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Abstract 

 

Introduction: In order for brain tumours to be successfully treated, maximal 

resection is beneficial. A method to detect infiltrative tumour edges intraoperatively, 

improving on current methods would be clinically useful. Vibrational spectroscopy 

offers the potential to provide a handheld, reagent-free method for tumour detection. 

Purpose: This study was designed to determine the ability of both Raman and 

Fourier-transform infrared (FTIR) spectroscopy towards differentiating between 

normal brain tissue, glioma or meningioma. 

Method: Unfixed brain tissue, which had previously only been frozen, comprising 

normal, glioma or meningioma tissue was placed onto calcium fluoride slides for 

analysis using Raman and attenuated total reflection (ATR)-FTIR spectroscopy. 

Matched haematoxylin and eosin slides were used to confirm tumour areas. Analyses 

were then conducted to generate a classification model. 

Results: This study demonstrates the ability of both Raman and ATR-FTIR 

spectroscopy to discriminate tumour from non-tumour fresh frozen brain tissue with 

94% and 97.2% of cases correctly classified, with sensitivities of 98.8% and 100% 

respectively. This decreases when spectroscopy is used to determine tumour type. 

Conclusion: The study demonstrates the ability of both Raman and ATR-FTIR 

spectroscopy to detect tumour tissue from non-tumour brain tissue with a high degree 

of accuracy. This demonstrates the ability of spectroscopy when targeted for a cancer 

diagnosis. However, further improvement would be required for a classification 

model to determine tumour type using this technology, in order to make this tool 

clinically viable. 

 

 

 

Key Words: Brain tumours, Classification model, Intraoperative diagnosis, 

Neurosurgery, Spectrochemical analyses  
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Introduction 

Brain tumours account for 3% of all tumours diagnosed annually, with 

incidence rates increasing approximately 15% over the last decade1. Whilst they 

comprise a small proportion of all cancers diagnosed per year, the difficulty of 

complete removal of the tumour is inherent. High-grade tumours can be infiltrative 

with up to 75% of tumour resections thought to leave behind viable tumour 2. Current 

techniques include the use of 5-aminolevulinic acid (5-ALA), a fluorescent compound 

to fluoresce tumour cells to enable the surgeon to visualise them more easily. This 

allows real-time feedback and does not rely on repeat intraoperative imaging 3,4. A 

tool that could either improve, or work in conjunction with 5-ALA could prove useful 

to neurosurgeons, improving resection rates further and thus, hopefully, disease-free 

survival. 

Vibrational spectroscopic techniques have been in use for many years, 

including two forms: Raman and attenuated total reflection Fourier-transform infrared 

(ATR-FTIR) spectroscopy. These are complimentary techniques producing results 

based upon vibrations within the chemical bonds of the interrogated sample. Studies 

on many tumour types comprising both tissue and biofluids, have shown promising 

results, and use a combination of both ATR-FTIR and Raman spectroscopy, with an 

ability to detect tumour from non-tumour cases 5-18. Both Hands et. al. and our group 

have demonstrated separation of patients with and without primary brain tumours and 

metastatic lesion using blood serum and plasma with high sensitivities and 

specificities 19-21. 

Much of the current tissue-based work has been performed on formalin-fixed 

paraffin-embedded (FFPE) tissue. This presents a challenge, as even with dewaxing, 

the paraffin present may still interfere with spectra and hence results 22,23. It has also 
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been shown to vary depending on the substrate upon which the tissue is placed 24. 

Previous studies have demonstrated the ability to differentiate low-grade and high-

grade gliomas, meningiomas, and metastatic tumours, as well as producing a database 

of paediatric tumours to produce a classification model25,26. Differentiation of 

metastatic brain tumours has proven more challenging as results found some tumour 

types overlapped, for example adenocarcinomas, though there were points of 

differentiation identified in tumours of differing phenotype 27,28. New studies from 

Desroches et. al. have demonstrated the use of a hand held Raman probe 

intraoperatively obtaining an accuracies of 84-87% when differentiating tumour from 

non tumour brain tissue 29,30. 

No studies have yet been done using fresh frozen tissue to differentiate 

different types of adult primary brain tumours. Whilst frozen tissue also has its own 

complications, the closer tissue is to its natural fresh state, the more relatable the 

results become 22. This novel study therefore aims to determine the ability of both 

ATR-FTIR and Raman spectroscopy to classify non-tumour brain from gliomas and 

meningiomas using fresh frozen tissue in order to reduce the signal received from 

tissue fixation. To the authors’ knowledge this is the first study performed using fresh 

frozen tissue, comparing both Raman and ATR-FTIR spectroscopy on adult brain 

tumours. If successful, results from this study have the potential to open the door 

towards intraoperative use of spectroscopy to delineate tumour from non-tumour 

brain tissue. This would provide a major advance in the intraoperative diagnosis of 

brain tumours. 
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Methods 

Ninety-six cases of fresh frozen brain tissue comprising primary brain tumours both 

gliomas of varying grades and meningiomas, along with normal brain were selected 

from the Brain Tumour North West tissue bank, with ethical approval 

(NRES14/EE/1270). This tissue has been retrieved from the patient and then snap 

frozen on arrival within the histopathology department. Frozen sections are cut and 

allowed to defrost prior to spectral acquisition. This tissue was chosen for analysis as 

it has not previously been formalin-fixed and therefore is closest to fresh tissue 

allowable given the number of cases tested. The cases used in the study are shown in 

Table 1 below, categorised by tumour type. 

Ten-µm-thick frozen sections were placed onto 25 × 25 × 1 mm Raman-grade 

calcium fluoride (CaF2)-coated slides (Cyrstan Limited). A matched 4-µm-thick 

section stained with haematoxylin and eosin (H&E) was then cut to allow viable 

tumour areas to be marked and confirmed. Following this, spectrochemical 

measurements were performed on the unstained samples using both Raman and ATR-

FTIR spectroscopy, focussed on the viable tumour areas. 

Raman spectroscopy 

Spectra were taken from 20-25 sampling points within the tumour tissue area using a 

Horiba Jobin-Yvon LabRAM HR800 spectrometer over 1800-400 cm-1 wavenumbers. 

An air-cooled CLDS point mode diode 785 nm laser with a single edge filter (cut off 

to 100 cm-1) and an output power of 300 mW. This was done with a confocal hole of 

100 µm at a grating of 300 gr/mm and a ×50 objective. For each spectrum, 2 

accumulations each over 30 seconds were acquired. 
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ATR-FTIR Spectroscopy 

The ATR-FTIR spectroscopy measurements were performed on an Agilent Cary-600 

Series FTIR spectrometer. Measurements were taken in transmission mode with 32 

co-added scans over a range of 4000-400 cm-1 and a resolution of 4 cm-1. A 

background scan was taken prior to each sample with the same settings. Twenty 

sampling points were selected within each viable tumour area. 

Computational analysis 

Data collection and manipulation was performed within a MATLAB R2014b 

environment (MathWorks Inc., USA) using PLS Toolbox 7.9.3 (Eigenvector 

Research Inc., USA) with specimens first assigned to training, validation and test 

groups using the Kennard-Stone algorithm (see Table 2), where 70% of samples were 

placed into training and 15% each into validation and test groups. 

Pre-processing using Savitzky-Golay smoothing followed by multiplicative 

scatter correction (MSC), baseline correction, and vector normalization were 

performed. The spectra were cut from 1800-500 cm-1 [see Supplementary Information 

(SI) Figures S1 and S5)]. Following on from this, principal component analysis with 

linear discriminant analysis (PCA-LDA) or quadratic discriminant analysis (PCA-

QDA), and genetic algorithm with LDA (GA-LDA) or quadratic discriminant analysis 

(GA-QDA) were performed in order to determine the best analytical method 31. The 

training samples were used for model construction and the test set for the final 

classification evaluation. The validation group was used to prevent overfitting, once 

the model parameters are optimized according to the classification performance of 

this data set, making it sure that the training fitting performance is in accordance with 

the validation response. The optimum number of variables for GA-LDA/QDA was 

performed based on the average risk 𝐺 of misclassification in the validation set 32. The 
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GA routine was carried out during 40 generations with 80 chromosomes each. 

Crossover and mutation probabilities were set to 60% and 10%, respectively. 

Moreover, the algorithm was repeated three times, starting from different random 

initial populations. The best solution (in terms of the fitness value) was employed. 

LDA and QDA were employed to the PCA scores and GA selected variables based on 

a Mahalanobis distance calculation between the classes 32. 

 

 

Results 

Raman Spectroscopy 

From the 96 cases, 1911 spectra were collected. During pre-processing 30 spectra 

were removed due to poor quality, observed by a Hotelling T2 versus Q residuals test. 

As in Table 2, tumours were classified by type rather than grade. Following pre-

processing there were 159 spectra in class 1, 666 in class 2 and 1056 in class 3. 

Firstly, comparison was done between normal and tumour tissue, grouping both 

meningiomas and gliomas together (Figure 1, Table 3). This demonstrates that 94% of 

the cases were correctly classified as either tumour or non-tumour brain tissue, with a 

sensitivity of 98.8% and specificity of 41.7%. 

Following on from this the model was tested to determine if it could identify 

normal from meningioma from glioma (Figure S2 and Table 4). When asked to 

determine tumour by type the overall classification accuracy fell to 63.1%. Normal 

brain tissue was still detected with an accuracy of over 90%. Comparisons between 

each individual group are shown in the supplementary material. 

 
ATR-FTIR Spectroscopy 

The process was then repeated for ATR-FTIR spectroscopy. From the 96 cases, 1919 

spectra were collected; again during pre-processing 38 spectra were removed due to 
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poor quality, observed by a Hotelling T2 versus Q residuals test. Spectra were divided 

as above. Following pre-processing there were 159 spectra in class 1, 666 in class 2 

and 1056 in class 3. As for the Raman spectra, firstly, normal was compared to 

tumour (meningioma and glioma) with GA-QDA providing the best results, with a 

classification accuracy of 97.2% (Figure S7, Table 5). The sensitivity was 100% and 

specificity 66.7%. 

When comparing if the classification model could correctly identify normal 

versus meningioma versus glioma the accuracy fell to 79.2%, (Figure 2 and Table 6) 

however was still above that achieved with the Raman spectroscopy (63.1%). FTIR 

also gave higher accuracy results when comparing tumour to no tumour, 97.7% 

compared to 94%. 

 

Discussion 

The ability of vibrational spectroscopic techniques to detect brain tumours with both 

blood components 5-8,19-21 and formalin-fixed tissue 25,28 has been previously 

demonstrated with high accuracy levels. Studies using fresh frozen brain tissue are 

few and far between, with one study within the paediatric field showing an ability to 

detect different tumour types and a second trialling a hand held Raman machine 

intraoperatively slowly moving forward 26, 29,30. This study aimed to compare both 

Raman and ATR-FTIR spectroscopy using fresh tissue, which had previously only 

been frozen, in order to determine which provided the most accurate classification 

results as a precursor to developing a tool for intraoperative detection of primary brain 

tumours. We have shown that as compared to normal brain tissue, ATR-FTIR and 

Raman spectroscopy can both detect normal from tumour tissue with a high degree of 

accuracy (97.7% and 94%, respectively). However, when asked to determine tumour 



 9 

type, the accuracy of both techniques drops (79.2 and 63.1%, respectively). FTIR 

spectroscopy was however, considerably higher than Raman, perhaps demonstrating it 

is better placed to differentiate between the tumour types. The accuracy does though 

remain greatly below that offered by a conventional intraoperative smear diagnosis 

and thus would require improvement in order to be a clinically diagnostic tool. 

Though, these rates would allow for intraoperative delineation of tumour versus 

normal. Importantly, the sensitivity when comparing normal to tumour is high (87.1-

100%), meaning we are not over diagnosing tumours. The specificities are lower, 

though in this situation where a surgeon is aware of the presence of a tumour, high 

sensitivity remains the priority. One limitation of the study is the low number of 

‘normal’ i.e. non-tumour cases tested (n=8) as the majority of patients undergoing 

neurosurgery have a tumour. This is due to the low number of normal fresh frozen 

cases available within the brain bank. Therefore, if used clinically, a much larger 

number of normal samples is needed, the ability to test more background non-tumour 

brain is likely to improve the classification accuracy and specificity. 

Moving forward, discussion with clinicians is also required to determine what 

is needed from an intraoperative diagnostic tool; i.e., cancer versus non-cancer or a 

defined tumour type and grade. The output from the machine for the surgeon then also 

needs to be defined. The use of a sound has previously been proposed, to allow the 

surgeon real time feedback of the spectroscopic output 33. Easy to interpret, quick 

results would be required. Inter-user and inter-site consistency is also required.34 

 Overall, we have shown in this study and other research35 that spectroscopy 

may have potential in the diagnosis of intraoperative brain tumours; however, further 

work to improve classification would be required prior to clinical implementation. 
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Further work to allow for comparison of primary to metastatic tumours would also 

prove useful in providing clinical useful information in real time. 
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Table 1 Tumour samples selected for analysis, broken down by tumour type and 

WHO grade. 

 N WHO 

Grade 1 

WHO 

Grade 2 

WHO 

Grade 3 

WHO 

Grade 4 

No Grade 

All Cases 96 25 11 14 33 5  

Normal brain 8 N/A N/A N/A N/A N/A  

Gliomas 54 1 6 11 33 3  

Meningiomas 34 24 5 3 N/A 2 
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Table 2 Number of samples within the training, validation and test groups based on 

the application of the Kennard-Stone algorithm. 

Class Training Validation Test 

Normal 111 24 24 

Meningioma 466 100 100 

Glioma 739 158 159 
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Table 3 Results for classification models for normal versus tumour (meningioma and 

glioma) using Raman spectroscopy. Highlighted in red is the best classification 

model. 

 PCA-LDA PCA-QDA GA-LDA GA-QDA 

Accuracy (%) 93.3 94.0 91.5 91.8 

Sensitivity (%) 98.4 98.8 97.3 97.7 

Specificity (%) 37.5 41.7 29.2 29.2 

PPV (%) 94.4 94.8 93.7 93.7 

NPV (%) 69.2 76.9 50.0 53.8 

Youden’s 

Index 

35.9 40.5 26.5 26.8 

 

Correct 

Classification (%) 

Training Validation Test 

PCA-LDA 85.5 91.4 93.3 

PCA-QDA 93.4 94.3 94.0 

GA-LDA 84.3 90.7 91.5 

GA-QDA 86.6 91.8 91.8 
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Table 4 Results for classification models of normal versus meningioma versus glioma 

using Raman spectroscopy. 

 Normal Meningioma Glioma 

PCA-

LDA 

GA-LDA PCA-

LDA 

GA-LDA PCA-

LDA 

GA-LDA 

Accuracy 

(%) 

92.9 92.6 69.5 68.4 63.6 62.4 

Sensitivity 

(%) 

33.3 29.2 33.7 36.6 86.6 82.8 

Specificity 

(%) 

98.4 98.4 89.5 86.2 35.2 36.8 

PPV (%) 66.7 63.6 64.2 59.7 62.7 62.6 

NPV (%) 94.1 93.7 70.7 70.9 67.7 63.0 

Youden’s 

Index 

31.8 27.6 23.2 22.8 21.8 19.6 

 

Correct 

Classification (%) 

Training Validation Test 

PCA-LDA 59.0 62.5 63.1 

GA-LDA 66.1 68.9 61.7 
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Table 5 Results of classification models for normal versus tumour (meningioma and 

glioma) using IR spectroscopy, with the best classification model highlighted in red. 

 PCA-LDA PCA-QDA GA-LDA GA-QDA 

Accuracy (%) 92.1 87.1 94.1 97.7 

Sensitivity (%) 98.1 87.1 100 100 

Specificity (%) 12.5 87.5 16.7 66.7 

PPV (%) 93.7 98.9 94.1 97.5 

NPV (%) 33.3 33.9 100 100 

Youden’s 

Index 

10.6 74.6 16.7 66.7 

 

Correct 

Classification (%) 

Training Validation Test 

PCA-LDA 81.1 92.9 90.5 

PCA-QDA 93.3 86.2 84.5 

GA-LDA 91.5 95.4 92.9 

GA-QDA 96.7 97.9 97.2 
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Table 6 Results of the classifcation models for normal versus meningioma versus 

glioma using IR spectroscopy. 

 Normal Meningioma Glioma 

PCA-

LDA 

GA-LDA PCA-

LDA 

GA-LDA PCA-

LDA 

GA-LDA 

Accuracy 

(%) 

90.8 95.8 73.1 83.4 64.0 79.2 

Sensitivity 

(%) 

8.3 50.0 26.0 56.0 96.2 98.1 

Specificity 

(%) 

98.5 100 98.9 98.4 22.6 54.8 

PPV (%) 33.3 100 92.9 94.9 61.4 73.6 

NPV (%) 92.1 95.6 71.0 80.4 82.4 95.8 

Youden’s 

Index 

6.8 50.0 24.9 54.4 18.8 53.0 

 

Correct 

Classification (%) 

Training Validation Test 

PCA-LDA 62.8 61.7 64.0 

GA-LDA 83.1 84.0 79.2 
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Figure Captions 

 

Figure 1 Graphical representations of normal versus tumour (Meningioma and 

glioma) using Raman spectroscopy. (A) PCA-LDA, (B) PCA-QDA, (C) GA-LDA, 

(D) GA-QDA. 

 

Figure 2 Graphical representations of normal versus tumour (meningioma and 

glioma) using IR spectroscopy. (A) PCA-LDA, (B) PCA-QDA, (C) GA-LDA, (D) 

GA-QDA. 

 


