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ABSTRACT The extensive growth of digital technologies such as the Internet of Things (IoT), social
media networks and forecasting systems has led to new challenges regarding computational complexity
and big data mining. The classification task in such applications is not trivial due to the high volume
of related data and limited time available for the task. It is particularly difficult when dealing with data
streams, where each instance of data is typically processed once on its arrival (i.e. online) while the
underlying data distribution often changes due to the changing environment. In this paper, we propose
a novel ensemble-based framework called Replicator Dynamics & Genetic Algorithms Approach (RED-
GENE) for effective data stream classification in the context of changing environment leading to concept
drifts (i.e. evolution of data streams). RED-GENE employs three novel Replicator Dynamics (RD) strategies
along with a Genetic Algorithm (GA) optimisation technique to flexibly adapt to different types of concept
drifts when performing data stream classification tasks. The proposed framework works as follows. First,
a set of random feature combinations is drawn from a given pool of features of the target data stream
to create different classification types. Next, RD is used to allow the classification types achieving higher
classification accuracy to grow and those with lower accuracy to shrink. A modified version of the classic
GA is then employed to optimise the randomly drawn combinations of features in each classification type.
The proposed framework was tested using nine data streams (including both real-world and synthetic
datasets) to investigate different variations of the proposed framework and compare its performance to
other state-of-the-art algorithms using immediate and delayed prequential evaluation methods. The results
demonstrated that the proposed framework can provide the best accuracy on average when comparing to
five other state-of-the-art algorithms.

INDEX TERMS Concept Drifts, Data Stream Mining, Ensemble Learning, Evolutionary Algorithms, Non-
stationary Environment.

I. INTRODUCTION

IN many modern-world applications such as sensor net-
works analysis, traffic monitoring, weather forecasting,

spam filtering systems, fraud/intrusion detection, health-
care systems, web searches and fault diagnosis/detection,
data come mostly in the form of data streams that require
online processing. This motivates researchers to focus on
data stream-related tasks, especially classification in non-
stationary environments [1], where the main challenge is
adapting to unforeseen concept drifts. A concept drift is a
change in the distribution of data that can be caused by
different factors such as time, an incident, change in be-

haviour or data attributes. Different types of concept drifts
can be divided into four general categories: abrupt (sudden),
gradual, incremental and recurrent (reoccurring) [1].

Owing to their flexibility and versatility, ensemble-based
learning methods are among the most popular techniques for
data stream mining allowing to effectively deal with concept
drifts in non-stationary data streams [2] [3]. Ensemble learn-
ing is a machine learning approach, where instead of training
a single classifier, a pool of classifiers are trained to improve
the classification accuracy by merging different experts (clas-
sifiers) in the system. While changing the weights of separate
classifiers in an ensemble according to their performance in
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the given context (i.e. over the most recent data instances)
allows to achieve a better overall performance, the extensive
range of real-world problems and their conditions make the
task of tuning weights very challenging.

An ideal method for data stream classification should
satisfy the following conditions. (1) Accuracy: the main
challenge in all classification problems is to maintain the
highest possible accuracy, or in other words, to achieve the
lowest misclassification rate. (2) Efficiency: in many modern
applications, there are time and memory constraints; hence,
the computational complexity of an ideal method should be
minimised. (3) Adaptation: once a concept drift occurs, the
accuracy achieved by a classifier decreases due to the changes
in the data distribution and target concept; hence, the rate of
misclassification and time of recovery upon different types of
concept drifts should be minimised.

Currently, there is a lack of a comprehensive approach able
to satisfy all these conditions in different environments. The
majority of the state-of-the-art ensemble methods for data
stream classification are focused on either a specific type of
concept drifts or a specific type of applications. In this paper,
we propose a novel ensemble learning framework called
RED-GENE that performs well regardless of the concept
drift type or application. The proposed framework employs
three new evolutionary game theoretic strategies based on
Replicator Dynamics (RD) and Genetic Algorithm (GA)
optimisation techniques to retain the classification accuracy
upon different concept drifts. According to the RED-GENE
approach, an ensemble of different classification types is
initially generated based on random combinations of features
of the target data stream. Several RD variations are then used
to grow and shrink the relative contribution of each type to the
ensemble. The randomly selected types are further optimised
using a specially designed GA enabling them to cope with
different concept drifts over time.

This research builds upon a novel method called Evo-
lutionary Adaptation to Concept Drifts (EACD) proposed
by the same authors [4]. Both the EACD and RED-GENE
methods employ the same approach to creating different clas-
sification types and a GA optimisation technique. However,
only the most basic modified version of Replicator Dynamics
in streaming data was used in EACD. This study improves the
EACD method and offers the following further contributions:
(1) we propose three different modified versions of Repli-
cator Dynamics to accelerate the concept drift adaptation
process; (2) we improve the classification accuracy for the
majority of the considered experimental cases; and (3) we
reduce the running time of the algorithm by generating a
lower number of types while improving the total accuracy.

The rest of this paper is organised as follows. Section
2 overviews related research. Section 3 details our pro-
posed method. Section 4 outlines the experimental setup and
presents the results of comparing the proposed approach to
related state-of-the-art methods. Conclusions and future work
are provided in Section 5.

II. RELATED WORK
The overwhelming majority of the existing data stream clas-
sification algorithms for evolving environments use ensemble
learning techniques due to their flexibility and versatility
compared to single classifier techniques [1] [2] [3] [5].
Different ensemble learning methods contributing to this
research area are discussed briefly below.

A large number of the state-of-the-art ensemble learning
algorithms are adapted versions of bagging [6] and boost-
ing [7] algorithms. OzaBag [8] is an online version of the
standard bagging. According to this algorithm, when a new
instance is presented to the system, each classifier chooses
the example K ∼ Poisson(1) times and updates its model
accordingly. OzaBoost [8] is an online version of the standard
boosting algorithm. OzaBoost is similar to OzaBag except
that classifiers are trained incrementally. Hence, when a
classifier misclassifies an instance, the Poisson parameter (λ)
for that instance increases before introducing it to the next
classifier. Otherwise, the λ parameter decreases. OSBoost [9]
uses a similar approach to that of the OzaBoost algorithm. In
addition, it combines different weak learners by producing a
connection between the batch boosting and online boosting
algorithms.

Dynamic Weighted Majority (DWM) [10] uses three basic
mechanisms to adapt to different concept drifts: (1) weight-
ing classifiers based on their performance, (2) removing old
classifiers when their performance drops below a predeter-
mined threshold, and (3) adding new classifiers based on the
overall performance of the ensemble.

Accuracy Updated Ensemble (AUE) [11] extends Accu-
racy Weighted Ensemble (AWE) [12] by updating online
component classifiers according to the current distribution of
data. AUE trains all old classifiers incrementally and assign
weights to them based on their error at a specific time. OAUE
[13] is an online version of AUE.

RED-PSO [14] is an implicit approach that couples the
Replicator Dynamics with a modification of Particle Swarm
Optimisation algorithm to seamlessly adapt to different con-
cept drifts. In this approach, different classification types act
as particles in PSO algorithms and the aim is to move the
particles towards the global and local optimal solutions in
each iteration of the algorithm.

The aforementioned methods are categorised as implicit
methods as they do not possess an explicit concept drift
detector. They try to adapt to concept drifts implicitly by up-
dating the state of the ensemble according to its performance.
As a result, the adaptation procedure in implicit methods
may take long time since concept drifts are not detected
immediately. This is opposed to explicit methods that use
a concept drift detector to detect concept drifts and react to
them immediately.

Adaptive Boosting (Aboost) [15] is an explicit approach
that couples the online boosting algorithm with a concept
drift detector. Hence, it acts as a normal boosting algorithm
when the environment is stationary. Once a concept drift
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detector has detected a drift, all weights of the classifiers
inside the ensemble are reset to one.

Adwin Bagging (AdwinBag) [16] is an approach similar
to Aboost except it uses the online bagging algorithm as
its learning mechanism and couples it with a concept drift
detector called ADaptive WINdowing (ADWIN) [17]. When
a concept drift is detected, a new classifier is added to the
ensemble. Leveraging Bagging (LevBag) [18] is an extension
of AdwinBag, where the amount of re-sampling is increased
in the bagging technique.

Recurring Concept Drift (RCD) [19] is another explicit
approach that employs a buffer to keep the context of each
data type in the stream. When its concept drift detector
signals ’warning’, a new classifier is generated and trained in
the ensemble alongside with a new buffer. If the detector then
signals ’drift’, meaning that the suspected concept drift has
been approved, the system searches for a similar data type in
the buffer keeping previous concepts. If a similar concept is
found, the system uses it, otherwise it uses the newly created
classifier.

Adaptive Random Forest (ARF) [20] algorithm, which
is another explicit approach, attempts to cope with concept
drifts by proposing a modification of random forest algorithm
for data stream learning. ARF uses a re-sampling method
along with adaptive operators to propose an efficient way of
concept drift detection in non-stationary data stream classifi-
cation tasks.

The main challenge with explicit methods is that they
have a sudden reaction to concept drifts, which makes them
sensitive to false alarms and noise. A wrongly detected con-
cept drift can lead to a series of unnecessary procedures and
eventually a reduced performance. Furthermore, designing a
good drift detection mechanism able to detect different types
of concept drifts is still a problem to address [1]. In this
scenario, RD offers a smooth yet effective way to improve the
performance of an ensemble by growing and shirking classi-
fication types. On the other hand, the main issue with implicit
methods is their slow reaction to concept drifts. Using a
drift detection mechanism along with a GA can initiate an
immediate reaction to concept drifts and the optimisation of
feature combinations in the types. In summary, it is feasible
to have the advantages of both explicit and implicit methods
by combining RD with a concept drift detection mechanism
and a GA.

At the same time, evolutionary algorithms cannot be ap-
plied to streaming data in their original form since the entire
set of instances is not accessible to the system. Hence, we
propose modified versions of classic RD and GA to make
them work in online environments over data streams.

III. REPLICATOR DYNAMICS & GENETIC ALGORITHMS
(RED-GENE) FRAMEWORK
This paper introduces a novel ensemble learning framework
for data stream classification tasks in non-stationary envi-
ronments. The proposed framework comprises two layers,
the base layer and optimisation layer, described in Sec-

tions III-B and III-C, respectively. In the base layer, several
classification types are created based on randomly selected
features (subspaces) of the target data stream to form an
ensemble. These classification types are trained using one
of the three proposed RD strategies (see Section III-B). The
combination of features inside each types is then optimised
in the optimisation layer using a modified GA technique.

More specifically, RD is applied to seamlessly update the
ensemble according to the most recent types of data contexts.
RD allows the number of well-performing classifiers to grow
and that of those achieving a lower than average performance
to shrink in size. As the original RD is designed specifically
for static data sets, we modified it to be compatible with
streaming data. As a result, we propose three new RD strate-
gies to be used in our framework.

The randomly selected classification types are then further
optimised using a GA to enable the framework cope with
different types of concept drifts. This allows the ensemble to
optimise the combination of randomly selected classification
types to form a set of more efficient types according to
the current concept. According to the proposed method, the
training of classifiers is performed on sequential data blocks
received from the data stream.

In summary, the proposed solution employs two different
evolutionary-based techniques to deal with different types
of concept drifts. RD is used to continuously detecting the
good and poorly performing types to extend or shrink them
accordingly. GA is used to generate new improved classifica-
tion types out of the existing ones by iterating over the most
recently received data.

A. OVERVIEW
The proposed framework employs RD and GA, an overview
of which is provided in the following sub-sections.

1) Replicator Dynamics
RD is a simple model of evolution and prestige-biased learn-
ing in game theory [21] [22]. It was originally designed
for symmetric games with many strategies. This model as-
sumes a large number of replicators (types). Each replicator
is assigned a payoff value according to the interaction of
different replicators and their fitness in the population. The
payoff for each replicator is then compared to an expected
value (expected payoff) to determine whether a replicator
is performing better or worse than the expected value. The
main idea in this model is that replicators with a performance
higher than the average fitness of the population increase
their share in the population, while those with a performance
lower than the average fitness decrease their share in the
population.

The Replicator Equation is represented by the following
formula:

ẋi = xi[(Wx)i − xTWx], (1)

where (Wx)i denotes the expected fitness for a replicator and
xTWx denotes the average fitness in the population state x.
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In the proposed framework, a classification type com-
prising randomly selected features of data acts as a single
replicator in the replicator equation. The expected payoff
for each replicator is set to the average accuracy of all
replicators (classification types), while a replicator’s payoff
is the average accuracy of the classifiers that are built using
the same classification type.

2) Genetic Algorithm
GA is a well-known optimisation algorithm simulating the
process of biological evolution. It is mainly used to produce
optimised solutions in search problems. GA uses biologically
inspired operators such as selection, crossover and mutation
to generate a new set of solutions optimising the current
set of solutions. In this study, GA is used to optimise the
combination of classification types in an ensemble. The rea-
son for choosing GA as an optimisation technique for the
proposed framework is its superiority in solving other search
problems, especially when there is a large number of local
optima [23], which is the case in our problem of optimising
classification types. Furthermore, a similar modification of
GA was successfully applied in our previous work on data
stream classification [4].

The original version of GA is designed to work in a static
environment, where all data are accessible at once for iterat-
ing different populations of solutions over the same data and
calculating the fitness of these solutions for each iteration.
However, this is not the case in online environments, where
data come as streams and are not available all at once.

In the proposed version of GA, the initial population is a
subspace of features (types) selected randomly from a given
pool of features of the target data stream, and the evaluation
is performed by computing the average accuracy of each
classification type. The specifics on how the proposed GA
works are provided in section III-C, after detailing other
elements of RED-GENE in section III-B.

B. BASE LAYER
As a first step of the RED-GENE framework, p percent
of data features (attributes) are randomly selected from a
pool of features of the target data stream: n = p

100 × f,
where p represents the percentage of the attributes(features)
to be selected randomly (p ∈ (0, 100)), f denotes the total
number of attributes of the target dataset and n denotes the
total number of attributes to be chosen in this stage. Each
iteration of this step creates a single classification type in the
ensemble. Hence, it should be repeated m times to generate
m different classification types, each having n randomly
selected attributes. In the proposed framework, m is a pa-
rameter representing the maximum number of classification
types to be selected for the ensemble and should be chosen
based on the total number of attributes in each type.

In this study, we assume that data received by the system
are in the form of data blocks of 100 instances. After receiv-
ing the true labels of all instances inside each data block, m
new classifiers (decision trees in this case, one for each type)

are trained. These classifiers are then used to classify the next
instances inside the data stream. In particular, the majority
voting is conducted, and the class with the biggest number of
votes is considered as the final output of the base layer of the
ensemble.

Every classification type is evaluated once the true labels of
instances in a specific data block are available. The accuracy
of each classification type is assumed to be the average accu-
racy of all classifiers built using the same set of features (i.e.
classification type): ai = ci

db , where ci denotes the number
of correctly classified instances in the ith data block and db
denotes the total number of instances in each data block. To
allow the types to reach a maturity level, the classifiers are
not evaluated during the first max

2 data blocks, where max
denotes the maximum number of classifiers allowed in each
classification type.

Next, the replicator dynamics step is applied (see Algo-
rithm 1), where each type’s accuracy is taken into consider-
ation and assessed with an expected payoff (as explained in
Section III-A1):

a(ti) ≥
∑m
i=1 a(ti)

m
⇒ grow

a(ti) <

∑m
i=1 a(ti)

m
⇒ shrink,

(2)

where a(ti) denotes the accuracy of ith type and m denotes
the total number of types.

Once the growing and shrinking types are identified using
the replicator dynamics step, the pool of classifiers is re-
formed based on one of the proposed strategies. In particular,
the following three novel RD-based strategies are proposed
in this study.

1) RD1: Weighted trees
In the original RD, the number of trees to be added to to the
ensemble or to be removed from it is specified dynamically
as

Ta(i) = b(a(ti)−
∑m
i=1 a(ti)

m
)× Tn(i)c,

Tr(i) = b(
∑m
i=1 a(ti)

m
− a(ti))× Tn(i)c,

(3)

where Ta(i) denotes the number of trees to add, Tr(i) denotes
the number of trees to remove, a(ti) denotes the accuracy of
subspace i being processed, m denotes the total number of
types and Tn(i) denotes the total number of trees currently
being inside classification type i. However, adding more than
one classifier (at one time-step) is not possible in an online
environment such as data stream classification tasks where
one-time processing is applied to incoming data (prequential
evaluation). As a result, for the first variation of the proposed
modifications of RD, we replicate this behaviour by assigning
a higher weight to a decision tree (classifier) instead of
training more than one. This is done exactly the same way as
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in equation 3 when Ta(i) specifies the weight to be assigned
to the newly built classifier. Hence, when a classifier has a
weight = k, this means in the voting mechanism the same
classifier has k votes instead of only one. The removing
mechanism in this strategy is similar to the original RD and
is based on the performance; e.g. when the number of trees to
remove is k, the k least accurate trees (in the last data block)
are removed from the ensemble. Path 1 in Figure 1 depicts
the flowchart of this strategy.

2) RD2: Not considering the shrinking types
According to this strategy, when a subspace is recognised
as shrinking (based on its accuracy), it is temporarily elim-
inated from the ensemble’s voting mechanism. The evalu-
ation of such subspaces continues as normal and they are
re-activated once they start to grow again. Furthermore,
the number of trees to be added or removed is fixed to
Ta(i) = 1 and Tr(i) = 1, respectively. Therefore, in
case of growing/shrinking, only one tree is supposed to be
added/removed. Path 2 in Figure 1 shows the flowchart of
RD2.

3) RD3: Weighted trees + Not considering the shrinking types
(RD1 + RD2)
This strategy combines the first two strategies (RD1 and
RD2). Hence, the number of trees to add or remove is set
dynamically based on Equation 3, and the shrinking of types
does not take place in the ensemble’s voting system unless
they start to grow again. Figure 1 depicts the flowchart of this
strategy.

Note that all the classifiers inside the ensemble get updated
(retrained) using all the incoming data blocks. This can lead
to a faster adaptation to concept drifts in the evolving data
stream.

To restrict the size of the ensemble and avoid adding
overhead to the system, an upper bound is assigned to the
number of classifiers of classification type. In this paper, the
upper bound is set to an arbitrary value ofmax = 20. Hence,
when the maximum size of a classification type is exceeded,
a classifier should be removed from the same type before
adding a new classifier. This is done by removing the least
accurate classifier in the last data block. Furthermore, a lower
bound for each type is set to min = 1 to prevent the types to
be completely removed. Hence, when only one decision tree
related to a type remains, it is not being removed upon a poor
performance.

C. OPTIMISATION LAYER
In this paper, we use GA to optimise the combination of
attributes in each classification type (subspace) using the
existing types that have been drawn randomly in the first
phase of the proposed algorithm. Features in our framework
act as individuals or Genes and the Classification types act
as chromosomes in the Genetic Algorithm. Therefore, in
each iteration of the GA, the related operations (Selection,
Crossover and Mutation) is applied to the population and

FIGURE 1. Illustration of different strategies of implementing Replicator
Dynamics; RD1: Path 1, RD2: Path 2, RD3: Paths 1 and 2.

the fitness (of each type) is calculated over a fixed data that
is embedded to this framework. Mentioned buffer act as a
search space for the GA and stores the most recent data
that is received by the system to perform the most up-to-
date evaluation. Note that the buffer is kept fixed during each
generation of the GA iterations.

GA is performed to all the randomly drawn classification
types (from the base layer) and perform the optimisation once
a drift detector verifies a concept drift. The optimisation layer
is different from the base layer only in this part (i.e. recom-
bining types upon concept drifts), while the classification,
training and updating mechanisms are the same as explained
for the base layer (see Section III-B).

Algorithm 2 outlines the process of the optimisation layer.
Selection stage: selection of chromosomes (classification

types) in this stage is based on the performance of them
over the search space (data inside the buffer). The types
with higher accuracy than the overall average accuracy are
selected as the candidates for the crossover stage. This stage
is referred by Algorithm 2 as ”Selection()” function.

Crossover stage: The classification types selected previ-
ously in Selection stage are now get paired with each other
to produce new offsprings. In other words, the attributes
(Genes) of good performing types (Chromosomes) get mixed
with each other to produce new types. This stage is called by
Algorithm 2 using “Crossover()” function.

Mutation stage: to prevent different types to get too
similar to each other (use same features), mutation step is
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Algorithm 1: PROPOSED RD STRATEGIES

Input: Continuous block of data
DB ={db1,db2,. . . ,dbn}

n: number of features to be selected in each type
m: total number of types
max: maximum number of classifiers in each type.
Output: Classified samples

1 i := 1
2 for t := 1 to t := m do
3 Randomly select n features

4 while data stream is not empty do
5 if i ≤ max

2 then
6 Classify(dbi)
7 Grow(T) for all types

8 else
9 Classify(dbi)

10 Evaluate()

11 if a(tj) ≥
∑n

j=1 a(tj)

m then
12 Grow(tj) /* Based on the strategy */

13 else
14 Shrink(tj) /* Based on the strategy */

15 Train()
16 i := i+ 1

applied during the breeding procedure. For this purpose, the
mutation rate is set to the arbitrary value of 5%. Note this
value is a parameter of the framework and can be changed.
The “Mutation()” function in Algorithm 2 refers to this stage.

The proposed GA modification is iterated over the fixed
data inside the buffer until the maximum number of gener-
ations are produced. Then the resulting classification types
are set to grow by training new classifiers over the incoming
data blocks. The set of newly built classifiers are then get
evaluated over the incoming data. Once their average per-
formance is reached the average accuracy of the ensemble
those classifiers are then set to get involved in the voting
mechanism of the ensemble.

In the proposed method, all classifiers inside the base layer
are given the initial weight of one (Wb = 1), while those
inside the optimisation layer – two (Wg = 2). This intensifies
the effect of the optimisation layer on the algorithm, given the
optimality of the types.

In general, the proposed RED-GENE method works as fol-
low. all the instances inside a new data block get classified by
classifiers inside both layers of the ensemble (base layer and
optimisation layer). The predictions of active classifiers are
then summarised by the decision making part of the ensemble
according to their weight and output. In this paper, a concept
drift detection mechanism is employed to determine when to
start/restart the GA procedure. When GA is due to start its
procedure, the classifiers inside its layer (optimisation layer)
are removed from the ensemble to make room for the new

collection of classification types due to be built.
Once the concept drift detector confirms a drift inside the

data stream, GA starts to iterate the necessary operations over
the fixed data inside the buffer. We use the Early Drift De-
tection Method (EDDM) [24], which is specifically designed
to improve the detection in the presence of gradual concept
drifts. Note that the EDDM method is specially chosen for
the experimental part of the RED-GENE framework, hence,
any other drift detection methods can be employed as desired.
When the concept drift detector signals warning, the buffer
starts storing the incoming data to the system. Once the drift
is confirmed by the detector (signalling drift), the GA step
starts its procedures and all data inside the buffer get fixed
for fitness calculation process. The Concept Drift Detection
stage of the proposed algorithm is called by Algorithm 2
using “DriftDetector()” function.

As mentioned earlier, using concept drift detectors can
sometimes lead to false positives and false negatives resulting
in accuracy drop in the classification process. A false positive
(when the concept drift detector wrongly signals a drift)
should not negatively affect the accuracy in our proposed
framework since the new set of classification types is based
on the most recent data, and only an extra overhead would
occur to perform additional GA optimisation. A false nega-
tive that does not trigger the optimisation layer can lead to
a delay in adapting to a concept drift only if the concept
drift is abrupt and significant. On the other hand, the base
layer always grows good performing types and shrinks badly
performing types according to the most recent data, which
would help the system to adapt to the concept drift even if it
is not detected.

Algorithm 2: GA OPTIMISATION

Input: Buffer
g: Maximum number of generations
Resetting mechanism: [implicit/explicit]
Randomly drawn subspaces (types) from the base
layer, TB ={t1,t2,..,tm}
Output: New set of types, TG ={t1′,t2′,..,tm′}

1 for i := 1 to i := g do
2 Selection()
3 Crossover()
4 Mutation()

5 repeat
6 DriftDetector()
7 until DriftDetector() = Drift /*When the detector

signals a drift*/
8 Reset(GA) /*Clear genetic layer and restart GA*/

IV. EXPERIMENTAL STUDY
To evaluate the performance of the proposed framework,
a comprehensive set of experiments was conducted using
different benchmarks solutions over five real world datasets
and four synthetic data generator.
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In the first set of experiments, different variations of the
proposed framework are compared to theEACDExp method
[4] that uses a basic RD variation with a similar optimisation
mechanism. This helps better understand the impact of em-
ploying the proposed RD modifications in this paper.

In the second set of experiments, The proposed method
is compared to the existing state-of-the-art methods that
have shown good performance and liable results in non-
stationary data stream classification [13] [20] including Dy-
namic Weighted Majority (DWM) [10], Online Accuracy
Updated Ensemble(OAUE) [13], OSBoost [9], Leveraging
Bag (LevBag) [18] and Adaptive Random Forest (ARF) [20].

We developed our framework using Java programming
language Version 8. All considered methods were executed
using the Massive Online Analysis (MOA) [25], which is an
open source framework for data stream mining in evolving
environments. When running LevBag, ARF, DWM, OAUE
and OSBoost, their default parameters as implemented in
MOA were used, while the parameters of our proposed
algorithms are listed in Section IV-B. To ensure a thorough
set of experiments with precise results, ten different variants
(seeds) were generated for every synthetic data stream, and
each method was tested on all variants. The variants were
generated by changing different parameters in all synthetic
streams, as specified in Section IV-A. For every real-world
data stream, each experiment was repeated ten times over the
same data stream.

We performed two different evaluation runs for each ex-
periment. The first run involved passing one of the chosen
datasets through a specific algorithm using the prequential
evaluation technique with immediate access to the real labels
of the instances labelled by the system. This evaluation run
is called immediate setting. The second run also involved
passing each dataset through a specific algorithm in the form
of prequential evaluation; however, the real labels of the
instances labelled by the system were accessed with a delay.
This evaluation technique, called delayed setting, can lead to
more realistic experiments since actual labels of streaming
data are usually not immediately available in the real world.
For the delayed setting, the parameter of delay was set to an
arbitrary value of 1, 000; hence, the label of each instance
was revealed after passing 1,000 instances. For both the
immediate and delayed settings, the window size (width) was
set to 1,000. The experiments were performed on a machine
equipped with an Intel Core i7-4702MQ CPU @ 2.20 GHz
and 8.00 GB of installed memory (RAM).

A. DATASETS
1) Synthetic Data Streams
SEA Generator is a popular data stream generator [26] that
simulates different concept drifts by generating random drifts
in a three-dimensional feature space where only two of the
features are relevant to the target class. For the experimental
study of RED-GENE framework, ten different variations of
this concept drift detector is generated. For the first five vari-
ants, two abrupt concept drifts with a width (of the concept

drift change) of 1 were added at instances 200K and 400K,
and two recurrent concept drifts with the same width were
added at instances 600K and 800K. For the remaining five
variants, two gradual concept drifts with a width of 10,000
were added at instances 200K and 400K, and two recurrent
concept drifts with the same width were added at instances
600K and 800K.

Hyperplane Generator is a synthetic data stream genera-
tor [27] that simulates concept drifts by moving the location
of a rotating hyperplane. For the experimental part of this
paper, the number of classes is set to 2 and the total number
of features is set to 10. Furthermore, the number of drifting
attributes was changed from 2 to 6, and the magnitude of
changes was set to 0.01 or 0.02 in each variant (total of ten
generated variants).

Random Tree Generator (RTG) is another widely-used
data stream generator [28] that simulated concept drifts by
building different decision trees and selecting random fea-
tures as their split nodes and allocating random classes to
them. In our experiments, to generate ten different variations
of RTG, the number of classes for the decision trees set from
2 to 6 and the number of features ranged from 10 to 18.

LED Generator is another popular data stream generator
[29]. The target in this generator is to predict the digit shown
on a 7-segment LED display. This generator contains 24
Boolean features, 17 of which are irrelevant and the remain-
ing seven correspond to each segment of the 7-segment LED
display. The ten variants used in this study simulates concept
drifts by swapping four of its features. Furthermore, for the
first five variations of this generator, the number of drifting
attributes were selected to be 1 to 5 respectively and for
the next five variations, only the random seed were changed,
while the drifting attributes were the same as in the first five
variations.

2) Real-World Data Streams
Forest Cover-type Data Stream is a real-world dataset in
the UCI Machine Learning Repository 1. The aim in this
dataset is to predict forest cover type from the cartographi-
cal variables. this dataset consists of 581,012 instances, 54
attributes and 7 classes.

Electricity is a widely-used dataset [30] from the Aus-
tralian New South Wales electricity market. The aim in this
dataset is to predict whether the electricity price goes up or
down based on the average consumption over the last 24
hours. It contains 45,312 instances with eight features.

Airlines is another popular dataset2. The challenge in
this dataset is to predict whether or not a flight will be
delayed given the scheduled departure information such as
the operating airline, time, destination and etc. This dataset
contains 539,383 records with seven attributes.

Poker-Hand dataset from the UCI Machine Learning
Repository3 is another dataset used for the experimental

1https://archive.ics.uci.edu/ml/datasets/covertype
2http : //kt.ijs.si/elenaikonomovska/data.html
3https : //archive.ics.uci.edu/ml/datasets/Poker +Hand
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study of this paper. The target in this dataset is to predict
the poker hand consisting of five card. This dataset containes
1,000,000 instances and 11 attributes.

KDDcup99 is a dataset used in the “Third International
Knowledge Discovery and Data Mining Tools Competition”,
which includes a wide variety of intrusions simulated in a
military network environment and contains 41 attributes and
23 classes [31].

B. RED-GENE VARIATIONS
We compared the following nine variations of RED-GENE
to evaluate the effects of the proposed RD strategies and their
parameters:
RD1 uses RD with weighted trees (see Section III-B1) and
the following parameters: p = 60% and m = 0.6× f ;
RD2 uses RD and does not consider shrinking types as
explained in Section III-B2 with p = 60%, m = 0.6× f ;
RD3 uses RD with weighted trees and does not consider
shrinking types (Section III-B3) with p = 60%,m = 0.6×f ;
RD1Lite is a lite version of RD1 with p = 40%,m = 0.4×f ;
RD2Lite is a lite version of RD2 with p = 40%,m = 0.4×f ;
RD3Lite is a lite version of RD3 with p = 40%,m = 0.4×f ;
RD1+GA is a version of RD1 optimised using GA with the
number of generations (g) set to 15 and the mutation rate set
to 5% (other parameters: p = 60%, m = 0.6× f );
RD2+GA is a version of RD2 optimised using GA with the
number of generations (g) set to 15 and the mutation rate set
to 5% (other parameters: p = 60%, m = 0.6× f );
RD3+GA is a version of RD3 optimised using GA with the
number of generations (g) set to 15 and the mutation rate set
to 5% (other parameters: p = 60%, m = 0.6× f ).

C. RESULTS AND DISCUSSION
The considered algorithms are compared based on standard
criteria, including the classification accuracy and overall time
of evaluation involving testing and training the framework.
Tables 1 and 2 list the average accuracies for all variations
of the proposed RED-GENE framework, along with our
own EACD [4] method over the nine datasets in the im-
mediate and delayed settings. The GA-optimised variations
(RD1+GA, RD2+GA, RD3+GA and EACD) perform better
than the RD-only variations (RD1, RD2 and RD3) and signif-
icantly better than the RDLite variations (RD1Lite, RD2Lite
and RD3Lite). This is because the former variations include
a concept drift detection mechanism enabling the system to
optimise the combination of features in every type of the
ensemble, especially upon concept drifts. RD3+GA has the
best average accuracy over seven out of nine datasets in the
immediate setting, five out of nine datasets in the delayed
setting and the best overall average accuracy in both the
immediate and delayed settings. Furthermore, since the same
parameters were employed for both the EACD method and
RD3+GA variation, we can analyse the impact of applying
the proposed RD variations in this study. Consequently, it is
evident that the newly proposed RD strategies improve the

classification accuracy compared to the basic RD variation
used in EACD [4].

Table 3 lists the average accuracies along with standard
deviation, minimum and maximum values of the RD3+GA
variation compared to the considered state-of-the-art meth-
ods. It can be noticed that RD3+GA has the best average
accuracy over Hyperplane, LED, SEA, Airlines, Electricity
and Poker-Hand datasets, as well as the best overall average
accuracy in both the immediate and delayed settings. It can
also be noticed that DWM, OAUE and OSBoost have the
same standard deviation of zero for all real-world data sets,
while RD3+GA, LevBag and ARF have different standard
deviation values. This is because the latter algorithms use
randomisation in their procedures, while the former do not.

Figure 2 demonstrates the overall evaluation time of RED-
GENE variations and EACDExp method in seconds. It is
clear that the variations without GA optimisation are faster
than the ones with it due to the time complexity of GA.
Furthermore, all RDLite variations are faster than the other
variations as they have fewer types and features in each type.
Figure 3 illustrates the overall evaluation time of the pro-
posed RED-GENE method compared to the other considered
state-of-the-art methods. DWM and OSBoost algorithms
have the shortest evaluation time by far for the majority
of the datasets (DWM over SEA, Airlines, Electricity and
Poker-Hand datasets, and OSBoost over Hyperplane, LED
and Forest Cover-type datasets), while the proposed RED-
GENE RD3+GA variation has the longest evaluation time in
most cases.

In summary, the main advantage of RED-GENE is its
accuracy providing the best average rank compared to
the state-of-the-art methods and robust performance in
evolving environments with concept drifts. In addition, the
RD strategies proposed in this paper are more efficient than
the basic RD strategy used in our previously proposed EACD
method. The main drawback of the best performing RD3+GA
variation of RED-GENE is its longest evaluation time over
six out of nine datasets, which is due to the employment of
two different evolutionary algorithms (RD and GA), along
with a concept drift detection method (EDDM). At the same
time, the RD1, RD2 and RD3 variations of RED-GENE offer
slightly shorter evaluation times and significantly shorter
times in their lite versions (RD1Lite, RD2Lite and RD3Lite)
while maintaining a high accuracy in many cases.

D. STATISTICAL ANALYSIS
We performed the Friedman [32] and Nemenyi [33] statistical
tests to further analyse the results of our experiments regard-
ing the RD3+GA variation of the proposed framework, along
with the considered state-of-the-art methods.

Table 4 shows the average rank and its squared value
for each algorithm in our experiments with k = 6 and
N = 18. Providing that the value of Friedman test statistic
is χ2

F = 31.80 with 5 (k − 1) degrees of freedom, and the
critical value for Friedman test given k = 6 and N = 18 is
14.63 at the significance levelα = 0.01, we can conclude that

8 VOLUME 4, 2016
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TABLE 1. Average accuracy (%) in the immediate setting of the RED-GENE variations and EACDExp method over multiple variants of different datasets.
RD3+GA achieves the highest average accuracy.

Dataset RD1 RD2 RD3 RD1Lite RD2Lite RD3Lite RD1+GA RD2+GA RD3+GA EACD
Hyperplane 87.21 87.84 89.26 79.46 78.27 81.20 91.15 90.84 92.84 90.59
LED 74.83 75.69 76.23 70.24 70.16 71.54 76.04 77.24 77.65 75.45
RTG 88.06 88.42 89.05 81.43 82.08 81.93 91.67 91.63 92.03 91.42
SEA 89.30 89.34 89.54 79.21 78.36 79.83 89.23 89.71 89.14 90.08
Airlines 64.32 63.63 64.39 62.81 61.06 61.45 66.89 66.45 66.88 66.61
Electricity 86.91 88.06 89.14 78.35 76.32 79.34 88.45 90.56 91.03 92.14
Forest 85.61 86.43 87.45 75.32 77.02 76.13 89.78 91.03 92.73 91.73
KDDcup99 99.72 99.71 99.75 99.45 99.51 99.19 99.75 99.78 99.78 99.78
Poker 87.49 88.24 87.82 79.24 80.74 81.51 89.65 90.05 90.15 86.21
Overall Ave. 84.83 85.26 85.85 78.39 78.16 79.12 86.84 87.25 87.98 87.11

TABLE 2. Average accuracy (%) in the delayed setting of the RED-GENE variations and EACDExp method over multiple variants of different datasets. RD3+GA
achieves the highest average accuracy over five out of nine data sets.

Dataset RD1 RD2 RD3 RD1Lite RD2Lite RD3Lite RD1+GA RD2+GA RD3+GA EACD
Hyperplane 86.94 87.23 88.86 79.53 78.14 80.04 90.52 90.92 92.03 90.02
LED 75.15 75.69 75.23 71.34 70.25 70.93 76.01 76.54 76.73 75.26
RTG 88.06 87.42 87.05 81.30 81.54 81.32 89.44 89.08 90.24 91.05
SEA 87.30 88.34 87.52 78.46 78.03 79.24 88.34 89.24 88.54 89.22
Airlines 63.85 62.03 62.39 61.67 60.78 61.06 65.49 64.34 64.45 63.35
Electricity 81.91 81.20 81.42 75.35 74.20 77.25 83.56 82.90 83.41 85.03
Forest 84.61 85.43 85.83 75.19 76.24 75.50 86.42 86.50 87.19 84.83
KDDcup99 99.73 99.72 99.73 99.46 99.49 99.50 99.74 99.73 99.76 99.76
Poker 80.49 79.53 80.56 77.16 78.42 78.92 82.65 82.10 83.11 80.21
Overall Ave. 83.12 82.95 83.18 77.71 77.45 78.19 84.69 84.58 85.05 84.30

TABLE 3. Average accuracy (%) in the immediate/delayed settings of RED-GENE compared to the state-of-the-art methods. RD3+GA achieves the highest
average accuracy over nine out of 18 experiments in both the immediate and delayed settings.

Dataset Criteria ARF DWM LevBag OAUE OSBoost RD3+GA

Hyperplane Ave.(%) 88.17/88.05 89.64/89.41 91.03/90.77 91.42/91.10 85.85/85.74 92.84/92.03
σ(%) 1.90/2.02 0.830.95 1.60/1.71 1.46/1.59 3.01/3.06 2.02/2.00

LED Ave.(%) 74.05/74.00 75.05/74.14 74.22/74.21 73.99/74.06 74.15/74.13 77.65/76.73
σ(%) 0.31/0.40 3.10/0.16 0.31/0.15 0.10/14.00 0.11/0.04 2.45/2.63

RTG Ave.(%) 78.35/78.24 59.35/59.49 90.78/90.91 88.88/88.72 93.40/85.53 92.03/90.24
σ(%) 8.12/8.06 8.87/8.64 2.26/2.48 3.26/5.13 1.45/2.90 2.00/2.41

SEA Ave.(%) 88.67/88.94 87.72/87.48 87.59/88.70 88.69/88.54 85.56/85.31 89.14/88.56
σ(%) 0.58/0.59 0.57/1.02 1.67/1.45 0.58/0.70 0.35/0.42 2.43/2.41

Airlines Ave.(%) 63.53/61.42 63.97/60.57 59.42/58.49 64.02/62.73 61.98/61.80 66.88/64.45
σ(%) 1.23/1.12 0/0 0.73/0.89 0/0 0/0 1.43/1.90

Electricity Ave.(%) 92.17/83.51 75.73/67.43 92.09/81.78 91.60/80.20 88.02/79.04 91.03/83.41
σ(%) 0.94/1.19 0/0 1.48/0.88 0/0 0/0 3.14/2.84

Forest Ave.(%) 93.57/85.65 83.75/74.93 92.73/86.22 90.70/86.84 84.45/74.47 92.73/87.19
σ(%) 1.58/2.60 0/0 2.10/2.72 0/0 0/0 2.83/2.04

KDDcup99 Ave.(%) 99.81/99.80 99.04/99.12 99.82/99.81 99.80/99.78 99.74/99.74 99.78/99.76
σ(%) 0.06/07 0/0 0.01/0.01 0/0 0/0 0.14/0.07

Poker Ave.(%) 84.19/67.95 74.37/59.31 88.52/76.78 80.74/73.81 84.31/81.23 90.15/83.11
σ(%) 4.55/2.92 0/0 3.34/3.72 0/0 0/0 1.08/1.62

the accuracy values of the studied methods are significantly
different (31.80 is greater than 14.63).

Now that the Null-hypothesis is rejected, we can proceed
with a post-hoc test. The Nemenyi test [33] can be used for
comparing classifiers to each other [34]. The performance of
two classifiers is significantly different if the corresponding
average ranks differ by at least the critical difference (CD).

The critical value in our experiments with k = 6 and
α = 0.10 is q0.10 = 1.614. As a result, the accuracy of
the proposed RD3 + GA method is significantly different
from ARF, DWM, and OSBoost methods, while it is not
significantly different from LevBag and OAUE methods. Fig-

ure 4 graphically represents the comparison of the different
methods employed in our experiments based on the Nemenyi
test.

V. CONCLUSION AND FUTURE WORK
In this paper, we proposed a framework called RED-GENE to
cope with different concept drifts in data stream classification
tasks. The proposed framework offer three novel strategies of
Replicator Dynamics (RD) along with a Genetic Algorithm
(GA) optimisation technique. RD was used to grow and
shrink a randomly drawn set of subspaces (classification
types) in the ensemble according to the most recent instances
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FIGURE 2. Average evaluation time (in seconds) of executing RED-GENE variants and EACD method over different data streams in the immediate setting.

FIGURE 3. Average evaluation time (in seconds) of executing RED-GENE and other state-of-the-art methods over different data streams in the immediate setting.

TABLE 4. Average rank of the methods considered in the experiments according to the Friedman test.

Dataset ARF DWM LevBag OAUE OSBoost RD3+GA
Rj 3.500 4.944 2.888 3.333 4.500 1.833
R2

j 12.250 24.447 8.346 11.111 20.250 3.361

of the data stream. GA was employed to optimise the com-
bination of features of the types when a concept drift was
detected by the Early Drift Detection Method (EDDM).

To test the proposed framework, a set of experiments
was conducted with four synthetic and five real-world data
streams. Nine different variations of RED-GENE were im-
plemented to examine different strategies of adopting RD in
online learning and assess the effect of selecting different
parameters. In addition, RED-GENE was compared to the
existing state-of-the-art methods and our previously proposed
EACD method. The results of the comparison demonstrated
that RED-GENE had the highest average accuracy and best

average rank among all compared methods in two different
settings (immediate and delayed). However, the overall eval-
uation time of RED-GENE was the longest over the majority
of considered datasets.

Eventually, using the Friedman statistical test, it was
shown that the performance of the studied methods in the
experiments were significantly different. Furthermore, using
the Nemenyi test, it was proved that the performance of
RED-GENE was significantly better that ARF, DWM and
OSBoost, while it was not significantly better than LevBag
and OAUE algorithms.

In the future, we plan to extend our current work to
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FIGURE 4. Comparison of all methods using the Nemenyi test at α = 0.10.

implement and analyse the following ideas: (1) Propose
a novel concept drift detection algorithm by conducting a
behavioural analysis of the classification types in the base
layer of the proposed framework (using RD to grow and
shrink the types); (2) use a dynamic weighting mechanism for
both layers of the proposed framework. This can potentially
improve the performance of the proposed framework; and (3)
apply other bio-inspired techniques in the optimisation layer
of the proposed framework.
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