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Zusammenfassung

In der Arbeit werden zwei wichtige Techniken für laser-interferometrische Gravitationswellen-
detektoren behandelt, die beide entscheidende Bedeutung für die gerade im Bau befindlichen
großen Detektoren haben, insbesondere für GEO600. Die Arbeit wurde am Max-Planck-
Institut für Quantenoptik in Garching durchgeführt, und insbesondere an dem dort befindlichen
Prototyp-Interferometer mit 30m Armlänge.

Die erste Technik, ‘autoalignment’, dient zur automatischen Justierung und Regelung der Win-
kelfreiheitsgrade eines Interferometers. Grundlage sind die früheren Arbeiten von Ward und
Morrison, die mit der von ihnen entwickelten Technik ‘differential wavefront sensing’ ein Fabry-
Perot-Interferometer mit insgesamt vier Winkelfreiheitsgraden automatisch justiert haben. In
der vorliegenden Arbeit wird diese Technik für allgemeinere Interferometer erweitert, insbeson-
dere für ein Michelson-Interferometer mit ‘power recycling’. Es werden die dafür nötige Theorie
und der praktische Aufbau eines solchen Systems für den Garchinger Prototypen beschrieben.
Das entwickelte System erlaubt es, alle zehn Freiheitsgrade eines Michelson-Interferometers mit
‘power recycling’ von elektronischen Regelkreisen justieren zu lassen, so daß die Positionen
aller Strahlen in einem solchen Interferometer nur noch durch die Positionen des Strahlein-
kopplers und zweier Detektoren bestimmt sind, und dabei alle miteinander interferierenden
Strahlen optimal übereinanderliegen. Für die beiden wichtigsten Freiheitsgrade (diejenigen des
Michelson-Interferometers) wird eine verbleibende Regelabweichung von ca. 20 nrad rms (in-
tegriert über den Frequenzbereich von 0.1Hz bis 100Hz) erreicht. Dies entspricht 0.6µm auf
30m, bei einem Strahldurchmesser von 2mm. Das autoalignment-System funktioniert sehr
zufriedenstellend, insbesondere auch noch nach dem Umbau auf Schnupp-Modulation und du-
al recycling. In einem separaten Abschnitt (2.10) werden Fehlersignale für die automatische
Justierung von GEO600 berechnet.

Die zweite Technik, ‘dual recycling’, erlaubt es, die Empfindlichkeit eines Michelson-Interfe-
rometers für Gravitationswellen zu erhöhen. Durch Hinzufügen eines weiteren Spiegels (des
‘signal recycling’-Spiegels MSR) werden die Phasenmodulations-Seitenbänder des Lichtes, die
dem zu messenden Signal entsprechen, resonant überhöht und so am Meßausgang verstärkt
(die Speicherzeit des Interferometers für diese Signal-Seitenbänder wird optimiert). Signal
recycling hat zwei mögliche Betriebszustände, die als ‘broadband’ und ‘detuned’ bezeichnet
werden. Die maximale Empfindlichkeit liegt im ersten Fall bei DC (0Hz), und im zweiten
Fall bei einer vom Anwender wählbaren höheren Frequenz. In der vorliegenden Arbeit werden
zunächst verschiedene mathematische Modelle eingeführt, mit denen das Verhalten eines Inter-
ferometers simuliert werden kann. Mit Hilfe dieser Modelle werden dann die Eigenschaften und
insbesondere die Regelsignale des Garchinger Prototypen diskutiert. Beide Betriebszustände
wurden am Prototypen experimentell demonstriert, und die beschriebenen Experimente stel-
len die erste Demonstration von signal recycling (bzw. dual recycling) an einem Interferometer
mit aufgehängten Spiegeln dar. Die gemessene Signalüberhöhung und deren Frequenzgang
sind in guter Übereinstimmung mit der Theorie. Ein weiterer wichtiger Effekt von dual recy-
cling, die Kontrast-Verbesserung des Michelson-Interferometers durch die Unterdrückung von
höheren transversalen Moden, wurde ebenfalls beobachtet. Die zur Regelung des Interferome-
ters verwendeten Techniken werden die Grundlage der entsprechenden Systeme von GEO600
darstellen.

Im Anhang werden verschiedene nützliche elektronische Schaltungen sowie ein ebenfalls im
Rahmen dieser Arbeit geschriebenes Programm zur Simulierung und Optimierung von elektro-
nischen Schaltungen beschrieben.

Schlüsselwörter: Gravitationswellendetektor, Autoalignment, Dual Recycling.
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Preface

The direct detection of gravitational waves by laser interferometry is expected to be
accomplished within the next years and will be one of the most exciting developments
in physics and astrophysics. Much has been written about the history and principles
of these efforts (see, e.g., [Thorne87, Saulson, Blair]) and that is not repeated here.

Currently there are four projects worldwide that are constructing large laser interferom-
eters. These are LIGO in the US, the French-Italian VIRGO project, TAMA in Japan
and the German-British GEO600. This work was carried out as part of the research
for the GEO600 project, which is being built near Hannover. The Max-Planck-Insitut
für Quantenoptik, which is the main German participant in GEO600, has for many
years been operating prototype interferometers in Garching near München. Since 1983
the prototype has 30m armlength and is known as the Garching 30m prototype. The
author has performed two main experiments at the 30m prototype, which were both
carried out in preparation for the construction of GEO600.

The first was the development of an automatic beam alignment system (short: ‘au-
toalignment’) for the 30m prototype, which is described in Chapter 2. It is based on the
differential wavefront sensing technique by Ward, Morrison and others [Morrison94],
who have used this technique to automatically align a Fabry-Perot cavity with four
angular degrees of freedom. In this work the technique is extended to more general
interferometers, in particular a Michelson interferometer with power recycling. Both
the necessary theory and the practical development of a working system for the 30m
prototype are described. The system allows to have all ten angular degrees of free-
dom of such an interferometer automatically aligned by electronic control loops, such
that the position of all beams is determined only by the lateral position of the beam
injector and of two photodetectors, and all interfering beams overlap optimally. For
the two most important degrees of freedom, those of the Michelson interferometer, the
remaining rms alignment noise (integrated from 0.1 to 100Hz) is about 20 nrad, which
is equivalent to 0.6µm over 30m and which must be compared with the beam diameter
(approximately 2mm). The system in the prototype works well and continued to do
so after the change from external modulation to Schnupp modulation and the intro-
duction of dual recycling. The main results are about to be published [Heinzel99]. In
Section 2.10 error signals for the autoalignment of GEO600 are computed.

The second experiment, subject of Chapter 1, was the implementation of dual recycling
(i.e. the combination of power recycling and signal recycling). As is explained in detail
in Section 1.1, the signal storage time in a simple Michelson interferometer intended
for gravitational wave detection is too short for the most promising signal frequencies
(approximately 100 to 1000Hz), unless the arms were hundreds of kilometers long.

For armlengths of order kilometer, there are currently two main alternatives considered
realistic for optimizing the signal storage time: Fabry-Perot cavities in the arms and
signal recycling.

All projects apart from GEO600 will use Fabry-Perot cavities in the arms and consider
signal recycling an option for future stages of their project, whereas GEO600 has no
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arm cavities and needs to implement dual recycling from the beginning.

While the principle of signal recycling was invented more than ten years ago, and a
table-top experiment confirmed the most important predictions soon after, dual recy-
cling had never been implemented on a prototype with suspended mirrors, and with a
control scheme that resembles the one planned for GEO600. This gap has been filled
by this work.

The most important topic treated in Chapter 1 is the control of a dual recycled inter-
ferometer, which includes the generation of error signals, the design of feedback loops
and the study of lock acquisition. For this purpose, various mathematical models are
presented that are used to simulate an interferometer. These models are then used to
analyze the behaviour and the error signals of the 30m prototype.

There are two main modes of operation in dual recycling, called ‘broadband’ and ‘de-
tuned’. In broadband operation, the maximal sensitivity extends from DC (0Hz) to
some corner frequency, whereas in detuned operation the maximal sensitivity is reached
at an arbitrary user-selectable center frequency. Both these modes of operation have
been realized in the 30m prototype. The signal enhancement and its frequency response
were in good agreement with theory. Another important effect of dual recycling, the
contrast improvement by suppression of higher order transverse modes, was also ob-
served in the experiment. The main results of the broadband experiment have recently
been pulished as a letter [Heinzel98].

Inevitably many specialized electronic devices were needed in the experiment. Some
were available from earlier experiments, but many were built by the author. A few
circuits that might also be useful for other experiments are described in Appendix B.
During this work the author has written a program (called ‘Liso’) that is helpful in
designing electronic circuits. While a full description of the program was omitted in
this work for space reasons, a short summary of its features and principles is given in
Appendix C.

Keywords: Gravitational wave detector, Autoalignment, Dual Recycling.
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Glossary

Some commonly used terms, abbreviations and symbols are listed here with a short
description of their usual meaning in this work.

AM: amplitude modulation.

AOM: an acousto-optic modulator (used to shift the frequency of a light beam).

autoalignment: the automatic beam alignment system of the prototype, subject of
Chapter 2.

beam injector: the last component determining the position and angle of the beam
hitting the PR mirror.

broadband: the state of a signal recycled interferometer when the the SR cavity is
resonant for the carrier frequency (see Section 1.5.1).

BS: a beamsplitter, usually the main beamsplitter of a Michelson interferometer.

camera: term used in Garching for a photodiode in an assembly together with pream-
plifiers etc.

CCD: charge-coupled device, used in a videocamera.

contrast: defined in Section 1.9.

DC: the average of a fluctuating signal; also used to indicate the limit of some function
for low frequencies.

detuned: the state of a signal recycled interferometer when the carrier frequency is not
resonant in the SR cavity (see Section 1.5.1).

DR: dual recycling (i.e. the combination of power and signal recycling).

EOM: an electro-optic modulator (used for modulating or shifting the phase of a light
beam); see also ‘Pockels cell’.

first loop: the loop that locks the laser frequency to the reference cavity for frequency
prestabilization (see Sections 1.6.1.2 and A.2).

FPZT: the fast piezo in the laser (see Section A.2).

FSR: the Free Spectral Range of a cavity (see Appendix D).

FWHM: the Full Width at Half Maximum of a cavity (see Appendix D).

KDP: ‘Kaliumdihydrogenphosphat’, potassium dihydrogen phosphate (KH2PO4), hy-
groscopic material used for Pockels cell crystals (see, e.g., [Yariv]).

KD∗P: KDP with the hydrogen atoms replaced by deuterium (KD2PO4), hygroscopic
material used for Pockels cell crystals (see, e.g., [Yariv]).
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local control: the feedback system installed for each suspended mirror that damps the
pendulum resonances and allows to feed in control signals (see Section A.3.1).

longitudinal: in the direction of the beam axis.

LISO: a program for ‘Linear Simulation and Optimization’ of analog electronic circuits
(see Appendix C).

M: a mirror.

M1 = ME and

M2 = MN: the two end mirrors.

MPR = MW: the power recycling mirror.

MSR = MS: the signal recycling mirror.

Michelson: the Michelson interferometer formed by the beamsplitter BS and the two
end mirrors M1 and M2, often used to specifically indicate this part of a more
complex interferometer.

Mix: an electronic mixer (for low frequencies, usually an analog multiplier; for radio
frequencies, a double-balanced diode mixer).

N,E,W,S: directions seen from the beamsplitter, see Figure 1.2 (used in this order in
Jun’s program).

op-amp: an operational amplifier.

PD: a photodetector (usually a photodiode).

Piezo: a piezo-electric transducer, used to control the microscopic position of a mirror;
see also ‘PZT’.

Pockels cell: used as synonym for EOM.

PR: Power recycling.

PZT: originally ‘Lead Zirconate Titanate’, Pb (Zr0.52Ti0.48)O3, a piezoelectric mate-
rial; often ‘PZT’ is used as a synonym for a piezo-electric transducer.

rotation: a movement of a suspended component that causes a horizontal movement of
the affected beam (cf. ‘translation’ and ‘tilt’).

RF: radio frequency (in the prototype usually around 10MHz).

rms: root mean square.

second loop: the loop that locks the prestabilized laser frequency to a resonance of the
PR cavity (via the first loop, see Section 1.6.1.2).

SNR: signal-to-noise ratio.
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SPZT: the slow piezo in the laser (see Section A.2).

SR: Signal recycling.

throughput: the coupling efficiency of the Schnupp modulation sidebands from their
place of generation (EOM) to the main output.

tilt: a movement of a suspended component that causes a vertical movement of the
affected beam (cf. ‘rotation’ and ‘translation’).

translation: a longitudinal movement of a suspended component (cf. ‘rotation’ and
‘tilt’).

tuning: the microscopic position of a mirror that determines the resonance condition
of an interferometer (see Setion 1.2.3).

VCO: a voltage-controlled oscillator (driving the AOM).

A: the total power loss of a mirror or beamsplitter, A = 1− ρ2 − τ2.

a, b: amplitudes of various light beams in models.

c: the speed of light in vacuum, 299792458 m/s.

C: a capacitor, also used for its capacitance (in Farad).

d: the ‘resonance factor’ of a cavity (see Equation (D.5)).

E: the electric field.

f : a frequency with the unit Hz.

fdet: the frequency of the sensitivity peak in detuned dual recycling (see Section 1.10).

fm, ωm: the modulation frequency for Schnupp modulation or external modulation.

fsig, ωsig: signal frequency (of gravitational waves or test signals).

F : the finesse of a cavity, F=FSR/FWHM (see Appendix D).

G: the ‘frequency response’ of the interferometer (see Sections 1.4.3 and 1.4.5).

Gn: normalized frequency response (see Equation (1.85)).

H: the ‘static response’ of the interferometer (see Section 1.4.2).

Hi(x): in Chapter 2, the Hermite polynomials.

h: the strain in space caused by a gravitational wave (see Section 1.4.4).

I: a current, in particular a photocurrent.



GLOSSARY xxiii

i:
√
−1.

J0, J1, . . . the Bessel functions of the first kind (see Section 1.2.1.1).

k: the magnitude of the wave vector of a light beam, k = ω/c, also used for an offset
to the carrier wavenumber (see Section 1.2.3).

L: a physical armlength or distance in the interferometer (see also the footnote on
page 33); also an inductor or its inductance (in Henry).

m: modulation index (in radians) of a modulation, usually a phase modulation (see
Section 1.2.1.1).

N : the number of ‘folds’ of the beam in a delay-line system (N = 2 in GEO600).

n: the index of a higher order transversal mode (see Section 1.9); also the index of
refraction; also the noise amplitude in Section 1.4.6.

p: the microscopic pathlength difference between the two Michelson arms, used in the
calibration (see Section A.5.1), p = ∆ϕλ/(2π).

Q: the quality factor of a resonant system.

q: a complex parameter describing a Gaussian beam (see Section 2.5).

R: a radius of curvature (of a mirror or wavefront); also a resistor or its resistance (in
Ohms).

U : a voltage.

u0, u1: modal functions describing the transverse structure of a laser beam (see Sec-
tion 2.2).

V : longitudinal output signal from a quadrant photodetector (see Section 2.3).

W : alignment output signal from a quadrant photodetector (see Section 2.3).

w: the radius (half-width) of a laser beam (see Section 2.2).

w0: the radius of a laser beam at its waist.

x, y, z: the three spatial dimensions, with z usually indicating the beam axis or the
direction of propagation.

Z: an impedance (usually complex).

zR: the Rayleigh range of a laser beam (λzR = πw
2
0, see Section 2.2).

α: the angle by which a component is misaligned (see Section 2.2).

β: the angle between the axes of a misaligned beam and its reference in Section 2.2;
also used as the angle corresponding to α in the other dimension in section 2.10.3.

γ: the angle between two wavefronts (see Section 2.2).
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δ: the angle corresponding to γ in the other dimension in section 2.10.3.

∆L: the (small) difference between the lengths of the two long arms used in Schnupp
modulation.

∆ϕ: the phase difference between the two interfering beams in a Michelson interferom-
eter.

η: the Guoy phase shift.

θ: an angle describing the ‘character’ of a misalignment (see Section 2.2).

θw: an angle describing the ‘character’ of a misalignment at the beam waist (see Sec-
tion 2.2).

θd: an angle describing the ‘character’ of a misalignment at a detector (see Section 2.2).

κ: the ‘amount’ of a misalignment (see Section 2.2).

λ: the wavelength of the light, 514 nm in the prototype (1064 nm in GEO600).

ρ: the amplitude reflectivity of a mirror or beamsplitter.

τ : the amplitude transmittance of a mirror or beamsplitter.

Φ: the combined Guoy phase shift of a combination of lenses and sections of free space
(see Sections 2.2 and 2.5).

ϕ: a tuning (i.e. microscopic position of one or several mirrors) of one degree of freedom
of the interferometer (see Sections 1.2.3 and 1.4).

ϕMI: the Michelson tuning, implemented in the models as ϕN = −12ϕMI, ϕE = 12ϕMI.

ϕPR: the tuning of the power recycling mirror (which determines whether the incoming
light is resonant in the interferometer).

ϕSR: the tuning of the signal recycling mirror (which has no influence at a perfect dark
fringe, but influences the gain and frequency response in dual recycling).

χ: the demodulation phase of a mixer, experimentally implemented with a phase-shifter
in the local oscillator line (see Sections 1.4.2 and 1.4.6).

ψ: the phase between signal beam and local oscillator beam in external modulation,
also called the ‘Mach-Zehnder phase’.

ω: an angular frequency ω = 2πf with the unit rad/s.

ℜ{z}: the real part of the complex number z.

ℑ{z}: the imaginary part of the complex number z.

x̃: the linear spectral density of x, with the unit of x divided by
√
Hz.



Chapter 1

Dual Recycling

1.1 Introduction to recycling

In a laser-interferometric gravitational wave detector, the sensitivity fundamentally
depends on two parameters of the system: The amount of light energy stored in the
arms and the storage time of the gravitational wave-induced optical signal in the arms.
These can be changed by implementing the techniques of power recycling and signal
recycling, respectively. The combination of signal recycling and power recycling is called
dual recycling.

The two recycling techniques will be discussed in the following pages, starting with
simple models which will later be refined, as and when necessary.

In all currently operated prototype interferometers and proposed large-scale detectors,
the detection system is based on a Michelson interferometer operated in the dark fringe
condition. The term ‘Michelson interferometer’ in this work is intended to represent the
combination of a beamsplitter and suspended mirrors at the end of two long orthogonal
arms. The directions North, East, West and South, as shown in Figures 1.1 and 1.2
will be used throughout to identify directions as seen from the beamsplitter. ‘North’
and ‘East’ represent the long arms; the light from the laser is injected from the ‘West’,
and ‘South’ represents the detection port.

In the dark fringe condition, all light incident on the beamsplitter will be reflected back
to where it came from, as shown in Figure 1.1. This is true for light coming from
either the West or the South directions in Figure 1.1. This model is simplified in that
it neglects various operational factors, for example:

• The inevitable optical losses in the arms will limit the amount of reflected light
to a fraction less than unity.

• Any asymmetry between the arms and in particular, any deviation of the end
mirrors from their ideal shape, will limit the contrast of the Michelson. In other
words, a certain fraction of the light from each arm will find no component from

1
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Figure 1.1: A Michelson interferometer in the dark fringe condition will essentially look like a
mirror from both ports.

the other arm with which to destructively interfere, and will thus appear at
the ‘other’ port (South or West, if the light was injected from West or South,
respectively).

• Finally this simple model does not hold for the Schnupp modulation sidebands
(see Section 1.5.4).

In spite of these limitations, the simple model is useful to illustrate the principles of
recycling.

1.1.1 Power recycling

If all other parameters remain constant, the shot-noise limited sensitivity of the detector
will improve in proportion to the square root of the light power in the arms. All planned
detectors will use power recycling to increase this power. As seen from the laser, the
Michelson in the dark fringe state will look like a highly reflective mirror for the incident
light. By placing another mirror, the power recycling mirror MPR, between the laser
and Michelson, a Fabry–Perot cavity is formed, the power recycling cavity (PR cavity,
see Figure 1.2). This cavity must be kept resonant with the laser light, usually using
the Pound-Drever-Hall scheme [Drever83b].

If the relative power losses of the Michelson interferometer for the light have a given
valueA (usually they will be minimized as far as technically possible, e.g. A = 1000ppm
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Figure 1.2: Power recycling resonantly enhances the light power circulating in the arms. The
directions North, East, West and South, as shown above, will be used throughout this work to
identify directions as seen from the beamsplitter.

in power), then the optimal transmission of MPR should also be
1 A; this is the

‘impedance-matched’ case. The power buildup in the cavity is then given by 1/A
(see Appendix D).

In the GEO600 setup, which has no cavities in the arms, there is an important limita-
tion to the power in the arms: All power must pass through the beamsplitter substrate.
Although materials with extremely low absorption loss (a few ppm/cm at 1064 nm)
have been developed, there is still a non-negligible amount of power absorbed in the
beamsplitter, which will cause a thermal lens effect with various associated problems.

Power recycling is a well-established concept which is discussed in various publications
(see, e.g., [Drever83c, Drever83d, Schilling:PR, Schnier97]). This work will concentrate
on the experimental realization of this technique in the Garching 30m prototype.

1.1.2 Signal recycling and RSE

The second fundamental parameter influencing the sensitivity of the detector is the
interaction time of the gravitational wave with the light.

One way to describe the effect of a gravitational wave is to say that it induces a phase
modulation on light travelling in a given direction in the arms (with respect to the
propagation of the gravitational wave, see also Section 1.4.4). The effect is the same as
if the index of refraction of the traversed medium were to be modulated. Consequently

1This is true if the losses of MPR itself are negligible to the losses A in the rest of the interferometer.
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modulation sidebands appear on the light (see Section 1.2.1.1 below), and the light
can now be regarded as consisting of a high power carrier with much weaker sidebands
imposed by the gravitational wave.

For this simplified discussion, we assume optimal orientation of the Michelson and
polarization of the gravitational waves.

Due to the quadrupole nature of the gravitational waves, the modulation sidebands are
generated with opposite sign in the two arms, and upon their first encounter with the
beamsplitter they interfere constructively towards the South port.

In the absence of any signal recycling, the modulation sidebands produced by the
gravitational wave immediately leave the interferometer (see Figure 1.3).

Figure 1.3: A gravitational wave produces phase modulation sidebands of opposite sign in the
two arms. They are separated from the carrier by the beamsplitter.

Their interaction time with the gravitational wave is thus given by the round-trip travel
time in the arms, 2L/c. For a signal frequency of 1000Hz, the optimal armlength would
be in the order of 100 km — impossible to realize on Earth.

The interaction time can be increased by the use of (non–resonant) optical multi-
reflection delay lines (‘Herriot delay lines’) in the arms; this was studied in detail at
Garching [Winkler]. Two main problems were identified: The mirror size becomes
very large (and thus very hard to manufacture with the necessary high quality), and
stray light produces spurious signals that can even be resonantly stored in the arm and
will cause excess noise. Because of these results, Herriot delay lines are currently not
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considered a realistic approach for large-scale gravitational wave detectors. However,
GEO600 will use the simplest form of a delay line (‘DL4’)2 to double the effective
armlength.

At this point there are two ways to increase the signal storage time: By the use of Fabry-
Perot cavities in the long arms, or alternatively by implementing signal recycling. Both
of these approaches have their merits and problems.

With the exception of GEO600, all other projects (LIGO, VIRGO, TAMA) have chosen
a basic configuration with cavities in the arms. These require a more complex control
scheme, since the cavities must also be kept resonant. An advantage is that most of
the power appears only inside the arm cavities and never needs to pass through the
beamsplitter (or any other substrate), such that the thermal lensing problems in the
substrates are reduced. However, thermal lensing can and will also appear due to
absorption in the mirror coatings.

The present ‘first generation’ concepts for LIGO, VIRGO and TAMA do not plan to
use any mirror in the south port. Then the signal storage time is given by the length
and finesse of the arm cavities and cannot easily be changed. More flexibility can
be obtained by placing an additional mirror in the south port. This configuration
is called either ‘signal recycling’ or ‘resonant sideband extraction’, depending on the
microscopic position (‘tuning’) of the additional mirror. The effect can either be to
increase the signal storage time (as in signal recycling) or decrease it (as in resonant
sideband extraction, which is useful only with arm cavities). In fact these two cases
are only the endpoints of a continuum of possible tunings, with the intermediate points
called ‘detuned’. These detuned cases may also be useful and cannot easily be classified
as either ‘resonant sideband extraction’ or ‘signal recycling’.

Resonant sideband extraction is an interesting configuration for interferometers with
arm cavities. It allows the use of high-finesse cavities in the arms, with a bandwidth
optimized for maximal light energy stored in the arms. The signal storage time, which
is then usually too large, can be reduced independently of the carrier storage time.
Resonant sideband extraction was first proposed and demonstrated in a table-top model
by the Garching group [Mizuno93, MPQ203, Heinzel95, Heinzel96]. It is now seriously
considered for the second generation of the LIGO interferometers.

Interferometers with arm cavities are not considered in the remainder of this work.

In the Michelson without arm cavities, the signal storage time can be increased with a
signal recycling mirror (MSR in Figure 1.4). This configuration was chosen for GEO600
and investigated in the 30m prototype and is the subject of this work. Signal recycling
and dual recycling were first proposed and demonstrated by the Glasgow group around
ten years ago [Meers88, Meers89, Strain91].

The partially reflecting signal recycling mirror MSR reflects the signal sidebands back
into the interferometer. Again, the Michelson looks like a mirror and reflects the signal
sidebands back towards MSR after each roundtrip in the arms. A cavity is formed for the

2The notation means that the roundtrip path length is four times the physical armlength. This is
achieved with an extra ‘near’ mirror and is not a Herriot delay line.
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Figure 1.4: The signal sidebands can be resonantly enhanced in the signal recycling cavity, thus
increasing the signal storage time.

signal sidebands, the signal recycling cavity (SR cavity). We assume the macroscopic
armlength to be fixed by the construction. The finesse of the SR cavity (and hence the
signal storage time) can be chosen independently of the carrier storage time, which is
determined by the PR cavity finesse. This gives great flexibility in the design of the
detector. Of course, MSR must be controlled by appropriate servo loops to reach and
maintain its desired position.

The following citation from K. Strain [Strain91] is still applicable to this work: “Note
the rather counterintuitive nature of this system: The signal is enhanced by placing a
mirror in front of the photodetector. This is all the more motivation for an experimental
demonstration.”

1.1.3 Detection of the signal by modulation methods

Before we can enter a more quantitative discussion of dual recycling, the detection
of the signal must be discussed. In a simple Michelson interferometer without any
modulation scheme, the power at the output port near the dark fringe depends nearly
quadratically3 upon the phase difference ∆ϕ between the two interfering beams (see

3In a perfect Michelson with no recycling, the exact dependence would have the form sin2(∆ϕ/2).
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Figure 1.5). For this discussion, we again assume a Michelson interferometer with
perfect contrast.
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Figure 1.5: Near the dark fringe, the power in the output beam depends nearly quadratically
on the phase difference ∆ϕ.

The aim is to extract information about ∆ϕ from the power at the output port. For
various reasons (most importantly, maximal power buildup in the PR cavity), the dark
fringe is chosen as operating point. If we try to use the power at the output port to
directly measure ∆ϕ then we lose the sign and have infinitesimally small slope at the
precise operating pount.

The problem can be solved by using a modulation scheme for the readout4. Because we
want to read out optical phase, an optical phase modulation technique is appropriate.
It is applied in one of three possible ways discussed below.

Easiest to understand is the ‘internal modulation’ where the phase difference ∆ϕ is
directly modulated (e.g. by an oscillatory small motion of one or both mirrors or else by
an electro-optic modulator in one or both arms). This situation is shown in Figure 1.6.
For illustrative purposes, three different operating points a, b and c are shown with
phase differences of ∆ϕ = −0.06 rad, 0 rad and 0.04 rad respectively.

The detected power will in general contain a component at the modulation frequency
(see Figure 1.7). The amplitude of this component will be proportional to the phase
difference ∆ϕ which we ultimately want to measure. The detected power also contains
components at DC and at twice the modulation frequency, which we ignore for the
present discussion.

The signal can finally be extracted by ‘coherent demodulation’ with the modulation

4There are also other benefits of a modulation method, in particular the measurement of light power
can be ‘shifted’ from the (low) signal frequencies to the much higher modulation frequency, where there
is less technical noise.
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Figure 1.6: When the phase difference is modulated periodically, the output power will change
in the rhythm of the modulation. Three different operating points a, b and c are shown.
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Figure 1.7: The detected power will in general contain a component at the modulation frequency
with an amplitude proportional to the phase difference ∆ϕ. The curves labelled a, b and c refer
to the three operating points shown in Figure 1.6.
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frequency (i.e. multiplication with a copy of the original oscillator signal, usually after
removing the DC component from the power signal by band-pass filtering). After
the demodulation there will be a DC component, which corresponds to our desired
signal (see Figure 1.8). Furthermore there will be some components at the modulation
frequency and twice the modulation frequency, which can be removed by low-pass
filtering. Finally we obtain the signal as a voltage that is proportional to the phase
difference ∆ϕ, and hence preserves the sign of ∆ϕ.
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Figure 1.8: The signal is recovered by removing the DC component of the detected power,
multiplying with the local oscillator (‘coherent demodulation’) and low-pass filtering. The
resulting averaged signal is indicated by the horizontal lines.

It can generally be shown (by Taylor expansion) that this modulation–demodulation
technique with small modulation index yields the derivative of the measured parameter
with respect to the modulated parameter. In our case, the output signal is the derivative
of the power at the detection port with respect to the phase difference ∆ϕ. In this way
the quadratic relationship is transformed into a linear relationship.

Related modulation–demodulation techniques are very widespread in experimental
physics and are also known as ‘lock-in detection’, for example see [Horowitz–Hill, Chap-
ter 15].

The straightforward application of this modulation–demodulation technique to a
Michelson interferometer is called internal modulation. In this technique (which was
used in the Garching prototype in its first years) the phase difference ∆ϕ is modulated
directly, either by dithering one end mirror or else by placing an electro-optic modulator
(EOM) in one or both arms. The detection of the photocurrent now takes place at the
modulation frequency instead of at the signal frequency. Because lasers tend to have
high levels of technical noise in the region of the gravitational wave signal frequencies,
the modulation frequency is usually chosen to be several MHz. This eliminates the
possibility of dithering an end mirror and leaves the EOM as the only practical modu-
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lator. If power recycling is implemented, all light power would have to pass through the
EOM. As we have seen, even the ultra-low loss material of the beamsplitter will already
cause problems by absorption, when it is traversed by the high-power beam. This is
even more significant for the EOM, which will have much higher absorption. Hence the
technique of internal modulation is not suitable for high-power interferometers.

Instead we will consider related but slighty more complicated modulation techniques.
Two important alternatives are external modulation and Schnupp modulation, and these
will be described in Sections 1.3.2 and 1.3.3.

1.2 Common techniques for modelling interferometers

In the following Sections mathematical models for interferometers of varying complexity
will be used. Some common aspects of these models are treated here.

1.2.1 Modulated light and sidebands

Phase modulation of a light beam will appear in two important contexts in this work:
The intentional phase modulation at a radio frequency produced by a Pockels cell, and
the tiny phase modulation of the light in the arms caused by a passing gravitational
wave. Both these effects can be described by sidebands, which are introduced in this
section.

1.2.1.1 Phase modulation

We write the electrical field of the unmodulated laser beam at a fixed point in space in
the scalar representation

E(t) = E0 exp( iω0t) . (1.1)

Phase modulation with the angular frequency ωm = 2π fm and the modulation depth
(‘modulation index’) m yields

Em(t) = E0 exp[ i (ω0t+m cosωmt)]

= E0 exp( iω0t) exp( im cos ωmt).
(1.2)

Using the identity [Gradstein-Ryshik, Vol. 2, No. 8.511]

exp( i m cosα) =
∞∑

k=−∞
i kJk(m) exp( i k α) = J0(m) + 2

∞∑

k=1

i kJk(m) cos(k α)

(1.3)

we find for the amplitude of the modulated light

Em(t) = E0 exp( iω0t)
∞∑

k=−∞
i kJk(m) exp( i kωmt). (1.4)



1.2. COMMON TECHNIQUES FOR MODELLING INTERFEROMETERS 11

Here the Jk(x) are the Bessel functions of the first kind of order k. The first terms of
their Taylor series are:

J0(x) = 1−
x2

4
+O(x4) (1.5)

J1(x) =
x

2
− x3

16
+O(x5) (1.6)

J2(x) =
x2

8
+O(x4) (1.7)

Jk(x) =
1

k!

(x
2

)k
+O(xk+2). (1.8)

Furthermore we have

J−k(x) = (−1)kJk(x). (1.9)

Sometimes the higher orders are needed (see, e.g., Section 2.3), but often a small
modulation index m < 1 can be assumed and we need to consider only the first terms:

Em(t) ≈ E0 exp( iω0t)

×
(
J0(m) + iJ1(m) exp[ iωmt] + iJ1(m) exp[− iωmt]

)

≈ E0 exp( iω0t) (J0(m) + 2 i J1(m) cos ωmt)
≈ E0 exp( iω0t) (1 + i m cosωmt) .

(1.10)

We see from the first equation that the phase modulation has created two sidebands

with a frequency offset of ±ωm against the carrier and with a phase shift of i ∧= 90◦
each. Their amplitude is J1(m) ≈ m/2, i.e. they contain a fraction m2/4 each of
the original (unmodulated) carrier power. The remaining carrier has the amplitude
J0(m) ≈ 1−m2/4, corresponding to 1−m2/2 of the original power.
Note that if we start with an (essentially equivalent) modulation signal given by sinωmt
instead of cosωmt, we have to apply a slightly more complicated identity:

exp( i m sinα) =

J0(m) + 2 i
∞∑

k=0

J2k+1(m) sin((2k + 1)α) + 2
∞∑

k=1

J2k(m) cos(2k α). (1.11)

The modulated field with only the first sidebands now becomes:

E′m(t) ≈ E0 exp( iω0t)

×
(
J0(m)− J1(m) exp[ iωmt] + J1(m) exp[− iωmt]

)

≈ E0 exp( iω0t) (J0(m) + 2 i J1(m) sinωmt)
≈ E0 exp( iω0t) (1 + i m sinωmt) .

(1.12)

Note the missing factor ‘i’ in the first equation and the different signs as compared to
Equation (1.10). We usually prefer Equation (1.10) over Equation (1.12) because the
former is more symmetrical and easier to remember.
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1.2.1.2 Amplitude modulation

A small amplitude modulation, on the other hand, yields spectra given by

E0 exp( iω0t) (1 +m cosωmt) =

E0 exp( iω0t)
(
1 +

m

2
exp[ iωmt] +

m

2
exp[− iωmt]

)
(1.13)

for a modulation with cosωmt and

E0 exp( iω0t) (1 +m sinωmt) =

E0 exp( iω0t)
(
1− i m

2
exp[ iωmt] + i

m

2
exp[− iωmt]

)
(1.14)

for a modulation with sinωmt. This can easily be understood and remembered with
the help of phasor diagrams, as explained e.g. in [MPQ203, Section 2.2].

1.2.1.3 Frequency modulation

When looking at laser noise, we also have to consider a frequency modulation of the
light field. A sinusoidal frequency modulation at the frequency ωm with the modulation
depth ∆ω can be expressed by

E(t) = E0 exp( iφ(t)),

φ(t) =

∫
(ω0 +∆ω sinωmt)dt.

(1.15)

Note that one might be tempted to write

φ(t) = (ω0 +∆ω sinωmt)t, (wrong) (1.16)

but this yields wrong results5. From Equation (1.15) it follows immediately that

φ(t) = ω0t−
∆ω

ωm
cosωmt,

E(t) = E0 exp( iω0t) exp

(
− i ∆ω

ωm
cosωmt

)
.

(1.17)

Hence a sinusoidal frequency modulation behaves like a phase modulation of the same
frequency with the modulation index

mFM =
∆ω

ωm
. (1.18)

5The frequency, given by dφ/dt, would become

ω = ω0 +∆ω sinωmt+∆ω ωm t cosωmt,

and the last term, which is proportional to t, is wrong.
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In communications theory (see e.g. Reference [Razavi]), one distinguishes between nar-
rowband FM, which is characterized by m≪ 1 and its opposite, wideband FM.

The spectrum of a narrowband FM signal contains (apart from the carrier) mainly the
first upper and lower modulation sidebands, separated from the carrier by ωm. It is
described by Equations (1.10) and (1.18).

A wideband FM signal, on the other hand, contains many spectral components at
multiples of ωm from the carrier. As an example, Figure 1.9 shows the spectrum of
a 100 kHz carrier, modulated at 1 kHz (ωm = 2π · 1 kHz) with a modulation depth of
∆ω = 2π · 10 kHz, i.e. mFM = 10.
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Figure 1.9: Spectrum of a frequency modulated signal with mFM = 10. The phase of each
component is one out of 1, i , −1 or − i , but the figure shows only the absolute values.

1.2.2 Description of mirrors and beamsplitters

Next we have to treat the splitting of light in two parts by a partially reflecting surface.
Such a surface (e.g. a partially reflective mirror, see Figure 1.10) can be described by
its amplitude reflectivity ρ and amplitude transmittance τ , which obey

ρ2 + τ2 +A = 1, (1.19)

where A represents the power loss and ρ and τ are nonnegative real numbers with
0 ≤ ρ, τ ≤ 1. Strictly speaking, the reflectivity may be different from the two sides,
but we can ignore this possibility for the low-loss optics generally used in gravitational
wave detectors.

Now the amplitudes b and c that emerge from the mirror can be represented as linear
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Figure 1.10: Amplitudes at a mirror.

combinations of the incoming amplitudes a and d:

(
b
c

)
=

(
i τ ρ
ρ i τ

)
·
(
a
d

)
. (1.20)

The factors ‘i’ are necessary to ensure energy conservation. Equivalently the matrix(
τ i ρ
i ρ τ

)
can be used6. Other matrices are possible (such as

( τ ρ
−ρ τ

)
) but less desirable

because of their asymmetry. Note that J. Mizuno in his work [MPQ203, Mizuno99]
uses an equivalent expression which couples the amplitudes on the right side, b and d,
to those on the left side of the mirror, a and c:

(
b
d

)
=
i

τ

(
1−A −ρ
ρ −1

)
·
(
a
c

)
. (1.21)

This form allows the multiplication of matrices that represent components following
each other ‘in line’. Since, however, in the end a set of linear equations needs to
be solved anyway, the author sees no particular advantage in this notation and uses
Equation (1.20) throughout this work.

Figure 1.11: Amplitudes at a beamsplitter.

A beamsplitter (see Figure 1.11) can similarly be described by two sets of linear equa-

6These relationships were probably derived many times independently by many people. The first
reference known to the author is [Rüdiger78]. The subject is also briefly treated in [Siegman].
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tions:
(
be
bn

)
=

(
i τ ρ
ρ i τ

)
·
(
aw
as

)
,

(
bw
bs

)
=

(
i τ ρ
ρ i τ

)
·
(
ae
an

)
.

(1.22)

In practice all we need to remember is to use ‘ i τ ’ as amplitude transmittance and ‘ρ’
as amplitude reflectivity.

1.2.3 Treatment of ‘lengths’ and ‘tunings’

At this point it is convenient to explain the treatment of ‘armlengths’ and ‘tunings’ in
our interferometer models (the simple models given explicitly in Section 1.3, the more
detailed models of Section 1.4 and also the autoalignment models). The following may
seem mathematically trivial, but is essential for successful application of the presented
models to real interferometers. For simplicity we use the word ‘length’ for all distances
between mirrors, beamsplitters etc.

We are not interested in the absolute value of any length to the precision of the light
wavelength. There are more than 108 wavelengths in one roundtrip through the arms of
our prototype (60m), and even more in GEO600. So far it has never been necessary in
our prototype (and it may even be impossible) to determine the exact integral number
of wavelengths in any macroscopic length. The macroscopic length is important for
modulation frequencies (no more than 50MHz) and signal frequencies (no more than
a few 100 kHz, including calibration signals), and hence an accuracy of order 1mm is
sufficient.

On the other hand, the resonance condition of an interferometer (e.g. a Michelson
interferometer or a Fabry-Perot cavity) is determined by mirror motions measured in
small fractions of a wavelength, and is usually periodic with the period of one (or one
half) wavelength.

Severe numerical problems would result if we expressed both the absolute armlength
and its fine tuning in one single number. Therefore we split this information in two
parts: The macroscopic length L and the tuning ϕ. The length L is expressed in meters
and changes the phase of modulation and signal sidebands, as explained below. The
tuning ϕ is expressed in radians, where 2π is equivalent to a pathlength difference of
one wavelength λ and is used to change the relative phase of interfering light beams by
multiplying the relevant light amplitudes with exp( iϕ).

As an example, consider a component of a light beam with the angular frequency
ω = ω0 + ω1, where ω1 ≪ ω0. Typically ω0 is the carrier frequency ω0 = 2π c/λ,
whereas ω1 is a small frequency offset, such as caused by a phase modulation

7. The

7For the laser light used in GEO600, ω0/(2π) equals 2.8 · 10
14 Hz, whereas the highest modulation

frequency will be no more than 50MHz, i.e. more than six orders of magnitude smaller.



16 CHAPTER 1. DUAL RECYCLING

field of the light beam varies with

a0 exp[ i (−ωt+ kz)] (1.23)

along the z-axis (the propagation axis). We write this expression as

a0 exp(− iω0t) exp( i k0 z) exp(− iω1t) exp( i k1 z), (1.24)

where k0 = ω0/c and k1 = ω1/c. We consider a fixed point in space z 6= 0 (such as
after propagating a macroscopic length). The term exp(− iω0t) will be common to all
interfering beams in all our applications. It can therefore be dropped since in the end
we compute measurable photocurrents by forming expressions like |a|2 = aa∗, where it
yields unity.

The next term exp( i k0 z), the microscopic phase of the carrier, is also omitted from
the calculations, because it will be represented by a suitable phase ϕ (often called
‘tuning’), which is defined as is most convenient for the particular application and is
usually restricted to the range −π < ϕ < π.

We keep the terms exp(− iω1t), which will reveal the time dependence of the detected
photocurrent, and exp( ik1 z) which describes the corresponding phase delays in the
macroscopic length z. For simplicity we will call k1 also a ‘wavenumber’, although its
typical values are ±ωmod/c or zero.

Having dropped the term exp( ik0 z) means that all phase shifts are referred to the
carrier phase, which is taken to be zero at the point of interest, unless a phase or
tuning ϕ has explicitly been introduced.

1.3 Internal, external and Schnupp modulation

1.3.1 Internal modulation in the sideband picture

In order to illustrate the application and versatility of the sideband picture, we now
treat again the case of internal modulation using sidebands.

We assume a simple Michelson interferometer with perfect mode matching and align-
ment, i.e. the interfering beams have the same transversal spatial structure, such that
we can also omit all transversal geometric factors. Misalignments can, however, also
be treated in a sideband picture, as will be done in Section 2.2 on autoalignment.

Referring to Figure 1.12, we call the amplitude of the incoming laser light a0. We define
the origin of time t = 0 at the moment the beam is split at the beamsplitter. In the
first arm we then have

a1 = i τ a0, (1.25)

where τ is the beamsplitter’s amplitude transmittance.
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Figure 1.12: A Michelson interferometer with internal modulation. The light amplitudes a0
. . . a5 and b1 . . . b4 are shown, as well as the lengths L1 . . . L4. The two Pockels cells are
driven in anti-phase from the modulation oscillator at the frequency fm.

The action of the Pockels cell can now be described as

a2 = a1 (J0(m) + 2 iJ1(m) cos[ωmt− kmL1]) . (1.26)

The term ‘−kmL1’, where km = ωm/c, describes the phase of the modulation oscillator
at the time of the beam’s passage through the Pockels cell. This description is useful for
the present discussion of internal modulation. For other cases (see e.g. the discussion of
Schnupp modulation in Sections 1.3.3 and 1.4), the time delay acquired by traversing
a finite distance will be associated with the phase of the beam.

Following the beam to the end mirror and back to the beamsplitter we get

a3 = a2,

a4 = a3
(
J0(m) + 2 iJ1(m) cos[ωmt− km(L1 + 2L2)]

)
.

(1.27)

Here we made the assumption of a perfectly reflecting end mirror. If losses are to be
included, we just need to multiply a3 with the mirror reflectivity.

Similarly we get for the second arm

b1 = ρa0,

b3 = b2 = b1
(
J0(m)− 2 iJ1(m) cos[ωmt− kmL3]

)
,

b4 = b3
(
J0(m)− 2 iJ1(m) cos[ωmt− km(L3 + 2L4)]

)
.

(1.28)

Finally we recombine both beams at the beamsplitter:

a5 = i τb4 − ρa4 exp( iϕ), (1.29)
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where ϕ is the Michelson phase and the ‘–’ sign was chosen because then ϕ = 0 corre-
sponds to the dark fringe. Note that in principle we could also express the Michelson
phase via the arm lengths L1 . . . L4, but we prefer not to do that (see Section 1.2.3).

The detected photocurrent is proportional to the power in that beam, i.e.

I5 = |a5|2 = a5 · a∗5, (1.30)

where constant factors have been omitted.

When the Equations (1.25) . . . (1.29) are inserted, this expression becomes rather
lengthy and is not given here. It contains various terms with a cosωmt dependency as
well as terms without any ωmt dependency and higher harmonic terms such as cos 2ωmt
and sin 2ωmt.

Most interesting is the coefficient of the cosωmt term, which represents (after demod-
ulation) our output signal. A Mathematica program to compute that term (as well
as the DC term and the higher harmonics, if desired) is printed in Appendix E.1.2.

Here we have introduced some simplifications (perfect mirrors and beamsplitter, equal
armlengths). From the given equations it is, however, clear that more general results
can be derived by the same method in a straightforward fashion. Because of their
complexity they will, however, be useful only in special situations or with particu-
lar numerical values. The resulting expression (with the simplifications L1 = L3 and
L2 = L4) is:

4J0(m)J1(m)
(
J0(m)

2 − J1(m)2 − 2J1(m)2 cos(2kmL2)
)
×

sinϕ cos(kmL2) cos[ωmt− km(L1 + L2)] (1.31)

We now examine the factors of this result. The factor sinϕ tells us the most important
property of the signal: it is linearly proportional to the Michelson phase ϕ near the
dark fringe operating point ϕ = 0.

The very interesting factor cos(kmL2) reflects the time delay which the light beam
experiences between its two passages through the Pockels cell. If kmL2 = π/2, or
equivalently 2L2 = λm/2, i.e. the total pathlength between the two passages equals half
the wavelength λm of the modulation frequency, the output signal completely vanishes
because the phase modulation on the way ‘out’ towards the end mirror is completely
compensated on the way back to the beamsplitter. In earlier experiments in the 30m
prototype, L2 was around 30m and fm was chosen near 10MHz, such that kmL2 ≈ 2π
and the maximum signal was obtained [Schilling].

Finally, the factor cos[ωmt − km(L1 + L2)] indicates that the modulation of the pho-
tocurrent at ωm appears with a time delay equivalent to the one-way travel time in the
total armlength. In our prototype such effects were always ignored since the reference
signal for the demodulator needed an adjustable phase-shift anyway. For the large
interferometers it might however become necessary to carefully compensate such time
delays in order to minimize the influence of phase noise from the modulation oscillator
[Strain].
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The first long factor with the Bessel functions shows how the signal depends on the
modulation index m. For small modulation indices m ≪ 1 this factor becomes 2m.
For larger modulation indices, it reaches a maximum absolute value of around 0.8 at
m = 0.63, if cos(2kmL2) = 0.

This example shows the usefulness of the sideband picture. In Appendix D it is applied
to a Fabry–Perot cavity. The principles involved are exactly the same as explained
above. However, in a cavity (and hence in a recycled interferometer), the linear equa-
tions coupling the light amplitudes to each other form loops and lead in general to
a linear system of equations in the unknown amplitudes. The solution of such a lin-
ear system is theoretically very straightforward, but may lead to algebraically more
complicated expressions for the amplitudes.

The method has been expanded by K. Strain, M. Regehr and J. Mizuno [Mizuno99]
(see Section 1.4).

1.3.2 External modulation

Another scheme to read out the Michelson phase at the dark fringe is external modu-
lation [Drever83a, Man90]. It was used for a few years in the Garching prototype and
also during the first half of this work. It had been proposed for GEO600, but has now
been replaced by Schnupp modulation (which is discussed in Section 1.3.3 and the rest
of this Chapter).

In external modulation, the ‘signal beam’, which emerges as the interfering sum of the
beams from the two arms, is arranged to interfere with another beam, called the ‘local
oscillator beam’. Before they interfere, a phase modulation is applied to one of the
two beams, usually the local oscillator beam. The resulting power of the interference
pattern will contain a component at the modulation frequency, which is proportional
to the Michelson phase, provided that everything is at its proper operating point.

In practice, this procedure can be carried out in several ways. The conceptually simplest
setup is shown in Figure 1.13. The local oscillator beam is split off by the pickoff mirror
PO before the light enters the interferometer, hence it has constant amplitude and a
fixed phase. It is then phase modulated in the electro-optic modulator EOM, which is
driven from the stable oscillator Osc.

In the second beamsplitter BS2, the signal beam and local oscillator beam are made
to interfere. Two interference products emerge, which in principle carry the same
information. For simplicity the diagram shows the detection of only one of them (with
photodiode PD). For optimal signal-to-noise ratio, both beams need to be detected,
otherwise a factor of

√
2 is lost. This loss was accepted in our prototype, but would be

unacceptable in a real gravitational wave detector.

This setup of Figure 1.13 has various practical problems. First, the alignment of the
two beams at BS2 is very difficult. They have travelled very different paths, and
only the signal beam position and direction is influenced by the alignment of the long
arms. Second, proper mode matching is equally difficult. And finally, there are very
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Figure 1.13: Schematic diagram of external modulation. The local oscillator beam is taken
from the injected light.

strict requirements on the frequency stability of the laser source, because the local
oscillator beam has a much shorter path to BS2 than the signal beam. For these
reasons, this setup is used only in table–top demonstration experiments, but not in
suspended interferometers.

Figure 1.14 shows a clever alternative setup, which was employed in the Garching
prototype. The local oscillator beam is picked off the light circulating in one arm
by the rear side of the beam splitter (this idea was first proposed by Lise Schnupp
[Schilling]). Normally this rear side is coated for minimal reflectance; however, in the
setup described here it is intentionally given a small finite reflectivity (approx. 300 ppm
in the Garching prototype).

Both signal and local oscillator beam travel towards the South in parallel. They hit
the ‘recombination plate’ RP, which has the same dimensions as the beamsplitter and
which is suspended either parallel (Figure 1.14) or orthogonal to it. The use of such a
recombination plate was proposed by P. Nelson [Nelson]. Figure 1.15 shows it in detail.

Interference takes place in the central spot of RP’s front surface, which is given a 50:50
beamsplitter coating. In an annulus around this central spot, the front surface is AR
(anti-reflective) coated. Both output beams emerge in parallel. This configuration
avoids the mode-matching problems and reduces very strongly the sensitivity of the
system to misalignments. Furthermore the local oscillator beam is taken from the
same light that circulates in the arms and hence has good coherence with the signal
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Figure 1.14: External modulation with a recombination plate (shown in detail in Figure 1.15).
In practice this configuration is preferable to the one shown in Figure 1.13.

Figure 1.15: Detailed view of the recombination plate. The type of coating in each spot is
indicated by ‘HR’ for high reflectivity, ‘AR’ for anti-reflection coating, and ‘50:50’ for a semi-
reflective beamsplitter coating and symbolized by the linewidth.
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beam.

The phase relationship between the two interfering beams (which will soon be found
to be important and is called the ‘Mach-Zehnder phase’ ψ) can be changed by slightly
rotating the recombination plate about an axis perpendicular to the page in Figure 1.15.

We now compute the output signal that is expected with external modulation, assuming
for simplicity, perfect modematching (i.e. the transversal geometry of all interfering
beams is the same). The amplitudes of the beams returning from the first and second
arm are given by

a1 = c1 exp( iϕ/2),

a2 = −c2 exp(− iϕ/2).
(1.32)

The factor exp( iω0t) describing the common light frequency has been omitted (as de-
scribed in Section 1.2.3). The phase ϕ corresponds to the Michelson phase, earlier
described as ∆ϕ. The negative sign in the second equation is included for later conve-
nience in order to have ϕ = 0 represent the desired dark-fringe operating point. Both
c1 and c2 are positive constants of approximately equal magnitude. The signal beam
is then given by

as = (a1 + a2)/
√
2 . (1.33)

The local oscillator beam is given by

aLO = cLO exp( iψ)
(
J0(m) + 2 iJ1(m) cos ωmt

)
. (1.34)

The positive constant cLO will generally be much smaller than c1 or c2. The phase
ψ (‘Mach-Zehnder phase’) describes the phase shift between signal beam and local
oscillator beam and is of great importance. The modulation of the local oscillator
beam is described by the term containing the Bessel functions, the argument of which
is the modulation index (see Equation 1.10).

The two output beams of the Mach-Zehnder are then given by

o1 = (as + aLO)/
√
2 ,

o2 = (as − aLO)/
√
2 .

(1.35)

The detected photocurrent in the two photodiodes is proportional to |o1|2 and |o2|2,
respectively. These expressions are rather lengthy and not given here. They can be
computed with theMathematica program printed in Appendix E.1.3. The subsequent
coherent demodulation extracts only those components swinging with the modulation
frequency ωm. They are (without the cosωmt term)

u1 =
√
2 cLO J1(m)

(
c1 sin

[ϕ
2
− ψ

]
+ c2 sin

[ϕ
2
+ ψ

])
,

u2 = −u1.
(1.36)
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With the simplification c2 = c1 one obtains

u1 = −
√
2 c1 cLO J1(m) sin

ϕ

2
cosψ. (1.37)

Various interesting facts can be seen from this result. The signal is proportional to the
amplitudes of both the beam in the arm and the local oscillator beam. The term sin ϕ

2

shows that it is a useful signal with maximum slope at the proper point of operation.
The term cosψ indicates the dependence on the Mach-Zehnder phase. It is clear that
ψ must be controlled, because otherwise the output signal might vanish or change sign.
It is exactly this dependence on the additional degree of freedom ψ that makes external
modulation more difficult to control than, for example, Schnupp modulation.

As we have seen, the output signal (demodulated dark fringe photocurrent) in an
interferometer using external modulation has an extra factor cosψ which requires active
control of the Mach-Zehnder phase ψ.

Herein lies a challenging problem that is typical for many complex interferometers:
A group of control loops (Michelson and Mach-Zehnder in this case) can only work
properly when every loop of that group is already working. (For another example see
Section 1.7).

In other words, if the Michelson is not locked to a dark fringe, there is no stable power
recycling. Then the light inside the interferometer will fluctuate wildly in power (by
many orders of magnitude) as well as in phase, because the uncontrolled suspended
mirrors move freely. No meaningful error signal for the Mach-Zehnder phase ψ can be
obtained.

However, without a controlled Mach-Zehnder phase, the Michelson error signal can
vanish or have the wrong sign. Thus, initially, neither of the two loops is locked and
neither has a useful error signal.

A simulation of these interferometer states, when lock has not yet been acquired for
all loops, is possible, but very difficult. The LIGO project is currently writing an ‘end-
to-end’ simulation code with this purpose in mind, which is based both on FFT beam
propagation codes and following the interferometer state over small discrete timesteps
[Yamamoto]. A complete description also needs to include the intermediate error signals
and subsequent actions of the relevant control loops. In the GEO600 project there
is no such effort to simulate such error signals. It is one of the main purposes of
the Garching 30m prototype and in particular of this work to investigate the lock
acquisition experimentally.

Appenix A.7 discusses in more detail the external modulation, which was used for the
first half of this work, and eventually replaced by Schnupp modulation.

1.3.3 Schnupp modulation

The third modulation technique is Schnupp modulation, alternatively known as ‘pre-
modulation’ or ‘frontal modulation’. It will be used in all planned large-scale detectors,
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including GEO600, and it has also been used in the Garching 30m prototype during
the second part of this work.

The basic idea is to create a controlled modulation at the output port by applying a
phase modulation to the laser beam before it enters the interferometer and introducing
an intentional armlength difference ∆L between the two long arms.

In the following description a simple Michelson interferometer without recycling (see
Figure 1.16) will be used as an example. For the mathematical description of Schnupp
modulation in this simple case, a variation of the sideband method will be used, which
has proved to be most flexible and which is used in the simulation programs described
in Section 1.4.

Figure 1.16: A simple Michelson interferometer employing Schnupp modulation. The light
amplitudes a0 . . . a6 used to derive the signal are shown.

Referring to Figure 1.16 and equation (1.10), we can write for the light amplitude a1

a1 = a0 [J0(m) + iJ1(m) exp( iωmt) + iJ1(m) exp(− iωmt)] . (1.38)

Immediately behind the beamsplitter we have

a2 = i τa1 = i τa0 [J0(m) + iJ1(m) exp( iωmt) + iJ1(m) exp(− iωmt)] and
a4 = ρa1 = ρa0 [J0(m) + iJ1(m) exp( iωmt) + iJ1(m) exp(− iωmt)] .

(1.39)
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Now these beams a2 and a4 propagate along the arms, traversing the distances 2L1+∆L
and 2L1 −∆L, respectively.
The phase shift induced on the ωm modulation, which is essential for the function of
Schnupp modulation, is now taken into account by propagating the carrier and each
sideband with its own ‘wavenumber’ k = ω/c (see Section 1.2.3):

k− = −ωm/c for the lower sideband at ω0 − ωm,
k0 = 0 for the carrier at ω0, (1.40)

k+ = ωm/c for the upper sideband at ω0 + ωm.

Hence the beams returning from the arms are given by

a3 = i τa0

[
J0(m)

+ iJ1(m) exp
(
i
(
ωmt+ k+(2L1 +∆L)

))

+ iJ1(m) exp
(
i
(
− ωmt+ k−(2L1 +∆L)

))]
,

a5 = ρa0

[
J0(m)

+ iJ1(m) exp
(
i
(
ωmt+ k+(2L1 −∆L)

))

+ iJ1(m) exp
(
i
(
− ωmt+ k−(2L1 −∆L)

))]
. (1.41)

The two beams a3 and a5 recombine to form the output beam a6 (and another beam
returning towards the laser, which is not considered here). We have

a6 = ρa3 − i τa5 exp( iϕ). (1.42)

The phase ϕ describes the ‘tuning’ of the Michelson interferometer, and the ‘−’ sign was
chosen such that ϕ = 0 conveniently corresponds to the dark-fringe operating point.

The power in the output beam is given by |a6|2, which again has various terms at the
frequencies 0, ωm and 2ωm. Extracting the terms at ωm yields the following expression
(see the program in Appendix E.1.4):

uωm = −2J0(m)J1(m) sinϕ sin
ωm∆L

c
sin

(
ωm

[
t+
2L1
c

])
. (1.43)

After demodulation in the mixer the output signal is given by

u = −2J0(m)J1(m) sinϕ sin
ωm∆L

c
. (1.44)

The output signal has the desired dependence on the Michelson phase ϕ, being linearly
proportional to ϕ near the desired operating point ϕ = 0. The effective modulation
index is given by

meff = 2J0(m)J1(m) sin
ωm∆L

c
≈ m sin ωm∆L

c
. (1.45)
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The dependence on ∆L can be written as sin(2π∆L/λm), using the wavelength λm of
the modulation frequency. It reaches its first maximum for ∆L = λm/4, when the total
pathlength difference (2∆L) between both arms is λm/2 (this is no longer true in a
system with recycling, see Section 1.5.4 below).

1.4 Simulation tools

For a useful simulation of the 30m prototype and GEO600 the models presented in
the previous sections need to be extended to include

• both power- and signal-recycling mirrors,

• arbitrary (non-ideal) reflectivities,

• arbitrary arm lengths (such as the armlength asymmetry needed for the Schnupp
modulation),

• the frequency response of the output signals.

Although analytical solutions can in principle be obtained by the methods described so
far, they become too complicated to be intuitively understandable. It is hence desirable
to find a general method to simulate a complex interferometer. The main application
of that model will be numerical simulations.

This has been carried out by J. Mizuno in collaboration with K. Strain and resulted
in the simulation program described in this section, which will be referred to as “Jun’s
program” in the following sections. The same has also been done in the LIGO project
[Yamamoto], but the resulting program, called Twiddle, has unfortunately not been
available to us when this work was written. However, during a workshop on simulation
tools held in Garching in April 1998 [STAIC] both programs were compared and found
to yield identical results.

1.4.1 The interferometer model

The simulation assumes the general dual-recycling interferometer with Schnupp mod-
ulation as shown in Figure 1.17.

The four directions seen from the beamsplitter are called North, East, West and South.
The West direction is taken to be the input port, South the output and North and East
are the long arms. In each direction from the beamsplitter BS, which has an amplitude
reflectivity ρBS, there are mirrors MN, ME, MW and MS with amplitude reflectivities
ρN, ρE, ρW and ρS respectively at distances LN, LE, LW and LS from the beamsplitter’s
semireflective surface. Furthermore, there are ‘tunings’ ϕN, ϕE, ϕW and ϕS associated
with each of the mirrors, again measured with respect to the beamsplitter. They cause
a phase shift of exp(−2 iϕx) for a beam reflected by the mirror Mx.
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Figure 1.17: The dual recyling interferometer simulated by Jun’s program. For simplicity, the
arm length L, mirror reflectivity ρ and tuning ϕ are symbolically shown only for the north arm,
but are similarly present in the other arms as well.

All four mirrors and the beamsplitter are assumed lossless, i.e. their amplitude trans-
mittance is given by τ =

√
1− ρ2. Losses can be introduced in the interferometer by

assigning a reflectivity ρ < 1 to the end-mirrors MN and ME.

The above quantities can loosely be split into two groups:

The design is defined by the lengths LN, LE, LW and LS and the reflectivities ρN,
ρE, ρW, ρS and ρBS. Some of these quantities may be subject to optimization
for a particular observational purpose, but none of them can be quickly changed,
and they can be considered constant during any particular experiment.

The state of the interferometer is defined by the tunings ϕN, ϕE, ϕW and ϕS. They
can and will vary during lock acquisition, and possibly during operation.

As far as the simulation is concerned, the interferometer is completely characterized by
the above quantities.

If light of the frequency ω0 + ω1 is injected through the West mirror MW, all light
amplitudes inside the interferometer can be computed by solving a set of linear equa-
tions composed of equations such as (1.20) and (1.22)8. As explained in Section 1.2.3,
ω1 is considered a small offset to the carrier frequency ω0 which is taken as reference
and whose numerical value is irrelevant. The tunings ϕN, ϕE, ϕW and ϕS refer to the
carrier frequency ω0, and light of the frequency ω0 + ω1 acquires an additional phase
shift given by exp( ik1∆L), when it traverses the distance ∆L (see Section 1.2.3).

8Actually Jun’s program uses equation (1.21) and solves the resulting equations using a clever matrix
notation explained in Reference [Mizuno99].
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The solution of these equations yields in general all unknown equilibrium amplitudes
and in particular the four light amplitudes that leave the interferometer through the
four mirrors, and which are denoted bN, bE, bW and bS in Figure 1.17.

In the present version used to simulate the 30m prototype and GEO600, a phase
modulation (Schnupp modulation) is applied to the light before it enters the inter-
ferometer. The resulting amplitudes are computed separately for the carrier and the
two sidebands, and then combined to find the photocurrent components at DC, the
modulation frequency and its second harmonic, as explained below.

There are two main types of output from the simulation, the static response and the
frequency response, which will be explained in the following sections.

1.4.2 Static response

For the static response, the design and state of the interferometer are described as in
the previous section. Light that is phase modulated with modulation frequency ωm
and modulation index m is injected through the West mirror. The amplitude of this
injected light has three frequency components:

ain = J0(m) + iJ1(m) exp( iωmt) + iJ1(m) exp(− iωmt)
= a0 + a+ exp( iωmt) + a− exp(− iωmt).

(1.46)

One output port is chosen, e.g. South. The linear equations describing the interfer-
ometer are solved separately for each of the three frequency components, resulting in
complex amplitudes b0, b+ and b− at the carrier frequency and its two modulation
sidebands, respectively. A photodetector at the chosen output port will detect the
photocurrent proportional to

I = |b|2 =
∣∣b0 + b+ exp( iωmt) + b− exp(− iωmt)

∣∣2. (1.47)

This photocurrent has components at DC, ωm and 2ωm, and can be written as a sum
of five components:

I = H0 + 2H1p cosωmt− 2H1q sinωmt+ 2H2p cos 2ωmt− 2H2q sin 2ωmt, (1.48)

using the following expressions:

H0 = |b0|2 + |b+|2 + |b−|2 at DC,
H1p = ℜ{b∗−b0 + b∗0b+} at ωm in phase,

H1q = ℑ{b∗−b0 + b∗0b+} at ωm in quadrature, (1.49)

H2p = ℜ{b∗−b+} at 2ωm in phase,

H2q = ℑ{b∗−b+} at 2ωm in quadrature.

Here the asterisk ‘∗’ denotes complex conjugation. The equivalence of equations (1.47)
and (1.48) can be shown by straightforward algebraic transformations.
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Hence H0, which is real and positive, represents the DC component (average) of the
detected photocurrent. The real numbers H1p and H1q yield the ωm components of the
photocurrent, H1p representing the ‘in-phase’ component and the H1q the ‘quadrature’
component, where ‘in-phase’ and ‘quadrature’ refer to the ωm Schnupp modulation.
Similarly, H2p and H2q yield the 2ωm components of the photocurrent, ‘in-phase’ and
‘quadrature’ now referring to 2ωm.

In practice the most important components are H1p and H1q. A linear combination of
them given by

H1(χ) = H1p cos(χ) +H1q sin(χ) (1.50)

is obtained experimentally by demodulating the photocurrent in a mixer. The local
oscillator port of the mixer is driven with the modulation frequency ωm, which has been
phase shifted by χ. The linear combination H1(χ) can also be computed as

H1(χ) = ℜ{(b∗−b0 + b∗0b+) exp(− iχ)}. (1.51)

Since in-phase and quadrature component can contain different information about the
interferometer state, it may be desirable to additionally demodulate the other quadra-
ture9 (with χ+ 90◦). The local oscillator phase χ as well as the demodulation of both
quadratures will be further discussed in Section 1.4.6.

The usual application of the static response is to plot one of its components (such as
H1p) versus one parameter of the interferometer (such as one of the tunings ϕ).

As a realistic example, the Michelson error signal H1p of the 30m prototype with
power recycling (but no signal recyling) is shown in Figure 1.18, together with the
corresponding power in the PR cavity and DC power at the output. TheMathematica
program to compute these results is shown in Appendix E.2.1.

For a certain Michelson detuning far away from the dark fringe (ϕMI = 0.28 rad),
almost all injected power (91%)10 appears at the output. This can be understood
by considering the PR cavity to consist of the PR mirror as the input coupler and the
Michelson (consisting of the beamsplitter and two long arms) as the ‘rear mirror’ which
has a variable reflectivity depending on ϕMI. The light that is ‘transmitted’ through
this imaginary ‘rear mirror’ is the light that appears at the output port. For the tuning
ϕMI =0.28 rad, this cavity is impedance matched and hence transmits all light (losses
excepted) to its output.

9The planned control scheme for LIGO [Regehr95] uses only one modulation frequency for all lon-
gitudinal degrees of freedom and relies upon separate demodulation of in-phase and quadrature signals
from several photodiodes to get sufficient information for all degrees of freedom.
10 The missing 9% are due to losses and, mainly, due to the fact that unity amplitude is assumed
before the Schnupp modulation is applied. Thus some power is in the modulation sidebands, which
have different resonance conditions in the interferometer (see also Section 1.5.4).
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Figure 1.18: Simulation of power recycling in the 30m prototype. The lower curve shows the
Michelson error signal H1p as a function of the Michelson tuning ϕMI. The upper curves show
the corresponding DC power at the output and the power buildup in the PR cavity, for unity
injected power.
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1.4.3 Frequency response: An introduction

The ‘static response’ described in the previous section assumes the state of the inter-
ferometer to be fixed, i.e. any changes happen on a timescale significantly slower than
all light travel times and storage times in the interferometer.

Many interesting effects happen to signals of timescales comparable to, or faster than,
those storage times. In a dual-recycled system for example, the storage time of the
SR cavity will be comparable to the expected signal period. Furthermore, in designing
control loops for the interferometer, it is essential to know the phase-shifts of signals
detected from the interferometer. To simplify the following discussion, we take the
Michelson tuning ϕMI, i.e. the differential tuning of the two end mirrors, as an example
of the parameter to be varied. If necessary, any of the tunings, or even any linear
combination of them, can take this role.

To compute these frequency-dependent effects, there is another type of output of Jun’s
program, called frequency response. As before, the state of the interferometer is given
and considered fixed. The output of the program is again computed for one output port,
e.g. South. It again has five distinct components: DC, ωm in-phase and quadrature, and
2ωm in-phase and quadrature, which are called G0, G1p, G1q, G2p and G2q respectively.
This section describes the meaning and application of the frequency response, whereas
its computation is presented in Section 1.4.5.

In the ‘static response’, the parameter ϕMI was set to a certain value and the pho-
tocurrents were computed for that state of the interferometer. The computation was
repeated for many values of ϕMI, but every single value was considered fixed. For the
frequency response however, ϕMI is sinusoidally dithered

11 by an infinitesimal amount
at a given frequency (the signal frequency fsig = ωsig/2π).

The output signals (the five components of the photocurrent at the chosen output port)
will then contain a sinusoidal component at the signal frequency fsig. The magnitude
and phase of these fsig components, divided by the infinitesimal stimulus, constitute the
frequency response of the interferometer. They are equivalent to ‘transfer functions’
used in the analysis of electronic circuits and are likewise usually plotted as Bode
diagrams.

Now there are two distinct frequencies with corresponding phases, causing possible
confusion and additional complications. The situation can be clarified by giving typical
numbers for the Garching 30m prototype.

The Schnupp modulation frequency ωm is around 10MHz and is imposed on the light
entering the interferometer as phase modulation by a Pockels cell. The light power at
the chosen output port has components at DC, 10MHz and 20MHz. With appropriate
filters, phase-shifters and mixers, five distinct signals can be extracted from that light,
represented by G0, G1p, G1q, G2p and G2q. At the output of the mixers and filters,
all five signals are at frequencies ≪ 10MHz. The result of the simulation are the fsig
components in these five signals.

11The term ‘modulation’ is avoided here because of possible confusion with the Schnupp modulation.
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Experimentally most interesting is a combination of G1p and G1q such as G1(χ) =
G1p cosχ+G1q sinχ. The demodulation phase χ refers to the 10MHz local oscilla-
tor associated with the Schnupp modulation and is implemented experimentally by a
10MHz phase shifter in the local oscillator port of the mixer.

The Michelson phase ϕMI is kept near zero by the dark fringe lock. This constitutes
the nominal operating point: all tunings are zero (the simulation can, of course, also
be done for arbitrary other operating points). A very small sinusoidal dithering at
the signal frequency (in this example, fsig = 375Hz) is applied to ϕMI via coil-magnet
actuators on the end mirrors (the actual amplitude of the motion was less than 1pm).
All five signals described above will in general have a 375Hz component in them.
The magnitude and phase (at fsig) of these components depend on the state of the
interferometer, but also on the signal frequency fsig. All five signals G0, G1p, G1q,
G2p and G2q will represent the magnitude and phase of the 375Hz component in the
respective mixer output. Consequently they come out of the calculation as complex
numbers, their argument representing the phase at 375Hz, which is not to be confused
with the 10MHz demodulation phase χ.

Picking one of the five signals, e.g. G1p, we can plot the magnitude and phase of its
fsig component as a function of fsig. This constitutes the typical application of the
frequency response output.

As an example, Figure 1.19 shows the frequency response of G1p for the dual recycled
30m prototype, with the same parameters as in the example in the previous section.
The Mathematica code is shown in Appendix E.2.2
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Figure 1.19: Frequency response of the Michelson error signal of the dual recycled 30m proto-
type.

The frequency response behaves like a one-pole low-pass filter with a corner frequency of
15.4 kHz, determined by the SR cavity linewidth (see Section 1.5.3 and Appendix D.3.1).
The knowledge of this frequency response is essential both to optimize the parameters
of the interferometer for a desired gravitational wave frequency and also for designing
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the control loops that are needed to keep the interferometer at the chosen operating
point. For this ‘simple’ case the frequency response could have been predicted without
the simulation program (see, e.g., [Meers89]), but for more complicated cases, such as
detuned dual recycling, the simulation is indispensable.

1.4.4 Simulating the effects of gravitational waves

In the above examples we have always dithered the differential Michelson phase ϕMI and
assumed that a gravitational wave will have a similar effect on the interferometer. That
is true if the direction of propagation of the gravitational wave is favorably oriented to
the arms of the detector, and its polarization is right. The simplest case is when the
wave is impinging orthogonally on the plane of the detector and is linearly polarized
with its main polarization axes parallel to the arms. In this case the differential phase
shift is given by

ϕMI(t) = 2 h(t− L/c)
ω0L

c

sin(ωsigL/c)

ωsigL/c
, (1.52)

for a simple Michelson interferometer, where h(t) is the strain of the gravitational
wave, assumed sinusoidal with angular frequency ωsig, L is the physical armlength and
ω0 the angular frequency of the laser light. Equation (1.52) is a ‘standard’ result; for a
derivation see for example Reference [Lobo92] (or [Heinzel95]).

If orientation and/or polarization are different from the simplest case cited above,
the phase shift will be multiplied by a factor between −1 and 1. For some directions
and/or polarizations, the effect may be zero. Further details can be found in References
[Forward78] and [Schutz87].

The frequency dependence of the phase shift ϕMI in Equation (1.52) is also interesting.
There are periodic zeroes in the response, the first one for ωsigL/c = π (see also Ref-
erence [Schilling97]). This corresponds to the case when the light’s round-trip travel
time in the arms is equal to one full period of the gravitational wave. Any phase shift
acquired on the way ‘out’ will be cancelled in the return trip back ‘in’. Hence the simple
model of the gravitational wave dithering just the position of the end mirrors fails in
this case.

In a delay-line system, Equation (1.52) remains valid if L is replaced by NL where N
is the number of ‘folds’ of the beams in each arm (N = 2 in GEO600). In contrast to
the common usage in Garching, for this work L is defined to be the physical armlength
and N the number of ‘folds’.12

For systems with dual recycling or Fabry–Perot cavities in the arms, it turns out that
Equation (1.52) is valid with L being the physical armlength (or NL for a delay line).
The gravitational wave produces a phase shift according to Equation (1.52), which
converts a fraction of the carrier into signal sidebands. These sidebands then circulate

12While Herriot delay lines were studied, there were good reasons to define these quantities differently,
but in this work such Herriot delay lines are not treated and a simple Michelson is taken as reference,
e.g. in Equation (1.52).
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in the interferometer. In the model, signal sidebands with an amplitude proportional
to the phase-shift given by Equation (1.52) are treated as if they were injected in the
arms. All further effects can adequately be described by the interferometer model given
above, and are similar to the effects of ‘dithering’ the armlength.

For GEO600, NL equals 1200m, and the signal frequency where the first zero occurs
is at 125 kHz. This is more than one decade higher than any anticipated signal and
we can therefore identify the effect of a gravitational wave with that of dithering the
armlengths for all practical purposes.

1.4.5 Computation of the frequency response

To compute the frequency response described in Section 1.4.3, all parameters of the
interferometer, including the tunings which set its operating point, are considered fixed.

The computation begins with the three (carrier-referred) light frequencies −ωm, 0, and
ωm which are produced by the Schnupp modulation and hence contained in the injected
light. They circulate in the interferometer, and at any given mirror their amplitudes,
called b−, b0 and b+, can be computed as described in Section 1.4.2.

The sinusoidal dithering of a mirror causes a phase modulation of the light reflected
from that mirror and hence additional sidebands appear in the reflected light. Assuming
a (small) modulation index ε, there will be new sidebands with amplitudes called e as
shown in Figure 1.20.

b-

b0

b+

e-- e-+ e0- e0+ e+- e++

fmod

fsig

Frequency

Figure 1.20: The nine light frequencies involved in computing the requency response.

Their complex amplitudes and corresponding frequencies (with respect to the carrier)
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are

e−− = i (ε/2)b− at − ωm − ωsig,
e−+ = i (ε/2)b− at − ωm + ωsig,
e0− = i (ε/2)b0 at − ωsig,
e0+ = i (ε/2)b0 at + ωsig,

e+− = i (ε/2)b+ at + ωm − ωsig,
e++ = i (ε/2)b+ at + ωm + ωsig. (1.53)

Since the modulation index ε is considered infinitesimally small, the Bessel functions
can be approximated by their first terms (see equation (1.10)). Higher order sidebands
and all second order effects, such as loss from the carrier and Schnupp sidebands (b−,
b0 and b+) due to the dithering, are ignored.

If the dithering takes place at an end mirror, these additional sidebands can be consid-
ered to be additionally injected through that end mirror, with amplitudes proportional
to b−, b0 and b+ at that end mirror. If the dithering is to take place at a mirror in-
ternal to the interferometer (such as the beamsplitter), the lengths on both sides of
the mirror are considered dithered simultaneously in anti-phase. This is explained in
detail in Reference [Mizuno99], where it is also shown how an internal dithering can be
replaced by an equivalent ‘virtual input’ at an end mirror.

Now there are light components at nine frequencies independently circulating in the
interferometer, the six of Equation (1.53) and −ωm, 0, ωm. The gain and phase shift
that each component experiences in the interferometer will in general differ from any
other and can be computed individually from the set of linear equations describing the
interferometer. At the chosen output port, nine light amplitudes are obtained, which
will be called b̂−, b̂0, b̂+, ê−−, . . . , ê++. This is schematically illustrated in Figure 1.21.

The output signals of interest are the ωsig components in the DC photocurrent and in
each of the four possible mixer outputs (two demodulated signals at ωm, and two at
2ωm). They are computed as follows:

G0 = 2F0,

G1p = 2 [F1+ + (F1−)
∗] ,

G1q = 2 [F1+ − (F1−)∗] ,
G2p = 2 [F2+ + (F2−)

∗] ,

G2q = 2 [F2+ − (F2−)∗] , (1.54)
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Figure 1.21: Schematic representation of the amplitudes used to compute the frequency re-
sponse. Due to the Schnupp modulation (not shown), the injected light has three frequency
components a−, a0, and a+. They circulate independently in the interferometer, yielding b−, b0,
and b+ at the dithered mirror (North in this example) and b̂−, b̂0 and b̂+ at the chosen output
port (South in this example). At the dithered mirror, six additional components e−−, . . . , e++
are produced proportional to the b components there. These also circulate individually with
different resonance conditions and appear at the output as ê−−, . . . , ê++.
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using the intermediate results

F0 = (ê−−)
∗b̂− + (b̂−)

∗ê−+ + (ê0−)
∗b̂0 + (b̂0)

∗ê0+ + (ê+−)
∗b̂+ + (b̂+)

∗ê++ ,

F1− = (b̂−)
∗ê0− + (ê−+)

∗b̂0 + (b̂0)
∗ê+− + (ê0+)

∗b̂+ ,

F1+ = (ê−−)
∗b̂0 + (b̂−)

∗ê0+ + (ê0−)
∗b̂+ + (b̂0)

∗ê++ ,

F2− = (ê−+)
∗b̂+ + (b̂−)

∗ê+− ,

F2+ = (ê−−)
∗b̂0 + (b̂−)

∗ê0+ . (1.55)

The terms F0, F1−, F1+, F2− and F2+ can be identified as interference products of all
combinations between two light amplitudes separated in frequency by ωsig, ωm − ωsig,
ωm + ωsig, 2ωm − ωsig and 2ωm + ωsig, respectively.

All of them are proportional to the (signal frequency) modulation index ε, and hence
the transfer functions for ε → 0 can be obtained by formally dividing them by ε (in
practice, ε is set to unity in Equation (1.53) and never appears in the program).

For very low signal frequencies ωsig → 0 all five output signals G0, . . . , G2q should
become purely real, and their value should be

lim
ωsig→0

Gx =
∂Hx
∂ϕ

∣∣∣∣
ϕ=ϕoperating

, (1.56)

when compared with the static response Hx at the same mixer output, and ϕ is the
dithered tuning. This can be used as one check for the consistency of the simulation.

Similarly to the case of the static response, the most important output signal will
generally be a linear combination of G1p and G1q given by

G1(χ) = G1p cosχ+G1q sinχ, (1.57)

where χ is the phase of the local oscillator at ωm that is used for downmixing.

1.4.6 Demodulation phase χ and reconstruction of the signal

In interpreting the frequency response and comparing it with experiments, a problem
arises in arriving at the proper choice of the demodulation phase χ. Both G1p and
G1q are complex numbers and in general they may have four independent components.
This applies in particular to the case of detuned dual recycling, and will be discussed
in general in this section.

We assume a monochromatic input signal to the interferometer with a (complex) am-
plitude x, i.e.:

ϕ(t) = ℜ{x exp( iωsigt)}, (1.58)

where ϕ is the dithered tuning of interest (e.g. the Michelson phase). The signal
frequency ωsig will be considered fixed and we look only at its amplitude x.
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The interferometer reacts on this input signal x and finally yields a photocurrent with
components in the neighborhood of ωm , which can be demodulated in two quadra-
tures13. The demodulated output signal in both quadratures is called yp and yq, re-
spectively, and is given by

yp = G1p x+ np , (1.59)

yq = G1q x+ nq . (1.60)

The noise terms np and nq represent additional the noise in the output channels, such
as the shot noise and the electronic noise of the photodetector. The noise in the two
quadratures is assumed to be uncorrelated, white, and to be of equal average value n,
i.e.

n = 〈np〉rms = 〈nq〉rms (1.61)

in a fixed observation bandwidth of interest.

These are significant simplifications. If the light power at the output is dominated by
the modulation sidebands (such as in properly operated dual recycling), the noise can-
not really be considered white. Detailed investigations (see [Meers91] and [Niebauer91])
show, however, that the loss in signal-to-noise ratio (SNR) due to these corrections is
only of the order of 1 dB. These corrections are ignored in the following discussion.
Another assumption is that after downmixing no further noise is added, i.e. A/D-
converters, amplifiers, etc. are considered perfect (their noise contribution is considered
negligible compared to the noise already present in the signal).

The transfer functions G1p and G1q can be computed by an interferometer simulation
program such as Jun’s program. The interesting questions are:

• In the data aquisition process intended to record the Michelson phase (and hence
the gravitational wave signal), both quadratures will need to be demodulated.
What is the best way to reconstruct the signal x such that the maximal signal-
to-noise ratio (SNR) is obtained?

• For analog loops, such as the dark fringe lock or the SR mirror lock in the 30m
prototype, normally only one mixer will be used. What is the best demodulation
phase? And how much SNR is lost compared with demodulating both quadra-
tures?

• To compare various transfer functions, what is a good ‘figure of merit’ of the
transfer functions?

1.4.6.1 Two mixers

If both yp and yq are obtained, they must be added coherently to obtain the maximal
SNR. Since the signal may appear with different phase shifts in the two quadratures,

13The same discussion applies for demodulation at 2ωm. Demodulation at this frequency is, however,
much less commonly utilized due to spurious 2ωm signals caused by various nonlinearities.
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the first step is to ‘shift back’ their phases before they can be added:

y′p = yp
|G1p|
G1p

,

y′q = yq
|G1q|
G1q

.

(1.62)

The signal components in y′p and y
′
q are now coherent, with both channels still having

the same noise level (remember that the in-phase and quadrature demodulation takes
place at ωm, whereas the phase shift described by Equation (1.62) is at the signal
frequency). The magnitude of the signal component is different in both channels and
given by |G1p| and |G1q|, respectively.
For optimal SNR, they should be added with proper weighting. The optimal weights
can be derived with the theory of optimal filtering, but can also be found by a direct
calculation. The result is that the weight of each channel should be proportional to the
magnitude of its signal component, i.e.:

yopt = |G1p| y′p + |G1q| y′q = yp
|G1p|2
G1p

+ yq
|G1q|2
G1q

. (1.63)

Substituting Equations (1.59) and (1.60) in the last expression yields

yopt =
(
|G1p|2 + |G1q|2

)
x+ |G1p|np + |G1q|nq. (1.64)

For the noise components np and nq, the phase of the transfer functions is irrelevant.
Because np and nq are uncorrelated, they must be added quadratically, yielding:

yopt =
(
|G1p|2 + |G1q|2

)
x+

√
|G1p|2 + |G1q|2 n. (1.65)

Hence the optimal reconstructed signal x̂ is given by

x̂ =
yopt

|G1p|2 + |G1q|2

= x+
n√

|G1p|2 + |G1q|2
.

(1.66)

We can thus take the variable

u :=
√
|G1p|2 + |G1q|2 (1.67)

either as a figure of merit for the transfer functions (for constant noise) or as measure
of the SNR (for constant signal).

It is straightforward to show that an arbitrary phase shift χ common to both mixers’
local oscillators does not affect the obtainable SNR14. In other words, any local oscillator
phase can be used for the first mixer, as long as the second mixer’s local oscillator is
in quadrature to the first mixer’s local oscillator.

14The signal x̂ remains constant if G1p is replaced by (G1p cosχ+G1q sinχ) and G1q by
(−G1p sinχ+G1q cosχ).
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Note that G1p and G1q will in general be frequency dependent with a possibly compli-
cated frequency response. The optimal SNR obtained above can then only be reached
by digitizing both channels yp and yq and performing the calculation of Equation (1.66)
digitally in the data aquisition or data processing program. This requires a knowledge
of the transfer functions G1p and G1q. In practice, for detuned dual recycling, some
kind of calibration signal will be beneficial to monitor (and stabilize) these transfer
functions (see Section A.8).

1.4.6.2 One mixer

During the experiments described in this work, the 30m prototype had no digital
data acquisition, and only one mixer (with adjustable phase shifter) was used for each
signal. For each of the relevant mixer outputs (PR cavity tuning, Michelson tuning
and SR tuning), the local oscillator phase χ was experimentally adjusted such that the
maximum signal was obtained for one particular signal frequency (see Section 1.8.1).
Hence the maximum signal obtainable with only one mixer and the corresponding phase
χ are important and discussed in this section. For the following algebra, G1p and G1q
are separated into their real and imaginary parts:

G1p = a+ i b,

G1q = c+ i d,
(1.68)

with a, b, c, d ∈ R . (Remember that the complex numbers G1p and G1q represent the
signal at ωsig in the two demodulator channels). Demodulating the ωm component in
the photocurrent with the demodulation phase χ yields the output signal

y(χ) = G1(χ)x+ n = (G1p cosχ+G1q sinχ)x+ n. (1.69)

According to the assumptions about the noise, the noise level n is independent of χ.
The signal x can therefore be reconstructed from the output y as

x̂ =
y(χ)

G1(χ)
= x+

n

|G1(χ)|
. (1.70)

Similar to Equation (1.67), we can hence take

u = |G1(χ)| (1.71)

either as a figure of merit for the transfer functions (for constant noise) or as measure of
the SNR (for constant signal). We ask which demodulation phase χ yields the maximum
output signal. To simplify the mathematics we look at the squared magnitude u2:

u2 = |G1(χ)|2 −→ max. (1.72)

Straightforward algebra yields

u2 = (a2 + b2) cos2 χ+ (c2 + d2) sin2 χ+ (ac+ bd) sin(2χ). (1.73)
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Solving ∂u2/∂χ = 0 for χ yields the optimal demodulation phase

χopt = ±
1

2
arccos

(
a2 + b2 − c2 − d2

w

)
, (1.74)

where the abbreviation

w =
√
(b+ c)2 + (a− d)2

√
(b− c)2 + (a+ d)2 (1.75)

has been introduced. The ‘+’ or ‘−’ sign in Equation (1.74) must be used for

ac+ bd > 0 or ac+ bd < 0. (1.76)

Note that ac+ bd can be computed as ℜ{G1p ·G∗1q}. Substituting χopt in u yields

u2opt =
1

2

(
a2 + b2 + c2 + d2 + w

)
. (1.77)

To obtain this result, the following identities valid for x ∈ [−1, 1] were applied:

cos

(
1

2
arccos x

)
=

√
1 + x

2
,

sin

(
1

2
arccos x

)
=

√
1− x
2

.

(1.78)

In the expression for u2opt (Equation (1.77)), no case distinction is necessary.

In experimental practice, the optimal phase χopt will be chosen for one particular
signal frequency15. In the simulation this corresponds to solving Equation (1.74) for
that frequency (note that a, b, c and d are the components of the frequency-dependent
transfer functions), and then using this phase χopt for all signal frequencies of interest.
This kind of calculation was done to compare experiment and theory in the detuned
case of dual recycling (see Section 1.10 and the program in Appendix E.2.4).

We now examine a few special cases for a fixed signal frequency:

• If one of the ωm quadratures vanishes, for example G1q = 0, we get the expected
results:

c = d = 0,

w = a2 + b2,

χopt = 0,

uopt =
√
a2 + b2 = |G1p|.

(1.79)

The magnitude of the signal (and also the SNR) is the same as if two mixers were
used.

15In the 30ṁ prototype, this was done by dithering the parameter of interest (e.g. the Michelson
phase) at an audible frequency and then adjusting the demodulation phase for maximal output signal,
which was monitored with headphones (see Section 1.8.1).
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• If the signal appears with equal amplitude and the same phase in both ωm quadra-
tures, i.e. G1p = G1q, we get:

a = c = â/
√
2,

b = d = b̂/
√
2,

w = â2 + b̂2,

χopt = +
π

4
,

uopt =

√
â2 + b̂2 =

√
|G1p|2 + |G1q|2,

(1.80)

again as expected. Now the case distinction in Equation (1.74) becomes impor-
tant, and similar results are obtained for G1p = −G1q with χopt = −π/4. The
magnitude of the signal (and also the SNR) is the same as if two mixers were
used.

• Another interesting special case occurs if G1p and G1q are 90◦ out of phase. For
example, suppose b = c = 0. This means that with a demodulation phase χ = 0
we obtain the signal with amplitude a, whereas with χ = 90◦ we obtain the signal
with amplitude d, but 90◦ out of phase (at ωsig) as compared to a. The above
equations then yield:

b = c = 0,

w = |a+ d| · |a− d| = |a2 − d2|,

χopt =

{
0; |a| > |d|,
π
2
; |a| < |d|.

uopt = max(|a|, |d|).

(1.81)

In the extreme case of a = d, the recovered signal u is independent of the demodu-
lation phase: u ≡ |a|. This is a factor of

√
2 worse than the result obtainable with

two mixers,
√
|G1p|2 + |G1q|2 = |a|

√
2. This extreme case may seem artificially

constructed. Indeed it is, but we will see that in detuned dual recycling almost
any relationship between G1p and G1q can appear.

1.4.6.3 Loss in SNR by using only one mixer

The ratio of the optimal SNR with two mixers, SNR2, to the SNR with one mixer
(assuming optimal demodulation phase χ for the frequency of interest), called SNR1,
is in the general case given by (see Equations (1.67) and (1.77)):

r21 :=
SNR2
SNR1

=

√
2(a2 + b2 + c2 + d2)

a2 + b2 + c2 + d2 +w
. (1.82)

After some algebra one obtains

r21 =

√
2

1 + f
(1.83)
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with

f =

√
1 + α2 + 2α cos(2β)

1 + α
,

α =

∣∣∣∣
H1p
H1q

∣∣∣∣
2

,

β = ∠

(
H1p
H1q

)
.

(1.84)

It can be seen that the loss in SNR by using only one mixer with the optimized demodu-
lation phase χopt instead of using two mixers is between 0dB and 3dB. For cos(2β) = 1,
i.e. when H1p and H1q are either in phase or 180

◦ out of phase, there is no loss in SNR
(but note that this is in general only true for the one signal frequency for which χ is
optimized). The maximal loss, 3 dB, appears when H1p and H1q are 90

◦ out of phase
and α = 1 (see the example of Equation (1.81)).

Since for a gravitational wave detector no avoidable loss in SNR can be tolerated, the
main output will certainly have two mixers. Another reason for two mixers is that
(at least in detuned dual recycling) the optimal demodulation phase χopt is frequency
dependent and changes by up to 90◦ around the sensitivity maximum. For the following
discussions of the interferometer’s frequency response, we will take

√
|G1p|2 + |G1q|2

(Equation (1.67)) as measure of the frequency response (see also Equation (1.85) below).

1.5 Signal recycling: Frequency response

The frequency response meant here is the detector’s output signal per unit ampli-
tude phase modulation of the Michelson, as a function of the signal frequency, i.e. the
frequency dependent response of the detector to a (hypothetical) gravitational wave
signal.

It will be computed as the frequency response from signal sidebands differentially en-
tered into the arms (such as by a gravitational wave) to the photocurrent at the South
port (the dark fringe port), demodulated at ωm, i.e. G1p and G1q at the South port.

The frequency response of the dual-recycled 30m prototype will be discussed using
results of Jun’s program (see Section 1.4). Only a few examples will be given for longer
interferometers such as GEO600, because optimal parameters still need to be found.
The optical parameters of the prototype are given in Appendix A.4.

1.5.1 ‘Broadband’ and ‘detuned’

At this point it is useful to introduce and clarify the terms ‘broadband’ and ‘detuned’.

The term ‘broadband’ is defined for this work to mean that operating point of the SR
cavity where the carrier frequency is resonant (also indicated by ϕSR = 0 mod 2π).
It corresponds to a maximum in the frequency response at zero signal frequency. The
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frequency response behaves like a one-pole low-pass filter with a corner frequency of
FWHMSR/2 (see Section 1.5.3 below, Appendix D.3.1 and Figure 1.19 for an example).

All other operating points are called ‘detuned’ (i.e. the SR cavity is not tuned to
the carrier, ϕSR 6= 0 mod 2π). The frequency response typically has a maximum at
some other signal frequency 6= 0. The bandwidth of that sensitivity peak is typically
FWHMSR. Detuned dual recycling is further discussed in Section 1.10.

This terminology is not optimal, since the signal bandwidth in the broadband case is
from 0 to FWHMSR/2, whereas in the detuned case it is FWHMSR centered around
some higher non-zero frequency, i.e. twice as wide. In practice, however, different
reflectivities of MSR will be optimal for the two cases, and therefore the ‘broadband’
response will usually have a wider bandwidth than the ‘detuned’ response. Lacking
better terms, we will continue to use ‘broadband’ and ‘detuned’ as defined above.

1.5.2 Transfer function and signal-to-noise ratio

The output signal, caused by signal sidebands entered into the arms, consists of two
factors: The frequency response for the signal sidebands and the throughput of the
Schnupp modulation sidebands. One condition for an optimal shot-noise limited signal-
to-noise ratio (SNR) is that the light power in the Schnupp modulation sidebands must
dominate all other light at the output port, in particular it must dominate the ‘waste’
light in higher transversal modes caused by imperfect contrast. Since this condition is
fulfilled for the dual-recycled prototype, and must be fulfilled for GEO600, we assume
it to be true in the following discussion. Then the SNR (to first order) is independent
of the power in the Schnupp sidebands, assuming all other parameters remain constant
(in particular the power circulating in the PR cavity).

This can be seen as follows: Doubling the amplitude of the Schnupp sidebands will
double the useful output signal, because the photocurrent at ωm is proportional to
the product of the Schnupp sideband amplitude and the signal sideband amplitude
(Equations (1.54) and (1.55)). Simultaneously the average power at the dark fringe
port will be increased by a factor of four (because the Schnupp sidebands dominate
that power), resulting in a doubled shot noise. Hence the SNR remains constant.

However the direct output of Jun’s program, i.e. the function
√
|G1p|2 + |G1q|2, is

proportional to the product of the above two factors and is hence not a faithful measure
of SNR, when the power in the Schnupp sidebands is not constant.

One possibility to compare the interferometer response under varying conditions (which
may involve varying amplitudes of the Schnupp modulation sidebands at the output),
is to define a normalized response by

Gn =

√
|G1p|2 + |G1q|2√

H0
(1.85)

The denominator is the square root of the average (DC) power at the corresponding
output (Equation (1.49)). The quotient Gn is proportional to the shot-noise limited
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sensitivity (i.e. a larger quotient means better sensitivity), because the shot noise is
proportional to the square root of the DC photocurrent (see also the remark following
Equation (1.61)). The main proportionality constants, which are not taken into account
by Equation (1.85), involve the armlength (see Equation (1.52)), and the injected laser
power (see, e.g., Equation (1.93)). Transfer functions in this work are compared under
the assumption of constant armlength and constant injected laser power.

The complete computation of an interferometer’s SNR involves many other aspects
which are beyond the scope of this work, such as thermal noise in the test masses or
nonstationary shot noise. Furthermore, even in the purely optical transfer functions,
there are technical tradeoffs such as a maximum practical light power inside the inter-
ferometer before thermal lenses become important. Hence no attempt is made in this
work to define or compute anything like an absolute shot-noise limited sensitivity. In-
stead, the emphasis is on ‘changes’ in sensitivity caused by changes in the configuration,
such as parameter variation or tuning of the interferometer.

1.5.3 Signal sideband transfer function

The transfer function for the signal sidebands can be computed with Jun’s program.
Often it is, however, sufficient to employ the much simpler model of a two-mirror signal
recycling cavity (see Figure 1.4). The ‘rear mirror’ of that cavity is the combination
of both end mirrors and will usually have a much higher reflectivity than the signal
recycling mirror. Furthermore it can normally be assumed that the small armlength
difference has no effect. Then the results of Appendix D can be applied. The transfer
function for light amplitudes produced inside the cavity is given by

Hbb =
− i τSR exp( i kL)
1− ρSR exp(2 i kL)

, (1.86)

where k is the ‘wavenumber’ of the signal sideband given by

k = ±2πfsig
c
= ±ωsig

c
(1.87)

for the upper and lower signal sideband, respectively (see Section 1.2.3). This situation
is shown in Figure 1.22.

The SR cavity is resonant for the carrier frequency. Hence both signal sidebands ex-
perience the same absolute gain. The final output signal is proportional to the light
amplitude in the signal sidebands. The cavity bandwidth FWHM is defined in terms
of power, such that for amplitudes it corresponds to the 3 dB corner frequency. The
whole system behaves like a one-pole low-pass filter with a corner frequency of

Bbb =
FWHMSR
2

=
c TSR
8πL

, (1.88)

which amounts to 15.4 kHz for the 3.88% SR mirror of the prototype (see Equa-
tion (1.89) and Appendix D.3.1).
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Figure 1.22: Amplitude transfer function in broadband signal recycling, using the parameters
of the prototype (30m armlength and 3.88% SR mirror transmission). The signal frequency
used for the example is 50 kHz.

Generally this FWHM bandwidth of the SR cavity is given by

FWHMSR =
c TSR
4πL

. (1.89)

For the 30m prototype, the numeric value is roughly

FWHMSR = 8kHz×
[
TSR
1%

]
, (1.90)

while for GEO600 (NL = 1200m) we have

FWHMSR = 200Hz ×
[
TSR
1%

]
. (1.91)

The gain for low-frequency signals (below Bbb) is given by

Hbb,DC =
2

τSR
, (1.92)

which amounts to 10.15 for the prototype. It is referred to an otherwise similar system
without signal recycling.

One main experimental result of the broadband DR experiment at the prototype was
the confirmation of this gain factor (see Section 1.8.2).

If the above approximations are not valid, the precise frequency response can be com-
puted with Jun’s program (see e.g. Figure 1.19).
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This gain is equivalent to the improvement in SNR of the detector as compared to
the same detector without signal recycling, if everything else remains constant. One
parameter that will not remain constant by the addition of signal recycling is the
amplitude of the Schnupp sidebands at the output. For the present comparison it can,
however, be assumed that they are optimized in each case such that their effect is
cancelled.

Figure 1.23 shows the signal gain obtainable by signal recycling in the prototype for
various transmissions of MSR. The reduced gain of the topmost curve is caused by
finite losses of the interferometer (which are included in the model as a power loss of
0.1% at each end mirror).
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Figure 1.23: Signal gain obtainable in the 30m prototype by signal recycling, compared against
the signal without MSR. The numbers printed are the power transmissions τ

2
SR of MSR. It is

assumed that the local oscillator (Schnupp modulation sidebands) is the same for each curve.

The curves were obtained by computing Gn (Equation (1.85)) with Jun’s program and
referencing them to the case without MSR. They can be approximately predicted by
Equations (1.88) and (1.92).

It has previously been shown [MPQ203, Section 3.1.3] that the shot-noise limited sen-
sitivity of a general Michelson-based interferometer can be approximated by

h̃ '

√
2~λ

πc

B

E
, (1.93)

where B is the effective bandwidth of the detector and E is the light energy stored in
the arms. The dependence on the bandwidth is also apparent in equations (1.88) and
(1.92), which can be combined to yield

Hbb,DC ∼
1√
Bbb

. (1.94)
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A higher value ofH means more signal with the same noise, and hence better sensitivity,
whereas the h̃ of equation (1.93) is defined reciprocally, i.e. a lower value means better
sensitivity.

1.5.4 Schnupp modulation sideband throughput

As far as the signal sidebands are concerned, the PR cavity and SR cavity could be
considered separate in the preceding section. For reasons explained below, this is no
longer true for the Schnupp modulation sidebands. They resonante in the complete
interferometer formed by the beamsplitter and a mirror in each of the four directions.

We are mainly interested in the efficiency with which the Schnupp modulation sidebands
are transferred to the main detection port (South), where they are needed as local
oscillator to detect the Michelson phase. We will use the term ‘throughput’ to denote
this coupling efficiency, which in general depends both on the Schnupp modulation
frequency and on the state of the interferometer.

There are two coupling mechanisms between the PR cavity and the SR cavity. The
first applies to signals that are produced differentially (i.e. in anti-phase) in the arms.
On their first encounter with the beamsplitter, such signals go in the other direction
compared to the carrier. In particular, the signal sidebands are transferred into the
SR cavity, where they circulate. This is the only relevant coupling mechanism for the
signal sidebands and is explained in Section 1.1.2.

The second coupling mechanism is only present in systems with Schnupp modulation
and is caused by the armlength difference between the two arms. It will turn out to
be proportional to the sideband frequency and is hence relevant only for the Schnupp
modulation sidebands with their much higher frequency. Because of its importance it
is explained here again in detail (see also Section 1.3.3).

Assume a Michelson interferometer with armlengths L + ∆L/2 and L − ∆L/2 (see
Figure 1.24) at the dark-fringe operating point for the carrier. All carrier light will be
reflected back to where it came from. Now consider a light beam of frequency ω with
respect to the carrier. Its corresponding wavenumber offset is k = ω/c.

The light returning from the first arm has travelled a distance 2L+∆L and has hence
the amplitude

a1 = i τa0 exp[ i k(2L +∆L)], (1.95)

whereas the light beam returning from the second arm has the amplitude

a2 = −ρa0 exp[ i k(2L −∆L)], (1.96)

where the ‘−’ sign ensures the dark-fringe condition for the carrier. Upon their recom-
bination at the beamsplitter the two interference products a3 and a4 are formed, which
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Figure 1.24: A Michelson interferometer with an armlength difference ∆L. The incoming
beam a0 is split into two parts. When they return from the two arms (as a1 and a2), a phase
difference has evolved between them. After recombination at the beamsplitter, new beams a3
and a4 are formed.

travel West and South, respectively. Their amplitudes are

a3 = i τa1 + ρa2

= −a0 exp( i 2kL)[ρ2 exp( i k∆L) + τ2 exp(− i k∆L)]
≈ −a0(ρ2 + τ2) exp( i 2kL) cos(k∆L) for ρ2 ≈ τ2,

a4 = ρa1 + i τa2

= 2a0ρτ exp( i 2kL) sin(k∆L).

(1.97)

With a symmetric 50:50 beamsplitter, these expressions simplify to

a3 = −a0 exp( i 2kL) cos(k∆L),
a4 = a0 exp( i 2kL) sin(k∆L).

(1.98)

It can be seen that a fraction sin(k∆L) of the amplitude is directed in the other direction
compared with where the light entered the Michelson. Light originally circulating in
the PR cavity is directed south towards MSR and hence enters the SR cavity, and vice
versa. The PR cavity and SR cavity can be understood as a system of coupled optical
resonators, with a frequency dependent coupling taking place at the beamsplitter. This
is symbolically shown in Figure 1.25.

As example, Figure 1.26 shows the ‘throughput’ of the Schnupp modulation sidebands
for the parameters of the 30m prototype, as computed with Jun’s program. All lengths
are those of the prototype. For the SR and PR mirrors, two sets of values are plotted,
those of the actual experiment (τ2PR = 7%, τ

2
SR = 3.88%) and another set with τ

2
PR =

1% and τ2SR = 2%. The frequency range shown corresponds to the second harmonics
of the cavity free spectral ranges, because frequencies in this range were used in the
experiment.
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Figure 1.25: Symbolic representation of a dual recycled interferometer with armlength differ-
ence ∆L in the dark-fringe condition. For the carrier, PR cavity and SR cavity are independent
in this idealized model. For light of other frequencies (k 6= 0) there is a coupling between these
cavities. Beams in the long arms are shown spatially separated, although in reality they are
superimposed.
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Figure 1.26: Throughput of Schnupp modulation sidebands in the 30m prototype. Shown is
the light amplitude at the South port for light of unity amplitude and the frequency shown
referred to the carrier injected in the East port. The vertical lines indicate the position of the
free spectral ranges of the two cavities (multiplied by two).
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In particular for the more strongly reflective mirrors, the coupled resonances can clearly
be seen. Figure 1.27 shows the same function for frequencies ten times higher, i.e. near
the 20th multiple of the cavitiy free spectral ranges. The two resonances of the PR
cavity and SR cavity are now separated more clearly.
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Figure 1.27: Throughput of Schnupp modulation sidebands in the 30m prototype for mod-
ulation frequencies near the 20th free spectral ranges of the PR and SR cavities. All other
parameters are the same as in Figure 1.26.

It is interesting that the curves shown can also be reproduced by the equivalent elec-
trical circuit of Figure 1.28. The phenomenon of separating the two resonances by the
coupling is exactly equivalent to the same effect in the electrical circuit. In both cases
(optical and electrical) it appears also if the two (undamped and uncoupled) resonance
frequencies are identical. This electrical model is, however, only of limited practical
use because with Jun’s program a simulation of the optical system is not much more
difficult than a simulation of the electrical circuit. The equivalence holds only for fre-
quencies near one particular multiple of the cavity free spectral ranges and the analogy
fails for a detuned interferometer. Furthermore there is no clear equivalence between
the parameters of the optical system and those of the electrical circuit.

In practice one will usually strive to choose a Schnupp modulation frequency near or
at the throughput maximum, because then the necessary level of modulation at the
output can be obtained with the lowest possible modulation index in the Pockels cell,
thus reducing the power loss of the carrier and also technical problems such as heating
of the crystal and RF pickup in adjacent photodiode preamplifiers.

The armlength difference ∆L is another parameter that influences the Schnupp side-
band throughput. One will normally strive to keep it as small as possible, in order to
minimize coupling of laser frequency noise into the output signal (see Section 1.8.3).
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Figure 1.28: An electrical model of coupled resonators. The frequency response of this circuit
(for voltages) is exactly identical to the curve shown in Figure 1.26 (with 1% and 2% mirrors).
The resonance frequencies of the (undamped) L-C resonators were set exactly identical to the
free spectral ranges of the SR cavity and PR cavity, multiplied by two.

1.6 Control of signal recycling

One of the main purposes of this work was to investigate control schemes for the dual
recycled interferometer. ‘Control’ in this section means longitudinal control of the
mirrors, and possibly control of the laser frequency, to ensure the proper interference
conditions inside the interferometer (assuming the alignment to be perfect). The discus-
sion in this section mixes general aspects with descriptions of the specific experimental
realization in the 30m prototype.

In a dual recycling interferometer there are three degrees of freedom, if the laser fre-
quency is assumed to be fixed:

Michelson The Michelson interferometer must be in the dark fringe condition. The
relevant degree of freedom is the (microscopic) armlength difference. A differential
motion of both end mirrors is used as actuator.

PR cavity The incoming carrier light must be resonant in the PR cavity. The length
of the PR cavity is equal to the distance from MPR to the ‘average’ of the two end
mirrors. Possible actuators are MPR and a common mode motion of the two end
mirrors. Another possibility to ensure resonance is to change the laser frequency
(see Section 1.6.1.2 below).

SR mirror Finally the microscopic position (tuning) of MSR must be controlled. The
control signal is fed directly to MSR.

The control problem has several aspects:

Error signals Jun’s program is used to predict the error signals at the desired operat-
ing point. Parameters such as modulation frequencies and armlength differences
can be optimized for the ‘best’ error signal. The coupling of the various feedback
loops to each other can be investigated.
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Actuators The error signals will be passed through loop filters and ultimately need
to be fed back to the interferometer. Directly moving the mirrors with the coil–
magnet (or electrostatic) actuators provided for that purpose is the obvious possi-
bility. Factors to be investigated are the actuator transfer functions, orthogonality
with other degrees of freedom (such as coupling into the alignment) and permis-
sible noise levels. Feedback to the laser frequency is another possible actuation
which simultaneously influences several degrees of freedom (see Section 1.6.1.2
below).

Loop filters The loop filters must be designed to provide the necessary gain, in con-
junction with the sensors’ and actuators’ response. Loop stability is the most
important question. Unconditionally stable loops are generally preferred for eas-
ier lock acquisition.

Lock acquisition Unfortunately it turns out that the three degrees of freedom listed
above are not independent. In particular, proper error signals for the Michelson
and the SR mirror can only be obtained after all three loops are already locked.
The question of how to get from the unlocked state (all three degrees of freedom
uncontrolled and mirrors freely swinging) to the locked state is very complex.
With our simulation tools it is impossible to predict the transient behaviour of
the interferometer. Therefore we had to rely on experiment to find a suitable
scheme for lock acquisition.

Summarizing the following sections, the number of degrees of freedom is reduced from
three to two by having one very robust loop (that for the PR cavity) continuously
working, such that the PR cavity is reliably resonant, being almost independent from
the state of the rest of the interferometer. Then the mirrors are left swinging randomly.
Most of the time the two error signals for the Michelson and SR mirror will be very small
and hence cause only negligible feedback action on the mirrors. In their random motion,
the remaining degrees of freedom sometimes get near the desired operating point, at
which moment the error signals start to get meaningful and the mirrors are ‘pushed’ in
the right direction. After a few (converging) oscillations around the operating point, the
system ‘drops’ into that point and stays there. This takes no more than a few seconds,
provided that the alignment is good and the loop gains and demodulation phases are
set properly. More details will be given below. An overview of the longitudinal control
loops is shown in Figure 1.29.

1.6.1 PR cavity loop

1.6.1.1 Error signal

In normal operation, the PR cavity behaves like a medium-finesse Fabry-Perot, its
length being the distance between MPR and the ‘average’ of the end mirrors. The
error signal is obtained with the usual Pound-Drever-Hall scheme [Drever83b] with a
modulation frequency that is not resonant in the cavity. In the prototype the modula-
tion frequency was 12MHz, which is 2.46 times the PR cavity FSR. At the dark fringe
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Figure 1.29: Overview of the longitudinal control loops for dual recycling in the 30m prototype.
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operating point, the carrier is resonant in the PR cavity, whereas the 12MHz mod-
ulation sidebands are not resonant. Hence the usual Pound-Drever-Hall error signals
are expected. In the prototype, the resonant photodiode PD2 (in Figure 1.29) detects
the light that is reflected from the PR cavity and is used to generate the error signal
together with mixer Mix2. Figure 1.30 shows the computed error signal as a function
of the tuning of MPR at the normal operating point.
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Figure 1.30: PR cavity error signal at the normal operating point.

The strange structure near π/2 is caused by the fact that the modulation frequency
(12MHz) is not a small fraction of the FSR, as is more usual with Pound-Drever-Hall
systems for short cavities, but is rather a non-integer multiple of the FSR. The ‘usual’
Pound-Drever-Hall signal (central feature with sidebands 12MHz away) is periodically
repeated every FSR (4.8656MHz) in an overlapping fashion.

If the interferometer is on a dark fringe, the PR cavity error signal is almost indepen-
dent of the SR cavity tuning. This is, however, not true for an arbitrary state of the
interferometer, such as during lock acquisition.

Figure 1.31 shows the PR cavity error signal for six randomly chosen states of the
interferometer. The zero position in these plots has been shifted to the desired resonance
of the PR cavity, which was determined by the program shown in Appendix E.2.3.

In any case there is a zero-crossing of the error signal. Since the PR cavity loop has
been designed with a large gain margin, it will try to lock onto this zero-crossing.
Fortunately it was found that the PR loop does lock the PR cavity correctly in almost
any state of the interferometer.

It can be seen in Figures 1.30 and 1.31 that there are extra zero crossings of the error
signal (near ϕPR = π/2 in Figure 1.30), that have the same sign as the ‘correct’ zero
crossing at ϕPR = 0. It was found experimentally that sometimes the PR loop does
indeed lock on this ‘wrong’ operating point. However, because the gain (visible in
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the plot as slope of the zero-crossing) is much lower, this ‘incorrect’ condition is not
very stable, and the loop usually jumps to the correct operating point during lock
acquisition.

1.6.1.2 Actuator

Our strategy for lock acquisition requires the PR cavity loop to lock onto the resonance
of the PR cavity under a large variety of cirumstances (i.e. Michelson and SR mirror not
yet locked, swinging randomly and/or being pushed around by their respective loops).
This demand requires a large gain margin and a control bandwidth much larger than
the bandwidth of these other two loops (which is between a few 100Hz and a few kHz).
Feedback to the PR mirror alone cannot provide such a wide control bandwidth. Hence
it is necessary to use another actuator with wider bandwidth. A suitable actuator is
the laser frequency.

Changing the laser frequency immediately changes the tuning of the PR cavity with a
coupling efficiency given by

∂ϕPR
∂νLaser

=
π

FSRPR
≈ 2π

c
30m ≈ 0.6 rad/MHz. (1.99)

The tuning of the SR cavity is simultaneously changed with about the same efficiency.
Due to the armlength difference, the Michelson tuning is also affected by the laser
frequency, but with a much smaller coupling efficiency given by

∂ϕMI
∂νLaser

≈ 2π
c
2 · 6 cm ≈ 2.4mrad/MHz (1.100)

(see also Section 1.8.3). Hence to a first approximation we may say that by changing the
laser frequency we simultaneously tune the PR and SR cavity but not the Michelson.

In earlier experiments in the Garching 30m prototype (power recycling with external
modulation, before the introduction of signal recycling) [Schnier97], the PR cavity error
signal was directly fed back to the laser frequency. There are three actuators available
for this purpose: two piezos changing the length of the laser cavity and an external
Pockels cell acting as phase corrector (see Appendix A.2). The piezos have mechanical
resonances which limit their useful frequency range. The overall open-loop gain was a
delicate function of the individual actuator gains, crossover frequencies, etc.

During the installation of dual recycling16, it was, however, found that this direct
feedback was too unstable for initially setting up the dual-recycled interferometer.

Hence we have implemented a prestabilization system for the laser frequency. A small
fraction of the light is directed on a reference cavity after it has been shifted in frequency
by a double-passed acousto-optic modulator (AOM). The laser frequency is locked to the
reference cavity with a Pound-Drever-Hall loop, which uses as actuators the two piezos

16This installation was done in the spring of 1998 in collaboration with Ken Strain and Ken Skeldon
from Glasgow.
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changing the length of the laser cavity and the external Pockels cell. The bandwidth
of this loop is around 300 kHz. This loop (to lock the AOM-shifted laser frequency to
the reference cavity) is called ‘first loop’ (the reason will become clear in Section 1.7).
It is described in more detail in Appendix A.2.

The AOM is driven by a voltage controlled oscillator (VCO) operating at 200±20MHz.
By changing the VCO’s input voltage, the frequency of the laser light that enters the
interferometer can be changed by ±40MHz, because the shifted laser frequency is locked
to the resonance of the reference cavity. This ‘laser frequency control’ input has a simple
flat frequency response up to around 100 kHz, limited by the response of the first loop
and additional time delays in the VCO and AOM. The measured frequency response
of the VCO/AOM as an actuator for the laser frequency is shown in Figure 1.32. The
fitted curve has a single pole at 28 kHz (from the reference cavity) and a time delay
of 2µs (fit by Liso). After electronically compensating the 28 kHz pole, it is used as
the actuator for the PR cavity loop with a control bandwidth of up to 70 kHz. The
PR cavity loop (which locks the laser frequency and and the PR cavity to each other)
is called ‘second loop’ in this work. For very slow signals that exceed the range of the
VCO/AOM, there is another feedback path that changes the length of the PR cavity
via the PR mirror MPR. The crossover frequency between the AOM and MPR is at a
few Hz.
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Figure 1.32: Frequency response of the AOM used as an actuator to change the laser frequency
via the first loop.

The advantages of using this setup are:

• The frequency of the light entering the interferometer is much more stable, around
5Hz/

√
Hz instead of several 100 kHz/

√
Hz at Fourier frequencies of a few 100Hz.

This simplifies lock acquisition of the dual recycled interferometer.

• The feedback loop acting directly on the laser gets its error signal from the refer-
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ence cavity, which is much more stable than the interferometer swinging during
lock acquisition, and the error signal has constant gain.

• The design of the PR cavity loop is much simplified by the simple actuator (VCO
input) now available. During lock acquisition, the finesse of the PR cavity and
hence the gain of the PR cavity loop change by several orders of magnitude.
Designing a stable loop with an error signal showing such gain variations is much
easier if the actuator has a simple frequency response.

• The new setup more closely resembles the planned control system of GEO600.

To put it in other words, the task of locking the laser frequency to the PR cavity has
two problems: The actuators (piezos and Pockels cell) have a problematic frequency
response requiring a well-defined loop gain. But the error signal has a huge gain vari-
ation during lock acquisition. With the setup described above, a new laser frequency
control with a simpler frequency response input is introduced and hence the design of
the PR cavity loop becomes manageable. Furthermore, the fluctuations of the laser
frequency during lock acquisition are very much reduced, simplifying lock acquisition
of the two remaining loops (Michelson and SR cavity).

In the prototype, there is, however, a distinct disadvantage of this approach: that is,
noise. The first loop suffers from having low light levels. Around 4% of the main beam
is split off by an uncoated glass plate. After double-passing the AOM, only around
one tenth of that light is left over, which, furthermore, is quite distorted in its beam
shape. On the laser table, there is not enough space for optimal mode matching lenses.
Also, the reference cavity has a low finesse; around 200. All these facts together result
in a remaining frequency noise of the prestabilized laser of around 5Hz/

√
Hz at a few

kHz, dominated by sensor noise. This setup was built during the first installation of
dual recycling, where the intention was to achieve and study lock acquisiton of the
dual recycled interferometer, and the emphasis was put on loop stability rather than
noise. Figure 1.33 shows the estimated frequency noise of the prestabilized laser. Note
that this is not directly measured, but rather deduced from the measurement shown in
Figure 1.34 below by correcting for the estimated loop gain of the second loop. Hence
the curve shown should only be considered as a rough estimate of an upper limit for
the prestabilized laser frequency noise.

The second loop sensor noise is much lower, such that in principle the frequency fluc-
tuations of the prestabilized laser could be further reduced. However, the unity gain
frequency of the second loop is only a few tens of kHz, and its gain drops as 1/f .
Figure 1.34 shows the resulting frequency noise (laser frequency referred to PR cavity).

This curve was measured via photodetector PD2 of Figure 1.29. Its calibration is
described in Appendix A.5.2. For autoalignment purposes, there is another photode-
tector (shown as PD2A in Figure 1.29) in the experiment detecting another fraction of
the same beam. The measurement was repeated with that (semi-out-of-loop) detector,
yielding the same result.

The remaining frequency noise shown in Figure 1.34 often dominates the noise at the
main output of the interferometer (see Section 1.8.3). It is coupled there due to the
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Figure 1.33: Estimated frequency noise of the prestabilized laser (this was not directly mea-
sured, see text).
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Figure 1.34: Frequency noise (laser frequency referred to PR cavity) with first and second loop
in operation.

armlength difference. In the prototype, there would be several possibilities to improve
the situation:

The performance of the first loop might be improved by increasing the light level, im-
proving the throughput through the AOM, improving the mode matching and/or using
a reference cavity of higher finesse. All these measures are possible in principle, and
the author believes that at least one of them should be sufficient to gain a satisfactory
improvement. However, they require a major reorganization of the laser table and were
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not implemented due to time limitations.

The loop gain of the second loop could also be improved. At present it is limited by the
actuator’s phase delay shown in Figure 1.32. It was believed that feeding back the high-
frequency component of the error signal to the first-loop error point (labelled ERR1
in Figure 1.29) and/or the first loop’s phase correcting Pockels cell (PC1) might allow
for an increase in the second loop unity gain frequency and hence its loop gain. This
was tried both by the author and, more thoroughly, by A. Freise and H. Grote during
a week-long stay in Garching, but it was not successful. The reason was that these
two additional actuators still interact with the first loop. Any frequency correction
that they apply is ‘seen’ by the reference cavity and hence shows up in the first-loop
error signal. From there it is amplified and fed back to the three actuators of the first
loop. The result is that all the complicated features in the frequency response of these
actuators (in particular the 200 kHz resonances of the fast piezo) also show up in the
frequency response of the proposed two new actuators, making their frequency response
quite complicated and of little use.

A possible solution would be to use another Pockels cell located behind the first loop
pickoff (such as PC3, which presently only applies the 9.7MHz Schnupp modulation),
as an additional fast actuator for the second loop. Again, this would be possible in
principle but not easy to implement in practice and has not been tried due to time
limitations.

A further possibility would be to eliminate the first loop altogether and feed the PR
cavity error signal directly back to the laser frequency via the three actuators (similar
to the frequency stabilization used with external modulation, see Figure A.15). This
would probably cure the noise problems, but, on the other hand, make lock acquisition
more difficult, because in such a setup the range of interferometer states allowing the
PR cavity loop to lock would most likely be smaller than in the present setup (see also
Section 1.7).

1.6.1.3 Keeping the PR cavity resonant in the simulation

In the simulation programs, there is a minor complication if the situation in the proto-
type is to be realistically described. The PR cavity tuning ϕPR is defined such that at
the proper operating point the condition ϕPR = 0 corresponds to the resonance of the
power recycling cavity for the carrier frequency. This is, unfortunately, no longer true
if the Michelson is not at the dark fringe condition (as during lock acquisition).

Experimentally, the PR cavity is nearly always kept resonant by the second loop. The
bandwidth of that loop is larger than those of the remaining two loops (Michelson
and SR). To simulate the Michelson and SR error signals under this condition requires
the correct PR cavity tuning ϕPR to be found, to make the PR cavity resonant (for
arbitrary tunings of the Michelson and SR cavity), because the second loop will enforce
this tuning in the experiment.

In the simulation, this can be done by temporarily ‘removing’ the PR mirror (i.e. setting
its reflectivity to zero), injecting carrier light from the West direction and computing



62 CHAPTER 1. DUAL RECYCLING

the phase of that light when it returns to the West port. The Mathematica code
necessary to compute this phase in Jun’s model is shown in Appendix E.2.3.

Figure 1.35 shows the resulting PR cavity tuning ϕPR that is necessary to make the
PR cavity resonant, as a function of the Michelson tuning ϕMI for the 30m prototype
with only power recycling, and then for dual recycling (with ϕSR ≡ 0).
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Figure 1.35: The PR cavity tuning ϕPR that is necessary to make the PR cavity resonant.

1.6.2 Michelson control

The error signal for the Michelson is obtained by demodulating the photocurrent from
the South port at the Schnupp modulation frequency (around 9.7MHz). In the proto-
type, the resonant photodiode PD3 together with mixer Mix3 (in Figure 1.29) generate
the error signal. In principle, this works as was shown in Section 1.3.3 for a simple
Michelson without recycling. The presence of the recycling mirrors does, however,
complicate the behaviour of the error signal for operating points other than the dark
fringe.

The following discussion uses the parameters of the 30m prototype, with the only
modification being the presence or absence of the signal recycling mirror, as individually
indicated.

1.6.2.1 Error signal without signal recycling

The properties of the Michelson error signal are already rather complex in a power-
recycled system without signal recycling when Schnupp modulation is used for the
readout. The reason is that the Schnupp modulation sidebands, which act as local
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oscillator for the detection of the signal at the output port, are subject to a complicated
resonance of their own in the system (see also Section 1.5.4).

Figure 1.36 shows the throughput of the upper Schnupp sideband from the input (i.e.
after the EOM) to the South output. It can be seen that at the proper operating point
(ϕMI = 0), there is only a small amount of Schnupp sidebands available at the output
to be used as local oscillator. This is because the armlength difference (6 cm) was
optimized for dual recycling but is too small for a system with only power recycling. It
can also be seen that the Schnupp sidebands at the output show resonance phenomena
including a phase reversal at tunings ϕMI 6= 0.
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Figure 1.36: Throughput of the upper Schnupp sideband from the EOM to the South port for
the 30m prototype without signal recycling, referred to unity input amplitude. The lower curve
shows the central part of the upper curve. The corresponding curves for the lower Schnupp
sideband are similar, but mirrored at the y-axis ϕMI = 0.
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Figure 1.37 shows the resulting Michelson error signal. Most interesting is the phase
reversal of the error signal near tunings ϕMI ≈ ±0.5. It is caused by the phase reversal
of the local oscillator just mentioned. The ‘height’ of the phase-reversed peak is smaller
than might be expected from Figure 1.36, because at these detunings the PR cavity
buildup is already reduced (lower curve of Figure 1.37). The same phenomenon will
show up in even stronger form for the case of dual recycling.
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Figure 1.37: Michelson error signal and PR cavity power buildup for the 30m prototype without
signal recycling.

The practical consequences of this phase reversal mainly affect the lock acquisition.
Clearly the loop designed to keep the Michelson on the dark fringe can only operate in
the region where the error signal has the correct sign. In the other regions the loop will
strive to move the Michelson even further away from the dark fringe. Fortunately it
turned out in the prototype experiments that the loop will nevertheless usually work.
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During acquisition the Michelson phase swings freely by several radians, crossing again
and again the ‘good’ region of the error signal. If the mirror motion is not too fast
at this point, and the loop gain is properly adjusted, then the loop will ‘catch’ the
swinging mirrors and hold them at the dark fringe.

It remains to be seen whether this simple lock acquisition scheme will also work for
GEO600, where the relevant cavities have much higher finesse and the ‘good’ region
will span a smaller part of the possible Michelson tunings.

1.6.2.2 Error signal with dual recycling

The presence of the SR mirror further complicates things. For example, if the SR mirror
is in its zero position (the proper position for broadband SR), the signal sidebands have
much more optical gain in the dark fringe condition (this is, after all, the purpose of
signal recycling). The additional gain is approximately given by the factor 2/τSR,
compared with the case without the signal recycling mirror (see Equation (1.92) in
Section 1.5.3).

If, on the other hand, the SR mirror happens to be in the ‘opposite’ position (rep-
resented in the simulation by the tuning ϕSR = π/2), the optical gain for the signal
sidebands is only τSR/2 in the dark fringe condition (see Appendix D). Hence there is
a gain variation of 4/τ2SR for the signal sidebands, which amounts to a factor of about
100 for the 3.88% SR-mirror of the prototype.

In practice however, the Schnupp sidebands, which act as local oscillator at the detec-
tion port, also experience a variation in gain and phase depending on ϕSR, which makes
the situation even worse. Figure 1.38 shows the throughput of the upper Schnupp side-
band from the input (i.e. after the EOM) to the South output with signal recycling
(compare Figure 1.36). The effective gain of the Michelson error signal at the dark
fringe varies by a factor of around 9000 instead of 100, when ϕSR is varied from 0 to
π/2.

During lock acquisition, neither the Michelson nor the signal recycling mirror will be
in their expected position. Instead they swing around freely in the two-dimensional
continuum of possible interferometer states.

Figure 1.39 shows the computed Michelson error signal for this continuum of states,
again under the assumption that the PR cavity is always kept on resonance (see Sec-
tion 1.6.1.3). This assumption is made throughout the rest of this Section, even if not
explicitly mentioned. Shown is the static response H1(χopt) (Equation (1.50)), where
χopt is the optimal demodulation phase for one mixer (Equation (1.74)), determined
for low signal frequencies at the nominal broadband operating point. This is what most
closely resembles the actual error signal in the prototype, as it is observed at the output
of mixer Mix3 in Figure 1.29.

Several interesting observations can be made from these diagrams. In a huge fraction
of the parameter space, the error signal is negligible (but compare Figure 1.40). Con-
sequently the Michelson dark fringe lock will not act very much on the mirrors in these
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Figure 1.38: Throughput of the upper Schnupp sideband from the EOM to the South port
for the 30m prototype with dual recycling, referred to unity input amplitude. The lower curve
shows the central part of the upper curve. The corresponding curves for the lower Schnupp
sideband are similar, but mirrored at the y-axis ϕMI = 0.

regions and more or less leave the mirrors swinging freely. This does in fact help the
lock acquisition.

The error signal is strictly zero for ϕMI ≡ 0, independent of the SR mirror tuning ϕSR.
This means that, to a first approximation, at the dark fringe operating point, a small
motion of the signal recycling mirror (i.e. fluctuation of ϕSR) will not directly cause
a spurious Michelson error signal. This is very desirable, because the Michelson error
signal will contain the gravitational wave information and so any potential noise source
for that signal is highly undesirable.

The lowest curve shows the Michelson error signal for an assumed tuning ϕSR ≡ 0 of the
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Figure 1.39: Michelson error signal (in arbitrary units) as a function of the tunings ϕMI and
ϕSR, with the PR cavity being kept resonant. The lower curve shows the error signal for
ϕSR ≡ 0. The tunings ϕMI and ϕSR are expressed as multiples of π in these plots.
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SR mirror. In the prototype, this situation cannot be experimentally realized, because
the SR mirror will not stay at ϕSR = 0, if the Michelson is detuned as much as is
shown in the Figure. Nevertheless it is interesting to see that the error signal exhibits a
similar phase reversal effect as was already apparent in the case of only power recycling
(Figure 1.37), but now the effect is even stronger17.

Figure 1.40 shows the gain in dB of the Michelson error signal. It was computed as
the frequency response

√
|G1p|2 + |G1q|2 (Equation (1.67)) for small signal frequencies,

and the gain at the nominal operating point ϕMI = ϕSR = 0 is taken as 0 dB reference.
Although not very clearly visible from the diagram, the maximal gain does indeed occur
in the center of the diagram, i.e. at the nominal operating point. It is interesting to
see, however, that there is a large area of strongly detuned states that have surprisingly
high gain.

These states are, however, not attractive as operating points because at these operating
points there is much more DC (average) light power arriving at the photodetector (PD3
in Figure 1.29), and hence the (shot-noise limited) SNR will be reduced. The DC light
power is shown in Figure 1.41, referred to unity at the nominal operating point. It was
computed as the static response H0 (Equation (1.49)).

Finally Figure 1.42 shows the theoretical SNR of the Michelson error signal (Gn from
Equation (1.85)). It was computed by dividing the gain from Figure 1.40 by the square
root of the DC light power (Figure 1.41). Again the nominal operating point was taken
as 0 dB reference. This plot shows clearly the superiority of the nominal operating
point.

1.6.2.3 Actuator and loop filter

In the prototype, the end mirrors are suspended as single pendulums. Their associ-
ated local control modules (see Appendix A.3.1) have control inputs that permit the
application of small forces directly to the mirror (via coils and magnets). In this way
a signal applied differentially (in anti-phase) to both end mirrors serves to control the
Michelson tuning, and is now described here. As discussed in Appendix A.3.1, the
transfer function of this input, as an actuator for the Michelson phase, has the form of
a two-pole low-pass filter.

This transfer function was transformed into a useful open-loop gain by the addition
of two f1/2 filters active between 3Hz and 10 kHz (see Appendix B.4). In order to
suppress potential disturbances from the resonances above 10 kHz, a two-pole low-
pass filter (3 kHz corner frequency) was also included. The resulting open-loop gain
for a typical unity-gain frequency of 300Hz is shown in Figure 1.43. Since this gain
turned out to be insufficient to suppress the large fluctuations of the Michelson phase
well enough at low frequencies for stable operation of the autoalignment system (in
particular near the pendulum resonsance near 1Hz), an additional filter was added
that can be progressively activated via a potentiometer. For that purpose a biquadratic
filter with a complex pole at 1Hz (Q = 1) and a complex zero at 20Hz (Q = 2) was

17The effect is reduced if the PR and SR cavities have the same length (see Section 1.11).
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Figure 1.40: The gain (in dB) of the Michelson error signal, referred to the gain at the nominal
operating point ϕMI = ϕSR = 0, for small signal frequencies.
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Figure 1.43: Open loop gain of the Michelson dark fringe lock, for a typical unity-gain frequency
of 300Hz. The dashed curves show the open-loop gain with the additional DC gain active.

chosen, which was realized as an Akerberg-Mossberg filter [Wangenheim]). Its action
is also shown in Figure 1.43.

During lock acquisition of the dual recycled interferometer, this additional filter needed
to be deactivated. Furthermore, the loop gain of the Michelson lock needed to be
reduced until it was lower than that of the SR mirror loop (see also Section 1.7).
Once lock was acquired, the loop gain could be increased and the additional filter be
activated. The unity-gain frequency could then be increased up to more than 1 kHz. In
practice, a unity-gain frequency of around 300Hz provided useful and stable operation.

1.6.3 SR mirror control

1.6.3.1 Error signal

Although the demodulated signal at the South port, which is used as the Michelson
error signal, does in general depend on the tuning of the signal recycling mirror MSR
(see Figure 1.39), it cannot be used as the MSR error signal. As was shown in the last
Section (1.6.2.2), the dependence on the MSR tuning vanishes in the dark fringe state
of the Michelson.

Hence it is necessary to find another way to control MSR. In the first demonstration
of dual recycling [Strain91], this was achieved by injecting additional light through the
South port into the interferometer. To avoid interference with the main light circu-
lating in the interferometer, this additional light was of orthogonal polarization and,
furthermore, shifted in frequency with an AOM.

It is, however, preferable to avoid this further complication and to use the light that is
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already present in the interferometer to generate an error signal for MSR. If possible,
it would be easiest if the same Schnupp modulation which is already being applied (to
read out the Michelson phase) could also be used to control signal recycling. It turns
out that this is indeed possible if we look at the light circulating in the arms.

This concept was first investigated in a series of table-top experiments in Hannover
(without power recycling) [Maass95, Barthel97, Freise98] and finally implemented in
the Garching 30m prototype as one main part of this work. The main results have
recently been published [Heinzel98].

The generation of an MSR error signal can be understood if one considers the (idealized)
interferometer in the dark fringe condition. Then there will be no carrier light between
the beamsplitter and MSR (compare Figure 1.2). The only light arriving at MSR will
be the Schnupp modulation sidebands, which are directed there via the armlength
difference (see Section 1.5.4). The only effect of an assumed motion of MSR, which we
want to detect, is to change the phase of those Schnupp sidebands that are reflected
back into the interferometer.

Hence the resonance condition of the Schnupp sidebands is modified and we can expect
to see their phase (with respect to the carrier) changed everywhere inside the inter-
ferometer, including the South output port. However at this port, it is impossible to
detect this phase change because no carrier is present. In the power recycling cav-
ity, on the other hand, the carrier is resonant and very strongly present. Beating the
phase-shifted Schnupp sidebands with the carrier will then produce an error signal that
depends on the tuning of MSR.

In principle, light from anywhere inside the power recycling cavity could be used to
detect this beat signal. In particular, light from either of the two arms will contain the
desired information. In the last table-top experiment in Hannover [Freise98], the light
transmitted through one end mirror was used for that purpose. In the Garching 30m
prototype we have chosen to use the weak beam reflected off the rear of the beamsplitter
(see Figure 1.29). This beam is a small fraction (around 300 ppm) of the light which is
on its way into the East arm. The rear of the beamsplitter had intentionally been given
this finite reflectance for the former external modulation setup (see Section 1.3.2). The
beam is detected by the resonant photodiode PD4 in Figure 1.29, and the error signal
is then generated in the associated mixer Mix4.

It is mentioned for completeness here that some simulations have also been carried out
to compute possible error signals for MSR which are detected at the West port of the
interferometer (i.e. in the light reflected from the power recycling mirror) instead of the
light from one arm (this had been proposed by David McClelland18 for detuned dual
recycling). All such simulations19 showed, however, the same qualitative behaviour of
the error signal as with detection in one arm. Detection in the West port (reflected
light) is therefore no longer considered in this work.

A detailed investigation of the error signal is possible with Jun’s program. Figure 1.44

18See also the footnote 27 on page 95.
19This holds also for detuned dual recycling (see Section 1.10.2) and the special case of equal lengths
of PR and SR cavity (see Section 1.11).
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shows the computed error signal, equivalent to Figure 1.39 for the Michelson error
signal. It was computed from the static response H1(χopt) at the East output port
(Equation (1.50)), where χopt is the optimal demodulation phase for one mixer (Equa-
tion (1.74)), determined for low signal frequencies at the nominal broadband operating
point. This is what most closely resembles the actual error signal in the prototype, as
it is observed at the output of mixerMix4 in Figure 1.29.

Several interesting facts can be seen in the plots. If the Michelson is in the dark fringe
condition (ϕMI = 0), the SR error signal shows a more regular behaviour than the
Michelson error signal. In particular, there is no phase reversal of the error signal
(compare Figure 1.39).

On the other hand, if MSR is locked (ϕSR = 0), the error signal is not constantly zero,
but does depend on the Michelson tuning ϕMI. This is different from the behaviour of
the Michelson error signal. The (desired) sensitivity of the SR error signal to a motion
of MSR is 3.3 times larger than the (spurious) sensitivity to a differential motion of the
end mirrors. However, since the Michelson lock must be rather tight anyway during
operation, this dependence is not expected to present a problem.

Figure 1.45 shows the frequency response of the SR error signal at the nominal operating
point. The data computed with Jun’s program were fitted with Liso. The response is
dominated by a single pole at 100 kHz. The structure near 300 kHz can be fitted by a
complex pole at 345 kHz (Q = 0.98) and a complex zero at 318 kHz (Q = 0.86). No
attempt was made to find a physical explanation for these response poles.

1.6.3.2 Actuator and loop filter

In the prototype the signal recycling mirror MSR is suspended as a single pendulum that
is very similar to the end mirrors (see Section 1.6.2.3 and Appendix A.3). The test mass
is a fused silica plate much thinner than those of the end mirrors. Consequently (and
possibly also because of imperfect adjustment of the gain ratio for the three coils) there
is some coupling of the longitudinal motion to the (undesired) rotational and tilting
motion of the plate20. The resulting transfer function is slightly more complicated
than the simple two-pole low-pass filter valid for the end mirrors. It was measured and
could be fitted with a model consisting of a complex pole at 0.8Hz (Q = 0.46), another
complex pole at 1.5Hz (Q = 1.75) and a complex zero at 2.4 Hz (Q = 2.25).

Apart from the standard overall gain control and optional inverter, the loop filter
consisted of an integrator active between 10mHz and 1Hz and a differentiator active
between 1Hz and 1 kHz. The resulting open-loop gain is shown in Figure 1.46 for a
typical unity-gain frequency of 500Hz. This filter was designed and built very quickly
during the initial installation of dual recycling. Since it worked satisfactorily, it was
never changed, although a more complicated filter (such as the one described in Sec-
tion 1.6.2.3) might yield slightly better performance.

20Another reason may be that the SR mirror is not fixed in the center of the test mass, as opposed
to the end mirrors. That was because the test mass was designed to hold two SR mirrors next to
each other such that the SR mirror reflectivity could quickly be switched by moving the test mass
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Figure 1.44: SR error signal as a function of the tunings ϕMI and ϕSR, with the PR cavity
being kept resonant. The lower curve shows the error signal for the dark fringe state ϕMI ≡ 0.
The tunings ϕMI and ϕSR are expressed as multiples of π in these plots.
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Figure 1.45: Frequency response of the SR error signal in the 30m prototype at the nominal
operating point.

-20

0

20

40

60

80

100

120

0.001 0.01 0.1 1 10 100 1000 10000
-180

-135

-90

-45

0

G
ai

n
 [

d
B

]

P
h
as

e 
[d

eg
]

Frequency [Hz]

gain

phase

Figure 1.46: Open-loop gain of the SR mirror control loop.

1.6.4 Power recycling gain in dual recycling

Supplementing the previous diagrams, which show various aspects of the dual recycled
interferometer as a function of the two tunings ϕMI and ϕSR, Figure 1.47 shows the
average (DC) total power in the power recycling cavity. It was computed as the sum
of the power in the North arm and the power in the East arm. If one compares this

orthogonally to the beam direction.
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diagram with Figure 1.41, there is not the strict correspondence that one might at
first expect (exit through the South arm being the main loss mechanism for the PR
cavity). This is because the impedance matching condition for the injected light varies
considerably over the plotted parameter space, and thus the amount of light directly
reflected from the PR cavity also varies by a factor of almost 10.

1.7 Lock acquisition

This section describes how the lock acquisition of the dual recycled interferometer was
found to work experimentally, and attempts to give an explanation using the simulations
presented in the previous sections.

During several months of experiments at the 30m prototype, the following procedure
to acquire lock of all loops proved to be the most successful (see also Section 1.8.1 on
the alignment procedure).

1. The first loop (laser frequency stabilization to the reference cavity) must be locked
(see Section 1.6.1.2). This is independent of the rest of the interferometer, apart
from the fact that the second loop (PR cavity lock) interacts with the first loop
via the AOM. It was helpful to interrupt this interaction during lock aquisition
by setting the gain of the second loop to zero. Lock acquisition was at first done
manually by slowly scanning either the laser frequency or the reference cavity
length (both via piezos). Then, in the neighborhood of a resonance, the first loop
tried to lock. Because the precise gain setting of that loop is somewhat critical,
it was often necessary to manually reduce the gain until lock of the first loop was
accomplished and then increase it again to reduce the remaining frequency noise.
Later this manual procedure was replaced by an electronic circuit that effectively
performs the same task. The circuit is described in Appendix B.13.

2. Once the laser frequency is stabilized, the gain of the second loop (which locks the
laser frequency to the PR cavity) is again restored to its normal value (this task is
now also performed by the electronic circuit). The second loop then continually
tries to lock the laser frequency to the ‘power recycling cavity’, which at this
point wildly fluctuates in its behaviour (because both the Michelson and the SR
mirror are still swinging freely). It is believed to be important for the final success
of lock acquisiton that the second loop manages to lock the laser frequency to
the swinging interferometer under most conditions of the interferometer (see also
Sections 1.6.1.2 and 1.6.1.3).

3. The remaining two degrees of freedom, Michelson and SR mirror, could only be
locked simultaneously. Thus both loop gains were set to an appropriate value and
the interferometer was left swinging. Fortunately it turned out that under correct
conditions (in particular, good alignment of the interferometer, proper loop gain
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Figure 1.47: Power buildup in the PR cavity (sum of the power in the East arm and the power
in the North arm for unity input power) as a function of the tunings ϕMI and ϕSR, with the
PR cavity being kept resonant. The lower curve shows the power for ϕSR ≡ 0. The tunings
ϕMI and ϕSR are expressed as multiples of π in these plots.
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and demodulation phase for the last two error signals)21 it usually only takes a
few seconds before the interferometer falls into lock by itself, without any external
interaction, and stays there. This process is described in some more detail below.

4. Once the dual recycled interferometer is locked, some parameters can be opti-
mized, as described in Section 1.8.1.

The lock, once achieved, was usually quite stable. At best, lock was typically lost after
15 to 30 minutes due to either a failure of the first loop (when the relative drift of the
laser frequency compared to reference cavity exceeded the actuator’s range) or ‘seismic’
disturbances (including stepping too strongly on the laboratory floor’s hot spot near
the central vacuum tank), which caused the dynamic range of one of the interferometer
loops to be exceeded.

For the lock acquisition described above to work it was found necessary (or at least
very helpful) that the Michelson loop gain was smaller than the SR mirror loop gain.
Typical gain settings corresponded to unity-gain frequencies (after lock was achieved)
of around 100Hz for the Michelson and 500Hz for the SR mirror. After lock was
achieved, the Michelson gain could be increased, even until it was bigger than the SR
mirror loop gain. This behaviour may have to do with the simpler structure of the SR
mirror error signal (compare Figures 1.39 and 1.44), but there is no hard evidence for
this belief.

Both error signals were recorded during a few typical lock acquisition transients. Some
examples are shown in Figure 1.48.

The upper curve of Figure 1.48 is perhaps most typical. At first (t < −0.2 s), both
Michelson and SR mirror are freely swinging and occasionally encountering one of the
peaks of Figures 1.39 and 1.44. At about t = −0.18 s, both of them arrive in the central
region. Then a complicated nonlinear oscillation starts and lasts for a few cycles, and
finally both degrees of freedom are locked. Lock acquisition was confirmed by a constant
high PR gain and by the sudden appearance of the calibration signal (375Hz) in the
Michelson output signal (unfortunately these were both not recorded in Figure 1.48
due to lack of channels in the oscilloscope).

Figure 1.49 shows an enlarged detail of the final phase of the oscillation. No attempt
was made to simulate or understand it. As can be seen from the other two examples in
Figure 1.48, sometimes the oscillation lasted longer, or was missing altogether on other
occasions.

1.7.1 Other stable states

During lock acquisition, in particular if parameters were not yet well readjusted after
an idle period, the dual recyled interferometer could sometimes lock in other states

21After the initial installation of dual recycling, it took Ken Strain and the author only one day to
acquire lock for the first time. The author thinks this was quite lucky (at least several weeks had been
expected), but also and mainly due to the expertise of Ken Strain.
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Figure 1.48: Some lock acquisition transients recorded in the dual-recycled 30m prototype.
The time axis has been shifted such that t = 0 corresponds to the approximate time of lock
acquisition.
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Figure 1.49: Detail of the lock acquisition transient from the upper curve of Figure 1.48.

than the desired dual recycling state. Some of these states were reasonably stable,
while others had so little loop gain that a small disturbance quickly threw them out
of lock. They could easily be identified by observing the power of the beams in the
interferometer and at the output. It was found, not very surprising, that the stability
of these states depended critically on the loop gains for the Michelson and SR mirror
lock, and, equally important, on the demodulation phases χMI and χSR that were used
to generate the error signals for these two loops. Luckily it was always possible to lock
the interferometer in the desired dual-recycling state after a few readjustments of these
gain and phase settings.

One of the more interesting states, that was sometimes observed, is shown in Fig-
ure 1.50. The thickness of the lines symbolically represent the relative beam powers in
each arm.

As another verification of our models, this state was also simulated with Jun’s program.
The required tunings are ϕMI = 3π/2, ϕSR = π/4 and ϕPR = π/4 (or an equivalent
symmetric combination). It was found that indeed error signals with zero crossings at
this operating point could be obtained, in particular if the demodulation phases χMI
and χSR had some offset against their optimized values for dual recycling. The gain of
both error signals was, however, much lower than in the normal state. The following
table shows the relative power in each arm (computed with Jun’s program) for unity
input power.
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Figure 1.50: One of the other stable states of the dual recycled 30m inteferometer, which was
sometimes observed when gain and phase settings were not yet optimized.

Tunings Power

State ϕMI ϕSR ϕPR North East West South

Normal 0 0 0 24.4 23.6 47.1 0.92

Funny
3π/2

π/2

π/4

3π/4

π/4

3π/4
0.004 39.5 18.8 20.7

Different interpretations of this state are possible. It can, for example, be considered as
a power-recycled Michelson with the East arm as PR cavity, with two short ‘arms’, and
even with signal recycling in the North arm. This dual-recycled Michelson is, however,
fed from the laser through one of its ‘arms’, an otherwise very unusual arrangement.
The simulation also showed that the gain of the error signals and the signal-to-noise
ratio at the output were, as expected, worse than in the normal dual recycling state.

1.8 Operation of dual recycling

1.8.1 Initial alignment and adjustments

This section briefly describes the procedure that was typically used to first aquire lock
in the dual recycled prototype, after it hadn’t been used for a while. After a warm-up
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period of one or two hours for the laser, the elements on the laser table were readjusted
until the first loop was locked (see Section 1.7). Then the coupling of the light into the
fiber was optimized. The suspended interferometer was usually so badly misaligned
that no interference took place. Realignment starts with a simple Michelson (i.e. MPR
and MSR tilted and acting only as attenuators). The spots at the output port are
clearly visible and can easily be superimposed by manual alignment.

This does, however, not yet mean that the two beams returning from the arms do indeed
retrace their path, which is necessary for power (and signal) recycling. This common
mode alignment of the end mirrors is the most tricky part in manual alignment. It
was initially approximated by observing the (very weakly visible) spots on the power
recycling mirror and then, as soon as possible after lock was aquired, optimized with
the autoalignment system (see Chapter 2).

The next step is to re-align the power recycling mirror such that a power-recycled
Michelson (still without signal recycling) results. This interferometer could usually
be locked (by increasing the Michelson loop gain), and the locked state was used to
optimize the alignment of the power recycling cavity.

Then finally MSR is re-aligned. At this moment the interferometer output, which had
been rather dim so far, starts to flash brightly. The interferometer is swinging through a
two-dimensional continuum of states, while the second loop is mostly locked, such that
the incoming laser light is usually resonant in the strange interferometer formed by the
swinging mirrors (see Section 1.7). In many states a large fraction of the injected power
appears at the output (see Figure 1.41). Furthermore, since both power- and signal-
recycling cavity are nondegenerate, higher order transversal modes may be resonant in
parts of the system at tunings where the fundamental mode is not resonant. This gives
the flickering light at the output port a wild and rapidly changing transversal structure.

If the power-recycling cavity had been well aligned before the re-alignment of MSR,
and all loop gains etc. are set not too far from their optimum, then the dual-recyling
interferometer will usually lock quickly, as described in Section 1.7. Once locked, many
parameters can be adjusted. To begin with, the alignment of all suspended mirrors
(apart from MSR) is optimized with the autoalignment system.

The alignment of MSR must be carried out manually, because there is not yet an
autoalignment system for it. For that purpose (and many others as well), a small test
signal at an audible frequency is fed to the Michelson interferometer via coil-magnet
actuators on one end mirror. The frequency should be as high as easily possible, because
low frequencies may be affected by the loop gain of the Michelson dark fringe lock (see
also Appendix A.5.1).

The amplitude of that test signal in the Michelson output is monitored via headphones
(and often a band-pass filter). This is a very sensitive indicator for the alignment of the
SR cavity, which can now be optimized. The same procedure is also used to optimize
the Michelson demodulation phase χMI.

The demodulation phase χSR for the SR error signal is similarly optimized with another
audible test signal, which is fed to MSR and monitored in the SR error signal.
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1.8.2 Confirmation of dual recycling

After the initial installation and lock acquisition of dual recycling, it was necessary to
confirm its proper operation. The first test was the enhancement of the amplitude of
the 375Hz calibration signal at the Michelson output. For that measurement, MSR
was temporarily misaligned by about 3mrad, such that beams reflected from it would
no longer hit the end mirrors, and MSR thus acted as a simple attenuator. Then the
interferometer (a power-recycled Michelson without signal recycling) was locked by
increasing the Michelson gain. The amplitude of the 375Hz signal at the Michelson
output was measured with a spectrum analyzer and recorded as reference. Then MSR
was re-aligned to its proper position, the dual recycled system was locked and the
amplitude of the 375Hz signal was measured again. The ratio of these two amplitudes
was compared with theory.

The expected ratio consists of three factors:

• The enhancements of the signal sidebands due to signal recycling. For the 3.88%
mirror of the prototype, this factor is given by 2/τSR = 10.15 (see Section 1.5.3).

• The improved coupling of the Schnupp modulation sidebands to the output, where
they act as local oscillator (compare Section 1.5.4 and Figures 1.36 and 1.38). This
factor22 amounts to around 9.

• The attenuation due to the misaligned MSR in the reference measurement yields
another factor of 1/τ2SR = 25.8.

Using Jun’s program with the best numbers available, the expected total ratio was
2335. Upon the initial installation of dual recycling, however, a ratio of only around
500 was consistently measured. Considerable effort was invested in trying to eliminate
all possible errors, including errors in the simulation. In the end, after all other pos-
sibilities had been excluded23, the signal recycling mirror (which had had about 4%
transmittance) was replaced by an old mirror of unknown origin, which happened to
be flat and have a suitable transmittance, which was measured as 3.88%. Immediately
upon its installation in the prototype, a ratio of 1900 was measured, and that old mir-
ror is still installed as the signal recycling mirror. Visual inspection of the previously
used mirror showed that its coating was very inhomogeneous, apparently due to some
severe accident in the coating process, and that entire batch of mirrors has now been
discarded.

The measured ratio of 1900, compared with the expected total ratio of 2335, was
considered sufficient evidence for the correct operation of dual recycling, if one takes
into account the idealizations of the model (perfect mode matching etc.).

Further indications of correctly operating dual recycling were obtained from the im-
proved shape of the mode emerging at the dark fringe port (see Section 1.9) and, later,
the correspondence of measurement and theory in the detuned case (see Section 1.10).

22The exact value is 9.24, if the demodulation phase in mixer Mix3 of Figure 1.29 is optimized
separately for the two cases, and to 8.93, if it remains untouched between the measurements.
23A significant fraction of these experiments was carried out in collaboration with B. Willke.
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1.8.3 Noise behaviour of the dual recycled prototype
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Figure 1.51: Noise spectrum of the dual recycled 30m prototype.

Figure 1.51 shows a typical noise spectrum of the dual recycled 30m prototype. The
calibration was performed as described in Appendix A.5.1. The lowest noise occurs
near 1 kHz at a level of around 5 · 10−15m/

√
Hz, similar to the results with external

modulation (see Figure A.17).

It was shown (see below) that this noise is largely dominated by the frequency noise
of the laser light that enters the interferometer. The expected effect of the frequency
noise with the known armlength difference can be computed as follows [Winkler]:

A laser frequency fluctuation of the amount δν will simulate the effect of a gravitational
wave of amplitude

h =
∆L

L

δν

ν
, (1.101)

where L is the physical armlength, ∆L the armlength difference and ν the laser fre-
quency. The corresponding phase difference (of the interfering beams) is related to h
by

δϕ =
4π L

λ
h =

4π ν L

c
h. (1.102)

Combining the above two equations yields

δϕ = 4π
∆L

c
δν. (1.103)

This conversion factor is independent of the Fourier frequency of the frequency fluc-
tuation. This can be understood in the sideband picture, if one remembers that the
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amplitude of the sidebands that describe the frequency fluctuation is inversely pro-
portional to the Fourier frequency (see Section 1.2.1.3), whereas their coupling to the
output is proportional to the Fourier frequency (see Section 1.5.4). Thus the amplitude
of the sidebands at the output, and hence the spurious signals which they cause, are
independent of the Fourier frequency.

For the prototype, the conversion factor from frequency noise to phase noise at the
Michelson output is thus expected to be 4π · 6 cm/c = 2.5 · 10−9 rad/Hz. According
to this calculation, however, the measured frequency noise of 0.4Hz/

√
Hz at 1 kHz

(Figure 1.34) would result in a phase noise of about 1 nrad/
√
Hz, whereas approximately

5 nrad/
√
Hz were measured (Figure 1.51).

A repetition and recalibration of both measurements (Figures 1.34 and 1.51, see Ap-
pendix A.5) confirmed both measurements. Nevertheless a measurement of the ‘transfer
function’ of laser frequency noise to output phase noise (without injecting additional
signals) showed a good correlation. Furthermore, an experiment was performed to
subtract the frequency noise (using the second loop error signal) from the Michelson
output. This gave indeed a lower noise level at the subtracted Michelson output (but
proved to be rather unstable, as the coefficient used in the subtraction was rather crit-
ical and tended to drift considerably on timescales of one minute or so). These facts
indicate that the output phase noise is indeed dominated by laser noise, although the
coupling efficiency is apparently higher than computed from Equation (1.103).

Several explanations are possible. If the Michelson is not exactly on a dark fringe,
the coupling increases. Simulations with Jun’s program have shown that an offset of
ϕMI = 0.001 rad is sufficient to increase the coupling to a value five times bigger than
predicted from Equation (1.103), i.e. sufficient to explain the measurements. Offsets in
the Michelson loop (and in all other loops that use RF demodulation to generate their
error signal) were not uncommon due to drifting AM in the Pockels cells that apply
the phase modulation (see Appendix A.2) and due to RF pickup in the photodiode
preamplifiers.

Another possible explanation is that laser frequency noise, which is generated by shot
noise in the first loop error signal and then impressed on the laser frequency via the high
loop gain and fed back to the piezos in the laser (see Section A.2). This unfortunately
not only changes the laser frequency but also alters its alignment and amplitude. Fluc-
tuations in alignment and amplitude do also couple into the Michelson output. This
may yield another contribution to the increased coupling which was observed.

Unfortunately the precise relationships were very difficult to investigate, due to the ever
present drifts in the laser beam characteristics and the modulation AM components.
It was, however, experimentally observed at the Michelson output by applying a test
signal to dither the laser frequency, that offsets in the Michelson loop (and also the PR
loop) did indeed change the coupling efficiency.

Furthermore, the calibration of the frequency noise measurement shown in Figure 1.34
was rather difficult and depended on many varying factors (see Appendix A.5.2), so
that some uncertainty (probably up to a factor of two) exists in the absolute scaling of
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Figure 1.34. The measurements shown in Figures 1.34 and 1.51 were done on different
days under somewhat different conditions of the interferometer.

Laser frequency noise is a serious problem in an interferometer that uses Schnupp mod-
ulation. Any frequency (or phase) fluctuation of the injected light will be separated
from the carrier by the beamsplitter and transferred to the South direction (either di-
rectly to the output port or to the SR cavity), as described in Section 1.5.4. In a system
with signal recycling, such light injected into the SR cavity will be indistinguishable
from the light caused by true signals, and will thus be amplified in the SR cavity just
as true signals would be.

For the 30m prototype, some possible improvements of the laser frequency stabiliza-
tion are discussed in Section 1.6.1.2. In GEO600, a much better laser and frequency
stabilization (including two suspended mode-cleaner cavities) will be used, and it is
hoped that laser frequency noise will not limit the sensitivity of GEO600.

1.9 Contrast improvement and ‘mode healing’ effect

One very important feature of signal recycling (and, in particular, of dual recycling)
has become known as ‘mode-healing’ effect [Meers91b, McClelland93, Mavaddat95].

There are two aspects to it: First, the contrast at the output port is improved due to
signal recycling. This effect was clearly observed in our experiment. Second, in a dual
recycled system, the power recycling gain should also improve. The experimental pa-
rameters of the prototype during this work were such that this effect was (as expected)
too small to be observed.

To understand these effects, we first consider a basic Michelson interferometer with
power recycling, but no signal recycling, which is operated on the dark fringe, with one
of the modulation methods described in Section 1.3 used for readout.

The contrast of an interferometer is never perfect. We use the term ‘contrast’ to rep-
resent the fraction of the light power leaking out towards the detection port (South)
relative to that incident on the beamsplitter from the input side (West). The modula-
tion sidebands are not included in this definition. More common definitions of ‘contrast’
or ‘visibility’ cannot easily be applied to a power-recycled system, where a true ‘bright
fringe’ never exists.

In the earlier experiments using external modulation (and no signal recycling), the con-
trast was found to be never better than 1:1000. If we ignore the modulation sidebands
for a moment, the remaining light at the South port consists of higher order transversal
modes, which are generated by differential mirror imperfections in the long arms. The
fundamental mode component in that light is eliminated as far as possible by the dark
fringe lock (the limit being unequal reflectivities in the two arms). The amplitude of
the remaining light can be expanded into a set of orthogonal modes, mostly used are
Gauss-Hermite modes or Gauss-Laguerre modes.
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Any components of the two first Gauss-Hermite modes (01 and 10) can be interpreted
as misalignments of the Michelson and are thus also suppressed (by the autoalignment
system). Hence the remaining light is dominated by higher order modes (see the left
half of Figure 1.53 for an example). This light is effectively lost from the power recycling
cavity and thus limits the power recycling gain.

Furthermore, at the detection port the power in the Schnupp modulation sidebands
(which are required to detect the Michelson phase) must be bigger than the power of
the ‘waste’ light, if the optimal sensitivity is to be approached. Since (in all practical
schemes) this power is also taken from the power recycling cavity, the power-recycling
gain that can be achieved is limited even more.

With the introduction of signal recycling, it becomes possible to distinguish between the
fundamental mode and higher order transversal modes thanks to the Guoy phase shift.
If the SR cavity is designed to be non-degenerate (as is usual), then the higher order
modes will in general not be resonant, when the carrier is resonant. For simplicity we
treat here only the case of broadband dual recycling, i.e. when the fundamental mode
of the carrier is resonant in the SR cavity.

To compute the resonance condition for the higher order sidebands in the signal re-
cycling cavity, we first need to find the geometry of the cavity eigenmode. From the
length of the cavity (L = 30.942m) and the radius of curvature of the end-mirrors
(R = 33m), we find the Rayleigh range of the SR-cavity as

zR =
√
L(R− L) = 7.98m, (1.104)

and the Guoy phase shift between mode n and mode n+1 for a one-way trip along the
arm as

η = arctan(L/zR) = 1.318 rad = 75.54
◦. (1.105)

The index n is given by l+m for a Gauss-Hermite mode with indices l andm (indicating
l and m node lines in the horizontal and vertical direction, respectively). For a Gauss-
Laguerre mode with indices l and m (indicating m circular node lines and l radial node
lines) the relevant index is n = |l|+ 2m [MPQ203, Appendix G] [Siegman].
The resonance condition in the Fabry-Perot cavity is mainly determined by the factor

d =
1

1− ρ1ρ2 exp(−2 i kL)
(1.106)

(see Appendix D), which multiplies all amplitudes in the cavity. If we assume the
carrier’s fundamental mode to be resonant (kL = 0 mod 2π) and include the Guoy
phase shift for the transversal mode with index n we obtain

d =
1

1− ρ1ρ2 exp(−2 inη)
(1.107)

Figure 1.52 shows the power buildup for higher order modes in the SR cavity, referred
to the power buildup for the fundamental mode. It was computed as |d|2 (Equa-
tion (1.107)) with the parameters of the prototype. It can be seen that most of the
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higher order modes are strongly suppressed. The appearance of individual higher order
modes which are almost as well resonant as the fundamental mode (such as the 31st

mode in Figure 1.52) depends critically on the exact value of the cavity length and
mirror curvature.
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Figure 1.52: Suppression of higher order transversal modes in the signal recycling cavity of the
prototype.

The effect of this suppression of the higher order modes is that most of the ‘waste
light’ generated by differential distortions of the end mirrors does not reach the main
photodetector. Hence a smaller amplitude of the modulation sidebands is sufficient
to achieve the optimal performance. This effect alone already allows to increase the
power circulating in the PR cavity (because a smaller modulation index is needed for
the Schnupp modulation).

The effect of ‘cleaning’ of the light that arrives at the detection port was clearly ob-
served in our experiment. Figure 1.53 shows the shape of the beam that leaves the
interferometer towards the main photodetector, recorded with a CCD camera. The left
picture shows the shape of the output beam without signal recycling. It is dominated
by ‘waste’ light in a combination of many higher order modes. The right picture shows
the same beam with dual recycling in operation. Now the beam is dominated by the
Schnupp modulation sidebands, which are in the fundamental transversal mode.

The measured contrast with dual recycling was 1:3700, including the power in the
Schnupp sidebands, which dominate the light at the output. Because the Schnupp
sidebands are necessary for operation, the contrast without them could not be mea-
sured. It was, however, estimated to better than 1:10000.

Another experimental observation concerns the amount of intentional misalignment
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Figure 1.53: The shape of the beam leaving the interferometer towards the main detection
photodiode. The left picture shows the case without signal recycling, while the right picture
was taken with dual recycling working.

(of the end mirrors) that is tolerable before lock is lost. It was found that (after
disabling the autoalignment system) the end mirrors could be misaligned more than
twice as far as had been possible without signal recycling. Furthermore, the shape
of the beam emerging at the South port starts to show the characteristic shape of a
misaligned Michelson (which looks like a Gauss-Hermite ‘01’ mode) only at much larger
misalignments.

The complete theory of ‘mode-healing’ is rather complicated. From the above con-
siderations it is easy to believe that the contrast at the dark fringe port improves,
in accordance with the observation. If there is less light leaving the interferometer
through the South port, it is also plausible (from energy conservation) that the power
recycling gain increases, provided that the imperfect contrast is a major loss mecha-
nism of the power recycling cavity. However, what exactly happens to the modes in
the interferometer is not easily understandable.

Table-top experiments [Meers91b] and numerical simulations [Mavaddat95] have shown
that the power recycling gain does indeed increase, if the ‘distortion’ is dominated by
lower order modes such as misalignments. One possible interpretation is that an equilib-
rium mode is formed in the ‘power recycling cavity’24, which is not a pure fundamental
mode. This mode experiences smaller losses than a fundamental mode would. It is,
however, still close enough to a fundamental mode such that the ‘overlap’ with the
mode coming from the laser is good and an efficient coupling of the incoming power
into that mode is possible.

In our experiment no such effect could be expected to be observable, because the power
recycling gain (about 50) was limited by the relatively high transmittance of the power

24Using the term ‘power recycling cavity’ here is common but not very precise. It is, of course, the
whole interferometer including in particular the SR mirror that forms the equilibrium mode.



1.10. DETUNED SIGNAL RECYCLING 91

recycling mirror (7%), and all other losses of the power recycling cavity were negligible
compared to those 7%.

1.10 Detuned signal recycling

1.10.1 Frequency response of detuned signal recycling

In analogy to Section 1.5.2, we treat separately the signal transfer function and the
Schnupp sideband throughput, the product of which constitutes the interferometer
transfer function, as computed by Jun’s program.

1.10.1.1 Signal transfer function

In detuned signal recycling, the resonance frequency of the SR cavity is not the carrier
frequency, but instead has an offset to the carrier which will be called fdet. This
is achieved by maintaining the signal recycling mirror MSR at a position that has a
microscopic offset (detuning) to the position where the carrier would be resonant. The
tuning ϕSR (expressed in radians) is related to fdet by

fdet = FSRSR
ϕSR
π
. (1.108)

The denominator is only π instead of 2π because of the definition of ϕSR in the model
(see Section 1.4.1).

Then, in general, the two signal sidebands (which are at frequencies ±fsig with respect
to the carrier) will experience different resonance conditions in the SR cavity. Often only
one sideband (the upper one was chosen in the following example) will be resonantly
amplified, whereas the other sideband has low gain (or is even suppressed) and can be
neglected. This situation is shown in Figure 1.54 (compare Figure 1.22). Note that in
an ideal interferometer, there is no carrier in the SR cavity.

If the signal frequency fsig is swept through some range around fdet, both signal side-
bands move symmetrically about the carrier. In the simplified picture given here, the
upper sideband traces the resonance of the SR cavity and is maximally enhanced for
fsig = fdet, while the lower sideband can be neglected.

If we compare the detuned signal transfer function with the broadband case discussed in
Section 1.5.3, the following important properties can be observed (see also Figure 1.56
below):

• The detuned transfer function reaches its maximum at fdet, and the 3 dB band-
width of that maximum is equal to the SR cavity’s FWHM, i.e. twice as wide as
the bandwidth25 in the broadband case.

25The term ‘bandwidth’ here refers to the signal bandwidth, where only positive frequencies are
considered.
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Figure 1.54: Amplitude transfer function in detuned signal recycling, using the parameters of
the prototype (30m armlength and 3.88% SR mirror transmission). The signal frequency used
for the example is 120kHz, and the frequency offset fdet is 100kHz.

• The value at the maximum is only one half of the broadband transfer function at
DC (if we assume equal detection of all sidebands).

• The magnitude of the detuned transfer function at DC will be lower than both
the broadband transfer function at DC and the detuned transfer function at its
maximum. This effect will be stronger with increasing frequency offset fdet and
increasing finesse of the SR cavity.

In this simple model, the signal transfer function can be approximated by that of a
second order low-pass filter (see Appendix D.3.2) under certain conditions. For very
small detunings (fdet / FWHM), the transfer function is a ‘mixture’ of the broadband
case and detuned case and cannot be described by the simple model given above. Such
small detunings will, however, rarely be useful in practice.

1.10.1.2 Schnupp sideband throughput

The resonance of the Schnupp sidebands in the interferometer, which is already rather
complicated in the broadband case (see Section 1.5.4), is even more complex in the
detuned case. The upper and the lower Schnupp sideband have different resonance
conditions. Figure 1.55 shows the throughput of the upper and lower Schnupp side-
bands to the output for the 30m prototype at a detuning of ϕSR = 0.065 rad, which
corresponds to a peak sensititvity at fdet = 100kHz. If we compare this plot with
Figure 1.26, it can be seen that the maximal modulation throughput is reached at
a very different Schnupp modulation frequency (at an offset of approximately fdet as
compared with the broadband case). The lower plot shows the resulting dependence of
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the frequency response of the interferometer on the Schnupp modulation frequency for
two signal frequencies (a very low frequency and 100 kHz).
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Figure 1.55: Schnupp sideband throughput in detuned dual recycling. The upper plot shows the
amplitude of the upper and lower Schnupp modulation sidebands at the output (assuming unity
input amplitude). The lower plot shows the dependence of the interferometer frequency response
on the Schnupp modulation frequency, for signals of low frequency and 100 kHz, respectively.

If the lower curves of Figure 1.55 are normalized by dividing them by the square root of
the average (DC) power arriving at the South port (according to Equation (1.85)), we
find that the shot-noise limited sensitivity of the interferometer is almost independent
of the Schnupp modulation frequency (this assumes that all other parameters, in par-
ticular the carrier power in the PR cavity, remain constant). This idealized shot-noise
limited sensitivity varies only by around 1% when the modulation frequency is varied
between 9MHz and 10MHz.
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Nevertheless one will usually strive for an efficient modulation throughput for the same
reasons already given towards the end of Section 1.5.4. In detuned dual recycling, the
generation of the error signal for the signal recycling mirror also depends on the Schnupp
modulation frequency (see Section 1.10.2 below), such that in practice a compromise
may be necessary in choosing the Schnupp modulation frequency.

1.10.1.3 Transfer function of the interferometer

The transfer function of the interferometer is the product of the signal transfer func-
tion and the Schnupp sideband throughput, which were discussed in the two previous
sections. In order to take into account some complications which were neglected in the
simplified discussion of the previous two sections, the transfer function is computed with
Jun’s program. Then both signal sidebands and both Schnupp modulation sidebands
are properly taken into account including their phase.

Since, as we have seen, the throughput of the Schnupp modulation sidebands (and
hence the amplitude of the output signal) depends on the tuning ϕSR as well as on the
Schnupp modulation frequency, we will use the ‘normalized’ transfer functions

Gn =

√
|G1p|2 + |G1q|2√

H0
(1.109)

(see Equation (1.85)). Figure 1.56 shows these transfer functions for the parameters
of the prototype and several detunings ϕSR. The value of the broadband (ϕSR = 0)
transfer function at low frequencies was taken as 0 dB reference.
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Figure 1.56: Normalized transfer functions of the dual recycled 30m prototype for various
detunings ϕSR. For the peak frequencies shown, the corresponding detunings were computed
using Equation (1.108), e.g. ϕSR = 0.324 for fdet = 500 kHz.

Several of the points mentioned in Section 1.10.1.1 can be confirmed by this figure. For
example, the smallest detuning (for fdet = 15kHz) is not very useful.
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1.10.2 Control of detuned dual recycling

Just as in the broadband case, error signals must be generated for both the Michelson
phase ϕMI and the SR mirror tuning ϕSR, preferably by using only one Schnupp mod-
ulation frequency for both signals. The nominal operating point is now at ϕSR 6= 0
(determined by fdet, see Equation (1.108)), whereas we still have ϕMI = 0 corresponding
to the dark fringe of the carrier (see Figure 1.41).

A series of experiments was performed at the 30m prototype and a method of obtaining
such error signals (and to lock the interferometer) in a detuned state was successfully
demonstrated26. This method is discussed here, together with some associated prob-
lems. Further work will be necessary to find a fully satisfactory control scheme for the
detuned operation of GEO600.

The error signals are, in principle, generated in a way similar to the broadband case (see
Sections 1.6.2.2 and 1.6.3.1 and Figure 1.29). In particular, the Michelson error signal
is obtained by demodulating the photocurrent at the South port with the Schnupp
modulation frequency (around 9.7MHz), whereas the SR error signal is obtained by
demodulating the photocurrent generated by a weak beam picked off one arm with the
same Schnupp modulation frequency. It should be noted that some variations of this
method had already been discussed for some time by various people27.

The two demodulation phases used in the two mixers that generate the error signals
will be called χMI and χSR, respectively. Experimentally they are adjusted by phase
shifters in the local oscillator lines which drive Mix3 and Mix4 in Figure 1.29. Our
method is based on choosing appropriate values for the Schnupp modulation frequency
and the demodulation phases χMI and χSR. The Michelson error signal will, under most
conditions, have a zero crossing at ϕMI = 0. The first difficulty lies in generating an er-
ror signal for the signal recycling mirror that has a zero crossing at the (predetermined)
tuning ϕSR 6= 0.

Looking at Figure 1.44, one might be tempted to use the error signal shown there and
add a DC offset to it, such that the locking point is shifted away from ϕSR = 0. This is,
however, not very desirable because the gain of the error signal and hence the locking
point will depend on many variables of the apparatus, such as injected light power,
Schnupp modulation index, PR gain, alignment etc.

In the following it will be shown that under certain conditions an SR error signal can be
generated that has a zero crossing at ϕSR 6= 0 which does not depend on these variables.
In the following discussion, which assumes the parameters of the 30m prototype, the
desired locking point will be assumed to be at fdet = 100kHz, corresponding to ϕSR =
0.065 (see Equation (1.108)).

The basic idea is to shift the Schnupp modulation frequency from its optimum in the

26These experiments were carried out in collaboration with A. Freise.
27These ‘various people’ include in particular Ken Strain and Jun Mizuno. During the workshop on
simulation tools held in Garching in April 1998 [STAIC], David McClelland proposed a similar scheme
which would use the light reflected from the PR cavity (instead of the light from one arm) to generate
the SR error signal.



96 CHAPTER 1. DUAL RECYCLING

broadband case (see Section 1.5.4) by approximately fdet. Figure 1.57 shows (as a first
attempt) both the Michelson error signal and the SR error signal that are generated
if the Schnupp modulation frequency is shifted by fdet = 100kHz (from 2 · FSRSR =
9688 kHz to 9788 kHz)28. The plot was generated under the following assumptions: The
nominal operating point is given by ϕMI = 0 and ϕSR = 0.065. The x-axis of both plots
shows one of the two tunings, while the other tuning remains at the nominal operating
point. The PR cavity tuning is computed such that the PR cavity is always resonant
(see Section 1.6.1.3).
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Figure 1.57: Error signals for detuned dual recycling (see text). The nominal operating point
is indicated by the long thin lines.

28For simplicity an integer multiple of FSRSR is assumed as optimal Schnupp modulation frequency
for broadband operation, although in reality the coupled cavities’ resonance (see Sections 1.5.4 and
1.10.1.2) must be studied.
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The Michelson demodulation phase χMI was computed from Equation 1.74 for a max-
imal frequency response at the operating point (for low signal frequencies, this corre-
sponds to a maximal slope of the plotted curve at ϕMI = 0, see Equation (1.56)). The
plotted Michelson error signal is then found as H1(χMI) (see Equation (1.50)), where
detection at the South port is assumed.

The SR demodulation phase χSR was determined as

χSR =
π

2
+
H1q
H1p

, (1.110)

where H1p and H1q were computed at the operating point, assuming detection at the
East port. This is the very demodulation phase that yields a zero-crossing at the
operating point.

The SR error signal is satisfactory, having two steep zero-crossings at ϕSR = ±0.065.
There is also another zero-crossing at ϕSR = 0, which is, however, irrelevant, because
it has the opposite polarity. Both locking points of ϕSR (+0.065 and −0.065) yield the
same frequency response, i.e. Figure 1.56 remains unchanged.

Unfortunately the Michelson error signal is rather problematic. It does have a zero-
crossing at the operating point ϕMI = 0, which even has sufficient slope there (compare
Figure 1.55). But the locking range (i.e. the range on both sides of the operating point
where the error signal has the correct sign) is very small on one side. The next zero-
crossing occurs already at −0.013 rad. This makes lock acquisition difficult and the
whole system potentially unstable.

If the sign of the SR tuning ϕSR is changed (i.e. ϕSR = −0.065 in the example), the
Michelson error signal undergoes a point reflection about the origin (of the lower plot
in Figure 1.57). This means in particular that the zero-crossing at ϕMI = 0 retains its
slope and polarity, and hence ϕSR = −0.065 is an equivalent operating point, where
lock acquisition might occur with the same probability. The small locking range of the
Michelson error signal is now on the other side (i.e. between 0 and 0.013 rad). Thus
the two operating points are not completely equivalent in all respects. In the prototype
experiments, however, no attempt was made to identify the sign of ϕSR and it is quite
possible that the system was locked with different signs on different occasions.

In the prototype experiments, the tiny locking range was slightly improved by a com-
promise: The Schnupp modulation frequency offset was reduced (we used 48 kHz above
2FSRSR instead of 65 kHz for a detuning of ϕSR =0.042 rad, which corresponds to
fdet = 65kHz, see Section 1.10.3). This deteriorates the shape of the SR error signal,
but improves the shape of the Michelson error signal (see below). The locking range
for the Michelson error signal can also be improved by de-adjusting the Michelson de-
modulation phase χMI from its optimal value (which was adjusted for maximal gain
at low signal frequencies), at the expense of having a reduced slope at ϕMI = 0. Un-
der the same conditions as shown in Figure 1.57, the closest undesired zero-crossing
can thus (by changing χMI) be shifted from −0.013 rad to about −0.04 rad. It can be
imagined to use such ‘misadjustments’ of the Schnupp modulation frequency and χMI
during lock acquisition, which are then slowly and carefully re-adjusted to their optimal
values during operation.
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If these tricks prove to be insufficient for GEO600, there are at least two other pos-
sibilities to obtain good error signals for both ϕMI and ϕSR. Of course, two different
modulation frequencies could be used to generate the two error signals. Then it would
be possible to optimize the Schnupp modulation frequency independently for both
error signals. The Michelson error signal has its ‘normal’ form (such as shown in Fig-
ure 1.39) if it is produced with a Schnupp modulation frequency near FSRSR or one of
its multiples. The SR error signal, on the other hand, has its best form if the Schnupp
modulation frequency has an offset of approximately fdet from FSRSR.

If two modulation frequencies were used, there would be two alternatives to choose from:
They could be chosen near the same multiple of FSRSR, i.e. approximately fdet apart.
This would allow the use of only one Pockels cell with one resonant transformer for both
of them. Problems may be expected from beat signals at the difference frequency (near
fdet) in both mixers, which will probably be undesirable (after all, fdet is approximately
the sensitivity maximum of the detector, where gravitational wave signals are sought).

Otherwise the two modulation frequencies could be chosen near different multiples of
FSRSR (in GEO600, we have FSRSR ≈ 125 kHz). This should reduce or eliminate the
beat frequency problems but would require another Pockels cell (or a rather difficult
driver/transformer).

There is, however, still another possibility to get reasonable error signals for both ϕMI
and ϕSR without using two modulation frequencies. It turns out that, if one single
Schnupp modulation frequency is chosen near a higher multiple of FSRSR, the SR error
signal is almost unaffected (it still looks very similar to the one shown in Figure 1.57).
The Michelson error signal, however, changes its shape considerably, and the locking
range may increase. This was only tested in simulations with the parameters of the
30m prototype, and Figure 1.58 shows an example. Here a modulation frequency of
20FSRSR + 100kHz = 96.98MHz has been chosen rather arbitrarily.

Although the shape of the Michelson error signal is now somewhat peculiar, it has a
locking range of more than 0.1 rad in both directions from the operating point ϕMI = 0.
These simulations have not been followed any further, since, with the parameters of
GEO600, considerably different results may be expected.

One feature of the discussed control scheme is that the operating point of the SR
cavity (i.e. ϕSR and equivalently fdet) is determined by both the Schnupp modulation
frequency and the local oscillator phase χSR that is used in generating the SR error
signal. For example, Figure 1.59 shows the dependence of the SR error signal on χSR
(computed as in Figure 1.57, in particular with a modulation frequency of 9788 kHz).
If χSR is varied by ±0.5 rad around the phase that gives a zero-crossing at ϕSR = 0.065,
the zero crossings move between 0.0594 rad and 0.0722 rad, corresponding to sensitivity
peaks between 92 kHz and 111 kHz.

This is both an advantage and a problem. It is an advantage, because the precise
frequency of the sensitivity peak (fdet) may be moved (by small amounts) by adjusting
χSR without changing any other parameters of the system. This might be useful if
either one fixed frequency is to be observed (such as an expected pulsar signal), or else
a frequency is to be tracked (such as the identified signal of a coalescing binary). The
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Figure 1.58: Error signals for detuned dual recycling, for a modulation frequency near 97MHz
(see text).

dependence of fdet on χSR may also be a problem, because it requires a very stable
demodulation phase χSR. This is a technical problem involving the stability of the
resonant transformer that feeds the Pockels cell, and of the phase shifter that feeds
the mixer generating the error signal. It is likely that these problems can be solved,
in particular if calibration signals are periodically (or even continually) applied in the
interferometer.

1.10.3 Experimental demonstration of detuned dual recycling

In the experiments on detuned dual recycling, the control scheme discussed in the
previous section was used. Apart from testing the control scheme, the main goal of
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Figure 1.59: SR error signals as a function of the demodulation phase χSR. The five curves
shown were computed with offsets of −0.5, −0.25, 0, +0.25 and +0.5 rad referred to the de-
modulation phase χSR used in Figure 1.57.

the experiments was to verify the frequency response for test signals that simulate
gravitational wave signals. With the parameters of the prototype, a clearly visible
peak in the frequency response occurs only at frequencies higher than about 50 kHz.
Thus the first step was to find an actuator that could simulate gravitational wave signals
at such frequencies. Luckily it turned out the the coils and magnets already present on
one end mirror (M1 in Figure 1.29) could be used for that purpose (after modification
of the current drivers).

Figure 1.60 shows the transfer function that was observed. Test signals were fed to the
current driver connected to coils behind the mirror, and were observed at the Michelson
output (Mix3 in Figure 1.29) while the interferometer was operated in broadband dual
recycling mode. Many resonances are visible in the range of 20 . . . 100 kHz. Some of
them are resonances of the test mass itself,29 while others were not identified. This
transfer function was measured with our HP3562A network analyzer. The phase of the
transfer function was also recorded.

The experiment itself was relatively straightforward, compared with the simulations of
Section 1.10.2. One of the resonances (near 69 kHz) was selected, and a test signal at
that frequency was injected via the current driver. The goal was to detune the interfer-
ometer such that the sensitivity peak would be near fdet ≈ 70 kHz (which corresponds
to ϕSR ≈ ±0.045 rad).

The two variables available for control of the detuning ϕSR, were the Schnupp modu-
lation frequency and the demodulation phase χSR, as discussed in Section 1.10.2. First

29According to a simple calculation following [McMahon64], the three lowest resonances should be
at 20.7, 20.8 and 26.3 kHz. In the measured spectrum there are indeed two resonances near 21 kHz and
another one near 27 kHz visible.



1.10. DETUNED SIGNAL RECYCLING 101

-90

-80

-70

-60

-50

-40

-30

-20

-10

0 10 20 30 40 50 60 70 80 90 100

M
ir

ro
r 

re
sp

o
n
se

 [
d
B

]

Signal frequency [kHz]

Figure 1.60: Transfer function of the end mirror M1 driven by coil-magnet actuators, which
were used to simulate gravitational wave signals.

the interferometer was locked in broadband operation. Then these two variables (and
the other demodulation phase χMI, which also changes in the process

30) were slowly
and carefully adjusted until the 69 kHz signal appeared with maximal amplitude at
the output, while the interferometer would still lock. The best modulation frequency
thus found was 9736 kHz. In this state the frequency response of Figure 1.60 was again
measured. The difference between these two measurements (i.e. the ratio of the two
transfer functions) was expected to show the effect of the detuning while cancelling the
effect of the mirror resonances, and was compared with the simulations. Figure 1.61
shows the first results obtained.

The theoretical curve was obtained as the ratio of two functions G1(χMI) (see Equa-
tion (1.57)), which were computed separately for the conditions of the respective mea-
surement. The parameters that were changed between the two calculations were the
SR tuning ϕSR (from 0 to 0.042 rad), Schnupp modulation frequency (from 9688 kHz to
9736 kHz) and the Michelson demodulation phase χMI (from −0.47 rad to −1.65 rad).
The three parameters (ϕSR for the detuned measurement, and χMI for both measure-
ments) were found with a non-linear least-squares fit. If the phase of the transfer
function is ignored, and only the absolute gain is used, an even better fit for the gain
alone can be found.

The measured additional gain around 70 kHz and especially the good agreement of the

30This was caused not only by the purely optical effects, which can be predicted by Jun’s program,
but also by additional technical frequency-dependent phase shifts in the resonant transformer that
drives the Pockels cell and in resonant circuits in the electronic phase-shifters.
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Figure 1.61: Change in the transfer function of the dual recycled interferometer due to detuning.
Shown are the measured data and the computed curve (see text).
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phase shift visible in Figure 1.61 show clearly that our models are basically correct and
that we have indeed locked the interferometer in a detuned state.

Furthermore it turned out that the whole system continued to behave as ‘friendly’ as
before; in particular the lock acquistion tended to happen by itself, just as described in
Section 1.7 for the broadband case31, and the autoalignment system also continued to
work as before. In practice, all we needed to do in order to operate the interferometer
in a detuned state was to change the Schnupp modulation frequency and the two
demodulation phases (χMI and χSR). Since these three variables could in principle be
calibrated by a set of reference measurements, the author sees no fundamental problem
in detuning the interferometer to a desired sensitivity maximum fdet by some automated
mechanism. Hence there is optimism that even for the very different parameters of
GEO600, a similar scheme might be found.

Figure 1.62 shows the Michelson and SR error signals computed with the parameters
of that measurement. It can be seen that by choosing a modulation frequency off-
set somewhat smaller than fdet (48 kHz instead of 65 kHz) and suitable demodulation
phases (χMI and χSR), useable error signals were generated for both the Michelson and
the SR mirror with a single Schnupp modulation frequency.

In order to verify the measurements and to try other locking points, the same ex-
periment was repeated a few days later. Now another network analyzer was used to
generate and detect the test signals, our new HP8751A, which also works for frequen-
cies > 100 kHz, and which allows the source to be programmed in such a way that only
certain frequencies are generated. This feature was used to generate test signals only
near some of the resonances of Figure 1.60, because the response for other frequencies
(in between the resonances) is so small in either state of the interferometer, that no
useful information can be extracted. The modulation frequency in these experiments
was 9740 kHz. Figure 1.63 shows the results of these measurements for two different
detunings ϕSR.

Note that in the experiment the two different detunings were set by only changing the
SR error signal demodulation phase χSR without changing any other parameters (for
the measurements, however, the Michelson demodulation phase χMI was readjusted be-
tween measurements). The fitted curves were computed using the following parameters
(which were again found by a nonlinear fit):

First (upper) curve: The SR detuning ϕSR was 0.0444, corresponding to
fdet = 68kHz. The Michelson demodulation phase χMI during the broadband
reference measurement was 0.14 rad, whereas χMI during the detuned measure-
ment was −1.66 rad.

Second (lower) curve: The SR detuning ϕSR was 0.0572, corresponding to
fdet = 88kHz. The Michelson demodulation phase χMI during the broadband
reference measurement was 0.06 rad, whereas χMI during the detuned measure-
ment was −1.40 rad.

31This was true under the same assumptions as were given there, in particular good initial alignment
of the whole interferometer.
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Figure 1.62: Computed error signals for detuned dual recycling, using the parameters that oc-
curred in the experiment (9736kHz modulation frequency, ϕSR = 0.042 rad, χMI = −1.65 rad).
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Figure 1.63: Change in the transfer function of the dual recycled interferometer due to detuning.
Shown are the measured data and the computed curve (see text).
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Unfortunately, the phase of the transfer functions was too noisy to be of any use and
was thus ignored.

1.11 Must PR and SR cavity have different lengths?

In the 30m prototype, PR cavity and SR cavity have slightly different lengths (the
distance from the beamsplitter (BS) to MPR is 15 cm, whereas from BS to MSR it is
28.5 cm, see Appendix A.4). This is due to constructional reasons, but was also believed
to be necessary for the operation of detuned dual recycling. To investigate this question,
some simulations with Jun’s program were run that assume equal lengths of the PR
and SR cavities. For those simulations, all the parameters of the prototype were used,
except for the distances BS−MPR and BS−MSR, which were both set to 21.75 cm (the
average of their previous values). The FSR of both cavities would then be 4855 kHz
(as compared to 4865 and 4845 kHz with the true lengths). Note that an armlength
difference between the two long arms (6 cm in the prototype) is always necessary with
Schnupp modulation (see Section 1.5.4).

These few simulations cannot, of course, give a generally valid answer to the question
asked in the title of this Section. For the parameters of the prototype, they do, however
show no significant difference, i.e. the prototype experiments could probably have also
been carried out with equal lengths. No simulations were done with a larger length
difference.

In the broadband case (ϕSR = 0), the SR error signal is essentially unchanged (com-
pare the lowest curve of Figure 1.44). The Michelson error signal, on the other hand,
even improves as compared to the lowest curve of Figure 1.39. The amplitude of the
‘overshoot’ with the wrong sign is reduced to about one third of its previous value.

For the detuned case, the situation is also largely unchanged. Error signals very similar
to those discussed in Section 1.10.2 were predicted by the simulation. As an example,
Figure 1.64 is the direct equivalent to Figure 1.57, for equal lengths of PR- and SR-
cavity. The Michelson error signal has the same problems as before, which probably
could be cured with the same measures.

For GEO600, these results are only of limited direct applicability, because of the very
different parameters. However, it should not be taken for granted that a difference
between the lengths of the PR- and the SR-cavities is intrinsically necessary, if a control
scheme similar to that described in Section 1.6 is used.
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Figure 1.64: Error signals for detuned dual recycling under the same conditions as in Fig-
ure 1.57, but with equal lengths of PR- and SR-cavity.
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Chapter 2

Autoalignment

This chapter describes the autoalignment system for the 30m prototype that was devel-
oped by the author. It was built during the first half of this work using the configuration
with external modulation (see Section 1.3.2, Appendix A.7 and Figure A.15). After
external modulation had been replaced by Schnupp modulation and dual recycling had
been introduced, the system continued to function without modification. There is,
however, not yet an autoalignment system for the signal recycling mirror MSR, and the
discussion in this chapter assumes a Michelson interferometer with power recycling only.
A summary of the material presented in Sections 2.1 to 2.9 is about to be published
[Heinzel99]. Some alignment error signals for GEO600 are computed in Section 2.10.

2.1 Introduction

To make the interferometer work optimally all optical components need to be well
aligned, and to remain so for extended periods of time. ‘Alignment’ in this chapter refers
to angular alignment of mirrors and beamsplitter, assuming the relevant longitudinal
loops to be working, in particular the PR cavity to be resonant in its fundamental mode.
In the following we consider only a single angular dimension α for each component, the
orthogonal direction to be handled equivalently. In this chapter, we count an angle as
positive if it is rotated clockwise from a reference direction. Figure 2.1 schematically
shows all possible misalignments in one dimension.

The required performance can only be achieved with an automatic alignment system.
There are three different methods known to the author that can be used for automatic
alignment of interferometers:

• The differential wavefront sensing technique, first developed by H. Ward and
others [Morrison94]. This is the method that we use and extend here, and which
is described below.

• The Anderson method [Anderson84, Sampas90] for aligning a Fabry–Perot cavity
requires a phase modulation of the incoming beam with a fixed frequency given by

109
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Figure 2.1: Schematic diagram of a power-recycledMichelson interferometer showing all possible
angular misalignments α in one dimension. Beams are shown in their nominal positions, whereas
the components are shown misaligned by exaggerated angles.

the difference of resonance frequencies of the fundamental and first higher order
modes in the cavity. The error signal is obtained with a quadrant photodiode
looking at the transmitted light. Since for a high PR gain we do not want much
light to be transmitted through the end mirrors, and because this method is not
easily applicable to a Michelson interferometer, we do not discuss it any further
in this chapter. The VIRGO project plans to use a combination of the above two
methods and has shown in a table-top prototype [Babusci97] that error signals
according to theory can be obtained.

• The most straightforward method of dithering all degrees of freedom with dif-
ferent low modulation frequencies has been used to align a Fabry–Perot cavity
[Kawabe94]. For various reasons we do, however, not believe that this is a prac-
tical scheme for gravitational wave detectors.

Referring to Figure 2.1, we can separately consider the following alignment tasks:

Michelson alignment: For optimal interference contrast, the axes of the beams
returning from the two arms need to coincide when they recombine at the beam-
splitter. The two degrees of freedom to be controlled are (1) the ‘differential’
term1 αdiff = α1 + α2 of the end-mirror alignments, and (2) its equivalent in
the other dimension. Good alignment of the Michelson interferometer is also
necessary to suppress the coupling of beam jitter into noise in the output signal
[Rüdiger81].

Power recycling cavity alignment: If we assume the incoming laser beam to be
fixed in space, the PR cavity’s axis needs to coincide with the incoming beam’s

1Due to the reflection at the beamsplitter experienced by only one beam, the differential alignment
of the end mirrors corresponds to α1+α2, whereas the common-mode alignment corresponds to α1−α2.
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axis in order to obtain optimal coupling of the laser light into the PR cavity. There
are four degrees of freedom to be controlled: (1) the PR mirror’s alignment αPR,
(2) the common mode term αcomm = α1 − α2 of the end mirror alignments, and
(3, 4) their equivalents in the other dimension.

Spot positions on mirrors: If the above two systems are working, there are two
more uncontrolled optical components: The beam injector2 (which is usually also
suspended as a pendulum), and the beamsplitter. These two components de-
fine the position of the beam spot on the far mirrors M1 and M2, respectively.
Although these spot positions in principle do not affect the operation of the inter-
ferometer, in practice one also needs to control these four degrees of freedom for
various reasons, such as wandering spot positions on mirrors and photodetectors,
scattered light variations, inhomogeneities of mirror coatings, etc.

Thus there are 5×2 degrees of freedom in a power-recycled Michelson interferometer
(beam injector, PR mirror, beamsplitter and two end mirrors) to be controlled in order
to fix all beams in space. The beam positions are then completely defined by the
lateral positions of the beam injector and of the sensors that determine the beam spot
positions on the end mirrors.

2.2 Misalignments in the mode picture

Small angular misalignments of a Gaussian laser beam can conveniently be described
by adding a small component of the first order Gauss-Hermite mode to the dominating
fundamental mode [Rüdiger81, Anderson84]. A mismatch in beam size or waist position
can similarly be described by a mixture of the fundamental mode with higher order
modes. Because of symmetry reasons, in this case the Gauss-Laguerre modes are more
convenient. Since we do not expect these mismatches to be as troublesome as angular
misalignments (their main effect will be a sub-optimal coupling of the incoming beam
into the PR cavity) and because we do not plan to incorporate an automatic system to
correct these mismatches, they are not considered in this chapter. In the following we
assume perfect mode-matching.

Hefetz et al. [Hefetz97] develop a general formalism to describe arbitrary misaligned
fields using operators in modal space. Here, however, we concentrate on the practical
computation of alignment error signals. Our analysis is restricted to the two lowest
modes and emphasizes experimental aspects such as the geometry of the interferometer,
various possible modulation schemes for a power-recycled Michelson interferometer, and
the manipulation of the beam with lens systems to separate the error signals.

The electrical field amplitude of a Gaussian beam propagating along the z-axis, with

2By ‘beam injector’ we mean the last component determining the position and angle of the beam
hitting the PR mirror. In our prototype this is a fiber output coupler suspended as a pendulum,
whereas in the large interferometers it will probably be a suspended beam-steering mirror.
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its waist at z = 0, is given by (see e.g. [Yariv])

El,m(x, y, z) = E0
w0
w(z)

ul(x, z)um(y, z) exp

[
i

(
(l +m+ 1)η(z) − kx

2 + y2

2R(z)

)]

(2.1)

with the spot radius

w(z) = w0

√

1 +

(
z

zR

)2
, (2.2)

the Rayleigh range zR given by

zR =
πw20
λ

, (2.3)

the radius of curvature of the wavefronts

R(z) = z

(
1 +

z2R
z2

)
, (2.4)

the Guoy phase shift

η(z) = arctan(z/zR), (2.5)

and the modal functions

ui(x, z) = CiHi

(
x
√
2

w(z)

)
exp

(
− x2

w2(z)

)
(2.6)

containing the Hermite polynomials Hi(x) and normalization constants Ci. In equation
(2.1), the propagation term exp(i (ωt− kz)) has been omitted and we assume n ≡ 1,
i.e. beams propagating in vacuum. In the following we again omit the second spatial
dimension y and need to consider only the transverse functions

u0(x, z) = C exp

(
− x2

w2(z)

)
, (2.7)

u1(x, z) = C
2x

w(z)
exp

(
− x2

w2(z)

)
, (2.8)

C = 4

√
2

πw2(z)
. (2.9)

Out of several possible normalizations for the ui, we have here chosen
the one that later gives the simplest coupling coefficients and also satisfies∫∞
−∞ [u0(x, z)]

2 dx =
∫∞
−∞ [u1(x, z)]

2 dx = 1. For future reference we also compute the
following integrals:

∫ ∞

−∞
u0(x, z)u1(x, z)dx = 0, (2.10)

∫ ∞

0

u0(x, z)u0(x, z)dx−
∫ 0

−∞
u0(x, z)u0(x, z)dx = 0, (2.11)

∫ ∞

0

u0(x, z)u1(x, z)dx−
∫ 0

−∞
u0(x, z)u1(x, z)dx =

√
2

π
. (2.12)
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Note that the functions u0 and u1 do not contain the wavefront curvature. The effects
of the curvature are, however, taken into account in the formalism below. We will use
a TEM00 beam described by u0 as reference and compare a slightly misaligned TEM00
beam against this reference. We assume the misaligned beam to have the same waist
size and longitudinal waist position as the reference.

At the beam waist (z = 0), the u1 component is in phase with u0 for lateral dis-
placements ∆x, and in quadrature for angular misalignments β between the beams’
axes:

u0(x−∆x, 0) ≈ u0(x, 0) +
1

w0
∆xu1(x, 0), (2.13)

u0(x, 0) exp

(
i
2π

λ
β x

)
≈ u0(x, 0) + i

πw0
λ

β u1(x, 0). (2.14)

We will need to consider such a beam after propagation away from the waist (z 6= 0). It
can be shown that the above approximations can consistently be generalized as follows.
A real (in-phase) u1 component corresponds to a lateral separation of the beams’ centers
with the scaling factor w(z), whereas an imaginary component corresponds to an angle
γ between the wavefronts with a scaling factor of λ/[πw(z)]. In the case of a tilt of the
beams’ axes by the angle β (about the beam waist as pivot), that angle is given by
γ(z) = β z2R/(z

2 + z2R). We thus have:

u0(x−∆x, z) ≈ u0(x, z) +
1

w(z)
∆xu1(x, z), (2.15)

u0(x, z) exp

(
i
2π

λ
γ x

)
≈ u0(x, z) + i

πw(z)

λ
γ u1(x, z) . (2.16)

These equations are valid for small misalignments, i.e. ∆x.w(z), γ.λ/[πw(z)].

In general we will have to consider combinations of lateral displacements and angular
misalignments, i.e. beams given by (at their waist):

u0(x, 0) + κ1 u1(x, 0) + κ2 iu1(x, 0) = u0(x, 0) + κ exp(i θ
w)u1(x, 0) . (2.17)

We describe the ‘character’ of the misalignment at the waist by the angle
θw = arctan(κ2/κ1), and its ‘amount’ by κ =

√
κ21 + κ

2
2 .

When a misaligned beam propagates, the first order mode u1 acquires an additional
phase shift with respect to u0 which is given by the Guoy phase η(z) = arctan(z/zR)
and which alters the ratio of lateral to angular misalignment. At a distance z from the
waist we then have

u0(x, z) + κ exp(i [θ
w + η(z)])u1(x, z) . (2.18)

For example, if we start with a beam that has a pure lateral displacement ∆x at its waist
(θw = 0) and consider its propagation away from the waist, we find that the real part of
the coefficient of u1 decreases. If, however, we take into account the scaling factor w(z),
the physical displacement ∆x remains constant. At the same time an imaginary part
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of the coefficient of u1 evolves, which corresponds to an angle γ between the wavefronts
caused by the now finite wavefront curvature.

In the following we will have to consider propagation through a system of lenses and
segments of free space, characterized by its overall phase shift Φ. After the sytem
we then have θd = θw + Φ describing the character of the misalignment. θd = 0
corresponds to a displacement between the beam’s centers with parallel wavefronts,
whereas θd = 90◦ describes coinciding centers with an angle between the wavefronts.
It will turn out that in the differential wavefront sensing scheme the detectors are only
sensitive to that angle, such that θd = 90◦ yields the maximum signal.

2.3 Detection of misalignments

The alignment of an interferometer is determined by the superposition of the axes of two
or more beams. In the differential wavefront sensing scheme, one of these must be phase
modulated (usually at a frequency of several MHz). The intensity of the interference
pattern will then in general contain a term at the modulation frequency. The integral of
this term over the whole cross section contains information about the longitudinal phase
relationship of the two interfering beams and is usually exploited for the corresponding
longitudinal loop. If the two beams’ axes are not perfectly superimposed, the RF term
in the intensity of the interference pattern will have a spatial structure that we exploit to
obtain error signals containing information about misalignments of the interferometer.
This is the essence of the ‘differential wavefront sensing’ technique.

2.3.1 Fabry-Perot cavity

In the case of a Fabry-Perot cavity (such as the PR cavity), the Pound-Drever-Hall
method [Drever83b] is used for longitudinal locking. The incoming beam is phase
modulated with modulation index m at a frequency ωm that is beyond the bandwidth
of the cavity. The reflected beam consists of two components: the direct reflection
from the coupling mirror (MPR in our case), which still contains the phase modulation
sidebands, and the beam leaking out of the cavity, which has no or negligible phase
modulation. We take the directly reflected beam as reference and consider the beam
leaking out of the cavity as misaligned against this reference. The amplitudes of the
two beams can be written as (see also Section 1.2):

a1 = c1u0 exp(iϕ)
[
J0(m) + 2 iJ1(m) cos(ωmt)

]
, (2.19)

a2 = −c2
[
u0 + κ exp(i θ

d)u1

]
, (2.20)

where c1 and c2 are positive constants, κ and θ
d represent the amount and character

of the misalignment (see Equation (2.17) and Section 2.4) and ϕ is the phase difference
between the fundamental mode terms of these two beams, arranged such that ϕ = 0
for the resonance of the cavity. Although only the first two Bessel functions J0 and
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J1 appear in the equations, the following results can be shown to be valid for arbi-
trary modulation indices (assuming sinusoidal modulation and none of the modulation
sidebands being resonant in the cavity).

We compute the light intensity |a1 + a2|2 and determine the coefficients Iωm of the
terms that oscillate with ωmt. The longitudinal (Pound-Drever) error signal VFP is
found by integrating this Iωm term over the whole cross section of the beam:

VFP =

∫ ∞

−∞
Iωm(x)dx = 4 c1c2 J1(m) sinϕ . (2.21)

On the other hand, the alignment error signal WFP is obtained with a split photodiode
as the difference of the contributions from the two halves:

WFP =

∫ ∞

0

Iωm(x)dx−
∫ 0

−∞
Iωm(x)dx = 4 c1c2 J1(m)

√
2/π κ sin(ϕ−θd) . (2.22)

A Mathematica program to compute these expressions is given in Appendix E.1.5.
If the Pound-Drever loop is locked, we have ϕ ≈ 0 and

WFP = −4 c1c2 J1(m)
√
2/π κ sin θd. (2.23)

Looking back at Equations (2.15) to (2.17) we see that we get a signal for an angular
misalignment between the wavefronts (θd = 90◦), but not for a lateral displacement.
The signal is, as desired, proportional to the ‘amount’ κ of the misalignment

In the above calculations we have assumed that the beam hits the center of the pho-
todiode. In Ref. [Morrison94] it is shown that any offset between the centers of the
interference pattern and the photodiode causes a reduction of the signal and spurious
signals from higher-order modes, such as second order modes corresponding to a mis-
match in beam size or curvature. For this reason it is necessary to keep the beam
always centered on the quadrant diode (see Section 2.6.2).

2.3.2 Michelson interferometer

For the Michelson interferometer, again a modulation technique is employed to read
out the Michelson phase near a dark fringe. The planned large-scale interferometers
will use either Schnupp modulation (see Section 1.3.3) or external modulation (Sec-
tion 1.3.2). We now treat these two cases, which have both been successfully used with
autoalignment in the 30-m prototype.

2.3.2.1 Schnupp modulation

In Schnupp modulation, the incoming laser beam is phase modulated with modulation
index m at an angular frequency ωm. An intentional length difference ∆L between the
arms causes a fraction of the modulation sidebands to appear at the dark fringe port,
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where they act as local oscillator to detect the signal (and misalignment). We can write
the amplitudes of the two beams from the arms as

a1 = c1 exp(−i
ϕMI
2
)
[
u0 +

κ

2
exp(i θd)u1

]

× [J0(m) + 2 iJ1(m) cos(ωmt+ ε)] (2.24)

a2 = −c2 exp(i
ϕMI
2
)
[
u0 −

κ

2
exp(i θd)u1

]

× [J0(m) + 2 iJ1(m) cos(ωmt− ε)] (2.25)

Here c1 ≈ c2, ϕMI is the deviation of the Michelson phase from the dark fringe, and
2ε = 2∆Lωm/c is the phase difference of the modulation after one roundtrip in the
arms.

With the same method as above3 we obtain as the signals for longitudinal locking (of
the Michelson to a dark fringe) and alignment (see Appendix E.1.5):

VMI = 8c1c2 J0(m)J1(m)

[
1−

(κ
2

)2]
sin ε sinϕMI, (2.26)

WMI = −8c1c2 J0(m)J1(m)
√
2/π κ sin ε cosϕMI sin θ

d. (2.27)

The longitudinal loop (dark fringe lock) uses VMI as error signal and keeps that error
signal very close to zero, thus enforcing the dark fringe condition ϕMI = 0. The align-
ment error signal WMI is again proportional to the amount κ of the misalignment, and
obtained only from the angular misalignment between the wavefronts.

2.3.2.2 External modulation

External modulation is described in Section 1.3.2. The autoalignment system of the
30m prototype was developed with external modulation, which was later replaced by
Schnupp modulation.

We now have to consider three interfering beams. We call their amplitudes a1 and
a2 for the beams from the first and second arm, and a3 for the local oscillator beam.
According to the experimental setup described in Section 2.6 below, we assume a3 to
be taken from a1 and thus perfectly aligned with it, whereas a2 is misaligned against
this reference. We can then write down the amplitudes

a1 = c1u0, (2.28)

a2 = −c2
[
u0 + κ exp(i θ

d)u1

]
exp(iϕMI), (2.29)

a3 = c3u0 [J0(m) + 2 iJ1(m) cos(ωmt)] exp(iψ). (2.30)

Here ϕMI represents the deviation of the Michelson phase from the dark fringe
4, ψ the

phase of the Mach-Zehnder interferometer and c1, c2 and c3 are positive constants with

3If higher order sidebands are included, the algebraic result needs to be transformed using the
following relation of the Bessel functions (which follows from [Gradstein-Ryshik, Vol. 2, No. 8.538]):∑
∞

k=0
(−1)kJk(m)Jk+1(m) =

1
2
J1(2m).

4Since in our setup the local oscillator beam is taken from one beam (a1), we apply both the
Michelson phase and the misalignment exclusively to the other beam (a2) in this model.
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c1 ≈ c2 and c3 ≪ c1. Both ϕMI and ψ are defined such that their nominal values at
the operating point are zero. The signals for longitudinal locking (of the Michelson to
a dark fringe) and alignment are found to be (see Appendix E.1.5):

VMI = −4c3 J1(m) [c2 sin(ϕMI − ψ) + c1 sinψ] , (2.31)

WMI = −4c2c3 J1(m)
√
2/π κ sin(ϕMI − ψ + θd). (2.32)

At the proper operating point of the Mach-Zehnder, ψ = 0, we have

VMI = −4c2c3 J1(m) sinϕMI, (2.33)

WMI = −4c2c3 J1(m)
√
2/π κ sin

(
ϕMI + θ

d
)
. (2.34)

As before, an alignment error signal at the dark fringe operating point (ϕMI = 0) is
obtained only for an angular error, i.e. a tilt of the wavefronts at the detector (for
θd = 90◦).

2.3.3 Mach-Zehnder alignment

With external modulation, there is one more interferometer that needs to be aligned:
the Mach-Zehnder interferometer. We now show how to obtain error signals that detect
misalignments of the Mach-Zehnder.

We start with the same amplitudes as in Equations (2.28)–(2.30) above, but now as-
sume the Michelson to be perfectly aligned and instead the local oscillator beam a3
to be misaligned. For simplicity we now also assume c1 = c2. This leads to the light
amplitudes

a1 = c1u0, (2.35)

a2 = −c1u0 exp(iϕMI), (2.36)

a3 = c3 [J0(m) + 2 iJ1(m) cos(ωmt)] exp(iψ)
[
u0 + κ exp(i θ

d)u1
]
. (2.37)

For the longitudinal signal, we obtain the same result as in Equation (2.31). The
alignment signal is, however, different:

WMZ = −4c1c3 J1(m)
√
2/π κ

[
sin(ϕMI − ψ − θd) + sin(ψ + θd)

]
. (2.38)

At the proper operating point (ϕMI = ψ = 0) this signal vanishes. We need two more
modulations in order to control the phase ψ (see Appendix A.7). Both ϕMI and ψ are
modulated sinusoidally with small modulation index at some low frequency (375Hz
and 11 kHz in the prototype). By synchronous demodulation with the proper local
oscillators, we can effectively obtain the derivatives

∂WMZ
∂ϕMI

= −4c1c3 J1(m)
√
2/π κ cos(ϕMI − ψ − θd), (2.39)

∂WMZ
∂ψ

= −8c1c3 J1(m)
√
2/π κ sin

(ϕMI
2

)
sin
(ϕMI
2
− ψ − θd

)
, (2.40)
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and by demodulating at both modulation frequencies in series we obtain

∂2WMZ
∂ψ∂ϕMI

= −4c1c3 J1(m)
√
2

π
κ sin(ϕMI − ψ − θd). (2.41)

At the proper operating point, ϕMI = ψ = 0, we have

∂WMZ
∂ϕMI

= −4c1c3 J1(m)
√
2

π
κ cos θd, (2.42)

∂WMZ
∂ψ

= 0, (2.43)

∂2WMZ
∂ψ∂ϕMI

= 4c1c3 J1(m)

√
2

π
κ sin θd. (2.44)

In principle, either Equation (2.42) or Equation (2.44) could be used for detecting the
Mach-Zehnder alignment error signals. In practice, however, Equation (2.44) might
be preferable, because the associated ‘common mode’ term (Equation (2.21)) vanishes.
Note that autoalignment of the Mach-Zehnder was not implemented in our prototype
(see Section 2.4.3 below), so that the results of this Section (2.3.3) were not verified
experimentally.

2.4 Misalignments caused by individual components

Next we have to consider what type of mode combination results from a misalignment of
each individual component. For general cavities (such as the more complicated cavities
of GEO600), a general method and some results are presented in Section 2.10. For
simpler cavities, such as those in our prototype, the results can also be derived directly.
In each case we compute the effect of the misalignment, referenced back to the beam
waist and expressed as θw (see Section 2.2).

2.4.1 PR cavity

We assume a plane front mirror MPR (as in our prototype) and take as rear mirror
misalignment the common mode of both end mirrors, which we now just call M1. The
waist of all beams in the PR cavity is at MPR. Figure 2.2 illustrates the possible
misalignments of the PR cavity.

A rotation of the end mirror M1 by an angle αcomm causes a lateral displacement of the
cavity eigenmode by the distance ∆x = αcommR1, where R1 is the radius of curvature
of the end mirror. At the beam waist we thus have θwcomm = 0

◦.

A rotation of MPR by an angle αPR causes a lateral displacement ∆x = αPR(R1−LPR)
at the waist, and an angular misalignment αPR. Thus the cavity eigenmode, with
respect to this reference, can de described as

u0(x, 0) +
αPR(R1 − LPR)

w0
u1(x, 0) − i

πw0
λ

αPR u1(x, 0), (2.45)
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Figure 2.2: Two types of misalignments of the PR cavity. CC denotes the center of curvature
of the end mirror(s), with radius of curvature R1. The solid line that is orthogonal to M1 and
passes through CC is the axis of the cavity eigenmode. LPR is the length of the PR cavity. In
our prototype, LPR ≈ 31m and R1 = 33m.

and the phaseshift between u1 and u0 at the waist is given by

θwPR = − arctan
(
πw0
λ

/
R1 − LPR

w0

)
= − arctan zR

R1 − LPR
. (2.46)

Note that the directly reflected incoming beam (our reference) experiences a rotation by
2αPR. This has the additional consequence that the whole interference pattern is tilted
by an angle somewhere between αPR and 2αPR. This makes it necessary to employ
an additional mechanism to keep the pattern centered on the quadrant detector (see
Section 2.6.2).

Since in general both MPR and the end mirrors will be misaligned simultaneously, we
will have a mixture of the two types of misalignments at the waist, described by θwPR
and θwcomm. With two separate quadrant detectors, each detecting a fraction of the
beam reflected from the PR cavity, it is possible to obtain independent signals for MPR
and the end mirrors’ common mode, if an additional phase shift between u0 and u1 is
introduced in one of the beams before detection.

For our prototype we have R1 = R2 = 33m, LPR = 31m
5, zR =

√
LPR(R1 − LPR) =

5The autoalignment system was built before the more precise measurements of Appendix A.14 were
carried out, and LPR = 31m is assumed throughout the rest of this chapter. Using the more precise
value of 30.807m does not significantly change the results.
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7.87m and hence θwPR = −75.7◦. We placed the first quadrant detector (PD1 in Fig-
ure A.15) approximately z = 1m from the waist and thus obtained Φ = η(1m) and
θdPR = θ

w
PR+Φ = −68.5◦, still giving sin(68.5◦) = 93% of the maximum possible signal

for MPR.

The signal for the end mirrors is obtained by the use of an adjustable lens system
(L1 and L2 in Figure A.15) in front of the second detector PD2, initially designed for
Φ = 90◦ phase shift, but adjusted such that θdPR = θ

w
PR+Φ = 0

◦ at PD2, corresponding
to θdcomm = 75.7

◦ and 97% of the maximum possible signal. The lens system was
adjusted experimentally by dithering the orientation of MPR and adjusting for vanishing
signal at the dithering frequency in PD2’s output signal. It was not necessary to
further separate the error signals. The design of the lens system is briefly described in
Section 2.5 .

2.4.2 Michelson interferometer

Again we describe the misalignments of the Michelson at the beam waist, which is at
a distance LPR from the end mirrors. With external modulation the local oscillator
beam was taken from the first arm as reflection from the back of the beamsplitter,
which has a finite reflectivity of 290 ppm. Thus the beam returning from the first arm
acted as angular reference. According to Figure 2.3, we have at the waist an angle
αMI = 2αdiff = 2(α1 + α2) and a lateral displacement ∆x = −αMILPR. Similar to the
derivation of Equation (2.46), we find for the phase between u1 and u0

θwMI = arctan

(
− zR
LPR

)
, (2.47)

which amounts to −14.25◦ in our prototype. Since the best signal is again obtained
with θdMI = 90

◦ at the detector (see Equation (2.32)), we need another lens system (L3
and L4 in Figure A.15) to introduce approximately 104.25◦ of extra phase shift between
u1 and u0.

With Schnupp modulation, the ‘local oscillator’ consists of the phase modulation side-
bands that leak out at the dark fringe port because of the armlength difference. Their
geometry is determined by the eigenmode of the PR cavity, which we assume to be well
aligned by its own autoalignment system. The ratio of lateral displacement to angular
misalignment and hence θwMI remain the same.

2.4.3 Mach-Zehnder alignment

We assume that both beamsplitter and RP are made such that their two surfaces are
parallel to each other and that their material and shape are identical. For horizontal
tilts, it is easy to see (using elementary geometry) that only a horizontal displacement of
the beams results. For vertical tilts, the geometry is not so simple, but was computed
using the ray-tracing program described in Appendix E.3. The results show that a
vertical tilt of RP causes a combination of horizontal and vertical displacements, but
no angle between the beams’ axes (see Figure 2.4).
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Figure 2.3: A misalignment of the Michelson interferometer is described by the differential
mode of the end mirrors. The angle between the beams is αMI = 2αdiff .
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Figure 2.4: Parallel shifts between the two interfering beams in the Mach-Zehnder interferome-
ter caused by a tilt of the recombination plate RP against the beamsplitter BS. The calculations
were done assuming a beamsplitter and recombination plate of 3 cm thickness.

It follows from equations (2.42) and (2.44) that we could obtain error signals for the
Mach-Zehnder alignment by using the quadrant detector on the detection bench which
is anyway there for the Michelson alignment (PD3 in our prototype). Since the beam
waist is near RP, the lateral displacement between the two interfering beams corre-
sponds to θwMZ = 0

◦, which is not very different from the θwMI = −14.25◦ valid for mis-
alignments of the Michelson. Hence we may use the detector PD3 with the existing
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lens system (which adds Φ = 104.25◦ of extra phase shift), and demodulate the output
signals twice according to equation (2.44) in order to obtain error signals.

In our prototype we did not install any automatic alignment system for RP. If we were
rotating RP we would simultaneously change the phase shift between the two interfering
beams. This phase shift needs to be well controlled to keep the interferometer in lock.
The dynamic range of the only other control element for this phase shift, Pockels cell
PC3, was too small to permit feedback of alignment correction signals to RP without
throwing the interferometer out of lock.

2.5 Computation of lens systems

We now describe a lens system for the purposes mentioned above, which ideally fulfills
the following requirements: arbitrary design value of phase shift Φ (usually around
90◦), preferably adjustable around the design value, compactness and reasonable spot
size on the quadrant detector.

Figure 2.5: Scheme of the lens system used to introduce additional Guoy phase shift between
u1 and u0.

One method to compute such lens systems uses the matrix formalism, as described e.g.
in [Yariv, Siegman]. The beam at any point is described by the complex parameter q
given by

q = i zR + z (2.48)

where zR is the Rayleigh range, which is constant for any beam segment, and z is
the distance from the waist. We denote by ‘ beam segment’ any portion of the beam
propagating between lenses or other components.

The radius of curvature R(z) and beam radius w(z) at any position z can be found
from the relation

1

q(z)
=
1

R(z)
− i λ

πw2(z)
, (2.49)

and the Guoy shift from

tan η(z) =
z

zR
. (2.50)
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The action of a thin lens with focal length f on the beam is given by

qi+1 =
Aqi +B

Cqi +D
(2.51)

with the matrix

A B

C D


 =


 1 0

− 1f 1


 (2.52)

The propagation of the beam for a distance d can either be described by another matrix

A B

C D


 =


1 d

0 1


 (2.53)

or more simply by qi+1 = qi+d. If the matrix is used, several or all matrices describing
a complex optical system could be multiplied together to form a single matrix. This
approach is, however, not useful here, because the phase shift cannot be determined
from this combined matrix. We are not interested in an absolute value of the Guoy
shift, but only in the difference between the u0 and u1 modes. When the beam passes a
thin lens, the phase shift must be continuous for physical reasons (imagine a very weak
thin lens). Equations (2.51) and (2.52) predict, however, a jump in the phase shift,
because in the new beam segment behind the lens, the phase shift is again counted
as zero at the new waist. What we need, however, is the accumulated phase shift Φ
through the whole system. It can be computed as follows:

• Start with q = i zR and Φ = 0 at the waist of the beam of interest.

• For any beam segment with Rayleigh range zR, which is traversed from z = zi to
z = zi+1, (zi < zi+1), add to Φ the phase shift arctan(zi+1/zR)− arctan(zi/zR).

• For any other optical element, transform the beam according to equations (2.51)
and (2.52). Any thin optical element does not contribute to Φ.

With a Mathematica program we computed the phase shift and beam size in var-
ious lens systems and found reasonable solutions for the two cases of interest in our
experiment, which require a phase shift of 90◦ and 104◦, respectively. Each lens system
consists of one converging lens (focal length f1) and one diverging lens (f2), separated
by a distance d2 ≈ f1+f2 (see Figure 2.5 and Table 2.1). The beam radius at the detec-
tor was designed to be approximately 2mm. The lens systems can be adjusted via the
distance d2 between the two lenses. It turns out that very close to the desired position
(which yields the design phase shift) the beam radius at the detector has a minimum,
which simplifies the initial setup. By moving the second lens 1 cm in either direction,
the phase shift Φ can be varied by more than ±30◦, thus allowing final adjustment of
the phase shift.

Almost the same effect could be obtained by using a converging second lens with the
same absolute focal length, with two minor disadvantages: The overall length of the
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d1 2w1 f1 d2 2w2 f2 d3 2wD Φtotal

[cm] [mm] [cm] [cm] [mm] [cm] [cm] [mm] [◦]

PR Cavity 120 2.30 35 32.17 0.220 −3 50 1.78 90

Michelson 50 2.27 25 23.27 0.175 −2 55 2.10 104

Table 2.1: Parameters of the two lens systems used in our prototype (see also Figure 2.5). The
beam diameters 2w are given at the first and second lens, and at the detector.

system would increase by |2f2| (since still d2 ≈ f1 + f2), and there would be a small
real focus in front of the second lens. With the systems described above, the smallest
beam diameter occurs at the second lens and is approximately twice as big as the real
focus would be.

2.6 Experimental setup

The 30m prototype is described in other parts of this work, in particular in Appendix A
and in Appendix A.7, which describes the external modulation setup that was used
during the development of the autoalignment system. An overview of the control loops
is shown in Figure A.15. This section only describes the additional devices that are
used for the autoalignment system.

2.6.1 Quadrant photodetectors

All three quadrant photodetectors PD1, PD2 and PD3 are built similarly. The pream-
plifier circuit used for each of the four quadrants is described in Appendix B.1 and
shown in Figure B.6. Each preamplifier has one DC output signal and one RF output
signal.

The DC and RF output signals are then separately processed with analog electronics
to produce a total of six output signals from each quadrant detector. The RF signals
V and W are the ones defined in Equations (2.21) and (2.22), and the DC signals V
and W are their DC counterparts. X and Y represent the two orthogonal directions
on the surface of the quadrant photodiode.

V : This signal is used for the longitudinal loops (PR cavity Pound-Drever loop and
Michelson dark-fringe loop, respectively).

WX ,WY : These are the most important output signals for the autoalignment system,
describing the tilt of the wavefronts of the interfering beams against each other.

V : This signal (total DC photo current) is used for monitoring and normalization
purposes.
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WX ,WY : These two signals (differences of the DC photo currents) are fed to the beam-
steering mechanism described in Section 2.6.2 below and are kept near zero by
that beam-steerer.

Figure 2.6 shows the RF signal paths in the quadrant detector in more detail. The sum
of all RF components, V , is produced by an adder and made available as output. The
signalsWX andWY are demodulated in the quadrant detector. As demodulators we use
two high-speed analog multipliers (Burr-Brown MPY600) which have differential high-
impedance inputs (in the new designs being prepared for GEO600 we prefer double-
balanced diode mixers, which have a better dynamic range). The RF components
from two diagonally opposite quadrants are demodulated in one mixer. After low-pass
filtering (70 kHz), the sum and difference of these two signals represent the desired WX
and WY outputs.

Figure 2.6: RF signal paths in the quadrant detector. The mixers are analog multipliers
with differential inputs. The signal ‘V ’ is demodulated in a separate mixer (Mix1 and Mix2 in
figure A.15) and used as error signal for the Pound-Drever loop and Michelson dark fringe lock,
respectively. The WX and WY outputs are the error signals for the auto-alignment loops.

The DC signal paths are shown in Figure 2.7. The sum of all DC photocurrents,
V , is again obtained with an adder. The differences in DC photocurrents, WX and
WY , are obtained from all 4 quadrants simultaneously with precision resistors and
instrumentation amplifiers, because here we do have a large common-mode signal and
thus want reasonable common-mode rejection.

2.6.2 Auxiliary beam-steering loops

As mentioned in Section 2.3, the quadrant detectors can produce reliable alignment
error signals only when the interference pattern is centered on the photodiode. Since
in the course of the alignment (either manual or automatic) the position and angle of
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Figure 2.7: Low frequency signal paths in the quadrant detector. ‘InAmp’ are instrumentation
amplifiers. The ‘V ’ output is used for monitoring, while the WX and WY outputs are used as
error signals for the auxiliary beam steering devices.

the beams leaving the vacuum chamber are changed (e.g. by rotating MPR), we need
an extra loop that centers the beam on the quadrant diode for each of the detectors
PD1, PD2 and PD3. These loops make use of the DC output signals WX and WY
from the corresponding quadrant detector. To deflect the beam we use commercial
magnet-mirror units modified for our purpose. The unity gain frequency of these loops
is around 30–50Hz, sufficient for our purposes.

A modification was necessary in the loop for PD3, because here the DC light level
hitting the photodetector may vary widely during lock acquisition. Thus the WX and
WY signals from PD3 are divided by the DC sum signal V from the same detector
before they are used as error signals. For GEO600 two commercial galvanometer
scanners mounted orthogonally will be used for each detector. In a prototype a unity
gain frequency of 2 kHz was obtained with these units6. It is important for these beam-
steering loops to have a bandwidth considerably higher than the main autoalignment
loop of which they are a part.

2.7 Automatic alignment loops

2.7.1 Actuators

Each suspended component in our prototype has an associated local control module
(see Appendix A.3.1). As described there, these modules have extra inputs which allow
to apply the alignment control signals.

The transfer functions from the respective control inputs (translation, rotation, tilt) to
an actual component movement have a similar simple shape, which can be approximated

6This prototype was developed by H. Grote during a stay in Garching.
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by two-pole low-pass models

HP(s = iω) =
AP

1 + s
ωPQP

+ s2

ω2
P

. (2.54)

Their pole frequencies fP = ωP/(2π) are between 0.5 and 2Hz, and the QP of these
resonances is quite low, i.e. between 0.7 and 4, due to the active damping by the local
control modules.

Figure 2.8 shows an example of such a transfer function, in this case for the common-
mode ‘tilt’ motion of the end mirrors. We have fitted the model (2.54) to the measured
transfer functions in order to obtain the parameters AP, ωP and QP, which can then
be used in the computation of loop filters.
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Figure 2.8: Transfer function from the common mode ‘tilt’ input for the end mirrors to the
actual tilting motion (measured with PD2). The measured data was fitted to a two-pole low-
pass model with fP = 0.90Hz and QP = 2.63.

For each channel, Table 2.2 shows these parameters, together with the overall factors
AP and the sensor gains AS, which were found with the calibration procedure described
in Appendix A.5.3.

2.7.2 Loop filters

We have tried several variants of loop filters. The purpose of all of them is to allow the
unity gain frequency to be around or above the pendulum resonance and to provide
extra gain at low frequencies (below the resonance). Because the overall loop gain may
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AP fP QP AS
Mode [µrad/V] [Hz] [V/rad]

EM diff. X 28.7 0.9 3.26 3.0 · 106

EM diff. Y 20.8 0.9 3.0 2.6 · 106

EM comm. X 287 0.89 2.99 58 · 103

EM comm. Y 208 0.9 2.63 47 · 103

PR X 2500 1.84 2.6 23 · 103

PR Y 3500 1.67 1.99 25 · 103

Table 2.2: Calibration parameters of the auto-alignment loops. ‘EM diff.’ is the differential
mode of the end mirrors (Michelson alignment), ‘EM comm.’ their common mode (PR cavity
alignment), and PR refers to the power recycling mirror. AP, fP and QP describe the pendulum
response (Equation (2.54)). The sensor gain AS includes everything from a mirror motion to a
signal at the photodetector’s output.

change according to many parameters, we have tried to normalize the error signals as
far as possible by analog division (see Section 2.7.3) and also to use unconditionally
stable loops wherever possible.

The favorite design consists of a ‘f1/2 filter’ active at frequencies above the pendulum
resonance (see Appendix B.4). The result is an open-loop gain curve that rolls off
approximately with f−3/2 above the pendulum resonance and has a phase margin of
around 45◦ (assuming there are no extra phase delays). At frequencies below the
pendulum resonance, there is an integrator active to increase the gain at low frequencies
and DC. Figure 2.9 shows the open loop gain of the Michelson alignment loop (x-
channel), which was built according to this scheme.

An alternative design employs a biquadratic active filter to compensate the pendulum
resonance. A new pole is introduced at a frequency above the loop’s unity gain fre-
quency, e.g. at 20Hz. It is thus possible to obtain an open-loop gain that continuously
rolls off as f−1 (or f−3/2 if desired) even around the pendulum resonance frequency,
at the cost of increased circuit complexity. Figure 2.10 shows the open loop gain of
the end mirror common mode alignment loop (y-channel), which was built according
to this scheme.

During the development of our system, we have built both kinds of filter, and both are
still used in the prototype. For new systems we would prefer the first kind, because it is
easier to build (no exact knowledge of the pendulum resonance is necessary) and because
the biquadratic filter of the alternative design intrinsically has very small dynamic range
(its step response has an enormous overshoot).
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Figure 2.9: Open-loop gain of the Michelson alignment loop. Here the pendulum has fP =
0.9Hz and QP = 3.26, and the loop includes a f

1/2-filter active between 1.5Hz and 45Hz, an
integrator between 3mHz and 0.3Hz and a second order low-pass filter (f = 85Hz, Q = 1).
Measured data are shown between 2Hz and 100Hz, together with the computed extrapolation
to lower frequencies.

2.7.3 Auxiliary signals for normalization

The two single-element photodetectors PD4 and PD5 in Figure A.15 are used to nor-
malize the autoalignment error signals. PD4 detects a stray beam from the beam
injector, which is a sample of the injected light hitting MPR. PD5 detects a sample
of the light power circulating in the PR cavity, which depends on the alignment of
the interferometer, the condition of beamsplitters and mirrors, and in particular on
the locking state of the longitudinal loops. Both PD4 and PD5 employ the broadband
preamplifier circuit described in Appendix B.1.1.

The error signals for the Michelson interferometer (from PD3) are proportional to the
product of the amplitudes of the beam returning from one arm and of the reference
beam. Both of these amplitudes are proportional to the amplitude of the light circu-
lating in the PR cavity, and hence the error signal is proportional to the power of that
light. Therefore, the error signals are divided by the output from photodetector PD5
with an analog divider (AD734) before being fed to the loop filters.

The error signals for the PR cavity are, however, proportional to the product of the
amplitudes of the beam injected into the interferometer and of the beam circulating in
the PR cavity. The power of those two beams is measured with photodetectors PD4
and PD5, respectively. Therefore we compute the square root of the product of these
powers with an analog circuit (AD734) and use it as denominator to normalize all four
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Figure 2.10: Open-loop gain curve of the end mirror common mode alignment loop (y-channel).
The pendulum resonance is electronically compensated by a biquadratic filter that introduces
the new pole at 20Hz with Qpole = 1.5, an integrator starts at 5mHz, and there is a f

−1/2

filter active between 80mHz and 2.5Hz. Measured data are shown between 0.75Hz and 100Hz,
together with the computed extrapolation to lower frequencies.

PR cavity error signals from PD1 and PD2.

2.7.4 Alignment loops for Michelson and PR cavity

The system used for aligning the Michelson interferometer is the most important au-
tomatic alignment loop in our setup, because any noticeable Michelson misalignment
immediately reduces the stability of the longitudinal loops. As described in the previ-
ous sections, the two error signals are obtained from the quadrant detector PD3. The
loop filters were built according to the first design of Section 2.7.2, with an f1/2 filter
active from 1.5Hz to 45Hz, an integrator between 3mHz and 300mHz and an addi-
tional two-pole low-pass filter at 85Hz in each channel. The unity gain frequency is
around 10Hz in normal operation and can be increased up to around 20Hz if desired.

Error signals that describe the misalignment of the PR cavity are obtained from the
quadrant detectors PD1 (for the PR mirror) and PD2 (for the end mirrors’ common
mode alignment). The loop filters for the PR mirror were built according to the second
design of Section 2.7.2 above with the new pole introduced at 20Hz (Qpole = 1.5), an
f−1/2 filter active between 80mHz and 2.5Hz, and an integrator starting at 5mHz in
each channel. The unity gain frequency is near 5Hz in normal operation and can be
increased up to about 10Hz.
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The Michelson loop and the PR cavity loop both act on the end mirrors, and the
separation of ‘common mode’ and ‘differential’ signals is not perfect. Therefore there is
some interaction between these loops. In particular we found that the Michelson loop
should have a higher unity gain frequency than the two channels of the PR cavity loop
that act on the end mirrors, and also that the Michelson loop should be switched on
first. Otherwise, if one tries to automatically align the PR cavity with no or too little
gain of the Michelson loop, a common mode signal fed back to the end mirrors invariably
involves some differential mode component, which reduces the Michelson contrast or
may even throw one of the longitudinal loops (and hence the whole interferometer) out
of lock.

2.7.5 Spot positions on end mirrors

The loops that control the positions of the spots on the end mirrors are much less
critical than those described above. The error signals for the beam spot positions are
obtained from position sensitive detector (PSD) diodes (type SD-386-22-21-251 from
Silicon Detector Corporation) with an active area of 100mm2. The beam diameter at
the end mirrors is 2w = 9mm, such that a part of the beam is cut off, but a useful
error signal is nevertheless obtained. For the planned large-scale detectors, an array
of separate diodes could be used. For this application, a PSD is more suitable than a
quadrant diode, because the PSD measures the ‘center of gravity’ of the light, which
is appropriate here, because the beam transmitted through the highly reflective mirror
coating may have an irregular shape. The PSD diodes are operated with −15V of
reverse bias and the photocurrent from each electrode is converted into a voltage by a
transimpedance amplifier (see Appendix B.1.1). The sum of all photocurrents and the
differences ∆x and ∆y are obtained with a circuit similar to the one shown in figure
2.7. The differences ∆x and ∆y are divided by the sum of all photocurrents and then
used as error signals.

Although the beam injector’s transfer function in itself is of the shape described in
section 2.7.1, we find that the actual transfer function from a movement of the beam
injector to a motion of the spot on the far mirror M1 involves the reaction of the other
loops described above. If these other loops were off, no motion of the spot position would
occur at all, because that position is solely determined by the PR cavity eigenmode
(and hence the alignment of MPR, M1 and M2). Thus we have additional phase delays
in the loop, which are caused by the reaction time of the other alignment loops.

Therefore the loop that controls the spot position on M1 via the beam injector must
be slower than the main alignment loops. In the prototype we have used an open loop
gain of with a simple 1/f roll-off and a unity gain frequency of around 0.3Hz.

Although for the second of these loops (the one controlling the beamsplitter in order to
fix the beam spot position on M2) there are no other loops involved, and the actuator
transfer function is that of the beamsplitter alone, we have nevertheless used the same
open loop gain curve as for the beam injector.

The PSD diodes can be positioned behind the end mirrors with motorized mounts.
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When everything is in lock, the spot positions on either of the end mirrors can thus be
controlled by moving the PSD with the motors, while all other spot positions remain
fixed and the Michelson and PR cavity are kept well aligned. The beam position on
the end mirror can thus be fixed to any desired spot, such as the center of the mirror
(to minimize torsional coupling) or to the spot that yields the best Michelson contrast.

In practice, this procedure works well for the beam injector and M1, but only in a
limited range for the beamsplitter and M2, because by moving the beamsplitter we also
move the beam that leaves the interferometer towards RP and PD3. Both the loop that
controls the Mach-Zehnder phase ψ and the beam steerer that keeps the beam centered
on PD3 must follow this movement, and the dynamic range of these loops limits the
amount that the beamsplitter can be moved without everything falling out of lock.

2.7.6 Lock acquisition and error checking

The normalization of all error signals described in Section 2.7.3 involves analog division
by a voltage that is proportional to some light level inside the interferometer. If any part
of the system falls out of lock, most of these light levels quickly drop to very low levels.
The normalized signal then gets very inaccurate or even saturated. To prevent feeding
back such ‘wrong’ error signals to the suspended components, the denominators used for
normalization are continually monitored by analog comparators. Once a denominator
drops below a preset threshold, an analog sample-and-hold circuit is activated that
holds the correction signal (output of the loop filter) at its last value. For initial manual
alignment, there is another mode of operation which forces all correction signals to zero.

In practice these error checking systems worked sufficiently well if the error that led to
the drop in light power was not caused by the autoalignment system itself. If, however,
something is wrong with one of the autoalignment loops, then usually one or several
components start to move away from their aligned positions, until the interferometer
falls out of lock. The sample-and-hold systems then hold the components in positions
that are already removed quite far from the optimum alignment, and lock acquisition
has to be restarted from the initial positions of all components.

Thus we monitor the correction signals during operation, and manually adjust offsets
from time to time such that the correction signals applied by the autoalignment loops
are near zero. Then, in case of a lock reacquisition, the ‘zero’ position for all component
orientations is already very close to the optimum position. In the planned large de-
tectors, this task would be performed by a computerized control system, which is also
responsible for monitoring the locking status, lock acquisition, etc. With such a system
available, we would no longer use the sample-and-hold circuits but instead switch the
correction signal to zero in case of insufficient light levels.

One important conclusion that we draw from our experiments is that this autoalignment
system can only start to work after all longitudinal loops of the interferometer are
already locked. Thus the interferometer must be started up with manual alignment,
until the PR cavity and Michelson dark fringe are both locked. In particular care must
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be taken that the PR cavity locks in its fundamental TEM00 mode. Only then can the
autoalignment system be activated.

2.8 Noise spectra

We have measured the noise spectra of all loops at their error points both with the loops
switched on and off. They were divided by the sensor transfer functionHS(s) to give the
mirror motion in radians. The calibration procedure is described in Appendix A.5.3.
For verification we have also measured the spectra of the correction signals applied to
the mirrors when the loop was working. These were multiplied with the pendulum
transfer function HP(s), such that they also express the mirror motion. A typical set
of such measurements is shown in Figure 2.11.
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Figure 2.11: Noise spectrum of the x-channel of the Michelson alignment loop, calibrated in
rad/
√
Hz of differential end mirror motion.

The upper two curves show the error signal with the loop switched off and the correction
signal with the loop in operation. The solid curve shows the error signal with the
loop on. The lowest curve shows the sensor noise, measured with the same average
photocurrent as that appearing during operation, produced by white light from an
incandescent lamp. We have numerically integrated the noise spectra between 0.1Hz
and 100Hz to obtain rms values for the angular misalignments (see Table 2.3).
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Loop off Loop on Corr. signal

Mode [nrad
RMS
]

EM diff. X 461 11 522

EM diff. Y 1100 26 790

EM comm. X 1390 26 1540

EM comm. Y 234 34 1010

PR X 1300 270 1000

PR Y 2700 176 2730

Table 2.3: Integrated rms alignment noise from 0.1Hz to 100Hz. ‘EM diff.’ is the differential
mode of the end mirrors (Michelson alignment), ‘EM comm.’ their common mode (PR cavity
alignment), and PR refers to the power recycling mirror.

Since some of the curves were measured on different days, and the environmental motion
of our lab depends on outer conditions, there is considerable variability in the data,
especially in the measurements with the loop off and those of the correction signal
(which both represent the amount of alignment noise without the loop). These rms
values are usually dominated by a DC term, which also depends on how well the
interferometer was manually aligned. The real usefulness of the autoalignment system
is only incompletely described by these numbers, since the natural fluctuations increase
even more towards frequencies below 0.1Hz. These slow drifts are well compensated
by the loops, but not easily measured.

The remaining fluctuations with the loop in operation are somewhat more reproducible.
For the Michelson alignment, we find an rms deviation of 11 and 26 nrad for the X and
Y channels, respectively. That corresponds at the waist (near the beamsplitter) to an
rms lateral displacement between the axes of the two beams of 0.33 µm and 0.78µm,
respectively, or equivalently to a fraction of 2.8 · 10−4 and 6.7 · 10−4 of the beam radius
w0.

For the four other channels (those for the PR cavity) the results look qualitatively
similar. In these channels, however, the sensor noise was higher by a factor of around
100. It was later found that during these measurements a spurious Fabry-Perot had
been formed between the ends of the fiber that brings the light into the tank. The
resulting excess noise on the light entering the interferometer had dominated the error
signals.

Another important question to be addressed is that of extra noise being fed into the
interferometer by the autoalignment loops. This is indeed a nontrivial problem since
the loops need to act on the end mirrors. In our prototype, we used simple 1/f2 filtering
with corner frequencies of 20Hz or 85Hz, as described in Section 2.7.4. Additionally
there is the 1/f2 filtering action of the pendulum itself (see Section 2.7.1). For the large-
scale interferometers, more elaborate filtering may be necessary in order to prevent
feeding noise to the mirrors at measurement frequencies. This will depend on the
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necessary loop bandwidths of the alignments loops, which in turn depend on how much
alignment noise there is to be controlled. In our prototype, the coil-magnet actuators
directly acted on the test masses, whereas in GEO600 they will act on an intermediate
mass of a double or triple pendulum, which provides additional isolation, but also a
more complicated transfer function.

2.9 Dark fringe contrast

Figure 2.12 shows how the light power at a dark fringe fluctuates without the auto-
alignment system, and how the fluctuations are reduced after the alignment system was
switched on. These environmental fluctuations shown are typical for a short time after
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Figure 2.12: Power leaving the dark fringe port of the interferometer (measured with PD3)
without and with auto-alignment (switched on at t = 0). The final level of 50 units corresponds
to about 0.1 . . . 0.2% of the power at the beamsplitter.

the interferometer was manually well aligned. Actually it is very difficult to align the
interferometer manually, in particular the end mirrors’ common mode. In practice the
fine alignment of the interferometer was done using the auto-alignment system, which
was then switched off to demonstrate the natural fluctuations. On longer timescales
(several minutes or longer) the contrast without auto-alignment usually deteriorates
even more than shown in Figure 2.12 due to slow alignment drifts.
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2.10 Alignment error signals for GEO600

This section presents the results of some computations that have been carried out by
the author for the autoalignment system for GEO600 which is being developed in
Hannover at the time of this writing. The methods presented in Sections 2.1 to 2.9 are
used and extended.

2.10.1 Ray-tracing program

The effects of mirror misorientations7 in interferometers with three or more mirrors
cannot easily be determined analytically in the general case. Therefore a Mathemat-
ica program for numerical 3-D ray tracing was written. It uses geometrical optics to
find the axis of the eigenmode for a given combination of reflecting and/or refracting
plane and spherical surfaces. The program is described and printed in Appendix E.3.
The term ‘beam’ in this section refers to the geometrical axis of a beam, without taking
into account the transverse shape or optical phase.

2.10.2 The GEO600 power recycling cavity

Figure 2.13 shows a schematic diagram of the GEO600 power recycling cavity (seen
from the side) together with the coordinate system adopted in this section (2.10.2). In
the GEO PR cavity the waist of the eigenmode is at MPR and its Rayleigh-range is
given by

zR =

√
2L(RF − L)(2L2 +RFRN − 2L(RF +RN))

(2L−RF)(2L−RF − 2RN)
= 227m, (2.55)

where L = 600m is the armlength, and RN = 600m and RF = 640m are the radii of
curvature of the near and far mirrors, respectively.

The following results do not depend critically on whether the near mirror MN is above
or below MPR, nor on their vertical distance (25 cm). In this section, angles are counted
positive if they describe a clockwise tilt from the reference direction.

As in Section 2.4 we determine the effect on the axis of the PR cavity eigenmode that
is caused by a misorientation of each mirror. Some assumptions are: All longitudinal
loops are locked, the PR cavity is resonant in its fundamental mode, mode matching is
perfect and all misalignments are small.

A summary of the results of the ray-tracing program is given in Table 2.4 which was
computed for misorientations in the y-direction (i.e. beam spots moving vertically),

7To avoid confusion, we call a mirror or other component misoriented in this section (2.10), if
its angular orientation differs from its reference orientation. The resulting movement of beams (e.g.
cavity eigenmodes) will be called misalignment. An interferometer is called well-aligned if there
are neither misorientations nor misalignments, i.e. components as well as beams are in their reference
positions.
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Figure 2.13: Schematic diagram of the GEO600 PR cavity seen from the side.

Cause ∆yPR γPR γ′PR θw

αPR −600m · αPR αPR −αPR 20.7◦

αF 0 0 0 undefined
αN 600m · αN 0 0 0◦

Cause ∆yF γF1 γF2 ∆yN γN
αPR 0 αPR −αPR 600m · αPR −αPR
αF 0 0 2αF −1200m · αF 2αF
αN 600m · αN 0 1.875αN −525m · αN 1.875αN

Table 2.4: Results of the ray-tracing program for the GEO PR cavity.

with the results for the x-direction being identical. The following notations are used:
∆yX is the lateral displacement of the beam spot at the component X, and γX is the
angle by which the beam segment ‘OutX’ is tilted due to the misorientation. The
directly reflected incoming beam is tilted by the angle 2αPR, when MPR is misoriented
by the angle αPR. Since the differential wavefront sensing method is sensitive to the
angle between two interfering beams, in this case the beam ‘OutPR’ leaking out of the
cavity and the directly reflected beam, we also include the angle γ′PR = γPR − 2αPR in
the table.

The ‘character’ of any small misalignment is described by the angle θ (see Section 2.2).
The angle θw (at the waist) is given by θw = arctan(γ′PRzR/∆ywaist). The angle θ
is altered by the propagation of the beam (from the waist to the detector), and can
additionally be influenced by lens systems, such that any desired angle θd at the detector
can be obtained, a feature needed for signal separation.

The corresponding analytical results for the more general case RN 6= L are shown in
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Cause ∆yPR γPR ∆yF γF2 ∆yN γN
αPR −αPR(L+ g h) αPR −αPR g h −αPR g RF αPR g RFRN −αPR g RF
αF 2αF g h 0 2αF g h 2αF g RF −2αF g RFRN 2αF g RF
αN αN g RFRN 0 αN g RFRN 2αN g RN αN g (RF − 2L)RN 2αN g RN

Table 2.5: Analytical results for the GEO PR cavity (L = arm length, g = 1/(2RN+RF− 2L),
h = RF(L−RN) ).

Table 2.5. They are mostly based on earlier calculations carried out by W. Winkler.

For the case of a curved power recycling mirror (such as might be simulated by thermal
lensing), no analytical results are known. With the raytracing code it is, however, easy
to compute numerical results for any given curvature.

The results shown in Table 2.4 are illustrated in Figures 2.14, 2.15 and 2.16. The
well-aligned beams are drawn with dashed lines as reference, whereas the misaligned
beams are drawn with solid lines. In Figure 2.14 it can be seen that a misorientation

Figure 2.14: Misorientation of MPR in the GEO600 PR cavity. The dashed line is the well
aligned reference. We have ∆yPR = −α · 600m, ∆yN = α · 600m and θwPR = 20.7◦.

of MPR changes both the lateral position and the angle of the eigenmode compared to
the well-aligned reference. The ratio of the two effects (lateral vs. angular) is described
by the angle θwPR = 20.7

◦.

A misorientation of MN, on the other hand, causes a pure lateral displacement and
hence we have θwN = 0

◦ (Figure 2.15). And, finally, a misorientation of MF causes no
change in the cavity eigenmode at all, as far as the waist is concerned (Figure 2.16).

Therefore we may use two quadrant detectors (near the position of ‘PDPR’ in the
present GEO design) with suitable lens systems to detect misorientations of MPR and
MN. Unfortunately, the signals for these two mirrors are not as easily separable as
in the case of a simple plane-curved cavity, because θwPR − θwN is only 20.7◦ instead of
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Figure 2.15: Misorientation of MN in the GEO600 PR cavity. The dashed line is the well aligned
reference. We have ∆yPR = α · 600m, ∆yF = α · 600m, ∆yN = −α · 525m and θwN = 0◦. The
angle between the reference and the misaligned beam between MF and MN is 1.875α.

Figure 2.16: Misorientation of MF in the GEO600 PR cavity. The dashed line is the well
aligned reference. We have ∆yN = −α · 1200m and no effect on the cavity eigenmode at its
waist.
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near 90◦. One possibility would be to induce additional phase shifts in front of the two
detectors such that at the first detector we would have θdPR = 20.7

◦ and θdN = 0
◦. This

first detector would then detect sin 20.7◦ ≈ 35% of the maximum possible signal for
MPR and no contribution from MN. The second detector could then be set up such
that θdPR = 0

◦ and θdN = −20.7◦, such as to detect 35% of the maximum possible signal
for MN and no contribution from MPR. Other configurations are also possible if the
signals are combined electronically.

Once MPR and MN are aligned, we may observe the spot position on MN (either by using
the transmitted light or by processing the output from a CCD camera which detects
the light scattered from MN), and use it to derive an error signal for the alignment of
MF with a slower loop.

Finally, we may align the beam injector to fix the beam spot position on MF (and,
correspondingly, the beamsplitter for the second arm) with another slow loop. In the
GEO configuration, we may, however, be handicapped by the fact that the ‘spot’ on MF
is composed of two beams which have a finite angle (0.25m/600m) between them and
which interfere with each other. Figure 2.17 shows the predicted vertical cross section
through the interference pattern on MF. The relative phase of the two interfering beams
is not controlled by any of the currently designed loops and hence we may expect these
fringes to be moving in an uncontrolled fashion. One possible approach would be to
reduce the spot size with a telescope, and then use a PSD to detect the ‘center of
gravity’ of that spot. This matter requires further investigation.
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Figure 2.17: Predicted interference structure on the far mirror MF of the GEO PR cavity. The
intensity along a vertical line through the center of the mirror is shown. The separation between
the fringes is 2.55mm.

In summary, we propose to use the following loops (sorted by decreasing speed):

(1) Beam steerers for (2) and (3) below (six channels).
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(2) Michelson alignment by differential wavefront sensing; feedback to MN differential
modes (two channels).

(3) PR cavity alignment by differential wavefront sensing; feedback to MN common
modes and to MPR (four channels).

(4a) Spot positions on MF via positional sensors; feedback to beam injector and beam
splitter (four channels).

(4b) Spot positions on MN via positional sensors; feedback to corresponding MF (four
channels).

2.10.3 The GEO600 modecleaner cavities

Figure 2.18 shows a schematic view of a GEO600 modecleaner cavity seen from above,
together with the coordinate system adopted in this section (2.10.3).

Figure 2.18: Schematic diagram of a GEO600 modecleaner cavity seen from above.

The cavity consists of two flat mirrors (Ma and Mc) that are separated by a relatively
short distance (15 cm in the present GEO design), and a curved mirror Mb with radius
of curvature R = 6.72m, which is at a distance L = 4m from the flat mirrors. The
beam enters through Ma and travels clockwise to Mb, Mc, Ma, etc. There are four
beams of interest leaving the cavity. The main output beams are ‘Outb’ and ‘Outc’
(the first GEO modecleaner uses ‘Outc’ as main output, whereas the second one uses
‘Outb’).

There are two beams coming from Ma: the directly reflected input beam and the
beam ‘Outa’ which is a fraction of the cavity eigenmode. The cavity is well aligned
to the incoming beam (which we consider fixed), if these two beams are perfectly
superimposed. By taking two quadrant diodes with two different lens systems and
appropriately demodulating their outputs, we can obtain four independent error signals,
similar to the case of a simple two-mirror Fabry-Perot cavity. The longitudinal locking
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signal is also obtained from these two interfering beams (using the Pound-Drever-Hall
scheme).

In the three-mirror cavity, there are two additional degrees of freedom. They can be
used to control the angle and/or direction of the output beams ‘Outa’ and ‘Outc’. This
is described in more detail below.

In the ray-tracing program, we first compute the well-aligned case (i.e., all mirrors are
hit in their center) as reference. We call Pa, Pb and Pc the points where the axis of
the eigenmode intersects the mirrors Ma, Mb and Mc, respectively. After misorienting
one particular mirror by the small angle ε, we recompute the eigenmode axis, compare
it with the well-aligned case and divide the difference by ε. The main results are (see
Figure 2.19):

Figure 2.19: Modecleaner with misoriented input mirror. The dashed line is the well aligned
reference. This is the most complicated case, since the direct reflection of the incoming beam is
also tilted by 2αa. For misorientations of the two other mirrors, the directly reflected incoming
beam is unaffected.

• The shifts of the spots Pa, Pb and Pc.

• The angles γa, γb and γc between the beams ‘Outa’, ‘Outb’, ‘Outc’ and their
respective references. For the vertical misalignments which are considered sepa-
rately, we call these angles δa, δb and δc, respectively. We also compute the angle
γd (δd) between the directly reflected incoming beam and its reference for the
case that Ma is misoriented.

• For ‘Outa’ in the case of misorienting Ma, we also compute the angle γ′a = γa−γd,
which is the angle between the beam leaving the cavity and the directly reflected
beam, because this is the angle between the interfering wavefronts that is detected
by the quadrant diode.

• As described above we finally compute the angle θ which describes the ‘character’
of the misalignment at the waist. It is given by θw = arctan(γ′azR/∆zwaist).
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The waist of the cavity eigenmode is located halfway between the mirrors Ma and Mc.
Its Rayleigh range is given by

zR =

√
LRT
2

(
R− LRT

2

)
= 3.28m, (2.56)

where LRT/2 is one half of the round-trip distance:

LRT/2 =
√
L2 + d2/4 + d/2 = 4.076m. (2.57)

Horizontal misalignments: By ‘horizontal’ misalignments we mean that a mirror
is rotated around the y-axis, i.e. beam spots move horizontally (in the plane of the
modecleaner cavity, see also diagram ’D’ in Figure A.4). We introduce the linear
combinations α− and α+ by

α− = αa − αc, (2.58)

α+ = αa + αc, (2.59)

and β− and β+ similarily. The results of the raytracing program are given in Table 2.6.

Cause Pa Pa waist Outa Out′a θw

∆x ∆z ∆z γa γ′a = γa − γd
αa −4.002m · αa −4.078m · αa −4.001m · αa 1.028αa −0.972αa 38.6◦

αb 0.187m · αb 0.191m · αb 0.000m · αb −2.542αb −2.542αb 90◦

αc 3.851m · αc 3.924m · αc 4.001m · αc 1.028αc 1.028αc 40.2◦

α− −3.926m · α− −4.001m · α− −4.001m · α− 0.000α− −1.000α− 39.4◦

α+ −0.076m · α+ −0.077m · α+ 0.000m · α+ 1.028α+ 0.028α+ (90◦)

Cause Pb Outb Pc Pc Outc d. refl.
∆x γb ∆x ∆z γc γd

αa −0.191m · αa 0.972αa 3.851m · αa −3.924m · αa −1.028αa 2 · αa
αb 10.362m · αb 2.542αb 0.187m · αb −0.191m · αb 2.542αb 0 · αb
αc −0.191m · αc −1.028αc −4.002m · αc 4.078m · αc 0.972αc 0 · αc
α− 0.000m · α− 2.000α− 7.853m · α− −8.001m · α− −2.000α− 1 · α−
α+ −0.381m · α+ −0.057α+ −0.151m · α+ 0.154m · α+ −0.057α+ 1 · α+

Table 2.6: Results of the ray-tracing program for horizontal misalignments of the GEO mode-
cleaner.

Vertical misalignments: In the modecleaners, the horizontal and vertical axes are
not similar. The results of the raytracing program for vertical misalignments (see
diagram ’C’ in Figure A.4) are given in Table 2.7. Note, for example, that a small
vertical tilt βa of the input mirror Ma (which is hit under approximately 45

◦ from
the incoming beam) causes a deflection of the reflected beam by only δd = 1.43βa as
compared to γd = 2αa in the horizontal case. Another example is the tilt of Mb which,
if horizontal, causes a pure angular misalignment at the waist. A vertical tilt of Mb,
on the other hand, shifts the cavity eigenmode downwards parallelly, without changing
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any angles. Angles are again counted as positive when they refer to a clockwise tilt
from the reference direction. As ‘viewpoint’ from where we look to determine whether a
tilt is clockwise, we take the point with coordinates (−1, 0, 0) in the coordinate system
of Figure 2.18. For the angles δa and δ

′
a (which describe the output beam Outa) we

take (0, 0,−1) as viewpoint, i.e. we look from the direction of Mb.

Cause Pa waist Outa Out′a θw

∆y ∆y δa δ′a = δa − δd
βa 1.889m · βa 1.942m · βa 0.701βa −0.727βa −50.9◦
βb −6.720m · βb −6.720m · βb 0.000βb 0.000βb 0◦

βc 1.994m · βc 1.942m · βc −0.701βc −0.701βc −49.8◦
β+ 1.942m · β+ 1.942m · β+ 0.000β+ −0.714β+ −50.3◦
β− −0.053m · β− 0.000m · β− 0.701β− −0.013β− (90◦)

Cause Pb Outb Pc Outc d. refl.
∆y δb ∆y δc δd

βa 4.797m · βa −0.727βa 1.994m · βa −0.701βa 1.43 · βa
βb −6.720m · βb 0.000βb −6.720m · βb 0.000βb 0 · βb
βc 4.797m · βc −0.701βc 1.889m · βc −0.727βc 0 · βc
β+ 4.797m · β+ −0.714β+ 1.942m · β+ −0.714β+ 0.714 · β+
β− 0.000m · β− −0.013β− 0.053m · β− 0.013β− 0.714 · β−

Table 2.7: Results of the ray-tracing program for vertical misalignments of the GEO mode-
cleaner.

Alignment strategies: The most important alignment task is to superimpose the
axis of the cavity eigenmode with the axis of the incoming beam. This requires the
control of four degrees of freedom. For this purpose, in the differential wavefront
sensing method, we place two quadrant detectors with different lens systems in the
beam reflected from Ma. The interference between the directly reflected incoming
beam, which is phase modulated at an RF frequency, and the beam ‘Outa’ leaking
out of the cavity contains enough information to lock the cavity longitudinally and to
obtain alignment error signals for those four degrees of freedom that determine the
superposition of the incoming beam and the cavity eigenmode.

In particular, we now assume all mirrors to be slightly misoriented and compute the
combined signals which are obtained by demodulating the outputs of two quadrant
detectors, one (called SI) with Φ = 0

◦ and the other one (called SQ) with Φ = 90
◦ of

extra phase shift. We scale parallel shifts ∆y or ∆z with the appropriate factor zR and
obtain for horizontal misalignments:

SI = −2.542αb − 1.000α− + 0.028α+, (2.60)

SQ = −1.218α−, (2.61)
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and for vertical misalignments:

SI = −0.013β− − 0.714β+, (2.62)

SQ = −2.047βb + 0.591β+. (2.63)

We see that we can indeed obtain four independent error signals from the reflected
light, which allow us to align the cavity eigenmode with the incoming beam. We
need to control the four angles αb, α−, βb and β+ for this purpose. The necessary error
signals can be obtained either as linear combinations of SI and SQ or else by introducing
different phase shifts Φ. Since the angles θw are very different for the horizontal and
vertical cases, the former approach may be easier, unless we want to use cylindrical
lenses.

The remaining degrees of freedom (α+ and β−) will produce almost no signal in the
quadrant detectors that look at the reflected light. Indeed, misorientations of these
angles have only little influence on the cavity eigenmode at all and hence only little
influence on the main output beams (Outc and Outc). Their effect is illustrated in
Figures 2.20 and 2.21.

Figure 2.20: Modecleaner with misorientation of α+. The dashed line is the well aligned
reference. The main effect is a downwards motion of the outgoing beam Outa.

Thus it might be argued that such misorientations do not disturb and need not to be
controlled. This is, however, not likely to be a practical alternative, since the effects of
α+ and β− will be small, but finite, and because there will anyway be some involuntary
feed back to them through imperfections in the α− and β+ feedback. At least a slow
loop to prevent runaway is expected to be necessary.

Looking back at the Tables 2.6 and 2.7, we see that the main effect of α+ and β− is a
common tilt of the two beams leaving Ma. We find for the angles γa and γd (the latter
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Figure 2.21: Modecleaner with misorientation of β−. The dashed line is the well aligned
reference. The main effect is a shift of the outgoing beam Outa.

describing the tilt of the directly reflected beam) in the horizontal case:

γa = −2.542αb + 1.028α+, (2.64)

γd = α− + α+, (2.65)

and for the vertical case:

δa = 0.701β−, (2.66)

δd = 0.714β− + 0.714β+, (2.67)

If we assume the loops described previously to be working (i.e. αb = α− = βb =
β+ = 0), we obtain useful error signals: γa ≈ γd = α+ for the horizontal case and
δa ≈ δd ≈ 0.7β− for the vertical case.
The easiest way to detect these angles (and thus to obtain error signals for the remaining
degrees of freedom) is to use the auxiliary beam-steering loops that center the beam on
the RF quadrant detectors (see Section 2.6.2). These beam-steering loops need to have
a wider bandwidth than the autoalignment loops for the four angles αb, α−, βb and
β+, which in turn are faster than the loops for α+ and β−. Hence the information that
we need is not contained in the error signal of the beam-steereing loops, but rather in
their correction signal (i.e. the currents forced through their galvanometer coils).

In summary, we propose to use the following loops for each modecleaner (sorted by
decreasing speed):

(1) Beam steerers for (2) below (four channels).

(2) Differential wavefront sensing for αb, α−, βb and β+ (four channels).

(3) α+ and β− via the spot positions on the quadrant detectors used for (2); error
signals can be obtained from the correction signal of the loops (1) (two channels).



Appendix A

The 30m prototype

A.1 Construction

Construction of the Garching 30m prototype began in 1982. It is located in the base-
ment of the Max-Planck-Institut für Astrophysik in Garching, at a distance of a few
hundred meters from the Max-Planck-Institut für Quantenoptik, where the offices and
other laboratories of the gravitational wave group are now located.

The central laboratory houses the laser table, the central tank, the vacuum pumps, and
most of the electronic and measuring equipment. From the central laboratory, the two
arms extend through the garden to the two end huts. The arms consist of stainless steel
tubes approximately 40 cm in diameter, which are protected from above by a concrete
hull. The tubes are approximately on ground level.

Each of the two end huts contains a vacuum tank, where the respective end mirror is
suspended. The length of each arm (from the center of the central tank to the center
of the end tank) can be varied by inserting smaller pieces of the stainless steel tube
and moving the end tanks on rails. During this work, the length of both arms was
approximately 30.6m (the exact armlengths are discussed below).

The vacuum system consists of one roughing pump (DK100), which is used to reach
a pressure of approximately 1mbar. In addition there is a turbomolecular pump with
its associated backup pump (D12) used to further reduce the pressure. The pressure
achieved is usually a few times 10−5mbar, after the turbomolecular pump had been
running for a day or so.

Since 1983 many different experiments had been carried out by various people at the
prototype. Most of the equipment used during this work remained from these earlier
experiments, in particular the laser and the whole suspension system including the local
controls. These items will be described only briefly here.

147
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A.2 Laser and associated optics

The laser is an Innova100 Ar+ laser running at 514 nm. It was usually operated at 35
or 40A tube current, which yielded about 1W of single-mode light. The laser had been
modified in several ways. A fast input was added to the power supply (tube current
control), which was sometimes used to apply an amplitude modulation (up to a few
tens of kHz) or to suppress amplitude fluctuations.

A temperature-stabilized etalon was inserted into the cavity to ensure single-mode op-
eration. Both end mirrors were removed from the laser case and separately mounted
on the laser table. The rear (high-reflectance) mirror is mounted in an assembly con-
sisting of a prism (to select the wavelength), a small piezo and the mirror itself. The
piezo is a special construction which had been provided by the Orsay group. Its mount
consists of an ‘acoustical delay line’ made of tungsten and designed to suppress most
of the mechanical resonances. It is briefly described in [Kerr85], and a similar device
is described in [Heinzel95, Section 3.4]. The frequency of the first resonance is slightly
above 200 kHz. This piezo is called the ‘fast PZT’ (FPZT) in this work.

The front (coupling) mirror is mounted on a commercial piezo (from PI), which has
a wider dynamic range than the fast piezo, at the expense of slower response (its
first resonance is at 2 kHz). It is called ‘slow PZT’ (SPZT) in this work. One of the
practical problems encountered during this work was the fact that the motion of this
slow piezo was not purely longitudinal. If increasing voltages are applied to it (e.g.
during long-term operation of the interferometer, when the laser frequency must follow
the resonance of a slowly drifting cavity), the coupling mirror of the laser becomes
tilted. This results in varying laser power and, even worse, in a misalignment of the
emitted laser beam.

Most of the optical elements on the laser table were installed or changed (some of them
several times) by the author during this work. These elements are described here,
with references to Figure 1.29 printed in bold. Immediately after the laser there is a
Faraday isolator (not shown). Next comes an electro-optic modulator (PC1) which is
used as fast phase-corrector for the frequency stabilization. A Gsänger PM25 cell is
used for that purpose. It consists of a KD∗P crystal with Brewster-angle faces mounted
in a glass tube with Brewster-angle windows. It is driven by a high-voltage amplifier
(built by the author) which uses two PA-85 (Apex) hybrid amplifiers in push-pull mode
and which can deliver up to 800Vpp, with a small-signal bandwidth of about 1MHz.
The amplifier has two equivalent inputs, one of which is permanently connected to the
frequency stabilization system, whereas the other one can be used to inject test signals
(for a phase modulation of the laser beam).

After another Faraday isolator (FR1) there are two more Pockels cells PC2 and PC3
which are used to apply the two modulation frequencies (12MHz for the frequency
stabilization and PR cavity lock and ≈ 9.7MHz for the Schnupp modulation). The
modulation index of these two modulations is approximately 0.6 rad.

These Pockels cells have been the cause of many problems. At first, PM25 cells had
also been used, however, it became apparent that they produced strong, drifting AM
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components in the light (at their respective modulation frequency). The AM compo-
nents were mainly due to heating of the crystal and changing alignment of the laser
beam (caused by slow environmental changes but also by the SPZT). Any alignment
drift caused a ‘polarization modulation’ of the emerging beam, that was converted into
AM at the next beamsplitting device (which are all polarization-sensitive).

These AM components cause offsets in all those loops which detect a beam and use a
mixer to demodulate the AM component in the photocurrent (these areMix1,Mix2,
Mix3 and Mix4, i.e. the most important loops of the interferometer control). The
offsets were sometimes so large that the respective loops would lock at a considerably
shifted operating point or, sometimes, wouldn’t lock at all (see, e.g., Figure 1.57).

The situation was considerably improved by the acquisition of new Pockels cells (KDP
crystals from Leysop), which have specially designed low-resistance electrical contacts
(to reduce the heating) and do not have Brewster-angle surfaces. Furthermore a λ/2-
plate was placed before each Pockels cell and a polarizer behind it such that the effect
of any polarization modulation could also be reduced. The AM produced by each
Pockels cell is monitored by two dedicated tuned photodetectors which detect the AM
in a small fraction of the respective beams, split off after the polarizer that follows the
Pockels cell. During the operation of the prototype (after a two-hour warm-up period),
the alignment of the two Pockels cells was manually readjusted approximately once or
twice per hour to minimize the residual AM.

The main laser beam is then fed into a single-mode fiber which takes the light into
the vacuum tank. The end of the fiber is fixed on the ‘beam injector unit’, which is
suspended as a pendulum such that the fiber end is decoupled from ground noise. The
beam injector unit also contains another Faraday isolator and a mode-matching lens.

Between the Pockels cells PC2 and PC3, a small fraction of the light is diverted to the
reference cavity for the ‘first loop’ (frequency prestabilization). A simplified diagram
of this part of the laser table is shown in Figure A.1.

The first λ/2-plate is used to adapt the polarization of the beam for the following
polarizing beam splitter PBS1, such that the beam is completely transmitted. The
beam then passes through the acousto-optic modulator AOM (model AA.BM.50) which
is used to shift the frequency of the beam. It is driven by a 200MHz VCO (built with
a Motorola MC12148 VCO chip) via a commerical power amplifier. The frequency of
the VCO can be changed by approximately ±20MHz via a control input, which is used
as an actuator for the second loop. A small mirror with a radius of curvature of 45 cm
is placed 45 cm behind the AOM to select and reflect the first order diffracted beam
while compensating the frequency-dependent diffraction angle. A λ/4-plate causes the
reflected beam to be separated from the incoming beam at the polarizing beamsplitter
PBS1, after it has passed the AOM a second time. The effective frequency shift of the
light that goes to the reference cavity is thus twice the VCO frequency, and has an
efficiency of 4.5MHz/V (referred to the VCO input).

The reference cavity used in the dual recycling experiment is one of several cavities
that had been built for other experiments. Its two mirrors are mounted in a cylindrical
vacuum chamber. It had originally been designed as a confocal cavity with 26.1 cm
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Figure A.1: Schematic diagram of the optical components for the laser prestabilization (‘first
loop’).

separation between the mirrors. In this work it was used under non-normal incidence
such that an effective length of 52.2 cm resulted. This was decided because the beam,
after two passages through the AOM, was badly distorted and the (never perfect)
mode degeneracy of a confocal cavity was hence undesirable. Two mode-matching
lenses (not shown in Figure A.1) are also placed between the pick-off from the main
beam and the reference cavity. Because of the very limited space on the laser table,
the mode-matching could only be approximated, but not optimized.

The reference cavity has a measured FSR of 287MHz1 and a finesse of 150. One of the
mirrors is mounted on a piezo, which has a rather high efficiency of 10MHz/V and its
first mechanical resonance near 9 kHz. That piezo is used to bring a resonance of the
reference cavity within the range of the laser frequency. In order to avoid feeding in
external noise to the laser frequency via the very sensitive piezo, a passive low-pass filter
with a very low cut-off frequency (0.1Hz) was placed between the high-voltage amplifier
used for that purpose and the piezo itself. The resulting slow response was only used
for manual lock acquisition (of the first loop) and subsequent periodic readjustment,
but not for any electronic control loop.

Without this manual readjustment, the reference cavity is the master frequency refer-
ence for the (AOM-shifted) laser frequency. Since the average (DC) control voltage for
the VCO/AOM is kept near zero via a second feedback path of the second loop to the
power recycling mirror, the reference cavity is the master frequency reference of the
laser at DC (with an offset of twice the VCO rest frequency, approximately 400MHz).
If one includes the slow manual feedback to the reference cavity piezo (which strives to
maintain the voltage at the laser SPZT near its nominal mean value), the laser itself is

1The length of the cavity was derived from this measurement



A.3. MIRRORS, SUSPENSIONS AND LOCAL CONTROLS 151

the final frequency reference on long timescales (several minutes or more).

Another λ/2-plate, polarizing beamsplitter (PBS2) and λ/4-plate are used to separate
the light reflected from the reference cavity and to direct it onto the tuned photode-
tector PD1. The RF output of that photodetector is mixed with the 12MHz reference
oscillator in mixer Mix1, to generate the error signal for the first loop.

The first loop has three actuators: the Pockels cell PC1 which acts as a phase corrector
for the high-frequency signals. It needs 1620V to achieve a phase-shift of 2π. Used as an
actuator for the laser frequency, it behaves like a differentiator with a gain proportional
to the signal frequency. At 100 kHz, its gain is 2.4 kHz/V. The second actuator is the
fast piezo (‘FPZT’), which has an efficiency of about 20 kHz/V. The crossover frequency
between these two actuators is at about 30 kHz. Finally there is the slow piezo (‘SPZT’)
which takes care of the slow signals with an efficiency of about 16MHz/V. The crossover
frequency between SPZT and FPZT is at about 1 kHz. The unity-gain frequency of
the first loop is normally around 300 kHz.

The light transmitted through the reference cavity is also detected (by the broad-
band photodetector PD5) and is used for the automatic lock-acquisition circuit (see
Appendix B.13).

A.3 Mirrors, suspensions and local controls

The mirror suspensions and their local controls already existed before the present work
commenced and are only briefly described here.

All three tanks (central tank and the two end tanks) have a ground plate and a similar
top plate, both of approximately 90 cm diameter and made out of solid aluminum with
screw holes in a 5 cm raster. All three tanks rest on foundations which are separated
from the foundation of the surrounding laboratory. Inside the vacuum tank, there
are four legs extending upwards from the bottom plate. On top of these legs come
the ‘stacks’, alternate layers of lead bricks and silicon-rubber cylinders, which provide
the first stage of seismic isolation. A schematic picture of the central tank (drawn by
P. Nelson) is shown in Figure A.2. This picture shows the setup for external modulation,
which was used only during the first part of this work, but is nevertheless useful to
illustrate the contents of the central tank.

The bottom plate, the top plate and the feet and stacks that hold the top plate are
clearly visible. There are two types of suspensions used in the prototype, single pendu-
lums and double pendulums. In Figure A.2, only the double pendulums are shown. In
the setup for external modulation shown, both the beamsplitter and the recombination
plate are suspended as double pendulums. In the present setup (with Schnupp modu-
lation and dual recycling), only the beamsplitter is suspended as a double pendulum.

Since the type of double pendulum that is used in the prototype (and shown in Fig-
ure A.2) has meanwhile been considerably improved (by our collaborators in Glasgow),
and the suspensions of GEO600 will be different, the details of the double pendulum
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Figure A.2: Schematic picture of the central tank (in the external modulation setup).
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are not discussed here. A sketch of a double pendulum used in the 30m prototype is
shown in Figure A.3.

In Figure A.2, the laser beam enters from the left side. The

Figure A.3: Sketch of a
double pendulum as it is
used to suspend the beam-
splitter in the prototype.

leftmost component is the ‘beam injector’, where the end
of the single-mode fiber is fixed. The beam injector is sus-
pended as a single pendulum, as are all other components
apart from the beamsplitter. It is a complex unit containing
several mirrors, a mode-matching lens, a Faraday isolator
and a remotely controllable motor to adjust the distance be-
tween the end of the fiber and the lens.

Next comes the power recycling mirror MPR. It consists of a
cylindrical plate made out of fused silica (∅ 15 cm, thickness
2.5 cm) with two holes (∅ 1 cm) approximately 3 cm from
each other (horizontally). Two of these plates had been pre-
pared for a planned external modulation setup with signal
recycling, where two beams need to pass the signal recycling
mirror MSR, one of which needs to pass straight through
unaffected (see Figure 1.14).

The actual power-recycling mirror itself is a standard (∅
2.5 cm, thickness 8mm) flat fused-silica mirror substrate
coated for 7% power transmittance on the ‘inner’ side (facing
the beamsplitter) and antireflection on the other side, glued
on top of one of the holes in the fused-silica plate mentioned
above. In our prototype it has proven to be very helpful
to make such mirrors wedged, such that the spuriously re-
flected beam from the AR coating cannot interfere with the
main beam. The presence of the two holes in the suspended
fused-silica plate was used to fix two mirrors with different
reflectivities on the fused-silica plate, such that switching
the reflectivity of MPR was slightly simplified (the part of
the suspension fixed on the top plate contains a micrometer
screw with sufficient range, but those parts belonging to the
local control, which are fixed on the bottom plate still need
to be moved and readjusted).

The two end mirrors in their respective end huts are also
suspended as single pendulums. The fused-silica substrates
are longer, having 12 cm thickness and 15 cm diameter. The
mirrors themselves have a diameter of 4 cm and a thickness of 1 cm and are optically
contacted on the substrates (this is different from the plan for GEO600, where the
main test mass substrates will be directly polished and coated as mirrors). The nominal
radius of curvature of the 30m prototype end mirrors is 33m. They were manufactured
and coated for maximal reflectivity by PMI (now REO). After years of use and some
cleaning attempts, their surface quality is now, however, less than desirable (indicated
by very clearly visible scattering and wavefront distortions that depend on the spot
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position on the mirror). In front of each end mirror there is a black-and-white CCD
camera mounted on the ground plate (below the beam) that looks at the mirror. The
light scattered from the mirror surface is strong enough to produce a clear picture of
the beam spot on the mirror. The two images are displayed on monitors in the central
laboratory, where they are used for initial alignment of the interferometer and also to
monitor the transversal mode of the PR cavity.

The signal recyling mirror MSR is suspended exactly as the power recycling mirror
(replacing both the suspended Pockels cell and the recombination plate in the lower
part of Figure A.2). It is also a flat dielectric mirror coated on a standard one-inch fused
silica substrate, and has a power reflectivity of 3.88% (average of three measurements,
see also Section 1.8.2).

A.3.1 Local controls

All pendulum suspensions, whether they are single-, double- or multi-stage pendulums,
need local controls to be useful. This is because the pendulum will have resonances
(i.e. modes of proper motion) of relatively high Q. For thermal noise reasons, the Q is
even made as high as possible (Q ' 106). This means that any stimulus which contains
some energy at the resonant frequency (such as seismic motion or a pulse) will induce
a strong motion of the mirror, which has a long decay time. Such motions would make
any component with such a suspension unusable for an interferometer. Hence it is
necessary to artificially damp the resonant motion in a frequency-dependent fashion
that does not spoil the performance of the detector at measurement frequencies. This
is the purpose of the local control. Here the comparatively simple local controls of
the single pendulums in the prototype are described, which had been developed by the
Garching group around 15 years ago.

A cyclindrical test mass that is suspended as single-stage pendulum from two wires has
four degrees of freedom, which are sketched in Figure A.4.

Figure A.4: The four degrees of freedom of a test mass suspended as single-stage pendulum
from two wires (such as the single pendulums in the prototype).
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The four degrees of freedom are (A) the longitudinal motion of the test mass as a whole
in the direction of the beam axis, (B) a similar motion in the orthogonal direction, (C) a
tilting motion of the test mass around a horizontal axis through its center of mass, and
finally (D) a rotational motion around a vertical axis through its center of mass. These
are not necessarily the eigenmodes of the system, and not all of them have necessarily
a very high Q. The local control nevertheless damps these degrees of freedom and thus
achieves its purpose. For multi-stage pendulums, a more detailed analysis is necessary
(and indeed has been carried out by their constructors, e.g. in Glasgow).

These four degrees of freedom are damped with four channels of the local control.
Each channel consists of a positional sensor for one specific direction and a coil-magnet
combination that applies forces at that position in the same direction. Figure A.5
shows the approximate physical location of each channel’s sensor-actuator, whereas
Figure A.6 shows (in schematic form) one of the four sensor-actuator assemblies2.

Figure A.5: The approximate physical locations of the four sensors/actuators of each local
control channel. The arrows symbolize the directions in which motions are sensed and forces
applied.

The suspended mirror does not touch the coil-assembly. That assembly is (in our
prototype) rigidly fixed on the ground plate. Glued onto the mirror there is a small,
strong, permanent magnet and a black ‘flag’ that protrudes into the shadow-sensor.
The position of the mirror relative to this assembly is sensed with the LED lamp and
the photodiode PD in Figure A.6. At the normal operating point, the flag blocks half
of the light from the LED that could maximally fall onto the photodiode PD. The
LED is driven from a constant-current source. Forces are applied by sending a current
through the coil. If the geometry of the coil-magnet system is designed such that the
gradient of the magnetic field at the permanent magnet is constant, the applied force
is (to first order) independent of the actual distance between the mirror and the coil
assembly [Rüdiger, Winterflood95]. Then ground motion is not coupled to the mirror
(in first order3). This is one of several important subtleties in the design of the local

2These units are sometimes also (slightly incompletely) called ‘shadow sensors’.
3It is even possible to design the system such that ground motion is not coupled to the mirror to

second order [Rüdiger].
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Figure A.6: Schematic picture of a ‘shadow-sensor’ (i.e., more precisely, a sensor-actuator
assembly for one channel of a local control). The gap between the mirror and the coil is a few
mm.

controls.

The next important point is the frequency response of the electronic feedback system.
The loop needs to have some gain at the pendulum resonance (which is around 1Hz).
At DC, however, there must be no feedback, since the LED-photodiode combination
is not a useful sensor for the absolute position and orientation of the test mass, which
are determined by requirements of the whole interferometer (i.e. not local). At higher
frequencies, in particular in the measurement band (from around 100Hz upwards) there
must be no feedback either, because for these frequencies the test-mass is supposed to
be a free mass and also because with any feedback intolerable amounts of extra noise
would be coupled to the mirror. Therefore the open-loop gain of the feedback loop
is designed such that there is gain only in about one decade of frequency, centered
around the pendulum resonance. At higher frequencies there are carefully designed
filters that block all signals. It is also important that the coils are driven from current
sources which have a high output impedance, such that the eddy-current damping
(which would otherwise be active at all frequencies) is minimized.

Thanks to the negative feedback, each such assembly acts as a local damper which is,
however, only active at frequencies near the pendulum resonance and only in one direc-
tion. The combination of four such channels, as shown in Figure A.5, damps all possible
motions of the mirror. Electrically the four channels are completely independent from
each other. During operation their signals are, however, coupled to each other by the
motion of the test mass.

In the prototype, the three channels labelled 1, 2 and 3 in Figure A.5 are also used
to apply signals for the non-local (‘global’) control of the interferometer. There are
longitudinal control signals, which are fed equally to all three channels, and alignment
control signals which are applied in the proper linear combinations. They are derived
from the respective longitudinal loops (see e.g. Section 1.6) and alignment loops (Sec-
tion 2.7).
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Electronically, these global control signals are added to the input of the current driver in
the appropriate channels. The frequency range where these channels are used is usually
much wider than just around the pendulum resonance. In particular, DC signals are
also applied (for example, to maintain the alignment of the interferometer). In the
prototype, also faster signals are applied (up to 1 kHz for the Michelson control).

For each component there are analog circuits that convert three input voltages for
the longitudinal position, rotation and tilt of the component into the proper linear
combinations that control the coil currents. For the end mirrors, there are ‘differential’
and ‘common’-mode inputs, which are added and subtracted to produce the appropriate
signals for each mirror.

Fortunately the transfer function of these control inputs have a simple shape. They
typically behave like two-pole low-pass filters with frequencies of around 1Hz and pole
Qs of around 0.7 to 3 (see Figure 2.8 for an example). The low effective Q results
from the interaction with the local control. This approximation is valid up to around
5 kHz. At higher frequencies there are internal resonances of the test masses which
make the transfer function more complicated. Since these resonances never presented
a practical problem during this work, they are not treated here (but see Section 1.10.3
and Figure 1.60).

This concludes the discussion of the local controls used in the prototype. For GEO600,
more sophisticated suspensions will be used, which also include local control channels
that sense and act between a suspended ‘reaction mass’ and another part of the multi-
stage pendulum.

One of the end mirrors in the prototype (M1 in Figures A.15 and 1.29) has three extra
coils (also acting on the three magnets already present) that are used with separate
current drivers to apply longitudinal calibration signals to the interferometer. For a
long time they had been driven via a 375Hz band-pass filter and had been used only for
the 375Hz calibration. For the detuned dual recycling experiment, however, broadband
current drivers were installed and used up to 120 kHz (see Section 1.10.3).

A.4 Optical parameters of the 30m prototype

The most important parameters of the prototype are shown in Figure A.7.

The average (‘common mode’) armlength is 30.66m (measured to a precision of ap-
proximately 1 cm via the PR cavity free spectral range). The armlength difference is
6 cm, accurate to about 1 cm. Experimentally, the armlengths were first made equal
by applying a strong Schnupp modulation to a simple Michelson (without recycling)
locked on mid-fringe (see Figure A.8) and moving the end mirror in steps until no more
modulation was visible at the output. (The relatively low estimated precision of that
measurement comes from drifting spurious AM in the Pockels cell, which caused offsets
in the output, together with other offsets caused by RF pickup.) The East mirror was
then moved inwards by 6 cm.
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Figure A.7: Important optical parameters of the 30m prototype in the dual recycling config-
uration.

The distances from beamsplitter to MPR and MSR were determined by direct measure-
ment to a precision of 1 cm (estimated) and found to be 15 cm and 28.5 cm, respectively.
These distances were more or less fixed by constructional constraints, although, in prin-
ciple, they could be changed in the prototype with some effort (see also Section 1.11).

The PR cavity is 30.807m long and has a FSR of 4865.6 kHz, the second harmonic being
at 9731 kHz. Since this length was directly measured via the FSR (see Appendix A.6),
its estimated precision is better than 1mm.

The power transmission of the PR mirror MPR was measured to be TPR = 7%, corre-
sponding to an amplitude reflectivity of ρPR = 0.9643. At the proper operating point
the losses of the PR cavity are dominated by this 7% transmission, and hence the
cavity can be treated as strongly overcoupled. Using the results from Appendix D, the
finesse is F = 2π/T = 90 and the power buildup 4/T = 57. The FWHM bandwidth is
FWHMPR = 54kHz.

Similarly the SR cavity is 30.942m long and has a FSR of 4844.4 kHz, the second har-
monic being at 9689 kHz. The power transmission of the SR mirror MSR was measured
to be TSR = 3.88%, corresponding to an amplitude reflectivity of ρSR = 0.9804 (see
also Section 1.8.2). Again, at the proper operating point the SR cavity can be treated
as strongly overcoupled. Its finesse is F = 2π/TSR = 162 and its FWHM bandwidth is
FWHMSR = 30kHz.

The Rayleigh range of the transverse eigenmode of both SR and PR cavities can easily
be computed from the given data (cavity length L ≈ 30.9m, flat front mirror, rear
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curvature radius R = 33m) to be

zR =
√
L(R− L) = 8.1m, (A.1)

which corresponds to a beam diameter at the waist (at MPR and MSR) of

2w0 = 2

√
λ zR
π
= 2.3mm, (A.2)

and a beam diameter at the end mirrors of

2w(L) = 2w0

√
1 +

L2

z2R
= 9.1mm. (A.3)

When we first implemented Schnupp modulation, we decided on a Schnupp modulation
frequency near the second harmonic of the free spectral ranges of the PR and SR cavity
(i.e. near 9.7MHz), because several pieces of electronics for that frequency had been
available from earlier experiments. The error signals that are generated with the help
of the Schnupp modulation do change when different harmonics are chosen (see Section
1.5.4).

A.5 Calibration procedures

Calibration in this section means finding the proportionality factors between measured
signals (e.g. voltages at a mixer output) and the corresponding physical quantities (such
as displacements, angles etc.). Various such calibrations have been carried out at the
prototype at one time or another, many of them only as rough estimates. One problem
is that almost all signals that are derived optically or interferometrically do depend on
various parameters of the system (in particular, light levels) that are neither constant
during one experiment (due to drifts in laser power, alignment etc.) nor from one day
to the next.

Furthermore many interesting signals are needed and used as error signals for feedback
loops, such that the signal is reduced depending on the loop gain, which again depends
on light levels, etc. Some consequences of this complication are discussed below.

For brevity, this section only describes three important calibrations that have been
carried out repeatedly. The first one is for the single most important signal in the
whole interferometer, the Michelson phase.

A.5.1 Michelson calibration

The Michelson output signal appears at the output of mixer Mix3 in Figure 1.29. It
is used as the error signal for the dark fringe lock. In operation, that loop typically
has a bandwith of a few hundred Hz (see Section 1.6.2.3). External disturbances to
the Michelson phase at lower frequencies appear in the correction signal of that loop
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(i.e. the voltage which is fed back differentially to the end mirrors). In the prototype
this low-frequency signal is monitored on an oscilloscope for curiosity, but is not really
used. In GEO600, such signals might, however, as a by-product contain interesting
information for geologists or seismologists.

The useful frequency band for gravitational-wave detection starts at about 50Hz. In
the prototype, frequencies above about 500Hz were typically looked at. In GEO, the
lower limit is expected to be between 50 and 100Hz. Signals at frequencies above
the loop bandwidth appear in the Michelson error signal. If signal frequency and
loop bandwidth are close to each other, the error signal is partially suppressed and
additionally phase-shifted. If that happens in GEO, digital data processing facilities
must analyze both the error signal and the correction signal and try to reconstruct the
underlying stimulus.

In the dual-recycled prototype, only signals above the loop bandwidth were used for
the calibration described here, such that all observed signals appeared essentially com-
pletely in the error signal.

The required calibration information generally consists of two parts: The frequency
response and an overall absolute factor. In the prototype, the frequency response
is essentially given by the optical response of the dual-recycled interferometer4. In
broadband operation, this behaves like a one-pole low-pass filter with a corner frequency
of 15.4 kHz (see Figure 1.19 and Section 1.5). Photodetectors, mixers etc. all have a
bandwidth larger than that, and thus the frequency response can be considered flat for
those frequencies that were measured (up to 5 kHz).

The absolute factor is more problematic. It depends on a multitude of factors (light
levels, alignment, loop gains, etc., remember also Figure 1.40 and the problems with
offsets), which cannot really be considered constant in the prototype. Hence the only
way to obtain a reliable calibration for the output signal is to apply a stable and well-
known test signal to the interferometer and measure its amplitude in the output signal.
This was exactly what was done in the prototype (see Figures A.17, 1.51 and A.10).

The test signal was applied via the extra set of coils (described at the end of Ap-
pendix A.3.1) that are mounted behind end-mirror M1. The three coils are driven by
three dedicated wide-band current drivers that share the same input signal. A sine
wave signal of constant amplitude and frequency is applied to that input. The cal-
ibration frequency used most often was 375Hz. Later calibrations have also used a
4.9 kHz signal, which is better because it is much further above the bandwidth of the
dark-fringe lock and there is less noise at that frequency. The frequency should be
chosen in a range where there are no special features such as mirror resonances nearby.

For GEO600, the tiny oscillating radiation pressure caused by a chopped low power

4Interesting things happen in a detuned interferometer that is operated in narrowband mode with
a center frequency that is below the loop’s unity-gain frequency. The information then appears in
the correction signal with its own frequency response that will usually not have a peak at the center
frequency. Signals near the center frequency hence do not appear amplified. Due to the increased
optical gain, however, the effect of the shot-noise is reduced at the interferometers center frequency,
and the signal-to-noise ratio is thus increased as expected.
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laser beam (e.g. from a He-Ne laser) reflected off one end mirror may already produce
a sufficiently strong calibration signal [Rüdiger].

Under these circumstances the amplitude of the mirror motion caused by the test signal
can be considered constant. Now the only missing factor is its amplitude in physical
units. It was determined by the following independent optical measurement:

Starting with a well-aligned interferometer, both recycling mirrors (MSR and MPR) are
misaligned far enough that they act as simple attenuators. Then a simple Michelson
interferometer remains. Nothing is changed at the end mirrors, in particular the test
signal is left untouched.

The light power at the output port (dark fringe port) is measured with a broadband
photodiode (no modulation is used in this measurement). Another photodiode (PD6 in
Figure 1.29) measures the injected light power, the main variable quantity during this
calibration experiment. Both signals are fed to the simple circuit shown in Figure A.8.

Figure A.8: Schematic of the circuit used for the Michelson calibration (‘mid-fringe lock’).

After appropriate scaling, the signal for the dark fringe power is divided by the in-
jected power in an analog divider (AD734 in ‘direct division mode’). The circuit can be
adjusted such that the divider output swings between 0 and 10V, independent of the
injected light power. Small variations of the Michelson phase (such as the test signal)
cannot directly be measured from that signal in the dark-fringe condition (see Sec-
tion 1.1.3). Since complicated modulation methods are exactly what is to be avoided,
the dark fringe cannot be used, and ‘mid-fringe’ is used instead. For that purpose, a
constant voltage of 5V is subtracted from the signal, which thus swings between −5V
and +5V. This is used as error signal for the usual Michelson feedback, with the gain
adjusted such that the interferometer stays very close to the mid-fringe condition, yet
without suppressing the test signal.

Figure A.9 shows the output signal as a function of the total pathlength difference p
between the two interfering beams. It is given by

U = 5V · sin
(
2π p

λ

)
. (A.4)
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Figure A.9: Output signal of the ‘mid-fringe lock’ circuit shown in Figure A.8.

The derivative ∂U/∂p is maximal at mid-fringe and is then given by

∂U

∂p
= 5V · 2π

λ
, (A.5)

and a small variation δU in the output voltage can be converted into total pathlength
difference by

δp =
λ

2π · 5V δU (A.6)

In this state, the amplitude of the test signal at the output is measured with a spectrum
analyzer. A typical spectrum analyzer (in our experiment, a HP3562A was used) has
some settings that become important in the calibration. The first one is the ‘window
function’ [Harris78, HP]. For a measurement such as this one where we want to deter-
mine the amplitude of a sharp spectral peak, it is best to use the ‘flat top’ window.
Other windows, such as Hanning, can produce an error in the amplitude (a few dB at
most), if the peak happens to fall in between two frequency bins.

Other important settings concern the display units of the spectrum analyzer. First
there are ‘Volts (peak)’ and ‘Volts (rms)’, which are related to each other by a factor of√
2. Another, more important, distinction exists between an amplitude spectrum (with
the units Volt) and a linear spectral density (with the unit Volt/

√
Hz). The conversion

factor between these is the square root of the analyzer’s effective bandwidth, which
should be read from the analyzer status display. The effective bandwidth depends not
only on the width of a frequency bin, but also on the window function.

The amplitude spectrum is suitable to determine the amplitude of sharp peaks, as in this
experiment. The linear spectral density, on the other hand, is suitable for continuous
noise spectra, such as white noise.
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In an actual example, a constant 4.9 kHz calibration signal (400mVrms stimulus) pro-
duced an output signal of 48.6µVrms. Using Equation (A.6) this can be converted into
the amplitude of the oscillation in the total pathlength difference, which is found to
be 795 fmrms. The actual motion of the mirror is only half that value, but this is not
important for the calibration.

This concludes the measurement of the test signal, which can now be used to calibrate
the output signal of the interferometer in other states, such as dual recycling. As an
example, Figure A.10 shows a typical such measurement (in broadband dual recycling
mode).
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Figure A.10: A typical output spectrum of the dual recycled interferometer with the 4.9 kHz
calibration signal. There are various noise peaks of technical origin visible in the spectrum,
which were being investigated when this measurement was made.

Since in these measurements we are interested both in peak amplitudes (for the calibra-
tion) and in a linear noise density (for the noise floor), care must be taken concerning
the display unit of the spetrum analyzer. The peak amplitude of the calibration signal
can be found in a separate measurement or by setting the appropriate display unit
and recording the result. The noise floor, on the other hand, must be displayed (or
recorded) as linear noise density.

If only one measurement is made and recorded for later evaluation, it is essential that
the effective bandwidth of the spectrum analyzer is recorded. In the example shown in
Figure A.10, it was 24Hz. (Note that due to the flat-top window, this is 3.8 times wider
than the bin width, 6.25Hz.) The known amplitude of the calibration peak (795 fm) is
converted to the units of the plot by division by the square root of the bandwidth, as
written in the Figure. The factor to convert from total pathlength difference to phase
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difference is given by 2π/λ.

A.5.2 Frequency noise calibration

Another important calibration concerns the frequency noise of the laser with respect
to the power recycling cavity (see Section 1.6.1.2 and Figure 1.34). It can be measured
at the output of mixerMix2 in Figure 1.29. This is in fact the error signal for the PR
cavity lock. Here we are not concerned with the interpretation of that signal, but only
with its calibration. Figure A.11 shows the relevant parts of the loop, with an adder
inserted between loop filter and the VCO’s input.

VCO +
AOM

Laser Detector

Loop
Filter

A B C D E

F

Figure A.11: Schematic of the relevant parts for the calibration of the frequency noise measure-
ment.

Starting from the left, the VCO/AOM converts a voltage into a frequency shift. Its
frequency response is known to be flat up to 10 kHz (see Figure 1.32), and the efficiency
can be determined statically by measuring the VCO behaviour. Doubling this value
yields the efficiency of the double-passed AOM as an actuator for the laser frequency,
which was found to be 4.5MHz/V. In other words, we know the transfer function from
point B to point D in Figure A.11.

The box labelled ‘Detector’ comprises the PR cavity together with the resonant pho-
todetector and mixer, which together produce the Pound-Drever-Hall error signal (see
Figure 1.30). Its transfer function is also known to be flat up to at least 10 kHz, but
its efficiency (in V/Hz) is still unknown. Since we can only measure at point E in
Figure A.11, and want to refer the result to point D, it is just this missing efficiency
that we need.

This efficiency was determined by a separate measurement, which made use of the
adder in Figure A.11. If signals are added at point A, they are partially suppressed
by the frequency-dependent loop gain. Measuring a transfer function from point A to
any other point in the loop is therefore not useful for our present purpose. We can,
however, measure the transfer function from point B to point E if the injected test
signals can be separated from the noise that is added by other parts of the loop. This
measurement was first done with a function generator at a few frequencies. The results
were however, so badly reproducible that a full transfer function was measured from
point B to point E instead, using the HP3562A spectrum analyzer. The result also
showed also some variations, and only at a few frequencies were the injected signals
large enough to provide sufficient coherence for the measurement. For the measurement
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shown below, this factor thus found was 400. Now that we know the transfer functions
D/B = 4.5MHz/V and E/B = 400, we can determine the missing factor D/E and find
it to be 11 kHz/V.

Figure A.12 shows one frequency noise measurement that was calibrated with the pro-
cedure described so far. Here the noise is somewhat lower than in Figure 1.34, because
for this measurement everything had just been readjusted for maximum light levels
at the reference cavity, and the gain of both the first and the second loop had been
increased to the limit just before oscillation occurred (the resonances of the piezo SPZT
begin to show up near 10 kHz, and an oscillation of the second loop is sometimes flick-
ering up near 50 kHz). For stability, the loop gain was somewhat reduced in normal
operation.
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Figure A.12: Frequency noise of the laser light with respect to the power recycling cavity, with
the interferometer locked in broadband dual recycling mode.

A.5.3 Calibration of the autoalignment loops

This section describes the calibration procedures that were used during the development
and characterization of the autoalignment system. The simple model shown in figure
A.13 was used to represent one channel of the autoalignment system.

It begins with the pendulum with the transfer function HP(s) (Equation (2.54)), de-
fined as the ratio of the actual movement of the respective beam to the input at the
appropriate local control module. While the frequency response can be measured di-
rectly (using, e.g., the autoalignment error signals while the respective loop is disabled),
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Pendulum

H   (s)
P

[rad/V]

Sensor

H   (s)
S

[V/rad]

Loop filter

H   (s)
L

[V/V]

M A B

C

D

Figure A.13: Simple loop model used for the calibration of the autoalignment system.

the constant factor AP must be determined separately. For the end mirrors, this mea-
surement was done by misaligning MPR such that a single-bounce Michelson remained,
switching off all autoalignment loops and locking the Michelson to a dark fringe. Then a
series of increasing voltages was applied to the input in question, and the deterioration
of contrast (increasing light power at PD3) was measured. These data were then fitted
to an appropriate model (which needs as further input the beam radius at the waist).
The missing factor AP could then be computed from the fitted parameters. These
results were in reasonable accordance with an less precise earlier measurement, where
the deflection was directly measured. The factor AP for MPR was also determined by
such a direct deflection measurement.

The sensor transfer function HS includes all optical effects, electronic gains of pream-
plifiers, mixers etc. such that it represents the ratio of the error signal to the angular
misalignment between the respective beams. We assume this transfer function HS(s)
to be flat for all frequencies of interest, i.e. HS(s) ≡ AS.
The transfer function of the loop filter, HL(s), is known by its design or can be measured
directly. For the calibration measurements described here, a unity-gain adder was
inserted into the loop in question. We then have the point C available as input, and
the three points A, B and D as outputs, where measurements can be made. With all
transfer functions known we can then compute noise spectra etc. referred to the point
M, which is not directly accessible but which represents the most interesting quantity
in the experiment (angle between wavefronts).

For the first type of measurement, which allows to determine the pendulum frequency
response (fP and QP) as well as the sensisivity AS of the sensor, we add a test signal
(e.g., white noise from the spectrum analyzer) at C, which is partially suppressed by
the loop. We then measure the transfer function from point D to point A, which we
call H2(s) and which is composed of HP and HS

H2(s) =
VA
VD
= HPHS =

APAS

1 +
s

ωPQP
+
s2

ω2P

(A.7)

By fitting this transfer function to the model (2.54) we can determine the parameters
ωP = 2πfP, QP and AS.
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For the second type of measurement, which allows to determine the open-loop gain and
unity-gain frequency, we also add a test signal at C. Now, however, we measure the
transfer function from pointC to either pointD or to pointB. Both of these alternatives
usually yield similar results. If we call the open-loop gain HOLG(= HPHSHL), we thus
measure

VD
VC
=

HOLG
1−HOLG

or
VB
VC
=

1

1−HOLG
, (A.8)

and we can directly compute HOLG from these measurements, which are usually most
reliable around the unity gain frequency of the loop, where they also are most interest-
ing. If necessary, the measured curves can be extrapolated to other frequencies using
the known transfer functions HP and HL. The figures 2.9 and 2.10 were produced in
this way.

A.6 Measurement of the PR cavity length

The length of the PR cavity could be determined very precisely with a direct optical
measurement. For this purpose, the signal recycling mirror was misaligned such that
a power-recycled interferometer without signal recycling remained. It was locked (on
the dark fringe of the Michelson and the resonance of the PR cavity) with the normal
circuits (see Sections 1.6.2.3 and 1.6.3.2) by increasing the Michelson gain.

Then a phase modulation near 4.8MHz was applied via Pockels cell PC1 in Figure 1.29.
The light reflected from the PR cavity is detected with a wideband photodetector. The
measurement is controlled by a network analyzer. The measurement frequency is swept
from 4.855 to 4.875 MHz. The source drives the Pockels cell, and the detected pho-
tocurrent is coherently demodulated by the analyzer. The result of such a measurement
is shown in Figure A.14.

In a perfect interferometer locked exactly on its nominal operating point, a pure phase
modulation should in theory yield no AM in the reflected light. But, in practice, the
modulation in the Pockels cell has some AM components, and the operating point
has small offsets from its theoretical value. Any of these effects yields a signal with
a minimum at the FSR. The measured data was fitted (with Liso) to a model of a
band-stop filter (also shown in Figure A.14). The resulting estimated center frequency
was 4.865577MHz with an estimated standard deviation of 7Hz.

Because the effect that leads to the signal was not exactly identified, the accuracy of
7Hz was not fully trusted (it would correspond to a length error of 0.05mm). But,
nevertheless, the length of the PR cavity could thus be estimated as 30.8075 m with a
precision of certainly better than 1mm. Note that this is the optical pathlength, which
includes the effect of passing through the beamsplitter substrate. This value formed
the fundamental armlength measurement in the prototype, from which all other lengths
were derived (see Appendix A.4).
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Figure A.14: Resonance of the PR cavity at its first FSR (measured data and fitted curve).

A.7 External modulation

This Section discusses experimental details and results of the experiments with external
modulation at the Garching 30m prototype, which were carried out during the first
half of this work.

A.7.1 External modulation: control of the Mach-Zehnder phase ψ

As we have seen in Section 1.3.2, the Mach-Zehnder phase ψ needs to be controlled and
thus an error signal must be generated.

First consider the output signal (Equation (1.37) on page 23) in the locked case, i.e.
ϕ ≈ 0, ψ ≈ 0. It is proportional to

sin
ϕ

2
cosψ. (A.9)

This is a useful error signal for the Michelson phase ϕ, but not for the Mach-Zehnder
phase ψ. For the latter we would like a signal proportional to ψ or sinψ instead of
cosψ. This would, however, not yet be sufficient because the sinϕ factor would still
cause the signal to vanish at the proper operating point. We hence would like to replace
sinϕ by a constant or cosϕ.

As discussed in Section 1.1.3, we can effectively obtain the derivative of a measured
quantity with respect to one of its parameters by modulating the parameter at a con-
stant frequency and then coherently demodulating the resulting signal. In order to
control ψ we make use of this principle twice to obtain the mixed second derivative of
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the output signal (see Equation (1.37))

uMZ =
∂2u1
∂ϕ∂ψ

=
1√
2
c1 cLO J1(m) cos

ϕ

2
sinψ, (A.10)

which has all the desired properties.

The signal u1 is the demodulated photocurrent in the main detection photodiode. We
now need two more modulation-demodulation procedures to obtain uMZ. Both the
Michelson phase ϕ and the Mach-Zehnder phase ψ must be modulated sinusoidally
with a small modulation index.

A.7.2 Experimental realization of the Mach-Zehnder control

An overview of the 30m prototype with external modulation is given in Figure A.15.

In the 30m prototype the Michelson phase ϕ had for a long time been modulated at
375Hz for calibration purposes. The modulation was applied via three small magnets
(glued onto one end mirror) and coils nearby which were driven with the 375Hz signal
through a current driver (see also Appendix A.3.1). The amplitude of the mirror
motion was a few picometers. This provided the first modulation necessary for the
Mach-Zehnder control (to obtain ∂u1/∂ϕ).

The second modulation (of ψ) had traditionally been done at a lower frequency (85Hz)
by mechanically dithering the recombination plate RP. With two small magnets glued
on the recombination plate and two coils driven in antiphase near the magnets, a
tiny rotation of the recombination plate around an axis perpendicular to the page in
Figure 1.15 could be obtained, which changed the Mach-Zehnder phase ψ. The current
through the coils was both modulated at 85Hz and used for feeding back the control
signal at lower frequencies and DC.

That system worked, but not very well, the deficiencies being associated with noise and
bandwidth. Since any demodulated signal is low-pass filtered shortly after the mixer,
the 85Hz demodulation must take place after the 375Hz demodulation. As can be seen
from the prototype noise spectra (see e.g. Figure A.17), the Michelson output is very
noisy near 375Hz. Thus the signal after the 375Hz demodulation contains excessive
noise, up to and including 85Hz. The second demodulation then produces an even
noisier signal, which needs heavy low-pass filtering to reduce the noise amplitude. This
again limited the useful loop bandwidth for the Mach-Zehnder loop to less than 1Hz,
which was just marginally sufficient to reduce the Mach-Zehnder phase fluctuations
to a level where they were small enough not to throw the interferometer out of lock.
The remaining Mach-Zehnder phase flucuations were estimated to be in the order of
0.1 – 0.5 rad (rms). They were dominated by differential rotational motion between
beamsplitter and recombination plate, acting like a pendulum with 0.3Hz resonance
frequency and a Q of around 3. Acquisition of lock was not easy because of the slow
reaction of the Mach-Zehnder loop.

Hence another modulation frequency was introduced for ψ. It was chosen to be well
above 375Hz, in a region where the interferometer output is much quieter. It was no
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Figure A.15: Overview of the 30m prototype with external modulation.
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longer possible to apply this fast modulation mechanically to the recombination plate.
Instead, it was added to the suspended Pockels cell PC3, via a ±120V high-voltage
amplifier. The frequency chosen was 11 kHz. Of course, now the order of demodulations
had to be reversed. The resulting Mach-Zehnder error signal was much quieter, and
a loop bandwidth of around 10 – 20Hz was obtained, making the Mach-Zehnder lock
tighter and helping lock acquisition. The fast components of the correction signal were
fed back to the Pockels cell PC3, whereas the slow components were applied (as a
rotational movement) to the recombination plate RP.

In this setup the unity-gain frequency of the Michelson loop could be increased up to
around 1000Hz, causing another unexpected complication. The Mach-Zehnder phase ψ
is obtained by first demodulating the output signal at 11 kHz, and again demodulating
the resulting signal at 375Hz. The 375Hz signal, however, is caused by the Michelson
phase modulation, which is suppressed by the respective loop. If the unity-gain fre-
quency of that loop approaches or passes 375Hz, the signal is suppressed by the loop
gain and, even more troublesome, phase-shifted by angles approaching 90◦.

To obtain a reliable error signal for the Mach-Zehnder phase, it was thus necessary
to take into account the phase shift for proper demodulation. Hence the phase of the
375Hz signal as it appeared at the output was detected by a phase-locked loop (PLL).
As input signal for the PLL the Michelson output was taken, which at the proper
operating point contains a strong 375Hz component with the same phase shift as the
375Hz component in the 11 kHz demodulated signal. This was used to phase-lock an
ICL8038 sine-wave generator, which then served as local oscillator for the final 375Hz
demodulation. A sketch of these loops is shown in Figure A.16.

A.7.3 Experimental results of external modulation

The main part of this work considers the newer system with Schnupp modulation
and dual recycling. Therefore this section will briefly discuss the earlier experimental
results that have been achieved with external modulation, because they have not been
published anywhere else.

Most interesting is the achieved phase (or displacement) sensitivity of the interferome-
ter. It is shown in Figure A.17. It was calibrated as discussed in Appendix A.5.1. The
two measured curves shown in Figure A.17 were measured with two different loop gains
for the Michelson (dark fringe) lock, such that the unity gain frequencies were below
375Hz in one case and around (or just above) 375Hz in the other case.

The predicted shot noise level (also shown in Figure A.17) was computed from the
following formula [Winkler97] for the linear spectral density of the phase noise:

ϕ̃ =

√
2qe
I0

√
1 +
2Imin + 4Icam

ρ2 I0
J1(m)

(A.11)

The formula is already simplified under the assumption that both beamsplitter and the
central spot of the recombination plate have an exact 50:50 coating. The meanings of
the symbols are:
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Figure A.16: Simplified diagram of the demodulators used to extract the Mach-Zehnder error
signal ψ in the external modulation setup.
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Figure A.17: Sensitivity of the Garching 30m prototype with external modulation.

qe is the electron charge, 1.6 · 10−19 C.
I0 is the photocurrent equivalent to the light power hitting the beamsplitter (9.74 A).

Imin is the photocurrent equivalent to the light power arriving at the dark finge port
before the recombination plate (the ‘Signal beam’ in Figures 1.14 and 1.15). This
expresses the contrast of the Michelson. A value of 6mA has been used for the
computation.

Icam is the noise equivalent photocurrent of the photodetector. This value was 100µA.

m is the modulation index in the Pockels cell PC3 of Figure A.15. Its estimated value
was 0.25 rad.

ρ2 is the power reflectivity of the beamsplitter’s rear side (which splits off the local
oscillator beam). The value used was 290 ppm.

Plugging in these numbers, formula A.11 becomes:

ϕ̃ = 1.8 · 10−10 rad√
Hz
· 2.32
0.12

= 3.4 · 10−9 rad√
Hz

. (A.12)

The sensitivity could be improved by a factor of
√
2, if both beams (see Figure 1.15)

were detected. This was not done in the prototype. Furthermore it can be seen from
Equation (A.12) that the modulation index was too low (this is responsible for the
factor 1/0.12 = 8.3), and the beamplitter rear coating was not optimal for the contrast
reached (yielding the factor of 2.32).

A.7.4 Conclusions about external modulation

We can summarize our experiences with external modulation as follows:
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As compared to Schnupp modulation (discussed below), the system is far more complex.
Two more modulations (375Hz and 11 kHz in Figure A.15) are needed, which are
unnecessary in Schnupp modulation. There is an additional degree of freedom, the
Mach-Zehnder phase ψ, which needs to be controlled. This would make lock acquisition
in a dual recycled system even more complicated than it is anyway (see Section 1.7).
Furthermore, the recombination plate is another extra suspended component which
requires careful alignment (or even autoalignment). Suspending the Pockels cell (PC3
in Figure A.15) and driving it with the high voltage, high frequency, modulation signal
is a difficult technical problem with problematic side-effects such as radiation at the
modulation frequency and coupling of ground noise through the electrical connections.

In order to come close to the shot-noise limited sensitivity, the level of the local oscillator
beam must be carefully chosen. Since it is determined by the reflectivity of AR coating
applied to the beamsplitters rear side, it cannot easily be changed (unless one changes
the polarization of the injected beam, which is, however, undesirable for other reasons,
such as the desire to maintain a particular ratio of transmittance to reflectance at the
main beamsplitter). Finally, two beams must be detected.

On the other hand, external modulation has one important advantage: it allows the use
of equal armlengths of the Michelson and hence reduces the interferometer’s sensitivity
to laser frequency fluctuations (see Section 1.8.3).



Appendix B

Electronics

B.1 Photodiode preamplifiers

In a complex interferometer, many light levels need to be detected and to be converted
to electrical signals (typically voltages). The most common detector is a photodiode,
which has three basic modes of operation: photovoltaic, photoconductive without bias
and photoconductive with a reverse bias voltage. In photovoltaic mode, the photodi-
ode is operated as a voltage source into a high impedance, yielding a voltage that is
proportional to the logarithm of the light power. For this reason, and also for speed
and noise reasons, we do not use photodiodes in photovoltaic mode.

In photoconductive mode, on the other hand, the photodiode is operated as a current
source into a low impedance. The photocurrent is proportional to the light power. If
very low light levels are to be measured, the lowest noise can be obtained with zero
bias voltage, at the expense of slow reaction (due to the large junction capacitance).
For faster reaction, the junction capacitance can be reduced by applying a reverse bias
voltage. All photodiodes in the prototype are operated with a reverse bias voltage.

In the prototype we have found two basic circuit configurations to be useful, which will
be briefly introduced. Both of them are based on circuits that have previously been
used in Garching and elsewhere.

The broadband circuit has a frequency response extending from DC to some corner
frequency and is typically used to monitor light levels in some part of the interferometer.

The tuned circuit, on the other hand, behaves like a band-pass filter tuned to a preset
frequency. It is used to detect the AM component in the light power which is caused
by an intentional modulation at a fixed frequency (e.g. the phase modulation applied
in a Pound-Drever-Hall system, or the Schnupp modulation).

The two circuits can also be combined to yield a circuit with two output voltages
from a single photodiode, the RF component at the modulation frequency, and the DC
component with a frequency response from DC to a corner frequency well below the
modulation frequency. This section briefly discusses the basic circuits, their frequency
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response and noise behaviour. For a detailed design it has proven useful to analyze the
circuit numerically using Liso (see Appendix C).

B.1.1 Broadband circuit

Figure B.1 shows the basic circuit diagram for a broadband photodiode preamplifier.

Figure B.1: Basic circuit of a broadband photodiode preamplifier.

The photodiode behaves as a current source yielding the photocurrent Ip. The op-
amp is used as a current-to-voltage converter (transimpedance amplifier), with the
scaling factor given by the resistor R1, i.e. the output voltage is −R1Ip. Of course,
positive output voltages can be generated, if desired, by reversing the polarity of both
the photodiode and the bias voltage. The op-amp keeps its inverting input at ground
potential and thus keeps the voltage across the photodiode constant. The capacitor
C1 represents the parasitic capacitances (mainly of the photodiode), but can also be
an intentional bigger capacitor needed for a tuned detector (see Section B.1.3). The
capacitor C2 will usually be needed to ensure stability of the circuit, and suitable values
are computed below.

To analyze the frequency response of the circuit we need to know the frequency-
dependent gain of the op-amp. The simplest model, which is, however, often adequate,
is given by

A(s = iω) =
A0

1 +A0
s
ωT

, (B.1)

with A0 the DC-gain and ωT the transit frequency. It is illustrated in Figure B.2.
Typical values for a standard bipolar low-noise op-amp such as an OP-27 are A0 ≈ 106
and ωT ≈ 2π · 10MHz. Op-amps with more complicated open-loop gain structures can
be treated by Liso.
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Figure B.2: Simplest model of the open-loop gain of an op-amp.

A straightforward analysis of the circuit yields the transfer function

UDC = −R1 Ip
1(

1 +
1

A0

)
+

(
R1 C2 +

1

ωT
+
1

A0ω1

)
s+

s2

ωTω1

(B.2)

≈ −R1 Ip
1

1 +

(
R1C2 +

1

ωT

)
s+

s2

ωTω1

, (B.3)

where the abbreviation

ω1 =
1

R1(C1 + C2)
(B.4)

has been introduced.

Apart from the expected factor −R1Ip, we are left with a two-pole low-pass filter, the
normal form of which is given by

HTP(s) =
1

1 +
s

ωPQ
+
s2

ω2P

, (B.5)

with the pole frequency ωP and the quality factor Q. By comparing equations (B.3)
and (B.5) we find

ωP =
√
ωTω1 (B.6)

and

Q =

√
ωT
ω1

1

1 +R1C2 ωT
. (B.7)

If C2 is omitted (as is mostly seen in textbook circuits
1), the frequency response may

have a distinct peak at ωP and the circuit may be unstable. The peak Q can usually be

1The only exceptions known to the author are Burr-Brown’s data sheet for their OPA655 op-amp
and [Horowitz–Hill, Fig. 15.45] (also taken from Burr-Brown).
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flattened without sacrificing bandwidth by adding an appropriately chosen capacitor
C2. This usually also ensures stability of the circuit.

Solving equations (B.7) and (B.4) for C2 yields

C2 =
1− 2Q2 +

√
1 + 4Q2(R1C1ωT − 1)
2Q2R1ωT

. (B.8)

For a maximally flat Butterworth transfer function (Q = 1/
√
2) this simplifies to

C2 =

√
2R1C1ωT
R1ωT

, (B.9)

with a pole frequency of

ωP =
ωT√

R1C1ωT +
√
2R1C1ωT − 1

, (B.10)

(which equals the 3 dB corner frequency for a Butterworth filter). It turns out that a
flat frequency response usually corresponds to a stable circuit (if necessary, the stability
can be analyzed in detail with Liso).

The output noise at low frequencies2, expressed as linear spectral density of the output
voltage, has four contributions:

• The thermal (Johnson) noise in resistor R1, given by
√
4kTR1.

• The op-amp’s input current noise Ĩop, which appears at the output as R1Ĩop.

• The op-amp’s input voltage noise Ũop.

• The shot noise associated with the photocurrent Ip, given by
√
2eIp, which ap-

pears at the output as R1
√
2eIp.

The total noise at the output is found by adding quadratically all contributions:

Ũ2out = 4kTR1 +
(
R1Ĩop

)2
+ Ũ2op +R

2
12eIp. (B.11)

To characterize the performance of the preamplifier, it is convenient to introduce the
‘noise equivalent photocurrent’ INE which is defined by the condition that its shot noise
contributes the same amount of noise at the output as the rest of the circuit [Schilling].
It is desirable to have INE smaller than the actual photocurrent in the typical operating
condition, such that the preamplifier doesn’t add significant extra noise to the inevitable
shot noise. The noise equivalent photocurrent is given by

INE =
1

2e

(
4kT

R1
+ Ĩ2op +

Ũ2op
R21

)
. (B.12)

It can be seen that, in order to obtain the maximal signal-to-noise ratio, the resistor R1
should be chosen as large as possible, i.e. such that the largest anticipated photocurrent
yields an output voltage near the op-amp’s maximal output voltage.

2The following approximation is valid only for frequencies ω ≪ ωP. In particular the op-amp’s input
voltage noise Ũop has a peculiar transfer function to the output, which starts to increase at frequencies
well below ωP. A detailed analysis is possible with Liso. In fact, the difficulty of this kind of analysis
even for such a simple circuit was one of the reasons to write Liso in the first place.
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B.1.2 Tuned circuit

The tuned preamplifier circuits are usually applied in situations where their output
signal is (after mixing with an appropriate local oscillator) used as error signal for
some loop (such as the Michelson dark fringe lock). Hence in normal operation no
large output signal is expected and the performance should be optimized for small
signals. In the typical operating condition, there is, however, a non-negligible DC
photocurrent flowing through the photodiode. In the circuits used in the prototype,
the best small-signal RF performance is achieved with a resonant passive LC-circuit,
where the capacitance C is the inevitable parasitic capacitance of the photodiode. A
simplified circuit diagram is shown in Figure B.3, together with the RF equivalent
circuit.

Figure B.3: Basic circuit of a tuned photodiode preamplifier, together with its RF equivalent
circuit. The capacitance CD represents the photodiode capacitance, whereas the optional series
resonant circuit formed by CS and LS can be used to suppress signals at another unwanted
frequency.

The capacitance CD is the sum of the photodiode junction capacitance, the input
capacitance of op-amp OP, and parasitic PC board capacitances. For the circuits
used in the prototype (which use one quadrant of a Centronics QD50-0 quadrant diode
operated with 15V reverse bias voltage), CD is typically around 30 pF. In the equivalent
circuit, CD forms a parallel resonant circuit together with the inductance L1. All losses
of the resonant circuit are modelled by the resistor Rloss. In the prototype circuits that
are tuned for 12MHz, L1 needs to have around 6µH and Rloss was found to be around
70Ω. Sometimes it is necessary to suppress unwanted signals at another frequency that
is also contained in the photocurrent (such as the second harmonic of the modulation
frequency). This can be achieved with a series resonant LC-circuit, such as LS and CS
in Figure B.3. The rest of this discussion assumes, however, no such series resonant
circuit.
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The frequency-dependent impedance of the parallel resonant circuit is given by

Z(s) =
1

1

sL1
+

1

Rloss +
1
sCD

=
sL1(1 + sCDRloss)

1 + sCD(Rloss + sL1)
. (B.13)

In the narrowband approximation, the resonance frequency is given by

ω0 =
1√
L1 CD

(B.14)

The impedance at the resonance frequency can be approximated by

Zmax ≈
L1

CDRloss
=

1

ω20 C
2
DRloss

(B.15)

For our prototype circuit, this impedance amounts to 2.8 kΩ. The quality factor Q is
then approximately given by

Q =
1

Rloss

√
L

CD
, (B.16)

which amounts to around 6.5 for the prototype circuit. Figure B.4 shows the frequency-
dependent impedance together with its real part and its phase.
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Figure B.4: Impedance of the parallel resonant circuit shown in Figure B.3 for typical values
used in the prototype.

The photocurrent produces a voltage proportional to |Z| across the impedance Z,
which is amplified by the wideband op-amp OP. At the same time, the real part of
the impedance Z produces a thermal (Johnson) noise voltage proportional to

√
ℜ{Z}.

Thus, for best small-signal noise performance, we will want the impedance Z to be
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as large as possible. This can be achieved by minimizing the capacitance CD via
increasing the reverse-bias voltage. Limits will be given by the power dissipation in the
photodiode, and its reverse breakdown voltage. Furthermore it may be undesirable to
reduce the bandwidth of the tuned circuit below a certain limit, if the resulting signal
is to be used as error signal in a wideband loop.

Similar to the broadband circuit, we can compute a noise-equivalent photocurrent INE
(at the resonance frequency) in order to characterize the noise performance of the
preamplifier. The result is

INE =
1

2e

(
4kTℜ{Z}
|Z|2 + Ĩ2op +

Ũ2op
|Z|2

)
, (B.17)

where Ũop and Ĩop are the input voltage and current noise spectral densities of op-amp
OP, respectively. The contributions of the two gain-setting resistors, R3 and R4 in
Figure B.3, are neglected here. A more complete noise analysis can be carried out with
Liso. With the typical values3 for the prototype circuit given above, the result is

INE ≈ 30µA, (B.18)

which is dominated by the first term of Equation (B.17), i.e. the thermal noise in the
losses of the photodiode.

It is possible to measure the most important parameters of a tuned photodiode pream-
plifier with only two measurements, if an RF spectrum analyzer is available. First, a
reference measurement of the output noise spectral density is made when no light is
falling on the photodiode. Then white light from an incandescent bulb is shone on
the photodiode, such that the DC photocurrent has a value of Ip, which should be
approximately equal to INE. The ratio of these two measurements (i.e. their difference
in dB) has a peak of approximately 3 dB at the resonance frequency. It can be fitted
with the following model:

y(ω) = 20 log10

√
1 +

Ip
INE
|HBP( iω)|2 = 10 log10

(
1 +

Ip
INE
|HBP( iω)|2

)
,

(B.19)

where the transfer function of a band-pass is used:

HBP(s = iω) =

s

ω0Q

1 +
s

ω0Q
+
s2

ω20

. (B.20)

The model results from quadratically adding the shot-noise caused by INE (which is
proportional to

√
INE) and the band-pass filtered shot-noise caused by Ip (which is

3For this computation it was assumed that the circuit is operated on resonance; and all tuned circuits
used in the prototype were operated on resonance. As is suggested by Figure B.4, theoretically INE
might be slightly reduced by operating off-resonance, if 4kTℜ{Z} is the dominant noise contribution.
This was, however, never tested in practice.
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proportional to
√
Ip). The three parameters to be fitted are INE, the band-pass center

frequency ω0 and it’s quality factor Q. Figure B.5 shows the result of such a measure-
ment. In this case the actual photocurrent was Ip = 27µA and the fitted parameters
were INE = 34µA, ω0 = 2π · 11.27MHz and Q = 4.6.
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Figure B.5: Measurement of the increased output noise of a tuned photodiode preamplifier
caused by a photocurrent approximately equal to INE. Shown are the measured data and the
curve that was fitted to obtain the photodiode parameters.

If the inductance L1 is directly measured, then the unknown photodiode parameters
CD and Rloss can be computed from such a measurement via Equations (B.14) and
(B.16).

B.1.3 Combined circuit

A tuned preamplifier is usually combined with a broadband circuit that allows to moni-
tor the DC photocurrent. A typical circuit used in the prototype is shown in Figure B.6.
The op-amp OP1 keeps the DC voltage across the photodiode constant and thus helps
to ensure a constant photodiode capacitance. The capacitor C1 is necessary to provide
an RF ground connection for the tuned circuit and must be taken into account in the
computation of C2 (see Equation (B.9)). The high-pass formed by C3 and R2 is op-
tional. If desired, one or more series resonant circuits such as shown in Figure B.3 can
be added.

B.2 Resonant transformers for Pockels cells

Pockels cells (electro-optic modulators) are often used to apply a phase modulation
of a fixed frequency to a light beam. The voltage required at the crystal may need
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Figure B.6: Combined photodiode preamplifier with a broadband output and a tuned RF
output.

to reach several hundreds of volts. This is best achieved with a resonant transformer,
several types of which are discussed in this Section. Electrically a Pockels cell looks like
a small capacitor. In the neighborhood of the modulation frequency, the losses of the
resonant circuit can be modelled by a small series resistance. Typical values are 50 pF
and 2Ω (this last value was derived from measured ‘Q’ values of resonant circuits and
includes wiring losses and the losses of typical coils). In the following these values, and
a modulation frequency of 10MHz, will be assumed for the examples.

Usually the modulation signal is amplified with a broadband power amplifier, which
typically has 50Ω output impedance. In the prototype, power levels of 1 or 2 Watt
were used.

A coil of around 5µH is needed to make a resonant circuit with the capacitance of the
Pockels cell. The coil can be an air coil or can be wound on a core. In the prototype
ring-cores are used because it was feared that air coils might radiate too strongly. Big
cores are necessary to avoid magnetic saturation.

With the values given above, the impedance of that resonant circuit will be about 50 kΩ,
and would be very badly matched to the source impedance. Therefore the impedance
of the resonant circuit must be transformed to 50Ω. The most straightforward way to
do this would be to add a suitable primary winding such that a transformer is obtained.
There is, however, a practical obstacle: The secondary typically has about 5 windings
(determined by the resonance frequency and the chosen core). For an impedance ratio
of about 1000, the primary would have to consist of 5/

√
1000 ≈ 1

6
windings. This is

impossible to realize. The problem can, however, be solved by using two transformers
in series. The second transformer has one primary winding, and the first one a winding
ratio of 1:6. The resulting circuit, which in this form was successfully used in the
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prototype, is shown in Figure B.7.

Figure B.7: Resonant transformer to drive a Pockels cell.

A 1Ω resistor is used to monitor the current through the circuit. This is useful in the
adjustment procedure described below. The resonance frequency can be trimmed with
the small capacitor. It is placed in between the two transformers, because there the
impedance level is such that typically a standard 5–60 pF trimmable capacitor gives a
useful adjustment range, and also because at this point the voltage is not yet as high
as at the Pockels cell.

A practical procedure to build such a circuit is as follows: First, find a suitable core
(preferably the biggest available ring-cores made out of RF-suitable ferrite). Use the
power amplifier that will finally be used, which should be able to handle short-circuit
loads, at least for short times.

The coil L4 is determined by the resonance frequency, and L3 has one winding. Start
with a rough estimate of the winding ratio for the first coil. Now apply a signal (from
an adjustable signal generator or a network analyzer) of the right level to the power
amplifier’s input. Watch the voltage at the 1Ω resistor, as the frequency is swept
through the resonance. The aim of the adjustment procedure is to reach something
that looks like Figure B.8.

At frequencies far away from resonance, the circuit behaves like a short circuit. The
current is then limited by the amplifier’s output impedance. At resonance, and when
the impedances are matched, the total impedance seen by the hypothetical voltage
source inside the RF amplifier is doubled, and hence the current drops to one half (i.e.
by 6 dB).

Now the circuit can be adjusted. The resonance frequency is mainly determined by
coil L4 and can be trimmed with the small capacitor. The impedance matching is
visible from the depth of the drop in current on resonance (see Figure B.8) and can be
adjusted via the winding ratio of L1/L2. These adjustments may need to be iterated
a few times, because resonance frequency and impedance matching are not completely
independent from each other. It is important that the measurement is done with the
same amplifier and power level that is later to be used, because the coils may already
start to show nonlinear behaviour due to core saturation (L4 is most strongly affected),
and the amplifier’s output impedance may be different from 50Ω. With the procedure
described (adjust for 6 dB drop in current), the impedance of the circuit is automatically
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Figure B.8: Current through the 1Ω resistor in Figure B.7.

matched to the actual output impedance of the amplifier, which is optimal in terms of
power transfer.

With the amplifier connected and impedance matched, the Q of the resonant circuit
drops to about one half of its previous value, because the amplifier output impedance,
transformed to the secondary (L4 and Pockels cell), equals the previous impedance of
the resonant circuit. With the numbers of the example, the transformed amplifier’s
output impedance looks like a 50 kΩ resistor in parallel to the resonant circuit. The
voltage at the Pockels cell is about 31 times higher than the voltage at the circuit’s
input. With 1 W of RF power, corresponding to 20Vp−p in 50Ω, about 600Vp−p can
be reached at the Pockels cell. Having matched the impedances means that most of
the available power is dissipated in the losses of the secondary resonant circuit. These
are mainly located in the crystal itself, the connections to the crystal (the peak current
is about 1A), and the core of coil L4.

Figures B.9 and B.10 show two possible alternative cir-

Figure B.9: Alternative resonant
transformer circuit with an auto-
transformer.

cuits. In Figure B.9, the transformer is replaced by an
‘autotransformer’. It suffers from the same problems
as the circuit with the true transformers, i.e. coil sat-
uration and impractical small winding numbers (with
the numbers of the example, the lower part of the coil
would need 1

6
winding). Otherwise, if it can be built, it

behaves completely equivalently to the circuit of Fig-
ure B.7 (but it has no galvanic isolation, and trimming
is not so easy).

Figure B.10 shows the use of a capacitive voltage divider as input (this circuit was
proposed by R. Schilling during a discussion with the author). With the numbers of
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Figure B.10: Alternative resonant transformer circuit with a capacitive voltage divider.

the example, the capacitor C needs to have about 1.6 nF. It behaves differently from
the previously discussed circuits in so far as there are now two resonances close to
each other (a parallel resonance and a series resonance). Figure B.11 shows the input
impedance of this circuit. The presence of the two resonances makes the adjustment
more difficult. On the other hand, it may be an advantage that at low frequencies the
input impedance is very high (instead of a short circuit as in Figure B.9).
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Figure B.11: Input impedance of the alternative resonant transformer circuit with a capacitive
voltage divider.

B.3 The automatic lock acquisition circuit

Overview of the function: The function of the automatic lock acquisition circuit
can best be explained with Figure B.12.

The topmost trace (labelled ‘PD5’) represents the light power that is transmitted
through the reference cavity, which is detected by photodiode PD5 in Figure A.1.
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Figure B.12: Sketch of important signals in the automatic lock acquisition circuit and of the
corresponding color-coded states. The time-scale is arbitrary.

It is the main input to the circuit. In the example of Figure B.12, it is very small from
t = 0 to t = 5. In reality this is a typical behaviour when there is no resonance of the
reference cavity in the frequency range of the laser.

During this time the circuit generates a triangle-wave that scans the laser frequency.
This voltage (an output of the circuit) is shown in the second trace (labelled ‘PZT’) of
Figure B.12. It is fed to the slow laser piezo SPZT.

The circuit has three main states, called ‘red’, ‘yellow’ and ‘green’ (these states are
indicated with a traffic-light like arrangement of LED lamps). The first state, when the
laser is scanned, is called ‘red’. The circuit also controls the loop gain of the first and
second loop by multiplying their error signals with a factor between zero and unity. In
the ‘red’ state, both factors are zero. This means in particular that the first loop is
disabled and does not apply any correction signal to the laser frequency.

In Figure B.12, the laser frequency is scanned through a resonance of the reference
cavity at t = 5.5. This results in a short peak in the transmitted light (PD5). At this
moment, the ‘yellow’ state is entered. The scanning of the piezo is stopped and the
piezo voltage is held at the value where the peak was detected.

The gain of the first loop is ramped up from zero to unity (between t = 5.5 and
t = 7.5). Hopefully the first loop acquires lock at a certain point during this ramp
(t = 7 in Figure B.12). If that happens, the circuit switches into the ‘green’ state at
the end of the ramp (t = 7.5). Otherwise, if at the end of the ramp the first loop is
not locked (indicated by a low level at PD5), the circuit returns to the ‘red’ state and
resumes to scan the laser piezo.
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The ramp is triggered by a high level on PD5 in the ‘red’ state and is always completed
for its full length, i.e. the duration of the ‘yellow’ state is fixed, independent of the light
level at PD5 during the ramp.

During this ramp, the loop gain of the second loop is held at zero. At the end of the
ramp (i.e. the start of the ‘green’ state at t = 7.5), another ramp starts which increases
the loop gain of the second loop from zero to unity. The state of the second loop is,
however, not monitored by the circuit.

If in the ‘green’ state the light level at PD5 drops again to zero (i.e. the lock of the
first loop is lost), the circuit immediately returns to the ‘red’ state (t = 12), i.e. the
scanning of the laser piezo is resumed and the two loop gains are reset to zero.

Since sometimes there may be very short drops in the light level at PD5 that do not
justify a return to the ‘red’ state (which invariably throws the whole interferometer out
of lock), very short interruptions (< 3ms) in the high level at PD5 are ignored (t = 11
in Figure B.12).

Circuit details: Figure B.13 shows the main part of the circuit diagram. The light
level from PD5 is amplified and optionally inverted with op-amps N5A and N5B. The
comparator N6A compares it with an adjustable level to generate a digital signal. The
monostable N9A, together with the gates IC2C and IC5A, is used to eliminate very
short LOW peaks in that signal and ‘debounce’ it. Any short LOW peaks are, however,
extended by the monostable N9B and indicated with the red LED lamp D94.

In the top part of the circuit diagram, the FET op-amp N1B and the comparator N2A
form a standard triangle generator with an output signal that swings between −10 and
+10 volts, and which is fed to SPZT. The oscillation frequency is approximately 10Hz.
The CMOS switch N3A is there to stop the oscillation and hold the output voltage. In
the ‘yellow’ and ‘green’ states, when the first loop has non-zero loop gain, this ‘held’
voltage is added to the correction signal that is applied by the first loop. Hence any
slow drifts in the ‘held’ voltage are compensated by the first loop. The momentary
direction of the triangle wave (‘up’ or ‘down’) is indicated with two yellow LED lamps
(D1 and D2 in the lower part of the diagram). This information is not really essential
to the user, but the alternatingly flickering LED lamps are an easily visible indication
that the first loop is not locked.

Since it was anticipated that there might be time delays between the occurrence of
the resonance and its detection by the circuit, switch N4A and op-amp N1A are im-
plemented to compensate the overshoot by taking a small step ‘back’ in the output
voltage, when the hold mode is entered. However, this proved to be unnecessary in
practice.

In the lower part of the diagram, op-amp N8B generates a ramp from 0 to 10 Volts (by
integrating a negative voltage with an inverting integrator). The duration of the ramp

4In almost all circuits built for the prototype, it has proven very advantageous to liberally include
red LED lamps for all easily detectable error conditions.
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Figure B.13: The main part of the circuit diagram of the automatic lock acquisition circuit.
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(which is also the duration of the ‘yellow’ state) can be adjusted with potentiometer
P5. A duration of approximately one second works well in the prototype.

That ramp voltage is used to multiply the error signal of the first loop in the analog
multiplier N12A. In the ‘green’ state (unity gain), switch N13A is used to connect
the error signal directly to the output, without the offset and noise of the multiplier.
Another reason for this arrangement is that, in the ‘green’ state, the ramp integrator
N8B is reset to zero. Likewise, switch N14A sets the loop gain to a true zero in the
‘red’ state. The end of the ramp (transition from ‘yellow’ to ‘green’ state) is detected
by the comparator N10A. The ramp for the loop gain of the second loop is generated
by a similar circuit as for the first loop (components N12A, N13A, N14A, N8B, N11A
and N10A) and is not shown.

The digital logic ICs are ‘HC’ types. The digital logic parts of the circuit are not ex-
plained here in detail, because they were changed several times during the development
of the circuit, and a redesign from scratch might be preferable for a new circuit, if the
control is not anyway handled by a computer. In short, flip-flop N24A controls the
‘yellow’ state. It is set by a rising edge of the signal called ‘LOCKED’ (which is high
when light is transmitted through the reference cavity) and reset by the ‘end of ramp’
signal from N8B. The ‘red’ state is indicated by a low level on the line ‘RED\’ (the
backslash indicates logical inversion). The signal called ‘LOCK1’ corresponds to the
‘green’ state and is used to control the second ramp (not shown in Figure B.13).

B.4 Analog filter with f+1/2 frequency response

Introduction. The filter described in this section is useful in servo loops where one
element of the feedback loop has a two-pole low-pass characteristic (such as a pendu-
lum), and where unconditional stability is required, e.g., because the overall gain may
change. The straight-line approximation of the frequency response is shown in figure
B.14. All frequencies are used as angular frequencies ω = 2πf throughout this section.

Gain [dB]

10

0

20

ω1 ω2
Frequency

Figure B.14: Straight-line approximation of the desired frequency response for the f+1/2 filter
(ω2 = 10ω1).



B.4. ANALOG FILTER WITH F+1/2 FREQUENCY RESPONSE 191

The filter consists of two cascaded sections, each extending over half a decade and
separated by half a decade. The idea to approximate a frequency response with an
f±1/2 behaviour and ±45◦ phase shift by using these half-decade sections is based on
circuits previously used by R. Schilling [Schilling].

The corresponding transfer function is

H(s) =

(
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(B.21)

The computed exact frequency reponse is shown in figure B.15. The figure can be used
to select a suitable ‘start’ frequency ω1 and to estimate the phase shift introduced by
the filter.
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Figure B.15: Computed exact frequency response of the f+1/2 filter.

If several such stages are cascaded (with corner frequencies differing by factors of 100),
the phase shift in the ‘central’ frequency region oscillates around 45 ± 2◦. A non-
inverting DC-gain of 1 was chosen which makes the HF-gain 10.

Figure B.16 shows how this filter modifies the transfer function of a resonant element.
The resonance frequency ωr is taken as unity. Three different quality factors (0.7, 2,
and 10) are plotted. The ‘start frequency’ ω1 of the f

+1/2 filter is taken as 5ωr, 3ωr,
and 2ωr respectively, as examples of how a 135

◦ phase delay can be approximated.

Electronic realization: The circuit diagram is shown in figure B.17.

It consists of two stages, each of which contributes one pole-zero pair. The input
stage is a passive RC-highpass filter with a DC-gain of 1/

√
10 and unity HF-gain. The
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Figure B.16: Computed frequency response of resonant systems together with the f+1/2 filter.

Figure B.17: Circuit diagram of the f+1/2 filter.

feedback network provides the rest of the transfer function, with a DC-gain of
√
10 and

a HF-gain of 10. This means that a unity-gain stable op-amp is not necessary in this
application; stability for gains ≥ 10 is sufficient.

Component values: One possible set of component values can be computed from
the transfer function as follows (note that ω1 and ω2 may be exchanged as desired).
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The relevant design equations are:

ω1R1C1 = 1 ,

R2 =
1√
10− 1

R1 ≈ 0.4625R1 ,

ω2R4C2 = 1 ,

R3 = R4(
√
10− 1) ≈ 2.162R4 ,

R5 =
R4√
10
≈ 0.3162R4 .

(B.22)

Other component values can also be found with Liso’s fit function, which also allows
to use a different overall gain or gain distribution.

B.5 Analog filter with f−1/2 frequency response

Introduction. The filter described in this section is useful in servo loops where more
gain at low frequencies is desired than can be obtained with the usual 1/f gain drop,
but where unconditional stability is required, e.g., because the overall gain may change.
Another possible use is to generate ‘pink noise’ from white noise. The straight-line
approximation of the frequency response is shown in figure B.18. This filter is based
on circuits previously used by R. Schilling [Schilling].
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Figure B.18: Straight-line approxmation of the desired frequency response for the f−1/2 filter
(ω2 = 10ω1).

The filter consists of two cascaded 1/f sections, each extending over half a decade and
separated by half a decade. The corresponding transfer function is

H(s) = 10

(
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ω1

)(
1 + s

ω2

)

(
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ω1/
√
10

)(
1 + s

ω2/
√
10

) . (B.23)

The computed exact frequency reponse is shown in figure B.19.
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Figure B.19: Computed exact frequency response of the f−1/2 filter

The features of the transfer function correspond to those of the f+1/2 filter described
in the previous section (but note the different definition of ω1 and ω2). A non-inverting
DC-gain of 10 was chosen because that makes the HF-gain unity and the filter can then
usually be introduced into existing servo loops without modification.

Electronic realization: The circuit diagram is shown in figure B.20.

Figure B.20: Circuit diagram of the f−1/2 filter

It consists of two stages, each of which have one pole-zero pair. The input stage is a
passive RC low-pass filter with unity DC-gain and a HF-gain of 1/

√
10. The feedback

network provides the rest of the transfer function, with a DC-gain of 10 and a HF-
gain of

√
10. That means that a unity-gain stable op-amp is not necessary in this

application; stability for gains ≥ 3 is sufficient.
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Component values: One possible set of component values is given here (note that
ω1 and ω2 may be exchanged as desired). The relevant design equations are:

ω1R2C1 = 1 ,

R1 = (
√
10− 1)R2 ≈ 2.162R2 ,

9

10

(√
10 + 1

)

︸ ︷︷ ︸
≈ 3.746

ω2R5C2 = 1 ,

R3 = 9R5 ,

R4 =
9√
10
R5 ≈ 2.846R5 .

(B.24)

Again, other solutions may be found with Liso.
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Appendix C

LISO

C.1 Introduction

During this work it was often found necessary to simulate linear electronic circuits
and transfer functions. ‘Linear’ here means that the circuits consist only of passive
components and op-amps. Typical problems that were frequently encountered and
that caused the author to write Liso include:

• To predict the frequency response of an active filter circuit with non-ideal op-
amps.

• To find component values for such a circuit that yield a certain predetermined
frequency response.

• To fit a transfer function of a given general type (e.g. a band-pass defined by
its pole data) to measured data, with proper weighting options and taking into
account a measured phase.

• To understand why op-amps in some circuits are unstable and show oscillations,
and to find stable circuits instead.

• To predict the noise behaviour of a given circuit and to identify the dominant
noise contributions.

• To maximize the dynamic range of a circuit, i.e., to find component values that
minimize the noise of a given circuit while maintaining a given transfer func-
tion and not exceeding other given limits (in particular, maximal op-amp output
currents).

• To compute the input impedance of a given circuit.

Hence the author has written the program which is now called Liso and which is briefly
described in this section. A detailed manual with examples, and the program itself, are
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available upon request from the author1. The program is now used by various members
of the GEO600 project, and also by some researchers in other institutions (University
of Florida, University of Tokyo), to design electronic circuits for gravitational wave
detectors. Various predictions of Liso (transfer functions, input impedances and noise
spectra) for some rather complicated circuits were compared with measurements, and
consistently excellent agreement was found. This section can only give a very brief
introduction to Liso and necessarily omits many details.

C.2 Features and limitations

The input to Liso is a fixed circuit consisting of passive components (any combination
of R, C, L, and transformers) and op-amps. It can have a voltage input (grounded or
floating) or a current input (such as for photodiode preamplifiers). Any node of the
circuit can be designated the input. The program then computes and plots:

• The frequency response from the input to any component or node (i.e., the voltage
at any node, or the current through any component, as a function of the input
frequency).

• The frequency-dependent input impedance of the circuit.

• The maximal permissible input signal, taking into account the maximal op-amp
output voltage, output current and slew rate.

• The stability of each op-amp in the circuit. Since op-amps are the only elements
with gain, this is equivalent to computing the stability of each closed loop in the
circuit and the stability of the circuit as a whole.

• The voltage noise at any node of the circuit (in particular the output), taking
into account Johnson noise of resistors and voltage noise and current noise of
op-amps. It can separate the individual contributions of these noise sources and
identify the dominating noise source for any frequency range.

• The spectral density of the noise current in any component, taking into account
the same noise sources as in the above item.

Some features of the program include:

• The program uses a user-expandable library of op-amp models with their main
characteristics. For each op-amp in the circuit, the library parameters can be
‘overridden’ by individual parameters.

• A very important function of the program is its ability to fit the model to given
data (either measured or ideal desired data) by varying specified components or
parameters.

1At present (January 1999), the program and the complete manual are available by anonymous ftp
from ftp.rzg.mpg.de in the directory pub/grav/ghh/liso.

ftp://ftp.rzg.mpg.de
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• All computations are carried out with complex numbers. In particular, data
measured with phase information can be properly fitted.

• Some effort has been made to incorporate state-of-the-art algorithms for the sim-
ulation and fitting parts, i.e. the author believes that the results are accurate for
reasonable inputs and they are delivered fast.

• In a separate mode of operation of the program, a frequency response can be
computed and fitted using the poles and zeroes of the transfer function as input
instead of a circuit description (see, e.g., Figures 1.32, 1.45, A.14, and D.2).

• Extensions to the basic fitting algorithm allow the user to find circuits with a
user-specified transfer function under additional constraints such as a required
minimal output swing and minimum noise.

• Two additional recent fitting procedures, ‘Direct Search Simulated Annealing’ and
‘Controlled Random Search’, often converge to solutions even when no reasonable
starting values are given.

• The combination of the last two items allows the user to almost automatically
find circuits with a specified transfer function and the maximum possible dynamic
range. Many of these solutions are almost impossible to find by other means.

• The results are plotted via Gnuplot, a public domain program that is available
for numerous platforms and supports a multitude of different ‘output devices’
(including Postscript). Liso writes an ASCII batch file for Gnuplot that can
be carried to other platforms, or modified by the user, e.g., to to change the
appearance of the plot.

The program has at present several limitations. Some of them (marked with an aster-
isk *) could possibly be overcome if necessary, others not.

• The circuit topology is fixed and must be known and entered by the user.

• All computations are done linearly in the frequency domain. In particular, the
DC operating point is not computed. No time-domain analyses are performed.
No non-linear components such as discrete semiconductors can be simulated.

• Only voltage-feedback op-amps can be simulated. *

• There is no graphical user interface. Input and output are done via ASCII files in
a batch-mode like operation. Plots are produced by calling Gnuplot. Without
Gnuplot, the only output is an ASCII data file, which may be plotted by other
software.

• At present the program has mainly been tested under various versions of UNIX
(mainly LINUX, also SUN Solaris and IBM AIX) and MS-DOS. There should,
however, be no big problem in porting it to any reasonable operating system. It is
entirely written in standard C and the preferred compiler is the GNU C-compiler.
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• Fitting is only possible for the ‘transfer functions’, not for noise. *

• There is only a very simple electrical rule check (ERC) which will not detect
many kinds of errors in the circuit (e.g. outputs connected to ground etc.). Many
erroneous circuit descriptions will cause the program to abort with a ‘singular
matrix’ error without further explanation. *

• Not all useful transfer functions can be entered by the present pole/zero syntax.*

C.3 Principles of operation

C.3.1 Circuit simulation algorithm

The fundamentals of the circuit simulation are surprisingly simple. They can be stated
as follows:

First Kirchhoff law: The sum of all currents flowing into a node is zero.

Impedance of passive components: For a passive component with the (complex)
impedance Z(s) which is connected between node1 and node2, we have

Z(s)I = Unode1 − Unode2, (C.1)

where I is the current through that component flowing from node1 to node2.
For a resistor we have Z(s) ≡ R,
for a capacitor Z(s) = 1/(sC)
and for an inductor Z(s) = sL,
with s = iω = 2π i f .

Op-amp open loop gain: For an op-amp with open-loop gain H(s), which is con-
nected to the nodes ‘p’, ‘m’ and ‘o’ with its noninverting input, inverting input
and output, respectively, we have

Uo = H(s)(Up − Um). (C.2)

Note that for finite Uo and |H(s)| ≫ 1, it follows that Up ≈ Um.

Voltage input: For a voltage input at the node nin, we set

Unin = 1 (C.3)

In the special case of a floating voltage input, the equation is

Unin − Unin2 = 1, (C.4)

where nin represents the input node and nin2 the second input node of a floating
voltage input.
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Current input: For a current we set

Iin = 1. (C.5)

Mutual inductances: These are not so obvious. The procedure is as follows ([Hoefer,
section 2.2.4]): If two coils L1 and L2 are coupled with the coupling factor k12
(0 ≤ k12 ≤ 1), a mutual inductance M12 with the unit Henry is computed as

M12 = k12
√
L1L2 . (C.6)

In the equation for L1, which normally states something like

sL1 IL1 − Unode1 + Unode2 = 0, (C.7)

an additional term +sM12 IL2 is introduced on the left-hand side. Correspond-
ingly, in the equation for L2, the term +sM12 IL1 is added. Note that in a complex
transformer with more than two windings all windings must be coupled to each
other. In other words, if there are three coils L1, L2 and L3 on a common core,
three mutual inductances M12, M23 and M13 must be treated as above.

We find that for each component we get one equation and one unknown (the current
through that component). For each node, we also get one equation and one unknown
(the voltage at that node). Furthermore, for the input we have one extra equation and
also an extra unknown (the input current Iin for a voltage input, or the voltage at the
input node for a current input). All these equations are linear in the unknowns. This
can most easily be demonstrated with an example, using the low-pass filter shown in
Figure C.1. We obtain the following equations:

Figure C.1: Example of a low-pass filter with nodes and currents shown.
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1

sC2
IC2 − Unsum = 0 (C2)

1

sC5
IC5 − Uno + Unm = 0 (C5)

1

HOP1(s)
Uno + Unm = 0 (OP1)

R1IR1 − Unin + Unsum = 0 (R1)

R3IR3 + Unsum − Uno = 0 (R3)

R4IR4 − Unsum + Unm = 0 (R4)

R6IR6 − Unin = 0 (R6)

−IR1 − IR6 + Iin = 0 (nin)

−IC2 + IR1 + IR3 − IR4 = 0 (nsum)

−IC5 + IOP1 − IR3 = 0 (no)

IC5 + IR4 = 0 (nm)

Unin = 1 (input)

(C.8)

These are 12 linear equations for the 12 unknown variables
IC2, IC5, IOP1, IR1, IR3, IR4, IR6,
Unin, Unsum, Uno, Unm and Iin.

Note that for a current input, the first eleven equations remain unchanged, and the
last one is replaced by Iin = 1. This basic set of equations is already sufficient to
compute the currents through all components and the voltages at all nodes for a given
frequency. The equations are solved using a specialized algorithm for ‘sparse’ matrices.
All transfer functions, the input impedance and the maximal permissible input signal
can be obtained from the solution of these equations.

C.3.2 Noise calculations

It turns out that a set of linear equations very similar to the one above can be used
to compute the noise, if we now interpret all voltages and currents as linear spectral
densities. We introduce noise sources into the circuit, as described below, and compute
the voltage at a certain node, interpreted as linear spectral noise density. All compo-
nent characteristics and Kirchhoff’s law remain valid. We must, however, take care to
compute only one noise source at a time, and then quadratically add the results. Oth-
erwise different noise sources might be added with a complex phase, or even subtracted,
whereas we want to treat all noise sources as independent and uncorrelated. Further-
more we only use the absolute value of the computed noise voltage, but not its phase,
and hence the sign with which we introduce the noise source becomes unimportant.

Resistor noise: The equation describing a resistor,

RI − Unode1 + Unode2 = 0, (C.9)
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is replaced by

RI − Unode1 + Unode2 = Un, (C.10)

where Un is the Johnson noise expressed as voltage noise source, Un =
√
4kTR. This

corresponds to connecting the noise source Un in series with the resistor:

Note that as compared with the equations above, only the right hand side is now
changed, whereas we still have the same unknowns and left-hand sides. The result is
the voltage at a certain node, which is interpreted as linear spectral noise density.

Op-amp voltage noise: To compute the contribution of the voltage noise of an
op-amp, we replace the equation describing the op-amp

Uo = H(s)(Up − Um) (C.11)

by

Uo = H(s)(Up − Um + Un). (C.12)

This corresponds to amplifying not only the differential input voltage, but also the
additional (equivalent input noise) voltage Un (see Figure C.2).

Figure C.2: Noise model of an op-amp.
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Note that there is no direct action of the voltage noise source to the input nodes.
Without feedback, no contribution of the voltage noise would appear at the input
nodes. By rearranging the equation we get

1

H(s)
Uo − Up + Um = Un, (C.13)

in other words, again only a change in the right-hand side.

Op-amp current noise: The current noise is modelled as a current source connected
between the node where the op-amp input is usually connected, and its true, ideal input.
Since the latter has infinite impedance, no current can flow into it. Consequently the
noise current must flow into the node where the input is connected. In other words, we
inject the noise current into that node (see Figure C.2).

Assuming the equation describing that node (without the noise source) had been

I1 + I2 − I3 − I4 = 0, (C.14)

we replace it by

I1 + I2 − I3 − I4 = In, (C.15)

with In the noise current spectral density. Again this changes only the right-hand side
of our equations.

C.3.3 Op-amp stability calculations

In many circuits it is difficult to determine beforehand whether an op-amp will be
stable or will oscillate. In order to understand and predict this behaviour, the ‘stability
function’ for some or all op-amps in a given circuit can be computed. The following
procedure is used to compute an op-amp stability function (see Figure C.3):

Figure C.3: How the stability function of an op-amp is computed.
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• The op-amp in question is ‘disconnected’ from the circuit and the voltage at its
former output node is set to unity. Specifically, the equation (C.2) describing the
op-amp is replaced by

Uo = 1. (C.16)

This procedure is done for one op-amp at a time, i.e. all other op-amps remain
active when the stability for one particular op-amp is computed.

• The differential input voltage Up −Um is computed. This represents the transfer
function of the rest of the circuit from the op-amp’s output to its input.

• That transfer function is multiplied by the op-amp’s open-loop gain.

Thus, the result is the open-loop gain of the feedback loop consisting of the op-amp in
question and the rest of the circuit, which could theoretically be measured in the circuit
by disconnecting the op-amp’s output, injecting a test signal to where the output was
formerly connected and measuring the transfer function from that test signal to the
op-amp’s output. The usual stability conditions for control loops can be applied to this
open-loop gain, e.g. the phase delay must be less than 360◦ at the unity-gain frequency2.
Although it is not always easy to interpret, the author found the op-amp stability
function one of the most useful features of Liso. All unexplained op-amp oscillations
that had occured during the first three years of the author’s work in Garching could
immediately be explained by Liso.

C.4 Fitting algorithms

The fitting functions of Liso are what make the program really useful and allow to
design circuits that could otherwise not be found.

Basically, a non-negative real function (called χ2) is defined, which can be understood
as a ‘figure of merit’. The lower that number, the better the fit. The basic χ2 function
known from standard statistics is modified in various ways to include:

• One of several possible weighting options for the data points.

• A ‘penalty function’ that increases χ2 if pre-set parameter limits are exceeded.

• More specialized ‘penalty functions’ which are needed to implement the dynamic
range optimization (see below).

The user defines the ‘parameters’, which are to be varied by the fitting procedure. These
parameters can be the values of individual components, characteristics of op-amps, or
the numerical values of poles and zeroes (if a transfer function is to be fitted from poles
and zeroes instead of from a circuit description). It is possible to define ‘dependent

2 This corresponds to the usual 180◦, where negative feedback is implicitly assumed.



206 APPENDIX C. LISO

parameters’, i.e. parameters that are always proportional (or inversely proportional)
with a fixed factor to one of the freely variable parameters.

The task of the fitting algorithm is then to minimize χ2 by varying the parameters.
This is achieved by a combination of up to four algorithms.

The main fitting algorithm is a combination of two ‘classical’ algorithms (both with
some extensions by the author), which are repeatedly looped over with tightening
tolerances. The first one is the Nelder-Mead Simplex algorithm [Nelder65], a very
robust geometrical algorithm which is good at approaching a minimum from far-off
starting values3. Secondly there is the well-known Levenberg-Marquardt algorithm
(see, e.g., [Press]), which is much faster once the vicinity of the (or a) minimum has
been found.

The success of these fitting algorithms critically depends on good starting values for the
parameters, especially if there are many (& 5) parameters. In order to make Liso even
more useful, two new algorithms [Ali97, Ali97b] have recently been implemented, which
are related to ‘simulated annealing’ methods used in global optimization problems.
These algorithms often succeed in finding parameters near the optimal solution (which
are then refined by the above-mentioned standard algorithms) even when no starting
values at all are known4.

At the end of the fitting procedure, some statistical indicators are computed, such as
estimated standard deviations for the best-fit parameters and correlation coefficients
between the parameters. Although these indicators have a well-defined meaning only
under special conditions that are often violated in practice, they are nevertheless useful
as qualitative indicator of mutual parameter dependencies and as a debugging aid if
something went wrong.

C.4.1 Optimizing the dynamic range

In designing filter circuits, there is often a multitude of possible ‘solutions’ (i.e. sets
of component values that provide the desired transfer function). With the standard
instructions, such sets can be found and the resulting circuit can be analyzed for op-amp
stability, noise, maximum input signal etc.

Sometimes it is desirable to optimize the dynamic range of the circuit, i.e. the ratio
of permissible input signal to the noise generated in the circuit itself. Usually the
dynamic range is limited at the upper end by the op-amps’ maximum output voltage
and/or output current5. A typical specification might be that the output must be able
to swing ±12V in the frequency range of interest, i.e. the circuit is not limited by
either overcurrent from op-amps’ outputs or by higher voltages at internal nodes due

3Although many numerical analysists frown upon this algorithm, it is still the favourite of many
practitioners, including the author.

4Both of these algorithms do indeed ignore any given starting values and initialize by generating
random points within the given limits for each parameter.

5The slew-rate of each op-amp is also taken into account.
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to suboptimal gain distribution. This condition sets lower limits to resistor values and
may impose restrictions on the gain distribution etc.

At the lower end, the limit is noise. The noise can be reduced by reducing resistor
values (thereby reducing both Johnson noise and the effect of op-amp current noise),
but also by redistributing the gain between the stages of a multi-stage filter or by other
modifications, which are sometimes rather unintuitive.

Optimizing the dynamic range hence involves changing component values without over-
loading any op-amp, while always maintaining the desired transfer function. Since in
many circuits transfer function, noise and op-amp load are connected in a very compli-
cated way, this optimization rarely finds the true optimum, if done ‘manually’.

Hence two extra instructions have recently been added to Liso which allow (at least
partially) to automate the procedure. They work by modifying the ‘figure-of-merit’
function χ2 with additional penalty functions. A lower limit can be given for the
permissible input signal (thus guaranteeing that the resistors do not become so small
as to over-demand the op-amps) and at the same time the noise at the output can be
minimized in a defined frequency range.

By minimizing χ2, the fitting algorithm then finds the (often unique) circuit that meets
all constraints and has the lowest possible noise. In particular in conjunction with the
‘global optimization’ algorithms, these instructions have led to astonishing improve-
ments in circuits which before had been believed to be optimal.





Appendix D

Two–mirror cavities

In our experiment there are various cavities consisting of two mirrors (Fabry–Perot
interferometers). First there is the reference cavity used for the pre-stabilization of the
laser frequency. More importantly, at the proper operating point (dark fringe) of the
interferometer both power recycling cavity and signal recycling cavity can be considered
two–mirror cavities for the carrier and the signal sidebands, respectively. Therefore,
we consider here a general two–mirror cavity and note down some useful relationships
for the light amplitudes and powers at a fixed light frequency ω, which is considered to
be an offset from an integer multiple of the cavity FSR.

Consider the cavity shown in Figure D.1 with amplitude reflectivities and transmit-
tances ρ1, ρ2, τ1, τ2. The length of the cavity is L, and thus the one–way phase shift
from traversing the length of the cavity is given by exp(−ikL) with k = ω/c. We con-
sider two inputs i1 and i2, the latter of which is particularily useful for the case of the
SR cavity. We call these two cases ‘external’ and ‘internal’ input, respectively.

Figure D.1: Model of a two–mirrror cavity.
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The relationships between the amplitudes are given by the linear equations

(
a1
a4

)
=

(
i τ1 ρ1
ρ1 i τ1

)(
i1
a′3

)
, (D.1)

(
a2
a3

)
=

(
i τ2 ρ2
ρ2 i τ2

)(
a′1
0

)
, (D.2)

a′1 = exp(− i kL)a1 , (D.3)

a′3 = exp(− i kL) (a3 + i2) . (D.4)

We now separately consider the two input cases and compute in each case the most
interesting amplitudes a1 (internal light), a2 and a4 (emerging light). We use the
abbreviation

d =
1

1− ρ1ρ2 exp(−2 i kL)
(D.5)

(the ‘resonance factor’) and find:

• ‘external’ input (unity input i1 and no input at i2):

a1 = i τ1 d, (D.6)

a2 = −τ1τ2 exp(− i kL) d, (D.7)

a4 = ρ1 − ρ2τ21 exp(−2 i kL) d. (D.8)

• ‘internal’ input (unity input i2 and no input at i1):

a1 = ρ1 exp(− i kL) d, (D.9)

a2 = i ρ1τ2 exp(−2 i kL) d, (D.10)

a4 = i τ1 exp(− i kL) d. (D.11)

The ‘resonance factor’ d reaches its extreme values

d ≈ 1
2
at anti–resonance (2 i kL = π mod 2π) (D.12)

and

d ≈ 1

1− ρ1ρ2
≫ 1 at resonance (2 i kL = 0 mod 2π). (D.13)

The finesse F of a cavity is defined as ratio of the Free Spectral Range FSR, which is
given by

FSR =
c

2L
, (D.14)
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to its Full Width at Half Maximum bandwidth FWHM (the latter refers to power, not
amplitudes) and is given by

F = π

2 arcsin
(
1−ρ1ρ2
2
√
ρ1ρ2

) ≈ π
√
ρ1ρ2

1− ρ1ρ2
≈ π

1− ρ1ρ2
. (D.15)

Note that both FSR and FWHM are expressed as frequencies f , not angular frequencies
ω = 2π f .

The results obtained so far are valid for arbitrary reflectivities and transmittances. We
now consider two common special cases with simplifying assumptions:

D.1 Impedance–matched cavity

We assume no losses other than transmission and have

τ1 = τ2 = τ =
√
T (D.16)

with T ≪ 1 the (identical) power transmittance of both mirrors and hence

ρ1 = ρ2 = ρ =
√
1− T . (D.17)

The maximum value of d is then

dmax =
1

τ2
=
1

T
, (D.18)

and the finesse is given by

F ≈ π
√
1− T
T

≈ π

T
. (D.19)

For the amplitudes and powers in the three interesting beams we obtain:

internal transmitted reflected

Input resonance a1 |a1|2 a2 |a2|2 a4 |a4|2

external resonant i
τ

1
T −1 1 0 0

external antiresonant i τ
2

T
4

i τ2

2
T 2

4
≈ 1 ≈ 1

internal resonant 1
τ2

1
T 2

i
τ

1
T

i
τ

1
T

internal antiresonant − i
2

1
4

− i τ
2

T
4

τ
2

T
4
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D.2 Overcoupled cavity

In an overcoupled cavity, we have τ1 > τ2. We consider the extreme case τ1 ≫ τ2 and
set

τ1 = τ =
√
T, (D.20)

τ2 = 0, (D.21)

with T ≪ 1 the power transmittance of the input mirror and hence

ρ1 = ρ =
√
1− T , (D.22)

ρ2 = 1. (D.23)

The maximum value of d is then

dmax =
2

τ2
=
2

T
, (D.24)

and the finesse is given by

F ≈ 2π
T
. (D.25)

For the amplitudes and powers in the two interesting beams (now a2 ≡ 0) we obtain:

internal reflected

Input resonance a1 |a1|2 a4 |a4|2

external resonant 2 i
τ

4
T

∗ −1 1

external antiresonant i τ
2

T
4

1 1

internal resonant 2
τ2

4
T 2

2 i
τ

∗∗ 4
T

internal antiresonant i
2

1
4

τ
2

T
4

In the prototype, the both PR- and SR-cavity can be considered overcoupled. The
two important ‘gain factors’ are marked in the table. The PR gain is marked with an
asterisk (∗). With the 7% mirror, a power buildup in the cavity of 57 is expected.

The formula for the SR gain is marked with two asterisks (∗∗). Because of the detection
scheme, the amplitude |a4| is important instead of the power |a4|2. For the 3.88% SR
mirror, a gain of 10.1 is computed.
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D.3 Approximations of the frequency response

If we are interested in the frequency response of the amplitudes computed above (i.e.
their dependence on the light frequency ω), the most important term is the ‘resonance
factor’ d (Equation (D.5)). Here approximate expressions for two common cases are
derived.

D.3.1 Resonant case

If the frequency of interest is identical to the light frequency ω (this occurs in computing
the frequency response of broadband signal recycling), the ‘resonance factor’ d can be
approximated by the transfer function of a one-pole low-pass as follows. We write
Equation (D.5) as

d =
1

1− ρ1ρ2 exp(−2 i kL)
=

1

1− r exp
(
− s

FSR

) , (D.26)

where for brevity r = ρ1ρ2 has been introduced and the frequency is expressed by the
Laplace variable s = iω, as is usual in describing electrical transfer functions. The free
spectral range is defined in Equation (D.14). Note that FSR is defined as frequency,
whereas the ω in s = iω is an angular frequency, i.e. there is an implicit factor 2π in
Equation (D.26).

For small frequencies ω (i.e. |s| ≪ FSR) the exponential function can be approximated
by the first two terms of its Taylor series, and we get

d ≈ 1

1− r
(
1− s

FSR

) = 1

1− r + r s

FSR

=
1/(1 − r)

1 + s
r

(1− r)FSR
. (D.27)

This last expression has the form of the transfer function of a one-pole low-pass with
an angular corner frequency

ωc =
1− r
r
FSR ≈ (1− r) FSR. (D.28)

By substituting

F = FSR

FWHM
=

π

1− r (D.29)

(see Equation (D.15)) and converting to the corner frequency fc = ωc/2π we finally
find

fc =
FWHM

2
. (D.30)

Thus the resonance factor d has a frequency response similar to that of a one-pole
low-pass filter with the corner frequency FWHM/2, for frequencies small compared to
the cavity’s free spectral range.
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D.3.2 Detuned case

In approximating the frequency response of detuned signal recycling, the signal fre-
quency of interest ω is referred to the carrier frequency, whereas the cavity’s resonance
is at another frequency ωdet = 2π fdet. Thus we consider the function

d =
− i

1− r exp
(
− s

FSR

) , (D.31)

where

s = i (ω − ωdet), (D.32)

and the factor ‘− i ’ has been introduced for later convenience. Looking at, for exam-
ple, Figure 1.56, one might be tempted to conclude that the transfer function can
be approximated by that of a two-pole low-pass filter. Unfortunately this is only
true in a rather limited frequency range around the peak frequency, and only for
FWHM≪ fdet ≪ FSR. Since these conditions are, however, realistic for many ap-
plications, it is worthwhile to study a possible approximation by a two-pole low-pass
filter.

Some attempts to find an algebraic similarity were not successful, and hence a numerical
comparison was done using Liso’s fitting function. The parameters used were those
of the prototype (FSR = 4844 kHz, r =

√
1− 3.88%) and a detuning frequency of

fdet = 400kHz was chosen (approximately the geometric average of the FSR and the
FWHM, which is 30 kHz).

Figure D.2 shows that the low-pass filter is a reasonable approximation around the peak
frequency, even for the phase (if the rather arbitrary, but unimportant factor ‘− i ’ is
included in Equation (D.26)). The pole frequency found by the fit was 400 kHz, and
the pole Q was 13, corresponding to a bandwidth of 30.7 kHz, which is very close to
the cavity’s FWHM.

Figure D.3 was produced using the low-pass parameters which were fitted near the peak
and shows that at frequencies considerably far away from the peak the approximation is
not very useful. Thus in general Equation (D.31), or, even better, Jun’s program (which
takes into account the other sideband) should be preferred to any approximation.



D.3. APPROXIMATIONS OF THE FREQUENCY RESPONSE 215

16

18

20

22

24

26

28

30

32

34

36

300 350 400 450 500
-180

-135

-90

-45

0

d
B

 

P
h
as

e 
[D

eg
re

e]

Frequency [kHz]

d

lowpass

gain

phase

Figure D.2: Approximation of the resonance factor d by a the transfer function of a two-pole
low-pass filter around the resonance.
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Figure D.3: The approximation of Figure D.2 in a wider frequency range.





Appendix E

Mathematica programs

E.1 Simplified interferometer models

E.1.1 Auxiliary functions

The following short modules contain a few auxiliary functions that are repeatedly used
by the programs in the next sections.

The first module, called clear.m resets Mathematica by deleting all previouisly de-
fined symbols.

(* clear.m *)
Unprotect[In,Out]
Clear["a*", "b*", "c*", "d*", "e*", "f*", "g*", "h*", "i*", "j*", "k*",
"l*", "m*", "n*", "o*", "p*", "q*", "r*", "s*", "t*", "u*", "v*", "w*",
"x*", "y*", "z*", In, Out]
Protect[In,Out]
Off[Remove::rmnsm]
Remove["Global‘*"]
On[Remove::rmnsm]
$Line=0
Null

The second module is somewhat more interesting. The functions defined in it are
used to extract the components swinging at n sin(ωmt) and n cos(ωmt) separately for
n = 1, 2, . . . .

(* demod.m: Auxiliary functions to describe demodulation
The modulation frequency must be called ’wm’,
and the time ’t’. *)

(* The Power in a beam with amplitude x, i.e. |x|^2 *)
power[x_]:=ComplexExpand[x Conjugate[x],TargetFunctions->{Re,Im}];

(* Extract only terms swinging at the mod. frequency *)
sinrule[1]:={
Sin[a_.+(m_/;(Abs[m]!=1))t wm]->0,

217
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Cos[a_.+(m_/;(Abs[m]!=1))t wm]->0
};

(* Rules to extract terms at a multiple of the modulation frequency *)
sinrule[n_]:={
Sin[a_.+(m_/;(Abs[m]!=n))t wm]->0,
Cos[a_.+(m_/;(Abs[m]!=n))t wm]->0,
Sin[a_.+t wm]->0,
Cos[a_.+t wm]->0,
Sin[a_.-t wm]->0,
Cos[a_.-t wm]->0
\renewcommand{\baselinestretch}{1.0}
};

(* Compute components of ’a’ at ’n’ times the mod. frequency *)
s[a_,n_] := Select[ExpandAll[TrigReduce[a]],!FreeQ[#,t]&]/.sinrule[n];

(* Compute DC component of ’a’ *)
s[a_,0] := Select[ExpandAll[TrigReduce[a]],FreeQ[#,t]&];

The function power takes an expression (typically a complex amplitude) and computes
its squared magnitude, such that exponential functions are converted into trigonometric
functions. As a (somewhat artificial) example, consider the amplitude a of a phase
modulated beam (see Equation (1.10)), where the upper sideband has an additional
phaseshift ψ:

a = J0(m) + J1(m) exp( iωmt) + J1(m) exp(− i [ωmt+ ψ]). (E.1)

The application of the power function to this amplitude yields the result

|a|2 = J0(m)2 + 2J1(m)2 +
2J1(m) (J0(m) [cos(ωmt) + cos(ωmt+ ψ)] + J1(m) cos(2ωmt+ ψ)) (E.2)

The work of extracting the components at a certain frequency is done by the function
s[]. It takes an expression and first expands1 all terms such as sinn(ωmt) into terms of
the form sin(nωmt) and cos(nωmt). Then the terms swinging with the desired multiple
of ωmt are extracted with the Select[] function and sinrule rules.

Applying the function s[] to the expression (E.2) in order to extract the ωm components
yields

2J0(m)J1(m)[cos(ωmt) + cos(ωmt+ ψ)]. (E.3)

E.1.2 Internal modulation

The following program computes the demodulated output signal of a simple Michelson
interferometer with internal modulation. It is described in Section 1.3.1.

1The program relies heavliy on the function TrigReduce which performs conversions such as cos2 x→
(1+cos(2x))/2. This function is available in Mathematica versions 3.0 and above. In earlier versions
or other programs that function must be directly implemented by the appropriate rules.
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<<clear.m
<<demod.m

(* Simplifications *)
rho=tau=1/Sqrt[2];
l3=l1;
l4=l2;

(* amplitudes *)
a1=I tau;
a2=a1 (j0 + 2 I j1 Cos[wm t - km l1]);
a3=a2;
a4=a3 (j0 + 2 I j1 Cos[wm t - km l1 - 2 km l2])
b1=rho;
b2=b1 (j0 - 2 I j1 Cos[wm t - km l3]);
b3=b2;
b4=b3 (j0 - 2 I j1 Cos[wm t - km l1 - 2 km l4]);
a5=I tau b4 - rho a4 Exp[I phi];

(* power in output beam *)
i5=power[a5];

(* compute 1*fmod component in output power *)
Simplify[s[i5,1]]

E.1.3 External modulation

The following program computes the output signal from a simple Michelson interfer-
ometer with external modulation. It is described in Section 1.3.2.

<<clear.m
<<demod.m

(* external modulation *)

a1e=c1 Exp[I phi/2];
a2e=-c2 Exp[-I phi/2];
as=(a1e+a2e)/Sqrt[2];
alo=clo Exp[I psi] (j0 +2 I j1 Cos[t wm]);
o1=(as+alo)/Sqrt[2];
o2=(as-alo)/Sqrt[2];

u1=Simplify[s[power[o1],1]];
u2=Simplify[s[power[o2],1]];

Print[u1];

(* Now simplify for c2=c1 *)

Print[Simplify[u1/.c2->c1]];
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E.1.4 Schnupp modulation

The following program computes the output signal in a simple Michelson interferometer
with Schnupp modulation (see Section 1.3.3).

<<clear.m
<<demod.m

(* Simplifications *)
rho=tau=1/Sqrt[2];

(* wave vectors *)
k0=0
kp=wm/c
km=-wm/c

(* amplitudes *)
a3=I tau (j0+I j1 Exp[I (wm t + kp 2 (l1-dl/2))] +
I j1 Exp[ I (-wm t + km 2 (l1-dl/2))])
a5=rho(j0+I j1 Exp[I (wm t + kp 2 (l1+dl/2))] +
I j1 Exp[I (-wm t + km 2 (l1+dl/2))])
a6=rho a3 - I tau a5 Exp[I phi]

(* power in output beam *)
i6=power[a6]

(* and its fmod component *)
Simplify[s[i6,1]]

E.1.5 Autoalignment error signals

The following program computes all autoalignment error signals given in Scetion 2.3.

<<clear.m
<<demod.m

(* Integrals over transverse modal functions *)
vrule={u0^2->1, u0 u1->0, u1^2->1}
wrule={u0^2->0, u0 u1->Sqrt[2/Pi], u1^2->0}
v[x_] := Simplify[ExpandAll[x]/.vrule];
w[x_] := Simplify[ExpandAll[x]/.wrule];

Print["Fabry-Perot :"];
a1f = c1 u0 Exp[I phi] (j0 +2 I j1 Cos[t wm]);
a2f = -c2 (u0 + k Exp[I theta] u1);
sf=Simplify[s[power[a1f+a2f],1]];
Print[v[sf]];
Print[w[sf]];

Print["Schnupp :"];
mod1=(j0+2 I j1 Cos[wm t + eps]);
mod2=(j0+2 I j1 Cos[wm t - eps]);
a1s=c1 Exp[-I phi/2] (u0 + k/2 Exp[I theta] u1) mod1;
a2s=-c2 Exp[I phi/2] (u0 - k/2 Exp[I theta] u1) mod2;
ss=Simplify[s[power[a1s+a2s],1]];
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Print[FullSimplify[v[ss]]];
Print[FullSimplify[w[ss]]];

Print["External Modulation :"];
a1e=c1 u0;
a2e=-c2 (u0+k Exp[I theta] u1) Exp[I phi];
a3e=c3 u0 Exp[I psi] (j0 +2 I j1 Cos[t wm]);
se=Simplify[s[power[a1e+a2e+a3e],1]];
Print[vse=FullSimplify[v[se]]];
Print[wse=FullSimplify[w[se]]];

Print["Mach-Zehnder :"];
a1mz=c1 u0;
a2mz=-c1 u0 Exp[I phi];
a3mz=c3 Exp[I psi] (j0 +2 I j1 Cos[t wm]) (u0+k Exp[I theta] u1);
smz=Simplify[s[power[a1mz+a2mz+a3mz],1]];
Print[vmz=FullSimplify[v[smz]]];
Print[wmz=FullSimplify[w[smz]]];
(* For the form given in the text, TrigReduce[] must be applied
to the result after removing the (wm t) term *)

E.2 Full interferometer simulation

Jun’s program is not printed here. It can be obtained from the author upon request.

E.2.1 Static response example

The following example shows how the plots shown in Figure 1.18 were produced. The
Mathematica code is printed in typewriter, with comments in between.

<<"clear.m" This resets Mathematica.

<<"Drint.m" This loads Jun’s program.

clight = 299792458.; The speed of light, c in m/s.

rBS = Sqrt[0.515]; The beamsplitter’s amplitude reflectivity ρBS.

rlist = {0.9995, 0.9995, 0.9643, 0}; Amplitude reflectivities of the four
mirrors. Signal recycling is disabled by setting ρS = 0. The order of the four
parameters is always North, East, West and finally South.

llist = {30.6873, 30.6273, 0.15, 0.285} / clight;

One-way light travel times in each arm, computed as armlength divided by c.

tlist = {-phi/2, phi/2, 0, 0}; The tunings. Zeroes represent the nominal
operating point. The Michelson tuning ϕMI, is introduced as differential detuning
of both long arms (North and East). It is to be used as independent variable in
the plot and is hence the only variable which is not yet given a numerical value.

wmod = 2 * Pi * 9.686 * 10^6 ; The modulation frequency is 9.686MHz.

midx = 0.6; The modulation index is 0.6.
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errsig = 100 *Simplify[SigTM[South, wmod, midx,

tlist, llist, rlist, rBS][[2]]];

This computes the static response at the South port for the given parameters.
A list of five elements is returned. They are, in this order, H0, H1i, H1q, H2i and
H2q. The second element, selected by ‘[[2]]’ is H1i, which is multiplied with the
arbitrary scaling factor 100. It represents the Michelson error signal.

outpow = Simplify[SigTM[South, wmod, midx,

tlist, llist, rlist, rBS] [[1]]];

The DC power (H0) at the South port.

prpow = Simplify[SigTM[East, wmod, midx, tlist, llist,

rlist,rBS][[1]]/(1-rlist[[2]]^2) +

SigTM[North, wmod, midx, tlist, llist,

rlist, rBS][[1]]/(1-rlist[[1]]^2) ];

The power in the PR cavity. SigTM[East, ...] [[1]] is actually the DC power
leaving through the East mirror. The power in the East arm is found by dividing
it by τ2East = 1− ρ2East. The same is computed for the North arm, and their sum
is the total power in the PR cavity.

Plot[errsig,{phi,-2,2},PlotRange->All];

Plot[outpow,{phi,-2,2},PlotRange->All];

Plot[prpow,{phi,-2,2},PlotRange->All];

The three results are plotted as a function of ϕMI. Figure 1.18 was produced by
exporting the data as a table and plotting it with Gnuplot.

E.2.2 Frequency response

The following code was used to produce Figure 1.19. Comments are given only for
those lines which differ from the previous example.

<<"clear.m"

<<"DRint.m"

clight = 299792458.;

rBS = Sqrt[0.515];

rlist = {0.9995, 0.9995, 0.9643, 0.9804};

Signal recycling is active.

llist = {30.6873, 30.6273, 0.15, 0.285} / clight;

tlist = {0, 0, 0, 0};

The nominal operating point.

wmod = 2 * Pi * 9.686 * 10^6 ;

midx = 0.6;

source={-.5,.5,0,0};

This defines where the dithering is applied (differentially to the end mirrors).
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sig1 = SigFQ[2*Pi*fsig, South, source, wmod, midx, tlist,

llist, rlist, rBS] [[2]];

This computes the frequency response for one signal frequency ωsig = 2πfsig,
measured at the South port. The result is a list of five (complex) elements,
G0, G1i, G1q, G2i and G2q. The second element, the in-phase component at
9.686MHz, is selected as result. As compared to SigTM there are two more
parameters, 2*Pi*fsig and source.

E.2.3 Resonance of the PR cavity

As explained in Section 1.6.1.3, for a realistic simulation of error signals in the 30m
prototype it is necessary to compute the PR mirror tuning ϕPR that makes the PR
cavity resonsant for arbitrary conditions of the Michelson and SR mirror.

In Jun’s program this can be done by the following code:

r0list={rlist[[1]],rlist[[2]],0,rlist[[4]]};

If rlist is the list of mirror reflectivities, r0list is the same list with the PR
mirror left out.

zz[pmi_,psr_] := TMresponse[0,tlist+{-pmi/2,pmi/2,0,psr},

llist,r0list,rBS][[3]];

This computes the amplitude of carrier light that is injected through the West
port upon its return to the West port. pmi and psr are the Michelson and SR
mirror tuning, respectively. For the other parameters, see Appendix E.2.1.

z[pmi_,psr_] := z[pmi,psr] = (Arg[-zz[pmi,psr]])/2;

This is the PR tuning necessary to keep the PR cavity resonant.

The amplitude of the light returning towards the power recycling mirror (MW ) results
as

a→W =
exp(2 iϕSR)

(
ρN exp(2 iϕMI) + ρE)

)
− 2ρNρEρS exp( iϕMI)

ρEρS + ρNρS exp(2 iϕMI)− 2 exp
(
i (ϕMI + 2ϕSR)

) . (E.4)

The PR tuning necessary to keep the PR cavity resonant is then given by

ϕPR,res =
∠(−a→W)
2

. (E.5)

E.2.4 Optimal demodulation phase

The following short function computes the optimal demodulation phase χopt according
to Equation 1.74, if all parameters of the interferometer are given numerical values:

chiopt := Module[{h, a, b, c, d, w, chi},
h = SigFQ[2*Pi*fsig, South, source, 2 * Pi * fmod * 10^6, midx,

{0,0,0,phisr}, llist, rlist, rBS];
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a = Re[h[[2]]]; b = Im[h[[2]]]; c = Re[h[[3]]]; d = Im[h[[3]]];
w = Sqrt[(b + c)^2 + (a - d)^2]*Sqrt[(b - c)^2 + (a + d)^2];
chi = ArcCos[(a^2 + b^2 - c^2 - d^2)/w]/2;
chi *= Sign[a*c - b*d];
chi]

E.3 Ray-tracing program

The following program uses geometrical optics to find the axis of the eigenmode for
a given combination of reflecting and/or refracting plane and spherical surfaces. Its
application is described in Section 2.10. An outline of the procedure is as follows: For
each surface, the following parameters must be given:

• The ‘center’ of the surface, i.e. the point where the well aligned beam is supposed
to hit the surface.

• The radius of the mirror (substrate) which is only used for some drawing routines,
but not for the calculations.

• The curvature of the surface, given as the reciprocal of the radius of curvature
(such as to avoid infinity for flat surfaces).

• The normal vector of the surface at its center.

The term ‘beam’ in this Appendix refers to the geometrical axis of a beam, without
taking into account the transverse shape or optical phase. A beam is described by
six coordinates: A point of origin (measured in meters) and a direction (given as a
unity vector). Although not all of them are independent, the full set is used without
problems. There are functions for reflecting and refracting a beam at a given surface,
which, using vector algebra, return the reflected or refracted new beam.

The program starts with a well-aligned interferometer and traces the beam through it.
The beams thus found (including the beams transmitted through each mirror and the
beam directly reflected from the input coupler) are saved and will be used as reference.
The simplest procedure to find this well-aligned interferometer is to arbitrarily fix the
spot positions on each mirror and then construct the normal vector of each mirror
accordingly. This can be done in the same program.

Then one mirror at a time is misoriented by a small angle ε (good values are 10−6 .
ε . 10−4 rad). The beam is again traced through one roundtrip in the interferometer.
A set of six equations is set up, which demand that the beam after the roundtrip
equals the original beam, with the 6 parameters of the starting beam as variables.
These equations are then numerically solved by the Newton-Raphson method (see,
e.g., [Press]), yielding a new starting beam that reproduces itself. The solution thus
represents the axis of the new cavity eigenmode. This new starting beam is once more
traced through the interferometer, now with full output. The results of the program
are the differences in beam origins and directions at each mirror between the well-
aligned case and the misaligned case, divided by ε. In other words, we compute the
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numerical partial derivatives of spot positions and beam angles with respect to the
mirror misorientations.

The program printed below computes the results for vertical misalignments in the
GEO600 modecleaner (shown in Table 2.7). To obtain the corresponding results for
horizontal misalignments (Table 2.6), the functions vrot and vangle must be replaced
by hrot and hangle, respectively.

<<clear.m
pi = N[Pi];

(* Parameters of the GEO modecleaner:
mdist = length of cavity (4 m)
roc = radius of curvature (6.72 m)
d = distance of near mirrors (15 cm)
eps = amount of misalignment for numerical differentiation *)

mdist = 4.;
roc = 6.72;
d = .15;
eps = N[10^-5];

(* There are 2 modes of operation:
"plot = True" draws some graphics with exaggerated parameters

(for an overview), whereas
"plot = False" performs the calculations *)

plot = False;

If [plot, (* Other parameters for plotting *)
{mdist = 0.3;
roc = 0.5;
N[4 Degree]; }];

(* length of a vector *)
len[a_] := Sqrt[a.a];

(* unity vector in the direction of ’a’ *)
normvec[a_] := a/len[a];

(* distance between two points *)
dist[a_, b_] := len[a-b];

(* Vector cross product *)
cross[a_, b_] := {-(a[[3]]*b[[2]]) + a[[2]]*b[[3]],
a[[3]]*b[[1]] - a[[1]]*b[[3]], -(a[[2]]*b[[1]]) + a[[1]]*b[[2]]};

(* Convert spherical coordinates into rectangular coordinates *)
s2r[x_] := {x[[1]]*Cos[x[[3]]]*Sin[x[[2]]],
x[[1]]*Sin[x[[2]]]*Sin[x[[3]]], x[[1]]*Cos[x[[2]]]};

(* Convert rectangular coordinates into spherical coordinates *)
r2s[x_] := {Sqrt[x[[1]]^2 + x[[2]]^2 + x[[3]]^2],
ArcCos[x[[3]]/Sqrt[x[[1]]^2 + x[[2]]^2 + x[[3]]^2]],
ArcTan[x[[1]], x[[2]]]};
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(* rotate vector ’x’ horizontally by angle ’a’ *)
hrot[x_, a_] := Module[{r, theta, phi, xx, yy, zz},
{r, theta, phi} = r2s[{x[[1]], x[[3]], x[[2]]}];
{xx, zz, yy} = s2r[{r, theta, phi+a}];
N[{xx, yy, zz}] ];

(* rotate vector ’x’ vertically by angle ’a’ *)
vrot[x_, a_] := Module[{r, theta, phi, xx, yy, zz},
{r, theta, phi} = r2s[{x[[1]], x[[3]], x[[2]]}];
{xx, zz, yy} = s2r[{r, theta+a, phi}];
N[{xx, yy, zz}] ];

(* find horizontal angle between vectors ’v0’ and ’v1’ *)
hangle[v0_, v1_] := Module[{a},
a = r2s[{v1[[1]], v1[[3]], v1[[2]]}] [[3]]
- r2s[{v0[[1]], v0[[3]], v0[[2]]}][[3]];

Mod[N[a+pi], 2 pi]-pi ];

(* find vertical angle between vectors ’v0’ and ’v1’ *)
vangle[v0_, v1_] := Module[{a},
a = r2s[{v1[[1]], v1[[3]], v1[[2]]}] [[2]]
- r2s[{v0[[1]], v0[[3]], v0[[2]]}][[2]];

Mod[N[a+pi], 2 pi]-pi ];

(* find 2 orthonormal vectors which are orthogonal to ’v’ *)
onvec[v_] := Module[
{ev = IdentityMatrix[3], ctab, e, max, maxpos, i, e1, e2},
ctab = Table[len[cross[ev[[i]], v]], {i, 3}];
max = -1.;
maxpos = -1;
For[i = 1, i<=3, i++,
If[ctab[[i]]>max, max = ctab[[i]];
maxpos = i;]];

e = ev[[maxpos]];
e1 = normvec[cross[e, v]];
e2 = normvec[cross[e1, v]];
{e1, e2} ];

(* plotting function: make a circle representing a mirror ’m’ *)
disk[m_] := Module[{zen, rs, k, nvec, e1, e2, phi},
{zen, rs, k, nvec} = m;
(* Center, Substrate Radius, Curvature, Normal *)
{e1, e2} = onvec[nvec];
Table[zen+e1 rs N[Cos[phi]]+e2 rs N[Sin[phi]],
{phi, 0, 2 pi, pi/12}]];

(* plotting functions *)
mplot[m_] := Graphics3D[Line[disk[m]]] (* Plot mirror *)
splot[x_] := Graphics3D[Line[x]]
(* Plot segment (Line between two points) *)

(* plotting function for a ’beam’ *)
bplot[x_] := Graphics3D[
Line[{Take[x, 3], Take[x, 3] + plotlen*normvec[Take[x, -3]]}]];

(* compute the point where beam ’b’ intersects surface ’m’ *)
isect[m_, b_] := Module[{zen, rs, k, nvec, orig, dir, pis},
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{zen, rs, k, nvec} = m;
(* Center, Substrate Radius, Curvature, Normal *)

orig = Take[b, 3]; dir = Take[b, -3];
(* origin, direction *)

pis = orig-dir*((orig-zen).nvec)/(nvec.dir); (* plane intersection *)
If[k==0, (* Flat mirror *)
pis,
Module[{cc, p1, p2, x, y, z, lam, gl1, gl2, sol}, (* curved mirror *)
cc = zen+(1/k)*normvec[nvec];
gl1 = (x-cc[[1]])^2+(y-cc[[2]])^2+(z-cc[[3]])^2==1/k^2;
gl2 = {x, y, z}==orig+lam*dir;
sol = NSolve[{gl1, gl2}, {x, y, z, lam}];
p1 = {x, y, z}/.sol[[1]];
p2 = {x, y, z}/.sol[[2]];
If[(Im[p1[[1]]]!=0 || Im[p1[[2]]]!=0 || Im[p1[[3]]]!=0),
Print["Error: no real intersection"]; Abort[];, Null];

If[(Im[p2[[1]]]!=0 || Im[p2[[2]]]!=0 || Im[p2[[3]]]!=0),
Print["Error: no real intersection"]; Abort[];, Null];

If[dist[p1, pis]<dist[p2, pis], p1, p2]]
] (* End If *)
] (* End Module *)

(* compute the reflected beam, when beam ’b’ hits mirror ’m’ *)
refl[m_, b_] := Module[{zen, rs, k, nvec, dir, is, u, k1, k2},
{zen, rs, k, nvec} = m;
(* Center, Substrate Radius, Curvature, Normal *)

dir = Take[b, -3]; (* direction *)
is = isect[m, b]; (* intersection *)
u = normvec[If[k==0, nvec, zen+(1/k)*normvec[nvec]-is]];
k1 = normvec[dir];
u = Sign[k1.u]*u;
k2 = normvec[k1-2*(k1.u)*u];
Join[is, k2]];

(* compute the refracted beam, when beam ’b’ hits mirror ’m’,
where index of refraction changes from ’n1’ to ’n2’ at ’m’. *)

refr[m_, b_, n1_, n2_] :=
Module[{zen, rs, k, nvec, dir, is, u, k1, ct1},
{zen, rs, k, nvec} = m;

(* Center, Substrate Radius, Curvature, Normal *)
dir = Take[b, -3]; (* direction *)
is = isect[m, b]; (* intersection *)
u = normvec[If[k==0, nvec, zen+(1/k)*normvec[nvec]-is]];
k1 = normvec[dir];
u = Sign[k1.u] u;
ct1 = k1.u;
Join[is, ((-(ct1*n1) + Sqrt[(-1 + ct1^2)*n1^2 + n2^2]) u+n1 k1)/n2] ];

h = 10^-6; (* Stepwidth for Newton-Raphson *)
hh = N[h IdentityMatrix[6]];

(* One iteration of the Newton-Raphson method to find
the solution of f[x]=0
x is a 6-dim. vector (beam starting from first mirror),
and f[x] (defined below) is the difference between the
beam after one roundtrip and the original beam *)
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raphson[x_] := Module[{jac, i, dx},
jac = Transpose[Table[(f[x+hh[[i]]]-f[x-hh[[i]]])/(2*h), {i, 1, 6}]];
f0 = -f[x]; dx = LinearSolve[jac, f0];
If[len[f[x+dx]]>10^-9, Print["Residual = ", len[f[x+dx]]]];
x+dx];

(* Definition of mirrors etc. Here: GEO modecleaner *)

(* pa, pb, pc = center of mirror a,b,c *)
pa0 = {-d/2, 0, 0};
pb0 = {0, 0, -mdist};
pc0 = {d/2, 0, 0};

(* na, nb, nc = normal vector of mirror a,b,c *)
na0 = normvec[0.5 (normvec[pb0-pa0]+normvec[pc0-pa0])];
nb0 = normvec[0.5 (normvec[pa0-pb0]+normvec[pc0-pb0])];
nc0 = normvec[0.5 (normvec[pa0-pc0]+normvec[pb0-pc0])];

(* ma, mb, mc = mirror a,b,c *)
ma = ma0 = {pa0, .05, 0, na0};
mb = mb0 = {pb0, .05, 1./roc, nb0}
mc = mc0 = {pc0, .05, 0, nc0};

(* Now the beams are computed for non-rotated mirrors (as reference):

b00 = incoming beam (starting at mirror ’a’ travelling to mirror ’b’)
bdref = directly reflected input beam
b10 = beam after reflection at mirror b
b20 = beam after reflection at mirror c
b30 = beam after reflection at mirror a, should be = b00
sin, s1, s2, s3 = ’distance’ vectors (for plotting only)
bouta, boutb, boutc = output beams leaving through mirrors a,b,c
*)

b00 = Join[pa0, normvec[pb0-pa0]];
sin = {Take[b00, 3] - 0.1*Take[b00, -3], Take[b00, 3]};
bdref = refl[ma0, b00];
b10 = refl[mb0, b00]; s1 = {pa0, pb0};
boutb = Join[Take[b10, 3], Take[b00, -3]];
b20 = refl[mc0, b10]; s2 = {pb0, pc0};
boutc = Join[Take[b20, 3], Take[b10, -3]];
b30 = refl[ma0, b20]; s3 = {pc0, pa0};
bouta = Join[Take[b30, 3], Take[b20, -3]];

(* This is the function f[x], which should be zero for the
cavity eigenmode. The beam ’b0’ makes one roundtrip,
resulting in b3. For the eigenmode, b3=b0 *)

f[b0_]:=Module[{b1, b2, b3},
b1 = refl[mb, b0];
b2 = refl[mc, b1];
b3 = refl[ma, b2];
b0-b3];

(* r[x] = round to 3 digits after decimal point *)
r[x_] := 10.^-3 Round[N[10.^3 x]];
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(* rp[x] = prints r[x] nicely *)
rp[x_] := PaddedForm[r[x], {7, 4}];

(* the function ’compute’ does the main job for misaligned mirrors.
It computes the cavity eigenmode in the misaligned case and compares
it to the previously calculated eigenmode in the well aligned case
(b00 etc.). Mirrors are misaligned by an angle ’eps’. *)

compute:=(
(* b0n is the beam b0 (from mirror a to mirror b) of the eigenmode
of the misaligned cavity *)

b0n = raphson[b00]; (* 1st iteration *)
b0n = raphson[b0n]; (* 2nd iteration *)
If[plot, b0n = raphson[b0n]]; (* 3rd iteration *)

(* bdrefn, ... have the same meaning as bdref0, ... above.
They describe the misaligned cavity *)

bdrefn = refl[ma, b00];
b1n = refl[mb, b0n]; s1n = {Take[b0n, 3], Take[b1n, 3]};

boutbn = Join[Take[b1n, 3], Take[b0n, -3]];
b2n = refl[mc, b1n]; s2n = {Take[b1n, 3], Take[b2n, 3]};

boutcn = Join[Take[b2n, 3], Take[b1n, -3]];
b3n = refl[ma, b2n]; s3n = {Take[b2n, 3], Take[b3n, 3]};

boutan = Join[Take[b3n, 3], Take[b2n, -3]];
If[len[b3n-b0n]>10^-10, Print["test=", len[b3n-b0n]]];

(* now the beams ’...n’ (misaligned eigenmode) are compared to
the beams ’...0’ (well aligned reference eigenmode), and divided
by the small misalignment angle ’eps’.
dpa, dpb, dpc are differences in the beam position on mirrors a, b, c
ama, gamb, gamc are the differences in angle of the output beams.
gamd is the difference in angle of the directly reflected beam.
gamas is the angle between output beam a and direct reflection. *)

dpa = Take[(boutan-bouta), 3]/eps;
dpb = Take[(boutbn-boutb), 3]/eps;
dpc = Take[(boutcn-boutc), 3]/eps;
gama = vangle[Take[bouta, -3], Take[boutan, -3]]/eps;
gamd = vangle[Take[bdref, -3], Take[bdrefn, -3]]/eps;
gamas = vangle[Take[bdrefn, -3], Take[boutan, -3]]/eps;
gamb = vangle[Take[boutb, -3], Take[boutbn, -3]]/eps;
gamc = vangle[Take[boutc, -3], Take[boutcn, -3]]/eps;

(* rt2 is half the cavity round-trip length *)
rt2 = Sqrt[mdist^2+d^2/4]+d/2;

(* zr is the rayleigh range of the cavity eigenmode *)
zr = Sqrt[rt2(roc-rt2)];

(* dzwaist is the shift of the eigenmode at the waist *)
dzwaist = (dpc[[2]]+dpa[[2]])/2.;

(* theta describes the ’character’ of misalignment *)
theta = N[ArcTan[gamas zr/dzwaist]];

(* this is only for plotting *)
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plotlen = 0.1;
If[plot,
Show[mplot[ma0], mplot[mb0], mplot[mc0], splot[sin],
splot[s1], splot[s2], splot[s3],
bplot[bdref], bplot[bouta], bplot[boutb], bplot[boutc],
Graphics3D[Dashing[{0.05, 0.05}]],
mplot[ma], mplot[mb], mplot[mc],
splot[s1n], splot[s2n], splot[s3n],
bplot[bdrefn], bplot[boutan], bplot[boutbn], bplot[boutcn],
ViewPoint->{0, 0, -100}] ];

(* the results are printed *)
Print[text];
Print[" pady=", rp[dpa[[2]]], " wdy=", rp[dzwaist],
" gama=", rp[gama], " gamas=", rp[gamas], " theta=", rp[theta/Degree]];
Print[" pbdy=", rp[dpb[[2]]], " gamb=", rp[gamb],
" pcdy=", rp[dpc[[2]]], " gamc=", rp[gamc]];
Print[];
)
(********* end of function ’compute’ ***********)

(* Now the function ’compute’ is called several times, each time with
one mirror misaligned. The common mode and differential mode
misalignments of mirrors a and c are also computed separately.

The signal detected by a camera in the reflected light
consists of "repart" and "impart" for parallel shifts and angular
rotations, respectively, between the directly reflected beam and
output beam ’a’. These are added up in ’repart’ and ’impart’
’ala’, ’alb’ and ’alc’ is the misalignment of mirror a, b, c,
respectively.

Furthermore the angular shift of output beams a and d (directly
reflected) are also added up.

*)

repart = impart = sumgama = sumgamd = 0;

ma = ma0; mb = mb0; mc = mc0;
text = "vrot ma"; ma[[4]] = vrot[ma0[[4]], -eps]; compute;
repart += dzwaist/zr ala;
impart += gamas ala;
sumgama += gama ala;
sumgamd += gamd ala;

ma = ma0; mb = mb0; mc = mc0;
text = "vrot mb"; mb[[4]] = vrot[mb0[[4]], eps]; compute;
repart += dzwaist/zr alb;
impart += gamas alb;
sumgama += gama alb;
sumgamd += gamd alb;

ma = ma0; mb = mb0; mc = mc0;
text = "vrot mc"; mc[[4]] = vrot[mc0[[4]], -eps]; compute;
repart += dzwaist/zr alc;
impart += gamas alc;
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sumgama += gama alc;
sumgamd += gamd alc;

ma = ma0; mb = mb0; mc = mc0;
text = "vrot ma+mc";
ma[[4]] = vrot[ma0[[4]], -eps];
mc[[4]] = vrot[mc0[[4]], -eps];
compute;

ma = ma0; mb = mb0; mc = mc0;
text = "vrot ma-mc";
ma[[4]] = vrot[ma0[[4]], -eps];
mc[[4]] = vrot[mc0[[4]], eps];
compute;

(* Now we have all contributions to repart, impart, sumgama, sumgamd.
We introduce the common mode angles ’amc’ and ’apc’ (minus and plus)
which satisfy
amc == ala - alc,
apc == ala + alc,
and express the results with these common mode angles. *)

acrule = {ala -> (amc - apc)/2 + apc, alc -> (-amc + apc)/2};

repart = repart/.acrule;
impart = impart/.acrule;
sumgama = sumgama/.acrule;
sumgamd = sumgamd/.acrule;

Print["repart = ", Simplify[repart]];
Print["impart = ", Simplify[impart]];
Print["sumgama = ", Simplify[sumgama]];
Print["sumgamd = ", Simplify[sumgamd]];



232



Bibliography

[Ali97] M. Ali, A. Törn, S. Viitanen: ‘A Direct Search Simulated Annealing algorithm
for optimization involving continuous variables’, Turku Center for Computer Sci-
ence, TUCS Technical Report No. 97 (1997). 206

[Ali97b] M. Ali, A. Törn, S. Viitanen: ‘A numerical comparison of some modified Con-
trolled Random Search algorithms’, Turku Center for Computer Science, TUCS
Technical Report No. 98 (1997). 206

[Anderson84] D.Z. Anderson: ‘Alignment of resonant optical cavities’, Appl. Opt. 23
(1984) 2944–2949. 109, 111

[Babusci97] D. Babusci, H. Fang, G. Giordano, G. Matone, L. Matone, V. Sannibale:
Phys. Lett. A 226 (1997) 31–40. 110

[Barthel97] A. Barthel: ‘Abstimmbares Signal-Recycling mit externer Modulation’,
Diploma thesis, University of Hannover, 1997 (in German). 73

[Blair] D.G. Blair [ed.]: ‘The Detection of Gravitational Waves’, Cambridge University
Press 1991. v, 237

[Drever83a] R.W.P. Drever, talk at ‘10th Int. Conf. on General Relativity and Gravi-
tation’, Padua 1983. 19

[Drever83b] R.W.P. Drever, J.L. Hall, F.V. Kowalski, J. Hough, G.M. Ford, A.J. Mun-
ley, H. Ward: ‘Laser Phase and Frequency Stabilization Using an Optical Res-
onator’, Appl. Phys. B 31 (1983) 97–105. 2, 53, 114

[Drever83c] R.W.P. Drever et al., in: ‘Quantum Optics, Experimental Gravitation, and
Measurement Theory’, eds. P. Meystre and M.O. Scully (Plenum Press, New York,
1983) 503. 3

[Drever83d] R.W.P. Drever, in ‘Gravitational Radiation’, eds. N. Deruelle and T. Piran
(North-Holland, Amsterdam, 1983) 321. 3

[Forward78] R.L. Forward: ‘Wideband laser-interferometer gravitational-radiation ex-
periment’, Phys. Rev. D 17, (1978) 379–390. 33

[Freise98] A. Freise: ‘Ein neues Konzept für Signal-Recycling’, Diploma thesis, Univer-
sity of Hannover, March 1998 (in German). 73, 73

233



234 BIBLIOGRAPHY

[Gradstein-Ryshik] I.S. Gradstein; I.M. Ryshik: ‘Tables of Series, Products and Inte-
grals’, Harri Deutsch 1981 10, 116

[Harris78] F.J. Harris: ‘On the Use of Windows for Harmonic Analysis with the discrete
Fourier transform’, Proc. IEEE 66 (1978) 51–83. 162

[Hefetz97] Y. Hefetz, N. Mavalvala, D. Sigg: ‘Principles of calculating alignment signals
in complex resonant optical interferometers’, J. Opt. Soc. Am. B 14, (1997) 1597–
1605. 111

[Heinzel95] G. Heinzel: ‘Resonant Sideband Extraction – Neuartige Interferometrie für
Gravitationswellendetektoren’, Diploma thesis, University of Hannover, 1995 (in
German). 5, 33, 148

[Heinzel96] G. Heinzel, J. Mizuno, R. Schilling, W. Winkler, A. Rüdiger, K. Danz-
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