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R E S E A R C H A R T I C L E
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ABSTRACT: Background: Although Huntington’s dis-
ease (HD) is caused by a single dominant gene, it is clear
that there are genetic modifiers that may influence the
age of onset and disease progression.
Objectives: We sought to investigate whether new
inflammation-related genetic variants may contribute to
the onset and progression of HD.
Methods: We first used postmortem brain material from
patients at different stages of HD to look at the protein expres-
sion of toll-like receptor 4 (TLR4) and triggering receptor
expressed on myeloid cells 2 (TREM2). We then genotyped
the TREM2 R47H gene variant and 3 TLR4 single nucleotide
polymorphisms in a large cohort of HD patients from the
European Huntington’s Disease Network REGISTRY.
Results: We found an increase in the number of cells
expressing TREM2 and TLR4 in postmortem brain

samples from patients dying with HD. We also found that
the TREM2 R47H gene variant was associated with
changes in cognitive decline in the large cohort of HD
patients, whereas 2 of 3 TLR4 single nucleotide polymor-
phisms assessed were associated with changes in motor
progression in this same group.
Conclusions: These findings identify TREM2 and
TLR4 as potential genetic modifiers for HD and sug-
gest that inflammation influences disease progression
in this condition. © 2019 The Authors. Movement Dis-
orders published by Wiley Periodicals, Inc. on behalf of
International Parkinson and Movement Disorder
Society.

Key Words: cognitive decline; Huntington; inflamma-
tion; motor symptoms; TLR4; TREM2

Huntington’s disease (HD) is an autosomal dominant
neurodegenerative disorder caused by aCAG trinucleotide
expansion in exon 1 of theHuntingtin (HTT) gene,1 which
presents with a combination of motor, cognitive, and psy-
chiatric deficits. Despite its clear genetic basis, HD patients
show variable ages of onset (AoO) and progression rate,
and although CAG repeat length has been shown to corre-
late with the AoO of motor signs,2-10 this has been of lim-
ited clinical use in predicting AoO for an individual.11

Moreover, patients with similar initial clinical presenta-
tions can follow very different clinical courses,12 with vari-
able rates of disease progression that are poorly correlated
to CAG repeat length. Hence, the CAG repeat size alone is
not sufficient to reliably predict disease onset and
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progression, and thus there is a need to better define what
other factors impact on these 2 aspects of HD.13,14

Previously, we have shown that tau has such an
influence,15 whereas others have reported on a number of
other genetic factors that impact on these features of
HD. For instance, an abnormal, but relatively short, CAG
expansion leading to HD, with a relatively long CAG
track in the wild-type allele has been shown to correlate
with more severe clinical features and pathology.16

Genetic polymorphisms adjacent to the CAG repeats have
also been shown to influence disease onset3,4,10,17,18 as
have genes related toDNA repair.19-21

In addition, inflammation has now been shown to be
important inmany chronic neurodegenerative disorders of
the brain such as Alzheimer’s disease (AD)22 and
Parkinson’s disease23 as well as HD.24 The evidence for a
key role of inflammation to HD comes from studies
looking at microglial activation on imaging and pathologi-
cally25 as well as peripheral cytokine profiles,26 which can
be found early on in the disease. Inflammation-related
genetic modifiers have also been shown to influence the
risk of developing neurodegenerative disorders such as
sporadic AD, and this includes the triggering receptor
expressed on myeloid cells 2 (TREM2)27-33 and toll-like
receptor 4 (TLR4).34-36We therefore sought to investigate
this inHDusing both postmortem studies and clinical data
from a large cohort of patients. Specifically, we took
advantage of tissue microarrays (TMAs) to assess the
expression of these proteins in the striatum37 and then
looked atTREM2 andTLR4 genetic variants/single nucle-
otide polymorphisms (SNPs) as genetic modifiers of dis-
ease progression in a large cohort of HD patients
(N = 830) obtained from the European Huntington’s Dis-
ease Network (EHDN).

Methods
Ethics Statement

The study was approved by the local research ethics
committee and the other sites of the EHDN REGISTRY
project.38 The participants and/or the next of kin gave
informed written consent for the use of genetic material
and brain tissue for research according to International
Conference on Harmonisation - Good Clinical Practice
(ICH-GCP) guidelines (http://www.ich.org/LOB/media/
MEDIA482.pdf) and the Declaration of Helsinki.

Subjects
Human genetic material, clinical information, and CAG

repeat length data were obtained from the EHDN
REGISTRY38 (http://www.euro-hd.net/html/registry). In
total, data were available from 830 patients who had a
clinical and genetically confirmed diagnosis of HD
(Table 1). AoO was defined as the age at which their first
HD features appeared as judged by a trained neurologist

either from the neurological examination or (more fre-
quently) from the patient history as recorded in REGIS-
TRY. Motor, functional, and cognitive features were
scored at visits approximately a year apart using the Uni-
fied Huntington Disease Rating Scale (UHDRS’99).39

Cognitive assessments included tests of verbal fluency as
well as the digit-symbol modality and Stroop tests (word,
color, and interference subtests), all of which are known to
be sensitive to the disease process inHD.40

Genotyping
SNP genotyping was undertaken using predesigned

assays (Applied Biosystems,Warrington, UK) tagging the
R47H variant ofTREM2 (SNP: rs75932628) and 3 SNPs
of the TLR4 gene (SNP: rs1927911, rs1927914,
rs10116253) and run on a Quantstudio 7 Flex Real-Time
PCR System (ThermoFisher, Waltham, MA, USA),
according to the manufacturer’s instructions. To validate
the results, 192 DNA samples randomly selected were
regenotyped 3 times in triplicate without any inconsis-
tencies observed among those samples.

Tissue Microarray Preparation
The Cambridge Brain Bank provided anonymous

paraffin-embedded tissue blocks fromHD patients (N = 16
[n = 5 grade 3; n = 11 grade 4]) and age-matched and sex-
matched controls (N = 9) known not to have any neurologi-
cal or psychiatric disorders (Table 2). Striatal tissue was
available for all cases. Demographic data were obtained
from the Brain Bank. The pathological severity of HD was
scored according to the Vonsattel grading system.41

After a preliminary hematoxylin and eosin and luxol
fast blue staining, all of the blocks were assessed by a neu-
ropathologist to mark the putamen and caudate and sent

TABLE 1. Demographic, Genotypic, and Clinical
Characteristics of the European Huntington’s Disease

Network Huntington’s Disease Cohort

N 830

Gender, M:F 413:417
Agea 50.98 (12.03)
CAG repeat length of the expanded allele 44.27 (4.25)
Years since disease onseta 2.10 (0.93)
UHDRS motor scoreb 32.90 (20.34)
UHDRS functional scoreb 8.42 (3.56)
Cognitive scoreb 157.62 (72.77)

Group means are shown with standard deviations in parentheses.
aAt enrollment.
bAt first visit. Annual change in cognitive performance was assessed based
on a composite cognitive score, a sum of individual scores in the verbal flu-
ency, the symbol digit, and all parts of the Stroop test (color, word, and
interference). Rate of change (points/year) was calculated by subtracting
cognitive score at the first assessment from the score at the last follow-up
assessment (or most complete data set) divided by the time between these
assessments in years. The rate of change in motor decline was calculated
using the total motor score from the UHDRS’99.
M, male; F, female; UHDRS, Unified Huntington’s Disease Rating Scale.
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to the Integrated Systems Engineering (ISENET, Milan,
Italy) for TMA assembly.42 A semiautomated tissue array
device (Galileo TMA CK4500 platform, ISENET, Milan,
Italy) with a needle punch of diameter 0.2 mm was
inserted into the marked areas of the donor block within
the putamen. Different donor tissue cores were inserted
into precored holes in a recipient paraffin wax block
according to the array coordinates defined in the pre-
determined template.

Immunohistochemistry and Quantification
Immunohistochemistry was performed on 10-μm thick

sections from the TMAs (or single-section slides in the
case of cerebral cortex) using TREM2 and TLR4 anti-
bodies and following standard protocols. Deparaffinized
and rehydrated tissue sections were incubated overnight
at 4�C with the following primary antibodies: mouse
monoclonal anti-TREM2 (1:200; Abcam, Toronto,
Canada) and mouse monoclonal anti-TLR4 (1:100;
Abcam, Toronto, Canada). The labeling was revealed
with the ABC Elite Vectastain Kit (Vector Laboratories,
Peterborough, UK). The sections were then incubated for

2 hours at room temperature with the biotinylated sec-
ondary antibody (1:500; Vector Laboratories, Peterbor-
ough, UK) and, following washes in phosphate-buffered
saline, horseradish peroxidase Avidin-D (Vector Labora-
tories, Peterborough, UK) was added for 1 hour at room
temperature and visualized with 3-3’diaminobenzidine as
the chromogen. Controls included staining after omitting
the primary antibody and were consistently negative for
any staining.
Individual immunolabeled TMA sections were scanned

on a Leica Aperio AT2 (Leica Biosystems, Buffalo Grove,
IL, USA) at 20×magnification with a resolution of 0.5-μm
per pixel and visualized on ImageScope v12.4.0.7018
(Leica Biosystems, Buffalo Grove, IL, USA). Quantifica-
tion was performed blinded to case identity. Both a posi-
tive cell detection and optical density analyses were
performed using QuPath software56 (version 0.1.2). For
analysis of the number of cells expressing eachmarker and
the relative optical density in the cortex, 10 images of a
20× field of view per section were taken using a E600 epi-
fluorescence microscope equipped with a DMX1200 digi-
tal camera driven by the Automatic Camera Tamer
software (Nikon, Melville, NY, USA), and staining was
analyzed using the Fiji image analysis software.57 The
average value of all images per case was used for statistical
analysis.

Statistical Analysis
A χ2 test was used to compare the allele frequency of

each variant with that expected for a population in Hardy-
Weinberg equilibrium. Fisher’s exact test was used to
compare the distribution of genotypes. Only genotyped
individuals for whom a complete data set was available for
at least 2 visits, a minimum of 1 year apart, were included
in the analysis,43,44 as we have done previously in this
cohort.15 Baseline demographic and clinical data were
compared between groups using 2-tailed t tests (2 groups)
and analysis of Aariance (more than 2 groups). We first
assessed the annual change in cognitive performance based
on a composite cognitive score, a sum of individual scores
on the verbal fluency and the symbol digit tests as well as
all parts of the Stroop test (color, word, and interference).
Rate of change (points/year) was calculated by subtracting
the cognitive score at the first assessment from the score at
the last follow-up assessment (or most complete data set)
divided by the time between these assessments in years, as
we have done previously.15,43,44We thenmeasured the rate
of change inmotor decline, calculated using the total motor
score from the UHDRS’99 collected at the same visits as
described previously using an equivalent formula. Outliers
were identified and the data were winsorized using Tukey’s
Hinge estimates. The Shapiro-Wilk test was used to assess
the distribution of variables (motor, functional, and cogni-
tive scores). Where data were not normally distributed, a
Mann-Whitney U test was used. A P value <0.05 was

TABLE 2. Demographic Details of the Postmortem Brain
Sample Cases

HD Cases Grade Age Sex

H614 3 42 F
H659 3 43 F
H679 3 51 M
H700 3 57 M
H709 3 79 F
H665 4 70 F
H669 4 53 M
H671 4 72 F
H682 4 40 M
H692 4 43 F
H693 4 26 F
H707 4 39 M
H710 4 43 M
H718 4 65 F
H720 4 68 M
H725 4 58 M
Mean � SD 53.1 � 14.7
Ratio F:M 8:8

Controls Age Sex

C568 69 M
NP16.28 68 M
NP16.59 60 F
PT88 72 M
PT129 50 F
PT149 56 M
PT151 76 M
PT155 39 F
PT172 45 F
Mean � SD 59.4 � 12.9
Ratio F:M 4:5

HD, Huntington’s disease; SD, standard deviation; F, female; M, male.
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defined as statistically significant. Graphs were generated
using GraphPad Prism (version 6.04 for Windows; Gra-
phPad, SanDiego, CA).

Results

To investigate the potential contribution of TREM2
and TLR4 to HD, we first assessed the protein expres-
sion levels in the striatum of HD patients using post-
mortem tissue. To make this analysis as consistent as
possible across different specimens, we built TMAs
with striatal tissue from HD patients and controls
(Fig. 1a,b). Quantification of the number of cells
expressing TREM2 and TLR4 revealed a significant
increase in both markers in HD patients when com-
pared with controls (Fig. 1c,d; P < 0.001). Moreover,
there was also an increase in relative optical density of
TLR4 in the striatum of HD patients when compared
with controls (Fig. 1d; P < 0.05). We also sought to
look at the expression of these 2 markers in the cortex
of a subgroup of patients and controls. Although the
number of cases is too low to draw clear conclusions,
we did not observe major differences in TREM2 and
TLR4 labeling in the cortex between HD cases and con-
trols (Fig. 1c,d).
We next sought to determine whether TREM2 and

TLR4 gene polymorphisms had any impact on disease
progression and clinical expression using genotype–
phenotype analysis. We thus genotyped 830 HD patients
from the EHDN for the TREM2 R47H variant
(rs75932628) and 3 TLR4 SNPs (rs1927911, rs1927914,
rs10116253) (Table 3). Patients were divided into 2 main
groups based on the allelic frequencies as described previ-
ously for other genetic variants15,43,44; those that were
homozygous for the rare allele were combined with het-
erozygous cases as summarized in Table 3. Complete clini-
cal data for 2 independent assessments at least a year apart
were available for all 830 individuals who were then
included in the analysis. Although we found no associa-
tion between AoO and motor and cognitive declines, nor
between CAG repeats length and motor and cognitive
declines, the already established negative correlation
between AoO and CAG repeat length was reproduced in
the total population (Kendall’s taub -0.255, P < 0.0001;
Supporting Information Fig. 1).
Nonparametric comparison showed that there was a

significantly higher rate of cognitive decline in TREM2
rs1927911 T carriers when compared with C/C patients,
whereas this SNP did not impact on annual changes in
functional capacity nor motor change (Fig. 2a; P < 0.05
and Table 3). However, overall motor decline per year
was significantly higher in TLR4 rs1927911 G/G when
compared with A carriers as well as in TLR4 rs1927914
A/A patients when compared with G carriers (Fig. 2b;
P < 0.05 and Table 3). No changes in cognitive nor

FIG. 1. Increased expression of TLR4 and TREM2 in the striatum of
HD patients. (a) Representative images of TREM2 immunostaining of
putamenal tissue punches from tissue microarrays from HD brains of
pathological grades 3 and 4 as well as a control brain. Scale
bars = 100 μm in punch, 50 μm in inset. (b) Representative images of
TLR4 immunostaining of putamenal tissue punches from tissue micro-
arrays from HD brains of grades 3 and 4 as well as a control brain.
Scale bars = 100 μm in punch, 50 μm in inset. (c) Quantification of the
number of TREM2-positive cells per mm2 in control and HD brains.
Student’s t test: ***P < 0.001, as compared to the control group. (d)
Quantification of the number of TLR4-positive cells per mm2 in control
and HD brains. Student’s t test: ***P < 0.001, as compared to the con-
trol group. CT/CTL, Controls; CTX, Cortex; HD, Huntington’s Disease;
PUT, Putamen; TLR4, toll-like receptor 4; TREM2, triggering receptor
expressed on myeloid cells 2. [Color figure can be viewed at
wileyonlinelibrary.com]
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functional decline were associated with these 2 SNPs.
Furthermore, when comparing TLR4 rs10116253 T/T
with C carriers, no association with any of the 3 clinical
assessments could be detected (Fig. 2b and Table 3).
Taken together, these results suggest that TREM2 and
TLR4 may be genetic modifiers for disease progression
but play different roles in contributing to the clinical
phenotypes.

Discussion

This is the first genotype–phenotype study assessing
the influence of genes related to inflammation in the
progression of HD. We first showed that there is an
increased number of cells expressing TREM2 and
TLR4 in the striatum of the HD brain, although only
TLR4 showed increased protein expression at this site.
We then sought to investigate the clinical significance of
this by looking into the impact of common variants in
these genes on clinical progression in a large cohort of
patients with HD. We found that TREM2 rs1927911
was associated with the rate of cognitive decline,
whereas TLR4 rs1927911 and TLR4 rs1927914 were
both associated with the rate of motor decline.
Although we found no association between AoO and
motor and cognitive declines, nor between CAG repeat
length and motor and cognitive declines, the established
negative correlation between AoO and CAG repeat
length was reproduced in our population. Furthermore,
there was no association between the SNPs TREM2
rs1927911 and TLR4 rs1927911 and TLR4 rs1927914
and AoO and CAG repeat length. This implies that the
influence of those genotypes on the rate of cognitive or
motor decline is independent of AoO and CAG repeat
length.
TLR4, a pattern recognition receptor, has also been

associated with misfolded protein clearance. For instance,
the uptake of α-synuclein by microglia has been shown to
depend at least in part on TLR4 in models of α-syn-
ucleinopathies.45,46 This receptor is also responsible for

the α-synuclein-induced proinflammatory response in
astrocytes47 and triggers the amyloid-β-induced activation
of microglia in ADmodels.48 As such, it is not unexpected
that TLR4 is also involved in the inflammatory response
in HD. Consistent with this, the Nuclear Factor kappa-
light-chain-enhancer of activated B cells (NF-κB) pathway,
a key signaling cascade downstream of TLR4, has been
shown to interact with mutant huntingtin protein exon
1 in mice.49 Moreover, a recent study reports that
N171-82QHDmice lacking TLR4 have their lifespan sig-
nificantly extended.50 The functional impact of the differ-
ent TLR4 polymorphisms on glial cells and neurons,
which seems to impact onmotor function rather than cog-
nition, is however not known. Given that we found TLR4
expression to be increased specifically in the putamen of
HD patients, this could mean that these SNPs are affecting
the expression levels or the affinity of the receptor to the
adaptor proteins, thus impacting on motor functions.
Nonetheless, TLR4-deficient mice have been reported to
have impaired motor functions, a feature that was attrib-
uted to TLR4 neuronal expression in the cerebellum,
although the striatumwas not assessed pathologically and
no cognitive tasks were performed.51

Consistent with the absence of an increase in TREM2
relative optical density in the striatum of HD cases, we
found no difference in motor progression in patients
carrying the TREM2 R47H variant. The potential role
of TREM2 variants as a factor linked to cognitive pro-
gression of HD supports the hypothesis that inflamma-
tion might also contribute to the cognitive impairments
seen in this disorder. TREM2 attenuates macrophage
activation52 and microglia expressing the R47H variant
have been reported to have a reduced capacity to bind
to phospholipids in an AD model, suggesting that
TREM2 senses changes in the lipid microenvironment
that result from Aβ accumulation and neuronal degen-
eration, which triggers signals that activate microglial
capacity to limit Aβ accumulation.53 As such, similar
mechanisms related to the triggered activation of
microglia by mutant huntingtin protein could underlie
the more severe cognitive decline in patients with the

TABLE 3. SNP Analysis

Gene SNP Genotype N Motor* P N Functional* P N Cognitive* P

TLR4 rs1927914 (G/A) A/A 337 5.15 (6.56) 0.039a 337 −0.92 (1.53) 0.828 323 −11.50 (24.88) 0.686
G carriers 473 3.89 (7.05) 473 −0.85 (1.32) 212 −12.04 (24.61)

TLR4 rs1927911 (A/G) G/G 431 4.94 (7.07) 0.05a 431 0.90 (1.50) 276 −12.18 (26.98) 0.828
A carriers 379 3.82 (6.91) 380 −0.85 (1.31) 0.511 257 −11.62 (22.05)

TLR4 rs10116253 (T/C) T/T 434 4.80 (6.79) 0.087 434 −0.90 (1.49) 0.604 281 −11.96 (25.29) 0.547
C carriers 377 3.92 (7.21) 377 −0.86 (1.31) 255 −11.52 (23.57)

TREM2 rs75932628
(H47R - C/T)

C/C 817 4.47 (7.01) 0.914 817 −0.87 (1.40) 0.138 539 −11.74 (24.88) 0.018a

T carriers 13 4.69 (11.79) 13 −1.25 (2.02) 9 −28.36 (26.47)

*Median change (standard error of the ratio change of points/years).
SNP, single nucleotide polymorphism.
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R47H variant. Interestingly, a recent study reports
more hyperphosphorylated tau in the cortex of an AD
mouse model carrying the human TREM2 R47H vari-
ant, which was thought to result from a reduction of
microgliosis around amyloid-β plaques. This in turn
could facilitate the local seeding and spreading of tau,54

findings which were also reported in the AD patient
brain where a reduced microglial accumulation around
plaques associated with higher pathological tau burden
was found in TREM2 R47H HD patients.55 However,
it still remains unclear as to why TREM2 seems to
influence only cognition and not motor decline in our

FIG. 2. The effect of TREM2 and TLR4 single nucleotide polymorphisms variants on motor and cognitive decline in HD. (a) Graph showing a more
severe cognitive decline in T carriers of the rs75932628 single nucleotide polymorphisms variant. Distribution was compared using Mann-Whitney
U test, *P < 0.05. (b) Graph showing a more severe motor decline in G/G carriers of the rs1927911 polymorphism as well as in A/A carriers of the
rs1927914 polymorphism. Distribution was compared using Mann-Whitney U test, *P < 0.05. TLR4, toll-like receptor 4; TREM2, triggering receptor
expressed on myeloid cells 2.
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HD study, but it could relate to an effect it may have
on the distribution of pathology. Although the post-
mortem samples available for our study does not allow
one to conclude on TREM2 cortical expression levels in
HD nor to assess whether such a reduction of micro-
gliosis around mutant huntingtin protein inclusions
exists in the cortex of TREM2 R47H HD patient car-
riers, it will be interesting to look at whether this could
underlie the link between the more aggressive cognitive
decline suggested by our genotype–phenotype study in
TREM2 R47H HD patients.
Although our results implicate TLR4 and TREM2 in

the clinical progression of HD, our study has a number
of limitations. First, in this study, cognitive data from
only N = 9 patients carrying the rs75932628 (H47R -
C/T) genotype were available, and thus the interpreta-
tion of these results should be done with great caution.
Further studies with a larger number of patients carry-
ing that genotype are now needed. Second, for some
patients, AoO was defined by retrospective interviews
of patients and the patient’s history, which can be
unreliable. Third, the pathological analysis we per-
formed is very limited in the number of samples and
regions assessed, and thus more extensive analyses in
larger numbers of brain areas and patients would be
useful. In addition, although pathological observations
can provide evidence as to whether a factor could be
involved in disease pathogenesis, it does not demon-
strate causality and as such further in vitro and animal
studies will need to be done before conclusions on path-
ophysiological mechanisms can be made.
In summary, we have shown that TREM2 and TLR4

are linked to the clinical progression and pathology of
HD and as such warrant further investigation, includ-
ing whether therapies modulating these pathways could
be useful in slowing down disease progression.
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