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Abstract: Entity resolution (ER) with imperfection management has been 
accepted as a major aspect while integrating heterogeneous information sources 
that exhibit entities with varied identifiers, abbreviated names, and multi-valued 
attributes. Many of novel integration applications such as personal information 
management and web-scale information management require the ability to 
represent and manipulate imperfect data. This requirement signifies the issues of 
starting with imperfect data to the production of probabilistic database. However, 
classical data integration (CDI) framework fails to cope with such requirement 
of explicit imperfect information management. This paper introduces an 
alternative integration framework based on the best-effort perspective to support 
instance integration automation. The new framework explicitly incorporates 
probabilistic management to the ER tasks. The probabilistic management 
includes a new probabilistic global entity, a new pair-wise-source-to-target ER 
process, and probabilistic decision model logic as alternatives. Together, the 
paper presents how these processes operate to support the current heterogeneous 
sources integration challenges.  
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1 Introduction 
Information integration (II) in its various appearances is one of the most relevant and 
critical problems studied in the database management and artificial intelligence (AI) fields, 
as well as in related areas such as the semantic web. The common definition of II is being 
the general process of obtaining a single source out of some heterogeneous information 
sources (Ziegler and Dittrich, 2004, p. 4). Challenges in II originate from its sources and 
data quality.  

The participated sources are developed and maintained independently with 
different interfaces, data models, schemas, data representation, and may contain a 
collection of semi-structured or unstructured objects that have the potential to be integrated 
while providing useful services to users. The information space term is used to refer to such 
collaboration (Magnani and Montesi, 2007, p.18; Ioannou, Niederee, and Nejdl, 2008; 
Dong and Halevy, 2005, p.26; Motro and Anokhin P, 2006, p.177).  

There are many definitions of data quality. Data can be considered high quality if 
it is fit for its intended uses in operations, decision making and planning (Strong, Lee, and 
Wang, 1997, p.103). Furthermore, as data volume increases, the question of internal data 
consistency becomes significant, regardless of fitness for use for any particular purpose. 
People's views on data quality can often be in disagreement, even when discussing the 
same set of data used for the same purpose. Therefore, Dong and Naumann (2009) have 
suggested approaches in data fusion to ensure data quality. 

Best-effort or schema-based is a dataspace approach proposed toward reaching 
the DataSpace Support Platform (DSSP) vision of overcoming the CDI limitations and 
supporting complex information space applications (Franklin, Halevy, and Maire, 2005; 
Halevy, Franklin, and Maire, 2006; Kuicheu et al, 2013; Sarma, Dong, and Halevy, 2009, 
p. 123). This approach recognises that imperfection inherently unavoidable in the 
integration process, yet imperfect information is valuable and even more useful than losing 
it, and hence, it is an important result to be managed and viewed to users (Zhang et al., 
2008; Hedeler et al., 2010, p.114). An approach is presented by Dong and Halevy (2005) 
as a best-effort integration solution exhibits various CDI’s benefits at lower cost, on-
demand and more automated integration, however, their approach has been criticised for 
producing lower integration and merged content quality (Dittrich, Salles, and Blunschi, 
2009; Sarma, Dong, Halevy, 2011). The approach takes a CDI framework, as mediator-
based, and attempts to relax it by reducing or removing the manual intervention in its 
integration process while providing useful service to both technical and non-technical 
users. Users can relax the CDI framework to simplify, remove or make several integration 
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components less precise while maintaining an automated process (Blanco et al., 2010; 
Sarma, Dong, and Halevy, 2011).  

 
The term Entity Resolution (ER) is used in this paper to refer to the process of 

handlings the actual data entity and the data conflicts. ER also refers to the process of 
handling conflicts and imperfections raised at the instance level due to the actual nature of 
data, the probabilistic matching heterogeneity at the instance integration level (Ioannou, 
Niederee, and Nejdl, 2008; Ioannou et al., 2012; Li et al., 2015). ER process composes of 
two sub-tasks to respond to these conflicts: entity linkage that handles the entity conflict, 
and data fusion that handles the data inconsistency (Dong and Naumann, 2009; Jiang, 2008; 
Haase and Volker, 2008; Panse et al., 2010; Ioannou and Staworko. 2013). Therefore, ER 
with imperfection management is recognised by several researchers as one of the crucial 
requirements and challenges in the age of information spaces integration (Magnani and 
Montesi, 2010; Hedeler et al., 2010; Agrawal and Yu, 2009). 

 
On the other hand, probability theory is presented in the literature as an 

appropriate modelling strategy for imprecise integration approaches through the possible-
worlds manipulation and probabilistic database generation (Ioannou, Niederee, and Nejdl, 
2008; Magnani and Montesi, 2010; Hedeler et al., 2010).  Probability theory provides 
explicit representation and numeric quantifications to imperfect data. The overall process 
presents the issues of starting with imperfect data to the construction of probabilistic 
database(s) (Magnani and Montesi, 2010; Dong, Halevy, and Yu, 2009; Sarma, Dong, and 
Halevy, 2011). 

 
When considering the new requirements and challenges of explicit imperfect 

information management, the CDI framework fails to cope and support this complex 
scenario of integration as stated by the recent literature studies (Cooper and Devenny, 
2009; Magnani and Montesi, 2010; Ioannou et al., 2011). The CDI framework’s 
components are formulated based on precise integration handling and outcome, which is a 
major undertaking that requires significant upfront human intervention. Moreover, the CDI 
framework treats instance integration as a secondary issue by assuming the existence of 
universal key identifier and a fair number of attributes’ values (Jaradat, 2015). The key to 
these challenges is the traditional Decision Model (DM) in the CDI process.  The DM 
encapsulates its logic with the manual matching process due to the precise and manual 
review enforcement and the iterative process at different entity orders’ needs. Thus, DM 
presents a major obstacle to achieving automated and efficient linkage results. As a 
consequence, the CDI framework cannot automatically and efficiently address the 
information integration over heterogeneous information spaces using the traditional pre-
selected thresholds and decision model logic; and hence, it needs to be extended or replaced 
(Jaradat, 2015).  

 
The main contributions of this paper are introducing a new integration framework 

that takes imperfect information management and instance integration as a primary 
component in its structure. This work supports the best-effort perspective by considering 
the ER as a non-trivial problem and uses the traditional source-to-target framework as its 
base in adding a new element to its original structure. In this paper, the authors relate the 
CDI framework’s notation and its ER associated approaches. In particular, the paper 
presents the implemented resolution process, DM logic approach, and the CDI 
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framework’s limitations to address the ER problem over heterogeneous information 
sources.  This paper’s main contribution is to present a framework including concept, 
formulation and process. Finally, the paper concludes by identifying corresponding 
functionality resolutions challenges that require further probabilistic management 
modelling attention.  
  
2 Related Work 
From the traditional perspective, the CDI framework is formulated based on precise 
integration components of (Θ, 𝑆,𝑀), where Θ can be a target (Τ) or global schema (𝐺), 𝑆 
is a local schema, and 𝑀 is a mapping from 𝑆 to Θ. Throughout this formulation, the DM 
logic is performed using a comparison function, i.e. 𝑠𝑖𝑚 (𝑟1, 𝑟2), predefined threshold 
value(s), i.e. {δm, δp}, and a precise DM of (𝑀𝑎𝑡𝑐ℎ [𝑀], 𝑃𝑜𝑠𝑠𝑖𝑏𝑙𝑒 − 𝑀𝑎𝑡𝑐ℎ [𝑃], 𝑁𝑜𝑛 −
𝑀𝑎𝑡𝑐ℎ [𝑈]) classes or (𝑀, 𝑈) classes, to determine to which class the compared pair will 
be assigned (Subramaniyaswamy and Pandian 2012; Elmagarmid, Ipeirotis, and Verykios, 
2007). Furthermore, classes’ assignment process is preceded iteratively in independent 
logic, or dependent logic at recent ER works by jointly identifying and resolving related 
items (Kalashnikov et al., 2008; Bhattacharya, Getoor, and Licamele, 2007; Ioannou and 
Staworko 2013; Ioannou and Velegrakis 2016). Figure 1 shows the dependent integration 
process between three sources, where ER are collectively done in iterative and propagated 
process. 

 

 
 

Fig. 1 The traditional pair-wise iteration for integrating three sources (Jaradat, 2015) 
 
Recently the works of Cooper and Devenny (2009), Magnani and Montesi (2009), 

and Sarma, Dong, and Halevy (2009) have demonstrated how to implement or extend CDI 
framework based on its traditional processes and DM using varied collective ER 
approaches by varied probabilistic schema generation proposals.   

  
Xu and Embley (2003) defined the framework 𝐼 as triple (𝑇, {𝑆𝑖}, {𝑀𝑖}), where 𝑇 

is a target schema, {𝑆𝑖} is a set of 𝑛 source schemas, and {𝑀𝑖} is a set of 𝑛 source-to-target 
mappings, such that for each 𝑆𝑖 schema there is a mapping 𝑀𝑖 from 𝑆𝑖 to 𝑇, 1 ≤ 𝑖 ≤ 𝑛 (Xu 
and Embley, 2003). Both target and source schemas in 𝐼 are presented in rooted graphs, 
where the graph includes a set of objects sets 𝑂 and a set of relationship sets 𝑅. For a 
schema 𝐻, which is either a source or a target schema, the union of 𝑂 and 𝑅 is denoted by 
∑𝐻 and 𝑉𝐻 depicts the extension of ∑𝐻 with derived 𝑂 and 𝑅 sets. A source-to-target 
mapping 𝑀𝑖  for 𝑆𝑖 schema on 𝑇  the schema is a function of 𝑓𝑖(𝑉𝑆𝑖) ⟶ ∑𝑇. The mapping 
shows inter-schema correspondences between a 𝑆𝑖 schema and a 𝑇 schema.  
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Pankowski (2008) extended the above framework by adding probability to its 
mapping element. He defined a probabilistic XML integration framework as 
(𝑆, 𝑇,𝑀𝑆𝑇 , 𝑃𝑟𝑜𝑏), where (𝑆, 𝑇,𝑀𝑆𝑇) is an ordinary source-to-target framework and 𝑃𝑟𝑜𝑏 
is a probability function over 𝑀𝑆𝑇: ∀ 𝑚 ∈ 𝑀𝑆𝑇 , 𝑃𝑟𝑜𝑏(𝑚) ∈ [0,1], ∑ 𝑃𝑟𝑜𝑏(𝑚)𝑚∈𝑀𝑆𝑇

= 1. 
Moreover, Sarma (2009) provided a framework for DIS with the uncertainty that extended 
the source-to-target framework by providing probabilistic schema mappings (𝑝𝑀), and 
probabilistic mediated schemas (𝑀) (Sarma, Dong, and Halevy, 2011). He refers to a 
source schema as 𝑆̅, and to a relation in 𝑆̅ as 𝑆 = 〈𝑠1, … , 𝑠𝑚〉. Similarly, he refers to the 
target schema as �̅�, and to a relation in �̅� as 𝑇 = 〈𝑡1, … , 𝑡𝑛〉. Schema mappings are 
considered in a limited form. It was in sort of attribute correspondences as 𝑐𝑖𝑗= (𝑠𝑖 , 𝑡𝑗), 
where 𝑠𝑖 is a source attribute in the schema 𝑆 and 𝑡𝑗 is a target attribute in the schema 𝑇. 
Based on that, a 𝑝𝑀 is a triple (𝑆, 𝑇,𝑚), where 𝑆 ∈ 𝑆̅, 𝑇 ∈ �̅�, and 𝒎 is a set of 
{(𝑚1, 𝑃𝑟(𝑚1)), … , (𝑚𝑙 , 𝑃𝑟(𝑚𝑙))}, such that for 𝑖 ∈ [1, 𝑙], 𝑚𝑖 is a one-to-one mapping 
between 𝑆 and 𝑇, for every 𝑖, 𝑗 ∈ [1, 𝑙], 𝑖 ≠ 𝑗 ⟹ 𝑚𝑖 ≠ 𝑚𝑗, and ∑ 𝑃𝑟(𝑚𝑖) =

𝑙
𝑖=1 1. A 

probabilistic mediated schema for {𝑆1, … , 𝑆𝑛} sources is a set of = {(𝑀1, 𝑃𝑟(𝑀1)), … , (𝑀𝑙 ,  
𝑃𝑟(𝑀𝑙))}, where for each 𝑖 ∈ [1, 𝑙], 𝑀𝑖 is a mediated schema for (𝑆1, … , 𝑆𝑛), and for 
each 𝑖, 𝑗 ∈ [1, 𝑙], 𝑖 ≠ 𝑗,𝑀𝑖and 𝑀𝑗 correspond to different clustering of the source attributes, 
and ∑ 𝑃𝑟(𝑀𝑖)

𝑙
𝑖=1  = 1. Moreover, each 𝑀𝑖 for the set {𝑆1, … , 𝑆𝑛} sources is denoted by 𝑀𝑖 =

{𝐴1, … , 𝐴𝑚}, where each of the 𝐴𝑖 is called a mediated attribute. The mediated attributes 
are sets of attributes from the data sources, i.e. 𝐴𝑖 ⊆ 𝐴; for each 𝑖, 𝑗 ∈ [1,𝑚], 𝑖 ≠ 𝑗 ⇒ 𝐴𝑖 ∩

𝐴𝑗 = ∅, such that 𝐴 is the set of all source attributes, i.e. 𝐴 = (𝑎𝑡𝑡𝑟(𝑆1) ∪ …∪ 𝑎𝑡𝑡𝑟(𝑆𝑛)), 
and 𝑎𝑡𝑡𝑟(𝑆𝑖) denotes the attributes in the schema 𝑆𝑖 , 𝑖 ∈ [1, 𝑛].  

 
As stated by Magnani and Montesi (2010) that the goal of uncertain or imperfect 

data integration is the usage of the imperfection presented in the data sources and/ or 
generated during the matching process to build an uncertain integrated view of the data that 
is represented in a sort of several alternative results. They also sated in Magnani and 
Montesi (2007) that models for data integration with uncertainty management can represent 
integrated data sources resulted from uncertain data integration processes.  

 
In fact, providing an explicit uncertainty management integration approach 

requires us to deal with uncertain or imperfect data at different levels or results during the 
matching and integration processes and phases, while obtaining a compact representation 
of alternative results associated with confidence values that indicates the level of 
correctness. Therefore, the uncertainty or imperfection management modelling are 
required to represent and handle imperfect and heterogeneous data sources, the generated 
results from the matching processes and its Decision Model (DM) logic, and the generated 
results from the merging processes, i.e. the mediated schema, the global instance, and/ or 
the merged data values. (Magnani and Montesi, 2010; Magnani and Montesi, 2007, Dong, 
Halevy, and Yu, 2009, Sarma, Dong, and Halevy, 2009). 

 
In table 1, we compare the main papers that are related to our work with regards 

to the data integration framework with explicit uncertainty management. In particular, we 
focus on the main data integration tasks and elements that require explicit uncertainty 
management handling and how the related works addressed them.   

Table 1 Comparison between different data integration approaches.    
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Criteria 
 
 
 
 
Related works 

The type data 
sources 

Similarity 
Technique    

(Collective / 
Source to 

target) 

DM Logic 
(Precise/ Most 

likely   
Probabilistic) 

Level of 
Integration  
(Schema, 

Instance, Data 
fusion) 

The Merging 
Result (Precise/ 
Probabilistic) 

Cooper and 
Devenny (2009) 

Text data 
represented in 
sort of entities. 

Data sources are 
associated with 

a reliability 
measure 

Collective 
process 

K Most likely: 
using a 

predefined 
threshold value 

Data fusion 
level 

Precise outcomes 
based on 

predefined 
threshold values. 

Magnani and 
Montesi (2009) 

Text data 
represented in 
sort of sets of 

schema objects. 

Source to 
target process 

Probabilistic Schema level Probabilistic 

Sarma, Dong, and 
Halevy (2011) 

Text data 
represented in 
sort of sets of 

schema objects. 

Source to 
target process 

Probabilistic Schema level Probabilistic 

Xu and Embley 
(2003) 

Text data 
represented as 
sets of schema 

objects. 

Source to 
target process 

Precise DM logic Schema level Precise outcomes 

Pankowski (2008) 
Text data 

represented in 
XML Format 

Source to the 
target process 

Probabilistic Schema level Probabilistic 
outcomes 

Whang and 
Garcia-Molina 
(2012) 

Text data 
represented in 
sort of records 

Collective and 
iterative 
process 

Precise and 
collective DM 

logic 

Instance level Precise outcomes 
based on the 
predefined 

threshold value. 

Nikolov et al. 
(2008) 

Text data 
represented in 

OWL 
knowledge 

bases 

Iterative and 
collective 
process 

Precise DM logic 
based on 

Threshold values 

Instance and 
data fusion 

levels 

Precise outcomes 
based on 

predefined 
threshold values 

Panse Approach 
(Panse & Ritter 
2010; Panse et al., 
2010; Panse 2015)  

digital data 
represented in 

sort of relational 
probabilistic 

data 

Source to the 
target process 

Precise  DM 
logic based on 

Threshold values 

Instance and 
data fusion 

levels 

Probabilistic 
outcomes based on 

predefined rules 
with threshold 

values 
Ioannou Approach 
(Ioannou et al., 
2013; 2012; 2011) 

Text data 
represented in 
sort of entities 

Source to 
target and 
collective 
processes 

Probabilistic DM 
Logic 

Instance and 
data fusion 

levels 

Probabilistic 
outcomes 

Bhattacharya, 
Getoor, and 
Licamele (2007)  

Text data 
represented in 

sort of  returned 
query’s records 

Collective 
process 

Precise DM logic Instance level Precise outcomes 
based on collective 

resolution 

Christen (2008) 
Text data 

represented in 
sort of records 

Source to the 
target process 

Precise  DM  
based on 

Threshold values 

Instance level Precise outcomes 
based on 

predefined 
threshold values 

 
Based on the summarised discussion above, we can outline several lessons learned 

regarding the need of a proper uncertainty management modelling that can explicitly 
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address and represent the imperfection at the entity resolution level, i.e. instance and data 
fusion phases. These remarks have directly motivated researcher to extends the CDI 
framework, the data matching process and its DM logic, and the ER process to explicitly 
cope, represent and manage uncertain data. The lessons learned are stated as follows:  

 
• The above CDI framework definitions maintain instance integration as either a precise 

or in a static manner when processed based on the traditional collective and iterative 
resolution. Therefore, existing ER methodologies based on the CDI framework suffer 
from one of the main drawbacks of the database systems in supporting heterogeneous, 
imperfect and volatile data (Magnani and Montesi, 2010, Blanco et al., 2010, Ioannou 
et al., 2011, Ioannou et al., 2012). Our review shows a large number of collective ER 
efforts on extending the CDI framework at the schema level are failing to completely 
or closely produce accurate linkage results without manual reviews (Cooper and 
Devenny, 2009; Whang and Garcia-Molina 2012; Nikolov et al., 2008; Bhattacharya, 
Getoor, and Licamele, 2007). The failure occurs due to the usage of the preselected 
threshold value(s) that requires users to be extra careful. In fact, tuning threshold values 
are a difficult and very much a domain-dependent process. 

• The works Magnani and Montesi (2010), Ioannou (2011), and Panse & Ritter (2010) 
show that ER over heterogeneous information sources is not a secondary issue in the 
integration framework. Furthermore, the process can handle the schema integration by 
assuming the existence of universal key identifiers and a fair number of attribute values. 

• ER with explicit uncertainty management up to the end of the resolution process cannot 
be efficiently addressed using the traditional collective and iterative pair-wise 
resolution process, which modifies the actual data based on the DM’s resulted data to 
be collectively used in the followed iterations. Several iterative processes at different 
orders are needed since collective ER’s results are highly depended on the order of the 
examined items (Bhattacharya, Getoor, and Licamele, 2007; Christen, 2008; Ioannou 
et al., 2012). Figure 1(b) shows the integration of three objects, as originated from three 
sources, due to the use of the traditional iteration. Note here that iterations one and two 
results in different objects’ order and may lead to different resolution results. 

• ER with uncertainty management cannot be automatically handled using the traditional 
DM logic due to the volatile data nature, and the encapsulation process of the matching 
outputs with the DM logic, which has been treated as a part of the matching 
classification and leads to a major limitation concerning its impracticability for 
probabilistic ER. If the new attribute value is added or updated, the user needs to make 
new decisions. DM cannot be adjusted individually, or during clustering, hence, it needs 
to be continuously repeated. Therefore, it becomes a discouraging, difficult and 
inefficient process. Moreover, adding a new source might cause the process to reach a 
stage that does not reflect the reality of the participated sources since the process is 
limited to two sources, i.e. the new source and the merged source with the modified or 
removed data. Previous merging decisions cannot be modified even if new negative 
evidence might appear in the newly participated source (Blanco et al., 2010; Ioannou 
et al., 2012). 

• The ER with uncertainty management cannot be explicitly incorporated using 
traditional probabilistic approaches. Traditional probabilistic approaches failed to 
maintain matching outputs in a sort of probabilistic data sets, or the probabilistic 
matching outputs had been replaced by predefined rules to generate precise mapping 
decisions, such as the works presented in Panse et al. (2010), and Magnani and Montesi 
(2007). 
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• The work of Panse (2015) shows CDI’s inefficient handling of data fusion with explicit 
uncertainty management by using probabilistic data fusion strategies that do not 
consider the probabilistic linkage and merge outcomes. 

• Majority of the works, except for Panse (2015), represent the integration of text/ string 
data format. The integration of data sources containing both string and digital data such 
as images is not taken into consideration so far. 

• Finally, the promising efforts presented by Sarma, Dong, and Halevy (2011), Magnani 
and Montesi (2010), and Ioannou et al. (2012) show encouraging results toward data 
integration with explicit uncertainty management.  

 
Consequently, this paper proposes an alternative integration framework that 

considers volatile data, instance integration, and uncertainty management as primary 
elements in the framework structure. 
 

The proposed framework in this paper can complement the works done by Sarma, 
Dong, and Halevy (2011) and by Magnani, and Montesi (2010) toward a complete and 
formal information integration framework with explicit uncertainty management 
incorporation. It also goes in parallel with recent ER efforts done by Ioannou et al. (2013; 
2012; 2011) and Panse (2015) toward a comprehensive probabilistic ER solution. It extends 
the probabilistic database definition to capture the probability at the linkage level besides 
type-I and type-II levels. Furthermore, our proposed framework in regards to its ER 
features and process comes with additional features to suit the problem space of imperfect 
and heterogeneous data, which can be exited in multiple formats such as text and images. 
The framework generates a probabilistic global entity (nDO) that exhibits the benefits of 
the iDO concept representation and its categorisation rules. Utilizing the iDO concept in 
the proposed framework makes it more practical and effective; as it allows the generation 
of domain-independent resolution rules based on the attributes (sub-) categories, and their 
mapping correlations with the EoI. Thus, more-general dependency rules can be created 
that suit varied information space domains without the need for further modification. These 
rules can reduce the uncertainty in the possible-worlds generation, and hence, enhance the 
ER results. Besides that, the proposed framework avoids pitfalls that may result from the 
one-time prior and collectively merging decisions. It also can support volatile data more 
efficiently as the linkage decision is separated from the merging decision, computing and 
maintain decision and merger separately, and merge on the fly upon a user’s request. 
Therefore, no entities’ merging is performed in advance, where any addition of new entities 
requires only the computation of the linkages or, in some cases, the re-computation of the 
probability of existing linkage. Moreover, the clear separation of matching, linkage, and 
merging processes and results in the implemented ER process, i.e. chain of subsequent 
phases of the resolution would make the process more efficient as any update can be 
accepted without the need for re-executing the whole process.  

 
3 The Proposed Framework 
This paper introduces a framework to support the automation of instance integration by 
explicitly incorporating probabilistic management to the ER tasks. It also aims to extend 
the pair-wise-source-to-target CDI framework based on the best-effort perception and to 
consider entities integration over multiple heterogeneous and volatile information sources.  
The proposed new framework presents a new alternative to pair-wise-source-to-target ER 
process that effectively copes with the uncertainty management manipulation and avoids 
the traditional iterative and collective cost. The framework implements a process by 
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maintaining the actual data of the participated sources, separating the matching process 
from the ER decision logic, assigning a probabilistic value of similarity between the 
matched data pairs, as well as the probabilistic linkage information. Moreover, the new 
framework operates over a collection of entities that describe Real-World Objects (RWOs) 
originated from heterogeneous and volatile information sources. These entities are 
represented based on the iDO concept to be the unified data model for the participated 
sources (Deraman et al., 2009, Deraman et al., 2005). The participated entities are 
described using iDO conceptualisation and attributes categorisations to enable rich entity 
representation, distinguish between strong and weak attribute evidence, and provide 
domain independent ER rules. Finally, the framework introduces an alternative 
probabilistic DM to replace the precise one, which assures the production of a probabilistic 
global entity (𝑛𝐷𝑂𝑣) and represents multi-valued attributes over pairs of probabilistic 
entity linkages. Figure 2 shows the dataflow processes and outputs in our proposed 
framework. 

 
 

Fig. 2 The data flow process and outcomes for the proposed best-effort framework 
 
In the following sections, the authors discuss related concepts to the proposed 

best-effort integration framework; the unified data model, the possible world generation 
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rules, the framework formulation, the implemented resolution process and its matching 
stage, and the probabilistic ER DM. 

 

3.1 The Unified iDO Model 
 
The participated information sources are sets of 𝑛 sources, i.e. 𝑆 = {𝑆1, 𝑆2, … , 𝑆𝑛}, that are 
roughly assumed to refer to the same domain. Each participated source 𝑆𝑖 . 𝑡𝑝 ∈ 𝑆 is a type 
of semi-structured (𝑡𝑝1), or unstructured (𝑡𝑝2), i.e. 𝑡𝑝 ∈ 𝑇𝑝 = {𝑡𝑝1, 𝑡𝑝2}. This helps to 
distinguish the matching process among these types of sources. The 𝑆𝑖 . 𝑡𝑝1 sources are 
assumed to contain unique instances; hence internal comparisons aren’t required since no 
duplicated objects can exist. Yet, 𝑆𝑖 . 𝑡𝑝2 sources may contain duplicated instances; hence, 
matching process will proceed internally. A source schema is denoted by 𝑆�̅� that consists 
of a set of 𝐶 attributes, i.e. 𝑆�̅� = {𝐴1, 𝐴2, … , 𝐴𝐶}. Each 𝑆𝑖 contains a set of 𝑚 𝑖𝐷𝑂𝑠, where 
the ranges of 𝑚 in these sources are different. 𝑖𝐷𝑂𝑖ℎ is a triple of a comprise set of attribute 
names, values and types, i.e. (𝐴𝑖𝑘,𝑎𝑘.𝑔𝑖ℎ , 𝑡𝑦): 𝑖 ∈ [1, 𝑛], ℎ ∈ [1,𝑚], 𝑘 ∈ [1, 𝐶], 𝑎𝑛𝑑 𝑔 ∈
[1, 𝑞]. An attribute may have a single value, i.e. 𝐴𝑘. 𝑎𝑘𝑖ℎ , or multi-valued, i.e. 𝐴𝑘. 𝑎𝑘.𝑔𝑖ℎ : 1 <
𝑔 ≤ 𝑞. 
 

To facilitate distinguishing between strong and weak attribute evidence, the 
authors classify relationship by mapping into four categories based on different 
relationship-cardinalities between attributes and their iDOs. Table 2 shows four types of 
relationships as identified by the iDO model.     

 
Table 2 The mapping types that influence the ER decision  

  

MAPPING TYPE DEFINITION 

𝑀1: (𝑖𝐷𝑂
1 → 1
1 ← 1

𝐴𝑘) 
One iDO can only have one data value for an attribute, and 
one attribute value can only correspond to one iDO, such as 

the mapping between a Person with its IC.  

𝑀2: (𝑖𝐷𝑂
1 → 1
𝑀 ← 1

𝐴𝑘) 
One iDO can only have one data value for an attribute, but 

one attribute value may refer to many iDOs, such as the 
mapping between a Person and its Age attribute. 

𝑀3: (𝑖𝐷𝑂
1 → 𝑀
1 ← 1

𝐴𝑘) 
One iDO can have many data values for an attribute, but one 
attribute value may refer to one iDOs, such as the mapping 

between a Person and its Phone-No. 

𝑀4: (𝑖𝐷𝑂
1 → 𝑀
𝑀 ← 1

𝐴𝑘) 
One iDO can have many data values for an attribute, and one 
attribute value may refer to many iDOs, such as the mapping 

between object Person and its Address. 
 

Additionally, to provide domain independent ER rules, we classify attributes into 
three major categories, based on their content. 
• Identification category: this category represents the main parameter attribute, i.e. 

(A𝑘. 𝑡𝑦 = Idn → A⃛𝑘) as well as other fundamental features of an iDO that indicate the 
nature of an object and provide clear identity information to a specific one. Based on 
the mapping types presented in Table 2, It is sub-divided into five subcategory’s types 
to distinguish the main parameter, which represents the entity of interest for resolution 
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(EoI), from other identification attributes that may have different mappings to their 
EoI, i.e. 𝑡𝑦 ∈ 𝐼𝑑𝑒𝑛 = {𝐼𝑑𝑛, 𝐼𝑑𝑛-𝐼, 𝐼𝑑𝑛-𝐼𝐼, 𝐼𝑑𝑛-𝐼𝐼𝐼, 𝐼𝑑𝑛-𝐼𝑉}, such as a person’s Name, 
IC-No, and Passport No. 

• Descriptive category: this category represents the associated features that provide 
additional and related information about a specific iDO. Those features might be 
changed, such as person’s age, facial features, address, occupation and salary. By 
using the mapping types above, the authors can subdivide this category into four 
subcategories, i.e.,  𝑡𝑦 ∈ 𝐷𝑒𝑠𝑐 = {𝐷𝑒𝑠𝑐-𝐼, 𝐷𝑒𝑠𝑐-𝐼𝐼, 𝐷𝑒𝑠𝑐-𝐼𝐼𝐼, 𝐷𝑒𝑠𝑐-𝐼𝑉}, such as 
phone-No, age, and address.  

• Supportive category: It contains the external information that an iDO may have. This 
information is the features from associated objects to provide more details about an 
iDO. The associated objects’ information can be identifiable or descriptive properties 
for the external objects that link it to the selected iDO. This category is also sub-
divided into four subcategories types, i.e.𝑡𝑦 ∈ 𝑆𝑢𝑝𝑝 =
{𝑆𝑢𝑝𝑝-𝐼, 𝑆𝑢𝑝𝑝-𝐼𝐼, 𝑆𝑢𝑝𝑝-𝐼𝐼𝐼, 𝑆𝑢𝑝𝑝-𝐼𝑉}, such as Venue, Article Name, and Co-author 
Name.  

3.2 Possible world generation rules 
 
By classifying the iDO attributes based on the above sub-categories, the new framework 
can generate general possible-worlds rules by assigning objects to their corresponding 
subcategories, and hence, an independent domain’s rules can be created to determine the 
impossible worlds for each possible linkage case or alternative, i.e.  𝑙𝑐𝑙 = (𝑙𝑐1 ∥ 𝑙𝑐2). 
Based on that, the possible worlds set (𝑃𝑠𝑤𝐿𝑐𝑙) that are associated with each linkage case 
can be generated accordingly. This generation is achieved based on the sample space 
production of the probabilistic similarity value for a pair of iDOs attribute’s values, i.e., 
𝛺𝑎𝑘.𝑔
𝑖𝑛𝑡(𝑤𝑥)

={(𝑎𝑘.𝑔
𝑤𝑥 , 𝑃𝑟(𝑎𝑘.𝑔

𝑤𝑥)), ((𝑎𝑘.𝑔
𝑤 , 𝑎𝑘.𝑔

𝑥 ), 𝑃𝑟(𝑎𝑘.𝑔
𝑤 , 𝑎𝑘.𝑔

𝑥 ))}: 𝑤 and 𝑥 refers to the compared 
iDOs. Possible world generation rules for each linkage case are stated in Table 3. 

 
Table 3 The mapping rules to obtain the possible worlds sets for (𝑙𝑐1, 𝑙𝑐2) cases 

 
MAPPING 

TYPE Possible Worlds Generation Rule 

𝑀1 
𝐼𝑓 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑀1, 𝑡ℎ𝑒𝑛 (𝑎𝑘

𝑤𝑥 , 𝑃𝑟(𝑎𝑘
𝑤𝑥)) ∈

𝑃𝑠𝑤𝐿𝑐1 , && ((𝑎𝑘
 𝑤, 𝑎𝑘

 𝑥), 𝑃𝑟(𝑎𝑘
𝑤 , 𝑎𝑘

𝑥)) ∈ 𝑃𝑠𝑤𝐿𝑐2  

𝑀2 
𝐼𝑓 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑀2, 𝑡ℎ𝑒𝑛 (𝑎𝑘

 𝑤𝑥 , 𝑃𝑟(𝑎𝑘
 𝑤𝑥)) ∈

𝑃𝑠𝑤𝐿𝑐1 , && ((𝑎𝑘
𝑤𝑥 , 𝑃𝑟(𝑎𝑘

𝑤𝑥)) ∨ ((𝑎𝑘
𝑤 , 𝑎𝑘

𝑥), 𝑃𝑟(𝑎𝑘
𝑤 , 𝑎𝑘

𝑥))) ∈ 𝑃𝑠𝑤𝐿𝑐2   

𝑀3 
𝐼𝑓 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑀3, 𝑡ℎ𝑒𝑛 ((𝑎𝑘

𝑤𝑥 , 𝑃𝑟(𝑎𝑘
𝑤𝑥)) ∨ ((𝑎𝑘

𝑤 , 𝑎𝑘
𝑥), 𝑃𝑟(𝑎𝑘

𝑤 , 𝑎𝑘
𝑥))) ∈

𝑃𝑠𝑤𝐿𝑐1 , && ((𝑎𝑘
𝑤 , 𝑎𝑘

𝑥), 𝑃𝑟(𝑎𝑘
𝑤 , 𝑎𝑘

𝑥)) ∈ 𝑃𝑠𝑤𝐿𝑐2  

𝑀4 
𝐼𝑓 𝑀𝑎𝑝𝑝𝑖𝑛𝑔 = 𝑀4, 𝑡ℎ𝑒𝑛 ((𝑎𝑘

𝑤𝑥 , 𝑃𝑟(𝑎𝑘
𝑤𝑥)) ∨ ((𝑎𝑘

𝑤 , 𝑎𝑘
𝑥), 𝑃𝑟(𝑎𝑘

𝑤 , 𝑎𝑘
𝑥))) ∈

𝑃𝑠𝑤𝐿𝑐1 , && ((𝑎𝑘
𝑤𝑥 , 𝑃𝑟(𝑎𝑘

𝑤𝑥)) ∨ ((𝑎𝑘
𝑤 , 𝑎𝑘

𝑥), 𝑃𝑟(𝑎𝑘
𝑤 , 𝑎𝑘

𝑥))) ∈ 𝑃𝑠𝑤𝐿𝑐2   
 

3.3 Framework Formulation 
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The schema integration is beyond the research scope of this paper. Therefore, we assumed 
a global schema and mapping production is prior performed by creating the global schema 
(𝐺𝑆). This process is performed to initiate the ER process by selecting all attributes 
included in the 𝐺𝑆, or a subset from 𝐺𝑆.   
 

The proposed best-effort framework takes instance integration as a non-trivial 
process that requires probability management capabilities. Hence, a probabilistic global 
entity named digital network object (𝑛𝐷𝑂𝑣) is added to the framework formulation. This 
framework also aims to remove the manual interventions by obtaining less precise but 
automatic ER answers. In correspondence, the proposed framework is formulated as given 
below: 

 
Definition. The proposed best-effort information integration framework is four 
components of (𝐿𝑠𝑠, 𝑇𝑠𝑡 , 𝑀𝑠,𝑡 , 𝑛𝐷𝑂𝑣); such that (𝐿𝑠, 𝑇𝑠𝑡 , 𝑀𝑠,𝑡) are a precise source-to-
target framework and 𝑛𝐷𝑂𝑣 is the added probabilistic global entity, where; 
 
• 𝐿𝑠𝑠 Is a local source or relation that belongs to a 𝐿𝑠 set of 𝑛 local sources or relations, 

i.e.,  𝐿𝑠 = (𝐿𝑠1, 𝐿𝑠2, … , 𝐿𝑠𝑛): 𝑠 ∈ [1, 𝑛], 𝐿𝑠𝑠 ∈ 𝑆. Each 𝐿𝑠𝑠 is a type of (𝑡𝑝1 𝑜𝑟 𝑡𝑝2), in 
which its local instances (reference entities) are denoted as 𝑝𝐷𝑂𝑥

𝑠ℎ =

{𝑎1.1
𝑡𝑦
, … , 𝑎𝑐.𝑞

𝑡𝑦 }: 𝑥 ∈ [1, 𝑦], ℎ ∈ [1,𝑚], 𝑘 ∈ [1, 𝑐], 𝑔 ∈ [1, 𝑞], ∃ 𝑎𝑘.𝑔
𝑡𝑦

= 𝑎𝑘.𝑔
𝑖𝑑𝑛 , |𝑎𝑘.𝑔

𝑖𝑑𝑛| = 1. 
 

• 𝑇𝑠𝑡  is a target source that belongs to a 𝑇𝑠 set of 𝑛 target sources or relations, i.e. 𝑇𝑠 =
(𝑇𝑠1, 𝑇𝑠2 , … , 𝑇𝑠𝑛): 𝑡 ∈ [1, 𝑛], 𝑇𝑠𝑡 ⊆ 𝑇𝑆𝑡 ∈ 𝑆. Each 𝑇𝑠𝑡  can be in type of (𝑡𝑝1𝑜𝑟 𝑡𝑝2), 
in which its target object instances (underlying entities) are denoted as 𝑟𝐷𝑂𝑤𝑡ℎ =
{𝑎1.1

𝑡𝑦
, … , 𝑎𝑐.𝑞

𝑡𝑦 }: 𝑤 ∈ [1, 𝑧], ℎ ∈ [1,𝑚], 𝑘 ∈ [1, 𝑐], 𝑔 ∈ [1, 𝑞], ∃ 𝑎𝑘.𝑔
𝑡𝑦

= 𝑎𝑘.𝑔
𝑖𝑑𝑛 , |𝑎𝑘.𝑔

𝑖𝑑𝑛| = 1. 
 

• 𝑀𝑠,𝑡 is a triple of (𝑇𝑠𝑡 . 𝑟𝐷𝑂𝑤𝑡ℎ . (𝑎1, … , 𝑎𝑐.𝑞
𝑡𝑦
), 𝐿𝑠𝑠 . 𝑝𝐷𝑂𝑥

𝑠ℎ . (𝑎1, … , 𝑎𝑐.𝑞
𝑡𝑦
),𝑚𝑡,𝑠.𝑘). 𝑀𝑠,𝑡 

Mapping is a set of one-to-one probabilistic matching for each target attribute value 
𝐴𝑡𝑘. 𝑎𝑘.𝑔

𝑡ℎ . 𝑡𝑦 ∈ 𝑟𝐷𝑂𝑤
𝑡ℎ against a local attribute value𝐴𝑠𝑘. 𝑎𝑘.𝑔𝑠ℎ . 𝑡𝑦 ∈ 𝑝𝐷𝑂𝑥𝑠ℎ , if initially 

there is 𝑀𝑠,𝑡.𝑘(𝑎𝑘
 𝑠ℎ~ 𝑎𝑘

 𝑡ℎ) ≥ 𝛿: 𝑡ℎ ≠ 𝑠ℎ, 𝑎𝑛𝑑 𝐴𝑡𝑘 = 𝐴𝑠𝑘, ∃ 𝑡𝑘, 𝑠𝑘 ∈ [11, 𝑛𝑐]. Thus, 
for each instance pairs from 𝑖𝐷𝑂𝑖ℎ𝐼𝑛𝑠 = ⋃ ⋃ ⋃ ⋃ (𝑖𝐷𝑂𝑖ℎ

𝑡𝑝
. 𝑎𝑘.𝑔
𝑡𝑦 )𝑞

𝑔=1
𝑐
𝑘=1

𝑚
ℎ=1

𝑛
𝑖=1  there exists  

𝐿𝑠𝑠 . 𝑖𝐷𝑂𝑠ℎ against  𝑇𝑠𝑖 . 𝑖𝐷𝑂𝑖ℎ source-to-target entities matching in the form of 
𝑝𝐷𝑂𝑥

𝑠ℎ~ 𝑟𝐷𝑂𝑤
𝑡ℎ between their shared attributes values 𝐴1 𝑠ℎ . 𝑎1~𝐴1 𝑡ℎ. 𝑎1, … , 𝐴𝑐 𝑠ℎ. 𝑎𝑐.𝑞~ 

𝐴𝑐
 𝑡ℎ. 𝑎𝑐.𝑞: 𝑎1

 𝑡ℎ~ 𝑎1
 𝑠ℎ ≥ 𝛿, (~) denotes the pair-wise matching operation, and (𝛿) is the 

similarity threshold value for considering the matching between the pairs of main 
parameter’s data values. 

 
• 𝑛𝐷𝑂𝑣 is a set of 𝑧 mutual probabilistic global entities alternatives (nDOs) that are 

generated from merging their possible corresponding iDOs, which have pair-wise 
linkage in sort of an underlying entity to possible reference linkages, i.e. 
(𝑟𝐷𝑂𝑤

𝑡ℎ: 𝑝𝐷𝑂𝑤1
𝑠ℎ [𝑃𝑟𝑤1], … , 𝑝𝐷𝑂𝑤𝑦

𝑠ℎ [𝑃𝑟𝑤𝑦]): 1 ≤ 𝑤 ≤ 𝑧, 1 ≤ 𝑥 ≤ 𝑦. A probabilistic 
global entity contains a set of possible ordinary entities merged from the underlying 
entity with its possible references, i.e. (𝑛𝐷𝑂𝑣 = 𝑛𝐷𝑂𝑣.1, … , 𝑛𝐷𝑂𝑣.𝑓): 1 ≤ 𝑗 ≤ 𝑓. Each 
possible merge has an assigned probability distribution value generated from 
multiplying the probability linkages of its probable linked references, i.e. 𝑛𝐷𝑂𝑣.𝑗 =
{(𝑟𝐷𝑂𝑤

𝑡ℎ:𝑝𝐷𝑂𝑤1
𝑠ℎ , 𝑝𝐷𝑂𝑤2

𝑠ℎ , … , 𝑝𝐷𝑂𝑤𝑦
𝑠ℎ ), 𝑃𝑟(𝑀𝑣.𝑗)}: ∑ 𝑃𝑟(𝑀𝑣.𝑗)

𝑓
𝑗=1 = 1. Furthermore, for 

each requested attribute and within each possible merge, there might be a multi-valued 
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attribute in which each possible attribute value alternative is assigned  with a 
probabilistic fusion score obtained from updating and conditionally combining the 
reliability scores of its attribute values, i.e., 𝑛𝐷𝑂𝑣.𝑗 . 𝐴𝑘 =

{(𝑎(𝛺𝑇𝑣.1), 𝜇(𝑎(𝛺𝑇𝑣.1))), … ,(𝑎(𝛺𝑇𝑣.𝐿), 𝜇(𝑎(𝛺𝑇𝑣.𝐿)))}:1 ≤ 𝑙 ≤ 𝐿, ∑ 𝜇(𝑎(𝛺𝑇𝑣.𝑙))
𝐿
𝑙=1 =

1. An 𝑎(𝛺𝑇𝑣.1) world (alternative) may contain single or multi-possible true values, i.e. 
𝑎(𝛺𝑇𝑣.𝑙) = {𝑎𝑘.1

𝑣.𝑗
, … , 𝑎𝑘.𝑔

𝑣.𝑗
}.  

3.4 The Implemented Resolution Process 
 
The ER is performed in a pair wise-source-to-target process with correspondence to the 
extracted local and target instances. In this process, pair-wise probabilistic linkage results 
between an underlying entity and a set of possible local instances are produced based on 
the pair-wise similarity matching between the correlated data items, i.e. 𝑟𝐷𝑂𝑤 =
{𝑟𝐷𝑂𝑤

𝑡ℎ: 𝑝𝐷𝑂𝑤1
𝑠ℎ [𝑃𝑟(𝐿𝑤1,)], … , 𝑝𝐷𝑂𝑤𝑦

𝑠ℎ [𝑃𝑟(𝐿𝑤𝑦)]}. Then, the probabilistic entity merging 
can be computed to produce a global entity, i.e. 𝑛𝐷𝑂𝑣

𝑤 =

{(𝑛𝐷𝑂𝑣.1
𝑤 , 𝑃𝑟(𝑛𝐷𝑂𝑣.1

𝑤 )), (𝑛𝐷𝑂𝑣.2
𝑤 , 𝑃𝑟(𝑛𝐷𝑂𝑣.2

𝑤 )), … , (𝑛𝐷𝑂𝑣.𝑓
𝑤 , 𝑃𝑟(𝑛𝐷𝑂𝑣.𝑓

𝑤 ))}. Figure 3(a) 
shows the ER process within three unstructured information sources, while figure 3(b) 
shows the ER process between their contained objects.  
 

 
 

Fig. 3 The utilised pair-wise-source-to-target process for three information sources 
 

From figure 3, we see that the iterations at different sources’/objects’ order will 
not lead to different outputs. This process allows the maintenance of the original data, their 
lineage, and the separation of the matching, linkage, merging, and fusing outputs. It also 
allows the production, the storage, and the manipulation of probabilistic results. Thus, the 
proposed process overcomes the limitations of the traditional process and provides good 
practicability for probabilistic ER. 

 
Despite the above illustration of the general resolution process, the instances 

comparison, which denotes the initial stage in this process, will be cover in further details 
next including the setting up of data inputs for resolution challenges and solutions.   

3.5 The Matching Comparison Process 
 
From the extracted data values and in correspondence to their referred instances, a pair-
wise matching mechanism is carried pair-wisely by comparing a local instance to a target 
instance in the form of |𝑇𝑠𝑡 . 𝑖𝐷𝑂𝑡ℎ|. |𝐿𝑠𝑠 . 𝑖𝐷𝑂𝑠ℎ|. Accordingly, the matching function is 
processed as shown in equation 3, where the abbreviated form of |𝑇𝑠𝑡ℎ| . |𝐿𝑠𝑠ℎ| is used. 

(a) (b) 

Source Object Name  Zip code Email 
S1 O1 John Doe 67129 jdoe@yahoo 
S2 O2 J. Doe 97300  
S3 O3 Jhn Foe 97300 jdoe@yahoo 

 

O1 

O2 O3 

Source 1(S1) 

Source 2 
(S2) Source 3 

(S3) 

 𝐿𝑠1 = 𝑆1 
𝐿𝑠2 = 𝑆2 

𝐿𝑠2 = 𝑆3 

𝑇𝑠1= 𝑆1 

𝑇𝑠2= 𝑆2   

𝐿𝑠3 = 𝑆3 

𝐿𝑠1 = 𝑆2 

𝑇𝑠𝑡= 𝑡𝑝2 
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|𝑇𝑠𝑡ℎ|. |𝐿𝑠𝑠ℎ|

=

{
 
 

 
 ⋃⋃|𝑇𝑠𝑡ℎ|

𝑚

ℎ=1

𝑛

𝑡=1

.⋃⋃|𝐿𝑠𝑠ℎ|

𝑚

ℎ+1

𝑛

𝑠=1

: 𝑇𝑠𝑡ℎ . 𝑡𝑝 = 𝑡𝑝2, 𝑝𝐷𝑂𝑠ℎ ≠ 𝑟𝐷𝑂𝑡ℎ                         

⋃ ⋃|𝑇𝑠𝑡ℎ|

𝑚

ℎ=1

𝑛−1

𝑡=𝑖=1

. ⋃ ⋃|𝐿𝑠𝑠ℎ|

𝑚

ℎ=1

𝑛

𝑠=𝑖+1

: 𝑇𝑠𝑡ℎ . 𝑡𝑝 = 𝑡𝑝1; 𝑇𝑠𝑡ℎ≠𝐿𝑠𝑠ℎ ; 𝑠, 𝑡, 𝑖 ∈ [𝑆1, 𝑆𝑛]

      (eq. 1) 

 
The example below is given to demonstrate the implemented matching process.  
 

Example 1: Given multi-sources as 𝑆1(iDO11, … , iDO1m), … , 𝑆𝑛(iDO𝑛1, … , iDO𝑛𝑚), such 
that (𝑆𝑖 = {1,2, … , 𝑛}, 𝑖𝐷𝑂𝑖ℎ = {𝑖1, 𝑖2, … , 𝑖𝑚}: 1 ≤ 𝑖 ≤ 𝑛, 1 ≤ ℎ ≤ 𝑚). Then, the 
matching process is implemented as figure 4 shows.  

 

 
 

Fig. 4 The matching process according to the source type 
 
Given the above matching process and the n-gram matching function in equation 

2, the framework can generate probabilistic matching outputs in the form of a tree that 
views both target iDOs and their potential candidates of local iDOs with their matched 
attributes values pairs, i.e. (𝑝𝐷𝑂𝑥

𝑠ℎ.𝐼𝑛𝑠. 𝑎1, … , 𝑎𝑐.𝑞
𝑡𝑦 ) ~ (𝑟𝐷𝑂𝑤

𝑡ℎ.𝐼𝑛𝑠. 𝑎1, … , 𝑎𝑐.𝑞
𝑡𝑦 ) →

𝑃𝑟𝑤~𝑥(𝑎1, … , 𝑎𝑐.𝑞
𝑡𝑦 ): 𝑠ℎ ≠ 𝑡ℎ, 𝑤 ∈ [1, 𝑧], 𝑝𝐷𝑂𝑥

𝑠ℎ ∈ 𝐿𝑠𝑠 , and 

𝑝𝐷𝑂𝑥
𝑠ℎ.𝐼𝑛𝑠, 𝑟𝐷𝑂𝑤

𝑡ℎ.𝐼𝑛𝑠∈ 𝑖𝐷𝑂𝑖ℎ
𝐼𝑛𝑠 , where 𝑖𝐷𝑂𝑖ℎ𝐼𝑛𝑠 is the union set of the extracted iDO instances 

from the participated 𝐿𝑠𝑠 and 𝑇𝑠𝑡  information sources due to a selected 𝐺𝑠 schema, i.e. 
𝑖𝐷𝑂𝑖ℎ

𝐼𝑛𝑠 =  ⋃ ⋃ ⋃ ⋃ (𝑖𝐷𝑂𝑖ℎ
𝑡𝑝
. 𝑎𝑘.𝑔
𝑡𝑦 )𝑞

𝑔=1
𝑐
𝑘=1

𝑚
ℎ=1

𝑛
𝑖=1 .  

F (Sim 〈a, b〉) =
|2 × ∑ log P(t)𝑡𝜖 𝑛−𝑔𝑟𝑎𝑚𝑠 (𝑎) ∩ 𝑛−𝑔𝑟𝑎𝑚𝑠 (𝑏) |

|∑ log P(t)𝑡𝜖 𝑛−𝑔𝑟𝑎𝑚𝑠 (𝑎) | +  |∑ log P(t)𝑡𝜖 𝑛−𝑔𝑟𝑎𝑚𝑠 (𝑏) |
                     eq. 2 

 
Where, n-grams(a) and n-grams(b) are the set of n-grams in a and b respectively, 

and P(t) is the probability of n-grams occurring in a word (Chen, Promparmote, and Maire, 
2006). The n-gram function is used to find the probability of a string matching between 
pairs of attributes values by their objects construct. The process would decompose text 
strings into a set of tokens (n-grams), which are the contiguous N characters of the text 
string.  

 
In this process, the similarity scores between rDO instance and its set of pDOs, 

are kept and stored alongside the original data to be used for the decision model stage. 
Accordingly, the process would separate original data items from the data that represent 

For all 𝑆𝑖 is in type 𝒕𝒑𝟐 and   
(𝑖𝐷𝑂𝑡ℎ∈ 𝑇𝑠𝑡ℎ) ≠ (𝑖𝐷𝑂𝑠ℎ∈ 𝐿𝑠𝑠ℎ) 

 

For all 𝑆𝑖 is in type 𝒕𝒑𝟏 
   

𝑇𝑠𝑡ℎ 𝐿𝑠𝑠ℎ 
𝑆1(𝑖𝐷𝑂11,…,𝑖𝐷𝑂1𝑚)  

𝑆𝑛−1(𝑖𝐷𝑂1,…,𝑖𝐷𝑂𝑚)  

 

… 

𝑆𝑛(𝑖𝐷𝑂𝑛1,…,𝑖𝐷𝑂𝑛𝑚) 

𝑆1(𝑖𝐷𝑂11,…,𝑖𝐷𝑂1𝑚)  

𝑆𝑛−1(𝑖𝐷𝑂1,…,𝑖𝐷𝑂𝑚) 
… 

𝑆𝑛(𝑖𝐷𝑂𝑛1,…,𝑖𝐷𝑂𝑛𝑚) 

𝑆2(𝑖𝐷𝑂21,…,𝑖𝐷𝑂2𝑚)  𝑆2(𝑖𝐷𝑂21,…,𝑖𝐷𝑂2𝑚)  
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the linkage decision. The separation enables suitable reusability when new data become 
available and helps to achieve automated and efficient probabilistic DM process for 
linkage.  

3.6 The Probabilistic DM 
 

In this proposed framework, a probabilistic DM is introduced to replace the traditional, 
precise DM. The proposed probabilistic DM considers a new resolution stage of multiple 
entities is merging instead of the collective pair-wise merging that is practically impossible 
and ineffective to be able to manage imperfection until the end. It also extends the 
probabilistic database definition to capture the probability management at the linkage level, 
besides type-I and type-II. The implemented DM takes the matching outputs for a pair of 
iDOs in sort of probabilistic similarity events and possible-worlds to produce probabilistic 
pair-wise linkage results without using preselected threshold values. Also, in this DM the 
probabilistic linkage values are stored alongside the linkage decisions to be used by the 
entities merging operation. Consequently, the process generates new probabilistic global 
entities (nDOs), and their multiple data values inconsistencies managed and fused. This 
outcome is a probabilistic database containing uncertainty management not only on the 
attributes level but also on their linkage and merging results.  
 

The probabilistic DM is in charge of conceptually representing the probabilistic 
pair-wise entity linkage decisions and determining their posterior linkage scores, i.e. 
𝐿(𝑟𝐷𝑂w

𝑡ℎ: 𝑝𝐷𝑂wx
𝑠ℎ ) → {(𝐿𝑐1, 𝑃𝑟(𝐿𝑐1)), (𝐿𝑐2, 𝑃𝑟(𝐿𝑐2))}. It is in charge of representing the 

multi-entities merging’s alternatives and computing their probability distributions, i.e. 
{(𝑛𝐷𝑂𝑣.1

𝑤 , 𝑃𝑟̀ (𝑛𝐷𝑂𝑣.1
𝑤 )), … , (𝑛𝐷𝑂𝑣.𝑓

𝑤 , 𝑃𝑟̀ (𝑛𝐷𝑂𝑣.𝑓
𝑤 ))}. It is also in charge of representing the 

data fused values’ alternatives and computing their updated reliability scores, i.e. 
{(𝑎𝑘.𝑇𝑣

𝑣.𝑗
= 𝑎(𝛺𝑡𝑣.1𝑝), 𝜇(𝑎𝑘.𝑇𝑣

𝑣.𝑗
= (𝛺𝑡𝑣.1𝑝)|𝑃𝑤𝑠𝑇𝑣)), … , (𝑎𝑘.𝑇𝑣

𝑣.𝑗
= 𝑎(𝛺𝑡𝑣.𝐿𝑝), 𝜇𝑎𝑘.𝑇𝑣

𝑣.𝑗
=

𝑎((𝛺𝑡𝑣.𝐿𝑝)|𝑃𝑤𝑠𝑇𝑣))}. 
 

4 Conclusion and further research 
This paper presents a new best-effort information integration framework that copes with 
the current information integration requirements and challenges, where imperfect data 
management and the integration over heterogeneous information spaces are the major 
aspects. The proposed framework realises the dataspace vision by supporting instance 
integration automation with explicitly incorporating probabilistic management into the ER 
tasks. Moreover, the proposed framework relaxes the traditional source-to-target CDI 
framework by making the instance integration less precise but automatic, while continuing 
to provide useful services to both technical and non-technical users. 

 
The proposed framework identifies, manages, and probabilistically models three 

functionality resolution challenges. These are (i) Probabilistic pair-wise-source-to-target 
entity linkage, (ii) Probabilistic entity merging over multiple possible linked references to 
an underlying entity, and (iii) Probabilistic data fusion values over multi-valued attributes. 
These challenges deploy three subsequent phases of resolution process based on the 
proposed framework and its probabilistic matching outputs. Each one of these sub-
problems may comprise several cases and types of imperfection and conflict that need to 
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be specified and handled. Therefore, there is a great potential for future investigations and 
research that can be carried on in regards to the proposed framework and its additional 
challenges. 

 
The proposed framework has been theoretically validated, however in our future 

publication there will be a practical demonstration using real-world datasets and a 
developed prototype named Impiana-I that will show the effectiveness of the framework 
to cope with the challenges outlined above. (Jaradat, 2015).     
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