters show a performance that is comparable to a hand 

tuned fixed relaxation parameter. It must be pointed out that hand tuning of the relaxation 

parameter is a very time consuming operation, as many simulation runs are necessary. Fur-

thermore, this operation must be repeated if the set-up of the simulation is changed. The re-

sults for the dynamic relaxation parameter were obtained from a single run of the simulator 

and required no hand-tuning. 

3.4.3 Accuracy evaluation 

It is necessary to define error criteria to determine sufficient convergence in the nonlin-

ear iteration. As multiple variables are used to describe the physical processes, it is necessary 

to track all of them for changes in the iterative process. On the one hand the primary variables 

(i.e. pressure, concentrations, saturations) can be tracked, on the other derived variables as the 

inner fluxes can provide an interesting view into the inner errors of the not yet converged sys-

tem. 

For the primary variable V the following criteria C, which are only based on the results 

of the new time level, are evaluated. The numbering is conforming to the one in RockFlow. 
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All of the above methods share the problems that the errors in the nonlinear iteration 

will accumulate if the time step is reduced. I.e. halving the time step can double the error in 

the nonlinear iteration, as the same error can occur twice in the same time span. Thus a set of 

criteria is developed, each of them takes into account the changes during a time step and 

therefore works on the two time levels t and t+∆t. 
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It is impossible to give a general recommendation for the type of error criterion to be 

chosen. For highly dynamic nonlinear processes the criteria C VI and C VIII produce very 

stable results, which do not have the tendency of error accumulation. For processes that are 

already near a steady state the criteria of the first group can be more suitable, as their denomi-

nator does not reach zero for steady state. The criteria C VI and C VIII do also work for sys-

tems that are near or in steady state, but they are less effective, as at least two iterations are 

performed in each time step. Furthermore, the limited accuracy of the linear solver should be 

considered, i.e. the denominator in C VI and C VIII should be limited to values above a user 

definable critical value, otherwise the system will spent useless iteration time in the nonlinear 

solver. 

Another possibility to verify the accuracy of the iteration process is the evaluation of the 

inner fluxes, i.e. the residuum of the pressure equation if the last pressure iteration vector is 

applied upon the assembled system of equations for the next iteration. The values of the re-

sidual vector correspond to erroneous fluxes into and out of the system. 
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3.5 Model adaptive methods 
The coupled systems which are regarded in this work can be described by a set of 

nonlinear coupled PDEs as described in Chapter 2.1: 

- A single pressure equation (p unknown). 

- Multiple saturation equations (Sα unknown). 

- Multiple transport equations (c α ,β unknown). 

These PDEs result in large systems of linear equations, as described in Chapter 3.1. Due 

to the nonlinear coupling (Equation 3.73), these systems of linear equations have to be rebuilt 

multiple times in each time step, an extremely costly procedure. 
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Setting up the systems of linear equations is expensive compared to solving them. This 

is due to the size of the PDEs on the one hand and the advances in solver technology (BiCG 

solvers, preconditioners, multi grid methods etc.) on the other. The following approach has 

the goal to reduce the time to set up those equation systems. 

3.5.1 A pr ior i adaptation of the physical model 

The first step is to determine a “holistic”  physical model, which captures all effects the 

modeller wants to take into account. This is a very important step, as already at this point the 

physical system can be over- or undersized. In the following some simplified formulations of 

the discretized field equations (Chapter 3.1.7.2) will be outlined, which demonstrate the capa-

bility to adapt the model to simplified physical problems. 

3.5.1.1 Saturated single-phase flow of an incompressible fluid 

This is the simplest case of groundwater flow simulation. Only the flux matrix C for a 

single-phase has to be multiplied with the pressure vector. On the right hand side the known 

gravity term D and sinks/sources E are added. It is important to note that this formulation is 

not stable for a time collocation factor 5.0≤Θ . It is recommended to use a fully implicit 

scheme with 1=Θ . 
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3.5.1.2 Saturated single-phase flow of a compressible fluid 

For this formulation the storage matrix A is introduced. In this case it describes the fluid 

compressibility. The introduction of the storage term increases the stability of the solution, so 

that the most accurate time collocation factor 5.0=Θ  can be used. 
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3.5.1.3 Saturated single-phase flow in an aquifer  with storativity 

Quite similar is the formulations for the flow of an incompressible fluid in an aquifer 

with storativity. In this case the compressibility of liquid, matrix and residual gas saturation is 

lumped into the soil storativity within matrix A. 
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3.5.1.4 Unsaturated single-phase flow in an aquifer  with storativity 

Unsaturated flow in an aquifer can be described by multiple formulations of the 

continuity equations. The first is the classical Richards’  formulation, in which the storage 

matrix A additionally contains the relationship between saturation and capillary pressure: 
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(3.77) 

This formulation requires that the derivatives of the capillary pressure functions are de-

fined over all of the possible suction pressures. If this is not the case, mass losses will occur in 

this formulation. For Finite-Difference formulations these mass losses even occur if the capil-

lary pressure function is well behaved. This was the main reason for the development of the 

schemes presented in the following. 

An alternative formulation was proposed by Celia et al. (1990). It does not use the de-

rivative of the capillary pressure–saturation relation in the mass storage term, but describes 

the mass storage due to saturation changes directly by using the saturation mass matrix B to 

describe changes of the saturation. Thus, it is simply the standard conservation equation for a 

single fluid under partially saturated conditions. 
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This formulation will show no mass losses, even if the capillary pressure function is not 

defined or the gradient is equal to zero or infinity for a certain suction pressure. But in general 

this formulation is not first choice, as the convergence in the nonlinear iteration scheme is 

poorer. This can be explained by the fact that changes of the saturation no longer are handled 

implicitly in the system of equations, but are handled as a right hand side parameter. 

For very dry situations the saturation formulation of the Richards’  equation is well 

suited: 
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It cannot be used in saturated areas of the system. To avoid this problem the primary 

variable switching technique (PVST) was proposed by Forsyth et al. (1995). In this approach, 

the system parts with a very low saturation are handled with the saturation formulation, while 

the rest of the system is treated by one of the other formulations. This approach is not imple-

mented yet, as it would require a major rework of the assemble strategy for the system of lin-

ear equations. Diersch and Perrochet (1999) have shown promising results for the perform-

ance of this scheme. 

3.5.1.5 Multiphase flow 

For multiphase flow problems a common pressure field for all phases is computed. 

Thus, the discretized pressure field equation for multiphase flow is very common to the gen-

eral superset equation (3.22). Differences arise only in the storage terms of matrix A: 
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(3.80) 

For multiphase flow in heterogeneous systems the choice of the reference phase can be 

crucial. As described by the extended pressure condition by Duijn et al. (1995), the phase 

pressures are not necessarily continuous over material boundaries. Continuity is not given, if 

the saturation of a phase drops below the residual saturation. In this situation the capillary 

pressures are no longer defined. For many natural soil systems it can be assumed that water is 

the most-wetting fluid (this not true for materials based on organic components, e.g. coal) and 

that the water saturation never drops below the residual saturation if no phase transitions (i.e. 

drying) take place. Thus, the water pressure can be used as reference pressure in most natural 

heterogeneous systems. As the influence of the capillary pressures on both sides of a material 

border shall correctly be treated in this situation, it is necessary to evaluate the node capillary 

pressures element-by-element. This means that the influence of the capillary pressures on the 

pressure field is correctly evaluated according to the materials assigned to the elements at 

each side of the material border. If a node-by-node approach is used instead, the capillary 

pressures on the material border cannot be described adequately because of the jump of the 

material properties. 

As already outlined in Chapter 3.1.7.2, additionally phases-1 saturation field equations 

must be solved after solving the pressure field equation: 
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For heterogeneous systems the saturation can be discontinuous across the material 

boundaries. This behaviour should be taken care for by assigning multiple saturations to a 

single node on the boundary, each belonging to one of the surrounding materials. Addition-
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ally, constraints for the saturations must be extracted from the capillary pressures of the sur-

rounding materials and incorporated into the system of equations. This procedure is not im-

plemented yet. 

The formulation presented above is suited for advection dominated systems, but can 

suffer from convergence problems for systems that are governed by capillary forces. This is 

due to the explicit handling of the capillary pressures in the saturation field equations (Equa-

tion 3.23). It is supposed to switch to another formulation by using the following substitution: 
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It was assumed that this substitution is constant over space within an element. This 

leads to the following expression to describe the saturation field: 
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(3.83) 

This formulation is only valid if the local changes of the saturation within an element 

are small. If this is not the case, a new element matrix type must be used, within which the 

derivative of the capillary pressure function is incorporated into the element integration loop. 

Furthermore, the capillary pressure function must have a finite derivative and must be con-

stant within the regarded part of the domain. If the material properties change, additional 

treatment of the internal boundaries can be helpful to enhance the solution procedure. The 

easiest method would be to switch the used formulation for the elements near the inner 

boundaries. A more sophisticated approach would allow multiple saturations on a single node, 

each of them belonging to one of the different materials of the connected elements. Due to the 

significant impact on the program structure this was not realized yet. 

For further developments it is suggested to solve the pressure field and the saturation 

fields in a combined system of linear equations for all primary variables. In this case, the dis-
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cretized equations can share the primary variables. In this case, a local Taylor development 

can be used to achieve a Quasi-Newton scheme for the matrices of type C and D, which will 

result in better convergence near the solution. Here, the procedure is outlined for the matrices 

of type C: 
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In this equation an approximation for matrix C at iteration level i+1 is proposed to be 

used while setting up the system of linear equations. It is estimated from the standard matrix 

C on the old iteration level i and additional terms, which use the partial derivative α∂∂ Sk �r  

and the change of the phase saturation EiE1i
αα

+ − SS  between the iteration steps. These terms can 

be added to the iterative scheme if the solution is accurate enough to switch to a Quasi-

Newton scheme. 

3.5.2 Runtime adaptation of the physical model 

In Figure 3.21 a typical coupled nonlinear system is presented. It includes multiphase 

flow as well as density driven flow effects. 

 

Fig. 3.21: An island as an example for a nonlinear subsurface flow system. Multiphase  

flow and density driven flow must be regarded to describe the system. 

The PDE to describe the fluid pressure for this example results from Equation 2.17, 

which has to be formulated for multiphase flow of three phases (Equation 3.80). It is assumed 

that the modeller decides that the compressibility of fluids and matrix are negligible for the 

processes of his objective. Furthermore the modeller has decided to use phase 0 as reference 

phase for the pressure field. Thus, the following subset of the multiphase pressure equation 

(3.80) for a three-phase system is to be solved: 
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This is a subset of the superset pressure PDE 2.17 and is valid in the entire domain. The 

same equation can be written in matrix notation for the FEM formulation (Chapter 3.1): 
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In the chosen formulation the index 0 denotes the non-wetting phase (in this case the 

gas), index 1 the non-aqueous liquid, index 2 water.  

It is obvious that the fluid mobilities for some phases are equal to zero in parts of the 

domain, as the saturation of the appropriate phase is below the residual saturation. As a con-

sequence it is absolutely legitimate to ignore the matrices of type C (Equation 3.15) and D 

(Equation 3.16) in the appropriate part of the domain for these phases if the saturation drops 

below the residual saturation. The matrices of type E are treated as nodal loads and are there-

fore not regarded here. 

This evaluation is performed as a first step, resulting in a largely simplified PDE, with a 

limited set of associated matrices (Figure 3.22) in parts of the domain. This process is equiva-

lent to a downsizing of the physical model, thus adapting it to the relevant processes. 
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Fig. 3.22: Matrix types belonging to relevant processes in the system. In large parts of the 

system a limited subset is sufficient to describe the relevant processes. 

When employing the model-adaptive methods, it is important to note that the system of 

linear equations does not degenerate by neglecting terms of the PDEs, because only terms that 

do not have an impact on the PDE are neglected. For the saturation PDE this can result in a 

system that is only determined by the mass lumped storage matrix, thus only the diagonal of 

the linear equation system is filled. 

3.5.3 Caching of system matr ices 

Due to the nonlinear coupling, the matrices that correspond to the terms of Equation 

3.85 are rebuild in each iterative step. As the physical model was already adapted by ignoring 

irrelevant parts of the PDE, the regarded PDE is now spatially differing. This is not problem-

atic, as the primary variable will stay continuous over the whole domain. A further look on 

the example PDE shows that only parts of the PDE are involved in the nonlinear coupling. 

This, again, differs spatially. During the simulation some of those matrices have to be rebuilt, 

others are static. In Figure 3.23 the matrices of Equation 3.86 are presented which change 

drastically enough to justify a costly matrix recalculation. 
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Fig. 3.23: Distribution of PDE parts belonging to matrices, which have to be rebuilt. In the 

grey areas a subset of the matrices must be rebuilt, in the white areas no recalculations are 

necessary. 

In the saturated zone the capillary pressure can be neglected and the relative perm-

eability can be assumed to be constant. In the zone of brackish water, the density changes due 

to salt transport. Therefore in a large part of the system (white soil areas in Figure 3.23) the 

resulting matrices can be regarded as constant, some matrices have to be rebuilt due to 

changes of the density (matrices C2, D2 in the light grey area). In the unsaturated soil areas 

(medium grey areas) the flux matrices for gas and water (C0, C2, D2) have to be rebuilt. Fur-

thermore, the element capillary pressure vectors must be refreshed. In the NAPL contami-

nated area multiple matrices (C0, C1, C2, D1, D2) must be recomputed is necessary.  

Only parts of the matrices really have to be rebuilt. The necessity is checked during a 

time step or iterative step (according to Figure 3.23). Thus the old system matrices of the grey 

areas are cached, together with the matrices of the white areas. 

The simulator has to store the matrices together with characteristic values (e.g. relative 

permeabilities, densities etc.), which have determined the situation in which these matrices 

were built. These characteristic values are evaluated during the runtime and only if the differ-

ences diverge over a critical limit, the matrices will be triggered for a recomputation. Small 

changes of phase mobilities, densities or velocities can be neglected, if they are below a user 

specified threshold. The stored matrices for flow and transport can be reused in this case. 

As characteristic values the 

- phase mobilities, 

- phase densities, 

- phase velocities and 

- phase saturation 
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in the middle of each element are used. The recomputation of matrices can be triggered 

by absolute values of the reference variables, absolute changes of the reference variables or 

relative changes of the reference variables. This means that the error ε is evaluated from the 

reference variable u for each matrix type M that is marked as relevant for phase α in Element 

E: 
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The current value of the characteristic reference variable u is compared to the stored 

reference value uref for each active matrix type of each phase for each element. The calcula-

tion of a matrix is triggered if a critical constraint for these values is violated: 
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By this means the errors are limited to a specified range. This approach has the disad-

vantage that for stationary problems the optimal solution can not be reached, as all matrices 

will tend to stay at a certain error, if this error is below the critical limit. 

An enhancement in this situation is a probability based approach. The condition for the 

matrix recomputation is enhanced by a random function r and a weighting factor λ: 
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The random number r is generated on the basis of a Poisson distribution in the range be-

tween zero and unity. This relates the relative frequency for a matrix re-calculation to the de-

viation from the reference value of the characteristic variable. Figure 3.24 shows the probabil-

ity function for rebuilding a matrix as a function of the relative error ref
M,E,�

�� and the form 
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factor λ. For λ equal to zero, the standard behaviour of the deterministic scheme is gained 

again. 
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Fig. 3.24: Matrix rebuilding probabilities as a function of relative error ref
M,E,�

��  and form 

factorλ. For small values of λ the behaviour is equivalent to the deterministic rebuilding 

scheme, for very large λ it is equivalent to the standard approach with no matrix caching. 

If a certain matrix is triggered for a recalculation by changes of the corresponding vari-

able, the new variable will be stored together with the reference value. As a single matrix can 

be triggered for a recalculation by multiple variables, it is important that all reference values 

are refreshed for the matrix, even if they did not cause this specific recomputation. 

3.5.4 Indexing cr iter ia for matr ix recalculations 

A large set of indexing criteria can be set up, though it seems useful to limit the number, 

as the computational effort for evaluating the criteria should be kept low compared to the ef-

fort to recalculate the matrices. The following indexing criteria are proposed: 

For Richards’  approach the pressure of the wetting phase determines the water satura-

tion, thus if the pressure is bigger than the reference pressure, the regarded part of the system 

is fully saturated and therefore most of the matrices are static. If density effects are taken into 

account, the recalculation of the gravity matrix must be triggered if significant density 

changes occur. In the rest of the domain the soil is unsaturated, thus the impact of changing 

saturations can trigger all matrices for a recalculation. If transport processes are taken into 

account, the matrices of the transport kernel have to be recomputed if the fluid velocity or the 

saturation diverge too much.  
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For the full multiphase flow model the situation is similar. The relative phase mobility 

kr � /µ�  is used to qualify if a matrix recalculation is necessary. Furthermore, the fluid density is 

important for density driven flow.  

Changes of the saturation have an impact on multiple matrices. As it is easier to qualify 

the error that is introduced via neglected changes of the phase mobilities and the capillary 

pressure, it is recommended to use these as indicators for the recalculation. The saturation is a 

good indicator for the recalculation of the storage matrix, if compressible fluids or transport 

processes are regarded. In Table 3.3 the matrix identifiers defined in Equation 3.13-3.17 are 

used. 

Table 3.3: Dependencies for matrix recalculations in the flow model. 

Reference variable of phase α Matrices, Vectors 

Saturation Aα, pc0, α 

Density (function of pressures, concentrations and temperatures) Aα, Cα, Dα 

Mobility (function of saturations, viscosity and for nonlinear flow 
regimes the velocity) 

Cα, Dα 

For the tracer transport model a more simplistic approach was chosen, as the tracer 

transport model is not an integral part of this work. Thus, only a very limited subset of the 

approach presented above was realized for the tracer transport model. The rebuild of all ma-

trices was related to changes of the fluid saturation and the fluid velocity. 

In order to visualize the considerations presented above, the system presented in Chap-

ter 4.6 will be chosen as a test case. Please refer to that chapter for the system description. 

While all of the calculations presented in Chapter 4.6 are performed in a steady state flow 

field, here the transient behaviour in the beginning of the experiment for set-up B is chosen. 

This is the more difficult test case, as the transient flow field undergoes severe changes during 

the simulation. 
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Fig. 3.25: Distribution of performed matrix recalculations for a single time step, relative to the 

number of recalculations for the standard approach. Mainly matrices near the head of the 

saltwater front are recalculated. 

In Figure 3.25 the percentage of performed matrix recalculations in the current time step 

is presented. This is the situation after 80000 seconds of saltwater intrusion. The system is not 

yet in steady state, as can be seen from the number of matrix recalculations around the posi-

tion of the saltwater tongue. In the plot the recalculations of all matrix types are incorporated 

by using an arithmetic mean, they are not weighted with the effort to build them. Obviously 

the unsaturated zone is already in state, as the number of recalculations is very low. In the 

saturated zone the recalculations concentrate on the area around the advancing saltwater 

tongue. 
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Fig. 3.26: Distribution of accumulated matrix recalculations for all time steps, relative to the 

number of recalculations for the standard approach. In large parts of the domain only a small 

number of recalculations was performed, they concentrate on the area of the saltwater tongue. 
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An additional possibility to evaluate the results is presented in Figure 3.26. In this plot 

the effort for rebuilding the system matrices was additionally averaged over all previous time 

steps. It becomes obvious that the computational effort is successfully focused onto the sys-

tem areas where large changes of the nonlinear regime took place. For the example presented 

above, the total computational effort is halved in comparison to the standard approach. 

3.5.5 Accuracy considerations 

The errors introduced by not setting up some matrices in parts of the system where the 

saturations are below the residual saturations (i.e. the model adaptive approach) are equal to 

zero, as for those areas the model adaptive approach is a fast a priori estimation to determine 

if the flux matrix will completely be equal to zero. 

More difficulties arise from estimating the errors that are introduced by the second step, 

the conditional matrix recalculations. For the flow model, the rebuilding criteria based on the 

fluid mobility are directly related to mass flux errors of the regarded phase. The criteria based 

on saturation changes lead to equivalent errors in the storage of the regarded phase. Further-

more, nonlinear errors are introduced via the capillary pressure function and the density of the 

fluid. The inaccuracies introduced by not rebuilding the tracer transport matrices are equiva-

lent to phase speed variations on the tracer front. These errors are equal to the relative values 

of the recalculation criteria for those matrices. 

Generally it is important to specify a useful range for the recalculation criteria in com-

parison to the errors introduced by the linear solver and the nonlinear iteration loop: 
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(3.90) 

It is obvious that a recalculation criterion smaller than the accuracy of the linear solver 

is useless, as the reliability of the results is not given in this range of values. Furthermore, the 

nonlinear solver will suffer from convergence problems if the inner results of the linear results 

are not accurate enough. By setting the recalculation criterion to smaller values than the 

nonlinear error criterion, it can be guaranteed that the total error is not determined by the con-

ditional rebuilding of matrices, but by the nonlinear solver. 

3.5.6 Efficiency considerations 

After profiling multiple simulations, it became obvious that for coupled systems setting 

up the system matrices can be much more costly than solving the resulting system of linear 

equations. This is especially true for systems with elements of higher dimensions. While the 
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integration of 1D-elements is performed very fast, the integration of 2D and even more 3D 

elements is quite expensive, so that the overhead for evaluating the recalculation criteria can 

pay off later by not rebuilding some matrices. The necessary effort to evaluate the indicators 

should be related to the possible gain from not rebuilding the corresponding matrices. The 

effort is determined by the effort to determine the saturation, density and mobility in the mid-

dle of an element. 

As an example, the profiling results for a simple test case will be presented here. The 

example by Förster and Bruck (Chapter 4.2) was discretized with 1D, 2D and 3D elements in 

order to compare the effort in the different parts of the numerical models. An instationary 

simulation was performed, modelling the initial flooding of the system with gas. In Table 3.4 

the distribution of CPU time spent in different parts of the simulator is compared for the dif-

ferent discretizations. Obviously the effort is shifted towards setting up the system matrices 

for higher element dimensions. 

Table 3.4: Comparison of relative CPU time spent in different parts of the simulator.  

The numbers do not sum up to 100%, because some overhead for I/O, generating  

post-processing data etc. is necessary. 

 1D 2D 3D 

Setting up matrices 10% 35% 66% 

Assembling matrices 3% 3% 3% 

Solving system of linear equations 85% 61% 30% 

The gain-to-effort ratio for the model adaptive methods would be quite bad for one-

dimensional elements, where one indicator value must be evaluated to possibly prevent the 

integration over two node values. For a two-dimensional element (in the following it is as-

sumed that three Gaussian points for each direction are used), this ratio is already much better, 

as in total nine integration points must be considered. For a three-dimensional element with 

27 Gaussian integration points, the additional effort pays of easily. If the Group-FEM ap-

proach (Equation 3.3) is not chosen, on each integration point several variables (saturation, 

density and mobility) must be evaluated. Furthermore several matrix transformations must be 

performed, resulting in a substantial additional effort. 

It is important to note that the model adaptive downsizing approach (i.e. the automatic 

downsizing of the physical model) shows good performance, even if heavy interactions be-

tween the different PDEs take place via nonlinear coupling functions. In contrast, the condi-

tional recalculation scheme will have a negative impact on the convergence of the nonlinear 

iteration scheme for these systems, so that the advantage from not rebuilding the system ma-

trices must be carefully balanced against the disadvantage in the nonlinear solving procedure. 
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For weak or non-existing nonlinear couplings, the conditional recalculation scheme 

shows significant advantages in comparison to the standard scheme. The same is true for 

nonlinear systems, if they are near their steady state. 

If additionally a grid adaptive scheme is used, the grid adaptive scheme minimizes the 

number of elements in regions with low spatial changes of the primary variables, the caching 

methods presented above try to minimize the number of matrix recalculations, if the temporal 

changes are low. Due to the nature of the regarded systems, spatial and temporal changes are 

often related to each other, so that both approaches hinder each other. This is no longer true if 

multiple coupled processes are regarded. Due to the additive behaviour of the grid adaptation 

scheme, the grid will already be refined if only one of the processes shows large spatial vari-

ability (compare Figure 4.18, the grid is refined due to changes of salinity, saturation and 

pressure). This does not necessarily imply that the other processes require this refinement, 

too. Anyhow the corresponding system matrices for all processes will be rebuilt during the 

subsequent time steps in these regions. This will be circumvented by using the proposed 

model adaptive approach with conditional matrix recalculation, resulting in better perform-

ance of the simulator. 

3.6 Global Algor ithm 
The global algorithm of the simulator is described in the following. In order to simplify 

the representation, it is divided into hierarchical ordered points of objective. The global algo-

rithm is presented in Figure 3.27, it must be pointed out that the global algorithm is non-static; 

it can be switched on the basis of the information in the input files and thus is “polymorph” . 

This polymorphism is realized by using function pointers in the code. Furthermore, it must be 

stressed that only a very rough overview of the functionality can be provided her, due to the 

complexity of the code. 
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Read input files

Construct FE data structures

Initialize chosen model
- initialize model node and element values
- initialize functions pointers
- initialize computational kernels

Destruct all data structures

Loop over all time steps

Write results

Predict results on new time level

A posteriori grid adaptation

A priori grid adaptation

If strong non-linear coupling: Calculate pressure
If strong non-linear coupling: Calculate saturations
If strong non-linear coupling: Calculate concentrations

Repeat until convergence is reached

If weak non-linear coupling: Calculate pressure
If weak non-linear coupling: Calculate saturations
If weak non-linear coupling: Calculate concentrations

Estimate length of next timestep

 

Fig. 3.27: Pseudo code for the global algorithm. 

The time loop in the algorithm contains several single computational kernels for pres-

sure, saturations and concentrations. These can either be incorporated into an iterative loop to 

resolve nonlinearities or can be evaluated once per time step for weakly coupled or linear 

processes. Within each FEM-kernel several tasks are performed. The structure of the pressure 

calculation kernel is outlined in Figure 3.28 as a typical example. 
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Loop over all elements

Compare stored values of reference variables to current ones
Evaluate error criterion and mark matrix:

-1: Delete matrix
0: Keep old matrix
1: Rebuild matrix

Loop over all rebuild criteria

Loop over all elements

Store new reference values for matrix if necessary
Rebuild matrix if necessary

Loop over all rebuild criteria

Loop over all elements

Evaluate current values of reference variables

Loop over all rebuild criteria

Loop over all elements

Evaluate current values of reference variables

Loop over all rebuild criteria

Loop over all elements

Incorporate matrices into global system of equations

Eliminate irregular nodes from global system of equations

Apply sources and sinks to global system of equations

Solve system of linear equations

Apply Dirichlet boundary conditions to global system of equations

 

Fig. 3.28: Pseudo code for the algorithm within 

a finite element kernel. 

Within the kernels the main workload is done in the functions which recalculation the 

system matrices. Furthermore the solver for the system of linear equations can require signifi-

cant CPU time. 
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4 Test cases and applications 
In the following a set of test cases is presented, which is supposed to give an overview 

over the capabilities of the developed numerical model. The examples where chosen to dem-

onstrate the possibility to transform the complex multiphase flow model into simpler ones, i.e. 

to demonstrate the model adaptivity. The chosen examples cover the following typical prob-

lem classes: 

- saturated single-phase flow of an incompressible fluid with storativity 

- saturated single-phase flow of a compressible fluid 

- unidirectional two-phase flow 

- multidirectional two-phase flow 

- tracer transport in fracture networks 

- coupled density driven and unsaturated-saturated flow (with laboratory experiment) 

- two-phase flow in a fracture network with tracer transport 

- three-phase flow in a porous medium 
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4.1 Pressure drawdown around a well 

This is a classical test case for numerical groundwater models. The transient pressure draw 

down around a well during a pump test in an infinite two-dimensional domain is regarded. It 

is presented here as a very simple application for the downsizing methods of the model. 
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Fig. 4.1: FE-mesh for Theis' example. A limited part of the domain is  

sufficient for the simulation, as the system is symmetric.  

In Figure 4.1 the geometry for this example is presented. Due to the symmetry of the 

system, only a sector of the total domain is regarded. The sides of the sector are impermeable. 

A constant flux is prescribed on the well. The outer boundary is simulated with a constant 

pressure and subsequently with a closed border in order to quantify the impact of the chosen 

boundary condition type on the results. The system is discretized with 40 nodes in radial di-

rection; the axial nodes are used to check for boundary effects in the solution (which are not 

observed). 



Test cases and applications 101 
 

 

Table 4.1: Physical properties for the simulation of the pressure drawdown in a well.  

Discharge rate 8.849e-04 m3/s 

Storativity 1.e-7 ms2 /kg 

Permeability 9.2903e-11 m2 

Pressure p(t = 0) = 0 Pa 

p(t, r = 304.8) = 0 Pa 

Radius 0.3048m < r < 304.8m 

The analytical solution for this test case assumes an infinite domain. In the results of the 

numerical model the influence of the boundary becomes visible for the last compared time 

step (Table 4.2), as the results for prescribed pressure and closed boundary start to differ.  

In total the results show a good agreement between computational and analytical solu-

tion, the small initial error smoothes out very fast. A further refinement of the mesh reduces 

the initial error significantly, after bisecting the mesh the initial result enhanced to a pressure 

difference of 20 Pa, a further bisection to 11 Pa and a last one to 9 Pa. Thus, grid convergence 

is reached for a result sufficiently near the analytical solution. 

Table 4.2: Comparison of numerically and analytically calculated drawdown in a well. 

Time [s] Pressure [Pa] 
analytical 

Pressure [Pa] numeri-
cal, pressure prescribed 
on boundary 

Pressure [Pa] 
numerical, closed 
boundary 

10 -367.88 -309.65 -309.65 

100 -12664. -12371. -12371. 

1000 -37562. -37569. -37569. 

10000 -64687. -65040. -65043. 

4.2 Gas flow through a rock sample 

In this test case the flow of a compressible fluid through a homogeneous porous me-

dium under isothermal conditions is regarded (Förster and Bruck, 1994). The system is a one-

dimensional rock column. It is completely saturated with gas. The prescribed pressures at the 

boundaries of the system induce the flow process. Due to the compressibility, a nonlinear 
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pressure field can be observed in the sample. The impact of gravity can be neglected in com-

parison to the applied pressures, as the vertical extent of the sample is very small. This and 

other examples for gas flow are extensively covered in Shao et al. (1995). 

4.2.1 Analytical solution 

Under the assumption of single-phase flow with no sinks or sources in the domain, it is 

possible to simplify the mass conservation Equation 2.3 for the one-dimensional case. Integra-

tion leads to: 

 ( ) constant  =ρ�=ρ q0qdiv  (4.1) 

I.e. the mass flux is constant in each cross-section of the system. Together with Darcy’s 

law (2.4) and the equation of state for ideal gases we obtain for isothermal conditions and 

neglected influence of gravity: 

 constant  =pgradp  (4.2) 

Integration delivers the pressure reduction curve in the sample: 
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If the pressures p1 at position x1 and p3 at x3 are known (i.e. the boundary conditions), 

the pressure p2 at an arbitrary position x2 in between can be computed from the above equa-

tion. 

4.2.2 Compar ison of analytical and numer ical solution 

It is seen from the derivation of the analytical solution that the soil parameters are not 

relevant to the solution. The boundary conditions are chosen as in the experiments by Förster 

and Bruck (1994): 

p(x = 0 m) = 1695500 Pa, p(x = 0.0488 m) = 95500 Pa 

The sample has a length of 4.88 cm, it is discretized with 36 adaptively placed nodes, 

resulting in a minimal element length of 0.04 cm in the area with the strongest curvature of 

the pressure field. Under those conditions the results of Figure 4.2 are achieved. The differ-

ence between analytical and numerical solution is very small, only directly near the boundary 

condition a significant error is encountered. By defining ε = maxi((Pana-Pnum)/Pana) the maxi-

mal error ε is below 4%. 
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Fig. 4.2: Pressure decrease for gas flow through a rock sample under high pressure. The re-

sults of the analytical and the numerical solution are indistinguishable. 

4.3 Unidirectional two-phase flow 

4.3.1 Introduction 

The object of interest is the displacement of two immiscible fluids in porous media. 

Buckley & Leverett stated their semi-analytical solution for the simplified one-dimensional 

problem in 1941 (Buckley & Leverett, 1941). Their problem is a classic benchmark, which has 

been widely used to test the handling of self-sharpening fronts in multiphase flow simulation 

programs (e.g. Huyakorn, 1978; Helmig, 1993). It originates in examinations that were per-

formed by the oil industry. In a one-dimensional set-up the initial oil filling is extracted on 

one side and water is entering the system on the other side. Thus, a moving front of water can 

be examined (Figure 4.3). Due to the shape of the permeability functions a shock front is es-

tablishing. This shock front is a severe test for numerical models, as it is difficult to catch the 

curvature and slope of the saturation in the numerical model. In natural systems the capillary 

pressures would smoothen the front. Some authors claimed the necessity to introduce artificial 

capillary pressure in order to enable a numerical solution. Capillary pressure between the two 

phases acts in a similar way as diffusion does in transport processes, it smoothes the front and 

therefore simplifies the numerical solution. 
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Soil sample, initially saturated with fluid 2 

Imbibition with fluid 1 Extracted fluid mixture 

 

Fig. 4.3: System set-up for the Buckley-Leverett test case. 

4.3.2 Analytical solution 

The literature offers multiple possible solutions to this problem. The one originally pro-

posed by Buckley & Leverett will be presented here. 

The mass conservation equation (2.3) can be simplified to  

 α
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∂
∂
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t

S
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(4.4) 

under the assumptions that the fluid is incompressible, the flow field is one-

dimensional, gravity can be neglected and that no sinks or sources are inside the domain. The 

fractional-flow-functions describe the flux of one phase related to the total flux of all phases: 
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The conservation equation can be expressed in terms of the total flux: 
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The relative permeabilities are not yet used in this expression. Buckley & Leverett used 

the following expressions, which they extracted from laboratory experiments: 
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(4.7) 

In those equations the sub-index r denotes the residual saturation of a phase. Incorporat-

ing the fractional flow function f1 and the relative permeabilities k1 and k2 into the conserva-

tion equation and some reordering leads to: 
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Now we can derive the saturation curve presented in Figure 4.4. The saturation curve is 

non-unique and has multiple possible saturations for one coordinate. The real saturation curve 

is gained by establishing a shock front in a way that the areas A and B are equal. 
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Fig. 4.4: Graphical determination of the shock front position for the Buckley-Leverett exam-

ple. The shock front is established at a position for which Area A is equal to Area B.  

4.3.3 Numer ical solution 

The standard test case is extended to a two- and three-dimensional problem. For the 

two-dimensional case one side is shifted upwards as a test for the gravitational terms in the 

numerical model (Figure 4.5). 
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Fig. 4.5: Geometry for the Buckley-Leverett problem, discretized with two- 

dimensional planar elements. 

Thus, the system is evaluated with one-dimensional, two-dimensional and three-

dimensional discretization. The meshes for the one-dimensional and three-dimensional discre-

tization are not presented here; they use the same spacing as the two-dimensional system. 

Table 4.3: Physical specifications for the Buckley-Leverett test case. 

Length 301.95 m 

Area of cross-section 10 m2 

Simulation time 969 days 

Porosity 0.2 [-] 

Permeability No influence 

Rel. permeability 2

r 6.0

2.0S
k �

	



�
�


 −= α
α

 

Viscosity ratio 1 [-] 

Extraction rate at x = 301.95m 1.505·10-6 m3/s 

Initial saturation of first phase 0.2 [-] 

Saturation of first phase at x = 0 m  0.8 [-] 

The impact of different numerical effects was already presented in Chapter 3.1.6, thus 

they will not be repeated here. The most important parameters for the numerical model are 

collected in the following table. 
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Table 4.4: Numerical parameters for the Buckley-Leverett test case. 

Number of nodes in x-direction 100 

Number of elements 99 

Element lengths 3.05 m 

Mass lumping Yes 

Upwinding Mobility 

1D: �  = 0.6; 2D, 3D: �  = 0.8 

Time collocation 
�

 =0. 5 

Time step length 412528.266 s 

Final simulation time 82505653 s 

For the simulations the final time of 969 days is reduced by the time that is necessary to 

fill the patch that belongs to the first node. This is necessary, because this patch is already 

filled at the beginning of the simulation due to the boundary condition. The computed satura-

tion distributions (Figure 4.6) show a good agreement to the analytical results. The smoothing 

of the front depends on the choice of the upwind coefficient. Using upwinding is necessary 

for this example, as otherwise unphysical behaviour is encountered (compare to Chapter 

3.1.6.1). Sizing the upwind parameter is always a compromise between good reproduction of 

the front steepness and beginning oscillations. In this case, the upwind parameter was chosen 

a little larger for 2D and 3D elements, because the upwinding is internally reduced for some 

points of the Gaussian integration (Chapter 3.1.6.1). Finalizing the quality of the results is 

good, the front advancing speed is reproduced correctly and the smoothing of the front is in a 

tolerable range. 
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Fig. 4.6: Calculated saturation distribution for the Buckley-Leverett example. The solution for 

2D and 3D elements are indistinguishable, the 1D solution differs slightly because of the dif-

ferent integration scheme for 1D elements. 

4.3.4 Impact of the model-adaptive methods 

The Buckley-Leverett example is chosen as a test case for the model-adaptive methods 

because an analytical solution is available and thus the impact of the methods on the accuracy 

can be evaluated. For these tests the same parameters as in the prior chapter are used. 

The computations are performed with elements of all three dimensions. Additionally a 

reference case with no model-adaptation is regarded. The model-adaptive runs are performed 

with different values for the matrix recalculation parameters, in order to study the impact on 

both accuracy and speed in execution. 

The model-adaptive downsizing is used for all system parts where one of the fluid mo-

bilities dropped to zero. Furthermore, the matrix recalculation is connected to a relative 

change �  of the fluid mobilities. The following table shows the impact on the computation 

time. 
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Table 4.5: Impact of conditional matrix recalculation on the  

execution time for different accuracies. 

Element 
dimension  

Standard ap-
proach 

Conditional recalculation. 

Accuracy: 

  �  = 0. �  = 10-3 �  = 10-2 �  = 10-1 

1 100% 61% 55% 50% 39% 

2 100% 42% 35% 32% 24% 

3 100% 36% 27% 24% 17% 

It is obvious that already for �  = 0 a substantial decrease in computation time is encoun-

tered. This is solely due to the downsizing of the physical model, i.e. ignoring irrelevant parts 

of the pressure PDE with no errors introduced. With increasing � , an increasing number of 

matrices is kept from being rebuilt, correspondingly the execution time drops further. For 

even further increased values of �  the numerical scheme loses its stability. Figure 4.7 shows 

the results for the different recalculation scenarios. 
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Fig. 4.7: Calculated saturation distributions for varying matrix recalculation parameters 

� . For �  = 10-3 and �  = 10-2 the results cannot be distinguished from the standard solution �  = 0. 

The results of the model-adaptive computation show the expected behaviour, as already 

discussed in Chapter 3.5. As presented in Figure 4.7, the results are excellent for both �  = 10-3 

and �  = 10-2. For �  = 10-1 the saturation front shows significant divergence from the other re-

sults. It is important to note that this divergence is in the 10% error margin that is introduced 

by setting �  to 10-1 (or 10%). 
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The prior statements show that the model-adaptive methods can significantly reduce the 

computation time, while the resulting errors are transparent to the modeller. 

4.4 Multidirectional two-phase flow 

4.4.1 Introduction 

The so-called “5-spot problem” is a two-dimensional test case that originates in the oil 

industry (Muskat, 1949). A large oil field with a checkerboard of oil extraction and water in-

jection wells is regarded. Here, the geometry and flow rates are adapted from the originally 

published units to the metric system. From symmetry considerations it becomes clear that two 

possible subsystems can be extracted from this field (Figure 4.8). The extracted sub-systems 

have impermeable boundaries and are driven by the oil extraction and water injection. The 

two systems should be numerically equivalent, but mesh effects can cause the results to be 

different. 

Water inflow
10 -3 m3/s

Oil outflow
10 -3 m3/s

Setup B

Setup A

1414
m

Cap. pressure: pcap=0.
αα

1
0

0
0

m

Porosity: 0.1 [-]
Rel. permeability: kr =S2

 

Fig. 4.8: Problem definition and extracted subsystems for the 5 spot problem. Both set-ups are 
equivalent due to the symmetry of the system. 

4.4.2 Numer ical simulation 

The regarded systems represent a slice of one meter thickness, which was cut from the 

oil reservoir. The simulations are performed with fixed pressure for the extraction well(s), 

while a constant volume flux of water is injected into the other well(s). The fluid properties of 

water are assumed to be equal to the properties of oil. The numerical properties are chosen as 

described in the following table. 
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Table 4.6: Numerical parameters for the 5 spot test case. 

Number of elements Coarse: 64 
Medium: 256 
Fine: 4096 

Node spacing Set-up A: coarse 125 m, me-
dium 62.5 m, fine 15.6 m 

Set-up B: coarse 176.8 m, me-
dium 88.4 m, fine 22.1 m 

Mass lumping Yes 

Upwinding Full mobility upwinding 

Time collocation 
�

 = 0. 5 

Time step length Initial 1000 s, dynamically 
adapted 

Final simulation time 2·107 s 

The results of the simulations for both set-ups are presented in Figure 4.9. Even the 

coarse grid simulation produces a useable solution, though the results on the finer grids are 

considerably better. It is oscillation free and shows a good mass balance. The reproduction of 

the front steepness is considerably better on the finer grid. 
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Fig. 4.9: Results for the 5-spot problem. The results for set-up A are shown on the left side, 
the results for set-up B on the right side. The upper two pictures show the results for grids 

with 64 elements, the middle ones with 256 elements and the lower ones with 4096 elements. 

4.4.3 Gr id or ientation dependency 

As a grid dependency test, the results for a cross-section along one of the boundaries for 

set-up A are compared to the diagonal cross-section for set-up B. Due to symmetry considera-
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tions, the results should be equal for both set-ups if the grids are sufficiently refined. As 

shown in Figure 4.10, a good agreement is reached, though the grid is turned by 45° between 

the two simulations. 
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Fig. 4.10: Comparison of cross-sectional results for 5-spot problem on fine grid for  

both set-ups. The results are close to each other, thus the solution is independent  

from the grid orientation.  

4.4.4 Impact of upwinding schemes on the results 

As already pointed out in Chapter 3.1.6, the upwinding procedures can have significant 

impact on the results. Naturally the modeller on the one hand wants to achieve stable results, 

while on the other the numerical results should not be smeared too much. In the following set-

up A will be examined on different mesh resolutions and with different upwinding schemes. 

The simulations are performed on grids with 256, 1024 and 4096 elements, respectively.  

The comparison of the Gauss-Point-Upwinding (GPU) with the Fully-Upwinding (FU) 

scheme (Chapter 3.1.6) shows differences in numerical stability and quality. For the GPU 

scheme it is necessary to distribute the singular water injection point onto a larger area, be-

cause otherwise a single peak in the saturation field near the injection point is encountered. 

For this reason, a source with a radius of 100m is applied. The injected stream is distributed 

with a weighting w = (1-d/100)0.25 as a function of the distance d from the proposed injection 

point. 
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Fig. 4.11: Comparison of cross-sectional results for 5-spot (set-up A) 
with different upwinding schemes. 

In Figure 4.11 the results of the different upwinding schemes are compared on different 

grid sizes. The GPU scheme still shows some small oscillation problems around the injection 

area for the medium size grid, while the FU scheme produces absolutely smooth results. This 

excessive smoothing on the other hand is the reason why the coarse grid results are better for 

the GPU scheme in the region behind the front. Finalizing, it should be investigated in future 

if it is useful to switch between the upwinding schemes dynamically. 

4.4.5 Model adaptive methods vs. gr id adaptation 

In order to compare the results of the model adaptive methods and the grid adaptation, 

the simulations for set-up A are performed on a fixed grid with 1024 elements with and with-

out the model adaptive methods and on an adaptively refined grid with 16 start elements.  

The model adaptive matrix recalculation is triggered by relative changes of 1% for the 

phase mobilities, thus allowing approximately 1% error in front advancement speed. The grid 

adaptive methods are run in “default”  mode, a maximum refinement depth of 3 levels is al-

lowed, resulting in a minimal grid spacing that is equal to the grid spacing that is used for the 

model adaptive methods. 
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Table 4.7: Numerical effort for different methods 

Numerical method Relative CPU time 

Standard 100% 

With predictor 81% 

With model adaptivity and predictor 26% 

With grid adaptivity and predictor 21% 

With grid adaptivity, model adaptivity 
and predictor 

12% 

Table 4.7 compares the computational effort for the standard method to the different 

adaptive methods. Obviously both adaptive approaches result in a significant decrease of nu-

merical effort. The quality of the results is unchanged for both adaptive approaches, thus they 

are not presented here. Both methods seem to harmonize not too bad with each other, as the 

combination results in a further decrease of the required CPU time. Though the very substan-

tial decrease in computational effort for the single application of the methods cannot be ex-

trapolated to using both of them, the combination results in an even further reduction of com-

putational effort. 

4.5 Advective tracer transpor t in fracture networks 

As test applications for the method of characteristics scheme presented in Chapter 3.2, 

fracture data from two different sites is used. The first example is based on the geometry data 

of a network of small fractures in the near field of a tunnel in the Grimsel Hard Rock Labora-

tory (Switzerland). It consists of four fractures, the geometry data was provided by Dr. H. 

Shao. The second example is based on data from the Münchehagen site (Germany). It consists 

of eleven fractures, the geometry data was provided by Dr. G. Kosakowski. The simulations 

presented here do not resemble any actual experiments, but are supposed to demonstrate the 

performance of the numerical scheme in comparison to established ones. 

Figure 4.12 shows tracer distributions of an injected tracer pulse in the system of 4 frac-

tures. The system is discretized with 3327 nodes. The tracer is injected at the lower left corner 

and an outlet is set at the upper right corner of the network. The dispersion length is set to 

very small values, taking into account that the main dispersion effects do not result from the 

single fracture dispersion, but from the network effects. 
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Fig. 4.12: Comparison of tracer breakthrough for a 4-fracture  

system (Grimsel) with different numerical methods. 

All methods give a similar distribution pattern, but the tracer peak is a little too dis-

persed in the operator splitting scheme. In the finite element simulation significant under-

shoots of up to 14% of the maximal concentration are observed. In order to reduce these un-

dershoots a finer mesh resolution would be required, resulting in larger computation times. 

The method of characteristics scheme shows no undershoots at all, while the mixed operator 

splitting scheme again produces some undershoots. The tracer breakthrough and the total dis-

tribution pattern are very similar for all methods.  

Figure 4.13 shows the finite element mesh for a fracture system based on the Münche-

hagen data. The example consists of eleven fractures and is discretized with 10922 nodes. 

Again the tracer transport is computed with the different numerical methods.  
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Fig. 4.13: Mesh for a system of eleven fractures (Münchehagen). 

Figure 4.14 allows the comparison of results for the peak breakthrough. The purely ad-

vective Lagrangian method computes very sharp peaks, whereas the FEM solution smoothes 

the front. The operator splitting scheme shows results between the two, as it is expected. In-

terestingly the Lagrangian scheme can reproduce one of the typical transport effects within 

fracture networks, the tailing effect (i.e. a non-gaussian type of breakthrough curve), though 

no dispersion is regarded for the single fractures. This means that the network dispersion by 

macro scale mixing processes starts to dominate over the neglected dispersion in the single 

fractures. For large fracture network systems this point of view, and therefore the MOC, 

might be sufficient for the characterization of the dominant physical processes. 
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Fig. 4.14: Tracer breakthrough at three neighbouring outflow nodes for a system of fractures 

(Münchehagen) computed with different numerical methods. 

The transport through the systems considered is highly advective (Pemax ≈ 36 for the 

first example, Pemax ≈ 220 for the second one). The Peclet numbers are computed on the basis 

of local (single fracture) dispersivities, because the much larger total dispersivity results from 

macro scale mixing in the network. For this kind of highly advective problems an operator 

splitting scheme is very effective. Table 1 compares the necessary CPU times for the simula-

tions mentioned above. 

Table 4.8: Comparison of relative CPU time for tracer transport  

simulations with different numerical methods. 

Numerical method 4 fractures, 3327 
nodes, steady flow 

4 fractures, 3327 
nodes, unsteady 
flow 

11 fractures, 10922 
nodes, steady flow 

FEM (SUPG) 100% 100% 100% 

Characteristics 3.6% 9.5% 1.4% 

Operator splitting: FEM 
(PG) + characteristics 

5.5% 9.8% 2.5% 

The results demonstrate that the presented extended MOC scheme is suitable for trans-

port simulations in fracture networks. Macro scale (i.e. network) mixing processes in the net-

work can be reproduced and by the combination with the FEM an operator splitting scheme is 

obtained, which is able to simulate diffusion, dispersion, sorption and decay in an efficient 

way. For highly advective problems (Pe >> 1) the MOC is very efficient. For transport proc-

esses of tracers in large fracture networks the macroscopic mixing dominates over local diffu-

sion and dispersion in single fractures, so that the very fast characteristics scheme is sufficient 
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to describe the main processes. If local fracture dispersivities, retardation or sinks or sources 

for the tracer shall be regarded, it is necessary to use the operator splitting scheme.  
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4.6  Density dr iven flow in unsaturated media 

4.6.1 Introduction 

Clearly, there is a lack of experimental measurements on density-driven flow in par-

tially saturated and coupled saturated/partially-saturated systems, which are suitable for veri-

fying numerical models. Here an effort to address this problem is presented, by combining 

experimental and numerical investigations of density-driven flow patterns in coupled satu-

rated/partially-saturated systems. First, a series of laboratory-scale experiments is considered 

to measure saltwater-freshwater interactions, particularly in the interface region between the 

saturated and partially saturated zones. The boundary conditions used in the experiments are 

selected on the basis of preliminary simulations from the numerical model. The experimental 

measurements are then used to test the numerical model. Particular emphasis is placed on 

checking the validity of flow phenomena predicted by the model in the partially saturated 

region above the water table, and along the interface between the saturated and partially satu-

rated regions. 

4.6.2 Exper imental set-up 

The laboratory experiment employed a perspex flow cell with internal dimensions of 

0.958 m (length) x 0.478 m (height) x 0.105 m (width). Figure 4.15 presents the system be-

fore it was filled with sand. 

  

Fig. 4.15: Sandbox before filling with sand. The right picture shows the injection tubes 

through which samples were taken and the tracer was injected into the system. 

It was equipped with two perforated sidewalls so that an inner length of 0.865 m re-

mained. Sixteen tubes of 1 mm inner diameter were placed horizontally throughout the system 
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to allow for tracer injection and sample extraction (Fig. 4.16). Each of the tubes was closed at 

one end, perforated along a length of 10 cm and bent upwards at an angle of 90 degrees. Thus 

a relatively equal injection over the system thickness could be achieved and, together with the 

symmetry arising from the impermeable front and back plate, the system can be simplified to 

a 2D system for the numerical investigations.  
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Fig. 4.16: Geometry of the sandbox. 

The filling material was a clean, natural, silica sand local to the Rehovot (Israel) area. 

The sand was sieved to a range of 0.25 mm to 0.50 mm, and then washed and oven-dried at 

95ºC. In order to achieve a relatively homogeneous packing, the flow cell was filled with dry 

sand “ increments”  of 2 cm thickness. Each of the increments was homogenized with those 

below to a depth of 10 cm, by using a mixing rod to disrupt any possible layering, and then 

compacted mechanically to reduce consolidation during the experiments. The 16 sam-

pling/injection tubes were emplaced during this packing process. The flow cell walls bent 

outwards slightly because of the filling material, introducing a minor error of up to 2 mm for 

the internal width of the flow cell. After completion of sand filling, the flow cell was flooded 

with CO2 through the lower row of injection tubes. Subsequent slow water saturation of the 

system from the bottom led to a virtually bubble free system, as CO2 dissolves easily in water. 

To minimize hysteresis effects, the flow cell was then run through multiple imbibition-

drainage cycles. Finally, the sand was covered to avoid evaporation across the upper bound-

ary, to mimic a system at greater depth. The room temperature was held constant at 25ºC. 

The porosity of the sand was measured to be 0.36 by taking samples of water-saturated 

sand and comparing the weights before and after oven-drying for a fixed volume. The intrin-

sic permeability of the sand was estimated to be about 4.7x10-11 m2, by measuring the flux for 

a small gradient under saturated conditions. Samples of the sand at different heights above the 
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fixed water table were taken to measure the water content. From these estimates, a capillary 

pressure – saturation relationship could be fitted, on the basis of the well-known van Genuch-

ten (1980) curve (Fig. 4.17). 
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Fig. 4.17: Water content versus height for the sand used in the experiments. 

Constant head boundary conditions were maintained for the experiments by filling the 

intake chambers of the flow cell with constant flux (100 ml/min) peristaltic pumps and using 

an overflow system. During the experiments this set-up produced stable hydraulic heads, with 

measurable head fluctuations of about ±0.5 mm. Several plastic barrels were used as water 

reservoirs. Regular tap water was used for all of the experiments; the barrels served as buffers 

to homogenize possible changes in the properties of the water (density of the freshwater was 

measured to be 1.067 kg/m3). The overflow of the intake chamber connected to the saltwater 

inflow was recycled, whereas the overflow on the freshwater side was not reused, due to pos-

sible density changes. An electrical conductivity meter was attached to the recycled saltwater 

as an on-line monitor of the salinity (density of the saltwater was measured to be 1.097 

kg/m3). After adjusting the density once, the reference conductivity was used as a standard for 

further adjustments. 

Tracer injections (red dye) were used to visualize the flow pattern. The dye was tested 

against a chloride tracer and showed no measurable retardation. Injection of dye in the two 

inlet/outlet chambers showed significant stratification, due to the saltwater inflow and to the 

boundary conditions used in the inlet and outlet chambers. On the saltwater side this 

stratification was eliminated by use of a recycling system within the inlet flow reservoir. On 

the freshwater side a small peristaltic pump was used to extract any bottom layer of saltwater 

that might develop. 

All tracer injections were performed in a way that minimized the impact on the stabi-

lized flow field. The density of the tracer was matched to the density in the flow cell prior to 

any injection. This was achieved by using a mixture between tracer matched to the density of 
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freshwater and tracer matched to the density of saltwater. A small amount of water was ex-

tracted through each of the injection tubes and the density was estimated from the electrical 

conductivity of each sample. Following each injection, the tubes leading to the perforated 

front ends were cleaned by injecting water of the appropriate density. In order to have a 

minimal impact on the equilibrium in the partially saturated zone, the amount of previously 

extracted water equalled the total amount of liquid injected afterwards. This procedure virtu-

ally eliminates the far-field impact of the injection, but as the extracted water is preferentially 

drawn from below the injection tubes (because of the higher saturation and therefore higher 

hydraulic conductivity and lower capillary pressure below the injection point), the injected 

tracer will settle in equilibrium below the injection tubing. 

During the experiments time-lapse pictures of the tracer movement were taken with a 

programmable digital still camera. It was therefore possible to take pictures at fixed or ran-

dom intervals with a prescribed set of exposure settings. For each series of pictures, a refer-

ence picture of the flow cell with no dye in it was taken. After the experiments the images 

were processed through several enhancement steps. The first image was inverted and blended 

into the following ones, so that only the change in the informational content was preserved. 

For this procedure a very steady lighting situation was required; the room was completely 

darkened to avoid the impact of sunlight on the pictures. Only the green channel of the images 

was used, as this channel showed the best signal-to-noise ratio against the red dye. 

4.6.3 Exper iments 

In an a priori investigation of the flow system, using the numerical model described be-

low in Section 4, five principal flow patterns were identified, depending on the water table 

heights (boundary conditions) at the two sides of the system. Prescribing the saltwater and 

freshwater inlet chambers as being on the left and right sides of the flow cell, respectively, the 

following five cases can be considered: 

- the pressure is much higher on the right side of the flow cell over at all heights, so 

that the freshwater is flushed through the system; 

- the pressure is uniform at the bottom on both sides of the flow cell, so that the salt-

water forms a tongue which does not reach the freshwater side; 

- the pressure is uniform at the midpoint between the base of the flow cell and the wa-

ter table, on both sides of the flow cell, so that the saltwater reaches the freshwater 

side, and there is a counterflow of freshwater; 

- the water table is approximately uniform on both sides of the flow cell, so that the 

saltwater breaks through the system, but the freshwater is not totally flushed out; 
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- the pressure is much higher on the left side of the flow cell over at all heights, so that 

the saltwater is flushed through the system. 

The two (first and last) extreme cases were neglected, as they lead to trivial cases where 

only freshwater or saltwater remains within the system. The focus is therefore on three ex-

perimental set-ups, corresponding to the second, third and fourth cases: 

- Set-up A: The pressure is uniform at the bottom on both sides of the flow cell. 

- Set-up B: An intermediate state between Set-up A and Set-up C. 

- Set-up C: The water table is uniform on both sides of the flow cell. 

The experiments were conducted after approximately steady state conditions were 

reached. In each experiment, a series of conductivity measurements was performed along the 

lower rows of sampling tubes, in order to determine the movement of the saltwater. The upper 

two sampler rows were not used for this purpose, as they did not come into contact with the 

saltwater. The system was assumed to be in steady state if no further increase in electrical 

conductivity was observed in the sampling tubes after waiting for an additional period equal 

to 10% of the total time the experiment was running. 

4.6.4 Numer ical simulations 

The numerical simulations of the experiments discussed in Chapter 4.6.3 incorporated 

parameter values that could be measured directly from the experimental set-up (Table 4.9). 

Table 4.9: Overview of parameter values of the laboratory experiment. 

Porosity n = 0.36 

Permeability k = 0.5 × 10-10 m2 

Residual saturation Sres = 0.15 

Maximum saturation Sfull = 1.0 

Relative permeability 
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Diffusion constant (salt) Dm = 4.0 × 10-10 m2/s 

Diffusion constant (tracer) Dm = 4.0 × 10-10 m2/s 

Longitudinal mass dispersion length αl = 5 × 10-4 m 

Transverse mass dispersion length αt = 5 × 10-5 m 
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Fluid viscosity µ = 1 × 10-3 kg/(ms) 

Fluid density (freshwater) ρfresh = 1067 kg/m3 

Fluid density (saltwater) ρsalt = 1097 kg/m3 

Other parameters, including the longitudinal and transverse dispersivities, fluid viscos-

ity and the relative permeability function, were assigned values based on commonly-reported 

estimates appearing in the literature. The effective diffusivity (i.e., the product of free water 

diffusivity and tortuosity) was fitted numerically to observations of diffusive tracer spreading 

of the tracer during a separate experiment with no water movement. The diffusivity of the salt 

was assumed to be equal to the tracer diffusivity. The diffusivities were assumed to be con-

stant in the range of the concentrations used (Reid et al., 1988). The longitudinal dispersivity 

was set to the diameter of the largest sand grains, while the transverse dispersivity was as-

sumed to be 1/5 of this diameter. Linear interpolation was used to quantify the dependency 

between salt concentration and fluid density (Herbert et al., 1988). The viscosity was as-

sumed to be constant in the range of salinities used in the experiments (Spitz, 1985). The dye 

concentration was very low, so the impact on the viscosity was neglected. 

Table 4.10: Overview of numerical parameter values for the  

simulation of the laboratory experiment. 

Number of nodes 36 nodes on initial grid, dynamically re-
fined, limited to 15000 nodes 

Time collocation 1 for pressure, 0.5 for transport  

Time stepping Fixed 

Upwinding SUPG for advection, α = 1 

The simulations were performed using, additionally, the numerical parameters shown in 

Table 4.10. An adaptive mesh refinement strategy was employed, which decreases the compu-

tational effort significantly. The starting grid was built with 25 elements, and a maximal re-

finement of 7 steps (each bisecting the element length) was allowed. The maximum number 

of nodes was restricted to 15000, which resulted in systems containing about 14000 elements. 

For comparison, a fixed mesh of comparable spacing would require about 400000 elements. 

Multiple simulations demonstrated that a refinement depth of 6 steps (resulting in approxi-

mately 6000 nodes) was sufficient to reach grid convergence.  

The sharp interface that becomes established in Set-up B (see below) required an addi-

tional adjustment of the grid, using a streamline orientation based on initial simulations. The 

upper picture in Figure 4.18 shows the mesh for Set-up B after a simulation time of 37900 s. 
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The lower picture shows the rectangular mesh that was used for the Set-up A after a time of 

21000 s. The mesh for Set-up C is not presented here, as it is similar to the mesh for Set-up A, 

though the local refinement is different. The grids were refined to accommodate the curvature 

of the pressure field, the saturation field, the salt concentrations and, with higher priority, the 

tracer field. 

 

 

Fig. 4.18: Dynamically adapted finite-element mesh. The upper picture shows the streamline 

adapted grid for Set-up B, the lower picture the standard grid for the other set-ups. 

The error criterion for changes in the variables considered in the nonlinear iteration was 

normalized according to the change in the variables in each time step. This approach avoids 

the accumulation of errors which might otherwise occur if the scheme chooses multiple 

smaller time steps instead of larger ones. The condition for the steady state form of the flow 

field was determined using the expression given in Table 4.10. 

Dirichlet-type boundary conditions (BC's) were specified for the fluid pressures and the 

tracer concentrations (Table 4.11). These BC's were coupled to two additional conditions. 

First, the pressure boundary conditions were eliminated for all nodes where a pressure that 

equals the reference pressure of the Richards’  approach does not result in a flux which leaves 

the system. In this way, the physically correct behaviour of a fluid at an open boundary can be 

reproduced. Second, the BC's for tracer concentrations were eliminated for nodes where 

fluxes leave the system. For those nodes the advective tracer transport fluxes are handled im-

plicitly in the FEM. The tracer injections were treated by using short time Dirichlet BC’s with 

a radius of 1 cm around the injection point; this value equals the amount of tracer injected 

through the tubes during the laboratory experiments. 
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Table 4.11: Applied Dirichlet-type boundary conditions. 

 Set-up A Set-up B Set-up C 

Pressure for x =0 
m 

2582.8 Pa for z = 0 m, 
declining linearly to 0 
Pa at z = 0.24 m.  

0 Pa for z>0.24 m if 
this results in a flux 
leaving the system 

same as Set-up A Same as Set-up A 

Pressure for x = 
0.865 m 

2582.8 Pa for z = 0 m, 
declining linearly to 0 
Pa at z = 0.247 m. 

2543.5 Pa for z = 0 m, 
declining linearly to 0 
Pa at z = 0.243 m. 

2512.1 Pa for z = 0 m, 
declining linearly to 0 
Pa at z = 0.240 m. 

Salt concentration 
for x = 0 m 

30 kg/m3 if advective 
fluxes into the system 
occur 

same as Set-up A same as Set-up A 

Salt concentration 
for x = 0.865 m 

0 kg/m3 if advective 
fluxes into the system 
occur 

same as Set-up A same as Set-up A 

4.6.5 Exper imental and numer ical results 

Presented below is a direct comparison of the results of the experiments and the associ-

ated numerical simulations. In the numerical simulations, tracer is injected at 16 points in the 

domain that match those used in the laboratory experiments. The three sets of flow conditions 

(Set-ups A, B and C; recall Section 4.6.3) are analysed in two ways: (1) by qualitative com-

parison of the tracer migration patterns from the injection points, at six different times, from 

photographs of the laboratory flow cell and corresponding “snapshots”  from the numerical 

simulations; and (2) by quantitative analysis of the streamline patterns, which were extracted 

from the photographs and simulated snapshots. In all cases, the numerical simulations are 

seen to closely match the experimental results. 

4.6.5.1 Set-up A 

The system was defined so that the pressures at the bottom of the two inlet chambers 

were the same. This was achieved by adjusting the water table heights to 24.0 cm in the left 

(salt water) chamber and 24.68 cm in the right (fresh water) chamber (p = ρgh = 2583 Pa; 

recall the fluid densities given in Table 4.9). 
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A detailed view of the observed and simulated flow patterns is presented in Figure 4.19 

(left column the experiment, right column for the numerical results), which shows the move-

ment of the injected tracer plumes for a total period of 30 hours. The numerical simulations 

resemble closely the behaviour observed in the flow cell experiment. The flow field can be 

separated into two main regions. In the lower region, the development of the saltwater tongue 

is clearly visible, along with a convection cell that develops. In the upper region, a significant 

counterflow area, which transports fresh water through both the saturated and partially satu-

rated zones, can be observed. The flow velocities are quite small in the saltwater tongue, even 

in comparison to the partially saturated zone where a significant flow takes place. 

Streamlines were extracted from the movement of the injected tracer in order to give an 

overview of the flow field dynamics (Figure 4.20) for the first 26 hours of the experiment. 

Comparison of the streamline plots (upper figure for the experiment, lower figure for the nu-

merical results) shows that the behaviour of the saltwater tongue in the saturated zone and the 

freshwater counterflow in the partially saturated zone are simulated extremely well. The posi-

tion of the front of the saltwater tongue can be estimated from the movement of the tracers 

injected in the tubes 4, 8, 12 and 16 (see Figure 4.16). In particular, the partial convection cell 

formed by the movement of the tongue is reproduced by the simulations. Also noticeable is 

the significant degree of flow in the partially saturated zone; the level of the water table is 

indicated on the figure. 

The rate of tracer movement in the partially saturated zone is slightly overestimated in 

the numerical simulations (Figure 4.19). A sensitivity analysis with additional numerical 

simulations indicated that the location of the upper row of injection points relative to the as-

signed water content is a crucial parameter for the tracer movement. As is clear from Figure 

4.17, the sharp transition in water content begins at heights above the water table in the range 

of 15 cm. Therefore, changing the height of the upper row of injection points by as little as 1-

2 cm, and variations of a few centimetres for the transition zone, can have a significant effect 

on the predicted tracer pattern. The error during the experimental placement of the injection 

rows and changes of the transition zone during the multiple experiments are in this range. 

Additional analysis demonstrated that it is possible to get a closer match between experimen-

tal and numerical results by changing these values. These parameters do not change the prin-

cipal behaviour of the system, and are therefore not discussed further. 
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Fig. 4.19: Experimental (left column) and numerical (right column) tracer distributions at 0.75 

h, 2.75 h, 5.75 h, 10.75 h, 16.75 h, 30.75 h after the experiment began. Horizontal boundary 

conditions: equal pressures at the bottom of the two inlet chambers (Set-up A). The dotted 

isoconcentration line shows computed 50% isosalinity. 
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Fig. 4.20: Experimental (upper picture) and numerical (lower picture) results showing stream-

lines extracted from tracer movement shown in Figure 4.19. The location of the water table is 

marked by a dashed line. The dotted isoconcentration lines show computed 10% and 90% 

isosalinities. 

4.6.5.2 Set-up B 

For this intermediate case, the heads were adjusted to be 24.0 cm in the left (salt water) 

chamber and 24.3 cm in the right (fresh water) chamber. This results in an equal pressure at 

13.3 cm above the base of the flow cell, on both boundaries:  
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The observed and simulated tracer migration patterns are presented in Figure 6 (left col-

umn the experiment, right column for the numerical results). Fluid within the lower salt water 

tongue moves to the right (tracer injection points 3, 4, 7, 8, 12 and 16 in Figure 4.21), while 

the fresh water advances to the left; no convection cells develop. This interplay is especially 

clear from the tracer migrating from injection points 7 and 11: these two plumes nearly col-

lide. In addition, significant flow through the partially saturated zone, as well as interaction at 

the interface between the saturated and partially saturated zones, can be observed. The nu-

merical model reproduces these behaviours very well. 

Streamlines were extracted from the movement of the injected tracer, for a period of 14 

hours (Figure 4.22); these streamlines show that a counterflow regime with high velocities is 
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established, leading to a “shearing”  of the flow field. The simulated tracer migration within 

the saltwater-freshwater interface region showed substantial numerical dispersion problems 

on the rectangular grid. Subsequent use of a streamline-oriented grid increased significantly 

the quality of the simulations, resulting in a very good reproduction of the sharp transition 

zone. 

An interesting effect is the “ tilt”  which is observed on the plumes injected through the 

tubes along the upper rows (Figure 4.21). This result can be attributed to the relatively large 

vertical spread of the plumes, with the upper part of the plumes being at lower saturation (and 

therefore effective permeability) areas than the lower part. The numerical model fails to catch 

this behaviour; a possible reason can be either local heterogeneities of the sand packing or a 

small error in the capillary pressure measurements. 



132 Density driven flow in unsaturated media 
 

 

 

 

 

 

  

Fig. 4.21: Experimental (left column) and numerical (right column) tracer distributions at 0.25 

h, 3.25 h, 6.25 h, 10.25 h, 17.25 h, 35.25 h after the experiment began. Horizontal boundary 

conditions: equal pressures at 13.3 cm above the base of the flow cell (Set-up B). The dotted 

isoconcentration line shows computed 50% isosalinity. 
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Fig. 4.22: Experimental (upper picture) and numerical (lower picture) results showing stream-

lines extracted from tracer movement shown in Figure 4.21. The location of the water table is 

marked by a dashed line. The dotted isoconcentration lines show computed 10% and 90% 

isosalinities. 

4.6.5.3 Set-up C 

In this case, the hydraulic heads were adjusted to heights of 24.0 cm on both boundaries 

of the flow cell. During the experiments, control of the heads was found to be critical, as even 

small changes in the heads can have a significant impact for this case. Some small fluctua-

tions were evident during the course of the experiment, and the head was readjusted by +1 

mm on the right side of the flow cell after 48 h. Furthermore the density adjustment of the 

tracer to the density of the fluid in the partially saturated zone proved to be crucial, as the flow 

velocities are very low and the impact of density differences was significant. 

The observed and simulated tracer migration patterns are presented in Figure 4.23 (left 

column the experiment, right column for the numerical results), while streamlines extracted 

from the tracer movement patterns are given in Figure 4.24. The flow field is distinguished by 

two very different flow regions: whereas movement (mostly of salt water) in the saturated 

area is very fast, a slow anti-clockwise convection of fresh water develops in the partially 

saturated zone. The streamline plot of the experiment clearly shows that the flow field is sepa-

rated into an area of high velocities in the saturated zone, and very slow movement in the par-

tially saturated zone, into the opposite direction. After a period of about 24 h, most of the 
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tracer in the saltwater toe was driven out of the flow cell, while very little movement in the 

freshwater area was visible.  

In the experimental data the streamlines in the partially saturated zone initially point in a 

direction opposite to that predicted by the numerical model (compare the upper row of injec-

tion points in Figure 4.23). After the heads were re-adjusted at the flow cell boundaries (nec-

essary because of minor fluctuations), the experimental and numerical results for the partially 

saturated zone are seen to match very well. Correspondence of the numerical simulations with 

the experimental results in the saturated zone is excellent. Some overestimation of the veloci-

ties in the partially saturated zone, by the numerical model, is evident (Figure 4.24). As noted 

above, this result can be attributed to the high sensitivity of the laboratory set-up to very small 

errors and variations in the heads at the boundaries. Tests with the numerical model confirm 

this sensitivity, and demonstrate the variability that can arise in this interface between the 

saturated and partially saturated zones. 

With time, very slow movement in the partially saturated region can be observed, which 

forms one large convection cell (second and fourth rows of pictures in Figure 4.23). This re-

sult is interesting, as the water table height is equal on both sides of the flow cell, and no ex-

ternal pressure gradient induces this flow. It would appear that upward diffusion of salt on the 

left side of the flow cell, across the interface between the saturated and partially saturated 

zones, leads to a density-driven flow mechanism that allows the observed slow counterflow to 

develop. 
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Fig. 4.23: Experimental (left column) and numerical (right column) tracer distributions at 2.5 

h, 6.5 h, 11.5 h, 16.5 h, 44 h, 53 h after the experiment began. Horizontal boundary condi-

tions: equal hydraulic heads (Set-up C). The dotted isoconcentration line shows computed 

50% isosalinity. 
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Fig. 4.24: Experimental (upper picture) and numerical (lower picture) results showing stream-

lines extracted from tracer movement shown in Figure 4.23. The location of the water table is 

marked by a dashed line. The dotted isoconcentration lines show computed 10% and 90% 

isosalinities. 

4.6.6 Conclusions from the laboratory exper iments 

The laboratory experiments discussed here demonstrate clearly that a significant lateral 

flow, and coupled density-driven flow effects, take place in the partially saturated region 

above the water table, and at the interface between the saturated and partially saturated zones. 

Although it is difficult to extrapolate these small-scale experiments to the field scale, similar 

flow behaviours can be expected at the saltwater/freshwater interface in unconfined aquifers.  



Test cases and applications 137 
 

 

4.6.7 Impact of model and gr id adaptivity on execution time and accuracy 

In order to compare the influence of both model and grid adaptivity on the results, the 

calculations for one of the set-ups are repeated. Two different grid resolutions are regarded in 

order to evaluate the influence of different grid resolutions on the computation time and the 

accuracy. The coarse grid is obtained by applying four bisections on the original grid, thus 

resulting in 6400 elements. Equivalently four bisections of the original grid are allowed in the 

grid adaptive scheme, too. The fine grid consists of 25600 elements and is obtained after ap-

plying five bisections.  

The results for the fine grid are not presented here, as all methods produced virtually 

equal results. In contrast, the computations on the coarse grid show significant differences. 

The results are presented in Figure 4.25. It is obvious, that the grid adaptive method suffers 

from numerical dispersion problems, while the standard approach can produce fair results 

even though a rather coarse grid is used. Even more astonishing is a comparison of the com-

putation times (Table 4.12). The grid adaptive approach uses even more computation time 

than the standard approach. A closer look on the performance data during the simulation re-

veals, that the simulator has to perform two or three nonlinear iterations in each time step, 

because the grid adaptation has disturbed the previous equilibrium of the flow field. The 

model adaptive approach produces results that are indistinguishable from the standard ap-

proach, while significantly reducing the computation time. For the model adaptive and the 

standard approach the coarse grid results are already very close to the results on the finer grid, 

while the grid adaptive scheme requires further refinement of the grid. 

Table 4.12: Comparison of computation time for the standard, 

grid adaptive and model adaptive approaches. 

Modelling approach CPU-time (fine grid) CPU-time (coarse grid) 

Standard approach 100% 100% 

Grid adaptive approach 110% 106% 

Model adaptive approach 54% 51% 

It must be stressed that these results can not be generalized. For finer meshes the results 

of the grid adaptive scheme are very good. Furthermore, the amount of needed computer 

memory is largely reduced with the grid adaptive approach. 
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Fig. 4.25: These pictures show the computed tracer distribution for the coarse grid. The upper 
picture shows the result of the standard approach, the middle one the result with grid adaptiv-

ity and the lower one with model adaptivity. 
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4.7 Multiphase flow in a fracture network 
This example presents the simulations of a packer test in a fracture network under mul-

tiphase flow conditions. The grid for this test case was generated by Rother (2001), based on 

geometry data that was supplied by Dr.-Ing. H. Shao (BGR). The physical data for the test are 

randomly chosen and do not reflect an actual test. 

The physical behaviour of the regarded system is a severe test for the numerical model. 

Due to the extreme differences in the physical properties of the fluids (the density differs by 

three orders of magnitude and the viscosity by two orders of magnitude), any change in the 

saturation distribution results in significant changes in the pressure field. Subsequently, this 

results in severe convergence problems, which cannot easily be resolved. Anyhow the system 

is presented here, as it demonstrates the bounds for the useful application of the model. 

Due to the low permeability of the surrounding rock matrix and the extremely high en-

try pressures for gas into the matrix, it can be assumed that gas does not enter the matrix. 

Thus, only the gas flow through the initially water filled fractures is regarded. The properties 

for the test case are presented in Table 4.13. 

Table 4.13: Properties for the multiphase flow packer test 

Fracture width 0.001 m 

Porosity 1 

Permeability  8.3·10-11 m2 

Initial water saturation  S(t = 0) = 99% 

Rel. permeability - saturation relation Linear for air, quadratic for water 

Capillary pressure - saturation relation Given by curve values 

In the simulation it is assumed that the fractures are of limited extent and that the inflow 

and outflow only takes place at the dedicated boundary conditions. The position and the val-

ues for the boundary conditions are presented in Figure 4.26. The mesh is refined near the 

inlet and outlet in order to obtain a better reproduction of the applied boundary conditions. In 

the numerical model fluxes are applied as volumetric fluxes. Here, a mass flux is applied, 

because mass fluxes are very often used in experimental work. The mass fluxes are dynami-

cally converted into volumetric fluxes in the model, according to the current pressure at the 

injection point. 
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Fig. 4.26: Geometry and boundary conditions for the multiphase flow packer test.  

The mesh consists of 1167 nodes and 1135 elements. 

The results presented in Figure 4.27 show the saturations and Darcy velocities of gas in 

the system for different times. In the initial phase of the simulation, the gas is travelling on a 

straight way to the constant pressure boundary condition. After 100 s of simulation (first row 

of pictures) a pressure of 200 kPa is required to inject the gas at the desired rate. After ap-

proximately 150 s the gas has reached the outlet of the system. Thus, a sudden venting of the 

system takes place. The pressure at the injection point drops to 180 kPa. In the subsequent 

simulation (1000 s) the gas starts to ascend due to its low density and finally pools up on the 

boundaries of the fractures. This process must be regarded very critically, as the real extent of 

the fractures is often not known in real world applications. Now the gas follows a completely 

different flow path, but still reaches the outlet. In a real world situation the gas would proba-

bly have escaped into the far field. 
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Fig. 4.27: Gas saturation (upper pictures) and Darcy velocities of the gas (lower pictures) 

in fractures during packer test after 100 s, 150 s and 1000 s (left to right). 

Furthermore the spreading of a tracer is regarded. The tracer is added to the gas at the 

injection point for the period between 200 s and 225 s. The diffusivity is set to 10-6 m2/s, the 

dispersion length is 0.2 m longitudinal and 0.01 m transverse. The resulting spreading of the 

tracer plume is presented in Figure 4.28. It should be pointed out that the boundary condition 

for the injection point is not switched to zero concentration after the tracer is added, but in-

stead the correct dilution is computed. 
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Fig. 4.28: Tracer concentration in the gas phase after 210 s, 250 s and 500 s. 
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Additionally to the distribution of the tracer in the network, the breakthrough on the out-

let is a valuable information. In the current implementation of the simulator it is not possible 

to balance fluxes over geometrical units. Only single nodes can be observed. Thus, six nodes 

on the outlet are chosen and the weighted medium of the concentrations is regarded here. The 

tracer breakthrough is presented in Figure 4.29. Interestingly the breakthrough shows a dou-

ble-peak and a very long tail. The double-peak can be related to two main flow paths of gas 

that establish in the system. The first breakthrough is caused by tracer that is following the 

straight line of gas which is connecting injection point and outlet. This can clearly be seen in 

the results for a single-node in the middle of the outlet. A sharp, fast arriving peak with a little 

tailing (dashed line in Figure 4.29) is observed here. In contrast, the result for a node on the 

upper bound of the outlet (dotted line in Figure 4.29) shows significant tailing. This is due to 

the storage of gas and tracer in the upper parts of the fracture network. 
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Fig. 4.29: Tracer breakthrough on the outlet. The solid line denotes the weighted medium of 

six nodal results. The dashed line denotes a single node in the middle of the outlet and the 

dotted line a single node on the upper bound of the outlet. 

It should be pointed out that this simulation imposed severe problems on the stability of 

the numerical model. Due to the extreme variability of the physical parameters between the 

regarded fluid phases and because of the very transient flow field, convergence was hardly 

reached. Furthermore, it must be critically studied if the REV concept, which is underlying 

this type of model, is valid for gas injections in small scale fracture systems (compare Persoff 

& Pruess, 1995). Possibly a REV approach is not valid, because single pathways of large ap-

ertures in the fractures will first be entered by the gas and can then govern the flow field. 

Thus, models based on percolation theory (Berkowitz and Balberg, 1993) might be a better 

tool for gas migration simulations, especially if these are supposed to be used in risk analysis. 
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4.8 Three-phase flow in a three-dimensional domain- 
The infiltration of non-aqueous phase liquids (NAPL) into natural soil systems results in 

a complex three-phase flow system. Here, an example for the simulation of a full three-phase 

flow problem is shown. The system is presented in Figure 4.30, it is a soil cube of 15 m 

length. Fixed pressure (175000 Pa) and saturation (water saturation equal to unity) boundary 

conditions are prescribed at the bottom of the system. Furthermore, a pressure and saturation 

boundary condition of small size is applied in one corner on the top of the system. It serves as 

a venting hole, so that the air can be driven out by the liquids that enter the system. 
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Fig. 4.30: System set-up for the three-phase flow test case. At the bottom both pressure and 

saturations are prescribed, at the top a constant rate NAPL infiltration takes place. 

In the current implementation of the code a limited set of coupling functions for relative 

permeabilities and capillary pressures in three-phase systems is realised (Chapters 2.2.3 and 

2.2.4). Due to the interface structure, these can later easily be extended to more sophisticated 

functions. Figure 4.31 presents the chosen functions for capillary pressures and relative per-

meabilities for this example. In Table 4.14 the material parameters for the test case are listed. 
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Fig. 4.31: Chosen relative permeability and capillary pressure functions for  

three mobile fluid phases. 

An initial run with no NAPL infiltration the system is performed until steady state is 

reached, so that good initial conditions for a second run with the NAPL infiltration are avail-

able. Afterwards the simulation is restarted in a second run with the infiltration taking place 

for 10000 s. The system is discretized with an equidistant grid of 0.47 m spacing. The time 

stepping is adjusted dynamically, starting with a time step of 1 s. The matrix recalculation is 

triggered for relative changes of the mobility or of the saturation of 10-4. 

Table 4.14: Overview of numerical and material parameters for the three-phase flow example. 

Fluid density air (pressure dependent) ρair  = 1.225·10-5 kg/(m3 Pa) 

Fluid density NAPL ρNAPL  = 900 kg/m3 

Fluid density water ρwater  = 1000 kg/m3 

Fluid viscosity air µair  = 1.79·10-5 kg/(ms)] 

Fluid viscosity NAPL µNAPL  = 2·10-3 kg/(ms)] 

Fluid viscosity water µwater  = 1·10-3 kg/(ms)] 

Porosity n = 0.1 

Permeability  k = 10-12 m2 
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Table 4.15: Boundary conditions for the three-phase flow example. 

Pressure at the bottom pwater = 75000 Pa 

Pressure at the top for x < 1 m and y < 1 m pwater = 0 Pa 

Saturations at the bottom  Swater = 0.95, SNAPL = 0, Sair = 0.05 

Saturations at the top for x < 1 m and y < 1 m  Swater = 0.05, SNAPL = 0, Sair = 0.95 

Infiltration of NAPL  10-3 m3/s for 10000 s 

The results for the second run are presented in Figure 4.32. The system is cut into two 

parts in order to have a free sight on the interiors. The infiltration of the NAPL is shown in the 

pictures of the left column. It is interesting to see, that the NAPL forms the characteristic lens 

at the end of the infiltration. Furthermore, the NAPL plume leaves a trace of NAPL in the 

upper parts of the system. This trace is determined by the residual saturation of the NAPL. 

The water saturation is nearly uninfluenced in the beginning of the simulation. This is due to 

the simple coupling functions that are used in this test case. If capillary pressure and relative 

permeability functions are used, which regard the influence of all phases on the coupling 

functions, this behaviour will change. Only at the end of the regarded time span, when the 

NAPL reaches the water surface, the influence of the NAPL is visible. In this test case the 

model adaptive methods reduced the computation time by approximately 50% compared to 

the standard approach. The differences in the results are very small, they are in the range of 

the error margin for the matrix recalculations. 
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Fig. 4.32: Movement of a NAPL plume in a three-phase flow system. The pictures on the left 
show the NAPL saturation and the pictures on the right the water saturation. Regarded are the 

times 104 s, 105 s and 5·106 s (upper to lower). 
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5 Conclusions and outlook 

5.1 Results of this work 

The methods developed in this work have shown their suitability for a wide range of 

flow processes in the subsurface. The developed numerical model is suitable for the simula-

tion of 

- saturated single-phase flow, 

- unsaturated single-phase flow, 

- density driven flow and 

- multiphase flow 

in the subsurface. Additionally, a single-phase, single-component tracer transport model 

was extended to the scope of multiphase, multi-component tracer transport and was coupled 

to the flow model to take into account for transport processes. Furthermore, the tracer trans-

port model was enhanced by a modified method of characteristics scheme in order to enhance 

the applicability for fracture networks. It was shown that the purely advective method of char-

acteristics scheme is suitable to describe one of the main effects of tracer transport in fracture 

networks, the tailing effect. 

Due to the multitude of regarded physical processes within the flow model, a scalable 

approach was derived, which can treat flow processes of different complexity by up- and 

downsizing of a superset model. The downsizing methods were automatized and are suitable 

to dynamically adapt the underlying physical model. The pros and cons of this method were 

presented in the regarded application examples. It became obvious that substantial improve-

ments in computation time can be reached and that the introduced errors can be quantified. A 

possible drawback can be a negative impact on the efficiency of the nonlinear iteration 

scheme. 

The developed system can serve as a construction kit for further developments, as the 

model is strictly parted in “special”  and “common” parts. The common parts can easily be 

adapted or extended to other physical processes. 

For the regarded physical models the set of standard boundary conditions was enhanced 

by special variants. These variants include special infiltration conditions for unsaturated flow, 

dynamically switched Dirichlet-type boundary conditions for tracer transport and free outflow 

(non-reflecting) conditions for multiphase flow.  
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Due to the strong nonlinear coupling between the regarded primary variables in the 

model, it was necessary to enhance the iteration and time stepping schemes. The nonlinear 

iteration was enhanced by a linear predictor and a dynamic relaxation, both can significantly 

reduce the simulation time. As the regarded processes are highly transient and require the ad-

aptation of the time stepping to the current physical situation, the standard time stepping 

methods by deterministic criteria were enhanced by different heuristic adaptation schemes. 

In order to validate the model, a set of test applications was regarded. Where analytical 

solutions were available, these were compared to the results of the model in order to quantify 

the accuracy. For all of the regarded test cases good agreement between analytical and nu-

merical solution was found. As no analytical solutions are available for complex nonlinear 

coupled processes in arbitrary domains, the results of these test cases can only be checked for 

plausibility. 

A laboratory scale experiment was performed to validate the numerical model for the 

case of density driven flow in unsaturated media. The experiments also enhance the palette of 

available benchmarks for testing of other numerical codes. The numerical code developed 

here was shown to reproduce and predict the flow behaviours observed in the experiments. 

Significantly, the laboratory experiments were designed according to initial simulations from 

the numerical model, thus underlining the predictive capacity of the model. Though the pre-

dicted behaviour of the system was quite unexpected, the experimental work proved the cor-

rectness of the prior numerical simulations. Simulations on the basis of the actual experimen-

tal data reproduced the behaviour of the experiments qualitatively and quantitatively. 

The numerical simulations of the laboratory scale experiment demonstrate the need for 

high-resolution input data that define relationships among the different physical parameters. 

In particular, detailed knowledge of relative permeability - saturation, and capillary pressure - 

saturation, relationships is crucial to improve the match between numerical simulations and 

experimental observations in the partially saturated zone. Small-scale structural heterogenei-

ties that are ubiquitous, yet difficult to quantify, of course play a fundamental role in these 

relationships. And yet, notwithstanding these uncertainties, the numerical model effectively 

captures the observed flow patterns of the experiment. 
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5.2 Proposals for fur ther work 
Though the simulation of flow and transport in saturated media delivers quite satisfying 

results, still a large amount of work is to be done in the field of density driven and multiphase 

flow simulations. This includes the development of both the physical and numerical models. 

The applicability of the physical models used in this work on multiphase flow in frac-

tures is doubtable, as it is not yet clear if a REV can be found for those processes. Experi-

ments by Persoff and Pruess (1995) and Thunvik and Braester (1991) show that finding a 

REV is at least difficult. If the regarded processes cover only small scales of a fracture, single 

pathways will govern the system behaviour. Thus, models based on percolation theory may 

provide a better reproduction of the underlying physical behaviour. Even if a REV is found 

for the regarded scale, upscaling is still a problem in modelling approaches for single and 

multiphase flow and transport. 

The numerical model offers several possibilities for enhancements; most of them are 

subject of the multiphase flow kernel: 

- In order to enhance the robustness of the multiphase flow kernel, the type of the cho-

sen formulation should dynamically be switched, based on the phase saturations and 

the material parameters. This will increase the execution speed and the robustness of 

the code. 

- The global pressure function can be weighted between the regarded phases. Together 

with appropriate formulations for the saturations, this can lead to better convergence 

(Ewing, 1996) 

- Phase transitions should be incorporated into the developed model via the sink and 

source terms. If this step is taken, it should be considered to extend the existing heat 

transport module (which is already coupled to the flow model described in this work) 

to the scope of multiphase flow. 

- The saturations on material borders should be defined multiple times, according to 

the number of surrounding materials. Thus, a better representation of the behaviour 

in heterogeneous systems will be gained. 

- The combination of a Quasi-Newton iteration scheme with the current Picard scheme 

can help to reach convergence faster. 

- The parallelization of the code would give access to the world of “super computers” , 

in order to tackle more complex and larger scale applications.  
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Obviously, there is still a large amount of work to be done. This is mainly due to the 

complexity of multiphase flow processes and because of the strong nonlinear coupling of the 

underlying equations that describe the physical processes. It is important to point out that the 

multiple nonlinear couplings are not only difficult to treat in the numerical model, but also 

require an in-depth understanding of the physical processes and of numerical modelling from 

a modeller who tries to apply this type of numerical model. Otherwise, the modeller will not 

be able to assemble a coherent set of initial conditions, boundary conditions and appropriate 

material functions and to use the model appropriately. 

 

 



References 151 
 

 

6 References 
Abbott, M. B., An introduction to the method of characteristics, American Elsevier, New 

York, 1966 

Barlag, C., Adaptive Methoden zur Modellierung von Stofftransport im Kluftgestein, Disserta-

tion, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der 

Universität Hannover, 1997. 

Barrett, R., M. Berry, T. Chan, J. Demmel, J. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. 

Romine and H.v.d. Vorst, Templates for the Solution of Linear Systems: Building 

Blocks for Iterative Methods 2nd Edition, SIAM, Philadelphia, 1994 

Bear, J., Dynamics of Fluids in Porous Media, Elsevier, New York, 1972 

Bear, J., Hydraulics of Groundwater, McGraw-Hill, New York, 1979 

Bear, J. and A. Verruijt, Modeling Groundwater Flow and Pollution, Kluwer Academic Pub-

lishers, Dordrecht/Boston/Lancaster/Tokyo, 1987 

Bear, J. and Y. Bachmat, Introduction to Modeling of Transport Phenomena in Porous Me-

dia, Kluwer Academic Publishers, Dordrecht/Boston/London, 1990. 

Bear, J., C. F. Tsang and G. de Marsily, Flow and Contaminant Transport in Fractured Rock, 

Academic Press Inc., San Diego/New York/Berkeley/Boston/London/Sydney/Tokyo, 

1993 

Benard, H., Les tourbillons cellulaires dans nappe liquide transportant de la chaleur par 

convections en regime permanent, Rev. Gen. Sci. Pures Appl. Bull. Assoc., 11, pp. 

1261-1271, 1900 

Berkowitz, B., J. Bear and C. Braester, Continuum models for contaminant transport in frac-

tured porous formations, Water Resour. Res., 24, pp. 1225-1236, 1988 

Berkowitz, B., and I. Balberg, Percolation theory and its application to groundwater theory, 

Water Resour. Res., 29, 4, pp. 775-794, 1993 

Boufadel, M. C., M. T. Suidan, and A. D. Venosa, Numerical modeling of water-flow below 

dry salt lakes – Effect of capillarity and viscosity, J. Hydrol., 221(1-2), pp. 55-74, 

1999. 

Braun, C., Ein Upscaling-Verfahren für Mehrphasenströmungen in porösen Medien, Ph.D. 

thesis, Institut für Wasserbau, Universität Stuttgart, ISBN 3-933761-06-9, 2000 

Brooks, A. N. & T. J. R. Hughes, Streamline Upwind Petrov Galerkin Formulations for Con-

vection Dominated Flows with Particular Emphasis on the Incompressible Navier-

Stokes Equations, Computer Methods in Applied Mechanics and Engineering, 32, pp. 

199-259, 1982 

Brooks, R. N. and A. T. Corey, Hydraulic properties of porous media, Hydrology Papers, 

Colorado State University, Fort Collins, Colorado, 1964 



152 References 
 

Brooks, R. N. and A. T. Corey, Properties of porous media affecting fluid flow, Journal of 

Irrigation Drainage, American Society of Civil Engineers, 92 (IR2), pp. 61-88., 1966 

Broyden, C. G., Quasi-Newton methods and their application to function minimization, Math. 

of Computation, Vol. 21, No. 99, pp. 368-381, 1967 

Buckley, S. E. and M. C. Leverett, Mechanism of Fluid Displacements in Sands, Transactions 

of the American Institute of Mining and Metallurgical Engineers (TAIME), Vol. 146, 

pp. 107-116, 1941 

Busch, K.-F., L. Luckner and K. Tiemer, Lehrbuch der Geohydraulik, Band 3, Geohydraulik, 

Gebrüder Bornträger, Berlin, Stuttgart 1993 

Celia, M. A., E. T. Bouloutas and R L. Zarba, A general mass-conservative numerical solu-

tion for the unsaturated flow equation, Water Resour. Res., Vol. 26, No 7, pp. 1483-

1496, 1990 

Christie, I., D. F. Griffiths, A. R. Mitchell and J. M. Sanz-Serna, Product Approximation for 

Non-linear Problems in the Finite-Element Method, IMA J. Numer. Anal., 1, pp 253-

266, 1981 

Courant, R. , K. Friedrichs and H. Lewy, On the partial difference equations of mathematical 

physics, IBM-J. Res. Develop., 11, pp 215-234, 1967 

Cuthill, E. H. and J. McKee, Reducing the bandwidth of sparse symmetric matrices, in Proc. 

24th Nat. Conf. Assoc. Comp. Mech, ACM Publ., pp. 157-172, 1969 

Diersch, H.-J. G., Finite element analysis of dispersion affected saltwater upcoming below a 

pumping well, Appl. Math. Modelling, 8, 5, pp. 305-312, 1984 

Diersch, H.-J. G. and P. Perrochet, On the primary variable switching technique for simulat-

ing unsaturated-saturated flows, Adv. in Water Res., 23, 1, 25-55, 1999 

Duijn, C. J., J. Molenaar and M. J. de Neef, The Effect of Capillary Forces on Immiscible 

Two-Phase Flow in Heterogeneous Media, Transport in Porous Media, 21, pp. 71-93, 

1995 

DVWK, Voraussetzungen und Einschränkungen bei der Modellierung der Grundwasser-

strömung, Deutscher Verband für Wasserwirtschaft und Kulturbau, Heft 206, Bonn, 

1985 

Elder, J. W., Transient convection in a porous medium, J. Fluid Mech., 27(3), 609-623, 1967. 

Ewing, R., Three-Phase Flow Formulations, Technical Note, Institute for Scientific 

Computation, Texas A&M University, 1996 

Forchheimer, P., Hydraulik, B.G. Teubner, Leipzig, 1914 

Forsyth, P. A., Y. S. Wu, and K. Pruess, Robust numerical methods for saturated-unsaturated 

flow with dry initial conditions in heterogeneous media. Adv. in Water Res. 18, 1, pp. 

25-38, 1995 

Förster, S. and J. Bruck, Bestimmung des Diffusions- und Permeabilitätsverhaltens von Was-

serstoff in Steinsalz und kompaktiertem Salzgrus, Teil I: Permeabilitätsuntersuch-



References 153 
 

 

ungen, TU Bergakademie Freiberg, 1994 

Fourar, M., S. Bories, R Lenormand and P. Persoff, Two-Phase Flow in Smooth and Rough 

Fractures: Measurement and Correlation by Porous-Medium and Pipe Flow Models, 

Water Resour. Res., 29, 11, pp. 3699-3708, 1993 

Gärtner, S., Zur diskreten Approximation kontinuumsmechanischer Bilanzgleichungen, Insti-

tut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Universität 

Hannover, 1987 

Geier, J., W, Dershowitz, P. Wallmann, and T. Doe, Discrete Fracture Modeling of In Situ 

Hydrologic and Tracer Experiments in Fractured and Jointed Rock Masses. In: Pro-

ceedings of the Fractured and Jointed Rock Masses, Lake Tahoe, California, June 3-5, 

1992, eds. L.R. Myer, and C.F. Tsang, 511-8. A.A. Balkema, Rotterdam, 1995 

Gibbs, N. E., W. G. Poole and P. K. Stockmeyer, An algorithm for reducing the bandwidth 

and profile of a sparse matrix, SIAM J. Num. Anal, 13, pp. 236-250, 1976 

Gresho, P. M. and R. L. Sani, Incompressible Flow and the Finite Element Method, Advec-

tion-Diffusion and Isothermal Laminar Flow, John Wiley and Sons, Chichester UK, 

1998 

Habbar, A., Vergleich verschiedener Krylov-Verfahren für allgemeine reguläre und sehr gro-

ße lineare Gleichungssysteme, Diploma thesis, Institut für Strömungsmechanik und 

Elektronisches Rechnen im Bauwesen der Universität Hannover, 1995 

Habbar, A., Direct and inverse modelling of reactive transport processes in porous and fractu-

red media, Dissertation, Institut für Strömungsmechanik und Elektronisches Rechnen 

im Bauwesen der Universität Hannover, 2001 (in preparation) 

Hackbusch, W., Iterative Lösung schwach besetzter Gleichungssysteme, Teubner, Stuttgart, 

1991 

Haverkamp, R., M. Vauclin, J. Touma, P.J. Wierenga and G. Vachaud, A Comparison of 

Numerical Simulation Models One-Dimensional Infiltration, Journal of the American 

Soil Science Society, Vol. 41, pp. 285ff, 1977 

Helmig, R., Theorie und Numerik der Mehrphasenströmungen in geklüftet-porösen Medien, 

Ph.D. thesis, Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwe-

sen der Universität Hannover, 34, 1993 

Helmig, R. and R. Huber, Comparison of Galerkin-type discretization techniques for two-

phase flow in heterogeneous porous media, Adv. in Water Res., Vol. 21, No. 8, pp. 

697-711, 1998a 

Helmig, R., Gekoppelte Strömungs- und Transportprozesse im Untergrund – Ein Beitrag zur 

Hydrosystemmodellierung -, Habilitationsschrift, Institut für Wasserbau, Universität 

Stuttgart, 1998b 

Henry, H. R., Salt intrusion into coastal aquifers, Int. Assoc. of Sci. Hydrol., Pub., No. 52, 



154 References 
 

IAHS Press, Oxfordshire, UK, 1960 

Herbert, A. W., C. P. Jackson and D. A. Lever, Coupled groundwater flow and solute trans-

port with fluid density strongly dependent upon salt concentration, Water Resour. Res., 

Vol. 24, pp. 1781-1795, 1988 

Hinkelmann, R. (1997) Parallelisierung eines Lagrange-Euler-Verfahrens für Strömungs- 

und Stofftransportprozesse in Oberflächengewässern (Parallelization of a Lagrangian-

Eulerian scheme for free surface flow and transport processes), Institut für Strö-

mungsmechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, 

51, 1997 

Hirsch, C., Numerical Computation of Internal and External Flows, John Wiley & Sons, New 

York, 1988 

Holzbecher, E. O., Modeling Density-Driven Flow in Porous Media, Springer-Verlag, Berlin, 

1998 

Huyakorn, P. S. and G. F. Pinder, Solution of Two-Phase Flow through Porous Media, Adv. in 

Water Resources, Vol. 1, No 5, 1978 

HYDROCOIN - The International HYDROCOIN Project, Level 2: Model Validation, OECD, 

Paris 1990. 

Jüttner, U., Entwicklung objektorientierter Datenstrukturen und Algorithmen für die 
Finite-Element-Methode, Diploma thesis, Institut für Strömungsmechanik und Elekt-

ronisches Rechnen im Bauwesen der Universität Hannover, 1999 

Kaiser, R., Gitteradaption für die Finite-Elemente Simulation gekoppelter Prozesse in geklüf-

tet porösen Medien, Dissertation, Institut für Strömungsmechanik und Elektronisches 

Rechnen im Bauwesen der Universität Hannover, 2001 (in preparation) 

Kolditz, O., Stoff- und Wärmetransport im Kluftgestein, Habilitation, Institut für Strömungs-

mechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, 47, 

1996 

Kolditz, O., R. Ratke, H.J. Diersch, and W. Zielke, Coupled groundwater flow and transport: 

1. Verification of variable density flow and transport models, Adv. Water Resources, 

21(1), 27-46, 1998a 

Kolditz, O., A. Habbar, R. Kaiser, H.. Kasper, T. Rother, M. Schulze-Ruhfus, C. Thorenz and 

W. Zielke, Software concept of simulating coupled processes in subsurface hydrosys-

tems, Proc. Hydroinformatics 98, pp. 613-618, Copenhagen, 24-26 August, Balkema, 

Rotterdam-Brookfield, ISBN 90 5410 984 X., 1998b 

Kolditz, O., R. Kaiser, D. Habbar, T. Rother, and C. Thorenz, ROCKFLOW- Theory and U-

sers Manual, Release 3.4, Groundwater Modeling Group, Institut für Strömungsme-

chanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, 1999 

Kröhn, K. P., Simulation von Transportvorgängen im klüftigen Gestein mit der Methode der 

Finiten Elemente, Institut für Strömungsmechanik und Elektronisches Rechnen im 

Bauwesen der Universität Hannover, 1991 



References 155 
 

 

Kueper, B. H. and D. B. McWhorter, The Behaviour of Dense, Nonaqueous Phase Liquids in 

Fractured Clay and Rock, Groundwater, 29, 5, pp. 716-728, 1991 

Lapidus, L. and G. F. Pinder, Numerical Solution of Partial Differential Equations in Science 

and Engineering, John Wiley & Sons, New York, 1999 

Lehmann F. and P. Ackerer, Comparison of Iterative Methods for Improved Solutions of the 

Fluid Flow Equation in Partially Saturated Porous Media, Transp. Porous Media, 

31(3), pp. 275-292, 1998 

Lenormand, R., Zarcone C. and A. Sarr, Mechanism of the displacement of one fluid by an-

other in a network of capillary ducts, J. Fluid Mechanics, 189, 165, 1988 

Leverett, M. C., Flow of Oil-water Mixtures through Unconsolidated Sands, , Transactions of 

the American Institute of Mining and Metallurgical Engineers (TAIME), Vol . 132, pp. 

149-171, 1938 

Leverett, M. C., Capillary Behavior in Porous Solids, Petroleum Technology, T.P. 1223, Au-

gust, 1940 

Li M.-H., H.-P. Cheng, and G. T. Yeh, Solving a 3D subsurface flow and transport with adap-

tive multigrid, J. Hydrologic Eng., January, 5, pp. 75-81, 2000 

Miller, T., G. Christakos, P. Imhoff, J. McBride, J. Pedit and J. Trangenstein, Multiphase flow 

and transport modelling in heterogeneous porous media: challenges and approaches, 

Adv. in Water Resources, Vol. 21, No. 2, pp. 77-120, 1998. 

Murphy, J. R. and N. R. Thomson, Two-Phase Flow in a Variable Aperture Fracture, Water 

Resour. Res., 29, 10, pp. 3453-3476, 1993 

Muskat, M., Physical Principles of Oil Production, McGraw-Hill, New York, 1949 

Neumann, S. P., Saturated-unsaturated seepage by finite elements, Proc. J. Hydr. Div., ASCE, 

99, 12, pp. 2233-2250, 1973 

Pawlowski, J., Veränderliche Stoffgrößen in der Ähnlichkeitstheorie, Salle und Sauerländer, 

Frankfurt am Main, 1991 

Parker, J. C., R. J. Lenhard and T. Kuppusamy, A Parametric Model for Constitutive Proper-

ties Governing Multiphase Flow in Porous Media, Water Resour. Res., 23, 4, pp. 618-

624, 1987a 

Parker, J. C. and R. J. Lenhard, A Model for Hysteretic Constitutive Relations Governing 

Multiphase Flow, Water Resour. Res., 23, 12, pp. 2187-2196, 1987b 

Persoff, P., K. Pruess, Two-phase flow visualization and relative permeability measurements 

in natural rough-walled fractures, Water Resour. Res., Vol. 31, No. 5, 1995 

Pruess, K. and Y. W. Tsang, On Two-Phase Relative Permeability and Capillary Pressure of 

Rough-Walled Rock Fractures, Water Resour. Res, 26, 9, pp. 1915-1926, 1990 

Redeker, A., Tracer Transport in Multiphase Flow, Semester work, Institut für Strömungs-

mechanik und Elektronisches Rechnen im Bauwesen der Universität Hannover, 1999 



156 References 
 

Reid R. C., J. M. Prausnitz and B. E. Poling, The Properties of Gases and Liquids, Mc Graw-

Hill, Singapore, 1988 

Richards, L. A., Capillary conduction of liquids through porous media, Physics, 1, pp. 318-

333, 1931. 

Rinnert, B., Hydrodynamische Dispersion in porösen Medien: Einfluß von Dichteunter-

schieden auf die Vertikalvermischung in horizontaler Strömung, Mitteilungen des In-

stitutes für Wasserbau, Heft 52, Universität Stuttgart, 1983 

Ritchie, D. M., The Development of the C Language, Second History of Programming Lan-

guages conference, Cambridge Mass., April, 1993 

Rother, T., Improvement of user environment in geometric modeling and grid generation of 

hydrogeologic data, Dissertation, Institut für Strömungsmechanik und Elektronisches 

Rechnen im Bauwesen der Universität Hannover, 2001 (in preparation)  

Sahimi, M., Flow and Transport in Porous Media and Fractured Rock, VCH-

Verlagsgesellschaft, Weinheim, New York, Basel, Cambridge, Tokyo, 1995 

Scheidegger, A. E., General Theory of Dispersion in Porous Media, Journal of Geophysical 

Research, Vol. 66, No. 10, 1961 

Schincariol, R. A. and F. W. Schwartz, An Experimental Investigation of Variable Density 

Flow and Mixing in Homogeneous and Heterogeneous Media, Water Resour. Res., 

26(10), pp. 2317-2329, 1990 

Schulze-Ruhfus, M., Adaptive Verfeinerung und Vergröberung gekoppelter 1D/2D/3D-

Elemente, Diploma thesis, Institut für Strömungsmechanik und Elektronisches Rech-

nen im Bauwesen der Universität Hannover, 1996 

Shao, H., O. Kolditz and W. Zielke, ROCKFLOW- Testbeispiele für Gasströmungen, Report, 

Institut für Strömungsmechanik und Elektronisches Rechnen im Bauwesen der Uni-

versität Hannover, 1995 

Simmons, C. T., K. A. Narayan and R. A. Wooding, Subsurface Hydrology - On a test case 

for density-dependent groundwater flow and solute transport models: The salt lake 

problem., Water Resour. Res., 35(12), pp. 3607-3620, 1999 

Simunek, J., M. Sejna and M. Th. v. Genuchten, The HYDRUS-2D Software Package for 

Simulating the Two-Dimensional Movement of Water, Heat, and Multiple Solutes in 

Variably-Saturated Media, U.S. Salinity Laboratory, USDA, ARS, Riverside, 1999 

Snell, R. W., Three-Phase Relative Permeability in an Unconsolidated Sand, Journal of the 

Institute of Petroleum, Vol. 48, Num. 459, 1962 

Soll, W.E. and M.A. Celia, A modified percolation approach to simulating three-fluid capil-

lary pressure-saturation relationships, Adv. in Water Resources, 16(2), pp. 107-126, 

1993 

Spitz, K., Dispersion in porösen Medien: Einfluss von Inhomogenitäten und Dichte-

unterschieden, Mitteilungen des Institutes für Wasserbau, Heft 60, Universität Stutt-

gart, 1985 



References 157 
 

 

Swartz, B. and B. Wendroff, Generalized Finite Difference Schemes, Math. Comp., 23, pp 37-

49, 1969 

Thorenz, C., Problemangepasste Netzgenerierung zur numerischen Simulation von Migrati-

onsproblemen im Grundwasser, Diploma thesis, Institut für Strömungsmechanik und 

Elektronisches Rechnen im Bauwesen der Universität Hannover, 1995 

Thorenz, C., O. Kolditz and W. Zielke, Numerische Modellierung von Flüssigkeits-Gas-

strömungen im Festgestein.- Weiterentwicklung der Mehrphasenmodelle ROCK-

FLOW-MM und MUFTE, Institut für Strömungsmechanik und Elektronisches Rechnen 

im Bauwesen der Universität Hannover, 1996 

Thorenz, C., O. Kolditz, and W. Zielke, A "method of characteristics" concept for advective 

tracer transport in fracture networks, Int. Assoc. of Sci. Hydrol., Pub. No. 265, IAHS 

Press, Oxfordshire UK, 2000 

Thunvik, R. and C. Braester, Gas Migration in Discrete Fracture Networks, Water Resour. 

Res., Vol. 2, 1991 

UNESCO, Tenth Report of the Joint Panel on Oceanographic Tables and Standards, UNESCO 

Technical Papers in Marine Science, 36, pp. 24ff, 1981 

van Genuchten, M. Th., A closed form equation for predicting the hydraulic conductivity of 

unsaturated soils, Soil Sci. Soc. Am. J., 44(5), pp. 892-898, 1980 

Warren, J. E., and P. J. Root, The Behavior of Naturally Fractured Reservoirs, Society of Pe-

troleum Engineers Journal, pp. 245-255, Sept. 1963 

Witherspoon, P. A., J. S. Y. Wang, K. Iwai and J. E. Gale, Validity of cubic law for fluid flow 

in a deformable rock fracture, Water Resour. Res., Vol. 16, No. 6, pp. 1016-1024, 1980 

Wollrath, J., Ein Strömungs- und Transportmodell für klüftiges Gestein und Untersuchungen 

zu homogenen Ersatzsystemen, Dissertation, Institut für Strömungsmechanik und E-

lektronisches Rechnen im Bauwesen der Universität Hannover, 1990 

Zienkiewicz, O. C. and P. N. Godbole, Finite Elements in Fluids, Vol. 1, Viscous Flow and 

Hydrodynamics, John Wiley and Sons, London, England, 1975 

 





Appendix A: Element matrices for 1D elements 159 
 

 

A Element matrices for 1D elements 
In the following the evaluation of element matrices for a two node element with linear 

weighting and basis functions will be presented. The indices a and b will be used to denote 

node values of nodes a and b, respectively. To simplify the evaluation, the Group FEM is 

used for the one-dimensional elements where noted. Furthermore expressions in the denomi-

nator of an expression are replaced y the corresponding element middle value, because other-

wise computationally very expensive numerical treatment of the integrals would be required. 

The local coordinate of each element is given by l, the length of the element by L. 

Matr ix type A and B: Storage and mass matr ices 

The matrices of type A and B are rather similar, thus only the derivation of a more ge-

neric matrix type will be presented here. 

Streamline upwinded weighting functions will be used for this matrix type. The upwind-

ing factor α must be directed streamline upwards. 
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Within the following equation e denotes the integrant. It is approximated by the element 

middle value. The vector of unknown node values is given by u. 
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Matr ix type C: Flux matr ix 

The derivation is performed in two parts. In the program code it is performed in a simi-

lar way, but the matrices are added upon each other before storing. 

First par t of flux matr ix C 
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Second par t of flux matr ix C 

One possibility is the evaluation with the Group FEM: 
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The equation presented above describes the resulting flux matrix if the Group FEM ap-

proach is used. Another possibility derivation for the matrix uses element middle values for 

the denominator: 
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Matr ix type D: Gravitation matr ix 

The gravitation matrix is very similar to the flux matrix, the treatment is equivalent. The 

first part of matrix type D is: 
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