
Kent Academic Repository
Full text document (pdf)

Copyright & reuse
Content in the Kent Academic Repository is made available for research purposes. Unless otherwise stated all
content is protected by copyright and in the absence of an open licence (eg Creative Commons), permissions
for further reuse of content should be sought from the publisher, author or other copyright holder.

Versions of research
The version in the Kent Academic Repository may differ from the final published version.
Users are advised to check http://kar.kent.ac.uk for the status of the paper. Users should always cite the
published version of record.

Enquiries
For any further enquiries regarding the licence status of this document, please contact:
researchsupport@kent.ac.uk

If you believe this document infringes copyright then please contact the KAR admin team with the take-down
information provided at http://kar.kent.ac.uk/contact.html

Citation for published version

Gaspar, Jaime (2019) Transformation of cryptographic primitives: provable security and proof
presentation. Doctor of Philosophy (PhD) thesis, University of Kent,.

DOI

Link to record in KAR

https://kar.kent.ac.uk/78724/

Document Version

UNSPECIFIED

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Kent Academic Repository

https://core.ac.uk/display/237431033?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Transformation of cryptographic primitives:
provable security and proof presentation

Jaime Gaspar

7 January 2019
(submission)

12 November 2019
(revision)

Ph.D. dissertation

School of Computing University of Kent

63144 words
(approximately)

186 pages
(exactly)

Abstract
We analyse transformations between cryptographic primitives and, for each
transformation, we do two studies: its provable security (proving that if the
original cryptographic primitive is secure, then the transformed cryptographic
primitive is also secure); its proof presentation (exploring improved ways of pre-
senting the proof). Our contributions divide into two sets: security proofs (some-
times new proofs and sometimes variants of known proofs); proof presentations
(inspired by our security proofs) and extraction of lessons learned from them.

2

Acknowledgements

First of all, I would like to very, very gratefully thank my past de jure doctoral
advisor, present de facto doctoral advisor and present external advisor, Eerke Boiten,
for all his kind advice.

I would like to gratefully thank my past supervisory team member and present
de jure doctoral advisor, Simon Thompson, for all his kind advice.

I would like to gratefully thank my present supervisory team member, Julio
Hernandez-Castro, for all his kind advice.

I would like to gratefully thank Carlos Pérez-Delgado for all his kind advice.
I would like to gratefully thank David Galindo for being the external examiner

in my viva voce.
I would like to gratefully thank Stefan Kahrs for being the internal examiner in

my viva voce.
I would also like to gratefully thank the University of Kent in general and its

School of Computing in particular for all their kind logistical support.
Last but not least, I would like to gratefully thank the Research Postgraduate

Scholarship from the Engineering and Physical Sciences Research Council / School
of Computing, University of Kent for all its kind financial support.

Finally, I would like to gratefully thank everyone mentioned for the extra time
given to me to complete this Ph.D. dissertation.

Almost all content in chapter 6 is heavily based on joint work with Eerke
Boiten (Gaspar and Boiten 2014) and for evaluation purposes we stipulate that
that work is split in equal parts between Eerke Boiten and Jaime Gaspar.

The approximated word count on the cover was calculated under Linux with
cat *.tex *.bib | wc -w.

3

4

Contents

Cover 1

Acknowledgements 3

Contents 5

I Introduction 9

1 Introduction 11
1.1 Introduction . 11
1.2 Problem . 11
1.3 Solution component: transformation of cryptographic primitives . . . 21
1.4 Solution component: provable security 24
1.5 Solution component: proof presentation 25
1.6 Solution component: automated/interactive theorem provers 31
1.7 Problem format . 34
1.8 Overview . 35
1.9 Contributions . 38
1.10 Conclusion . 39

II Notions and notations 41

2 Basics 43
2.1 Introduction . 43
2.2 Notions and notations . 44
2.3 Conclusion . 50

3 Cryptographic primitives and security notions 51
3.1 Introduction . 51
3.2 Primitive: random generator . 52
3.3 Security: uniformity . 52
3.4 Primitive: one-time pad . 52
3.5 Security: perfect secrecy . 53
3.6 Primitive: Blum-integer factorisation problem 54
3.7 Security: Blum-integer factorisation problem hardness 55

5

3.8 Primitive: Rabin cipher . 55

3.9 Security: Rabin cipher security . 57

3.10 Primitive: binary-string function . 59

3.11 Security: “collision resistance” . 59

3.12 Security: collision resistance . 59

3.13 Security: one-wayness . 61

3.14 Primitive: pseudorandom generator 62

3.15 Security: cryptographic security . 62

3.16 Primitive: stream cipher . 64

3.17 Security: indistinguishability from random 65

3.18 Security: indistinguishable encryptions 65

3.19 Security: semantic security . 66

3.20 Security: bit-recovery resistance . 66

3.21 Primitive: formal language . 67

3.22 Security: (NP \ P)-ness . 67

3.23 Conclusion . 68

III Examples 69

4 Provable security of transformation of cryptographic primitives 71

4.1 Introduction . 71

4.2 Example: transformation of a uniform random generator into the
perfectly-secret one-time pad . 72

4.3 Example: transformation of the hard Blum-integer factorisation prob-
lem into the secure Rabin cipher . 74

4.4 Conclusion . 78

5 Proof presentation of transformation of cryptographic primitives 79

5.1 Introduction . 79

5.2 Example: collision resistance . 80

5.3 Example: two-to-one collision resistance implies one-wayness 81

5.4 Example: ∀p ∃N ∀n > N |f(n)| < 1/p(n) versus f ∈ N 82

5.5 Conclusion . 85

IV Transformations and proof presentations 87

6 Transforming one-way length-nondecreasing binary-string functions
into (possibly different) one-way binary-string functions 89

6.1 Introduction . 89

6.2 Transformation . 90

6.3 Security . 90

6.4 Proof presentation: proof idea . 91

6.5 Extra: composition of one-way functions is not necessarily one-way . 92

6.6 Conclusion . 94

6

7 Transforming cryptographically-secure pseudorandom generators
into indistinguishable-from-random stream ciphers 95
7.1 Introduction . 95

7.2 Transformation . 96

7.3 Security . 98
7.4 Proof presentation: schematic proof 99

7.5 Proof presentation: wedding-cake notation 100

7.6 Extra: reciprocal implication . 102

7.7 Extra: indistinguishable encryptions 103
7.8 Extra: semantic security . 105

7.9 Extra: bit-recovery resistance . 106

7.10 Proof presentation: “compression” of analogous statements 108
7.11 Conclusion . 109

8 Transforming one-way binary-string functions into NP \ P formal
languages 111

8.1 Introduction . 111
8.2 Transformation . 112

8.3 Security . 113

8.4 Proof presentation: carving out a theory 116
8.5 Conclusion . 122

9 Transforming cryptographically-secure pseudorandom generators
into one-way binary-string functions 123

9.1 Introduction . 123
9.2 Transformation . 124

9.3 Security . 124

9.4 Proof presentation: indirect proof . 126
9.5 Extra: Oded Goldreich’s transformation 128

9.6 Conclusion . 132

V Conclusion 133

10 Provable security of transformation of cryptographic primitives 135

10.1 Introduction . 135

10.2 Proposal: graph completion . 138
10.3 Proposal: vertices addition . 139

10.4 Proposal: basing on indistinguishable-from-random stream ciphers . . 140

10.5 Proposal: extraction of numeric/computational content 141

10.6 Proposal: composition and decomposition 143
10.7 Proposal: empirical tests . 144

10.8 Proposal: claim strengthening and proof weakening 145

10.9 Proposal: transformation of cryptographic protocols 146
10.10Proposal: recasting cryptographic concepts as topological concepts . . 147

10.11Conclusion . 149

7

11 Proof presentation of transformation of cryptographic primitives 151
11.1 Introduction . 151
11.2 Proof presentation: proof idea . 154
11.3 Proof presentation: schematic proof and proof reorganisation 159
11.4 Proof presentation: wedding-cake notation 165
11.5 Proof presentation: carving out a theory 168
11.6 Proof presentation: direct proof versus indirect proof 170
11.7 Proof presentation: quasi-parentheses-free notation 174
11.8 Conclusion . 177

Bibliography 179

8

Part I

Introduction

9

Chapter 1

Introduction

1.1 Introduction

1.1. Roughly speaking, our subject of study is proofs in cryptography (in the inter-
section of mathematics and computer science); in more detail, it is

1. transformation of cryptographic primitives;

from the points of view of

2. provable security;

3. proof presentation.

We start by introducing, motivating and justifying this subject.

1.2. In this chapter, we give only a contribution modestly worth of notice: the
definitions, propositions and proofs around the toy cipher.

1.2 Problem

1.3. Definitions, theorems and proofs in cryptography in general and provable se-
curity (introduced in section 1.4 below) in particular are often complicated because
they may involve more than one of the following five theories:

1. computability theory to model a cryptographic primitive (or protocol) and an
adversary or breaker both with limited computational power;

2. probability theory to model the success likelihood and the guessing strategy
of an adversary or breaker;

3. asymptotic theory to give meaning to negligible success probabilities as a func-
tion of the size of a security parameter (such as a key);

4. number theory (or other theories such as lattice theory) to provide hard prob-
lems that are used to construct hard-to-break cryptographic primitives;

5. cryptographic theory with its rich “zoo” of

11

(a) cryptographic primitives and protocols;

(b) security notions;

(c) proof methods;

(d) known results and assumed conjectures;

(e) disproved bad ideas;

(f) computer-assisted tools;

and so on. (Although we focus on cryptographic primitives, perhaps we should
remark that cryptographic protocols, for example the framework of universal
composability (Ristenpart, Shacham and Shrimpton 2011, section 1), also face
some challenges.)

1.4. The complexity of definitions, theorems and proofs in cryptography in gen-
eral and provable security in particular increases the likelihood that mistakes “slip
through undetected”, thus somewhat undermining the point of having definitions,
theorems and proofs to achieve a mathematical degree of certainty. This was per-
haps first clearly articulated by Shai Halevi when he pointed out that the cryp-
tographic community produces proofs in larger numbers, faster and with greater
complexity than it can carefully verify, so some incorrect “proofs” are bound to go
unnoticed (Halevi 2005, page 2). The evaluation of how serious this problem is
varies:

1. some, such as Neal Koblitz et al., have considered that the problem is so large
that it amounts to a crisis;

2. others, such as Oded Goldreich et al., have argued that it is an exaggeration
to consider the problem a crisis.

In the next two paragraphs we summarise their points of view.

1.5. Neal Koblitz, mostly with Alfred J. Menezes, wrote a series of articles (often
with titles starting with “Another look at”) in which they presented some criticism
of provable security. We would say that their main criticisms are the following.

1. Security proofs for asymmetric cryptosystems often focus only on the non-
invertibility of the one-way function which the cryptosystem is based on while
ignoring that most attacks actually exploit not the function but the crypto-
graphic protocol wrapped around the cryptosystem (an example being
Daniel Bleichenbacher’s attack on the Rivest-Shamir-Adleman cipher RSA
(Bleichenbacher 1998)) (Koblitz and Menezes 2007, page 4).

2. A security proof guarantees resistance against attacks included in the un-
derlying security notion but not against other attacks (two examples being
side-channel attacks (Koblitz and Menezes 2007, page 8), and that Shafi
Goldwasser, Silvio Micali and Ronald Rivest’s most-followed definition of a
secure signature scheme does not include the duplicate signature key selec-
tion attack (Koblitz and Menezes 2013, page 4)) (Koblitz and Menezes 2007,
page 8) (Koblitz and Menezes 2013, page 4).

12

3. Sometimes we should aim for more than “formalistic” proofs by reduction of
theoretical interest, namely to aim for “tight” reductions of a more applied in-
terest giving meaningful estimations for security parameters’ sizes (an example
being that whether RSA and the Probabilistic Signature Scheme PSS are con-
sidered equally secure may depend on what kind of proof we aim for (Koblitz
and Menezes 2007, page 17)) (Koblitz and Menezes 2007, pages 17 and 29)
(Koblitz and Menezes 2006, sections 4 and 6).

4. Some security proofs, due to their complexity and delicateness, may contain
subtle mistakes that remain undetected for some time, casting a shadow over
the degree of trust that we may put on proofs (two examples being the mis-
take found by Victor Shoup (Shoup 2002, section 4) in Mihir Bellare and
Phillip Rogaway’s security proof of the RSA Optimal Asymmetric Encryption
Padding RSA-OAEP and the mistake found by David Galindo (Galindo 2005,
section 3.2) in Dan Boneh and Matthew Franklin’s security proof of their
identity based encryption) (Koblitz and Menezes 2007, section 4.2).

5. Some security proofs, due to their technicality and impenetrability, may be
inaccessible and therefore unconvincing for more applied and less theoreti-
cal people, reducing the impact of those proofs (Koblitz and Menezes 2007,
sections 4.4 and 8).

6. Security proofs would be more credible if there were in cryptography a tradition
of careful review of proofs without the pressure of conference deadlines, akin
to the tradition in mathematics (an example being Mihir Bellare and Phillip
Rogaway’s less reviewed proof of the security of RSA-OAEP (Bellare and
Rogaway 1995, appendix A) versus Andrew Wiles’ more carefully reviewed
proof of Fermat’s last theorem) (Koblitz and Menezes 2007, section 4.4)
(Koblitz 2007, page 976).

7. Minor changes in a cryptosystem may break security proofs (an example being
that the Digital Signature Algorithm DSA broke the security proof of the
Schnorr signature (Koblitz and Menezes 2007, page 26)) (Koblitz and Menezes
2007, page 26).

8. If the parts of a hybrid cryptosystem are not independent, then security proofs
under the random oracle model (for idealised hash functions) of that cryptosys-
tem may not imply real security (with real hash functions) (an example being
Mihir Bellare, Alexandra Boldyreva, Adriana Palacio’s hybrid hashed ElGamal
key-encapsulation composed with symmetric encryption (Bellare, Boldyreva
and Palacio 2004, proposition 2)) (Koblitz and Menezes 2007, page 30).

9. A provable-security result may suggest one thing and another provable-security
result may suggest the opposite (an example being Dan Boneh and Venkate-
san Ramarathnam’s result suggesting that breaking RSA may be easier than
factoring (Boneh and Venkatesan 1998, theorems 3.3 and 3.7), and Daniel
R. L. Brown’s result suggesting the opposite (Brown 2016, theorem 9))
(Koblitz and Menezes 2006, section 3.1).

13

10. Despite provable security’s goal of giving precise definitions of security, some
definitions may still contain some ambiguity (an example being that the defini-
tion of an asymmetric cipher being resistant against chosen-ciphertext attacks
has four possible readings of which at least three are non-equivalent (Bellare,
Hofheinz and Kiltz 2015, figures 1–2)) (Koblitz and Menezes 2013, section 3.1).

11. Focusing on achieving provable security for a certain security definition may
lead to a simplification of a cryptosystem by removing security features as long
as security remains provable, but the removal of features may:

(a) weaken the cryptosystem against attacks not included in the security
definition;

(b) remove features useful when the security proof is mistaken;

(c) remove features useful when the underlying security model is unrealistic;

(an example being Hugo Krawczyks’ hashed-variant simplification HMQV of
the Menezes-Qu-Vanstone authenticated key-agreement protocol MQV, which
permitted new attacks and had a mistake in the security proof (Menezes 2007,
section 3)) (Koblitz and Menezes 2006, section 5).

12. Sometimes the security proof of a cryptosystem relies on the hardness of a
problem that instead of being natural is contrived (an example being the secu-
rity of the Boneh-Boyen signature relying on the strong Diffie-Hellman prob-
lem (Boneh and Boyen 2008, sections 3.1–3.2)) (Koblitz and Menezes 2010,
section “The Strong Diffie-Hellman Problem”).

1.6. Oded Goldreich and others counter-criticised Neal Koblitz’s criticism. We
would say that their main criticisms are the following.

1. Oded Goldreich reads Neal Koblitz’s criticism as close to a rejection of rigorous
analysis (in favour of informality and intuition) and advocates that rigorous
analysis (not informality nor intuition) is the right methodology for a scientific
cryptography (Goldreich, Barak, Katz, Krawczyk and Koblitz 2007).

2. Boaz Barak argues that the situation in cryptography is not worse than in
mathematics in general (an example being that mistakes in proofs occur in all
mathematics) (Goldreich, Barak, Katz, Krawczyk and Koblitz 2007).

3. Jonathan Katz finds that Neal Koblitz’s criticism is in part a fallacious ad
hominem argument (an example being the suggestion that some cryptogra-
phers publish papers of reduced originality or with small improvements of
previous work) (Goldreich, Barak, Katz, Krawczyk and Koblitz 2007).

4. Hugo Krawczyk argues that provable security does play an important role in
the design and analysis of real-world cryptosystems (an example being that
HMQV brings improvements to MQV guided by provable security) (Goldreich,
Barak, Katz, Krawczyk and Koblitz 2007).

14

5. Avi Wigderson argues that cryptographic scenarios are adversarial and unex-
pected, so empirical testing of cryptosystems is less reliable, thus we have to
rely more on mathematical proofs, which increases the importance of provable
security (Wigderson 2008).

6. Ivan Damg̊ard remarks that non-“tight” security proofs may not give estima-
tions for the size of security parameters but nevertheless they do prove that a
cryptosystem is secure (Damg̊ard 2007, section 2.1).

1.7. To illustrate the fact that sometimes “proofs” in cryptography have mistakes,
let us give an example of a “proof” in cryptography that was published and after-
wards discovered to have a mistake: the security “proof” (Ristenpart and Rogaway
2007, sections 6–7) (Ristenpart and Rogaway 2015, sections 6–7) of Thomas Ris-
tenpart and Phillip Rogaway’s eXtension by Latin Squares XLS (Ristenpart and
Rogaway 2007, section 3) (Ristenpart and Rogaway 2015, section 3) and its mistake
discovered by Mridul Nandi (Nandi 2014, section 3) (Nandi 2015, appendix A).

Notions and notations Before we proceed to the example, we need to introduce some
notions and notations that we will use in it:

1. if L ⊆ N, then let {0, 1}L :=
⋃

l∈L{0, 1}l;
2. let {0, 1}2∗ :=

⋃

n∈N{0, 1}2n;

3. if n ∈ N, then let [0 .. n] := {0, 1, 2, . . . , n};
4. if X, Y ⊆ N, then let X + Y := {x+ y | x ∈ X, y ∈ Y };
5. if x, y ∈ {0, 1}∗, then let x‖y or xy denote the concatenation of x and y;

6. if x ∈ {0, 1}2∗, then let x
�

and x
�

denote respectively the left and right
half of x;

7. if x ∈ {0, 1}∗ and k ∈ N, then let x≪k and x≫k denote respectively the
left and right circular shift of x by k bits (for example x1x2x3 . . . xn≪2 =
x3x4x5 . . . xnx1x2, where x1, x2, x3 . . . , xn ∈ {0, 1});

8. if b ∈ {0, 1}, then let b̄ := b ⊕ 1 denote the bit obtained by flipping the
bit b;

9. if n ∈ N \ {0}, then let Un denote the uniform random variable over
{0, 1}n;

10. if E : K × P → C is an encryption function (which encrypts, with a
key k ∈ K, a plaintext p ∈ P to a ciphertext c = E(k, p) ∈ C), then we say
that E is length-preserving if and only if ∀k ∈ K ∀p ∈ P |E(k, p)| = |p|;

11. if E : K×P → C and E ′ : (K×K′)×P ′ → C′ are encryption functions with
P ⊆ P ′, then we say that E ′ extends E if and only if ∀k ∈ K ∀k′ ∈ K′
∀p ∈ P E ′((k, k′), p) = E(k, p);

12. if E : K × P → C (where C := P) is an encryption function with as-
sociated decryption function D : K × C → P (that is ∀k ∈ K ∀p ∈ P
D(k, E(k, p)) = p), then we say that E is a pseudorandom permuta-
tion (Katz and Lindell 2015, definition 3.28) if and only if informally

15

E is length preserving and for all polynomial-time probabilistic algo-
rithms AO,O′

(called distinguishers) with access to a pair (O,O′) of ora-
cles, the “probability”

Pr[AE(k,·),D(k,·)(1n) = 1]− Pr[Aπ,π−1

(1n) = 1]

that AO,O′
can distinguish (in the sense of giving different outputs) be-

tween (O,O′) = (E(k, ·), D(k, ·)) (for a “uniformly random” k ∈ K)
and (O,O′) = (π, π−1) (for a “uniformly random” and length-preserving
permutation π of P) is “negligible” (in the sense that it vanishes super-
polynomially in |k|).

Motivation To facilitate their definition and the study of their security, encryp-
tion functions are sometimes defined to encrypt not all binary strings (the
full {0, 1}∗) but only some binary strings (for example {0, 1}n). This raises
the question of how to extend an encryption function E to an encryption
function E ′′ that encrypts more binary strings. Naturally, we want that the
extension preserves properties of E (for example being length-preserving) and
the security of E (for example being a pseudorandom permutation). Thomas
Ristenpart and Phillip Rogaway proposed the construction XLS that extends
E to more strings (but not all) while preserving its property (being length pre-
serving) and its security (being a pseudorandom function) but at the expense
of an auxiliary encryption function E ′.

Construction of XLS Let n′ ∈ N \ {0}. We assume that we have

1. a main length-preserving encryption function

E : {0, 1}K × {0, 1}N → {0, 1}N

(where ∅ 6= K ⊆ N and ∅ 6= N ⊆ N \ [0 .. n′ − 1]);

2. an auxiliary encryption function

E ′ : {0, 1}K ′ × {0, 1}n′ → {0, 1}n′

(where ∅ 6= K ′ ⊆ N);

we define

3. the mixing function

m: {0, 1}2∗ → {0, 1}2∗
x 7→

(
x

�
⊕ ((x

�
⊕ x

�
)≪ 1)

)
‖
(
x

�
⊕ ((x

�
⊕ x

�
)≪ 1)

);

and then we construct

4. the length-preserving encryption function

E ′′ : K′′ × {0, 1}N ′′ → {0, 1}N ′′

(where K′′ := {0, 1}K ×{0, 1}K ′
and N ′′ := N + [0 .. n′− 1]) that extends

E and is defined by

16

(a) if p ∈ {0, 1}N , then E ′′((k, k′), p) := E(k, p);

(b) if p /∈ {0, 1}N , then E ′′((k, k′), p) := c where c is the last value of c
when we apply the algorithm described in the following table (where
l := max{l ∈ N | ∃l′ ∈ [0 .. n′ − 1] |p| = l + l′}, l′ := |p| − l and j
ranges over [0 .. i− 1]).

1 Set c to be equal to p.

2 Divide c into blocks of length n′

with the last block being in-
complete and possibly empty.

c = x1 ... xi−2 xi−1 xi |xj |=n′> |xi|

Encrypt the penultimate block
with E ′.

c = x1 ... xi−2 E ′(k′, xi−1) xi

3 Divide c into three blocks, the
second one of length 1 and the
third one of length 2l′.

c = y1 y2 y3 |y2| = 1 |y3| = 2l′

Flip the bit in the second block
and mix the third block with m.

c = y1 y2 m(y3)

4 Divide c into two blocks, the
first one of length l.

c = z1 z2 |z1| = l

Encrypt the first block with E. c = E(k, z1) z2

5 Repeat step 3. c = y′1 y′2 y′3 |y′2| = 1 |y′3| = 2l′

c = y′1 y′2 m(y′3)

6 Repeat step 2. c = x′1 ... x′i−2 x′i−1 x′i |x′j |=n′> |x′i|
c = x′1 ... x′i−2 E ′(k′, x′i−1) x′i

7 Output c.

Decryption D′′ is done essentially as encryption E ′′ but inverting both the
order of the steps and the functions E(k, ·) and E ′(k′, ·) (that is replacing those
functions by their corresponding decryptions D(k, ·) and D′(k′, ·)) (there is no
need to invert m because m−1 = m).

Security The security claim for XLS is essentially the following: if E and E ′ are pseu-
dorandom permutations, then E ′′ is a pseudorandom permutation (Ristenpart
and Rogaway 2007, theorem 2) (Ristenpart and Rogaway 2015, theorem 3).

Counterexample Mridul Nandi showed that the security claim is false (assuming
the existence of pseudorandom permutations) by proving that if E = E ′, then
the algorithm AO,O′

that, when given oracle access to (O,O′) =
(
E((k, k′), ·),

17

D((k, k′), ·)
)
, computes

p := U2n′−1,

c := E ′′((k, k′), p),

p′ := D′′((k, k′), c
�
c
�

),

p′′ := p
�
⊕ p′

�
⊕ ((p

�
⊕ p′

�
)≫ 2),

c′ := E ′′((k, k′), p′
�
‖(p

�
⊕ p′′))

and outputs the truth value (0 or 1) of c′
�

= p′′ ⊕ c
�

, is a distinguisher for E ′′

with non-negligible probability of at least 1/2−21−n′
(Nandi 2014, theorem 2)

(Nandi 2015, section 2.3).

Mistake After presenting his counterexample, Mridul Nandi identified the mistake in
the security proof (Nandi 2015, appendix A). We present here our take on the
mistake, which is somewhat simpler and has the advantage of not requiring
familiarity with the “semantics” of the proof because it is almost entirely
“formal”. Thomas Ristenpart and Phillip Rogaway have a pseudocode for a
game G4 dealing with some variables M i

k and that in part says

1. let i ∈ [1 .. j] be such that M i
2 = M j

2 ;

2. (a) if i < j, then let M j
4 := M i

4 and M j
5 := M i

5;

(b) otherwise let M j
4 and M j

5 be uniformly random and independent
(Ristenpart and Rogaway 2007, page 18);

moreover, they are considering the case

3. M i
2 6= M j

2 ;

and they claim that

4. M i
4, M

i
5, M

j
4 and M j

5 are independent (Ristenpart and Rogaway 2007,
page 19).

The mistake is that point 4 is false: from point 3 we get i 6= j, so from
point 1 we get i < j, thus the point that applies is point 2a and not point 2b,
hence we have M j

4 := M i
4 and M j

5 := M i
5, therefore we do not have point 4.

Thomas Ristenpart and Phillip Rogaway acknowledged the mistake identified
by Mridul Nandi and retracted their article (Ristenpart and Rogaway 2015,
cover page).

Solution? It is difficult to say how Thomas Ristenpart and Phillip Rogaway could
have avoided the mistake. They appear to have done everything right:

1. they gave informal (in the form of words) and formal (in the form of
pseudocode) descriptions to play both in the field of intuition and in the
field of rigour;

2. they organised (with visual cues) the “proof” into cases (in the form of
claims), subcases (indicated by a triangle ⊲) and sub-subcases (indicated
by a bullet •) to help keep track of where one is in the “proof”;

18

3. they used notational conventions fairly easy to understand (for exam-
ple plaintexts involve the letter M as in M j , and the parsing of the
binary string M j as the concatenation of the binary strings M j

1 , M j
2 and

M j
3 with respectively lengths m, n and s is denoted by “M j

1 M
j
2 M

j
3 ←

M j of lengths m,n, s”);

and so on. Despite all this care, a mistake still slipped through. It is hard to
say what could have been done better. The only answer that occurs to us is
that the

1. mixing of objects in different levels (for example bits are in a lower level
than binary strings, which in turn are in a lower level than functions
mapping binary strings to binary strings, and so on);

2. going up and down, by using cases, subcases and sub-subcases, in a some-
what complicated tree structure underlying the “proof”;

may suggest that it would be neater to divide the “proof” into layers of ab-
straction (for example first we work only with the lower level, then we abstract
from it and we work only at the second level, then we abstract from it again
and work only at the third level, and so on), but this is easier said than done.

1.8. Independently of whether the problem with definitions, theorems and proofs
in cryptography in general and provable security in particular amounts to a crisis
or not, we believe that the problem warrants effort to find solutions. We would say
that a possible solution for the problems has the following four components:

1. transformation of cryptographic primitives;

2. provable security;

3. proof presentation;

4. automated/interactive theorem provers.

In the next four sections we explain these four components in more detail. To
illustrate this discussion with examples, we first need to introduce the notions of

1. toy cipher;

2. toy one-way function;

that we will use as simple running examples through those sections.

1.9. The following definitions are about toy ciphers.

1. Let m,n ∈ N be fixed parameters.

2. A toy pseudorandom generator is a function G : {0, 1}m → {0, 1}n whose in-
puts s ∈ {0, 1}m are called seeds and whose outputs G(s) ∈ {0, 1}n are called
(prefixes of) streams (informally, we hope that a toy pseudorandom genera-
tor expands a truly-random seed into a not-truly-random-but-random-enough
stream, although this is not actually required by the definition).

19

3. A toy pseudorandom generator G is toy secure if and only if it is not a constant
function (informally, we hope that the outputs of G look random, so, with high
probability, they should not be all equal, and we take this latter condition as
our notion of security; it is admittedly a weak condition but it turns out to be
good enough for our purposes).

4. A toy cipher is an ordered pair C = (E,D) such that:

(a) E : {0, 1}m × {0, 1}n → {0, 1}n is a function called encryption whose
inputs k ∈ {0, 1}m and p ∈ {0, 1}n are respectively called keys and plain-
texts (informally, the encryption codes a plaintext using a secret key);

(b) D : {0, 1}m × {0, 1}n → {0, 1}n is a function called decryption whose
inputs k ∈ {0, 1}m and c ∈ {0, 1}n are respectively called keys and ci-
phertexts (informally, the decryption decodes a ciphertext using the same
secret key);

(c) ∀k ∈ {0, 1}m ∀p ∈ {0, 1}n D(k, E(k, p)) = p is a property that holds true
and is called correctness (informally, correctness means that the decryp-
tion undoes the encryption).

5. The toy stream cipher CG = (EG, DG) induced by a toy pseudorandom gener-
ator G is the toy cipher defined by:

(a) EG(k, p) := G(k)⊕ p;
(b) DG(k, c) := G(k)⊕ c;

(informally, a toy stream cipher encrypts by mixing the stream with the plain-
text through xor, decrypts by mixing the same stream with the ciphertext, and
enjoys correctness because the mixings cancel out in the sense of x⊕x⊕y = y).

6. A toy breaker for a toy cipher C = (E,D) is a function B : {0, 1}n → {0, 1}n
such that ∀k ∈ {0, 1}m ∀p ∈ {0, 1}n B(E(k, p)) = p (informally, a toy breaker
decrypts any ciphertext without the key akin to Dan Brown’s Transltr

(Brown 1998, chapter 4) but specialised to break C). A toy cipher is toy
secure if and only if it has no toy breakers (informally, meaning that there is
no way to bypass the key).

The following definitions are about toy one-way functions.

1. Let 0 denote the identically-zero function 0: N→ R defined by 0(n) := 0.

2. Let N be a set of functions f : N→ R such that 0 ∈ N and let us say that a
function f : N→ R is toy negligible if and only if f ∈ N (informally, we hope
that a toy negligible function is a function that vanishes fast at infinity, for
example such that ∀k ∈ N limn→+∞ n

kf(n) = 0, although this is not actually
required by the definition). We often write, say, 2−n ∈ N , when we actually
mean f ∈ N where f : N → R is defined by f(n) := 2−n, or in other words,
λn . 2−n ∈ N where n ranges over N.

20

3. Let us say that two functions f, g : N→ R are toy identical, and write f ≈ g,
if and only if |f − g| ∈ N (later on it will be of particular interest that
if f gives the probability f(n) = PrP (n) ≥ 0 of some predicate P , then
f ≈ 0 ⇔ f ∈ N).

4. Let x
$← {0, 1}n mean that x is chosen uniformly in {0, 1}n (such an x is also

often denoted Un). Let Un denote a random uniform variable in {0, 1}n.

5. We say that a function f : {0, 1}∗ → {0, 1}∗ is toy one-way if and only if:

(a) f is polynomial-time computable (informally, f , that is x 7→ f(x), is easy
to compute);

(b) there is no polynomial-time probabilistic algorithm A such that

Pr
[
f
(
A(f(Un))

)
= f(Un)

]
∈ N ,

or in other words,

λn . Pr
x

$
←{0,1}n

[
f
(
A(f(x))

)
= f(x)

]
∈ N ,

where n ranges over N (informally, f is hard to invert, that f(x) 7→ x, or
more precisely, f(x) 7→ x′ with f(x) = f(x′), is hard to compute).

1.3 Solution component: transformation of cryp-

tographic primitives

1.10. The first component of the solution is the transformation of cryptographic
primitives (or protocols). A transformation T of a first cryptographic primitive P1

into a second cryptographic primitive P2 is informally a construction P1
T
 P2 of P2

using P1 as a “black box”.

1.11. Let us give a first example of a transformation of cryptographic primitives.
The toy stream cipher CG induced by the toy pseudorandom generator G is obtained
by the transformation G CG of the first cryptographic primitive G into the second
cryptographic primitive CG.

1.12. Let us give a second example of a transformation of cryptographic prim-
itives. The example is a mechanical machine called Tunny (more precisely, the
Lorentz cipher implemented in Tunny) used during the World War II by the Ger-
man Army (Good, Michie and Timms 1945, section 11.A.c). Tunny was what
we called a toy stream cipher with m := 5 =: n (the 26 letters of the alphabet,
keys, streams, plaintexts and ciphertexts were encoded as five-bit blocks) (Good,
Michie and Timms 1945, section 11.A.a), so in particular it is obtained by the
transformation G CG of a toy pseudorandom generator G into the toy stream
cipher CG (Good, Michie and Timms 1945, section 11.B.b). Tunny had twelve
wheels:

1. five χ-wheels χ1, χ2, χ3, χ4 and χ5;

21

2. five ψ-wheels ψ1, ψ2, ψ3, ψ4 and ψ5;

3. two µ-wheels µ61 and µ37 (Good, Michie and Timms 1945, section 11.B.c).

All wheels had pins around them and at each time one pin per wheel was in an
active position denoting:

1. the bit 0 if the pin was lowered;

2. the bit 1 if the pin was raised;

(more precisely, the raised and lowered pins were respectively vertical and oblique
cams) (Good, Michie and Timms 1945, section 11.B.j). Tunny operated as follows.

1. Tunny’s toy pseudorandom generator G:

(a) was set with a seed/key k consisting of the initial position of all the
wheels (Good, Michie and Timms 1945, section 11.d.a);

(b) generated a five-bit stream letter G(k) := χ1χ2χ3χ4χ5 ⊕ ψ1ψ2ψ3ψ4ψ5,
then the χ- and ψ-wheels rotated in a way affected by the µ-wheels and
Tunny was ready to generate the next stream letter (Good, Michie and
Timms 1945, sections 11.B.d–f).

2. Tunny’s toy stream cipher CG = (EG, DG) operated as by the definition of the
toy stream cipher induced by G:

(a) encrypted a plaintext letter p as EG(k, p) := G(k)⊕ p;
(b) decrypted a ciphertext letter c as DG(k, c) := G(k) ⊕ c (Good, Michie

and Timms 1945, section 11.B.b).

1.13. Transformation of cryptographic primitives helps solve the problem (from
section 1.2) in the following three ways.

1. A transformation P1
T
 P2 may allow us to decompose a security proof of P2

into two hopefully simpler security proofs:

(a) a security proof of P1;

(b) a security proof of T showing that security is preserved by T , that is if
P1 is secure, then P2 is secure.

2. A transformation P1
T
 P2 may allow us to abstract (step away) from some of

the theories supporting cryptography, for example a security proof of P2 may
be complicated because it uses both number theory and complexity theory but
the security proofs of P1 and T may be easier because

(a) the security proof of P1 only uses number theory;

(b) the security proof of T only uses computation theory.

3. A transformation P1
T
 P2 may allow us to increase the level of abstraction of

the construction and security proof of P2 by identifying and operating on two
higher level concepts, namely P1 and T .

22

(Three interesting bonuses are that:

1. T gives us a way of constructing a P2 from an already constructed P1;

2. we can “drop-in replacements”, that is to replace

(a) P1 by any cryptographic primitive P ′1 still secure;

(b) T by any transformation T ′ still secure;

obtaining another cryptographic primitive P ′2;

3. to produced a new cryptographic primitive P ′2, it suffices to change only P1 to
P ′1 or only T to T ′, instead of having to change both P1 to P ′1 and T to T ′, so
half of the work suffices.)

1.14. We give two examples of major texts dealing considerably with transformation
of cryptographic primitives.

1. Oded Goldreich wrote a two-volume book on the foundations of theoretical
cryptography (Goldreich 2004, Goldreich 2011). This book is somewhat tech-
nical, for example often:

(a) definitions are expressed by formulas (akin to f
(
A(f(Un), 1n)

)
= f(Un));

(b) proofs are formal and detailed (longer than a page);

(c) notions have variants (what kind of computational model describes the
adversary, whether probabilities are negligible or non-noticeable, includ-
ing or excluding extra assumptions on lengths such as being regular or
preserved, and so on).

We would say that this book works well as a reference and research text.

2. Jonathan Katz and Yehuda Lindell wrote a book introducing theoretical cryp-
tography (Katz and Lindell 2015). This book is less technical, for example
often:

(a) definitions are expressed by games (akin to “Alice picks an x ← Un for
which she calculates f(x) and gives (f(x), 1n) to Bob, then Bob calculates
an x′ ← B(f(x), 1n) and gives it to Alice, and Bob wins if f(x) = f(x′)”);

(b) proofs are less formal and detailed (no longer than a page);

(c) notions do not have variants.

We would say that this book works well as an introductory and pedagogical
text.

23

1.4 Solution component: provable security

1.15. Provable security is an area in cryptography that aims to guarantee the se-
curity of cryptographic primitives (and protocols) by means of mathematical proofs
instead of empirical testing and analysis. To achieve this, all objects involved in the
security theorem have to be mathematically defined to render them mathematically
treatable, namely:

1. the cryptographic primitives;

2. the security notion;

3. the statement of the theorem;

4. the security proof of the theorem;

(and other objects that may be involved such as

1. assumptions made but not captured in the definitions, for example P 6= NP;

2. models where the proof may take place, for example the random oracle model;

3. hard problems that may underlie the cryptographic objects, for example the
problem of factorising large integers).

1.16. Let us give a first example of provable security. The example consists of four
parts:

1. the definitions of the cryptographic primitives

(a) toy pseudorandom generator G;

(b) toy stream cipher CG induced by G;

given in paragraph 1.9;

2. the definitions of toy security of

(a) G;

(b) CG;

given in paragraph 1.9;

3. the security theorem below;

4. the security proof below.

Theorem. If G is toy secure, then CG is toy secure.

Proof. Let us assume that G is toy secure, that is G is not constant, so there are
x, x′ ∈ {0, 1}m, necessarily distinct, such that their images y := G(x) and y′ := G(x′)
are distinct: (∗) x 6= x′ ∧ G(x) = y 6= y′ = G(x′). Aiming at a contradiction, let us
assume that CG = (EG, DG) has a toy breaker B, so (†) ∀k ∈ {0, 1}m ∀p ∈ {0, 1}n
B(EG(k, p)) = p.

24

1. Taking k := x and p := y in (†), for which G(k) = y and so EG(k, p) = y⊕y =
0n, we get (‡) B(0n) = y.

2. Taking k := x′ and p := y′ in (†), for which G(k) = y′ and so EG(k, p) =
y′ ⊕ y′ = 0n, we get (‡′) B(0n) = y′.

From (‡) and (‡′) we get y = y′, contradicting (∗).

1.17. Let us give a second example of provable security. This example consists
in proving that the toy one-wayness of an injective function f : {0, 1}∗ → {0, 1}∗ is
preserved under self-composition f ◦f , and is written in a style somewhat mimicking
Oded Goldreich’s style (which is lighter in terms of formulas but less detailed than
our style).

Theorem. If f : {0, 1}∗ → {0, 1}∗ is an injective toy one-way function, then g := f ◦f
is a toy one-way function.

Proof. Let us prove by reducibility the hardness-to-invert of g assuming the same for
f , that is given a polynomial-time probabilistic algorithm B inverting g we construct
a polynomial-time probabilistic algorithm A inverting f : on input f(x), A calls B
to compute and output x′ := B

(
f(f(x))

)
= B(g(x)); clearly A is a polynomial-time

probabilistic algorithm. We claim that x′ is an inverse of f(x): since B inverts g,
x′ is an inverse of g(x), that is g(x) = g(x′), or in other words, f(f(x)) = f(f(x′)),
thus by the injectivity of f , f(x) = f(x′), that is x′ is an inverse of f(x).

1.18. Provable security helps solve the problem (from section 1.2) in the following
three ways.

1. Provable security gives more guarantees that a cryptographic primitive is se-
cure (because provable security relies on the high standard of mathematical
proofs) than empirical testing and analysis.

2. Provable security makes the security of a cryptographic primitive amenable to
formal verification by a computer-assisted proof checker (because, in principle,
mathematical definitions and proofs are expressible in a formal language and
logic that can be mechanically verified).

3. Provable security helps to find mistakes in proofs (because this is the dual of
checking their correctness).

1.5 Solution component: proof presentation

1.19. Proof presentation is a procedure in mathematics that aims to improve proofs
by rewriting them in ways that increase their positive qualities such as:

1. to convince of the truth of the theorem;

2. to explain why the proof is the way it is;

3. to introduce a proof method;

25

4. to teach by example;

5. to help discover other proofs.

There is some dispute about whether proof presentation is a “science” (a rigorous
knowledge that can be applied with little resort to creativity, akin to the algebraic or
arithmetic laws and how they are used to solve equations) or an “art” (an unrigorous
knowledge or one that requires considerable creativity to the applied, akin to guiding
principles to write a good novel). We take a middle position here:

1. some aspects are “science”-like, for example guidelines to choosing good nota-
tion such as using symmetrical symbols instead of asymmetrical symbols for
symmetric operations, as in x ⋆ y instead of x� y (Grundy 2008, page 15);

2. some aspects are “art”-like, for example to identify the main idea of a proof and
rewrite the proof to pull that idea to the foreground and push the technicalities
to the background, as underlined in

to differentiate xx, rewrite xx as ex log x, then the differentiation is
straightforward (by the exponential and product rules) and gives
xx(log x + 1)

instead of

(xx)′ = (elog x
x

)′ = (ex log x)′ = ex logx(x log x)′ = elog x
x

(x log x)′ =

xx(x log x)′ = xx
(
1 log x + x1

x
)

= xx(log x + 1).

1.20. Let us give a first example of a proof presentation. The example shows a
proof presentation of the original proof in paragraph 1.16.

Proof.

1. We assume that G is toy secure, that is G is not constant, so there are x, x′ ∈
{0, 1}m, necessarily distinct, such that their images y := G(x) and y′ := G(x′)
are distinct.

2. Let us recall that by definition a toy breaker of CG = (EG, DG) is a function
B such that ∀k ∈ {0, 1}m ∀p ∈ {0, 1}n B(EG(k, p)) = p. So if there is a toy
breaker, then each ciphertext c = EG(k, p) uniquely determines a plaintext p
(independently of the key k).

3. Let us write a table with the possible

(a) keys, emphasising x and x′, in the left column;

(b) plaintexts, emphasising y and y′, in the top row;

(c) ciphertexts, emphasising 0n, which is the result of both encryptions

EG(x , y) = G(x)⊕ y = y ⊕ y = 0n,

EG(x′, y′) = G(x′)⊕ y′ = y′ ⊕ y′ = 0n,

in the interior of the table.

26

The table is the following, where:

(a) “k”, “p” and “c” stand respectively for “keys”, “plaintexts” and “cipher-
texts”;

(b) ellipses stand for omitted keys, plaintexts and ciphertexts.

p · · · y · · · y′ · · ·
k c

... · · · · · · · · · · · · · · ·
x · · · 0n · · · · · · · · ·
... · · · · · · · · · · · · · · ·
x′ · · · · · · · · · 0n · · ·
... · · · · · · · · · · · · · · ·

Let us notice that x and x′ are in different rows because x 6= x′, analogously y
and y′ are in different columns because y 6= y′, so the two indicated occurrences
of 0n are in distinct cells. We can read in the table that the ciphertext 0n results
from both the distinct plaintexts y and y′, so this ciphertext does not uniquely
determine a plaintext, thus by point 2 there is no toy breaker, that is CG is
toy secure.

For example if G(s) = s, then the table is the following.

p 00 01 10 11

k c

00 00 01 10 11
01 01 00 11 10
10 10 11 00 01
11 11 10 01 00

We underlined in the table the ciphertexts 00.

This proof presentation relies on two small tricks:

1. to recast the existence of a toy breaker as meaning that each ciphertext
uniquely determines a plaintext;

2. to display the relation between keys, plaintexts and ciphertexts in a table.

We see a disadvantage and an advantage in this proof presentation.

1. The disadvantage is that the proof presentation is less suitable to verify for
correctness (for example with the help of a computer) than the original proof
because it relies on a table in which

(a) the reader makes a visual recognition that two plaintexts y and y′ encrypt
to the same ciphertext 0n;

27

(b) most of the table is omitted (as indicated by ellipses) and the reader has
to convince himself/herself that these omissions are of no consequence for
the argument being made;

(and both points are less suitable for a computer to process).

2. the advantage is that the proof presentation gives a better understanding of
why the result is true than the original proof because the proof presentation

(a) recasts the notion of a toy breaker given by the formula ∀k ∈ {0, 1}m
∀p ∈ {0, 1}n B(EG(k, p)) = p into the more understandable idea given
essentially by the words “each ciphertext uniquely determines a plaintext
(independently of the key)”;

(b) allows to “visualise the truth” of the result in a table.

1.21. Let us give a second example of a proof presentation. The example consists in
rewriting the usual presentation of the classical proof that

√
2 is an irrational number

(which does not emphasise the proof’s structure and so, in principle, could be an
obstacle to verifying the proof correctness) into a proof in a style closer to the one
advocated by Leslie Lamport (Lamport 1995, figure 5) (emphasising structure and
correctness, although our proof presentation softens his proof presentation, which
employs more syntax and indentation, sometimes resembling source code). The
proof presentation will have:

1. the advantage of being more suitable for a computer-assisted proof checker;

2. the disadvantage of being less suitable for a human being to read.

The original classical proof, written in the usual mathematical style, looks as follows.

Theorem. We have ∄r ∈ Q r2 = 2.

Proof. Aiming at a contradiction, let us say that there is an r ∈ Q such that r2 = 2,
say r = m/n with m ∈ Z and n ∈ Z \ {0}, where we can assume that m and n are
not both even (by the representation of rational numbers as irreducible fractions).
From r2 = 2 and r = m/n we get m2 = 2n2, so m is even (by Euclid’s lemma ∀p ∈ P
∀a, b ∈ Z (p | ab ⇒ p | a ∨ p | b) with p = 2 and a = b = m), that is there is a
k ∈ Z such that m = 2k. From m2 = 2n2 and m = 2k we get n2 = 2k2, so n is also
even. Then m and n are both even, contradicting the assumption.

The presentation will use mainly three devices:

1. a detailed step-by-step design presented in a linear way (although there is an
underlying tree structure hidden behind the linear presentation and hinted by
the division into items and subitems and by cross references);

2. the “claim method” in which

(a) claims are raised up by stating them (as in “Claim: (a) . . . ”);

(b) then claims are settled down by proving them (as in “Proof: . . . ”);

(c) afterwards proved claims can be used at will (as in “by (a) we have. . . ”).

28

3. the “reference method” in which each proposition mentioned in the proof is

(a) labelled (for example “(a)” for label (a) in the local item, and “(1a)” for
label (a) in item 1);

(b) then accessed by referencing its label.

The proof presentation is the following.

Proof.

(1) Assumptions: there is an (a) r ∈ Q such that (b) r2 = 2.

Goal: (c) false.

(2) Claim: there are (a) m ∈ Z ∧ n ∈ Z \ {0} such that (b) r = m/n and (c) m
and n are not both even.

Proof: by the representation of rational numbers as irreducible fractions.

(3) Claim: if (a) e ∈ Z and (b) e2 is even, then (c) e is even.

Proof: by Euclid’s lemma ∀p ∈ P ∀a, b ∈ Z (p | ab ⇒ p | a ∨ p | b) with p = 2
and a = b = e.

(4) Claim: m is even.

Proof: we have (a) m2 = 2n2 by (1b) and (2b); we have that (b) m2 is even
by (2a) and (a); we have the claim by (2a), (b) and (3) with e = m.

(5) Claim: n is even.

Proof: there is a (a) k ∈ Z such that (b) m = 2k by (4); we have (c) n2 = 2k2

by (1b), (2b) and (b); we have that (d) n2 is even by (a) and (c); we have the
claim by (2a), (d) and (3) with e = n.

(6) Claim: we have (1c).

Proof: by (2c), (4) and (5).

1.22. Proof presentation may help solve the problem (from section 1.2) in the fol-
lowing three ways.

1. Proof presentation, when done in the direction of clarifying technical aspects
of a proof such as

(a) logical structure;

(b) steps taken;

(c) assumptions used;

and so on, may help check the correctness of the proof.

2. Proof presentation, when done in the direction of clarifying the beautiful main
ideas of a proof, may help:

29

(a) understanding the proof;

(b) remembering the proof;

(c) developing an intuition about the subject;

(d) inspiring other researchers.

3. Proof presentation may increase:

(a) the audience of a proof (because it makes the proof more accessible);

(b) the knowledge of the community (because it reaches a wider audience).

1.23. We give four examples of work on proof presentation.

1. An example of large work towards the goal of correctness is the Mizar Mathe-
matical Library (Mizar Project 2018) of fully formalised mathematical proofs.
The main idea behind the Mizar Mathematical Library is to create a huge cor-
pus of mathematics (containing at least the fundamentals of mathematics)
that:

(a) is formalised in a language close to the language used by mathematicians;

(b) has been checked for correctness by an interactive theorem prover;

(c) can be extended by adding further mathematical knowledge.

2. An example of work towards both the goals of correctness and communica-
tion is Leslie Lamport’s articles on how to write proofs well (Lamport 1995,
Lamport 2012). Leslie Lamport advocates a hierarchical structure (making
use of line breaks, indentation and labels-references as in source code) to write
proofs and argues that this helps:

(a) avoiding mistakes in proofs;

(b) revealing the structure of proofs.

3. An example of a work mostly towards the goal of communication is Dan
Grundy’s PhD thesis (Grundy 2008) using as a case study a proof by Oded
Goldreich (that there are weak one-way functions if and only if there are strong
one-way functions). Dan Grundy:

(a) makes an extensive analysis of the difficulty of Oded Goldreich’s proof;

(b) identifies many pitfalls (such as notation too specific or too ambiguous,
unstated knowledge or assumptions, and reasoning too informal or lacking
structure) common in proofs in cryptography.

4. Another example mostly towards the goal of communication is David Gries
and Fred B. Schneider’s book (Gries and Schneider 1993) intended to teach
logic (and also discrete mathematics) by using logic in proofs in discrete math-
ematics instead of teaching logic in isolation. This is achieved by a proof pre-
sentation consisting in bringing logic to the foreground by means of a series of
tricks whose most visible parts are changes in the usual mathematical notation
and reasoning (for example by giving an equality-like treatment to equivalence
through equational logic).

30

1.6 Solution component: automated/interactive

theorem provers

1.24. An automated/interactive theorem prover is, roughly speaking, a computer
program that:

1. produces a mathematical proof in the case of an automated theorem prover;

2. checks the correctness of a mathematical proof in the case of an interactive
theorem prover.

In more detail:

1. an automated theorem prover

(a) inputs

i. the syntax of the language of a mathematical theory;

ii. the axioms and rules of the theory;

iii. a statement in the language;

(b) outputs a proof of the statement (using the language and the axioms and
rules) if one is found;

2. an interactive theorem prover

(a) inputs

i. the syntax of the language of a mathematical theory;

ii. the axioms and rules of the theory;

iii. a statement in the language;

iv. a candidate to a proof of the statement using the language and the
axioms and rules;

(b) outputs an indication that the proof is correct if this is the case.

When Shai Halevi pointed out the problem (from section 1.2), he also advocated
a research program to help solve the problem, consisting in creating an interactive
theorem prover capable of verifying the more difficult parts of proofs and outlined
the prover’s capabilities and inner-workings (Halevi 2005, sections 2–5).

Automated/interactive theorem provers interact with the other solution compo-
nents:

1. they can be used to prove the security of a transformation of cryptographic
primitives;

2. they require rigorous definitions, theorems and proofs as does provable secu-
rity;

31

3. but to some degree they collide with proof presentation because a proof for-
malised in a automated/interactive theorem prover often brings both little
technical details and big ideas to the foreground ending up “not seeing the
forest for the trees” (an exception being the interactive theorem prover Is-
abelle (University of Cambridge and Technische Universität München [Tech-
nical University of Munich] 1986), which performs better than other interactive
theorem provers in terms of pushing little technical details to the background
and pulling big ideas to the foreground).

1.25. An interactive/automated theorem prover may help solve the problem (from
section 1.2) in the following two ways.

1. An interactive theorem prover helps:

(a) to check the correctness of a proof if it is correct (giving the highest degree
of certainty currently achievable);

(b) to find errors in a proof if it is incorrect.

2. An automated theorem prover helps:

(a) ideally, to automatically generate a full proof (or a counterexample, which
could be an attack on a cryptographic primitive or protocol);

(b) at least, to generate the more mechanical parts of a proof.

1.26. Let us give an example of an automated theorem prover. The example, bor-
rowed from Ivo Seeba (Seeba 2010, sections 4 and 5.1), shows (omitting details and
simplifying the syntax) how CryptoVerif proves that if f : D → D is an injective
one-way function, then so it is its self-composition g := f ◦ f . The one-wayness of f
(apart from being polynomial-time computable) is expressed in CryptoVerif by an
adversary having a negligible probability PrG of winning the following game G (the
code is on the left and the comments on the right).

G
new x : D Pick a uniformly random x ∈ D.
adv<f(x)> Give f(x) to the adversary.
adv(x’ : D) Get an x′ ∈ D from the adversary.
if (f(x) = f(x’)) If f(x) = f(x′). . .
then win . . . then the adversary wins.

CryptoVerif proves the one-wayness of g by starting with a game G1 expressing that
one-wayness and rewriting G1 into the series of games G1 G2 G3 G4 (of
which G1 G2 G3 are easy transformations and G3 G4 is the essence of the
proof) below (between them there are hints for the transformation justifications)

G1 G2 G3 G4

new x : D new x : D new x : D new x : D

adv<g(x)> adv<g(x)> adv<f(f(x))> adv<f(f(x))>

adv(x’ : D) adv(x’ : D) adv(x’ : D) adv(x’ : D)

if (g(x) = g(x’)) if (x = x’) if (x = x’) if false

then win then win then win then win

g injective g = f ◦ f PrG ∈ N

32

such that
PrG1 = PrG2 = PrG3 ≈ PrG4 = 0.

So CryptoVerif concludes PrG1 ≈ 0, that is PrG1 ∈ N , or in other words, g is
one-way (if polynomial-time computable).

1.27. Although our work focuses on handmade proofs, we should mention that
there is a developed use of automated/interactive theorem provers in cryptography,
of which we give three main examples.

1. CryptoVerif is an automated theorem prover developed by Bruno Blanchet to
produce security proofs of cryptographic protocols using game hopping (such
as the game transformations G1 G2 G3 G4 above) and a computa-
tional model (Blanchet 2018a), which was used to formally verify the security
of a draft of TLS 1.3 (Bhargavan, Blanchet and Kobeissi 2017). In contrast
to ProVerif, CryptoVerif uses a computational model (Blanchet 2016), which
treats:

(a) messages as binary strings (which are not black-boxes, so the model can
look “into” messages and, for example, count the number of 0s);

(b) cryptographic primitives as algorithms on binary strings (such as polyn-
omial-time probabilistic algorithms).

2. ProVerif is another automated theorem prover and counter-example finder
developed also by Bruno Blanchet to produce security proofs and find at-
tacks on cryptographic protocols using a (formal-symbolic-abstract) Dolev-Yao
model (Blanchet 2018b), which was also used to formally verify the security
of a draft of the Transport Layer Security TLS 1.3 (Bhargavan, Blanchet
and Kobeissi 2017). In contrast to CryptoVerif, ProVerif uses a Dolev-Yao
model (Blanchet 2016), which treats:

(a) cryptographic primitives (such as encryption EA and decryption DA for
user Alice A) as black-boxes (with axioms such as DA(EA(m)) = m);

(b) messages (between A and Bob B) as terms on primitives (such as
(
A,DA(EA(m)), B

)
and (A,m,B), which are treated as equal by the

model if and only if their equality is provable from the axioms) (Dolev
and Yao 1983, section I).

3. The Tamarin Prover is an automated theorem prover and counter-example
finder developed by David Basin, Cas Cremers, Jannik Dreier, Simon Meier,
Ralf Sasse and Benedikt Schmidt to produce security proofs and find attacks
on cryptographic protocols using a Dolev-Yao model (Cremers, Dreier and
Sasse 2018), which was also used to formally verify the security of a draft of
the TLS 1.3 (Cremers, Horvat, Hoyland, Scott and van der Merwe 2017). Like
ProVerif but unlike CryptoVerif, Tamarin Prover uses a Dolev-Yao model (The
Tamarin Team 2018, page 16).

CryptoVerif and ProVerif fulfil Shai Halevi’s program to different extents (Barthe,
Grégoire, Heraud and Béguelin 2011, page 72).

33

1.7 Problem format

1.28. The problems that we are interested in have the following format:

if a first cryptographic primitive P1 is secure according to a first security
notion S1 and it is transformed by a transformation T into a second cryp-
tographic primitive P2, is the second cryptographic primitive P2 secure
according to a second security notion S2?

We can schematically represent the problem as follows:

P1 S1-secure
T
 P2 S2-secure ?

The problem has exactly the following five parameters:

P1 = first cryptographic primitive,

S1 = first security notion,

P2 = second cryptographic primitive,

S2 = second security notion,

T = transformation of P1 into P2.

So an instance of the problem is completely specified by these five parameters.

1.29. Let us argue the niceness of our problem format by showing how it reformats
results in cryptography into an organised structure that clarifies the role of the
components of those results. For example, the classical result that there is a

constructive proof that cryptographically-secure pseudorandom generators
exist under the assumption that one-way binary-string functions exist

where we underlined the three main keywords. The last two keywords, “cryptogr-
aphically-secure pseudorandom generators” and “one-way binary-string functions”,
are pairs of

1. security notions: “cryptographically-secure” and “one-way”;

2. cryptographic primitives: “pseudorandom generators” and “binary-string func-
tions”;

so they can be further broken down as in

constructive proof that cryptographically-secure pseudorandom generators
exist under the assumption that one-way binary-string functions exist

and finally the keyword “constructive” can be recast as “transformation”. This fits
perfectly our problem format

P1 S1-secure
T
 P2 S2-secure ?

34

by letting

P1 = binary-string function,

S1 = one-wayness,

P2 = pseudorandom generator,

S2 = cryptographic security,

T = construction in the constructive proof,

that is

binary-string
function = P1

one-wayness = S1

construction

=

T

P2 = pseudorandom
generator

S2 = cryptographic
security

1.30. We are interested in three aspects of these problems, which are the first three
components of the solution from sections 1.3, 1.4 and 1.5:

1. transformation of cryptographic primitives, that is to present a suitable trans-
formation T (of P1 into P2);

2. provable security, that is to prove that P2 is S2-secure (if P1 is S1-secure);

3. proof presentation, that is to give a better presentation of the security proof
(mentioned in the previous point).

1.8 Overview

1.31. Let us present a chapter-by-chapter overview of this text.

Part I Introduction

Chapter 1 Introduction This chapter mainly:

1. introduces the problems that we study;

2. presents some context (background, literature and state of the art);

3. serves as a guide to the remaining of this text.

Part II Notions and notations

Chapter 2 Basics This chapter presents a collection of

1. notions;

2. notations;

that we will use.

Chapter 3 Cryptographic primitives and security notions This chapter pre-
sents a collection of formalisations of

35

1. cryptographic primitives;

2. security notions;

that we will use.

Part III Examples

Chapter 4 Provable security of transformation of cryptographic primitives
This chapter presents two classic examples of provable security:

1. the perfect secrecy of the one-time pad;

2. the reduction of the security of the Rabin cipher to the factorisation
of Blum integers.

The examples are formatted as transformation of cryptographic primi-
tives and security proofs of those transformations.

Chapter 5 Proof presentation of transformation of cryptographic primitives
This chapter presents two new examples of proof presentation:

1. an incorrect cryptographic proof (essentially, that if a function is
collision resistant, then it is one-way) to illustrate the delicateness of
this type of proofs;

2. the improvement of a proof (that if we change an arbitrary one-way
function f to force ∀n ∈ N f(0n) = ǫ, then f is still one-way) by
using the simple notation trick of replacing a long formula ∀p ∃N
∀n > N |f(n)| < 1/p(n) by a short abbreviation f ∈ N (together
with some easy and useful facts about N).

Part IV Transformation and proof presentation

Chapter 6 Transforming one-way length-nondecreasing binary-string functions
into (possibly different) one-way binary-string functions In this chapter:

1. we transform a length-nondecreasing binary-string function g into
(possibly another) binary-string function f ◦ g by post-composition
with a collision-resistant binary-string function f ;

2. we prove the security of the transformation, namely that if g is one-
way, then f ◦ g is one-way;

3. we make a proof presentation on the security proof by:

(a) pulling the idea of the proof to the foreground;

(b) pushing the technicalities of the proof to the background;

4. we prove the extra result that the composition of one-way binary-
string functions is not necessarily one-way.

Chapter 7 Transforming cryptographically-secure pseudorandom generators
into indistinguishable-from-random stream ciphers In this chapter:

1. we transform a pseudorandom generator G into a stream cipher CG

by xoring the stream of G with the plaintext given to CG;

2. we prove the security of the transformation, namely that if G is
cryptographically secure, then CG is indistinguishable from random;

36

3. we make two proof presentations on the security proof:

(a) by rewriting the proof in a schematic way;

(b) by introducing the wedding-cake notation to simplify the presen-
tation of formula rewritings;

4. we prove extra results:

(a) the reciprocal implication of the security of the transformation;

(b) indistinguishability from random implies indistinguishable en-
cryptions;

(c) indistinguishability from random implies semantic security;

(d) indistinguishability from random implies bit-recovery resistance.

Chapter 8 Transforming one-way binary-string functions into NP \ P formal
languages In this chapter:

1. we transform a binary-string function f into a formal language L̄f

by roughly defining L̄f := {(x, f(x)) | x ∈ {0, 1}∗}, or to be rigorous
(since mathematical rigour is an important point of this chapter),
L̄f := {x2f(x̄)21|x̄| | x ⊑ x̄ ∈ {0, 1}∗};

2. we prove the security of the transformation, namely that if f is one-
way, then L̄f is NP \ P;

3. we make a proof presentation on the security proof by carving out
from the proof a mini-theory of minimisation operators.

Chapter 9 Transforming cryptographically-secure pseudorandom generators
into one-way binary-string functions In this chapter:

1. we transform a pseudorandom generator G into a binary-string func-
tion fG by taking fG(x) to be the stream of G of length 2|x| and
seed x;

2. we prove the security of the transformation, namely that if G is
cryptographically secure, then fG is one-way;

3. we make a proof presentation on the security proof by converting
the proof from a direct proof (a proof of ∀x P (x) ⇒ ∀y Q(y) by
assuming ∀x P (x), taking an arbitrary y, instantiating ∀x P (x) with
an x := t(y) constructed from y, and proving Q(y)) to a proof by
reduction (a proof of ∀x P (x) ⇒ ∀y Q(y) by taking a y such that
¬Q(y), constructing an x := t(y) from y, and proving ¬P (x) for that
particular x);

4. we prove the extra result showing that our transformation G fG
and a similar transformation G gG by Oded Goldreich are related
by one-wayness-preserving transformations f fp and g gt such
that (fG)p = gG and (gG)t = fG.

Part V Conclusion

Chapter 10 Proof presentation of transformation of cryptographic primitives
This chapter presents a list of research proposals for future work. Each
proposal has 3 parts:

37

1. the idea for the proposal;

2. some comments on the proposal;

3. the benefit of the proposal.

Chapter 11 Provable security of transformation of cryptographic primitives
This chapter presents a collection of case studies on proof presentation
often based on the proof presentations in the previous chapters. Each
case study has six parts:

1. an introduction presenting the main idea;

2. the problem exemplified in number theory;

3. the problem exemplified in cryptography;

4. a solution exemplified in number theory;

5. a solution exemplified in cryptography;

6. a conclusion presenting the lesson learned.

1.9 Contributions

1.32. Let us indicate chapter-by-chapter our main contributions in this text.

Part I Introduction

Chapter 1 Introduction In this chapter:

1. we formulate the problems that interest us;

2. we give the toy example of the toy security of toy stream ciphers.

Part II Notions and notations

Chapter 2 Basics In this chapter we present a characterisation of negligible
functions in terms of limits.

Chapter 3 Cryptographic primitives and security notions In this chapter we
present:

1. less original contributions in the form of variants of know formalisa-
tions of cryptographic primitives and security notions;

2. more original contributions such as formalisations of collision resis-
tance and stream ciphers.

Part III Examples

Chapter 4 Provable security of transformation of cryptographic primitives In
this chapter we present two variants of classical security proofs:

1. a proof of the perfect secrecy of the one-time pad that is direct and
does not use Bayes’ theorem Pr[A|B] = Pr[B|A] PrA / PrB (if
PrA,PrB 6= 0);

2. a more formalised and yet more readable proof (than the ones that
we found in the literature) of the reduction of the security of the
Rabin cipher to the factorisation of Blum integers.

38

Chapter 5 Proof presentation of transformation of cryptographic primitives
Essentially everything in this chapter is a contribution of ours (jointly in
part with Eerke Boiten) but we should notice that the use of notations
such as f(n) = negl(n) and f(n) ≤ ε(n) to simplify statements and
proofs, akin to our notation f ∈ N , already occurs in the literature.

Part IV Transformation and proof presentation

Chapter 6 Transforming one-way length-nondecreasing binary-string functions
into (possibly different) one-way binary-string functions Essentially ev-
erything in this chapter is a contribution of ours (jointly in part with
Eerke Boiten) but we should notice that our counter-example to the
composition of one-way binary-string functions being one-way is based
on a (slightly weaker and slightly more complicated) counter-example by
Pooya Farshim.

Chapter 7 Transforming cryptographically-secure pseudorandom generators
into indistinguishable-from-random stream ciphers Essentially everyt-
hing in this chapter is a contribution of ours except the transformation
G CG, which is “folklore”.

Chapter 8 Transforming one-way binary-string functions into NP \ P formal
languages Essentially everything in this chapter is a contribution of ours
but we should notice that security proof that we present:

1. was produced by us on our own and then simplified following Aaron
Dutle;

2. was produced by Aaron Dutle before us but in a much less formal
way (formality is a main point of this chapter).

Chapter 9 Transforming cryptographically-secure pseudorandom generators
into one-way binary-string functions Essentially everything in this chap-
ter is a contribution of ours but we should notice that Oded Goldreich
has presented his transformation G gG before we presented our trans-
formation G fG.

Part V Conclusion

Chapter 10 Provable security of transformation of cryptographic primitives
Essentially everything in this chapter is a contribution of ours in the
form of (hopefully) pertinent research proposals.

Chapter 11 Proof presentation of transformation of cryptographic primitives
Essentially everything in this chapter is a contribution of ours.

1.10 Conclusion

1.33. In this chapter:

1. we introduced and gave context on

39

(a) transformation of cryptographic primitives;

(b) provable security;

(c) proof presentation;

(d) automated/interactive theorem provers;

and used as running examples

(a) the toy security of toy stream ciphers;

(b) toy one-way functions;

2. we presented an overview of the remaining text and our contributions in it.

40

Part II

Notions and notations

41

Chapter 2

Basics

2.1 Introduction

2.1. In this chapter we present a collection of notions and notations that we will need
in later chapters. While mostly tedious on their own, these notions and notation
do play an important role in understanding the formalisations of cryptographic
primitives and security notions central to later chapters.

2.2. Let us consider, for example, the formula

Pr T
(α)

(

f1
(
A(

(γ)

1n)

(β)

1

(δ1)

)
, f2

(
A(

(γ)

1n)

(β)

2

(δ2)

))

∈ N
(ε)

,

where we give in addition that:

1. T is a function mapping ordered pairs of binary strings to real numbers;

2. f1 and f2 are functions mapping binary strings to binary strings;

3. A is a polynomial-time probabilistic algorithm that inputs binary strings and
outputs ordered pairs of binary strings.

(The formula expresses that A essentially on input n outputs pairs (x1, x2) :=
(A(1n)1, A(1n)2) such that the test T (f1(x1), f2(x2)) succeeds only with probability
approaching 0 “very fast as a function of n”. For example, if T tests for inequality,
that is T (y1, y2) ⇔ y1 6= y2, then A outputs pairs (x1, x2) such that f1(x1) = f2(x2)
holds with probability approaching 1 “very fast”; such pairs are essentially what are
called claws for f1 and f2, which are of interest in cryptography.) To understand
the formula, we need mainly to know the following notions and notations:

(α) Pr T (. . .) is an abbreviation for Pr[T (. . .) = 1], that is the probability of T
outputting the “truth value” 1, or in other words, of T “succeeding”;

(β) both occurrences of A(1n) denote the same output of A, not (if A is not deter-
ministic) two (possibly different) outputs, so, for example Pr[A(1n) = A(1n)]
means Pr[x = x : x← A(1n)], not Pr[x = y : x← A(1n), y ← A(1n)];

43

(γ) 1n denotes the binary string 111 · · ·1 with exactly n occurrences of the bit 1;

(δi) A(1n)1 andA(1n)2 denote respectively the first and second components ofA(1n),
so it is implicitly assumed that A outputs ordered pairs A(x) = (A(x)1, A(x)2);

(ε) N denotes the set of negligible functions, which are informally functions from
N to R vanishing “super-polynomially fast”, and the function in question is
implicitly assumed to be λn . Pr T (. . .), where n ranges over N, so we write
the shorter Pr T (. . .) ∈ N instead of the longer λn . Pr T (. . .) ∈ N .

These and other notions and notations are explained further below.

2.3. In this chapter, we give only the following contribution worth of notice: the
equivalence

f ∈ N ⇔ ∀p lim
n→+∞

p(n)f(n) = 0,

where

1. f : L→ R is a function with an arbitrary domain L;

2. p ranges over the positive polynomials, or equivalently, over the polynomials
in one variable and with integer coefficients;

which we did not find in the literature but we saw in a talk (Comon 2016, slide 25)
the somewhat similar characterisation

f /∈ N ⇔ ∃p lim inf
n→+∞

p(n)f(n) > 1.

2.4. Although we prefer to use mathematical notation instead of English, we do
sometimes write for example “∀A . . . , where A ranges over the polynomial-time
probabilistic algorithms outputting pairs of binary strings” instead of “∀A ∈ PTP

pairs

. . . ”; the reason for this is that we use many quantifier ranges and so it would be
onerous to assign and remember notations for all of them.

2.2 Notions and notations

2.5. In the following definition we collect various notions and notations.

2.6 Definition.

Sets of numbers

1. N denotes the set of natural numbers {0, 1, 2, 3, 4, . . .}.
2. N \ {0} denotes the set of positive natural numbers {1, 2, 3, 4, . . .}.
3. P denotes the set of prime numbers {2, 3, 5, 7, 11, . . .}.
4. [m.. n] denotes the integer interval {i ∈ N | m ≤ i ≤ n} from m (inclu-

sive) to n (inclusive) (where m,n ∈ N).

44

Relations on numbers

1. | (as in m | n) denotes the divisibility relation.

Functions on numbers

1. ⌊·⌋ denotes the floor function ⌊x⌋ := max{i ∈ Z | i ≤ x} (where x ∈ R).

2. A positive polynomial (Delfs and Knebl 2007, definition 5.4) is a polyno-
mial p(n) in one variable n and with coefficients in Z such that ∀n ∈ N \ {0}
p(n) > 0.

Logic

1. TrP denotes the truth value (0 or 1) of P (where P is a predicate).

Sets

1. P(X) denotes the powerset {Y | Y ⊆ X} of X (where X is a set).

Functions on functions

1. f−1[y] denotes the set of preimages {x ∈ X | f(x) = y} of y under f
(where f : X → Y is a function and y is arbitrary).

Let us notice that f−1[y] is a set of elements and not a specific element
such as a preimage of y under f (that is an x ∈ X such that f(x) = y)
nor (if f is bijective and y ∈ Y) the inverse f−1(y) of y under f (that is
the unique x ∈ X such that f(x) = y).

2. dom(f) denotes the domain of f (where f is a function).

3. im(f) denotes the image of f (where f is a function).

Relations on functions

1. f ≤ g means ∀n ∈ N f(n) ≤ g(n) (where f, g : N→ R are functions).

Negligibility

1. A negligible function (Goldreich 2004, definition 1.3.5) is a function
f : L→ R with an arbitrary domain L (but only of interest when N ∩ L
is infinite) such that

∀p ∃N ∀n > N |f(n)| < 1/p(n)

(where p ranges over the positive polynomials, N ranges over N, and n
ranges over N ∩ L), or equivalently, such that

∀p lim
n→+∞

p(n)f(n) = 0

45

(where p ranges over the positive polynomials, or equivalently, over the
polynomials in one variable and with integer coefficients, and the limit
means

∀ε > 0 ∃N ∈ N ∀n ∈ N ∩ L (n > N ⇒ |p(n)f(n)− 0| < ε),

where we replaced the usual n ∈ N by n ∈ N∩L for f(n) to be defined).

We often say, for example, that 2−n is negligible to mean that the func-
tion f : N → R defined by f(n) := 2−n, that is λn . 2−n where n ranges
in N, is negligible.

2. N denotes the set of negligible functions.

We often write, for example, 2−n ∈ N to mean f ∈ N where f : N → R
is the function defined by f(n) := 2−n, that is λn . 2−n where n ranges in
N.

Sometimes we abuse the notation and write for example P (n) := 2−n
2 ≤

2−n ∈ N to mean P (n) := 2−n
2 ∧ ∀n ∈ N 2−n

2 ≤ 2−n ∧ λn . 2−n ∈ N .

We have f ∈ N ⇔ |f | ∈ N , so we write f ∈ N in situations where one
may expect |f | ∈ N .

3. f : A9 B denotes a partial function f from A to B (where A and B are
sets).

4. f is two-to-one if and only if every image of f has exactly two distinct
preimages, that is ∀y ∈ im(f) |f−1[y]| = 2 (where f is a function).

Sets of strings

1. {0, 1}n denotes the set of binary strings of length n (where n ∈ N).

Analogously for Xn (where X is a set).

2. {0, 1}≤n denotes the set of binary strings of length less than or equal to
n (where n ∈ N).

Analogously for X≤n (where X is a set).

3. {0, 1}∗ denotes the set of binary strings (of finite length).

Analogously for X∗ (where X is a set).

4. {0, 1}2∗ :=
⋃

n∈N{0, 1}2n denotes the set of binary strings of even length.

Analogously for X2∗ (where X is a set).

Special strings

1. ǫ denotes the empty string.

2. 0n denotes the all-zero binary-string of length n, that is 000 . . . 0
︸ ︷︷ ︸
n zeros

(where
n ∈ N).

3. 1n denotes the all-one binary-string of length n, that is 111 . . . 1
︸ ︷︷ ︸

n ones

(where
n ∈ N).

46

Functions on strings

1. |x| denotes the length of x (where x ∈ {0, 1}∗).
2. |(x1, . . . , xn)| denotes |x1 . . . xn| = |x1| + · · · + |xn| (where n ∈ N and
x1, . . . , xn ∈ {0, 1}∗).

3. If x = x1 . . . xn with x1, . . . , xn ∈ {0, 1} and n ∈ N, then

xi :=

0 if n = 0

x1 if i = 0

xi if 1 ≤ i ≤ n

xn if i > n

if n 6= 0

(where i ∈ N).

4. xy denotes the concatenation of x and y (where x, y ∈ {0, 1}∗).
5. x|n denotes the restriction of x to its prefix of length n (if n > |x|, then
x|n = x) (where x ∈ {0, 1}∗ and n ∈ N).

6. x
�

denotes the left half x1 . . . x⌊n/2⌋ of x = x1 . . . xn (where n ∈ N and
x1, . . . , xn ∈ {0, 1}).

7. x
�

denotes the right half x⌊n/2⌋+1 . . . xn of x = x1 . . . xn (where n ∈ N
and x1, . . . , xn ∈ {0, 1}).

8. x
��

denotes the init (or head)

{

x1 . . . xn−1 if n > 1

ǫ if n ≤ 1

of x = x1 . . . xn (where n ∈ N and x1, . . . , xn ∈ {0, 1}).
9. x

��
denotes the tail

{

xn if n ≥ 1

ǫ if n = 0

of x = x1 . . . xn (where n ∈ N and x1, . . . , xn ∈ {0, 1}).
10. n2 denotes the binary string obtained by writing n in base 2 without

leading zeros (where n ∈ N).

11. (n1, . . . , nk)2 denotes ((n1)2, . . . , (nk)2) (where k, n1, . . . , nk ∈ N). Analo-
gously for sets instead of tuples.

12. 2x denotes:

(a) the natural number obtained by interpreting x as a natural number
written in base 2 if x ∈ {0, 1}∗ \ {ǫ};

(b) the natural number 0 if x = ǫ.

13. 2(x1, . . . , xk) denotes (2(x1), . . . , 2(xk)) (where k ∈ N and x1, . . . , xk ∈
{0, 1}∗). Analogously for sets instead of tuples.

47

14. ⊕ denotes xor defined by the following equalities or table

⊕ = +2 = −2,

0⊕ 0 = 0,
0⊕ 1 = 1,
1⊕ 0 = 1,
1⊕ 1 = 0,

⊕ 0 1
0 0 1
1 1 0

(where +2 and −2 denote respectively addition modulo 2).

15. ⊕ also denotes the bitwise (bit-by-bit) xor of two binary strings of the
same length, that is

(x1 . . . xn)⊕ (y1 . . . yn) = (x1 ⊕ y1) . . . (xn ⊕ yn)

(where n ∈ N and x1 . . . xn, y1 . . . yn ∈ {0, 1}).
16. ⊖ denotes ⊕ (which is explained by the fact that we can define ⊕ := +2

and ⊖ := −2, and that it happens here in particular that +2 = −2 and
more generally in all rings of characteristic 2) (where +2 and −2 denote
respectively addition modulo 2).

17. x[y ← z] denotes the result of simultaneously substituting (replacing) in
x all occurrences of z by y (where x, y, z ∈ {0, 1}∗).

18. A (total) binary-string function is a function f : {0, 1}∗ → {0, 1}∗.
19. A partial binary-string function is a function f :

⋃

l∈L{0, 1}l → {0, 1}∗
(where L ⊆ N is infinite).

20. f is length preserving (Goldreich 2004, definition 2.2.4) if and only if
∀x ∈ dom(f) |x| = |f(x)| (where f is a partial binary-string function).

21. f is length nondecreasing if and only if ∀x ∈ dom(f) |x| ≤ |f(x)| (where
f is a partial binary-string function).

22. f is length regular (Goldreich 2004, section 2.2.3.2) if and only if

∀x, x′, y, y′ ∈ {0, 1}∗ (|y| = |y′| ⇒ |f(x, y)| = |f(x′, y′)|)

(where f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ is a function).

23. f is polynomial-to-one (Boiten and Grundy 2010, q-pre-injectiveness in
paragraph “One-way functions and pre-composition”) if and only if every
image of f has at most polynomially many preimages, that is there is a
positive polynomial p such that ∀x ∈ {0, 1}∗ |f−1[x]| ≤ p(|x|) (where f is
a binary-string function).

24. f does not depend on the left half of the input if and only if

∀x, x′ ∈ dom(f) (x
�

= x′
�
⇒ f(x) = f(x′))

(where f is a partial binary-string function).

25. f does not depend on the right half of the input if and only if

∀x, x′ ∈ dom(f) (x
�

= x′
�
⇒ f(x) = f(x′))

(where f is a partial binary-string function).

48

Relations on strings

1. ⊑ (as in x ⊑ y) denotes the prefix (initial segment) relation (where
x, y ∈ {0, 1}∗).

2. ≤lex denotes the non-strict lexicographic order in {0, 1}∗ (Avigad and
Goldreich 2011, section 4.1) defined by the following condition: if

x = x1 . . . xm, x1, . . . , xm ∈ {0, 1}, m ∈ N,

y = y1 . . . yn, y1, . . . , yn ∈ {0, 1}, n ∈ N,

imin↓ :⇔ ∃i ∈ [1 .. min(m,n)] xi 6= yi,

imin := min {i ∈ [1 .. min(m,n)] | xi 6= yi}
(so imin is defined if and only if imin↓), then

x ≤lex y :⇔ x ⊑ y ∨ (imin↓ ∧ ximin
< yimin

).

3. minlexX denotes the minimum (if it exists) of X with respect to ≤lex

(where X ⊆ {0, 1}∗).

Probability

1. Un and U ′n denote uniform random variables in {0, 1}n (where n ∈ N).

2. If in a formula there are two occurrences of a random variable X , for
example Pr[f(X) = f(X)], then they denote the same outcome of X
(Goldreich 2004, pages 8–9 and 34).

For example Pr[f(X) = f(X)] means Pr[f(x) = f(x) : x ← X] and
not Pr[f(x) = f(x′) : x ← X, x′ ← X] (the latter would be denoted by
Pr[f(X) = f(X ′)] with X ′ being a random variable identically distributed
to X but independent from X).

Analogously, if X is a probabilistic algorithm instead of a random vari-
able.

3. PrA(~x) is an abbreviation of Pr[A(~x)], which in turn is an abbreviation of
Pr[A(~x) = 1] (where A is an algorithm and ~x is a tuple of binary strings).

4. PrE is an abbreviation of Pr[E] (where E is an event).

Algorithms

1. P is the class (set) of formal languages decidable by polynomial-time
deterministic algorithms (Turing machines) (Papadimitriou 1994, sec-
tion 2.4).

2. NP is the class (set) of formal languages decidable by polynomial-time
nondeterministic algorithms (Turing machines) (Papadimitriou 1994, sec-
tion 2.7).

3. A(1n) = Un means that the polynomial-time probabilistic algorithm A
is such that |A(1n)| = n and ∀x ∈ {0, 1}n Pr[A(1n) = x] = 2−n, that is
A(1n) takes values in {0, 1}n and (considered as a random variable) is
uniformly distributed as Un (where n ∈ N).

49

4. If A on input ~x outputs ordered pairs of binary strings, then A(~x)1 and
A(~x)2 denote respectively the first and second components of the ordered
pairs, that is A(~x) = (A(~x)1, A(~x)2) (where A is an algorithm and ~x is
a tuple of binary strings). We often simply write A(~x)1 or A(~x)2 with-
out explicitly saying that A outputs ordered pairs, and in such cases
it is implicitly understood that A does output ordered pairs (we mean
exactly 2-tuples, not 3-tuples nor 4-tuples nor so on) of binary strings.
Analogously, if A outputs n-tuples (where n ∈ N \ {0}).

5. y↓ and y = ↓ mean that the object y is defined. For example f(x)↓ and
f(x) = ↓ mean that x is in the domain of the partial function f , and
A(x)↓ and A(x) = ↓ mean that x is an input for which the algorithm A
halts.

6. y↑ and y = ↑ mean that the object y is undefined. For example f(x)↑ and
f(x) = ↑ mean that x is not in the domain of the partial function f , and
A(x)↑ and A(x) = ↑ mean that x is an input for which the algorithm A
does not halt.

7. x = y↓ means that x and y are both defined and are equal, that is
x↓ ∧ y↓ ∧ x = y.

8. x
↓↑
= y means that x and y are both defined and are equal, or they are

both undefined, that is (x↓ ∧ y↓ ∧ x = y) ∨ (x↑ ∧ y↑).

2.3 Conclusion

2.7. In this chapter we presented a collection of notions and notations that we will
need in later chapters, of which perhaps the more important ones are:

1. PrA(x) abbreviates Pr[A(x) = 1];

2. multiple occurrences of A(x) and Un denote the same outcome;

3. 1n denotes 111 . . . 1 with exactly n times the bit 1;

4. A(x)i denotes the i-th component of A(x);

5. the set N of negligible functions.

50

Chapter 3

Cryptographic primitives and
security notions

3.1 Introduction

3.1. This chapter presents a collection of formalisations of cryptographic primitives
and security notions that we will need in later chapters. (They are all collected here,
instead of appearing in the chapters where they are needed, to avoid duplication
because some on them are needed in more than one chapter.)

3.2. In this chapter, we give the following contributions.

Less original contributions Our own formalisations that we found already partially
or fully formalised in a similar way in the literature:

1. perfect secrecy;

2. cryptographic security;

3. indistinguishable encryption;

4. semantic security;

5. bit-recovery resistance.

More original contributions Our own formalisations that we did not find already
partially nor fully formalised in a similar way in the literature:

1. collision resistance (jointly with Eerke Boiten);

2. stream cipher.

3.3. This chapter includes work taken from the following two articles:

1. the notion of collision resistance and sections 3.11 and 3.12 below are based
on joint work with Eerke Boiten (Gaspar and Boiten 2014, section 1.3).

2. the notion of indistinguishability from random below is based on a informally
published work of ours (Gaspar 2016, definition 5).

51

3.2 Primitive: random generator

3.4. An n-length random generator is informally an algorithm that inputs n and
outputs a random string of length n.

3.5 Definition. Let n ∈ N. An n-length random generator (Goldreich 2004,
adapted from definition 3.3.4) is a polynomial-time probabilistic algorithm Gn such
that Pr[|Gn(1n)| = n] = 1, that is |Gn(1n)| = n for all runs of Gn.

3.6. We could have defined a random generator as being a polynomial-time prob-
abilistic algorithm G such that ∀n ∈ N |G(1n)| = n and then obtain from G the
n-length random generator Gn(x) := G(1n) (where x ∈ {0, 1}∗), but in the notion
of n-length one-time pad it is convenient to have a parameter n, so we do the same
for Gn.

We could also have “hardwired” the input 1n in Gn getting G′ := Gn(1n), but
we have to make the input explicit so that we can require Gn to run in polynomial
time in the length of the input.

3.3 Security: uniformity

3.7. The n-length uniformity of an n-length random generator Gn informally means
that the outputs of Gn are unbiased.

3.8 Definition. Let n ∈ N. An n-length random generator Gn is n-length uni-
form (Goldreich 2004, section 1.2.1) if and only if G(1n) = Un, that is the proba-
bility distribution of G(1n) is uniform.

3.4 Primitive: one-time pad

3.9. The n-length one-time pad Cn,Gn induced by the n-length random generator Gn

is informally the cipher that:

1. generates a key k := Gn(1n) (independently of the plaintexts);

2. encrypts a plaintext p to k ⊕ p;

3. decrypts a ciphertext c to k ⊕ c.

3.10 Definition. Let n ∈ N.

1. The n-length one-time pad CG induced by the n-length random generator Gn

(Buchmann 2001, section 4.5) is the 6-tuple Cn,Gn
:= (Kn,Pn, Cn, Kn,Gn, En, Dn)

where:

(a) Kn := {0, 1}n is called key space;

(b) Pn := {0, 1}n is called plaintext space;

(c) Cn := {0, 1}n is called ciphertext space;

(d) Kn,Gn
:= Gn is called key generator ;

52

(e) En defined by
En : Kn ×Pn → Cn

(k, p) 7→ k ⊕ p
is called encryption function;

(f) Dn defined by
Dn : Kn × Cn → Pn

(k, c) 7→ k ⊕ c
is called decryption function.

2. We:

(a) define a probability distribution PrKn k := Pr[Kn,Gn(1n) = k] on Kn;

(b) assume that there is an arbitrary probability distribution PrPn on Pn;

(c) assume that PrKn and PrPn are independent and so induce a probability
distribution PrKn×Pn (k, p) := PrKn k × PrPn p in Kn × Pn.

3.5 Security: perfect secrecy

3.11. Before we progress, we need to make a small digression into probability theory
to further discuss PrKn×Pn so that we can talk simultaneously of the probability of
events in Kn and events in Pn. Let n ∈ N.

1. We consider the variables:

(a) k ranging over Kn;

(b) p ranging over Pn.

2. We define:

(a) Pp := Kn × {p}, which is the event “the plaintext is p” in Kn × Pn;

(b) Cc := {(k′, p′) ∈ Kn ×Pn | En(k′, p′) = c}, which is the event “the ci-
phertext is c” in Kn × Pn.

(There is no need to add n as a subscript to Pp and Cc because n can be
determined from p and c since |p|= n = |c|.)

3. We adopt the following abbreviations:

(a) Pr p := PrKn×Pn Pp, which is the probability of the event “the plaintext
is p” in Kn × Pn and is equal to PrPn p;

(b) Pr[p|c] := PrKn×Pn Pp ∩ Cc / PrKn×Pn Cc, which is the conditional proba-
bility of the event “the plaintext is p” in Kn × Pn given the event “the
ciphertext is c” in Kn ×Pn.

(We have PrKn×Pn Cc > 0, as required for the conditional probability to be
defined, if PrKn is uniform: taking a p′ ∈ Pn such that PrPn p

′ > 0, and taking
k′ := p′ ⊕ c, which is such that PrKn k

′ = 1/|Kn| > 0, we have (k′, p′) ∈ Cc, so
PrKn×Pn Cc ≥ PrKn×Pn (k′, p′) = PrKn k

′ × PrPn p
′ > 0.)

53

3.12. The n-length perfect secrecy of an n-length one-time pad Cn,Gn informally
means that ciphertexts c computed by Cn,Gn do not reveal any information about
their corresponding plaintexts p, in the sense that learning c does not improve the
probability of discovering p, that is Pr p = Pr[p|c].

3.13 Definition. Let n ∈ N. An n-length one-time pad Cn,Gn is n-length perfectly
secret (Buchmann 2001, definition 4.4.1) if and only if

∀p, c Pr p = Pr[p|c],

where

1. p ranges over Pn;

2. c ranges over Cn.

3.6 Primitive: Blum-integer factorisation prob-

lem

3.14. Before we progress, we need to make a small digression into number theory
discussing Blum primes and Blum integers.

1. A Blum prime (Talbot and Welsh 2006, problem 6.10) is a q ∈ P such that
q ≡ 3 (mod 4).

(Blum primes are named after Manuel Blum, possibly because they are used
in his Blum-Blum-Shub pseudorandom generator and in his Blum-Goldwasser
cipher. At the “limit of infinity”, “half” of the prime numbers are Blum
primes, or more rigorously, if πi(n) := |{q ∈ P | n ≥ q ≡ i (mod 4)}|, then
limn→+∞ π1(n)/π3(n) = 1 (Granville and Martin 2006, formula (1)). But it
is conjectured that before the “limit of infinity”, primes numbers are biased
to be Blum primes, or more rigorous but not completely rigorous, π1(n) <
π3(n) occurs more often than π1(n) > π3(n) (Granville and Martin 2006, first
quotation on page 2), something known as Khrushchev’s bias (Granville and
Martin 2006, last quotation on page 22).)

2. A Blum integer (Menezes, van Oorschot and Vanstone 1996, definition 2.156)
is the product of two distinct Blum primes q and q′.

(Blum integers qq′ are of particular interest in number theory and its appli-
cations to cryptography because they make it easier to calculate square roots
modulo qq′.)

3.15. The Blum-integer factorisation problem is informally the problem of present-
ing an algorithm A that factors Blum integers (at least half of the time), that is A
inputs (in base 2) a Blum integer qq′ and outputs (in base 2) q or q′ (with probability
at least 1/2).

54

3.16 Definition. The Blum-integer factorisation problem is the following problem:
to present a probabilistic algorithm A such that

∀qq′ Pr[A((qq′)2) ∈ {q2, q′2}] ≥ 1/2,

where qq′ ranges over the Blum integers (and q and q′ are the Blum prime factors
of qq′).

3.7 Security: Blum-integer factorisation problem

hardness

3.17. The hardness of the Blum-integer factorisation problem informally means
that the problem has no easy solution, when by an easy solution we understand a
polynomial-time probabilistic algorithm.

3.18 Definition. We say that the Blum-integer factorisation problem is hard if
and only if no polynomial-time probabilistic algorithm A solves the Blum-integer
factorisation problem.

3.8 Primitive: Rabin cipher

3.19. Before we progress, we need to make a small digression into number theory
discussing quadratic residues modulo n and modular square roots modulo n. Let
n ∈ N.

1. A quadratic residue modulo n (Menezes, van Oorschot and Vanstone 1996,
page 209) is a c ∈ N such that there is a p ∈ N such that c ≡ p2 (mod n).

2. A square root of c ∈ N modulo n is a p ∈ N such that c ≡ p2 (mod n).

3. Let c ∈ N and let us now restrict ourselves to the case where n = qq′ is a Blum
integer, so c(q+1)/4, c(q

′+1)/4 ∈ N because (q + 1)/4, (q′ + 1)/4 ∈ N. We define

√
c mod qq′±∓ := (±c(q′+1)/4qq

′−1 ∓ c(q+1)/4q′q−1) mod qq′,

where the signs ± and ∓ are independent, so there are 4 combinations of signs,
and we denote the set/tuple of the 4 values (in some order)

√
c mod qq′±∓

by
√
c mod qq′. Then the elements of

√
c mod qq′ are the square roots of c

modulo qq′, or more precisely, we make the claim (Buchmann 2001, based on
section 7.3.3)

the square roots of a quadratic residue c ≡ p2 (mod qq′) modulo qq′

are modulo qq′ exactly the elements of
√
c mod qq′

proved in proof 3.24. (If q and q′ are large, then
√
c mod qq′±∓ may be very

large, even not polynomial-time computable in |(qq′)2|, so we included the

55

part “. . . mod qq′” in its definition; in calculations we may want to use instead
the variant

√
c
′
mod qq′±∓ := ((±c(q′+1)/4qq

′−2 mod q′)q+(∓c(q+1)/4q′q−2 mod q)q′) mod qq′

and even make more reductions such as substituting c(q
′+1)/4qq

′−2 mod q′ by
(c(q

′+1)/4 mod q′)(qq
′−2 mod q′); proof 3.24 still holds for the variant.)

3.20. The Rabin cipher is informally the cipher that:

1. generates as key a Blum integer qq′;

2. encrypts a plaintext p by squaring it to p2 mod qq′;

3. decrypts a ciphertext c by square rooting it to
√
c mod qq′.

3.21 Definition. The Rabin cipher C (Buchmann 2001, based on sections 7.3.1–
7.3.3) is the 7-tuple C := (K,K′,P, C, K, E,D) where

1. K := {(q, q′) ∈ P× P | q 6= q′ ∧ q, q′ ≡ 3 (mod 4)} is called private-key space;

2. K′ := {qq′ | (q, q′) ∈ K} is called public-key space;

3. P := N is called plaintext space;

4. C := N is called ciphertext space;

5. K is a probabilistic algorithm, such that on input n ∈ N outputs ((q, q′), qq′) ∈
K × K′ with qq′ ≥ n, called key generator ;

6. E defined by
E :

⋃

qq′∈K′

({qq′} × [0 .. qq′ − 1])→ C
(qq′, p) 7→ p2 mod qq′

is called encryption function;

7. D defined by
D : K × N→ N4

((q, q′), c) 7→ √c mod qq′

is called decryption function.

3.22. The decryption D of the Rabin cipher does not produce the plaintext p, that is
p 6= D((q, q′), E(qq′, p)), but a set/tuple of 4 possible plaintexts with the guarantee
that one of them is the correct plaintext, that is p ∈ D((q, q′), E(qq′, p)), so there is
ambiguity in decryption. One way to resolve the ambiguity would be to order the 4
possible plaintexts (they are natural numbers, so they can be ordered canonically)
and to send along with the ciphertext the index of the correct plaintext (this would
not break the security proof of the Rabin cipher).

3.23. As promised, we give a proof of the claim made in paragraph 3.19.

56

3.24 Proof.

1. First, we make two claims.

(a) Claim: p is a square root of c modulo qq′ if and only if p is a square root
of c modulo q and q′.

Proof: c ≡ p2 (mod qq′) ⇔ qq′ | c−p2 ⇔ q | c−p2 ∧ q′ | c−p2 ⇔ c ≡ p2

(mod q) ∧ c ≡ p2 (mod q′) using q, q′ ∈ P and q 6= q′.

(b) Claim: two square roots p and p′ of c modulo q differ at most in their
signs modulo q; analogously for q′ instead of q.

Proof: c ≡ p2 (mod q) ∧ c ≡ p′2 (mod q) ⇒ p2 ≡ p′2 (mod q) ⇔
q | p2−p′2 = (p−p′)(p+p′) ⇔ q | p−p′ ∨ q | p+p′ ⇔ p ≡ +p′ (mod q) ∨
p ≡ −p′ (mod q) by Euclid’s lemma ∀q ∈ P ∀a, b ∈ Z (q | ab ⇒ q | a ∨
q | b).

2. Second, in the next two claims we check that the square roots of c modulo qq′

are exactly the elements of
√
c mod qq′ modulo qq′ using the previous claims.

(a) Claim: all elements of
√
c mod qq′ are square roots of c modulo q, that

is for each element e, we have c ≡ e2 (mod q); analogously for modulo q′

instead of q.

Proof: (
√
c mod qq′++)2 ≡ (c(q+1)/4q′q−1)2 = c(q+1)/2(q′q−1)2 ≡

(p2)(q+1)/2(q′q−1)2 = ppq(q′q−1)2 ≡ p · p · 12 = p2 ≡ c (mod q) by ∀a ∈ Z
∀n ∈ N \ {0} a mod n ≡ a (mod n), q | qq′−1 and Fermat’s little theo-
rem ∀q ∈ P ∀a ∈ Z

(
aq ≡ a (mod q) ∧ (q ∤ a ⇒ aq−1 ≡ 1 (mod q))

)
;

analogously for the other elements.

(b) Claim: the elements of
√
c mod qq′ contain all possible signs modulo q,

that is for each element e there is an element e′ such that e ≡ −e′
(mod q); analogously for q′ instead of q.

Proof:
√
c mod qq′++ ≡ +c(q+1)/4q′q−1 = −(−c(q+1)/4q′q−1) ≡ −√c mod

qq′+− (mod q); analogously for the other elements (Buchmann 2001, based
on section 7.3.3).

3.9 Security: Rabin cipher security

3.25. The security of the Rabin cipher C informally means that the problem of
decrypting some ciphertext c (in binary notation), computed by C, without knowing
some private key (q, q′) of c but knowing some public key qq′ (in binary notation) of
c, has no easy solution (that always works), when by an easy solution we understand
a polynomial-time probabilistic algorithm that computes some

√
c mod qq′±∓ (with

probability 1).

3.26 Definition. The Rabin cipher is secure if and only if

∀A ∃qq′, c Pr[A((qq′)2, c2) ∈ (
√
c mod qq′)2] < 1, (3.1)

where

57

1. A ranges over the polynomial-time probabilistic algorithms;

2. qq′ ranges over the Blum integers;

3. c ranges over the quadratic residues modulo qq′.

3.27. The security notion of the Rabin cipher seems ad hoc for this cipher because
this security notion is about computing square roots modulo qq′ and so it is the
decryption function of this cipher; for other ciphers that have nothing to do with
computing square roots modulo qq′, this security notion does not fit. We argue now
that this security notion can be recast as an instance of a more general security
notion and in this sense it is less ad hoc than it seems. To do so, we first need to
discuss asymmetric ciphers and their security, but for brevity we only sketch them.

Asymmetric cipher An asymmetric cipher is a 7-tuple C = (K,K′,P, C, K, E,D)
where

1. K, K′, P and C are respectively private-key, public-key, plaintext and
ciphertext spaces ;

2. K, E and D are respectively a probabilistic key-generation algorithm, an
encryption and a decryption functions, all polynomial time;

3. K(1n) outputs a private-public pair of keys (k, k′) ∈ K ×K′;
4. C has perfect or imperfect decryption if and only if D(k′, ·) outputs re-

spectively single plaintexts or sets/tuples of candidate plaintexts.

5. D(k, ·) undoes E(k′, ·) in the sense of ∀p ∈ P p =∈ D(k, E(k′, p)) where
we read “=” (“∈”) if C has perfect (respectively, imperfect) decryption.

Motivation The goal of an asymmetric cipher is allow Bob to send encrypted mes-
sages to Alice, through a channel eavesdropped by Eve, without having previ-
ously arranged for a shared key:

1. Alice keeps k private and publishes k′;

2. Bob encrypts p with k′ and sends c := E(k′, p) to Alice;

3. Alice decrypts c with k to get p =∈ D(k, c);

4. Eve cannot decrypt c because she does not know k.

Security An asymmetric cipher is ε-secure if and only if

∀A ∃(k, k′) ∈ K × K′ ∃c ∈ C Pr[A(k′, c) =∈ D(k, c)] < ε, (3.2)

where A ranges over the polynomial-time probabilistic algorithms, and ε > 0.

Instantiation Taking

1. ε := 1;

2. (k, k′) := ((q, q′), qq′);

3. D(k, c) :=
√
c mod k′, that is D((q, q′), c) :=

√
c mod qq′;

in (3.2), we get (3.1) modulo conversions from n ∈ N to n2 ∈ {0, 1}∗.

58

3.10 Primitive: binary-string function

3.28. A binary-string function is informally a function that maps strings to strings.

3.29 Definition.

1. A (total) binary-string function is a function f : {0, 1}∗ → {0, 1}∗.

2. A partial binary-string function is a function f :
⋃

l∈L{0, 1}l → {0, 1}∗ where
L ⊆ N is infinite.

3.11 Security: “collision resistance”

3.30. The “collision resistance” of a binary-string function f informally means that
(f is polynomial-time computable and) it is hard to find collisions for f , that is
ordered pairs (x1, x2) ∈ {0, 1}∗ × {0, 1}∗ such that x1 6= x2 ∧ f(x1) = f(x2).

3.31 “Definition”. A binary-string function f is “collision resistant” if and only
if:

1. f is polynomial-time computable;

2. we have

∀A Pr[A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] ∈ N ,

where A ranges over the polynomial-time probabilistic algorithms.

3.32. We write “collision resistance” inside quotation marks because this is not yet
our official definition since it turns out to be an unwise definition as it is equivalent
to injectivity.

3.33. The role of the input 1n of A is not very clear in the “definition” above (for
example if (x1, x2) is a collision for f , then the constant algorithm A(x) := (x1, x2)
outputs the collision (x1, x2) while ignoring the input x = 1n) but only when we
give our official definition below, however, for consistency and to help bridging the
“definition” above and the definition below, we include the input already in the
“definition” above.

3.12 Security: collision resistance

3.34. The collision resistance of a binary-string function f informally means that
(f is polynomial-time computable and) it is hard to find arbitrarily long (or equiva-
lently, infinitely many) collisions for f , that is ordered pairs (x1, x2) ∈ {0, 1}∗×{0, 1}∗
such that |x1x2| is arbitrarily large and x1 6= x2 ∧ f(x1) = f(x2).

3.35 Definition. A binary-string function f is collision resistant if and only if:

1. f is polynomial-time computable;

59

2. we have

∀A Pr[|A(1n)| ≥ n ∧ A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] ∈ N ,

where A ranges over the polynomial-time probabilistic algorithms.

3.36. We required the condition |A(1n)| ≥ n, that is the collisions (A(1n)1, A(1n)2)
have lengths |A(1n)| = |(A(1n)1, A(1n)2)| = |A(1n)1| + |A(1n)2| arbitrarily long,
because without this condition the definition becomes equivalent to the injectivity
of f .

3.37. The notion of collision resistance appears in the literature defined for a family
of functions instead of a single function as in definition 3.35.

In previous work (Gaspar and Boiten 2014) we investigated composition theo-
rems for one-way binary-string functions with the format

if f (or g) is a one-way binary-string function and g (respectively f) is
“special”, then f ◦ g is a one-way binary-string function.

Collision resistance appeared as one of the “special” properties. Because the problem
deals with single functions f and g, it forced us to formulate the notion of collision-
resistant for a single function instead of a family of functions.

Let us present (a simplified variant of) the notion of collision resistance for a
family of functions and then speculate about a relation with the notion of collision
resistance for a single function.

1. A family of binary-string functions F = {fn}n∈N is collision resistant (Damg̊ard
1988, definition 2.1) if and only if:

(a) F is uniformly polynomial-time computable (that is there is a polynomial-
time deterministic algorithm B such that ∀n ∈ N ∀x ∈ {0, 1}∗ B(1n, x) =
fn(x));

(b) we have

∀A Pr[A(1n)1 6= A(1n)2 ∧ fn(A(1n)1) = fn(A(1n)2)] ∈ N ,

where A ranges over the polynomial-time probabilistic algorithms.

2. Let us assume that there are functions

π : N× {0, 1}∗ → {0, 1}∗, π1 : {0, 1}∗ → N, π2 : {0, 1}∗ → {0, 1}∗

that are respectively a bijective polynomial-time computable pairing function
such that

∀n ∈ N ∀x ∈ {0, 1}∗ n ≤ |π(n, x)|
and its two polynomial-time computable projections such that

∀n ∈ N ∀x ∈ {0, 1}∗
(
π1(π(n, x)) = n ∧ π2(π(n, x)) = x

)
.

60

3. We speculate that the notions of collision resistant for families of binary-string
functions and for single binary-string functions can be related somewhat along
the lines of the following:

(a) for all families F = {fn}n∈N of binary-string functions, if the single
binary-string function f defined by f(x) := fπ1(x)(π2(x)) is collision re-
sistant, then F is collision resistant (proof sketch: if (x, x′) is a collision
for fn, then (π(n, x), π(n, x′)) is a collision for f of length at least 2n);

(b) for all single binary-string functions f , if the family F = {fn}n∈N of
binary-string functions defined by ∀n ∈ N fn := f is collision resistant,
then f is collision resistant (proof sketch: a collision for f is a collision
for fn).

These ideas are still ongoing research.

3.13 Security: one-wayness

3.38. The one-wayness of a binary-string function f informally means that

1. f is easy to compute, that is x 7→ f(x) is easy to compute;

2. but f is hard to invert, that is f(x) 7→ x, or more precisely, f(x) 7→ x′ with
f(x) = f(x′), is hard to compute.

3.39 Definition. A (possibly partial) binary-string function f is one-way (Goldreich
2004, definition 2.2.1) if and only if:

1. f is polynomial-time computable;

2. we have
∀A Pr

[
f
(
A(f(Un), 1n)

)
= f(Un)↓

]
∈ N ,

where A ranges over the polynomial-time probabilistic algorithms.

To simplify, we often omit ↓.

3.40. In the definition above, the algorithm A, besides the input f(Un), also has
the extra input 1n. Informally, this extra input is included so that the runtime
of A is not based on |f(Un)| but on |f(Un)1n| = |f(Un)| + n ≥ n = |Un|, and
in this way excludes functions f that are one-way only because they shrink Un

logarithmically into f(Un) and so any polynomial-time algorithm A trying to invert
f(Un) would have to expand f(Un) exponentially into A(f(Un)), which cannot be
done in polynomial-time because there is not enough time for A to write down the
expanded exponentially long A(f(Un)) (Goldreich 2004, paragraph “The Auxiliary
Input 1n” in chapter 2).

3.41. In the definition above, we will always require the condition f(Un)↓ but often
not write ↓. The condition makes no difference for total functions but may make a
difference for partial functions (proof sketch: if

61

1. f is a total one-way binary string function;

2. g is the polynomial-time computable partial binary-string function f |{0,1}2∗ ,
that is f restricted to even-length strings;

3. P↓ := Pr
[
g
(
A(g(Un), 1n)

)
= g(Un)↓

]
and P := Pr

[
g
(
A(g(Un), 1n)

)
= g(Un)

]
;

then g satisfies

1. ∀A P↓ ∈ N by the one-wayness of f and because if n is odd, then P↓ = 0 since
g(Un)↑;

2. ¬∀A P ∈ N by A(x, y) := 1 and because if n is odd, then P = 1 since
g(1) = g(Un) due to g(1)↑ and g(Un)↑.)

3.14 Primitive: pseudorandom generator

3.42. A pseudorandom generator is informally a function G that expands a short
random string s into a “potentially infinitely long” pseudorandom string s∞, in the
sense of ∀l ∈ N G(s, 1l) = s∞|l.
3.43 Definition. A pseudorandom generator (Goldreich 2004, definition 3.3.4) is
a function G : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ such that

1. G is polynomial-time computable;

2. ∀s, l |G(s, 1l)| = l;

3. ∀s, l G(s, 1l) ⊑ G(s, 1l+1);

where

1. s is called seed and ranges over {0, 1}∗;
2. l is called stream length and ranges over N;

3. G(s, 1l) is called stream with seed s and of length l.

3.15 Security: cryptographic security

3.44. The cryptographic security of a pseudorandom generator G informally means
that it is hard for an algorithm A′ to distinguish the stream G(Un, 1

|A(1n)1|) (for
a uniformly random seed Un and of length |A(1n)1| given by the first component
A(1n)1 of an algorithm A) from a truly uniformly random string U|G(Un,1|A(1n)1|)| (of
the same length as the stream).

3.45 Definition. A pseudorandom generatorG is cryptographically secure (Goldreich
2004, adapted from definition 3.3.4) if and only if

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N ,

(3.3)

where A and A′ range over the polynomial-time probabilistic algorithms.

62

3.46. Our formalisation above has a feature by design that we did not find in the
literature: the first algorithm A is able to communicate with the second algorithm A′

by means of the second component A(. . .)2 of A, which is passed as an input to A′

in A′(. . . , A(. . .)2). This makes intuitive sense if we think of cryptographic security
as asserting that the following two-step game is almost always unwinnable for a
player (A,A′):

1. player (A,A′), through its first component A, chooses a length l := |A(1n)1|,
for which player (A,A′) hopes to distinguish between the pseudorandom string
G(Un, 1

l) = G(Un, 1
|A(1n)1|) of that length l and the truly random string Ul =

U|G(Un,1|A(1n)1|| also of that length l;

2. player (A,A′), through its second component A′, tries to distinguish between
G(Un, 1

l) and Ul where l is the length chosen by player (A,A′) in the previous
game step.

Naturally, we want that player (A,A′) in the second step still remembers what he/she
did in the first step besides the chosen length l, for example player (A,A′) may
remember why he/she choose that particular value of l. This is formally achieved
by allowing the first component A of player (A,A′) to pass on an arbitrary piece
of information A(. . .)2 to the second component A′ of player (A,A′) in the form
of an input A(. . .)2 in A′(. . . , A(. . .)2). (One natural piece of information for A to
pass to A′ would be the entire computation history of A to assure that A′ knows
everything that A knows, but it would suffice for A′ to pass on the entire list of
“internal coin tosses” of A used in the computation made by A because A′ can then
recompute the entire computation history of A.) (Occasionally, it turns out that this
communication from A to A′ is not essential as we will see below when we remark
that our definition of cryptographic security with communication is equivalent to
Oded Goldreich’s definition without communication, but for consistency, flexibility
and ease of comparison our definitions always include communication.)

3.47. Oded Goldreich’s book (Goldreich 2004, Goldreich 2011) is one of our main
references, so let us us make a comparison with it. This book defines cryptographic
security (Goldreich 2004, definition 3.3.4) essentially by a formula seemingly weaker
than (3.3), namely

∀p, B′ PrB′(G(Un, 1
p(n)), 1n)− PrB′(U|G(Un,1p(n))|, 1

n) ∈ N , (3.4)

where

1. p ranges over the positive polynomials;

2. B′ ranges over the polynomial-time probabilistic algorithms;

but it turns out that (3.3) and (3.4) are equivalent (proof sketch:

(⇒) taking A(x) := (1p(|x|), ǫ) and A′(x, y, z) := B′(x, y) in (3.3), we get (3.4);

63

(⇐) for all polynomial-time probabilistic algorithms A, there is a positive polyno-
mial pA such that ∀n ∈ N |A(1n)1| ≤ pA(n), so taking p := pA and B′(x, y) :=
A′(x||A(y)1|, y, A(y)2) in (3.4), we get

∀A,A′ PrA′(

=G(Un,1|A(1n)1|)
︷ ︸︸ ︷

G(Un, 1
pA(n))||A(1n)1|, 1

n, A(1n)2)−
PrA′(U|G(Un,1pA(n))|||A(1n)1|

︸ ︷︷ ︸
=U

|G(Un,1|A(1n)1|)|

, 1n, A(1n)2) ∈ N ,

thus we get (3.3)).

3.16 Primitive: stream cipher

3.48. A stream cipher is informally a cipher that encrypts a “potentially infinitely
long” plaintext p∞ to a “potentially infinitely long” ciphertext c∞ in the sense that
a prefix p of p∞ is encrypted to a prefix c of c∞, or somewhat more precisely, as we
add extra bits to a plaintext p getting a longer plaintext p′ ⊒ p, the stream cipher
adds extra bits to the ciphertext c producing a longer ciphertext c′ ⊒ c.

3.49 Definition. A (symmetric and deterministic) stream cipher C is a 6-tuple
(K,P, C, K, E,D) where

1. K := {0, 1}∗ is called key space;

2. P := {0, 1}∗ is called plaintext space;

3. C := {0, 1}∗ is called ciphertext space;

4. K a is probabilistic polynomial-time algorithm called key generator such that
∀x ∈ {0, 1}∗ K(x) ∈ K;

5. E : K × P → C is a polynomial-time computable function called encryption
function.

6. D : K × C → P is a polynomial-time computable function called decryption
function;

such that

1. ∀k ∈ K ∀p ∈ P D(k, E(k, p)) = p;

2. ∀k ∈ K ∀p, p′ ∈ P (p ⊑ p′ ⇒ E(k, p) ⊑ E(k, p′)).

3.50. Our definition of stream cipher is restricted to stream ciphers that are:

1. symmetric (that is ciphers in which the encryption and decryption keys are
the same or at least the latter can be easily computed from the former), so
excluding asymmetric ciphers (for example the Blum-Blum-Shub stream ci-
pher (Klein 2013, chapter 11));

64

2. deterministic (that is the encryption is computed by a deterministic algorithm
instead of a probabilistic algorithm), so excluding enhancements on stream ci-
phers by adding randomness to them (for example random nonces and random
initialisation vectors) and casting some unavoidable insecurity (for example if
two ciphertexts under the same key are seen to be equal, then it can be inferred
that the corresponding plaintexts are also equal).

3.17 Security: indistinguishability from random

3.51. The indistinguishability from random of a stream cipher C informally means
that it is hard for an algorithm A′ to distinguish a ciphertext E(K(1n), A(1n)1)
computed by C (with corresponding plaintext given by the first component A(1n)1
of an algorithm A) from a uniformly random string U|E(K(1n),A(1n)1)| (of the same
length as the ciphertext).

3.52 Definition. A stream cipher C = (K,P, C, K, E,D) is indistinguishable from
random (Möller 2004, paragraph before definition 3) (Reingold 1998, section 1.1.1)
(Rogaway 2004, section 3) if and only if

∀A,A′ PrA′
(
E(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N ,

where A and A′ range over the polynomial-time probabilistic algorithms.

3.53. In the definition, the last component A(. . .)2 of A plays the same role (of
passing extra information from A to A′) as the one in paragraph 3.46. This design
choice is standard for us (but not for others because we did not find it in the
literature), so we will often adopt it without commenting on it.

3.18 Security: indistinguishable encryptions

3.54. The indistinguishability of encryptions of a stream cipher C informally means
that it is hard for an algorithm A′ to distinguish between two ciphertexts
E(K(1n), A(1n)1) and E(K(1n), A(1n)2) computed by C (with corresponding plain-
texts of the same length and given by the first and second components A(1n)1 and
A(1n)2 of an algorithm A).

3.55 Definition. A stream cipher C = (K,P, C, K, E,D) has indistinguishable
encryptions (Katz and Lindell 2015, adapted from definition 3.8) if and only if

∀A,A′ PrA′
(
E(K(1n), A(1n)1), A(1n)1, A(1n)2, 1

n, A(1n)3
)
−

PrA′
(
E(K(1n), A(1n)2), A(1n)1, A(1n)2, 1

n, A(1n)3
)
∈ N ,

where A and A′ range over the polynomial-time probabilistic algorithms such that
for A we have ∀x ∈ {0, 1}∗ |A(x)1| = |A(x)2|.
3.56. As before, the last component A(. . .)3 of A plays the same role as the one of
A(. . .)2 in paragraph 3.46.

65

3.19 Security: semantic security

3.57. The semantic security of a stream cipher C informally means that ciphertexts
computed by C do not reveal any computationally-extractable information about
their corresponding plaintexts, in the sense that what can be computed from seeing
a ciphertext can also be computed without seeing the ciphertext, or more precisely,
that a function g computable by an algorithm A′ from a ciphertext E(K(1n), A(1n)1)
(with corresponding plaintext given by the first component A(1n)1 of an algo-
rithm A) (and also from extra information about the plaintext given by a function f)
can also be computed by an algorithm B without access to E(K(1n), A(1n)1).

3.58 Definition. A stream cipher C = (K,P, C, K, E,D) is semantically secure
(Katz and Lindell 2015, based on definition 3.12) (Goldreich 2011, based on defi-
nition 5.2.1) if and only if

∀A′ ∃B ∀A, f, g
Pr

[
A′
(
E(K(1n), A(1n)1), f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
−

Pr
[
B
(
1|A(1n)1|, f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
∈ N ,

where

1. A, A′ and B range over the polynomial-time probabilistic algorithms;

2. f and g range over the polynomial-time computable functions.

3.20 Security: bit-recovery resistance

3.59. The bit-recovery resistance of a stream cipher C informally means that it
is hard for an algorithm A′ to recover (with probability better than the probabil-
ity 1/2 of a uniformly random guess) the i-th bit U i

|A(1n)1|
of a uniformly random

plaintext U|A(1n)1| (of length |A(1n)1| given by the first component A(1n)1 of an
algorithm A) from the corresponding ciphertext E(K(1n), U|A(1n)1|) computed by C.

3.60 Definition. A stream cipher C = (K,P, C, K, E,D) is bit-recovery resis-
tant (Katz and Lindell 2015, based on theorem 3.10) if and only if

∀A,A′, i Pr
[
A′
(
E(K(1n), U|A(1n)1|), 1

n, A(1n)2
)

= U i
|A(1n)1|

]
− 1/2 ∈ N ,

where

1. A and A′ range over the polynomial-time probabilistic algorithms such that
for A we have ∀x ∈ {0, 1}∗ |A(x)1| ≥ 1;

2. i ranges over N.

66

3.21 Primitive: formal language

3.61. A formal language is informally a set of words written with letters taken from
some alphabet.

3.62 Definition. Let Σ be a set.

1. The set Σ is called an alphabet (Papadimitriou 1994, definition 2.1).

2. The elements of Σ are called letters over Σ.

3. The finite strings (that is n-tuples with n ∈ N) w = l1 . . . ln of letters over Σ
are called words over Σ.

4. The sets L whose elements are words over Σ are called languages over Σ
(Papadimitriou 1994, definition 2.3).

3.22 Security: (NP \ P)-ness
3.63. Let c be a constant and A an algorithm. We will use the notations
Pr[A(w) = c] > 0 and Pr[A(w) = c] = 1, which are

1. defined if A is probabilistic (because there is a notion of probability for A);

2. undefined if A is deterministic or nondeterministic (because there is no notion
of probability for A);

so we need to clarify the meaning of the notations in the latter case:

1. Pr[A(w) = c] > 0 means that it is possible for A(w) to output c, that is there
is a computation path of A starting on input w and ending on output c;

2. Pr[A(w) = c] = 1 means that it is certain that A(w) outputs c, that is all
computation paths of A starting on input w end on output c.

3.64. The (NP \P)-ness of a formal language L informally means that the problem
of answering “yes” or “no” to the question “w ∈ L?” is hard in the sense of being
solvable by

1. a polynomial-time nondeterministic algorithm;

2. but not a polynomial-time deterministic algorithm.

3.65 Definition. Let L be a formal language over an alphabet Σ, and yes and no

be two constants.

1. Let A be a polynomial-time (deterministic, nondeterministic or probabilistic)
algorithm that inputs words w over Σ and outputs yes or no. The algorithm
A decides L if and only if

∀w
(
(w ∈ L ⇒ Pr[A(w) = yes] > 0) ∧
(w /∈ L ⇒ Pr[A(w) = no] = 1)

)
,

(3.5)

where w ranges over the words over Σ (Papadimitriou 1994, definition 2.3).

67

2. The formal language L is:

(a) P if and only if there is a polynomial-time deterministic algorithm decid-
ing L;

(b) NP if and only if there is a polynomial-time nondeterministic algorithm
deciding L;

(c) NP\P if and only if L is NP but not P (Papadimitriou 1994, sections 2.3
and 2.7).

3.23 Conclusion

3.66. In this chapter we presented a collection of formalisations of cryptographic
primitives and security notions.

68

Part III

Examples

69

Chapter 4

Provable security of
transformation of cryptographic
primitives

4.1 Introduction

4.1. In this chapter, we present two classic examples of provable security, adapted
to fit our problem format of transformation of cryptographic primitives:

1. the transformation of a uniform random generator into a perfectly-secret one-
time pad;

2. the transformation of the hard Blum-integer factorisation problem into the
secure Rabin cipher.

4.2. In this chapter, we give two contributions modestly worth of notice:

1. a proof of the perfect secrecy of the one-time pad that is direct and does not
use Bayes’ theorem Pr[A|B] = Pr[B|A] PrA / PrB (if PrA,PrB 6= 0);

2. a more formalised and yet more readable proof (than the ones that we found
in the literature) of the security of the Rabin cipher.

The proof of the perfect secrecy of the one-time pad that we present has two
advantages when compared to some other proofs found in the literature.

Bayes-free Our proof avoids using Bayes’ theorem for simplicity. This is already
done in some proofs in the literature

(Boneh and Shoup 2017, proofs of theorems 2.1, 2.2 and 2.4)
(Delfs and Knebl 2007, proofs of proposition 9.4 and of theorem 9.5)
(Pass and Shelat 2010, proofs of theorem 12.3 and of proposition 15.5)
(Talbot and Welsh 2006, proof of proposition 5.5)
(Vaudenay 2006, proof of theorem 1.5)

but not in some other proofs in the literature

71

(Blahut 2014, proofs of theorem 5.3.2 and of corollary 5.3.3)
(Buchmann 2001, proof of theorem 4.4.3, and second paragraph of
section 4.5)
(Katz and Lindell 2015, proofs of lemma 2.4 and of theorem 2.9,
and paragraph before theorem 2.9)
(Rothe 2005, proof of theorem 4.24, and example 4.25)
(Shannon 1949, proof of theorem 6, and page 682)
(Smart 2016, proof of theorem 9.4).

Direct Our proof is direct in the sense that it avoids relying on auxiliary results for
simplicity. Again, this is already done in some proofs in the literature but not
in some other proofs in the literature, as we can verify by inspecting the list
of references in the previous point in order to check if they cite a single proof
(for example “proof of theorem 9.4”) or multiple proofs (for example “proofs
of theorems 2.1, 2.2 and 2.4”).

4.2 Example: transformation of a uniform ran-

dom generator into the perfectly-secret one-

time pad

4.3. Let us see an adaptation to fit our problem format (presented in paragraph 1.28)
of a classical result (the perfect secrecy of the one-time pad) specified by the following
instances of its parameters:

P1 = n-length random generator,

S1 = n-length uniformity,

P2 = n-length one-time pad,

S2 = n-length perfect secrecy,

T = transformation of an n-length random
generator into an n-length one-time pad.

4.4. Let us start by sketching our example.

n-length random generator Informally, it is an algorithm G that outputs a binary
string of length n such as 001001010 (where n = 9).

n-length uniformity Informally, it means that the binary strings of length n output
by the n-length random generator are all equally probable.

n-length one-time pad Informally, it encrypts a plaintext p of length n with a key k
of length n (produced by G) by xoring p and k getting k⊕ p, and decrypts by
doing the same.

n-length perfect secrecy Informally, it means that a ciphertext of length n reveals
no information about the plaintext (in the sense of singling out a plaintext as
more probable than the other ones).

72

Security theorem We prove a theorem saying that if the n-length random generator
is n-length uniform, then the n-length one-time pad is n-length perfectly secret.

The idea of the proof is the following: a ciphertext c can be the result of
encrypting any plaintext p with the key k := p⊕ c where each key k is equally
probable (by the n-length uniformity of G), so each plaintext p is equally
probable, thus c does not single out any p.

4.5. Let us introduce our transformation T : the transformation of an n-length
random generator into an n-length one-time pad.

4.6 Definition. Let n ∈ N. The transformation of an n-length random generatorGn

into an n-length one-time pad Cn,Gn is Gn Cn,Gn.

4.7. Finally, let us present our security theorem.

4.8 Theorem. Let n ∈ N. For all n-length random generators Gn, if Gn is n-length
uniform, then Cn,Gn is n-length perfectly secret (Buchmann 2001, theorem 4.4.3).

4.9 Proof. The definition of Pr[p|c] is

Pr[p|c] :=
PrKn×Pn Pp ∩ Cc

PrKn×Pn Cc
. (4.1)

Using En(k′, p′) = k′ ⊕ p′ (by definition of En) we get

(k′, p′) ∈ Cc ⇔ E(k′, p′) = c ⇔
k′ ⊕ p′ = c ⇔ k′ = c⊖ p′ ⇔ (k′, p′) = (c⊖ p′, p′),

(k′, p′) ∈ Pp ∩ Cc ⇔ p′ = p ∧ (k′, p′) = (c⊖ p′, p′) ⇔ (k′, p′) = (c⊖ p, p),

so

Cc = {(c⊖ p′, p′) | p′ ∈ Pn}, (4.2)

Pp ∩ Cc = {(c⊖ p, p)} (4.3)

(for all p ∈ Pn and c ∈ Cn). The definition of PrKn×Pn is

Pr
Kn×Pn

(k, p) := Pr
Kn

k × Pr
Pn

p (4.4)

(for all p ∈ Pn and c ∈ Cn) because we assume that PrKn and PrPn are independent.
The n-length random generator Gn being n-length uniform means Gn(1n) = Un,
where Kn,Gn

:= Gn and PrKn k := Pr[Kn,Gn(1n) = k], so

Pr
Kn

k = 2−n (4.5)

(for all k ∈ Kn). By the definition of probability (distribution), we have

∑

p′∈Pn

Pr
Pn

p′ = 1. (4.6)

73

Recall
Pr p = Pr

Pn

p. (4.7)

The one-time pad being perfectly secret means

Pr p = Pr[p|c] (4.8)

(for all p ∈ Pn and c ∈ Cn).
Using (4.1), (4.2), (4.3), (4.4), (4.5) and (4.6) where indicated, we have

Pr[p|c] = by (4.1)

PrKn×Pn Pp ∩ Cc

PrKn×Pn Cc

= by (4.2)–(4.3)

PrKn×Pn (c⊖ p, p)
∑

p′∈Pn
PrKn×Pn (c⊖ p′, p′) = by (4.4)

PrKn c⊖ p× PrPn p
∑

p′∈Pn
PrKn c⊖ p′ × PrPn p

′
= by (4.5)

2−n PrPn p

2−n
∑

p′∈Pn
PrPn p

′
= by (4.6)

Pr
Pn

p = by (4.7)

Pr p,

so we get (4.8).

4.3 Example: transformation of the hard Blum-

integer factorisation problem into the secure

Rabin cipher

4.10. Let us see an adaptation to fit our problem format (presented in paragraph 1.28)
of another classical result (the security of the Rabin cipher) specified by the following
instances of its parameters:

P1 = Blum-integer factorisation problem,

S1 = hardness,

P2 = Rabin cipher,

S2 = security,

T = transformation of the Blum-integer
factorisation problem into the Rabin cipher.

Actually, talking about a transformation T in this example is to some extent arti-
ficial: we are not going to build P2 using P1 but rather prove the S2-security of P2

using the S1-security of P1; it is in this broader sense that we talk of a transforma-
tion T . Along the same lines, considering the Blum-integer factorisation problem

74

as a cryptographic primitive P1 and its hardness as a cryptographic security no-
tion S1 is to some extent artificial: they are more related to number theory than to
cryptography but they do play an essential role in the security of the Rabin cipher,
which belongs to cryptography; it is in this broader sense that we talk about the
cryptographic primitive P1 and its security notion S1.

4.11. Let us start by sketching our example.

Number theory We will need to recall how to calculate square roots modulo n and
how to transform two square roots p and p′ modulo n into a “magic num-
ber” mn(p, p′) that gives us a factor of n.

Factorisation problem Informally, it is the problem of finding a (non-trivial) factor
of any given n.

Hardness Informally, it means that it is hard to factor n.

Rabin cipher Informally, it encrypts a plaintext p by squaring p modulo n and
decrypts a ciphertext c by calculating square roots of c modulo n.

Security Informally, it says that it is difficult to decrypt a ciphertext (without know-
ing the factorisation of n).

Security theorem We prove a theorem essentially saying that if the factorisation
problem is hard, then the Rabin cipher is secure, or equivalently, if we know
how to decrypt the Rabin cipher, that is how to calculate a square root mod-
ulo n, then we know how to factor n.

The idea of the proof is the following: we chose a random p, so we have a
square root p of p2 modulo n; since we know how to compute a square root
modulo n, then we get another square root p′ of p2 modulo n; now we use
mn(p, p′) to get a factor of n.

4.12. Before we progress to the presentation of our example, we need to make a small
digression into number theory, more precisely Blum primes, Blum integers, quadratic
residues, square roots modulo n, the factorisation problem and the relation between
square roots modulo n and the factorisation problem.

4.13. Let qq′ be a Blum integer and let us define the “magic number” mn(p, p′) :=
gcd(p−p′, qq′). The “magic number” transforms two square roots p and p′ modulo qq′

of the same quadratic residue modulo qq′ into a factor of qq′ with probability at
least 1/2. More precisely, we make the claim (Buchmann 2001, section 7.3.5)

if qq′ is a Blum integer, c is a quadratic residue modulo qq′, p is uniformly
randomly chosen in

√
c mod qq′, p′ is arbitrarily chosen in

√
c mod qq′

independently from p, and gcd(p, qq′) = 1, then Pr[mn(p, p′) ∈ {q, q′}] ≥
1/2.

proved in proof 4.18. (We chose to call “magic number” to mn(p, p′) because it seems
to “magically” factor qq′.) The hypothesis gcd(p, qq′) = 1 may seem a little strange,
it is here for a technical reason appearing in the proof 4.18, but does not “hurt”
because if gcd(p, qq′) 6= 1, then gcd(p, qq′) ∈ {q, q′} (because 0 6= p ∈ √c mod qq′ ⊆
[0 .. qq′ − 1], so p ∈ [1 .. qq′ − 1]), so we get a factor of qq′ as intended.

75

4.14. Finally, let us present our security theorem and transformation T : the re-
duction of the security of the Rabin cipher to the hardness of the Blum-integer
factorisation problem.

4.15 Theorem. If the Blum-integer factorisation problem is hard, then the Rabin
cipher is secure (Buchmann 2001, section 7.3.5).

4.16 Proof. We prove the contrapositive of the theorem. The Rabin cipher not
being secure means

∃A ∀qq′, c Pr[A((qq′)2, c2) ∈ (
√
c mod qq′)2] = 1, (4.9)

where A ranges over the polynomial-time probabilistic algorithms, qq′ ranges over
the Blum integers and c ranges over the quadratic residues modulo qq′. The Blum-
integer factorisation problem not being hard means

∃B ∀qq′ Pr[B((qq′)2) ∈ {q2, q′2}] ≥ 1/2, (4.10)

where B ranges over the polynomial-time probabilistic algorithms and qq′ ranges
over the Blum integers.

Let us construct such a B from such an A. Let B be a polynomial-time proba-
bilistic algorithm that:

1. inputs (qq′)2;

2. (a) generates a uniformly random number p ∈ [0 .. qq′ − 1];

(b) computes gcd(p, qq′)2;

(c) computes c := p2 mod qq′;

(d) computes p′ := 2A((qq′)2, c2);

(e) computes mn(p, p′)2;

3. outputs

(e) gcd(p, qq′)2 if gcd(p, qq′) 6= 1;

(f) mn(p, p′)2 if gcd(p, qq′) = 1;

which is a polynomial-time probabilistic algorithm because the generation of p can be
done in polynomial time in |(qq′)2|, gcd, so also mn, is a polynomial-time computable
function, and A is a polynomial-time probabilistic algorithm. (To be rigorous, we
should have defined the behaviour of B on an general input x ∈ {0, 1}∗ instead of
a particular input (qq′)2, and then some small changes would be required such as
where it is (qq′)2 should be x and where it is qq′ should be 2x, but this extra rigour
makes the proof more difficult to read so we skipped it.)

Let us prove Pr[B((qq′)2) ∈ {q2, q′2}] ≥ 1/2:

1. if the outputB((qq′)2) is gcd(p, qq′)2 from point 3e, then Pr[B((qq′)2) ∈ {q2, q′2}] =
1 (because gcd(p, qq′) ∈ {1, q, q′, qq′} since q, q′ ∈ P, and 1 < gcd(p, qq′) ≤ p ≤
qq′ − 1 < qq′ by the generation of p and by point 3e);

76

2. if the output B((qq′)2) is mn(p, p′)2 from point 3f, then by the claim in para-
graph 4.13 we get Pr[B((qq′)2) ∈ {q2, q′2}] ≥ 1/2.

4.17. As promised, we give a proof of the claim made in paragraph 4.13.

4.18 Proof. First we make two claims.

1. Claim: p is a square root of c modulo qq′ if and only if p is a square root of c
modulo q and q′.

Proof: given in proof 3.24.

2. Claim: two square roots p and p′ of c modulo q differ at most in their signs
modulo q; analogously for q′ instead of q.

Proof: given in proof 3.24.

We have one of the following 4 equally-probable cases (because p is uniformly
random and p′ is independent from p) using the previous claims:

p ≡ +p′ (mod q) ∧ p ≡ +p′ (mod q′), (4.11)

p ≡ +p′ (mod q) ∧ p ≡ −p′ (mod q′), (4.12)

p ≡ −p′ (mod q) ∧ p ≡ +p′ (mod q′), (4.13)

p ≡ −p′ (mod q) ∧ p ≡ −p′ (mod q′). (4.14)

We make three more claims.

3. Claim: we have mn(p, p′) ∈ {1, q, q′, qq′}.
Proof: we have mn(p, p′) | qq′ by definition of mn(p, p′) and of gcd, and the
only positive divisors of qq′ are 1, q, q′ and qq′ because q, q′ ∈ P.

4. Claim: in cases (4.12) and (4.13) we have mn(p, p′) 6= 1.

Proof: in case (4.12) we have q | p−p′, so q | mn(p, p′), thus mn(p, qq′) ≥ q > 1
since q ∈ P; analogously for case (4.13).

5. Claim: in cases (4.12) and (4.13) we have mn(p, p′) 6= qq′.

Proof: we have p, p′ ∈ √c mod qq′ ⊆ [0 .. qq′−1], so (∗) p−p′ ∈ [−(qq′−1) .. qq′−1];
if p − p′ = 0, then q′ | 2p by (4.12), so q′ | p because q′ ∈ P \ {2}, thus
gcd(p, qq′) ≥ q′ > 1, contradicting gcd(p, qq′) = 1, so (†) p− p′ 6= 0; from (∗)
and (†) we get the claim; analogously for case (4.13).

In cases (4.12) and (4.13) we have mn(p, p′) ∈ {q, q′}. So mn(p, p′) ∈ {q, q′} in at
least 2 out of 4 equally-probable cases, thus Pr[mn(p, p′) ∈ {q, q′}] ≥ 1/2 (Buchmann
2001, section 7.3.5).

77

4.4 Conclusion

4.19. In this chapter we presented two classic examples of provable security of
transformation of cryptographic primitives:

1. the transformation of a uniform random generator into a perfectly-secret one-
time pad;

2. the transformation of the hard Blum-integer factorisation problem into the
secure Rabin cipher.

78

Chapter 5

Proof presentation of
transformation of cryptographic
primitives

5.1 Introduction

5.1. In this chapter we present three examples of proof presentation:

1. a bad cryptographic definition (a good-looking attempt to capture the notion
of collision resistance that fails by turning out to be equivalent to the notion
of injectivity) to illustrate the delicateness of this type of definitions;

2. an incorrect cryptographic proof (essentially, that if a function is collision
resistant, then it is one-way) to illustrate the delicateness of this type of proofs;

3. an improvement of a cryptographic proof (that if we change an arbitrary one-
way function f to force ∀n ∈ N f(0n) = ǫ, then f is still one-way) by using
the simple notation trick of replacing a long formula ∀p ∃N ∀n > N |f(n)| <
1/p(n) by a short abbreviation f ∈ N (together with some easy and useful
properties of N) to illustrate how to improve a proof.

5.2. The

1. notion of “collision resistance” (the wrong notion with quotation marks);

2. collision resistance (the right notion without quotation marks);

3. the result that “collision resistance” is equivalent to injectivity;

4. the idea of replacing ∀p ∃N ∀n > N |f(n)| < 1/p(n) by f ∈ N ;

5. the properties of N ;

have been developed in collaboration with Eerke Boiten (Gaspar and Boiten 2014,
sections 1.3 and 2.5).

79

5.2 Example: collision resistance

5.3. Let us see an example showing how delicate definitions in cryptography can
be. The example is a definition which seems to capture well an intuitive notion but
turns out not to do it well.

5.4 “Definition”. A binary-string function f is “collision resistant” if and only if:

1. f is polynomial-time computable;

2. we have

∀A Pr[A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] ∈ N , (5.1)

where A ranges over the polynomial-time probabilistic algorithms.

5.5. The “definition” above seems to capture well the intuitive notion of being hard
to find collisions for f by using the following standard techniques in cryptography:

1. modelling an adversary trying to find a collision by a polynomial-time proba-
bilistic algorithm A in the part “∀A” of (5.1);

2. having A attempt to compute a collision (A(1n)1, A(1n)2) for f in the part
“A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)” of (5.1);

3. requiring that A only succeeds with negligible probability in the part “Pr[. . .] ∈
N ” of (5.1).

However, the proposition below shows that the “definition” reduces to the injectivity
of f , which is not the notion that the “definition” intends to capture. So the
“definition” is an example of a “definition” that seems good (that is capturing the
intended intuitive notion) but turns out to be bad (that is not capturing the intended
intuitive notion). As such, the “definition” exemplifies our thesis that it is easy to
make mistakes but hard to find them in definitions in cryptography.

5.6 Proposition. For all binary-string functions f , we have: f is “collision resis-
tant” if and only if f is injective.

5.7 Proof.

⇒ We prove the contrapositive of the proposition. If f is not injective, that is there
are x1, x2 ∈ {0, 1}∗ such that x1 6= x2 and f(x1) = f(x2), then taking the con-
stant algorithm A(x) := (x1, x2) (which is a polynomial-time, even constant-
time, probabilistic, even deterministic, algorithm) we have A(1n)1 6= A(1n)2 ∧
f(A(1n)1) = f(A(1n)2), so

Pr[A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] = 1 /∈ N ,

thus f is not “collision resistant”.

80

⇐ If f is injective, then f has no collisions, so B(1n)1 6= B(1n)2 ∧ f(B(1n)1) =
f(B(1n)2) is false for all B, thus

∀B Pr[B(1n)1 6= B(1n)2 ∧ f(B(1n)1) = f(B(1n)2)] = 0 ∈ N ,
hence f is “collision resistant”.

5.8. A closer look at the proof above shows that the essence of why the notion of
“collision resistant” reduces to injectivity is that the algorithm A is only challenged
to produce a single collision (x1, x2), which it can by having the collision “hard-
wired” in it instead of spending computational effort finding the collision, and the
same would work if the algorithm were only challenged to produce finitely many
collisions. The “correction” of the definition of “collision resistance” that we pro-
posed avoid this problem by challenging the algorithm to produce infinitely many
collisions, or equivalent, arbitrarily long collisions (that is |x1| or |x2| arbitrarily
long, or equivalently, |x1x2| = |x1|+ |x2| arbitrarily long).

5.9 Definition. A binary-string function f is collision resistant if and only if:

1. f is polynomial-time computable;

2. we have

∀A Pr[|A(1n)| ≥ n ∧ A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] ∈ N ,
where A ranges over the polynomial-time probabilistic algorithms.

5.3 Example: two-to-one collision resistance im-

plies one-wayness

5.10. Let us see an example showing how delicate proofs in cryptography can be.
The example is a “proof” that seems to be correct but turns out to contain a subtle
mistake.

5.11 “Proposition”. If a binary-string function f is two-to-one and collision re-
sistant, then f is one-way (Canetti 2009, section 1.1 in lecture 7).

5.12 “Proof”. We prove essentially the transposition of the proposition. If f is not
one-way but it is polynomial-time computable, that is there is a polynomial-time
probabilistic algorithm A such that P (n) := Pr

[
f
(
A(f(Un), 1n)

)
= f(Un)

]
/∈ N ,

then the polynomial-time probabilistic algorithm B defined by B(x) :=
(
U|x|, A(f(U|x|), 1

|x|)
)

satisfies the following three properties.

|B(1n)|≥ n Follows from |B(1n)| ≥ |B(1n)1|, B(1n)1 = Un and |Un| = n.

(†)
︷ ︸︸ ︷

f(B(1n)1) = f(B(1n)2) ⇒
(∗)

︷ ︸︸ ︷

Pr[B(1n)1 6= B(1n)2] = 1/2 If (†), then B(1n)1 and
B(1n)2 are preimages of the same image y, there are exactly two such preimages
since f is two-to-one, one of the preimages is B(1n)2 and B(1n)1 has probabil-
ity 1/2 of being the other preimage because B(1n)1 is uniformly random, so
(∗).

81

Pr[f(B(1n)1) = f(B(1n)2)] = P (n) We have that f(B(1n)1) = f(B(1n)2) is f(Un) =

f
(
A(f(Un), 1n)

)
by definition of B, and the latter equality has probability P (n)

by definition of P .

So Pr[|B(1n)| ≥ n ∧ B(1n)1 6= B(1n)2 ∧ f(B(1n)1) = f(B(1n)2)] = P (n)/2 /∈ N
since P (n) /∈ N .

5.13. There is a mistake in the “proof” above, namely that the formula (∗) may be
false (even assuming that (†) is true).

For example, if any collision (x1, x2) of f is such that |x1| 6= |x2|, then (f(x), 1|x|)
uniquely determines x (because x is the only preimage of f(x) with length |x|), so
A(f(Un), 1n) = B(1n)2, may determine Un = B(1n)1 and output it, thus
(‡) A(f(Un), 1n) = B(1n)2 = Un = B(1n)1, hence Pr[B(1n)1 6= B(1n)2] = 0, there-
fore (∗) is false (while (†) is true).

The mistake in the “proof” of (†) ⇒ (∗) is in the part “B(1n)1 has proba-
bility 1/2 of being the other preimage because B(1n)1 is uniformly random”. This
quoted statement would be true if B(1n)1 and B(1n)2 were independent events, but
they may be dependent events, they may even the same event as in (‡).

So the “proof” above is an example of “proof” that seems correct (we are confi-
dent that the reader did not notice the mistake when the reader read the “proof” —
we also did not notice it when we first wrote the “proof”) but turns out to be in-
correct (having a subtle mistake that is easily overlooked). As such, the “proof”
exemplifies our thesis that it is easy to make mistakes but hard to find them in
proofs in cryptography.

5.14. A closer look at the mistake above shows that it depends crucially on the case
“any collision (x1, x2) of f is such that |x1| 6= |x2|”. So one way of correcting the
proposition would be to add as a hypothesis the negation of the quoted case, or even
better, its “strong negation” “any collision (x1, x2) of f is such that |x1| = |x2|”.
This motivates the following definition and corrected proposition.

5.15 Definition. We say that a binary-string function f is has equal-length col-
lisions if and only if any collision (x1, x2) of f is such that |x1| = |x2|, that is
∀x1, x2 ∈ {0, 1}∗ (f(x1) = f(x2) ⇒ |x1| = |x2|).

5.16 Proposition. For all binary-string functions f , if f is two-to-one, collision
resistant and has equal-length collisions, then f is one-way.

5.17 Proof. The “proof” 5.12 is a correct proof under the assumption that f has
equal-length collisions.

5.4 Example: ∀p ∃N ∀n > N |f(n)| < 1/p(n) versus

f ∈ N
5.18. Let us see an example showing how abbreviating a complex notion (such as
∀ε > 0 ∃N ∀n > N |xn − l| < ε) by a simple notation (such as lim xn = l) can
simplify considerably a proof in cryptography. The example is the abbreviation of

82

∀p ∃N ∀n > N |f(n)| < 1/p(n) by f ∈ N . It comes in line with Dan Grundy
and Eerke Boiten’s introduction of a “for all large enough n” quantifier n P (n)
abbreviating ∃N ∀n > N P (n) (where N does not occur freely in P (n)) (Boiten
and Grundy 2010, section 2).

Actually, there is more in the example than just an abbreviation: we use freely
and without mention obvious properties of N such as ∀f, g ∈ N f + g ∈ N and
∀g ∈ N ∀f ≤ g f ∈ N , and obvious examples of elements of N such as 2−n ∈ N
and 0 ∈ N . This mirrors what we do with probabilities: we use freely and without
mention obvious properties of Pr such that ∀A,B Pr[A ∨ B] = PrA + PrB −
Pr[A ∧ B] and ∀B ∀A ⊆ B PrA ≤ PrB, and obvious examples of Pr such as
Pr[Un = 0n] = 2−n and Pr ∅ = 0.

Moreover, the search for complex notions to be abbreviated has the potential to
lead to the discovery of new notions. For example if we did not already know the
notion of negligibility, then our example could have led us to discover that notion.

In conclusion, the abbreviation of complex notions by simple notations can have
the following three benefits:

1. to simplify the proof by replacing complex notions by simple abbreviations;

2. to further simply the proof by recasting verbose low-level arguments as more
elegant high-level arguments;

3. to potentially lead to the discovery of new notions.

5.19. To compare the use of ∀p ∃N ∀n > N |f(n)| < 1/p(n) versus the use of
f ∈ N , we present the following proposition and two proofs of it, the first one using
∀p ∃N ∀n > N |f(n)| < 1/p(n) and the second one using f ∈ N . We trust that
the reader will dislike the first proof because of its disadvantages such as alternating
quantifiers ∀∃∀ and trivial but tiresome calculations pertaining to p and N , and
will appreciate the second proof for abstracting away the said disadvantages behind
the notation f ∈ N . (Aside from providing us with an example to illustrate our
thesis that the well-chosen notation considerably improves proof presentation, the
proposition and its proofs are also of interest as a “warm-up” to the similar but
slightly more complicated proposition 6.13 and its proof.)

5.20 Proposition. Let O := {0n | n ∈ N}. For all binary-string functions f , if f is
one-way, then the binary-string function g defined by

g(x) :=

{

ǫ if x ∈ O
f(x) if x /∈ O

is one-way.

5.21 Proof. The binary-string function f being one-way means that f is polynomial-
time computable and

∀A, p ∃M ∀n > M Pr
[
f
(
A(f(Un), 1n)

)
= f(Un)

]
< 1/p(n), (5.2)

where A ranges over the polynomial-time probabilistic algorithms, p ranges over the
positive polynomials, and M and n range over N. The binary-string function g being

83

one-way means that g is polynomial-time computable (which is the case because f
is polynomial-time computable and O is polynomial-time decidable) and

∀B, q ∃N ∀n > N Pr
[
g
(
B(g(Un), 1n)

)
= g(Un)

︸ ︷︷ ︸

=:P

]
< 1/q(n), (5.3)

where B ranges over the polynomial-time probabilistic algorithms, q ranges over the
positive polynomials, and N and n range over N.

Let

Q := (Un ∈ O),

R :=
(
Un /∈ O ∧ B(g(Un), 1n) ∈ O

)
,

S :=
(
Un /∈ O ∧ B(g(Un), 1n) /∈ O

)
.

To prove (5.3), we take arbitrary B and q, and we prove the following three claims,
which later on we will see that imply (5.3).

∃N ′ ∀n > N ′ Pr[P ∧ Q] < 1/(3q(n)) We have PrQ = 2−n because |O∩{0, 1}n| = 1

and |{0, 1}n| = 2n, so Pr[P ∧ Q] ≤ 2−n. We have lim
(
1/(3q(n))

)
/2−n =

lim 2n/(3q(n)) = +∞ because an exponential eventually grows faster than a
polynomial, so there is an N ′ such that ∀n > N ′

(
1/(3q(n))

)
/2−n > 1, that is

∀n > N ′ 2−n < 1/(3q(n)), thus ∀n > N ′ Pr[P ∧ Q] ≤ 2−n < 1/(3q(n)).

∃N ′′ ∀n > N ′′ Pr[P ∧ R] < 1/(3q(n)) If P ∧ R, then g(Un) = f(Un) and

g
(
B(g(Un), 1n)

)
= ǫ by R, so f(Un) = ǫ by P , thus Pr[P ∧R] ≤ Pr[f(Un) = ǫ].

1. If ∄c ∈ {0, 1}∗ f(c) = ǫ, then ∀n Pr[f(Un) = ǫ] = 0 < 1/(3q(n)).

2. If ∃c ∈ {0, 1}∗ f(c) = ǫ, then taking A(x, x′) := c, which is a probabilistic
polynomial-time algorithm, and p := 3q, which is a positive polynomial
because q is a positive polynomial, in (5.2), we get an N ′′ such that
∀n > N ′′ Pr[f(Un) = ǫ] < 1/(3q(n)).

So ∀n > N ′′ Pr[f(Un) = ǫ] < 1/(3q(n)) in any case, thus ∀n > N ′′

Pr[P ∧ R] ≤ Pr[f(Un) = ǫ] < 1/(3q(n)).

∃N ′′′ ∀n > N ′′′ Pr[P ∧ S] < 1/(3q(n)) If P ∧ S, then g(Un) = f(Un) and

g
(
B(g(Un), 1n)

)
= f

(
B(f(Un), 1n)

)
by S, so f

(
B(f(Un), 1n

)
= f(Un) by

P , thus Pr[P ∧ S] ≤ Pr
[
f
(
B(f(Un), 1n)

)
= f(Un)

]
. Taking A := B, wh-

ich is a polynomial-time probabilistic algorithm because B is a polynomial-
time probabilistic algorithm, and p := 3q, which is a positive polynomial
because q is a positive polynomial, in (5.2), we get an N ′′′ such that ∀n > N ′′′

Pr
[
f
(
B(f(Un), 1n)

)
= f(Un)

]
< 1/(3q(n)), so ∀n > N ′′′ Pr[P ∧ S] ≤

Pr
[
f
(
B(f(Un), 1n)

)
= f(Un)

]
< 1/(3q(n)).

Finally, let us see that the three claims above imply (5.3): we have P ⇔
(P ∧ Q) ∨ (P ∧ R) ∨ (P ∧ S), so taking N := max{N ′, N ′′, N ′′′}, we get

∀n > N PrP ≤ Pr[P ∧ Q]
︸ ︷︷ ︸

<1/(3q(n))

+ Pr[P ∧ R]
︸ ︷︷ ︸

<1/(3q(n))

+ Pr[P ∧ S]
︸ ︷︷ ︸

<1/(3q(n))

< 1/q(n).

84

5.22 Proof. The binary-string function f being one-way means that f is polynomial-
time computable and

∀A Pr
[
f
(
A(f(Un), 1n)

)
= f(Un)

]
∈ N , (5.4)

where A ranges over the polynomial-time probabilistic algorithms. The binary-string
function g being one-way means that g is polynomial-time computable (which is the
case because f is polynomial-time computable and O is polynomial-time decidable)
and

∀B Pr
[
g
(
B(g(Un), 1n)

)
= g(Un)

︸ ︷︷ ︸

=:P

]
∈ N , (5.5)

where B ranges over the polynomial-time probabilistic algorithms.
Let

Q := (Un ∈ O),

R :=
(
Un /∈ O ∧ B(g(Un), 1n) ∈ O

)
,

S :=
(
Un /∈ O ∧ B(g(Un), 1n) /∈ O

)
.

To prove (5.5), we notice P ⇔ (P ∧ Q) ∨ (P ∧ R) ∨ (P ∧ S) and we prove
Pr[P ∧ Q],Pr[P ∧ R],Pr[P ∧ S] ∈ N .

Pr[P ∧ Q] ∈ N We have PrQ = 2−n ∈ N because |O∩{0, 1}n| = 1 and |{0, 1}n| =
2n, so Pr[P ∧ Q] ∈ N .

Pr[P ∧ R] ∈ N If P ∧ R, then g(Un) = f(Un) and g
(
B(g(Un), 1n)

)
= ǫ by R, so

f(Un) = ǫ by P , thus Pr[P ∧ R] ≤ Pr[f(Un) = ǫ].

1. If ∄c ∈ {0, 1}∗ f(c) = ǫ, then Pr[f(Un) = ǫ] = 0 ∈ N .

2. If ∃c ∈ {0, 1}∗ f(c) = ǫ, then taking A(x, y) := c, which is a probabilistic
polynomial-time algorithm, in (5.4), we get Pr[f(Un) = ǫ] ∈ N .

So Pr[f(Un) = ǫ] ∈ N in any case, thus Pr[P ∧ R] ∈ N .

Pr[P ∧ S] ∈ N If P ∧S, then g(Un) = f(Un) and g
(
B(g(Un), 1n)

)
= f

(
B(f(Un), 1n)

)

by S, so f
(
B(f(Un), 1n

)
= f(Un) by P , thus Pr[P ∧ S] ≤

Pr
[
f
(
B(f(Un), 1n)

)
= f(Un)

]
. Taking A := B, which is a polynomial-time

probabilistic algorithm because B is a polynomial-time probabilistic algorithm,
in (5.4), we get Pr

[
f
(
B(f(Un), 1n)

)
= f(Un)

]
∈ N , so Pr[P ∧ S] ∈ N .

5.5 Conclusion

5.23. In this chapter we presented three examples of proof presentation:

1. a bad definition;

2. an incorrect cryptographic proof;

3. an improvement of a proof.

85

86

Part IV

Transformations and proof
presentations

87

Chapter 6

Transforming one-way
length-nondecreasing binary-string
functions into (possibly different)
one-way binary-string functions

6.1 Introduction

6.1. In this chapter we solve the instance of our problem format (presented in
paragraph 1.28) specified by the following instances of its parameters:

P1 = length-nondecreasing binary-string function,

S1 = one-wayness,

P2 = binary-string function,

S2 = one-wayness,

T = post-composition with a fixed
collision-resistant binary-string function.

As a proof presentation, we make the security proof of T more understandable
(but less formal) by pulling to the foreground the proof idea and pushing to the
background the technical details.

As an extra, we give a counterexample to the statement “the composition of
two one-way binary-string functions is one-way” (assuming the existence of one-way
functions).

6.2. Let us informally explain our instances of the parameters.

Length-nondecreasing binary-string function A binary-string function is a function
that inputs and outputs binary strings. Being length nondecreasing means
that each output is not shorter than the corresponding input.

One-wayness It means that the function f is easy to compute but hard to invert, that
is x 7→ f(x) is easy to compute but f(x) 7→ x (or more precisely, f(x) 7→ x′

with f(x) = f(x′)) is hard to compute.

89

Transformation A collision-resistant function f is such that it is difficult to find
collisions of f , that is pairs (x, x′) of distinct inputs with the same output, or
in other words, such that x 6= x′ and f(x) = f(x′). Post-composition means
that f appears on the left side of the symbol ◦ in f ◦ g. The transformation
inputs a length-nondecreasing binary-string function g and and outputs the
binary-string function f ◦ g.

6.3. In this chapter:

1. almost all content is heavily based on joint work with Eerke Boiten (Gaspar
and Boiten 2014);

2. the counterexample is based on a statement by Pooya Farshim, which was
strengthened and proved by us.

6.2 Transformation

6.4. Now, to be sure, we explicitly state the transformation in question.

6.5 Definition. Let f be a fixed collision-resistant binary-string function. The
transformation of a length-nondecreasing binary-string function g into a (possibly
different) binary-string function f ◦g by post-composition with the collision-resistant
binary-string function f is g f ◦ g.

6.3 Security

6.6. Now we show that if a length-nondecreasing binary-string function g is one-way,
then the binary-string function f ◦ g obtained by post-composition with a collision-
resistant binary-string function f is one-way. Informally, this means that secure
(in some sense) length-nondecreasing binary-string functions are transformed into
secure (also in some sense) binary-string functions.

6.7 Theorem. Let f be a fixed collision-resistant binary-string function. For all
length-nondecreasing binary-string functions g, if g is one-way, then f ◦g is one-way.

6.8 Proof. The binary-string function f being collision resistant means that f is
polynomial-time computable and

∀A Pr[|A(1n)| ≥ n ∧ A(1n)1 6= A(1n)2 ∧ f(A(1n)1) = f(A(1n)2)] ∈ N , (6.1)

where A ranges over the polynomial-time probabilistic algorithms. The length-
nondecreasing binary-string function g being one-way means that g is polynomial-
time computable and

∀B Pr
[
g
(
B(g(Un), 1n)

)
= g(Un)

]
∈ N , (6.2)

90

where B ranges over the polynomial-time probabilistic algorithms. The binary-
string function f ◦g being one-way means that f ◦g is polynomial-time computable,
which is the case because f and g are polynomial-time computable, and

∀C Pr
[
f ◦ g

(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

︸ ︷︷ ︸

⇔:P

]
∈ N , (6.3)

where C ranges over the polynomial-time probabilistic algorithms.
Taking A(x) :=

(
g
(
C(f ◦ g(U|x|), x)

)
, g(U|x|)

)
, which is a polynomial-time prob-

abilistic algorithm because C and U· are polynomial-time probabilistic algorithm
and f , g, |·| and (·, ·) are polynomial-time computable, in (6.1), and B(x, y) :=
C(f(x), y), which is a polynomial-time probabilistic algorithm because C is a poly-
nomial-time probabilistic algorithm and f is polynomial-time computable, in (6.2),
we get

∀C Pr
[

(∗)
︷ ︸︸ ︷∣
∣g
(
C(f ◦ g(Un), 1n)

)∣
∣ + |g(Un)| ≥ n ∧

g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧ f ◦ g

(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N ,

∀C Pr
[
g
(
C(f ◦ g(Un), 1n)

)
= g(Un)

]
∈ N .

We have (∗) because g is length nondecreasing, so

∀C Pr
[

⇔:Q
︷ ︸︸ ︷

g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧ f ◦ g

(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N ,

∀C Pr
[
g
(
C(f ◦ g(Un), 1n)

)
= g(Un)

︸ ︷︷ ︸

⇔:R

]
∈ N .

Using Pr[Q ∨ R] ∈ N because Pr[Q ∨ R] ≤ PrQ+ PrR ∈ N since PrQ,PrR ∈ N ,
we get

∀C Pr
[(

=:x
︷ ︸︸ ︷

g
(
C(f ◦ g(Un), 1n)

)
6=

=:x′

︷ ︸︸ ︷

g(Un) ∧ f ◦
=x

︷ ︸︸ ︷

g
(
C(f ◦ g(Un), 1n)

)
= f ◦

=x′

︷ ︸︸ ︷

g(Un)
)
∨

g
(
C(f ◦ g(Un), 1n)

)

︸ ︷︷ ︸
=x

= g(Un)
︸ ︷︷ ︸

=x′

]
∈ N ,

where the underlined part means f(x′) and not f ◦ x′, and analogously elsewhere.
Using (x 6= x′ ∧ f(x) = f(x′)) ∨ x = x′ ⇔ f(x) = f(x′), we get (6.3).

6.4 Proof presentation: proof idea

6.9. We will improve the proof presentation of proof 6.8 (motivated by the reasons
given in section 1.5).

6.10 Proof. Let

P :⇔ f ◦
=:x

︷ ︸︸ ︷

g
(
C(f ◦ g(Un), 1n)

)
= f ◦

=:x′

︷ ︸︸ ︷

g(Un),

Q :⇔ x = x′ ∧ P,

R :⇔ x 6= x′ ∧ P.

91

To prove that f ◦ g is one-way we have essentially to prove PrP ∈ N (for all
polynomial-time probabilistic algorithms C). To do this, we notice P ⇔ Q ∨ R
and we prove PrQ,PrR ∈ N .

PrQ ∈ N If Q, then x = x′, so B(x, y) := C(f(x), y) is inverting g by P , which by
the one-wayness of g has negligible probability.

PrR ∈ N If R, then

1. the ordered pair (x, x′) is a collision of f by P ;

2. the collision (x, x′) is arbitrarily long because |x′| ≥ n since g is length
nondecreasing;

which by the collision resistance of f has negligible probability.

6.11. We see two advantages in proof 6.10 over proof 6.8:

1. it shows that the core of the argument is that

(a) P ⇔ Q ∨ R;

(b) PrQ ∈ N (because Q implies that B is inverting the one-way function g);

(c) PrR ∈ N (because R essentially implies that (x, x′) is a collision of the
collision-resistant function f);

2. it avoids the complicated formulas and manipulations from proof 6.8.

6.5 Extra: composition of one-way functions is

not necessarily one-way

6.12. During an investigation of “algebras” consisting of one-way functions and
other functions under the composition operation, we considered the following ques-
tion: when is the composition of a one-way function f or g with another function g
or f a one-way function f ◦ g?

1. Eerke Boiten and Dan Grundy gave the following sufficient condition for pre-
composition: if

(a) f is a one-way binary-string function;

(b) g is a polynomial-to-one length-preserving binary-string function;

then the binary-string function f ◦ g is one-way (Grundy and Boiten 2008,
paragraph “One-way functions and pre-composition”).

2. We gave the following sufficient condition for post-composition: if

(a) f is a collision-resistant binary-string function;

(b) g is a one-way length-nondecreasing binary-string function;

92

then the binary-string function f ◦ g is one-way (theorem 6.7).

3. But what about if both f and g are one-way?

We address this question in the following proposition by giving a negative answer (if
one-way functions exists), even in the case f = g, using a counterexample essentially
by Pooya Farshim (we simplified and adapted the counterexample) and we give a
detailed proof of it by us (we do not know if Pooya Farshim had a proof in mind or
relied on intuition). Informally, the counterexample consists in considering a one-
way function f , a “negligible” set N ⊆ {0, 1}∗, and constructing another one-way
functions g such that the image of g is contained in N and g restricted to N is a
constant function, so g ◦ g is a constant function and therefore is not one-way. The
construction uses the “double” function d that doubles the length of an input x by
prepending 0|x| to x. (The counterexample and its proof are similar but slightly
more complicated than proposition 5.20 its proof 5.22.)

6.13 Proposition. Let d be the binary-string function defined by d(x) := 0|x|x and
N := im(d). For all binary-string functions f , if f is one-way, then the binary-string
function g defined by

g(x) :=

{

ǫ if x ∈ N
d(f(x)) if x /∈ N

is one-way but the binary-string function g ◦ g is not one-way (Farshim 2015, based
on his counterexample).

6.14 Proof. It is easy to prove that g ◦ g is not one-way: we have ∀x ∈ {0, 1}∗
g(x) ∈ N and ∀x ∈ N g(x) = ǫ, so ∀x ∈ {0, 1}∗ g ◦ g(x) = ǫ, thus g ◦ g is invertible
with probability 1 by any polynomial-time probabilistic algorithm. So let us focus
on proving that g is one-way (assuming that f is one-way).

The binary-string function f being one-way means that f is polynomial-time
computable and

∀A Pr
[
f
(
A(f(Un), 1n)

)
= f(Un)

]
∈ N , (6.4)

where A ranges over the polynomial-time probabilistic algorithms. The binary-string
function g being one-way means that g is polynomial-time computable, which is the
case because d and f are polynomial-time computable and N is polynomial-time
decidable, and

∀B Pr
[
g
(
B(g(Un), 1n)

)
= g(Un)

︸ ︷︷ ︸

⇔:P

]
∈ N , (6.5)

where B ranges over the polynomial-time probabilistic algorithms.
Let

Q :⇔ Un ∈ N,
R :⇔ Un /∈ N ∧ B(g(Un), 1n) ∈ N,
S :⇔ Un /∈ N ∧ B(g(Un), 1n) /∈ N.

To prove (6.5), we notice P ⇔ (P ∧ Q) ∨ (P ∧ R) ∨ (P ∧ S) and we prove
Pr[P ∧ Q],Pr[P ∧ R],Pr[P ∧ S] ∈ N .

93

Pr[P ∧ Q] ∈ N

1. If n is odd, then PrQ = 0 ∈ N because all elements of N have even
length.

2. If n is even, then PrQ = 2−n/2 ∈ N because |N ∩ {0, 1}n| = 2n/2 and
|{0, 1}n| = 2n.

So PrQ ∈ N , thus Pr[P ∧ Q] ∈ N .

Pr[P ∧ R] ∈ N If P ∧ R, then g(Un) = d(f(Un)) and g
(
B(g(Un), 1n)

)
= ǫ by R,

so f(Un) = ǫ by P , thus Pr[P ∧ R] ≤ Pr[f(Un) = ǫ].

1. If ∄c ∈ {0, 1}∗ f(c) = ǫ, then Pr[f(Un) = ǫ] = 0 ∈ N .

2. If ∃c ∈ {0, 1}∗ f(c) = ǫ, then taking A(x, y) := c, which is a probabilistic
polynomial-time algorithm, in (6.4), we get Pr[f(Un) = ǫ] ∈ N .

So Pr[f(Un) = ǫ] ∈ N , thus Pr[P ∧ R] ∈ N .

Pr[P ∧ S] ∈ N If P ∧ S, then g(Un) = d(f(Un)) and g
(
B(g(Un), 1n)

)
=

d
(

f
(
B
(
d(f(Un)), 1n

)))

by S, so f
(
B
(
d(f(Un)), 1n

))
= f(Un) by P , thus

Pr[P ∧ S] ≤ Pr
[
f
(
B
(
d(f(Un)), 1n

))
= f(Un)

]
. Taking A(x, y) := B(d(x), y),

which is a polynomial-time probabilistic algorithm because B is a polynomial-
time probabilistic algorithm and d is polynomial-time computable, in (6.4),
we get Pr

[
f
(
B
(
d(f(Un)), 1n

))
= f(Un)

]
∈ N , so Pr[P ∧ S] ∈ N .

6.6 Conclusion

6.15. In this chapter:

1. we solved the instance of our problem specified by

P1 = length-nondecreasing binary-string function,

S1 = one-wayness,

P2 = binary-string function,

S2 = one-wayness,

T = post-composition with a fixed
collision-resistant binary-string function;

2. we gave a proof presentation by pulling to the foreground the proof idea and
pushing to the background the technical details;

3. we gave a counterexample to the statement “the composition of two one-way
binary-string functions is one-way”.

94

Chapter 7

Transforming
cryptographically-secure
pseudorandom generators into
indistinguishable-from-random
stream ciphers

7.1 Introduction

7.1. In this chapter we solve the instance of our problem format (presented in
paragraph 1.28) specified by the following instances of its parameters (Gaspar 2016,
section 1, taken almost verbatim):

P1 = pseudorandom generator,

S1 = cryptographic security,

P2 = stream cipher,

S2 = indistinguishability from random,

T = transformation of a pseudorandom generator
into its induced stream cipher.

As proof presentations, we

1. give a security proof of T using a schematic proof;

2. give another security proof of T using the wedding-cake notation;

3. “compress” nine analogous and verbose claims into a shorter presentation.

As extras, we prove that indistinguishability from random implies

1. cryptographic security;

2. indistinguishable encryptions;

95

3. semantic security;

4. bit-recovery resistance;

and we comment on

1. the reciprocal implications;

2. the role of length regularity of a stream cipher;

for the last three implications.

7.2. Let us informally explain our instances of the parameters.

Pseudorandom generator It is a deterministic algorithm that outputs a stream of
bits such as 001101100.

Cryptographic security It means that the stream output by the pseudorandom gen-
erator looks random such as 0011011001 in contrast to 0101010101.

Stream cipher It is a cipher that mixes a plaintext such as 0000011111 with the
stream output by a pseudorandom generator such as 0011011001 to create a
ciphertext such as 0011000110.

Indistinguishability from random It means that for all plaintexts such as 0000011111
chosen by an adversary, the corresponding ciphertexts computed by the stream
cipher look random such as 0011000110 in contrast to 0101010101.

Transformation It inputs a pseudorandom generator and outputs the stream cipher
that creates a ciphertext by mixing a plaintext with the stream output by the
pseudorandom generator.

7.3. In this chapter:

1. all theorems and proofs are ours;

2. the content of sections 7.2, 7.3 and 7.6 is based on an informal publication of
ours (Gaspar 2016).

7.2 Transformation

7.4. Let us recall that a stream cipher C = (K,P, C, K, E,D) is length regular if
and only if it encrypts plaintexts of equal length into ciphertexts of equal length
even under different keys, that is

∀k, k′ ∈ K ∀p, p′ ∈ P (|p| = |p′| ⇒ |E(k, p)| = |E(k′, p′)|).

We can think of length regularity as a modest security notion saying that the
lengths of the ciphertexts alone do not reveal a difference between the plaintexts (but
an analysis of the content of the plaintexts may reveal something). Or to rephrase
things negatively and giving an example, if a stream cipher were not length regular

96

and would encrypt p := 0 as c := E(k, p) = 0 and p′ := 1 as c′ := E(k, p′) = 00
(notice |p| = |p′| but |c| 6= |c′|), and we were given one of the ciphertexts c and
c′, then just looking at the length of the ciphertext we could deduce whether the
corresponding plaintext is p or p′.

Length regularity is a technical condition appearing often in definitions, theorems
and propositions below. Since it is not of much interest on its own (because it is
a modest security notion), we will treat it as a “second-class citizen” by mostly
remitting it to remarks after the definitions, theorems and propositions.

7.5. Let us introduce, by an example, a construction of a stream cipher induced by
a pseudorandom generator (a cipher which we could also call pseudo one-time pad
because it is another cipher called one-time pad but with a random key replaced by
a pseudorandom key).

For example if our plaintext is 0000011111 and our stream of the pseudorandom
generator is 0011011001, then we can encrypt and get the ciphertext 0011000110
schematically calculated by xoring as

plaintext 0 0 0 0 0 1 1 1 1 1
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

stream 0 0 1 1 0 1 1 0 0 1

= = = = = = = = = =
0 0 1 1 0 0 0 1 1 0 ciphertext

and from the ciphertext 0011000110 and the same stream 0011011001 we can decrypt
and recover our plaintext 0000011111 schematically by xoring again as

ciphertext 0 0 1 1 0 0 0 1 1 0
⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕ ⊕

stream 0 0 1 1 0 1 1 0 0 1

= = = = = = = = = =

0 0 0 0 0 1 1 1 1 1 plaintext

Let us observe that the stream acts as a key to encrypt and decrypt. Also let
us notice that the stream needs to be as long as the plaintext. So if the plaintext
is very long, then it may be too onerous to store the entire stream (this is a well-
known practical limitation of the one-time pad). Thus it is more practical to store
the seed used by the pseudorandom generator to produce the stream as the key and
to recreate the stream from the seed when necessary.

7.6. Informally, a stream cipher induced by a pseudorandom generator G is the
cipher that inputs a key k and a plaintext p, passes k as seed to G to get a stream
g := G(k, 1|p|) with the same length as p, encrypts p by xoring it g giving the
ciphertext c := g ⊕ p, and decrypts c by xoring again with g giving the plain-
text c⊕ g = p⊕ g ⊕ g = p.

Now we formally define the stream cipher induced by a pseudorandom generator.

7.7 Definition. The stream cipher CG = (K,P, C, K, EG, DG) induced by the pseu-
dorandom generator G (Katz and Lindell 2015, construction 3.17) is the stream
cipher defined by

97

1. ∀x ∈ {0, 1}∗ K(x) := U|x|;

2. ∀k ∈ K ∀p ∈ P EG(k, p) := G(k, 1|p|)⊕ p;

3. DG := EG.

7.8 Remark. The stream cipher CG induced by the pseudorandom generator G is
length regular.

7.9. Now, to be sure, we explicitly state the transformation in question.

7.10 Definition. The transformation of a pseudorandom generator G into its in-
duced stream cipher CG is G CG.

7.3 Security

7.11. Now we show that if the pseudorandom generator G is cryptographically
secure, then its induced stream cipher CG is indistinguishable from random. Infor-
mally, this means that secure (in some sense) pseudorandom generators are trans-
formed into secure (also in some sense) stream ciphers.

7.12 Theorem. For all pseudorandom generators G, if G is cryptographically se-
cure, then CG is indistinguishable from random.

7.13 Proof. The pseudorandom generator G being cryptographically secure means
that

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N ,

(7.1)

where A and A′ range over the polynomial-time probabilistic algorithms. The stream
cipher CG being indistinguishable from random means that

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|EG(K(1n),B(1n)1)|, 1
n, B(1n)2) ∈ N ,

(7.2)

where B and B′ range over the polynomial-time probabilistic algorithms.
Taking A(x) := (B(x)1, B(x)) and A′(x, y, z) := B′(x ⊕ z1, y, z2), which are

polynomial-time probabilistic algorithms because B and B′ are polynomial-time
probabilistic algorithms and ·1, ·2, (·, ·) and ⊕ are polynomial-time computable, in
(7.1), we get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|)⊕ B(1n)1, 1

n, B(1n)2)−
PrB′(U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, 1

n, B(1n)2) ∈ N .

Substituting G(Un, 1
|B(1n)1|) ⊕ B(1n)1 by EG(Un, B(1n)1), by definition of EG, we

get
∀B,B′ PrB′

(
EG(Un, B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

98

Substituting Un by K(1n), by definition of K, we get

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(K(1n),1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting U|G(K(1n),1|B(1n)1|)| ⊕ B(1n)1, which is a uniform random variable in

{0, 1}|G(K(1n),1|B(1n)1|)| because U|G(K(1n),1|B(1n)1|)| and B(1n)1 are independent since
the former only uses the length of the latter, by U ′

|G(K(1n),1|B(1n)1|)|
, we get

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|G(K(1n),1|B(1n)1|)|, 1
n, B(1n)2) ∈ N .

Substituting |G(K(1n), 1|B(1n)1|)| by |EG(K(1n), B(1n)1)|, by definition of G and EG,
we get (7.2).

7.14. It is worth remarking that the part “Substituting U|G(K(1n),1|B(1n)1|)|⊕B(1n)1,

which is a uniform random variable in {0, 1}|G(K(1n),1|B(1n)1|)| because U|G(K(1n),1|B(1n)1|)|

and B(1n)1 are independent [. . .], by U ′
|G(K(1n),1|B(1n)1|)|

” of proof 7.13 uses a recur-

rent fact in cryptography: a uniform random variable Un in {0, 1}n xored with an
independent random variable Xn in {0, 1}n gives a uniform random variable U ′n in
{0, 1}n, or less precisely but more succinctly, Un ⊥ Xn ⇒ Un ⊕Xn = U ′n.

7.4 Proof presentation: schematic proof

7.15. We are going to improve the proof presentation of proof 7.13 (motivated by
the reasons given in section 1.5).

7.16 Proof.

G is cryptographically secure
~
w
w
�

Definition

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)− PrA′(U|G(Un,1|A(1n)1|)|, 1

n, A(1n)2) ∈ N
w
w
w
�

A(x) := (B(x)1, B(x))

A′(x, y, z) := B′(x⊕ z1, y, z2)

∀B,B′ PrB′(G(Un, 1
|B(1n)1|)⊕ B(1n)1, 1

n, B(1n)2)−
PrB′(U|G(Un,1|B(1n)1|)| ⊕B(1n)1, 1

n, B(1n)2) ∈ N
~
w
w
�

G(Un, 1
|B(1n)1|)⊕B(1n)1 =

EG(Un, B(1n)1)

∀B,B′ PrB′
(
EG(Un, B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(Un,1|B(1n)1|)| ⊕B(1n)1, 1
n, B(1n)2) ∈ N

~
w
w
�

Un = K(1n)

99

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(K(1n),1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N

~
w
w
�

U|G(K(1n),1|B(1n)1|)| ⊕B(1n)1 =

U ′
|G(K(1n),1|B(1n)1|)|

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|G(K(1n),1|B(1n)1|)|, 1
n, B(1n)2) ∈ N

~
w
w
�

|G(K(1n), 1|B(1n)1|)| =
|EG(K(1n), B(1n)1)|

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|EG(K(1n),B(1n)1)|, 1
n, B(1n)2) ∈ N

~
w
w
�

Definition

CG is indistinguishable from random

7.17. In proof 7.16 we indicated the second step as being an implication instead of
an equivalence. This is because that step consists in instantiations for which it is
not obvious how to revert them. But in fact they can be reverted and this is done
below in proof 7.26.

7.18. We see two advantages in proof 7.16 over proof 7.13:

1. it shows clearly the linear structure of the proof, in which a formula expressing
the premise “G is cryptographically secure” is “massaged” step by step until
we obtain a formula expressing the conclusion “CG is indistinguishable from
random”;

2. it is more appealing because it is presented (partially) as a diagram instead of
(fully) as text.

7.19. We argued that the schematic proof 7.16 is better than the conventional
proof 7.13 but we will keep using the conventional proof because it includes full jus-
tifications, which are missing in the schematic proof due to the graphical restrictions
of its schematic nature.

7.5 Proof presentation: wedding-cake notation

7.20. We are going to improve the proof presentation of proof 7.13 (motivated by
the reasons given in section 1.5).

7.21 Proof. Let us start with the following formula expressing that the pseudoran-
dom generator G is cryptographically secure:

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)− PrA′(U|G(Un,1|A(1n)1|)|, 1

n, A(1n)2) ∈ N .

100

We are going to substitute in it some subformulas by other subformulas using the
following equalities labelled from α to ε:

α : A(x) := (B(x)1, B(x)), A′(x, y, z) := B′(x⊕ z1, y, z2),
β : G(Un, 1

|B(1n)1|)⊕ B(1n)1 = EG(Un, B(1n)1),

γ : Un = K(1n),

δ : U|G(K(1n),1|B(1n)1|)| ⊕ B(1n)1 = U ′|G(K(1n),1|B(1n)1|)|,

ε : |G(K(1n), 1|B(1n)1|)| = |EG(K(1n), B(1n)1)|.

We do the substitutions schematically using the notation

SF

ζSF ′

to indicate that subformula SF was replaced by subformula SF ′ using equality ζ :

∀...A,A′

αB,B′
..............

Pr...... A
′(G(Un, 1

|A(1n)1|), 1n, A(1n)2)

αB′(
........

G(Un, 1
|B(1n)1|)⊕B(1n)1

βEG(
..........

Un

γK(1n)
................

, B(1n)1).......................

, 1n, B(1n)2)................................

− Pr...............A
′(U|G(Un,1|A(1n)1|)|, 1

n, A(1n)2)

αB′(
........

U|G(Un

γ K(1n)

,1|B(1n)1|)| ⊕B(1n)1

δU ′
|G(K(1n),1|B(1n)1|)|

ε |EG(K(1n),B(1n)1)|..

, 1n, B(1n)2)................................

∈ N.............

After all substitutions, we get the underdotted formula above spelling

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|EG(K(1n),B(1n)1)|, 1
n, B(1n)2) ∈ N ,

which expresses that the stream cipher CG is indistinguishable from random.

7.22. We see two advantages in proof 7.21 over proof 7.13 and even over proof 7.16:

1. it avoids “dragging along” a long formula that is essentially repeated from
instance to instance with only minor changes, resulting in a shortening from
approximately one page to approximately half a page (consisting of the equal-
ities labelled from α to ε plus the wedding-cake diagram);

2. it is more appealing because it is presented (partially) as a diagram instead of
(fully) as text.

7.23. What was said in paragraph 7.19 still applies here.

101

7.6 Extra: reciprocal implication

7.24. In theorem 7.12 we saw that if a pseudorandom generator G is cryptographi-
cally secure, then the stream cipher CG is indistinguishable from random. Now let
us see the reciprocal implication.

7.25 Theorem. For all pseudorandom generators G, if CG is indistinguishable from
random, then G is cryptographically secure.

7.26 Proof. The stream cipher CG being indistinguishable from random means that

∀A,A′ PrA′
(
EG(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|EG(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N ,

(7.3)

where A and A′ range over the polynomial-time probabilistic algorithms. The pseu-
dorandom generator G being cryptographically secure means that

∀B,B′ PrB′(G(Un, 1
|B(1n)1|), 1n, B(1n)2)−

PrB′(U|G(Un,1|B(1n)1|)|, 1
n, B(1n)2) ∈ N ,

(7.4)

where B and B′ range over the polynomial-time probabilistic algorithms.
Taking A(x) := (0|B(x)1|, B(x)2) and A′ := B′, which are polynomial-time prob-

abilistic algorithms because B and B′ are polynomial-time deterministic algorithm
and ·1, ·2, (·, ·), |·| and 0· are polynomial-time computable, in (7.3), we get

∀B,B′ PrB′
(
EG(K(1n), 0|B(1n)1|), 1n, B(1n)2

)

PrB′(U|EG(K(1n),0|B(1n)1|)|, 1
n, B(1n)2) ∈ N .

Substituting EG(K(1n), 0|B(1n)1|) by G(K(1n), 1|B(1n)1|) ⊕ 0|B(1n)1|, by definition of
EG, we get

∀B,B′ PrB′
(
G(K(1n), 1|B(1n)1|)⊕ 0|B(1n)1|, 1n, B(1n)2

)
−

PrB′(U|G(K(1n),1|B(1n)1|)⊕0|B(1n)1||, 1
n, B(1n)2) ∈ N .

Substituting K(1n) by Un, by definition of K, we get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|)⊕ 0|B(1n)1|, 1n, B(1n)2)−

PrB′(U|G(Un,1|B(1n)1|)⊕0|B(1n)1||, 1
n, B(1n)2) ∈ N .

Substituting G(Un, 1
|B(1n)1|)⊕ 0|B(1n)1| by G(Un, 1

|B(1n)1|), by definition of ⊕, we get
(7.4).

Alternatively, taking A(x) := (B(x)1, B(x)) and A′(x, y, z) := B(x ⊕ z1, y, z2),
which are polynomial-time probabilistic algorithms because A and B are polynomial-
time probabilistic algorithms and ·1, ·2, (·, ·) and ⊕ are polynomial-time computable,
in (7.3), we get

∀B,B′ PrB′
(
EG(K(1n), B(1n)1)⊕B(1n)1, 1

n, B(1n)2
)
−

PrB′(U|EG(K(1n),B(1n)1)| ⊕B(1n)1, 1
n, B(1n)2) ∈ N .

102

Substituting K(1n) by Un, by definition of K, we get

∀B,B′ PrB′
(
EG(Un, B(1n)1)⊕ B(1n)1, 1

n, B(1n)2
)
−

PrB′(U|EG(Un,B(1n)1)B(1n)1| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting EG(Un, B(1n)1) by G(Un, 1
|B(1n)1|) ⊕ B(1n)1, by definition of EG, we

get
∀B,B′ PrB′(G(Un, 1

|B(1n)1|)⊕ B(1n)1 ⊕ B(1n)1, 1
n, B(1n)2)−

PrB′(U|G(Un,1|B(1n)1|)⊕B(1n)1| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting G(Un, 1
|B(1n)1|) ⊕ B(1n)1 ⊕ B(1n)1 by G(Un, 1

|B(1n)1|), by definition of
⊕, we get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|), 1n, B(1n)2)−

PrB′(U|G(Un,1|B(1n)1|)⊕B(1n)1| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting |G(Un, 1
|B(1n)1|) ⊕ B(1n)1| by |G(Un, 1

|B(1n)1|)|, by definition of ⊕, we
get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|), 1n, B(1n)2)−

PrB′(U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, which is a uniform random variable in

{0, 1}|G(Un,1|B(1n)1|)| because U|G(Un,1|B(1n)1|)| and B(1n)1 are independent since the
former only uses the length of the latter, by U ′

|G(Un,1|B(1n)1|)|
, we get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|), 1n, B(1n)2)−PrB′(U ′|G(Un,1|B(1n)1|)|, 1

n, B(1n)2) ∈ N .
Substituting U ′

|G(K(1n),1|B(1n)1|)|
by U|G(K(1n),1|B(1n)1|)|, because they both denote uni-

form random variables in {0, 1}|G(K(1n),1|B(1n)1|)| and there is no occurrence of the
latter variable, we get (7.4).

7.7 Extra: indistinguishable encryptions

7.27. Let us prove that indistinguishability from random implies indistinguishable
encryptions.

7.28 Proposition. For all length-regular stream ciphers C, if C is indistinguishable
from random, then C has indistinguishable encryptions.

7.29 Proof. Say C = (K,P, C, K, E,D). The stream cipher C being indistinguish-
able from random means that

∀A,A′ PrA′
(
E(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N ,

(7.5)

where A and A′ range over the polynomial-time probabilistic algorithms. The stream
cipher C having indistinguishable encryptions means that

∀B,B′
α1:⇔

︷ ︸︸ ︷

PrB′
(
E(K(1n), B(1n)1), B(1n)1, B(1n)2, 1

n, B(1n)3
)
−

PrB′
(
E(K(1n), B(1n)2), B(1n)1, B(1n)2, 1

n, B(1n)3
)

︸ ︷︷ ︸
⇔:α2

∈ N , (7.6)

103

where B and B′ range over the polynomial-time probabilistic algorithms such that
(∗) ∀x ∈ {0, 1}∗ |B(x)1| = |B(x)2|.

First taking (†) A(x) := (B(x)1, B(x)) and (†′) A′(x, y, z) := B′(x, z1, z2, y, z3) in
(7.5), and second taking (‡) A(x) := (B(x)2, B(x)) and (‡′) A′(x, y, z) :=
B′(x, z1, z2, y, z3) in (7.5), which are polynomial-time probabilistic algorithms be-
cause B and B′ are polynomial-time probabilistic algorithms and ·1, ·2, ·3 and (·, ·)
are polynomial-time computable, we get, respectively,

∀B,B′
α1⇔

︷ ︸︸ ︷

PrB′
(
E(K(1n), B(1n)1), B(1n)1, B(1n)2, 1

n, B(1n)3
)
−

PrB′(U|E(K(1n),B(1n)1)|, B(1n)1, B(1n)2, 1
n, B(1n)3)

︸ ︷︷ ︸

⇔:β1

∈ N , (7.7)

∀B,B′
α2⇔

︷ ︸︸ ︷

PrB′
(
E(K(1n), B(1n)2), B(1n)1, B(1n)2, 1

n, B(1n)3
)
−

PrB′(U|E(K(1n),B(1n)2)|, B(1n)1, B(1n)2, 1
n, B(1n)3)

︸ ︷︷ ︸

⇔:β2

∈ N (7.8)

(notice that we made two different sets (†)–(†′) and (‡)–(‡′) of substitutions in (7.5),
getting the two different formulas (7.7) and (7.8)). We have |E(K(1n), B(1n)1)| =
|E(K(1n), B(1n)2)| by (∗) and the length regularity of C, so β1 = β2 =: β, thus

∀B,B′ |α1 − α2| ≤ |α1 − β|
︸ ︷︷ ︸

∈N

+ |α2 − β|
︸ ︷︷ ︸

∈N

∈ N ,

hence we get (7.6).

7.30 Remark. The reciprocal implication of proposition 7.28 is false (assuming
the existence of a length-regular stream cipher with indistinguishable encryptions):
if C = (K,P, C, K, E,D) is a length-regular stream cipher with indistinguishable
encryptions and C ′ = (K,P, C, K, E ′, D′) is the stream cipher defined by E ′(k, p) :=
E(k, p)1 and D′(k, c) := D(k, c

��
), then C ′ is a length-regular stream cipher with

indistinguishable encryptions but C ′ is not indistinguishable from random because
the last bit x

��
of an x ∈ {0, 1}∗\{ǫ} being 0 or 1 gives a clue about whether, respec-

tively, x is not or is a ciphertext (the algorithms A(x) := (0, ǫ) and A′(x, y, z) := x
��

are such that
=1

︷ ︸︸ ︷

PrA′
(
E ′(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E′(K(1n),A(1n)1)|, 1
n, A(1n)2)

︸ ︷︷ ︸

=1/2

= 1/2 /∈ N).

7.31 Remark. Proposition 7.28 is false without the assumption that the stream
cipher is length regular (assuming the existence of an indistinguishable-from-random
length-regular stream cipher: if C = (K,P, C, K, E,D) is an indistinguishable-from-
random length-regular stream cipher, then the non-length-regular stream cipher
C ′′ = (K,P, C, K, E ′′, D′′) defined by E ′′(k, p) := E(k, p[11 ← 1]) and D′′(k, c) :=
D(k, c)[1 ← 11] (recall that p[11 ← 1] means to replace all 1s in p by 11s, the
intended meaning of D(k, c)[1← 11] is to undo in D(k, c) the said replacements, and

104

so we have ∀k ∈ K ∀p ∈ P D′′(k, E ′′(k, p)) = p) is indistinguishable from random but
does not have indistinguishable encryptions because E ′′(k, 0) = E(k, 0[11 ← 1]) =
E(k, 0) has length 1 but E ′′(k, 1) = E(k, 1[1 ← 11]) = E(k, 11) has length 2 and
so they so can be distinguished (the algorithms A(x) := (0, 1, ǫ) and A′(x, y, z) :=
max(0, |x| − 1)2 are such that

=0
︷ ︸︸ ︷

PrA′
(
E ′′(K(1n), A(1n)1), A(1n)1, A(1n)2, 1

n, A(1n)3
)
−

PrA′
(
E ′′(K(1n), A(1n)2), A(1n)1, A(1n)2, 1

n, A(1n)3
)

︸ ︷︷ ︸
=1

= −1 /∈ N).

7.8 Extra: semantic security

7.32. Let us prove that indistinguishability from random implies semantic security.

7.33 Proposition. For all length-regular stream ciphers C, if C is indistinguishable
from random, then C is semantically secure.

7.34 Proof. Say C = (K,P, C, K, E,D). The stream cipher C being indistinguish-
able from random means that

∀A,A′ PrA′
(
E(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N ,

(7.9)

where A and A′ range over the polynomial-time probabilistic algorithms. The stream
cipher C being semantically secure means that

∀B′ ∃C ′ ∀B, f, g
Pr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr
[
C ′

(
1|B(1n)1|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N ,

(7.10)

where B, B′ and C ′ range over the polynomial-time probabilistic algorithms and f
and g range over the polynomial-time computable functions.

Taking A(x) := (B(x)1, B(x)) andA′(x, y, z) := Tr[B′(x, f(z, y), y, z2) = g(z, y)],
which are polynomial-time probabilistic algorithms because B andB′ are polynomial-
time probabilistic algorithms and ·1, ·2, (·, ·), f , g and Tr[· = ·] are polynomial-time
computable, in (7.9), we get

∀B′, B, f, g
Pr Tr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr Tr
[
B′

(
U|E(K(1n),B(1n)1)|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N .

Substituting Pr TrP by PrP , where P is any predicate, we get

∀B′, B, f, g
Pr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr
[
B′

(
U|E(K(1n),B(1n)1)|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N .

105

Substituting (∗) |E(K(1n), B(1n)1)| by (†) |E(0, 1|B(1n)1|)|, by the regularity of C,
because the C ′ that we want to construct satisfying (7.10) does not have access to
(∗) but can compute the equal (†) from the input 1|B(1n)1|, we get

∀B′, B, f, g
Pr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr
[
B′

(
U|E(0,1|B(1n)1|)|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N .

Taking C ′(w, x, y, z) := B′(U|E(0,w)|, x, y, z), we get (7.10).

7.35 Remark. The reciprocal implication of proposition 7.33 is false (assuming the
existence of a semantically-secure length-regular stream cipher): if C is a seman-
tically-secure length-regular stream cipher and C ′ is the stream cipher defined in
remark 7.30, then C ′ is a semantically-secure length-regular stream cipher but C ′ is
not indistinguishable from random as proved in remark 7.30.

7.36 Remark. Proposition 7.33 is false without the assumption that the stream ci-
pher is length regular (assuming the existence of an indistinguishable-from-random
length-regular stream cipher): if C is an indistinguishable-from-random length-
regular stream cipher, then the non-length-regular stream cipher C ′′ defined in re-
mark 7.31 is indistinguishable from random but it is not semantically secure because
|E ′′(k, 0)| = 1 but |E ′′(k, 1)| = 2 and so, letting p ∈ {0, 1}, from |E ′′(k, p)| we can
compute p but from 1|p| = 1 we cannot compute p (the algorithms A(x) := (U1, ǫ)
and A′(w, x, y, z) := max(0, |w|−1)2 and the functions f(x, y) := ǫ and g(x, y) := x1
are such that

∀B
=1

︷ ︸︸ ︷

Pr
[
A′
(
E ′′(K(1n), A(1n)1), f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
−

Pr
[
B
(
1|A

′(1n)1|, f(A(1n), 1n), 1n, A(1n)2
)

= g(A(1n), 1n)
]

︸ ︷︷ ︸

=1/2

= 1/2 /∈ N).

7.9 Extra: bit-recovery resistance

7.37. Let us prove that indistinguishability from random implies bit-recovery resis-
tance.

7.38 Proposition. For all length-regular stream ciphers C, if C is indistinguishable
from random, then C is bit-recovery resistant.

7.39 Proof. Say C = (K,P, C, K, E,D). The stream cipher C being indistinguish-
able from random means that

∀A,A′ PrA′
(
E(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N ,

(7.11)

where A and A′ range over the polynomial-time probabilistic algorithms. The stream
cipher C being bit-recovery resistant means that

∀B,B′, i Pr
[
B′

(
E(K(1n), U|B(1n)1|), 1

n, B(1n)2
)

= U i
|B(1n)1|

]
− 1/2 ∈ N , (7.12)

106

where B and B′ range over the polynomial-time probabilistic algorithms such that
∀x ∈ {0, 1}∗ |B(x)1| ≥ 1 and i ranges over N.

Taking A(x) :=
(
U|B(x)1|, (B(x)2, U

i
|B(x)1|

)
)

andA′(x, y, z) := Tr[B′(x, y, z1) = z2],
which are polynomial-time probabilistic algorithms because B andB′ are polynomial-
time probabilistic algorithms and ·1, ·2, ·3, (·, ·), |·|, U·, ·i and Tr[· = ·] are polynomial-
time computable, in (7.11), we get

∀B,B′, i Pr Tr
[
B′

(
E(K(1n), U|B(1n)1|), 1

n, B(1n)2
)

= U i
|B(1n)1|

]
−

Pr Tr
[
B′(U|E(K(1n),U|B(1n)1|

)|, 1
n, B(1n)2) = U i

|B(1n)1|

]
∈ N .

Substituting Pr TrP by PrP , where P is any predicate, we get

∀B,B′, i Pr
[
B′

(
E(K(1n), U|B(1n)1|), 1

n, B(1n)2
)

= U i
|B(1n)1|

]
−

Pr
[
B′(U|E(K(1n),U|B(1n)1|

)|, 1
n, B(1n)2) = U i

|B(1n)1|

]
∈ N .

We have |E(K(1n), U|B(1n)1|)| = |E(K(1n), 1|B(1n)1|)| by the length regularity of C,
so

∀B,B′, i Pr
[
B′

(
E(K(1n), U|B(1n)1|), 1

n, B(1n)2
)

= U i
|B(1n)1|

]
−

Pr
[
B′(U|E(K(1n),1|B(1n)1|)|, 1

n, B(1n)2) = U i
|B(1n)1|

]

︸ ︷︷ ︸
⇔:α

∈ N .

We have α = 1/2 because B′(U|E(K(1n),1|B(1n)1|)|, 1
n, B(1n)2) and U i

|B(1n)1|
are inde-

pendent and U i
|B(1n)1|

is a uniform random variable in {0, 1} since |B(1n)1| ≥ 1, so

we get (7.12).

7.40. It is worth remarking that the part “We have α = 1/2 because
B′(U|E(K(1n),1|B(1n)1|)|, 1

n, B(1n)2) and U i
|B(1n)1|

are independent and U i
|B(1n)1|

is a uni-

form random variable in {0, 1}” of proof 7.39 uses a fact equivalent to the fact
(∗) Un ⊥ Xn ⇒ Un ⊕ Xn = U ′n mentioned in paragraph 7.14: if the uniform
random variable Un in {0, 1}n and a random variable Xn in {0, 1}n are independent,
then Pr[Xn = Un] = 1/2n, or less precisely but more succinctly, (†) Xn ⊥ Un ⇒
Pr[Xn = Un] = 1/2n (proof sketch:

(⇒) if Xn ⊥ Un, then Xn = Un ⇔ Un ⊕ Xn = 0n ⇔ U ′n = 0n by (∗), so
Pr[Xn = Un] = Pr[U ′n = 0n] = 1/2n;

(⇐) if Un ⊥ Xn, then for any constant cn ∈ {0, 1}n, we have Un ⊕ Xn = cn ⇔
Xn ⊕ cn = Un, where X ′n := Xn ⊕ cn ⊥ Un, so Pr[Un ⊕ Xn = cn] =
Pr[X ′n = Un] = 1/2n by (†) with X ′n instead of Xn, thus Un ⊕ Xn is uni-
form).

7.41 Remark. The reciprocal implication of proposition 7.38 is false (assuming
the existence of a bit-recovery-resistant length-regular stream cipher): if C is a bit-
recovery-resistant length-regular stream cipher and C ′ is the stream cipher defined
in remark 7.30, then C ′ is a bit-recovery-resistant length-regular stream cipher but
C ′ is not indistinguishable from random as proved in remark 7.30.

107

7.42 Remark. Proposition 7.38 is false without the assumption that the stream ci-
pher is length regular (assuming the existence of an indistinguishable-from-random
length-regular stream cipher): if C is an indistinguishable-from-random length-
regular stream cipher, then the non-length-regular stream cipher C ′′ defined in
remark 7.31 is indistinguishable from random but it is not bit-recovery resistant
because we can recover p ∈ {0, 1} from |E ′′(k, p)| as proved in remark 7.36 (the
algorithms A(x) := (0, ǫ) and A′(x, y, z) := max(0, |x| − 1)2 are such that

Pr
[
A′
(
E ′′(K(1n), U|A(1n)1|), 1

n, A(1n)2
)

= U i
|A(1n)1|

]

︸ ︷︷ ︸
=1

−1/2 = 1/2 /∈ N).

7.10 Proof presentation: “compression” of anal-

ogous statements

7.43. We will improve the presentation of the claims of propositions 7.28, 7.33 and
7.38, remarks 7.30, 7.35 and 7.41, and also remarks 7.31, 7.36 and 7.42 (motivated
by the reasons given in section 1.5). Although we are not working with a proof but
with claims, we still call it proof presentation since the difference is of no importance.

7.44. Let us give, in the following table, names (on the left) to the sets of stream
ciphers satisfying certain properties (on the right).

LR Length Regularity
IFR Indistinguishability From Random

IE Indistinguishable Encryptions
SS Semantic Security

BRR Bit-Recovery Resistance

Given a stream cipher C = (K,P, C, K, E,D), let us recall, in the following
table, the stream ciphers C ′ = (K,P, C, K, E ′, D′) and C ′′ = (K,P, C, K, E ′′, D′′)
from remarks 7.30 and 7.31.

C ′ E ′(k, p) := E(k, p)1 D′(k, c) := D(k, c
��

)
C ′′ E ′′(k, p) := E(k, p[11← 1]) D′′(k, c) := D(k, c)[1← 11]

Then the mentioned propositions and remarks can be neatly “compressed” into
the following table.

Proposition 7.28 C ∈ LR ∩ IFR ⇒ C ∈ LR ∩ IE
Remark 7.30 C ∈ LR ∩ IE ⇒ C ′ ∈ (LR ∩ IE) \ IFR
Remark 7.31 C ∈ LR ∩ IFR ⇒ C ′′ ∈ IFR \ (LR ∪ IE)

Proposition 7.33 C ∈ LR ∩ IFR ⇒ C ∈ LR ∩ SS
Remark 7.35 C ∈ LR ∩ SS ⇒ C ′ ∈ (LR ∩ SS) \ IFR
Remark 7.36 C ∈ LR ∩ IFR ⇒ C ′′ ∈ IFR \ (LR ∪ SS)

Proposition 7.38 C ∈ LR ∩ IFR ⇒ C ∈ LR ∩ BRR
Remark 7.41 C ∈ LR ∩ BRR ⇒ C ′ ∈ (LR ∩ BRR) \ IFR
Remark 7.42 C ∈ LR ∩ IFR ⇒ C ′′ ∈ IFR \ (LR ∪ BRR)

108

Let X range over {IE, SS,BRR}. Then the previous table can be further “com-
pressed” into the following table by taking advantage of the analogous structures of
the propositions and remarks.

Propositions 7.28, 7.33, 7.38 C ∈ LR ∩ IFR ⇒ C ∈ LR ∩X
Remarks 7.30, 7.35, 7.41 C ∈ LR ∩X ⇒ C ′ ∈ (LR ∩X) \ IFR
Remarks 7.31, 7.36, 7.42 C ∈ LR ∩ IFR ⇒ C ′′ ∈ IFR \ (LR ∪X)

7.45. We see two advantages in the last table over the original claim texts of the
propositions and the remarks:

1. the table compresses all claim texts in only three lines;

2. the table makes it clear that the propositions and remarks are analogous to
each other by showing that they are instantiations (by instantiating X) of a
master structure (the table with the variable X).

7.11 Conclusion

7.46. In this chapter:

1. we solved the instance of our problem specified by

P1 = pseudorandom generator,

S1 = cryptographic security,

P2 = stream cipher,

S2 = indistinguishability from random,

T = transformation of a pseudorandom generator
into its induced stream cipher;

2. we gave three proof presentations

(a) using a schematic proof;

(b) using the wedding-cake notation;

(c) by “compressing” together the claims of analogous propositions and re-
marks;

3. we proved that indistinguishability from random implies

(a) cryptographic security;

(b) indistinguishable encryptions;

(c) semantic security;

(d) bit-recovery resistance.

109

110

Chapter 8

Transforming one-way
binary-string functions into NP \ P
formal languages

8.1 Introduction

8.1. In this chapter we solve the instance of our problem format (presented in
paragraph 1.28) specified by the following instances of its parameters:

P1 = binary-string function,

S1 = one-wayness,

P2 = formal language,

S2 = (NP \ P)-ness,

T = transformation of a binary-string function
into its induced bitwise formal language.

As a proof presentation, we “carve out” from the security proof of T a “mini-
theory” of minimisation operators and use it to reprove the security of T in a neater
way.

8.2. Considering a formal language as a cryptographic primitive P2 and (NP \ P)-
ness as a cryptographic security notion S2 is to some extent artificial: they are more
related to computation theory and complexity theory than to cryptography but
they do play an essential role in arguing the difficulty of presenting an example of a
one-way binary-string function, which belongs to cryptography; it is in this broader
sense that we talk about the cryptographic primitive P2 and its security notion S2.

8.3. Let us informally explain our instances of the parameters.

Binary-string function It is a function that inputs and outputs binary strings.

One-wayness It means that the function f is easy to compute but hard to invert, that
is x 7→ f(x) is easy to compute but f(x) 7→ x (or more precisely, f(x) 7→ x′

with f(x) = f(x′)) is hard to compute.

111

Formal language It is a set of words such as {0, 01, 011, 0111, . . .} written with letters
such as 0 and 1 from some alphabet such as {0, 1}.

NP \ P It means that the problem of deciding if a word belongs to the formal lan-
guage is a hard problem.

Transformation It inputs a binary-string function f and outputs a formal language
capturing the hardness of inverting f .

8.4. In this chapter all work is ours except that:

1. the theorem stating that the existence of one-way functions implies P 6= NP
and its informal “proof” are mostly unpublished “folklore”;

2. we adopted in our proof a simplification by Aaron Dutle of his less formal
proof (Dutle et al. 2009, problem 2);

3. the analogy in paragraph 8.16 is due to Eerke Boiten.

8.2 Transformation

8.5. The problem that we solve here can be briefly stated as “one-way functions
imply P 6= NP” (this statement is less informative because it abstracts the trans-
formation T). It is a “folklore” result that explains why there are no known un-
conditional examples of one-way functions (since it is unknown whether P 6= NP or
not). The idea to prove it is simple: if f is a one-way binary-string function, then
the problem of inverting f is in NP \ P (this idea is imprecise because NP \ P is a
class of formal languages and not problems). Despite this, it is difficult to find a
detailed and correct proof in the literature. The proofs that we found suffer from
the following problems.

Mistakes Some proofs construct a language {x2f(x̄) | x ⊑ x̄ ∈ {0, 1}∗} (similar to

L̄f in definition 8.8) which causes a certain algorithm B(x2f(x̄)) (similar to B
in proof 8.13) not to run in polynomial-time (essentially because from |f(x̄)|
we may not recover |x̄|).

Informality Some proofs present the informal idea above without formalising it
enough to allow to check the proof for correctness.

We are only aware of two exceptions (proofs without mistakes and formal enough):

1. a proof by Aaron Dutle (Dutle et al. 2009, problem 2);

2. our own initial proof.

These two proofs are similar but have the following differences.

Dutle Gaspar

{x2f(x̄)2n | x ⊑ x̄ ∈ {0, 1}∗, . . .} . . . n = |x̄| . . . n ≥ |x̄|
B searches for an x with. n = |x̄| . . . n ≥ |x̄|

The proof is more. informal . . . formal

112

The choice n = |x̄| in Dutle’s proof simplifies the proof when compared to our proof,
so below we adopt Dutle’s choice.

8.6. Below we will consider formal languages over the alphabet {0, 1, 2}. We will
treat the letter 2 as a separator between binary strings. For example 2 is used in
x2y2z (where x, y, z ∈ {0, 1}∗) to separate x, y and z. We can think of:

1. 2 as a comma “,”;

2. x2y2z as “x, y, z”.

8.7. In theorem 8.12 we will show that a one-way binary-string function f can be
transformed into an NP\P formal language L̄f , so now we define L̄f . We also define
a simplified variant Lf of L̄f whose role will become clear in section 8.4.

8.8 Definition. Let f be a binary-string function.

1. The formal language Lf induced by f is {x2f(x)21|x| | x ∈ {0, 1}∗}.

2. The bitwise formal language L̄f induced by f is {x2f(x̄)21|x̄| | x ⊑ x̄ ∈ {0, 1}∗}.

8.9. Now, to be sure, we explicitly state the transformation in question.

8.10 Definition. The transformation of a binary-string function f into its induced
bitwise formal language L̄f is f L̄f .

8.3 Security

8.11. Now we show that if a binary-string function is one-way, then its induced
bitwise formal language is NP \ P. Informally, this means that secure (in some
sense) binary-string functions are transformed into secure (also in some sense) formal
languages.

8.12 Theorem. For all binary-string functions f , if f is one-way, then L̄f is NP\P.

8.13 Proof. The structure of the proof is the following:

1. we prove that L̄f is NP by

(a) constructing a nondeterministic algorithm B;

(b) proving that B decides L̄f ;

(c) proving that B runs in polynomial time;

2. we prove L̄f is not P by

(a) constructing from a hypothetical polynomial-time deterministic algorithm
C deciding L̄f a deterministic algorithm D;

(b) proving that D inverts f ;

(c) proving that D runs in polynomial time;

113

contradicting the one-wayness of f .

So let us do this.

L̄f is NP

Construction of B Let us consider the following nondeterministic algorithmB,
described in high-level pseudo-code, that inputs w ∈ {0, 1, 2}∗ and out-
puts yes or no. In the first line below, B checks that w has the right
format x2y2z (otherwise returns the “error message” no and halts) and
parses w, and in the third line B uses the parsed x, y and z.

if not ∃x, y ∈ {0, 1}≤|w| ∃z ∈ {1}≤|w| w = x2y2z
︸ ︷︷ ︸

(1)

then {output no; halt}

if ∃x̄ ∈ {0, 1}|z| (

(2)
︷ ︸︸ ︷

x ⊑ x̄ ∧ y = f(x̄))
︸ ︷︷ ︸

(3)

then {output yes; halt}
output no; halt

In order to determine below the runtime of B, we need to give some
low-level detail about how B checks (1) and (3).

(1) To check (1), B counts the number of 2s in w and the number of 0s
after the second 2 (if there is a second 2), determines that (1) is true
if the counted number of 2s is two and the counted number of 0s is
zero (so there are only 1s to the right of the second 2), otherwise
determines that (1) is false.
Let us notice that B will determine that (1) is true exactly when w
has exactly two 2s and only 1s to the right of the second 2, that is
exactly when (1) is indeed true.

(3) To check (3), B uses its “internal coin tosses” to construct a random
x̄ ∈ {0, 1}|z|, checks whether (2) is true and determines that (3) is
true if (2) is true, otherwise determines that (3) is false.
Let us notice that B, being nondeterministic, will determine that (3)
is true exactly when there is a construction of an x̄ ∈ {0, 1}|z| such
that (2) is true, that is exactly when (3) is indeed true.

B decides L̄f Let us prove w ∈ L̄f ⇔ B(w) = yes (for all w ∈ {0, 1, 2}∗):
w ∈ L̄f if and only if w = x2f(x̄)21|x̄| for some x, x̄ ∈ {0, 1}∗ with x ⊑ x̄,
which is equivalent to (1) and (3) being both true, that is B(w) = yes.

B runs in polynomial time It essentially suffices to prove that (1), (2) and (3)
are checked in polynomial time.

(1) It should be clear that B can count the number of 2s in w and the
number of 0s in w after the second 2 in polynomial time in |w|.

(2) Checking (2) takes polynomial-time in |x̄| = |z| ≤ |w| because ⊑ is
polynomial-time decidable and f is polynomial-time computable.

114

(3) The construction of x̄ ∈ {0, 1}|z| takes |x̄| = |z| ≤ |w| steps and (as
already seen) checking (2) takes polynomial-time in |w|.

L̄f is not P Let us assume, aiming at a contradiction, that L̄f is P, that is there is

a polynomial-time deterministic algorithm C deciding L̄f .

Construction of D Let us consider the following deterministic algorithm D,
described in high-level pseudo-code, that inputs w ∈ {0, 1, 2}∗ and out-
puts no or a certain x|z| ∈ {0, 1}∗. In the first line below, D checks that w
has the right format y2z (otherwise returns the “error message” no and
halts) and parses w, and in the third to seventh lines D uses the parsed
y and z and constructs x|z| bitwise (one bit at a time).

if not ∃y ∈ {0, 1}≤|w| ∃z ∈ {1}≤|w| w = y2z
︸ ︷︷ ︸

(4)

then {output no; halt}
i := 0; x0 := ǫ
for i from 1 to |z|
if C(xi−102y2z) = yes

︸ ︷︷ ︸

(5)

then xi := xi−10
else xi := xi−11

(6)

(7)

output x|z|; halt

In order to determine below the runtime of D, we would need to give some
low-level detail about how D checks (4), but instead we just mention that
is analogous to how B checks (1).

D inverts f Let x ∈ {0, 1}∗ (which induces (y, z) := (f(x), 1|x|)). Let us
denote by xmin the least (with respect to the lexicographic order) inverse
of f(x) (that is y) with length |x| (that is |z|), that is xmin := minlexX ,
where X := f−1[f(x)] ∩ {0, 1}|x| (that is X := f−1[y] ∩ {0, 1}|z|). Let
us prove that D inverts f by proving the following: if D inputs w =
f(x)21|x|, then D outputs x|z| = xmin. So let us assume that D inputs
w = f(x)21|x|. Then (4) is true with y := f(x) and z := 1|x| (and y
and z such that (4) are unique), so D proceeds to the construction of
x0, . . . , x|z|. We can prove |xi| = i by a simple induction on i ∈ [0 .. |z|]
by noticing x0 = ǫ and that in (6) each xi is obtained by appending a
single 0 or 1 to xi−1. Let us prove xi ⊑ xmin by induction on i ∈ [0 .. |z|].
Base case We have x0 = ǫ, so x0 ⊑ xmin.

Induction step We assume xi−1 ⊑ xmin by induction hypothesis, we have
|xi−1| < |xmin| because |xi−1| = i − 1 < |z| = |x| = |xmin|, so
xi−10 ⊑ xmin ∨ xi−11 ⊑ xmin. We have

(5) ⇔ xi−102y2z ∈ L̄f ⇔
∃x̄ ∈ {0, 1}∗ (xi−10 ⊑ x̄ ∧ y = f(x̄) ∧ |x̄| = |z|) ⇔ xi−10 ⊑ xmin

because xi−1 ⊑ xmin, x̄ is an inverse of y = f(x) with length |x̄| =
|z| = |x| and xmin is the minimum of such inverses, so (interpreting

115

(6) as a predicate instead of a statement)

(6) ⇔
(xi−10 ⊑ xmin ⇒ xi := xi−10) ∧ (xi−11 ⊑ xmin ⇒ xi := xi−11)

because xi−10 ⊑ xmin ∨ xi−11 ⊑ xmin, thus xi ⊑ xmin.

Taking i = |z| in |xi| = i and xi ⊑ xmin, we get x|z| = xmin because
|z| = |xmin|.

D runs in polynomial time It essentially suffices to prove that (4), (5) and (7)
run in polynomial time.

(4) Checking (4) takes polynomial time in |w| analogously to (1).

(5) Checking (5) takes polynomial time in |xi−102y2z| ≤ 2|w| because C
runs in polynomial time, w = y2z and |xi−102| ≤ |z| + 1 ≤ |w| since
|xi−1| = i− 1 < |z|.

(7) Running (7) takes polynomial time in |w| because the for loop runs
through |z| ≤ |w| values and the instructions and checks inside the
loop, notably C in (5), run in polynomial time in |w|.

8.4 Proof presentation: carving out a theory

8.14. We will improve the proof presentation of proof 9.10 (motivated by the reasons
given in section 1.5).

8.15. In (7) in proof 8.13 there is a bitwise construction x0 · · · x|z| of an
inverse x|z| of f(x). Now we work on a proof presentation of proof 8.13 by “carving
out” this construction into a “mini-theory” of minimisation operators µ and µ̄.

8.16. To illustrate this “mini-theory”, let us consider the following analogy sug-
gested by Eerke Boiten. Let us say that a thief wants to open a safe with a three-digit
mechanical combination lock, whose combination is 123.

1. Let L := {123}. If the thief is stupid, then he/she will try all combinations
from 000 to 999 until one works. We can think that the thief is trying to find
an x in L by running through all possible elements x and testing membership
in L until he/she finds an x such that x ∈ L. Notice that this (in the worst-
case scenario) requires 103 trials (in general it would be 10n where n is the
number of digits), which is exponential in the number of digits.

2. Let L̄ := {x | x ⊑ x̄ ∈ L} = {ǫ, 1, 12, 123}. If the thief is smart, then he/she
will search for the first digit by listening to the lock for a click that signals
the first digit d1 := 1, and then he/she will similarly find the second and third
digits d2 := 2 and d3 := 3. We can think that the thief is trying to find an x3
in L by constructing the finite sequence

x0 := ǫ,

x1 := x0d1 = 1, where d1 ∈ [0 .. 9] is such that x0d1 ∈ L̄,
x2 := x1d2 = 12, where d2 ∈ [0 .. 9] is such that x1d2 ∈ L̄,
x3 := x2d3 = 123, where d3 ∈ [0 .. 9] is such that x2d3 ∈ L̄

116

by testing membership in L̄. Notice that this (in the worst-case scenario)
requires 3 × 10 trials (in general it would be n × 3 where n is the number of
digits), which is linear in the number of digits.

8.17. Below we will consider a formal language L over the alphabet {0, 1, 2} and a
formula ∃x ∈ {0, 1}|z| x2y2z ∈ L. We will treat:

1. y as a parameter (which can be ǫ if we do not want a parameter, and which can
“morally” be finitely many binary parameters y1, . . . , yn by encoding y1, . . . , yn
as a single binary parameter y);

2. z as another parameter, of the form 1l (where l ∈ N), which we will only use
to give us the length l = |z| = |x| of the x in the formula.

To simplify the discussion that follows, we will drop 2 and y and replace z by l in
paragraph 8.18. Then, to be rigorous, we will resume using them in definitions 8.21
and 8.23.

8.18. Let L be a formal language over the alphabet {0, 1} and let us consider the
formula ∃x ∈ {0, 1}n x ∈ L. We will define two operators µ and µ̄ that search for
the least witness x to this formula.

1. The operator µ is µ(L) := minlexX , where X := {x ∈ {0, 1}n | x ∈ L} =
{0, 1}n∩L. Notice that µ(L) is a witness to the formula (if there is a witness).
The deterministic algorithm that we have in mind to compute µ(L) is simply
a brute-force search: we run though all possible x ∈ {0, 1}n in lexicographic
order and test for x ∈ L until we find such an x. Notice that this algorithm
runs in exponential time in n (provided that we can test membership in L̄ in
at most exponential time).

Let L̄ := {x | x ⊑ x̄ ∈ {0, 1}n, x̄ ∈ L}. This formal language is the “prefix-closure”
of L (more precisely, of X).

2. The operator µ̄ is µ̄(L̄) := xn, where the finite sequence (xi)i=0,...,n is recursively
defined by

x0 := ǫ if ǫ ∈ L̄

xi :=

{

xi−10 if xi−10 ∈ L̄
xi−11 if xi−11 ∈ L̄

(this unofficial definition has the problem that we may not have “ǫ ∈ L̄” or
“xi−10 ∈ L̄ or xi−11 ∈ L̄ but not both”, but this is taken care of in the
official definition 8.23 below). Although it may not be obvious, µ̄(L) is the
least witness to the formula, which is µ(L). The algorithm that we have in
mind to compute µ̄(L) is the construction of (xi)i=0,...,n following its recursive
definition. Notice that this algorithm runs in polynomial time in n (provided
that we can test membership in L̄ in at most polynomial time).

8.19. It may seem that what µ(L) does in exponential time is done by µ̄(L̄) in
polynomial-time, which by “magic” reduces the complexity from exponential to

117

linear. But the complexity does not really disappear: it is simply shifted from µ to
L̄, in the sense of the complexity decreasing in µ µ̄ (informally, from NP to P)
but potentially increasing in L L̄ (formally, from P to NP), as schematised by
the following table.

µ(L) µ̄(L̄)
µ L µ̄ L̄

NP P P NP

8.20. Now we formally define L̄, µ and µ̄. The definition of µ̄ (more precisely, of
(xi)i=0,...,|z|) is more complicated than what we sketch in paragraph 8.18 to deal with
the problems about possibly not having “ǫ ∈ L̄” or “xi−10 ∈ L̄ or xi−11 ∈ L̄ but not
both” mentioned there.

8.21 Definition. The bitwise formal language L̄ induced by the formal language L ⊆
{0, 1, 2}∗ is

{x2y2z | x ⊑ x̄ ∈ {0, 1}|z|, z ∈ {1}∗, x̄2y2z ∈ L}.

8.22. The notation L̄f may seem ambiguous because it can denote

1. the language L̄f in definition 8.8;

2. language L̄ in definition 8.21 with L := Lf ;

but these two languages coincide so there is really no ambiguity.

8.23 Definition.

1. The minimisation operator µ is the partial function

µ : P({0, 1, 2}∗)× {0, 1}∗ × {1}∗ 9 {0, 1}∗
(L, y, z) 7→ minlexX

,

where

X := {x ∈ {0, 1}|z| | x2y2z ∈ L}.

2. The bitwise minimisation operator µ̄ is the partial function

µ̄ : P({0, 1, 2}∗)× {0, 1}∗ × {1}∗ 9 {0, 1}∗
(L, y, z) 7→ x|z|

,

where the finite sequence (xi)i=0,...,|z| ⊆ {0, 1}∗ is recursively defined by

x0 :=

{

ǫ if ǫ2y2z ∈ L
↑ otherwise

xi :=

xi−10 if xi−102y2z ∈ L
xi−11 if xi−102y2z /∈ L ∧ xi−112y2z ∈ L
↑ otherwise

.

118

8.24. If µ̄ is applied to a language of the form L̄ instead of an arbitrary language L,
then the definition of xi can be simplified by removing the case “otherwise” because
we have ǫ2y2z ∈ L̄ ⇒ xi−102y2z ∈ L̄ ∨ xi−112y2z ∈ L̄.

8.25. In the next proposition we show that L L̄ potentially increases the com-
plexity from P to NP as discussed in paragraph 8.19.

8.26 Proposition. For all L ∈ P({0, 1, 2}∗), if L is P, then L̄ is NP.

8.27 Proof. The structure of the proof is the following: we assume that L is P, that
is there is a polynomial-time deterministic algorithm A deciding L, and we prove
that L̄ is NP by:

1. constructing a nondeterministic algorithm B;

2. proving that B decides L̄;

3. proving that B runs in polynomial time.

So let us do this.

Construction of B Let us consider the following nondeterministic algorithm B, de-
scribed in high-level pseudo-code, that inputs w ∈ {0, 1, 2}∗ and outputs yes

or no. In the first line below, B checks that w has the right format x2y2z
(otherwise returns the “error message” no and halts) and parses w, and in the
third line B uses the parsed x, y and z.

if not ∃x, y ∈ {0, 1}≤|w| ∃z ∈ {1}≤|w| w = x2y2z
︸ ︷︷ ︸

(1)

then {output no; halt}

if ∃x̄ ∈ {0, 1}|z| (

(2)
︷ ︸︸ ︷

x ⊑ x̄ ∧ A(x̄2y2z) = yes)
︸ ︷︷ ︸

(3)

then {output yes; halt}
output no; halt

In order to determine below the runtime of B, we would need to give some
low-level detail about how B checks (1) and (3): this is as in proof 8.13 (in
particular, B, being nondeterministic, can use its “internal coin tosses” to
construct a random x̄ ∈ {0, 1}|z| in linear time in |z|).

B decides L̄ Let us prove w ∈ L̄ ⇔ B(w) = yes (for all w ∈ {0, 1, 2}∗): w ∈ L̄ if
and only if w = x2y2z for some x, x̄, y ∈ {0, 1}∗ and z ∈ {1}∗ with x ⊑ x̄ ∈
{0, 1}|z| and x̄2y2z ∈ L, which is equivalent to (1) and (3) being both true
because A decides L, that is B(w) = yes.

B runs in polynomial time It essentially suffices to prove that (1), (2) and (3) are
checked in polynomial time.

(1) This is as in proof 8.13.

119

(2) Checking (2) takes polynomial-time in |x̄2y2z| ≤ 2|w| because ⊑ is pol-
ynomial-time decidable, A runs in polynomial-time, |x̄| = |z| ≤ |w| and
|2y2z| ≤ |x2y2z| = |w|.

(3) This is as in proof 8.13.

8.28. In the next proposition we show (informally speaking) µ(L, y, z) = µ̄(L̄, y, z)
as discussed in paragraph 8.18.

8.29 Proposition. For all L ∈ P({0, 1, 2}∗), x, y ∈ {0, 1}∗ and z ∈ {1}∗, we have

µ(L, y, z)
↓↑
= µ̄(L̄, y, z).

8.30 Proof. Let X and (xi) be as in definition 8.23.

µ(L, y, z)↑ ⇒ µ̄(L̄, y, z)↑ If µ(L, y, z)↑, then X = ∅, so ∄x ∈ {0, 1}|z| x2y2z ∈ L,

thus ǫ2y2z /∈ L̄, hence x0↑, therefore x|z|↑, so µ̄(L̄, y, z)↑.

µ(L, y, z)↓ ⇒ µ̄(L̄, y, z)↓ ∧ µ(L, y, z) = µ̄(L̄, y, z) Let us assume µ(L, y, z)↓, that
is X 6= ∅. Let us denote by xmin the least (with respect to the lexicographic
order) x ∈ {0, 1}|z| such that x2y2z ∈ L, that is xmin := minlexX . Let us
prove µ̄(L̄, y, z)↓ and µ(L, y, z) = µ̄(L̄, y, z) by proving x|z|↓ and x|z| = xmin.
We can prove xi↓ ⇒ |xi| = i by a simple induction on i ∈ [0 .. |z|] by noticing
x0↓ ⇒ x0 = ǫ and that each xi, if defined, is obtained by appending a single
0 or 1 to xi−1. Let us prove xi↓ ∧ xi ⊑ xmin by induction on i ∈ [0 .. |z|].

Base case We have x0 = ǫ because ǫ2y2z ∈ L̄ since ǫ ⊑ xmin and xmin2y2z ∈ L,
so x0↓ ∧ x0 ⊑ xmin.

Induction step We assume xi−1↓ ∧ xi−1 ⊑ xmin by induction hypothesis, we
have |xi−1| < |xmin| because |xi−1| = i−1 < |z| = |xmin|, so xi−10 ⊑ xmin ∨
xi−11 ⊑ xmin. We have

xi−102y2z ∈ L̄ ⇔
∃x̄ ∈ {0, 1}∗ (xi−10 ⊑ x̄ ∧ x̄2y2z ∈ L ∧ |x̄| = |z|) ⇔ xi−10 ⊑ xmin

because xi−1 ⊑ xmin, x̄ is such that x̄2y2z ∈ L and |x̄| = |z|, and xmin is
the least of such x̄s, and analogously

xi−102y2z /∈ L̄ ∧ xi−112y2z ∈ L̄ ⇔ xi−11 ⊑ xmin,

so

xi :=

xi−10 if xi−102y2z ∈ L̄
xi−11 if xi−102y2z /∈ L̄ ∧ xi−112y2z ∈ L̄
↑ otherwise

⇔ (xi−10 ⊑ xmin ⇒ xi := xi−10) ∧ (xi−11 ⊑ xmin ⇒ xi := xi−11),

thus xi ⊑ xmin.

Taking i = |z| in xi↓, |xi| = i and xi ⊑ xmin, we get x|z|↓ and x|z| = xmin

because |z| = |xmin|.

120

8.31 Theorem. For all binary-string functions f , if f is one-way, then L̄f is NP\P.

8.32 Proof.

L̄f is NP We have that Lf is P because ·2·2·, 1·, |·| and f are polynomial-time

computable, so L̄f is NP by proposition 8.26.

L̄f is not P Let us assume, aiming at a contradiction, that L̄f is P. Let us construct

a deterministic polynomial-time algorithm D inverting f with probability 1 /∈
N , which contradicts the one-wayness of f .

Construction of D Let D(y, z) := µ̄(L̄f , y, z). We have (∗) D(f(x), 1|x|) =

µ̄(L̄f , f(x), 1|x|) = µ(Lf , f(x), 1|x|) by proposition 8.29.

D inverts f Let x ∈ {0, 1}∗ and let X be as in definition 8.23 with L := Lf .

D(f(x), 1|x|)↓ We have x2f(x)21|x| ∈ Lf by definition of Lf , so X 6= ∅
by definition of X , thus µ(Lf , f(x), 1|x|)↓ by definition of µ, that is
D(f(x), 1|x|)↓ by (∗).

f
(
D(f(x), 1|x|)

)
= f(x) We have D(f(x), 1|x|) = µ(Lf , f(x), 1|x|) =

minlexX ∈ X by (∗), so D(f(x), 1|x|)2f(x)21|x| ∈ Lf by definition
of X , thus f(D(f(x), 1|x|)) = f(x) by definition of Lf .

D runs in polynomial time We have that L̄f is P by hypothesis, so µ̄(L̄f , ·, ·)
is polynomial-time computable by inspection of the definition of µ̄, thus
D runs in polynomial-time by definition of D.

8.33. We see two advantages in proofs 8.27, 8.30 and 8.32 over proof 8.13:

1. Lf L̄f , µ µ̄ and L̄f not being NP \ P are not dealt with all at the same
time and mixed up but instead separately, namely

(a) proof 8.27 deals with Lf L̄f ;

(b) proof 8.30 deals with µ µ̄;

(c) proof 8.32 deals with L̄f not being NP \ P;

making it easier to read and check the proofs;

2. the “mini-theory” of minimisation operators µ and µ̄

(a) is of interest on its own;

(b) can be reused in other proofs because it was stated explicitly and in the
general case in propositions 8.26 and 8.29 instead of implicitly and in a
particular case in proof 8.13.

121

8.5 Conclusion

8.34. In this chapter:

1. we solved the instance of our problem format specified by

P1 = binary-string function,

S1 = one-wayness,

P2 = formal language,

S2 = (NP \ P)-ness,

T = transformation of a binary-string function
into its induced bitwise formal language;

2. we gave a proof presentation by “carving out” a “mini-theory” of minimisation
operators.

122

Chapter 9

Transforming
cryptographically-secure
pseudorandom generators into
one-way binary-string functions

9.1 Introduction

9.1. In this chapter we solve the instance of our problem format (presented in
paragraph 1.28) specified by the following instances of its parameters:

P1 = pseudorandom generator,

S1 = cryptographic security,

P2 = binary-string function,

S2 = one-wayness,

T = transformation of a pseudorandom generator
into its induced binary-string function.

As a proof presentation, instead of proving the security of T by a direct proof as
in “if P1 is S1-secure, then P2 is S2-secure”, we see how to prove it by an indirect
proof (a proof by contrapositive known as proof by reduction) as in “if P2 is not S2-
secure (and B breaks the S2-security of P2), then P1 is not S1-secure (and A = f(B)
breaks the S1-security of P2)”.

As an extra, we consider Oded Goldreich’s previously known transformation,
prove a relation between our transformation and Oded Goldreich’s transformation
and present new one-way-preserving transformations in the process.

9.2. Let us informally explain our instances of the parameters.

Pseudorandom generator It is a deterministic algorithm that outputs a stream of
bits such as 001101100.

Cryptographic security It means that the stream output by the pseudorandom gen-
erator looks random such as 0011011001 in contrast to 0101010101.

123

Binary-string function It is a function that inputs and outputs binary strings.

One-wayness It means that the function f is easy to compute but hard to invert, that
is x 7→ f(x) is easy to compute but f(x) 7→ x (or more precisely, f(x) 7→ x′

with f(x) = f(x′)) is hard to compute.

Transformation It inputs a pseudorandom generator and outputs the binary-string
function that on an input x outputs a stream of the pseudorandom generator
seeded with x and of length 2|x|.

9.3. In this chapter all definitions, theorems and proofs are ours except for Oded
Goldreich’s

1. definition of gG (Goldreich 2004, proposition 3.3.8);

2. results about gG in paragraph 9.26 (Goldreich 2004, propositions 2.2.3 and
3.3.8).

9.2 Transformation

9.4. Informally, a binary-string function fG induced by a pseudorandom genera-
tor G is obtained by passing the input x of fG(x) as a seed to G, getting the
stream G(x, . . .) of G, and taking that stream as the output of fG, that is fG(x) :=
G(x, . . .). It remains to choose how long should the stream of G be:

1. we are tempted to choose the length |x|, that is fG(x) := G(x, 1|x|), but this
seemingly does not allow to prove that fG is one-way from the assumption that
G is cryptographically secure because of hard-to-explain technical reasons (a
certain probability β in proof 9.10 needs to be negligible);

2. so instead we choose the length 2|x|, that is fG(x) := G(x, 12|x|), which solves
the problem (by making β ≤ 2−n negligible).

Now we formally define the binary-string function induced by a pseudorandom
generator.

9.5 Definition. The (total) binary-string function fG induced by a pseudorandom
generator G is fG(x) := G(x, 12|x|).

9.6. Now, to be sure, we explicitly state the transformation in question.

9.7 Definition. The transformation of a pseudorandom generatorG into its induced
binary-string function fG is G fG.

9.3 Security

9.8. Now we show that if the pseudorandom generator G is cryptographically secure,
then its induced binary-string function fG is one-way. Informally, this means that
secure (in some sense) pseudorandom generators are transformed into secure (also
in some sense) binary-string functions.

124

9.9 Theorem. For all pseudorandom generators G, if G is cryptographically secure,
then fG is one-way.

9.10 Proof. The pseudorandom generator G being cryptographically secure means

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N ,

(9.1)

where A and A′ range over the polynomial-time probabilistic algorithms. The
binary-string function fG being one-way means fG is polynomial-time computable,
which is the case because G, |·|, 2· and 1· are polynomial-time computable, and

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
∈ N , (9.2)

where B ranges over the polynomial-time probabilistic algorithms.
Taking A(x) := (12|x|, ǫ) and A′(x, y, z) := Tr[fG(B(x, y)) = x], which are

polynomial-time probabilistic algorithms because B is a polynomial-time probabilis-
tic algorithm and |·|, 2·, 1·, ǫ, (·, ·), fG and Tr[· = ·] are polynomial-time computable,
in (9.1), we get

∀B Pr Tr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr Tr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N .

Substituting Pr TrP by PrP , where P is any predicate, we get

∀B Pr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N .

Substituting G(Un, 1
2n) by fG(Un), by definition of fG, we get

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N .

Substituting |G(Un, 1
2n)| by 2n, by definition of G, we get

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]

︸ ︷︷ ︸
=:α

−Pr[fG(B(U2n, 1
n)) = U2n]

︸ ︷︷ ︸

=:β

∈ N .

For all probabilistic polynomial-time algorithms B, we have the following.

α− β ∈ N It is stated above.

β ∈ N We have ∀x ∈ {0, 1}∗ ∀n ∈ N (x ∈ {0, 1}n ⇔ fG(x) ∈ {0, 1}2n) by definition

of fG andG, so f−1G [{0, 1}2n] ⊆ {0, 1}n, thus 0 ≤ β ≤ |f−1G [{0, 1}2n]|/|{0, 1}2n| ≤
|{0, 1}n|/|{0, 1}2n| = 2−n ∈ N because U2n ranges uniformly over {0, 1}2n,
hence β ∈ N because N is downwards closed in the sense of
∀f, g (0 ≤ f ≤ g ∈ N ⇒ f ∈ N) (Gaspar and Boiten 2014, section 2.5),
where f and g range over the functions from some set L to R.

125

α− β, β ∈ N ⇒ α ∈ N Follows from α = (α− β) + β and N being closed under
addition in the sense of ∀f, g ∈ N f + g ∈ N (Katz and Lindell 2015, point 1
of proposition 3.6), where f and g range over the functions from some set L
to R.

From the three points above we get α ∈ N , so (9.2).
Schematically, the proof is the following:

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N

w
w
w
�

A(x) := (12|x|, ǫ)

A′(x, y, z) := Tr[fG(B(x, y)) = x]

∀B Pr Tr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr Tr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N

w
w
w
�

PrTrP = PrP

∀B Pr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N
w
w
w
�

G(Un, 1
2n) = fG(Un)

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] ∈ N
w
w
w
�
|G(Un, 1

2n)| = 2n

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]

︸ ︷︷ ︸
=:α

−Pr[fG(B(U2n, 1
n)) = U2n]

︸ ︷︷ ︸

=:β

∈ N

w
w
w
�

β ∈ N
α− β, β ∈ N ⇒ α ∈ N

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
∈ N

9.4 Proof presentation: indirect proof

9.11. We are going to improve the proof presentation of proof 9.10 (motivated by
the reasons given in section 1.5).

9.12 Proof. The pseudorandom generator G not being cryptographically secure
means

∃A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) /∈ N ,

(9.3)

where A and A′ range over the polynomial-time probabilistic algorithms. The
binary-string function fG not being one-way means that fG is not polynomial-time
computable, which is not the case because G, |·|, 2· and 1· are polynomial-time
computable, or

∃B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
/∈ N , (9.4)

126

where B ranges over the polynomial-time probabilistic algorithms.
Let

α := Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
,

β := Pr[fG(B(U2n, 1
n)) = U2n].

First, let us prove β ∈ N and α− β, β ∈ N ⇒ α ∈ N .

β ∈ N We have ∀x ∈ {0, 1}∗ ∀n ∈ N (x ∈ {0, 1}n ⇔ fG(x) ∈ {0, 1}2n) by definition

of fG andG, so f−1G [{0, 1}2n] ⊆ {0, 1}n, thus 0 ≤ β ≤ |f−1G [{0, 1}2n]|/|{0, 1}2n| ≤
|{0, 1}n|/|{0, 1}2n| = 2−n ∈ N because U2n ranges uniformly over {0, 1}2n,
hence β ∈ N because N is downwards closed in the sense of
∀f, g (0 ≤ f ≤ g ∈ N ⇒ f ∈ N) (Gaspar and Boiten 2014, section 2.5),
where f and g range over the functions from some set L to R.

α− β, β ∈ N ⇒ α ∈ N Follows from α = (α− β) + β and N being closed under
addition in the sense of ∀f, g ∈ N f + g ∈ N (Katz and Lindell 2015, point 1
of proposition 3.6), where f and g range over the functions from some set L
to R.

Second, let us schematically prove (9.3) from (9.4).

∃A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) /∈ N

~
w
w
w

A(x) := (12|x|, ǫ)

A′(x, y, z) := Tr[fG(B(x, y)) = x]

∃B Pr Tr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr Tr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] /∈ N

~
w
w
w

PrP = PrTrP

∃B Pr
[
fG

(
B(G(Un, 1

2n), 1n)
)

= G(Un, 1
2n)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] /∈ N
~
w
w
w

fG(Un) = G(Un, 1
2n)

∃B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
−

Pr[fG(B(U|G(Un,12n)|, 1
n)) = U|G(Un,12n)|] /∈ N
~
w
w
w

2n = |G(Un, 1
2n)|

∃B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]

︸ ︷︷ ︸
=α

−Pr[fG(B(U2n, 1
n)) = U2n]

︸ ︷︷ ︸

=β

/∈ N

~
w
w
w

β ∈ N
α− β, β ∈ N ⇒ α ∈ N

∃B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]

︸ ︷︷ ︸
=α

/∈ N

127

9.13. We see an advantage and a disadvantage in proof 9.12 over proof 9.10:

1. the advantage is that most people find it more natural to

transform an algorithm B breaking the one-wayness of fG (the B in
∃B ¬. . .) into an algorithm A breaking the cryptographic security
of G (the A in ∃A ¬. . .)

than to

transform the statement that all algorithms A do not break the
cryptographic security of G (the statement ∀A . . .) into the state-
ment that all algorithms B do not break the one-wayness of fG (the
statement ∀B . . .).

2. the disadvantage is that most people find it more elegant a direct proof (as in
∀A . . . ⇒ ∀B . . .) than an indirect proof (as in ∃B ¬. . . ⇒ ∃A ¬. . .).

9.5 Extra: Oded Goldreich’s transformation

9.14 Definition. Our new total binary-string function fG(x) := G(x, 12|x|), where
x ∈ {0, 1}∗, is similar to Oded Goldreich’s old partial binary-string function gG(x) :=
G(x

�
, 1|x|), where x ∈ {0, 1}2∗ is only allowed to have even lengths. Now we study

the relation between fG and gG and conclude that they are the same modulo certain
one-wayness-preserving operators ·p and ·t that transform total binary-string func-
tions into partial binary-string functions and vice-versa, in the sense of (fG)p = gG
and (gG)t = fG.

Let us start by introducing gG.

9.15 Definition. The partial binary-string function gG : {0, 1}2∗ → {0, 1}∗ induced
by a pseudorandom generator G (Goldreich 2004, proposition 3.3.8) is gG(x) :=
G(x

�
, 1|x|).

9.16. Now let us introduce the operators ·p and ·t and prove that they preserve
one-wayness.

9.17 Definition.

1. Given a total binary-string function f : {0, 1}∗ → {0, 1}∗, we define the partial
binary-string function fp : {0, 1}2∗ → {0, 1}∗ by fp(x) := f(x

�
).

2. Given a partial binary-string function g : {0, 1}2∗ → {0, 1}∗, we define the total
binary-string function gt : {0, 1}∗ → {0, 1}∗ by gt(x) := g(x1|x|).

9.18 Remark. The partial binary-string function fp does not depend on the right
half of the input.

9.19 Proposition. For all binary-string functions f : {0, 1}∗ → {0, 1}∗, and for all
partial binary-string functions g : {0, 1}2∗ → {0, 1}∗ that do not depend on the right
half the input, we have:

128

1. if f is one-way, then fp is one-way;

2. if g is one-way, then gt is one-way.

9.20 Proof.

1. The total binary-string function f being one-way means that f is polynomial-
time computable and

∀A Pr
[
f
(
A(f(Un), 1n)

)
= f(Un)

]
∈ N , (9.5)

where A ranges over the polynomial-time probabilistic algorithms. The partial
binary-string function fp being one-way means that fp is polynomial-time com-
putable, which is the case because f and ·

�
are polynomial-time computable,

and
∀B Pr

[
fp
(
B(fp(Un), 1n)

)
= fp(Un)↓

]

︸ ︷︷ ︸
:=αn

∈ N , (9.6)

where B ranges over the polynomial-time probabilistic algorithms.

Taking A(x, y) := B(x, 12|y|)
�

, which is a polynomial-time probabilistic algo-
rithm because B is a polynomial-time probabilistic algorithm and |·|, 2·, 1·
and ·

�
are polynomial-time computable, in (9.5), we get

∀B Pr
[
f
(
B(f(Un), 12n)

�

)
= f(Un)

]
∈ N .

Using Pr
[
fp
(
B(f(Un), 12n)

)
= f(Un)↓

]
= Pr

[
f
(
B(f(Un), 12n)

�

)
= f(Un) ∧

B(f(Un), 12n) ∈ {0, 1}2∗] ≤ Pr
[
f
(
B(f(Un), 12n)

�

)
= f(Un)

]
, by definition of

fp and dom(fp) = {0, 1}2∗, and using that N is downwards closed, we get

∀B Pr
[
fp
(
B(f(Un), 12n)

)
= f(Un)↓

]
∈ N .

Substituting Un by U2n�
, because both are uniform random variables in {0, 1}n,

we get
∀B Pr

[
fp
(
B(f(U2n�

), 12n)
)

= f(U2n�
)↓
]
∈ N .

Substituting f(U2n�
) by fp(U2n), by definition of fp and U2n ∈ {0, 1}2∗ =

dom(fp), we get

∀B Pr
[
fp
(
B(fp(U2n), 12n)

)
= fp(U2n)↓

]

︸ ︷︷ ︸
=α2n

∈ N .

Using that

(a) i. αn ∈ N when αn is restricted to even ns by the formula above;

ii. αn = 0 when αn is restricted to odd ns because then fp(Un)↑;
(b) N is closed under extensions by zeros in the sense that if h : L ⊆ N→ R

is in N , then h′ : N→ R defined by h′(x) :=
{
h(x) if x ∈ L
0 if x /∈ L is in N ;

we get (9.6).

129

2. The partial binary-string function g being one-way means that g is polynomial-
time computable and

∀A Pr
[
g
(
A(g(Un), 1n)

)
= g(Un)↓

]
∈ N , (9.7)

where A ranges over the polynomial-time probabilistic algorithms. The to-
tal binary-string function gt being one-way means that gt is polynomial-time
computable, which is the case because f , |·|, 1· and string concatenation are
polynomial-time computable, and

∀B Pr
[
gt
(
B(gt(Un), 1n)

)
= gt(Un)

]
∈ N , (9.8)

where B ranges over the polynomial-time probabilistic algorithms.

From (9.7), dom(g) = {0, 1}2∗ and N being closed under speed-up in the sense
∀f(n) ∈ N f(2n) ∈ N , we get

∀A Pr
[
g
(
A(g(U2n), 12n)

)
= g(U2n)

]
∈ N .

Taking A(x, y) := B(x, 1⌊|y|/2⌋)1|B(x,1⌊|y|/2⌋)|, which is a polynomial-time proba-
bilistic algorithm because B is a polynomial-time probabilistic algorithm and
|·|, ⌊·/2⌋ and 1· are polynomial-time computable, we get

∀B Pr
[
g
(
B(g(U2n), 1n)1|B(g(U2n),1n)|

)
= g(U2n)

]
∈ N .

Substituting g
(
B(g(U2n), 1n)1|B(g(U2n),1n)|

)
by gt(B(g(U2n), 1n)), by definition

of gt, we get
∀B Pr

[
gt
(
B(g(U2n), 1n)

)
= g(U2n)

]
∈ N .

Substituting g(U2n) by g(U2n�
1n), because g does not depend on the right half

of the input, we get

∀B Pr
[
gt(B(g(U2n�

1n), 1n)
)

= g(U2n�
1n)

]
∈ N .

Substituting g(U2n�
1n) by gt(U2n�

), by definition of gt, we get

∀B Pr
[
gt
(
B(gt(U2n�

), 1n)
)

= gt(U2n�
)
]
∈ N .

Substituting U2n�
by Un, because both are uniform random variables in {0, 1}n,

we get (9.8).

9.21 Remark. Point 2 may be false (assuming the existence of one-way functions)
if g depends on the right half of the input (proof sketch: if f : {0, 1}∗ → {0, 1}∗ is
one-way, then g : {0, 1}2∗ → {0, 1}∗ defined by g(x) := f(x

�
) is one-way analogously

to point 1 of proposition 9.19, so gt(x) = g(x1|x|) = f((x1|x|)
�

) = f(1|x|) is constant
over each {0, 1}n, thus it is not one-way).

9.22. Let us momentarily:

1. denote {0, 1} by 2 (as done with the von Neumann ordinals in set theory);

130

2. denote the set of functions from X to Y by X � Y (which below will read
better than the more usual Y X);

3. extend the definition of fG and gG to arbitrary G ∈ 2∗ × 2∗ � 2∗ (instead of
only pseudorandom generators G).

The next proposition says (modulo the extension) that the following diagram com-
mutes.

2∗�2∗

·p
��

2∗×2∗�2∗

f· 44✐✐✐✐✐✐✐✐✐✐✐

g· **❚❚❚
❚❚❚❚

❚❚❚❚

22∗
�2∗

·t

OO

So we can “meta-transform” between our transformation

G cryptographically-secure fG one-way, where fG = (gG)t

and Oded Goldreich’s transformation

G cryptographically-secure gG one-way, where gG = (fG)p.

9.23 Proposition. For all pseudorandom generators G, we have:

1. (fG)p = gG;

2. (gG)t = fG.

9.24 Proof.

1. We have dom((fG)p) = {0, 1}2∗ = dom(gG) and

∀x ∈ {0, 1}2∗ (fG)p(x) = fG(x
�

) = G(x
�
, 12|x�|) = G(x

�
, 1|x|) = gG(x).

2. We have dom((gG)t) = {0, 1}∗ = dom(fG) and

∀x ∈ {0, 1}∗ (gG)t(x) = gG(x1|x|) = G((x1|x|)
�
, 1|x1

|x||) = G(x, 12|x|) = fG(x).

9.25. We give to proposition 9.19 two interpretations (only) seemingly contradic-
tory:

1. on the one hand, the proposition says that fG and gG are (modulo ·p and ·t) the
same function, so in this way the two constructions f· of g· of one-way binary-
string functions from cryptographically-secure pseudorandom generators are
the same;

2. on the other hand, to infer the one-wayness of fG from gG and vice-versa, it
takes (the about two pages of)

(a) definition 9.17;

131

(b) proposition 9.19;

(c) proof 9.20;

so in this way the two constructions f· of g· are (non-trivially) separated.

9.26. There are two properties that are desired in a one-way partial binary-string f :
to be extensible to

1. a length-preserving one-way partial binary-string;

2. a total one-way binary-string;

or even

3. a length-preserving and total one-way binary-string f ′.

In the next table we summarise the existence of these extensions for fG and gG:

length preserving total extensible to length preserving and total
fG no yes no
gG yes no yes

(proof sketch: fG is not extensible to a length-preserving function because fG doubles
lengths; the results for gG are known (Goldreich 2004, propositions 2.2.3 and 3.3.8)).
Let us compare fG and gG:

1. fG is better in the sense that the proof that fG is one-way (if G is cryp-
tographically secure) is simpler by avoiding the delicateness of dealing with
partial functions such as gG;

2. gG is better in the sense that gG can be extended to a length-preserving total
function while fG cannot.

9.6 Conclusion

9.27. In this chapter:

1. we solved the instance of our problem format specified by:

P1 = pseudorandom generator,

S1 = cryptographic security,

P2 = binary-string function,

S2 = one-wayness,

T = transformation of a pseudorandom
generator into a binary-string function;

2. we gave a proof presentation by means of an indirect proof;

3. we compared our transformation with Oded Goldreich’s transformation and
presented new one-way-preserving transformations in the process.

132

Part V

Conclusion

133

Chapter 10

Provable security of
transformation of cryptographic
primitives

10.1 Introduction

10.1. In section 1.2 we identified a problem in cryptography: definitions, theorems
and proofs in cryptography are often so complicated that some incorrect “proofs”
go unnoticed. In sections 1.3, 1.4, 1.5 and 1.6 we proposed a solution for the prob-
lem. The solution is divided into components and two of the components are the
transformation of cryptographic primitives and provable security. In section 1.3 we
argued that the transformation of cryptographic primitive helps solve the problem
by producing simpler security proofs, allowing abstraction from underlying theories
and operating on higher level concepts. In section 1.4 we argued that provable secu-
rity also helps solve the problem by giving a mathematical guarantee of correctness,
being amenable to formal verification and helping find mistakes. So, ultimately, in
the “big picture” of things, we hope that our work devoted to the provable security
of transformation of cryptographic primitives will contribute to the solution of the
problem.

10.2. To be more concrete, we give three examples of small insights that we devel-
oped.

1. Cryptographic primitives and security notions:

(a) often require some algorithm A(x) to run in polynomial time in a security
parameter n or in the length of the input x;

(b) sometimes transformations of cryptographic primitives and their security
proofs overlook this requirement;

(c) often this can be spotted by checking if the proof addresses runtimes or
what happens when A(x) “shrinks too much” or “expands too much” x;

(d) sometimes the proof can be fixed by adding 1n or 1|x| as an extra input
to A, or adding extra assumptions about lengths, and changing the proof
accordingly.

135

2. Security notions often have variants that differ by

(a) allowing extra inputs or not;

(b) requiring (a family of) algorithms to be uniform or not;

(c) requiring functions to be total or not;

and so on, and this raises three problems that we need to be aware of:

(a) when citing a result, we should check if the result’s security notions are
our ones or if the result’s proof can be easily adapted to our ones;

(b) some security proofs depend in an essential way on the variants of the
security notions used so it is dangerous to overlook the question of vari-
ants;

(c) security notions mentioned in the security of transformation of cryp-
tographic need to be compatible variants, often in the sense of having
matching allowances and requirements.

3. It is possible for

(a) a security notion to “make perfect sense”;

(b) a security result to look “obviously true”;

(c) a security proof to be “plainly straightforward”;

and yet

(a) the security notion being

Uninstantiable no cryptographic primitive satisfies the security notion;

Unknown to be (non-trivially) instantiable we do not know how to con-
struct a (non-trivial) cryptographic primitive satisfying the security
notion even under common assumptions such as the existence of one-
way binary-string functions;

Instantiable but uninteresting only satisfied by extremely strong crypto-
graphic primitives such as the one-time pad, or turning out to be
equivalent to an elementary notion such as injectiveness;

Universally instantiable being satisfied by every cryptographic primitive,
even by the identity function and constant functions.

(b) the security result missing some minor assumption to be really true;

(c) the security proof having a “bug” at an “innocent-looking” point;

so one cannot check enough security notions, security results and their security
proofs.

136

10.3. In the previous chapters we studied the transformations of cryptographic
primitives shown in the (directed) graph

one-way
binary-string functions

chapter 6

��

chapter 8

��

cryptographically-secure
pseudorandom generators

chapter 9oo

chapter 7

��
NP \ P

formal languages
indistinguishable-from-random

stream ciphers

where

1. each vertex of the graph is a pair (P, S) consisting of

(a) a cryptographic primitive P ;

(b) a security notion S (for P);

(if we are interested only in the cryptographic primitive P , then we refer to the
vertex (P, S) simply as P ; if we are only interested in the security notion S,
then we refer to the vertex (P, S) simply as S);

2. each edge of the graph from a vertex (P1, S1) to a vertex (P2, S2) is a pair
(T, P) consisting of

(a) a transformation T of cryptographic primitives P1 into cryptographic
primitives P2;

(b) a security proof P that T preserves security in the sense that if P1 is
S1-secure, then P2 (transformed from P1 by T) is S2-secure;

(if we are interested only in the transformation T , then we refer to the edge
(T, P) simply as T ; if we are only interested in the security proof P , then we
refer to the vertex (T, P) simply as P);

(our graph bears some resemblance to a graph with security notions for asymmetric
ciphers as vertices, and implications and non-implications as edges (Bellare, Desai,
Pointcheval and Rogaway 1998, figure 1)). In this chapter we propose to study more
transformations guided through some research lines:

1. completion of the graph of the already seen transformations;

2. addition of new vertices to the graph by varying the security notions or adding
new cryptographic primitives;

3. basing the construction of cryptographic primitives on indistinguishable-from-
random stream ciphers instead of one-way binary-string functions;

4. extraction of numeric/computational content in line with concrete security;

137

5. composition of transformations into new composed transformation and decom-
position of transformations into new decomposing transformations;

6. empirically testing implemented candidates to secure cryptographic primitives
obtained by transformations of well-established implemented candidates to
secure cryptographic primitives;

7. improving transformation claims or proofs;

8. transformation of cryptographic protocols;

9. recasting cryptographic concepts as topological concepts.

10.4. In this chapter all work is ours except section 10.10, which builds on ideas by
Stefan Kahrs and Eerke Boiten.

10.2 Proposal: graph completion

10.5 Proposal.

Idea We propose to complete the graph from section 10.1 into a graph such as the
following one.

• ++

����

•

��zz

kk

•

KK ::

++ •kk

ZZ KK

Comments Of the transformations necessary to complete the graph:

1. some are already known, for example the transformation of one-way
binary-string functions into cryptographically-secure pseudorandom gen-
erators (Goldreich 2004, theorem 3.5.12);

2. other transformations may be easy, for example the transformation of an
indistinguishable-from-random stream cipher into a cryptographically-
secure pseudorandom generator may be as easy as to encrypt the plain-
text 0n;

3. other transformations seem unlikely, for example a (non-trivial) transfor-
mation of a (worst-case) NP \ P formal language into an (average-case)
one-way binary-string function (but there is likely a trivial transforma-
tion, namely a constant transformation L f , where f is a fixed one-way
binary-string function, since likely exists such an f).

Benefit We see the following benefits of this proposal:

1. it gives a “full” description of the transformations between the considered
cryptographic primitives;

138

2. it shows a tight connection between the considered cryptographic prim-
itives by proving that they all stand together in the sense that their
existences rise or fall together;

3. even if the transformation (or its proof) from a cryptographic primitive P1

into a cryptographic primitive P2 turns out to be wrong, it still holds that
P1 can be transformed into P2 because there are several other paths from
P1 to P2;

4. it gives freedom to chose how to transform a cryptographic primitive P1

into a cryptographic primitive P2 because there are several paths from
P1 to P2 (although the more efficient construction is likely the edge from
P1 to P2).

10.3 Proposal: vertices addition

10.6 Proposal.

Idea We proposed to add new vertices to the graph by varying the notions of security
or by adding new cryptographic primitives, for example:

1. trapdoor functions;

2. block ciphers;

3. asymmetric ciphers;

4. digital-signature schemes;

5. hash functions;

6. message authentication codes (MAC);

7. commitment schemes.

Comments The cost of this proposal is that if we still aim for a complete graph,
then the graph becomes unmanageably large, so we may instead aim for a
direct cycle covering all vertices in the graph like the one below because this
guarantees that every cryptographic primitive can be transformed into any
other cryptographic primitive.

•

((PP
PPP

PPP
PPP

PPP •

��✰
✰✰
✰✰
✰✰
✰✰
✰✰
✰✰

•

66♥♥♥♥♥♥♥♥♥♥♥♥♥♥ •

		✓✓
✓✓
✓✓
✓✓
✓✓
✓✓
✓

•

OO

•

vv♥♥♥
♥♥♥

♥♥♥
♥♥♥

♥♥

•

OO

•

hhPPPPPPPPPPPPPP

Benefit We see the following benefits of this proposal:

1. the more security notions or cryptographic primitives that are considered,
the more complete is the picture;

139

2. if P1 is an old cryptographic primitive that is conjectured to exist and
is already in the graph, and P2 is a new cryptographic primitive that is
added to the graph, then the conjecture on the existence of P1 implies a
conjecture on the existence of P2;

3. if S1 is an old security notion that is already in the graph, and S2 is a new
security notion that is added to the graph, then the existence of a path
from S1 to S2 and vice-versa shows that S1 and S2 are equivalent, which
is evidence that they are “right” notions since it would be an unlikely
coincidence for two “wrong” notions to be equivalent.

10.4 Proposal: basing on indistinguishable-from-

random stream ciphers

10.7 Proposal.

Idea We propose to build the array of cryptographic primitives starting with indist-
inguishable-from-random stream ciphers (or cryptographically-secure pseudo-
random generators). The traditional construction starts with one-way binary-
string functions in the base, indicated by f in the tree below, and constructs
the other cryptographic primitives, indicated by •, from one-way binary-string
functions (and other primitives constructed in the meantime), as in the fol-
lowing tree.

...
...

...

•

OO

•

OO

•

OO

•

cc●●●●●●

;;✇✇✇✇✇✇✇ •

OO

f

bb❊❊❊❊❊❊❊

<<②②②②②②②

In our proposal, f in the base would be replaced by indistinguishable-from-
random stream ciphers C.

Comments There is one easy way to realise this proposal: to prepend to the above
tree the transformations C G f

1. starting at indistinguishable-from-random stream ciphers C;

2. proceeding into cryptographically-secure pseudorandom generators G;

3. finishing at one-way binary-string functions f ;

140

obtaining

...
...

...

•

OO

•

OO

•

OO

•

cc●●●●●●

;;✈✈✈✈✈✈✈ •

OO

f

bb❋❋❋❋❋❋❋

<<①①①①①①①

G

OO

C

OO

but this construction is of little interest because it is unlikely to be “optimal”
(for example if by optimal we mean with the least possible number of edges,
but we can have other meanings in mind such as the best “quality” discussed
in section 10.5).

Benefit We see the following benefit of this proposal: it appears to be easier

to construct the transformations G P of cryptographically-secure
pseudorandom generators G into other cryptographic primitives P

(for example we saw the not-too-complicated transformations G
C and G f of cryptographically-secure pseudorandom genera-
torsG into indistinguishable-from-random stream ciphers C in chap-
ter 7 and into one-way binary-string functions f in chapter 9)

than

to construct the transformations f P of one-way binary-string
functions f into other cryptographic primitives P

(for example Oded Goldreich’s book states the transformation f
G of one-way binary-string functions f into cryptographically-secure
pseudorandom generators G (Goldreich 2004, theorem 3.5.12) but
prefers to prove simpler particular cases where f has extra proper-
ties instead of the full general case because of its too-complicated
proof (Goldreich 2004, section 3.5)).

10.5 Proposal: extraction of numeric/computati-

onal content

10.8 Proposal.

Idea We propose to extract numeric/computational content from security proofs of
transformations of cryptographic primitives. This is known in cryptography
as concrete security (Bellare, Desai, Jokipii and Rogaway 1997) and in logic

141

as proof mining (Kohlenbach 2008). The extraction consists in analysing a
known proof and quantifying (or at least finding an upperbound on) a measure
of the “quality” of a cryptographic primitive.

Comments For example:

1. instead of saying that a probability PrP (n) is negligible, we could mea-
sure how fast the probability vanishes as in PrP (n) = 2−(n−1)/3 (or at
least find an upperbound as in PrP (n) ≤ 2−n);

2. instead of saying that an algorithm A(x) is polynomial-time computable,
we could measure how fast the algorithm runs as in “A(x) runs exactly
in time |x|2 + (−1)|x| + 1” (or at least find an upperbound as in “A(x)
runs in time at most |x|2 + 2”).

In the same style, we could bring the construction of algorithms breaking the
security of cryptographic primitives to the foreground:

3. instead of saying that if there is an algorithm A breaking the security
of a cryptographic primitive, then there is an algorithm C breaking the
security of another cryptographic primitive, we could present the con-
struction of C from B as in C(x, y) := B(1|x|, x ⊕ y) and point out the
material |·|, 1· and ⊕ used in this construction.

PrP (n) ∈ N
A(x) ∈ PPT

B(x, y) C(x, y)

−→

PrP (n) = 2−(n−1)/3

Time(A(x)) = |x|2 + (−1)|x| + 1

C(x, y) := B(1|x|, x⊕ y)

|·|, 1·, ⊕

Benefit We see the following benefits of this proposal:

1. having numeric/computational information on cryptographic primitives
may allow to estimate the size of security parameters to achieve a desired
level of security (Koblitz and Menezes 2007, pages 17 and 29) (Koblitz
and Menezes 2006, sections 4 and 6);

2. the numeric/computational information may help to break a tie between
two competing cryptographic primitives or transformations;

3. the numeric/computational information may help avoiding less interest-
ing transformations such as transforming a polynomial-time computable
cryptographic primitive into another cryptographic primitive by means
of an exponential-time computable transformation;

4. the numeric/computational content may indicate the power of the hard-
ware necessary to implement a transformed cryptographic primitive, wh-
ich may be relevant when the cryptographic primitive is intended to run
in low-end hardware or very fast.

142

10.6 Proposal: composition and decomposition

10.9 Proposal.

Idea We propose to improve our understanding of already-known transformations of
cryptographic primitives by means of composition or, inversely, decomposition.

Composition Given the transformations P1
T1
 P2 and P2

T2
 P3, we can pro-

duce the composed transformation P1
T2◦T1
 P3.

Decomposition Given the transformation P1
T
 P3, maybe we can produce

decomposing transformations P1
T1
 P2 and P2

T2
 P3 such that T = T2◦T1.

P1

T =T2◦T1

77
T1 // P2

T2 // P3

Comments Let us see an example of a composition and an example of a decompo-
sition.

Composition In chapter 9 we saw the composition of g· and ·t, which gives f·;
Decomposition In chapter 9 we saw the decomposition of f· into g· and ·t.

G

f·= ·t◦g·

77
g· // gG

·t // (gG)t = fG

Benefit We see the following benefits of this proposal.

Composition If the old transformations P1
T1
 P2 and P2

T2
 P3 are composed

into a new transformation P1
T2◦T1
 P3, then:

1. it is trivial to get a security proof of T2◦T1 by composing the security
proofs for T1 and T2 but we may aim at a simpler security proof for
T2 ◦ T1 using the fact that T2 in T2 ◦ T1 is not applied to arbitrary
cryptographic primitives P2 but only to cryptographic primitives P2

transformed from P1 by T1;

2. it may be possible to simplify T2 ◦ T1 into a new transformation T
and so T2 ◦ T1 guided the discovery of T .

Decomposition If the old transformation P1
T
 P3 is decomposed into new

transformations P1
T1
 P2 and P2

T2
 P3, then:

1. the decomposition may reveal new concepts underlying P2 and its
security notion;

2. the security proofs for P1
T1
 P2 and P2

T2
 P3 may be simpler than

the security proof for P1
T
 P3 because, say,

143

(a) the security proof for T1 only uses probability theory;

(b) the security proof for T2 only uses computation theory;

(c) the security proof of T mixes both theories.

10.7 Proposal: empirical tests

10.10 Proposal.

Idea We propose to empirically test a transformation P1
T
 P2 from an S1-secure

cryptographic primitive P1 to an S2-secure cryptographic primitive P2 by:

1. instantiating P1 by a well-established implemented candidate to an S1-
secure cryptographic primitive P1;

2. applying the transformation T to P1 to obtain an implemented candidate
to an S2-secure cryptographic primitive P2;

3. test the candidate to P2 with a test suite S.

P1
transform with T−−−−−−−−−−→ P2

test with−−−−−−→ S

Comments For example, if the transformation T consists in transforming a block
cipher C into a pseudorandom generator G by running the block cipher in the
counter mode of operation, then we could think of:

1. instantiate C with the Advanced Encryption Standard (AES), which is
a well-established candidate to a secure block cipher;

2. applying the transformation T to C to obtain an implemented candidate
to a secure pseudorandom generator G;

3. test G with the Diehard tests (a popular battery of statistical tests of
randomness).

AES
transform with
counter mode−−−−−−−−→ pseudorandom

generator
test with−−−−−−→ Diehard

Benefit We see the following benefits of this proposal:

1. it opens the door for applied empirical tests of transformations of cryp-
tographic primitives that so far were only subject to theoretical cryptan-
alytic examination;

2. in a area such as cryptography where there is a large need to be able to
trust an object (here a transformed cryptographic primitive), one more
way to test the object is likely welcomed so as to (in case the object
passes the test) increase our trust in the object.

144

10.8 Proposal: claim strengthening and proof we-

akening

10.11 Proposal.

Idea We propose to improve transformations of cryptographic primitives by means
of strengthening the theorems’ claims or, inversely, weakening the theorems’
proofs.

Claim strengthening Given a transformation theorem claiming that a cryp-
tographic primitive P1 can be transformed into a cryptographic primi-
tive P2, we may be able to strengthen the claim by changing the trans-
formation so that P2 has extra properties (such as length regularity or
even length preservation).

Proof weakening Given a transformation proof showing that a cryptographic
primitive P1 can be transformed into a cryptographic primitive P2 with
extra properties, we may be able to weaken the proof by changing the
transformation so that P2 does not need to have the extra properties.

Better
result

Original
result

claim strengthening (but proof complication)

OO

proof weakening

(but theorem weakening)
// Better
result

Comments

Claim strengthening Strengthening a theorem’s claim is a conventional goal
in mathematics and computer science because one usually searches for
the “best” results, often in the sense of stronger. The price to pay is
that the theorem’s proof has to be made more complicated along with
the theorem’s claim.

For example in sections 7.7, 7.8 and 7.9 we proved that indistinguisha-
bility from random implies three other security notions, where our initial
idea was to do the proof only for stream ciphers CG induced by pseu-
dorandom generators G, but then we realised that the implications are
more meaningful (indistinguishability from random is somewhat new and
so needs to be justified) if strengthened to “arbitrary” (actually, length
regular) stream ciphers. The price that we paid was:

1. to add the assumption of length regularity in the implications;

2. to discuss the meaning of length regularity as a modest security no-
tion;

3. to prove that the implications are false without length regularity.

145

Proof weakening Weakening a theorem’s proof is an unconventional goal in
mathematics but more accepted in teaching (in a loose sense including
talks, textbooks and popularisation works) because one may have to lower
the difficulty level of a proof to better pass a message. The price to pay
is that the theorem’s claim has to be weakened along with the proof.

For example we simplified proof 4.16 of theorem 4.15 by weakening for-
mula (4.10)

1. from Pr[. . .] = ε/2 to Pr[. . .] ≤ ε/2 (by replacing = by ≤), which
allowed to skip the analysis of cases (4.11) and (4.14);

2. from Pr[. . .] ≤ ε/2 to Pr[. . .] ≤ 1/2 (by taking ε := 1), which allowed
to simplify the notation and the calculations.

The price that we paid was that we had to weaken the theorem and its
security notions according to the proof.

Benefit We see the following benefits of this proposal.

Claim strengthening Strengthening a theorem’s claim may produce a better
result for research proposes.

Proof weakening Weakening a theorem’s proof may produce a better result
for teaching.

10.9 Proposal: transformation of cryptographic

protocols

10.12 Proposal.

Idea We propose to study transformations of cryptographic protocols P as done
with cryptographic primitives, namely treating P as a “black-box” for which:

1. we cannot “look inside” P ;

2. we can only access P through its two “interfaces”

(a) x
in→ P for input, as in “we give x as an input to P”;

(b) P
out→ y for output, as in “we receive y as an output from P”.

Comments For example, let us consider the following simple cryptographic proto-
col P , where E is an encryption algorithm, kA is Alice’s key and kB is Bob’s
key.

(1) The cryptographic protocol receives x as input.
(2) Alice computes and sends E(kA, x) to Bob.
(3) Bob computes and sends E(kB, E(kA, x)) to Alice.
(4) The cryptographic protocol gives E(kB, E(kA, x)) as output.

Then:

146

1. saying that we cannot “look inside” P means that we cannot change the
inner-workings of P , for example we cannot

(a) change step (1) to “The cryptographic protocol receives x and y as
inputs”;

(b) drop step (3);

(c) add an new step between steps (2) and (3);

2. saying that we can only access P through its “interfaces” x
in→ P and

P
out→ y means that the only two things that we can do with P is to

(a) give a value x as input to the P , that is x
in→ P ;

(b) receive a value y as output from P , that is P
out→ y.

The way in which we can use P is limited but still we can do some transfor-
mations of P , for example:

1. we can compose P with some cryptographic protocol, for example with
P itself, getting the new cryptographic protocol P ◦ P that on input x
outputs

E
(
kB, E

(
kA, E(kB, E(kA, x))

))
,

or schematically,

x
in→ P

out→ E(kB, E(kA, x))
in→ P

out→ E
(
kB, E

(
kA, E(kB, E(kA, x))

))
.

2. we can

(a) pre-process with a function f the input x of P before giving it to P ,
which means that instead of giving x we actually give f(x);

(b) post-process with a function g the output y of P , which means that
instead of receiving y we actually receive g(y);

getting the new cryptographic protocol g ◦P ◦ f that on input x outputs

g
(
E
(
kB, E(kA, f(x))

))
,

or schematically,

x
pre→ f(x)

in→ P
out→ E

(
kB, E(kA, f(x))

) post→ g
(
E
(
kB, E(kA, f(x))

))
.

Benefit We see the following benefit of this proposal: to apply to transformation of
cryptographic protocols the ideas that we developed for, and the lessons that
we learned from, transformation of cryptographic primitives.

10.10 Proposal: recasting cryptographic concepts

as topological concepts

10.13 Proposal. Often security notions have definitions similar to

147

the probability that a reasonable algorithm “sees” the difference between
an “ideal” object X(1n) (for example a truly random binary string of
length n) and a “real” object Y (1n) (for example the prefix of length n
of the stream of a pseudorandom generator) is negligible, that is

∀A, p ∃N ∀n > N |PrA(X(1n))− PrA(Y (1n))| < 1/p(n), (10.1)

where

1. A ranges over the polynomial-time probabilistic algorithms;

2. p ranges over the positive polynomials;

3. N and n range over N.

Stefan Kahrs suggested the idea of:

1. giving topologies to sets used in cryptography, for example to give to the set RN

(of the functions f : N → R) the topology having as a base the set of “balls”
of the form

Bp(f) := {g ∈ RN | ∃N ∀n > N |f(n)− g(n)| < 1/p(n)},

where p is a positive polynomial;

2. recasting (10.1) as saying that for all reasonable algorithms A, the “points”
X(1n) and Y (1n) are topological indistinguishable, or more precisely that for
all polynomial-time probabilistic algorithms A, we have that PrA(X(1n)) and
PrB(Y (1n)) are topologically indistinguishable;

3. asking questions about the continuity of transformations of cryptographic
primitives;

4. determining how low are these topological spaces in the hierarchy of separation
axioms T0–T6;

5. using notions from topology, for example compactness;

6. using results from topology, for example that the composition of continuous
functions is continuous;

7. abstract from quantifiers (such as ∃N ∀n > N) by moving them from the
cryptographic foreground to the topological background (as in the definition
of Bp(f)).

Eerke Boiten suggested that a topological approach to the transformation of cryp-
tographic primitives may link “ideal” secure cryptographic primitives (for example
one-way functions) and “real” maybe-secure cryptographic primitives (for example
the Secure Hash Algorithm 3 SHA3), relying on the premise that “real” maybe-
secure cryptographic primitives approximate “ideal” secure cryptographic primi-
tives: if a transformation T , of a secure theoretic cryptographic primitive P1 into
another secure theoretic cryptographic primitive P2, is continuous, then T should

148

also transform a “real” maybe-secure applied cryptographic primitive P ′1 into an-
other “real” maybe-secure applied cryptographic primitive P ′2; in symbols, if

(∗) T (P1) = P2
︸ ︷︷ ︸

T transforms P1 into P2

, (†) ∀P, P ′ (P ≈ P ′ ⇒ T (P) ≈ T (P ′))
︸ ︷︷ ︸

T is continuous

, (‡) P ′i ≈ Pi
︸ ︷︷ ︸

P ′
i approximates Pi

,

then

T (P ′1)
(†)(‡)≈ T (P1)

(∗)
= P2

(‡)≈ P ′2,

so (assuming that ≈ is transitive)

T (P ′1) ≈ P ′2
︸ ︷︷ ︸

T approximately transforms P ′
1 into P ′

2

.

10.11 Conclusion

10.14. In this chapter we presented some proposals to study more transformations
of cryptographic primitives following these research lines:

1. completion of the graph;

2. addition of new vertices to the graph;

3. basing the construction of cryptographic primitives on indistinguishable-from-
random stream ciphers;

4. extraction of numeric/computational content;

5. composition and decomposition of transformations;

6. empirically test implemented candidates to cryptographic primitives obtained
by transformations;

7. improving transformation claims or transformation proofs;

8. transformation of cryptographic protocols;

9. recast cryptographic concepts as topological concepts.

149

150

Chapter 11

Proof presentation of
transformation of cryptographic
primitives

11.1 Introduction

11.1. Similarly to what we said in paragraph 10.1, in section 1.2 we identified
a problem in cryptography: definitions, theorems and proofs in cryptography are
often so complicated that some incorrect “proofs” go unnoticed. In sections 1.3,
1.4, 1.5 and 1.6 we proposed a solution for the problem. The solution is divided
into components and one of the components is proof presentation. In section 1.5
we argued that proof presentation helps solve the problem by helping to check the
correctness of proofs, helping to understand proofs and increasing the audience for
proofs. So, ultimately, in the “big picture” of things, our work devoted to proof
presentation hopefully contributes to the solution of the problem.

11.2. To be more concrete, we give three examples of small insights that we devel-
oped.

1. Security proofs of transformations of cryptographic primitives can easily be-
come complex because of

(a) intricate definitions of cryptographic primitives and security notions;

(b) several theories used in the security proofs;

(c) delicate syntactical rewriting of formulas;

(d) large number of objects mentioned in the proof such as cryptographic
primitives, security notions, security parameters, algorithms, formulas,
calculations and divisions in cases;

and so on, thus being organised and having a clear structure helps managing
the complexity of proofs. Let us give as examples some simple, yet effective,
small tricks to help organising and structuring proofs:

151

(a) stating at the beginning of the proof its premises/assumptions and its
conclusions/goals (because we may lose sight of what we know and what
we want to know in a long proof, find it convenient to be reminded, or
simply to introduce the notation that will be used such as the one-way
binary-string function being named f and the algorithm that tries to
break its security being named A);

(b) using text structures (such as lists, indentation, tables and text division
into paragraphs) to organise content;

(c) dividing the proof into lemmas, claims, assumptions and goals (to “divide
and conquer” and also because lemmas and claims may be provable in
isolation);

(d) giving labels to assumptions, goals, claims and (parts of) formulas, and
then refer to them by their labels instead of repeating them (such as “by
formula (9)” instead of “by ∀A,B Pr[A(. . .) = B(. . .)] ∈ N ”) but avoid-
ing so many labels that it becomes difficult to keep track of them (it may
be difficult to find the objects with labels (1), (2), (3), . . ., (∗), (†), (§), . . .,
(α), (β), (γ), . . . and (P), (P ′), (P ′′), . . . in the middle of the text);

(e) using easy-to-remember notation (for example algorithms attacking cryp-
tographic primitives P1, P2 and P3 are better denoted by A1, A2 and A3

than by X , X ′ and X ′′, or even worse, by ℵ, β and c);

(f) being careful with the writing style (for example mixing the wordings
“from P we get Q” and “we get Q from P” can be confusing because
they express implications P ⇒ Q and Q ⇐ P where the arrows have
opposing directions, or even worse, writing the nonsensical “due to P ,
since Q, we have R, because of S, by T”);

(g) relying on conventions and abbreviations to shorten a formula (such as
Pr[X = Y] meaning Pr[x = y : x ← X, y ← Y]) but not to the point of
becoming difficult to interpret the formula (it may not be clear whether
Pr[X = X] means Pr[x = x : x← X] or Pr[x = x′ : x← X, x′ ← X]).

The listed tricks are not specific to cryptography but become particularly
important there to manage complexity. A list of this nature would never be
exhaustive but the examples given should be enough to explain the kind of
tricks that we have in mind.

2. There is a tension between producing a deep proof and producing a clear proof
because they are often orthogonal aims. Let us give as examples some simple,
yet effective, small tricks to help writing clear proofs:

(a) the type of proof is often decided by the audience of the proof, namely

i. for research-like activities, such as publishing a research article or
giving a research talk in a specialised conference, a deep proof is
better;

ii. for teaching-like activities, such as writing a textbook for students or
giving a popularisation talk for laypersons, a clear proof is better;

152

(b) if space and time allows it, it is possible not to have to make a choice
between the two proofs by presenting both of them as complements of
one another;

(c) sometimes a deep proof can also be made clear by rewriting the proof
using high-level/abstract concepts such as limn→∞ xn = l instead of low-
level/concrete objects such as

∀ε > 0 ∃N ∈ N ∀n ∈ N (n > N ⇒ |xn − l| < ε);

(d) sometimes a deep proof only lacks clarity because it is badly written,
which could be substantially improved if we were allowed the time to
think more about the proof so as to get a better understanding of it and
therefore an enhanced ability to present the proof well (unfortunately,
we find ourselves too often in a situation where time urges because we
need to submit that article by the deadline of the next conference, we
need that publication to improve our odds of getting a grant or a job
promotion, or we are too busy teaching, writing referee reports or taking
care of administrative tasks).

3. Sometimes the graphical appearance of a written proof makes a difference in
understanding the proof. Let us give as examples some simple, yet effective,
small tricks to help writing more-graphical proofs:

(a) drawing a diagram that captures the statement that we want to prove
(for example, De Morgan’s law A ∩B = A∪B becomes evident when we
draw it as a Venn diagram);

(b) instead of being bounded by the usual linear presentation of written text,
we may want to take advantage of the two-dimensional shape of paper
and write, say, in a tree-like shape (for example when proving the zero-
product property xy = 0 ⇒ x = 0 ∨ y = 0 by considering the three
cases x < 0, x = 0 and x > 0, which in turn are divided into the three
subcases y < 0, y = 0 and y > 0);

(c) if some parts of a proof are under the scope of other parts, this can be
made apparent by using indentation to indicate scope as usually done
with programming languages (for example

Assume P . for (i = 1; i <= n; i++) {
Then P . sum += i;

So P ⇒ P . }
where the second lines are under the scope of the first lines).

(d) it often helps to present a statement by a figure (such as a commutative
diagram expressing f ◦ g = g ◦ f) as a complement to its presentation
in words and symbols (such as “functions f and g commute under com-
position in the sense of f ◦ g = g ◦ f”), or at least present a figure-like

formula (such as x
g7→ ··· f7→ y

g← [··· f← [x).

153

11.3. We already saw in previous chapters the 11 proof presentations listed in the
following table.

Section Proof presentation

1.5 Proof idea
1.5 Visualisation of a proof
1.5 Emphasising proof structure
5.2 Bad cryptographic definition
5.3 Incorrect “proof”
5.4 Notation improvement
6.4 Proof idea
7.4 Schematic proof
7.5 Wedding-cake notation
8.4 Carving out a theory
9.4 Indirect proof

In this chapter we:

1. recover some of these proof presentations;

2. present some new proof presentations.

Each proof presentation is turned into a case study with the following 6-part struc-
ture.

Introduction: idea Idea of the problem and solution.

Problem: number theory Easy number-theoretic example of the problem.

Solution: number theory Easy number-theoretic example of the solution.

Problem: cryptography Difficult cryptographic example of the problem.

Solution: cryptography Difficult cryptographic example of the solution.

Conclusion: lesson Lesson learned about the problem and solution.

11.4. In this chapter all work is ours except:

1. the triangular inequality and its proof without using intervals in section 11.2
(which are likely “folklore”);

2. the notion of eventual domination for functions in section 11.5 (which is likely
“folklore”).

11.2 Proof presentation: proof idea

11.5 Case study.

Introduction: idea Sometimes there is a clear idea behind a proof that is not clear
from the written proof, and it becomes a non-trivial exercise for the reader to
recover the idea from the written proof. We think that this happens in three
steps:

154

1. the prover uses his/her intuition to produce a clear idea for the proof;

2. the prover writes down the proof in a semi-formal or formal language
while taking care of technical details, and in the process the idea becomes
“buried” under the language and the technicalities;

3. the reader has to reverse the prover’s second step in order to expose the
prover’s first step and so recover the idea.

We are not claiming that the prover’s second step is not worthwhile, to the
contrary, it is necessary to produce a proof formalised enough to be checked
for correctness. What we are claiming is that something important is lost in
the second step, namely the idea that would illuminate the reader in three
ways:

1. by explaining why the proof is the way it is (instead of being the “pull of a
rabbit out of a hat” criticised by Dan Grundy (Grundy 2008, page 20));

2. by explaining why the result is true (instead of just establishing that the
result is true);

3. by working as a mnemonic for the proof (we have good memory for clever
ideas but not for long and arbitrary-looking manipulations of symbols).

Problem: number theory Let us consider the following proposition (the triangular
inequality) and its proof.

Proposition. We have ∀x, y ∈ R |x+ y| ≤ |x|+ |y|.
Proof. Let x, y ∈ R be arbitrary. We have:

x ≤ |x| ∧ x ≥ −|x| ∧ y ≤ |y| ∧ y ≥ −|y| ⇒
x+ y ≤ |x|+ |y| ∧ x+ y ≥ −(|x| + |y|) ⇒

|x+ y| ≤ |x|+ |y|.

There is a simple idea for the proof but the idea is not easily seen from the
proof: knowing that x is in the interval [−|x|, |x|] and that y is in the inter-
val [−|y|, |y|], we can calculate an interval [−(|x|+ |y|), |x|+ |y|] where x+ y
is, concluding |x + y|≤ |x| + |y|. Next we are going to develop further this
idea.

Solution: number theory Let x ∈ [a, b] and y ∈ [c, d], and let us define an opera-
tion + on intervals [a, b] and [c, d] such that (∗) x+y ∈ [a, b]+ [c, d]. There are
two natural definitions, which give the same result and for which (∗) holds:

1. [a, b] + [c, d] := [a+ c, b+ d];

2. [a, b] + [c, d] := {r + s ∈ R | r ∈ [a, b], s ∈ [c, d]};

(assuming a ≤ b and c ≤ d to avoid pathological cases such as [0,−1]+[0, 1] :=
[0 + 0, −1 + 1] = [0, 0] 6= ∅ by point 1 but [0,−1] + [0, 1] := {r + s ∈ R |

155

r ∈ ∅, s ∈ [0, 1]} = ∅ by point 2, where [0,−1] := {r ∈ R | 0 ≤ r ≤ −1} = ∅).
This is illustrated in the figure below.

[
a x b

]

[
c y d

]

[
a+c x+y b+d

]

In the next proof we make use of this natural addition of intervals to get a
proof displaying a clear idea.

Proof.

1. We define
[a, b] + [c, d] := [a+ c, b+ d],

so, for all x, y ∈ R,

x ∈ [a, b] ∧ y ∈ [c, d] ⇒ x + y ∈ [a+ c, b+ d].

2. For arbitrary x, y ∈ R, we have

x ∈ [−|x|, |x|] ∧ y ∈ [−|y|, |y|] ⇒
x + y ∈ [−|x|, |x|] + [−|y|, |y|] = [−(|x|+ |y|), |x|+ |y|] ⇒

|x+ y| ≤ |x|+ |y|.

Problem: cryptography Let us consider proof 7.34 (summarised below).

Proposition. For all length-regular stream ciphers C, if C is indistinguishable
from random, then C is semantically secure.

Proof. The stream cipher C = (K,P, C, K, E,D) being indistinguishable from
random means

∀A,A′ PrA′
(
E(K(1n), A(1n)1), 1

n, A(1n)2
)
−

PrA′(U|E(K(1n),A(1n)1)|, 1
n, A(1n)2) ∈ N .

The stream cipher C being semantically secure means

∀B′ ∃C ′ ∀B, f, g
Pr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr
[
C ′

(
1|B(1n)1|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N .

Taking A(x) := (B(x)1, B(x)) andA′(x, y, z) := Tr[B′(x, f(z, y), y, z2) = g(z, y)]
in the premise, we get

∀B′, B, f, g
Pr

[
B′

(
E(K(1n), B(1n)1), f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
−

Pr
[
B′

(
U|E(K(1n),B(1n)1)|, f(B(1n), 1n), 1n, B(1n)2

)
= g(B(1n), 1n)

]
∈ N .

We have |E(0, 1|B(1n)1|)| = |E(K(1n), B(1n)1)| by the length regularity of C,
so taking C ′(w, x, y, z) := B′(U|E(0,w)|, x, y, z), we get the conclusion.

156

This proof has two main ideas:

1. moving from an algorithm A′ computing a truth value 1 to an algo-
rithm B′ computing a function g by A′(x, y, z) := Tr[B′(x, f(z, y), y, z2) =
g(z, y)];

2. hardwiring of a uniform random variable U|E(0,w)| in the algorithm C ′ by
C ′(w, x, y, z) := B′(U|E(0,w)|, x, y, z).

Moreover, the proof as it is written is:

1. good to check for correctness (not so much the summarised proof above
but the more detailed proof 7.34);

2. bad to show the two ideas.

We see this as problem that we should fix.

Solution: cryptography The best way to fix the problem identified above is to give
a new proof that is both:

1. good to check for correctness;

2. good to show the two ideas.

Because we lack such an ideal proof, we give a complementary proof that is:

1. bad to check for correctness;

2. good to show the two ideas.

Proof. The proof has the following two main ideas.

1. Indistinguishability from random essentially has the form

∀A′ Pr[A′(. . .) = 1]− Pr[A′(. . .) = 1] ∈ N ,

so it talks about an algorithm A′ computing the truth value 1. Semantic
security essentially has the form

∀B′ ∃C ′ ∀g Pr[B′(. . .) = g(. . .)]− Pr[C ′(. . .) = g(. . .)] ∈ N ,

so it talks about algorithms B′ and C ′ computing a function g. To move
from indistinguishability from random to semantic security, we have to
solve the following problem: how to “upgrade” from an algorithm A′

computing the truth value 1 to an algorithm B′ (and C ′) computing a
function g, in the sense of, given B′ (and g), to choose an A′ such that

A′(. . .) = 1 ⇔ B′(. . .) = g(. . .).

When the problem is phrased this clearly, the solution is fairly clear:

A(. . .) := Tr[B′(. . .) = g(. . .)].

157

2. The previous idea leads us to an intermediate formula essentially of the
form

∀B′ ∀g Pr[B′(E(. . .), . . .) = g(. . .)]− Pr[B′(U..., . . .) = g(. . .)] ∈ N ,

where now we made explicit the inputs E(. . .) and U... because they will
play a role. Semantic security essentially has the form

∀B′ ∃C ′ ∀g Pr[B′(E(. . .), . . .) = g(. . .)]− Pr[C ′(. . .) = g(. . .)] ∈ N ,

so it asks to construct an algorithm C ′. To move from the intermediate
formula to semantic security, we have to solve the following problem: how
to construct the algorithm C ′, in the sense of, given an algorithm B′, to
produce an algorithm C ′ such that

C ′(. . .) = B′(U..., . . .).

When the problem is phrased this clearly, the solution is clear:

C ′(. . .) := B′(U..., . . .),

where U... is “hardwired” in B′ to create C ′, which can be done because
C ′ is intended to be a probabilistic algorithm and so it can create its own
U... using its own “internal coin tosses”.

Let us summarise, less precisely but more clearly, these two ideas.

1. Indistinguishability from random talks about A′ computing 1 while se-
mantic security talks about B′ computing g, and we can move from the
former to the latter by A′ := Tr[B′ = g].

2. After applying the previous idea:

(a) indistinguishability from random now talks about B′ “not seeing”
the difference between a ciphertext c and a random string Un, that
is B′(c) = B′(Un);

(b) semantic security talks about what can be computed by B′ seeing
a ciphertext c can also be computed by some C ′ without seeing the
ciphertext c, that is B(c) = C ′().

We can move from the former to the latter by taking C ′() := B′(Un):

indistinguishability from random: B′(c) = B′(Un),

hardwiring Un in B to get C ′: B′(Un) = C ′(),

semantic security: B′(c) = C ′().

158

or, more diagrammatically,

B′(Un)

hardwiring Un

in B′ to get C ′

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹✹
✹✹

✹

B′(c)

indistinguishability
from random

✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠✠

semantic
security

C ′()

where the double lines denote equality.

To be sure, we are not arguing that this new proof should replace the original
proof (because the new proof is not formalised enough to be checked for cor-
rectness), only that the new proof complements the original proof by showing
more clearly the two ideas behind the original proof.

Conclusion: lesson Sometimes a proof follows a clear idea not easily read from the
proof. This deprives the reader from an explanation to the proof, to the truth
of the result, and a mnemonic for the proof. Instead of forcing the reader to
non-trivially extract the idea from the proof, we propose that the proof should
be rewritten in a way that exposes the idea or at least the idea should be given
as a complement to the proof.

11.3 Proof presentation: schematic proof and proof

reorganisation

11.6 Case study.

Introduction: idea Sometimes proofs have a structure more complicated than needed.
A simple example is a direct proof of P ⇒ Q versus a direct proof unneces-
sarily combined with a proof by contradiction.

Direct Direct and contradiction
Assume P . From P get . . . so Q. Assume P . Aiming at a con-

tradiction, assume ¬Q. From P
get . . . so Q. From Q and ¬Q we
get a contradiction ⊥. So Q.

P...
Q

P...
Q ¬Q
⊥
Q

Proof organisation is the act of changing the arguments and their order in
proofs to make proofs clearer and/or shorter. It can be achieved in two
ways (Dijkstra 2000, page 22):

159

1. the “bad” way, which consists in omitting details that help understand
the proof;

2. the “good” way, which consists in eliminating redundancies in the proof
and finding shorter “proof paths”.

In order to do proof reorganisation in the “good” way, it is often convenient
to express the proof schematically to better reveal its structure. There are
various schematic notations, for example:

1. Wim H. J. Feijen’s notation (Grundy 2008, page 17) (which works well
for linear proofs) with the format like

¬(P ∧ Q)

⇔ {De Morgan’s law }
¬P ∨ ¬Q

⇔ {Commutativity }
¬Q ∨ ¬P

2. the natural-deduction notation (Gentzen 1935, page 188) (which works
well for unidirectional trees) with the format like

¬P ¬Q
¬P ∧ ¬Q

∧ introduction

¬(P ∨ Q)
De Morgan’s law

3. Daniel J. Velleman’s notation (Velleman 2006, page xii) (which is typo-
graphically convenient and programming-like but not so graphical) with
the format like

Assume P .

Thus P .

Thus P ∨ Q.

Thus P ⇒ P ∨ Q.

4. “our” notation (which works well for unidirectional and bidirectional
trees) with the format like

¬P ¬Q
Weakening

w
w
w
�

w
w
w
�

Weakening

¬P ∨ ¬Q
~
w
w
�

De Morgan’s law

¬(P ∧ Q)

160

Problem: number theory Let us consider the following proposition and its proof.

Proposition. We have ∀x ∈ R ∀n ∈ N \ {0, 1} (xn = x ⇒ x ∈ {−1, 0, 1}).
Proof. Let O := {1, 3, 5, . . .} denote the set of positive odd numbers and E :=
{2, 4, 6, . . .} denote the set of positive even numbers. We have that xn = x is
equivalent to x(xn−1 − 1) = 0 (notice that xn−1 is defined for x = 0 because
n − 1 ≥ 1), which is equivalent to x = 0 or xn−1 − 1 = 0. If n ∈ E, then
n − 1 ∈ O, so xn−1 − 1 = 0 is equivalent to xn−1 = 1 that is equivalent to
x = 1. If n ∈ O, then n− 1 ∈ E because n 6= 1, so xn−1 − 1 = 0 is equivalent
to xn−1 = 1 that is equivalent to x = ±1. This proof is essentially presented
diagrammatically below.

xn = x
~
w
w
�

n− 1 ≥ 1

x(xn−1 − 1) = 0
~
w
w
�

zero-product property

x = 0 ∨ xn−1 − 1 = 0
~
w
w
�

logic

(n ∈ E
∼∼∼∼∼∼∼

∧ xn−1 − 1 = 0)
︸ ︷︷ ︸

∨ (n ∈ O
∼∼∼∼∼∼∼

∧ xn−1 − 1 = 0)
︸ ︷︷ ︸

~
w
w
�

~
w
w
�

n 6= 1

n− 1 ∈ O
∼∼∼∼∼∼∼∼∼∼∼∼

∧ xn−1 − 1 = 0
..................................

n− 1 ∈ E
∼∼∼∼∼∼∼∼∼∼∼∼

∧ xn−1 − 1 = 0
..................................

arithmetic

~
w
w
�

~
w
w
�

arithmetic

n− 1 ∈ O ∧ xn−1 = 1
.......................

n− 1 ∈ E ∧ xn−1 = 1
.......................

arithmetic

w
w
w
�

w
w
w
�

arithmetic

x = 1 x = ±1

From the prose proof it is not easily noticeable, but from the diagrammatic
proof we see more easily that the proof is wasteful in three ways:

1. from the first underlined part (which is xn = x) to the second under-
lined part (which is x(xn−1 − 1) = 0) there is a “large” step (which is
xn = x ⇔ xn − x = 0 ⇔ xxn−1 − x = 0 ⇔ x(xn−1 − 1) = 0),
but from the first underdotted parts (which are xn−1 − 1 = 0) to the
second underdotted parts (which are xn−1 = 1) there is only a “small”
step, so we can avoid the “small” step by rewriting the third underlined
part (which is xn−1 − 1 = 0) as xn−1 = 1;

161

2. the underdotted parts (which are xn−1 − 1 = 0 and xn−1 = 1) are the
same on both branches of the proof, so we can avoid this repetition by
moving the underdotted parts to before the branching;

3. the first underwaved parts (which are n ∈ E and n ∈ O) are introduced
but what is used are the second underwaved parts (which are n− 1 ∈ O
and n− 1 ∈ E), so we can skip the first underwaved parts.

Solution: number theory Now we repeat the diagrammatic proof with the three
improvements mentioned above implemented.

Proof.

xn = x
~
w
w
�

n− 1 ≥ 1

x(xn−1 − 1) = 0
~
w
w
�

zero-product property

x = 0 ∨ xn−1 = 1
~
w
w
�

logic, n 6= 1

(n− 1 ∈ O ∧ xn−1 = 1)
︸ ︷︷ ︸

∨ (n− 1 ∈ E ∧ xn−1 = 1)
︸ ︷︷ ︸

arithmetic
w
w
w
�

w
w
w
�

arithmetic

x = 1 x = ±1

We see that the number of edges of the diagram is reduced from 10 to 6, which
is a considerable shortening.

Problem: cryptography Let us consider proof 6.8. The way in which we wrote it
is already organised, so let us schematically present a slightly less organised
variant below for example purposes.

Proposition. Let f be a fixed collision-resistant binary-string function. For all
length-nondecreasing binary-string functions g, if g is one-way, then f ◦ g is
one-way.

Proof.

∀A Pr[|A(1n)| ≥ n ∧
A(1n)1 6= A(1n)2 ∧

f(A(1n)1) = f(A(1n)2)] ∈ N
∀B Pr

[
g
(
B(g(Un), 1n)

)
=

g(Un)
]
∈ N

︸ ︷︷ ︸

w
w
w
�

Pr[Q ∨ R] ≤ PrQ+ PrR
f, g ∈ N ⇒ f + g ∈ N
f ≤ g ∈ N ⇒ f ∈ N

∀A,B Pr
[(
|A(1n)| ≥ n ∧ A(1n)1 6= A(1n)2 ∧

..

f(A(1n)1) = f(A(1n)2)
)
∨ g

(
B(g(Un), 1n)

)
= g(Un)

..

]
∈ N

162

w
w
w
�

A(x) :=
(
g
(
C(f ◦ g(U|x|), x)

)
, g(U|x|)

)

..

B(x, y) := C(f(x), y)
..

∀C Pr
[(∣
∣g
(
C(f ◦ g(Un), 1n)

)∣
∣ + |g(Un)| ≥ n ∧

...

g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧

...

f ◦ g
(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

)
∨

...

g
(
C(f ◦ g(Un), 1n)

)
= g(Un)

]
∈ N

...
w
w
w
�
|g(Un)| ≥ n

∀C Pr
[(
g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧

f ◦ g
(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

)
∨

g
(
C(f ◦ g(Un), 1n)

)
= g(Un)

]
∈ N

w
w
w
�

(x 6= x′ ∧ f(x) = f(x′)) ∨
x = x′ ⇔ f(x) = f(x′)

∀C Pr
[
f ◦ g

(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N

We can see that the proof is complicated in two ways:

1. the first three underlined parts (which are |A(1n)| ≥ n, |A(1n)| ≥ n again
and · · ·+|g(Un)| ≥ n) are “dragged” along the proof only to be eliminated
by the fourth underlined part (which is g(Un) ≥ n) but this elimination
could be done sooner for simplicity;

2. we move from the first underdotted part (which is ∀A,B . . .) to the third
underdotted part (which is ∀C . . .) by the instantiation in the second
underdotted part (which is A(x) := · · · and B(x, y) := · · ·) but this in-
stantiation is actually two instantiations (one from A and another one for
B) that act disjointly in the first underlined part (which is a disjunction
in which the left disjunct mentions A but not B and the right disjunct
mentions B but not A), so they could be done separately for simplicity.

Solution: cryptography By simplifying the two complications mentioned, we obtain
proof 6.8, which we summarise below diagrammatically for ease of comparison
with the above variant.

163

Proof.

∀A Pr[|A(1n)| ≥ n ∧
A(1n)1 6= A(1n)2 ∧

f(A(1n)1) = f(A(1n)2)] ∈ N
A(x) :=

(
g
(
C(f ◦ g(U|x|), x)

)
,

g(U|x|)
)

w
w
w
�

∀C Pr
[∣
∣g
(
C(f ◦ g(Un), 1n)

)∣
∣ + |g(Un)| ≥ n ∧

g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧

f ◦ g
(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N

|g(Un)| ≥ n

w
w
w
�

∀C Pr
[
g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧

f ◦ g
(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N

∀B Pr
[
g
(
B(g(Un), 1n)

)
=

g(Un)
]
∈ N

w
w
w
�

B(x, y) :=

C(f(x), y)

∀C Pr
[
g
(
C(f ◦ g(Un), 1n)

)
=

g(Un)
]
∈ N

︸ ︷︷ ︸

w
w
w
�

Pr[Q ∨ R] = PrQ+ PrR
f, g ∈ N ⇒ f + g ∈ N
f ≤ g ∈ N ⇒ f ∈ N

∀C Pr
[(
g
(
C(f ◦ g(Un), 1n)

)
6= g(Un) ∧

f ◦ g
(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

)
∨

g
(
C(f ◦ g(Un), 1n)

)
= g(Un)

]
∈ N

w
w
w
�

(x 6= x′ ∧ f(x) = f(x′)) ∨
x = x′ ⇔ f(x) = f(x′)

∀C Pr
[
f ◦ g

(
C(f ◦ g(Un), 1n)

)
= f ◦ g(Un)

]
∈ N

Conclusion: lesson Some proofs have less clear and redundant parts that make the
proofs more difficult to read and longer than they have to be. Proof reorgani-
sation addresses these problems in three steps:

1. writing the proof using some schematic notation that reveals the proof
structure;

2. analysing the proof structure looking for

(a) arguments that can be reordered in a simpler way;

(b) joint arguments that can be done in a simpler way separately;

(c) repeated arguments that can be eliminated;

(d) arguments that are only partially used;

and so on;

3. rewriting the proof correcting the problems found.

The result is a simpler and/or shorter proof than the original proof.

164

11.4 Proof presentation: wedding-cake notation

11.7 Case study.

Introduction: idea There are proofs in which part of a formula is repeated unma-
nipulated through the calculations. This was called “syntactic baggage” and
criticised by Dan Grundy (Grundy 2008, page 36). Prompted by this crit-
icism, we propose a notation that aims to avoid “syntactic baggage”. This
notation has the format exemplified below.

¬(P ⇒ Q)

¬(¬P ∨ Q)

¬¬P ∧ ¬Q

⇔ P ∧ ¬Q

The selection of a subformula to manipulate while leaving the remaining
part of the formula unchanged is reminiscent of Jim Grundy’s window in-
ference (Grundy 1993, chapter 2).

Problem: number theory Let us consider the following proposition and its proof.

Proposition. We have ∀n ∈ N (n+1)2(n−1)+(n3+n2−n−1) ≡ 0 (mod 2).

Proof. Let n ∈ N. We calculate

(n+ 1)2(n− 1) + (n3 + n2 − n− 1) =

(n + 1)((n+ 1)(n− 1)) + (n3 + n2 − n− 1) =

(n+ 1)(n2 − 1) + (n3 + n2 − n− 1) =

(n3 + n2 − n− 1) + (n3 + n2 − n− 1) =

2(n3 + n2 − n− 1) ≡
0 (mod 2).

We can see that almost all formulas occurring in the proof are divided into
two parts:

1. a left part that is manipulated through the proof;

2. an underlined right part, a piece of “syntactic baggage”, that is not ma-
nipulated and just repeated throughout the proof.

The “syntactic baggage” creates three difficulties while writing and reading
the proof:

1. we have to keep copying the “syntactic baggage” from one line to another;

2. we have to keep reading the “syntactic baggage” just to realise that it is
not manipulated;

3. if we make a mistake in one of the copies of the “syntactic baggage”, then
the proof becomes incorrect.

165

Solution: number theory An obvious but uninteresting solution would be to give

a name (say α) to the “syntactic baggage” (which is n3 + n2 − n − 1) and
replace the occurrences of the “syntactic baggage” by the name (for example
(n + 1)2(n − 1) + (n3 + n2 − n − 1) would become (n + 1)2(n − 1) + α). A
less obvious but more interesting solution is the notation used in the proof
below that allows to manipulate the left parts while avoiding repetitions of
the “syntactic baggage”.

Proof. Let n ∈ N. We calculate

(n+ 1)2(n− 1)

(n+ 1)((n+ 1)(n− 1))

(n + 1)(n2 − 1)

n3 + n2 − n− 1
︸ ︷︷ ︸

=α

+ (

α:=
︷ ︸︸ ︷

n3 + n2 − n− 1) = 2α ≡ 0 (mod 2).

We call this notation “wedding cake” notation because when turned upside
down it sometimes looks like a wedding cake as shown below.

zzz
yyyyy

xxxxxxx
wwwwwww

Problem: cryptography Dan Grundy gave an example (Grundy 2008, page 36)
where “syntactic baggage” appears in four out of six lines from a proof in
cryptography. We have encountered the same problem: in proof 7.13 (sum-
marised below), the “syntactic baggage” PrB′

(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)

(underlined in the summary) appears three times.

Proposition. For all pseudorandom generators G, if G is cryptographically
secure, then CG is indistinguishable from random.

Proof. The pseudorandom generator G being cryptographically secure means

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N .

The stream cipher CG being indistinguishable from random means

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|EG(K(1n),B(1n)1)|, 1
n, B(1n)2) ∈ N .

Taking A(x) := (B(x)1, B(x)) and A′(x, y, z) := B′(x⊕z1, y, z2) in the premise,
we get

∀B,B′ PrB′(G(Un, 1
|B(1n)1|)⊕ B(1n)1, 1

n, B(1n)2)−
PrB′(U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, 1

n, B(1n)2) ∈ N .

166

Substituting G(Un, 1
|B(1n)1|)⊕ B(1n)1 by EG(Un, B(1n)1), we get

∀B,B′ PrB′
(
EG(Un, B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(Un,1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting Un by K(1n), we get

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U|G(K(1n),1|B(1n)1|)| ⊕ B(1n)1, 1
n, B(1n)2) ∈ N .

Substituting U|G(K(1n),1|B(1n)1|)| ⊕B(1n)1 by U ′
|G(K(1n),1|B(1n)1|)|

, we get

∀B,B′ PrB′
(
EG(K(1n), B(1n)1), 1

n, B(1n)2
)
−

PrB′(U ′|G(K(1n),1|B(1n)1|)|, 1
n, B(1n)2) ∈ N .

Substituting |G(K(1n), 1|B(1n)1|)| by |EG(K(1n), B(1n)1)|, we get the conclu-
sion.

Solution: cryptography As before, we can use the wedding-cake notation that avoids
the syntactic baggage: this is done in proof 7.21 (summarised below).

Proof. The top line of the two “wedding cakes” below says that G is crypto-
graphically secure.

∀...A,A′

B,B′
..............

Pr...... A
′(G(Un, 1

|A(1n)1|), 1n, A(1n)2)

B′(
........

G(Un, 1
|B(1n)1|)⊕ B(1n)1

EG(
..........

Un

K(1n)
................

, B(1n)1).......................

, 1n, B(1n)2)................................

− Pr.............. A
′(U|G(Un,1|A(1n)1|)|, 1

n, A(1n)2)

B′(
........

U|G(Un

K(1n)

,1|B(1n)1|)| ⊕ B(1n)1

U ′
|G(K(1n),1|B(1n)1|)|

|EG(K(1n),B(1n)1)|..

, 1n, B(1n)2)................................

∈ N...........

The underdotted part says that CG is indistinguishable from random.

Conclusion: lesson Dan Grundy’s criticism on “syntactic baggage” is justified: there
are indeed proofs with “syntactic baggage” that would better be avoided. This
led us to the wedding-cake notation. This notation has two advantages:

1. avoids “syntactic baggage”;

2. results in a short diagrammatic proof presentation well-suitable as a sum-
mary of the full proof.

But it also has two disadvantages:

167

1. the notation is only easily applied to proofs that are calculational (con-
sisting in manipulating a formula) and linear (having a single line of
reasoning from the premise to the conclusion or vice-versa);

2. the notation leaves out justifications of why the manipulations are legal
(although the justifications could be added, for example, using a reference
system similar to footnotes).

11.5 Proof presentation: carving out a theory

11.8 Case study.

Introduction: idea Sometimes proofs contain implicitly a theory but that theory:

1. does not stand out in isolation because it is mixed with the remaining
material of the proof;

2. is not neatly stated in general but less neatly stated only for the particular
case used in the proof.

Besides the abstract interest of having the theory, it can be beneficial for the
proof presentation:

1. to carve out the theory in the sense of presenting it in isolation and in
general;

2. to rewrite the proof as a particular application in context of the general
and isolated theory;

3. possibly to use new concepts discovered during the carving out of the
theory.

In this case study we are going to see how to carve out a theory from a proof.

Problem: number theory Let us consider the following proposition and its proof.

Proposition. We have ∃N ∈ N ∀n ∈ N (n > N ⇒ n ≤ n3).

Proof. Let N := 0 ∈ N. Let us take any n ∈ N. Let us assume n > N .
Then 1 ≤ n, so 1 = 1 · 1 ≤ n · n = n2 since 1 and n are non-negative, thus
n = n · 1 ≤ n · n2 = n3 since n is non-negative.

Reading the proof above, we may get the impression that the more general
result with ni ≤ ni+j instead of n ≤ n3, where i, j ∈ N\{0}, should be provable
along the same lines, but the not very neat aspect of the proof does not invite
us to try to prove it. Let us try to improve this situation.

Solution: number theory To prove the proposition, and even its generalisation with

ni ≤ ni+j instead of n ≤ n3, in a neater way, let us construct a “mini-theory”
of the “discovered new” concept of eventual domination of functions consisting
of a definition and three theorems, and then prove the generalisation of the
proposition in a neat way as an application of the “mini-theory”.

168

Definition We say that a function f : N → N is eventually dominated by a
function g : N→ N, and write f � g, if and only if

∃N ∈ N ∀n ∈ N (n > N ⇒ f(n) ≤ g(n)).

We often write, for example, n � n2 to mean f � g where the func-
tions f, g : N→ N are defined by f(n) := n and g(n) := n2.

Theorems For all functions f, f ′, g, g′, h : N→ N, we have

1 � n, (11.1)

f � g ∧ f ′ � g′ ⇒ ff ′ � gg′, (11.2)

f � g ⇒ fh � gh (11.3)

(proof sketch of (11.2): if n > N ⇒ f(n) ≤ g(n) and n > N ′ ⇒
f ′(n) ≤ g′(n), then n > max(N,N ′) ⇒ f(n)f ′(n) ≤ g(n)g′(n) since
f(n), f ′(n), g(n) and g′(n) are non-negative).

Application The proposition can be restated in the language of the “mini-

theory” as n � n3. We use the “mini-theory” to prove n � n3. In fact,
the proof is now so easy that we even prove ∀i, j ∈ N \ {0} ni � ni+j

almost without additional effort.

Proof. We have 1 � n by (11.1) and we have

1 � n ⇒ by (11.2) applied j − 1 times with
f(n) = 1 = f ′(n) and g(n) = n = g′(n)

1 � nj ⇒ by (11.3) with

f(n) = 1, g(n) = nj and h(n) = ni

ni � ni+j ,

so we conclude ni � ni+j.

This new proof, which essentially consists in the three simple steps

(11.1)
=⇒ 1 � n

(11.2)
=⇒ 1 � nj (11.3)

=⇒ ni � ni+j ,

(where
(11.1)
=⇒ 1 � n means that 1 � n is true by (11.1)) not only has a

neater aspect than the old proof but even proves a stronger result with
almost no additional effort.

Problem: cryptography Proof 8.13 of theorem 8.12 has in it implicit the idea of

finding an inverse x|z| of f(x̄), where x|z| ∈ {0, 1}|z|

1. not by searching through all elements of {0, 1}|z| for x|z| because this is
an exponential-time task (since there are 2|z| elements);

2. but instead by constructing x|z| bit by bit because this is a polynomial-
time task (since it takes |z| steps);

(the proof is complicated so we do not repeat it here, even if summarised).
However, this idea is:

169

1. buried in the middle of other material, which may not make the idea
stand out;

2. used in a particular case, which may obscure the general idea.

Solution: cryptography In section 8.4 we gave the neater proof 8.32 of theorem 8.12
obtained by

1. carving out a “mini-theory” about how

(a) to replace an exponential-time minimisation/search operator µ;

(b) by a polynomial-time minimisation/search operator µ̄;

at the expense of potentially increasing the complexity of a P formal
language Lf to a NP formal language L̄f ;

2. bringing in this way to the foreground the idea of finding an inverse x|x|
of f(x̄)

(a) not by searching x|x| in {0, 1}|z| in exponential time using µ;

(b) but by constructing x|x| bit by bit in polynomial time using µ̄;

3. then applying the “mini-theory” to produce the neater proof 8.32 where
essentially x|x| is found in polynomial time by µ̄ as being µ̄(L̄f , f(x̄), 1|x̄|);

4. using in proof 8.32 the discovered concepts of µ and µ̄.

(again, the proof is complicated so we do not repeat it here, even if sum-
marised).

Conclusion: lesson We saw that carving out a theory from a proof can be beneficial
in three ways:

1. it may allow to write a cleaner proof divided into two parts, namely

(a) the presentation of the theory in isolation and in general;

(b) the application of the theory in context and in the particular case
used in the proof;

2. the theory may even allow to prove a more general result with little
additional effort;

3. it has the potential to lead to the discovery of new concepts.

11.6 Proof presentation: direct proof versus indi-

rect proof

11.9 Case study.

Introduction: idea There are two usual methods to prove an implication P ⇒ Q:

1. the direct proof, in which we assume P and prove Q;

2. the indirect proof (proof by contrapositive), in which we prove ¬Q ⇒ ¬P
(the contrapositive) by assuming ¬Q and proving ¬P .

170

If P :⇔ ∀x P ′(x) and Q :⇔ ∀y Q′(y) are universal statements, then there
is more to be said about the two methods:

1. in the direct proof, we often assume ∀x P ′(x), take an arbitrary y, instan-
tiate x = t(y) as being some term (or more than one) constructed from y
(for example, x = y2 + 1) getting P ′(t(y)), and prove P ′(t(y)) ⇒ Q′(y);

2. in the indirect proof, we often assume ∃y ¬Q′(x), take x = t(y) as being
some term constructed from the y assumed to exist, and prove ¬P ′(t(y)).

∀x P ′(x)
x= t(y)

======⇒
construction

∀y Q′(y)

direct proof

versus ∃y ¬Q′(y)
x= t(y)

======⇒
construction

∃x ¬P ′(x)

indirect proof

In the proofs of this form that we have found in cryptography, often both
proof methods work and give proofs that are essentially the same in terms of
constructions but different in terms of style. In this case study we are going
to examine the advantages and disadvantages of both methods.

Problem: number theory Let us consider the following proposition essentially of the
form ∀x P ′(x) ⇒ ∀y Q′(y) and its direct proof.

Proposition. For all functions f : N→ [0,+∞[, if f ∈ N , then
√
f ∈ N .

Proof. The condition f ∈ N means

∀p ∃N ∀n > N |f(n)| < 1/p(n). (11.4)

The condition
√
f ∈ N means

∀q ∃N ∀n > N
∣
∣
√

f(n)
∣
∣ < 1/q(n). (11.5)

Taking p := q2 in (11.4), we get

∀q ∃N ∀n > N |f(n)| < 1/q(n)2,

so we get (11.5).

We see two advantages in the above direct proof:

1. direct proofs are often considered more elegant than indirect proofs, which
may be a bias but even so plays into the appeal of a proof;

2. direct proofs do not require the law (¬Q ⇒ ¬P) ⇒ (P ⇒ Q) (nor
the laws ¬∀x P (x) ⇔ ∃x ¬P (x) and ¬∃x P (x) ⇔ ∀x ¬P (x)) of clas-
sical logic, so they save some steps (the ones necessary to “expand” the
negations of the premise and of the conclusion) and may be formalisable
in a weaker logic (such as intuitionistic logic), which has philosophical
advantages (some people consider weaker logics more sound) and a con-
structive advantage (often the so-called proof interpretations to extract
constructive/computational content from proofs extract a more meaning-
ful content in weaker logics).

171

We see, however, also a disadvantage of the direct proof: it is often easier
for us to reason along the lines of “from an y such that ¬Q′(y), construct
an x = t(y) such that ¬P ′(x)” than along the lines of “massage ∀x P ′(x),
by constructing x = t(y) from y, into ∀y Q′(y)”, especially when ¬Q′(y) and
¬P ′(x) have a clear intuitive meaning (such as often happens in cryptography
when they mean the breaking of the security of cryptographic object).

Solution: number theory Now we deal with the disadvantage of direct proofs iden-
tified above by giving an indirect proof.

Proof. The condition
√
f /∈ N means

∃q ∀N ∃n > N
∣
∣
√

f(n)
∣
∣ ≥ 1/q(n). (11.6)

The condition f /∈ N means

∃p ∀N ∃n > N |f(n)| ≥ 1/p(n), (11.7)

Taking p := q2, that is
√
p = q, in (11.6), we get

∃p ∀N ∃n > N |
√

f(n)| ≥ 1/
√

p(n),

so we get (11.7).

We see an advantage in the above indirect proof: it follows the easier reasoning
“from an y such that ¬Q′(y), construct an x = t(y) such that ¬P ′(x)” instead
of the harder reasoning “massage ∀x P ′(x), by constructing x = t(y) from y,
into ∀y Q′(y)”. We see, however, also two disadvantages in the indirect proof:

1. it is often considered less elegant;

2. requires certain classical laws.

Both direct and indirect proofs have significant advantages and disadvantages,
so we do not consider any of them as the “right” proof, instead we consider
them as two options available for the prover to choose from according to his/her
goal.

We should point out that both proofs above have essentially the same content,
which is the construction p := q2. So we would say that the two proofs are
essentially the same modulo a change of style between ∀x P ′(x) ⇒ ∀y Q′(y)
and ∃y ¬Q′(y) ⇒ ∃x ¬P ′(x).

Problem: cryptography Let us consider proof 9.10 (summarised below).

Proposition. For all pseudorandom generators G, if G is cryptographically
secure, then fG is one-way.

Proof. The pseudorandom generator G being cryptographically secure means

∀A,A′ PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2) ∈ N .

(11.8)

172

The binary-string function fG being one-way means (besides being polynomial-
time computable)

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
∈ N . (11.9)

Taking A(x) := (12|x|, ǫ) and A′(x, y, z) := Tr[fG(B(x, y)) = x] in (11.8), we
get

∀B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]

︸ ︷︷ ︸
=:α

−Pr[fG(B(U2n, 1
n)) = U2n]

︸ ︷︷ ︸

=:β

∈ N .

From α − β ∈ N above and β ∈ N because β ≤ |f−1G [{0, 1}2n]|/|{0, 1}2n| ≤
|{0, 1}n|/|{0, 1}2n| = 2−n we get α ∈ N , so (11.9).

As before, this proof is direct and so has the advantages of a direct proof
but also the disadvantage of the harder reasoning “massage ∀x P ′(x), by con-
structing x = t(y) from y, into ∀y Q′(y)”.

Solution: cryptography Now we deal with the disadvantage of the direct proof above
giving an indirect proof.

Proof. The pseudorandom generator G not being cryptographically secure
means

∃A,A′
=:α

︷ ︸︸ ︷

PrA′(G(Un, 1
|A(1n)1|), 1n, A(1n)2)−

PrA′(U|G(Un,1|A(1n)1|)|, 1
n, A(1n)2)

︸ ︷︷ ︸

=:β

/∈ N . (11.10)

The binary-string function fG not being one-way means

∃B Pr
[
fG

(
B(fG(Un), 1n)

)
= fG(Un)

]
/∈ N . (11.11)

Taking A(x) := (12|x|, ǫ) and A′(x, y, z) := Tr[fG(B(x, y)) = x], where B is
given by (11.11), we get

α /∈ N ,
β = Pr[fG(B(U2n), 1n) = U2n] ∈ N

because β ≤ |f−1G [{0, 1}2n]|/|{0, 1}2n| ≤ |{0, 1}n|/|{0, 1}2n| = 2−n, so α − β /∈
N , thus (11.10).

Again, we should point out that both proofs above have essentially the same
content, which is the constructions A(x) := (12|x|, ǫ) and A′(x, y, z) =
Tr[fG(B(x, y)) = x].

Conclusion: lesson Implications of the form ∀x P ′(x) ⇒ ∀y Q′(y) appear often in
cryptography. There are two usual methods to prove them:

1. the direct proof reasoning in the form “massage ∀x P ′(x), by constructing
x = t(y) from y, into ∀y Q′(y)”;

173

2. the indirect proof reasoning in the form “from an y such that ¬Q′(y),
construct an x = t(y) such that ¬P ′(x)”.

We made the following comparison between them:

1. the direct proof is often considered more elegant;

2. the direct proof often uses a weaker logic with philosophical and con-
structive benefits;

3. the indirect proof is often more natural to reason about.

We concluded not to select one them as the “right” proof. Importantly, we
noticed that often both proofs are essentially the same in the sense that they
contain the same constructions t(y) and differ mostly in style only.

11.7 Proof presentation: quasi-parentheses-free no-

tation

11.10 Case study.

Introduction: idea In formalising statements, sometimes we get long and difficult-
to-parse formulas such as the formula

∀X
(
∀x (x ∈ X ⇒ ∃!y P (x, y)) ⇒ ∃Y ∀x

(
x ∈ X ⇒ ∃!y (y ∈ Y ∧P (x, y))

))

expressing the axiom schema of replacement in set theory (saying that if a
formula P (x, y) defines on a set X a function f that maps each x ∈ X to
the unique y such that P (x, y), then there exists a set Y that is a codomain
of f). The obvious culprit is the proliferation of parentheses. Sometimes
we can cut down the number of parentheses by rewriting the formula using
standard abbreviations (such as ∀x ∈ X . . . for ∀x (x ∈ X ⇒ . . .)) or more
ad-hoc rewrites (such as replacing parentheses (·) by square brackets [·] to aid
matching pairs of parentheses/brackets), for example as in

∀X [∀x ∈ X ∃!y P (x, y) ⇒ ∃Y ∀x ∈ X ∃!y ∈ Y P (x, y)],

but since the problem occurs often, it seems worthwhile to look for a solution
that goes further than saving a few pairs of parentheses. So we explore some
quasi-parentheses-free notations in terms of how they perform in two aspects:

1. length reduction measured by:

(a) the number of symbols;

(b) the physical length when printed on paper;

2. readability indicated by:

(a) the absence of parentheses pairs to match;

(b) the need to introduce white space to improve readability;

174

3. being unambiguously determined by whether parentheses can be reintro-
duced in an unique way (modulo redundant parentheses) or not solely by
the analysis of the types of the symbols in the formula.

Problem: number theory Let us consider the formula

P (0) ⇒
(
∀n ∈ N

(
P (n) ⇒ P (S(n))

)
⇒ ∀n ∈ N P (n)

)

expressing the induction axiom for natural numbers, where

1. P (n) is a predicate;

2. S(n) := n + 1 is the successor function;

which we take as our fist reference formula for this case study. This formula
has four nested level of parentheses because:

1. there are nested implications of the form A ⇒ ((B ⇒ C) ⇒ D);

2. there are nested functions or predicates in P (S(n)).

One way to cut down on the number of parentheses is:

1. to rewrite A ⇒ ((B ⇒ C) ⇒ D) as A ∧ [B ⇒ C] ⇒ D;

2. to rewrite P (S(n)) as P (n+ 1);

getting

P (0) ∧ ∀n ∈ N [P (n) ⇒ P (n+ 1)] ⇒ ∀n ∈ N P (n)

These rewritings improved this situation but they are ad-hoc and may not
work in other situations, so they are not a general solution.

Solution: number theory Below:

1. in (11.12) we repeated the reference formula;

2. in (11.13) we deleted the parentheses (for example A ⇒ ((B ⇒ C) ⇒
D) becomes A ⇒ B ⇒ C ⇒ D), creating ambiguity;

3. in (11.14) we added spaces to help parsing the formula (for example
A ⇒ B ⇒ C ⇒ D becomes A ⇒ B ⇒ C ⇒ D), removing the
ambiguity;

4. in (11.15) we made the spaces visible (for example A ⇒ B ⇒ C ⇒ D
becomes A ⇒ B ⇒ C ⇒ D).

P (0) ⇒
(
∀n ∈ N

(
P (n) ⇒ P (S(n))

)
⇒ ∀n ∈ N P (n)

)
, (11.12)

P0 ⇒ ∀n ∈ N Pn ⇒ PSn ⇒ ∀n ∈ N Pn, (11.13)

P0 ⇒ ∀n ∈ N Pn⇒ PSn ⇒ ∀n ∈ N Pn, (11.14)

P0 ⇒ ∀n ∈ N Pn⇒ PSn ⇒ ∀n ∈ N Pn. (11.15)

The gain of (11.14) relative to (11.12) is:

175

1. (a) reducing the number of symbols from 34 to 20 (not counting spaces
as symbols);

(b) reducing the length from 301 points to 233 points (a point is 1/ 72.27
inches and we round the points to the unit);

2. (a) reducing the number of levels of parentheses from 4 to 0;

(b) there was the need to introduce 2 levels of white space (and);

3. the formula without parentheses and with white space is unambiguous
because we can reintroduce the parentheses in a unique way by:

(a) writing a first level of parentheses around implications E ⇒ F with
no spaces;

(b) writing a second level of parentheses around implications E ⇒ F
with a single space;

(c) writing a third level of parentheses around implications E ⇒ F
with two spaces;

(d) noticing that PSn has two possible meanings, namely P (S)(n) and
P (S(n)) and excluding P (S)(n) because the predicate P is applied
to natural numbers but the function S is not a natural number.

Although there is a gain in removing parentheses, it seems to us that the
gain is not enough to justify adopting and getting used to a new notation.
Maybe a less drastic solution would be to vary the parentheses: instead of
using always round parentheses possibly with different sizes as in

((
((·))

))
, we

could also use square, curly and angular parentheses as in 〈{[(·)]}〉 and less
conventional parentheses such as the quotation marks “ ‘·’ ”, the moustaches

︷·︷ and the doubled parentheses 〈〈{{[[((·))]]}}〉〉. A less conventional solution
would be to replace the range of parentheses by underlines or underbrackets,
for example replacing f(g(h(x))) by fghx or fghx.

Problem: cryptography In formalising statements in cryptography, it is easy to get
long and difficult-to-parse formulas such as the formula

∀A′ ∃B ∀A, f, g
Pr

[
A′
(
E(K(1n), A(1n)1), f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
−

Pr
[
B
(
1|A(1n)1|, f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
∈ N

from definition 3.58 (expressing the semantic security of a stream cipher C =
(K,P, C, K, E,D)), which we take as our second reference formula for this case
study.

Solution: cryptography Below:

1. in (11.16) we repeated the reference formula (with the quantifications
omitted because they do not have parentheses);

2. in (11.17) we deleted the parentheses (for example w
(
x(y(z))

)
becomes

wxyz), creating ambiguity;

176

3. in (11.18) we added spaces to help parsing the formula (for example wxyz
becomes w x yz), removing the ambiguity;

4. in (11.19) we made the spaces visible (for example w x yz becomes
w x yz).

Pr
[
A′
(
E(K(1n), A(1n)1), f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
−

Pr
[
B
(
1|A(1n)1|, f(A(1n), 1n), 1n, A(1n)2

)
= g(A(1n), 1n)

]
∈ N , (11.16)

PrA′EK1nA1n
1fA1n1n1nA1n

2 = gA1n1n −
PrB1|A1n1|fA1n1n1nA1n

2 = gA1n1n ∈ N , (11.17)

Pr A′ E K1n A1n
1 f A1n 1n 1n A1n

2 = g A1n 1n −
Pr B 1|A1n1| f A1n 1n 1n A1n

2 = g A1n 1n ∈ N , (11.18)

Pr A′ E K1n A1n
1 f A1n 1n 1n A1n

2 = g A1n 1n −
Pr B 1|A1n1| f A1n 1n 1n A1n

2 = g A1n 1n ∈ N . (11.19)

The gain of (11.18) relative to (11.16) is:

1. (a) reducing the number of symbols from 110 to 63;

(b) reducing the length from 656 points to 607 points;

2. (a) reducing the number of levels of parentheses from 4 to 0;

(b) there was the need to introduce 4 levels of white space;

3. the formula without parentheses and with white space is unambiguous.

Although there is a gain, it seems not enough to justify a new notation.

Conclusion: lesson Sometimes there are long and difficult-to-parse formulas. An
obvious culprit is the proliferation of parentheses. So we explored quasi-
parentheses-free notations. Our conclusion is that although the quasi-pare-
ntheses-free notation makes the formulas shorter, it requires white space to
help parsing the formulas, and the gain is not enough to justify learning a
quasi-parentheses-free notation.

11.8 Conclusion

11.11. In this chapter we

1. recovered some of the previous proof presentations;

2. presented some new proof presentations;

turning each one into a case study with:

1. number-theoretic and cryptographic examples;

2. an extraction of the lesson learned.

177

178

Bibliography

Avigad, L. and Goldreich, O. (2011). Studies in Complexity and Cryptography: Mis-
cellanea on the Interplay between Randomness and Computation, Vol. 6650 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, chapter
Testing Graph Blow-Up, pp. 156–172.

Barthe, G., Grégoire, B., Heraud, S. and Béguelin, S. Z. (2011). Computer-aided
security proofs for the working cryptographer, in P. Rogaway (ed.), Advances in
Cryptology — Crypto 2011, Vol. 6841 of Lecture Notes in Computer Science,
Springer, Heidelberg, Germany, pp. 71–90. Proceedings, 31st Annual Cryptol-
ogy Conference — Crypto 2011, Santa Barbara, California, United States of
America, 14–18 August 2011.

Bellare, M., Boldyreva, A. and Palacio, A. (2004). An uninstantiable random-
oracle-model scheme for a hybrid-encryption problem, in C. Cachin and J. L.
Camenisch (eds), Advances in Cryptology — Eurocrypt 2004, Vol. 3027 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, pp. 171–
188. Proceedings, International Conference on the Theory and Applications of
Cryptographic Techniques — Eurocrypt 2004, Interlaken, Switzerland, 2–6
May 2004.

Bellare, M., Desai, A., Jokipii, E. and Rogaway, P. (1997). A concrete security
treatment of symmetric encryption, 38th Annual Symposium on Foundations
of Computer Science, IEEE [Institute of Electrical and Electronics Engineers]
Computer Society, Los Alamitos, California, United States of America, pp. 394–
403. Extended abstract. Proceedings, 38th Annual Symposium on Foundations
of Computer Science, Miami Beach, Florida, United States of America, 20–22
October 1997.

Bellare, M., Desai, A., Pointcheval, D. and Rogaway, P. (1998). Relations among
notions of security for public-key encryption schemes, in H. Krawczyk (ed.),
Advances in Cryptology — Crypto ’98, Vol. 1462 of Lecture Notes in Com-
puter Science, Springer-Verlag, Berlin, Germany, pp. 26–45. Proceedings, 18th
Annual International Cryptology Conference — Crypto ’98, Santa Barbara,
California, United States of America, 23–27 August 1998.

Bellare, M., Hofheinz, D. and Kiltz, E. (2015). Subtleties in the definition of
IND-CCA [INDistinguishability under adaptive Chosen-Ciphertext Attacks]:
When and how should challenge decryption be disallowed?, Journal of Cryp-
tology 28(1): 29–48.

179

Bellare, M. and Rogaway, P. (1995). Optimal asymmetric encryption, in A. D. San-
tis (ed.), Advances in Cryptology — Eurocrypt ’94, Vol. 950 of Lecture Notes
in Computer Science, Springer-Verlag, Berlin, Germany, pp. 92–111. Proceed-
ings, Workshop on the Theory and Application of Cryptographic Techniques —
Eurocrypt ’94, Perugia, Italy, 9–12 May 1994.

Bhargavan, K., Blanchet, B. and Kobeissi, N. (2017). Verified models and ref-
erence implementations for the TLS [Transport Layer Security] 1.3 standard
candidate, 2017 IEEE [Institute of Electrical and Electronics Engineers] Sym-
posium on Security and Privacy, Institute of Electrical and Electronics Engi-
neers, pp. 483–502. Proceedings, 38th 2017 IEEE Symposium on Security and
Privacy, San Jose, California, United States of America, 22–24 May 2017.

Blahut, R. E. (2014). Cryptography and Secure Communication, Cambridge Univer-
sity Press, Cambridge, United Kingdom.

Blanchet, B. (2016). Automatic verification of security protocols: ProVerif
and CryptoVerif, prosecco.gforge.inria.fr/personal/bblanche/talks/

Facebook16.pdf. Slides. Accessed on 19 September 2018.

Blanchet, B. (2018a). CryptoVerif: Cryptographic protocol verifier in
the computational model, prosecco.gforge.inria.fr/personal/bblanche/
cryptoverif. Webpage. Accessed on 15 September 2018.

Blanchet, B. (2018b). ProVerif: Cryptographic protocol verifier in the formal model,
prosecco.gforge.inria.fr/personal/bblanche/proverif. Webpage. Ac-
cessed on 15 September 2018.

Bleichenbacher, D. (1998). Chosen ciphertext attacks against protocols based on the
RSA [Rivest-Shamir-Adleman cipher] encryption standard PKCS [Public Key
Cryptography Standards] #1, in H. Krawczyk (ed.), Advances in Cryptology —
Crypto ’98, Vol. 1462 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, Germany, pp. 1–12. Proceedings, 18th Annual International Cryptol-
ogy Conference — Crypto ’98, Santa Barbara, California, United States of
America, 23–27 August 1998.

Boiten, E. and Grundy, D. (2010). The logic of large enough, in C. Bolduc, J. De-
sharnais and B. Ktari (eds), Mathematics of Program Construction, Vol. 6120 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, Germany, pp. 42–
57. Proceedings, 10th International Conference on Mathematics of Program
Construction — MPC 2010, Québec City, Canada, 21–23 June 2010.

Boneh, D. and Boyen, X. (2008). Short signatures without random oracles and the
SDH [Strong Diffie-Hellman] assumption in bilinear groups, Journal of Cryp-
tology 21(2): 149–177.

Boneh, D. and Shoup, V. (2017). A graduate course in applied cryptography,
crypto.stanford.edu/~dabo/cryptobook. Version 0.4. Book draft. Accessed
on 8 May 2019.

180

Boneh, D. and Venkatesan, R. (1998). Breaking RSA [Rivest-Shamir-Adleman ci-
pher] may not be equivalent to factoring, in K. Nyberg (ed.), Advances in
Cryptology — Eurocrypt ’98, Vol. 1403 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Germany, pp. 59–71. Extended abstract. Pro-
ceedings, International Conference on the Theory and Application of Cryp-
tographic Techniques — Eurocrypt ’98, Espoo, Finland, 31 May – 4 June
1998.

Brown, D. (1998). Digital Fortress, 2009 edn, Corgi Books / Transworld Publishers,
London, United Kingdom.

Brown, D. R. L. (2016). Breaking RSA [Rivest-Shamir-Adleman cipher] may be as
difficult as factoring, Journal of Cryptology 29(1): 220–241.

Buchmann, J. A. (2001). Introduction to Cryptography, Undergraduate Texts in
Mathematics, first edn, Springer-Verlag, New York (city), New York (state),
United States of America.

Canetti, R. (2009). Introduction to cryptography, www.cs.tau.ac.il/~canetti/
f08-materials. Lecture notes, course Introduction to Cryptography
(0368.4162), Tel Aviv University, Fall of 2008, dated November 2008 – February
2009. Accessed on 26 December 2018.

Comon, H. (2016). Communication security: Formal models and proofs, www.cs.
bris.ac.uk/cryptoschool. Slides, Summer School on Automatic Verifica-
tion of Cryptographic Systems / Computer Aided Analysis of Cryptographic
Protocols, Universitatea Politehnica din Bucureşti [Politehnica [Technical] Uni-
versity of Bucharest], Bucharest, Romania, 11–14 September 2016. Accessed on
29 September 2016, no longer available on 24 August 2018.

Cremers, C., Dreier, J. and Sasse, R. (2018). Tamarin Prover, tamarin-prover.
github.io. Webpage. Accessed on 15 September 2018.

Cremers, C., Horvat, M., Hoyland, J., Scott, S. and van der Merwe, T. (2017).
A comprehensive symbolic analysis of TLS [Transport Layer Security] 1.3,
CSS’17 — 2017 ACM [Association for Computing Machinery] SIGSAC [Special
Interest Group on Security, Audit and Control] Conference on Computer and
Communications Security, Association for Computing Machinery, New York
(city), New York (state), United States of America, pp. 1773–1788. Proceed-
ings, 24th 2017 ACM SIGSAC Conference on Computer and Communications
Security, Dallas, Texas, United States of America, 30 October 2017 – 3 Novem-
ber 2017.

Damg̊ard, I. B. (1988). Collision free hash functions and public key signature
schemes, in D. Chaum and W. L. Price (eds), Advances in Cryptology —
Eurocrypt ’87, Vol. 304 of Lecture Notes in Computer Science, Springer-
Verlag, Berlin, Germany, pp. 203–216. Proceedings, Workshop on the Theory
and Application of Cryptographic Techniques — Eurocrypt ’87, Amsterdam,
Netherlands, 13–15 April 1987.

181

Damg̊ard, I. B. (2007). A “proof-reading” of some issues in cryptography, in L. Arge,
C. Cachin, T. Jurdziński and A. Tarlecki (eds), Automata, Languages and Pro-
gramming, Lecture Notes in Computer Science, Springer-Verlag, Berlin, Ger-
many, pp. 2–11. Proceedings, 34th International Colloquium on Automata,
Languages and Programming 2007, Wroc law, Poland, 9–13 July 2007.

Delfs, H. and Knebl, H. (2007). Introduction to Cryptography: Principles and Appli-
cations, Information Security and Cryptography, second edn, Springer-Verlag,
Berlin, Germany.

Dijkstra, E. W. (2000). The notational conventions I adopt, and why, cs.utexas.
edu/users/EWD/ewd13xx/EWD1300.PDF. Manuscript, code EWD 1300. Ac-
cessed on 5 January 2019.

Dolev, D. and Yao, A. C. (1983). On the security of public key protocols, IEEE
[Institute of Electrical and Electronics Engineers] Transactions on Information
Theory 29(2): 198–208.

Dutle, A. et al. (2009). Problem set 1: Solutions. Problem solutions, course Topics
in Discrete Mathematics: Combinatorial Complexity (Math 778C), University
of South Carolina, Spring of 2009, dated March 2009. Unpublished, privately
communicated, August 2016.

Farshim, P. (2015). Communication between Pooya Farshim and Eerke Boiten.

Galindo, D. (2005). Boneh-Franklin identity based encryption revisited, in L. Caires,
G. F. Italiano, L. Monteiro, C. Palamidessi and M. Yung (eds), Automata,
Languages and Programming, Vol. 3580 of Lecture Notes in Computer Sci-
ence, Springer-Verlag, Berlin, Germany, pp. 791–802. Proceedings, 32nd Inter-
national Colloquium on Automata, Languages, and Programming — ICALP
2005, Lisbon, Portugal, 11–15 July 2005.

Gaspar, J. (2016). Transformation of cryptographically-secure pseudorandom gener-
ators into indistinguishable-from-random stream cipher, in J. Brookhouse and
G. Parish (eds), UKSCC 2016: University of Kent School of Computing Confer-
ence, School of Computing, University of Kent, Canterbury, United Kingdom,
pp. 17–20. Proceedings, University of Kent School of Computing Conference —
UKSCC 2016, School of Computing, University of Kent, Canterbury, United
Kingdom, 10 June 2016. Informal publication in internal conference proceed-
ings.

Gaspar, J. and Boiten, E. (2014). Simple composition theorems of one-way
functions — proofs and presentations, Cryptology ePrint Archive, Report
2014/1006, eprint.iacr.org/2014/1006. Article. Accessed on 24 August
2018.

Gentzen, G. (1935). Untersuchungen über das logische Schließen [Investigations on
logical consequence/deduction/inference/reasoning], Mathematische Zeitschrift
[Mathematical Journal] 39(2–3): 176–210, 405–431.

182

Goldreich, O. (2004). Foundations of Cryptography, Vol. 1: Basic Tools, digital edn,
Cambridge University Press, Cambridge, United Kingdom.

Goldreich, O. (2011). Foundations of Cryptography, Vol. 2: Basic Applications,
digital edn, Cambridge University Press, Cambridge, United Kingdom.

Goldreich, O., Barak, B., Katz, J., Krawczyk, H. and Koblitz, N. (2007). Letters to
the editor, Notices of the American Mathematical Society 54(11): 1454–1456.

Good, J., Michie, D. and Timms, G. (1945). General report on Tunny: With
emphasis on statistical methods, Technical Report HW 25 / 4–5, United
Kingdom Public Record Office. www.ellsbury.com/tunny/tunny-000.htm,
www.alanturing.net/turing_archive/archive/index/tunnyreportindex.

html. Webpages. Accessed on 6 October 2018.

Granville, A. and Martin, G. (2006). Prime number races, The American Mathe-
matical Monthly 113(1): 1–33.

Gries, D. and Schneider, F. B. (1993). A Logical Approach to Discrete Math, Texts
and Monographs in Computer Science, Springer-Verlag, New York (city), New
York (state), United States of America.

Grundy, D. (2008). Concepts and Calculation in Cryptography, PhD thesis, Univer-
sity of Kent, Canterbury, United Kingdom.

Grundy, D. and Boiten, E. (2008). Towards a calculational theory of one-way func-
tions. Article. Unpublished.

Grundy, J. (1993). A Method of Program Refinement, PhD thesis, University of
Cambridge, Cambridge, United Kingdom.

Halevi, S. (2005). A plausible approach to computer-aided cryptographic proofs,
Cryptology ePrint Archive, Report 2005/181, eprint.iacr.org/2005/181.
Article. Accessed on 22 November 2018.

Katz, J. and Lindell, Y. (2015). Introduction to Modern Cryptography, Cryptography
and Network Security, second edn, Chapman & Hall / CRC [Chemical Rubber
Company] Press, Taylor & Francis Group, LLC [Limited Liability Company],
Boca Raton, Florida, United States of America.

Klein, A. (2013). Stream Ciphers, ebook edn, Springer-Verlag, London, United
Kingdom.

Koblitz, N. (2007). The uneasy relationship between mathematics and cryptography,
Notices of the American Mathematical Society 54(8): 972–979.

Koblitz, N. and Menezes, A. J. (2006). Another look at “provable security” II, in
R. Barua and T. Langue (eds), Progress in Cryptology — Indocrypt 2006,
Vol. 4329 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, Ger-
many, pp. 148–175. Proceedings, 7th International Conference on Cryptology
in India — Indocrypt 2006, Kolkata, India, 11–13 December 2006.

183

Koblitz, N. and Menezes, A. J. (2007). Another look at “provably security”, Journal
of Cryptology 20: 3–37.

Koblitz, N. and Menezes, A. J. (2010). The brave new world of bodacious as-
sumptions in cryptography, Notices of the American Mathematical Society
57(3): 357–365.

Koblitz, N. and Menezes, A. J. (2013). Another look at security definitions, Advances
in Mathematics of Communications 7(1): 1–38.

Kohlenbach, U. (2008). Applied Proof Theory: Proof Interpretations and their Use in
Mathematics, Springer Monographs in Mathematics, first edn, Springer-Verlag.

Lamport, L. (1995). How to write a proof, The American Mathematical Monthly
102(7): 600–608.

Lamport, L. (2012). How to write a 21st century proof, Journal of Fixed Point
Theory and Applications 11(1): 43–63.

Menezes, A. (2007). Another look at HMQV [Hashed Menezes-Qu-Vanstone key
agreement], Journal of Mathematical Cryptology 1(1): 47–64.

Menezes, A. J., van Oorschot, P. C. and Vanstone, S. A. (1996). Handbook of Applied
Cryptography, Discrete Mathematics and Its Applications, August 2001 fifth
printing edn, CRC [Chemical Rubber Company] Press, Boca Raton, Florida,
United States of America.

Mizar Project (2018). Mizar mathematical library, mizar.uwb.edu.pl/library/.
Webpage. Accessed on 30 September 2018.

Möller, B. (2004). A public-key encryption scheme with pseudo-random cipher-
texts, in P. Samarati, P. Ryan, D. Gollmann and R. Molva (eds), Computer
Security — Esorics 2004, Vol. 3193 of Lecture Notes in Computer Science,
Springer-Verlag, Berlin, Germany, p. 335–351. Proceedings, 9th European Sym-
posium on Research in Computer Security, Sophia Antipolis, France, 13–15
September 2004.

Nandi, M. (2014). XLS [eXtended by Latin Square] is not a strong pseudoran-
dom permutation, in P. Sarkar and T. Iwata (eds), Advances in Cryptology —
Asiacrypt 2014, Vol. 8873 of Lecture Notes in Computer Science, Springer,
Heidelberg, Germany, pp. 478–490. Proceedings, Part I, 20th International
Conference on the Theory and Application of Cryptology and Information Se-
curity, Kaoshiung, Taiwan, 7–11 December 2014.

Nandi, M. (2015). Revisiting security claims of XLS [eXtended by Latin Square]
and COPA [possibly Cipher Online Parallelisable Authenticated], Cryptology
ePrint Archive, Report 2015/444, eprint.iacr.org/2015/444. Article. Ac-
cessed on 3 May 2019.

184

Papadimitriou, C. H. (1994). Computational Complexity, August 1995 reprint edn,
Addison-Wesley Publishing Company, Reading, Massachusetts, United States
of America.

Pass, R. and Shelat, A. (2010). A course in cryptography, www.cs.cornell.edu/
courses/cs4830/2010fa/lecnotes.pdf. Lecture notes. Accessed on 21 May
2019.

Reingold, O. (1998). Pseudo-Random Synthesizers, Functions and Permutations,
PhD thesis, The Weizmann Institute of Science, Rehovot, Israel.

Ristenpart, T. and Rogaway, P. (2007). How to enrich the message space of a ci-
pher, in A. Biryukov (ed.), Fast Software Encryption — FSE 2007, Vol. 4593
of Lecture Notes in Computer Science, Springer, Berlin, Germany, pp. 101–118.
Proceedings, Revised Selected Papers, 14th International Workshop, Luxem-
bourg City, Luxembourg, 26-28 March 2007.

Ristenpart, T. and Rogaway, P. (2015). How to enrich the message space of a
cipher, Cryptology ePrint Archive, Report 2007/109, eprint.iacr.org/2007/
109. Article. Accessed on 24 August 2018. Version 20070326:072155 dated
March 2007, version 20150227:035315 dated February 2015.

Ristenpart, T., Shacham, H. and Shrimpton, T. (2011). Careful with composi-
tion: Limitations of the indifferentiability framework, in K. G. Paterson (ed.),
Advances in Cryptology — Eurocrypt 2011, Vol. 6632 of Lecture Notes in
Computer Science, Springer, Heidelberg, Germany, pp. 487–506. Proceedings,
30th Annual International Conference on the Theory and Applications of Cryp-
tographic Techniques — Eurocrypt 2011, Tallinn, Estonia, 15–19 May 2011.

Rogaway, P. (2004). Nonce-based symmetric encryption, in B. Roy and W. Meier
(eds), Fast Software Encryption — FSE 2004, Vol. 3017 of Lecture Notes in
Computer Science, Springer-Verlag, Berlin, Germany, pp. 348–359. Proceed-
ings, 11th International Workshop Fast Software Encryption 2004 — FSE 2004,
Delhi, India, 5–7 February 2004.

Rothe, J. (2005). Complexity Theory and Cryptology: An Introduction to Cryp-
tocomplexity, Texts in Theoretical Computer Science, Springer-Verlag, Berlin,
Germany.

Seeba, I. (2010). CryptoVerif: The tool of crypto analysis, courses.cs.ut.ee/

2010/security-seminar-spring/uploads/Main/seeba-final.pdf. Article.
Accessed on 19 September 2018.

Shannon, C. E. (1949). Communication theory of secrecy systems, The Bell System
Technical Journal 28(4): 656–715.

Shoup, V. (2002). OAEP [Optimal Asymmetric Encryption Padding] reconsidered,
Journal of Cryptology 15(4): 223–249.

185

Smart, N. P. (2016). Cryptography Made Simple, Information Security and Cryp-
tography, Springer International Publishing, Cham, Switzerland.

Talbot, J. and Welsh, D. (2006). Complexity and Cryptography: An Introduction,
Cambridge University Press, Cambridge, United Kingdom.

The Tamarin Team (2018). Tamarin-Prover manual: Security protocol
analysis in the symbolic model, tamarin-prover.github.io/manual/tex/

tamarin-manual.pdf. Manual. Accessed on 5 January 2019.

University of Cambridge and Technische Universität München [Technical University
of Munich] (1986). Isabelle, isabelle.in.tum.de. Webpage. Accessed on 28
September 2018.

Vaudenay, S. (2006). A Classical Introduction to Cryptography: Applications for
Communications Security, Springer Science+Business Media, Inc., New York
(city), New York (state), United States of America.

Velleman, D. J. (2006). How to Prove It: A Structured Approach, second edn,
Cambridge University Press, Cambridge, United Kingdom.

Wigderson, A. (2008). Letters to the editor, Notices of the American Mathematical
Society 55(1): 6–7.

186

