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Abstract 

Objective:  A key challenge in ancient DNA research is massive microbial DNA contamination from the deposition 
site which accumulates post mortem in the study organism’s remains. Two simple and cost-effective methods to 
enrich the relative endogenous fraction of DNA in ancient samples involve treatment of sample powder with either 
bleach or Proteinase K pre-digestion prior to DNA extraction. Both approaches have yielded promising but vary-
ing results in other studies. Here, we contribute data on the performance of these methods using a comprehensive 
and systematic series of experiments applied to a single ancient bone fragment from a giant panda (Ailuropoda 
melanoleuca).

Results:  Bleach and pre-digestion treatments increased the endogenous DNA content up to ninefold. However, 
the absolute amount of DNA retrieved was dramatically reduced by all treatments. We also observed reduced DNA 
damage patterns in pre-treated libraries compared to untreated ones, resulting in longer mean fragment lengths 
and reduced thymine over-representation at fragment ends. Guanine–cytosine (GC) contents of both mapped and 
total reads are consistent between treatments and conform to general expectations, indicating no obvious biasing 
effect of the applied methods. Our results therefore confirm the value of bleach and pre-digestion as tools in palaeog-
enomic studies, providing sufficient material is available.
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Introduction
Ancient DNA (aDNA) research contributes a wide range of 
applications and prospects to the field of evolutionary biol-
ogy [1]. As a result of post mortem microbial colonisation, 
the endogenous fraction of DNA in ancient samples typi-
cally makes up less than 1% of the total retrieved DNA (e.g. 
[2]). The financial costs required to sequence such a sample 
may therefore be prohibitive. Multiple approaches exist to 
reduce the contaminant fraction of DNA [3, 4]. Particularly 

appealing for their simplicity and cost-effectiveness are the 
exposure of powder from bones or teeth to bleach (sodium 
hypochlorite solution) [5], a pre-digestion buffer [6], or a 
combination of both [7]. However, the precise mechanisms 
underlying these methods remain uncertain, and their 
exact effect on a particular sample is difficult to accurately 
predict [5]. The data presented here contribute to a better 
understanding of these pre-treatment methods.

In this study, three different concentrations of bleach 
as well as a pre-digestion buffer were applied to the pow-
der of a single ancient bone fragment from a giant panda 
(Ailuropoda melanoleuca). The effects of these different 
applications on endogenous DNA content, complexity of 
DNA sequencing libraries, and on characteristic aDNA 
damage patterns were evaluated.
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Main text
Ancient bone sample
The investigated bone fragment was found in the sink-
hole of Xiaoshuijing, Jiangdong Hill, Tengchong County, 
Yunnan, China. Its age is 8470 ± 45 years based on radio-
carbon dating [8].

Established procedures to avoid modern contamination 
were followed during DNA extraction and library prepa-
ration [9]. Appropriate blank controls were included dur-
ing all procedures, and consisted of: extraction buffer 
without bone powder for extraction; nuclease free water 
instead of DNA extract for library preparation; and Tris–
EDTA–Tween (TET) buffer containing 10 mM Tris–HCl 
(Thermo Fisher 15568-025), 1  mM EDTA (VWR E177-
500MLDB) and 0.05% (v/v) Tween-20 (A. Hartenstein 
CT20), instead of DNA template for all PCRs. No inves-
tigator blinding or treatment randomisation was carried 
out.

Laboratory procedures
Using a mixer mill (Retsch MM 400), the 1.55  g bone 
fragment was ground into homogenous powder and 
then divided into 61 portions of ~  25  mg and stored at 
− 20 °C. Eleven portions of 25.1 ± 0.6 mg were used in 
this study.

Two replicates were carried out for each pre-treat-
ment method. Bleach pre-treatments comprised v/v-
dilutions of 0.1, 0.5 and 1.0% bleach (laboratory grade 
sodium hypochlorite, Sigma Aldrich 425044, 10–15% 
available chlorine), resulting in ~  0.015, ~  0.075 and 
~  0.150% available chlorine, respectively. Following 
Korlević et  al. [5], 1  mL of bleach solution was added 
to the bone powder, and rotated for 15  min at room 
temperature. The sample was then pelleted by cen-
trifugation at 16,300×g, and the resulting superna-
tant discarded. Three wash steps were then carried out 
involving rotation for 3  min in 1  mL water, and cen-
trifugation at 16,300×g. For pre-digestion treatment, a 
pre-digestion buffer containing 0.5% (w/v) N-lauroyl-
sarcosine (Sigma Aldrich L9150-50G), 0.5  M EDTA 
(VWR E177-500MLDB) and 0.25  mg/mL Proteinase K 
(Promega V3021) was applied to bone powder samples 
as described by Damgaard et al. [6]. The buffer volume 
was adjusted for the lower amount of bone powder 
used here, compared with Damgaard et al. [6], by using 
312.5 µL per application instead of 5 mL. Samples were 
incubated at 37  °C (rather than 50  °C as used in [6]), 
to match final extraction conditions, and for 45  min 
(rather than 30 min as used in [6]), as recommended for 
lower incubation temperatures [6]. After incubation, the 
tubes were centrifuged for 2  min at 16,300×g, and the 
supernatant discarded. All pre-treatments were imme-
diately followed by DNA extraction. In order to gain 

comparative values, three bone powder portions were 
additionally processed without any pre-treatment.

DNA extraction was performed according to Dab-
ney et  al. [10] with reduced bone powder input mass, 
and reduced centrifugation speed of the binding appa-
ratus at approximately 450×g. The lower centrifugation 
speed was chosen based on our previous experience 
that the binding apparatus can break during centrifu-
gation at higher speeds. To examine the influence of a 
reduced bone powder input, we performed 12 independ-
ent extractions on six cave hyena samples using both 25 
and 50 mg of bone powder. Results from this comparison 
(Additional file  1: Figure S1) showed no consistent evi-
dence of a reduction in DNA yield greater than would be 
expected based on input bone powder amounts (i.e. DNA 
yield from 25 mg bone powder being half that obtained 
from 50  mg bone powder). We interpret this result as 
indication that no obvious negative influence on extrac-
tion efficiency is caused by using this reduced input bone 
powder amount.

Sequencing libraries were generated from each DNA 
extract following a single-stranded library preparation 
protocol [11], which included treatment with uracil-DNA 
glycosylase (New England Biolabs M0279) and endonu-
clease VIII (New England Biolabs M0299). The Klenow 
Fragment of DNA polymerase I (Thermo Fisher Scientific 
EP0051) was used for the fill-in reaction [5]. 2.5 U/μL 
of Circligase II (Biozym 131406) was used and the liga-
tion reaction carried out overnight. A quantitative PCR 
(qPCR) experiment was carried out using 0.2% of the 
unamplified library to estimate relative library complexi-
ties (Additional file  2: Table S1), and to determine the 
optimal number of cycles for subsequent indexing PCR, 
representing the inflection point of the respective library 
amplification curves, corrected for reaction volume and 
template amount. qPCR was performed on a PikoReal 
96 Real-Time PCR machine (Thermo Fisher Scientific 
TCR0096) with 3 replicates for each library, involving an 
initial 10 min denaturation at 95 °C, followed by 40 cycles 
of: 15 s at 95 °C, 30 s at 60 °C, and 1 min at 72 °C. The 10 
μL qPCR reaction mix contained 1 μL of diluted library 
and final concentrations of 1 × SYBR Green qPCR Mas-
ter Mix (Applied Biosystems 4309155) and 0.2  μM of 
each primer IS7 and IS8 [11]. The indexing PCR was then 
performed for the appropriate number of cycles, intro-
ducing unique 8  bp indices to both 5′ and 3′ adapters. 
Final concentrations and PCR were as described by Gan-
sauge and Meyer [11], but using 20 μL of template DNA 
in a total reaction volume of 80 μL.

DNA sequencing was performed on an Illumina Next-
Seq 500 sequencing platform, using 500/550 Mid Output 
v2 (150 cycles, Illumina FC-404-2001) and 500/550 High 
Output v2 (75 cycles, Illumina FC-404-2005) kits, with a 
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custom read-1 [11] and a custom index-2 [12] sequenc-
ing primer. Although paired-end data was acquired for 
some libraries (GP1-01, GP1-02, GP1-03), only their first 
reads were used in data analysis, effectively unifying all 
sequence reads to single-end data of 76 bp length.

Sequence data analysis
Sequencing reads were trimmed using the software cuta-
dapt (version 1.4.2) [13], requiring a minimum 4 bp over-
lap for adapter trimming. Duplicates were removed from 
the trimmed reads using Tally [14] (version 14-020), and 
1,500,000 reads subsampled in order to estimate the frag-
ment length distribution of the total DNA (both endog-
enous and contaminant) recovered using each treatment 
(Additional file 3: Table S2, Additional file 4: Table S3).

For comparison of endogenous DNA, 1,500,000 
trimmed reads ≥  30  bp were randomly subsampled 
(Additional file 3: Table S2) and mapped to the reference 
genome assembly of the giant panda [15] using the “aln” 
algorithm of BWA [16] (version 0.7.8-r455), with default 
parameters, and converted to bam format using BWA’s 
“samse” utility. Using SAMtools [17] (version 0.1.19-
44428cd), reads mapping with a phred quality score 
below 30 were removed (samtools view). The alignment 
was sorted by 5′ read position (samtools sort), and dupli-
cate reads were collapsed (samtools rmdup). Thymine 
over-representation at 5′ ends of endogenous DNA frag-
ments was assessed using mapDamage2.0 [18] (version 
2.0.2-8-gaeeeffc-dirty).

For the total DNA, guanine–cytosine (GC) con-
tents were obtained directly from trimmed FASTQ files 

(Additional file  3: Table S2, Additional file  4: Table S3). 
For endogenous DNA, mapped reads were converted 
into the FASTQ format using BEDtools [19] (version 
v2.25.0) for their GC content to be assessed.

Endogenous content and total DNA recovery
All pre-treated libraries showed higher endogenous 
contents than untreated ones (Table  1). Considering 
mean values for each pre-treatment method, the high-
est increase in endogenous content was observed for 
0.5% bleach (ninefold, Fig.  1), which is consistent with 
the results of previous studies [5]. 0.1 and 1.0% bleach 
concentrations resulted in eightfold and fivefold mean-
increase in endogenous content, respectively. The effect 
of pre-digestion was less pronounced, providing a two-
fold increase in endogenous content. Overall DNA 
retrieval was drastically reduced by all pre-treatment 
methods, scaling in magnitude with bleach concentra-
tion, with the effect of pre-digestion again being less pro-
nounced (Fig. 1). It should be noted that the amounts of 
retrieved DNA vary within most treatments (by up to 
61%, Table 1), which appears to be a common phenom-
enon in aDNA studies (e.g. [20]).

The up to ninefold increase of endogenous content in 
pre-treated libraries implies an equivalent cost reduc-
tion for further sequencing attempts of the sample 
investigated here. However, the large reduction in DNA 
retrieval rates will be associated with reduced library 
complexity (i.e. the number of distinct DNA molecules 
it contains), which may counter any increases in endog-
enous content by increasing sequence duplication rates. 

Table 1  Outcome of sequencing experiments

The number of mapped reads, endogenous contents, relative DNA quantities and GC contents of all libraries are reported. GP1-01 (shown in parentheses) is 
considered an outlier due to an extremely reduced relative DNA quantity in comparison to other untreated libraries (GP1-02 and GP1-03), suggesting failed library 
preparation, and was not considered for further analysis
a  Endogenous content was calculated as the quotient of successfully mapped reads (excluding duplicates) and the total number of reads used for mapping
b  Based on qPCR results (Additional file 2: Table S1). Normalised to GP1-02 (untreated), which yielded the most DNA

Library Pre-treatment Mapped reads  
(excluding duplicates)

Endogenous 
contenta (%)

Relative DNA 
quantityb (%)

Mean fragment  
length

GC content (total/
mapped), %

(GP1-01) None (4896) (0.7) (0.4) (37.7) (60/37)

GP1-02 None 2969 0.4 100.0 31.9 64/37

GP1-03 None 3409 0.4 39.0 34.1 63/38

GP1-07 0.1% bleach 28,771 3.5 4.7 36.5 60/37

GP1-10 0.1% bleach 16,898 2.6 2.4 32.8 62/39

GP1-08 0.5% bleach 33,467 3.8 1.3 40.1 57/38

GP1-11 0.5% bleach 23,317 3.1 0.7 36.1 59/39

GP1-09 1.0% bleach 18,865 2.1 1.1 39.6 57/38

GP1-12 1.0% bleach 16,590 2.1 0.7 37.8 59/39

GP1-13 Pre-digestion 5734 0.7 11.7 36.6 62/39

GP1-14 Pre-digestion 4925 0.7 11.3 34.3 62/39
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This effect can be mitigated by processing an increased 
amount of bone powder, provided sufficient material is 
available.

Fragment lengths, thymine over‑representation and GC 
content
Mean fragment lengths were generally higher for pre-
treated libraries than for untreated ones (Fig. 2a–e). For 
bleach treated libraries, the length increase appears to 
be positively correlated with bleach concentration. The 
mean length of pre-digested libraries was intermediate 
between that of the 0.1 and 0.5% bleach treated librar-
ies. However, the variation of mean fragment length 
within replicates was often larger than the difference 
between treatments. Because of the small number of rep-
licates carried out, any conclusions based on mean val-
ues are therefore tentative, and more replicates would 
be needed in order to robustly test these hypotheses. 
We also observed consistently reduced levels of thymine 
overrepresentation in pre-treated libraries compared to 
untreated ones, albeit with some variation in exact fre-
quencies between replicates (Fig. 2f ).

DNA fragmentation and cytosine deamination are 
typical forms of damage occurring to ancient DNA mol-
ecules [21]. The observation that libraries pre-treated 
with bleach exhibit larger average fragment lengths 
and reduced cytosine deamination (inferred from thy-
mine over-representation), despite the DNA degrading 

properties of bleach [22, 23], seems counter-intuitive. We 
hypothesise that DNA from osteocytes is more protected 
from both damage and contamination due to its location 
within the bone’s lacunae [24, 25]. Sample pre-treatment 
thus enriches for this osteocyte DNA providing both an 
increase in the endogenous fraction and a reduction in 
damage rates, but this hypothesis is currently untested.

The GC content of the total recovered DNA was con-
sistently lower in bleached libraries in comparison to 
untreated ones (Table 1). Smaller reductions in GC con-
tent were observed with pre-digestion. For endogenous 
DNA (mapped reads), GC contents were around 38%, 
regardless of the pre-treatment method  (Table  1), as 
expected for a mammalian genome [26], indicating no 
obvious GC content bias introduced by the pre-treat-
ments used in this study.

Conclusions
Our results add to a growing body of research confirm-
ing that bleach and pre-digestion are valuable tools for 
the study of both palaeogenomes [5–7] and forensics 
[20, 27]. The majority of published studies have applied 
these methods to bone and/or tooth samples, however 
bleach has also been used successfully to remove modern 
human DNA contamination from hairs (e.g. [28]). To our 
knowledge, only mitochondrial sequences have been suc-
cessfully retrieved from ancient hair specimens to date, 
rendering them potentially less useful than bone sam-
ples for studies of ancient nuclear genomes. The wider 
potential for these pre-treatment methods in the retrieval 
of genetic data from other ancient or degraded tissues 
appears largely unexplored, but may represent a benefi-
cial area for future research.

The increases in endogenous content associated with 
the pre-treatment methods applied here could provide 
a direct and equivalent reduction in sequencing costs. 
However, the inevitable reduction of library complexity 
may counter such gains and necessitate the processing 
of more sample material. Pre-treatments may be further 
improved by fine tuning concentrations and incubation 
times, as well as by comparing their effect on samples 
from different species, time periods and deposition envi-
ronments. Even now, samples with very low endogenous 
DNA contents may become viable for whole-genome 
sequencing if pre-treatment is applied, greatly increasing 
the number of potential study subjects.

Finally, the high experimental noise observed in the 
rates of DNA retrieval (Table  1) and mean fragment 
lengths (Fig.  2a–e), appear to be common in aDNA 
research (e.g. [20]). A large number of replicates may 
therefore be needed for statistical confirmation of the 
observed trends, particularly when effect sizes are 
small.
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Fig. 1  Mean relative DNA quantities and endogenous contents 
for each pre-treatment. Vertical bars show relative DNA quantities 
(Additional file 2: Table S1), normalised to the mean of untreated 
libraries, referring to the left-hand axis. Black horizontal marks show 
endogenous contents, referring to the right-hand axis
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Limitations
• • Only one bone was investigated, precluding broad 

generalisations as bleach and pre-digestion treat-
ments are known to have sample-specific effects.

• • Due to limited amount of material, not enough rep-
licates could be prepared to statistically confirm the 
results.
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