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Produced via Centrifugal Spinning: Unexpected Dissolution Behavior
on Recrystallization
Stefania Marano,† Susan A. Barker,† Bahijja T. Raimi-Abraham,†,⊥ Shahrzad Missaghi,‡

Ali Rajabi-Siahboomi,‡ Abil E. Aliev,§ and Duncan Q. M. Craig*,†

†School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, U.K.
‡Colorcon Inc., Global Headquarters, 275 Ruth Road, Harleysville, Pennsylvania 19438, United States
§Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K.

ABSTRACT: Temperature-controlled, solvent-free centrifu-
gal spinning may be used as a means of rapid production of
amorphous solid dispersions in the form of drug-loaded
sucrose microfibers. However, due to the high content of
amorphous sucrose in the formulations, such microfibers may
be highly hygroscopic and unstable on storage. In this study,
we explore both the effects of water uptake of the microfibers
and the consequences of deliberate recrystallization for the
associated dissolution profiles. The stability of sucrose
microfibers loaded with three selected BCS class II model
drugs (itraconazole (ITZ), olanzapine (OLZ), and piroxicam
(PRX)) was investigated under four different relative humidity
conditions (11, 33, 53, and 75% RH) at 25 °C for 8 months, particularly focusing on the effect of the highest level of moisture
(75% RH) on the morphology, size, drug distribution, physical state, and dissolution performance of microfibers. While all
samples were stable at 11% RH, at 33% RH the ITZ−sucrose system showed greater resistance against devitrification compared
to the OLZ− and PRX−sucrose systems. For all three samples, the freshly prepared microfibers showed enhanced dissolution
and supersaturation compared to the drug alone and physical mixes; surprisingly, the dissolution advantage was largely
maintained or even enhanced (in the case of ITZ) following the moisture-induced recrystallization under 75% RH. Therefore,
this study suggests that the moisture-induced recrystallization process may result in considerable dissolution enhancement
compared to the drug alone, while overcoming the physical stability risks associated with the amorphous state.

KEYWORDS: centrifugal spinning, microfiber, amorphous, solid dispersion, crystallization, stability, poorly water-soluble drug, sucrose,
supersaturation

1. INTRODUCTION

The drug dissolution performance of BCS class II drugs is
pivotal for attaining suitable oral absorption from the
gastrointestinal tract, with associated therapeutic benefit. The
incorporation of this class of drugs into fully amorphous solid
dispersions represents a well-known and efficient technology to
address low bioavailability resulting from poor water-solubility.1

Amorphous materials lack the ordered molecular lattice of
crystalline materials, hence the strength of intermolecular
interactions is lower than in crystalline solids. The higher free
energy state of amorphous drugs can lead to increased rates of
dissolution and apparent solubility (often up to several orders
of magnitude) and, in turn, higher bioavailability.2−5

Conventional methods for preparing amorphous solid
dispersions include spray-drying, freeze-drying, and hot melt
extrusion. These approaches may require specialized equip-
ment, often associated with difficulties in scale-up.6 Drug
loaded microfibers represent a recent and potentially highly
interesting approach to solid dispersion technology provided

the issues associated with large scale production can be
overcome. Our previous work explored the use of a solvent-free
temperature-controlled centrifugal spinning process as an
alternative technique for mass producing amorphous solid
dispersions in the form of drug-loaded sucrose microfibers with
enhanced dissolution performance.7 This technique has
promising large scale production capability and the microfibers
produced showed significant dissolution improvements for the
model drugs olanzapine (an antipsychotic drug) and piroxicam
(a nonsteroidal anti-inflammatory) (both BCS class II)
compared to the drugs alone or their physical mixtures with
sucrose. This was mainly attributed to the amorphous nature of
both the drug and the microfiber matrix, the solubilizing
capability of sucrose, and the high surface area to volume ratio
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of the microfibers formed. However, because of the particularly
hygroscopic nature of amorphous sucrose, the shelf life of
microfibers produced using this technique is expected to be
relatively short. Physicochemical instability of amorphous solid
dispersions is indeed one of the major challenges for this type
of formulation, and this instability has been reported to have a
detrimental effect on the drug dissolution rate and solubility
during storage of these products.8 Therefore, a significant effort
has recently been directed toward stabilizing the drug in the
amorphous state, particularly focusing on inhibiting recrystal-
lization by the use of appropriate polymers.9−11 However, the
dissolution advantage of the amorphous over the crystalline
state has not always been demonstrated to be as clear-cut as
predicted. For example, Save and Venkitachalam found that
there was no significant differences in the dissolution rates of
fully amorphous nifedipine in polyethylene glycol 4000 (PEG
4000) solid dispersions compared to the corresponding
physical mixtures.12 Similarly, Verheyen et al. demonstrated
that simply mixing crystalline diazepam and temazepam with
PEG-6000 showed the same dissolution rates as the equivalent
amorphous solid dispersion formulations.13 In other studies,
Pina et al. found that fully amorphous olanzapine in
polyvinylpyrrolidone/vinyl acetate (PVP/VA) solid dispersions
displayed comparable dissolution rates with the corresponding
formulations containing crystalline olanzapine.14 In a similar
fashion, Andrews et al. found no difference in the dissolution
performance between bicalutamide solid dispersions in PVP
tested immediately after manufacture and those tested after 6
months storage at 65% RH/20 °C, despite the presence of drug
crystals on the surface of aged samples.15

These discrepancies may potentially be linked to recrystal-
lization of amorphous drugs upon contact with water, whereby
rapid crystallization can occur as a result of an increase in the
overall molecular mobility, rendering the dissolution behavior
more comparable with material that was initially crystalline.16

Moreover, examination of the literature of monolithic solid
dispersions indicates examples of where moisture-induced
recrystallized systems may actually show enhanced dissolution
performance.15,17−20 For example, recent work conducted by
Chan et al. showed that after a deliberate early moisture-
induced recrystallization of amorphous spray-dried ketoprofen
and piroxicam in poly(vinyl alcohol) (PVA) solid dispersions,
the dissolution performance was higher for the moisture-treated
samples than the corresponding amorphous freshly prepared
samples.17 Moreover, the same authors showed that the
apparent solubility of both drugs from the treated samples
was about 5-fold higher than the equilibrium solubility of the
equivalent pure drugs. Similarly, the dissolution rate of a ternary
solid dispersion of diazepam in PEG 3000 and lactose was

found to be faster after moisture-induced recrystallization at
75% RH/40 °C compared to the equivalent sample stored at
0% RH and at room temperature.20 It is conceivable that these
increases may be associated with the recrystallization process
from or within the solid dispersion resulting in dissolution
advantages in terms of, for example, surface area.21 It is also
feasible that the water sorption/desorption processes occurring
during recrystallization under high relative humidity conditions
may induce disordering of the drug crystal lattice, including
formation of point defects, growth banding, vacancies, and
dislocations.22 Similarly, the presence of excipients have been
found to strongly inhibit drug crystal growth rate, commonly by
adsorbing onto the drug crystal surfaces, resulting in a
diversification of drug crystal sizes, shapes, and solubility.23

Overall, however, there does appear to now be a number of
studies whereby the paradigm of amorphous systems holding
an inevitable dissolution advantage over the crystalline
equivalent does not appear to be wholly supported by
observation.
The objective of this study is to investigate the effect of

increasing relative humidity conditions (11, 33, 54, and 75%
RH/25 °C) on the stability, recrystallization behavior, and
dissolution performance of three microfibrous amorphous solid
dispersion systems, consisting of the poorly water-soluble drugs
olanzapine (OLZ), piroxicam (PRX), and itraconazole (ITZ)
(all BCS class II drugs) in sucrose microfibers at a fixed drug
loading (10% w/w). As the solid-state stability and final
dissolution performance may potentially be affected by their
physicochemical properties, the model drugs were chosen on
the basis of their lipophilicity (log P) and molecular weight
(Mw) in the increasing order of OLZ (Mw = 312.43 g/mol, log
P = 2.224) < PRX (Mw = 331.35 g/mol, log P = 3.0625) < ITZ
(Mw = 705.64 g/mol, log P = 5.6626), to investigate links
between those properties and drug recrystallization tendency.
We specifically focus on the effect of rapid recrystallization,
observed for freshly prepared microfiber formulations when
exposed to the highest humidity conditions (75% RH/25 °C)
on potential changes in microfiber size, morphology, drug
distribution, drug physical state, and dissolution performance.
Dissolution tests were conducted under nonsink conditions to
evaluate both dissolution kinetics and potential increase in
apparent drug solubility. Our intention is to further develop the
use of microfibers as viable solid dispersion delivery systems but
also to further explore the influence of physical state on the
dissolution properties of poorly water-soluble drugs.

2. MATERIALS AND METHODS
2.1. Materials. Olanzapine (Mw = 312.43 g/mol) was

purchased from Myjoy Ltd. (India); piroxicam (Mw = 331.34 g/

Figure 1. Schematic representation of the centrifugal spinning apparatus and individual process steps in the preparation of drug-loaded microfibers.
Reproduced from ref 7. Copyright 2016 Elsevier.
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mol) was purchased from Afine Chemicals Ltd. (China);
itraconazole (Mw = 705.64 g/mol) was purchased from Watson
Noke Scientific Ltd. (China); sucrose (Mw = 342.29 g/mol)
was obtained from Sigma−Aldrich Co. (USA). All buffer salts
used for the dissolution medium, as well as dimethyl sulfoxide
(99.9%) (DMSO), acetonitrile (99.8%) (ACN), and sodium n-
dodecyl sulfate (99%) (SDS), were purchased from Sigma-
Aldrich (Germany). All other chemical regents were of
analytical grade.
2.2. Methods. 2.2.1. Preparation of Microfibers by

Temperature-Controlled Centrifugal Spinning. Unloaded
and 10% (w/w) drug-loaded sucrose microfibers were prepared
as illustrated in Figure 1 using a previously described
temperature-controlled centrifugal spinning device.7 Physical
mixtures (PMs) were prepared by mixing sucrose (90% w/w)
and drug (10% w/w) in a mortar for 5 min. Ten grams of
starting material were accurately weighed and placed into the
spinneret, which was preheated to the required temperature.
Optimal procedure conditions were carefully determined on the
basis of melting (Tm) and degradation (Tdeg) temperature
values of raw materials alone and in their PMs to avoid material
degradation and to obtain homogeneous systems. Spinning
operations were conducted with a rotational speed of 2400 rpm
at room temperature (25 ± 5.0 °C). Freshly prepared
microfibers were collected and characterized within 24 h of
preparation.
2.2.2. Stability Study. The effect of relative humidity on the

stability profile and recrystallization behavior of unloaded and
drug-loaded sucrose microfiber formulations (10:90% w/w)
was investigated by storing three different batches for each
formulation in open glass vials at 25 ± 0.5 °C inside a
desiccator containing saturated salt solutions to generate four
different humidity conditions: lithium chloride (11% RH),
magnesium chloride (33% RH), magnesium nitrate (53% RH),
and sodium chloride (75% RH), for up to 8 months. MTDSC
and XRPD were used in combination every day for the first
month and after 3, 6, and 8 months of storage to monitor
changes in the physical state of the formulations during storage.
Drug dissolution studies, SEM/ESEM-EDS images, SS-NMR,
and ATR-FTIR were also conducted on microfibers stored for
8 months at 75% RH/25 °C and compared to those freshly
prepared. A Q5000 SA Dynamic Vapor Sorption Analyzer
(DVS) (TA Instruments, New Castle, DE, USA) was also used
to quantify and evaluate the water sorption tendency of freshly
prepared samples at equilibrium under specific controlled
humidity and temperature conditions. Five to seven milligrams
of samples was placed on a metal coated quartz DVS pan at 25
°C and dried at 0% RH for 3 h. Samples were subsequently
exposed to 33% RH for 24 h to evaluate the extent of moisture
absorption.
2.2.3. Thermal Analysis. Thermal analysis of freshly

prepared and aged samples was conducted using modulated
temperature differential scanning calorimetry (MTDSC) (TA
Instruments Q2000, New Castle, DE, USA) with a refrigerated
cooling system attached to an inert dry nitrogen sample purge
flow at 50 mL/min. Temperature calibration was performed
using indium, n-octadecane, and tin; heat capacity constant
calibration was performed using aluminum oxide TA sapphire
disks at 2 °C/min with ±0.212 °C modulation amplitude over a
60 s period. All DSC and MTDSC experiments and calibrations
were performed using a PerkinElmer 40 μL aluminum pan
accompanying a pinholed lid. DSC experiments were
performed on starting materials at 2 °C/min over an

appropriate temperature range, while MTDSC experiments
were conducted on all other samples at 2 °C/min with ±0.212
°C modulation amplitude over a 60 s period. The glass
transition (Tg) values were measured in the reheating cycle and
determined as the fictive glass transition temperature.
Following the method developed by Barandiaran and
Colmenero,27 the drug glass forming ability/recrystallization
tendency was evaluated by weighing a 1−3 mg sample into
hermetically sealed pans, heating at 10 °C/min to 5 °C above
the melting temperature, holding isothermally for 3 min,
cooling at a rate of 20 °C/min to −70 °C and reheating at 10
°C/min to just above the melting temperature.28 Water content
and thermal decomposition temperature (Tdeg) of both raw
materials and formulations were measured using thermogravi-
metric analysis (TGA) with a Q5000 (TA Instruments,
Newcastle, DE, USA). Samples were heated from room
temperature up to 100 °C with a heating rate of 10 °C/min
and held isothermally for at least 15 min before continuing the
heating ramp up to 300 °C. The amount of water content was
quantified as the percentage of mass loss observed in the
temperature region below the onset of degradation. The data
obtained were analyzed using the TA Instruments Universal
Analysis 2000 software, version 4.7. All experiments were
conducted in triplicate.

2.2.4. X-ray Powder Diffraction (XRPD). Ambient X-ray
powder diffraction (XRPD) measurements were performed
using a MiniFlex diffractometer (RigaKu, Tokyo, Japan).
Samples were lightly pressed into 20 mm aluminum sample
trays and the surface scraped evenly using a glass slide. A Cu
Kα radiation point source (λ = 1.5148 227 Å) was operated at
40 mV and 15 mA. XRPD patterns were recorded using
diffraction angles (2θ) from 5° to 50° (step size 0.05°; time per
step 0.2 s). Data was exported and analyzed using OriginPro
2016. All experiments were conducted in triplicate.

2.2.5. Scanning Electron Microscopy (SEM). The morphol-
ogy and size of freshly prepared microfibers and corresponding
aged samples were analyzed using a Quanta 200F instrument
(FEI, Hillsborough, OR, USA). Samples were coated with 20
nm of gold under vacuum using a Quorum Q150T Turbo-
Pumped Sputter Coater (Quorum Technologies, UK). Data
were collected over a selected area of the surface of samples.
The average diameter and the percentage frequency of the
microfibers were determined from the mean value of 100
individual measurements collected by analyzing the SEM
micrographs using ImageJ (USA, version 1.46r). After storage
at 75% RH/25 °C for 8 months, fibers collapsed into elongated
particles with high aspect/ratio (length/diameter). Therefore,
average particle size of the aged samples was estimated by
measuring the length of the short axis diameter (shortest
distance between two points) on a given particle using ImageJ.

2.2.6. Environmental Field Scanning Electron Microscopy
(ESEM) and Energy-Dispersive X-ray Spectroscopy (EDS).
Surfaces of the freshly prepared and aged microfibers (at 75%
RH/25 °C) were scanned using a FEI/Philips XL-30
Environmental Field Emission scanning electron microscope
(ESEM) (accelerating voltage 10 kV), equipped with a
Schottky-based gun design using a point-source cathode of
tungsten, which has a surface layer of zirconia (ZrO2). Samples
were fixed on sample stubs using double-sided adhesive tape. A
sputter carbon coater (Quorum Technologies, Newhaven, UK)
was used to coat the surfaces prior to imaging. EDS (INCA
Energy manufactured by Oxford Instruments) connected to the
ESEM was used to map the distribution of drug clusters using
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chlorine (Cl) in ITZ and sulfur (S) in OLZ and PRX as specific
markers. Samples were tested using both ESEM and mapping
mode EDS.
2.2.7. Drug Content and Loading Efficiency. Drug content

was measured by dissolving predried samples, containing 10 mg
of theoretical equivalent of drug content, in 5 mL of DMSO, in
which both drug and carrier are soluble, followed by dilution in
phosphate buffer (pH: 6.8) for UV detection at 254 and 353
nm for OLZ and PRX, respectively. For ITZ, predried samples
were dissolved in 100 mL of 50:50 ACN/phosphate buffer
(pH: 6.8) and analyzed using HPLC-UV system at 264 nm
(Hewlett-Packard 1050 Series, Agilent Technologies, UK),
equipped with a Synergi 4 μm Polar-RP 80 Å, 50 × 3 mm
column (Phenomenex, UK). The system was operated under
gradient flow at 1 mL/min using 50:50 ACN/water−acetic acid
0.1 (% v/v) as the mobile phase. For a detection wavelength of
264 nm, the ITZ peak elution time was 6.3 min. The standard
curve linearity was verified from 1 to 100 μg/mL with an r2

value of at least 0.999. Drug loading efficiency (DLE) was
measured using eq 1:

= ×DLE(%)
amount of drug measured

theoretical amount of drug based on drug loading
100

(1)

2.2.8. Attenuated Total Reflectance-Fourier Transform
Infrared Spectroscopy (ATR-FTIR). Characterization of PMs
and formulation molecular structure was performed using
attenuated total reflectance Fourier transform infrared spec-
troscopy (ATR−FTIR) (Bruker Vertex 90 spectrometer, UK).
Measurements were performed with a resolution of 2 cm−1, 32
scans over 4000−700 cm−1 range at room temperature (25 °C)
in transmission mode. Spectra were analyzed using Opus
software version 7.2 and OriginPro 2016. All experiments were
conducted in triplicate.
2.2.9. Solid-State 13C NMR Spectroscopy (SSNMR). Solid-

state NMR experiments were carried out on Bruker Avance 300
spectrometer with a 7.05 T wide-bore magnet at ambient probe
temperature. High-resolution solid-state 13C was recorded at
75.5 MHz using a standard Bruker 4 mm double-resonance
magic-angle spinning (MAS) probe. Solid materials were
packed into zirconia rotors of 4 mm external diameter and
spun at the MAS frequency of 8 kHz with stability better than
±3 Hz. High-resolution solid-state 13C NMR spectra were
recorded using cross-polarization (CP), MAS, high-power
proton decoupling, and total suppression of sidebands
(TOSS). Typical acquisition conditions for 13C CPMAS
TOSS experiments were 1H 90° pulse duration = 2.45 μs;
contact time = 2 ms; recycle delay = 5 s. Dipolar-dephased 13C
CPMAS TOSS spectra (also known as NQS CPMAS TOSS,
where NQS stands for nonquaternary suppression) were also
acquired in order to emphasize peaks due to nuclei, which are
either remote from protons or have substantial motional
averaging of dipolar interactions with protons. The dephasing

delay used was 40 μs. 13C chemical shifts are given relative to
tetramethylsilane, which was calibrated using glycine (176.46
ppm).

2.2.10. Nonsink Dissolution Testing. Dissolution−super-
saturation profiles of the formulations were obtained by
nonsink dissolution tests in phosphate buffer (pH: 6.8) using
a shaking incubator. For ITZ, 0.1% (w/v) of sodium dodecyl
sulfate (SDS) was added to the dissolution medium. Samples
containing 10 mg of drug were loaded into 50 mL of
dissolution medium. One milliliter of samples was withdrawn at
predetermined time intervals and filtered through a 0.22 μm
Millipore Millex GT filter. The drawn volume was replaced
with the same amount of blank dissolution medium from a
separate vessel, also held at a temperature of 37 ± 0.2 °C. The
absorbance of the filtrate was measured by UV (for OLZ, PRX)
and HPLC-UV system (for ITZ) after appropriate dilution.
Dissolution tests were performed for 25 h.

2.2.11. Statistical Analysis. The maximum drug concen-
tration in solution (Cmax) and the time of its occurrence (Tmax)
were obtained from the drug concentration−time profiles.
Moreover, the supersaturation profiles between formulations
were compared by measuring the area under the curve (AUC).
All results are expressed as mean ± SD. The data from different
formulations were compared for statistical significance by one
way analysis of variance (ANOVA) and Tukey−Kramer
posthoc test when p < 0.05.

3. RESULTS AND DISCUSSION
3.1. Sample Preparation. Temperature-controlled cen-

trifugal spinning represents an innovative approach to solvent-
free spinning of fiber-based fully amorphous solid dispersions
with high production rates.7 During the formation of fibers
using this approach, materials are quickly mixed, melted, and
stretched into fine fibers under simultaneous centrifugal and air
friction forces. Both the enhanced surface area and amorphous
nature of the product potentially improve dissolution perform-
ance of BCS class II drugs.7 Fully amorphous (as determined
using XRPD, data not shown) OLZ−, PRX−, and ITZ−sucrose
microfibers with 10% (w/w) drug loading were successfully
prepared using the operating conditions summarized in Table
1, these being chosen on the basis of melting (Tm) and
degradation (Tdeg) temperature values of each component and
their corresponding physical mixtures. Tm values for the raw
materials and in their PMs with sucrose were observed at 191 ±
0.5, 196 ± 0.4, 203 ± 0.2, and 169 ± 0.3 °C for sucrose, OLZ,
PRX, and ITZ, respectively. Tdeg values, determined using TGA,
were observed at 230 ± 4.1, 234 ± 1.0, 232 ± 3.2, and 238 ±
3.7 °C for sucrose, OLZ−sucrose, PRX−sucrose, and ITZ−
sucrose PMs, respectively. In addition, Table 1 summarizes
experimental values of glass transition temperature (Tg)
measured using MTDSC (in reheating cycle), drug loading,
and drug loading efficiency of the fibers formed. It is
noteworthy that the Tg values for the three systems are very

Table 1. Experimental Operating Conditions Used for the Preparation of Microfibers and the Corresponding Glass Transition
Values (Tg) Measured Using MTDSC and Drug Loading and Drug Loading Efficiency Determined Using eq 1

spinning condition

formulation temperature (°C) rotating speed (rpm) Tg (mean ± SD) (°C) drug loading (% w/w) drug loading efficiency (mean ± SD) (%)

sucrose fibers 197 2400 71.1 ± 4.3
OLZ−sucrose fibers 200 2400 73.9 ± 2.1 10 101 ± 2.3
PRX−sucrose fibers 205 2400 69.6 ± 1.4 10 97 ± 1.5
ITZ−sucrose fibers 197 2400 74.3 ± 1.9 10 99 ± 3.1
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similar; this is expected from the similar reported Tg values of
the drugs alone (71 ± 0.5, 61 ± 0.4, and 59 ± 0.2 °C for OLZ,
PRX, and ITZ, respectively). Also note that SEM images and
other basic characterization data are reported in a subsequent
section.
3.2. Stability Studies. 3.2.1. Visual Observations. Initially,

freshly prepared microfibers were characterized and tested
within 24 h of preparation and stored in sealed bags under
ambient conditions; previous studies indicated a significant
dissolution advantage for such systems,7 and these are further
explored for the systems below. However, preliminary
observations suggested that the physical shelf life of these
samples is relatively short; the instability was particularly
apparent for drug-free sucrose microfibers which collapsed,
liquefied, and then solidified into hard lumps of sucrose crystals
within one or 2 days. This is in agreement with a previous
study, whereby fully amorphous sucrose fibers were shown to
collapse and crystallize in 1−3 days when exposed to 33% or
higher RH conditions.29

The corresponding microfiber samples containing 10% (w/
w) drug did not show any visible structural changes over 1−4
weeks under the same conditions. As the structural collapse
began, it was observed that the drug-loaded samples broke
down into dry and very fine powders instead of the hard and
sticky clusters observed for the drug-free sucrose samples.
Similar effects were observed for all three drugs. Based on these
preliminary observations, we can assume that the presence of
the drugs, even at relatively low drug loading, affects the
crystallization tendency and structural collapse mechanism of
the pure sucrose system.
3.2.2. Effect of Relative Humidity on the Time to

Recrystallization of Microfibers. For a better understanding
of the effect of moisture and the presence of the drugs on the
physicochemical stability of drug-free and drug-loaded sucrose
microfibers, samples were exposed to four different controlled
relative humidity conditions (11, 33, 53, and 75% RH) at 25 °C
and periodically characterized over an 8 month period.
The physical state of all samples after exposure to moisture

was monitored using XRPD and MTDSC. Samples were
considered fully amorphous if showing only one single, mixed-
phase glass transition (Tg) from the MTDSC profiles and a
broad halo pattern from the XRPD diffraction patterns. As an
example, Figure 2A,B shows MTDSC and XRPD results for all
samples exposed for 8 months to 25 °C/11% RH. It can be
seen that all samples exposed to 11% RH maintained their
amorphous state over an 8 month period, demonstrated by a
mixed-phase glass transition (Tg) from the MTDSC traces and
a broad halo pattern from the XRPD diffractograms. Tg values
were found to be equivalent to samples characterized
immediately after preparation, suggesting good long-term
stability in the amorphous state under these conditions.
However, at higher relative humidity conditions, the stability
of all samples in the amorphous state is compromised. The
appearance of Bragg peaks from the XRPD diffractograms was
considered as clear evidence of recrystallization. MTDSC was
mainly used to confirm that recrystallization occurred based on
the disappearance of the Tg of the relative component.
Table 2 summarizes the sample physical stability data under

the aforementioned humidity conditions, and the time range in
which each sample shows evidence of recrystallization based on
the appearance of Bragg peaks (from the XRPD data) as well as
the disappearance of the Tgs together with the corresponding
exothermic crystallization events. When both requirements

were satisfied, an average number of days ± SD was reported.
Inspection of this table indicates that the two techniques are in
reasonable agreement, providing a relatively narrow time range
in which the recrystallization process begins, although not
without discrepancies. In particular, the XRPD data of all
recrystallized samples suggest that only sucrose recrystallized
out from the amorphous systems as only Bragg peaks
corresponding to crystalline sucrose were detected, likely due
to poor sensitivity of the instrument in detecting low amount of
drugs. However, MTDSC profiles of the same samples
collected at the same time range showed no amorphous
content by the absence of any detectable Tg, suggesting that
also the drugs together with sucrose might have recrystallized.
Moreover, prior to the complete disappearance of Tgs from the
MTDSC profiles, Tgs for all systems were seen to become
broader and gradually decrease due to the plasticizing effect of
sorbed water. However, for better clarity, in this section the
term recrystallization refers to sucrose recrystallization only as
from the data collected using the two techniques, we can only
provide evidence for the physical state of sucrose. These
discrepancies between XRPD and MTDSC are further
discussed in section 3.4.3. Upon exposure to 54% RH/25 °C
and 75% RH/25 °C, all samples collapsed and sucrose
recrystallization occurred within 24 h. Again, a more in-depth
analysis of the actual physical state for the three drugs under the
highest humidity conditions (75% RH/25 °C) is provided in a
subsequent section.
However, it is interesting to note that samples exposed to

33% RH/25 °C showed significant differences in sucrose

Figure 2. (A) MTDSC heat flow traces and (B) XRPD diffractograms
of amorphous microfibers after 8 months storage at 11% RH/25 °C of
(a) drug-free sucrose microfibers, (b) OLZ-loaded sucrose microfibers,
(c) PRX-loaded sucrose microfibers, and (d) ITZ-loaded sucrose
microfibers with inset view showing magnification of glass transitions
analyzed with reversing heat flow. All microfibers contained 10% (w/
w) drug loading.
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recrystallization time. As shown in Table 2 (bold values), the
onset time range for sucrose recrystallization varied among
samples. In particular, we can identify three distinct cases under
these conditions: relatively rapid sucrose recrystallization for
drug-free sucrose microfibers (2.1 ± 0.8 days), ∼8-fold and ∼2-
fold slower recrystallization in the presence of OLZ (23.5 ± 2.6
days) and PRX (9.0 ± 1.6 days), respectively, and inhibition of
recrystallization in the presence of ITZ for the duration of the
stability study (8 months).
Overall, the addition of the model drugs resulted in a

significant delay in sucrose recrystallization time from the
microfibers, suggesting dramatic reductions in the system
molecular mobility in the solid state; this may be through
molecular interactions, alterations in Tg via plasticization effects,
or alterations in the water uptake tendency. In a study
conducted by Shamblin and Zografi, the recrystallization of
sucrose from the amorphous state was found to be inhibited by
the presence of 50 (%w/w) PVP, prepared as amorphous
lyophilized solid solutions.30 The inhibiting effect could not be
attributed to the antiplasticizing effect of PVP as Tg values of
the mixtures remained unchanged, but due to coupling of
sucrose to PVP through hydrogen bonding, which reduced the
local molecular mobility of sucrose. Sucrose molecules with
eight hydroxyl groups, three hydrophilic oxygen atoms, and 14
hydrogen atoms can interact through hydrogen bonding with
proton acceptor/donor sites present in OLZ, PRX, and ITZ. As
shown in our previous work, ATR-FTIR spectra of OLZ-loaded
microfibers displayed a chemical shift of ν(C−N) (piperazinyl
ring of OLZ) to lower wavenumber indicating potential
hydrogen bonding interactions between OLZ and sucrose
molecules.7 However, no chemical shifts were observed in the
case of PRX- and ITZ-loaded sucrose microfibers as discussed
in more detail in section 3.4.4. This may reflect why the
addition of PRX did not stabilize the system as well as OLZ.
However, these observations are not sufficient to explain the
significant inhibition effect in the sucrose recrystallization
observed at 33% RH after the addition of ITZ.
3.3. Assessment of Water Uptake in Relation to Drug

Crystallization Tendency. Another possible cause of the
significantly slower sucrose recrystallization tendency observed

for ITZ-loaded microfibers stored at 33% RH may be related to
the different degrees of lipophilicity of the model drugs. The
addition of the more lipophilic ITZ (log P = 5.66)26 compared
to OLZ (log P = 2.2)24 and PRX (log P = 3.06)25 may account
for the greater recrystallization inhibition observed for the
ITZ−sucrose system. Molecularly dispersed lipophilic ITZ
molecules may increase the overall hydrophobicity of the
sucrose microfiber surfaces, slowing the diffusion of the water
into the hydrophilic sucrose domains and therefore inhibiting
crystallization.
If this assumption is true, ITZ−sucrose systems should

absorb less water during storage than the other samples.
Therefore, the water uptake profiles of samples were measured
using DVS after allowing equilibration at 25 °C and 33% RH
for 24 h after preparation. As expected, no crystallization was
observed over the time scale of the experiment. Drug-free
sucrose microfibers were indeed found to significantly (p <
0.05) absorb higher amounts of water (5.3 ± 0.5%) compared
to the drug-loaded sucrose systems in the decreasing order of
OLZ−sucrose (3.4 ± 0.3%) > PRX−sucrose (2.9 ± 0.4%) >
ITZ−sucrose (1.79 ± 0.2%). Overall, these findings suggest
that drug-loaded microfibers are more resistant to the
absorption of water under these conditions than the pure
sucrose microfibers and that the higher lipophilicity of ITZ
results in a lower uptake than the less lipophilic OLZ or PRX.
In addition, it is perfectly feasible that the superior ability of

ITZ-loaded microfibers to remain in the amorphous state upon
storage compared to OLZ− and PRX−sucrose systems may be
linked to the drug glass-forming abilities and the corresponding
devitrification tendencies. As a first simple observation, the
more complex and larger molecular structure of ITZ (Mw =
705.64 g/mol) compared to those of OLZ (Mw = 312.43 g/
mol) and PRX (Mw = 331.35 g/mol) is generally indicative of
stronger glass formation and hence greater likelihood of
remaining in the amorphous state.28,31

For a more precise indication of drug crystallization tendency
we used the DSC screening method, whereby drugs can be
separated into three distinct classes based on their thermal
response upon cooling from the undercooled melt or upon
reheating from the glassy state.28 OLZ and PRX were found to

Table 2. Average Time Required for the Onset of Sucrose Recrystallization for All Formulations Stored under 11, 33, 53, and
75% RH at 25 °C, Measured by MTDSC and XRPD, n = 6a

sample relative humidity (%) XRPD profiles Tg (mean ± SD) (°C) onset of sucrose recrystallization time (mean ± SD) (days)

sucrose fibers 11 halo pattern 71.1 ± 4.3 n.o.
33 sucrose Bragg peaks n.o. 2.1 ± 0.8
53 sucrose Bragg peaks n.o. 0.8 ± 0.2 (<1 day)
75 sucrose Bragg peaks n.o. 0.7 ± 0.1 (<1 day)

OLZ−sucrose fibers 11 halo pattern 73.9 ± 2.1 n.o.
33 sucrose Bragg peaks n.o. 23.5 ± 2.6
53 sucrose Bragg peaks n.o. 1.1 ± 0.2
75 sucrose Bragg peaks n.o. 0.9 ± 0.1

PRX−sucrose fibers 11 halo pattern 69.6 ± 1.4 n.o.
33 sucrose Bragg peaks n.o. 9.0 ± 1.6
53 sucrose Bragg peaks n.o. 1.0 ± 0.2
75 sucrose Bragg peaks n.o. 0.8 ± 0.1

ITZ−sucrose fibers 11 halo pattern 74.3 ± 1.9 n.o.
33 halo pattern 74.1 ± 2.1 n.o.
53 sucrose Bragg peaks n.o. 1.7 ± 0.8
75 sucrose Bragg peaks n.o. 1.1 ± 0.1

aBold values highlight significant differences (p < 0.05) in the sucrose recrystallization times under 33% RH. n.o. = not observed. Crystalline sucrose
2θ angle peaks: 11.64°, 13.10°, 18.78°, 19.56°, and 24.70°.
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fall into class II as recrystallization was not observed upon
cooling from the undercooled melt, but it was observed during
reheating above the corresponding Tg. For ITZ, no
crystallization was observed either upon cooling or reheating
up to the melting point (class III), clearly indicating a stronger
resistance to devitrification compared to OLZ and PRX (data
not shown).
Overall, therefore, there are a number of possible

explanations for the greater stability of the drug loaded systems
compared to the unloaded and the rank order of the three
incorporated drugs; these include direct molecular interaction,
lipophilicity with associated lower water uptake, and intrinsic
crystallization tendency of the incorporated drug. The
anomalous behavior of the ITZ systems is of particular interest
and is most probably linked to the lower water uptake or the
intrinsic crystallization properties of the drug (or a combination
of both).
3.4. Solid-State Characterization of Microfibers

Stored at 25 °C/75% RH. Since the main purpose of this
study is to investigate the potential effects of a moisture-
induced sucrose recrystallization on microfiber size, morphol-
ogy, drug distribution, drug physical state, and dissolution
performance, samples stored at 75% RH/25 °C were chosen for
further analysis and investigations in order to allow comparison
of the initial amorphous fibers with the equivalent moisture-
treated systems.

3.4.1. Scanning Electron Microscopy (SEM). Figure 3 shows
the scanning electron micrographs (SEM) of freshly prepared
microfibers and the corresponding moisture-treated samples
after 8 months of storage at 75% RH/25 °C. It is clear that
storage results in both changes to the surface integrity and the
fiber architecture, with the generation of elongated particles as
the fiber structure collapses. SEM images collected after 1 day
of storage did not show any significant difference in terms of
morphology and size compared to those after 8 months of
storage (data not shown). With the exception of some rounded
particles, the majority of aged drug-loaded particles have visibly
maintained the fiber shape, although shorter in length
compared to the corresponding freshly prepared samples. As
mentioned previously, it is clear from Figure 3 that the aged
drug-free sucrose microfibers collapsed into significantly larger
and more irregular crystal agglomerates compared to the aged
drug-loaded samples. Table 3 shows the average fiber diameter
of microfibers upon preparation and average particle size of the
corresponding aged samples after storage. Crystal clustering
and agglomeration observed for drug-free sucrose microfibers
may be a result of the recrystallization mechanism of sucrose
from the amorphous state. It has been reported that when
amorphous sucrose recrystallizes, a relatively small amount of
moisture is generally trapped in the crystal lattice due to the
particularly high tendency of sucrose molecules to form
hydrogen bonds with water.32 This internal water is slowly
released to the crystal surface, forming a residual thin layer of

Figure 3. SEM images of the surface morphology of all samples: (a) freshly prepared samples (500× magnification), (b) 8-month aged samples
(500× magnification), and (c) 8-month aged samples (100× magnification). All aged samples were stored at 75% RH/25 °C for 8 months.
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supersaturated “syrup” on the surface of each crystal. This
forms an external low-permeability crust of amorphous sugar,
which is the main cause of caking and formation of large crystal
aggregates.33 However, the absence of significant crystal
agglomeration for the aged drug-loaded sucrose microfibers
supports previous observations that the drugs may interfere
with the mechanism of recrystallization of amorphous sucrose.
This might also explain why freshly recrystallized drug-loaded
sucrose microfibers were found to retain negligible amount of
water (∼0.01%) compared to the pure recrystallized sucrose
system (∼2−3%), measured using TGA.
3.4.2. Assessment of Drug Distribution. It has been

reported that the crystallization of sucrose can be inhibited
by substances able to adsorb onto the sucrose crystal surface
during crystallization.34,35 These substances impede the bulk
diffusion of sucrose molecules to the crystal surface and surface
incorporation, preventing further growth or recrystallization.
Therefore, energy-dispersive spectroscopy (EDS) was also
conducted to evaluate the drug distribution within the sucrose
matrix in drug-loaded microfibers before and after storage. This
technique can distinguish and locate a specific chemical
element present in a drug molecule, giving a distinct signal in

the EDS spectrum.36 Since chlorine (Cl) atoms are unique to
ITZ and sulfur (S) atoms are unique to OLZ and PRX, these
chemical elements were used as specific markers to track the
drug distribution on the scanned surfaces.
Figure 4 shows the drug distribution (red dots) in the

sucrose matrix as detected by EDS for all samples before
(freshly prepared samples) and after 8 month storage at 75%
RH/25 °C, respectively. Overall, the technique indicates that in
all three cases the drug appears to be reasonably evenly
distributed in the sucrose matrix, before and after storage and
indeed present on the surface, bearing in mind that the
technique has a penetration depth of approximately 0.16−1 μm
at 10 kV.37

Nevertheless, looking at the freshly prepared samples there
does appear to be some inconsistency in the color intensity for
the OLZ system, when comparing different fibers in the
scanned area, while for PRX there appears to be spots of
intense color, which may indicate some degree of surface phase
separation. However, it is important to note that a certain
degree of phase separation may have occurred during the
ESEM-EDS experiments given the environmental conditions
associated with the measurements and the relative instability of
the freshly prepared samples. However, ITZ system shows a
more even drug distribution compared to PRX and OLZ
systems, indicated by the absence of regions with different color
intensity.
After collapse of the structures on storage, it is interesting to

note that spots of intense color/drug become more visible for
all three systems, particularly apparent for the particles
containing OLZ and PRX. Of the three drugs, PRX again
shows the greatest evidence for separation of the two
components on crystallization, as seen by the presence of
regions that show no coloration. Interestingly, ITZ shows a
much more even distribution of drug than the other two
samples, even after crystallization. Overall, therefore, the study
indicates that the collapse process leads to particles, whereby

Table 3. Fiber Diameter of Freshly Prepared Samples and
Particle Size (Short Diameter Length) of the Corresponding
Aged Samples after 8 Month Storage at 75% RH/25 °C

freshly prepared sample aged sample

sample
fiber diameter (mean ± SD)

(μm)
particle size (mean ± SD)

(μm)

sucrose fibers 9.77 ± 3.10 334.52 ± 86.58
OLZ−sucrose
fibers

10.87 ± 2.94 17.10 ± 9.45

PRX−sucrose
fibers

14.10 ± 4.53 15.43 ± 7.58

ITZ−sucrose
fibers

5.84 ± 2.97 29.03 ± 7.20

Figure 4. SEM micrographs of the areas mapped by EDS for all samples: (A) freshly prepared microfibers and (B) 8-month aged microfibers stored
at 75% RH/25 °C. Red dots represent the distribution of the drugs by tracking sulfur (S) for OLZ and PRX, and chloride (Cl) for ITZ.

Molecular Pharmaceutics Article

DOI: 10.1021/acs.molpharmaceut.6b01126
Mol. Pharmaceutics 2017, 14, 1666−1680

1673

http://dx.doi.org/10.1021/acs.molpharmaceut.6b01126


the two components (drugs and sucrose) are present and
mixed together. However, there appear to be some degree of
separation into distinct crystalline regions, which may have
some effects on the final drug dissolution performance.

3.4.3. Sample Crystallinity and Thermal Response. The
crystallinity of aged fiber formulations was initially examined
using XRPD and MTDSC. The diffraction patterns of aged
drug-loaded fibers after 8 month of storage at 75% RH/25 °C,

Figure 5. Powder X-ray diffractograms of (A) starting materials and (B) 8-month aged samples; (C) MTDSC traces of 8-month aged samples. All
aged samples were stored at 75% RH/25 °C for 8 months.
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are compared to the corresponding PMs and displayed in
Figure 5A,B. The presence of diffraction peaks indicates that all
formulations contain crystalline material. However, diffraction
peaks are significantly broader with decreased intensities if
compared to the corresponding PMs. Variations in the intensity
of diffraction peaks are generally associated with the preferred
crystallographic orientation of most materials. More impor-
tantly, as previously mentioned, characteristic peaks of all three
drugs could not be detected from the diffraction patterns of the
aged samples, showing only characteristic peaks of crystalline
sucrose (11.64°, 13.10°, 18.78°, 19.56°, and 24.70°). In other
words, XRPD data themselves confirm that, while sucrose
completely recrystallized after storage, there appears to be less
evidence of drug recrystallization. However, these findings may
not be conclusive as this technique has several disadvantages
associated with the preferred crystallographic orientations and
peak broadening, as well as poor sensitivity in detecting
components present in relatively lower ratios in a two phase
system.
Figure 5C shows the MTDSC profiles of the aged samples

after 8 month of storage at 75% RH/25 °C. In contrast to
XRPD data, MTDSC profiles of the aged samples show that
both components (drug and carrier) are present in the
formulations. The absence of the glass transitions and
exothermic crystallization, and the presence of endothermic
melting peaks might indicate that both components of all
samples recrystallized during storage. In the case of OLZ,
however, a weak endotherm can be seen at around 80 °C,
which cannot be associated with the glass transition of OLZ
and may instead indicate water loss (see section 3.4.5). It is
interesting to note that the onset of melting temperature values
of each component from the aged samples are found to be
depressed relative to the onset of melting peaks (Tm‑onset) for
the pure untreated materials (indicated by the annotations on
each MTDSC trace and corresponding to 191 ± 0.5, 196 ± 0.4,
203 ± 0.2, and 169 ± 0.3 °C for sucrose, OLZ, PRX, and ITZ,
respectively). This is particularly apparent for the aged sucrose
in both drug-free and the ITZ−sucrose systems, which shows
two broad peaks at significant lower temperatures (T1m‑onset,
126 ± 0.8 °C; T2m‑onset, 149 ± 0.4 °C) relative to that of intact
sucrose. A similar behavior pattern has been reported by
another author, whereby recrystallized sucrose showed a
significant depression of its melting point, which was attributed
to defects in the lattice structure.38 If local defects, impurities,
and/or submicron crystallites are present in the crystal lattice,
the physicochemical properties, including the melting behavior,
may be altered relative to the corresponding intact crystal.39

These observations may indicate an overall reduction in the
solid state intermolecular interactions, which in turn may affect
the drug solubility and dissolution performance. Interestingly,
there appears to be little or no change in the melting behavior
of sucrose for the aged OLZ− and PRX−sucrose systems,
showing only one sharp melting peak around 185−190 °C as
would normally be expected for intact sucrose.
XPRD diffractograms and MTDSC profiles collected over

the 8 month period under 75% RH/25 °C were totally
reproducible and superimposable to those obtained after 1 day
of storage at the same conditions, suggesting that no further
changes of physicochemical properties of the recrystallized
samples occurred during storage (data not shown).
3.4.4. Attenuated Total Reflectance-Fourier Transform

Infrared Spectroscopy (ATR-FTIR). Although the MTDSC
traces indicated that both drug and carrier recrystallized during

storage, XRPD was not able to detect characteristic Bragg peaks
of the drugs. Therefore, ATR-FTIR and SS-NMR (discussed in
the next section) were used to further elucidate the physical
state of the drugs and to observe whether potential changes in
the drugs’ molecular structure occurred as a result of storage.
Figure 6A−C compares ATR-FTIR spectra of the freshly
prepared drug-loaded microfiber formulations for OLZ, PRX,
and ITZ in comparison with corresponding aged formulations,
pure drugs, and PMs, respectively. To identify the presence of
drugs, we particularly focused on the region between 1700 and

Figure 6. Comparison of ATR−FTIR spectra in the region between
1700 and 1400 cm−1 of drug-loaded freshly prepared samples,
corresponding aged samples, PMs, and sucrose as received for (A)
PRX, (B) OLZ, and (C) ITZ. All aged samples were stored at 75%
RH/25 °C for 8 months.
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1400 cm−1 as sucrose shows no absorption in this region. In all
cases, there are clear differences between the ATR-FTIR
spectra of freshly prepared samples and the corresponding
physical mixtures. Due to the amorphous character of freshly
prepared fibers, characteristic peaks of all drugs were found to
be fewer in number and broader relative to those of the
corresponding drugs in their PMs. Regarding the aged samples,
sharpening of characteristic peaks for all drugs is expected as a
result of rapid recrystallization upon storage at 75% RH/25 °C
as previously observed from DSC and XRPD results.
Surprisingly, while it is clear from a comparison between
aged samples and PMs that PRX crystallized into its previous
crystalline form (Form I) (totally overlapping spectra), two
distinct cases were observed for OLZ and ITZ. In the case of
ITZ, there is no evidence of narrowing of peaks or any sign of
recrystallization as the spectra of aged samples and correspond-
ing freshly prepared samples are superimposable. This may
suggest that ITZ did not recrystallize during storage. In the case

of OLZ, although there seem to be a narrowing of peaks in the
aged samples indicating recrystallization, peaks at 1582 and
1556 cm−1 assigned to ν(CN) (azepine ring) and ν(CC)
(benzene and thiophene rings), respectively, appear at relatively
higher frequencies in the aged sample compared to the
corresponding PM. It is also interesting to note that the
position of these peaks in the aged samples is equivalent of that
observed in the amorphous freshly prepared samples. This may
indicate that OLZ is either partially present in the amorphous
state or, more likely, OLZ is present in a different crystalline
form. In fact, OLZ has been found to exist in more than 25
possible crystalline forms.40 In particular, in the presence of
water and at ambient temperature, OLZ was found to easily
convert (within hours) to the less soluble dihydrate B or the
least soluble dehydrate D.41 However, due to the very high
concentration of sucrose and in turn the relatively low drug
loading, the identification of a different form of OLZ was not
possible using ATR-FTIR.

Figure 7. 13C CP/MAS NMR spectra of freshly prepared microfibers, the corresponding aged samples, PMs, and sucrose as received. All aged
samples were stored at 75% RH/25 °C for 8 months.
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3.4.5. Solid-State 13C NMR Spectroscopy (SSNMR). SSNMR
spectroscopy is a powerful, nondestructive, and noninvasive
technique, particularly effective for investigating the drug’s
physical state as well as polymorphism. Figure 7 shows 13C CP/
MAS NMR spectra collected for all freshly prepared samples,
the corresponding aged samples, PMs, and sucrose as received.
All PMs and unprocessed sucrose show sharp and highly
resolved resonances associated with the well-defined solid-state
environments of the 13C nuclei in the crystal structures. Freshly
prepared microfibers are completely amorphous as confirmed
by the observed broad resonance lines (Figure 7). As an
illustration, the half-height line width of the signal at ∼103 ppm
increases from 10 Hz in crystalline samples to 250 Hz in
amorphous samples. In particular, differences between crystal-
line and amorphous PRX can be clearly seen at around 132−
136 ppm (crystalline PRX, four peaks at 132.4, 133.7, 135.1,
136.5 ppm; amorphous PRX, one peak at 134.3 ppm).
Similarly, significant differences between crystalline and
amorphous ITZ can be seen at around 108−109 ppm
(crystalline ITZ, two peaks at 108.0 and 109.5 ppm; amorphous
ITZ, one peak at 108.2), 153−146 ppm (crystalline ITZ, three
peaks at 153.7, 150.5, and 146.3 ppm; amorphous ITZ, one
peak at 146.1), and 22 ppm (crystalline ITZ, one peak at 22.2
ppm; amorphous ITZ, one peak at 19.7 ppm). For OLZ, 13C
chemical shift of amorphous OLZ remained mostly unchanged
relative to that of crystalline OLZ, although peaks in
amorphous OLZ are broader, particularly evident at around
48−46 ppm (crystalline OLZ, three well-defined peaks at 48.5,
47.1, 46.0 ppm; amorphous OLZ, the same peaks are less
resolved due to signal broadening). The SSNMR spectrum of
PRX from the aged sample is readily assigned to that of
crystalline PRX from the PM. This confirms that PRX
recrystallizes into its previous form (Form I) during storage.
However, in the case of OLZ−sucrose aged sample, although
resolved resonances indicate that OLZ recrystallized during
storage, the 13C chemical shift is somewhat different to the
SSNMR spectrum of crystalline OLZ (Form I) from the
corresponding PM. In particular, additional resonances at
119.2, 119.8, 122.5, 130.4, 140.9, and 146.6 ppm were found in
the crystalline OLZ from the aged samples, indicating the
presence of one or more different crystal forms. The most
relevant anhydrates and hydrates of OLZ have been previously
characterized by 13C CP/MAS NMR spectroscopy.41 The
analysis of the specific 13C chemical shift and peak assignments
for the relevant OLZ crystal forms indicates that some of the
additional peaks found in the OLZ aged samples are identified
to belong to dehydrate B. Therefore, OLZ may be present in a
mixture of Form I and dehydrate B. This might also explain the
first weak endotherm observed at around 82 °C in the MTDSC
profile of aged OLZ−sucrose fibers in Figure 5C, which may be
associated with the dehydration process of OLZ dehydrate as
previously reported in the literature.42 For ITZ, it is clear that
the 13C NMR chemical shifts and line widths of the drug in the
aged sample are similar to those in the corresponding freshly
prepared sample. This observation agrees well with the ATR-
FTIR results, whereby ITZ did not recrystallize during storage.
3.4.6. In Vitro Dissolution Study. Figure 8A−C shows

dissolution−supersaturation profiles (for OLZ, PRX, and ITZ,
respectively), obtained under nonsink conditions for the freshly
prepared microfiber formulations in comparison with corre-
sponding aged samples at 75% RH/25 °C (both freshly
recrystallized and after 8 month of storage), PMs, and pure
drugs.

As shown in our previous work, freshly prepared OLZ- and
PRX-loaded sucrose microfibers showed evidence for super-
saturation, with sustained plateau levels under nonsink
conditions; this is putatively ascribed to their amorphous
nature, the enhanced surface area of the fibers, and the ability of
sucrose to reduce drug precipitation.7 Figure 8C indicates that
this also appears to be the case for the freshly prepared ITZ-
loaded sucrose microfibers, exhibiting up to 8-fold super-

Figure 8. Comparison of dissolution−supersaturation profiles
obtained under nonsink conditions between freshly recrystallized
samples under 75% RH/25 °C, 8-month aged samples under 75%
RH/25 °C, freshly prepared samples, PMs, and pure drug for (A)
OLZ, (B) PRX, and (C) ITZ.
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saturation (Cmax) relative to the equilibrium solubility of the
pure drug and PM.
However, the dissolution performance of the corresponding

aged samples was not dramatically reduced after storage, as
would typically be expected given the well-recognized argu-
ments that the amorphous state should yield higher dissolution
rates and apparent drug solubility than the crystalline
equivalent. In the particular case of aged samples containing
OLZ and PRX, whereby both components (drug and carrier)
recrystallized during storage, dissolution profiles were expected
to be similar to the corresponding PMs. However, drug
concentration achieved from the aged samples was found to be
significantly (p < 0.05) supersaturated relative to the
equilibrium solubility of the pure drugs and PMs. It is
interesting to note that simply mixing OLZ and PRX with
sucrose as raw materials also leads to an increase in the
dissolution rate and apparent drug solubility. This was
investigated in our previous work and explained as potential
formation of 1:1 stoichiometric water-soluble complexes
between both drugs and sucrose.7

As shown in Figure 8A,B, OLZ and PRX reached a slightly
lower drug concentration (p < 0.05) in the first 5 h compared
to the equivalent freshly prepared samples. However, differ-
ences in the level of drug supersaturation between aged and
freshly prepared samples become insignificant (p > 0.05) after
this time point (after 5 h), reaching the same level of drug
concentration: 0.17 mg/mL for OLZ (2.43-fold compared to
the pure drug) and 0.12 mg/mL for PRX (2-fold compared to
the pure drug). The initial difference may be linked to the
recrystallization of the two drugs upon storage, thereby
decreasing the driver of supersaturation for both recrystallized
drugs. However, the overall enhancement in the apparent
solubility for OLZ and PRX from the recrystallized systems
compared to the pure drugs and PMs is somewhat unexpected
as drug recrystallization will be expected to negate any solubility
advantage.
A different relationship between profiles was seen for ITZ

systems. Both freshly prepared and aged samples display similar
dissolution profiles in that a rapid release was seen up to a high
Cmax, with the ITZ concentration thereafter decreasing probably
due to drug recrystallization and precipitation in the dissolution
medium, after which a high plateau concentration is seen.
However, a significantly higher maximum level of ITZ
supersaturation for the aged samples (up to 10-fold compared
to the PM) compared to the fresh ones (up to 8-fold compared
to the PM) can be clearly seen from the dissolution profiles (p
< 0.05), along with a higher Cmax value (71.58 ± 8.2 μg/mL for
the aged samples and 56.78 ± 5.9 μg/mL for the fresh
samples).
It is worth noting that dissolution profiles of all freshly aged

formulations and their corresponding samples after 8 months of
storage did not show any significant difference (p > 0.05). This
agrees well with the solid-state characterization data, whereby
the physical state, morphology, and size of all samples stored
for 1 day did not show any changes over 8 months of storage at
75% RH/25 °C. This has positive implications for the
development of a stable products using this technology.
Overall, the profiles show that formulation into fibers

enhances the dissolution profiles of all three drugs; however a
further set of observations relates to the effect of recrystalliza-
tion of the drug and sucrose (PRX, OLZ) or the sucrose alone
(ITZ), whereby in all three cases the expected detrimental
effect on dissolution does not appear to occur. For the PRX and

OLZ, not only the rate of dissolution but the plateau
concentration is very largely maintained following recrystalliza-
tion, the latter indicating inhibition of precipitation following
rapid dissolution. In the case of ITZ, the dissolution from the
physical mixes is indistinguishable from the drug alone;
however, the ITZ kinetic solubility from the fibers is actually
enhanced following sucrose recrystallization compared to the
fully amorphous freshly prepared systems. There may be several
factors involved in this observation. Table 4 shows that the rate

of drug dissolution from the recrystallized system is actually
initially slower than that of the freshly prepared material, yet a
higher Cmax is obtained; this may be associated with the higher
rate of supersaturation build-up, leading to faster nucleation
and crystallization in solution.43,44 Therefore, the initial slower
dissolution rate of the recrystallized sucrose matrix in the aged
samples may have prevented rapid nucleation, leading to a
greater degree of supersaturation.
It is also worth re-exploring the traditional mechanistic

approaches to solid dispersion technology that were suggested
for monolithic systems.45 One possibility for the enhanced
dissolution in all three cases lies with the reduction in drug
particle size, even in the recrystallized systems, while the
intimate proximity of the sucrose may enhance the wetting of
the drugs and reduce aggregation during dissolution. A further
explanation, which would be in keeping with observed
supersaturation effects, is the suggestion of high local
concentrations of the sucrose during the dissolution process
itself resulting in enhanced solubility of the drug in the
dissolving fluid, even if the sucrose in the totality of the
dissolution vessel might not be expected to significantly
enhance the dissolution rate. Notwithstanding the mechanism
involved, the study suggests that it is possible to generate a
physical form of the dispersion, which is stable in itself due to
prior recrystallization but may also lead to significant
dissolution and potentially processing advantages compared
to the amorphous fibrous form.

4. CONCLUSION
Temperature-controlled centrifugal spinning is a promising
approach for a large scale manufacture of fully amorphous
sucrose-based solid dispersions with enhanced dissolution
performance for BCS Class II drugs. However, given the
hygroscopic nature of the microfibers formed, in this study, we

Table 4. Comparison of ITZ Concentration in Solution from
the Dissolution−Supersaturation Profiles Obtained in the
First Hour under Nonsink Conditions between Freshly
Prepared Samples and 8-Month Aged Samples under 75%
RH/25 °Ca

ITZ concentration in solution (μg/mL)

time
(min)

freshly prepared microfibers
mean ± SD

8-month aged microfibers
mean ± SD

3 6.06 ± 0.18 1.81 ± 0.23
5 11.15 ± 0.43 3.75 ± 0.35
10 22.13 ± 2.25 13.77 ± 3.25
15 42.24 ± 7.90 46.38 ± 1.23
30 56.78 ± 5.91 62.69 ± 4.15
60 56.67 ± 4.12 71.58 ± 8.22

aAll the ITZ concentration values reported at the same time are
statistically different (p < 0.05), except for values reported at 15 min.
Bold values indicate Cmax.
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principally focused on the potential effect of high humidity
conditions (75% RH/25 °C) on microfiber size, morphology,
drug distribution, drug physical state, and dissolution perform-
ance of freshly prepared microfiber formulations. In particular,
the exposure of microfibers to high relative humidity conditions
was expected to have a detrimental effect on the physical
stability of the final formulations, with a decrease in the
dissolution performance being expected over time. In contrast,
although significant changes in the fiber morphology and
physical state occurred rapidly after exposing freshly prepared
amorphous microfibers to a high moisture environment (75%
RH), the resultant product’s physical stability and drug
dissolution performance showed unexpected findings. The
early moisture-induced recrystallization of drug-loaded sucrose
microfibers under 75% RH changes the appearance of samples
from a fiber morphology to a powder, whereby the drug was
found to be fairly uniformly distributed. While PRX and OLZ
recrystallized along with the carrier, ATR-FTIR and SS-NMR
showed that ITZ remained in the amorphous state for the
duration of the stability test (8 months). Furthermore, we
observed that the apparent solubility for recrystallized OLZ and
PRX from the aged samples was supersaturated compared to
the drug alone and the PMs.
Taken together, the results from this set of experiments

highlight that drugs in microfibrous solid dispersions may not
necessarily need to be present in the amorphous state for
promoting drug dissolution performance. A range of other
factors, including reduction in drug particle size, wetting effects,
solubilization in the immediate proximity of the dissolving
surface, and inhibition of crystallization, may all play a role.
It is also typically assumed that amorphous materials are

difficult to handle and to process into a conventional dosage
form that can be manufactured at large scale. Therefore,
another important implication of our findings is that it may be
possible to develop a microfiber-based formulation with
improved performance reasonably easily by using the
centrifugal spinning process: fully amorphous drug-loaded
microfibers can be easily produced and, if required, immediately
recrystallized under controlled temperature and humidity
conditions, leaving a product that may overcome the issues of
amorphous material stability while retaining the advantage of
rapid dissolution.
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