
Palaeogenome reveals genetic contribution of extinct giant 
panda to extant populations 

Gui-Lian Sheng1,*, Nikolas Basler2, Xue-Ping Ji3, Johanna L. A. Paijmans2,4, Michaela Preick2, 
Stefanie Hartmann2, Michael V. Westbury2,5, Jun-Xia Yuan1, Nina G. Jablonski6, Federica 
Alberti2, Georgios Xenikoudakis2, Xin-Dong Hou1, Bo Xiao1, Jian-Hui Liu3, Michael Hofreiter2, 
Xu-Long Lai1, Axel Barlow2,*

1 State Key Laboratory of Biogeology and Environmental Geology, China University of 
Geosciences, Wuhan, Hubei 430074 China

2 Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24–
25, 14476 Potsdam, Germany

3 Yunnan Cultural Relics and Archaeology Institute, 15-1, Chunmingli, Chunyuanxiaoqu, 
Kunming, Yunnan 650118, China

4 Present address: School of Archaeology and Ancient History, University of Leicester, 
Leicester, LE1 7RH, UK

5 Present address: Natural History Museum of Denmark, University of Copenhagen, Øster 
Voldgade 5-7, DK-1350 Copenhagen K, Denmark 

6 Department of Anthropology, 409 Carpenter Building, The Pennsylvania State University, 
University Park, PA 16802, USA

*Corresponding authors: G.-L.S (email: glsheng@cug.edu.cn) and A.B. (email: 
axel.barlow.ab@gmail.com )

Lead contact: G.-L.S (email: glsheng@cug.edu.cn)

Summary: Historically, the giant panda was widely distributed from northern 
China to southwestern Asia [1]. As a result of range contraction and 
fragmentation, extant individuals are currently restricted to fragmented 
mountain ranges on the eastern margin of the Qinghai-Tibet plateau, where 
they are distributed among three major population clusters [2]. However, little 
is known about the genetic consequences of this dramatic range contraction. 
For example, were regions where giant pandas previously existed occupied 
by ancestors of present-day populations, or were these regions occupied by 
genetically distinct populations which are now extinct? If so, is there any 
contribution of these extinct populations to the genomes of giant pandas living
today? To investigate these questions, we sequenced the nuclear genome of 
a ~5,000 year old giant panda from Jiangdongshan, Tengchong County in 
Yunnan Province, China. We find that this individual represents a genetically 
distinct population that diverged prior to the diversification of modern giant 
panda populations. We find evidence of differential admixture with this ancient
population among modern individuals originating from different populations as
well as within the same population. We also find evidence for directional gene 
flow, which transferred alleles from the ancient population into the modern 
giant panda lineages. A variable proportion of the genomes of extant 
individuals is therefore likely derived from the ancient population represented 
by our sequenced individual. Although extant giant panda populations retain 
reasonable genetic diversity, our results suggest that this represents only part 
of the genetic diversity this species harbored prior to its recent range 
contractions. 
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Results and Discussion

Ancient giant panda genome. We extracted DNA from 300 mg of bone 
powder sampled from a subfossil femur bone of a giant panda from 
Jiangdongshan, Tengchong County in Yunnan Province, south-western 
China, far south of the current distribution of giant pandas (Fig. 1). Remains of
this individual have previously been radio-carbon dated at 5,025 ± 35 years 
before present [1], representing the last known record of the species from this 
region. Parts of the mitochondrial DNA sequence of this specimen have been 
obtained previously and its haplotype shown to nest within the phylogenetic 
diversity of modern giant panda mitochondrial DNA, as sister to a clade 
comprised of three haplotypes sampled from Mountains in Shaanxi Province 
[3, 4]. This may reflect either the ancient giant panda as a direct ancestor of 
this modern population, incomplete lineage sorting, or maternal gene flow 
among more diverged populations, none of which can be excluded based on 
mitochondrial evidence alone. 

We converted twelve DNA extracts to Illumina sequencing libraries. A total of 
1.75 billion reads were generated from these, of which 55 million could be 
mapped with high confidence to the giant panda nuclear reference genome 
assembly [5, 6], providing approximately 1.2x coverage of the genome of the 
ancient giant panda (Table S1). Analysis of this data indicated advanced DNA
fragmentation and high levels of cytosine deamination at the terminal DNA 
fragment ends (Figure S1), consistent with the age of the sample. 
Contamination analysis provided no evidence of substantial contamination of 
the ancient sample by potentially contaminating mammalian DNA (Table S2).

Relationship to modern giant panda genomes. Previous studies have 
shown that modern giant pandas are distributed among three major 
geographic population clusters (Fig. 1; [2]). These comprise: a northeastern 
Qinling Mountains population (QIN); a western Minshan Mountains population
(MIN); and a third southwestern population encompassing the Qionglai, 
Daxiangling, Xiaoxiangling, and Liangshan Mountains (QXL). Previous studies
suggest that the modern MIN and QXL populations diverged around 2,800 
years ago from a common ancestral population, which diverged from the 
population ancestral to QIN around 0.3 million years ago [2]. To gain insight 
into the relationship of the ancient giant panda to these populations, we 
carried out a principal components analysis (PCA). This analysis recovered 
the expected three modern population clusters. Within the QXL population, 
two individuals from Liangshan Mountains appear to be diverged considerably
from other QXL individuals, which has been found by previous studies [3], and
may reflect substructure within the QXL population. Regarding the ancient 
individual, the PCA showed that it does not cluster together with any specific 
extant population (Fig. 2a), in contrast to the relationships suggested by 
mitochondrial DNA (Figure S2). Phylogenetic analysis further suggests that 
the ancient individual represents a population which diverged prior to the 
diversification of modern populations (Fig. 2b), which is also supported by tree
topology tests, which show that any pair of modern giant pandas always share
a greater excess of derived alleles with each other than either of the two does 
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with the ancient giant panda (Fig. 2c). Overall, these results support the 
ancient giant panda as representing a distinct and divergent extinct population
that diverged from all modern populations more than 0.3 million years ago. In 
contrast, the estimated coalescence time of the ancient giant panda’s 
mitochondrial haplotype and its modern sister clade is ~14,150 years (95% 
credibility interval 6,805–23,301 years, Figure S2). The close relationship of 
the ancient giant panda’s mitochondrial DNA with modern giant pandas 
therefore most likely reflects maternal gene flow from an ancestor of the 
modern populations into the extinct ancient population, since incomplete 
lineage sorting would require a coalescence time older than the initial 
divergence of all populations.

Gene flow among giant panda populations. We further investigated the 
possibility of past gene flow among ancestors of the modern populations and 
the extinct, ancient population using the D statistic [7, 8]. The D statistic is a 
four taxon test of differential admixture among two closely related individuals 
(P1 and P2) with a more distantly related candidate admixing lineage (P3), 
which makes use of an outgroup (P4) for allele polarisation. Significant non-
zero D values suggest admixture with P3 subsequent to the divergence of P1 
and P2, with negative and positive values indicating, respectively, P1 or P2 as
the lineage that is more admixed with P3. We tested combinations of 
individuals consistent with their phylogeny (Fig. 2b) using the polar bear as 
outgroup (P4). Specifically, we tested all combinations of: (((modern panda, 
modern panda), ancient panda), polar bear). Since the ancient individual is in 
P3, these tests will not be biased by increased rates of sequencing error in 
the ancient dataset [9]. 

An additional source of bias for D statistics is the reference genome sequence
used for mapping [10]. Since the giant panda reference genome [6,7] likely 
represents an ingroup to the investigated clade, mapping to this sequence will
be biased toward alleles found in the population from which the reference 
genome descends, potentially leading to inflated estimates of admixture with 
that population [11, 12]. Bias towards the reference allele is exacerbated for 
ancient datasets since the expected baseline number of mismatches between
read and reference is higher due to increased rates of sequence errors in 
paleogenomes compared to modern datasets. The giant panda reference 
genome assembly is from a captive individual, “Jingjing”, whose father 
descends from the QXL population and whose mother descends from both 
QXL and MIN populations. Correspondingly, D statistics calculated after 
mapping reads to this reference suggest a general pattern of admixture 
between the ancient population and the modern QXL and MIN populations, 
relative to the modern QIN population (Figure S3). To further investigate 
whether this result is driven by mapping reference bias, we remapped the 
data to the reference genome assembly of the polar bear (Table S1), which 
represents an outgroup to the investigated clade. These D statistics supported
very different patterns of admixture. To visualise these patterns we identified 
one modern QXL individual (Qionglai Mountains, SRR504883) as showing the
least admixture with the ancient population, against which all other modern 
individuals were compared (Fig. 3). Of these, all but one individual showed a 
significant signal of admixture with the ancient population, relative to the least 
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admixed individual. Admixture levels appear highly variable within modern 
populations, with no obvious pattern of any single population being more or 
less admixed with the ancient population. Additional D statistic comparisons 
(Figure S3) further revealed differential levels of admixture with the ancient 
population within each modern population as well as within individual 
mountain ranges. 

These complex patterns of admixture are unlikely to result solely from direct 
gene flow with the ancient population. Although the extinction date of the 
ancient population is unknown, the fact that the ancient individual sequenced 
in this study represents the last known occurrence of giant pandas in Yunnan 
Province suggests that extinction occurred shortly after ~5,000 years bp. By 
this reasoning, the ancient population had already gone extinct prior to the 
divergence of the MIN and QXL populations [2] by several thousand years. 
Variable diffusion of admixed alleles via gene flow among modern populations
(i.e. including QIN), or with additional, so far unsampled extinct populations, is
therefore required to explain the observed patterns of differential admixture 
both between and within the modern MIN and QXL populations.

The D statistic results suggest the possibility of survival of alleles from the 
ancient population in modern populations as a result of past admixture. 
However, D statistics cannot provide conclusive support for this hypothesis 
because the direction of gene flow is not explicitly tested. We therefore tested 
for directional gene flow from the ancient population into the modern 
populations using a previously described approach based on the distribution 
of phylogenetic tree topologies along non-overlapping 100 kb sliding genomic 
blocks [11]. For this test, we selected two MIN individuals, MIN+ and MIN-, 
which were found to be highly admixed and less admixed with the ancient 
population, respectively, relative to a QIN individual. The most commonly 
observed topology was the species tree: (((MIN+,MIN-),QIN),ancient)). We 
also observed a greater number of blocks where the MIN+ individual clustered
with the ancient giant panda (((MIN-,QIN),(MIN+,ancient)), 1,190 blocks) than 
where the MIN- individual clustered with the ancient giant panda 
(((MIN+,QIN),(MIN-,ancient)), 1,126 blocks). This pattern indicates the 
transfer of alleles from the ancient population into the ancestors of the MIN+ 
individual, since unidirectional geneflow in the opposite direction would not be 
associated with such an imbalance in the observed frequency of these 
topologies. The observed imbalance equates to 6.4 Mb of the genome of 
MIN+ individual being derived from directional geneflow from the ancient 
population above that occurring in the MIN- individual. Since the test is 
relative, this estimate represents a conservative minimum since the complex 
overall patterns of admixture suggest a high likelihood that MIN- is itself 
admixed with the ancient population. Most importantly, the observed signal of 
admixture between the ancient giant panda and MIN+ at least in part reflects 
the presence of alleles derived from the ancient population in this modern 
giant panda. Ancestors of modern populations were therefore recipients of 
alleles from the ancient population which still persist in the genomes of living 
individuals.
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Implications for our understanding of giant panda evolution. With an 
estimated census population size around 2,500 individuals [13, 14], the 
conservation status of the giant panda has recently been changed from 
“endangered” to “vulnerable” [15]. Giant pandas have also been shown to 
display moderate-to-high levels of genetic variation compared to other 
endangered carnivores, and even compared to humans [2, 6, 16-19]. 
Nonetheless, the current habitat range of giant panda is far more restricted 
than it was in the past [16, 20, 21], with genome data suggesting two major 
population bottlenecks at ~0.2 million years ago and ~20,000 years ago, 
respectively [2]. Elucidating the full impact of this range contraction in terms of
both the loss of genetic diversity within surviving populations and the 
extinction of distinct and divergent populations is likely impossible based only 
on data from modern populations [22].

The palaeogenome of the ~5,000 year old giant panda from Yunnan Province 
presented here reveals an extinct, divergent population that is an outgroup to 
all extant giant panda populations, which must have diverged from them prior 
to 0.3 million years ago. This lost lineage survived through the Last Glacial 
Maximum and went extinct around the Middle Holocene. The sample used in 
this study represents the last known record of the giant panda in Yunnan 
Province before it disappeared from this region, and therefore probably 
approximates the extinction time of this lineage. However, genetically, the 
ancient population may not have gone fully extinct, since we found extensive 
evidence of differential admixture with it among all extant populations as well 
as evidence for the persistence of alleles from the ancient population in 
modern individuals.

Recently, independent studies have recovered mitochondrial haplotypes from 
Middle Holocene [3] and Late Pleistocene [23] giant pandas, which are sister 
to all modern giant panda haplotypes sampled thus far. Combined analysis of 
these ancient mitochondrial sequences suggests their monophyly indicating a 
divergent mitochondrial clade lost during the recent evolutionary history of 
giant pandas [4], mirroring the results of this study based on complete nuclear
genomes. Given that the mitochondrial haplotype of the ancient giant panda 
investigated here almost certainly reflects a recent transfer of mitochondrial 
DNA from the ancestors of extant populations, and that this ancient individual 
was recovered from the same locality as the Middle Holocene lost clade 
individual, it could be tentatively suggested that the lost mitochondrial clade 
and the divergent ancient nuclear genome revealed by this study represent 
one and the same population. Genome sequencing of ancient giant pandas 
representing the lost mitochondrial clade therefore represents the next logical 
step in the study of the evolutionary history of the giant panda.
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Main text figure legends

Figure 1. Sampling locations of giant pandas investigated in this study. 
Photograph on the bottom left shows sampled the ancient giant panda femur 
bone. The three modern giant panda populations (coloured areas) comprise: 
Qinling population in Shaanxi Province (QIN); Minshan (MIN) population in 
both Gansu and Sichuan Provinces; and the QXL population comprised of 
Qionglai (QIO), Daxiangling (DXL), Xiaoxiangling (XXL), and Liangshan (LS) 
in Sichuan Province. The red point indicates the approximate locality of the 
ancient sample

Figure 2. Relationship of the ancient giant panda to modern giant panda 
genomes. a. Ordination of individuals along the first and second components 
of a PCA based on 409,165 variable transversion sites. Axis labels indicate 
the percentage of variance explained by each component. Symbols for each 
population are indicated in the key at the bottom left. Singleton positions were 
excluded from this analysis, which conservatively reduces the overall 
separation of the ancient from the modern individuals, but the ancient 
population is still clearly distinct. b. Neighbour-joining phylogeny based on 
403,235 transversion sites, rooted using the polar bear as outgroup (not 
shown). Note that the QXL population is not recovered as monophyletic, 
which likely reflects the substantial divergence of LS within this population 
cluster (part a. and [2]). c. Topology tests for the position of the ancient panda
as basal to all modern pandas based on the excess of derived alleles that a 
modern giant panda shares with the ancient giant panda and not with another 
modern giant panda, compared to the excess of derived alleles that a modern 
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giant panda shares with another modern giant panda and not with the ancient 
giant panda. These derived allele proportions (x axis) are expressed as D 
statistics (black points) calculated for all combinations of individuals for the 
topologies indicated on the y-axis. All Z-scores for ((ancient,modern),modern 
were > 3, whereas many Z-scores for ((modern,modern),ancient) were < 3. 
Consistently lower D values for the topology ((modern,modern),ancient) 
supports the ancient panda as basal to all modern pandas. The giant panda 
was used as mapping reference for all these analyses. For mitochondrial 
relationships see Figure S2.

Figure 3. D statistic tests of differential admixture with the ancient giant 
panda, relative to the least admixed modern giant panda. These 
correspond to all comparisons of the topology (((P1,P2),P3),P4), where P1 is 
the least admixed modern panda, P2 is another modern panda, P3 is the 
ancient panda, and P4 is the polar bear outgroup. Positive D values indicate 
that the P2 individual is more admixed with P3 than P1 is with P3. D values 
are indicated as points coloured according to the population origin of the P2 
individual (consistent with Figures 1 and 2). The least admixed individual 
originates from the QXL population. All comparisons are significant (Z > 3) 
except the single smallest (leftmost) D value. The polar bear was used as 
mapping reference for these analyses. D statistics tests of admixture with the 
ancient giant panda for all pairs of modern giant pandas are shown in Figure 
S3.

STAR METHODS

CONTACT FOR REAGENT AND RESOURCE SHARING

Further information and requests for resources and reagents should be 
directed to and will be fulfilled by the Lead Contact, Gui-Lian Sheng 
(glsheng@cug.edu.cn)

METHOD DETAILS

Laboratory procedures 
All DNA extraction and library preparation procedures were performed in 
ancient-DNA-dedicated clean rooms following standard procedures to avoid 
contamination. Negative (nuclease free water) controls were included in all 
DNA extraction and library preparation steps. 

We ground the ancient giant panda bone specimen to powder with a mortar 
and pestle and separated the powder into ~25 mg aliquots. Initially, we 
extracted DNA and prepared Illumina sequencing libraries from two of these 
aliquots to assess the endogenous content of the ancient giant panda bone. 
DNA extraction was carried out using a protocol optimised for the recovery of 
short ancient DNA fragments [26], with slight modifications [24]. Bone powder 
aliquots were each digested in 1 mL of extraction buffer (0.45 M EDTA, 0.25 
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mg/mL Proteinase K) overnight at 37 °C with rotation. Following 
centrifugation, the supernatant was removed and combined with 13 mL of 
binding buffer (5 M guanidine hydrochloride, 40% (vol/vol) isopropanol, 0.05%
Tween-20, and 90 mM sodium acetate) and passed through a commercial 
silica spin column (Qiagen MinElute) with an extension reservoir (Zymo-spin 
V) fitted. Two wash steps were then carried out (PE buffer, Qiagen) and the 
DNA eluted in two steps each using 12.5 µL TET buffer (10mM Tris-HCl, 1 
mM EDTA, 0.05% Tween-20). 

We prepared Illumina sequencing libraries using a  protocol based on single-
stranded DNA [27], with modifications [24], designed to efficiently recover 
short ancient DNA fragments. The DNA extractions were quantified using a 
Qubit 2.0 instrument (Fisher) with dsDNA HS Assay kit and the input volume 
for library preparation was adjusted to 13 ng total input DNA to maintain the 
efficiency of the single-stranded ligation reaction [27]. Input DNA was treated 
with the enzymes uracil-DNA glycosylase and endonuclease VIII to excise 
uracil residues resulting from cytosine deamination and to cleave DNA at 
abasic sites, respectively. This involved 44 µL reactions with the following 
reagent concentrations: 1.8x CircLigase buffer II, 4.5 mM MnCl2, 0.11 U/µL of 
uracil-DNA glycosylase, and 0.02 U/µL of endonuclease VIII. Residual 
phosphate groups were then removed from the 5’ and 3’ DNA fragment ends 
using 1 unit of FastAP. The double-stranded DNA was then heat denatured 
and oligo CL78 ligated to the 3’ end of the single strands by adding the 
following reagents to a final volume of 80 µL and incubating overnight: 20% 
(vol/vol) PEG-4000, 0.125 µM CL78, and 2.5 units/µL Circligase II. Ligation 
products were then immobilised on streptavidin beads (MyOne C1) allowing 
the removal of reagent mixtures for successive steps of the library 
preparation. The CL9 extension primer was annealed to the complementary 
CL78 oligo sequence and the strand complementary to the template single-
stranded molecules filled-in using Bst 2.0 polymerase in 50 µL reactions with 
the following reagent concentrations: 1x isothermal amplification buffer, 250 
µM of each dNTP, 2 µM CL9 extension primer, and 0.48 U/µL Bst 2.0 
polymerase. 3’ overhangs were then removed using T4 DNA polymerase in 
100 µL reactions with the following reagent concentrations: 1x Buffer Tango, 
0.025% (vol/vol) Tween 20, 100  µM of each dNTP, and 0.05 U/µL T4 DNA 
polymerase. The double-stranded adapter (CL53/CL73) was then ligated to 
the blunt-ended molecules using T4 DNA ligase in 100 µL reactions with the 
following reagent concentrations: 1x T4 DNA ligase buffer. 5% (vol/vol) PEG-
4000, 0.025% (vol/vol) Tween 20, 100 µM double-stranded adapter, and 0.1 
U/µL T4 DNA ligase. The library strand complementary to the original single-
stranded template molecule was then heat denatured and eluted in 25 µL TET
buffer. 

The libraries were then PCR amplified, incorporating unique 8 bp index 
sequences within both P5 and P7 adapters, using AccuPrime Pfx polymerase 
in 80 µL reactions with the following reagent concentrations: 1x AccuPrime 
Pfx reaction mix, 0.4 µM each of P5 and P7 indexing primers, and 0.025U/µL 
AccuPrime Pfx polymerase. The appropriate number of cycles was 
determined in advance by qPCR analysis of the unamplified library to identify 
the cycle number corresponding to the point of inflection of the qPCR 
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amplification curve, correcting for differing reaction volume and template 
amount in the subsequent library amplification PCR. The qPCR analysis 
involved 10 µL reactions with the following reagent concentrations: 1x SYBR 
green qPCR master mix, 0.2µM each of IS7 and IS8 amplification primers, 
and 0.2% of the unamplified library. After amplification, the indexed libraries 
were quantified using a TapeStation 2200 instrument (Agilent) with D1000 
screen tape and reagents, and a Qubit with dsDNA HS Assay kit. 

We then performed test sequencing of the single stranded libraries on an 
Illumina NextSeq 500 sequencing platform [28] using the custom CL72 R1 
sequencing primer [27] generating approximately one million 75 bp single-end
reads for each library. Mapping of this test data (for methodological details 
refer to the “Data processing” section below) to the reference genome 
assembly of the giant panda [5, 6] indicated that the two libraries initially 
prepared from the ancient giant panda bone did not contain a sufficient 
content of endogenous DNA for deeper sequencing (Table S1). We then took 
a further ten bone powder aliquots and pretreated them with 0.5% (vol/vol) 
bleach solution (sodium hypochlorite) at room temperature for 15 min before 
DNA extraction, in an attempt to reduce the proportion of contaminant DNA 
[24, 25]. Qubit quantification indicated low concentrations for the resulting 
DNA extracts (maximally 0.766 ng/µL), and so  20 µL of each extract was 
used to prepare a further ten single-stranded libraries, respectively. Library 
preparation followed the procedure described above except that the Klenow 
Fragment of DNA polymerase I was used for the fill-in step [25]. This was 
carried out in 50 µL reactions with the following reagent concentrations: 1x 
Klenow buffer, 200 µM of each dNTP, 2 µM CL9_Phos extension primer, and 
10 U/µL Klenow Fragment of DNA polymerase I. Since the resulting 
molecules are blunt-ended, removal of overhangs using Bst 2.0 was not 
required. Test sequencing of these pretreated libraries indicated that they 
provided  sufficient endogenous data yield for deeper sequencing (Table S1). 
Therefore, these ten libraries were pooled in equal molarity and sequenced on
a single lane of the Illumina HiSeq 4000 platform using the custom CL72 R1 
sequencing primer and the Gesaffelstein index 2 sequencing primer [28] 
producing 100 bp paired-end reads. 

To assess library complexity, we used lc_extrap in the Preseq package (http://
smithlabresearch.org/software/preseq/) to predict the endogenous data yield 
from further sequencing of the pretreated libraries. The ten libraries varied in 
their predicted complexity (Table S3) and were re-pooled based on the 
Preseq result in order to minimise the overall level of sequence duplication 
during further sequencing on five HiSeq lanes (Table S1).

Data processing
All data processing was carried out within the BEARCAVE v.ce78f40 data 
analysis and storage environment (available at: 
https://github.com/nikolasbasler/BEARCAVE), which provides a resource for 
data processing and the establishment of a common sequencing data 
repository. The BEARCAVE v.ce78f40 distribution is freely available and can 
be used to replicate the described analyses. 
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For data processing using BEARCAVE, raw reads from each library were 
treated independently. Cutadapt v1.12 [29] was used to trim Illumina adapter 
sequences from all reads and discard sequences shorter than 30 bp. Flash 
v1.2.11 [30] was used to merge overlapping read pairs. Unmerged paired 
reads were discarded as long DNA fragments are likely to represent modern 
contamination. The merged reads were mapped to the both the nuclear 
genome assembly of the giant panda [6] and the polar bear [31] using the 
“aln” and “samse” algorithms in bwa v0.7.15 [32]. For mapping to polar bear, 
the number of allowed mismatches was relaxed by setting the -n flag in bwa 
aln to 0.01 rather than the default 0.04, replicating the approach used by a 
previous study which mapped reads in the opposite direction, from polar bear 
to the giant panda reference [12]. Sequences with a map quality score less 
than 30 were removed and the alignment sorted by 5’ mapping position using 
the “view” and “sort” algorithms in samtools v1.3.1 [33]. Potential PCR 
duplicates generated during library amplification were eliminated by using 
“rmdup” in samtools. The resulting bam files for each library were then 
merged into a single bam file using samtools “merge”. Full details of mapping 
statistics are provided in (Table S1).

Short read data of 49 modern giant pandas (average 4.7x fold coverage) [2] 
and a polar bear ([31], accession SRS463472) were downloaded from the 
European Nucleotide Archive and processed using identical methods, except 
that both merged and unmerged read pairs were used for mapping and the 
relaxed mismatch setting was used when mapping polar bear reads to the 
giant panda reference genome assembly. 

QUANTIFICATION AND STATISTICAL ANALYSIS

Ancient DNA authenticity and contamination 
We checked for the presence on DNA fragmentation and cytosine 
deamination typical of ancient DNA using the program mapDamage v2.0.8 
[34], with merged reference scaffolds and Bayesian estimation disabled. The 
alignment length distribution of reads mapped to the giant panda reference 
nuclear genome revealed high levels of DNA fragmentation (Figure S1). 94% 
of alignments are < 100 bp, and the modal alignment length is 31 bp, which 
represents an overestimate since reads < 30 bp were discarded prior to 
mapping. The mapped reads also show elevated levels of C→T substitutions 
relative to the reference genome at their terminal ends (Figure S1). These 
patterns are consistent with the postmortem degradation of endogenous 
molecules expected for ancient samples, supporting the authenticity of our 
data. 

We investigated potential modern mammalian contamination of the ancient 
giant panda sample by comparing the percentage of reads mapping uniquely 
to the giant panda reference genome with the percentage mapping uniquely 
to the genomes of potential contaminating mammals using the program 
FastQscreen v0.10.0 [35], using bwa v0.7.8 aligner and default parameters. 
The potential contaminating genomes used in the comparison were human, 
cow, pig, cat, dog and mouse. The proportion of reads mapping uniquely to 
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panda in this analysis was 7.75%, which is ~100-fold greater than values for 
any other genome tested (maximum 0.07% for human) (Table S2). Although 
these values do not represent absolute measures of contamination, their ratio 
is indicative of a very low ratio of endogenous to contaminant DNA in the 
ancient giant panda sample, and is further likely to be an overestimate due to 
greater quality and contiguity of the test genomes in comparison to the giant 
panda reference.

Mitochondrial phylogeny 
Modern [2] and ancient giant panda reads were mapped to a giant panda 
mitochondrial genome ([36]; GenBank accession FM177761.1) using the 
procedures described above (see Table S1). All read alignments were 
checked by eye for the presence of polymorphic positions, which would 
suggest that an appreciable proportion of reads mapping derive from nuclear 
mitochondrial DNA segments (NUMTs), but such sites were not observed in 
any read alignment. A consensus fasta sequence based on maximum 
effective base depth [37], which takes into account both base and mapping 
quality scores, was generated using “doFasta 3” in ANGSD v0.916 [38]. The 
mitochondrial genomes of the 49 modern giant pandas [2] and that of the 
ancient individual analysed here were aligned along with the published 
mitochondrial genome sequence of an ancient giant panda from Guangxi, 
China [23], using the MUSCLE algorithm [39] implemented in the software 
MEGA X v10.0.5 [40], with default parameters. The resulting sequence 
alignment was checked by eye and a 367 bp section of the d-loop containing 
a microsatellite repeat motif was removed as this cannot be reliably 
reconstructed from short read data. The final alignment comprised 16,445 
aligned positions of which 245 were variable and 119 were parsimony 
informative.

Phylogenetic relationships and coalescence times of the mitochondrial 
sequences were then estimated using BEAST v1.8.2 [41]. This analysis was 
based on a previous analysis of mitochondrial sequences of modern and 
ancient giant pandas [4]. Phylogeny and coalescence times were estimated 
under a piecewise-constant Bayesian Skyline tree model with 10 groups, 
assuming a strict molecular clock and a GTR+G substitution model. Time 
calibration was achieved by fixing the tip dates of the ancient samples to their 
median calibrated radio-carbon ages and by applying a normal prior on the 
coalescence time of all modern panda haplotypes with a mean age of 72,000 
years and a standard deviation of 10,000 years, based on a previous study 
[22]. The per-lineage substitution rate was estimated within an open, uniform 
prior of 0–20% per million years. Default settings were retained for all other 
priors. The MCMC chain ran for sufficient time to achieve convergence and 
adequate posterior sampling of all parameters (effective sample sizes > 200), 
determined using the program Tracer v1.6 [42]. The maximum clade 
credibility tree was selected from the posterior sample with node heights 
centred on the median from the posterior sample using TreeAnnotator v1.8.2 
[43], and visualised in FigTree v1.4.2 [44] (Figure S2).

Relationships among giant panda genomes 

500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548



Individuals of unknown provenance and captive individuals of mixed 
population ancestry (indicated in Figure S2 ) were excluded from these 
analyses. The giant panda genome assembly was used as mapping 
reference. A covariance matrix was calculated using single base identity by 
state (IBS) in ANGSD v0.916, with the following filters applied. Transition sites
were identified using genotype likelihoods and excluded. Singleton sites were 
excluded (1/N < -minFreq < 2/N, where N = number of individuals). We 
furthermore only considered sites without missing data (-minInd N), a 
minimum base quality score of 30 (-minQ 30), minimum mapping quality score
of 30 (-minMapQ 30), and minimum scaffold length of 1 Mb. PCA of the 
covariance matrix was then carried out using the “eigen” function in R [45], 
which was also used to visualise the results. The removal of singletons in this 
analysis provides an effective means of removing sequencing errors, which 
are known to occur in high abundance in ancient datasets, but this approach 
is sensitive to unbalanced sampling of populations [9]. Since the ancient 
population investigated here is represented by only one individual, many 
alleles unique to that population will have also been removed. This effect 
makes this analysis highly conservative since the divergence of the ancient 
population from modern ones will be underestimated. The observation of the 
ancient genome as distinct under this conservative approach thus provides 
robust support for the ancient population being distinct. 

Relationships assuming a phylogenetic model of evolution were estimated 
using neighbour-joining phylogenetic analysis. A distance matrix was 
calculated using ANGSD including the polar bear as outgroup and applying 
the same filters as used for PCA. The neighbour-joining tree was then 
calculated using the “nj” function and rooted using the “root” function in the R 
package ape [46]. Support for the ancient giant panda as basal to the modern 
giant panda clade was further assessed using an approach based on D 
statistics [7, 8]. Specifically, for each pair of modern giant pandas, we 
calculated the excess of derived alleles that a modern giant panda shares 
with the ancient giant panda and not with the other modern giant panda, and 
compared these to the excess of derived alleles that a modern giant panda 
shares with the other modern giant panda and not with the ancient giant 
panda. These values correspond, respectively, to D statistics calculated for 
tree topologies (((ancient,modern),modern),outgroup) and 
(((modern,modern),ancient),outgroup). For the latter, D values were converted
to their absolute value, which effectively places the modern panda that shares
more derived alleles with the ancient panda in P2. Consistently lower D 
values for a particular topology across all comparisons supports that topology 
as correct since D values in the alternative topology are inflated because they 
reflect derived alleles shared through both admixture and direct ancestry, 
whereas those for the correct topology reflect only derived alleles shared 
through admixture. D statistics for this topology test were calculated in 
ANGSD using single read sampling (doAbbababa 1), requiring minimum base
and map qualities of 30, excluding transitions, and only considering scaffolds 
> 1 Mb, with the polar bear as outgroup. Statistical support was assessed 
using a weighted-block jackknife test using 5 Mb non-overlapping blocks, with 
absolute Z-scores > 3 considered as supported. 
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Admixture tests
The polar bear genome assembly was used as mapping reference for all 
admixture tests, since preliminary analyses using the giant panda as mapping
reference suggested an effect of mapping reference bias. The polar bear 
reference sequence was also used as outgroup. We computed D-statistics for
the topology (((modern,modern),ancient),polar bear). Although increased 
rates of error in ancient datasets have been show to confound D statistics [9], 
these tests should not be substantially affected since the ancient individual is 
in P3. Specifically, assuming an equal occurrence of singleton sites in P1 and 
P2, errors in the P3 individual should not cause an imbalance in the frequency
of either ABBA or BABA sites. D-statistics were calculated as described 
above. For significance testing, we applied the weighted block jackknife test 
using 5 Mb non-overlapping blocks, with D values more than three standard 
errors different from zero (Z > 3) considered as statistically significant. The 
phylogenetic test of directional admixture was based on that described in a 
previous study [11]. A majority-rule consensus sequence for scaffolds > 1 Mb 
was generated for the test individuals using ANGSD (-doFasta 2). A custom 
perl script was then used to divide the aligned sequences into non- 
overlapping 100 kb blocks. Blocks where any single individual had > 50% 
missing data were excluded, and the remainder converted into binary 
characters to exclude transitions (R: 0, Y: 1). 14,933 blocks remained after 
filtering. The phylogeny of each block was then computed under the 
BINGAMMA model with RAxML v8.2.10 [47] using the polar bear as outgroup 
to root the trees. The occurrence of each of the 15 possible rooted tree 
topologies was then counted.

DATA AND SOFTWARE AVAILABILITY
The raw fastq DNA sequence data files generated from the ancient giant 
panda bone sample have been deposited in the European Nucleotide Archive 
under ID codes ERX3266492 to ERX3266503, and ERX3266568 to 
ERX3266597.
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KEY RESOURCES TABLE

KEY RESOURCES TABLE

REAGENT or RESOURCE SOUR
CE

IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins
Guanidine hydrochloride Roth Cat#0037.1
QIAGEN MinElute kit Qiagen Cat#28004

Critical Commercial Assays
D1000 Screen Tape (Tapestation2200) Agilent Cat#5067-5582
dsDNA HS Assay Kit (Qubit 2.0) Therm

ofisher 
Cat#Q32851

Deposited Data
aGP2-01_test This 

paper
ENA: ERX3266492

aGP2-02_test This 
paper

ENA: ERX3266493

aGP2-03_test This 
paper

ENA: ERX3266494

aGP2-03_1st This 
paper

ENA: ERX3266568

aGP2-03_2nd This 
paper

ENA: ERX3266569

aGP2-03_3rd This 
paper

ENA: ERX3266570

aGP2-04_test This 
paper

ENA: ERX3266495

aGP2-04_1st This 
paper

ENA: ERX3266571

aGP2-04_2nd This 
paper

ENA: ERX3266572

aGP2-04_3rd This 
paper

ENA: ERX3266573

aGP2-05_test This 
paper

ENA: ERX3266496

aGP2-05_1st This 
paper

ENA: ERX3266574

aGP2-05_2nd This 
paper

ENA: ERX3266575

aGP2-05_3rd This 
paper

ENA: ERX3266576

aGP2-06_test This 
paper

ENA: ERX3266497

aGP2-06_1st This 
paper

ENA: ERX3266577

aGP2-06_2nd This 
paper

ENA: ERX3266578

aGP2-06_3rd This 
paper

ENA: ERX3266579



aGP2-07_test This 
paper

ENA: ERX3266498

aGP2-07_1st This 
paper

ENA: ERX3266580

aGP2-07_2nd This 
paper

ENA: ERX3266581

aGP2-07_3rd This 
paper

ENA: ERX3266582

aGP2-08_test This 
paper

ENA: ERX3266499

aGP2-08_1st This 
paper

ENA: ERX3266583

aGP2-08_2nd This 
paper

ENA: ERX3266584

aGP2-08_3rd This 
paper

ENA: ERX3266585

aGP2-09_test This 
paper

ENA: ERX3266500

aGP2-09_1st This 
paper

ENA: ERX3266586

aGP2-09_2nd This 
paper

ENA: ERX3266587

aGP2-09_3rd This 
paper

ENA: ERX3266588

aGP2-10_test This 
paper

ENA: ERX3266501

aGP2-10_1st This 
paper

ENA: ERX3266589

aGP2-10_2nd This 
paper

ENA: ERX3266590

aGP2-10_3rd This 
paper

ENA: ERX3266591

aGP2-11_test This 
paper

ENA: ERX3266502

aGP2-11_1st This 
paper

ENA: ERX3266592

aGP2-11_2nd This 
paper

ENA: ERX3266593

aGP2-11_3rd This 
paper

ENA: ERX3266594

aGP2-12_test This 
paper

ENA: ERX3266503

aGP2-12_1st This 
paper

ENA: ERX3266595

aGP2-12_2nd This 
paper

ENA: ERX3266596

aGP2-12_3rd This 
paper

ENA: ERX3266597

Oligonucleotides



CL9_Phos extension primer: 
GTGACTGGAGTTCAGACGTGTGCTCTTCC*GA*TC*
T
 (* = phosphothioate linkage)

[25] Sigma Aldrich

CL9 extension primer:
GTGACTGGAGTTCAGACGTGTGCTCTTCCGATCT

[27] Sigma Aldrich

Double-stranded adapter
Strand 1 (CL53): CGACGCTCTTC-ddC (ddC = 
dideoxycytidine)
Strand 2 (CL73): 
[Phosphate]GGAAGAGCGTCGTGTAGGGAAAGAG*T
*G*T*A (* = phosphothioate linkage)

[27] Sigma Aldrich

CL78: AGATCGGAAG[C3Spacer] 10 [TEG-biotin] (TEG
=triethylene glycol spacer)

[27] Sigma Aldrich

P5 indexing primer: 
AATGATACGGCGACCACCGAGATCTACACnnnnnnn
nACACTCTTTCCCTACACGACGCTCTT

[27] Sigma Aldrich

P7 indexing primer: 
CAAGCAGAAGACGGCATACGAGATnnnnnnnnGTGA
CTGGAGTTCAGACGTGT

[27] Sigma Aldrich

IS7 amplification primer: 
ACACTCTTTCCCTACACGAC 

[27] Sigma Aldrich

IS8 amplification primer: 
GTGACTGGAGTTCAGACGTGT

[27] Sigma Aldrich

CL72 R1 sequencing primer : 
ACACTCTTTCCCTACACGACGCTCTTCC

[27] Sigma Aldrich

Gesaffelstein index 2 sequencing primer: 
GGAAGAGCGTCGTGTAGGGAAAGAGTGT

[28] Sigma Aldrich

Software and Algorithms
BEARCAVE ce78f40 - https://github.com/nikolasbasler/

BEARCAVE
Cutadapt v1.12  [29] https://cutadapt.readthedocs.io/en/

stable/index.html
Flash v1.2.11 [30] https://ccb.jhu.edu/software/FLASH/
BWA v0.7.15 and v0.7.8 [32] http://bio-bwa.sourceforge.net/

Samtools v1.3.1 [33] https://sourceforge.net/projects/
samtools/files/samtools/

PreSeq - http://smithlabresearch.org/software/
preseq/

MapDamage v2.0.8 [34] https://ginolhac.github.io/
mapDamage/

FastQscreen v0.10.0 [35] https://
www.bioinformatics.babraham.ac.uk/
projects/fastq_screen/

ANGSD v0.916 [38] http://www.popgen.dk/angsd
MEGA X v10.0.5 [40] https://www.megasoftware.net/

dload_mac_beta
BEAST v1.8.2 [41] http://beast.community/index.html
Tracer v1.6 [42] https://github.com/beast-dev/

tracer/

http://www.popgen.dk/angsd


TreeAnnotator v1.8.2 [43] http://beast.community/treeannotator
FigTree v1.4.2 [44] http://tree.bio.ed.ac.uk/software/

figtree/
RaxML v8.2.10 [47] https://github.com/stamatak/

standard-RAxML
Other
Proteinase K Prome

ga
Cat#V3021

Zymo-spin V column extension reservoir Zymo Cat#C1016-50
Circligase II Biozym Cat#131402(CL9021K)
Endonuclease VIII NEB Cat#A0299S
Uracil-DNA glycosylase (Afu UDG) NEB Cat#M0279S
FastAP Therm

o 
Fisher

Cat#EF0651

MyOne C1 streptavidin beads Therm
o 
Fisher

Cat#65001

Bst 2.0 polymerase NEB Cat#M0537S
T4 DNA Polymerase Therm

o 
Fisher

Cat#EP0061

Buffer Tango (10x) Therm
o 
Fisher

Cat#BY5

T4 DNA ligase Therm
o 
Fisher

Cat#EL0011

Accuprime Pfx Therm
o 
Fisher

Cat#12344024

PEG-4000 Therm
o 
Fisher

Cat#EP0061

Klenow fragment of DNA polymerase I Therm
o 
Fisher

Cat#EP0051

SYBR green PCR MasterMix Therm
o 
Fisher

Cat#4309155


